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Preface 

An experiment is an intervention in the operation of a working system. It is 
always done to learn about the effect of the change in conditions. Some con- 
ditions must be controlled; some, at least one. must be varied deliberately, 
not just passively observed. To avoid Chantecler’s mistake, the variation 
should not be regular. (You will remember that Rostand’s cock thought it 
was his crowing that made the sun rise.) All industrial experiments are 
interventions; unfortunately not all are irregularly timed interventions. 

It is impossible to make any very general statistical statements about 
industrial experiments. No claim is made here for the universal applicability 
of statistical methods to the planning of such experiments. Rather, we 
proceed by examples and by modest projections to make some judgments 
on some sorts of industrial experiments that may gain from statistical 
experience. 

Industrial experiments may be classified in several ways that carry impli- 
cations for statistical thinking. First, I put J. W. Tukey’s distinction between 
confirmation and exploration experiments, which might well be extended by 
the small but important classification of fundamental, or creative, or stroke- 
of-genius experiments. This book deals almost entirely with confirmatory 
experiments, a little with exploratory ones, and not at all with the last type. 
Confirmation experiments are nearly always done on a working system and 
are meant to verify or extend knowledge about the response of the system to 
varying levels or versions of the conditions of operation. The results found 
are usually reported as point- or confidence-interval statements, not as 
significance tests or P-values. 

A second way of classifying experiments is based on the distance of their 
objectives from the market. As we get closer to being ready to go into pro- 
duction (or to making a real change in production operations), it becomes 
more important to have broadly based conclusions, covering the effects of 
realistic ranges of inputs, operating conditions, on all properties of the 
product. The Fdrther we are to the right on the God-Mammon scale, the 
more useful large-scale multifactor experiments arc likcly to be. 
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viii PREFACE 

A third classification involves continuity of factors. If most factors in an 
experimental situation are continuously variable and are controllable at 
predetermined levels, the whole range of response surface methodology 
becomes available. These procedures are only cursorily discussed here, since 
there are already many excellent expositions in print. When many factors 
are orderable in their levels, but not measurable, the response surface methods 
become less useful. When many factors are discrete-leveled and unorderable, 
one's thinking and one's designs necessarily change to accommodate these 
facts. I t  is with these latter types of situations that this work is mainly 
concerned. 

A fourth classification distinguishes between experimental situations in 
which data are produced sequentially and those in which many results are 
produced simultaneously, perhaps after a lapse of time. Pilot plants, full- 
scale factory operations, and even bench work on prototype equipment 
usually produce one result at  a time. Storage tests, and clinical trials on 
slowly maturing diseases are examples of situations that are intrinsically 
many at a time, not one at  a time. They are always multiple simultaneous 
trials since a long time may be needed to fill in omissions. A very large 
number of such experiments have been carried out, and dozens have been 
published. They are strongly isomorphic with the corresponding agricultural 
factorial experiments. At the one-at-a-time end of this scale 1 believe but 
cannot prove that some statistical contribution is to be expected. No 
examples of completed sets can be given. 

Experiments vary in their sensitivity. In some situations the effect of 
interest A is four or more times the error standard deviation (T of the system, 
so that A/cr 3 4. In such cases, small numbers of trials (runs, tests, sub- 
experiments) are required, and replication is supererogatory. This happens 
most commonly in physical sciences, and in bench work when the experi- 
mental setup is familiar and stable. At the other extreme are situations in 
which A/a 6 1 ,  as is common in the biological sciences, including clinical 
trials, and in work on large-scale, even plant-wide, experiments, where 
uncontrollable variation is always present and small improvements are 
commercially important. Statistical methods can be well adjusted to this 
whole gamut, and the details ofthis coverage will be given in several chapters. 

The book should be of use to experimenters who have some knowledge 
of elementary statistics and to statisticians who want simple explanations, 
detailed examples, and a documentation of the variety of outcomes that 
may be encountered. 

CUTHBERT DANIEL 

Rlihicbcck, N o v  YuIk 
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C H A P T E R  1 

Introduction 

1.1 
1.2 
1.3 
1.4 
1.5 
I .6 
1.7 
I .8 

The Range of Indnstrial Research, I 
Scientific Methods, 2 
Making Each Piece of Data Wark Twice, 3 
First Stages in Planning Industrial Experiments, 4 
Statistical Background Required, 5 
Doing the Arithmetic, 6 
Sequences of Experiments, 7 
The Future of the Design of Industrial Experiments, 7 

1.1. THE RANGE OF INDUSTRIAL RESEARCH 

The connections between scientific research and industrial research are 
sometimes very close. In studying a new industrial use for the water-gas 
shift reaction, for example, industrial research workers would depend heavily 
on the theoretical and experimental results in the technical literature. In 
producing a new modification of a familiar dyestuff with somewhat improved 
lightfastness, one industrial organic chemist would start with a careful theo- 
retical study and search for the reievant literature. Another equally able 
chemist might prefer a wider search of alternatives directly in the laboratory. 
In attempting to find acceptable operating conditions to make a new petro- 
chemical, it might well be discovered that no basis for a theory exists until 
a considerable volume of laboratory work has been completed. 

A wide spectrum of degrees ofempiricism already exists, then, in industrial 
research. The word theory is used with entirely different references in dif- 
ferent parts of this spectrum. The word may be almost a term of derogation 
when used by a chemist working on a problem requiring a high degree of 
empiricism, to describe the work of another who has a good mathematical 
background but a less sound laboratory foreground. In such contexts the 
term in theory, yes is usually understood to be followed by the phrase in 
practice, no. Contrariwise, the experienced kineticist (even more so, the fresh 
graduate) may believe that the bench worker should use the term conjccfure 

1 



2 INTRODUCTION 

or the expression set of vagire andprejudiced hunches rather than the fine word 
theory to describe the set of bcliefs under which the latter is laboring. 

The effects of some factors on one property of an industrial product may 
well be broadly guessed or cvcn prccisely predicted from available theory, 
But no industrial product has only one propcrty of interest. It must be stable 
and inexpensive and small and inodorous and easy to use, and so on, through 
a list of perhaps 20 attributes. For many of these, little or no theory will be 
available. Even when theoretical methods might yield correct answers, it may 
be that no one is available who can use these methods expeditiously. Time 
will often be saved by simply “getting the data.” 

Most of my own experience with industrial experimentation has been near 
the empirical end of the spectrum just indicated, and this bias will show 
repeatedly in later chapters. The two-level multifactor fractional rcplicates- 
and other incomplete two-level factorials -which are one of the principal 
subjects of this work are quite surely of wide application when a broad range 
of experience must be accumulated economically in the absence of easily 
applied theory. Little, but still something, will be said about the prospects 
for other, more theoretically developed branches of industrial research. 

Real differences of opinion on how best to proceed may become very 
important. Theoreticians may judge that a problem should first be studied 
“on paper”; laboratory workers may feel certain that the primary necd is 
for more data. Compromises should be considered. Perhaps both vicws can 
be implemented at  the same time. If the theoreticians can tell the laboratory 
workers what data they would most like to have, the information may be 
produced more quickly than either group thought possible. This is so because 
more can be found out per run made or per compound synthesized or per 
product modification carried out than most experimenters realize. 

1.2. SCIENTIFIC METHODS 

The research worker is often able to see the results of one run or trial before 
making another. He may guess that he can improve his yield, say, by a slight 
increase in temperature, by a considerable increase in pressure, by using a 
little more emulsifier, and adding a little more catalyst. He will act on all four 
guesses at  once in his next run. And yet, in conversation, especially in genera1 
or philosophical conversation, he may state his belief in the value of varying 
onefactor at a time. Indeed many experimenters identify the one-factor-at-a- 
time approach as “the” scientific method of experimentation. 

Two different phases of research are being confused here. In the very early 
stages of any problem, operability experiments must be done, to see whether 
any yield or other desired property is attainable. After some set of operable 
or promising conditions has been established, the experimenter is very likely 
to continue trying simultancous variation of all factors he thinks may help. 
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When this no longer works, he may well decide that he must settle down and 
vary the experimental conditions one at  a time, in sequences that are natural 
for the system in question. This will often involve series of small increments 
for each of the continuously variable factors. Confusion appears when 
methods that seem appropriate for the later stage are claimed as valid for the 
earlier one. 

As the process or product gets closer to the market, more and more 
conditions and tolerances turn up as requirements. Toxicity, inflammability, 
shelf life, and compatibility with dozens of other materials may have to be 
studied. The tolerance of the product to a wide variety of circumstance of use 
begins to assume major importance. The research or development technician 
must now investigate a whole set of newconditions. He must be able to assure 
the producing and marketing divisions of his company that the product can 
be guaranteed safe, efficient, and operable under a range of conditions not 
studied when it was first being considered and developed. 

Because of the shortage of available technicians, because of the entire lack 
of any theory for some properties, because of the multiplicity of factors that 
may influence a product, and because of the other multiplicity of factors to 
which it must be insensitive, industrial research often differs widely from 
pure or basic research. In particular, more factors must be studied, and so it 
is often said, and rightly, that more data must be taken in industrial research 
problems than in pure research ones. 

1.3. MAKING EACH PIECE OF DATA WORK TWICE* 

It does not follow that the enormous amounts of data often accumulated 
in industrial research laboratories are entirely justified. Most experimenters, 
and most research directors too, 1 believe, have assumed that each piece of 
data can be expected to give information on the effect of one factor ar most. 
This entirely erroneous notion is so widespread and so little questioned that 
its correction should start right here wiih the simplest possibleexample to the 
contrary. 

A chemist has two small objects to weigh. He has a double-pan scale of 
fair precision and of negligible bias and a set of weights with excellent 
calibration. He would like to know the weight of each object with the best 
precision possible. He is to make two weighings only. His experience, habits, 
and common sense conspire to tell him to weigh one object (call it P )  and 
then to weigh the other, Q-carefuIly of course. For each object there will be 
one weighing, one piece of data, one weight. 

There is, however, a way to find the weight of each object as precisely as if 
ir had been weighed twice and the two weighings averaged. To do  this each 

* T h i s  cnpressian is due to W. J. Yotiden. 
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object must indeed be weighed twice. But we are allowed only two weighings 
in all. Hence each object must be on the scale pans twice. if the two objects 
are put in one pan and weighed together, we get an estimate of the sum of the 
two weights. To separate the components we must either weigh just one, or 
else find their difference. By placing one object in one pan and one in the 
other, we can, by balancing with the calibrated weights, find the difference. 
Calling the sum of the weights S = P + Q, and the difference D = P - Q, 
we see that the average of S and D measures the weight of P only, since Q is 
exactly balanced out. Similarly, the average of S and -D measures the 
weight of Q with P exactly balanced out. We have then weighed each object 
twice, in two weighings, each with the precision of two averaged weighings. 

The disadvantage of this “weighing design” is that no information is 
available until all the data are in. The reward for the delay is, in this case, the 
double precision. The moral, to be given extended emphasis and develop- 
ment later, is that each observation can be made to yield information on two 
(or more) parameters. indeed the number of times that each observation 
can be used increases steadily with the number of observations in each 
balanced set. What is required is plunning. In most cases, little or no infor- 
mation is extractable along the way. Finally a computation, usually quite 
simple, must be made to extract all the information at  once. 

The pronounced improvement of the (S ,  D) pair of weighings over the 
(P, Q) set becomes a minor matter when compared with the gains that are 
attainable when larger sets of weights or any other measurements are to be 
estimated. The simplest case was used here as an example that does not 
appear to have been mentioned since it was first pointed out by Hotelling 
(1 9421. 

1.4, FIRST STAGES IN PLANNING INDUSTRIAL EXPERIMENTS 

The stated aims of an industrial experiment are not the same at all of its 
stages, but the same broad desiderata seem to emerge repeatedly. We always 
want to know whether an effect holds fairly generally, and whether an ap- 
parent lack of effect of some factor is a general lack. Fisher’s determined 
emphasis on the importance of a broad base for scientific inferences can never 
be forgotten. It is not a counsel of perfection but rather a sine qua non for 
good industrial research. 

Some experimenters believe that they must be able to judge early which 
factors are going to be influential. They foresee, or think they do, that the 
experimental program will become unmanageably large if all factors are 
admitted for detailed study. But if factors are dropped from the active list 
too early, on the basis of relatively small numbers of data, it may take the 
research worker a long time to get back on the right track. 
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It is better to write down quite early a full list of all the factors that might 
influence the desired properties of the product under development. A valu- 
able exercise in planning an attack on a new problem is  to prepare a cross 
tabulation of all potential factors by all interesting properties of the product 
or process, This “influence matrix” should be a dated record of the ex- 
perimenter’s opinions about the effect(s) of each independently controllable 
variable on each property. Its use is discussed in Chapter 9. 

Within the limits of practicability it is desirable to look at each factor’s 
effects under a wide range of conditions or levels of the other factors. A 
stable effect, even at zero, over a wide range of settings of the other factors is 
reassuring because broadly based. On the other hand, if the effect of some 
factor varies, perhaps even changes sign depending on the settings of the 
others, this information is important and should be known early. Balanced 
or nearly balanced sets of runs provide the easiest way to learn about these 
situations. 

Perhaps the major departure of this work from others with similar subject 
is its attitude toward the assumptions that are usually made before experi- 
mentation is started. The standard assumptions of most statistical treatments 
are as follows: 

1. The observations must be a fair (representative, random) sample of the 
population about which inferences are desired. 

2. The observations are of constant variance (or at least the variance must 
be a known function of the independent variables), are statistically 
independent, and are normally distributed. 

3. Few or no bad values will be produced, and few missing values. 

Assumption 1 is for the experimenters to guarantee. The three parts of 
assumption 2 can often be verified, or at least refuted, by the data themselves. 
Responding to the myriad ways in which data fail to meet these requirements 
will be a major part of the effort. Assumption 3 is violated in a large number, 
perhaps 30%, of all industrial experiments. Methods are given for spotting 
bad values, and for drawing valid conclusions, though often with reduced 
precision, in spite of these defects. 

1.5. STATISTICAL BACKGROUND REQUIRED 

I assume that the research worker reading this book knows a few of the 
fundamentals of applied statistics. Foremost among these are the following: 

1. The prime requirement for drawing any valid inference from experi- 
mental data is that the inferrer know something about the way in which 
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the data (a sample) represent nature (the population). The prime require- 
ment for the validity of any conclusions drawn from the study of experi- 
mental data is that the data be a real sample of the situations to which 
the conclusions are to apply. 
The basic terms-statistic, parameter, sample mean, sample standard 
deviutioti, standard error of a mean, regression coeflcierit, leust-sqirccres 
estimate-should all be familiar. They will all be defined and described, 
but if the reader is encountering many of them for the first time, he will 
not find these pages easy reading. 
The most pervasive generalization in the whole of statistics is the Central 
Limit Theorem. Its effect is to make averages ofindependent observations 
more nearly Gaussian in their distribution than the error distributions 
of the single observations. Since a large proportion of the parameter 
estimates we make are averages, the central limit theorem must be 
working for us a large part of the time. This comforting circumstance 
cannot account for the apparent “normality” we will repeatedly find in 
residuals, however, since they are heavily dependent on the single ob- 
servations themselves. For these we must believe that a considerable 
number of small additive, nearly independent factors are responsible. 
No quantitative knowledge or application of the theorem is ever neces- 
sary. It simply operates, like a law of nature, but, unlike other laws, 
generally in our favor. The reader is referred to Cram&r [I9461 for 
an illuminating discussion of the central limit theorem and of its ante- 
cedents. 

6 

2. 

3. 

1.6. DOING THE ARITHMETIC 

Many research engineers and industrial scientists are repelled by the mo- 
notonous and extensive arithmetic that statistical texts and handbooks seem 
to demand. My sympathies are with them; much of this drudgery is un- 
necessary. Nearly all the arithmetic in this book has been done by hand, 
perhaps on a desk calculator. Intelligent coding and rounding are of the 
essence and frequently result in reducing time, as well as errors, to a small 
fraction of their former magnitudes. 

When 10 or more experiments (or responses in a single experiment of size 
16 or larger) must be analyzed, time will be saved if the standard algorithms 
(for the analysis of variance, for Yates’s method in 2” plans, for partially 
balanced incomplete blocks) are available on a computer. Do not consider 
any proyrmt that does not comprrte and print residirals automatically, pref- 
erably roimded to two digits. 

The plotting of cumulative empirical distributions of residuah on a 
“normal” grid is again a tedious job when done 8 s  proposed in the few 
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textbooks that mention it. But when the number of points is large, the job 
can be greatly shortened. Standard grids for N = 16,32 are given that require 
no calculation of probability points. All large computers have been pro- 
grammed to a fare-thee-well to make approximate plots without special 
peripheral equipment, and only approximate plots are needed. I have found 
too that, when the number of points exceeds 100, it is usually necessary to 
plot onIy the largest 25 or so (including both ends). As soon as the plotted 
set “point” straight through the 50% point, there is no nced Lo continue 
plotting. 

1.7. SEQUENCES OF EXPERIMENTS 

‘The analysis of sequences of agricultural experiments has been studied 
extensively by Yates and Cochran [1957, pages 565 ff.], and much can be 
learned from this work. Thc tlesigri of sequences of industrial experiments 
is much less fully developed, although economical augmentation of early 
experiments seems to be crucial in industrial research. The earliest work in 
this area was by Davies and Hay [1950]. Less clear, but more economical, 
augmentations were published in 1962 [Daniel]. [Although trend-robust 
plans (Chapter IS) are carried out in sequence, they are not really adaptive 
designs but have to be carried all the way before effects can be estimated.] 

1.8. THE FUTURE OF THE DESIGN OF 
INDUSTRIAL EXPERIMENTS 

Major new developments in the design of industrial experiments seem to 
me to await the appearance of well-educated statisticians who want to work 
in close touch with industrial scientists. Many mathematical statisticians are 
under the illusion that they and their graduate students are writing for a 
future which they forsee without benefit ofdetailed knowledge of the present. 
A tiny proportion of their work may be remembered 20 years from now. 

As in the past, many developments will come from scientists and engineers 
with extensive experience in industrial research. But we need in addition a 
cohort of modest graduate statisticians who recognize the productiveness o f  
going directly to industrial scientists to find out just how they do their re- 
search. Far too many graduates, and even some senior statisticians, are 
willing if not anxious to tell scientists how to plan their experiments, in 
advance of knowing just how such work is now done. There are, fortunately, 
a few outstanding exceptions. I think especially of the work of Box, Lucas, 
Behnken, W. G. Hunter, N. R. Draper, and their associates on “nonlinear” 
design. A shortcoming of this book is its lack of any treatment of these 
plans- .an omission due to my own lack of experience with them. 
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Simple Comparison Experiments 

2.1 An Example, 9 
2.2 The Effects of n Factor? 10 

2.1. AN EXAMPLE 

The example is taken from Davies [1956, Ed. 2, printing 1971, pages 
12-18]. Only one criticism is to  be made, and that with some hesitation, since 
this is the fundamental work on industrial experimentation (from which I 
for one have learned more than from any other book). 

We quote from Davies, Section 2.21 : 

The experiment was required to test whether or not treatment with a certain 
chlorinating agent increased the abrasion resistance of a particular type of rubber. 
The experimenter took tcn test-pieces of the material and divided each piece into 
two. One half was treated and the other half was left untreated, the choice of which 
half of the specimen should receive the treatment being made by tossinga coin. The 
abrasion resistances of the ten pairs of specimens were then tested by a machine, the 
specimens being taken in random order. 

Perhaps most experimenters would prefer to call such a collection of data 
a test, so as not to invoke the grander connotations of the term scientific 
experiment. It is not clear from the description or from later discussion 
(page 43, Figure 2.5) whether all 10 specimens were taken from one sheet of 
rubber. Since we need a straw man for this discussion, let us assume that the 
10 were indeed a random sample from a single sheet. Randomization of the 
choice of half piece for chiorhalion plus random allocation of sample 
points in the sheet of rubber have guaranteed that any differcnce found and 
judged to be real has a good chance of being confirmed if measured over the 
whole sheet. 

But the data cotnefrom one sheet of rubber. The pains taken to obtain 
precise and “unbiased” data have resulted in our getting into our sample 

9 
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only a small corner of the population about which we suppose the experi- 
menters wished to make a statement. If other sheets, from other batches or 
from other manufacturers, would respond differently to this treatment, then 
we will be misled by the results from our single sheet. The conclusion from 
these data, expressed as a “95% confidence interval on the true effect of 
chlorination,” is applicable only to the average effect for all parts of the sheet 
sampled. 

I t  may well have been that only one sheet of the particular type of rubber 
under study was available. But if more than one could have been sampled, 
more valid conclusions would have been reached by sampling them all. 
Sampling 10 sheets chosen at  random would be best. Moreover, if several 
manufacturers produced this type of rubber, still greater validity could have 
been guaranteed by sampling all, even if only with one specimen from each. 

An important function of the design statistician is to give the experimenter 
pause, before he takes his data, in order to help him avoid the commonest 
of all mistakes in experimental (and testing) work. This is the mistake of 
premature generalization. It is most frequently caused by assuming that the 
data are a proper sample of a wider population than was in fact sampled. 

It is time for Sermon I:  “The Contribution of the Statistician (S) to the 
Experimenter (E).” It will be a short one. 

The major contribution of S to E is to help him obtain more valid, that is 
to say, more general, more broadly based, results. It will often happen that, 
when this point has been adequately covered, no need is felt, or time available, 
for repeated measurements under closely matched conditions. The most 
useful replication will be that which best samples the population of con- 
ditions about which E wants to make inferences. In this sense, the best 
replication is done under different conditions, not under the same conditions. 

Although we are by no means through with simple comparisons, the 
experimenter will perhaps see a new answer to the question usually asked 
rhetorically: “What can statistics do for me?” The statistician reader, in 
turn, may give a somewhat new emphasis in answering the question, “What 
is the key assumption underlying the valid use of a confidence-interval 
procedure?” His response should be that we have a set of observations with 
known correlations, preferably zero, sampling the popularion whose pavmn- 
eters we want to estimate. 

2.2. THE EFFECT OF A FACTOR? 

The patient experimenter has been thinking that this is a11 very simple 
minded and not really what he had hoped for. “Real problems are more 
complicated. Even chlorination is not that simple. There are many chlori- 
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nating agents, there are degrees of chlorination. and so on. Surely we are 
not to be told that the effect of chlorination is going to be decided on so 
flimsy a basis, with a11 that fuss about sampling rubber and nothing about 
sampling the conditions of chlorination.” 

Just as we tried to broaden the base of our experience by better sampling 
of the particular type of rubber, so too must we sample better, and system- 
atically, the conditions for chlorination. If we do not, we may report “the 
effect” because of our choice of conditions, even though other levels, not 
greatly different, might show larger effects. The rest of this book is concerned 
with various aspects of this question. 
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Two Factors, Each at Two Levels 
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3.5 Intermediate Summary, 21 
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3.6.4 An Example, 26 

3.7 Summary, 28 
Appendix 3.A The Analysis of Variance Identities, 2.8 

3.1. INTRODUCTION 

The study of the effects of varying a single factor is usually only a prelude 
to the study of the effects of varying several factors. Only minimal generality 
is gained by repeated variation of a single factor, with everything else held 
constant. This practice is commonly justified by the claim that “we have to 
start somewhere,” We do indeed. 

Researchers faced with serious scientific problems have long records of suc- 
cess in choosing the most important factor and then studying it thoroughly. 
Later, if not sooner, however, they usually need to learn about the simuG 
taneous impact of two or more independent variables, or at least about the 
response to variation of one factor under more than one set of conditions. 
If one of two catalysts proves definitely better than the other in cracking a 
particular petroleum feedstock, it is inevitable that the experimenters will 
want to know whether it is also better, and, if so, to the same degree, in 
cracking another stock. They then have before them the simplest two-factor 
plan, a z2. 

13 
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The distinction between factors with qualitatively different levels (or ver- 
sions) like the two just mentioned and “quantitative” factors (like pressure, 
temperature, chemical concentration) will be made frequently, but at the 
moment is not important. 

3.2. FACTORIAL REPRESENTATIONS 

Suppose, to fix fundamental ideas, that each of two factors, A and B, has 
been varied, and that the results (responses, y’s) are as follows: 

B 
1 0 

B 
0 1 

0 
I 

A 
0 

A t  
66 82 1 or, in general, 
44 60 

Y l l  Y12 

y21 P22 

We hardly need to know the error standard deviation for the “data” on 
the left to be able to judge that we have before us the ideal case. Varying A 
from its low to its high level has produced the same change in response 
(44 - 66 = 60 - 82 = - 22) af both levels of 5. Varying B from its low to 
its high level has produced a change in response of -t 16 at both leuels of A. 
We can speak, then, of the udditiuity of effects of factors A and 5 and can 
safely symbolize the situation by writing, first generally, 

(3.1 ) &j  = bo + bix,i + bzxzj, 

where x l l  = 0, signaling low A ;  
xL2 = 1, signaling high A ;  
xzl = 0, signaling low B; 
x22 = 1, signaling high B; 
i indexes the levels of A, i.e., i = I ,  2; 
j indexes the levels of B, i.e., j = 1,2; 
bo is the value of Y t , ,  i.e., at the low levels of both A and B;  
b ,  is the increment in Y caused by changing the level of A :  it is the 

bz is the increment in Y caused by changing the level of B: it is the 
“effect of varying A”; 

“effect of varying B.” 
For the data given above, this becomes 

x j  = 66 - 22x1, + 16x2,. 

We will consistently use Y (capital) to indicate fitted or predicted or 
“regression” values, and y (lowercase) to indicate single observed results. 
Variables such as x ,  and x2 in Equation 3.1 that can take only two values 
(here 0 and 1) are called indicator (or dummy) variables. 
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In an equivatent nomenclature, used because of its greater symmetry, we 
may put x, = - 1 at low A, and = + 1 at high A, and similarly for x2. The 
effects are now measured as deflections up and down from the general average 
( y .  ,) of the results. The half effects are commonly symbolized by their cor- 
responding letters, with carets superimposed to indicate that these are esti- 
mates, not parameters. The fitting equation is now written as 

(3.2) yi j  = y . .  + AXli + Bx2j 

or, for the imaginary data just given, as 

(3.3) = 63 - IIx,, + 8 ~ 2 j .  

All three constants in (3.3) are calculated from the data: 

J’,. = ~ [ Y I I  + Y 2 1  + J’12 + Y Z ~ ]  = )[66 + 44 + 82 + 601 = 63 
A  ̂ = “22 + Y21) - (YL2  + Y l t l l *  

B = m y 1 2  + Y22) - ( Y l l  + Y ? A l *  

=: 4[(60 + 40) - (82 -t 66)] = $(I04 - 148) = -? 
= -11, 

= fC(82 + 60) - (66 + 44)] = i(142 - 110) = 7 
= 8  

In tabular form, which avoids some repetition, we have 

R 
0 1 Row Average ,%Effect 

I - - 
Column Average 
8-Effect 

‘ , @ = 5 5 - 6 3 = - 8  

Statisticians are wont to write (3.3) in a third way, which is more useful 
when there are more than two levels ofeach factor: 

1’. - (3.4) r j  - Y , .  + 8, + P j s  

where now the i levels of factor A can be numbered I ,  2, . . ,and so also forj. 

* These expressions arc our first examples ofcontrssts, that is, of linear fiinctions of variables- 
here yI, y2. y3, )’,.--whose coeficienls sum to zero. Thus 1 f I - I - I = 0. All efTecls are 
estimated by contrasts. 
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Accelerating our snail’s pace, let us suppose that a 2’ has been done but 
that the results are as follows: 

H 
0 1 4 
----. - 

43 

- 8  + 8  

Note that the y .  ., A, and B are the same for these data as for the earlier set. 
Rut  now there is a discrepancy of rt I in each cell. We can represent the de- 
composition of the observations into four parts as follows: 

67 81 63 63 + l  - 1  
- 1  4-1 

(3.6) Y i j  = Y . .  + A  ̂ xi1 + BXZJ t A 3  ~trxzj. 

Thus the effects A  ̂ and 8 do not give an exact representation of the four 
observed y-values. If a( y )  is of the order of I, this discrepancy is put down to 
error. 

If a(y) is 0.1, we are confronted by real lack of fit. The factors A and B are 
said to interact-they no longer operate exactly additively. We can add a 
fourth term to our equation, which will obviously have to be of second order, 
and equally obviously cannot be of the form xf or x i  (these are meaningless) 
and so, again obviously, must be of the form Cx x2. We will make the new 

A % x , ~ x ~ ~ .  I t  is called a two factor interaction. In the example we are flogging, 
A% = 1. This can be calculated directly from the data by using the tiny 
malrix 

constant easier to remember by writing it as Ab , and so the new term is 

[-: -:I 
at the end of(3.5). Thus we have 

where the second form makes it clear that Â B depends on the difference 
between the A-effect at high Band the A-effect at low B. The term “two-factor 
interaction” will be abbreviated as 2fi throughout this book. 

A^B = i ( Y ‘ 1  - Y2l  - Y12 t Y22) = “22 - Yt2)  - ( Y Z l  - Y ’ d l ,  

In the representation of (3.4) we can now write 

(3.7) yij = Y , .  + zi + b’j + ijiij, 

where the first three terms are unchanged in meanings and values from (3.4). 
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The pij nomenclature is widely used [Brownlee 1965, Scheffc 19581 but is 
only minimally useful for the 2’ since it contains only one degree of freedom 
(d.f.), although there are four i, j combinations. 

Adding two more self-explanatory modes of specification of the four 
“experimental settings” for the 2’. we have Table 3.1. 

TABLE 3.1. 
FOUR ALTI:I<NAT’IVE REPRESENTATIONS 01: m k  EXPERIMENTAL CONIXTIONS 

wit  I H E  2 x 2 FACTORIAL PLAN, WE 22 + ‘ I  

Symmetrical 
Digital Coordinates 

Run No. Uppercase A B x, x2 Lowercase Response 

1 AoBo 0 0  - 1  - 1  (1) J’I 

.- - --- 

2 AIBO I 0  + I  - 1  0 Yz 
3 AOBI 0 1  - I  + I  b 1’3 

4 A,BI  I 1  + I  f l  nh Jr4 

The four nomenclatures are designated here as uppercase, digital, sym- 
metrical, and lowercase. They are, of course, ways of specifying the experi- 
mental conditions, not the responses. The uppercase symbols give levels of 
factors by subscripts; the digital symbols are two-digit numbers: O0,Ol. etc., 
and are simply the subscripts of the uppercase symbols; the symmetrical 
coordinates are the levels of xi and x2 restricted to be + I  or - 1 .  The 
lowercase symbols are the most compact, since they use the absence of a 
letter to indicate the lower level, and the presence of a letter to indicate the 
higher level, of the corresponding factor. 

Returning to our “concrete” example, the reader who is following closely 
will see that !he fitting equation for these four values in the factorial repre- 
sentation is 

3.3. YATES’S ALGORITHM FOR EFFECTS IN THE 2’ 

We start with the ridiculously simple case of the 2’, that is to say, a orte- 
factor two-level experiment, and consider Table 3.2. The experimental con- 
ditions are indicated by ( I )  and a, and the results by y, and y,. The columns 
headed T and ( A )  show how the data would be treated to find twice the 
mean and twice the A-effect. To make a short story long, we add the pair 
and then Subtract y ,  from y,. To get the two equation constants, we divide 
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TABLE 3.2. 
TABLE OF SIGNS AND YATE’S ALGORITHM FOR TIE 2’ 

Spec. Obs. 7’ - 2y. ( A )  - I  = 22 ~ ;Iy;,l N; 

(1 )  Y I  + I  
(I J’2 + I  - t l  Y 2  Y2 - Y l  ( A )  

by 2’. The fitting equation is then 

Y = y .  + A X I ,  

where x, is the indicator variable that takes the values - 1 for low A and -I- I 
for high A. We have omitted the fussy subscript i here. 

For the 22 we also handle the numbers one pair at a time. As Table 3.3 
shows, adding numbers in pairs removes the effect of factor A. These sums 
are entered in the first two lines ofcolumn 1. We recover the simple A-effects 
by taking differences between the pairs as in the last two lines in column 1. 
From the name of each of the four entries in column 1, we see how these 
must be combined to give our effects (each multiplied by 2’). Adding the 
pairs of column I, we get T (the total) and (A), the contrast-sum that mea- 
sures 4A. These are shown in the first two lines of column 2 of the next table, 
Table 3.4. We see, too, that the difference between the low-B sum and the 
h igh4  sum will give the total B-effect (=4@, and that the difference between 
the two A-effects will give 4 h .  

TAHLE 3.3. 
PARTIAL COMPUTATION OF FACTORIAL EFFECTs 

FOR THE 2’ BY YATES’S ALGORITHM 
_ _ _ _ ~ _ _ _ .  

Spec. Column I Name of Sum or Difference 

(1) (1 -t (1) L o w 4  sum 
n cib + b High-B sum 

b rt - (1) A-effect at low B = A, 
rib ttb - h A-effect at high B = A^2 
--- ____ 

Written out in such detail, these directions may not seem timeworthy, but 
this algorithm is wonderfully compact when n = 3 or more, and we will show 
further uses for it later. In Table 3.5 the data that follow (3.4) are put through 
this computation for practice. The panel on the right is an exercise for the 
reader. [In this table, as in many others presented subsequently, (0), (l), (21, 
etc., in the heading designate column 0, column 1, column 2, etc.] 
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TABLE 3.4. 
CoMPimE COMPUTATION oI FACIOKIAI. EFFECTS I O K  

THE 2' UY YATFS'S ALGORITHM 
-_ ._ - 

Spec. Column 1 Column 2 Name 
____ 

,, 
( 1 )  ( I  + (I) ((6 + 6 t n + (1) 1 = 4JJ.. 
a crb -1- h rtb -- b 4- o -- (I) ( A )  = 4A* 

(0) ( 1 )  12) (3) (4) 
Spec. Obs. (2) i 4 Name 

( 1 )  67 110 252 63 v;.  
rc 43 142 -44 - 1 1  A 

6 81 -24 32 4- 8 s 
(I 6 G I  -20 4 + I  AB 

19 

Obs. 
(An Exercise) 

1 1  
It 

35 
51 

h n - ( l )  o h + b - a - ( l )  ( B ) = 4 B  
fib a6 - b o6 - h - n + (1 )  ( A n )  = 4AR 

* The symbol ( A )  will be used in this work to denote the 
total eflect of A. As mentioned in the text. it is called a 
"contrast-sum" and is always 2"A. 

TABLE 3.5. 
SAMP1.E COMPUTATION FOK A 2' 

We can see how well the equation without the interaction term fits the 
data by reversing the algorithm and setting A R  = 0. This is done most 
simply by writing the effects in inoerse order, carrying through the same set of 
additions and subtractions, and reading off the fitted values in inverse 
standard order, as in Table 3.6. 

TABLE 3.0. 
REVERSAL OF YATPS'S AL.GOKITIIM TO COMPUTE FiTr~i>  VALUE^ 

PROM EFFECTS 

EtTecc (0) ( I )  (2) = Y Spec. y d,  = y - Y 
-- . - -- 

A% 0 8  60 r;b 61 1 
ti 8 52 82 6 81 - 1  

A - 1 1  8 44 ir 43 - 1  
Y 63 74 6G (i) 67 1 
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The residuals, d, = y - Y, are forced to be of the same magnitude and 
to have the signs of (AB) because we are fitting three constants to four 
observations. We know that the addition of an interaction term to our 
fitting equation will give us an exact fit. There is then but one d.f. in the 
four residuals, rather than four separate measures of lack of fit to the additive 
model. 

3.4. INTERPRETATION OF A FACTORIAL EXPERIMENT 
WHEN INTERACTIONS ARE PRESENT 

As we glance at the factorial representation of our 2’ given by (3.8), we 
may think that the last term, having a notably smaller coefficient than either 
of its predecessors, should be dropped. Expressing the same idea in another, 
equally tendentious way, we may say that the equation using only the 
additive main effects represents all data points with residuals of & 1. And 
yet, and yet, we must not forget that the two simple A-effects A ,  and A2, 
- 24 and - 20, may for some situations be seriously different. If the average 
random error of observations is 0.1, and if the experimenter has a physical 
model that requires additivity of the effects of A over the range of B under 
study, then the data have sufficed to reject his model. 

Our example is too small, as well as too fictitious, to interest us further 
for its own sake. But a warning and an aid to clarity are in order. Many who 
use the effects-and-interactions mode of description do not notice that an 
apparently small interaction may have serious consequences. 

Representing the ratio of the two simple effects, All/&, by 1; and the ratio 
of the interaction to the average main effect, A%/& byf, we have 

P 9 - P  I’ = -- or, iff = -, then 1 - f  I ’ = -  

1 +-7” 4 4 + P’ 
(This formula has the pleasant property that it remains true even if one 
forgets which ratio is I’ and which f.) We see that, iff = 3, I’ = 4. Thus we 
might well find A significant and AB not, and so might ignore the fact that 
the data are “trying to tell us,” namely, that the A,-effect is only one third of 
the A,-effect. 

When the interaction is as large in magnitude as a main effect, we have 
f = 1,  and so I* = 0. In words, A has no effect at one level of B, and all of its 
effcct (and so twice the average, A) at the other level of B. There are many 
examples of this in the pubtished literature, but none has been pointed out 
explicitly. 

When the 2fi (betwcen two two-level factors) is of nearly the same mag- 
nitudeasbothmaineffects, thereisagain a better way todescribe thesituation. 
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Suppose that - A  = B = A B  = 1. Then the average responses will look 
like this: 

B 

A rJ with mean zero, 
- 3  1 

or like this: 
B 

with mean 20. 
A 1 :: :: 1 

There is one contrast”, not three, and one sentence that describe the 
situation completely. The contrast is [ ( l )  + b + ab - 3a-J; the sentence is: 
“The condition a is adverse (or advantageous) and the other three combi- 
nations of levels of A and B are indistinguishable.” This appeared in the 
classic 2’ experiment on beans given by Yates [1937]. In his symbols, 
-S i K SK, and all three were significant. I t  might well happen in 
another case that all three effects taken singly were nonsignificant, but that 
the contrast given above was highly so. 

3.5. INTERMEDIATE SUMMARY 

The summary takes the form of Sermon 11. When you find interactions 
that approach in magnitude one or more of their component main effects, 
you should examine the combined impact of the effects orid the 2fi by thc 
reverse Yates’s algorithm. You will sometimes find that all taken together 
pile up in some part of factor space to produce very large (or very small) 
values there and little or no difference elsewhere. As a general rule: Ifan 
interaction is one-third or more of a main effect, do not report results in terms 
of main eflects and interactions. Interactions are only a statistical (and hence 
descriptive) model’s way of telling you that the simple additive model is 
not working. What is  working can sometimes be seen by going back to the 
data or to the values produced by the fitted model. Interactions are then a 
sort of lack of fit; they are residuals from the fitting of an additive model. 
They do not always tell us very clearly what to do next in the 22 since the 
interaction appears in all four cells, but we will use them in many more ways 
in more complex situations. 

* The reader will remember that a contrast is a linear function, usiially of responses, J’,, of the 
form qy,, where q = 0. The ci are exact constants. 
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Post Scriptitni. There is still another method of reporting interactions 
(and main effects) that is even more obscurc than just the giving of their 
estimates, and that is to assign a “mean square” to each, to judge their 
significances individually and to lcave the matter at that. This practice will 
be documented and deplored later. 

3.6. THE REPLICATED 2’ 

3.6. I .  
We have usually assumed that the average random error (standard 

deviation) of observations is negligible compared to all effects found; 
otherwise we have assumed that the average error is exactly known. These 
unrealistic assumptions were made in order to expatiate on the definitions 
of the factorial parameters, on their interpretations, and on their limitations. 

But 0 is usually not known and usually must be estimated from data, 
most simply by replication. The two advantages of a properly replicated 
22, a 2 2 + r  then, are that a current estimate of the standard deviation D is 
obtained, and that each parameter is estimated with smaller variance a2/4r. 
Further replication will give better and better estimation of error and more 
and more precise parameter estimation. 

Most readers will know what is meant by proper replication. If care has 
been taken to randomize the allocation ofexperimental units to “treatments,” 
that is, to the four specified experimenta1 conditions, the replication is quite 
surely proper. 

Randomization is a form of insurance against two sorts of bias. An un- 
randomized experiment may give biased parameter estimates and a biased 
estimate of the error variance. The experimenter may then carry out entirely 
meaningless tests of significance, and he may compute “confidence intervals” 
which are wrongly centered and of incorrect width. 

The hazards of nonrandomized tests or experiments are widely different 
in different sciences, even in different laboratories. It does seem to be the 
case that a very large part of all scientific and engineering data (perhaps 
90%) is taken under nonrandomized conditions. We cannot simply condemn 
all these experiments and all these data as worthless. Let us rather indicate 
some of the conditions that make randomization more or less needful. 

General Remarks on Replication 

3.6.2. Limitations of Randomization 

Although the “state of the art” is not a quantifiable measure, there can be 
little doubt that some fields or research exist which are steady enough and 
precise enough to advance for long periods with no need for randomization. 
A classic example of repeated data that required no randomization whatever 
is provided by Michelson’s nineteenth century measurements of the velocity 
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of light. They were taken in sequences of several hundred over several years, 
and on several experimental setups. Even though later colleagues were not 
satisfied, these measurements were “all right” and gave a durable estimate 
of the mean velocity of light in air, along with an excellent estimate of the 
random error of the measurements. As Walter Shewhart told me long ago, 
“the set of several hundred measurements were in as good a state of statistical 
control” as any set he had seen. By “a state of statistical control” Shewhart 
meant that successive observations evidently varied only by random inde- 
pendent disturbances of zero average (no drift) and of constant variance. 

As a more current, but imaginary, example a physical chemist who wishes 
to check or to modify Benedict’s equation of state for a new gas mixture 
will surely standardize or calibrate his equipment with familiar gases or 
mixtures, and will then not look back by making further repetitions. He will 
vary pressure, temperature, or even trace components in the order that is 
technically most convenient. If his data permit satisfactory estimation of 
all free parameters in the equation, with perhaps 10 or 15 extra points to 
judge goodness of fit and to check for drift, no need for randomization is 
apparcn 1. 

To take an cxamplc at thc other extreme, in which it is apparent that 
several biased estimates of parameters were published, the 15 reports on 
the “solar unit” (average distancc of the earth from the sun) appearing 
between 1895 and 1961 each gave an estimate of this unit together with 
an cstimate of its error, or at least “spread” (sec Youden [1962], McGuire 
et al. [ 19611). Each new estimated value lies outside the spread givcn by its 
predecessor! It is not easy to see how randomization could have been used 
to get a fairer estimate of error. 

When a detailed physical (or chemical or biological or psychological) 
mathematical model exists, which diverges clearly from some alternative 
or competing model, it may well happen that a single run will be decisive. 
Good experimenters are sometimes able to make tests under just a few 
differing conditions that provide decisive evidence when the expected 
difference is large. A large difference is of course one that is a large multiple 
of its standard error. In 1912 the estimated advance in the perihelion of 
Mercury that was not accountable for by Newtonian theory was 43 seconds 
per century, not a large amount by most standards. But this difference was 
10 times its estimated standard error, and that was enough to justify two 
expeditions to the tropics (to make the first tests of the theory of relativity). 

When we come to great experimenters--and we do not come to them 
often, or they to us---the requirement of randomization is derisible. Their 
reportable experiments are nearly always crucial; results must strike all 
(well, nearly all) competent readers “between the eyes.” One or more who 
are not convinced are likely to plan and carry out an experiment that will 
supply striking disproof or, possibly, confirmation. Thus these workers do 



24 TWO FACTORS, EACH A T  TWO LEVELS 

practice serious and not trivial replication, since an experiment repeated 
in another laboratory is a more severe test of real effects than is any repetition 
in a single laboratory. This is hardly done, however, to conform to some 
statistical canon of unbiasedness. It has been part of the scientific code for 
centuries that one man’s work must be verifiable by another’s, at least by 
some other’s. 

We now come to experimental situations in which randomization, 
although theoretically desirable, is not decisive, not needed, perhaps not 
even sensible. Suppose that a large number of trials, (say 100) have been 
made with careful randomization, and that 100 more have been made with 
no such precaution. The sets come from similar but not exactly duplicate 
experiments. If analysis of both sets shows no appreciable difference in 
error structure, it would be doctrinaire to insist that all future trials be 
randomized. Perhaps a fraction, say one quarter, should be, just to keep a 
rough monitor on the stability of the system under study. This is once 
more what Shewhart demanded when he required evidence that a system 
was currently in a state of statistical control. 

We do not suggest that randomization be ignored just because “things 
appear to be going along all right.” We may not know how nearly all right 
things have been going until some serious randomized trials have been 
carried out. We do suggest that randomization, although generally sufficient, 
may not always be necessary. Rut  this decision requires evidence, not just 
optimism. 

There are many cases in which randomization is difficult, expensive, 
inconvenient. The random allocation of differing experimental conditions 
to experimental units is sometimes upsetting to the experimenter. This 
reaction may be much more than just a natural response to an unfamiliar 
device. If the system under study takes a long time to come to equilibrium 
after a sudden willful change in the level of some factor, then experimental 
work, and even plant production, may be slowed to an unacceptable rate by 
such a change. Similarly, if a complex system must be partially dismantled 
to vary some structuraf f&ctor, it is not likely that random variation of that 
factor will be permitted. The statistician’s way to accommodate such factors 
is of course to use “split-plot” or “partially hierarchal” designs. These plans, 
discussed in Chapter 16, have the discouraging property that the effects of 
the easy-to-vary factors are always more precisely determined than are 
the effects of the hard-to-vary factors. 

Perhaps this paragraph should be entitled “Conditions under Which 
Nothing Can Be Done.” Agricultural experimenters cannot take a random 
sample of years in which to compare varieties or conditions of cultivation; 
sometimes they cannot even get a random sample of seeds or test animals. 
Blast-furnace operators cannot assign different coke charges to a furnace 
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at random. Lung-cancer researchers cannot randomly assign cigarette 
loadings to human subjects. Examples can be given from many other fields. 

There are, to be sure, ways of randomizing stupidly, even disastrously. 
If one treatment is applied to one field “randomly” and another treatment 
to another field, the precision of within-field comparisons may be lost. One 
clinical treatment applied in one research hospital cannot usually be com- 
pared safely with another treatment in another hospital. 

We now mention two more experimental situations (to be considered 
later in more detail) in which randomization of the usual sort is contra- 
indicated. When the experimenter knows that his random error is small 
compared to the effects and interactions of interest, when there is little 
danger of drift due to uncontrolled causes, and when his equipment requires 
him to take one observation at a time, then he may wish to do his work 
in such an order as to obtain an early look at simple nonadditivities if they 
exist. Such “one-at-a-time” plans have little interest for two-factor problems, 
but begin to produce interesting and economical results when three factors 
are involved. See Daniel [1973]. 

When random error is small and one run at a time must be made, hut, 
contrary to the case discussed above, the system may show drift over sets 
of runs, some orders of trials are much better than others. Such plans are 
discussed in Chapter 15. 

3.6.3. When Is Randomization Useful? 

Randomization becomes increasingly useful as we move away from the 
various situations described above. Thus (1) when the experimenters can 
produce only rough qualitative judgments of the magnitudes of effects (as 
multiples of 0, the standard deviation of single observations), (2) when 
effects of importance are of the order of o, (3) when experiments are near 
terminal, (4) when lower-ranking or younger or even mediocre research 
workers must provide evidence that will convince their skeptical superiors, 
and ( 5 )  when serious, perhaps life-threatening, alternatives are under study 
in human experimentation, then randomization may be an essential part of 
the experimental design. In cases 2 and 5 especially, it is decisively important 
to secure statistically independent observations, since the experimenters 
are relying on the law of large numbers to reach an acceptably small standard 
error of each effect. Randomization brings us closer to statistical indepen- 
dence. 

I have given more space to the discussion of valid nonrandomization than 
to the customary insistence on careful randomization. This has been nec- 
essary to counter the doctrinaire claims of some statisticians which have, 
I think, been responsible for repelling many research workers who might 
well gain by an occasional randomization. 
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I admire and recommend highly the pages on randomization in the 
classic book of Cochran and Cox [1957], especially Sections 1.13 and 1.14. 
Thcre is nothing doctrinaire in these pages. It is true that there are no 
examples in this work ofexpcrimcntal data from any ofthe physical sciences. 
My own experiences, having been mainly in the latter areas, have surely 
been responsible for my differing emphasis. 

Thc invcntor of randomization, or at least its prime developer in exper- 
imcntal agriculture, was R. A. Fisher. Some of the claims made in his Design 
of Experimerits [I9531 are not accepted here. We quote (out of context, of 
course, as one nways quotes) from his page 9 of the sixth cdition: “The 
chapters which follow are designed to illustrate the principles which are 
common to all experimentation, by means of examples chosen for the 
simplicity with which these principles are brought out.” I do not find stated 
or illustrated the principles that are claimed to be common to all exper- 
imentation. Section 9 (bearing the title “Randomization: The Physical Basis 
of the Test”) curiously does not mention randomization. Section 20(“Validity 
of Randomization”) does state that the simple precautions outlined supply 
absolute guarantee of the validity of experimental conclusions. It would 
have been suficiently impressive if only an occasional improvement in 
validity had been claimed. 

3.6.4. An Example 
Federer [ 1955, pages 176 ff.] describes a 22 done in lour randomized blocks 

of four. The responses are given as “per cents of bud-take success,” and we are 
asked to assume that all per cents are based on the same number of grafts. 
We look at all the residuals by removing row and column eflects from 
two-way Table 3.7. 

Seeing no signs of serious heterogeneity, we call the residuals reflections 
of random error, but only with (4 - 1)(4 - 1) - 1 or eight d.f. We estimate 
the error variance by the mean square residual = 823/8 = 102.9, and the 
error standard deviation by s = 10.14. The standard error of the means of 
four observations will be s/,/4 = 5.07. The means for the four factorial 
experimental conditions are as follow: 

(1) 72 
a 21 
h 36 
crb 19 

Inspection tells me that calculation of effects is not likely to clarify any- 
thing; but if inspection does not tell the reader this, he should put the four 
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TABLE 3.7. 
NAIK’S D A T A ,  VIA FEDERE!{ [19ss, I’AGE 177). !.OR A 2’ IN FOUR BLOCKS 

I 
I I  
111 
IV 

64 23 30 15* 132 33 
7s 14 SO 33 I72 43 
76 12 41 17 I46 36 
73 33 25 10 141 3s 

Cc: 288 82 146 75 59 1 I48 
& - 148: 140 - 66 - 2  - 73 - I  

Column Deviations: 35 - 16 -- I - 18 
Column Averages: 72 21 36 19 37 

Residuals 

- 4’ 6 - 2  O* 
- 3  -13 8 8 

5 - 8  6 - 1  
3 14 -9  -7  

~ 

* Observation missing; value iiisertcd lo give 7ero residual. 
Residual = d,, = observed value - fitted value 

for example, d , ,  = 64 - 33 - (72 - 37) = 64 - 33 - 35 

= -4. 

means through Yates’s algorithm and gel, for M, A, B, and A%, respectively, 
37, - 17.3, -9.3, and 8.5, all with standard error s/J16 or 2.54. The only 
simple finding seems to me to be that the response to (1) far exceeds the 
responses to the three other conditions. Nature has this time declined to 
respond in terms of main effects. 

The main (but after all minor) point or this example is to provide a rneaiis 
of looking at the residuals which are reflections of the random fluctuations 
in the response. Later we will take a more severe position in judging the 
homogeneity of such residuals. Here it suffices to note that the residuals in 
the Lirst column are not at all larger than the remainder, so that there is 
little point in a transformation of the data to gain some theoretical homo- 
geneity. 
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‘The minor point (for us, major for the experimenters) of the example is 
that the partition into main effects and interaction has failed, and that this 
is not at  all a rare outcome. The higher levels of the two factors that were 
varied have damaged “bud take” and have done so nearly uniformly. 

The results of this small analysis can be put into “analysis of variance” 
format, as in Table 3.8. 

