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Preface

An experiment is an intervention in the operation of a working system. It is
always done to learn about the effect of the change in conditions. Some con-
ditions must be controlled; some, at least one, must be varied deliberately,
not just passively observed. To avoid Chantecler's mistake, the variation
should not be regular. (You will remember that Rostand’s cock thought it
was his crowing that made the sun rise) All industrial experiments are
interventions; unfortunately not all are irregularly timed interventions.

It is impossible to make any very general statistical statements about
industrial experiments. No claim is made here for the universal applicability
of statistical methods to the planning of such experiments. Rather, we
proceed by examples and by modest projections to make some judgments
on some sorts of industrial experiments that may gain from statistical
experience.

Industrial experiments may be classified in several ways that carry impli-
cations for statistical thinking. First, I put J. W. Tukey’s distinction between
confirmation and exploration experiments, which might well be extended by
the small but important classification of fundamental, or creative, or stroke-
of-genius experiments. This book deals almost entirely with confirmatory
experiments, a little with exploratory ones, and not at all with the last type.
Confirmation experiments are nearly always done on a working system and
are meant to verify or extend knowledge about the response of the system to
varying levels or versions of the conditions of operation. The results found
are usually reported as point- or confidence-interval statements, not as
significance tests or P-values.

A second way of classifying experiments is based on the distance of their
objectives from the market. As we get closer to being ready to go into pro-
duction (or to making a real change in production operations), it becomes
more important to have broadly based conclusions, covering the effects of
realistic ranges of inputs, operating conditions, on all properties of the
product. The farther we are to the right on the God—Mammon scale, the
more useful large-scale multifactor experiments arc likely to be.

Vit
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A third classification involves continuity of factors, If most factors in an
experimental situation are continuously variable and are controllable at
predetermined levels, the whole range of response surface methodology
becomes available. These procedures are only cursorily discussed here, since
there are already many excellent expositions in print. When many factors
are orderable in their levels, but not measurabile, the response surface methods
become less useful. When many factors are discrete-leveled and unorderable,
one’s thinking and one’s designs necessarily change to accommodate these
facts. It is with these latter types of situations that this work is mainly
concerned.

A fourth classification distinguishes between experimental situations in
which data are produced sequentially and those in which many results are
produced simultaneously, perhaps after a lapse of time. Pilot plants, full-
scale factory operations, and even bench work on prototype equipment
usually produce one result at a time, Storage tests, and clinical trials on
slowly maturing diseases are examples of situations that are intrinsically
many at a time, not one at a time, They are always multiple simultaneous
trials since a long time may be needed to fill in omissions. A very large
number of such experiments have been carried out, and dozens have been
published. They are strongly isomorphic with the corresponding agricultural
factorial experiments. At the one-at-a-time end of this scale 1 believe but
cannot prove that some statistical contribution is to be expected. No
examples of completed sets can be given.

Experiments vary in their sensitivity. In some situations the effect of
interest 4 is four or more times the error standard deviation o of the system,
so that 4/c = 4. In such cases, small numbers of trials (runs, tests, sub-
experiments) are required, and replication is supererogatory. This happens
most commonly in physical sciences, and in bench work when the experi-
mental setup is familiar and stable. At the other extreme are situations in
which d/o < I, as is common in the biological sciences, inctuding clinical
trials, and in work on large-scale, even plant-wide, experiments, where
uncontrollable variation is always present and small improvements are
commercially important. Statistical methods can be well adjusted to this
whole gamut, and the details of this coverage will be given in several chapters.

The book should be of use to experimenters who have some knowledge
of elementary statistics and to statisticians who want simple explanations,
detailed examples, and a documentation of the variety of outcomes that
may be encountered.

CUTHBERT DANIEL

Rhinebeck, New York
March 1976
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CHAPTER 1

Introduction

1.1 The Range of Industrial Resesrch, 1

1.2 Scientific Methods, 2

1.3 Making Each Piece of Data Work Twice, 3

1.4 First Stages in Planning Industrial Experiments, 4

1.5 Statistical Background Required, 5

1.6 Daing the Arithmetic, 6

1.7 Sequences of Experiments, 7

1.8 The Future of the Design of Industrial Experiments, 7

1.1. THE RANGE OF INDUSTRIAL RESEARCH

The connections between scientific research and industrial research are
sometimes very close. In studying a new industrial use for the water-gas
shift reaction, for example, industrial research workers would depend heavily
on the theoretical and experimental results in the technical literature. In
producing a new modification of a familiar dyestuff with somewhat improved
lightfastness, one industrial organic chemist would start with a careful theo-
retical study and search for the relevant literature. Another equally able
chemist might prefer a wider search of alternatives directly in the laboratory.
In attempting to find acceptable operating conditions to make a new petro-
chemical, it might well be discovered that ne basis for a theory exists until
a considerable volume of laboratory work has been completed.

A wide spectrum of degrees of empiricism already exists, then, in industrial
research. The word theory is used with entirely different references in dif-
ferent parts of this spectrum. The word may be almost a term of derogation
when used by a chemist working on a problem requiring a high degree of
empiricism, to describe the work of another who has a good mathematical
background but a less sound laboratory foreground. In such contexts the
term in theory, yes is usually understood to be followed by the phrase in
practice, no. Contrariwise, the experienced kineticist (even more so, the fresh
graduate) may believe that the bench worker should use the term conjecture

1



2 INTRODUCTION

or the expression set of vague and prejudiced hunches rather than the fine word
theory to describe the set of beliefs under which the latter is laboring.

The effects of some factors on one property of an industrial product may
well be broadly guessed or even precisely predicted from available theory,
But no industrial product has only one property of interest. It must be stable
and inexpensive and small and inodorous and easy to use, and so on, through
a list of perhaps 20 attributes. For many of these, little or no theory will be
available. Even when theoretical methods might yield correct answers, it may
be that no one is available who can use these methods expeditiously. Time
will often be saved by simply *‘getting the data.”

Most of my own experience with industrial experimentation has been near
the empirical end of the spectrum just indicated, and this bias will show
repeatedly in later chapters. The two-level multifactor fractional replicates—
and other incomplete two-level factorials—which are one of the principal
subjects of this work are quite surely of wide application when a broad range
of experience must be accumulated economically in the absence of easily
applied theory. Little, but still something, will be said about the prospects
for other, more theoretically developed branches of industrial research.

Real differences of opinion on how best to proceed may become very
important. Theoreticians may judge that a problem should first be studicd
“on paper”; laboratory workers may feel certain that the primary need is
for more data. Compromises should be considered. Perhaps both views can
be implemented at the same time. If the theoreticians can tell the laboratory
workers what data they would most like to have, the information may be
produced more quickly than either group thought possible. This is so because
more can be found out per run made or per compound synthesized or per
product modification carried out than most experimenters realize.

1.2. SCIENTIFIC METHODS

The research worker is often able to see the results of one run or trial before
making another. He may guess that he can improve his yield, say, by a slight
increase in temperature, by a considerable increase in pressure, by using a
little more emulsifier, and adding a little more catalyst. He will act on all four
guesses at once in his next run. And yet, in conversation, especially in general
or philosophical conversation, he may state his belief in the value of varying
one factor at a time. Indeed many experimenters identify the one-factor-at-a-
time approach as “‘the” scientific method of experimentation.