TABLE 3.8. 
ANALYSIS OF VARIANCE OF FBDWER’S REPLICAIED 2’ 

Source of Degrees of Sums of Mean 
Variation Freedom Squares Sq tiares 

Blocks 3 22 1 73.7 NonsignifiLxmi 
( I )  vs. u, h, ah 1 6557 6557 Significant 
Among N, b, (ih 2 766 383 Nonsignificant 
Residual 8* 823 I03 

14, 8367 by addition 
- - 

8363 from data 

* One degree of freedom has been lost since only 15 (not 16) pieces of data ace given 
in Table 3.7. 

3.7. SUMMARY 

The two-Pdctor, two-level plan, the 2’, is discussed in elementary detail, 
introducing the factorial representation with its various symbols, the 
definition of two-factor interactions, and Yates’s “addition and subtraction 
algorithm” for computing all effects and interactions compactly. There is 
much homily about the interpretation of large 2fi. 

The varying needs for randomization in engineering and other scientific 
experimentation are discussed at length. En many situations randomization 
is not required or is undesirable; in many others it is a desideratum; and in 
some it is a nearly absolute necessity. The need depends OR the ratio of the 
effects to be detected to the error standard deviation nnd on the nearness 
of the program to final, costly decision. 

APPENDIX 3.A 

THE ANALYSIS OF VARIANCE IDENI‘ITIES 

A.I. One Set of Repeated Observations 

y., we write 
Designating the observations as yI  (i = I, 2, .  . . , I), and their mean as 

(3.A.I) Yi Y .  + ( J J ~  - P.). 
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This equation as it stands assumes nothing about the error distribution. 
But if the observations are a fair sample, their average estimates the popu- 
lation mean p, and the (yi - J ? ~ )  are simply the residuals (not quite the 
random errors unless I is large, since they have variance [ ( I  - l)/f]az). 

An analogous relation holds for sums of squares, for, squaring both sides 
of (3.A.I), 

YT = Y2 + ( Y r  - V.)’ + 2Y.O+ - Y.1, 

CYZ = CYZ + x ( J r i  - v.)’ + 2Jj,C(Yi - Y . )  

and stiinming over i, we have 

(3.A.2) 

= Iy2 + ECyi - Y.)’, 
since 

This may be expressed in words as follows: The sum of the squares of I 
numbers is I times the square of their mean plus the sum of squares of the 
deviations of the numbers from their mean. 

A.2. Several Sets of Repeated Observations 

Let i now designate the sets, taken presumably under different conditions, 
and j the replicates: i = 1,2,. . . , I, and j = I, 2, . . . , J, assumed to be the 
same number for all i. Calling the grand average y , . ,  we write: 

Y I ~  Y.. -t ( ~ i .  - Y..) + ( V i j  - Yi.) 

(3.A.3) or ( Y i j  - Y. . )  (Yi .  - Y . . )  + ( Y i j  - Yi.17 

which is obviously an identity for any set of identifiable I x J numbers. In 
words, we can say: The deviation of each of IJ  = N numbers from their 
grand average is equal to the deviation of its group average from the grand 
average plus its deviation from its group average. 

Squaring, summing, and recognizing that sums of deviations From means 
are always 0, we have 

This is the “one-way analysis of variance identity” since the data are grouped 
only by i. I t  is conceivably useful for judging whether the groups really differ 
in their means more than would be expected on the evidence of the scatter of 
individual observations around their group averages. 

The reader should take it as an exercise to derive the sum of squares 
identity for the one-way case when there are different numbers of observa- 
tions, ni,  in each group. 
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A.3. Two-way Layout, Unreplicated 

j = I ,  2,. . . , J for columns. The identity becomes 
The numbers are now cross-classified by i = 1,2,. . . , I for rows, and 

(3~4.5) Yij - Y..  ( Y , .  - Y..) + ( Y . j  - Y . . )  + ( Y ~ J  - ~ i .  - Y . j  + Y . . ) ,  

where the last term in parentheses is simply written in to force the identity. 
This partition can always be made. It will be most useful if either or both of 
the first two terms is large compared to the average ofthe third term, because 
then we are finding that the system that produced the numbers is responding 
largely additively to the row and column partitions. 

Squaring, summing, and simplifying as beforc, we have 

-t x C ( ~ i j  - Yi. - Y. j  + Y . . ) ~ ,  
i I  

which will be useful for producing comparable averages of the three terms. 

A.4. Two-way Layout With Replication 

We now write 

(3.A.7) (Yl,k - Y . . . )  = ( Y L .  - Y . . . )  + ( Y J .  - v . . .  
+ ( Y i j .  - Y i . .  - Y . j .  -t v . . . )  + (yijk ’- Yij.1, 

where i and j have the same meanings as in Section A.3, and k (k  = 1,2,. . . , K )  
designates the repeated observations in each i j  combination. The corre- 
sponding sum of squares identity is perhaps obvious: 

Here, as in the cases given in Sections A.1 and A.2, we have a real measure of 
random error and so can hope to judge objectively the reality and relative 
importance of the first three terms on the right-hand side. 

All of these cases, as well as many others to be given later, demonstrate 
decompositions of data into parts that may well be scientifically interesting, 
especiaiiy when I and J are fairly large. But when 1 = J = 2 there is little 
point in viewing the displacements of the two levels as two deviations of 
equal magnitudes and opposite signs from their mean. The reader probably 
knows, too, that for two observations, or means, a and b, 
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The simple difference between the two means is more informative than its 
square since the former has a sign; the latter is always positive, and nothing 
is gained by squaring. We can express this in an equivalent way as follows: 
A difference can be compared with its standard error more intelligibly than 
a squared (and halved) difference with its variance. 

We will usually find that classifications with three or more levels can also 
be broken down into simple comparisons and often that these comparisons 
are more informative than mean squares giving equal weight to all levels. 
Scheffe [ 19591 has shown how to judge objectively all comparisons (con- 
trasts) in any balanced set of data when the standard assumptions are 
satisfied. See Brownlee [ 1965, Section 10.3, page 3161. 
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4.1, INTRODUCTION 

As we take one more plodding step toward enlarging our view of multi- 
factor plans, we come upon the 3 x 3, that is, the 3’. This gives us the 
opportunity to discuss a few more aspects of experimentation and of the 
interpretation of experimental results. (The 3 x 2 is too small a step to take, 
so we leave it for incidental treatment later.) 

Just as the 22 corresponds to the type of linear approximation familiar to 
applied mathematicians, physicists, and engineers who habitually substitute 
straight lines for other functions, so the 32 parallels second-order approxi- 
mation. But even when the three levels, or versions, of a factor are not points 
on an ordered continuum, there will be many situations in which industrial 
research workers will want to study all three at once. For example, there are 
three major sources of coffee beans and (at least) three degrees of roasting 
the beans, and any restriction on either condition forces a postponement of 
the time when usable results can be reported. 

33 
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A properly conservative statistician (and who would want to retain a stat- 
istician who was not properly conservative?) may recommend that, if a 3’ 
corresponds to the experimenter’s needs, it be replicated, preferably more 
than twice, so as to get an unbiased and reasonably powerful test of signif- 
icance. If data are inexpensive or can be acquired quickly or are to be used 
for a major decision, this requirement may be gladly met by the experimenter. 
There are many cases, however, where such a recommendation will result 
only in a scientist’s gohg his own way, alone and unguided. Thus the national 
air-pollution data have been collected for only 3 years; they are reported 
grouped for small, medium, and large communities. They produce, then, a 
necessarily unreplicated 32. Examples are given later of carefully randomized, 
highly replicated sets of nine which proved to be practical, and indeed in 
each case constituted the only means to secure safe inferences of sufficient 
precision. 

4.2. BOTH FACTORS HAVE NUMERICALLY SCALED LEVELS 

Such factors are called continuous (meaning that their levels are potentially 
continuous) or quantitative, by most writers. The standard examples in 
engineering are temperatures, pressures, or concentrations of ingredients, 
when these are independent variables. Such factors are usually set at equally 
spaced levels. Following G. E. P. Box and his associates, we imagine the 
response surface above the xI-xz plane to be a quadratic surface, repre- 
sented analytically as: 

(4.11 rt = c1 + P A  + P 9 2  + P , , 4  + P 2 2 4  f P12XIX2, 

Adding a random error term, assumed here to be normal with mean 0 and 
variance a2, N(0,  a’), uncorrelated, so that the observed values, )+jk, are 

(4.2) Yijk = + ei jk ,  

where i = 1,2,3 indexes the level ofx, , j  indexes the level ofx,, and k indexes 
any replicates taken at x I I ,  xtl, we see that six parameters are required. There 
are then only three d.f. from the 32 for lack of fit. 

The general second-order equation is hardly ever a model derived from 
subject-matter knowIedge. Nearly always, as Box and Wilson 119511 sug- 
gested, it is equivalent to approximating theory by using the second-order 
terms in a Taylor series expansion of the true function about some point in 
a region judged to be approximable by these terms. It may happen that a real 
physical model is available, nonlinear in its parameters, and that this is ap 
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proximable by a series whose coefficients are definite functions of the “real” 
parameters, but this case is not discussed here. 

There is at least one serious defect in using a 3’ to estimate a full quadratic 
equation; perhaps there are two. Both were pointed out and indeed rectified 
by Box, Youle, and J. S. Hunter [ 1954,1955,1957J long ago. Themoreserious 
one, to my mind, can best be indicated by a glance at the three fictitious 32’s 
of Figure 4.1. The values in the cells are “responses.” Each square has the 
same /j12x,x2, but the response at the center is different in each case. It is 
evident that the general shape and orientation of the response surfaces are 
heavily influenced by the center point. This suggests strongly that if any point 
can be replicated this one should be. Even triplication or quadruplication is 
desirable. I t  will be obvious to the moderately competent algebraist that 
Figure 4.fa has large negative /Itl and pZz, whereas Figure 4.lc has large 
positive values for these terms. In Figure 4.lh both these terms are zero. 

\ 

-6 

‘ -6 ‘0  -5 -2 2 5 -5 0 5 

P I  (b) fc) 

Figure 4.1 Three fictitious V’s, both independent variables continuous. 

The second defect of the 3’ as a second-order response surface design is 
the lack of radial symmetry about its center. I t  reaches further out from the 
center at its four vertex points than at its four midedge points. This produces 
contours ofinformation about the center that are not circular. This handicap, 
although admittedly severe in plans in three or more factors, is at least 
minimal in the 32. 

The important idea of second-order rotatability has been well explained 
many times, especially by Box [1954], Box and Youle [1955], and Box and 
Hunter [1957), as well as by Chew [ 19581, Cochran and Cox [ 19573, and 
Guttman, Wilks, and Hunter [ 1971). It will not be discussed here. We regress 
to the old-fashioned 32. 
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Elementary analytical geometry suffices to derive the estimates of the co- 
efficients in (4.1). First, for a single, equally spaced x-variable, we look at 
Figure 4.2 and at the one-variable equation 

(4.3) Y = (1 + bx + cx2. 

3 

-1 0 
X 

Figure4.2 Geometric interpretation of coefficients in Y = u + b . ~  + cx2 when x = - 1.0, + I .  

No least-squares fitting is required; only direct substitution of the three 
observed responses, y , ,  y,, and y,, is needed in this equation to produce the 
three estimates: 

(4.4) 0 = ~ 2 ,  6 = ~ ( Y J  - ~ i ) ,  

c = +(Yl  - 2Y2 -t Y3) = f ( Y 1  + Y3) -.- Y2 

= f D Y l  - Y2) - (Y2 - Y 4 .  

The “linear” coefficient h is the slope of the line through the two extreme 
points. The quadratic coefficient c is the negative of the amount by which y2 
differs from the average of y ,  and y,. i t  may be viewed alternatively as the 
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difference in slope between the two line segments y, - y, and y ,  - y,. The 
third way of writing this estimate, shown first in (4.4), gives the multipliers I, 
-2, and 1 for y , ,  y z ,  and y3 in simplest integer form. 

The same forms apply to row averages (averages over x,) and to column 
averages (over xl), and all four estimates ( h , ,  h,, b, ,, b,, corresponding to 
the first four betas in (4.1) are orthogonal. Following Yates we will use the 
symbols A,, B,, A,, B, (the subscripts L and Q stand for linear and quadraric) 
instead of b , ,  b,, . . . . 

Still intuitively, we note that the term 6 1 2 ~ 1 ~ 2  can have effect only when 
both x1 and x2 are nonzero and so should take the same form here that it did 
for the 2,, using only the four “corner” values of the 32. Direct check shows 
the estimate 

to be orthogonal to the others. 
We tabulate the estimates of the six effects [the ps in (4.l)]-.five of them 

contrasts -in Table 4.1. The captions A, * * A&, are identical in meaning 
with their corresponding Us. The divisors are the sums of squares ofthe multi- 
pliers shown in each column. The whole table is, then, a coded “transforma- 
tion matrix” for the 32. 

b , ,  = $<Y9 - Y7 - Y 3  + Y J  

TABLE 4.1. 
ESrlMA’I’ES OF SIX EFFECT PAHAMETERS FROM A 3* 

- 1  - 1  y, I - 1  - 1  1 I I 1 
0 - 1  y2 1 0 - 1  -2  I 0 1 
I - I  y J  1 1 - I  I 1 - I  - 2  

- 1  0 y.$ 1 - 1  0 I - 2  0 I 
0 0 Y5 1 0 0 -2  - 2  0 I 

I 0 1 - 2  0 - 2  1 Y6 

- 1  I y7 I - 1  1 1 I - 1  -2 
0 1 Ya 1 0 1 - 2  1 0 - 2  
I 1 Y9 1 I 1 1 1 1 4 

Divisor: 9 6 6 18 1R 4 36 

It is easy to verify that all six vectors are orthogonal. [The column headed 
“Cell (3,3)” will be explained in Section 4.4.3 We can compute a sum of 
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squares for each column. Each will be the square ofa single number (the inner 
product of the coefficient vector times the y-vector) diuided by the given 
divisor. These values will be put into analysis of variance form in Table 4.3 
in the next section. In my opinion it is more intelligible to show this partition 
arithmetically than algebraically. 

The three d.f. for lack of fit to a full quadratic can be used to provide a 
“sum of squares for lack of fit.” It is more in accord with my point of view to 
use them to estimate three more parameters. The classical parameters first 
given by Yates correspond to the three additional terms in the fitting 
equation: 

b112X%2 4- b,22X,X,2 + b,,,,xfx& 

chosen no doubt because they have easily derivable estimates orthogonal to 
all others and to each other. They do not appear to me to be plausible geo- 
metrically or analytically, but an effort will be made in Section 10.6 to give 
them two more intuitive interpret at ions. 

When the three levels of each factor are evenly spaced, an extension of 
Yates’s 2” algorithm is available [Davies et al. 1959, pages 363-3661 for the 
32 and for the 3”, m > 2. A further extension to factorial plans of the form 
2”3”‘ is given by Margolin [ 19673. 

4.3. STANDARD COMPUTATIONS IN A 3* 

First we set down a standard computation that should precede any com- 
putation of a “sum of squares for interactions.” Indeed we propose an inflex- 
ible rule: Do not try to interpret sums of squares of quantities whose 
summands you do not know. Refusal to inspect the items summed may lead 
(and, as we will abundantly document later, often has led) to the overlooking 
of a sensible subdivision that is informative. As a prime example, nearly all 
of the sum of squares may be in a simple single contrast or summand. 

Since the arithmetic operations are simple, and their algebraic representa- 
tions tedious, we start with a classical example from Cochran and Cox [ 1957, 
Ed. 2, page 1641. We reduce the arithmetic by subtracting the mean, 353, 
from each value in their Table 5.6. We then compute the row averages and 
column deviations, fitted values to the additive model, and residuals from 
the observed values, that is, the estimated interactions, as shown in Table 4.2. 
The rows correspond to three equally spaced levels of a phosphate fertilizer; 
the columns, to three equally spaced nitrogen levels. The responses are totals 
over 12 plots of the numbers of lettuce plants emerging. 



TABLE 4.2. 

ON ImrUce 
STANDARD COMPUTATIONS ON COIIRAN ANi) COX'S 3' [1957, PACiE 164) 

-___ 
Row 

Data- 353 Averages 
__ -.I___cI-__ ___ 

96 60 -27 43 
0 

341 278 312 -12 56 -75 5 -.'"~- -41 - 128 - 43 

Data 

449 413 326 
409 358 291 

Cc: 140 -10 - 130 
Coluinii Deviations: 47 -- 3 -43 

I___------.__. 

Revised Data 

Fitted Values First Residuals 
- 

90 40 0 6 20 -27 
47 - 3  -43 =3 9 8 -19 
4 -46 -86 - I 6  -29 45 

Row xR Averages Second Residuals 

96 60 -27 
56 5 -62 

-12 -75 -142 

129 43 - 5  9 -4 
- I  0 -2 -3 4 

- 229 - 76 6 -7  0 

Cc: I40 -10 -231 
z c  + 34: I74 24 -197 

Column 
Deviations: 58 8 -66 

* Stefansky [I9721 and Appendix 4.A. 

- 101 
I New SS residual = 235 

New MS residual = 235/3 
= 78.7 

39 
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TABLE 4.3. 
TWO ANALYSLS OF VARIANCE FOR THE 3 X 3 OF TAntE 4.2. 

Total 8 2a,000.00 

Unrevised Data 

Source of Degrees Sumof Mean 
Variation of Freedom Squares Square 

7 45,34956 

Onc Cell [Cell (3,3)] Revised 
-. 

d.f. ss MS 

Phosphate, P 2 

Nitrogen, N 2 

Interaction P,,N,, I 

PLW I 
PQ,U.I I 

NLm 1 
NQuid 1 

Kernainder 3 

11,008.67 
11.008.17 

0.50 

I 2, t50.00 
50.00 

I2,200.00 

2,2oy.00 
4,791.33 I. l98.CQ 

I 21,360.67 
I 533.56 

I 22,940. I ?  
I 280.06 

3 235.10 78.4 

4.4. ONE-CELL INTERACTION 

On inspection of the nine residuals (first residuals) we spot the largest in 
cell (3, 3), but we need some objective way ofjudging this largeness. Ignoring 
the deplorable gaffe in the paper “Residuals in Factorials” [Daniel, 1961 3, we 
find an excellent answer in Stefansky [ 19723. Her “maximum normed 
residual,” z(O), is easy to compute; it is the ratio of the maximum residual to 
the square root of the residual sum of squares. For thc present case we have 
a significance probability of roughly 0.05. See Appendix 4.A. 

If these were engineering data, and if it could be done tactfully, we 
would ask the experimenters whcther by any chance the reported 312 (coded 
to -41 in Table 4.2) could have been misrecorded by 100. But this can 
hardly be done, even tactfully, for ancient data in another field. We try instead 
to remove the disturbing effects of this value, to see whether anything else 
is afoot. We replace the offending value by another, yo, which is computed 
to give a zero residual, and then carry through the whole computation again. 
This is done at the bottom of Table 4.2. The drastic effect on all residuais is 
apparent. 

The rcplacement value yo is given by the formula: 

yo = y; ,  + y ’ .  - (4.5) 11 .) Y : . ,  

where y;. means the average of all other values in row i, 
yl j  means the average of all othcr values in column j ,  
f .  means the average of all values in neither. 

This formula is exactly equivalent to the usual “missing value formula” for 
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randomized blocks, but seems to me more intelligible, easier to remember, 
and simpler to compute. I t  holds for any size of two-way layout. 

A simple check on any residual in a 3’ is provided by the identity 

(4.6) 

provided thcrt 

For the present cased,, = f[-41 - (-27 - 62 - 12 - 75)] = 45.0. 
Our sums ofsquares (Ss’s) are just 12 times those of Cochran and Cox sincc 

we have so far ignored the fact that each response i s  the sum of I 2  observa- 
tiotis. 00 a plot basis our revised residual mean square (RMS) is 78.7/12 = 
6.56. This is significantly smcr//cr.(P i 0.05) than the error mean square (MS) 
of 59.0 given on page I66 of the reference. 

We have an example, then, of a me-cell iriteraction. These interactions 
are, in my experience, the commonest of all forms of nonadditivity, and for 
“quantitative-level” factors they occur most frequently in a corner cell. We 
can derive the coefficients for the “one-cell contrast” most directly by simply 
placing a single disttirbance in one cell, and then following i t  throiigh the 
computation corresponding to Table 4.2. To get minimal intcgers wc put a 
9 in one cell. Thus we have 

xR Avcragcs Residiials 

4 - 2  - 2  
0 0 0  0 0 - 2  1 I 
0 0 0  0 0  - 2  I 1 

cc: 9 0 0 
c c - 3 :  6 - 3  - 3  

Column Devidtions: 2 - 1 - 1 

We have used cell (1, 1) above, but of course the same pattern can emerge 
from any cell. The simplest way to remember the pattern is to place a 4 in 
the offending ccll and then fill out the rest, forcing rows and columns to sum 
to zero. 

The reader may wish to verify that this pattern, or some constant multiple 
of it, will emerge from any 3 x 3 table of additive data when one value is 
perturbed by any amount, A constructed example follows. If the data also 
contain random error, the pattern will of course be more or less obscured. 
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28 36 47 
58 48 59 
85 75 a6 

Although the contrast just derived for a one-cell interaction is correct and 
can be used with the original data, there is little point in its use with the 
residuals. Naming the residuals, 

P Y  I’ 

s t u  

v w x, 

we see that -24  - 2,. = 2p, -2s - 2v = 211, and ( t  + u)  i- ( w  + x) = 
--s - u = p. So our integer contrast is identically 9p! The corresponding 
SS is ( 9 ~ ) ~ / 3 6  = Zp’. For the present w e  we have that the SS [interaction 
in cell (3,3)] = $(45’) = 4556, exactly as would be found by subtracting the 
SS new residuals from the original SS residuals, 4793 - 237 = 4556. The 
computation of “second residuals” gives more detail on what is left, even 
though containing only three degrees of freedom. 

We now see the most direct way to calculate the replacement value y& and, 
once the first residuals have been computed, all the second residuals. For the 
3*: y: = yu - %tiij. For the present case JJ:,~ = -41 - $45 = - 142. 

The pattern of duerences between second and first residuals is just the 
negative of the familiar pattern, hence here, 

- 1  - 1  2 
- 1  - 1  2 

2 2 - 4  

each coetticient scaled by 45/4, or 11.25. Thus the new d , ,  = 6 - 11.25 = 

The weakness of the standard representation of interactions in a factorial 
- 5.25. 

plan 

(4.7) QJ = P + ai + B j  + Yi j  

is nearly at its maximum in the 3’. The yfi are defined by subtraction of 
“main effects” from qij, but as the little table above with one 9 in it makes 
clear, if one value is off from a clear pattern set by the rest of the table, then 
all consistent main effects are biased, as is the mean, and the rest of the 
disturbance gets spread throughout the table as shown. These Bij do not 
estimate anything real, but by good luck, the largest of them can be used to 
recover the real discrepance which is $ x 45 = 101.25. In general, in an 



R x C table, this correction factor will be RC/(R - 1)(C -- 1). See Table 8.1 b. 
If this value is actually an error, and not a permanent interaction, then we 
do the experimenter no favor by reporting biased main effects and a spurious 
linear-by-linear interaction. 

4.5. SIMPLER COMPUTATION AND INTERPRETATION OF 
ALBQ, AQBL, AND AQBQ 

If the data analyst has a completed 3' before him ( A  and B continuous) 
and a good estimate of 6, he may want to see explicitly the three higher-order 
coefficients, b121, b ,  ,' and b, , 2 2  (alternatively, A&, etc.) There are two 
ways of computing these that are simpler than the usual ones, originally 
given by Yates [ 19371, shown at the top of Table 4.4. 

TABLE 4.4. 
COMPUTATION OF A,. A, , ,A, ,$ ,  tw., FKOM RUIDUAI.S I N  A 3' 

r F I LI U x I V  P (1 

- 1  1 2 - 2  - I  1 
- 1  2 - I  I - 2  1 

1 - 2  1 - 2  4 - 2  1 - 2  1 

1 - I  
- I  - 1  
- I  1 

I I 

- 1  1 
1 I 

- 1  I 
1 I 

1 - 1  - 1  I 
1 - 1  

1 - 1  
1 

Since there are but four d.f. in the nine residuals, we choose four of the 
latter, p, r, u, x, and represent the four parameter estimates by the familiar 
contrasts for the 22 among these four and by their sum. Because of the re- 
straints on the nine residuals, 9 = - p  - i', etc., it is not necessary or even 
sensible to use all nine in computation. Going further, we see in the lowest 
panel of the table that we can replace - p  - I' by (I, etc., and so represent 
4ALB,, for example, by (s - t i ) ,  and 4A,B, by t !  

On soberer thought these quantities make good sense as aspects of lack 
of fit. Take 4A,B,, for example. This will be large when the four corner 
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residuals have the following signs: 

- P  + r  
(+S) (-4 

- V  + X. 

This can happen only when there is a sort of reversal from left to right in the 
response surface, since if p and o are negative, then s must be large and 
positive, while it must be large and negative. Thus the apparent curvature 
of the response away from the fitted quadratic surface at the lowest level of B 
is the reverse of that at its highest level. This can be visually represented as a 
bit of 

overlaid on an otherwise quadratic and additive surface. 
The usual (Yates),contrast for APBQ is given by the coelfidents 

1 -2  1 
- 2  4 - 2  

1 -2 I ,  

and this is, by analogy with our earlier one-called interaction, identical with 
9t ( t  is the residual in the center cell). Some sombrero-type deviation from 
additivity is indicated: 

When a three-level factor is continuous but not equally spaced, there is 
also a simple way of writing orthogonal L and Q contrasts and Ss's. We 
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could call the three levels u, u, and w, (these have nothing to do with the 
residuals 14, u, w )  but things are easier to remember if we rescale the levels to 
0, 1, and d, where d > 1 but is otherwise unrestricted. We give the formulas 
in both codings: 

Levels,* 
_---- 

U 2 r f - u - w  u - w  - 1 -  n 1 - 11 

I1 --If + 2 u -  w 1v - u 2 -  d 
W - I f  - u + 2\v If - u d - 1  + 2 d  - 1  

Divisors for S S :  6(1 - d + (1’) 2(1 - d + (1’) 

* Exactly equivalent to L,, since subtracting u from each of Levels, gives 0, u - i f ,  

and IV - 11;  then division by u - )v gives 0, 1, (w - I I ) / (U  - 11).  1 have set thc latter ratio 
equal to d. 

The mnemonic is: Each term in Qz is the difference in cyclical order 
between the other two levels. I advise the reader not to try to get a comparably 
simple formula for four unevenly spaced levels. 

4.6. TUKEY’S TEST FOR MULTIPLICATIVE NONADDITIVITY 

As is explained most simply in Scheffk [ 1958, page 1301, the interactions, 
with (R - 1)(C - I )  degrees of freedom (for us here 4 d.f.), may be repre- 
sentable as 

where G is a constant, and so a single degree of freedom for interaction. 
Schefle shows that, if the yi, are representable by a second-degree polynomial 
in the row and column parameters, it must be of the form just given. Tukey 
showed [ 19491 that G can be estimated by 

?iJ = GaiPj, 

and that SS (G) = P z / Q .  
These are most simply computed as shown in Snedecor [1965, Ed. 5, 

seventh printing, pages 321 -3231. We repeat the calculation in Table 4.5 for 
the 32 under discussion, and we regret that the test does not reach the 0.05 
level. It should be noted that the f i j  can be used in place of the yr,. The 
estimated “error sum of squares” for testing nonaddivity is found to be 2817, 
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which far exceeds the 236 found by our brutally ad hoc removal of y3 , , .  The 
yl, estimated from G6$, do not suffice to remove a large part of the residual 
SS, as they will when this relation holds strongly, and when, therefore, the 
Bi and the flj are sufficiently large to permit its accurate estimation. 

Data 
Row di xR Averages Dev. p, dip, p, - p* 

43 5397 232,071 1377 
409 358 291 0 5227 0 1207 
341 278 312 -43' 1436 -61,748 -2584 

___--- -. -_ 
I c  1199 1049 929 3177 0 12,060 170,323 

Column Averages: 400 350 310 4,020 
Column 

Deviationsdj: 46 - 3  -43' 

pi = ZXgjd,; pi = (449 x 46) - (413 x 3) - (326 x 43) = 5397. 
zc&fijYij = P x d i p ~  = 170,323; I d !  = 3698; c d f  = 3974. 
SS (nonadditivity) - P'/cd: . &ff = 1974; G = P/Q = 0.01 159. 
SS (testing) = Residual SS - SS (nonadditivity) = 4791 - 1940 = 2817. 
MS (testing) = 2817/3 = 939; F-ratio (nonadditivity) = 1940p39 =- 2.07, n.s. 

* Var(p, - p )  = $Ed!; MS(testing) = f x 3974 x 939 i= 2.488 x 10'; s(lJi - = 1577. 
Force Edj = Edi = 0. 

4.7. AN EYEBALL TEST FOR INTERACTION 

When additivity holds, differences between observations in adjacent rows 
should be tolerably constant. The writing down of these differences usually 
suffices to spot a single nonadditive cell, and does so in these data. Thus, 
even for the uncoded data, 

Row Differences 

449 413 326 40 55 35 
409 358 291 68 80 -2, 
341 278 312 

It is clear with no knowledge of 0 at all that the last difference, y Z s 3  - y3.3,  
is far from its mates, 68 and 80. The "tolerable" agreement of the three 
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differences from rows 1 and 2 tells us that is the culprit, not ~ ’ 2 . 3 .  The 
objective statistician will wince at the word tolerable, but it is our experience 
that when this test fails, objective tests do too. On the contrary, we will see 
several cases in which we can spot the most aberrant cell or cells by the row 
difference pattern, but cannot prove a real discrepancy by the maximum 
normed residual (MNR) method. 

4.8. 

There is a single failure of additivity in the data of Table 4.2. If we bar the 
invidious suspicion that the value at (3, 3) is a misprint, in error by 100, the 
discrepancy is in such a direction that the adverse effects on lettuce plant 
emergence of increasing phosphate and nitrogen are not so great at the 
extreme condition (highest P and N) as the other data would lead us to 
expect. This can hardly be an agriculturally important finding, however, 
since the general conclusion already visible is that the least amounts of 
phosphate and of nitrogen are most favorable. Presumably, if fertilizer is 
needed on this variety of lettuce, it should be applied after emergence. 

WHAT IS THE ANSWER? (WHAT IS THE QUESTION?) 

4.9. AN UNREPLICATED 3* ON AIR-POLLUTION DATA 

The August 1972 (Third Annual) Report of the Council on Environmental 
Quality gives on page 9 a table of “extreme value indexes” or EVI’s, which 
are measures of the worst air conditions observed for each of three years 
(columns), and for communities of three sizes, c los, c4 x lo5, and 
>4  x 10’ (rows). Table 4.6 gives these values, multiplied by 100, followed 
by standard computations. 

The very satisfactory partition given in the analysis of variance table--with 
both row and column effects highly significant against a 4d.f. error estimate- 
tempts us to let well enough alone. But a rather peculiar improvement is 
still possible. We have carried through, but do not show here, the I d.f. test 
for removable nonadditivity. Its F-value is 6.94, while F(.05) is 10.1, and 
Q.1) is 5.5. However, since there appears to be a positive trend of pi with Bi, 
we have taken the liberty of extracting the square root of each EVI and 
carrying through the standard computations once more. We now get F- 
values of 379. and 299. and significance probabilities below .0005. Since the 
coefficient of variation of the transformed variable is 1.46%, the imputed 
Coefficient of variation of the back-transformed EVI would be about 3%. 

Thc EVI’s are themselves the square roots of sums of squares of con- 
centrations of three pollutants. We cannot imagine why the square roots 
should more nearly fit an additive model, but we have made the facts known 
to the proper authorities. 
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TABLE 4.6. 
100 x EVI (EXTHEMI VALUE INIJEXFS) 01: AIR POLLUTION, 1968- 1970, FOR 

THREL: SIZES OF COMMUNITIES 

Cities 1968 1969 1970 
____ .  

Small 1035 768 641 
Medium 661 410 334 
Large 1156 799 666 

Column Deviations: 232 -60 - 172 

~ 

Row 
Deviations Residuals 

96 -12 13 - 2  
-251 - 39 2 38 

155 @ - 1 5  -36 

719 = y..  

Analysis of Variance 
~ -- 

Degrees of Sums of Mean 
Source Freedom Squares Squares F P 

Sizes ( R )  2 287,123 143,861 79 <.001 
Years (C) 2 260,560 130.280 71 c.001 
Residuals 4 7,306 1,827 s = 42.8; decoded, 0.43. 

CV = 431719 = 6%. 
- 

4.10. THE 3’ WITH BOTH FACTORS DISCONTINUOUS 

We take Cochran and Cox’s third 3*, given in their Section 5.29, pages 
170-175, which was actually replicated four times so that an error estimate 
with 24 d.f. is available. The nine treatment means are given in Table 4.7, 
followcd by a table of residuals from the usual additive model. 

We notice the largest residual at ( I ,  3), but we do not judge its importance 
by the maximum normed residual because we have a better estimate of Q. 

We use, rather, the Studentized extreme deviate t’  [Pearson and Hartley 
1954, page 1731, which allows for the error degrees of freedom trrtd for the 
number of values of which dIe3 is the extreme. Since the residuals in a 32 have 
variance *a2, we estimate s(d,,,) as J x 2.58 = 1.72., and so our t ‘  = 
5.9/1.72 = 3.43. Since the .01 value from the table is 3.22, we appear to have 
an excessive d,j. 

As for the earlier example, it is easier to compute the SS due to the single 
residual by (9/400)592 = 78.3 rather than by the elaborate contrast with 
coefficient 4 in cell (1,3), balanced symmetrically in the other eight cells. 
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TABLE 4.7. 
ABBREVIATED COMPUTATIONS FOR COCHKAN AND COX'S 3' 

ON COMPOST 

Data (Data - 70.5) x I0 

53.6 56.8 67.0 -169 -137 - 3 5  
80.8 82.3 80.5 103 118 100 
74.3 69.1 70.0 38 -14 -S 

First Residuals SS (residuals)/100 = 97.02. 
- 
-46 - 12 59 s ( r / , j )  = ~ . s ( J J )  = 4 x 2.58* = 1.71. 

5 22 -27 Studentized extreme deviate = 5.9/1.72 
41 -9 -31 = 3.43. 

t'(0.01,9, 24) = 3.22; P < ,01. 

Tukcy's I d.f. for nonadditivity gives F = 4.4, nonsignificant. 

Remaining SS (residual) = 97.0 - 78.3 = 18.7. 
S S ( d , , , )  = 2 x 5.9' = 78.3. 

* Residual MS = 18.7/3 = 6.2; Error MS from 24 d.T. = 6.56 

4.11. THE 32 WITH ONE FACTOR CONTINUOUS, 
ONE DISCRETE-LEVELED 

Our data are again taken from Cochran and Cox [ 1957, pages 169- 1703. 
The first paragraph of their general comment on interpretation of the analy- 
sis of variance is too valuable to paraphrase. 

The separation of the treatment comparisons into main effects and interactions is 
a convenient and powerful method of analysis in cases where interactions are small 
relative to main effects. When interactions are large, this analysis must be supple- 
mented by a detailed examination of the nature of the interactions. It may, in fact, 
be found that an analysis into main effects and interactions is not suited to  the data 
at hand. There is sometimes a tendency to apply the factorial method of analysis 
mechanically without considering whether it  is suitable or not, and atso a tendency 
to rely too much on the initial analysis ofvariance alone when writing a summary of 
the results. 

The experiment involved the response to three levels of nitrogen Fertilizer 
(150, 210, 270 Ib/acre) by three varieties of sugar cane. The 3' was done in 
four replications, and the error MS with 24 d.f. was 43.91. Thc corresponding 
coefficient of variation was about 5%. 
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TABLE 4.8. 
DATA FROM COCHRAN AND Cox’s 3 2  ON SUGAR CANE 

266.1 275.9 
303.8 20.3 25.7 22.1 

245.8 250.2 281.7 -28.6 -7.9 
274.4 258.1 231.6 

I he row differences in Table 4.8 show instantly that u, and u2 are nearly 
“parallel,” and that u3 is entirely different. A simple plot of the level of N 
versus p for each variety shows the same thing. We decline, therefore, to 
report on an analysis of variance of all three varieties since we know that 
it will show large I/ x N interaction, all due to 1 ~ 3 .  The data can, as in many 
cases, be partly interpreted before a routine analysis of variance. We sub- 
divide our analysis even in the first round, then, taking uI and u2 without u3 .  
This is shown in Table 4.9. We partition the three u3 means separately, but 
use the pooled error to test the partition. 

It appears, then, that the following hold: 

1. There wasa consistent difference between IY, and u2 of68.1/12 = 5.67 tons 
of cane per plot. 

2. There was an upward roughly linear trend of yield with increasing N for 
varieties 1 and 2. 

3. There was an almost exactly linear downward trend ofyield with N for us.  

There are oddities in items 1 and 3. The parallelism of u1 and u2 is im- 
probably close, and for u3 the linearity of yield with N is too exactly linear! 
Both are significantly smaller than the error MS, givcn as 43.91. The mystery 
is only deepened by the authors’ footnote on page 170, which points out that 
much ofvariety 3 ripened earlier than the other two but was let? on the ground 
until harvest. Not having the actual data from which the error was computed, 
we terminate our analysis. 

The attentive reader will notice that, if we had gone ahead with our 
standard computations, without taking account of the disparate variety, no 
great harm would have befallen us beyond wasted time. The rounded re- 
siduals are as follows: -v -10 - 5  

03 23 7 -30 

These results would have told us that u ,  and u2 are closely alike, whereas 
u3 is quite different. 
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TABLE 4.9. 
COMPUTATIONS AND ANALYSIS OF VARIANCE FOR 3* ON stJC;AK C A N E  

_I_-_ 

Data Coded b y - 2 7 0 . 6 I D a t a  for V, 

t I I  19.7 
t12 3.4 
113 -23.1 

&: -29.3 -15.1 

“ I  

02 

0 ,  - v * :  
Differences --22.7: -2.4 3.0 -0.6 

S S ( U I  - ”2) = (34.1 + 34.0)’/6 x 4 = 193.32. SS ( ~ 3 )  = 233.31. 
SS [ ( N ) u 1 , u 2 ]  = 3048.99/2 x 4 = 381.12. 
SS (u,, ~2 x N) = (2.4* + 3.02 + 0.62)/8 

SS ( u 3 ,  linear) 
= (19.7 + 23.1)’/2 x 4 
= 228.98. = 15.12/8 = 1.89. 

ANALYSIS OF VARIANCE 

Degrees of Sum of Mean 
Source Freedom Squares Square F P 

U I  - 02  I 193.32 
N,(4,”2)  I 338.56 
Np(U,, u2) 1 42.5 
( h  - 02) x N 2 I .89 
v 3  x N,linear 1 228.98 

Error 24 
of x N,quad. I 4.33 

- -  

1Y3.3 4.4 .05 
338.6 7.7 .05 
42.5 1 .o 5 

229.0 5.22 .05 
0,945 0.0215 ,9995 

4.3 0.099 .9995 
43.91 

4.12. SUMMARY 

Our analysis of 3 x 3 tables of data differs from the analyses of others 
mainly in the detailed treatment of interactions (nonadditivity of row and 
column effects, residuals, ?,,). 

Simplification of “linear by quadratic” and of “quadratic by quadratic” 
interaction terms has given them new meanings. 

The commonest interactions appear to be either in one cell or in one row 
(or column). (This finding is extended in Chapter 8 for larger arrays.) 

The numerical methods of analysis of variance remain valuable, but rather 
different partitions are used. 
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CRITICAL VALUES OF THE 
MAXIMUM NORMED RESIDUAL (MNR)* 

3 
4 
5 
6 
7 
8 
9 

.660 ,675 .664 .646 .626 606 387 
,665 .640 .613 .588 .565 .544 

.608 .578 .55t .527 SO6 
.546 .519 A95 .475 

.492 .469 .449 
A46 ,426 

. a 7  

TABLE 4.A.2. 

LEVEL a r- 0.05 
STEFAANSKY’S TABLE 6.2: CRITICAL VALUFS OF THE MNR AT 

c Y 
- 

3 
4 
5 
6 
7 
8 
9 

3 4 5 6 7 8 9 

.648 ,645 .624 ,600 .577 ,555 .535 
.621 S90 ,561 .535 ,513 .493 

.555 .525 .499 .471 .457 
A95 A69 .447 A28 

A44 A23 .405 
A02 3 8 5  

.368 

* Reprinted by permission from W. Stefansky C1972a:I. 
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5.1. WHEN TO USE THE 23 

The experimenter hearing of factorial experiments for the first time may 
feel that he should start with the simpler, more manageable plans. But if he 
does this, he will be postponing the time when he can easily see their ad- 
vantages. Sixteen-run plans are usually more than twice as informative per. 
run as eight-run plans. My advice to the experimenter considering a 23 is, 
then: If  you really have three and only three factors that it makes sense to 
vary, if your time and money budgets are so restricted that eight runs will 
consume quite a large part of your effort, if you are quite sure that differ- 
ences larger than two standard deviations are all that you are interested in, 
and if you are quite sure that you can choose levels for your factors so that 
all eight combinations will be operable, then the 23 is the one to use. 

53 
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5.2. A REAL 23 

The data given in Table 5.1 come from the early stages of a study of the 
effects of three well-known factors-time of stirring A, temperature B, and 
pressure C--on the thickening time of a certain type ofcement. The response 
JJ was the time in minutes required to reach a certain degree of hardness. The 
exact specification of the two levels of each factor and the name of the par- 
ticular cement type, although crucial for the experimenter, are not important 
here. The error standard deviation for single runs was known to be about 
12 minutes. The runs were made in random order but are presented in the 
table in “standard” order. 

TABLE 5.1. 
DATA FOR AN UNREPIACATED z3 IN 

STANDARD ORDER: SD = 12 

(1) 297 
R 300 
b 106 
cib 131 
C 1 I1 
ac 178 
6c 16 
a6c 109 

Most obviously the simple A-effects are small and rather uneven. They are 
asfollows:300 - 297 = 3,131 - 106 = 25,178 - 177 = 1,and 109 - 76 = 
33. Taken individually, these results are hardly striking, since their standard 
error is about 12J2 or 17. 

Second, the results at high B are all much lower than their counterparts 
at low B. Thus with no computation at all we see that 

b - (1) = -191, 
nb - = -169, 

bc - c = -101, 
abc - oc = -69. 

It is clear that all these differences are real and that they do not agrce very 
well with each other. 

Finally, looking at the simple C-eRects, we find - 120, - 122, -30, and 
- 22. The C-differences are large at low R and small at high B. Some readers 
will see immediately that, when the B-effects are larger at low C than at  high, 
the C-effects at low B must be larger than those at high B. 
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5.3. YATES’S TABLE OF SIGNS 

Table 3.4 shows the four ways in which the four results ofa 2* are combined 
to give the four (regression) coefficients of the factorial representation, and 
Table 3.5 shows the corresponding computation. Both the table of signs and 
the computational method are due to Yates. We now extend the table ofsigns 
and the corresponding computation to the 2j. 

The 2’ in the upper left corner of Table 5.2 is seen to be made up of four 
squares, three of the form ;, and one in the upper right of the reverse 
form, 7 f . The 23 table of signs will require eight rows and columns. The 
eight parameters are symbolized in the cotumn headings of Table 5.2. The 
signs in the table may be written down directly as three squares identical 
with the 2’ table, and one in the uppcr right the Same with all signs reversed. 
The dotted lines in Table 5.2 are meant to guide the eye to the component 2’ 
and 22 tables. In this table we have dropped the 1’s and retained only thesigns. 
The letter T is used to indicate “Total”--formerly “Sum,” 

Table 5.2 is the “transformation matrix” that shows how the eight re- 
sponses are to be handled to get their sum 7’ and the seven contrast-sums 
(A), . . . , (ARC). If the latter are divided by 4, we have the “effects and inter- 
actions” as these are usually defined; dividing by 8, we get the “regression 
coefficients” of the factorial representation. The reader will remember that 
this expresses each result as the sum of a set ofdisplacements due to different 
combinations of the factor levels, up or down from the grand average. Each 
column of Table 5.2 contains the ordered elements of an eight-dimensional 
vector. All eight are pairwise orthogonal (the Greek word for “perpen- 
dicular”). The definition of orthogonality of two column vectors is that the 
sum of the products of corresponding elements in the two columns is zero. 

TABLE 5.2. 
FACTORIAL TRANSFURMATION MATRIX FOR THE 2’ 

Spec. Obs. T A  B A B  C AC EIC ABC 
-_____ 

- I -  + I -  + + 
I I 

I J 

I 

+ f 

- (1) Y I  + 
f + 

+ 
+ + ’ -  - I -  - 

f l  Y2 

- b Y3 + - + - I -  + 
- - - ah Y4 + + + + l -  

C Y s  + 
flC Y6 + + 
bc Y7 + 
abc 78 + + + + + + t t 

- - - - - _. - 
+ - - - I 

- - + + 
+ 

- - 

- + - - + - 
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5.4. YATES’S ALGORITHM FOR THE 23 

The reader will have guessed that the data from a z3 can be made to yield 
all eight “effects” by extending the algorithm of Yates, given in Section 3.3 
for the 2’, through three columns. This is done in Table 5.3. The algorithm 
works of course for any 2“set of data. It has been programmed for all com- 
puters for p = 4, 5, 6, 7, but a single 24 computation by hand takes only 
from 10 minutes to f hour, depending on the number of figures in each 
response. It is rare for three figures to be required, unheard of for four. 

TABLE 5.3. 
YATES’S ALGORITHM APPLIED TO A 2’ 

(1) 291 597 834 I374 I72 Average 
a 300 231 540 62 8 .d Time of stirring 

- - - - _- - - - - I - - - -_ - - -. _. - - - - 
b 106 355 28 -530 - 66 Temperature 
a6 131 185 34 54 7 A B  

C I77 3 -360 -294 -- 37 tA Pressure 
ac 178 25 --I70 6 I AC 

bc 76 f 22 I90 24 LIZ 
- ----- --- -- 

abc I09 33 32 10 I A& 

It is instructive to remove an eye average, say 170, from each of the eight 
observations, and then to repeat the calculation. The reader will find too 
that rounding the numbers to the nearest I0 before computation yields 
results that closely resemble those given. It is not always safe to round a 
number to a major fraction of its standard deviation, Cochran and Cox 
[I9571 recommend rounding to not more than one quarter of a standard 
deviation. This rule is safe whatever the size of the collection of data under 
study, but it will be found to be increasingly conservative as N = 2Pincreases. 

5.5. FIRST INTERPRETATION OF THE 23 
Knowing that the error standard deviation of a single run is 12, we estimate 

the standard error (abbreviated as SE hereafter) of the contrast-sums in 
column (3) of Table 5.3 to be 12J8 or 34. Alternatively, the estimated SE 
of the regression coefficients in the next column is 12/J8or 4.2. On direct 
inspection of the magnitudes of all seven effects, B and C and BC appear to 
be real, 
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TABLE 5.4. 
13 x C T’AIILX FOR THE DATA OF TIIC 23 

I 

C 

c 

u 
b __ 

297 106 - 
300 131 

c 
177 16 
178 109 

R 
6 

. 

29R I I H  

I78 92 

These judgments confirm our first inspection of the data. Table 5.4 shows 
at the left the eight values of observations arranged in a “13 x C“ two-way 
table. These pairs are averaged to give the form shown on the right. 

I t  is clear that the etfect of higher temperature B, in decreasing the setting 
time is much larger at low pressure (low C) than at higher pressure. 

5.6. HEVERSE YATFS’S ALGORITHM 

The fitted values just found can be computed directly by the “reverse 
Yates” used in Section 3.3. Although there is no gain in economy in the 
present case, the work is carried through in Table 5.5 for practice. 

TABLE 5.5.  

GIVE TIIE F~ITED VALUES 
REVERSE YATES’S ALGORITHM APPLIED TO THE REAL EFFECTS TO 

(0 )  ( I )  (2) (2) -+ 8 = Y Name Y 
----- ~ --__- 

(BC)  1 9 0 - 1 0 4  140 92 62 16, I 0 9  
(C)  -294 844 1420 I78 c  ̂ 177, 178 

y) I --:-I: -484 948 I18 I; 131, 106 
1904 2388 298 (i) 297,300 

5.7. INTERPRETATION WITH ONE 
FACTOR DISCONTINUOUS 

I f  factor B were one with discontinuous versions or levels while C was a 
“continuous” variahie, it would not makc good sense to report the fitting 
equation as the last column of Table 5.3 implies, namely, as 

(5.1) Y = 172 - 66x2 - 37x3 + 24~2x3, 
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where xz = - 1 at low B, 
= + I  at high B; 

x3 = - 1 at low C, 
= + I at high C. 

Since the interaction term has no obvious interpretation under these 
conditions, it would be simpler to give two linear equations, one holding at 
the low level of B, the other at high B: 

(5.2) YB- = 238 - 61x3, 

(5.3) YB+ = 106 - 13x3. 

Each of these equations is derived (if that is not too pretentious a word) 
from the relevant half of the 23 by setting x2 = - I  or + 1 in (5.1). The 
reader should carry through these calculations, which require a small piece 
of paper and no computing equipment. 

300 

280 

280 

240 

B 220 

.- 2 
f m - 

.- E 180-  

.- 
c. 

k 100 

- 

- 
- 

- 

- 

- 

1 I 
-1 0 +1 

x3 

Level of factor C 

Figure 5.1 Y versus x3 i f  8 i s  discontinuous. 
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The experimenter felt strongly that factor A must have had some effect. 
He may well have been right. As the reader will note if he carries through 
the arithmetic work just recommended, the computed A-effect is as large 
as the C-effect at high B. I t  does not appear, however, at low B. This state 
of affairs is shown in Figure 5.1. 

Rut these equations all spring from the premise, contrary to fact, that B 
is a discontinuous factor. We now return to reality. 

5.8. REPRESENTATION WHEN 
ALL FACTORS ARE CONTINUOUS 

When all factors are continuous, the familiar apparatus of quadratic 
equations is available. But I have rather disingenuously concealed up to this 
point the fact that a ninth observation was indeed taken in this experiment. 
I t  was made at the center of the design, that is to say, at the midrange of each 
of the three factors. The response observed was y ,  = 168. This is quite close 
to the average, 172, of the other eight observations. 

Suppose that we had tried to fit a general quadratic equation in x2 and 
x3 to the five points in (x2, x3) space (since x1  appears to have a very small 
coefficient). Thus we would have 

We would have found, almost instantly, that not all of the six coefficients 
can be estimated. We can estimate the first four, however, without even 
using thc fifth data point. We can estimate (h22 + bJ3)  by (y9 - p), where 
p is the average of the first eight y-values. This estimator wilt be (168 - 172) 
or - 4  in this case. Its standard error will be (1 + &)% = 1.060 or about 
12.7. 

Only in an introductory example of the sort under discussion would we 
dare to “conclude” that this quantity is 0 just because it is about a third of 
its standard error. A more serious statement about the true value of the sum 
of the two pure quadratic coefficients would be that it lies, with 95% con- 
fidence, between ( -4  + 25.4) = + 21 and ( -4  - 25.4) = -29. But here, 
to make other points, we are moving even further in the direction of simpli- 
fication, and assuming that, since the sum appears to be small, both its 
summands are 0. We do this in order to show a tolerably simple response 
surjiace. The reader, however, should not ever make so irresponsible a set of 
judgments in a real-life case. Do as I say, not as I do. 

(5.4) Y = b, + b z . ~ ,  t b 3 X 3  f h 2 3 X 2 X 3  + b 2 2 ~ :  + b.33~:. 

We are accepting, then, the equation: 

This equation looks exactly like (5.1), but it has a different meaning. 
Here xz and x3 are continuous variables, and the equation is that of a 
continuous response surface. 