Two different phases of research are being confused here. In the very early
stages of any problem, operability experiments must be done, to see whether
any yield or other desired property is attainable. After some set of operable
or promising conditions has been established, the experimenter is very likely
to continue trying simultancous variation of all factors he thinks may help.
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When this no longer works, he may welil decide that he must settle down and
vary the experimental conditions one at a time, in sequences that are natural
for the system in question. This will often involve series of small increments
for each of the continuously variable factors. Confusion appears when
methods that seem appropriate for the later stage are claimed as valid for the
earlier one.

As the process or product gets closer to the market, more and more
conditions and tolerances turn up as requirements. Toxicity, inflammability,
shelf life, and compatibility with dozens of other materials may have to be
studied. The tolerance of the product to a wide variety of circumstance of use
begins to assume major importance. The research or development technician
must now investigate a whole set of new conditions. He must be able to assure
the producing and marketing divisions of his company that the product can
be guaranteed safe, efficient, and operable under a range of conditions not
studied when it was first being considered and developed.

Because of the shortage of available technicians, because of the entire lack
of any theory for some properties, because of the multiplicity of factors that
may influence a product, and because of the other multiplicity of factors to
which it must be insensitive, industrial research often differs widely from
pure or basic research. In particular, more factors must be studied, and so it
is often said, and rightly, that more data must be taken in industrial research
problems than in pure research ones.

1.3. MAKING EACH PIECE OF DATA WORK TWICE*

It does not follow that the enormous amounts of data often accumulated
in industrial research laboratories are entirely justified. Most experimenters,
and most research directors too, 1 believe, have assumed that each piece of
data can be expected to give information on the effect of one factor at most,
This entirely erroneous notion is so widespread and so little questioned that
its correction should start right here with the simplest possible example to the
contrary.

A chemist has two small objects to weigh. He has a double-pan scale of
fair precision and of negligible bias and a set of weights with excellent
calibration. He would like to know the weight of each object with the best
precision possible. He is to make two weighings only. His experience, habits,
and common sense conspire to tell him to weigh one object (call it P) and
then to weigh the other, Q—carefully of course. For each object there will be
one weighing, one piece of data, one weight.

There is, however, a way to find the weight of each object as precisely as if
it had been weighed twice and the two weighings averaged. To do this each

* This expression is due to W. J. Youden.
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object must indeed be weighed twice. But we are allowed only two weighings
in all. Hence each object must be on the scale pans twice. If the two objects
are put in one pan and weighed together, we get an estimate of the sum of the
two weights. To separate the components we must either weigh just one, or
else find their difference. By placing one object in one pan and one in the
other, we can, by balancing with the calibrated weights, find the difference,
Calling the sum of the weights § = P + @, and the difference D = P — @,
we see that the average of § and D measures the weight of P only, since @ is
exactly balanced out. Similarly, the average of S and — D measures the
weight of O with P exactly balanced out. We have then weighed each object
twice, in two weighings, each with the precision of two averaged weighings.

The disadvantage of this “weighing design” is that no information is
available until all the data are in. The reward for the delay is, in this case, the
double precision. The moral, to be given extended emphasis and develop-
ment later, is that each observation can be made to yield information on two
(or more) parameters. Indeed the number of times that each observation
can be used increases steadily with the number of observations in each
balanced set. What is required is planning. In most cases, little or no infor-
mation is extractable along the way. Finally a computation, usually quite
simple, must be made to extract all the information at once.

The pronounced improvement of the (S, D) pair of weighings over the
(P, Q) set becomes a minor matter when compared with the gains that are
attainable when larger sets of weights or any other measurements are to be
estimated. The simplest case was used here as an example that does not
appear to have been mentioned since it was first pointed out by Hotelling
[1942].

1.4. FIRST STAGES IN PLANNING INDUSTRIAL EXPERIMENTS

The stated aims of an industrial experiment are not the same at all of its
stages, but the same broad desiderata seem to emerge repeatedly. We always
want to know whether an effect holds fairly generally, and whether an ap-
parent lack of effect of some factor is a general lack. Fisher’s determined
emphasis on the importance of a broad base for scientific inferences can never
be forgotten. It is not a counsel of perfection but rather a sine qua non for
good industrial research.

Some experimenters believe that they must be able to judge early which
factors are going to be influential. They foresee, or think they do, that the
experimental program will become unmanageably large if all factors are
admitted for detailed study. But if factors are dropped from the active list
too early, on the basis of relatively small numbers of data, it may take the
research worker a long time to get back on the right track.
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It is better to write down quite early a full list of all the factors that might
influence the desired properties of the product under development. A valu-
able exercise in planning an attack on a new problem is to prepare a cross
tabulation of all potential factors by all interesting properties of the product
or process. This “influence matrix” should be a dated record of the ex-
perimenter’s opinions about the effect(s) of each independently controllable
variable on each property. Its use is discussed in Chapter 9.

Within the limits of practicability it is desirable to look at each factor’s
effects under a wide range of conditions or levels of the other factors. A
stable effect, even at zero, over a wide range of settings of the other factors is
reassuring because broadly based. On the other hand, if the effect of some
factor varies, perhaps even changes sign depending on the settings of the
others, this information is important and should be known early. Balanced
or nearly balanced sets of runs provide the easiest way to learn about these
situations.

Perhaps the major departure of this work from others with similar subject
is its attitude toward the assumptions that are usually made before experi-
mentation is started. The standard assumptions of most statistical treatments
are as follows:

1. The observations must be a fair (representative, random) sample of the
population about which inferences are desired.

2. The observations are of constant variance (or at least the variance must
be a known function of the independent variables), are statistically
independent, and are normally distributed.

3. Few or no bad values will be produced, and few missing values.

Assumption 1 is for the experimenters to guarantee. The three parts of
assumption 2 can often be verified, or at least refuted, by the data themselves.
Responding to the myriad ways in which data fail to meet these requirements
will be a major part of the effort. Assumption 3 is violated in a large number,
perhaps 307, of all industrial experiments. Methods are given for spotting
bad values, and for drawing valid conclusions, though often with reduced
precision, in spite of these defects.

1.5. STATISTICAL BACKGROUND REQUIRED

I assume that the research worker reading this book knows a few of the
fundamentals of applied statistics. Foremost among these are the following:

1. The prime requirement for drawing any valid inference from experi-
mental data is that the inferrer know something about the way in which
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the data (a sample) represent nature (the population). The prime require-
ment for the validity of any conclusions drawn from the study of experi-
mental data is that the data be a real sample of the situations to which
the conclusions are to apply.

2. The basic terms—statistic, parameter, sample mean, sample standard
deviation, standard error of a mean, regression coefficient, least-squares
estimate—should all be familiar. They will all be defined and described,
but if the reader is encountering many of them for the first time, he will
not find these pages easy reading.

3. The most pervasive generalization in the whole of statistics is the Central
Limit Theorem. Its effect is to make averages of independent observations
more nearly Gaussian in their distribution than the error distributions
of the single observations. Since a large proportion of the parameter
estimates we make are averages, the central limit theorem must be
working for us a large part of the time. This comforting circumstance
cannot account for the apparent “normality” we will repeatedly find in
residuals, however, since they are heavily dependent on the single ob-
servations themselves. For these we must believe that a considerable
number of small additive, nearly independent factors are responsible,
No quantitative knowledge or application of the theorem is ever neces-
sary. It simply operates, like a law of nature, but, unlike other laws,
generally in our favor. The reader is referred to Cramér [1946] for
an illuminating discussion of the central limit theorem and of its ante-
cedents.