(5.5) Y = 172 - 66x2 - 37x3 + 24XzX3. 
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Figure 5.2 shows a few of its contours. These can be sketched quite easily 
by solving the equation for x2, giving Y a fixed value, and then running 
through a sequence of x3, x2 points. Thus: 

172 - 37x3 - Y 
x2 = 

66 - 24x3 * 

I 

Figure 5.2 Contours of Y when xt  and x, are continuous. Y = 172 - 66x, - 37x, + 24x,x, 
Circled dots represent data points. 

When values for x2 thus found become too far from the region of interest, 
it is sensible to use instead the equation for x3: 

172 - 66x2 - Y 
37 - 24x2 x3 = -.--- -. 

If less than an hour is required to obtain computing services, any of the 
many available contour-plotting routines may be used. 
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5.9. CONTOURS OF STANDARD ERROR OF Y 

The fact that the lines in Figure 5.2 are sharp does not mean that the true 
contours of constant Y are exactly known. On the contrary, contours of 
constant s( Y) to be used with Figure 5.2 are given in Figure 5.3. Since the four 
coefficients in (5.5) all have the same variance, 0 2 / N ,  and are uncorrelated 
(orthogonal), the equation for the variance of a fitted value, Y, is 

Var (Y) = - ( I  + x i  + x: + $x$) = - t2, (5.6) 

when all xi are coded & 1 at the data points, and t is a multipfier of o/JN, 
also shown in the figure, which can be used in other 2”s. See Appendix 5.A. 

o2 o2 
N N 

t 
FIpre 5.3 s( Y) = taJN as a function of x I  and x, 
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r 

L 

Figure 5.4 Y- and s( Y)-contours. 

A special case of this equation, for use only at the data points ofany 2” = N, 
i s  : 

(5.7) 
ka2 * 

Var ( Y  at design points) = --, N 

where k is the number of constants, including bo or I. 
It is of some interest to note that inside the design area the standard error 

of Y is largest at the data points and is minimal at the center of the design. 
Some readers will find it easier to look at Figure 5.4, in which the Y- 

* I am indebted to Professor Allan Birnbautn Toi this iemarkably useful equa[ion. 
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contours of Figure 5.2 have been overlaid in light dotted lines with the 
a( Y )  contours of Figure 5.3. 

5.10. A NUMERICAL CHECK FOR YATES'S ZP-ALGORITHM 

Here is a numerical check for the 23 computation which is simpler but 
slightly less thorough than that given by Yates: 

1. 

2. 

3. 

4. 

Sum the observations in column 0, in sequence, writing down the 
subsurns under column 0. 
S8 is the last observation, ubc; 
S4 is abc -I- ab, that is, The sum of every fourth observation; 
S ,  is abc + ab + ac + u, that is, The sum of every second observation; 
S1 is the sum of ull observations. 
After column 1 is completed, sum its upper half. The result should agree 
with S1. Then continue summing to get the whole column sum. This 
must equal 2S,. 
After column 2 is completed, sum its entries from the top. The sum of 
the first two must be S ,  ; the sum of the first four must be 2Sz. The sum 
of all eight must be 4S,. 
After column 3 is completed, sum its entries, noting thc following as 
you go: 

a. The first entry is S,. 
b. The sum of the first two is 2.9,. 
c. The sum of the first four is 4S4. 
d. The sum of all eight is 8S8 .  

This check will always catch a single error, but of course, compensating 
errors are possible. The extension to larger powers of 2 is obvious. 

5.11. INTERPRETATION OF THE 23 

To admit the simple truth, the main interests of the experimenter in these 
nine data points were (a) to see that his equipment was working, and (6) to 
note that the responses were acceptably high. He could then go ahead with 
his program, which required tests on several types of cement. 

The experimenter knew that the form of equation being used could not 
be exactly right since it implied that Y, the hardening time, would increase 
at much lower values of x2  and x3. 

I f  we compare the observed y-values with those fitted, assuming that 
8, C, and RC are the only real effects (see Table 5 . 9 ,  we see that a tolerably 
good fit has been obtained. Indeed the MS for lack of fit [computed most 
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easily from the differences of the observations in the four cells as (3* + 252 + 
l 2  + 33’)/2 x 41 is 216 with four d.f. This is not greatly larger than the 
expected a* of 122 or 144. 

If we add the two terms, A and AB, that are next largest, the residual MS 
is reduced to 8.5. The latter is found from the two contrasts not used in the 
new equation, namely, (AC) and (ABC), in column 3 of Table 5.3. Thus 
(6* + 102)/8 x 2 = 8.5. This smacks of overfitting, but of course nothing 
a n  be proved in such a small experiment since we have left ourselves only 
two d.f. for judging lack of fit. 

The reader should take it as an exercise to fit the six-term equation in 
A, B, AB, C, BC, and the mean, by using the reverse Yates device. He should 
then compare the fitted values with the observed ones and see whether he 
likes the new equation better. He will note that the fit is rather strained with 
only B, C, and BC, since the values at high B apparently fit worse than those 
at low B. O n  the other hand, the equation with six effects gives almost too 
good a fit. 

The ambiguity haunting the detailed interpretation of these data is 
entirely typical of “small” factorials. Quite a large proportion of the effects 
we are finding are in the doubtful range; both a and A% are larger than their 
expected standard error, but smaller than twice that value. The set of data 
is not large enough to establish a clear pattern. The detection of revcaling 
patterns, both of concurrence and of discordance, wilt be one of our main 
themes when larger sets of data are discussed. 

5.12. ONE BAD VALUE IN 2$*’ 

The artificial data given in column 0 of Table 5.6, panel a, would produce 
the “effects” shown in the adjacent column (3). On casual inspection it 
appears that the factors A, B, and C are all influential and additive in their 
effects. On more thoughtful inspection it appears that all four interaction 
terms, though small compared to the main effects, have the same magnitude. 
Only an extremely casual data analyst would pool the four 50’s and call the 
result an unbiased estimate of the random error. 

In column 4 the signs of these four are isolated, A gross error in a single 
piece of data would enter each contrast-sum and influence it by the same 
absolute amount. Inspection of the rows of the table of signs, Table 5.2, 
shows that only eight patterns of disturbance (with their negatives) are 
possible, and that only one of these would produce the pattern of signs of 
column 4, Table 5.6. We complete the pattern in column 5. If Table 5.2 
were not available, we could use the reverse Yates operation on this set of 
signed ones, as in panel b of Table 5.6, to find that only run a could be respon- 
sible, and that it must be off by +50. We can revise the column of effects 
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TABLE 5.6. 
PATTERNS IN T I E  EFFECT CONTRASTS JUDGED NONSIGNIFICANT 

( I )  158 1650 + 1600 200 ABC + I  2 0 0 abc 
3-1 - 2  0 0 lie 
- 1  - 2  0 0 ac 
- 1  2 o o c  

U 132 -254 
h 212 166 
ah 136 -50 - - 0 0  

C 264 374 - 424 53 C - 1  0 -4  0 nb 
uc 188 -50 - - 0 0  - I  0 4 0 6  
bc 318 50 -t + 0 0  + I  0 0 8 a  
abc 242 50 + + 0 0  + I  0 0 0 ( I )  

___1- - __ 

directly, without repeating the whole computation, by adding 50 to or 
subtracting 50 from each of its members with signs reversed from those in 
column 5. In this way we get the revised contrast-sums shown in column 
6, panel 4. 

Our conclusion about the magnitude of the random error is now entirely 
different. Each of the effects has been increased. Of course with real data 
the nonrandomness induced by a bad value will not be so obvious since it 
will be somewhat obscured by random error. 

A heavy price must be paid for this piece of cleverness, just as it would be 
if one value were missing altogether. Although the computation of Table 
5.6 gives no hint of the fact, all effects are now estimated with twice the 
variance of the unmodified set. P. W. M. John [ 19731 was the first to point 
out this rather horrifying fact, but he also shows some ways of ameliorating 
the loss in the larger factorials. 

Since we cannot hope to estimate all eight factorial parameters from 
seven observations, the natural one to forgo is ABC. This is equivalent to 
estimating each of the other effects plus or minus ABC. We can tease each 
of these out by reverse Yates, asking, for example, what combination of 
observations estimates A-ABC. A simple rule emerges: A different set of 
four observations is required for each estimate; those for main effects are 
in a pair of diagonally opposite edges that do not include the bad value, and 
those for two-factor interactions are in the face that varies the two com- 
ponents but is away from the bad value. Thus in Figure 5.50, for factor A 
and for observation ( I )  to be excluded, we use the four points marked in the 
“diagonal square”: ab, b, ac, c. For the 2fi A B  the four points marked in 
Figure 5.5b should be chosen. It should be obvious or verifiable that the 
contrast (abc - bc) - (ac - c)  has expected value 4(AB -i- ABC). 
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A+ A 3  

(0) (6) 

Figwe 5.5 Data points for estimation of (a) A and (h) AB in a z3 - I .  

5.13. BLOCKING THE 23 

The familiar advantage of blocking (and often the only one mentioned) 
is the possibly improved precision if the blocking isolates sets of experimental 
material that are more homogeneous than the whole. There will be many 
cases in which two litters of four are easier to obtain than one of eight, and 
many in which two smaller batches of raw material will give better compa- 
risons within batches than will one large batch, or a random assignment 
of runs to material regardless of batch. But the other side of blocking needs 
more emphasis. 

Even when all cight runs could be run on one batch of raw material, 
there is an important reason for not doing so. We are always trying to get 
conclusions that are widely applicable. If we confine all the data to a single 
batch, and thcn suppose that our conclusions must hold for all batches we 
make a needlessly reckless extrapolation. Our results will be as precise, and 
our base broader, if we plan to take half the data on one batch and half on a 
batch separated as widely as possible from the first. 

Of course something must be sacrificed if we are to eliminate batch-to- 
batch differences from our comparisons. It is  usudly thought safest to 
confound the ABC interaction with batch differences by doing in one batch 
the runs that are on the“p1us” side of the ABC contrast. This requires doing 
( t ) ,  ah, ac, and bc in one batch, and a, 6, c, and abc in the other. These are 
sometimes called the “even” and “odd” blocks for the number of Ietters in 
the specification of each run. 

A conscientious seeker aRer truth will remember that the blocks should 
be done in random order, and that the set of four runs inside each block 
should also be objectively and separately randomized. The tables of Moses 
and Oakford [ 19631 provide a very convenient way to do this. 

Unfortunately there are not many choices for such small sets, and many 
of them are distasteful because they are sensitive to any linear or simply 
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curved trend in time. Some methods for avoiding these difficulties will be 
discussed in Chapter 15 on trend-free plans. 

When blocks of two experimental units are called for, an unreplicated 2’ 
cannot be expected to give much information on interactions. The inter- 
action contrasts wilt generally be aliased with block differences, and so the 
first set of four blocks will measure only main effects with within-block 
precision, while the two-factor interactions will be measured with the 
amorig-block variance. The four blocks, each a pair of points at the ends of 
a different major diagonal of the cube, are: 

I.  (l),  abc 

11. a, bc 
111. b, ac 

IV. c,ab 

Estimates of the three main effects, freed of any aliasing with 2fi‘s but not 
of the 3fi ABC, can be made with two-thirds efficiency after any three of these 
blocks have been completed. Other sets of blocks must be done if the three 
2fi’s are to be estimated with the within-block variance. See Sections 10.3.2 
and 10.3.3. 

5.14. SUMMARY 

Much of the content of this chapter is standard and is a reflection of the 
treatment in many earlier works. Much of it is clearly presented in Yates’s 
pamphlet [1937]. Davies [I9711 contains a good exposition of the 2j, 
although the factorial representation (displayed on page 235 of that work) 
is not employed in the body of the text, nor are data used there to derive 
fitting equations. 

The representation of the response surface as a factorial function of the 
factor levels is not new, but is carried through here in elementary detail for 
several cases (Sections 5.7 and 5.8) for experimentalists and engineers who 
may not have seen the statistical textbooks or papers in which this is 
explained. 

The numerical check for Yates’s algorithm is new but owes something 
to R. Freund, who showed me a similar one long ago. The search for ”bad 
values” in Section 5.12 has not, I believe, been published elsewhere. The 
emphasis on blocking for generality rather than for precision is new, or at 
least original. 

But, as I warned in’Section 5.1, the 23 is not widely recommended. It is 
treated here at such length as a miniature exemplification of the 2p plans, 
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to introduce several sets of nomenclature and severai modes of represen- 
tation of the facts that are unfamiliar to most experimenters. Every one of 
the topics introduced in the sections of this chapter will appear repeatedly 
in later chapters. 

APPENDIX 5.A 
THE VARIANCE OF LINEAR FUNCTIONS OF 

UNCORRELATED RANDOM VARIABLES 

Most readers already know the results of this appendix. Those who do not, 
however, must acquire them to profit fully from this chapter and from most 
of those to follow. 

I assume first that y is a random variable with expectation p and variance 
u2. The variance of a random variable is defined as the expected value of its 
squared deviation porn its expected value, Thus: 

E { Y )  = I(, E(tY - PIZ] = 0:. 

We take the simple linear function of y,  z = a + cy, where a and c are 
known constants, and we write in turn the expected values of z and of its 
squared deviation from its expectation: 

E{4 = EI(Q 4- C Y ) )  

= E { a )  + E{cy )  

= E{aj + c E { y }  
= a 4- cp;  

Var(z) = E { ( z  - E{z) ) ’ )  

since E{ ) is a linear operator 
since E {  } is a linear operator 

= E((a  I- cy - a - C p y }  

= EICc(y - PU2) 
= c 2 E { ( y  - P ) ~ }  
= c ay. 

since E {  1 is a linear operator 
2 2  

In summary, we may write 

(5.A.1) Var (a + cy) = c2a,2. 

We extend this to find the variance of a weighted sum of n uncorrelated 
random variables y i ,  which may have different expectations, different 
variances a:, and different weights c,. 

(5.A.2) 
n n 

I =  1 1 
Var C c,yi = C #a:. 
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If the weights are all set at 1, 

69 

(5.A.3) 

In words, the variance of a sum of uncorrelated random variables is the 

If each weight is set at 1/11, and if 0; = 0: (constant), 
sum of their variances. 

The equation 

U2 
Var y = 2 

n 
(5.A.4) 

for uncorrelated or independent y, all with the same variance, is perhaps the 
most important equation in statistics. 

(5.A.5) Var Zciyr  = a,”xcz, 
which again holds when all yi are uncorrelated with the same variance but 
not necessarily with the same population means. 

Perhaps the second most useful equation, at least in our work, is 

Applying (5.A.5) to a general equation like ( 5 . 9 ,  i.e. to: 

Y = 7 + h l x ,  + hZx2 -t b l z x l x z ;  

and, remembering that the b’s and are the random variables, all uncor- 
related (orthogonal) and all of the same variance, u2/N, while the x’s are 
exact, we have 

Vat Y = Var y + x: Var 6 ,  + x: Var bz + x:x: Var b12 
0 2  

N = - ( I  + x: + x: + X t X f ) ,  

which is (5.6). 
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6.1. INTRODUCTION 

Sixteen-run plans are generally much more valuable than eight-run plans. 
The gain does not occur primarily because of the improved precision of the 
larger plans, nor is it heavily influenced by the larger number of independent 
contrasts availabIe for estimating effects and interactions. I believe that it is 
due mainly to the opportunity for stirdying the data-to learn about the 
presence of one or more defective values, about possible transformations, and 
about the randomization pattern and its defects-which just begins to appear 
in the 24. 

6.2. THE FIRST COMPUTATIONS 

The data come from a well-executed unreplicated four-factor experiment. 
They were the first observations taken on a prototype piece of equipment for 
which no error estimate was available. The experimenters hoped for a stan- 
dard deviation of about 5%. Three of the factors were known to have positive 
effects: A, the load on a small stone drill; B, the Row rate through it; and C, its 
rotational speed. The fourth factor, D, was the ‘‘type of mud used in drilling.” 

71 



72 UNREPLICATBD FOUR-FACTOR, TWO-LEVEL FACTORIAL EXPERIMENTS 

The response was the rate of advance of the drill. Table 6.1 gives the data in 
column 0, and shows the details of the usual computation to arrive at the 
contrast-sums listed in column (4). 

TABLE 6.1. 
STANDARD FIRST STAGE3 IN THB N U M E R I C A L  ANALYSIS OF A 24 

Obs. 
spec. (0) (1) (2) (3) (4) Effect 

I_---- 

(1) 1.68 3.66 10.38 
a 1.98 6.72 29.72 

b 3.28 10.68 13.13 
ah 3.44 19.04 45.25 

C 4.98 4.51 0.46 
ac 5.70 8.62 -0.18 

bc 9.97 17.20 0.81 
abc 9.07 28.05 6.21 

d 2.07 0.30 ~ 3.06 
ad 2.44 0.16 8.36 

bd 4.09 0.72 4.1 1 
abd 4.53 -0.90 10.85 

cd 7.77 0.37 -0.14 
acd 9.43 0.44 - 1.62 

hcd 11.75 1.66 0.07 
abcd 16.30 4.55 2.89 

40.10 
58.38 

0.28 
7.02 

11.42 
14.96 

- 1.76 
2.96 

19.34 
32.12 

- 0.64 
5.40 

5.30 
6.74 

- 1.48 
2.82 

98.48 
7.30 

26.38 
1.20 

5 1.46 
4.76 

12.04 
1.34 

18.28 
6.74 

3.54 
4.72 

12.78 
6.04 

1.44 
4.30 

Total 
A 

B 
AB 

C 
AC 

BC 
ABC 

D 
AD 

ED 
ABD 

CD 
ACD 

BCD 
ABCD 

- 

?’here are many ways ofjudging the set of 15 factorial effects, none of them 
objective, The commonest method is lo take an oath before the data are 
taken that we will use the three- and four-factor interactions as estimates of 
error, and to then use “ F -  or t-tests” on each of the remaining contrasts, 
judging all those to be significant which are larger than a critical F-value, 
usually taken as the 5% point for the number of degrees of freedom pooled 
for error.This method, recommended in most textbooks, is frequentlyviolated 
as soon as the data are in, first of all by the use of several levels of significance 
to indicate which effects are more and which less “significant.” The lack of 
seriousness of the whole enterprise is revealed by the fact that no statistician 
has thought to investigate the operating characteristic (frequency of missing 
real effects) of the combined multilevel test. Examples will be given later of 
entirely jejune conclusions drawn in this way. 
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At this point only a commonsense inspection of the relative magnitudes 
of the contrasts is urged, It is entirely obvious that the five largest effects--B, 
C, BC, D, and CD-are dominant as well as plausible. They are dominant 
because of the wide gap (of 4.74) separating them from the remaining 10 
contrasts, which are all smaller than 7.32. They are plausible because the two- 
factor interactions contrasts-BC and CD -are nonadditivities of pairs of 
the most influential factors. 

One way of expressing the dominance of the five largest contrasts is by 
computing the “coefficient of determination,” R:. This is the fraction of the 
total scatter of the original 16 observations, expressed as a sum of squares 
about their mean, that is accounted for by the five effects we have chosen. The 
total sum of squares (abbreviated as TSS henceforth) of deviations of our 
observations about their mean is 262.68. The SS accounted for by the five 
effects chosen is (26.38’ t 51.46’ + 1 .  .)/16 or 249.15. Then R: is 249.15/ 
262.68 or 0.948. 

We seem to have done quite well, but of course we need some control since 
we have chosen the five largest effects after the fact. A rough computation 
(using Owen’s tables [ 19621 to find expected values and variances of normal 
order statistics) indicates that the five largest of 15 normally distributed values 
may be expected to account for 75% of their TSS. 

If we assume-as we are not really entitled to--that the residual SS, 13.52, 
measures random error, then 13.53/10 or 1.35 is an estimate of the error 
variance. Since the mean square for the five effects is 249.15/5 or 49.83, we see 
that the ratio of these two MS’s, one for effects and one for random error, is 
49-83/13 or 36.8. There is little point in judging the “statistical significance” 
of this value by reference to F-tables. In the first place, we may have under. 
estimated the error variance by our arbitrary assignment of BC to the set of 
real effects. In the second place, we may have ouerestimated the error variance 
by leaving some real effects in the residual SS. Third, we compute this value 
only to compare it with later ratios of the same sort. I t  is not our aim to 
develop a test for the significance of the difference in significance of two 
significance tests. 

Table 6.2 shows in detail (for the last time) the “reverse Yates computation” 
to get fitted values Y .  The residuals dy are calculated in the last column of the 
same table. Some readers may find it interesting to compute the residuals 
directly, without the computation of the Y, by dropping the effects judged 
real from the column of effects, and carrying the reverse Yates operation 
through only on the effects judged not real. The values in the last column of 
this operation must of course be divided by N, the number of observations, 
Lo give the residuals in original units. 

We now explore in some detail the consequences of jtldging that factors 
B, C, D are the only influential ones, and that B, C, BC, I), and CD are the 
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TABLE 6.2, 
“REVEHSE YATES” COMPUTATION 01; FITTED VALUES k’ AND OF RFStDUALS d,  

Contrast- 

Effect Sum (I) (2) (3) (3) + 16 +6.2 = Y Spcc. p 4 
---- -____-._ 

BCD 0 13 31 120 +7.5 13.7 b d  11.8, 16.3 - 1.9, + 2.6 
CD 13 I 8  89 44 +2.8 9.0 cd 7.8, 9.4 - 1.2, t 0 . 4  

5D 0 63 31 -32 -2.0 4.2 hd 4.1.4.5 -0.1.+0.3 
D I8 26 13 -60 -3.8 2.4 d 2.1, 2.4 -0.3, 0.0 

nc I 2  13 5 58 +3.6 9.8 bc 10.0, 9.1 i-0.2, -0.7 
c 51 18 -37 -18 -- 1.1 5.1 c 5.0,5.7 -0.1,+0.6 

n 26 39 5 -42 -2.6 3.6 b 3.3, 3.4 -0.3, -0.2 
T 0 - 2 6  -65 -70 -4.4 1.8 (I) 1.7, 2.0 -0.1, +0.2 

only real effects. This is done by study of the empirical cumulative distribu- 
tion (abbreviated as e.c.d. from now on) of the residuals and of their possible 
relations with their corresponding Y-values. Ideally, the the e.c.d. should 
approximate a normal one, and there should be visible relation of the ‘I, 
to the Y. 

Figure 6.1 shows the I6 residuals from Y(Y, 8, c, Be, fs, CD) ptotted as 
an e.c.d. on a “16-residual normal grid.”* The d,, are first entered directly near 
the left margin of the grid. They are then easily moved in, each one going to 
the succeeding line on the grid. Figure 6.2 is an “Anscombe-Tukey plot” 
[I9631 of all 16 residuals against their corresponding Y-values. Both plots 
fail to conform to our hopes. The e.c.d. does not give a straight line; there is 
a clear trend to increasing d,  with increasing Y, We will discuss these matters 
somewhat more objectively in the next section, after reviewing here the nu- 
merical operations that should become routine. 

The work may be listed iindcr five steps: 

1. Yates’s aIgorithrn on y to get effects. 
2. Reverse Yates on large effects to get Y. 
3. Computation of I/,.  

4. Normal plot of d,,. 
5. Plot of d,  versus Y. 

The choice of terms to put into the fitting equation was subjective but 
rather easy in this example. The examination can be made more thorough 
when Past computing service is available. First the forward computation of 

* Two full-sizc blnnk grids are included for copying. 
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Figure 6.1 Residuals from equation Y(y, 8, c, b, &, C%). 

the whole set of effects is carried out. Then a sequence of fitting equations is 
run through, each equation adding the next smaller effect, regardless of its 
meaning, to the fitting equation. I f  this is carried through automatically, 
without human intervention or arbitrary stopping rule, for, say, halfof the 
total number of effects, a lot of paper will be wasted, but 99% of all the ex- 
periments I have seen will have been covered. As very crude guesses, about 
four real effects is average for a z4, and seven for a z5. The e.c.d. and dy versus Y 
plot must be made for each fitting equation. These can be (and indeed have 
been) programmed for many computers, 
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Figure 6.2 Residuals d j  versus fitted values Y. 

If this is done for the present z4, it will be found that the largest residuals 
continue to appear excessive in the e.c.d. plot, and that the dependence of 
d, on Y persists. 

6.3. INTERPRETATION OF THE FIRST COMPUTATIONS 

6.3.1. The Empirical Cumulative Distribution of the Residuals 
The vertical lines of the “16-residual normal grid” of Figure 6.1 are spaced 

to give a straight line-on the average-when a set of normaliy distributed 
independent values is ordered and plotted. But of course a particular sample 
of 16 numbers derived from observations never gives an exact straight line. 
In addition to the inevitable fluctuations of samples of indepertdenr normal 
deviates, our sets will always have a further distortion caused by their being 
residuals from a fitted equation and hence not independent. 

I see no prospect for gaining insight into the behavior of sets of residuals 
by study of the variances and covariances ofthe usual normal order statistics 
as they are published. There is at present no substitute for the direct examina- 
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tion of a considerable collection of e.c.d.’s of the size we need. We would like 
a set originating from independent random normal deviates, and another 
set from fitted equations. Appendix 6.A gives 40 plots of 16 independent 
standard normal deviates (r,s.n.d.) as drawn from the Rand tables [1955, 
pages 1-2003 with nothing removed. If five or so d.f. are removed from a set 
of r.s.n.d. by multiple regression, some of the irregularities of the original 
e.c.d. will be removed, so that the normal slot will appear more nearly normal, 
even “supernormal,” that is, with extreme deviates smaller than expected. 
Although it is salutary to note the variations in shape that these little sets 
show, none has the shape of Figure 6.1. 

I conclude that something is amiss. Either there are two excessive values 
which were disturbed by some factors that did not operate on the other 14 
observations, or the random error is not normally distributed, or the factorial 
representation is far from the best, or the response is not in the right units. 
We must strongly resist accepting the first alternative. It should be considered 
only if all else fails. 

6.3.2. The dy versus Y Plot 

Figure 6.2 shows heavy dependence of the magnitude of d, on Y. This 
dependence is of the simplest kind, suggesting that dy increases with the true 
value of y. The true value of y is often designated as q (read “eta”). If the “per 
cent error,” or the “coefficient of variation” c/o, is constant, we expect that 
log y will have constant error. A constant coeRcient of variation (usually 
abbreviated as CV) implies that the uncontrolled factors producing random 
variation somehow know how large the quantity is that they are disturbing. 
The simplest assumption needed to account for this behavior is that the 
random factors are operating multiplicatively, rather than additively. If the 
same mode of influence extends to the controlled factors, we may hope that 
some or all of the interactions found in fitting an additive equation, as we 
did above, will be removed. 

Using log y as a response, after a study ofy shows residuals increasing with 
Y, is not simply a lazy statistician’s way of reinstating his assumption of con- 
stant average error. If its use simplifies the fitting equation, if a notably better 
fit is obtained, and if the dependence of dy on Y is removed or greatly de- 
creased, we can feel quite sure that log y is a more informative response than y. 

Many properties of physical systems meet the obvious mathematical re- 
quirements for “logging.” The response must of course be intrinsically posi- 
tive. The ratio of the largest response to the smallest should be fairly large, 
say at least 5 : 1. These conditions are met by the present data. Indeed, when 
speedy computer service i s  available, my own practice is to ask for the whole 
sequence of computations and plots listed in the preceding section, borh for 
y and for log y .  
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6.4. LOOKING FOR SIMPLE M0I)ELS 

Table 6.3 and Figures 6.3 and 6.4 show the results of the usual computa- 
tions, using z = 100 log,, y as a response. We have simplified our equation, 
and we have improved our fit. Main effects A, B, C, D now give an Rf of 0.986; 
adding C D  raises this to 0.9908. But we stiH have one suspiciously large 
residual- that at bcd-and we still have a whole collection of residuals that 
increase with Z, though perhaps less than they did in the corresponding 
situation with Y. 

1 have not been entirely fair to the experimenters in my rather slow ap- 
proach to “logging.” They knew that many factors operated exponentially 
on the rate of advance y, bul they did not think that as small a set of observa- 
tions as this one could throw much additional light on the matter, Two 
suggestions emerged after discussion: It i s  possible that some low rate of 
drilling is itself a zero level, and it is conceivable that some fixed low power 
of y is the response on which the factors might operate additively. 

TABLE 6.3. 

R E S I D U A L S ~ ~ ~  
EFFECTS ON 2 = 100 log,, y ;  FITTED VALllFs 211, A ,  B, c, D ,  CD); 

Panel a 
Spec. y Z (4) Effects 

(1) 1.68 22.5 
a 1.98 29.6 

b 3.28 51.6 
ab 3.44 53.7 

C 4.98 69.7 
ac 5.70 75.6 

bc 9.97 99.8 
abc 9.07 95.8 

d 2.07 31.6 
ad 2.44 38.7 

bd 4.09 61.2 
abd 4.53 65.6 

cd 7.77 89.0 
UCd 9.43 97.4 

bcd t 1.75 107.0 
iibccl 16.30 121.2 

11 10.0 
45.2 

201.8 
-11.8 

40 1 .O 
3.8 

- 17.6 
3.6 

I 13.4 
23.0 

- 5.2 
18.0 

34.0 
18.4 

- 11.8 
13.4 

T 
A 

B 
AB 

c 
AC 

BC 
ABC 

D 
A D  

BD 
ABD 

CD 
ACD 

UCD 
ABCD 

1110 
45 

202 
0 

401 
0 

0 
0 

1 I 3  
0 

0 
0 

34 
0 

0 
0 

23.9 
29.6 

49.2 
54.8 

69.8 
75.5 

95.1 
100.7 

33.8 
39.4 

59.1 
64.7 

88.2 
93.8 

113.5 
119.1 

- 1.4 
0.0 

+ 2.4 
- 1.1 

-0.1 
+0.1 

+4.7 
- 4.9 

- 2.2 
-0.7 

4-2.1 
+ 0.9 

+ 0.8 
f 3.6 

- 6.5 
3-2.1 
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Figure 6.3 Residuals from equation Zg, A ,  b, e, h, C%); 100 log,, y = Z. 

The first possibility can be tested by trying log ( y - c) as a response, letting 
c take each of several values, say 0.5, 1.0, and 1.25. Figures 6.5 and 6.6 show 
the residual e.c.d. and d,, versus W plots for w = 100 log 1OO(y - 1). The 
second set of alternatives can be canvassed by using y ,  y112, log y ,  Y - ” ~ ,  and 
y -  I as responses. Table 6.4 gives a summary of all nine cases. In the first five 
we have varied the exponent of y;  in the latter five (case VlI = case 111) we 
have tried five values of c. 
We see that log y does best if we look only at overall fit to four main effects. 

But y -  112 does somewhat better if one two-factor interaction is allowed. If 
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Figure 6.6 Residuals d, versus fitted values W ;  

TABLE 6.4. 
SUMMARY OF A 24 UNDER NINE )'-?'RANSFORMATIONS 

Bad Added 
Transform Response R&4, B, C, D) Values dy vs. Y CV Interactions R i  

I 

I I  
I l l  
IV 
V 

VI 
VII  (= 111) 
VIlI 
IX 
X 

Y 

y1/2 

log Y 
y -  H 2  

) , - I  

k ( Y  + 1) 

log ( ) I  - 0.5) 
log(y - 1.0) 
log (7 - 1.25) 

log J' 

0.8818 

0.9562 
0.9856* 
0.9683 
0.9 168 

0.9828 
0.9856* 
0.9851 
0.9777 
0.9673 

bcd, 
abed 
nbcd 
bcd ' OK 

t 

bcd 

O K  

19% K , C D  

CD 
CD 
BC 
BC 

BC 
CD 
BC 

1 1 %  BC 
BC 

0.9485 

0.9757 
0.9908 
0.9930* 
0.9857 

0.9902 
0.9908 
0.9898 
0.99 I5 
0.989 I 

* Highest R2 in its column. 
Obviously lionnormal because of absence of LIC. 

has the further advantage that the residuals from this equation show no trend 
with response. There is little to choose between y-'" and log ( y  - 1), so far 
as our analysis shows. Both require BC, and neither shows any excessive 
residuals or trend of residuals with response. 

This is an appropriate time at which to return the data and the analysis to 
the experimenters. It is they who will decide whether the equation in y -  * I 2  is 
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intriguing or is merely a curiosity. A summary of our findings can be written 
entirely in engineering terms, with no more mathematical apparatus than 
elementary algebra and tables of data and residuals. 

6.5. A NOTE ON ROUNDING IN YATB’S ALGORITHM 

I am indebted to Ms. E. (Reid) Flaster for an ingenious suggestion that 
often saves time in hand or desk-machine computation of the 2p factorial 
effects. Suppose that we round the y-data of Table 6.1 to the nearest integer 
and then carry through the usual four-column calculation. The result will be 
the column label “(4)” in Table 6.5, panel a. We see immediately that there 
are too many ties. These are two O’s, three 4‘s, four 6‘s, and two 12’s. These 
numbers are not behaving like a set of random variables from a continuous 
distribution. 

We can carry through a set of one-digit corrections as in panel 6 of the 
same table. The new column 4 values designated as (4), are then (10 times) 

TABLE 6.5. 
h CNITEREON FOR ROUNVINC; RESPONSES IN A z4 

Panel a. Rounding to digits produced too many ties 
Panel b. Revision to one decimal reduces ties to unimportance 

(0) (1) (2) (3) (4) (0)’ (1)’ (2)’ (3)’ (4)’ (4) + 0.1(4)’ 
-I___-- 

2 4 10 40 98 -3  - 3  4 2 6 98.6 
2 6 30 58 6 0 7 -2 4 10 7.0 

3 1 1  13 0 26 3 -3  1 2 4 26.4 
3 19 45 6 2 4 1  3 8 - 8  I .2 

5 4 0 10 52 0 5 4 14 - 4  51.6 
6 9 0 16 4 - 3  - 4  - 2  -10 8 4.8 

I0 17 I - 2  12 0 2 - 3  2 2 12.2 
9 2 8  5 4 0  1 1 I 1  -10 14 I .4 

2 0 2 20 18 1 3 10 - 6  2 18.2 
2 0 8 3 2 6  4 1 4  2 6 6.6 

4 I 5  0 6  1 - 3  -9 -6  -24 3.6 
5 - 1  I t  4 6 - 5  1 - 1  14 -12 4.8 

8 0 0 6 12 -2 3 -2 - 6  8 12.8 
9 1 - 2  6 4  4 - 6  4 8 20 6.0 

12 1 I - 2  0 -2  6 -9  6 14 1.4 
16 4 3 2 4  3 5 - 1  8 2 4.2 
-_ - --_-- ~ __ 
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the corrections to column 4 of panel ti. These are added i n  the last column of 
the table to give us closer estimates of the correct values. We note that there 
are now only two pairs of ties, one at 1.4 and one at 4.8. 

A set of corrections to 0.01 will surely not change any of these values 
greatly. Even if all the revisions were of size 0.04, their maximum possible 
effect on a value in column 4 would be 16 x 0.04 or 0.64. This is only half 
the smallest of our panel b results. 

6.6. SNARES (AND DELUSIONS) 

A parting glance at the computation in Table 6.1 may induce the reflection 
that NN the contrasts in column 4 should not be positive. Even though three 
of the four factors were known to have positive emects, i t  is not credible that 
all the interactions be positive. Nor is it likely that all the error contrasts, 
which should have an expected value of 0, will be on one side of 0. 

I n  casting about Tor the simplest possiblecause for this run ofplussigns, the 
reader may come upon the fact that an excessive result for one arid only one 
of the 16 observed responses--that at abctl-would bias all the contrasts in 
the same direction. It is tempting to revise this oflending value by an amount 
that would make the set of 15 contrasts (or perhaps only the 9 smaller inter- 
action contrasts) look more like a set of random normal deviates. 7 h i s  should 
not be done. 

If the pattern of signs in column 4 indicated a bad value anywhere but at 
rrbcd, a more persuasive case for revision could be made. But just here we 
have the extreme condition-high levels for all factors, all with positive 
average effects. By inspection we see that all the other results lead up to this 
one. I t  would be too bad to lose the knowledge that we really can drill fastest 
under these conditions just lo enforce a good fit for a rather arbitrary form 
of equation. If the large discrepancies had appeared at intermediate values 
of the response, our hesitation in criticizing or even revising them would have 
been less. In positive terms, an interior point, either in factor space or in 
response range, is more safely judged to be excessive than is an extreme one. 
We note, finally, that the predominance of long runs of signs in the effect 
column is removed by the transformation to log y = z (Table 6.3). 

Sermon 111 is only a short reiteration of points already made: Therc is much 
information in large sets of balanced data, not only about the cffects of the 
factors varied, but also about the appropriateness of the fitting equation and 
about the form of the error distribution. The balancc and symmetry of the 
2 P  plans give them properties of response hy patterti to many sorts of dis- 
turbance. In the example just treated, such pattcrns showed in the behavior 
of whole sets of residuals under various transformations of the response. 
There will be many more. 



APPENDIX 6.A. 

EMPIRICAL CUMULATIVE DISTRIBUTIONS, EACH OF 
16 INDEPENDENT STANDARD NORMAL DEVIATES 
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Three Five-Factor, Two-Level 
Unreplicated Experiments 
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7.4.5 Block-Factor Interactions? 143 
7.4.6 Conclusions, 147 

7.5 General Conctuslons, 147 
7.6 Half-Normal Plots, 149 

7.1 INTRODUCTlON 

Three z5 factorials are studied in this chapter. They were not chosen after 
inspection of a larger set; they are simply the three best-known examples. 
The program of analysis is like that of earlier chapters but is now augmented. 

We expect a small number of real effects and low-order interactions. At 
most all main eFfects, some two-factor interactions, possibly a three-factor 
interaction, and some block effects will be large. We will have, then, about 

127 
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16 d.f. above and beyond the real effects. These can be used poetically, as 
degrees of freedom for the imagination. The key assumptions of the standard 
analysis (uncorrelated errors with constant variance, no block-factor inter- 
actions, no bad values) need not remain unexamined. They can sometimes be 
roughly verified, and sometimes shown to be invalid, by the data. Almost as 
often, the analysis can be modified to take account of the observed failures 
of the standard assumptions. 

The extra degrees of freedom are sufficiently numerous, as they were not 
in the smaller experiments discussed earlier, to manifest many identifiable 
patterns and parts of patterns. The number of contingencies is finite in the 
sense that a single data analyst will have time to think ofonly a finite number 
of things to study, but it is infinite in the sense of being unbounded. This 
chapter will be successful to the degree that it stimulates readers to study 
critically the data produced by their own experimental systems. 

There will be many failures in that frequently no pattern is detected. Since 
patterns are often indications of nonrandotnness, their absence is desirable, 
and such failures are welcome. 

Some readers wilt not be able to repress a natural feeling: “If you look 
long enough, you are bound to find something.” Aside from the question- 
begging term lorig enorryh, I deny the allegation. I look longer than most, 
and usuatly find nothing. But a deeper objection to the statement is that it 
cxcuscs those who do not look at all, and who believe that theancient wisdom 
requiring thc analysis to be determined before the data are taken is the only 
true way. If some of the key assumptions underlying the standard analysis 
of all factorial experiments can be tested or even refuted by examination of 
the data, then one who has not noticed this has not looked long enough. 

The standard form of thc “analysis of variance,” which is widely used in 
summarizing factorial designs with factors at many levels, does not seem to 
me to be useful for 2” data. All the contrasts from a 2“ data set must be 
examined together. Their order, their distribution, and their signs are all 
lost in the standard analysis of variance table. The habit of summarizing 
the results in such a table (manifested in so many textbooks that it would be 
unkind to name) has had a tranquilizing effect with much information lost. 

The data juggling that appears in this chapter might be charitably de- 
scribed as a series of efforts to get the data into such shape that they will 
admit of valid standard significance tests. I do not know the effects of these 
revisions on the operating characteristics of the tests, and I await the results 
of further research with fear and trembling. 

The three classic experiments are taken from Yates [1937], Davies [ 19711, 
and Kempthorne [1952]. They have been studied many times before. Each 
analysis brings new questions, and no final answers are offered. The work 
presented here should of course have been carried out in close collaboration 
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with the experimenters, who could have categorically ruled out many of my 
questions and doubts, and who surely would have raised other more realistic 
ones. 

7.2. YATES’S 25 ON BEANS 

7.2. I .  Description 
This early experiment, described in Yates’s classic pamphlet [ 19371, was 

carried out at Rothamsted in 1935. The five factors were as follows: spacing 
of rows S (18 and 24 in.), amount of dung D (0 or 10 tons/acre), amount of 
nitrochalk N (0 or 50 Ib/acrc), amounl of superphosphnte P (0 or 60 Ib 
P,O,/acre), and amount of muriale of potash K (0 or 100 Ib K,O/acre). As 
Yates writes, “The spacing was varied to test the theory that the best effects 
of manures might be obtained with closely spaced rows.” The field plan is 
reproduced in Table 7.1. The actuaI data, arranged in standard order on 
s, d, t i ,  p ,  k, are given in Table 7.2. 

The test was arranged in four blocks of eight plots, confounding SDP, 
SNK, and DNPK with block means. This was accomplished by choosing 
for the “principal block” [which is 111 in this case and can always be identified 
by its containing the treatment combination (l)] those conditions which have 
an even number of letters in common with SDP and with SNK. Thcse can 
be most expeditiously found by first writing down three such combinations 
which can be used as “generators of the principal block”; the third must not 
be the product of the other two. Thus dp, ttk, and sdn will do. Their products 
(see Chapter 10) in all combinations, along with (I), give the set used in 
block 111, whose mean is then aliased with - S D P  - SNK + DNPK. The 
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TABLE 7.2. 
RESULTS OF STANDARD CbAPUTATIONS ON YATIS'S 2* ON BEANS 

---- - . ~  --I- 

Rounded 
Data and -59  Contrast- Effect Fitting 

spec. (v )  (I") Sum Symbol Equation Y' n 

(1) 

n 
sn  

S 

tl 

Stl 

dtt 
sdn 

P 
SP 

4) 
sdp 
nP 
SOP 
dnp 
Slftlf) 

k 
sk 
dk 
sdk 
nk 
a i k  
dtrk 
srlnk 

Pk 
SPk 
dPk 

HPk 
sdpk 

snpk 
dnpk 
sahpk 

66.5 
36.2 
74.8 
54.1 
68.0 
23.3 
67.3 
70.5 

56.7 
29.9 
76.7 
49.8 
36.3 
45.7 
60.8 
64.6 

63.6 
39.3 
51.3 
73.3 
71.2 
60.5 
73.7 
92.5 

49.6 
74.3 
63.6 
56.3 
48.0 
47.9 
77.0 
61.3 

7 
- 23 

16 
-4 

9 
- 36 

8 
I I  

-- 2 
-- 29 

18 
-9 
- 23 
- 13 

2 
6 

5 
- 20 
-8 
14 
I 2  

I 
15 
33 

-9 
I5 
5 

-3 
- 1 1  
- 1 I  

18 
2 

- 4  
- I28 

252 
80 
50 
54 
82 
30 

- 84 
48 

-8 
- I88 
- 82 

18 
18 

- 10 

I20 
136 
- 64 
- 24 

70 
- 98 

38 
- 35 

-8 
- 56 
-- 28 
- 60 
- 18 
- 102 

46 
78 

T - 4  3 
S -128 -26 
D 252 6 

2 
3 

- 26 
6 
2 

-9  
- 14 

18 
SD P -188 -10 

-9 
- 14 

18 
- 10 

K I20 1 
SK 136 -10 

5 
18 

I 
- 10 

5 
18 

- 10 
2 

17 
6 

- 10 
2 

17 
- 10 

+4 
+ 3  
4- 10 
-6 
+6 
- 10 
+2  
+9 

+7 
- 15 

0 
+ 1  
- 14 

+ I  
- 16 
+ 16 
+ 4  
- I0 
- 13 
-4 

+ 11 
+ I 1  
4- 10 
I- 15 

+ I  
+13 
- I2 
-9 
- 1  
- 13 

+ 1  
-4 
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treatment combinations for any other block are found by multiplying the 
eight just obtained by any letter or combination of letters not in the block. 
As these were allocated to the four blocks shown, we have the confounding: 

Block S D P  S N K  D N P K  

I + + + 
I t  

.f 111 
IV -t 

___ .. -_ 

__ 4- - 
- - 

- - 

7.2.2. Standard Computations 

As always, the total and the 31 contrast-sums are computed by Yates’s 
method. The results are given in Table 7.2 for the data rounded to the nearest 
unit. We see that S, D ,  SDP (one of the block contrasts), K, and SK are the 
largest erects. We use these five efleects, transferred to the column marked 
“Fitting Equation” in Table 7.2, in the reverse Yates computation to find 
the fitted values Y’ and thence the residuals (1, also given in the table. 

The usual plots (empirical cumulative distribution of residuals, and re- 
siduals versus Y) are shown in Figures 7.1 and 7.2. These plots show no 
cause for alarm or even suspicion. The imputed standard deviation of y from 
Figures 7.1 is 9.8 with 26 d.f., only a Iittie larger than the 9.06 that Yates 
found (with 13 d.E) by his more conservative pooling of higher-order inter- 
actions not used for blocking. 

7.2.3. Residuals in Place 

The residuals can also be placed in their respective plot positions, as in 
Table 7.3. Here we see a region of high fertility in the area inside the dotted 
line. This region extends into all four blocks, but the largest residuals appear 
in  the two right-hand columns ( +  IS, - 15, f 16, - 16). 

Just as a trial, we look at the effects of the factors in blocks I and 111. By 
good luck, these two blocks comprise a superblock with only D N P K  aliased 
with their mean. Each of the contrasts found from these 16 plots estimates 
the sum of two aliased effects, but no serious confusion appears. Table 7.4 
shows the results of the usual computations, including the pairs of aliased 
effects and the residuals, from an equation that includes D, K, SK, DK + N P ,  
and SDP + SNK (between blocks I and 111). 

The 16 residuals now have a MS value of 24.7 with 10 d.K, a striking 
reduction from the 82 found by Yates for the whole 2’. The reader is spared 
the necessity of looking at another set of plots and residuals in place. All of 
them look all right. 



Figure 7.1 Yates's Z 5  on beans. Residuals from Y(J, s,6, k, sk, SB). 
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Figure 7.2 Yates's 2'. Residuals d, versus Y,. 



TABLE 7.3. 
RESIDUALS PROM 2s ON BEANS, IN PLACE. 

111 

+ l l  +4 

i 
-4 t1 

/ 

/+3 tl 

/--\, 
0 

+11 /’ -13 
0 -/’ 

.-14 -4 

+2 1.1 

I 

I V  . 
\ 

+? 1 -1  
\ 
I 

-10 +16 I 

-10 
I +lo 1 
I 

+10 I -9 
I 

+6 I +4 
I 

-12 
\ 

I +15 1 
‘.---A’ 

-16 -16 

--6 -13 

I I  

TABLE 7.4 .  
STANDARD COMPUTATIONS USING BLOCKS I AND 111 ONLY 

I-____ 

Contrast- Etfect 
Spec. J’ - S9 Sum Symlml Equation Y d 

( 1 )  7 
S - 23 
dk -8  
sdk 14 
rrk 12 
snk I 
dl1 8 
S h  I I  

Pk -- 9 

dp 18 
sdp -9 

sny I 3 

sdnpk 2 

spk 15 

“P - 23 

dnpk 18 

+21 
- 25 
t 8 7  
- i l  
+ l l  
- 3  

+ 37 
- 13 

- 23 
+7 

+31 
- I43 
- 1 3  
- 3  

-I- 69 
+ 63 

T 
S 
D + NPK 
SD 
N + DPK 
SN 
DN f PK 
SDN 

P + DNK 
SP 
DP f NK 
S D P  i- SNK 
N P  + DK 
S N P  + SUK 

S D N P  + SK 
DNP + K 

$21 0 + 7  
-26 + 3  

+ 87 -7  - 1  
9 + 5  
9 + 3  

- 1  + 2  
2 + 6  

12 - I  

- 8  - 1  
17 + 2  
20 - 2  

- 143 -6  -3 
- 7 3  -18 -5 

- 8  - 5  
+ 69 I I  f 7  
+ 63 I + I  
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7.2.4. Dropping the Factorial Representation 

The complex of large main effects and 2Ps, all involving S, D, and K, may 
be trying to tell us something, but they are not saying anything simple in the 
factorial representation. We may have another case before us-they are not 
rare-in which Nature is not behaving "factorially," at least not in terms of 
our present factors. Since thc four effects, D, K, SK, and DK, are of roughly 
the same magnitude (87,69,63, and - 73, respectively), we set thein all at + I 
or - I and put them through a rcvcrsc Yates computation in Table 7.5. The 
rcsulting eight (coded) fitted values are placed on a 23 diagram in Figure 7.3. 
A 23 sufkes since N and P are without effects. 

Although we do not see any simple way to summarize these results, some- 
thing should be said. From the whole Z5 Yates had found, concerning the 

THKEE r;i VE-FAAC IOK, TWO-LEVEL UNREPLICATED EXPERIMENTS 

TABLE 7.5. 

D,  K, SK, DK 
JUDGING THE SIMULTANEOUS IMPACT OF 

SDK 0 - I  I 2 .@ 
DK - I  2 I 0 dk 

SK I I - I  2 sk 
A 

K 1 0 I O l  
SD 0 - 1  3 0 S d  

D 1 0 - 1  2 2  

A 

S 0 I 1 - 4  ŝ  
T 0 o - I  - 2  ( i )  

+2 

0 +2)--- -- 
/ 

K t -2 Om / / -4 0 f 

S* 

Figure 7.3 Coded responses lo S, D, and K in Yates's Z 5  on beans. 
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earlier conjecture that the best efiects might be obtained at closer spacing, 
that “the interaction bctween spacing and manures turned out to be the 
opposite of what had been expected.” if the results of these two blocks are 
to be believed, then dung alone on closely spaced rows (i.e., treatment com- 
bination d )  is as good as any other combination found. Indeed at wide 
spacing potash helps, as sk shows, but adding dung after (or before‘!) potash, 
as at sdk, gives no further increase. 

There we, then, three favorable combinations, and they are of rather 
unexpected variety t i ,  sk, and sdk. We suppose that no one would add 
potash and dung if either alone did as well, and we presume that wide spacing 
would be easier to manage and cultivate. This puts sk ahead. Not surprisingly, 
the worst combination is wide spacing and no fertilizer of any kind (i.e., s). 
Finally, as is usually the case in this country too, fertilizer nitrogen does not 
appear to increase the yield of beans. 

7.2.5. A COMMON RESULT: Id1 G IS1 lADl 

Returning for a moment to the full z5 shown in Table 7.2, we see that the 
total effects for S, K ,  and S K  are - 128, 120, and 136, respectively. This 
rough equality turns up quite frequently and has a simpte interpretation. If 
we put the three effects at - I ,  I ,  and 1 for simplicity, and go through a 2’ 
reverse Yates computation, we have the following: 

s 
0 3 

There arc, then, three nearly identical combinations, and one exceptional 
one, here s. (Other assortments of signs of the three effects simply move the 
exceptional response to some other cell or change its sign.) The simple inter- 
pretation ofsuch an equality of magnitude of A, B, and AB is: One combina- 
tion is exceptionally high (or low), and the other three combinations produce 
the same average response. 

7.3. DAVIES’ 2’ ON PENICILLIN (1971, PACES 383, 4151 

7.3.1. Description 

This was a full z5 done in two blocks (weeks) to study the effects on yield 
of variation in the concentrations of five components of a nutrient medium 
for growing Periicilliirm chrysogenrrrn in surface culture. 
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Table 7.6 gives the yields J' and their coded logs, z = IOO(log 1' - 21, to- 
gether with the usual contrasts. We see by inspection that the influential 
factors must be A, C, and E,  with perhaps CE and blocks (ABCDE) having 
some influence. This is true both for y and for log y. We note that the per 
cent of the total sum of squares accounted for by A, C, E, and CE is 86.5 for 
y, and 76.2 for z.  

TABLE 7.6. 
Dav11.s' 2' ON PCNICII.I.IN: J" = yicld -- 130; z = IOOflog yicld - 2) 

Etrects Effects Revised Erects 
Spec. J'' on y' Name z on z ElTectson y' Y' 4' on 

(1) 

h 
n6 

ct 

C 

AC 

hc 
AhC 

ci 
ild 

bd 
nbd 
crl 
OCd 

Dcd 
A b c d  

c 
At? 

/JC 

crbc 
ce 
ace 
bce 
itbce 

rle 
ccde 
bcle 

cde 
iicde 
bcde 
abcde 

cttldt! 

I2 
- -  16 
-- I 

-21 
55 
32 
70 
42 

ia 
- 22 

16 
- 35 

70 
34 

- I2 

- 24 
- 24 
- 42 
- 32 
- 17 
- 42 

85 

36 
- 51 

- 29 
- 16 

10 
- 58 

0 
- 47 
- 1 5  
-20 

- 14. 
562' 

18 
- 190 

514' 
- 194 

142 
- 42 

32 
- 160 
- 32 
-- 92 
- 32 
56 

._ 84 
I 28 

- 668' 
84 
96 

- 52 
- 336* 
- 104 

aa 
a4 

70 
90 
74 
58 
i a  

134 
34 

202' 

7 
A 
B 
AB 
C 
AC 
BC 
ABC 

D 
AD 
BD 
ABL) 
CD 
ACD 

ABCD 

E 
AE 
BE 
ABE 
CE 
ACE 

ABCE 

DE 
ADB 
BDE 
ALlDE 
CDE 
A C D E  
BCDE 
ABCDE 

n u  

a c E  

15 
6 

I1 
4 

27 
21 
30 
24 

17 
3 

16 
-2  
30 
22 
33 
7 

2 
2 

-6 
- I  

5 
-6 
22 

- 10 

0 
6 

I5 
- 14 

1 1  
- 8  
16 
4 

304 
- I90 

-6  
-64 
I53 
- 53 

53 
0 

9 
-54 
-. 7 
- 34 

-4 
33 

58 

- 224 
2 

29 
- 22 
- 93 

39 
31 

30 
21 
28 
14 
12 
47 
16 
77 

- l a  

- 58 

61 * 

93 
- 115 

583. 
-119 

217 
33 

I07 
- 85 

43 
- I7 

43 
131 
-9 
203 

- 743* 
9 

21 
- I27 
-411' 
- I79 

13 
9 

-5 
15 

- I  
- 17 
- 59 

59 
-41 
I27 

- 4a7* 
9 + 3  

-21 + 5  -27 
9 -10 61 

- 21 0 -59 
72 -17 1 
41 -9 13 
72 -2 25 
41 +I 17 

9 $ 9  - I  
-21 - 1  79 

9 -47 23 
- 2 1  -14 27 

72 -2 -49 
41 - 7  31 
72 + I 3  35 
41 +22 -49 

-12 -12 157* 
-42 + l a  -19 

-42 $ 1 0  -a7 
-12 -30 29 

- I  -16 -47 
-31  - 1 1  - I 5  

- I  +37 45 
-31 -20 1 

-12  -17 -57 
-42 +26 19 
-12 - t22  -93 
-42 -16 -21 

- I  1 -53 
-31 -16 - I  

- 1  +I6 -45 
-31 + I 1  I 1  

* Judged significant. 
' Results after revising crhcrl by 1-75, 
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1.3.2. When to Log 

The authors write, “The logarithmic transformation was used because the 
error was expected to be proportional to tlie result.” The basic reason for 
“logging” the dependent variable must be that the equation representing 
the data is expected to be of the form 

(7.1) Y = CI exp ( h s ,  + cs2 + ds3 + . . . ) 
- - tICA\D\2E“3. . . 

where C = In h , ,  etc. 
Thus the factors are expected to operate exponentially on the response. I t  

may well be that the uncontrolled factors, which are producing the random 
variation in y, also operate exponentially. But even if there were no error at 
all, the logarithmic transformation of y would be obligatory if the system 
followed an equation like (7.1) for its influential factors. In the present case 
overall per cent error appears to be about 13”/; from Davies’ analysis. For 
coefficients of variation (i.e., per cents error) less than 20% the random error 
will usually not be useful in deciding on logging. In these data, most of the 
variation is being produced by the systematically varied factors, not by the 
random error. I t  is the former, then, not the latter, that will give more infor- 
mation about transforming. 

7.3.3. A Bad Value 
There are 13 effects (contrasts) in the /otter. 16 that should be error esti- 

mates. I exclude E, CE, and ABCDE since tlie former two are plausible 
effects and the last is a blocking contrast. Of these 13, there are 11 that are 
positive. A discrepancy from evenness as large as this would occur only with 
relative frequency 0.01 I23 (National Bureau of Standards, Ttrhles q/” Birimtiiiul 
Probability Distrihtrtiori, 1950, page 21 1, p = .50, I I  = 13, I’ = I I). Since an 
equal discrepancy in  the opposite direction would be equally striking, I 
find a tail probability of 0.02246. 

Of the 13 candidates for random error in the I I ~ ~ P I ’  16 effects of Tdbk 7.6 
(here I exclude T, A, and C) I count 9 in the expected negative direction, 
and hence 5 (namely, AB, BC, D, ACD, and ABCD) are in the adverse direc- 
tion. There are, then, 7 out  of 26 adverse, 19 in favor. A divergence as large 
as this in either direction from 13 : 13 is of probability .02896 (ihid., page 252, 
p = S O ,  rt = 26, I’ = 19), and so is still quite unlikely. 

There is only one response that can bias the contrasts in this way, and it 
is ahcd. Looking at the magnitudes of the lower set, I guess that ctbcd must 
be off by about 75. If I revise the value of y at nbcd to +63, I get a new 
set of total effects, each differing by &75 from the former one. The entire 
revised set is shown in Table 7.6, along with the new residuals found by 

At this point we would choose y, not z. 
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using the revised effects A, C, E, and CE. The block diflerence, ABCDE, 
has now dropped to an inconsequential level. 

7.3.4. Effects on Residuals 

We now have a set of data that looks “all right,” but an upsetting aspect 
appears in the residuafs as ordered: those at high E are clearly larger than 
those at low. We cannot count on being so fortunate in the future as we are 
here, where the unstabilizing factor appears to be E and so is clearly visible 
on inspection. We might take the absolute values of the residuals and put 
them through the Yates procedure. The resuit is seen in the last column of 
Table 7.6. Not surprisingly, factor E emerges clearly separated from all other 
“effects on the magnitude of ldJ,1.’’ 

We are forced to study the 2’ as two 24’s. Table 7.7 shows the usual results, 
obtained first withoirt revision of abed. In panel n for low E we see that in this 
context a revision by about + 50 will suffice. The table shows the results of 
this revision, both on the effects and on the residuals from the obvious 
fitting equation in A and C .  The MS residual is now 77.2; the estimated 
standard deviation (std. dev.), 8.8. This corresponds to a 6% precision and 
an R2 of 0.953, both welcome changes from the 13% precision and R2 of 
0.865 that we might have reported for the whole 2’. 

The 16 results at high E present a much less satisfactory picture. Panel b 
of Table 7.7 gives the results of the routine computations. No bad values 
are obvious in this set. The std, dev. is 19, which, with the mean of 109, gives 
a precision of 17%. The two effects detected are A and ABCD, which is 
aliased with the block difference in this half replicate. These two effects 
give an R Z  of 0.524. 

Davies writes, “Information existed from earlier work that interaction 
CE was likely to be appreciable.” This can now be given fuller justification 
and a simpler statement: Factor C was strongly influential at low E, and 
not at all at high. 

We must reject the set of high4 runs as having too great a variance, as 
showing a block effect not present at low E, and as not being of practical 
importance anyway since E has a large adverse effect on yield. We may take 
some comfort from the fact that the improved precision of the low4  set 
permits us to estimate the effects of A and of C as precisely as they were 
apparently estimated from the whole Z5. 

7.3.5. Conclusions 

Only the low-E half of this 2’ is safely interpretable. It has excellent 
precision (6%), one bad value (at abed), and two clear main effects, A and C. 
The other half has poor precision (17%) and one clear effect, A. But since 
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TABLE 7.7. 

r)AVlliS’ 2’ AS TWO 24’S, O N E  AT LOW /? A N D  ONE A 1  t1lGH f? 

Panel 11. y = yield - I50 

Specs. y on y Name Efiecrs’ Y t  d,’ 
ElTects Revised 

~ - 

(1) - 8  7 T  57 -9 t l  
N -36 -323 A -273* -43 + 7  
b 2k -39 R 11 -9 --I2 
rib -41 -69 AH -19 -43 t 2 
c 35 425 C 475* 50 - 1 5  
1IC I2 -45 AC 5 16 4 
bc 50 27 BC 77 50 n 
nbc 22 -63 ABC - 13 16 t6 

d -2 -19 D 31 - 9 t 7 Std. DCV. ( d )  = 8.8. 
ad -42 -125 AD 75 - 43 + t  
bd - 4  - 5 3  HD - 3  -9 + 5  R2 = 0.953. 
abd -55 -75 ABD -25 -43 -12 
C f f  50 -25 CD 25 50 0 
OCd 14 -39 ACD I 1  16 -2  
bcd 65 -59 BCD - 9  50 t 1 5  
a b d  -32 -37 ABCD 13 16 + 2  

Panel b. y = yield - 109 
e -3  - 5  25 -28 

---- --.-I__ - 

ne - 3  -239* A -25 +22 
be - 21 57 B 2 -23 
uhe -11 -121 - 2  -9 
ce 4 89 C 2 + 2  
ace -21  -149 -2 -19 
bce 57 115 25 t 32 
d c c  -30 21 -25 -5 

de - 8  51 D 2 -10 
nde 5 -35 - 2  + 7  Std. UW. (0)  = 19.2. 
bde 31 21 25 +6  
abde -37 -17 -25  - 12 Rz = 0.524. 
cde 21 - 7  25 -4 
acle -26 95 -25 - 1  
hcde 36 - 2 5  2 +34 
nbcde 1 165’ AHCD t blocks -2 + 3  

*Judged real. 
iilml revised by t 50. 
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high E itself is unfavorable to yield, we have lost the less useful half of this 
experiment. 

More generally, statisticians have too long applied a weak criterion for 
dcciding whether to use y or log y. The decisive criterion is: Which form 
gives the better representation of the data, not of its error distribution? We 
must not let the tail wag the log. 

We can get clues to the dependence of the magnitude of the error on 
experimental conditions by putting the absolute values of the residuals 
through the usual process for two-level factorials. 

A simple bad value can be spotted before commitment to a set of effects 
judged real. There are certain patterns (2 x 2”) in the ordered contrasts 
that indicate just which value is biased and in which direction the bias ties. 

- -._. -. - 
pkd tin sk spknd 
844 1104 1156 1506 

S d  P 
1176 888 

piid pkn 
1284 996 860 

911 spk (I) sknd 
1184 984 740 1468 

____- 

7.4. ROTHAMSTED’S 25 ON MANGOLDS 
(COPIED FROM KEMPTWORNE) 

7.4.1. Description 

The data are takcn from Section 14.7 of Kempthorne [1952], pages 
267 270. The five factors-4, P, K, N, D-were amounts of sulfate of 
ammonia, superphosphate, muriatc of potash, agricultural salt, and dung, 
respectively. Each was varied from l ime to some. The experiment was 
divided into four blocks, all in a single field. Table 7.8 gives the actual fidd 
arrangement and yields. 

pkrtd t84 Fq d 
1248 1100 
spkd skn sp 
1356 1376 1008 

skd spkrt k i d  spnd 
1328 1292 100s 

lJff Pk n 
1008 692 780 I I08 

-__ 

The confounding pattern can be found expeditiously by setting down the 
three generators (any three) of the principal block (here 111), and then finding 
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the ititelactions that have an eoeu number of letters in common with each of 
these generators. Thus, il we choose 311, kd, and spd as generators, we find by 
direct trial that - S P N ,  - P K D ,  and so necessarily their product, + S K N D ,  
are confounded with thc mcan of block 111 (see Chapter 10). We note that 
S P N  is + in blocks I and IV and -. in blocks 11 and 111. and that P K D  is 
i- in 1 and 11 and - in Il l  and IV. So, necessarily, SKND is + in I and 111. 
We will want to remember that PKD is confounded with the “north” versus 
“south” pairs of blocks, that S K N D  is confounded with the “east-west” 
distinction, and that S P N  is confounded with the difference between the 
diagonal pairs, that is, (I + 1V) - (11 + 111). 

7.4.2. Standard Computations 

The usual 31 contrast-sums are computed in Kempthorne’s Table 14.11. 
(The yield at pri should be 964, not 864.) Siiice we know that the error std. 
dev. is about 80, there can be no harm in rounding the observations to the 
nearest 10. Table 7.9 shows as y (column 3) the yields in units of 10 Ib, in 
standard order. The next column, headed y’, gives ( y  - 110). The next 
column lists the resulting contrast-sums. These are shown to demonstrate 
how closely they match those given by Kempthorne and to simplify future 
reference. 

Since S, N, and D are visibly controlling, I use only these three at first to 
construct a fitting equation and to find the residuals, (1,. The fitted values 
are produced from the fitting equation in Table 7.10, and the residuals are 
placed in standard order in Table 7.9. They are plotted as an ecd in Figure 
7.4, We hardly need a test for outliers to justify studying the effect of the 
observation at d on the estimate of error and on the choice of “real” effects. 

7.4.3. One Bad Value? 

The MS residual computed from the d ,  is 2720/28 = 97.2. We can find 
the change in each residual-when the vaiue a t  d is revised by an amount 
Q-without recomputing all effects. A change of any one observation by the 
amount Q will change every contrast-sum by +Q. Here we are interested in 
only three effects, namely, S,  N, and D and in the mean. The signs can be read 
from Davies’ Table M or can be written down directly. Since we are con- 
sidering a decrease in the vahe at d, we know that this will appear positively 
in S and in N, and negatively in D and in T. The four values, most simply set 
at + 1, + 1, - I, and - I, respectively, are run through reverse Yates (see 
Table 7.10, panel b) and then rescaled in units of Y by multiplication by 
r1,/2p. In the present case ri , /2p is 29/32, which is so closrrto I that no rescaling 
is needed. I apologize for the inapt use of the symbol A for a change in a 
statistic and not, as is usual, for a parameter. 
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TABLE 7.9. 
ROTHAMSTELI’S 25 : EFFECTS, FITTED VALUE$, RESIDUALS 

111 
1v 
I 
I1 
11 
I 
IV 
111 

IV 
I11 
I1 
I 
1 
I I  
I11 
IV 

I1 
1 
IV 
I11 
111 
IV 
I 
II  

I 
I1 
111 
1v 
IV 
111 
I1 
I 

t 1) 
S 

P 
$11 
k 
sk 
Pk 
SPk 

n 
sn 

fJ” 
spn 
kn 
skn 
Pkn 
spkn 

n 
Sd 
Pd 
SPd 
kd 
skd 
Pkd 
spkd 

nrl 
snd 

Pnd 
spkd 
knd 
sknd 
pknd 
spknd 

74 
I l l  
89 

101 
78 

I I6 
69 
98 

78 
I18 
96 

131 
100 
138 
86 

I29 

I25 
It8 

128 
90 

I33 
84 

I36 

I10 
I38 
I00 
I32 
101 
147 
I10 
151 

m i  

- 36 
1 

-21 
-9 
- 32 

6 
-41 
- 12 

- 32 
8 

- 14 
21 

- 10 
28 

- 24 
19 

15 
8 

-9 
18 

- 20 
23 

- 26 
26 

0 
28 

- 10 
22 
.- 9 
37 
0 

41 

534 
- 34 

8 
16 

I26 
- 46 
-8 

214 
72 
44 

- 10 
102 
-60 
-4 
to 

292 
- 10 
-6 
76 

- 16 
78 

126 
-60 

- 66 
-8 
- 16 
- 78 

14 
- 36 

40 
22 

- 32 
534s 1 

- 32 
I 

- 32 
I 

- 32 
I 

214N -19 
14 

14 

14 
- I9 

14 

- I9 

- I9 

2921) - 14 
19 

- I4 
19 

- I4 
19 

PKD -14 
19 

- I  
32 

- I  
32 

- 1  
32 

- I  
32 

-4 
0 

+ I I 
- 10 

0 
+ 5  
-9 
- 13 

-13 
-6 
+ 5  
+7 
+9 

+ 14 
-5 
+ 5  

i- 29 
- 1 1  

+ 5  
-1  
-6 
4-4 
- 12 
+ 7  

+ I  
-4  
-9 
- 10 
-8 
+ 5  
+ I  
+ 9  

+2 -2 
0 0 

+ 2  +I3  
0 -10 
0 0 

+ 2  + 7  
0 -9 

+ 2  - 1 1  

0 -13 
-2 -8 

0 + 5  
-2 + 5  

0 + 9  
-2 + I2  

0 - 5  
-2  +3  

- 29 0 
f 2  --9 
+4  +9 
+ 2  4-1 
+4  -2 
+2 +6 
+4 -8 
+ 2  + 9  

+2  +3 
0 - 4  

+2 -7 
0 -10 

+2 -6 
0 +5 

+2 + 3  
0 + 9  
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TABLE 7.10. 
(hM1~UTA.llON OF & AND EFriicrs ON d ,  

--- . - ~ . .  

Panel I t .  Y, 
(0) (1) (2) (3) (3) t 32 

SND 0 292 1040 32 &d 

s a 214 2Y2 612 19 sti 
ND 292 748 -28 - 1  Kd 

D 292 534 -320 -456 -14 B 

SN 0 202 456 14 
N 214 292 320 -612 -19 ii 
S 534 214 292 28 I 5 
T o -534 -748 -1040 -32 ( i )  

OR 

(0) ( 1 )  (2) I ____ 
SN -. D -292 -78 456 %= --a 
N - S D  214 534 -28 XI= -j: 

S - ND 534 506 612 .?(I = -ri  
T - S N D  0 -534 -1040 (i)  = -sf id 

Paiiel h. d ,  
(0 )  ( 1 )  (2) (3) 

SND 0 - I 2 s& 
KD - I  3 0 g  
SD I - I  0 s n  
D - 1  2 I - 2  f? 

SN 0 - - I  4 G 
N 1 - 1  I 2 1 7  
s I 1 - 1  2 s  
T 1 0 - 1  0 (i) 

--- -- 
A 

The changes in d, ,  designated as Ad,, win be the negatives of those in Y, 
and these values are transferred to Table 7.9. The revised residuals d2 are 
also shown. Their MS is 1755/27 or 65.00, which is close to the 67.91 given 
by Kempthorne with 13 d.f. 

7.4.4. Dependence of Residuals on Y or X? 

Figure 7.5 shows no visible tendency of the d ,  residuals (obtained after 
revision of the response at d by - 29) to vary with Y. We have put the absolute 
values of the d, through Yates’s algorithm to see whether there is any 
dependence of the sizes of the residuals on experimental conditions. Since 
nothing striking emerges, we have not reproduced the results. 

7.4.5. Block-Factor lnteractions? 

The contrast labeled PKD in Table 7.9 appears large and has a simple 
alias. I t  is the difference between the total yield in the upper pair of blocks 
and that in the lower pair. We ask, then, whether the effects of factors S, N, D 
are the same in these two pairs. 

Two more standard computations, one on the “half replicate” defined by 
I + PKD, the other on the half I - PKD, give the total effects listed in 
Table 7.1 I (see Chapter 11). The effects do not seem the same. I t  appears 



29 

16 

10 

6 

4 0 

-5 

-10 

-t5 

? 29 O d  

k 
24 29 30 31 32 

_ _ ~  
24 20 30 31 32 

Plgure 7.4 Rothemsted's 2'. Residuals r l ,  from Y , ( p ,  $ 8 ,  A). 
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1 4 ~  
12 
10 

d2 -2 

-4 
-6 
-8 

-10 
-12 
-14 

TABLE 7.1 I .  
FACTOKIAL EFFECTS NORTH (I A N D  I!) AND SOUTH (11 A N D  Iv) 

0 - 0 

0 
- 

8 -  
6 -  
4 -  
2 -  

0 0 

0 
0 

0 0 0 
0 

0 0  

0 v; + 110 
o: ;o gb, l b ,  4% 1h 4 0  1I ,Lo 
- 0 

0 
0 - 0 

- 0 0 
0 0 - 0 0 - 0 

- 0 

Blocks I and 11: I + PKD 
y’ Contrasts d3 

k - 3 2  
k 6 

-- 21 
- 9  

k -10 
k 28 

- 14 
21 

- -  15 
8 

k -26 
k 26 

0 
28 

k 0 
k 41 

-2 
267, 5’ + 3  

5 P +9 
13 - 12 

157* N f l  
17* - 6  

- I  - 3  
7 - 2  

93* D $ 4  
21 - 7  
35 K -7  
71 + 1 1  

- 5  - I  
- 29 + 5  

13 - I  
- 39 +7 

Blocks I11 and IV: I - PKD 
JJ’ Contrasts d, 

-- 

( 1 )  -36 --- + 3  
s 1 297* + 3  

k -41 -9 - 2  
SP k -12 -35 - 10 
n - 32 87* -- 4 
sn U 25 - I  
1)ti k -- 24 15 +4  
spn k 19 13 + 10 
d k -20 169* .- 2 
sd k 23 - 1  4-3 
Pd -9 - I 1  +9 
spd 18 -25  - 2  
t d  k - 9  -31 - 2  
strd k 37 -9 + 7  
pnd -10 -59 - 3  
sptd 22 -9 - 8  

* Judged real. 
’ Revised from + 15. 
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that D has a larger effect in the lower, less fertile pair of blocks, and that N, 
on the contrary, has a larger effect in the upper pair. 

Using the six observed effects to derive new residuals, we obtain the values 
given as d3 in Table 7.1 1. These are plotted as a combined e.c.d. in Figure 7.6 
and are shown in place in Table 7.12. Lacking any two-dimensional run or 
cluster theory, 1 remark only that there appears to be a ridge of high fertility 
running north and south in the middle of the field. 

Figure 7.6 Residuals d3 from two equations. See Table 7.1 I .  
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TABLE 7.12 
RESIIXJAI.~  dj IN PI.ACI: ON F‘IEIJ PLAN 

I .  c-----_ I 1  

-7 - 1  (- +3 

-2 t1 -7 \ 
.-> 

\ 

I 1 
I 

t7 

+9 

- 

+4 

+4 

+11 

- 

+3 

Computing an error MS from the d,  with 23 d.f. (32 observations .- 2 
means - 6 efltxts - 1 bad value), we find 1078/23 or 46.8, and so an esti- 
mated error std. dev. of 6.8, checking closely enough with the 6.6 estimated 
from Figure 7.6. ‘Ihe MS is 70% of that found by Kempttiorne with 13 d.f. 

7.4.6. Conclusions 

We Iiave found rather strong evidence that the factors S, N, and D operated 
additively in the north pair af blocks and in the south pair, but with different 
effects. The randoni error is (of course) considerably reduced from that found 
earlier, and was due largely to a ridge of high fertility in the middle ofthe field. 

7.5. GENERAL CONCLUSIONS 

These studies of ancient 2 5  experiments should not be taken as destructive 
exercises. Although our results cannot now be iiscfd to the original experi- 
menters, thcy should be suggestive to the reader now working on large 2p 
factorials. 

Many experimenters have instinctively--and rightly-resisted turning 
over their data to a statistician for “analysis,” that is, for routine analysis. 
They have resisted, I believe, because they did not know what the statistician 
was doing, what unstated assumptions he was making, or what many of his 
technical terms meant. Many statisticians have been obscure in describing 
their operations; many have not inquired of the experimenter about his 
private assumptions; most have referred experirnentcrs to textbooks for 
definitions of terms. 

In this chapter I have tried to show how some of the key assumptions about 
the system under study can be checked when the data from a 25 are at hand. 
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In most cases the analysis of the data can be suitably modified when some of 
the assumptions are found inapplicable. 

Let us review once more the assumptions of the experimenter and those of 
the stalistician. I believe that the former nearly always assumes the following: 

1. 

2. 
3. 

4. 

5. 

Some of the factors varied will have large and uniform, that is, additive, 
effects. 
Some factors will have negligible effects or none at all. 
A few factors may operate nonadditively. Thus one factor may be quite 
influential at one level of another factor, but much less influential, or 
even without effect, at another level of the second factor. 
Sets of data taken close together-blocked-will have small random 
error for internal comparisons, but the same eflect for eachfuctor should 
show in euch block. 
There may be a few wild values, caused by mistakes or by factors other 
than those deliberatety varied. 

To these assumptions the statistician will want to add two others: 

6. The random errors operating may be viewed as uncorrelated from a 
single distribution, roughly normal, with zero mean and all with the 
same variance. To “guarantee” the validity of this assumption, the treat- 
ment combinations must be assigned to the plots or experimental units 
at random. 

7. The experimental plots are a fair sample of those to which it is desired 
to generalize. 

‘10 particularize these generalities, see Table 7.1 3. We note the frequent 
failure ofseveral key assumptions in these by no means exceptional examples. 

TABLE 7.13. 
SUMMARY OF RESULTS OF CHAPTER 7 

Assumption Yntes Davies Kempthorne 

I. Few large effects 
2. Some negligible effects 
3. Few interactions 
4. a. Block differences 

5. No wild values 
6. Normal crror 

h. No block interactions 

7. Homogeneous, 
typical plots 

S, D ,  K 
N, P 
SK 
YCS 
Large 
None 
YCS, in 2 blocks 

High and low strips; 
scc Table 7.3 

A ,  C, E 
4 D 
CE 
Yes 
Present 
a6cd low 
Ycs, in 
2 blocks 
--_ 

s, N, D 
P, K 
None 
Yes 
Large 
d high 
Yes 

North-south ridge; 
see Table 7. I2 
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All that remains is to point out a new virtue of factorial 2p experiments. 
Just as these plans are sensitive to certain defects-especially to bad values, 
to large differences in variance of groups of observations, and to block- 
effect interactions-so their high degree of articulation makes it easier to find 
these defects. As Yogi Bcrra is said lo have said, “You can observe a lot by 
just watching.” 

7.6. HALF-NORMAL PLOTS 

I have ofcourse made half-normal plots [Daniel 19591 of the contrast-sums 
from each of the 25 experiments discussed in this chapter. To my great 
chagrin none of the peculiarities discovered above is reflected in these plots, 
nor have any other notable irregularities been found. The reasons are not 
far to seek. The defects found are all strongly sign dependent, and all are 
properties of subsets of the data set which are obscured in the half-normal 
plots by overaggregation. 

The signed contrasts in standard order have more information in them 
than do the unsigned contrasts ordered by magnitude. The signed residuals 
from a fitting equation made from the largest effects will ofien tell us ifsome- 
thing is awry. Repeated trials, subdividing the data in plausible ways and 
inspecting residuals from each trial, will sometimes reveal just what the 
trouble is. 

These failures of half-normal plots prompt Sermon IV: Do not ever assume 
that a statistic aggregated over a whole data set is distributed as required by 
some unverified assumptions. The homogeneity of the yurts of an aggregate 
can be tested before or after the aggregation, but such testing must be done 
before conclusions can be drawn from the experiment. 
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Larger Two-way Layouts 

8.1 
8.2 
8.3 
8.4 
8.5 
8.6 
8.7 
8.8 
8.9 

Introductfon, 151 
A 7 x 4 from Yaks, 152 
A 5 x 3 x 4 from Davies, 153 
An 8 x 5 via ScheW6,155 
A 6 x 5 x 2 from Fisher, 159 
A 33 x 31 from PRster, 162 
Conerdities on the Analysis of Balanced Data, 170 
Partiat Replication of Two-way Layouts, 171 
Summary, 172 

8.1. INTRODUCTION 

We return now to two-way layouts of largcr size than the 3 x 3 discussed 
in Chapter 4. Some new deviccs for analysis emerge, justified by the higher 
cost of such data and by the more detailed information they supply. The data 
sets used as examples range from 3 x 5 to 33 x 31. 

The standard factorial representation, including nonadditivity parameters, 
is less objectionable in the larger data sets. But i t  is found repeatedly that 
interactions are localized, not spread irregularly over whole tables. Large 
interactions appear most often in single cells, in a single row (or column), or 
occasionally in a few rows or columns. No clear examples of widely dissemi- 
nated interaction are evident. 

We show in detail why the usual residuals behave more nearly like un- 
biased estimates of true interactions in the larger tables, and we make 
suggestions for separating these interactions from random error, even in 
unreplicated data. When the data are as large a set as an 8 x 5, it becomes 
possible to learn something about the form of the error distribution. Even 
row-wise heterogeneity of error begins to be detectable. 

Large, properly replicated R x C tables are rare in industrial and physical 
research, probably because experimenters have recognized that they do not 
usually need replication for secure interpretation. Although it must be ad- 
mitted that unrandomized data cannot be as securely interpreted, there is 
still a lot of room between full security and worthlessness. 

151 
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Some large two-way layouts have quantitative, even equally spaced, levels 
of both factors; most of the others have qualitative, usually not orderable, 
factors both ways. J. Mandel is the unrivaled master of model making and 
data fitting for the first type, and any exposition here would be only an echo 
of his work [1971; 1964, Chapter I 1  ; 1969a, b]. We concentrate therefore 
on the unordered discrete-leveled R x C case. 

The eHbrt required to complete a large R x C table, and the experience 
that main effects dominate-with occasional interaction cells or rows- 
combine to suggest that some form of fractionation might be appropriate, 
Section 8.8 is devoted to this situation. 

8.2. A 7 x 4 FROM YATES 11970, PAGE 551 

The data come from a comparative trial of four varieties of cotton (in 
4 x 4 Latin squares) at each of seven centers. “Log yields were tabulated 
because of evidence of rough proportionality of means to standard errors.” 

TABLE 8.1. 

The entries J’ in the tahle arc related to Yates’s values JI‘ as follows: y = lOO(y’ - 0.49). 
YIELDS OF 4 VARIETIES OF COTTON AT 7 CENTERS YATES [1970, P A W  551 

Sums Averages Residuals I Panel a 
Data 

-30 -39 -34 -24 
4 5 - 4  10 

-20 -21 -25 -13  
53 47 49 76 

8 6  0 1 4  
16 12 II 16 

-33 - 3 1  -34 - 2 6  

-127 -31.8 1.8 -4.5 2.8 0.0 
15 3.8 .2 3.9 -2.8 - 1.6 

-79  - 19.8 -.2 1.5 -0.2 - 1.0 
+225 56.2 -3.2 -6.5 -2.2 @ 
-124 -31.0 -2.0 2.1 2 . 0 - 2 . 8  

28 7.0 1.0 1.7 -2.0 -0.8 
55 13.8 2.2 0.9 2.2 -5.6 

Sums: - 2  -21 -37 53 
Sums + 2: 0 -19 -35 55 
Deviations: 0 -2.7 -5.0 7.8 

- 7  
1 

Residual MS = 335/18 = 18.6. 
sS(4.4) = 122 x 18/12 = 224. 
Remaining MS = 11 1/17 

= 6.53. 
MNR = 12/335”’ = 0.656. 
P *< .01. 

Paiiel /I. Propapiition of n disturbance of RC i it  cell ( I ,  I )  thioughout an R x C table: 
I’ - R .- I ,  c = C - I. The residuals ale: 

- r  
--c I 1 I I . . .  I 
--c I I I I ... 1 
--c I 1 1 I . . ’  I 

I 
- c  I I I 1 . . .  I 

I’c -). -I ’  - r  - -p . . .  

. . , . . . . . 

- 
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Yates also wrote that “when a set of interactions is found to be significant, 
there is a probability that the whole ofthis significance may be accounted for 
by a single outstanding value.” He tabulates the contrast J!I - ( A  + B + C)/3 
for each center and judges that it is notably larger for center 4. The one- 
celled interaction must have been spotted before construction of this contrast. 
Our usual rigmarole for estimating residuals is repeated in Table 8.1. In its 
lower panel, the table gives the pattern of attenuation of a single exceptional 
disturbance in a general R x C table. 

I t  is evident from Table 8.1, b, that a maximum residual of size di, implies 
an estimated disturbance of (RC/rc) di,. For the data of Table 8.1, panel a, 
we see that (28/18)12* = 224 is removed from the original 335. The remainder 
of 11 1 with 17 d.f. gives a decoded residual MS of O.OO0658, less than the MS 
for error given by Yates of O.OOO869. We have again found a single aberrant 
cell which accounts for ct l l  of the visible interaction. 

8.3. A 5 x 3 x 4 FROM DAVIES 11971, ED. 2, PAGES 291-2951 

This was a three-factor unreplicated factorial design, all factors (A ,  I?, C )  
at discrete levels. The 5 x 4 table for A x C (Table 8.2) is chosen to make 

‘TABLE 8.2. 

ROUNCJIXJ TO lo’s 
A X c-’ INTCRACTION FROM DAVIL?’ 5 X 3 X r( [l97l,  PAGE 2943, DATA CODED RY -9% AND 

Panel (I 

Codcd Data 
..I-- 

C, C ,  C, C, 1 Sums Averages Residuals 
~- _ _  

37 - 3  lo - 3  --3 
1 I6 -14 -16 IS 

78 19 - 7  I2 2 - 5  
I -7 8 - 2  

- 7  0 I 1  - 6  

Sums: 62 -37 -101 10 SS(AC) = 1606/3 = 535. 
Sums -- 2: 60 -39  - I 0 3  84 2 MS(AC) = %/I2 = 45. 
Deviations: 12 - 8  -21 17 

I’iincl h. With row A Z  Iemnved 

Residuals 

1 6 - 7  1 
- 4  7 - 3  1 

5 - 1 1  4 2 
- 3  - 4  7 -2  

SS [ (AC)  - A * ]  = 406/3 = 135. 
= I35/9 = 15. MS 

Decoded = 1500. 
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a petty point. The four largest residuals are in row Az (Filler Quality). We 
do need a test for residual heterogeneity for doubtful cases, but this is hardly 
a doubtful case. Filler Quality 2 gives wear resistances with the four qualities 
of rubber (factor C) in a diflerent pattern from the other four fillers. We set 
row 2 aside and repeat the computation in the lower part ofTable 8.2. We see 
that there is still some A x C interaction when compared to the original MS 
(ABC) of 32q3.20 in our coding). We have located only two thirds of the AC 
interaction in row A Z .  

Contrary to the remark in Davies (“In the general case, the interaction 
sum of squares cannot be conveniently calculated by direct methods and it 
is usual to derive it by subtraction from the total” [ 1971, page 294]), we find 
it both convenient and more illuminating to compute the interaction cell 
by cell and to get the interaction SS directly by squaring and summing the 
residuals. The reader-used to desk or computer results to many more 
significant figures than the work shown-may be uncomfortable at the sight 
of such gross rounding. He should be reminded that the high precision to 
which he is accustomed is required only when some SS’s are to be estimated 
by subtraction. The method shown does not get any SS in that way. 

It is appropriate to show the computation of the three-factor interaction, 
ABC, here, even though it does not strictly fall under the title of this chapter. 
The ABC interaction may be viewed as (AB)C, as (AC)B, or as (f3C)A. Since B 
has the smallest number of levels, the arithmetic is lightened a little by 
choosing the second alternative. This requires that we make up an A x C 
table for each level of B, and find the three sets of residuals. The deviations of 
these from their averages, cell by cell, give the 60 components of the three- 
factor interaction. In Table 8.3 these are put into the same arrangement as the 
original data. Nothing remarkable emerges, unless we clutch at the straw 
floating by in the form of the three largest components ( -  27, - 25, and 25), 
all in row A4. The table is given so that the reader can, perhaps for the first 
time, see all the terms of a three-factor interaction. 
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Figure 8.1 E.c.d. Tor the 60 componcnls of 4 x B x C from Davies' 5 x 3 x 4. 6 = 
I1.5$9j23 = 18. See Table 8.3. 

Figure 8.1 shows, on a normal grid, the outer 16 terms plus the 30th term. 
The observed s of 11.5 is of course the root mean square of 60 values, but 
since 36 constants have been fitted, ( I  -b 4 + 2 + 3 + 8 + 12 + 6 = 36 d.f. 
for mean, A, B, C, AB,  AC, BC, respectively) only 24 d.E remain. We make 
a rough correction by multiplying by (59/24)'/2 = 1.569 to get 18.05, which 
matches nicely the 17.9 given by Davies. 

8.4. AN 8 x 5 VIA SCHEFFk (1959, HIS TABLE B, PACE 1381 

The 8 x 5 data set from a randomized block experiment on eight varieties 
of oats, originally from Anderson and Bancroft [ 19521, is large enough to 
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provide some evidence on the shape of the error distribution. The residuals, 
shown in panel b of Table 8.4, are plotted in Figure 8.2 on an "arithmetic 
normal grid." The plotting is done in two stages. First the grid is scaled, in 
this case from - 80 to + 80. Then each residual is picked up from the residual 
table and plotted as a dot near the left margin, as shown in the figure. In this 
way, we avoid the necessity of searching for the largest, then for the next 
largest, etc. When all are transferred, we count them to make sure that none 
has been lost. 

Eaeh point is now moved in to a per cent probability point, which is 

i - f  
p' = 100- N 

for the ith point.* 
The per cents can be read from a slide rule with ample precision, and two 

points (one at each end of the cumulative distribution) can be plotted for 
each per cent computed. The straight line is drawn by eye, using a transparent 
rule, and is forced through the (0, 50%) point. The data near the 16 and 84% 
points should be given somewhat greater (vertical) weight in deciding on the 
slope of the line. The error std. dev. is most easily estimated as hcdf the differ- 
ence on the residual scale between the 16% and 84% points taken from the 
line drawn. Sinw the N = RC residuals have only ( R  - 1)(C - I )  degrees 
of freedom, we get a fairer estimate of the standard deviation of observations 
by multiplying the graphical value by [RC/(R - 1)(C - l)]lf2. 

There is a crudity in this correction that may be deplored, but that does 
not seem to me to be seriotis for R x C tables larger than 5 x 5. It is well 

I am aware of some differing opinions on the c h o h  of plotting positions--in particular, 
those of Blom [ 19581, Harter [1969), and 'I'ukey 119623. Blom recommends b r a  in the equation 

i - a  
p" = IM) --- 

N + I - a  

the value 4 as a general compromise, since the optimum value varies with N. Harter shows 
that this value (0.375) is generally a bit low, but for N = 20 he gives 0.378 and for N = 50,0.389. 

If we use, then, 
i - 0.38 p = .__- 

N -t- 0.62' 

i P' p" 
we have for N = 40 

I 1.250 1.526 
2 3.75 3.99 
3 6.25 6.44 

The discrepancy for i = I is less than Q inch on the usual 84 x I I inch grid and decreases for 
larger i. Deviations of this magnitude are negligible compaied to those that we will be judging 
important. 
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TABLE 8.4. 

AN 8 x 5 IWJM ANDERSON A N D  BANCROW, VIA SCHIW~ 11959, PAGE 1381. 
D A T A  CODSO UY - 354 

^ _ _ _ _ _ _ ~  .--- 

Residuals 
-----_I__ ____ 

1350. 
S ,  = 36.6. 
See Figure 8.2. 

-.____I__ 

Panel o 
Blocks 

2 
3 

5 
6 

8 
-__--I- 

1~: 232 28 233 -104 -384 5 
x c  - 1 :  231 27 232 - I05 -385 0 cc f 8: 29 3 29 -13 --48 

Panel c 
Resitluds,. Block I Rcmovcd 

. -. _- 
Variety I1  I l l  IV V 

Panel d 
Residuals,, Ordeied by 6, aiid /?, 

Vaiiecy 111 I II IV V 
-____ 

I 3 -42 - 7  46 
2 I0 23 -24 - 8  
3 -20 44 - I 8  - 6  
4 26 - I 1  - 1 7  I 
5 -39 -16 59 - 2  
6 5 - 7  -21 23 
7 12 2 41 -55  
8 6 5 - 1 4  4 

Residual MS, = 20.423121 = 972.5. 
s2 = 31, 2 

- 26 - 37 

- - 2  - 1 5  
10 -23 

- 6  -13 

61 3 
-33 -16 
--24 -9  
-30 -21 

I0 62 
-18 25 
47 -50 

- - I 4  3 

known that the correlation coeficient between pairs of residuals in the same 
row (column) is - 1/(C - 1) [ - t/(R - l)], while that between residuals in 
different rows and columns is -l/(R - 1)(C - 1). This disparity becomes 
less when R and C are larger. 

Panel b of Table 8.4 shows the residuals from the usual additive modcl. 
This suggests, without being entirely convincing, that block I was more 
disturbed than the other four. Carrying through the analogous arithmetic 
for blocks 11,111, IV, and V, we acquire the residuals and summary statistics 
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shown in panel c. The normal plot of the new residuals looks “better,” but 
this opinion is subjective and tendentious. 

I t  is natural to consider applying Tukey’s G-test (Section 4.6), but a simple 
rearrangement of the table shows this to be unnecessary. Panel d gives the 
8 x 5 display of residudk, but rearranged by (decreasing) row and column 
averages. As Scheff6 mentions [1959, page 1321, Tukey’s statistic can be 
written as 
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The rearrangement of panel c puts the 6ij and f l j  into decreasing orders 
and so induces maximum positive correlation between them as they stand. 
If  G is to be large, the Fij must be in the general form of a “linear by linear” 
interaction contrast. This means a predominance of residuals of the same 
sign in the diagonal quadrants with the largest residuals near the corners. 
Since Panel (1 does not reveal this pattern, the detailed test is not carried 
through. 

I conclude that these data are satisfactory in the sense that the standard 
assumptions (normal, uncorrelated, constant-variance observations, with 
additive row and column effects) are satisfied for blocks II-V. There appear 
to be two exceptional values (for varieties 1 and 8) in block I. 

8.5. A 6 x 5 x 2 ON BARLEY (IMMER ET AL.) FROM 
FISHER j19531 

The data are given as a “practical example” by R. A. Fisher [1953, page 661. 
Results are shown for the total yields of five varieties of barley in two suc- 
cessive years at six locations in the state of Minnesota. We can view the data 
table as two 6 x 5 layouts, one summed over the two years, the other 
showing the difference between the 2 years. Although the data were originally 
given to one decimal place, they are rounded to the nearest unit in Table 8.5, 
panel a. Also, 101, the approximate mean, has been subtracted from each 
value. 

Panels b and c of Table 8.5 show the sums over and the differences between 
the yields in the two years. We look first at the differences and at the cor- 
responding table of residuals. The large residual in row 5,  at column 3, is .05 
significant by the maximum normed residual test. (These residuats are of 
course just twice the components, R,,, ,  of the three-factor interaction.) Inspec- 
tion of the corresponding difference in panel c shows it to be - 28, while the 
other items in the same row are 32, 39, 27, and 24. The sum of the cor- 
responding two items (in panel b) is 36, close to the average of the other 
entries in that row. These facts suggest that the two entries have been inter- 
changed in error. If this is so, the error MS should be revised from its original 
value of 143 to 89. This has serious consequences for judgments on main 
effects and on two-factor interactions. The only other serious change would 
be in the overall yearly difference, which is not now (and was not then) an 
important parameter. 

Turning now to panel b, we can see that all of the four largest Sij are for 
variety 4 (Trebi), which gave the highest average yield. The remaining MS 
for six locations by four varieties is 109, a value negligibly larger than the 
corrected error MS of 89 (3fi). 



Panel u. 
Varieties 

Panel E. 

Locations Yeat Differences (1931 -1932) -- 
1 0 23 39 23 14 
2 46 26 39 44 38 
3 -21 -28 -38 -9  -40 
4 21 59 28 15 49 
5 32 39 - 2 8  27 24 
6 19 10 12 10 2 

~~ 

Locntion Ycar M S 1’ T P 

I I -20 4 19 9 - 3  
2 -20 -19 -21 -14 -17 

2 I 46 41 SO 91 45 
2 - I  I S  I1 47 7 

3 I -- 1Y -24 -23 30 - I t  
2 2 4 16 39 2Y 

4 I 19 20 23 40 24 
2 -2 -39 - 5  25 -25 

5 I -2 -12 -32 -12 3 
2 -35 - 5 1  - 4  -39 -21 

6 t -14 -24 -22 I - 5  
2 -33 -34 -34 -9 -7 

Pancl b. 
Sums over Years 

Varieties 

Averages Residuals 

20 -20 -3 26 I - 5  
39 7 -19 7 3 0 

-27 6 - 7  -4 I6 -12 
35 -14  18 0 -22 I5 
19 13 14 6 6 
11 8 - 7  8 - 3  - 8  

Locations M S V T P Averages Residuals 

-12  6 - 5  l8 
I -40 - 1 5  -2 - 5  -20 -16 - 1 1  21 
2 45 56 61 138 52 70 
3 -17 -20 - 7  69 I8 9 - I 3  -9 -12 6 

5 -37 -63 -36 -51  -18 -41 17 2 9 @ 20 
4 17 -19 I8 65 - I  16 14 - 1 5  6 14 -20 

6 -47 -58 -56 -8 -12 -36 2 -2 -16 -7  21 

Column 
deviations: -13  -20 -4 35 3 

deviations: 0 6 -7 2 - 1  -- I Column 
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It  is natural to t i y  Tukey's test for multiplidve nonadditivity (called the 
G-tcst below), on these data. The details are given in Table 8.6 because they 
reveal that, even when a test turns out to be significant, there may be reasons 
for not accepting the outcome at face value. We reorder the table of residuals 
( f i j )  of panel a, Table 8.5, by row and column means to get panel Q ofTable 8.6. 
We do see the largest positive residual at cell (1, I )  and the largest negative 
one at cell (5 ,  I ) ,  but the agreement is not striking elsewhere. Since the 
I;-test for G is significant, we proceed to compute e unrl the resulting residuals, 
Ti, = &$,. These are shown in panel b. The resemblance of these doubly 

TABLE 8.6. 
TUKEY'S G-Tesr ON RFSIDUALS OP TABLE 8.5, PANEL b, REORDERED BY ROW AND 

COLUMN MEANS 

Panel ( I  

Locations Averages 2, pi  
- - --_IL 

I36 35 553 
109 8 236 
105 4 642 
93 -8  -591 
83 -18 -842 
80 -21 -39 

Varieties 

4 5 3 1 2  

33 -21 - - 5  -12 6 
14 -21 6 14 -15 
25 6 -12 -13 -9  

-24 -7  18 - 1 1  21 
-45 20 9 17 - 2  
-7  21 -16 2 - 2  

-- I __-- - -- 

Deviatioiis (fl,): 17 2 - 2  -7  - 10 1 
p, = C y,J, ; P = @,pi = 44,514. 

I&,? : 21 34; uj = 446. 
J I 

SS(nonaddit1vity) = 44,514'/(2134 x 446) = 2082. 

F(nonadditivity) = 2082/(2 x 143) = 7.28; P, .: ,025. 

G = 44,514/(2134 x 446) = 0.0468. 
11__----_1_- - - - 

Panel b 
Residuals Predicted by c Residual Residuals 

TiJ = '*,f i , 9,) - 3iJ 
- _ _ _ _  - ~ _ _ _  

28 3 - 3  - 1 1  -16 5 24 - 2  - 1  10 
6 I - 1  - 2  -4  8 -22 7 16 - I 1  
3 0 0 - 1  - 1  22 6 -12 -12 - 8  

-6  - 1  1 2 4 -18 -6 17 -13 17 
-14 -2  2 6 8 -31 22 7 11 --LO 
-17 - 2  2 7 10 10 23 -18 - 5  -12 

I___- --- - 
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ordered residuals to a “linear by linear” interaction contrast is strong. Sub- 
tracting the “predicted residuals” of panel 6 from those of panel a, we reach 
the “residual residuals” of panel c. Some of the original residuals have been 
nicely reduced, but others have not changed and a third group has even been 
increased. It is obvious that nearly all of the reduction in residual SS produced 
by the G-transform has come from the two variety 4 (now in column 1) 
residuals + 33 and -45, spotted earlier. It is also noteworthy (and deplorable) 
that all the residuals for location 5 (fast row) have been increased. 

We must decline, then, to give strong weight to the significance of the 
G-test in this case, since its value depends so largely on two residuals. 

Locations 5 seems to have produced less reliable data than the other 
locations. Two of its values (for variety 3) appear to have been transposed; 
the largest residual in Table 8.5, panel h (for Trebi), is to be laid at its door, 
and it had the lowest yield overall. We have therefore dropped the data 
from this location and redone the whole analysis, but, as the weary reader 
will be relieved to see, we do not display all the arithmetic. There remain 
consistent differences between varieties, locations, and even years. The yearly 
differences were consistent for four locations but were reversed for location 2. 
No large location-variety interaction remains. The error std. dev. (3fi) is 
reduced to 10 as compared to the 12 computed from the full set of data. 

8.6. A 33 x 31 FROM PFISTER (LIGHTFASTNESS ( y )  OF 33 
DYE BASES (A),  EACH COUPLED TO 31 NAPHTHOLS (S)J 

The data were published by Pfister Chemical Company [I9551 and were 
given as scores from 1 to 8, that is, from “very poor” to “excellent,” with 
occasional + or - suffixes to indicate intermediate scores. These have been 
dropped so that only integers appear in Table 8.7. It is not plausible to 
assume that the random error in these observations is normally distributed 
with constant variance, nor is it likely that the observations were taken under 
randomized or other statistically independent conditions. The code letters 
at the head ofeach column identifying the naphthols in the Pfister publication 
are commercial designations, related to chemical composition. All codes 
containing the letter G are chemically related, and those containing LG are 
a more closely related subset. 

Since both row and column categories are discrete, not ordered or con- 
tinuous, any rearrangement of rows or column loses no information. Indeed 
we will see that rearranging by decreasing row and column averages produces 
considerable clarification and eases computation. Table 8.8 shows the re- 
arranged data. The expected and visible result of this reordering is to sur- 
round most observations with numbers of similar magnitudes. Exceptions 
to this near matching are then evidences of nonadditivity. The ordered table 



1 Naphthols I 

16 4 ;  6 5 4 3 4 5 6 4 5 3 1 5  7 6 5 6 6 6 4 6 6 5 5 6 5 6 6 5 
4 6 6 5 5 6 5 6 5  5 4 6 5  6 6 S 6  6 6 5 6 6 6 6 6 5 6 6 5 5 1 6 8  :i 1 ;  4 4 6 5 4 6 5 6 2 S 3 6 4 6 4 2 S 6 2 6 6 6 6 6 5 6 6 5 

19 4 6 6 5 4  6 5  7 4 4 4 6 6  7 6 4 5  5 1 4 4 6 4 5 6 5  6 7 4 6 1 6 5  
3 3 1 :  3 4 4 4 3 4 5 6 3 4 3 6 5 7 5 4 3 6 6 3 5 5 6 5 5 5 6 6 4 
21 5 6 5 6 5 6 6 6 5 4 4 2 5 5 5 2 2 4 6 4 6 6 6 4 6 6 4 5 5 
22 1 4  4 5 4 4 4 5 4 4 3 4 2 5 h 5 4 2 2 4 5 3 S 4 5 5 4 4 4 4 4 

5 5 ~ 2 5 5 5 4 5 2 1 5 5 6 5 1 1 4 5 5 6 5 6 5 5 5 S 5 5 ~ 1 ~ ~  
: ' : 4 6 5 4 4  5 4 7 4 4 4 1 4  7 6 7 5 6 6 4 6 7  6 6 6 4 6 1 5 4 1 6 5  
25 6 4 6 6 5  5 S 5 2 4 3 4 6 6  5 6 3 3  5 6 4 6 6 6 6 6 5 6 6 6 6 1 5 8 1 4  
26 5 4 3 4 3 4 4 4 6 1 2 2 4 5  6 4 2 2  3 5 4 5 4  5 4 4 4 5 5 4  
21 5 4 4  5 3 5 4 5 6 2 3  2 4  3 6 3 1 I 1  3 2 4  5 5 5 5 5 4  5 5  
28 5 3 5 5 2 5 6 5 6 5 2 4 5 5 6 4 I 1  4 6 5 5 5 5 S 5 5 6 6 5 
29 5 4 5 5 1 5 5 5 7 5 2 6 5 5 6 5 1 1 4 6 S 5 5 S S 5 5 6 6 5 ~ 1 ~ ~  
M 6 6 5 5 2 6 6 6 1 5 2 4 6 5 6 4 1 1 4 6 5 6 6 6 6 6 6 5 5 5 ~ 1 4 8 ~  
31 5 5 4 3 3 5 4 3 2 3 1 4  3 4 4 3 1 1  1 3  3 5 3 5 3 3 3 5 5 4 
32 5 5 4 5 3 5 5 3 5 4 2 4 5 5 6 5 1 1  4 6 4 5 5 5 5 5 5 4 5 5 
33 5 6 6 6 S 6 6 6 4 4 6 4 5 6 6 5 2 2 2 5 4 5 5 S 5 5 6 5 6 6 

! I 

5 1 5 9 1 3  
5 

4 1 5 3  l i  
7 

6 1 4 5 2 4  
5 1 5 1  19 
4 1 2 4 3 1  

8 

5 1 2 1 3 3  
3 1 1 8 3 2  
5 1 3 6 2 6  

4 1 0 3 3 3  
5 1 3 8 2 9  
6 1 5 5 1 6  

Dye i I 2 3 4 J 6 1 8 9 10 I 1  12 13 14 15 16 17 18 19 20 ? I  22 23 24 25 26 21 28 29 30 31 Row I 0 Ah! BG BO BR BS CL D DB E G GR ITR KB LB LC LG L3G t 4 G  LT MCA MX OL P RL RP RT SG SR SW TR /IT. Rank 

. Rounded down 
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is bordered with row averages and column deviations so that fitted values 
and residuals can be computed without pencil. For example, the average 
for row 1 is 6.2 and the column deviation for column 1 is 1.2, so the fitted 
value in cell (1, I )  is 7.4. The residual is then ( 5  - 7.4) or -2.4. Is this large 
or small? We can get a (conservative) view of this by evaluating the residual 
root mean square for the whole table, including, at first, ail interactions. 