1.6. DOING THE ARITHMETIC

Many research engineers and industrial scientists are repelled by the mo-
notonous and extensive arithmetic that statistical texts and handbooks seem
to demand. My sympathies are with them; much of this drudgery is un-
necessary. Nearly all the arithmetic in this book has been done by hand,
perhaps on a desk calculator. Intelligent coding and rounding are of the
essence and frequently result in reducing time, as well as errors, to a small
fraction of their former magnitudes.

When 10 or more experiments (or responses in a single experiment of size
16 or larger) must be analyzed, time will be saved if the standard algorithms
(for the analysis of variance, for Yates’s method in 2" plans, for partially
balanced incomplete blocks) are available on a computer, Do not consider
any program that does not compute and print residuals automatically, pref-
erably rounded to two digits.

The plotting of cumulative empirical distributions of residuals on a
“normal” grid is again a tedious job when done as proposed in the few
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textbooks that mention it. But when the number of points is large, the job
can be greatly shortened. Standard grids for N = 16, 32 are given that require
no calculation of probability points. All large computers have been pro-
grammed to a fare-thee-well to make approximate plots without special
peripheral equipment, and only approximate plots are needed. I have found
too that, when the number of points exceeds 100, it is usually necessary to
plot only the largest 25 or so (including both ends). As soon as the plotted
set “point” straight through the 505/ point, there is no need to continue
plotting.

1.7. SEQUENCES OF EXPERIMENTS

The analysis of sequences of agricultural experiments has been studied
extensively by Yates and Cochran [1957, pages 565 fI.], and much can be
learned from this work. The design of sequences of industrial experiments
is much less fully developed, although economical augmentation of early
experiments seems to be crucial in industrial research. The earliest work in
this area was by Davies and Hay [1950]. Less clear, but more economical,
augmentations were published in 1962 [Daniel]. {Although trend-robust
plans (Chapter 15) are carried out in sequence, they are not really adaptive
designs but have to be carried all the way before effects can be estimated.)

1.8. THE FUTURE OF THE DESIGN OF
INDUSTRIAL EXPERIMENTS

Major new developments in the design of industrial experiments seem to
me to await the appearance of well-educated statisticians who want to work
in close touch with industrial scientists. Many mathematical statisticians are
under the illusion that they and their graduate students are writing for a
future which they forsee without benefit of detailed knowledge of the present.
A tiny proportion of their work may be remembered 20 years from now.

As in the past, many developments will come from scientists and engineers
with extensive experience in industrial research. But we need in addition a
cohort of modest graduate statisticians who recognize the productiveness of
going directly to industrial scientists to find out just how they do their re-
search. Far too many graduates, and even some senior statisticians, are
willing if not anxious to tell scientists how to plan their experiments, in
advance of knowing just how such work is now done. There are, fortunately,
a few outstanding exceptions. I think especially of the work of Box, Lucas,
Behnken, W. G. Hunter, N. R. Draper, and their associates on “nonlinear”
design. A shortcoming of this book is its lack of any treatment of these
plans—an omission due to my own lack of experience with them.
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CHAPTER 2

Simple Comparison Experiments

2.1 An Example, 9
2.2 The Effccts of a Factor? 10

2.1. AN EXAMPLE

The example is taken from Davies (1956, Ed. 2, printing 1971, pages
12-18]. Only one criticism is to be made, and that with some hesitation, since
this is the fundamental work on industrial experimentation (from which I
for one have learned more than from any other book).

We quote from Davies, Section 2.21:

The experiment was required to test whether or not treatment with a certain
chlorinating agent increased the abrasion resistance of a particular type of rubber.
The experimenter took ten test-pieces of the material and divided each piece into
two. One half was treated and the other half was left untreated, the choice of which
half of the specimen should receive the treatment being made by tossing a coin. The
abrasion resistances of the ten pairs of specimens were then tested by a machine, the
specimens being taken in random order.

Perhaps most experimenters would prefer to call such a collection of data
a test, so as not to invoke the grander connotations of the term scientific
experiment. It is not clear from the description or from later discussion
{page 43, Figure 2.5) whether all 10 specimens were taken from one sheet of
rubber. Since we need a straw man for this discussion, Jet us assume that the
10 were indeed a random sample from a single sheet. Randomization of the
choice of half piece for chlorination plus random allocation of sample
points in the sheet of rubber have guaranteed that any difference found and
judged to be real has a good chance of being confirmed if measured over the
whole sheet.

But the data come from one sheet of rubber. The pains taken to obtain
precise and “unbiased” data have resulted in our getting into our sample

9
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only a small corner of the population about which we suppose the experi-
menters wished to make a statement. If other sheets, from other batches or
from other manufacturers, would respond differently to this treatment, then
we will be misled by the results from our single sheet. The conclusion from
these data, expressed as a **95% confidence interval on the true effect of
chlorination,” is applicable only to the average effect for all parts of the sheet
sampled.

It may well have been that only one sheet of the particular type of rubber
under study was available. But if more than one could have been sampled,
more valid conclusions would have been reached by sampling them alil.
Sampling 10 sheets chosen at random would be best. Moreover, if several
manufacturers produced this type of rubber, still greater validity could have
been guaranteed by sampling all, even if only with one specimen from each.

An important function of the design statistician is to give the experimenter
pause, before he takes his data, in order to help him avoid the commonest
of all mistakes in experimental (and testing) work. This is the mistake of
premature generalization. It is most frequently caused by assuming that the
data are a proper sample of a wider population than was in fact sampled.

It is time for Sermon 1: “The Contribution of the Statistician (§) to the
Experimenter (E).” It will be a short one.

The major contribution of S to E is to help him obtain more valid, that is
to say, more general, more broadly based, results. It will often happen that,
when this point has been adequately covered, no need is felt, or time available,
for repeated measurements under closely matched conditions. The most
useful replication will be that which best samples the population of con-
ditions about which £ wants to make inferences. In this sense, the best
replication is done under different conditions, not under the same conditions.

Although we are by no means through with simple comparisons, the
experimenter will perhaps see a new answer to the question usually asked
rhetorically: “What can statistics do for me?” The statistician reader, in
turn, may give a somewhat new emphasis in answering the question, ‘“What
is the key assumption underlying the valid use of a confidence-interval
procedure?”* His response should be that we have a set of observations with
known correlations, preferably zero, sampling the population whose param-
eters we want to estimate.

2.2, THE EFFECT OF A FACTOR?

The patient experimenter has been thinking that this is all very simple
minded and not really what he had hoped for. “Real problems are more
complicated. Even chlorination is not that simple. There are many chiori-
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nating agents, there are degrees of chlorination, and so on. Surely we are
not to be told that the effect of chlorination is going to be decided on so
flimsy a basis, with all that fuss about sampling rubber and nothing about
sampling the conditions of chlorination.”

Just as we tried to broaden the base of our experience by better sampling
of the particular type of rubber, so too must we sample better, and system-
atically, the conditions for chlorination. If we do not, we may report “the
effect”” because of our choice of conditions, cven though other levels, not
greatly different, might show larger effects. The rest of this book is concerned
with various aspects of this question.
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3.1, INTRODUCTION

The study of the effects of varying a single factor is usually only a prelude
to the study of the effects of varying several factors. Only minimal generality
is gained by repeated variation of a single factor, with everything else held
constant. This practice is commonly justified by the claim that “we have to
start somewhere.” We do indeed.