The “analysis of variance identity” for a two-way table (which holds with- 
out any assumption about the distribution of error) can be used to partition 
each observation into {our components: a grand mean, a row “eff’ect” or 
deviation from the grand mean, a column etTect or deviation from the grand 
mean, and a residual term. Using y ,  , to denote the grand average, yi. for the 
ith row average, and y., for thejth column average, we can write the identity 
as 

(8.1) 

(8.2) or 

Y i j  = Y.. + (Yi. - Y.. )  + ( V . j  - Y , . )  + ( Y f j  - Yi.  - Y . j  + Y,.) 

Y i .  + ( Y . j  - Y . . )  + fYi, - Y i .  - ~ . y  + Y. . )  

(8.3) or = Row average + Column deviation t- Residual 

(8.4) or = ni + pj + yij. 

From (8.4) it  is easy to compute the f i J .  By squaring both sides of (8.1) and 
summing over i and j, we obtain the corresponding sum of squares identity; 
then, transposing to isolate the SS for interaction, we have 

since all cross-product terms vanish identically. The threc sums on the right 
are easily computed. All are given in Table 8.10 in standard analysis of 
variance form. 

The square root of the residual MS estimates the error std. dev. if there 
are no interactions. This is hardly likely, however, so we have in 0.82’’2 = 
0.91 a somewhat inflated estimate. We have gone carefully through ordered 
Table 8.8, sp~tting discrepant values by their failure to nearly match their 
neighbors, estimating their residuals, and circling them (in Table 8.9) if the 
latter are as large as 2.1. There appear to be 31 such entries. Figure 8.3 shows 
these residualsplotted as circled dots on a normal grid. A straight line through 
the upper six points and through the (50”/,, 0) point suggests that quite a few 
of the negative residuals are not part of the implied normal distribution. 
Indeed, if six of these, all less than - 3, are removed, the remaining circled 
points find themselves moved over onto the straight line (as x’s). I suppose, 
then, that we have a nearly normal distribution of error holding for all but 
six of our 1023 points. The empirical cumulative distribution found suffices 
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TABLE 8.10. 
ANALYSIS 01; VARIANLT FOR 'THE 33 X 31 DATA OF TABLE 8.8. 

Degrees of 
Source Freedom Sum of Squares Mean Square F 

___--~- 
Column: dye base 32 337 10.5 12.8 
Row: naphthol 30 57 1 19.0 23.2 
R x C: residual 788 0.82 __ 960 - 

Total 1022 1696 

Figure 8.3 E.c.d. or 31 ex t reme residuiils froin Plistcr's 33 x 31 . = duti t ;  x = cif'tcr delction 
of six points. See T a b l c  8.9. 
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only to rule out six points as excessive-or, rather, deficient. There are reasons 
for believing that more than this number of cells in fact contain interactions. 

As we look at Table 8.9 from a little distance, focusing now on the circled 
cells, we see that every circle except that at (1, 1)  appears in a row or column 
with at least one other. We ask, then, how probable the observed row and 
column associations are, if the 31 largest residuals were simply dropped at 
random into the data table. The column iti at the extreme right and the values 
i t j  at the very bottom ofTable 8.9 give us the required associations. Table 8.1 1 
accumulates these as the numbers of rows N, and columns N, which contain 
one, two, etc., large residuals. Expected values of N i  and Ni have been com- 
puted from the binomial expansion of (p + q)”, where n = 33 for rows and 
31 for columns, p = (1023 - 31)/1023 = 32/33 = 0.96, and q / p  = 1/32 for 
rows arid columns. (The computation from the hypergeometric distribution 
gives so closely the same results that it is omitted here.) After the first term 
in the expansion, p” = A,,, the succeeding terms were calculated.by 

TABLE 8.11. 
N~JMBEK rn Rows NI AND COLUMNS N j  CONTAINING 

i, j = 0, I ,  2, . . . , 7  RFSIUUALS WITH EXPECTED VALUES AND 

CHI-SQUARE COMPONENTS 

i , j  Ni 

0 i l  
I 12 
2 5 
3 
4 
5 
6 
I - 

Sums 31 

E(Ni}  

1 1.94 
1 1.57 
5.42 

2.07 

31.00 

X: 
-__ 

0.074 
0.016 
0.033 

0.418 

__ 
0.541 

21 
2 
3 

- 
31 

ElNjj X; 
_-.. 

11.22 8.52 
11.59 7.94 
5.79 1.34 

2.39 2.85 

- -- 
31.00 20.65 

The results are almost too clear. For rows (i.e., for dye bases), expected 
values under the assumption of independence match the observations very 
well (P = .go). For columns &e., for naphthols), the two with five (cohmns 
22 and 28 in Table 8.9) and the one with seuen (column 30) take up far too 
many of the interactions, leaving too many empty columns and too few with 
only one large residual. The significance probability is less than .0005. 
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If  we had the strength, we would replace all 31 large residuais by their 
values estimated from the unchanged row and column means, and redo the 
analysis of variance and the normal plot. The residual SS would be reduced 
by about 205 to 583 with (960 - 31)or 929d.f. The revised MS residual would 
then be 0.628, and the “error std. dev.” 0.79. But we do not have the strength. 

As further subjective evidence that the circled values in Table 8.9 are inter- 
active, we note that all columns with more than two excesses have the letter G 
in their specification, and that the three columns (22,29, and 30) with five or 
more excesses all have LG in their names. These naphthols are chemically 
related, and this, for me, settles the matter. I have no doubt at all that these 
coupling agents did not operate additively on lightfastness with the dye bases 
indicated. From the point of view of the manufacturer of the naphthols, it 
must be advantageous to do the following: 

1. Check the data for naphthols LG and L3G with dye bases 29, 30, 26, 
and 28 (in rows 22, 23, 26, and 27) since these are adverse interaclions. 
The six combinations with asterisks are maximally disappointing. 

2. Tell users that G, LG, and L3G give unusually favorable results (positive 
interactions) with the obvious dye bases. 

1 add only a sharp reproof to the statistician who would report the MS 
(R x C) as “random error.” It is not. A less sharp rebuke, but still an admoni- 
tion, should be given to those who simply report that this mean square is a 
mixture of random error and interaction. I t  is, but one can say exactly how, 
and so one should. We can even answer the question “Is the AB interaction 
due to A or to B?“ I t  is widely stated that the 2fi‘s are symmetrical and that 
it is logically impossible to make a distinction between the statements “ A  
operates differently at the different levels of B and ‘‘B operates differently 
at the different levels of A.” The interaction in our last case is due almost 
entirely to the naphthols and not to the dye bases. We all understand that 
the naphthols only operate nonadditively with some dye bases, but it is 
almost entirely the three naphthols L4G, LG, and LBG that produce the 
interaction. There is no trouble-making dye base. The observed interaction 
is not symmetrical in A and B. 

Exactly analogous comments apply to most other cases when the non- 
additivity is in more than one cell. In Table 8.2 all the interaction was in 
row 2. In Table 8.4 i t  was in variety 1 and in block I. In Table 8.5 (Immer on 
barlcy) the interaction was entirely due to m e  variety. I have not seen a case 
of Iock of row or column association for 2fi’s in data tables larger than 4 x 4. 

Thcse findings criticize implicitly my own overhasty drawing of the e.c.d. of 
the original residuals for this large table. I found only 6 excessive residuals 
from that plot, whereas I have found 31 by taking advantage of the strrrcture 
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of the table, that is, by the identification of the residuals, which is lost in the 
e.c.d. This is the same criticism that we made earlier of the use of half-normal 
plots in 2’ experiments. Premature aggregation of visibly heterogeneous 
residuals is the hurried statistician’s besetting sin, corresponding to the 
criticism made in Chapter 3 of the experimenter who generalizes prematurely. 

8.7. GENERALITIES ON THE ANALYSIS OF 
BALANCED DATA 

I t  will not have escaped the reader that little has been said in this chapter 
about the “statistical design of experiments.” I take it for granted that any 
large balanced set of data, collected by a careful experimenter, is worth some 
study in its own right. The thorough statistician may retort that there is 
little value in this effort (especially for the data of Section 8.6) since no secure 
inferences can be drawn from such data. He will add that all the so-called 
tests of significance made are meaningless, and that all estimates are of un- 
known bias since the data were surely taken under nonrandomized condi- 
tions, probably in groups by columns or rows, by different, unspecified dye 
chemists, and perhaps on single batches of dye bases or coupling agents. 
(This statistician uses long sentences, doesn’t he‘?) 

1 rely, more heavily than the skeptical statistician, on the intelligence and 
integrity of the producers of the data. I t  is true that all the “interactions” 
that I have uncovered may be due to defective randomization, to careless 
experimentation or record keeping, or to unstated changes in technique or 
technician. But the relatively small number of large deviations, and thc 
resulting relatively small s of 0.91 including all interactions, make me believe 
that large interactions have not been overlooked, and that the row and 
column effects are consistent enough to be largely correct. It  seems safe to me 
to conclude that the effects of these naphthols and dye bases on lightfastness 
are nearly all additive. 

If I had been an advisor in the planning of this study, I would have recom- 
mended that at least six rows (if, as I suspect, rows were swept through in 
sequence) be repeated at random, und that the single cells showing residuals 
of, say, 2.5 in the first full replicate be repeated, changing technicians, material 
batches, or whatever conditions the dye chemist in charge thought desirable. 

If a repeated row average came out far from its mate, say discrepant by 
0.6 or more [we expect an .F (row average) of 0.91/31 = 0.1631, I would 
require still more row replication. Moreover, I could justify this to the dye 
chemists by the expericncr: before us, rather than by appeal to the theory of 
statistics. (A further recommcndation, which I have called partial replication, 
is discussed in Section 8.8) 
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Further checks are conceivable, without further data. We could list all 
residuals to the nearest tenth unit, in a table like Table 8.8, and study their 
homogeneity, omitting of course those circled in Table 8.9. This is left “as an 
exercise for the student.” The reader may ask, rhetorically, “When does one 
cease analyzing the data‘!” My answer must be, “Only when time or money or 
strength runs out.” 

It has been a primary purpose of this chapter to give examples for analysis 
guided by-stimulated by-the data as they stand. There may be some in- 
dications of a future systematic program in these pages, but for the moment 
the emphasis shouid be on step-by-step study, aided by the usual tools and by 
any others the reader may think helpful. Is a transformation of the data desir- 
able? Should four columns be removed from Table 8.7, and the rest reana- 
lyzed? Does an analysis of variance of the absolute values of the residuals 
reveal anything? I welcome further suggestions. 

8.8. PARTIAL REPLICATION OF TWO-WAY LAYOUTS 

Balanced (or partially balanced) incomplete block designs, for comparing 
u varieties, in b blocks, with k trials per block, a n  be written as two-way 
layouts with blocks for columns and varieties for rows. We a n  get an idea of 
k ,  for any given R x C tic., u x h), by considering that we will need at least 
R -i C - I degrees of freedom for separating out row and column parain- 
eters, and perhaps as many (surely not less than half as many) degrees of 
freedom for “error,” in which we include, at the moment, interaction. We need, 
then, at Ieast 3 ( R  + C)/2 observations. When R is about the same as C, this 
comes to roughly 3R, and hence designs with k = 3 seein minimal and those 
with k = 4 better. 

Such partial replications may find use in two different ways. They may 
provide an economical fraction of the full R x C table in cases where only 
rough screening of row and column parameters is envisaged. In situations 
like the one in  Scction 8.6, where more thorough calibration is required since 
the data will be used over a long period, a small fraction of the full R x C 
set might be added to a full replicate to get a well-scattered sampling of 
replication error. 

I t  would be natural in planning the naphthol study to look for a supplc- 
inentary set of, say, 36 varieties in 36 blocks of three (or four). Clatworthy 
[1973, page 274) gives a partially balanced incomplete block (PBIB) plan, 
LSGS, that would spot fivecells in each row and column of a 36 x 36 two-way 
layout. If no design of the size needed were availablc, I would not hesitate to 
scatter a set of the size required (roughly 3R in numbcr) over the whole grid. 
These observations would be uscd primarily to get an error estimate. The 
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gain through including them in the row and column parameter estimation 
would be trilling. 

For smaller two-way tables, with b and u of the order of 5-10, numerous 
balanced incomplete block (BIB) and PBIB designs with k I-- 3, 4, provide 
suitable fractions. Computer estimation of row and column parameters and 
of all residuals in the observed cells is always much easier than hand calcu- 
lation, but for plans in this size range the familiar formulae for adjusted 
means are not difficult. There is a list of five BIB plans in Davies [1971] 
and a somewhat larger list of references in Cochran and Cox [ 1957). 

8.9. SUMMARY 

’The operations described above and summarized below are not to be taken 
as inflexible rules but only as a reflection of my own moderate success in 
analysing my clients’ data. 

1. 

2. 

3. 

4. 

Ifan R x C array has been replicated, learn about the mode of replication 
and study the empirical distribution of random error. If error appears 
Gaussian, nearly Gaussian, or Gaussian except for a few points, make 
and record reasonable revisions and estimate (z from the revised set. 
If row and column categories are not orderable a priori, compute row 
and column sums and re-order table by decreasing sums both ways. 
This will help to detect localizable interaction and to make Tukey’s 
G-test. 
Compute, tabulate. and study the Pl j  (residuals) from the combined 
data. Tabulate row differences-if rows are longer than columns-and 
see whether the disparities spot the same cells as the y r j .  They will 
sometimes find more.* 
If major pi ,  are in a few rows or columns, and are only a small set com- 
pared to R x C, they should be revised to get more interesting, stable, 
and informative Bi and Ij from the remainder of the data. The large 
residuals should of course all be reported, preferably after reflation to 
estimate the actual deviations from additivity. An analysis of variance 
table is useful when it partitions the total sum of squares into localizable 
interaction and into parts allocable to consistent row and column dif- 
ferences. One that uncritically spreads disturbances among row, column, 
and interaction Ss’s is not useful. 

The most satisfactory partitions are those that put all ofthe significant 
interaction SS into a few cells (or even into a single cell) except for a 
remainder which nicely matches that expected from random error. 

‘A paper on this possibility will appear shortly. 
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5. The greater the care exerted by the experimenter to sample just the 
population desired, the more valid are his findings. When objective 
randomization is assured, we are assured of a faircr allocation of sums 
of squares to effects and to random crror. But cvcn unrandomized data 
are often worthy of study, even if only to justify criticism. The result of 
such study may only be the spotting of a few values that the experimenter 
will want to repeat, or it may only find deplorable trends inextricably 
aliased with desired effects. Such findings can be useful educationally. 
A large proportion of large R x C sets of data contain disturbances 
that are only technical or clerical errors. A large proportion of the 
remainder show disturbances that are in a few columns or rows (usually 
not in both). These must be pointed out to the experimenter. 
When it makcs experimental sense to sweep through rows or columns 
in sequence, the experimenter should be asked to repeat a few rows, 
perhaps those showing the largest and the smallest averages plus a small 
random subset. Even when this cannot be done, carefully worked trials 
are worth study. The data may provide internal evidence of coherence 
and of scientific value. 

6. 

7. 



This Page Intentionally Left Blank



C H A P T E R  9 

The Size of Industrial Experiments 

9.1 Intmducfion, 175 
9.2 Efficiency and Its Deficiencies, 177 
9.3 Power and Sensitivity, 178 

9.1. INTRODUCTION 

The prime difference between industrial and academicexperimenters seems 
to me to be that the former start with a budget, a staff, and a laboratory for 
pilot plant or full-scale plant), and wish to improve a working system or to 
improve their knowledge of a working system. The latter start with a problem 
and then try to find the budget, the staff, and the equipment to cope with the 
problem, or at least with some manageable aspect of it. 

Industrial research workers can often tell in advance about how many 
“runs” they will be able to make. This number, NT, will depend heavily on 
the order in which runs can be made. It will usually be minimal if full ran- 
domization is required. In nearly all expcrimental situations some factors 
are hard to vary, whereasothers, i f  not easy,areat least amenable todeliberate 
variation. Most industrial experiments are, then, split plot in their design. 
The total number of runs is largely determined by the number of combi- 
nations of the hard-lo-vary factors that can be afforded. 

It  is usually not advisable to propose that all of the work be done in 
“balanced” or statistically planned sets. It is better to agree that some fraction, 
f ,  of the budget be set aside for “statistical experiments” so that the experi- 
menters, perhaps all novices in statistical design, can watch tlie effectiveness 
of such designs and can evaluate their disadvantages, without the strain of 
being fully committed to a new and unfamiliar technique. In favorable situ- 
ations, a fair value for f is 0.5. 

Perhaps the hardest decision of the classical experimenter, in considering 
statistical designs, is committing himself to do a considerable piece of work, 

I75 
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which will require a substantial portion of his budget of time and funds, 
without being able to draw any quantitative conclusions until the whole 
sel is completed. On the other side of the scale is the fact that the planning 
of larger blocks of work has often been recalled later by experimenters as a 
most valuable discipline. 

As first mentioned in Chapter 3, all experimental campaigns should start 
with the preparation of an irijiterrce ntrrlvix. Using a row for each hctor that 
is thought to influence any outcome, and a column for each response, the 
experimenter should make up a tabte that indicates the current state of 
opinion and knowledge about the system under study. In each cell of this 
table the experimenter can enter a summary of what he knows or guesses. 
Thus a +, or - in the ( i ,  in )  celt would signal opinion about the direction 
of the effect of x i ,  in the range considercd, on y”,. If no opinion can be given, 
a “DK” (for “don’t know”) or an ‘7.” (for “ignorance”) should be entered. 
If a regression coefficient and its standard error are available, they can be 
written in. If the general shape of the relation is known, it can be sketched 
easily in a I-inch squarc. 

The independent variables, the factors, should be named and symbolized, 
and the range judged sensible for experimentation should be recorded, It is 
always important to know which factors are easiest to change and which 
hardcst, and this information too should be set down. The degree of nesting 
to bc used is determined almost entirely by the relative difficulty of varying 
the factors. Thus a change of feedstock to a large piece of equipment may 
require a long time to “line out,” but a small change in pressure may be 
quick to equilibrate. In such a case the experimenter will surely want to run 
through several pressure levels before changing feedstock. 

Assume now that the information matrix has been completed. Initial de- 
cisions have been made on the reasonable ranges over which to vary each 
important factor. The number of hard-to-vary factors nH has been given. 
The number of runs N,,,each at different choices of levels of the hard-to-vary 
factors, has been roughly fixed for the budget period, perhaps for the project, 
in question. We do not propose to change any factor over a wide range. We 
are not exploring the outermost limits of operability of the system. We want 
only to get a generally valid picture of the conditions to which the system is 
sensitive, and of those toward which it is robust. 

The cautious experimenter will rarely commit more than half his N,, or 
half his time to deadline, to a single “statistical experiment.” In this, he is of 
course entirely right. It often takes a number of additional runs, and may 
even require several more fractions of a factorial, to obtain satisfactory clarity 
about the operation of a system. Perhaps half of N, should be reserved for 
this purpose. Hence the number of runs in the first set is guessed to be of the 
order of fN,/2 = N,/2 = N,, say. 
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Experimenters usually have (or can develop), a rather large list of Pictors 
whose effects they would like to know. I t  will be necessary to choose ti,,, the 
number of hard-to-vary factors, from this list to be of the order of N , / 4  to 
N,/2, but in any case less than N,. If this is not possible, some sort of group 
screening is called for. (See Watson [1961] and Patel [1962, 1963).) I expect 
I I , ~  to be between 2 and 10, although the total number of candidate factors 
may be as large as 40. 

If nH is less than N,/2, that is to say, if the number of hard-to-change 
factors is less than half the projected size of the first balanced set of runs, a 
good case can be made for committing all the statistical effort to a single 
design that will estimate all main effects separated from all 2fi’s. Smaller 
plans of this type  (called main-effect-clear plans, plans of Resolution IV, or 
four-letter plans) are given in Chapter 12, and larger examples are shown in 
Chapter 13. 

When a few extra runs, say 4-8, can be spared beyond the balanced set 
just mentioned, the experimenter will have a better chance of disentangling 
and identifying any suspiciously large interaction strings. This operation is 
described in Chapter 14. 

Only rarely must a plan of experimentation be set up in advance that will 
guarantee estimation of each main effect and of each 2fi aliased only with 
higher-order interactions. This will require at least 16,22, 29, 37,46, and 56 
runs for 5,  6, 7,8,9, and 10 two-level factors, respectively. Such “two-Tactor- 
interaction-clear” or Rcsolutioii V plans are needed when the responses being 
studied demand long-term storage or the testing of equipment through many 
cycles of operation. In such cases, the possibility of experimenting or testing 
in stages is severely restricted. 

9.2. EFFICIENCY AND ITS DEFICIENCIES 

The term eficiency as used in statistics has little to do  with the engineering 
or even with the commonsense use of the word. As E. S. Pearson has pointed 
out, we statisticians are oftentimes trapped by the honorific overtones of the 
words we choose. If an experimenter can get good estimates of seven main 
effects and all their 2fi‘s in 29 runs, it is stultifying to tell him that he can 
obtain “100% efficiency” of estimation only by doing 64 runs. The larger 
plan will give him the 28 desired estimates, of course with greater precision, 
but a large proportion of them will be estimates of zero. Thus this 100% 
cficicnt plan may waste 35 runs. Webb’s saturated plan [ 19651 in 29 runs 
(consisting of ( I ) ,  all 21 two-lcttcr trcatments, and all 7-six-letter combina- 
tions) is “only” 68% efficient, arid so cach effect is mcasurcd as precisely as if 
replicated about I0 times. Most experimenters had not dreamed that such 
precision was attainable with tio replication. 
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A better measure of the usefulness of an experimental plan would take 
account both of the degree of saturation of the plan with useful effects and 
of the effective replication of statistical efficiency. Perhaps the product of the 
statistical efficiency and of the ratio (number of estimates/number of runs) 
can be called the e?fficacy or the ecotionty of the plan. It would measure the 
efficiency per i~.sejitI degree rdfieedom. Thus for Webb‘s 29-run plan just 
mentioned the economy would be 0.68 x 1.0 or 0.68. The economy of the 
standard 64-run plan for the same purpose would be 1.0 x 29/64 or 0.45. 
The fact that all the runs of the former are included in the latter is advanta- 
geous when sets of runs can be made and studied in sequence. 

9.3. POWER AND SENSITIVITY 

N o  mention has been made m far of the statistical power of thc tests made 
to judge the reality of effects, or of the expected values of confidence-interval 
widths for parameters of interest. These both depend on advance knowledge 
of d ,  the true error variance, and this is not usually known in advance. I 
still remember the few cases in which research workers gave estimates of the 
error variance that were supported by later work. Most commonly I have 
been given gross underestimates, based on the known high precision of the 
measuring instruments used on product properties. 

My attempts to get good estimatcs of error variance by fitting equations 
to past data taken on the same system have occasionalty been successful, but 
more frequently have been failures, and in both directions. The commonest 
cause of my undercstimates is, I believe, my failure to spot replication degen- 
eracy, some form of plot splitting, in old data. The commonest cause of my 
overestimates has been my failure to detect a few very bad runs. In historical 
unbalanccd data it is often not possible to spot these. (For some examples of 
modcratc success, see Daniel and Wood [ 19711.) The aberrant runs are less 
likely to show as having large residuals in poorly balanced data. 

In working with experimenters who have already done large balanced 
multifactor tests, 1 have noted a third factor that has invalidated earlier 
variance estimates. The presence of an “external examiner” sometimes in- 
creases the care with which data are collected. This, in turn, may decrease 
the random error in new sets of data. A sort of reverse Heisenberg effect 
appears to operate. At  the same time, undetected bad values in earlier tests 
must have invariably increased the estimates of error from these tests. 

Finally, it has been my experience that research administrators have some- 
times decided to proceed with an experimental campaign even after a power 
calculation has shown that a sequence of feasible size has low probability of 
detecting effects of the magnitudes desired. In such cases the objectives of 
the project were made more modest so that some experimentation could go 
forward. 
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The general conclusion seems to be that we must learn to do the best with 
what we have, using variance and confidence-interval-length estimates only 
as uncertain warnings of what may well be missed. 

A more detailed treatment of the number of runs required must wait our 
discussion of fractional replication and of other incomplete factorials (Chap- 
ters 12 and 13). When the experimenter can see clearly the number of param- 
eters (usually main effects and 2 7 s )  that he will want to estimate, he should 
then count on doing at least 1.3 times, and perhaps twice, that number of runs. 

In risky summary of this discussion, an N, of 8 is minimal in industrial 
research. An N ,  of 16 is much commoner and usually more productive per 
ri111. Even such a set, however, frequently requires some augmentation, often 
with 8 more runs. Initial sets of 32 are less common but are of high yield 
when feasible, Finally, N,’s of 64-100 are not rare. 
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C H A P T E R  10 

Blocking Factorial Experiments 

10.1 Introduction, 181 
10.2 The Simplest Blocking: The 2' in Blocks of Two, 183 
10.3 The Z3 in Blocks of Four and Two, 185 

10.3.1 The 23 in Two Blocks of Four, 185 
10.3.2 ?he 2' in Blocks of Two, 187 
10.3.3 The Z3 in Eight and in Twelve Blocks of Two, 189 

10.4 The 2' in Blocks of Eight and Four, 190 
10.4.1 The 2' in Sixteen Blocks of Two, 190 
10.4.2 ,The 2'114 x 4, That Is, the 2' in Four Blocks of Four, 192 
10.4.3 The2'//8 x 2, 193 

10.5 The 2*, 193 
10.6 The 3' in Blocks of Two and Three, 193 
10.7 Discussion and Summary, 195 

10.1. INTRODUCTION 

We have been discussing factorial experiments ever since Chapter 3, but 
we now need to go into more detail about their subdivision into useful parts. 
The reader will surely know that factors are not necessarily all at two or three 
levels, and that there may well be more than two factors at more than three 
levels (as in Chapter 8). 

Factorial experiments have been done since time immemorial by research 
engineers and by many others, but not under the name that Fisher gave them, 
and without using randomization, the factorial representation, or the general 
ideas of main effects and interactions. The data have usually been summarized 
as multiple plots, with all factors continuously variable. 

An unreplicdted factorial plan with tiA levels of A, etc., requires N, = 

n,nBnc. .  . results for each response, and this number may be too large, or 
perhaps only so large as to raise concern about the stability of the system 
over the long time or wide area required. It is natural to look lor sensible 
subgroups of the full factorial that will permit closer comparisons because of 
greater homogeneity within subgroups. 

181 
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Such subgroups are called blocks. The classic exampie in agricultural ex- 
perimentation is the subdivision of a single field in which a crop is grown 
into parts thought to be more homogeneous than the whole field. In indus- 
trial research, batches of raw material are frequently used to determine the 
size of blocks, In  this way differences among batches are prevented from 
entering the error term, and hence greater precision is attained for the im- 
portant comparisons, which are arranged to be estimable witkiri blocks. 

The practice of blocking for increased homogeneity is of course not con- 
fined to factorial plans. Any set of different treatments, varieties, or experi- 
mental conditions may be combined and applied to one batch of raw material, 
to onc laboratory setup, or to one day’s operation. If there is random allo- 
cation of treatments to experimental units, one rmidomized block has been 
accomplished. Confirmation by repetition in other randomized blocks pro- 
vides maximum security . in  making inferences about systematic differences 
among the responses to different treatments. 

Since it is often not possible to insert all treatments into each block, 
attention must be given to the selection of sub-subsets that will yield maxi- 
mum precision in comparing the effects of treatments. The best subdivision 
will be that in  which each treatment appears to be matched with every other 
treatment the same number of times. Such subdivisions are called bcrlriticed 
incoriipiere blocks (BIB for short). The BIB are best in the sense of giving 
maximum precision per observation, that is, highest efficiency. But although 
great ingenuity and efTort have been expended in producing these designs, 
they often require an unacceptably large number of observations to attain 
full balance. 

We are then forced to make a further compromise, by reneging on the 
requirement that all pairs be equally represented within blocks. These com- 
promise plans are called p w r i r r l l y  bnlariced inconiplete blocks (PBJB); and, if 
each pair of treatments appears either. R ,  ov L2 times, together, they are called 
PBIB with two aw.xicrte c lmes .  The book by W. H. Clatworthy [ 19731 is 
certain to become the standard atlas of PBIB’s. 

An excellent discussion of the subdivision of factorial plans into random- 
i7ad BIB’S is to be found in Chapter 7 of Davies [ 19711 and is continued in 
Chapter 9. Part of the present chapter is a repetition, with admiration, of 
that discussion. However, a new systcm of blocking the z3 in pairs is given 
in Section 10.3.2 (none is given in Davies for this case). Such systems will be 
found useful when the effects of interest are of the order of 200, where oo is 
the error standard deviation within blocks. A new blocking system for the Z4 
in blocks offour, given in Section 10.4.2, makes it possible to acquireestimates 
of all but two 2fi’s with full efficiency (the two exceptions with efficiency 4). 
This is done by using different contrasts in blocking from the usual ones. 
tncidentnlty, OK perhaps fundamentally, the standard dictum (that if P and Q 
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are confounded among four blocks, then P Q  is also) is refuted by these 
designs. 

10.2. 'THE SIMPLEST BLOCKING: THE 2' IN BLOCKS OF TWO 

I t  might happen that natural blocks admit only two treatments (for ex- 
ample, twin goats or very small batches of some expensive raw material) and 
that only two two-level factors are under study. I do not consider this a 
likely case, but the fundamental principles of blocking are already involved 
and just escape degeneracy. 

As in Chapter 3, we call the factors A and Band designate the four possible 
treatment combinations or experimental conditions as (11, (I, 6, and (16. We 
take two observations (1)  and CI, as a first attempt, and we look at the expected 
value of the only possible comparison and at the expected value of the sum 
of the two observations. By Yates's algorithtn or by direct inspection, 

(9.1 ) E((1)) = - A  - B + A B  -6 average level of block 1, 

(9.2) 

Hence, E(n - (1)) = 2A - 2AB, 

and E{n  + (I)} = -2B + 2(average level of block I). 

So we see that the block difference estimales 2 ( A  - AB)  and the sum 
2(average level of block I - B). In the jargon of blocking, AB is ctlinsed with 
A, and B is cor!founded with the mean. The two new terms are, so far as I can 
see, synonymous. 

There are only six possible pairings of the four treatment combinations, 
which are shown diagrammatically in Figure 10.1 and are designated here as 

E { u }  = A - l3 - AB + average level of block I, 

f 
B 

Figure 10.1 

- 11- 

A+ 

The six possible blocks of IWO for the 2'. 
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TABLE 10.10. 
EXPCCTED VALWS 01: AND ESTIMATES FROM DIFFERENCES IN r m  2’///2 

Estimates from Block Dilferenws 
No. Computation t Expected Value and Sums 

I, 11,. . . , VI. The expected values of the six block differences are shown in 
Table 10.1 u and should be verified by the reader. 

It comes as no surprise that at least three blocks of two must be done in 
order to get even the crudest estimates of A, B, and AB. Since the experimenter 
would only rarely do a 22 unless he was interested in the 2fi, AB, the two 
blocks V and VI are the least useful. Their internal comparisons do not 
contain AB. If the first four blocks are done, we see (and can verify computa- 
tionally) that AB is estimated with half the variance of A and B. If all six 
blocks are done, then all three parameters are estimated equally precisely. 

It should be apparent without computation that each of the three effects 
is estimated with efficiency f, since only four out of six block difl‘erencts are 
used to estimate each one. 

Since six differences are ultimately available, we must look for and make 
use of the three “degrees of freedom” not consumed in the estimation of the 
three parameters. These three are measures of(twice) the random error within 
blocks: they are found from A ,  - A z ,  B, - a,, and AB, - AB2. This 
“intrablock variance” will be symbolized by u;. 

The expectations of two times the six block means are given in Table IO.lb. 
The new symbols, 6, i = 1, 2,. . . , 6 ,  are parametric deviations of block 

mcans from the grand average, M. If the blocks can be viewed as a random 
sample of a population of blocks, the I ,  may be used to estimate the variance 
of this population, which we will call u:. This may be useful for judging the 
effectiveness of the blocking. If rst/t$ is large, blocking has been in some 
degree effective. This ratio should be greater than 3 for real gains in precision. 

Estimates of the may be computed by correcting each block sum for the 
indicated effect, to get six estimates of(M + l i) .  The deviations of these from 
their average (which estimates M) are the values desired. 
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TABLE IO.lh. 
EXPECTED VALUES AKD ESTIMATES FROM BLOCK SUMS IN THE 2’ / / /2  

- - 
No. Com p ti ta t ion + Expected Value Estimates from Block Sums 

1, ( I )  c It M* - B -t I,’ I, + 11, = 2 M  + I ,  + 12 

14 h c crh M + B + / ,  11, - I, = 2 8  - It + /2 

111, (1) + h M - A + / ,  lit, + IV, = 2M i- I, + 14 * v s  ;I + ctb M + A + / 4  IV, - 111, = 2 A  - I ,  + l d  ”* 0 f I1 

VI, (I) + crh M + A B  t - 1 ,  VI, - V, = 2 A B  - I, + 16 
M - AD + I ,  V, + Vi, = 2 M  + Is -+ 16 

* M stands lor the parametric d u e  of the mean of ail six blocks. 
See text for definition of I i .  

The block parameters have obviously bcen assumed to enter additively 
into their expectations in Table lO.lb, and so any block-treatment inter- 
actions have been taken to be zero. If this assumption is in error, the three 
effect differences, ( A ,  - A2),  etc., will reflect these interactions. If all such 
differences are small (compared to A, R, AB), we need not worry about them 
at this stage. The practical reader will recognize that this pathetically small 
example, with only three d.f. for the estimation of 05 (and five for o:). is 
not recommended for actual use except in dire circumstances. It may be 
said, however, to be better than nothing. It is certainly better than the 
absolutely minimal design of blocks I, 11, and 111 for estimation of A, B, 
and AB. But modesty will not guarantee usefulness. It is only the principles 
and computations that are to be remembered from this section. 

Looking back at Tables 10.la and b, we ask, “What is confounded with 
the within-block differences?” For blocks I and I 1  we see that B is confounded 
with the difference between results in each, and that A and AE are estimable 
with variance a$/2. We have, then, deliberately lost B for the sake of better 
estimation of A and AB. Ceteris paribus in blocks 111 and IV, we lose A but 
get estimates of B and AB. 

10.3. THE z3 IN BLOCKS OF FOUR AND TWO 

10.3.1. The 2’ in Two Blocks of Four 

Here we come, for the first time, to a tolerable experimental situation in 
that we can “lose,” that is, confound, a parameter that we do not usually 
cherish. The 3fi ABC is estimated by a contrast among the eight responses of 
the 23. If we put the four trials that have -t ABC in one block and the re- 
mainingfour in the other, we haveconfounded ABC with the block difference. 
But we can estimate the remaining six parameters (the three main effects and 
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the three 2fi’s) with full efficiency and minimum variance. Thus we have 

Block I Block 11 

(1)  N 

ab b 
(1 c C 

h C  ohc 

I t  is easiest to remember this partition by noting that the “even” trials are in 
one block. The symmetry is pleasant to see diagrammed (Figure 10.2). Here 
the circled vertexes specify block I. These appear nicely spaced in a tetrahe- 
dron, two at the high and two at the low level ofeach factor. We can discover 

Figure 10.2 The two blocks of row for the ZJ, confounding ABC 

(again) just what each of the three obvious contrasts (e.g., the difference be- 
tween the two results at high A and the two at low A) is measuring by the 
standard proccdure of Yates 011 the 2’, entering f l  for each of the four 
treatmeat combinations as it will enter the desired contrast. Thus for the 
A-contrast we have 

Spec. 

- I  - I  0 0 
I 0 4 ( A )  
1 2 0 

-!-I - 1  2 0 

I 2 0 
4-1 1 - 2  0 

- 1  1 0’ - 4  (BC) 
I 0 0. 
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Wesee that the A-contrast, called (A ) ,  has expected value 4(A - BC), mea- 
sured with the within-block precision. The other two obvious contrasts 
measure 4(8 - AC) and 4(C - AB). Since the other block yields estimates of 
4(A + RC), etc., we can estimate all six parameters with full precision, that is, 
with variance ~ $ 8 .  All six effects can be computed in one “Yates calculation,” 
ignoring the result for ABC since it measures that interaction plus the block 
difference. 

10.3.2. The 2> in Blocks of Two 

Blocks of two factorial treatments are orten needed but are not frequently 
discussed in the statistical literature. They should always he considered when 
the variance between identifiable pairs is known to be a small fraction, say 
one third or less, of the variance of unblocked observations. There is usually 
some loss in variance eficiency in using blocks of two; but, as we will see, 
this efficiency factor is f in  the worst case (6 blocks of two for estimating six 
parameters in the z3) and is f when 8 -12 blocks can be managed for the same 
factorial. 

The familiar textbook example used lo exemplify “partial confounding” 
will be skipped over lightly here. If the 23 is covered in the four blocks: 

I I1  111 IV 

the three main effects can be estimated with full efficiency, since each block 
gives an estimate of A _+ B & C, and all four differences can be combined to 
yield main effect estimates with variance ~ $ 8 .  This seems to me shortsighted 
since all 2fi’s have been confounded with block differences. Surely, if a facto- 
rial plan is contemplated, the 2fi’s are of interest. I t  would be satisfying if the 
three 2fi’s could all be estimated from a new set of four blocks. but this is not 
feasible by the usual method of confounding, which confounds some effect, 
say A, between the first pair of blocks and the second, and then confounds 
another effect, say B, between the pair I + 111 and the pair I1 + IV. If this is 
done, their product, AB, is inevitably confounded between the pairs I + IV 
and 11 i- 111, arid there goes one of our desired Zfi‘s. Yates [I9371 (and, 
following him, Cochran and Cox, Davies, and all other authors) recommends 
that another set of four blocks be done to get the missing 2fi’s and that then 
still another set offour be carried out to attain balance, that is, equal variance 
for all estimates. 

We tackle first the specification of six blocks of two that will permit 
estimation of the six first- and second-order effects in the z3, assuming ABC 
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to be negligible. Since we know that this cannot be done by using one set of 
confounded effects throughout, we employ a different set for each puir of 
blocks. We will want to cstimate A and (AD f AC) from blocks I and 11, B 
and (A13 -t BC) from blocks 111 and IV, and C and (AC + BC) from blocks V 
and VI. For block I, since A and (AB + AC)are to be estimated, B, C, arid BC 
must be confounded with its mean, so the block must contain only (1) and u. 
Block I1 must estimate thesame two parameters with one reversed sign and so 
contains bc and ubc. Similarly blocks 111 and IV are to estimate B and the 
sum of its 2f is and so must be aliasing A, C, and AC with their means. We 
work this out a little more formally below for blocks I and 11, and summarize 
the whole plan and its efficiencies in Table 10.2. 

TABLE 10.2. 
THE 23 IN SIX BLOCKS OF TWO 

I I I  1 IIJ I V  1 v V I  

(1)  bc I (1) nc 1 ( I )  ub 
(I  nbc f )  abc C obc 

Estimable 
effects: A B C 

(AB + AC) (Al l  + RC) (AC + BC) 
= z,/4 = Z2/4 = z3i4 

Erects: A t3 C A B  AC BC 
Eftiiciencyfactor: j j 5 4 f 4 

Starting with the block differences for I and 11; we have 

E(u - (1)) 2(A - AB - AC), 

E{nbc - be} = 2(A + AB + AC). 

Adding and then subtracting these two equations gives 

E((nhc - b ~ )  + ((1 - (1))) = 4A, 

E { ( &  - bc) - (N - (1))) = 4(AB f A C )  = 21. 

We proceed similarly for the other two pairs of blocks, getting estimates ofa  
main effect and of the sum of its two 2fi’s and calling the latter z2 and z3, 
respectively. i t  is then easy to separate the three 2fi’s: 

Z I  + 21 - 23, 
A 

8AB = 
n 

8AC = 21 - 2 2  -t ~ 3 ,  
A 

8BC = -21 + z* + 23. 
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The variance of each of these estimates is 3u2/16. The minimum possible 
variance obtainable for a 2fi would come from six blocks around the edges 
of a 2’ (s ic! )  and is 3a2/32, so all of our efficiency factors for the three 2fi’s 
are 4. These factors are hardly to be boasted about, but they do provide 
estimates of the six eRects and so have full “degree of freedom” efficiency; the 
plan is saturated with within-block estimates. The efficiencies are improved 
if  eight or more blocks are manageable. 

10.3.3. The 2’ in Eight and in ’Twelve Blocks of Two 

Table 10.3 shows, in its first two lines, the generation and specification of a 
superblock containing four blocks of two. I t  provides four uscful estimates, 
the maximal number for four blocks of two. The next two lines specify another 
set of four blocks of two, and now all six desired parameters are estimable 
with the efficiency Pictors given below in the table. When a third set of four 
can be added, we attain equality of efficiency for all six parameters, although 
the average factor has not changed. 

’TABLE 10.3. 
THE 2’ IN EfotiT AND 1N TWELVE BLOCKS OF TWO 

Alias Subgroups 
(Superblocks) Estimable Parameters Treatment Combinations _- - --I_ . _.- _I- - ~ 

-t - A C BC 5 ABC 8, C, AB, AC (1 )  (I 6 crh 
bc abc c nc 

- + n  AC ARC A, c, A B, nc (1) a b clb 
LIC c ffbc bc 

+ C  & A B  A B C  A, B, AC, BC (1 )  0 c f fc  
oh b uhc 6c 

Effect: A B C A B  AC BC AverageEfficiency 

Efliciency(8 blocks): 1 4 1 1 4 4 J 
Efficiency (12 blocks): 4 $ f 4 f +! _- 

In each of the sets-of-four blocks there is a “principal block” containing 
treatment (1) and one other. The other blocks can always be generated from 
the principal block by mukiplieation by any admissible treatment not already 
present. The principal block is always determined by the alias subgroup. Thc 
rule is as follows: Each member of the principal block has an even number of 
letters in common with each member of the alias subgroup (0 is taken as an 
even number). To be strict, all effects with an odd number of letters are 
aliased negatively with the mean of the principal block, and all with an cven 
number of letters are aliased positively with the mean of that block. 
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The gains in estimabiiity of these tiny designs are obtained by two changes 
from the standard plans. First, we have placed ABC in the alias subgroup, 
not among the estimable effects, since it is assumed to be 0 or at least negli- 
gible. Second, instead of using blocks that estimate only main effects, we have 
chosen combinations that give 2fi estimates as well. There seems to me to be 
little point in using complementary pairs [like ( I )  and abc] that can give no 
within-block information on 2fi‘s. 

10.4. THE z4 IN BLOCKS OF TWO, FOUR, AND EIGHT 

10.4.1. The z4 in Sixteen Blocks of ‘Two 
We have 10 parameters to estimate(four main effects and six 2fi‘s). Exhaus- 

tive trial dashes the hope that these might be arranged in two superblocks of 
eight blocks each. However, by using four superblocks of four blocks each, 
each superblock confounded differently, it is possible to reach an efficiency 
factor of 4 for all main effects and for four 2fi’s. The remaining two 2fi’s are 
estimable with full efficiency. 

Table 10.4 shows the four superblocks, the four parameters estimable from 
each, and the required treatments for each block. It is easy to see that the 
estimate of (AC + ED) fram I can be combined with the estimate of 
(AC - DD) from 11 to separate the two components, and that similar opera- 
tions can be carried out on all the other pairs. 

Superblo&: I 
Eslimable elTccts: A 

n 
(AC + BD) 
(AD t BC) 

SpeciAcations: ( I ) ,  ab 
tic, bc 
Cld, bd 
crf. abcd 

Parity: Even 
Generation: A. B -L nh 

___-I-- 

l l  
A 
c 

(AC - 5D)  
(AD - BC) 
4 c 
b, cibc 
d, ncd 
n6d, bcd 
Odd 
A, c -t fl, c 

= ( (I) ,  ac) x (1 

111 
5 
D 

( A B  -t CD) 
(AD + RC) 
( I ), hd 
uh, nd 
nc, nbcd 
hr, eri 
Even 
B, D 4 bd 

IV 
C 
D 

( A B  - CD) 
(AD - BC) 
11, crcd 
b, b d  
c, r i  
nbe, nbd 
Odd 
C, D + c, d 

= {(l), cd}  x c 

The reader is remined of the two-weight problem discussed in Chapter 1. 
It will be remembered that, when the sum and the difference of two weights 
(P and Q) can be observed, the variance of the estimates of the two weights is 
halved as compared to direct observation of each weight singly. Here too we 
estimate sums and differences, and so we name and then invoke the P-Q 
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PRINCIPLE. We set up one set of four blocks of two (superblock 1) so that 
four estimates are obtaincd. It is not possible to arrange for ( A  - B) and 
(C - D )  at the same time, so we settle for A, B, (AC + ED), and ( A D  + BC). 
Each of the four blocks of two must then have these four “paramcters” in 
the expected value of its single contrast, but with different signs, so that the 
four desired combinations can be orthogonally estimated. Again, the P-Q 
principle is being applied, but now perhaps it should be called the P-Q-R-S 
principle, which is the optimal generalization for four weights. 

Sincewewant A,B, (AC + BD),andfAD + BC)toheintheexpectedvahe 
of the block contrast, the parameters C, D, AB (and their products) must be 
confounded with the block mean. For the principal block, we milst always 
take “odd” parameters with the minus sign, and so we generate the alias 
subgroup as 

I - L: - R + CD + - ABC - A B D  + ABCD,  

where the three underlined terms are taken as generators. 

ence, we multiply each term of the alias subgroup by A, say, and get 
Checking to make sure that the desired parameters are in the block differ- 

A - A C - A D + A C D + B - B C - B D + B C D  
= A + B - (AC + BD) - ( A D  + BC) + A C D  + BCD,  

and so all is well. 
To find the corresponding treatment combinations automatically, we can 

do reverse Yates (on a set of 0’s and l’s), either on the members of the alias 
subgroup or on the string ofeffects just given. We find (1) and nb, and we note 
that each of these has an even number ofletters in common with every member 
of the alias subgroup. I t  suffices to check only the three generators for 
evenness, as can easily be proved. Pains are taken to change the signs of two 
generators in each line, so that the superblock in fotn will have only ABCD 
confounded with its mean (plus the sum of all block differences). Here is the 
sequence of signs for each of the four blocks of two:  

I SL‘ D CD 44 AUC ABV ABCD Treatment Combinations 

+ - ._ t +  - - 3- (1) ab 
+ + - -  - - + -t CI c bc 
+ .._ + - -  + I + crci hd 
+ + + + +  + + + Cd abcd 

Superblock 11 is generated from a different set of four target parameters, 
now including (AC - BD) and (AD - BC) so that we can use the P-Q 
principle, and similarly for the two superblocks I11 and IV. A price is paid 
for this rather irregular blocking, however, and those seeing the penalty 

-- ___- -- 
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for the first time may find it too high. Only half the data are used (with full 
efficiency) in estimating 8 of the 10 desired parameters, while all are used to 
estimate A D  and BC. Thus, in the old-fashioned sense, this plan has 50% 
efficiency for all but two parameters. We have accepted this deficiency in 
order to be able to estimate all 10 parameters in 16 blocks of two. These 
cannot be acquired by standard “balanced” methods without using twice 
as many blocks in ail. 

10.4.2. The 24//4 x 4, That Is, the 2‘ in Four Blocks of Four 

Standard dogma requires us to choose two factorial parameters, preferably 
higher-order interactions, and their protiirct, which are assuredly negligible. 
We resist using ABCD for one of the blocking parameters because its product 
with any other undesired parameter is either a main effect or a 2fi. If we 
choose any two 3fi’s, their product is a 2fi, and so it might appear that one 
2fi must be lost. This is the choice recommended by Cochran and Cox, by 
Davies, and by all other authors known to me, following Yates [ 19371. To 
regain some kind of balance, six repetitions of the z4 are recornmended by 
these authors, each using a different confounding pattern, and each losing 
a different 2fi. This may be feasible in agricultural experiments when 96 plots 
are needed to attain adequate precision. But even two repetitions, losing 
onc 2fi in each, may suffice. We would then have full effciency on all but the 
two blocking 2fi’s, which would be estimated with efficiency factor 4. 

Table 10.5 gives a blocking schcme for a single replicate of the 24 which 
permits estimation of all 10 main effects and 2fi’s. 8 with full efficiency, but 
5 D  and CD with efficiency *, The four defining contrasts* are as follows: 

1. I - ABC - ABD + CD. 
11. I - ABC + ABD - CD. 

111. I f ABC - ACD - HD. 
IV. I f A5C + ACD + BD. 

TABLE 10.5. 
THE 24 IN FOUK BLOCKS OF 

k . W R  (ALL 2fi’S ESTIMABLE) 

I I I  111 I V  

* 1 have riot used the name “defining contrasts” before. I t  designates the sum of the tdrms in 
the alias subgroup and henm the l ist of parameters that are confounded with the mean of one 
block. All other aliases can be found by multiplying this string by any efim not in the string. 
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The reader should be warned that, although in this case a single Yates’s 

computation on the 16 results will give correctly the estimates of eight of the 
desired parameters, a different computation-using only the half of the data 
in which it is not confounded-will be required for BD and for CD. 

I hear a voice muttering, “But this is merely partial confounding.” I 
mutter back, “Yes, but not ‘merely,’ since the plans produced have long 
been needed but not offered.”* 

There are 3 d.L within each block and hence 12 in the four blocks, so there 
must be 2 d.f. for error. These are BCD and ABCD and are estimated with 
full eficiency. 

10.4.3. The24//8 x 2 

I t  seems inevitable to choose ABCD for confounding. This divides the 24 
into an “even” and an “odd” half. It is of some interest to note that the four 
main effects (each along with thc complementary 3fi) can be estimated from 
either block. 

10.5. THE BLOCKED z5 

For two blocks of 16, the 5fi ABCDE is clearly the parameter lo lose. 
For four blocks of eight, any two 3fi‘s with one letter in common should be 
chosen, since their product will then be a 4fi. If the experimenter suspects 
that certain 2fi’s may be large, their letters should be split between the two 
3fi’s. 

There must be subdivisions of the 25 into blocks of four, and even of two, 
but they are not given here. Enough has been said about the 23 and the 24 
to show what rules to follow and which to circumvent. 