Researchers faced with serious scientific problems have long records of suc-
cess in choosing the most important factor and then studying it thoroughly.
Later, if not sooner, however, they usually need to learn about the simul-
taneous impact of two or more independent variables, or at least about the
response to variation of one factor under more than one set of conditions.
If one of two catalysts proves definitely better than the other in cracking a
particular petroleum feedstock, it is inevitable that the experimenters will
want to know whether it is also better, and, if so, to the same degree, in
cracking another stock. They then have before them the simplest two-factor
plan, a 22,

13
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The distinction between factors with qualitatively different levels (or ver-
sions) like the two just mentioned and “quantitative” factors (like pressure,
temperature, chemical concentration) will be made frequently, but at the
moment is not important.

3.2. FACTORIAL REPRESENTATIONS
Suppose, to fix fundamental ideas, that each of two factors, 4 and B, has
been varied, and that the results (responses, )'s) are as follows:

B B
0 1 0 1

0} 66 82 . 01y, V12
A or, in general, A
1 {44 60 & L} vay V22

We hardly need to know the error standard deviation for the “data” on
the left to be able to judge that we have before us the ideal case. Varying 4
from its low to its high level has produced the same change in response
(44 — 66 = 60 — 82 = —22) at both levels of B. Varying B from its low to
its high level has produced a change in response of + 16 at both levels of A.
We can speak, then, of the additivity of effects of factors 4 and B and can
safely symbolize the situation by writing, first generally,

(3.1) Yj = bo + byxy; + byxyj,

where x,; = 0, signaling low A4;
x;2 = |, signaling high 4;
x5, = 0, signaling low B;
x32 = 1, signaling high B;
i indexes the levels of A, ie,i = |, 2;
j indexes the levels of B, ie.,j = 1, 2;
b is the value of Yy, i.e, at the low levels of both 4 and B;
b, is the increment in Y caused by changing the level of 4: it is the
“effect of varying A”;
b, is the increment in Y caused by changing the level of B: it is the
“effect of varying B.”
For the data given above, this becomes

Y” = 66 — 22x“ + l6x:1.

We will consistently use Y (capital) to indicate fitted or predicted or
“regression” values, and y (lowercase) to indicate single observed results.
Variables such as x, and x, in Equation 3.1 that can take only two values
(here 0 and 1) are called indicator (or dummy) variables.
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In an equivalent nomenclature, used because of its greater symmetry, we
may put x, = —1 at low A4, and = + 1 at high A, and similarly for x,. The
effects are now measured as deflections up and down from the general average
(y.) of the results. The half effects are commonly symbolized by their cor-
responding letters, with carets superimposed to indicate that these are esti-
mates, not parameters. The fitting equation is now written as
{3.2) Y=y .+ /'fx” + szj
or, for the imaginary data just given, as
(3-3) )’u = 63 - “X” + 8)(2}-.

All three constants in (3.3) are calculated from the data:

=4{yii + ya + Y2 + 2] = [66 + 44 + 82 + 60] =
= 4[(ya2 + y21) = (12 + ¥
= %[(60 + 40) — (82 + 66)] = 1(104 — 148) = — %
= -11,
B ={(yi2 + y22) — 11 + y2)J*
= }[(82 + 60) — (66 + 44)] = 4(142 — 110) = ¥
=8

b

In tabular form, which avoids some repetition, we have

B
0 1 Row Average  A-Effect
y 01 66 82 74 + 1
1144 60 52 — 1
Column Average | 55 71 63
B-Effect - +8

fB=55-63= -8

Statisticians are wont to write (3.3) in a third way, which is more useful
when there are more than two levels of each factor;

(3.4 b=y, + 8%+ B
where now the i levels of factor A can be numbered 1, 2, .. ., and so also for j.
* These expressions are our first examples of contrasts, that is, of linear functions of variables—

here yy, y2. ¥3, y4—whose coefficients sum to zero. Thus ! + 1 — 1 — | = 0. All effects are
estimated by contrasts.
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Accelerating our snail’s pace, let us suppose that a 22 has been done but
that the results are as follows:

B
0 1 &
y a {67 8i +11
I {43 61 ~11
B -8  +8

Note that the y_, A, and B are the same for these data as for the earlier set.
But now there is a discrepancy of + 1 in each cell. We can represent the de-
composition of the observations into four parts as follows:

67 817 _[63 63 ~1 -1 ~1 +1 +1 -1
33 [43 61]—[63 63]— “[+1 +1]+8[—-1 +1]“[—1 +1]’
(36) Yij = y.. + /‘i X1 + B X2 + AIB x“x2i.

Thus the eflfects 4 and B do not give an exact representation of the four
observed y-values. If g( y) is of the order of 1, this discrepancy is put down to
error.

If a(y) is 0.1, we are confronted by real lack of fit. The factors 4 and B are
said to interact—they no longer operate exactly additively. We can add a
fourth term to our equation, which will obviously have to be of second order,
and equally obviously cannot be of the form x? or x} (these are meaningless)
and so, again obviously, must be of the form Cx;x,. We will make the new
constant easier to remember by writing it as AB, and so the new term is
ABx 1iX2;. Itis called a two factor interaction. In the example we are flogging,

Py

AB = 1. This can be calculated directly from the data by using the tiny

malrix
1 -1
-1 i

at the end of (3.5). Thus we have

AB = 2y = v~ vz + a2 = %[(}’zz = yi2) = (a1 — yid}s

where the second form makes it clear that AB depends on the difference
between the A-effect at high B and the A-effect at low B. The term “two-factor
interaction” will be abbreviated as 2fi throughout this book.

In the representation of (3.4) we can now write
(3.7 Yij =y, + &+ Bj + P

where the first three terms are unchanged in meanings and values from (3.4).
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The 9;; nomenclature is widely used [Brownlee 1965, Scheffé¢ 1958] but is
only minimally useful for the 22 since it contains only one degree of freedom
(d.f), although there are four i, j combinations.

Adding two more self-explanatory modes of specification of the four
“experimental settings” for the 22, we have Table 3.1.

TABLE 3.1.
Four ALTERNATIVE REPRESENTATIONS OF THE EXPERIMENTAL CONDITIONS
FOR THE 2 x 2 FACTORIAL PLAN, THE 22+¢

Symmetrical
Digital Coordinates
Run No. Uppercase A B Xy X Lowercase Response
1 AoBy 0 0 -1 =1 ) i
2 A 1 Bo 1 0 + i -1 a ¥a
3 AOBI 0 { -1 + | b ¥Ya
4 A B, 1 1 +1 +1 ab Va

The four nomenclatures are designated here as uppercase, digital, sym-
metrical, and lowercase. They are, of course, ways of specifying the experi-
mental conditions, not the responses. The uppercase symbols give levels of
factors by subscripts; the digital symbols are two-digit numbers: 00, 01, etc,,
and are simply the subscripts of the uppercase symbols; the symmetrical
coordinates are the levels of x; and x, restricted to be +1 or —1I. The
lowercase symbols are the most compact, since they use the absence of a
letter to indicate the lower level, and the presence of a letter to indicate the
higher level, of the corresponding factor.