10.6. THE 3t IN BLOCKS OF TWO AND THREE 

The authors of Davies [1971] have in their Chapter 9, Sections 5-9, 
and in Appendix 9F and G, given an excellent discussion of the natural 
ways to block the 32, the 33, and the 34 in blocks of 3,9,  and 27. Since these 
arrangements have been exactly duplicated in dozens of textbooks, I decline 
to repeat them here, but only recommend their use when blocks of three are 
the natural ones to use. 

The partitioning of the interactions originated by Yates is described in all 
texts as uninterpretable. A little space is taken here to rectify this judgment. 

The I interaction pair of degrees of freedom is defined [Yates 1937, page 
95; Cochran and Cox 1957, page 193; Quenouille 1953, page 120; Davies 
1971, page 3991 by the three “diagonal sums” of the observations in a 32. 

* See Youden [I9611 for a different coiistructive use of partial confounding. 



194 BLOCKING FACTORIAL EXPERIMENTS 

Labeling the nine cells as follows: 

bo b,  bz 

we have the definitions 

1 ,  = I f 5 + 9, 

1 2  = 2 t 6 f 7, 

I ,  3 f 4 + 8; 

J ,  = 1 + 6 + 8, 

J ,  = 2 + 4 + 9, 

J ,  = 3 + 5 + 7. 

Yam partitions the interaction sum of squares into two pairs of two d.f., 
one among the I, the other among the J ,  but does not give orthogonal 
contrasts corresponding to individual degrees of freedom. 

Taking the (only) two natural contrasts, I define 

I/, = 21, - I ,  - I ,  and V, = W, - J ,  - J , ;  

u, = I, - I ,  and 

The Ui and & ( i  = 1,2) are free of main effects and of the grand average 
and are therefore solely functions of the 2fi, that is, the pij of the factorial 
representation. Using now the 9,j or residuals in the 3, instead of the obser- 
vations, we can list the mrrlrip/ier:r of each residual in a standard 3 x 3 array 
to represent each U and I! 

V, = J ,  - J , .  

From these it follows that: 

u, + v, = (A@&), 

u, - vz = (A@,), 

u ,  - v, = 3(A,,&); 

u, + v* = (A,.B@k 

where the parcntheses on the right mean “the standard integer contrast 
among the residuals.” 
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We can now put into words what the I and J components mean. 
U , ( = 2 I ,  - I, - 13)  is a single-degree-of-freedom contrast which will 
respond to a diagonal ridge (or trench) in the responses in the direction \. 
V,( =2.1, - J ,  - J , )  will be large only when a diagonal ridge (or trench) 
goes in the opposite direction,/. U2 and V2 are simply orthogonal remainders, 
representing lack of fit  to one or the other ridge. If both U ,  and V, came out 
largc, we would of course prefer to represent their sum as AQBQ. 

I leave to fresher minds the working out of the corresponding extensions 
to the 33, and so forth. The actual partitions are given i n  all four references 
cited above. 

We try as always to reach a reasonable compromise between the number 
of blocks required for exact balance (equality of variance of all estimates) 
and the. Iiumber of parameters to be estimated. For the 32 there are of course 
eight parameters to be estimated from within-block comparisons. If we re- 
quire all 36 blocks of two (9 x 8/2 = 36), we will reach exact balance. 
Remembering that we want good row and column comparisons, we start 
with the 12 pairs that compare each cell with its edge neighbor. These will 
give good estimates of the comparison of row (or column) I with row (or 
column) 2 and of row (or column) 2 with row (or column) 3. Numbering the 
cclls as follows: 

1 2 3  
4 5 6  
7 8 9  

we are proposing, then, these blocks: 12,23,36,25, 14,45,56,69,58,47,78,89. 
The I2 differences can be used to estimate the row and column difTerences 
and the interaction parameters. There wilt be 4 d.f. for within-block error. 
If this is not deemed sufficient, the natural augmentation is to the com- 
parison of row (and column) 1 with row (and column) 3; hence we add 
blocks 17,28,39, 13,46, 79. This will give six morc d.f. for error and notably 
improved efficiency and precision in all estimates. The 18-block plan appears 
as Design LSI on page 260 of Ciatworthy [1973]. 

10.7. DISCUSSION AND SUMMARY 

There has been insufficient warning in the preceding sections about the 
hazards of blocking. It  has been assumed that the true effects and their 
interactions are the same in all blocks. In the jargon of this chapter, it has 
been assumed that blocks do not interact with factors. 

In serious experimentation, however, this is almost never known before- 
hand. The relative success of blocking must depend on the fact that inter- 
actions are commonly rarer than effects, at least when factors are varied 
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over the ranges actually chosen by experimenters. Extensive retrospective 
reviews (by Kempthorne [I9521 and others) have verified tliat, in experi- 
mental agriculture, block-factor iriteractioiis must have been small. This 
assumption a n  be partly tested by using a larger number of blocks than the 
absolute minimum for estimability, so that several effect estimates can be 
made and then compared. 

Three factors have motivated this rather lengthy discussion of blocking. 
The first is the need to counter the inveterate habit of many experimenters 
who believe that the only way to guarantee “controlled experiments” is to 
use a large part of their experimental time and effort in repeated measurement 
of “standards.” Blocking provides, as Fisher never tired of emphasizing, 
local control, that is, within-block comparisons that largcly diminatc the 
long-term drifts of many experimental systems. The sccond factor is my 
desire to shake up a little those statisticians who take it for granted that no 
improvements in blocking factorials are to bc expected. Tlie third is the 
need to prepare the reader for “fractional replicates,” which are merely 
rather large blocks, used singly to estimate lower-order parameters aliiised 
with negligible higher-order ones. 
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11.1. INTRODUCTION 

A fractional replicate is simply a block of a full factorial plan. A chosen 
set of effects, usually interactions that can safely be judged negligible, is con- 
founded with the mean. This set, together with the identity I, is the alias 
subgroup. 

Every effect in a fractional replicate is biased by the complement of each 
member of the alias subgroup. It is important therefore that all these com- 
plements be interactions that are either safely negligible or easily identifiable. 

There are two reasons for proposing a fractional replicate instead of a 
full replicate: 

1. The effects of the factors of primary interest can be examined over a 
wider range of conditions than would otherwise be possible. 

2. The number of rum required to investigate a given number of main 
effects and 2fi’s is decreased. 

The principal disadvantages are: 

1. Too few degrees of freedom may remain for testing for the multifarious 
varieties of lack of fit. 

2. The vulnerability of fractional replicates to the usual hazards of experi- 
mentation-wild values, interchanged observations, inoperable or un- 
attainable test conditions-is greater than that of whole replicates. 

I97 



198 FRACTIONAL REPLICATION--- ELEMENTARY 

After discussion of these gains and hazards, we will make suggestions for 
reaching an acceptable balance. These proposals will be largely on the side 
of conservatism, judging only relatively large effects to be real, and reserving 
about half of the available degrees of freedom for study of the data. 

11.2. FRACTIONS OF 219 

The 2p plans have been praised so extensively in earlier chapters that the 
reader must be convinced of their superiority. Why, then, do we rock this 
steady boat by putting forth modifications, especially if they are riskier, 
require more restrictive assumptions, and are. harder to analyze? 

Every 2 P  Pdctorial experiment is a fraction of a larger 2‘(P =z p )  in which 
some factors have not been varied, but have deliberately been held constant, 
possibly not at their best levels. Thus any 2’ is a half of a z3, the third factor 
being any condition held constant during all four runs of the 22. There may 
be better halves. These will be considered below. Every 22 is a quarter 
replicate, a 24-2, too. 

In other words, there are usually more than p factors in each experimental 
situation. Very naturally, the experimenter’s censoring judgment has been 
exercised in choosing the factors that seem worth studying and feasible to 
vary. He needs to be informed that some of the factors he has chosen not to 
vary might well be varied, and their effects noted, with no great increase 
(somctimcs with no incrcase at all) in thc numbcr of runs required. 

Put still anothcr way, wc may bc ablc to broadcn thc base of our inferences 
about thc cfkcts of thc p important factors by varying some other factors 
which “probably” producc no effects. Wc do not know that thesc latter factors 
are uninfluential; we only hope that they are. If our data show that they are 
indeed negligible, a point has been gained. If, on the other hand, one or more 
of them do influence results, an even more important fact has been learned. 

There are of course nice matters ofjudgment in any decision to vary more 
factors. Shall we try to find out more about the more restricted system, or to 
find out less about the wider set of conditions implied in varying more 
facto rs ? 

11.3. SOME OVERSIMPLE FRACTIONAL REPLICATES 

11.3.1. One Run 
The single run is made at the “low” levels of three factors. (The naming of 

factor levels is generally a matter of n~rnenclatural convenience.) We specify 
the conditions of this run by the symbol (1). To be neat, we should specify 
the outcome---the response of the system to the run made at condition 
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(1)-by some different symbol, say - 1 ~ ~ ~ ) .  But it is usually typographically 
convenient, when no ambiguity is likely, to  designate the value of the res- 
ponse also as (1). 

The factorial representation of the result ( I )  shows only how its expected 
value is related to the expected value of the average response to the full 
factorial. Thus, if three factors are being held at their lower levels, we can 
write 

(11.1) E((1) f  = M - A - R + A B  - C + AC + BC - ABC, 

just as the first line of Table 5.2 shows. The expected value of the result at 
(1 )  is quite obviously biased from M by any of the seven factorial effects 
which are not zero. 

Although this “experiment” has been called oversimple, it represents the 
commonest of all tests or experiments. A run is made under some conditions, 
mainly to see whether an interesting or an acceptable ”yield” is obtained. 
Ifwe want some yield but get none, this is often a crucial finding. Even getting 
a very low yield is informative. When this happens, the experimenter may in 
his next run try conditions as difTerent as possible from those tried at  first. 

11.3.2. Two Runs 

Suppose the experimenter now tries abc. He has changed the levels of all 
three factors, guessing that all three may influence the response in the same 
direction. The last line of Table 5.2 shows how the factorial effects hit this 
run, The tliflerence between the two responses has the expected value: 

( 1  1.2) Efahc - ( I ) }  = 2 ( A  + B t C f ABC). 

Now only four effects are aliased. We have done one fourth of the 23 that 
would be required to give us estimates of all eight factorial efi’ects unaliased 
with each other. We can call our two runs a quarter replicate of the Z3 and 
symbolize this as a 23-2. 

11.4. THE HALF REPLICATE, 2’-’ 

We cannot conceivably get separate estimates of the main effects of factors 
A ,  B, and C unless we do four runs. Let us ask first a simple question, “Where 
should we place four runs in a 2’?’ Intuitively we say that they should span 
[he cube as well as possible. This forces 11s to one of the two complementary 
blocks of four of Section 10.3.1 (diagrammed in Figure 10.2). As we saw in 
that section, ABC is confounded with the bIock difference. As we should see 
now, the mean of the odd block is aliased with + ABC, and that of the even 
block with - ABC. I f  this is not clear, the reader should eitiier consult Table 
5.2 (which will show that the odd treatment combinations are all on the plus 
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side of ABC, all the even ones on the negative side), or carry through the 
forward Yates computation, using + 1 for the four even combinations and 
- I for the rest, or do forward Yates on a set of -I- 1’s in the even positions, 
to find that the mean and - ABC are measured by the average of the four 
runs. 

Just as in Chapter 10, here we can multiply the defining contrast by any 
effect not present to display all factorial effects aliased with the multiplier. 
Thus for block I we have 

E{L) = I - ABC, 
E { ( A ) }  = 4(A - BC), 
E{(B) )  = 4(B - AC), 
E{(C)J = 4(C - AB), 

where J is the block mean, and (A) is the contrast ab + ac - (1) - bc, etc. 
A more deliberate way to produce the z3-’ may prove more illuminating. 

I t  is the approach used by the authors represented in Davks rl971) and is 
beautifully explained in Box and Hunter [1961). Table 11.1 gives at the left 
the standard transformation matrix for the 2’. 

TABLE 1 1 . 1 .  
IDENTIFICATION OF 1 A E  WITH C TO Pitonuct? 

A 2 3  -. 1 

SF. T A B AH C,+ C2- 
-________--______ 

(1) + - - + c  (1) 
It + + - -  0 ac 
6 + - + -  6 bc 
n6 + + + + a6c a6 
-__---__I -- 

We surely want to estimate A and E, but we ask whether AB is needed. If 
it is not, the AB-contrast can be used to measure the effect of C. We have two 
choices: we can assign the first and fourth runs to high C, as in the column 
headed C ,  ; or we can use the other two runs for high C, as in C2. 

We have, in effect, set AB = C in C,, and = - C in C2. More correctly, 
we use the AD-contrast to measure (C 4- AB) in C, and (C - AE) in C2, I 
am happy to report that Box and Hunter express defining contrasts as the 
sums of aliased terms, as I have, instead of the confusing “equalities” of 
earlier works. (Davies [1971], Brownlee et al. [1948], and Finney [ 19451 
use expressions like A = - EC to indicate that (A  - BC) is measured by the 
A-contrast.) 
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11.5. THE Z 4 - l  

The 24-1  has 23 or eight runs. We therefore identify the - ABC-contrast 
with the new factor, D. The specifications and aliases are in the standard 

as follows: 
specs. Aliases 

(1) I + A B C D  
-____.I I___- 

CI ri A + B C D  
h (I B + A C D  

c n C + A B D  
ab A B  + CD 

NC AC + BD 
bc RC + AD 

rrhc r l  A B C  + D 

This alias pattern has a qualitative advantage over those shown earlier in 
that main effects are now estimated with no bias from 2fis. The latter are of 
course aliased in pairs. 

We will call plans of this sort four-letter plans or plans of Resolution IV 
(following Box and Hunter). Plans which force main effects to be aliased 
with 2fi’s (like the Z 3 - ’  of Section 11.4) are called, by various writers, three- 
letter plans, plans or Resolution 111, or main effect plans. 

Thedata and column 3 ofthe standard computations for the example which 
follows are taken from Davies [1971, pages 454-457,491]. “The error vari- 
ance was known to be about 4.0.” Using 7, (A), and (8) in the “reverse Yates” 
shown in panel b of Table 1 1.2, we find the fitted values Y, and the residuals d ,  . 

The conclusions appear simple and straightforward. The residual MS, of 
6.0 with five d.f. is compatible with the given error variance of 4.0. 

A suspicious mind would notice that the two largest residuals ( -  3 and + 4) 
appear at the same experimental condition (a, since C and D are without 
effects). Since the true standard deviation is stated to be 2.0, the standardizcd 
range of this pair is 7.0/2.0 or 3.5, and this has a P-value of 0.025. This might 
suffice to raise one eyebrow, but not two. 

We note that the signs of the ordered residuals (exapt for the first, which 
is 0) are those of -AC. Since AC is 12/8 or 1.5, we can revise the Y-values 
shown by this amount-and hence the residuals ‘1, in the opposite sense-to 
get new residuals d,, also shown in the table. Thc new residual mean square, 
residual MS,, is 12/4 or 3, so we do not seem to be overfitting. 

Our conclusions about effects are the same as Davies’. The A and B-effects 
are undoubtedly real and closely additive. The AC interaction is “probably” 
present, probably positive, and probably less than 2 x t .5 or 3. 
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TABLE 11.2. 

Psncl a. Forward Yates on Davies' Z4-  ' 

specs. y 
l__l-. 

(1) 107 
ffd I14 
bd 122 
ab I 3 0  
C d  106 
CiC 121 
hc I 20 
ubcd 132 

(3) 

952* 
42* 
56* 

- 2  
6 

12 
-- 6 
- 4  

Aliases 
__I 

T 
A 
5 
A 5  + CD 
C 
AC + 51) 
U C +  AD 
ABC + D 

ltlcluding 
A 

Yt(7,  A^, B )  (1, AC = 1.5 d ,  
-__________ 

t 1.5 - I07 0 
I I7 - 3  + - 1.5 
121 + I  - -0.5 
131 - I  + + 0.5 
I07 - 1  t t 0.5 
117 + 4  - i- 2.5 
121 - I  + + 0.5 
131 + I  - 0.5 - 

Panel b. Reverse Yates on T, (A ) ,  ( B )  

Specs. - Effects ( I )  (2) (2) + 8 = Y, 4 

( A 5 )  0 56 1050 131 - I ,  - 1  
(W 56 994 966 121 + I ,  - 1  
(4 42 56 938 117 -3 ,  + 4  
T 952 910 854 107 0, - 1  

From d , ,  residual MS, = 30/5 = 6.0. 
From (I2, residual MS2 = 12/4 = 3.0. 

* Judged significant 

11.6. A NOTE ON THE CHOICE OF Z f ABCD 

There is an apparent asymmetry between the two half replicates, I + 
ABCD and I - ABCD! Suppose that all four main effects were present, were 
large, and were of about the same size. If one is of opposite sign to the other 
three, then, aside from random disturbances, we will see a pattern in the 
data taken according to I + ABCD of the form shown in Table 11.3, panel a. 

If the Same experimental situation had been studied using the other half 
replicate, we would get results with a pattern like that in panel b. We now 
see six data values at the mean, one well above and one equally far below. 
This pattern is of course entirely acceptable mathematically and will give 
the right estimates of all four effects if all the data are all right. But the 
suspicious experimenter or data analyst, noting that all but two of his values 
are nearly the same, might be tempted to revise these two, or at least to doubt 
their validity. This would of course be disastrous, since then no effects at all 
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would be found. A revision of two values in the data of panel (7 will not 
removc all effects. 

If the experimenter knows or is able to guess the signs of his cffccts, hc can 
run through the little reverse Yates required, to see whether he is likcly to 
get a pattern like that of panel (1 or that of panel b. He can then change the 
names of the levels of one factor if necessary and so give himself a better 
chance orsecing some effect in every data point, instead of just in two out of 
eight. 

We close this chapter with a warning. We have so far Found no fault with 
fractions-0f-P plans, but this is a consequence of our not having put these 
small plans to sufficiently severe test. Such tests will be made in the following 
chapter. 

The mature reader will understand that the small fractions, 23-1  and 
24-1, are too heavily saturated and too imprecise for most practical uses. 
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you want to make sense, you had beiter take all important factors info 
account. PAUL. GOODMAN. 

12.1. INTRODlJCTlON 

There are several excellent atlases of 2p-4  plans for 4 < p < 16 and for 
16 < 2 P - 4  I 256. They will all be praised in this chapter. The impatient 
experimenter or statistician may feel that he can bypass this plodding ex- 
position and proceed to these references. So he can, but not safely. I have 
seen many-perhaps a hundred-ill-conceived, misleading, and therefore 
very expensive fractionally replicated experiments. The commonest defects 
are the following: 

1. Oversaturation, that is, too many effects demanded for the number of 
trials used. 

205 
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2. Overconservativeness, that is, too many observations for the desired 
estimates. 

3. Failure to study the data for bad values. 
4. Failure to take account of all the aliasing. 
S. Imprecision, that is, insufficient hidden replication, due principally to 

ignorance of the error variance and of its constancy. 

We will first look at fractions of some large factorials. Then, after this 
cautionary tale, some higher fractions, 2P-2*3i4, will be discussed. Finally 
the published listings for two- and three-level plans will be reviewed. 

12.2. HALVING THE 2 5  

12.2.1. Yates's 2' on k a n s  

We have already divided this 2' (in Section 7.2.3) into two half replicates, 
using the defining contrasts I k DNPK asshown in Table 7.4. This wasdone, 
the reader will remember. to study the responses in blocks I and 111, which 

TABLE 12.1. 

(6LOCKlNG: SDP,  SNK, DNPK)* 
CONTRAST-SUMS PROM TWO 2'- "S PROM YATU'S 2' ON BEANS 

I - SDNPK I + SDNPK 
- - - - - - I I c____ 

Specs. Efl'ecrs Aliascs Specs. Elrecis Aliascs 

( 1 )  
sk - 87 S 
cik I I7 D 
sn 79 S D  

k 
S -41 S 
n 15 D 
srlk I S D  

nk 55 N I1 - 5  N 
SII 41 SN strk 13 SN 
(Ill 69 DN rlttk 13 DN 
s h k  19 SDN - P K  srlt1 i I  SDN + PK 

Ilk - 25 P P - 59 P 
sp 5 SP spk 43 SP 
4) 45 D P  - SNK' clpk - 53 DP + SNK* 
silpk - 129 SDP' - NK S d p  - 59 SDP* + hiK 

Ill' -- 29 NP ripk - 53 NP 
.snpk 41 S N P -  DK sr1p - 23 SNP + DK 
diipk - 59 DNP - SK ntrp 17 DNP + SK 
.sntrp - 65 SDNP - K scfiipk 55 SDNP + X 
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had on average smaller residuals and yielded, he will not forget, a dusty 
answer. We will now divide Yales’s 25 into the two halves that would be 
most natural a priori, ignoring for the moment the original blocking. We use 
then the defining contrasts I jI SDNPK and find effects as contrast-sums, 
listed in Table 12.1 and plotted in Figure 12.1. 

I- -200 

Figure 12.1 Contrasts froin I - SDNPK versus those from I t SDNPK(Yates’s  2’ UII beans). 

I have used a t-value of2.63-tabled at the 0.975 level and 10 d.f.-- along 
with a pooled estimated standard error of contrast-sums of 36.2, to get a 
radiirs of 2.63 x 36.2 or 95.2 for the circle shown in the figure. Each half 
replicate gives roughly 10 d.f. for error, and even though the two halves do 
not give exactly the same s, I have taken the easy way out to avoid drawing 
ellipses. Thc circle in Figure 12.1 does appear to separate the largest effects 
(S,  D, and SDP blocks) from the ruck, but the interesting finding discussed in 
Chapter 7-- that S x K x SK-would barely be suspected in the halfcalled 
I, and would be missed entirely in 11. 
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We could have read in Yates’s pamphlet [ 1937, page 30) that “The experi- 
ment is not of high precision, being of only 32 plots and having a high stan- 
dard error per plot (beans have at Rothamsted proved a very variable crop) 
but in combination with other similar experiments it should provide useful 
information. . . .” We have then really gone in the wrong direction in trying 
to interpret half of this experiment and have done so only as an exercise, not 
as a suggested economy. The z5-‘ is by far the commonest fractional rep- 
licate actually done, so we should be warned that much may be missed. 

12.2.2. Davies’ 2’ on Penicillin 

This experiment (see Section 7.3) was indeed blocked on ABCDE, and so 
each block was a 2’ - of the sort that one might do singly. 

The usual computations give the contrasts shown in Table 12.2 and the 
correlation plotted in Figure 12.2. Here the two halves find the same main 
effects significant. The circle drawn is of radius 2.63 x 68 = 179. The 

TABLE 12.2. 
Two 2 5 - 1  FROM DAVIFS’ 23 

I - ABCDE I +  ABCDE 

-298 A 
-58 B 
- 104 

228 C 
- 134 

26 
- 56 

-26 D 
- 124 

36 
122 A B D - C E  

10 
- 20 
-84 - A E  
398 - E  

-264 A 
76 B 

- 86 

-286 C 
-60 
I16 
14 

58 D 
- 36 
-68 

-214 A B D +  CE 

- 42 
76 
0 

-270 E 
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troublesome CE interaction is large in one half, but much smaller in the other, 
and so might well have been missed. The value at ahcd, called bad in Section 
7.3.3. cannot be detected in its 25-  I .  

- 300 

- -300 

Figure 12.2 Contrasls from two Z 5 -  (Davies’ 2s on penicillin) 

12.2.3. Rothamsted’s 2’ on Mangolds 
As in Sections 12.2.1 and 12.2.2, we give the usual contrast-sums and their 

aliases Tor the two half replicates in Table 12.3. 
As Figure 12.3 makes clear, the effects of S, I), and N are detected and well 

matched in both halves; the 2fi KN is a false positive in the principat block, 
but not in the other one. The 2fi SK was judged significant in the original z5 
and is easily spotted in both halves. 
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(BLOCKING: SPN, PKU, SKND)  
Two 2s - FROM ROTHAMSTED 25 ON MANGOLDS 

I - SPKND I + SPKND 

247 
I 

- 3  

47 
71 

- 19 
29 

I37 
- 27 
- I7 

3 

13 
- 27 

3 
- 141 

S 
P - SKND blocks 

K 
SK 

SPK - ND 

N 
SN - PKD blocks 

SPN - K D b l ~ k s  

SPKN - D 

287 
- 35 

I t  

-31 
55 

- 27 
- 37 

77 
99 
61 

- 13 

89 
- 33 

-7  
151 

S 
P + SKND blocks 

K 
SK 

SPK + N D  

N 
SN f PKD blocks 

SPN + K D  blocks 

SPKN + D 

- 300 S 

1 I 
-300 -200 -100 
- 
-300 -200 

Figure 12.3 Contrasls froiii I -- S P K N I ) ( I )  versus those from I + SPKND(II)(Rothsmsied). 
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12.2.4. An Industrial 2‘ from Johnson and Leone 

The 25 discussed by Johnson and Leone [1964, Vol. 2, page 184) has a 
special interest because it contains a large three-factor interaction that turned 
out to have a rather simple interpretation. The 32 observations coded by - 8 
are, in standard order, 1,2,0, -2 ,z>,  -3, -2 ,2;3 ,5 ,1 ,5 ,  -l,z, --l,?; 
-5, 1, 2, -2, - 3 ,  -2, -4 ,2;0 ,  -1.0, -2, - 1 ,  - 1 ,  -3, -2. The four 
largest contrastsinthese data are A  ̂ = 36, 6 = 36,6 = -42, and A 6 E  = 

- 30. These are nearly enough equal in magnitude that we code all to -i- 1 and 
put all through the reverse Yates algorithm to see whether some pattern of 
response emerges : 

A D E  - I  - 1  - 2  0 
D E  -- 1 2 0 
A E  1 0 0 
E .- 1 1 0 --4 ê  

D I - 1  0 0 
A 1 I - 2  0 
7’ - 1  -2  0 

A I )  I 0 4 2  

The combined impact of the four factorial contrasts is a cancellation of all 
effects except in two positions. These two, nd and 2, are equally far from the 
mean, one low, one high. This was not easy to see in the original data, but it 
does provide a simpler description of the whole set of data. The four condi- 
tions predicted to be “low” in J’ are the four that contain e but not a or d 
(e,  be, ce, bce); the four predicted to be “high” are r i d ,  abd. Q C ~ ,  ahcd. These are 
underlined in the data listing above. There are two failures in that L; (double 
underline) is not supposed to be low, and acd (double underline) is not high 
enough. 

The effects as judged by the two halves I Jt ABCDE are listed in Table 12.4. 
These contrasts are plotted in Figure 12.4, with a circle of the usual radius. 

Although most large contrasts are in the right quadrants (upper right and 
lower left), this fractionation must be admitted to be a failure. The rough 
equality of the three main effects and their 3 fi’s might have been guessed 
from part I but is obscured by the large 21i, DE. Both DE and ADE disappear 
in I I !  



TABLE 12.4. 

I 11 
I - ABCDE I + ABCDE 

16 A 2 O A  
- 4  8 

6 2 

-6  - 16 
8 2 

24 BC-- ADE -6  BCf ADE 
18 - D E  - 4  

14 D 22 D 
4 - 8  
0 -4  

-6  ABD - CE 14 A B D + C E  

- 2  - 8  
4 -6  

-4 BCD - A E  -14 B C D +  A E  
14 AECD - E -28 ABCD f E 

B 

Figure 12.4 Johnson and Leone's 2'. I - -  ABCDE(1) versus I + ABCDE(I1). 
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In summary, three of our four exemplary 2‘’s have survived halving, with 
some obscurilies, but the fourth is a half failure. As we can see from the half- 
normal plot given in Johnson and Leone (Example 15.4, page 189), the four 
largest eFFects are only a little too large for the pattern set by the smaller 
27 contrasts. This bare significance in the 2s is destroyed or at least seriously 
distorted in the halves. 

12.3. QUARTER REPLICATES: 2p-2 

12.3.1. Of Resolution 111,2fi;’ 
There will be three interactions or “words” in the alias subgroup for any 

2 p - ’  in addition to the identity, since effects will be aliased in sets of four. 
Since each letter will be present in two of these words, the average word 
length L will be 2 p / 3 .  We will always want all main effects to be estimable 
separately; and so even if all 2fis are negligible, as is required for a Resolution 
111 plan, we must have all word lengths greater than or equal to 3 and hence, 
in symbols, 

I n  words, we cannot have a quarter replicate of Resolution 111 for fewer 
than five factors. 

The 2;;* is indeed realizable. We choose two 3fi‘s having one letter in 
common, say ABC and CDE,  and inevitably include their product, ABDE, 
in the alias subgroup. To produce the principal block [containing treatment 
combination (I)]  we make our confounding pattern of defining contrasts out 
of the negative (because odd-lettered) 3fi’s, together with their necessarily 
positive product. Thus 

I - ABC - CUE + ABDE 

specifies by implication all the strings of four effects in our confounding 
pattern. The generators of the principal block are found by direct trial, 
requiring each to have an even number of letters in common with ABC and 
with CDE.  Thus ab, m d ,  and de suffice to generate the principal block. 

I t  is useful to write out the full aliasing for each of the contrasts that will 
emerge in any fractional replicate. But for the present z5-’ this may suffice to 
repel the cautious statistician or experimenter. Thus, including only main 
effects and 2fis, the expected values of the mean and of the seven standard 
contrasts are as follows: 

I - ABC - C D E  -I- ABDE 

A -  BC 
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B - AC 
C - AB - DE 
D -  CE 
E; -- CD 

AD 4- BE 
A E  -I- BD 

The experimenter must know his system very well indeed if he can ignore 
six 2fi's and so be able to estimate his main effects without 2fi biases. 

In the z5-' given by Davies L1971, Example 10.3, pages 457 ff., 4921 the 
alias subgroup was I + ASE - ACD - BCDE, and the standard deviation 
of single observations was known to be about 1. The data, the effects, and the 
aliasing are shown in Table 12.5. 

TABLE 12.5. 
S~JMMARY OF DATA AND EFFECTS IN DAVIES' 2 5 - 2  

~~ ~ ~ 

Total Effects 
Spec. Yield Alias (std. error = I.O$ = 2.8) 

e 59.1 
rr d 57.0 
6 58.6 

crb rlc 63.9 
c cfe 61.2 

(1 c 71.6 
6r I /  19.2 

ubc c 16.9 

533.5 
A -+ BC - CD 5.3 
B - 1  AE 23.1 
AB -t E 0.7 
C -  AD 56.3 
AC - D - 1.1 
BC - DE 10.9 
ARC -I- CE -- BR - 14.1 

Since the standard error of the total effects must be 1.0 x J8 or 2.8, we 
are forced to conclude not only that B and Care large and real but also that 
the two aliased pairs of 2fi's are too large to be due to chance. ARer making 
up all four 2 x 2 tables (to show the expected yields) for BC, DE, CE, and 
BD, the statisticians and experimenters concluded that the conditions giving 
the highest yield would be bcd [Davies 1971, bottom of page 4593. Inspection 
of the data reveals exactly the same thing, that is, the yield at bcd is 79.2 and 
the next highest yield (ctbce at 76.9) is noticeably lower. I am not implying 
that the standard statistical analysis should have been skipped; but when it 
produces results as complex in its second-order aspects as this one-clearly 
not expected by the experimenters-it is safer to view the whole fractional 
replicate as an attempt to get a broad but thin sampling of the results in 
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ABCDE space. Something intelligible has been learned from the fraction, 
namely, that factors 5 and C dominate the yield. If high yield is very impor- 
tant, then at the very least another fractional replicate should be done, and 
(the P-Q principle!) it should estimate (5C + DE) and (BD -t CE). Since 
both these can be guaranteed by putting + 5 C D E  in the alias subgroup, we 
should arrange to separate C and - - A D  by including + ACD in the alias 
subgroup (ass . )  and SO have, finally, I + ACD + A 5 E  + BCDE. The new 
set will now be odd on A C D  and on ABE. Rather than searching for all eight 
treatment combinations with these properties, I suggest deriving first the 
principal block with these defining contrasts. The new plan can then be 
found by multiplying ail members of the principal block by OJW combination 
of lowercase letters that is odd on both ACD and AHE. Thus by trial 1 found 
&c, &, and _b_e as generators of the principal block, multiplied all out to 
get the first column of treatment combinations shown below, and then mul- 
tiplied all of them by ( I  (which is odd on A C D  and ABE) to obtain the desired 
plan shown in the last column below. 

Generat ion 

1 
2 
1 x 2  
3 
1 x 3  
2 x 3  
l x 2 x 3  

Principal 
Block 

( I )  
c& 
l& 

bcde 
he 

-.- 

N ce 
c h i  
cn 

Desired 
Set 

U 

bc 
tie 
&de 
crbe 

hd 
uctl 

ce 

I t  should now be clear to the reader how to write out the aliasing pattern 
for the new desired set, and how to combine these results with those found 
earlier to separate the 2fi strings as planned. To see in full the results of 
combining the two 2’- ”s, we note that together they make a half replicate 
with a.s.g. 1 + A 5 E  (alas), and so we still have Resolution 111 on factors A,B,  
and E. On the assumption that all interactions greater than the two-factor 
ones are negligible, the fifteen contrasts will now estimate ( A  + B E ) , ( B  + A E ) ,  
( E  + AB),  C ,  D,  AC, AD, BC, BD, C D ,  CE, and DE, plus three contrasts for 
error. The reader can see, by writing out the treatment combinations for the 
two quarter replicates not used, that each contains one and only one treat- 
ment combination with B, C, and D, all at high levels. Thus the post hoc 
hypothesis that bcd is always highest in yield can be checked after any one 
of the three quarters is completed. 
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12.3.2. Of Resolution IV, 2f;’ 

More commonly, the experimenter will want to see good estimates of main 
effects no1 aliased with any 2fi, but will be able to tolerate aliasing of main 
effects with 3fi’s. This requires “four letter” or Resolution IV plans. Since we 
are still discussing quarter replicates, we now require that L2 4 = 2p/3, 
so that p 2 6. In words, we can get a quarter replicate of Resolution IV only 
if at least six factors can be varied, and then in 26-2 = 16 trials. 

We take I + ABCD + CDEF + ABEF for our a.s.g. (any permutation 
of the six letters gives an equivalent plan). We write down four generators of 
the principal block; ab, ace, ade, and g, say. By using as few letters as possible 
in each generator, and by adding one letter in each new one, we can be sure 
even before multiplying out that no product is like any of its predecessors. 
Table 12.6 gives the alias structure and the treatment combinations required. 
The reader is reminded that there is no correspondence between the entries 
in the two columns; they are printed side by side solely to save space. The 
last two contrasts as fisted would be used as a start in estimating error. 

TABLE 12.6. 
ALIASING AND PLAN FUR THE 2fc2 

1. 
2.  
3. 
4. 
5.  
6. 
7. 
8. 

9. 
10. 
1 1 .  
12. 
13. 
14. 
15. 
16. 

Mean + 4fi 
A t- 3f i  
B + 3fi 
c + 3fi 
D + 3fi 
E + 3fi 
F + 3fi 
AB f C D  f EF 

A C +  BD 
A D  + BC 
AE + BF 
AF + BE 
C E +  DF 
CF + DE 
ACE + BDE + ADF + BCF 
ACF + BDF + ADE + BCE 

(1) 
a6 
ace 
bce 
ade 
bde 
cd 
abcd 

a d  
bcf 
el’ 
a w  
cdeJ 
abcdef 
a# 
bdf 

The thoughtful reader may well have been asking himself whether there 
is any use in a plan that mixes up 2fi‘s in pairs and triples. Even if such a 
contrast comesout experimentally to be very large, how can it be interpreted? 
The answer, to be expanded in Chapter 14, is that, while the sum of two or 
more 2t7s can be reliably decomposed only by acquiring further data, this 
may be only a single observation-or two, four, or eight, depending on the 
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ratio of the magnitude of the large contrast to its standard crror. With much 
greater risk, we sometimes jump to the conclusion that, say, the (AC + BD) 
contrast is due largely to A C ,  if the effects of A and/or C are large, but tliose 
of B and D are small. 

12.3.3. Of Resolution V: 2{-* 

If a quarter replicate is to be of Resolution V, then all members of the 
a.s.g. must contain five or more letters. We can choose two five-letter inter- 
actions whose product is a six-letter word by allowing two letters of overlap. 
Thus we will have 1 - A B C D E  - DEFGII -t A B C F G N .  Therefore the 
smallest 2$-2 must have p = 8 and so requires 64 trials. This seems quite 
wasteful since the number of degrees of freedom needed for eight lactors is 
8 x 9/2 or 36. We will discuss more economical alternatives in Chapter 13. 

12.4. EIGHTH REPLICATES: P-' 

Thcre will bc scven mcmbers of the a.s.g. beyond the identity, and each 
factor (letter) must appear four times. The average word length L must be 
2 4y/7. Hence for Resolution IV minimum 11 must bc 7, and for Res. V, 9. 
The Res. IV plan is attainable and will be discussed below. The Res. V plan 
is not attainable. 

Consider the a.s.g. of a 2:-3. Start with two generators, P and Q, which 
must be of length 5. Their product must be of length 6. We have now con- 
sumed 16 of the 9 x 4 = 36 letters present in the whole a.s.g. We have, 
then, 20 letters left for four words, and so all must be of length 5. But this is 
impossible since the product of the third generator (which must be of length 5 )  
and the two earlier generators must be of length 6. 

We proceed then to a compromise plan that has Res. IV for some factors 
(six, in fact) and Res. V for two, all in 32 trials. We choose two 4fi's as initial 
generators and so get three members of the a.s.g.: 

A B C D  + ABEF + CDEF. 

We seek a 5fi that has two letters in common with ABCD, two in common 
with ABEF, and hence two in common with CDEI;, ctnd that includes the 
two new letters to make an eight-factor plan, namely, G and H. Thus we 
arrive at ACEGH, and on multiplying this by the three members above we 
have the a.s.g.: 

I + A B C D  + ABEF C CDEF - ACEGH - BDEGH - BCFGH - A D F G H .  

It is clear, is it not, that G and H are the factors all of whose 2fi's are estimable. 
An experiment with these properties was reported [Daniel and Riblett 

19541. For some unknown reason the a.s.g. was not given. Let us recover it. 
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We pick up five generators of the principal block from Table III of the paper 
cited, and we then find by search fkee generators for thc a.s.g.: 

Generators of 
Principal Block Alias Subgroup 

1.  ABCD 1 x 2 CDEF --- - 1. g h  
2. 2-h 2. AREF 
3. a 3. - A D E G H  1 x 3 - BCEGH 
4. bnfh 2 x 3  -BDFGH 
5. - ndf 1 x 2 x 3 - A C F G H  

__-____ 

We see then that the 2fi’s of factors A-F are afiased in strings: 
A B  + C D  + EF, (AC + BD), ( A D  f BC), (AE + BF) ,  ( A F  4- BE),  fCE + 
DF), and (CF t DE). All 2fi’s, including G and H, are aliased only with 3fi’s. 

It is worth repeating that each effect (main effect or 2fi) is estimated as 
precisely as if all other factors were held constant, It is worth adding that, 
since all 2fi and 3fi contrasts were small, they were pooled to give an estimate 
of random error with 31 - 8 = 23 d.f. These estimates (two responses were 
measured) gave the experimenters their first real knowledge of the random 
error of the process under study. The estimates were resisted for sonic time, 
being larger than was thought acceptable, but later replicates, pooled from 
several separate trials, confirmed them both. 

Because this was the first published multivariate (actually bivariate) 
fractional replicate, its data have been studied by several authors [eg. 
R. Gnanadesikan and M. W. Wilk 19691, with interesting further findings 
and suggestions. 

12.5. SIXTEENTH REPLICATES OF RESOLUTION IV: Zpf4 

Since L must be at least 4, since each letter must appear 8 times, and since 
there are 15 interactions in the a.s.g., we have L 2 4 = 8p/15, so p must be 
over 7$ or 8. This fraction is actually attainable and is very well known 
[Box and Hunter 1961, National Bureau of Standards 1962, Hahn and 
Shapira 1966, navies 1971, Daniel 19621. There are 28 2fi’s, which are 
estimable only in seven strings of four each. If, as in Daniel [I962], the four 
4fi’s ~ - _ _  ABCD, ABEF, ABGII, and ACEG ____ are chosen to generate the plan, the 
seven strings are as follows, 

A B  + CD -t EF f GN 
AC -k BD + EG + FH 
A D  + B C  + EH + FG 
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AE + BF + CG + DH 
A F  + BE + Clf + DG 

AG + BH -t CE f DF 
A H  + BG‘ + CF f DE 

Since all 15 orthogonal contrasts are used for estimation in this plan, no 
subdivision into blocks is possible without some further sacrifice. To divide 
this fraction into two blocks, we must assume away one string of Zfi’s, 
involving (alas) each of the eight factors once. I t  may be more sensiblc to 
give up one factor entirely and so to revert to a 2:; ’. An excellent discussion 
of such a plan is given in Box and Hunter [ 1961 J with a clearly worked out 
example. The discussion in Davies [1971, Chapter 10, page 4861 is also 
helpful. 

12.6. RESOLUTION V FRACTIONAL REPLICATES, 2t-q: 
PUBLISHED Lws 

Of the industrial experimenters with whom I have talked, a large propor- 
tion- perhaps half -have wanted to know whether their system were 
”interactive.” They have not usually required all 2Vs, but they have ordinarily 
insisted on getting clear estimates of some-perhaps half. 

The minimum possible number, N,,,i,,, of trials for a Resolution V fractional 
replicate is [ p (p  + 1) + 2]/2, and so, for p = 5, 6, 7, 8, 9, 10, is 16, 22, 29, 
37,46,56, respectively. These minima are not attainable as balanced fractions 
except for p = 5.  I will indicate in the next chapter some irregular (un- 
balanced) fractions that have good efficiencies (although never loo”/,) and 
that come closer than the balanced fractions to the indicated minima. For the 
present, we stay with the regular, “orlhogonal” fractions. These have, to 
repeat, full eficiencies for all estimates, but the price paid is sometimes high 
in the number of trials required. 

The Res. V (and Res, IV) fractional replicates in the interesting range 
(5  < p 5 12, I6 5 N I 256) have been listed several times. The original 
papers by Finney [ 19451 were followed by the more extended list of Brownlee, 
Kelly, and Loraine [1948]. Later papers by Box and Hunter [1961], by the 
Statistical Engineering Laboratory of the National Bureau of Standards 
[1962], by Hahn and Shapiro [1966], and by others have been even more 
extensive, more explicit, and more easily usable. 

The convenient listing by Box and Hunter [I9611 uses numbers to tag 
factors instead of letters, but this is an easy translation to make. 

The National Bureau of Standards (NBS) booklet, which goes to p = 16, 
N = 256, docs not classify the plans by resolution. However, since full a.s.g.’s 
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are given, it is not hard to see that the smallest Res. V plans are those num- 
bered2.6.16,2.7.8,4.8.16,4.9.16,8.10.16,16.11.16,16,12.16,64.14.32, 128.15.32, 
where “q.p.b” means a 2 P - q  in blocks of size b. This bulletin also gives all 
treatment combinations explicitly, but not in standard or even alphabetical 
order. It is understandable that in the early 1950’s it was not considered safe 
to transpose dl these meaningless sets of letters by hand, but without an 
ordering of some sort it is impossible even to proofread the plans. Let us hope 
that someone will eventually produce a clearly printed, lexical, computer- 
checked printout of all these valuable plans. 

Another useful compendium, which includes plans for factors at more than 
two levels, is Catalog anti Computer Progrant .for the Design and Analysis of 
Orthogonal Syminetric nnti Asymmetric Fsactional Factorial Experimertts by 
G. J. Hahn and S. S. Shapiro [ 19663. This work, as well as that of Addelman 
and Kempthorne [I9613 on orthogonal main effect plans, will be discussed 
in detail in Chapter 13. 

12.7. FRACTIONAL REPLICATES IN THE SERIES 

The authors of Davies [1971, Section 10.8, page 4751 give a first-rate 
description of the fractionation of the 3 P  factorial plans. As they write, 
“Fractional replication is not as satisfactory in 3” design as in 2” design; 
relatively large experiments are required to free the 2fi’s even when dealing 
with as few as four factors.” The principal reason for this unsatisfactoriness 
is the relatively large number of degrees of freedom in the 2fi’s for the 3 P  
series, which is obviously four times that for the 2’. To this increased gross 
requirement must be added the combinatorial restrictions, which increase 
still further the required number of observations. 

The classic NBS document on fractions of the 3 p  series by Connor and 
Zclen [ 19591 gives the best Resolution V plans. Defining as above the“degree 
of freedom efticiency” (d.f.e.) as the ratio of the number of degrees offreedom 
required for estimation of main effects and 2fi‘s to the number ofobservations 
specified, we have, for the smallest Res. V. plans in this document, the 
following: 

NBS No. p q N d.f.e. 

3.5.3 5 1 81 0.625 
3.6.9 6 I 243 .297 
9.7.9 7 2 243 .405 

27.8.9 8 3 243 .529 
81.9.9 9 4 243 .670 

243.10.81 10 5 243 327 
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If 243 trials are feasible, we may as well vary up to 10 factors. I have 
not seen a 243-trial experiment in my own work, but one is described in 
Kexnpthorne C1952, page 426). The. d.f.e.’s quoted above, although they come 
from very large plans, are nevertheless comparable with those for the 2p 
series in the same range of p. (The smallest 24°-q is of size 128 and so has a 
d.f.e. of 0.433.) Unless an experiment requires a long waiting time, it will 
usually be more economical to carry through a Res. 1V plan and then to 
distentangle the suspiciously large contrasts measuring strings of f f i ’s ,  as 
is recommended for the 2p-q in Chapter 14. 

When all the factors have continuous levels, the response surface methods 
of Box, Youle, [1954, 1955, 1957, 19581 and Hunter in [Chew, Ed. 1958, 
pages 138-190) and of their successors are far superior and require in general 
fewer trials. This is due to the reduction from 4 d.f. for each 2fi to one d.f. 
for the cross-product term since only that one makes sense for continuous 
variables. 
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13.1. INTRODUCTION AND JUSrIFICATION 

We have praised factorial designs and their balanced fractions at  great 
length. We have seen that, in addition to their maximum precision and mini- 
mum bias, the larger of these plans permit srirdy, so that defects, even failure 
of some basic assumption, can be spotted. These advantages give the frac- 
tional replicates-and the full factorials-their priority when new experi- 
mental systems are being investigated, when precision is not known, and 
when occasional bad values are likety. 

Rut some experimenters will feel that none of these restrictions applies to 
their present work. They are familiar with the system; it has constant, even 
known, precision; bad values are rareand are tletectible by technical methods. 
There is, then, 110 great need to allow 10-30d.f. for frce-standing data analysis. 
All that is needed, the experimenter may insist, is a plan that will permit 
good estimates of the parameters in which he is interested, with perhaps some 
indication of their stability over a range of variation of some other experi- 
mental conditions. 

In the terms of Chapters 11 and 12, there are some multifactor situations 
in which the experimenter is justified in demanding higher safurution of the 
design with parameter estimates-higher degree of freedom efficiency, then. 
The idea of resolution still holds some water, although not quite as milch as 
earlier. The experimenter may want some interactions to he estimable, but 
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not all. He may even be willing to state just which Zf iS  he is quite sure are 
negligible, which he is doubtful about, and which he must have quite clear 
estimates of. The plan he wants, then, is of Resolutions 111, IV, and V for 
different factors and factor combinations. 

I have not been able to produce a logical outline for organizing this com- 
plex ofsituations. Hence I will simply start with plans ofpure Res. 111, proceed 
to those of Res. IV, then to mixed Res. I11 and IV, and so vaguely on. 

The earliest work in this area, that of Plackett and Burman [ 19461 remains 
a classic, unsurpassed when a large number of factors (9-99!) are to be varied 
and when additivity of effects of all factors is assured. The penalty for the 
extreme saturation of these plans lies in the heavy aliasing of every main 
effect with 2fi’s. Some lightening of this burden is offered later. 

The very thorough atlas of “orthogonal main effect” plans, abbreviated in 
this chapter as OME plans, by Addelman and Kempthorne [ 19611 can hardly 
be praised too highly. The plans may, however, require augmentation in one 
respect. The atlas does not show the 2fi aliases of each main effect estimate. 
This is no omission if the assumption of no 28’s is entirely correct. But if the 
experimenter’s assumption of total additivity of effects is only, say, 90% 
secure, so that on average one 2fi in 10 is large even though all were assumed 
to be 0, then it will be well to know where these rare 2fi’s may show, and with 
what main effect each is aliased. I will show how to expose these aliases, at 
least for the simpler plans. 

Much work has been done on irregular parts of the 2”3’ series, as well as 
on the pure 3“‘ series. Some of this work, especially that of B. H. Margolin 
[ t 9681, will be summarized and recommended. Rather unexpectedly, there 
is often a limit in that some saturated plans are of poor efficiency, but equally 
unexpectedly, this situation can often be improved by the addition of a small 
number of trials. The work of A. T. Hoke [ 1974) is quoted in this connection. 

Very compact 2“3” combinations in less than 20 trials, with some 2fis 
estimable, are often useful for the experimenter described above, and are 
dangerous only if he is wrong in his judgments about negligible 2fi’s. S. Webb 
[I9653 has produced an atlas of such plans that is bound to be widely used. 

13.2. PLACKETT-BURMAN DESIGNS 

These plans [Plackett and Burman 19461 are described primarily to warn 
experimenters of their sensitivity to the multiple assumption about total 
additivity of effects of factors. We use the smaller plan for 11 factors in 12 
trials shown in Table 13.1. Although we may take comfort from the 100% 
efficiency of all 11 main effect estimates, we must remember that we have 
“assumed away” 1 1  x 1012 or 55 2fi’s. 
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TABLE 13.1. 
I’LACKETT-BURMAN PLAN: 2’ ‘//I 2 

‘Trial 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 
I I  
12 

A B C D E F 6 H J K 1, 

0 0 0 0 0 0 0 0 0 0 0  
0 1 1 0 1 1 1 0 0 0 1  
l 0 I I O l l  1 0 0 0  
0 1 0 1 1 0 1 1  L O O  
O O l O l l 0 l  1 1 0  
0 0 0 1 0 l 1 0 1 1  1 
1 0 0 0 1 0 1  1 0 1  1 
1 1 0 0 0 1 0 1  1 0 1  
1 1 1 0 0 0 1 0 1 1 0  
0 1 1 1 0 0 0 1 0 1 1  
1 0 1 1  1 0 0 0 1 0 1  
~ 1 0 1 1 1 0 0 0 1 0  

-~ __ .._ ___ _-- 

In  a 2f,;q the consequence of erroneously supposing a 2fi to be 0 is that 
orie contrast will have a serious bias. In the Plackett-Burman (P-H) plans it 
turns out that all the 2fi‘s not involving factor P are aliased with the P- 
contrast. There is, then, a string of 45 2fi‘s behind each main effect contrast, 
and each 2fi appears in 9 of the 11 contrasts. The aliasing is lcss drastic if 
the plan is used for fewer than 11 factors, but each 2fi appears in more than 
one string of aliases. 

The P-B plans are advantageous in the sense that each 2fi has coefficient 
+& (not & I )  when it appears. The pattern of signs is different for each 2fi 
and is identifiable for each main effect contrast. Thus, for the 1 I-factor plan 
( A  . * L, I omitted), the 2fi A B  appears positive in I;, J,  and K, and negative 
elsewhere. If then all 11 contrasts were ofabout the same nonzero magnitude, 
butwithsignsinthepattern - - - - - + - - + + - , I  foronewould 
say, “‘I’his is  the 2fi AB.” But this pattern will not generally be clear, due to 
the presence ofother effects and of random error. The highly irregular pattern 
of signs for each main effect contrast (15 pluses, 30 minuses) is not, I think, 
worth publishing. 

As Box and Wilson showed long ago in their pioneering paper [ 19511, 
any Res. I11 plan for factors at two levels can be complemented by an equal 
plan, with all levels replaced by their alternative versions, to give a Res. IV 
plan. Such a scheme, with 24 trials then, seems permissible when the experi- 
menter is quite sure that very few 2Ks are large. The prospect of disentan- 
gling a number of long strings of Zfi’s, although ameliorated somewhat by 
the known patterns, is not enticing. 
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13.3. SEVERAL FACTORS AT SEVERAL LEVELS: 
2"3;i'r,lv,v 

The work of Addelman and Kempthorne [1961,1962a, b, and Appendix 
13.A of this book] on OME plans is valuable as a reference if one is consid- 
ering experimental work with more than, say, four factors, of which one or 
more are at three or more levels. The introductory 121 pages of the larger 
work [I9611 are well worth scanning. The listing of basic plans [1961, pages 
123- I381 is essential. The 26 basic plans (N = 8-81) cover a very wide range 
of situations. We need not repeat the substance of the many excellent papers 
showing how these plans were derived. Rather, we are concerned with their 
use and analysis. 

The OME plans to be discussed do not have alias structures as neat as 
those of the fractional replicates-in which each 2fi appears but once-but 
they are much less muddled than the P-B plans. We take Basic Plan 2 [1961, 
page 1391 to show a tolerably simple way to find ail 2fi aliases for each main 
effect, and we choose the most difficult case, which is for a 3124//8. (I have 
reversed the order of the factors to conform to the quoted text.) 

Table 13.2 gives the plan as transcribed from Addelman and Kempthorne 
(hence forth A-K). 

Only the contrast for A, is unexpected. Tables are given in A-K [1961, 
pages 106-1191 for all other cases in which there are unequal numbers of 
appearances of levels of factors. Our example is shown in the second panel 
of their Table 18 on page 113. 

Fourteen separate 2fi terms have been suppressed in the main effect 
parametrization. We sort these out in the third panel at the top ofTable 13.2, 
which is labeled X 2  and is called the cnrljbuitling ntorrix. As always, the set 
of entries in each column of X 2  is found as the product of the two corre- 
sponding numbers in the main effect columns. I find it convenient to tran- 
scribe each vector (e.g., that for A,) onto the edge of a 3 x 5 index card, and 
then to move this set up to each other main effect set in turn. I can then 
write down the eight entries in each 2fi column in a few seconds without 
eyestrain. The marked index card should be kept for the next operation. 

The X, matrix shows how each 2fi enters each observation. We need to 
know also how each 2fi enters each main effect estimate. This is particularly 
easy to determine when XI,  the matrix of independent uariables, is orthogonal, 
as it is here, because then the direct estimates are the least squares ones. 
Each coefficient in the diagonal set below A', is just the sum of squares of 
the entries in XI.  The cdinses which come with each main effect are also easy 
to write down. One simply puts the vertical pattern for each main effect, 
say AL, namely, - I ,  - 1,0,0, I, 1,0,0, adjacent to each of the nine columns 
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of Xz and so forms the inner product to make one entry in the row ofaliases, 
here 0, 0, 0, -4,O, -4, in about a minute. The first line of numbers in the 
alias matrix is, then; 

E{AI,} = A,+ - BC - D E  - BE - CD 

Since five pairs of columns had identical entries (or their negatives), I have 
further shrunk the confounding and alias matrices in the column headings. 

This rather blind procedure produces all seven lines of the alias matrix. 
The reader who requires a little more insight into the situation may want to 
look at the third set of panels in the table. We have here identified each of 
the main efiect vectors with its older, more familiar name as we have used 
these names since Chapter 4, where they were first shown in Yates’s table of 
signs. They are now given the subscript to distinguish them from their 
current designations at the top of the tabie. The six contrasts - B ,  to ABC, 
are easy to identify, but the odd couple for A,  needs to be explained. The 
simplest way to make the identification is by putting the four signed 
“observations” for A, through Yates’s algorithm. Thus we have 

(0) (1) (2) (3) 

- 1  - 2  -2 0 
- 1  0 2 0 

0 2 0 0 
0 0 0 0 

1 0 2 4 Co 
I 0 -2 0 

0 0 0 - 4  BCo 
0 0 0 0 

- 

- 

We can now see, without a cell-by-cell check, which 2fi goes with each 
main effect. For example, Co and - BC, appear in the 2fi columns only for 
(BC + DE) and for -(BE + CD) so there are the aliases for A,,. 

After such a 3’24//8 is completed, one should of course put the eight 
results through Yates’s algorithm. The “Standard contrasts” section of 
Table 13.2 can then be used tu relabel the effects with a simple calculation, 
i(Co - KO), added to find 4a,. 

The alias structure of this plan is worth looking at even if one is quite 
sure that no 2fi‘s are present. It  makes explicit just what has been assumed 
away, and just where each 2fi might turn up. The reader will notice that no 
main effect is aliased with any of its own 2Vs, and that only two pairs of 2Rs, 
namely, the ALX components, appear in more than one main effect estimate. 
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Margolin [I9681 uses the same example (and gives the same results!) but 
with a different assignment of letters to factors. Remembering that my 
A, B, C, D, E are his R ,  A ,  E, F ,  G, respectively, one can see the identity of 
his aliases (on his page 567) with those of Table 13.2. 

Since we have handled the full 3'24 from Basic Plan 2, it is now straight- 
forward to see the aliasing if fewer factors are chosen from the same plan. 
If we drop E,  making the plan a 3'2', we simply drop all 2fi's containing E. 

13.4. AUGMENTAIION OF THE 3'2.118 

When the experimenter finds one or two large effects, all others being of 
lesser magnitude, there is not much risk in interpreting the results as simple 
additive effects of the factors. But when there is no such clear separation, 
and when in addition the error standard deviation is not known, I would 
strongly advise augmenting the 8 trials by another 8, which use the opposite 
levels of all the two-level factors, and which interchange the levels of A as 
follows: 

First Set Second Set 
-- - 

0 1 
I 0 
1 2 
2 1 

Table 13.3 shows the new plan, labeled Plan 2,,, along with the corre- 
sponding X, and X, matrices and, below, the new alias matrix. By adding 
and subtracting the pairs of estimates for A ,  * . * E (the P-Q principle), we 
resolve some of the aliasing. Summarizing, we can make 12 estimates from 
the 16 trials, namely, 

A ,  - BC - DE ALB - 2AQC 

AQ ALC - ~ A Q B  

B - ALC A1.D - 2AQE 
C - ALB ALE - 2AQD 

D - ALE 

E - ALD 

RD 4- CE 

BE + C D  

Although considerable ambiguity remains, we have been able to remove 
two 2fi's from each main effect string, and that accomplishment will be 
judged worthwhile by some. Technical identification of one of a pair of 2fi's 
may now be undertaken with less risk. 
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Margolin [1969] has given a lower bound (let us call it Niv) for the 
minimum possible number of trials for a Res. IV plan for any 2"3'": 

For our case, it = 4, m = 1, so that N;, = IS. It is discouraging to me, but 
perhaps a challenge to scholarly statisticians, that I have not been able to 
come within 50% of the stated minimum. 

The experimenter who feels that he is being told more than he cares to 
know about aliasing and dealiasing may want to consult the valuable 
Catalog nrid Computer Prograin for the De.si.sign and Andysis  of Ortltoyoncil 
Symmelric arid Asymmetric Froctiotid Fcrclorial Exyerimerits by G. J. Hahn 
and S. S. Shapiro of General Electric [1966], which permits automatic 
estimation of all main effects and of 2fi's where feasible in any of the A-K 
plans. This catalog is especially useful for the choice and analysis of the 
larger plans. Good programs for computing any set of 2fi aliases have been 
written at least twice but apparently have not been published. Hoke C1970'J 
and Webb 1965b have developed programs (Webb's is the larger) which 
they may well send to the first few requesters. The experienced computing 
statistician will recognize that for any matrix of independent variables X ,  
and for any confounding matrix Xz the alias matrix is 

A = ( X ' , X , ) - l X ' , X ,  

as Box and Wilson showed in their classical paper [ 19511. For OME plans, 
( X ' , X 1 ) - '  is diagonal and X' ,X ,  is just the set of inner products of main 
effects by 2fi that I went through slowly above for Basic Plan 2. (See Margolin 
[1968, pages 562 ti.] for further simplifications.) 

N;, = 3(tI f 2tn - 1). 

13.5. ORTHOGONAL MAIN EFFECT PLANS: 2"3"'//16 

Addelman and Kempttiorne's Basic Plan 5 [1961, page 141, and Appendix 
13.A of this book] shows us how to produce all mixed plans from the 2"3' 
to the 2334, and as such is a major contribution. My only addition is to give 
some idea of the alias patterns for one of the more complex of these alter- 
natives. I am indebted to B. H. Margolin for having first penetrated this 
thicket. By methods more general (and more economical) than my simple 
Table 13.2, using his concept of "non-zero-sum-column vectors," he has 
teased out the alias pattern for the 2633 given in Table 13.4. This rather 
repellent array should really be viewed as a great simplification. There are 
63 individual 2fi's and 96 2fi terms in the array, so there is considerable 
duplication, but of course nothing like the amount threatened by the P-B 
plans. I t  is left as an exercise for your friendly neighborhood statistician to 
design an augmenting set that follows the pattern of my 243' above-or, as 
I would hope, does better. 
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TABLE 13.4. 
ALIAS PATTERN OF 2B’s FOR A 263’ FROM BASIC PLAN 5 

A . . . , E A T  IWO LEVELS; R ,  s, r, AT THREE. 
L-..._.-___--_-_I_.-- - -  .- 

1. 
2. 

A - BF + CKQ - i D T L  - f E S L  - lR$L - i R , , T ,  - SQ7Q 
B - AI; + CSQ - f D R L  - f E T L  - ~ R L S L  - RQTQ + )SLTL 

3. C - DE + ARQ + BSQ + FTQ - f R L T L  - RQTu - iSLTL 
4. D - CE - &AT, - $BRL - f F S L  + fR,,TQ + ~ R Q S L  + iSQTL 
5. E - C D  - :ASL - #BTL - _  )I;& + )R&SQ + fRp7.L + fSl .TQ 
6. F - A B  + C T Q  - f D S ,  - )ER,  - 4RQTL - R$Q - &TL 
7 .  R,. - BD - EF - IASL - PAT,. - $BSL - f C T L  - f C S ,  + STQ + ESQ - 

EF - f F T L  -I- )SQTL + )SL’I’Q 

8. RQ + A C  - BTQ + $DSL + f E T L  - FSQ + )SLT, 
9. SL - A E  - f A R L  - f B T ,  - fBRI ,  - i C R L  - fCTL - DF + DRQ i E T Q  - 

f F T ,  + f R Q T L  + )RLTQ 
LO. S, - A T Q  + BC -t- f D T L  + t E R ,  - FR,  + i R L T ,  
11. 7 ’ ~  - AD - t A R t  - )BSL -- BE - fCSc - hCRL + ER,  f DSQ - 4FRL - 

iFsL + fRLSQ + iN$,, 
TQ - AS, - BRQ + ( I F  + )DRL + jESL + #R,SL 12. 

13.6. SMALL, INCOMPLETE 2’3”’ PLANS (N I; 20) 

This section is entirely devoted to recommendations for, and warnings 
about, the catalog of Webb [1965], which collects about 67 plans, most of 
them developed by Webb himself. Some of these designs are outrageously 
small (4, 5, 6 trials). The reader should be warned that Webb considers his 
factor levels as quantitative and only permits estimation of 2fi‘s including 
three-level factors of the form ALB or A,BL (not A& or A&). 

It is hard to see why Webb calls the plans 3”2”, whereas Margofin terms 
them 2n3m. We are in the hands of mathematicians, who cannot be required 
to use a lexical or even a uniform notation. 

By far the easiest way to analyze any of these irregular plans is by a 
standard least-squares regression program, arranged to give all effects and 
interactions as regression coefficients, with their standard errors, t-values, 
and perhaps component effects and degrees of orthogonality. 

Since most of these plans are nearly saturated, there is little to be learned 
from the residuals from a full fitting equation. Of course if only 3 or 4 d.f. 
are consumed by large effects and 10-15 are left for lack of fit, the residuals 
will not be severely distorted and may reveal a wild value or even a localized 
interact ion. 
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13.7. ESTIMATION OF SELECTED SUBSETS OF 
TWO-FACTOR INTERACTIONS 

Addelman C1962b-I has given a useful list of plans (all are fractional 
factorials from the 2';to the 5' series) which permit us to estimate SUIFW 2fi's. 
Hc has arranged his plans in three classes. Class One plans are fork factors 
(k = 3 . . . 62) of which a subset of size rf may interact, but only with each 
other. Class Two plans are for k factors of which a subset of size d interact 
only with each other, and the remaining set of size k - d factors also interact 
with each other. Class Three plans provide estimation of all 2fi's with a 
specified subset of factors. 

Addelman's three tables are rcproduced here (with permission) as Tables 
13.5, 13.6, and 13.7. As a first examplc of their use, suppose that the effects 
of 10 two-level factors are under study, and that 4 of them arc thought likely 
to interact with each other. Table 13.5 (Addelman's Table 1 )  shows us that 
we must use 32 trials to accommodate these requircrnents. If we use A, B, 
C, D for the four interacting factors, then any of the 3-, 4-, 5-factor inter- 
actions, or even AE, BE, CE, DE, may serve as the noninteracting factors. 

TABLE 13.5. 
ADDELMAN'S TABLE 1 : FACrOK REPRESENrATIONS FOR Cl ASS ONf: 

COMPROhliSE PLANS 
- ---I - -- 

Number Number of Total 
of Interacting Number 

Trials Factors of Factors Factor Representations 

23 2 
3 

2' 2 
3 

4 
5 

2 5  2 
3 

4 

5 

6 

6 
4 

14 
12 

9 
5 

30 
28 

25 

21 

16 

A ,  B ;  C,  AC, BC, A B C  
A. B, C ;  ABC 
A ,  B; C,  D, all interactions excluding AB 
A, B, C; D, all interactions excluding AB. 

A C ,  and BC 
A ,  B, C ,  D ;  ABC, ABD,  A C D ,  BCD,  A B C D  
A, B, C, D, A B C D ;  
A, B ;  C,  D, E,  all interactions excltitling A B  
A ,  H, C ;  D, E, all interactions excluding 

A B ,  AC, and BC 

and 5-factor interactions 

interactions 

interact ions 

A, B, C, D ;  E, AE, RE, CE, DE, all 3-, 4-, 

A, B, C, D, E ;  all 3-, 4-, and 5-factor 

A, R, C ,  D,  E, A B C D E ;  all 3-faclor 



TABLE 3.5 (conlinirecl) 

Number Number of Total 
of Interacting Number 

Trials Factors of Factors Factor Representations 

26 2 62 

3 60 

4 57 

5 53 

6 48 

7 42 

8 35 

33 

34 

2 11 

3 7 
2 38 

3 34 

4 28 
5 20 

45 2 18 

3 12 

5 3  2 27 

A, 8;  C, D, E, F, all interactions excluding 
AB 

A, B, C ;  D, E, F, all interactions excluding 
AB, AC, and BC 

A, B, C, D; E, F, all interactions excluding 
AB, AC, AD, BC, BD, and CD 

A, B, C, I), E;  I;, AF, SF, CI;, DF, EF, all 
3-, 4-, 5-, and 6-factor interactions 

A, B, C, D, E, F ;  all 3-, 4-, 5-, and &factor 
interactions 

A, B, C, D, E, F, ABCDEF; all 3- and 4- 
factor interactions 

A, B, C, D, E, F, ABCD, ABEF; ACE, ACF, 
ADE, ADF, BCE, BCF, BDE, BDF, CDE, 
CDF, CEF, DEF, ACDEF, BCDEF, 
ABCDEF, all remaining 4-factor inter- 
actions excluding CDEF 

A, B;  C, AC, AC’, BC, BC2, ABC, A X Z ,  

A, B, C ;  ABC, ABC2, AB’C, AB2C2 
A, B ;  C, D, all interactions cxcluding AB 

A, B, C ;  D, all interactions excluding AB, 

A, B, C, D; all 3- and $-factor interactions 
A, El, C, D, ABCD; ABC‘, AB2C, AB2C2, 

ABD’, AB‘D, ABZDZ, ACD’, AC’D, 
AC2D2, BCDz, RC’D, BCZDa, ABC2D2, 
AB2CDZ, AB’C’D 

A, B; C, all interactions excluding AB, AB2, 
and AB3 

A, B, C ;  ABC, ABC2, ABC3, AB2C, AB1C2, 
AB2C3, AB’C, AB’C‘, AB3C3 

A,  8; C, all interactionsexcluding AB, ABZ,  
AR’, and AB4 

A, B, C; all 3-factor interaclions 

AB’C, A B ~ C ~  

and ABZ 

ABZ. AC, AC’, BC, and BCZ 

234 



TABLE 13.6. 

COMPROMISE PLANS 
ADIIRI.MAN'S TAl1l.E 2: I.'ArTnR REPRFSENTATIONS FOR CLASS 'TWO 

Number Number of Factors 
of 

Trials First Set Second Sel Factor Representations 

2 5  2 
3 

26 2 
3 
4 
5 

27 2 

3 

4 

5 

6 

3 O  2 
3 

5 
4 
8 
I 
6 
5 

I f  

10 

9 

8 

7 

4 
3 

A,  B ;  C, D, E, ACD, BCE 
A ,  U, C ;  D. E, ABC, ADE 
A,  B;  C ,  D, E,  F, ACD, UCE, AEF,  BCDF 
A, B, C ;  D, E ,  F ,  .4BC, ADE, BDF, CDEF 
A, U ,  C. D; E,  F, AUC, BCDE, ACDF, BCEF 
A,  R, C, D, E ;  F, ABC,  ADE, BDEF, ACEF 
A, B; c, D,  E, I;, G, ACD, UCE, Ancm, 

CDEF, ADEG, AUCFG 

BCDF, DEFG, BDEG 

BCEG, BD EFG 

AUFG, DEFG 

BCDG, ABDEG 

A. B, C ;  D, E, F,  G, ABC,  AUDE, ACFG, 

A, U, C ,  D; E, F, G, ABC,  CEF,  DEG, ADFG, 

A, B, C, D, E ;  F, G, ABC, ADE, ACEF, UCDG, 

A ,  B, C, D, E. F ;  G, ABC, ADE, BDF, AEFG, 

A, B ;  C, D, ACD, BCD2 
A, B, C ;  D, ABC,  ABC'D 

TABLE 13.7. 
ADDELMAN'S Tnnt..E 3 : FACrOR REPRESENTATIONS FOR CLASS THREE 

COMPROMISE PLANS 

Number Nurnber or Total 
or Intcracling Numbcr 

Trials Factors of Factors Factor Representations 
- 

23 0 I A, B, C,  AB,  AC, UC, ABC 
1 4 A ;  B, C ,  BC 
2 3 A, B ;  C 
3 3 A, B, C; 

2 5 A, n;  c, D, CD 

24 0 I5 A, R, C ,  D, all interactions 
1 8 A ;  B, C ,  D, BC, BD, CD, BCD 

3 5 A, 3, C ;  D, ABCD 
4 5 A, B, C, D ;  ABCD 
5 5 A ,  8, C,  D, ABCD; 

1 16 A ;  B, C,  D, &all interactions not containing 
2 5  0 31 A,  B,  C, D, E, all interactions 

A 
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TABLE 13.7 (continued) 
__ 

Number Number of Total 
of Interacting Number 

Trials Factors of Factors Factor Representations 

26 

2 

3 

4 

5 

6 
7 

33 0 
a 

1 
2 
3 

34 0 
1 

2 
3 
4 
5 

43 0 
I 
2 
3 

5 3  0 
I 
2 
3 

9 
9 
7 
6 
6 

63 
32 

17 

17 

11 

10 

9 
8 
8 

13 

5 
3 
3 
40 
14 

6 
6 
5 
5 

21 
6 
3 
3 

31 
I 
3 
3 

A, B;  C, D, E, CD, CE, DE, CDE 
A, B, C ;  D, El DE, ABCD, ABCE, ABCDE 
A, B, C, D; E, ABCD, ABCDE 
A,  B, C, D, E ;  ABCDE 
A, B, C,  D, El ABCDE; 
A, B, C,  D, E, F, all interactions 
A ;  B, C, D, E, F,  all interactions not con- 

taining A 
A,  B ;  C, D, E, F,  all interactions not con- 

taining A or B 
A, B, C ;  D, E. F, DE, DF. EF, DEF, 

ABCD, ABCE, ABCF, ABCDE, ABCDF, 
ABCEF, ABCDEF 

A,  B, C, D; E, F, EF, ABCD, ABCDE, 
ABCDF, ABCDEF 

A, R, C, 0, E;  F,  ABCF, ADEF, BCDE, 
BCDEF 

A, S, C, D, E. F ;  ABCD, ABEF, CDEF 
A,  B, C,  R, E, F, ABCD; ABEF 
A, B, C, D, E, F ,  ABCD, ABEF; 
A,  B, C, AB, AB2, AC, AC‘, BC, BC’, ABC, 

A ; B, C, BC, BC2 
A, B; C 
A, B, C ;  
A,  B, C,  D, all interactions 
A ;  B, C, D. all interactions not containing 

A, B; C,  D, CD, CD2 
A, B, C ;  D, ABCD, ABCD’ 
A,  B, C, D; ABCD 
A,  B, C, D, ABCD; 
A, B, C,  all interactions 
A ;  B, c, sc, sc2, B C ~  
A, B ;  C 
A. 3, C ;  
A, B, C,  all interactions 
A ;  B, C, all interactions not containing A 
A, B ;  C 
A, B, C ;  

ABC2. AB’C, AB2C2 

A 
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For an example from Table 13.6 suppose that 7 factors are to be varied, 
that A, B, C interact, and that D, E, F, G interact but only among themselves. 
Line 2 of the table tells us that again we require a 25, that A,  B, C are to be 
used for the first subset, and that D, E, ABC, ADE must be used for the 
other subset. The reader must see by now that, whereas D and E can be used 
directly, I;' and G are to be represented by ABC and ADE, so that the six 
2fi's in the second set are to be identified with the contrasts in the 25  as 
follows: 

DE = DE, 
D F  = D x A B C  = ABCD,  

DG = D x ADE = AE,  
EF = E x A B C  = ABCE, 

EG = E x A D E  = AD, 
FG = A B C  x ADE = BCDE.  

These six are all easily identifiable in the 2', all are mutually orthogonal, 
and none involves main effects or 2fi's among A, B, and C .  

APPENDIX 13.A 

ORTHOGONAL MAIN EFFECT PLANS FROM 
ADDELMAN AND KEMPTHORNE 119611 

BASIC PLAN 1 : P; 4 trials 
123 
000 
011 
101 
110 

BASK PLAN 2: 4; 3; 2'; 8 trials 
* +  
0 0  
0 0  
1 1  
1 1  
2 2  
2 2  
3 1  
3 1  

1234567 
0000000 
0001111 
OlfOOll 
0111100 
1 0 ~ 0 1 0 1  
1011010 
1100110 
1101001 

*-1,2.3 



BASIC PLAN 5:  4’; 3 5 ;  215; 16 trials 

12345 12345 00000 00001 11111 ***++ ***** 12345 67890 12345 
00000 00000 00000 00000 00000 
01123 03121 OQOQl 10111 01110 
02231 02211 00010 11011 lGOll 
03312 01112 00011 01100 11101 
10111 10111 01100 00110 11011 
11032 11012 01101 10001 10101 
12320 12120 01110 11101 01000 
13203 11201 01111 01010 00110 
20222 20222 10100 01011 O l l Q l  
21301 21101 10101 11100 00011 
22013 22011 10110 10000 11110 
2313.0 21110 10111 00111 10000 
30333 10111 11000 01101 10110 
31210 11210 11001 11010 11000 
32102 12102 11010 10110 00101 
33021 11021 11011 00001 01011 
1-000 2-000 3-000 4-111 5-111 
*-f23 *-456 +a789 *-012 +-345 

BASIC PLAN 6: 8; 7; 6 ;  5 ;  28; 16 trials 

1 1 1 1 23456789 
0 0 0 0 00000000 
0 0 0 0 llllll11 
1 1 1 1 00001111 
1 1 1 1 1lllQOCIO 
2 2 2 2 00110011 
2 2 2 2 llOOtlOO 
3 3 3 3 00111100 
3 3 3 3 11000011 
4 4 4 4 01010101 
4 4 4 4 10101010 
5 5 5 1 01011010 
5 5 3 1 10100101 
6 6 2 2 OtlOOllO 
6 6 2 2 10011001 
7 3 3 3 01101001 
7 3 3 3 f0010110 
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BASK PLAN 13: 4q; 3 O ;  211 ;  32 trials 
123456769 129436789 00000 00001 11111 11112 22222 22 2233 
**a+**++* *******+* 12345 67890 12345 67890 12345 67 8901 

0000 00000 
011231111 
0223 I2222 
033123333 
1011 11032 
110320123 
1232032 10 
132032301 
202223102 
213012013 
220131320 
231 3 00231 
303332 130 
312 10302 1 
321020312 
3302 1 I203 
0021 302 13 
013301302 
020222031 
031013120 
10302 1221 
1122 10330 
121333003 
130102112 
2003 1331 1 
2lllZ22OO 
222001 133 
233230022 
301202323 
310033232 
3231 10 10 1 
332S21010 

000000000 
OllZlllll 
022112222 
011121111 
101111012 
110120121 
121201210 
11 2012 10 1 
202221102 
21~012011 
2201 11120 
21 110021 1 
101112110 
1121 0102 1 
1210201 12 
1102 1120 1 
002110211 
011101102 
020222011 
011011120 
101021221 
l12210110 
121111001 
1101 02 112 
2001111 11 
211122200 
2220011 11 
21 12 10022 
101202 12 1 
11 001 12 12 
121110101 
112121010 

00000 00000 00000 00000 00000 00 
00001 10111 01110 01101 10110 11 
00010 11011 10011 10110 11011 01 
00011 01100 11101 11011 01101 10 
01100 00110 11611 01100 01101 01 
01101 10001 10101 00001 11011 10 
01110 11101 01000 11010 10110 00 
01111 01010 00110 10111 00000 11 
10100 01011 01101 11001 10001 01 
10101 11100 00011 10100 00111 10 
10110 10000 11110 01111 01010 00 
10111 00111 10000 00010 11100 11 
11000 01101 10110 10101 11100 00 
11001 11010 11000 11000 01010 11 
11010 10110 00101 00011 00111 01 
11011 00001 01011 01110 10001 10 
00000 01010 11110 00010 10111 10 
00001 11101 10000 01111 00001 01 
00010 10001 01101 10100 01100 11 
00011 00110 00011 11001 11010 00 
01100 01x00 00101 01110 11010 11 
OllCl 11011 01011 00011 01100 00 
01110 10111 10110 11000 00001 10 
01111 00000 11000 10101 10111 01 
10100 00001 10011 11011 00110 11 
10101 lOllG 11101 10110 10000 00 
10110 11010 00000 01101 11101 10 
10111 01101 01110 00000 01011 01 
11000 00111 OlOOG 10111 01011 10 
11001 10000 0011c 11010 11101 01 
11010 11100 11011 90001 10000 11 
11011 01011 10101 01100 00110 00 

0000 
0000 
0000 
0000 
0011 
0011 
0011 
0011 
0101 
0101 
0101 
0101 
0110 
0110 
0110 
0110 
1111 
1111 
1111 
1111 
1100 
1100 
1100 
110c 
1010 
1013 
1c10 
1010 
1001 
1001 
1001 
1001 

1-000 2-000 3-000 4-111 5-111 6-111 7-122 8-222 9-222 
*-123 *-456 *-789 *-012 +-345 e-678 +-PO1 *-234 +-567 

239 



This Page Intentionally Left Blank



C H A P T E R  14 

Sequences of Fractional Replicates 

14.1 Introduction, 241 
14.2 
14.3 Augmenting tke Zk', 246 

Simplest Augmentations: the 2& ' and the 2% ', 242 

14.3.1 To Separate a Single Pair of Two-Factor Interaclions, 246 
14.3.2 To Separate Four Members of a Single String of lwo-Factor 

Interactions, 246 
14.3.3 All Seven Two-Factur Interactions with One Factor, 247 

14.4 Conclusions and Apologies, 249 

14.1. INTRODUCTION 

Fractional replicates are done by those who do them because they are 
economical. They are not done by those who do not do them because they 
are risky. Thc risk lies in the ambiguity caused by their inevitable aliasing. 
Experimenters sometimes feel that they can safely judge which 2fi's are 
negligible and hence that they can securely interpret the strings of main 
effects and 2fi's which the fractional replicates produce. ey are often right, 

It does happen, however, that some fractional replicates produce ambig- 
uous results which the experimentcr may want to resolve by further work. 
This chapter is devoted to proposals for dealiasirtg certain effects, if the 
reader will pardon the neologism. I t  is restricted to the augmentation of the 
2p-4 series, although there is no doubt that similar systems can be worked 
out for other types of designs. 

To put it at its simplest, we use the P-Q principle, sometimes extended 
to the P-Q-R-S principle. When P -t Q is known or at least estimated, we 
produce plans which estimate P - Q-or P - Q -4- A + p, where A and 
p are already estimable-and then we combine the two. We have already 
used this principle in designing plans before any work is done. We now 
extend i t  to fix up data sets that have failed to produce clear results. 

24 1 

and many successful fractional replicates are in the recor 5. . 
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The second-order response surface methodology of Box, Youte, and 
Hunter [ 1954,1955,19571 and of Hill, and Hunter [ 1966) may also be viewed 
as a system of augmenting Resolution V 2 P - q  designs in order to get more 
general and more intelligible results when all factors are continuous. The 
augmentations of this chapter are of a more primitive type. They are aimed 
at discovering which 2fi's are there, and so in some cases will simpiify the 
response surface fitting that will come later. They will more frequently be 
used after Res. fV plans, which commonly produce strings of 2fi's as es- 
timable quantities. 

Most of the proposals made here can be found in the paper on sequences 
[Daniel 19621. Perhaps they are described morc clearly here. 

14.2. SIMPLEST AUGMENTATIONS: 
THE 2Ai ' AND THE 2$ ' 

The first paper on augmentations of 2p-4  to separate aliases was that of 
Davies and Hay [ 19501. They required the addition of at lcast one more set 
as large as the original sct. The plans proposed below are generally smallcr, 
although cases will arise that demand equal or larger extra sets. 

It  must be obvious to any reader who is not opening this work to this 
chapter that the 2'-', I - ABC, yields three contrasts, (A), (B), (C), which 
have expected values (A - BC), (B - AC), and (C - AB). Each main effect 
is aliased with the complementary 2fi with opposite sign. The expccted value 
of each trial in the other. 23-1, I 4- ABC, will have matching signs on each 
main effect and its attached 2fi. Thus we have 

E(ct) = /i + A - B - C - AB - AC + BC(+ABC). 

Now after the first 23.-' is done, if it so happens that only the A-contrast 
is large, there is only one serious ambiguity to resolve. When we dare say, 
then, that B, C, AB, AC are all roughly 0, we can write 

E { N ]  = /.1 -I- A + BC. 

If we carry out only trial a, we can use the estimate of 11 from the first 
fraction and so get an estimate of A -I- RC: 

A T BC =; fi - N.  

We carry through the computittion on the five responses because of the 
rather counterintuitive outcome. We compute 4(A 4 BC) as described 
just above, write down the estimate 4(A 2 BC) from the original fraction, 
and then add and subtract: 
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Step ( 1 )  ab (IC bc ti 

1. - 4fi - 1  - 1  - 1  - I  
2. 4N 4 

--_I__- 

3. = 1.  + 2. 4(A T. BC:) - 1  - 1  - 1  - I  + 4  
4. 4(A = BC) - 1  + I  + I  - 1  

5 .  ;= + ( 3 .  + 4.) 4AI - 1  - I  -1-2 
6. t ( 3 .  - 4.) 4BC - - I  - 1  i - 2  

From steps S and 6 we see immediately that Var ( A )  = Var (B?) = $; and 
since the minimum variance for five observations is A($ + 4) = A, we have 
attained an efficiency of $. (Henceforth in this chapter we will take a’ to be 
1.) 

I t  is shocking, is it not, to find that we require only three ofthe fiveobserva- 
tions for the unaliased estimates, even though it is pleasing that the efficiency 
of each estimate is 3,  based on all five observations. This sounds slightly 
superemcient , 

The adding of a single trial to a 23-.t is safe oniy when the system is 
assuredly stable, without time drift. A minimum block for separating A from 
- BC will contain two trials. We are allowed to use only the within-block 
contrast in estimation. Although the pair can be found by trial, it helps our 
insight to derive it formally. Since we want a contrast that includes A + BC, 
we choose an alias subgroup that contains only orher effects. We must 
include + A13C since all trials not yet made are in the Z 3 - ’ :  I + ARC. We 
add - AC to the group and so arc forced to include the product + ABC x 
-AC = -B. The trials corresponding can be found by reverse Yates 
algorithm, putting I ,  - I ,  - 1, 1 in the positions of the four elements of the 
group. This pair is of course not the only one that mcets our requirements. 
If we had chosen 1 + ABC - BC - A,  the pair b, c would emerge. 

Returning to the pair N, c, we see that the contrast ((1 - c) has expectation 
2 ( A  - C - AR + BC) = 2 f A  + R C )  since. we have “decided” that C and 
A B  are negligible. We now need no corrcction for p, and so we can utilize 
the P-Q principle to combine this estimate with that for A - BC: 

4(A BC) - 1  l 1 - I  
4(A 4 BC) 2 - 2  

~ 

SA - I  1 1 - 1  2 - 2  
SB? - 1  1 1 - I  - 2  2 
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We see that Var (A)  = Var (Bk) = 1% and hence that the eficiencies are 

We proceed to the 2f; ’ for the simplest case of two 2fi’s aliascd with cach 
other. The reader will remember that the 3;’: I + ABCD provides scvcn 
orthogonal contrasts, one for each main effect and three for the three pairs 
of complementary interactions. Suppose that (AB f CD), (A) ,  and (C) “come 
out large” and that (R), (D), and the other two interaction sums are small. 
Any treatment combination not in  the first 24-‘ will do, for example, 

E{u] = / i  + A - C - AB + CD f 11 negligible terms. 

Since, then, (AH fi CD) = fi - c? -t a -I (I, our single observation requires 
three corrections. We tabulate 8(AB + CD) from the 24--1, and then 
8(AB 2 CD) = 8fi - 8e + 8A1 - 8u as they depend on the nine pieces of 
data. 

i x y = t .  

(1) ub ac bc od bd cd ubcd u 

8(AR 4 CD) 1 1 - I  - 1  - 1  - I  1 1 
+ 84 1 1 1 1 1 1 1 1  
- 8e 1 I - 1  - 1  1 1 - I  - 1  
+ 8 2  - 1  I 1 - 1  I - 1  - 1  I 

16AB 2 4 0 - 2  2 0 0 2 - 8  
16 C b  0 - 2  - 2  0 -4 - 2  2 0 + 8  

- 8u - 8  
-- 

8 A B  1 2  0 - 1  1 0  0 1 - 4  
a ck 0 - 1  - 1  0 - 2  - 1  2 0 + 4  

Var (A%) = Var ( C b )  = &# = #; Min Var (9 obs.) = &. Hence effi- 
ciencies = &. 

The reader will find, if lie carries the AB-contrast through Yates’s forward 
algorithm, that A and C have coefficients 0, while only AB has coefficient 8. 
There are I 1  other nonzero multipliers, but these are all effects that we have 
assumed negligible. 

Our efficiency, A, is not danling, but I do not find it disturbing either. 
I t  will be even smaller for single augmentations of larger plans. I view it as 
satisfactorily far above 0, rather than as disastrously far below 1. 

We now choose a pair of trials for the same case. We take care that both 
are at the same levels of A and of C to avoid variance-increasing corrections. 
Our alias subgroup will then contain - ABCD, + A ,  and, say, -- C and so 
will be: 

I - ARCD + A - C - AC - BCD - ABD + BD. 
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Now our desired contrast will estimatc 

B - ACD I- -- BC - ABC - C D  - A D  + D i A B  -- CD. 

I fiqd it simplest to pick the two trial specifications by direct search, but 
of course reverse Yates on the eight signed members of the alias subgroup 
will produce the same result, namely, abd and (1. 

If we designate the original contrast for 8 ( A B  + CD) by y ,  (with variance 
8), and the new contrast from the pair by y2 (with variance 2), we obtain: 

16AB = JJ, + 4y2; 16Cb = y ,  - 4y2, 

each with variance $J and so with efficiency 0.64. 
It is no1 dificult to produce a set offoctr trials if they are necessary to gel 

more precision in separating AB from CD, when A and C (only) are large. 
We use the alias subgroup 1 - ABCD - AC + BD and acquire immediately 
the set: a, c, abd, bcd. But since we now have three contrasts (among the 
four augmenting trials) at our disposal, we consider what use to make of the 
other two, which are 

A - C + ABD - BCD -+ A - C and B - ABC + D - ACD. 

We should usc the first to improve our precision of estimation of A and 
C, and the second as a degree of freedom for error. Designate the original 
estimate of A as, A , .  The new estimate, A,, will be (A C) from the new 
set ol‘ four, plus e, estimated from the main experiment. We will combine 
these two estimates by weighting them inversely as their variances. Variance 
(A,) = $,and Var (A2) = Var (A * C ) ,  + Var (el) = = 8,  whence, 
as we mathematicians say, 

+ 

3A, + A2 
4 ’  

a = __ _- _. 

Eff, ( A )  = i$ x = $. 

The same system is used to improve our  earlier C-estimate. 
If now we suppose that two pairs of 2fi‘s require disentanglement, we 

find that the only augmenting set of four that meets our requirements puts 
all four 2fi’s into a single string and so caniiot be used. We might hope to use 
one of Addelman’s plans for estimating all main effects and 2fi’s in four 
factors in 12 runs (a 24//12, then), but this fails since his plans do not include 
a 2 $ ’ .  I see no satisfying alternative to the full set of eight, I - ABCD, if 
two 2fi interaction strings appear large after the first half replicate. 
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14.3. AUGMENTING THE 21t-4 

14.3.1, To Separate a Single Pair of Two-Factor Interactions 

Since there is nothing new in this case, the separation design is left as an 
exercise. Slightly better use of the remaining contrasts (whenfow augmenting 
trials are made) is available because we now get an estimate of C and one of 
A separated from each other. Each is used to decrease the variance of the 
weighted estimate of a main effect. 

14.3.2. To Separate Four Members of a Single String of 
Two-Factor Interactions 

If four main effects, say A, C, E, G, and a single string of 2Fs, say A B  + 
CD + EF + G H ,  all appeared large in a 2,8;-*, the experimenter might well 
wish to isolate all four 2fi components. Although it is possible to name 
three treatment combinations that will permit estimation of the four 2fi‘s 
[Daniel 19627, their variances are so large as to be generally unacceptable. 
Even the use of three pairs of observations gives poor efficiencies. (The 
three pairs given in the 1962 paper [page 409, line 111 are erroneous. The 
corrections given later [Daniel 19631 are rather opaque.) The simplest 
pairs are ( i f -  bk (to estimate the ordered string with signs + - - +), 
dh - bf (to get i- - + -), and j h  - 611 (for + + - -). 

As we took at these six conditions, we note that all are in the 2&-’ : f + 
BDFH. We add the missing two, namely, (1) and bdfh, to form the rid1 
“even” half replicate on B, D, F,  and H, knowing full well that the eight are 
really a 28-5 .  I have chosen the low levels of A, C, E, and G so that all treat- 
ments are at the same levels of the four influential factors. In this way I 
avoid corrections for main effects. The alias subgroup for our eight trials is 
then: 

I + BDFH - A - C - E - G + AC 

+ AE + AG + CE + CG + EG phis 56’s. 

multiplication of each member of the alias subgroup in turn: 
We extract directly the four contrasts containing our 2fi components by 

= - E t- SC + BE + BG & 2 3fi, 
yj. =a- u + AD + DE k 2 fi, 
J J ~  = fFF_ - F + AF + CF rfr 3fi, 
~ ’ 4  = GltI - H + AH t- EH & 3fi. 

So our four 2fi’s are separated from each other by this “interaction ex- 
traction fraction” (D. W. Behnken) and are aliased only with clouds of 
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effects we have already judged to be negligible. The remaining three contrasts 
in the Z6-', which may be called BD + FN, BF -t DH, and BN + DF, can 
be used as error estimates. 

Again we can attain a somewhat smaller variance for the 2fi estimates 
by combining each one given above with the estimate of their sum (call it 
y s )  from the original 28-.4: 

ABI = y, , Var ( A B , )  = & = & 
A B ,  = y5 - y,  - y3 - y4, Var (AB,)  = & + $ + 4 + $ = A; 

Eff.(AB) = x = f. 
Although algebraic formulae can be worked out for all cases' it seems to 

me simpler to make a computation like the above, always using the P-Q 
principle when feasible, and otherwise always weighting each (orthogonal) 
estimate inversely as its variance. 

14.3.3. To Separate All Seven Two-Factor interactions with 
One Factor 

The separation of al l  2Ws with one factor is analogous to the preceding 
case, although I did not know this in 1962. The seven 2fi's with A, for example, 
appear in different alias strings, so we look for a set of trials from which we 
can estimate AB - CD - EF - GH, and also AC - BD - EG - F H ,  
and so on down to A N  - BG -- CF - DE. Clearly the alias subgroup 
must contain - A B C D ,  - A B E F ,  - A B G H ,  and -ACEG,  and equally 
clcarly we require one more generator since we hope to do only 8 = 28-5  
trials. We use - A  as the last generator, so that all trials will be at low A. 
The alias subgroup now contains 32 terms, but they are easy to view overall. 
The first 16 members are: 

123 - ABCDEFGH 34 

1 - A B C D  24 

2 - A B E F  14 
3 - A R C H  t 234 
4 - A C E G  12 

234 - A C F H  13 

134 - A D E H  23 
124 -ADFG 

+ BCEH 
+ 5 C F G  

+ BDEG 

+ BDFH 
+ CDEF 

f CDGH 

+ EFGH 
i 

and the second 16 members are the products of these with - A, 
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The corresponding triat specifications or treatment combinations are: 

bcdt&gh ceg 

bcd C l h  
bef deh 

bgh 4.3 
These are seen to be the lowercase counterparts of the first column of the 
alias subgroup with a removed. 

It is by now an elementary exercise to combine each ofthe seven contrasts 
from this 28-s, after correction by a main effect if large, with the corre- 
sponding string from the original 28-4. I give an example which I hope most 
readers can skip. Designate the -&contrast from the 28-s as y,. Then 

E ( y 3 )  = -B + AB - (CD + EF f GH). 
Let 

y ,  = B, * * .  from thc 28-4, 
y, = AB + CD $ EF + GH from the28-4. 

AB + (CD 4 EF + GH) = yz 
AB - (CD + EF + GH) = y1 + y3 

Then 

- 
A 3  = t ( Y l  f Y2 I- Y3) 

and 

Similar operations with the remaining six contrasts from the P V 5  will 
separate the other interactions with A. 

The paper “Sequences of Two-Level Fractional Factorial Plans” by S. 
Addelman [I9691 discusses the same problem as this chapter, at greater 
length and for a wider range of designs, but with less tailoring to specific 
cases. I start with minimal augmentations (N = I ,  2, 4, 8), responding to 
just what has been exposed earlier, and proposing only the smallest aug- 
mentations which will remove known ambiguities with acceptably small 
variance. 

Addclman uses more general criteria. He shows what set to add to each 
small initial block t o  gain maximal numbers of estimates of parameters. 
His augmenting sets are usually as large as the initial block. The second 
block is chosen for the large number of new estimates it permits, but these 
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are not explicitly tailored to  the set of ambiguities revealed by the first set. 
The tailored, irregular, post hoc plans that I propose are not, as Addelman 
very rightly says, easily categorized and listed. 

14.4. CONCLUSIONS AND APOLOGIES 

I have viewed the known aliases (of second order) of an estimate as am- 
guities which can be counted. The separation of a string (sums and differ- 
erences) of aliases into one unbiased member and a smaller string requires 
one augmenting trial if precision is good enough and if the experimental 
system is assuredly not drifting. The efficiency of parameter estimates is 
doubled and drift removed if two new trials can be done. Four. augmenting 
trials-none of them replicates of earlier work- provide still more precision 
both for the target estimate and for some effects already estimated. 

Multiple ambiguities are more likely to require eight or more trials. 
Care in choosing the augmenting set often permits efficient separation of 
several ambiguities at once, whether or not they were originally in the same 
string. 1 always try for sets which permit the P-Q principle (often extended 
to the P-Q-R-S principle), since this gives the highest efficiency for all esti- 
mates, When this cannot be done, because of the asymmetry of the effects 
found, I patch together the best combination that will permit sonte estimation 
of the entangled effects. This will, in my experience, nearly always be a new 
fractional replicate, and not a congeries of unrelated pairs of observations, 
one pair for each ambiguity. 

Although I have no doubt that extensions to the 2 p - q  for p > 8, to the 
3r-v series, and to the general augmentation of partially balanced incomplete 
block systems are all manageable, 1 leave thcse pleasures to others. 
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Trend-Robust Plans 

15.1 Introduction, 251 
15.2 Simplest Trend-Robust Plans, 252 
15.3 Trend-Robust 2'+' / /S and 2'-'//8,253 
15.4 Trend-Robust 2'1/16, Zb-'//16, 25//32, and 2'4-91/32, 256 

15.1. INTRODUCTION 

This chapter is largely a rephrasing and condensation ofa  paper published 
in 1966.* Since no printed evidence of the usefulness of these plans has 
appeared in nine years, my earlier enthusiasm for them has been somewhat 
dampened. 

Just as knowledge of a system's stabilities and of its heterogeneities is 
essential for the effective blocking of a factorial experiment, so similar 
knowledge is required for systems which drift or trend or age. If the shape 
of the drift curve is roughly known, use should be made of this knowledge. 
Instead of randomly spreading the systematic trend to give a large random 
error, we can get most of thc trend into two d.f., separated from the random 
error. This is proved for systems with linear and quadratic trend when a 
2p-q plan is to be done, and must, it seems to me, be true also for higher-order 
trends and for more general factorials. 

As Hald [1952b, page 5101 has put it: "The possibility of eliminating 
systematic variation etfectivcly depends on whether the variation is smooth 
[or whether]. . . irregular fluctuations occur." Later on the same page he 
recognizes that the trend can be largely etiminated "if the systematic variation 

* That paper [Daniel and Wilcoxon 19661 rails to point out its obvious indebtedness lo two 
papers by D. R. Cox [1951, 19521 and to Section 14.2 or his book Pluming of Experirttems 
[ 19581. 1 make this acknowledgment now, with apologies. The basic idea of these plans was 
F. Wilcoxon's. He noticed that the 8 ordered trials 0 I I 0 1 0 0 I gave a sequcncc lor one two- 
lcvcl factor that was exactly orthogonal to linear and quadratic time trends. He then worked 
out many larger ordered multiractor plans with the same orthogonality. 

25 1 



252 TREND-HORUST PLANS 

is smooth and slow.” I take “smooth” to mean “representable by linear and 
quadratic terms in lime,” and “slow” to mean “being a considerable multiple 
of the time required to make one trial. In the next sections, this multiple goes 
from 3 to 32, 

Some orders of trials for the 2 P ,  and for the 2’’”q are much more sensitive 
than others to aliasing of linear (L) and quadratic (Q) trends with factorial 
effect contrasts. Two contrasts in particular (C and BC in the z3, D and 
CD in the z4, E and DE in the 2’) are highly correlated with Land Q, respec- 
tively. For B, C, D, E,  the squared correlation coefficients with L are 0.80, 
0.76, 0.75, and 0.75, respectively. For AB, BC, CD, DE, the squared coeffi- 
cients with Q are 1.0, 0.80, 0.72, and 0.71, respectively. By choosing other 
contrasts to determine the levels of factors, and by watching out for the 
corresponding forced 2fi contrasts, we can estimate all main effecls and all 
2Ks with good efficiencies, using the random fluctuations rrbuul the drift 
curve as a basis, rather than the uncontrollable variation including drift. 

The factor levels in these plans appear in sequences that may be in- 
convenient for the experimenter. But there is a wide choice of number of 
changes of level in  each plan, varying, for example, in the Z4 from 5 to 13. 
1 can see no theoretical objection to allocating the factor hardest to change 
to the letter that has the longest runs at one level. 

Since most estimates are made with efficiencies near 1.00, some experi- 
menters may see an advantage in following the specified sequence even when 
little is known about the shape of the trend curve. If no trend appears, only 
two d.f. are lost. I f  large L- or Q-trends appear, a substantial gain in precision 
of all estimates is guaranteed. 

15.2. SIMPLEST TREND-ROBUST PLANS 

Suppose that one factor at two levels is to be studied in a system known 
to be drifting linearly over periods as long as several trials. The minimum 
conceivable plan contains t h e e  trials. Examples include the effect of some 
diet change on the milk yield of a milch cow, and the effect of feedstock 
change on the selectivity of a catalyst that ages slowly in use. Call the two 
levels of the factor A and B [and not, because of the clumsiness of the designa- 
tion, ( I )  and (43. The six possible orders for four trials arc: 

1. n B n  IV. BAA 
11. BAB V. A B B  

111. A A B  VI. 5BA 

The two orders I and I1  have obvious advantage. Direct solution of the 
equation Y = bo -t b , x  -t d , t ,  putting x at - 1 and f. 1, and t at - 1 and 
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+ I ,  will show that I and 11 have efficiency 1.00 whereas the other four 
sequences have efficiencies $ for b,  and d ,  and 3 for b,,. Since more than onc 
cow or catalyst batch would have to be used, I and 11 would naturally be 
used in alternation. 

A severe randomizer will insist that, for each pair, I or I1  should be chosen 
at random, to be followed by its complement. Let him. 

This miniplan is entirely vulnerable to qutrdmic trend. Tlie onlyforrr-trial, 
one-factor, two-level, L- and Q$ee plan is ABAB, which need not be dis- 
tinguished from its complement, BABA. Our fitting equation, 

(15.1) Y = ho + b,x -1- d , t  + d , , t z ,  

requires four constants, so the fitting of four trials (at cqual time intervals, 
please} leaves no room for error estimation. Dircct substitution of the four 
lines of our (X, Y) matrix: 

460 = y1 + YZ + y 3  + Y,, 
8bl = - y  + 3 ~ 2  - 3 ~ 3  + y4, 

8Cll = - Y ,  - Y2 + Y3 + Y4, 

4d11 = YI - YZ - ~3 f ~ 4 ,  

Trial Spec. 

1 A 
2 B 
3 A 
4 B 

- -- 

Var (b,) = a; 
Var(h,) = &; 
Var (d,) = -,+; 
Var ( d ,  ,) = 4. 

t t 2  Y bo x 

1 - 1  - 3  9 y ,  
1 1 - 1  1 yz 
1 - 1  1 1 Y3 

- 1 1 1 3 9 Y4 

15.3. TREND-ROBUST 2*"//8 AND Z4-'//8 

We proceed to give plans and to show their properties, skipping derivations 
and proofs. Table 15.1 (adapted from Daniel and Wilcoxon [1966]) shows 
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TABLE 15.1. 
A ZZ-V/ /8 ,  L- AND @ROBUST 

Y = 6, + hpY, 4- hcXG + b,cXpY~ + d, t  + dl,(f2 - 5.25) 

( X ' X )  6 x 6 
8 0 0 0 0  0 
0 8 0 0 4  0 
0 0 8 0 0  - 8  
0 0 0 8 - 8  0 
0 4 0 - 8  42 0 
0 0 - 8  0 0 I68 

I I  = (X'X)-'X' 8 x 6 I (X) 8 x 6 
Trial Spec. .to Y~ sLi xyG I (I' - 5.25) Rho 3 2 i ~ ~  806, 166F, 16d, 8Od,, I 

6 4 0 ( X ' X )  ' 5 x 5 

85 0 -10 -10 0 
0 8 4  0 0 4 

-10 0 too 20 0 
-10 0 20 20 0 

0 4 0 0 4  

7 
1 

I - 1  -1.5 - 3  
- I  - I  -0.5 - 5  

- 1 - 1  I 0.5 - 5  
1 1 . 5  - 3  

I - 1 I -- 1 2.5 1 
I I - I  - I  3.5 7 

I - 3  -7 1 - 1  3 
1 5 I 1  I - 1  1 
1 - 3  9 - 3  - 1  - I  
I 5 -13  - 3  - I  - 3  
1 - 5  -13  3 I - 3  
I 3 9 3 1 - 1  
I - 5  11 - I  I 1 
I 3 -7 - 1  I 3 

Etficiencies: 44 9p 8 
F C : F ^ G & Q  

iZ b, b, bp, d l  d , ~  

a 22 " / /8 ,  along with the ordinary teast-squares results, (X), (X'X), (X'X)-', 
B = (X'X)-'X', and the efficiency factors for B. 