Returning to our “concrete” example, the reader who is following closely
will see that the fitting equation for these four values in the factorial repre-
sentation is

(3.8) Yu = 63 — llx“ + 8ij + I'OxliXZj'

3.3. YATES’S ALGORITHM FOR EFFECTS IN THE 2?

We start with the ridiculously simple case of the 2!, that is to say, a one-
factor two-level experiment, and consider Table 3.2, The experimental con-
ditions are indicated by (1) and a, and the results by y, and y,. The columns
headed T and (A4) show how the data would be treated to find twice the
mean and twice the A-effect. To make a short story long, we add the pair
and then subtract y, from y,. To get the two equation constants, we divide
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TABLE 3.2,
TABLE OF SIGNS AND YATES'S ALGORITHM FOR THE 2!

Spec. Obs. T =2y (4) = 24 Obs. Column 1 Name
(n Yt +1 -1 Y1 ya + T
a ¥z +1 +1 Y2 Y2 — % (4)

by 2*. The fitting equation is then
y = y + "ixl,

where x, is the indicator variable that takes the values — 1 for low A and + 1
for high A. We have omitted the fussy subscript i here.

For the 2% we also handle the numbers one pair at a time. As Table 3.3
shows, adding numbers in pairs removes the effect of factor 4. These sums
are entered in the first two lines of column 1. We recover the simple A-effects
by taking differences between the pairs as in the last two lines in column 1.
From the name of each of the four entries in column 1, we see how these
must be combined to give our effects (each multiplied by 2?), Adding the
pairs of column 1, we get T (the total) and (4), the contrast-sum that mea-
sures 44. These arc shown in the first two lines of column 2 of the next table,
Table 3.4. We see, too, that the difference between the low-B sum and the
high-B sum will give the total B-effect (= 4B), and that the difference between
the two A-cffects will give 44B.

TABLE 3.3.
PartiaL COMPUTATION OF FACTORIAL EFFECTS
FOR THE 22 BY YATES'S ALGORITHM

Spec. Column 1 Name of Sum or Difference

n a + (1) Low-B sum
a ah + b High-B sum
b a - (1) A-effect at low B = A,
ab ab — b A-eflect at high B = A,

Written out in such detail, these directions may not seem timeworthy, but
this algorithm is wonderfully compact when n = 3 or more, and we will show
further uses for it ater. In Table 3.5 the data that follow (3.4) are put through
this computation for practice. The panel on the right is an exercise for the
reader. [In this table, as in many others presented subsequently, (0), (1), (2),
etc., in the heading designate column 0, column 1, column 2, etc.]
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TABLE 3.4.
CoMmPLETE COMPUTATION OF FACTORIAL EFFECTS FOR
THE 22 BY YATES'S ALGORITHM

Spec. Column 1 Column 2 Name
(1) a + (1) ab + b + a+ (1) T = 4):,
a ab + b ab — b+ a - (1) (4) = 44*
b a - (1) ab + b —a—(1) (B) = 48
ab ab — b ab — b —a+ (1) (AB) = 44B

* The symbol (A4) will be used in this work to denote the
total effect of A. As mentioned in the text, it is called a
“contrast-sum” and is always 2"4.

TABLE 3.5.
SampLe COMPUTATION FOR A 22
(0) (1) 2) (3) CH Obs.
Spec. Obs. (2) = 4 Name {An Exercise)
() 67 110 252 63 ¥ 11
a 43 142 44 —11 A 1
b 81 —-24 32 +8 B 35
ab 61 —-20 4 +1 AB 51

We can see how well the equation without the interaction term fits the
data by reversing the algorithm and seiting AB = (. This is done most
simply by writing the effects in inverse order, carrying through the same set of
additions and subtractions, and reading off the fitted values in inverse
standard order, as in Table 3.6.

TABLE 3.6.
REVERSAL OF YATES'S ALGORITHM TO CoMPUTE FITTED VALUES
FROM EFFECTS

Effect {0 (1) =Y Spec. ¥ dy=y~-Y

-

Al 0 8 60 ab 61 1
B 8 52 82 b 8t —1
A -1 8 44 a 43 -1
y 63 74 66 h 67 1
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The residuals, d, = y — Y, are forced to be of the same magnitude and
to have the signs of (4B) because we are fitting three constants to four
observations. We know that the addition of an interaction term to our
fitting equation will give us an exact fit. There is then but one d.f. in the
four residuals, rather than four separate measures of lack of fit to the additive
model.

3.4. INTERPRETATION OF A FACTORIAL EXPERIMENT
WHEN INTERACTIONS ARE PRESENT

As we glance at the factorial representation of our 22 given by (3.8}, we
may think that the last term, having a notably smaller coefficient than either
of its predecessors, should be dropped. Expressing the same idea in another,
equally tendentious way, we may say that the equation using only the
additive main effects represents all data points with residuals of +1. And
yet, and yet, we must not forget that the two simple A-effects A, and A,,
~24 and — 20, may for some situations be seriously different. If the average
random error of observations is 0.1, and if the experimenter has a physical
model that requires additivity of the effects of A over the range of B under
study, then the data have sufficed to reject his model.

Our example is too small, as well as too fictitious, to interest us further
for its own sake. But a warning and an aid to clarity are in order. Many who
use the effects-and-interactions mode of description do not notice that an
apparently small interaction may have serious consequences.

Representing the ratio of the two simple effects, A 4,/A,, by r, and the ratio
of the interaction to the average main effect, AB/A, by f, we have

=7
T+

(This formula has the pleasant property that it remains true even if one
forgets which ratio is r and which f) We see that, if f = 4, r = 4. Thus we
might well find A significant and AB not, and so might ignore the fact that
the data are “trying to tell us,” namely, that the A4,-effect is only one third of
the A,-effect.

When the interaction is as large in magnitude as a main effect, we have
S = 1,and so r = 0. In words, 4 has no effect at one level of B, and all of its
effect (and so twice the average, A) at the other level of B. There are many
examples of this in the published literature, but none has been pointed out
explicitly.

When the 2fi (between two two-level factors) is of nearly the same mag-
nitude as both main effects, there is again a better way to describe the situation.

or, if f = g then r=21_2F



3.5. INTERMEDIATE SUMMARY 21

Suppose that —4 = B = AB = 1. Then the average responses will look
like this:

B
1 1 .
A with mean zero,
-3 1
or like this:
B
21 21 .
A 17 21 with mean 20.

There is one contrast®, not three, and one sentence that describe the
situation completely. The contrast is [(I) + b + ab — 3a]; the sentence is:
“The condition a is adverse {(or advantageous) and the other three combi-
nations of levels of A and B are indistinguishable.” This appeared in the
classic 2° experiment on beans given by Yates [1937]. In his symbols,
-8 = K = 8K, and all three were significant. It might well happen in
another case that all three effects taken singly were nonsignificant, but that
the contrast given above was highly so.

3.5. INTERMEDIATE SUMMARY

The summary takes the form of Sermon II. When you find interactions
that approach in magnitude one or more of their component main effects,
you should examine the combined impact of the effects und the 2fi by the
reverse Yates’s algorithm. You will sometimes find that all taken together
pile up in some part of factor space to produce very large (or very smail)
values there and little or no difference elsewhere. As a general rule: If an
interaction is one-third or more of a main effect, do not report results in terms
of main effects and interactions. Interactions are only a statistical (and hence
descriptive) model’s way of telling you that the simple additive model is
not working. What is working can sometimes be seen by going back to the
data or to the values produced by the fitted model. Interactions are then a
sort of lack of fit; they are residuals from the fitting of an additive model.
They do not always tell us very clearly what to do next in the 22 since the
interaction appears in all four cells, but we will use them in many more ways
in more complex situations.