The contrasts for P,  6, FIG, and d , ,  in Table 15.1 support a conjecture 
made long ago that contrasts with varying but integral coefficients are 
clarified by being decomposed into two or more contrasts each with the 
same coefficient, only signs being varied. Thus we have 

h, = -3, 5,  -3, 5, -5,3, -5,3 
= [ -4,4, -4,4, -4,4, -4,4] 

(8 [ I ,  I ,  1, 1, - 1, - 1, - 1, - 11 
= 4tA0)-  (CO) 
= 32E - 2. 

The decomposition here could be found by any idler, but more complex 
cases can be solved by putting the ordered coefficients themselves through 
the corresponding forward Yates algorithm. The regression coefficient b,, 
to take a more difficult exampte, looks from its signs like a disturbed - (AB,). 
Even if one guessed that - 10(ABo) is the right amount (it is the average of 
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the absolute values of the eight coefficients) and subtracted this to get 

( X )  = -7,11,9, -13 ,  -13,9, 11, - 7  
0 [lo, - 10, - 10, 10, 10, - lo, - 10,101 

= 3, I ,  - 1 ,  -3, -3, -1, 1,3, 

it still might not be obvious that (X) can itself be partitioned into 
2(ACo) -!- (RC,). But it is more insightful to note that (X) as it stands is 
simply 80dl1. Thus bG is seen to be just the expected factorial contrast 
[note that g is at its two levels in the 2 2 + i  in the - (ABo) pattern], corrected 
for one unit of Q ( =dl  

Responding to natural greed we try to accommodate two more factors into 
an eight-trial plan, since we have two d.f. left over after fitting F, G, FG, 
L, and Q. We require firm assurance that the two new factors, H and J, 
have entirely additive effects. There must be no interaction with H or J .  
Table 15.2 gives the same results as were shown in 15.1. We have lost a 
little efficiency in 6, but we have gained efficient estimates of the main 
effects of H and J. 

to allow for the small correlation of G with Q. 

(X) 8 x 6 
Xo x p  XG xrc Y" Y, I 1' 

I - I  - I  1 - 1  - 1  -3.5 7 
I I I I 1 1 - 2 3  I 
1 - I  1 - 1  I - 1  -1.5 - 3  
I I - I  - I  - 1  I -0.5 - 5  
I - I  - 1  1 I I 0.5 - 5  
I 1 I I - 1  - I  1.5 - 3  
I - 1  I -I - 1  1 2.5 1 
I I - 1  - I  I I 3.5 7 

(X'X) 7 x 7 
8 0 0 0 0 4  0 
0 8 0 0 0 0 - 8  
0 0 8 0 0 - 8  0 
0 0 0 8 0 0  0 
0 0 0 0 8 0 1 6  
4 0 - 8  0 0 4 2  0 
0 -8 0 0 16 0 168 

32(X'X)-kX' = 328 8 x 7 
E G FG A j i. 0 

- 3  - 3  2 - 4  - 2  - 2  I 
5 5 2 4 6 - 2  I 

- 3  3 - 6  4 - 6  - 2  - I  
5 - 5  -6  - 4  2 - 2  - 1  

- 5  - 5  6 4 2 2 - I  
3 3 6 - 4  - 6  2 - 1  

- 5  S - 2  -4 6 2 1 
3 - 3  - 2  4 - 2  2 I 

128(X'X)'" 7 x 7 
17 0 - 2  0 0 - 2  0 
0 1 7  0 0 - 2  0 I 

- 2  0 2 0  0 0 4 0 
0 0 0 1 6  0 0 0 
0 - 2  0 0 20 0 - 2  

- 2  0 4 0 0 4 0 
0 I 0  0 - 2  0 I 
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15.4. TREND-ROBUST 24//16, 2"'//16, 2'//32, AND 2'4-9//32 

Since the arithmctic for the 16- and 32-run plans will usually be done 
by computer, we omit the details given in preceding sections and present 
only the generators of each design: 

24//16 26-2Jf16 25J/32 2 4- '1132 
____l_--_l.___^ -- 
1. ab$ abde abe nbdeyjlm 
2. ucn CICdJ uce acdfgkh 
3. bed bcd bcde bcdltjklo 

5 .  ahcde nbcdejghjklmno 

Orderly multiplication ofthese generators: 1. x 2., 1. x 3., 1. x 2. x 3., 4., 
etc., for the 24 gives ( I ) ,  ubd, acd, be, h i ,  nc, ab, d, ubcd, c, 6, ad, a, hrl, cd, 
ubc. Details on confounding patterns and other matters are given in Daniel 
and Wilcoxon [ 19661. 

4. abcci abcdef d efijkl 
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Nested Designs 
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16.3 Split-Plot Designs, 267 
16.4 Fractional Factorials, 2p-q, In Split-Plot Arrangements, 270 
16.5 Partially Hierarchal Plans, 274 
16.6 Summary and Conclusions, 275 

Appendix 16.A. Some Two-Level Factorial Plans with Split-Plot 
Confounding, 275 

16.1. INTRODUCTION 

Most industrial experiments are not done in fully randomized sets, in 
randomized blocks, or even in randomized incomplete blocks. Even most 
experiments done after statistical advice do not conform. The reason is one 
of convenience: some factors are very hard to vary, and others are much 
easier. It does not make practical sense to vary at random, say, the internal 
setup of a system operated at  high vacuum which must be evacuated and 
degassed after each takedown. If there are conditions-for example, cathode 
voltages and emitter temperatures-to be varied within one setup, they will 
surely be varied while the electrode configuration is maintained constant, 
without disassembly. Then a new assembly will be made, and the easy-to- 
vary factors again varied inside the newly evacuated system. 

It may be advisable to return to the first assembly at some poin!, but it is 
almost never technically sensible to test each assembly at only one set of 
operating conditions. Although no statistical designer would forbid such a 
plan, he would make sure that the analysis of the resulting data corresponded 
to the realities of the design. 

The fundamental difference between such a nested set of data and a fully 
randomized set lies in their error structures. In the fully randomized plan 
there is only one homogeneous random error system. Only one error term 

257 
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appears in the modeling equation. No restrictive assumption is made about 
the sources of the uncontrolled variability. It may come from many physically 
distinct causes, but it has an equal chance of perturbing each observation. 
In the nested case, on the other hand, there are at least two independent 
sources of random disturbance. One set, the nesting set, only hits each group 
of data taken together, once. In the example used above each system setup 
is affected by one manifestation of the “setup error.” The other set of random 
causes affects each observation separately as the nested factor levels are 
changed. These within-setup perturbations are assumed to be independent 
of the among-setup disturbances. In the simplest nested situations, then, 
there are two independent sources of random variation. More complicated 
situations are common. 

16.2. THE SIMPLEST CASE 

A stratified sample provides the simplest possible example. The data 
shown in Table 16.1 are taken from Brownlee [1965, Section 10.6, page 3257. 

TABLE 16. I 
NESTED MEASUREMENTS ON 22 BArcnts OF A PLASTIC-LIKE MATER~AI. 

DROWNLEE’S Table 10.4: 

Batch: I 2 3 4 5 6 7 8 9 10 11 
--- 

58 49 
48 41 
47 46 
65 46 

Total: 218 182 
w : 18 8 

- -- 

Batch: 12 13 

45 28 54 47 
44 55 49 45 
44 50 53 47 
44 41 52 47 

177 174 208 186 
1 2 7  5 2 

14 15 16 17 

- - - -  

45 
54 
50 
57 

206 
12 
- 

I8 

49 43 37 
41  48 43 
46 49 47 
50 47 27 

192 187 154 
4 6 2 0  

- I __.-. 

19 20 21 

48 
52 
57 
51 

208 
9 

- 

22 

45 55 42 45 41 43 53 41 43 34 M 
43 42 41 43 46 42 44 43 45 34 48 
44 47 46 48 41 38 49 41 44 40 48 
44 52 50 45 30 35 52 35 46 40 48 

Total: 176 196 179 181 158 I58 198 160 178 148 194 
I V :  2 1 3 9 5 1 6 8 9 8 3 6 2  

_ _ _ _ - - _ _  ~ - - - - -  
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Here 22 batches of a “plastic-like material” are sampled, each four times. 
A trial model equation may be written as 

(16.1) yiCf, = p + e, + cicj,, 

If the sampling of both batches and subbatches is random, then 

i = I , .  . . , 22; ( j )  = 1 , .  . . , 4  for each i. 

The random errors are all assumed to be unbiased and uncorrelated. The 
usual criticism of experimenters-that they do not study their system under 
a sufficiently wide range of experimental conditions --is here replaced by 
the usual criticism of samplers-that they overdo the estimation of the 
nested random error at the expense of the nesting error. Thcre are to be 
3 x 22 = 66 d.f. for estimating Var ( E ~ ( ~ , )  = E { B $ ~ ) )  = ug in this case, and 
less than 21 for estimating Var (e,) = E { e z }  = 0:. 

We will get an estimate of u(: from 

that is, from the pooled sum of squares withiti batches. But the mean square 
(among batches), 

t 2 2  

has the expected value (G: + ~$4) and so must be used with A to get an 
estimate of c;. 

We have plunged ahead and made statements about the standard way to 
estimate 0: and a: in nested samples, with no warnings or cautions. When 
data are taken in this standard way, the same number of subbatches being 
inspected from each batch, it is not difficult to examine the so-far-unspoken 
assumptions of normality and of homogeneity of the two sets of random 
effects. For the . G ~ ( ~ )  the ranges of the yij over i should follow the known 
distribution of ranges of four from a normal population. Figure 16.1 shows 
by its solid curve the expected distribution of normal ranges of four, with 
do taken as 4.2 = average range& = 8.68/2.06, where d2 is taken from 
Hald’s Table VIII [1952a, page 603. This seems to me a clear case of a 
smooth nonnormal distribution, not due to one or a few outlying observa- 
tions. A smooth curve can be drawn through the observed cumulative 
distribution of the 22 ranges, but it crosses the expected curve only once, all 
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Figure 16.1 X, E.c.d. of 22 ranges of sets of four. 

the larger ranges being too targe, all the smaller ones too small. To see 
whether there is any clear dependence of range (and hence of no or c$) on 
batch mean, refer to Figure 16.2~. I see no connection whatever. In despera- 
tion I try transforming the observations y i f j ,  by taking logarithms, square 
roots, and reciprocals, and by deleting the four largest observations. None 
of these rectifies the nonnormality visible in the figure, and so none of them 
is reproduced. The reason for trying to find a (simple) transformation to 
normality is that we want to make a test ofsignificance and even a confidence- 
interval statement about the two components of variance, But these are 
derived under the assumptions that the ei and the ci(,) are normally and 
independently distributed. We try doubly hard here because, as Figure 16.3 
shows, the batch means (totals) are nearly normal. 
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Figure 16.2 (n) Twenty-two hatch ranges (Wi)  versus batch totals ( ~ j ~ j ) , .  See Table 16.1. 

On plotting the 22 ranges of four in serial order (Figure 16.26), a glimmer 
emerges. Every third range is higher than its two successors. I guess therefore, 
that we are seeing the effects of successive subbatch results from some mixing 
process. The batch mean is not changing, but the within-batch homogeneity 
is changing rapidly in cycles of three batches. I have divided the (first 21) 
batches into three sets of seven, found the average range of each set (namely, 
16.29, 6.57, 4.43), deduced a standard deviation by dividing by 2.06 (to get 
7.91, 3.19, 2.15), standardized each set by dividing by its corresponding 
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Figure 16.3 E.e.d. of  twenty-two bittch loials. $8 = (200 - 165)/2 := 17.5. 

standard deviation, and plotted the whole set of 21 “tristandardized ranges” 
in Figure 16.4. As can be seen, we have a success of sorts. 

Although 1 do not like the ripples in the e.c.d., they are not wide and the 
extreme ranges now behave well compared to their mates. A more careful 
and more sensitive test would take the residuals within each batch, group 
them into three sets, and produce three new e.c.d.’s. Let’s do it. Table 16.2 
gives the grouped residuals, and Figures 16.5a, h, c show the e.c.d. on normal 
grids for each set of 28 separately. The error within each “mixing stage” is 
homogeneous, nearly normal, and so acceptable. But the model equation 
(16.1) must be used separately on each stagesince each represents a drastically 
different relation between the two components of variance, gi and a:. 

We now feel safe in partitioning the total sum of squares Lor each set of 
seven batches (TSSk, k = I, I I , I I I ) ,  using the usual identity: 

O’tj - j i . . ) ,  = ( ~ i j  j 7 t . k  + ( F i .  - L..h k = 1, 11, 111- 



Figure 16.4 Twenty-one trislandardized railgcs. 

TABLE 16.2 
RESIUUAW l.HOhI 21 BATCH MEANS Gwnrro INTO TNHEI: S k l S  [HNOWNLLE 1965, PAGE 3251 
. _- --- 

i I 

I 3.5, -6.5, -7.5,  10.5 
4 -15.5, 11.5, 6.5, -2.5 
7 -6.5. 2.5, -1.5, 5.5 

10 -.1.5, 4.5, 8.5, - 11.5 
i 3 6.0, - 7.0, -- 2.0, 3.0 
I6 1.5, 6.5, 1.3, --9.5 
19 1.0, 3.0, 1.0, -5.0 

i 11 

2 3.5, -4.5, 0.5, 0.5 
5 2.0, - 3.0, 1.0, 0 
8 1.0, - 1.0, -2.0, 2.0 

I I  -4.0, 0 , S . O , - l . O  
14 -2.8, -3.8. 1.2, 5.2 
17 3.5, 2.5, -- 1.5, -4.5 
20 -- 1.5, 0.5, -0.5, 1.5 

-.-- ._ - - .- ". ._ - 
3 
6 
9 

12 
15 
18 
21 

0.7, -0.2, -0.2, -0.2 
0.5, - 1.5, 0.5, 0.5 
3.8, 1.2, 2.2, 0.2 
1.0, - 1.0, 0 , 0 

-0.2, -0.2. 2.8. -0.2 
3.5, -5.5, -0.5, 2.5 

-3.0, -3.0, 3.0, 3.0 
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Figure 16.5 (ci)E.c.d.ofresidualsfrolnseven balcher(l,4,7,. . ., 19),s, = 7.S.(h)Ssme 
for seven batches (2, 5 . 8 ,  . . . , 20), s2 = 3 .1 .  (e )  S;we for seven betches (3, 6, 9, . . . , 21), 
.Y, = 3.6. 

Also, 
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TABLE 16.3. 

k MS (BJ MS (w,) z ; ,~  I: = MS(II)/MS(W) P L u 

I 165.29 58.14 26.79 2.84 .05 2.4 0.07 2.77 
2 79.74 9.50 17.56 8.39 .OOO5 4.6 0.21 2.27 
3 60.50 2.55 14.49 23.73 .0005 5.5 0.25 2.15 

Table 16.3 shows the mean squares and variance component estimates. 
The “equivalent degrees of freedom for S:,” called d;LB in the tabb, is com- 
puted by Satterthwaite’s formula* [1946}, when and only when the F-vaiue 
reaches Gaylor and Hopper’s criterion [ 19691, namely, when its significance 
probability is below 0.025. For the present case, where f, is 6 and Jz is 21, 
this value is 3.09, and only sets I1  and 111 (k = 2, 3) meet the requirement. 
The equivalent degrees of freedom are then 4.64 and 5.5O-nol too far 
below their maximum possible value of 6. 

Once we have drf., und once we have some assurance that our random 
distributions are normal, we can put confidence ranges around a&. As all 
good elementary textbooks aver (e.g., Brownlee, 119651, Section 9.2. pages 
282 ff.; Davies [ I971 3, Section 2.363, pages 28 IT; Hald, [1952b], Section 11.4, 
page 286). we need only multiply our estimates, sgk by d:f./xz9s and by 
d:f./xzos; to get 90% intervals for These two values for our case are 0.75 
and 4.75. These limits serve mainly to warn us that we do not know our 
among-batch components of variance very well. ‘This can hardly be news at 
this stage. A variance estimated with fewer than 6 d.f. is of course poorly 
estimated. Even that estimated by Brownlee C1965, page 3273 with some- 
thing less than 21 d.f. is, as he says, of disagreeably poor precision. 

The conclusions For this set of data are now tolerably clear. The 22 sets- 
of-four measurements were not taken from a system with homogeneous 
error. When they are divided into three subsets of seven, we find reasonably 
constant random normal error within each subset but widely different sub- 
batch variation from set to set. It should not be argued by a critic of this 
finding that we have deliberately divided the data into sets with visibly 
different subbatch errors. We have dared to do this only because of the 

*This formula may be written, for our case: 

+ - 
.h JZ 

where I: is the usual ratio: MS(II)/MS(W). 
fi aadf; arc the numerator and dcnomLirtor d.f., 
d.f.,, is  the approximated d.f. for 8;. 
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completely regular periods of three in the successive batches. We do seem 
now to be looking at three nested cases, each with its own within-nest (i.e., 
with subbatch) normal error with variances 58.14,9.50, and 2.55, rather than 
at one jumble with average variance 23.39. 

It  is some consolation, I should hope, that there is more information about 
the among-batch variation in the 7 batches, 3, 6, 9, 12, 15, 18, 21, than in 
the other 14-or, of course, than in the whole scrambled set. We have not 
destroyed the data; we have saved them, and found out which part is worth 
saving. 

The general conclusions are methodological : 

1. One has little chance of finding anything objective about the system 
that produced the data being analyzed if  one declines to check the 
correctness of the crucial assumptions required by the estimation and 
test procedures being used. 

2. There do not seem to be entirely general rules for studying such data. 
There must be some more efficient ways than my own-I have spent 
most of 3 weeks looking at these 88 values. Each time that I try to write 
down a set of general rules, they seem to me to depend too heavily on 
the last set of data I have studied. Just now I would recommend, for 
balanced data the following: 

(1. Write down in detail what is wanted from the data. Write down 
how you would attain these desiderata if all is well. Write down the 
assumptions that ~ S I  be valid if the statistics you would normally 
compute are to be valid. See how many of these assumptions you 
can check from these data alone. See how many of those which you 
cannot check can be gucssed, guaranteed, or refuted by the experi- 
menter who secured the data. 
Make all simple graphs: data in time order, internal versus cxtcrnal 
means, ranges, and e.c.d.3 of all subsets with more than 15 d,f., 
especially if normality is required. 

6. 

The title of this section is misleading. 1 have left it unchanged s i n a  it 
more nearly reflects life as one thinks it is: this was an appcrredy simple 
case. 

16.3. SPLIT-PLOT DESIGNS 

We have just discussed a case of simple nesting. Both systems of random 
error-that within batches and that among batches-affected each observa- 
tion, but aside from the estimation of lhe two average (squared) random 
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disturbances only one parameter of the system, its grand average, was esti- 
mated. No factors were varied, so this was not really an experiment. 

We come now to the much commoner case, in which some factor or factors 
will be varied among batches (or plots), while some other factor or factors 
will be varied within each batch or plot. There is an excellent discussion of 
such an experiment in Cochran and Cox [1957, pages 293-3021 with a 
detailed example. In studying chocolate cakes, three recipes were used, at six 
baking temperatures, for each of 15 replicate “mixes” or batches. The baking 
temperature was varied (on separate subbatches) within each batch. Thus 
temperature effects and all their interactions were affected only by subplot 
random variation, whereas recipes had the whole-plot error. The recipe x 
replication interaction was used to estimate the whole-plot error. 

The detailed analysis of the sort indicated above for simple nesting is left 
as an exercise for the reader, who will notice that some 28% of the SS for 
whole-plot error is produced by two cakes (Nos. 4 and 14 in Recipe I) and 
that, if these two are revised, the whole-plot error MS is reduced nearly to 
insignificance. There is again, then, no possibility of estimating the precision 
with which the whole-plot variance is  estimated, since even the F-ratio of 
1.63 for the unretouched whole-plot error is too small for Satterthwaite’s 
formula to be valid. 

There are also good examples in Cox [ 19583, Johnson and Leone [ 1964, 
Vol. 11, page 2323, Federer [ 1955, page 2761, and Hicks 11965, pages 192 f f . ] .  
Two of these are briefly discussed here. 

The data given by D. R. Cox are described as apossible set (my emphasis) 
and are used only to show the rationale and mode of interpretation for 
plans in split units, as Cox calls them, His discussion of this experiment and 
of other split-unit designs is well worth studying. There are irregularities in 
the data (Day 2 does not seem like the other 7 days; there is an upsetting 
three-factor interaction) that dash once again my hopes far a designed ex- 
periment that produces both precise and simple results, but there is no use 
crying over spilt plots. 

The split-plot example in C. R. Hicks’s book is accompanied by a clear 
and general discussion, including a straightforward method of deducing the 
expected values of all mean squares and hence a means of seeing which 
effects are testable by each error type. The data are given in Table 16.4a. 
The plots are thc sets of three pieces at  one temperature within one replicate. 
They were electronic components withdrawn from one oven at three bake 
times. Thus all interactions with bake time, as well as the main effect, are 
measured with within-plot precision. The nntang-plot MS for error (296) 
appears to be indistinguishable from the within-plot MS (2431, and therefore 
the main technical gain must have been the ease of putting three components 
at a time into one oven. 
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TABLE 16.4a, b 

ft. HtCKS’s TADLE 13.3: SI‘l.i‘I-PLOT LAYOUT FOR ELECTRICAL COMI‘ONENr-LlFE 
T a r  DATA 

Baking Oven Temperature (7), degrees 
Time (B), - 

Rep. ( R )  min 580 600 620 640 Averages 
~ 

I 5 217 158 229 223 207 
10 233 I38 186 227 196 
15 175 152 155 156 158 

11 5 188 126 160 20 1 1 69 
10 20 1 130 170 181 170 
15 195 147 161 I72 109 

111 5 I62 122 167 182 158 
10 1 70 185 181 20 1 184 
15 213 180 182 I99 194 

- - -- - 
h. HICK’S T A u u  13.5: ANOVA* TOR SPLIT-PLOT ELL-CTRICAI. COMPONENT DATA 

Source d.L SS MS EMS 

R, 2 1.963 982 q! + 1%; 
Ti 3 12,494 4165 uf + 3a& + 9 4  
RTij 6 1,774 296 ut + 3aiT 

RB,, 4 7,021 1755 uf + 40:~ 

RTB,,, 12 2,912 243 uf f uiTB 

Total: 35 29,331 

* Analysis of variance. 

-_____--- __I_ 

Bk 2 566 283 U: + 4~:n + 1 2 ~ ;  

7.4,  6 2,601 434 ~f + 6:rn + 3n& 

- -  

Although the author writes that the “results of the analysis” are shown in 
the analysis of variance table (Table 16.4b), my own emphasis is that the 
table tells us only which data subtables are worth examining. The strikingly 
large R x R ,  mean square tells me to look at the R x H table of averages 
or totals. This is given at the right of Table 16.4~. It tells something rather 
unsettling. The effect of increasing bake time was rregatiue and roughly linear 
in Replicate I ;  it was zero in Replicate 11; it was positive and roughly linear 
in Replicate 111. This is not the way in which replicates are suppose to behave. 
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The reader may feel that my attitude is antiscientific, or even perverse, in 
that I am disturbed when experimental results do  not come out consistently. 
But we do replicates to gain precision; if they show different patterns, and 
if we take the data seriously, then we can only point out to the experimenter 
that just when his error is least (in Replicate 11) his bake-time effects vanish, 
and that he may want to look into his technique and records quite carefully. 

16.4. FRACTIONAL FACTORIALS, 2p-q,  IN 
SPLIT-PLOT ARRANGEMENTS 

The simplest nested two-level plan is the 2’. Imagine, then, that only two 
two-level factors are to be studied, and that A is hard to vary whereas B is 
easy. We must now think of doing a 22 in two blocks of two: 

(1) a 
b ab 

We can estimate the average B-effect by the usual contrast, and it is clear, 
is it not, that the diference between the two within-block €3-effects measures 
four times the AB interaction with thesame, that is, with the within-block, 
variance. The A-effect is measured by a contrast across blocks and hence has 
variance G; + ~ $ 2 .  Replicates must be done, of course, to gel estimates 
of the two variances, as well as to gain more precision in estimating all 
etfects. 

A. 
We may describe a split-plot plan as one in which some main effect(s), here 
only A, is  (are) aliased with block means. 

As more factors are considered, more alternatives for plot splitting become 
available. For the 23 we might have blocks of four, with two factors varied 
inside plots, and so have each block a 23-1 with, say, A again aliased with 
blocks. Here too the alias subgroup for plot I is I - A and, for plot 11, 
I + A :  

I I1 

We can view each block or plot as a 2 2 - 1 ,  with alias subgroup i 

I t  is obvious that B, C, and BC are estimated within plots. It is not quite 
so obvious that AB, AC, and ARC are also estimated with within-plot 
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precision. For example, AB, which is always 

( I )  - a - 6 + ctb + c - (tc - bc + ahc, 

can be calculated from 

(nbc + a6 - n - ac) - [bc +- b - (1)  - el 
= E-effect at high A - B-effect at low A, 

that is, from within-plot contrasts, and hence with the within-plot variance. 
Only A is measured with among-plot, that is, with whole-plot, variance. 

A second alternative [or the z3 might demand blocks of two with C for 
the within-plot factor and with A and E varied among plots. The single 
plot, I, is now a 23-2  with alias subgroup 

I - A - B + AB,  

whence the aliased effects within plots are 

C - AC - BC + ABC = E { c  - (1)). 

The four plots are as follows: 

( 1 )  0 h ah 
C ac hc ahc 

Here it should be clear or be deducible by the reader that A, B, and A B  are 
estimated with the “outer” variance; the other effects, with the inner variance. 
And again it is taken for granted that the whole 2’ will be run more than 
once to get estimates of the two variance components. 

Consider now a 25 with three factors nested. We should perhaps write 
this as a 22 x 2‘’’ to separate the whole-plot factors from the others, and 
to make our example one with plots containing four treatment combinations. 
The principal plot, if we may call it that (and we may), is I below: 

1 I1  111 IV 

Since we have outlined only half of a full z5, we cannot hope to separate 
all 2Ws. The reader can see that CDE is aliased with the mean of all four 
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plots, so that the overall a.s.g. is I - CDE. Thus the three 2fis, CD, CE, 
and DE, are not separable from their complementary main effects. This 
half replicate would, then, be done only if C, D, and E were known to have 
additive effects. We require the other P - ‘ ,  I + CDE, containing all treat- 
ments with odd numbers of the letters c, d, e, if we are to separate all inter- 
actions. We will still have A, B, and A B  estimated with whole-plot error, 

It  must have occurred to the reader that the greater convenience of plot 
splitting entails a price that may be excessive. Two variances must be esti- 
mated, and the number of degrees of freedom available for the two estimates 
can be made equal only when plots are of size 2. As the reader can see from 
the many text examples, the number of degrees of freedom usually increases 
rapidly as one goes down to the inner components, This may be good for 
the subplot effects but is of course correspondingly bad for the whole-plot 
effects. 

All of the above discussion may be taken as an introduction to the useful 
paper of Addelman [1964], which is reprinted in Appendix 16.A. A few 
nomeiictatural differences should be noted. Addelman uses P, Q, R, , , , , W 
for subplot factors; he uses the symbol PQRSo,,, where I would write 
- + PQRS, and his P Q R ,  I corresponds to my TPQR; finalIy he calls the 
alias subgroup the “identity relationship.” 

Addelman writes [1964, page 255, four lines below Table 21, “If some or 
all of the 3fi. . . are known to be negligible, they may be pooled with the 
interactions that are used to mcasurc cxpcrimental error.” This is uncxccp- 
tionable, but I have yet Lo meet an experimeter who knew that his 3Ws (or 
even his 2fi‘s!) were ncgligible. I would thcn advisc looking at the results of 
the experiment, pooling everything that looked as small as the higher inter- 
actions. As I have so often said before, most 3fi‘s (by which I mean far more 
than 90%) are found to be indistinguishable from random error. 

We take as an example the earliest published split-plot 2 P - ‘ 4  fractional 
replicate [Kempthorne and Tischer 19531 (see Tables 16.50, b), even though 
it is further complicated in two ways. In the first place, it was actually an 
8 x 4* x 2‘ in 512 treatment combinations in which the seven d.f. for three 
“pseudofactors” and all their interactions were used to represent the main 
effects of one eight-level factor, and two extra pseudofactors were used for 
each of the four-level factors. The second complication was that the plan 
actually had its subplots split into sub-subplots, and so, for those whose 
tongues are agile, it was a split-split-plot design with three error terms. 

Although it is not directly relevant to the split-plot aspects of this experi- 
ment, theenergeticreader will want to verify that halfofthe2fi variety x date 
(the 8 x 4 table of means is given in Table 16.56) interaction MS, which is 
judged highly significant, comes from a single cell (7th row, 1st column) where 
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a 3.63 average appears. If it were 2.63, the 2fi would not be significant ! 
A very energetic reader may notice that the SS,'s computed from the 

8 x 4 table appear to be less than those in Kempthorne's analysis of variance 
table by a factor of 36. Mr. Kempthorne has kindly resolved this mystcry. 
Each of the treatment combinations was actually the sum of 6 judgments, 
two from each of three judges. 

TABLE 16.50, h. 
' T m m  FROM KEMPTHORNE ANV TISCHER'S 8 x 42 x z4 IN 5 I 2  TREATMENTS 

0.  KEMPTHORNE AND TISCHER'S TAn1.e 2: ANALYSIS OF VAIUANCI! FOR APPEARANCE 
-__.- 

Source of Variation Degrees of Freedom Sum of Squares Mean Square 
___-.l_l-~ 

Rep. 3 38.7 I 
Var (A, B, C) 7 1190.19 170.03' 
Error A 21 635.23 30.25 

Total 31 1,864.13 

Date (D,  E) 3 9046.14 301 5.38' 
Date x Var 21 1502.80 71.56 
FG 1 116.28 1 16.28' 
H J  1 578.00 578.00' 
Error B 70 2787.96 39.83 
-rota! 127 15,895.3 1 

F I 36.12 36.12 
G 1 12.50 12.50 
H 1 5189.26 5189.26 
J I 2601.01 260 I .0lt 
FH I 0.94 0.94 
FJ 1 29.07 29.07 
GH 1 23.63 23.63 
GJ I 1.76 1.76 
Var x F 7 51.32 1.33 
Var x c 1 146.63 20.95 
Var x H 7 41 8.62 59.80* 
Var x J 7 722.62 103.23' 
Date x F 3 61.59 20.53 
Date x G 3 39.02 13.01 
Date x H 3 467.82 155.94' 
Date x J 3 141.98 47.33 

Error C 336 7303.68 21.74 
Total 51 I 33,142.88 
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TABLE 16.5 (cotrrirttred) 

12. K E M P T H O R N ~ ~  AND TISCIIER’S TABL.C 3: VARII:TY AND DATE EFFECTS A N L ~  

INTERACTIONS 

Date 

Variety I 2 3 4 Mean 

1 2.56 3.59 4.45 5.00 3.90 
2 3. I 9  4.23 4.53 5.10 4.26 
3 3.51 5.04 5.17 4.92 4.66 
4 3.09 4.34 4.68 5.28 4.35 
5 2.78 3.92 5.08 5.01 4.20 
6 3.24 3.89 4.97 5.17 4.32 
7 3.63 3.50 4.05 3.95 3.78 
8 3.08 4.06 4.83 5.07 4.26 
Mean 3.14 4.07 4.72 4.94 4.22 

_______I-. - - - 

---___I 

Standard eirois: of variety means; 0.12 
of date means: 0.09 
of entries in table for interadion: 0.26 

Average Effects of Blanching, Dehydration, and Storage 

F G‘ H 3 
Storage 

Blanching Dehydration -I_-- 

Tcmperat ure Temper at w e  3 Months 6 Months Mean 

Low : 4.26 4.24 70°F 5.30 4.19 4.15 
High : 4.17 4.19 100°F 3.88 3.49 3.69 

4.59 3.84 
._ 

* Significant at .05 level 
+ Significant at .O1 level 

16.5. PARTIALLY HIERARCHAL PLANS 

I have neglected quite a number of important matters in this work. One 
major omission has been “mixed models.” This term is meant to cover 
experimental situations in which one factor has fixed levels, and one has 
random levels, being, say a sample from some population, finite or infinite. 
When a mixed model situation is investigated by a split-plot design, we have 
a “partially hierarchal plan.” The earliest sizable example of such a “p.h.p.” 
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was reported in two related papers by Vaurio and Daniel [I9541 and by 
Scheffk tlY54J. Our detailed model was so greatly improved by Wilk and 
Kempthrone [I9551 that it is now entirely out of date. The example is 
persistent, however, and has been discussed repeatedly ever since. I do not 
think that the last word has been said. Perhaps a new controversy is in the 
making. It would hardly be useful to write an exposition now that may well 
be obsolete before it reaches print. Those who must do something in the 
meantime are advised to read Scheffe rather than Brownlee. [The reason 
for this recommendation becomes clear when one reads in Scheffb that 
Bennett and Franklin (whom Brownlee follows) use a correct method, but 
from an incorrect derivation. Scheffb‘s exposition is difficult, but there we 
are.] 

16.6. SUMMARY AND CONCLUSIONS 

Nested designs (some factors hcld constant, others varied in each “nest”) 
are common in industrial rcsearch. The larger the system under study, the 
more likely it is that such plans will prove the morc convcnient or cvcn the 
only possible ones. Their disadvantages are low replication for thc factors 
held constant for each nest, and the consequent loss of degrees of freedom 
for estimating variances of the effects of the nesting factors. 

The obligation to examine the data from nested designs (for defective 
points and for nonnormal error distribution) is even more binding than for 
other designs. Since we usually want to estimate each component of variance 
(by subtraction of one mean square from another), the assumption of nor- 
mality of residual distribution is a key one. I t  is clearly violated in some 
published examples. 

APPENDIX 16.A 

SOME TWO-LEVEL FACTORIAL PLANS WITH 
sPLrr  PLOT CONFOUNDING*.? 

SIDNEY ADDELMAN 
Reseorch Triangle Institute 

The classical split plot experiment consists of plots within blocks and 
blocks within replicates. The blocks are usually referred to as “whole plots” 
and the plots as “split plots.’’ In  most split plot experiments, the whole plots 

* Reprinted by permission from Addelman [ 19641. 
t This research was supported by the U. S. Army Research Ofice (Durham). 
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are split into a number of parts equal to the number of split plot treatments. 
It will frequently be found in practice that the number ofsplit plot treatments 
available exceeds the number of split plots. Assume that there are four whole 
plot treatments and eight split plot treatments, the split plot treatments being 
the treatment combinations of three two-level factors. It is usually reasonable 
to assume that the three-factor interaction effect of the three split plot factors 
is of less interest than the other split plot comparisons. When this is the case, 
the three-factor interaction may be confounded with whole plots. The con- 
founding of split interaction effects with whole plots is known as split plot 
confounding. Examples of split plot confounding have been presented by 
Kempthorne.* If the whole plot treatments are denoted by t , ,  t2 ,  c3, and I,,, 
and the split plot factors are denoted by P, Q, and R,  one complete replicate 
of the experimental plan would involve eight whole plots, each split into 
four split plots, as follows, before randomization : 

1 ,  t l  i2 t 2  t3 c 3  t4 f4 
.--___.- 

OOO 001 OOO 001 OOO 001 OM) 001 
011 010 oti 010 011 010 011 010 
101 too 101 100 101 loo 101 loo 
110 111 110 111 110 111 110 111 

The treatment combinations OM), 01 1, etc., denote the combination of levels 
of factors P ,  Q, and R ,  respectively. If wedenote those treatment combinations 
for which the sum of the levels of the factors P, Q, and R is 0 (modulo 2)  by 
PQRo and 1 (modulo 2) by PQR,,  the experimental plan can be represented 
as follows: 

It  is clear that the PQR interaction is confounded with the whole plot treat- 
ment replicates. The analysis of variance for this plan will have the structure 
shown in Table 16A.1. 

* 0. Kempiliorne, Recent developmcnts in the design of field exprimenis, JottrtidoJ Agrirrtlirrral 
Scietice. 37: 156-162 (1947); The Desigti arid Airnlysis of Experiments, John Wiley & Sons, he., 
New York (1952). 
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'TABLE 16A.I 
S-rwcruw UI: ANOV PUK 

SPLIT PLOT CONHNJNDING 
A 2' FACTORIAL PLAN WITH 

277 

~ 

Whole plot treatmente: T 3 
PQR 1 
TPQR a 
Split plot treatments: P ,  Q, R, 

PQ, PRi Q R  

TPQ, T P ' T Q * T R  TPR, TQR 1 18 

Total 31 

If the higher order interactions are negligible, the TPQR interaction can be 
used as an estimate of whole plot error with three degrees of freedom and the 
TPQ, TPR, and TQR interactions can be pooled to form an estimate of split 
plot error with nine degrees of freedom. 

There are many situations in which the whole plot treatments are the com- 
binations of two-level factors. For example, the four whole plot treatments in 
the experimental plan already described might be the four treatment com- 
binations 00, 01, 10, and 11 of the whole plot factors A and E .  In such a 
situation, the three degrees of freedom for whole plot treatments, ?; can be 
partitioned into single degree of freedom contrasts, denoted by A, 5, and A5. 

It should be noted that the experimental plan consists of a full replicate of 
a 2' factorial arrangement, two of the factors representing whole plot treat- 
ments and the remaining three factors representing split plot treatments. 
Split plot confounding can also lead to fractional replicates of the factorial 
arrangements. Consider, for example, a situation in which two factors, each 
at two levels, are to be tested on whole plots while the treatment combinations 
of a 25 factorial arrangement are to be tested on split plots. If the whole plot 
factors are denoted by A and B while the split plot factors are denoted by 
P, Q, R, S, and 7: an experimental plan with eight whole plots, each split into 
eight split plots, could be represented as follows before randomization: 

00 00 01 01 10 10 11 11  

PQRSO PQRS,  PQRS, P Q R S ,  PQRS,  PQRS,  PQRS, P Q R S ,  
- .- 

PQTo PQTi p Q T o  P Q T ,  PQTo PQTt PQTo PQTi 
RSTo RSTg R S T ,  RSTo RSTI R S T o  RSTo R S T ,  
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The interaction PQRS is confounded with thc AB whole plot contrast, while 
PQTand RSTare confounded with whole plot replicatcs. The 64 treatment 
combinations of the plan constitute a half replicate of a 2’ arrangement (a 
2’-’ plan) defined by the identity relationship 1 = ABPQRS,. A systematic 
procedure for obtaining the treatment combinations that are defined by an 
identity relationship was presented by Addelman.* 

The analysis of variance for the above plan will have the structure shown in 
Table 16A.2. 

TABLE 16A.2 

W I ~ H  SPLIT PLOT CONFWJNIXNG 
STRUCTURE OF ANOV OF A 2’-‘ FACTORIAL PLAN 

__ 

Source d.f. 

A, B, A n  + PQRs 3 
PQT, RST 2 
Whole plot error: APQT 4- BRST, ARST + BPQT 2 

15 

10 
13 

P, Q, R, 4 T ,  PQ, PR, Pst PTi 
QR, QS, &Tr RS, RT, ST 1 
AP, AQ, AR, AS, AT, BP, BQ, BR, US, BT 
PRT, PST, QRT, QST, ART, APT, AQT, 
ART, AST, BPT, BQT, BRT, BST 
ABS + PQR, ABR + PQS, ABQ + PRS, ABP + QRS, 
APQ + BRS, APR + BQS, APS 4- BQR, ARS + BPQ, 
AQS + RPR, AQR 4- BPS 

AQST + BPRT, APST + BQRT, AQRT f BPST 

SpIit plot error: ABPT + QRST, ABQT 4- PRST, 
ABRT + PQST, ABST + PQRT, APRT 4- BQST, 

Total 

1 
1 lo 

8 

- 
63 
- 

1 
--I_ --- 

In this table, all five-factor and higher order interactions have been ignored. 
The whole plot and split plot error terms are made up of sets of aliased four- 
factor interactions, because it is likely that these four-factor interactions are 
negligible. Ifsome oral1 ofthe three-factor interactionsor pairs ofthree-factor 
interactions are known to be negligible, they may be pooled with the inter- 
actions that are used as an estimate of experimental error. 

A partial index of two-level factorial and fractional factorial arrangements 
that involve split plot confounding is presented in Table I6A.3. The whole plot 
treatments are the treatment combinations of t i 1  (=  2,3,4) two-level factors, 
and the split plot treatments are the combinations of levels of t i 2  (= 3,4, . . . , 

* S. Addelman, Techniques for constructing fraclional replicate plans, .lotrrrid of the Aniericrtri 
Slniislicnl Assucirrfiort, 58: 45-71 (1963). 
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8) two-level factors, where t i ,  + n2 = ti (= $ 6 ,  . . . , 12). In some of the plans 
the whole plot treatment combinations are replicated, and in some they are 
not. The plans in which the whole plot treatment combinations are not 
replicated are obtained by confounding some of the higher order interactions 
among the split plot faclors with some or all of the degrees of freedom as- 
sociated with whole plot treatments. This type of confounding results in a 
fractional replicate of the 2" arrangement. For many of these fractional 
replicate plans, the number of whole plot treatments is inadequate to permit 
the estimation of all main eflects and two-factor interaction erects of the 
whole plot factors and also a valid whole plot experimental error. However, 
even when no estimate of whole plot error is available, knowledge of the 
relative sizes of whole plot eflects is important. All of these plans permit the 
evaluation of all split plot main effects and two-factor interaction effects, as 
well as the interactions of the whole plot factors with the split factors, when 
the three-factor and higher order interactions are negligible. Some of these 
plans also permit the evaluation of some of the three-factor interactions when 
the remaining three-factor and higher order interactions are negligible. The 
plans in which the whole plot treatments are replicated are obtained by con- 
founding some of the higher order interactions among the split plot factors 
with whole plot replicates and, in some cases, also with some or all of the 
whole plot treatment effects. The plans in which a split plot interaction effect 
is confounded only with whole plot replicates are full replicates. The plans in 
which somc intcractions among split plot factors are confounded with whole 
plot replicates and some with whole plot treatment etfects are fractional 
replicates. Thc plans which contain whole plot rcplicates permit the evalua- 
tion of all whole plot main effects and two-factor interactions, all split plot 
main effects and two-factor interactions, and all two-factor interactions 
between one whole plot factor and one split plot factor. The plans vary in the 
degree to which they permit an evaluation of three-factor interactions. 
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C H A P T E R  17 

Conclusions and Apologies 

17.1 The Deslgn and Analysis or Industrial Experiments, 283 
17.2 Omissions, 285 
17.3 Noveltks, 286 
17.4 Cookbook or Research Monograph? 286 

17.1. THE DESIGN AND ANALYSIS OF 
INDUSTRIAL EXPERiMENTS 

I have dealt only with confirmatory experiments, that is lo say, with multi- 
factor trials on operating systems. I have outlined, sometimes at tedious 
length and with embarrassing simplicity, the steps that must be taken in 
planning such experiments. You must: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Analyze all thc rclcvant data that you have, including literature sources, 
by some variant of “multiple regression.” (There is at least one book 
on the analysis of rniscellancous, unbalanced, historical data.) This 
will sometimes (perhaps one time in four) be of direct aid in planning 
further experimental work. 
List all the factors you want to vary, with the range of variation and 
the number of levels that you desire for each. 
List all the responses you plan to measure, with whatever is known 
about the precision of tneasurement of each. 
Construct an “influence matrix” with each factor of item 2 for a row, 
and each response of item 3 for a column. Enter in each cell what you 
know of the effect of that factor on that response. 
Decide-- or guess- which factors may not operate additively, and 
record these potential two-factor interactions. 
Decide how many trials (each under different experimental conditions) 
you can afford to make. 
See whether the number from item 6 exceeds the number of parameters 
implied by your estimates in items 2 and 5 .  If it does not, you will not 
even be able to study your factors at two levels each. 

28 3 
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8. 

9. 

10. 

11. 

12. 

13. 

14. 

CONCLUSIONS AND AI’OLOGIES 

Decide whether you will learn anything from a set of trials that includes 
most factors at two levels, with some at three. if you are willing to 
consider such a coarse survey of the system’s operation, then look for 
a 2’9”’ subset of the full 2”3“ factorial which will give you the estimate 
you want, ivirh an excess number of degrees of freedom for studying 
the data. This excess shoutd be greater than 8, I think, and may be 20 
or 60. 
Having found a plan, inspect it carefully for trials that may be imprac- 
tical or unworkable. If there are several of these, you may have to 
shrink some factor ranges, or even subdivide the work into two or more 
subplans. 
If the plan is inevitably nested, orland if some f‘actor is at random levels 
(being a sample of some population), construct a “dummy analysis of 
variance table” for your chosen design, to make sure that you have 
adequate degrees of freedom for judging each effect. 
Build in all that you know and can afford to study. Randomize over 
what you do  not know, insofar as possible. 
If raw materials must be accumulated, be sure to have an excess for 
repeated runs, for following promising leads, and for clearing up 
confusion from aliasing. 
Do the same for time and manpower as for raw materials. You are in 
desperate straits if all your funds, time, and raw materials must go into 
uiie plan, with final answers required at  the end. Reserve, then, one third 
to one half of your capacities for follow-up. 
Repeat trials that you suspect are atypical. 

These suggestions are not meant as substitutes for any of the rechnical 
thought and preparation that all careful experimenters take for granted. They 
are meant to replace old-fashioned notions about one-factor-at-a-time ex- 
perimentation because of the gains in generality and in precision that are 
possible. 

The weary reader may well feel that this little book contains too much 
postrnortcm analysis and not enough material on planning ahead. The 
balance struck here is necessarily a reflection of my own predilections and 
limitations. A few novelties have been turned up in experiment design, but 
most of my own life in statistics has indeed been spent “between engage- 
ments,” that is, in studying the results obtained by experimenters, and only 
then trying to hclp them guess what should be done next. 

The broad advice on the analysis of experimental data can be put into a 
few words : “Verify and revise if necessary the assumptions behind the stan- 
dard analysis you would like to make.” These assumptions are of two kinds. 
Some concern the “model,” whether descriptive or mechanistic, that is, the 
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representing equation with its unknown, presumably fixed, constants; the 
rest concern the distribution of the random fluctualions, including the un- 
controllable appearance of occasional bad values. A number of examples 
of each sort have been given. 

The model assumptions most commonly violaled (and so indicated by the 
data) are thcse: 

1. The response function is of the same form in XI at all settings of X2 . . . 
x,. 

2. The response pattern is the same in all blocks and in all replicates except 
perhaps for constant offsets. 

The distributional assumptions that most frequently fail are: 

1. 

2. 
3. 
4. 

There are no bad values in the data (decimal point errors, or wild values 
that are unlikely ever to appear again under the same experimental 
conditions). 
The variance of y is constant at  all X .  
Observed responses are normally distributed at all X. 
Random disturbances in successive trials are independent or at least 
uncorrelated. 

The reader who has examined earlier chapters will not need to be told 
again that, whereas homogeneity of variance (like normality and like statis- 
tical independence of successive observations) cannot be proved, hetero- 
geneity (like nonnormality and like serial correlation) can be detected in 
some sets ofdata. 

17.2. OMISSIONS 

There are many omissions in these chapters. Those that weigh most heavily 
on my conscience are : 

1. New work on small 2"3" plans [Hoke 1974; Margolin 1968, 19721. 
2. J. Mandel's extended models for two-way layouts with interactions 

LMandel 1969a., b, 19711. 
3. My own work on one-at-a-time pIans [Daniel 1973). 
4. G. F. Watson's work, with its succcssors, on group screening [Watson 

1961 ; Patel 1962, 19631. 
5, Partially hierarchal plans [Brownlcc 1965, Chaptcr 16; Scheffk, 1958, 

Sections 5.3, 8.31. 
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6. Balanced and partially balanced incomplete block plans [Clntworthy 
19731. 

7. Recent work on experiments with mixtures [SchefE 1963; Gorman 
and Hinman 1962; Mctean and Anderson 19663. 

8. Second-order responsesurface plans [Box et al. 1954,1955,1957; Hunter 
and Box 1965; Draper and Stonemao 1968, Hill and Hunter 19661. 

9. J. W. Tukey’s work on exploratory data analysis and on robust analysis 
in general [Reportedly to be published in 19761. 

10. Design of‘ experiments for nonlinear models [Herzberg and Cox 19691. 
11. Recent work on the power ofcommon significance tests [Wheeler 19743. 

There are others that do not weigh so heavily, including some, I am sure, 
that are not included because of my lack of awareness. 

17.3. NOVELTIES 

A large part of the book is enlirely standard, following Fisher, Yates, 
Davies, and Cochran and Cox as closely as possible. I append a list for those 
who want to proceed quickiy to my less standard proposals and operations. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 

Interpretation of 2fi (Section 3.4). 
Randomization and its limitations (Section 3.6). 
Residuals in a 32 (Sections 4.3,4.4,4.5, 10.6). 
One had value in a z3 (Section 5.12). 
Rounding in Yates’s algorithm (Section 6.5). 
Interpreting effects and interactions (Section 7.2.5). 
“Logging” (Section 7.3.2). 
Dependence of residuals on factor levels (Section 7.3.4). 
Structure in 2fi’s; separation of interactions from error (Sections 8.2, 
8.3, 8.5, 8.6). 
Estimating the size of an experiment or sequence (Chapter 9). 
Minimal blocks of 2 (Sections 10.3.2, 10.3.3, 10.4. I). 
Against Plackett-Burman two-level designs (Section 13.2). 
Augmenting 2”3“ main effect plans (Sections 1.3.3-1 3.5). 
Nonnormal error and components of variance (Section 16.2). 
Fractional replication in split plots (Section 16.4). 

17.4. COOKBOOK OR RESEARCH MONOGRAPH? 

Earlier drafts of this work have been criticized for their lack of focus. 
This criticism has aided me in rewriting many chapters, although usually, it 
now seems to me, the focus has not been sharpened. One tries to see ahead as 
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broadly as possible, although the word srrcrtcgy has not once been used. One 
tries to carry each precept, hunch, and suspicion as far as possible, down to 
the last arithmetical detail, But it often happens that the details of the arith- 
metic uncover something unforeseen. It is  standard scientific expository 
practice (not mine) to conceal these lucky accidents, and to rewrite as if one 
had proceeded deductively all the way. “First the hypothesis, then the as- 
sumptions, then the mathematics; then stop. Leave the arithmetic to the 
reader or to the lower orders.” I believe it is more instructive and more 
stimulating to show how one finds out. 

I have tried to state some tolerably general findings, and to carry them 
back to some fairly general recommendations, I have tried to carry each 
through to concrete numerical examples, demeaning though this may appear. 
This is, then, a cookbook, but only very amateur cooks -and perhaps some 
philosophers of cooking-will nut know that a good cookbook is used better 
by a good cook. 

It must have been clear long before Section 17.2 that this is not a general 
handbook, not an exhaustive treatise, and surely not an introductory text- 
book. But, as Section 17.3 rather immodestly insists, it does contain some 
new results and so may charitably be called a monograph. 

I have tried to avoid sybillic doubletalk. I never write “in a certain sense” 
or “in essence.” I have nowhere issued warnings that such and such must be 
used very cautiously without an immediate example of what is required for 
caution. There is, then, I hope, no oracular pretension. The serious reply to 
the question of the section title is, “A bit of each.” 
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