* The reader will remember that a contrast is a linear function, usually of responses, y,, of the
form 37 ¢;y,, where Y5 ¢; = 0. The ; are exact constants.
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Post Scriptum. There is still another method of reporting interactions
(and main effects) that is even more obscurc than just the giving of their
estimates, and that is to assign a “mean square” to each, to judge their
significances individually and to lcave the matter at that. This practice will
be documented and deplored later.

3.6. THE REPLICATED 2?

3.6.1. General Remarks on Replication

We have usually assumed that the average random error (standard
deviation) of observations is negligible compared to all effects found;
otherwise we have assumed that the average error is exactly known. These
unrealistic assumptions were made in order to expatiate on the definitions
of the factorial parameters, on their interpretations, and on their limitations.

But ¢ is usually not known and usually must be estimated from data,
most simply by replication. The two advantages of a properly replicated
22 a 2%*" then, are that a current estimate of the standard deviation ¢ is
obtained, and that each parameter is estimated with smaller variance o2/4r.
Further replication will give better and better estimation of error and more
and more precise parameter estimation.

Most readers will know what is meant by proper replication. If care has
been taken to randomize the allocation of experimental units to “treatments,”
that is, to the four specified experimental conditions, the replication is quite
surely proper.

Randomization is a form of insurance against two sorts of bias. An un-
randomized experiment may give biased parameter estimates and a biased
estimate of the error variance. The experimenter may then carry out entirely
meaningless tests of significance, and he may compute “confidence intervals”
which are wrongly centered and of incorrect width,

The hazards of nonrandomized tests or experiments are widely different
in different sciences, even in different laboratories. It does seem to be the
case that a very large part of all scientific and engineering data (perhaps
90%;) is taken under nonrandomized conditions. We cannot simply condemn
all these experiments and all these data as worthless. Let us rather indicate
some of the conditions that make randomization more or less needful.

3.6.2. Limitations of Randomization

Although the “state of the art” is not a quantifiable measure, there can be
little doubt that some fields of research exist which are steady enough and
precise enough to advance for long periods with no need for randomization.
A classic example of repeated data that required no randomization whatever
is provided by Michelson’s nineteenth century measurements of the velocity
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of light. They were taken in sequences of several hundred over several years,
and on several experimental setups. Even though later colleagues were not
satisfied, these measurements were “all right” and gave a durable estimate
of the mean velocity of light in air, along with an excellent estimate of the
random error of the measurements, As Walter Shewhart told me long ago,
“the set of several hundred measurements were in as good a state of statistical
control” as any set he had seen. By “a state of statistical control” Shewhart
meant that successive observations evidently varied only by random inde-
pendent disturbances of zero average (no drift) and of constant variance.

As a more current, but imaginary, example a physical chemist who wishes
to check or to modify Benedict’s equation of state for a new gas mixture
will surely standardize or calibrate his equipment with familiar gases or
mixtures, and will then not look back by making further repetitions. He will
vary pressure, temperature, or even trace components in the order that is
technically most convenient. If his data permit satisfactory estimation of
all free parameters in the equation, with perhaps 10 or 15 extra points to
judge goodness of fit and to check for drift, no need for randomization is
apparcnt.

To take an cxamplc at the other extreme, in which it is apparent that
several biased estimates of parameters were published, the 15 reports on
the “solar unit” (average distance of the earth from the sun) appearing
between 1895 and 1961 each gave an estimate of this unit together with
an estimate of its crror, or at least “spread” (sec Youden [1962], McGuire
et al. [1961]). Each new estimated value lies outside the spread given by its
predecessor! It is not easy Lo see how randomization could have been used
to get a fairer estimate of error.

When a detailed physical (or chemical or biological or psychological)
mathematical model exists, which diverges clearly from some alternative
or competing model, it may well happen that a single run will be decisive.
Good experimenters are sometimes able to make tests under just a few
differing conditions that provide decisive evidence when the expected
difference is large. A large difference is of course one that is a large multiple
of its standard error. In 1912 the estimated advance in the perihelion of
Mercury that was not accountable for by Newtonian theory was 43 seconds
per century, not a large amount by most standards. But this difference was
10 times its estimated standard error, and that was enough to justify two
expeditions to the tropics (to make the first tests of the theory of relativity).

When we come to great experimenters—and we do not come to them
often, or they to us—the requirement of randomization is derisible. Their
reportable experiments are nearly always crucial; results must strike all
(well, nearly all) competent readers “between the eyes.” One or more who
are not convinced are likely to plan and carry out an experiment that will
supply striking disproof or, possibly, confirmation. Thus these workers do
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practice serious and not trivial replication, since an experiment repeated
in another laboratory is a more severe test of real effects than is any repetition
in a single laboratory. This is hardly done, however, fo conform to some
statistical canon of unbiasedness. It has been part of the scientific code for
centuries that one man’s work must be verifiable by another’s, at least by
some other’s,

We now come to experimental situations in which randomization,
although theoretically desirable, is not decisive, not needed, perhaps not
even sensible. Suppose that a large number of trials, (say 100) have been
made with careful randomization, and that 100 more have been made with
no such precaution. The sets come from similar but not exactly duplicate
experiments. If analysis of both sets shows no appreciable difference in
error structure, it would be doctrinaire to insist that all future trials be
randomized. Perhaps a fraction, say one quarter, should be, just to keep a
rough monitor on the stability of the system under study. This is once
more what Shewhart demanded when he required evidence that a system
was currently in a state of statistical control,

We do not suggest that randomization be ignored just because “things
appear to be going along all right.” We may not know how nearly ali right
things have been going until some serious randomized trials have been
carried out. We do suggest that randomization, although generally sufficient,
may not always be necessary. But this decision requires evidence, not just
optimism.

There are many cases in which randomization is difficult, expensive,
inconvenient. The random allocation of differing experimental conditions
to experimental units is sometimes upsetting to the experimenter. This
reaction may be much more than just a natural response to an unfamiliar
device. If the system under study takes a long time to come to equilibrium
after a sudden willful change in the level of some factor, then experimental
work, and even plant production, may be slowed to an unacceptable rate by
such a change. Similarly, if a complex system must be partially dismantled
to vary some structural factor, it is not likely that random variation of that
factor will be permitted. The statistician’s way to accommodate such factors
is of course to use “split-plot™ or “partially hierarchal” designs. These plans,
discussed in Chapter 16, have the discouraging property that the effects of
the easy-to-vary factors are always more precisely determined than are
the effects of the hard-to-vary factors.

Perhaps this paragraph should be entitled “Conditions under Which
Nothing Can Be Done.” Agricultural experimenters cannot take a random
sample of years in which to compare varieties or conditions of cultivation;
sometimes they cannot even get a random sample of seeds or test animals,
Blast-furnace operators cannot assign different coke charges to a furnace
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at random. Lung-cancer researchers cannot randomly assign cigarette
loadings to human subjects. Examples can be given from many other fields.

There are, to be sure, ways of randomizing stupidly, even disastrously.
If one treatment is applied to one field “randomly” and another treatment
to another field, the precision of within-field comparisons may be lost. One
clinical treatment applied in one research hospital cannot usually be com-
pared safely with another treatment in another hospital.

We now mention two more experimental situations (to be considered
later in more detailj in which randomization of the usual sort is contra-
indicated. When the experimenter knows that his random error is small
compared to the effects and interactions of interest, when there is little
danger of drift due to uncontrolled causes, and when his equipment requires
him to take one observation at a time, then he may wish to do his work
in such an order as to obtain an early look at simple nonadditivities if they
exist. Such “one-at-a-time” plans have little interest for two-factor problems,
but begin to produce interesting and economical results when three factors
are involved. See Daniel [1973].

When random error is small and one run at a time must be made, but,
contrary to the case discussed above, the system may show drift over sets
of runs, some orders of trials are much better than others. Such plans are
discussed in Chapter 15.

3.6.3. When Is Randomization Useful?

Randomization becomes increasingly useful as we move away from the
various situations described above. Thus (1) when the experimenters can
produce only rough qualitative judgments of the magnitudes of effects (as
multiples of o, the standard deviation of single observations), (2) when
effects of importance are of the order of g, (3) when experiments are necar
terminal, (4) when lower-ranking or younger or even mediocre research
workers must provide evidence that will convince their skeptical superiors,
and (5) when serious, perhaps life-threatening, alternatives are under study
in human experimentation, then randomization may be an essential part of
the experimental design. In cases 2 and S especially, it is decisively important
to secure statistically independent observations, since the experimenters
are relying on the law of large numbers to reach an acceptably small standard
error of each effect. Randomization brings us closer to statistical indepen-
dence.

I have given more space to the discussion of valid nonrandomization than
to the customary insistence on carefu] randomization. This has been nec-
essary to counter the doctrinaire claims of some statisticians which have,
I think, been responsible for repelling many research workers who might
well gain by an occasional randomization.
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I admire and recommend highly the pages on randomization in the
classic book of Cochran and Cox [1957], especially Sections 1.13 and 1.14.
There is nothing doctrinaire in these pages. It is true that there are no
examples in this work of expcrimental data from any of the physical sciences.
My own experiences, having been mainly in the latter areas, have surely
been responsible for my differing emphasis.

The inventor of randomization, or at least its prime developer in exper-
imental agriculture, was R. A, Fisher. Some of the claims made in his Design
of Experiments [1953] are not accepted here. We quote (out of context, of
course, as one aways quotes) from his page 9 of the sixth edition: “The
chapters which follow are designed to illustrate the principles which are
common to all experimentation, by means of examples chosen for the
simplicity with which these principles are brought out.” I do not find stated
or illustrated the principles that are claimed to be common to all exper-
imentation. Section 9 (bearing the title “Randomization: The Physical Basis
of the Test™) curiously does not mention randomization. Section 20 (“Validity
of Randomization™) does state that the simple precautions outlined supply
absolute guarantee of the validity of experimental conclusions. It would
have been sufficiently impressive if only an occasional improvement in
validity had been claimed.

3.6.4. An Example

Federer [ 1955, pages 176 ff.] describes a 2% done in four randomized blocks
of four. The responses are given as “per cents of bud-take success,” and we are
asked to assume that all per cents are based on the same number of grafts.
We look at all the residuals by removing row and column effects from
two-way Table 3.7.

Seeing no signs of serious heterogeneity, we call the residuals reflections
of random error, but only with (4 — 1)(4 — 1) — I or eight d.f. We estimate
the error variance by the mean square residual = 823/8 = 102.9, and the
error standard deviation by s = 10.14, The standard error of the means of
four observations will be s/\/4 = 5.07. The means for the four factorial
experimental conditions are as follow:

(1) 72
a 21
b 36
ab 19

Inspection tells me that calculation of effects is not likely to clarify any-
thing; but if inspection does not tell the reader this, he should put the four
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TABLE 3.7.
NAIK’S DATA, ViA FEDERER [1955, PAGE 177], rOR A 22 1N FOUR Brocks

27

Row
Block (n a b ab Sw Averages
] 64 23 30 15* 132 33
il 75 14 50 kX 172 43
HI 76 12 41 17 146 36
Iv 73 33 25 10 141 35
Ye: 288 82 146 75 591 148
Y — 148: 140 - 66 -2 -73 — 1
Column Deviations: 35 - 16 —~1 —18
Column Averages: 72 2t 36 19 37
Residuals
-4t 6 -2 o*
-3 —-13 8 8
5 —8 6 ~1
3 14 -9 -7

* Observation missing; value inserted to give zero residual.
! Residual = d,; = observed value — fitted value

=y~ Yy=yy =y +n -y )+, -y
=Yy =¥ — ;- )
for example, d,, = 64 — 33 — (72 — 37) = 64 —~ 33 ~ 35
= —4,

means through Yates’s algorithm and get, for M, 4, B, and 4B, respectively,
37, —17.3, —9.3, and 8.5, all with standard error s/\/l_6 or 2.54. The only
simple finding seems to me to be that the response to (1) far exceeds the
responses to the three other conditions, Nature has this time declined to
respond in terms of main effects.

The main (but after all minor) point of this example is to provide a means
of looking at the residuals which are reflections of the random fluctuations
in the response. Later we will take a more severe position in judging the
homogeneity of such residuals. Here it suffices to note that the residuals in
the first column are not at all larger than the remainder, so that there is
little point in a transformation of the data to gain some theoretical homo-
geneity.
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The minor point (for us, major for the experimenters) of the example is
that the partition into main effects and interaction has failed, and that this
is not at all a rare outcome. The higher levels of the two factors that were
varied have damaged “bud take” and have done so nearly uniformly.

The results of this small analysis can be put into “analysis of variance”
format, as in Table 3.8.

TABLE 3.8.
ANALYSIS OF VARIANCE OF FEDERER'S REPLICATED 22

Source of Degrees of Sums of Mean

Variation Freedom Squares Squares
Blocks 3 221 13.7 Nousignificant
(V) vs. a, b, ab i 6557 6557 Significant
Among a, b, ab 2 766 383 Nonsignificant
Residual 8* 823 103

14* 8367 by addition

8363 from data

* One degree of freedom has been lost since only 15 {(not 16} picces of data are given
in Table 3.7.

3.7. SUMMARY

The two-factor, two-level plan, the 22, is discussed in elementary detail,
introducing the factorial representation with its various symbols, the
definition of two-factor interactions, and Yates’s “addition and subtraction
algorithm” for computing all effects and interactions compactly. There is
much homily about the interpretation of large 2fi.

The varying needs for randomization in engineering and other scientific
experimentation are discussed at length. In many situations randomization
is not required or is undesirable; in many others it is a desideratum; and in
some it is a nearly absolute necessity. The need depends on the ratio of the
effects to be detected to the error standard deviation and on the nearness
of the program to final, costly decision.

APPENDIX 3.A
THE ANALYSIS OF VARIANCE IDENTITIES

A.1. One Set of Repeated Observations

Designating the observations as y, (i = 1, 2,..., 1), and their mean as
y., We write

(3.A.D =y +ly -y
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This equation as it stands assumes nothing about the error distribution.
But if the observations are a fair sample, their average estimates the popu-
lation mean u, and the (y, ~ y) are simply the residuals (not quite the
random errors unless [ is large, since they have variance [(I — 1)/I]a?).

An analogous relation holds for sums of squares, for, squaring both sides
of (3.A.1),

=+ =yl + yin - p)

and summing over i, we have

(3.A.2) SyE =Yy 4+ Y- v+ 25— v)
2 + Yy — v)4

Yy —y)=0.

This may be expressed in words as follows: The sum of the squares of |
numbers is / times the square of their mean plus the sum of squares of the
deviations of the numbers from their mean.

i

il

since

A.2. Several Sets of Repeated Observations

Let i now designate the sets, taken presumably under different conditions,
and j the replicates: i = 1,2,...,[,and j = 1,2,..., J, assumed to be the
same number for all i. Calling the grand average y_, we write:

yp=y. i —y)+ vy~ w)
(3.A.3) or (yvy—y)=W —y)+yy~ n

which is obviously an identity for any set of identifiable I x J numbers. In
words, we can say: The deviation of each of {J = N numbers from their
grand average is equal to the deviation of its group average from the grand
average plus its deviation from its group average,

Squaring, summing, and recognizing that sums of deviations from means
are always 0, we have

(3A4) Z?“’U —y P ==y P+ EY - v

This is the “one-way analysis of variance identity” since the data are grouped
only by i. It is conceivably useful for judging whether the groups really differ
in their means more than would be expected on the evidence of the scatter of
individual observations around their group averages.

The reader should take it as an exercise to derive the sum of squares
identity for the one-way case when there are different numbers of observa-
tions, n;, in each group.
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A.3. Twoe-Way Layout, Unreplicated

The numbers are now cross-classified by i = 1,2,...,7 for rows, and
ji=1,2,...,J for columns. The identity becomes

(BAS) yy—y. = -y )+ Wi—-v )+ —y.—yity)

where the last term in parentheses is simply written in to force the identity.
This partition can always be made. It will be most useful if either or both of
the first two terms is large compared to the average of the third term, because
then we are finding that the system that produced the numbers is responding

largely additively to the row and column partitions.
Squaring, summing, and simplifying as before, we have

(BA6) XY (- )= J;()’i. -y ) +1 ;(y,, - y.)?
i
+ 22Xy =y — v+ v A
i
which will be useful for producing comparable averages of the three terms.

A.4. Two-Way Layout With Replication
We now write

BADY v —v. )= —y. )+, —y.)
+ (g — .. — Vg + v )+ g~ Yiph

where i and j have the same meanings as in Section A3, and k(k = 1,2,...,K)
designates the repeated observations in each ij combination. The corre-
sponding sum of squares identity is perhaps obvious:

(BA8) YY¥(viw — y. ) = JKY(y.. — y. P + IK¥(y, — y. P

+ KYY vy =y = v+ ¥ )P

+ 232w~ )
Here, as in the cases given in Sections A.1 and A.2, we have a real measure of
random error and so can hope to judge objectively the reality and relative
importance of the first three terms on the right-hand side.

All of these cases, as well as many others to be given later, demonstrate
decompositions of data into parts that may well be scientifically interesting,
especially when f and J are fairly large. But when I = J = 2 therc is littie
point in viewing the displacements of the two levels as two deviations of

equal magnitudes and opposite signs from their mean. The reader probably
knows, too, that for two observations, or means, a and b,

2 a+ by _ (a-b°
,;(“" 2)” 2
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The simple difference between the two means is more informative than its
square since the former has a sign; the latter is always positive, and nothing
is gained by squaring. We can express this in an equivalent way as follows:
A difference can be compared with its standard error more intelligibly than
a squared (and halved) difference with its variance.

We will usually find that classifications with three or more levels can also
be broken down into simple comparisons and often that these comparisons
are more informative than mean squares giving equal weight to all levels.
Scheffé [1959] has shown how to judge objectively all comparisons (con-
trasts) in any balanced set of data when the standard assumptions are
satisfied. See Brownlee [ 1965, Section 10.3, page 316].
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Two Factors, Each at Three Levels
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(MNR), 52

4.1, INTRODUCTION

As we take one more plodding step toward enlarging our view of multi-
factor plans, we come upon the 3 x 3, that is, the 3%, This gives us the
opportunity to discuss a few more aspects of experimentation and of the
interpretation of experimental results. (The 3 x 2 is too small a step to take,
so we leave it for incidental treatment later.)

Just as the 22 corresponds to the type of linear approximation familiar to
applied mathematicians, physicists, and engineers who habitually substitute
straight lines for other functions, so the 3? parallels second-order approxi-
mation. But even when the three levels, or versions, of a factor are not points
on an ordered continuum, there will be many situations in which industrial
research workers will want to study all three at once. For example, there are
three major sources of coffee beans and (at least) three degrees of roasting
the beans, and any restriction on either condition forces a postponement of
the time when usable results can be reported.

33
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A properly conservative statistician (and who would want to retain a stat-
istician who was not properly conservative?) may recommend that, if a 32
corresponds to the experimenter’s needs, it be replicated, preferably more
than twice, so as to get an unbiased and reasonably powerful test of signif-
icance. If data are inexpensive or can be acquired quickly or are to be used
for a major decision, this requirement may be gladly met by the experimenter.
There are many cases, however, where such a recommendation will result
only in a scientist’s going his own way, alone and unguided. Thus the national
air-pollution data have been collected for only 3 years; they are reported
grouped for small, medium, and large communities. They produce, then, a
necessarily unreplicated 32. Examples are given later of carefully randomized,
highly replicated sets of nine which proved to be practical, and indeed in
each case constituted the only means to secure safe inferences of sufficient
precision.

4.2. BOTH FACTORS HAVE NUMERICALLY SCALED LEVELS

Such factors are called continuous (meaning that their levels are potentially
continuous) or quantitative, by most writers. The standard examples in
engineering are temperatures, pressures, or concentrations of ingredients,
when these are independent variables. Such factors are usually set at equally
spaced levels. Following G. E. P. Box and his associates, we imagine the
response surface above the x-x, plane to be a quadratic surface, repre-
sented analytically as:

4.1 n=p+ Bixy + Baxy + Buuxi + Pazxi + Braxixs,

Adding a random error term, assumed here to be normal with mean 0 and
variance g%, N(0, o2), uncorrelated, so that the observed values, y;,, are

4.2) Yige = iy + ey,

where i = 1, 2, 3 indexes the level of x,, j indexes the level of x,, and k indexes
any replicates taken at x,, x,;, we see that six parameters are required. There
are then only three d.f. from the 32 for lack of fit.

The general second-order equation is hardly ever a model derived from
subject-matter knowledge. Nearly always, as Box and Wilson [1951] sug-
gested, it is equivalent to approximating theory by using the second-order
terms in a Taylor series expansion of the true function about some point in
a region judged to be approximable by these terms. It may happen that a real
physical model is available, nonlinear in its parameters, and that this is ap-
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proximable by a series whose coeflicients are definite functions of the “real”
parameters, but this case is not discussed here.

There is at least one serious defect in using a 32 to estimate a full quadratic
equation; perhaps there are two. Both were pointed out and indeed rectified
by Box, Youle,and J. S. Hunter [ 1954, 1955, 1957] long ago. The more serious
ong, to my mind, can best be indicated by a glance at the three fictitious 3%'s
of Figure 4.1. The values in the cells are “responses.” Each square has the
same f};,x,X,, but the response at the center is different in each case. It is
evident that the general shape and orientation of the response surfaces are
heavily influenced by the center point. This suggests strongly that if any point
can be replicated this one should be. Even triplication or quadruplication is
desirable. It will be obvious to the moderately competent algebraist that
Figure 4.1a has large negative 8, and f,,, whereas Figure 4.1¢ has large
positive values for these terms. In Figure 4.1b both these terms are zero.

(a) (b) (c)

Figure 4.1 Three fictitious 3%'s, both independent variables continuous.

The second defect of the 3% as a second-order response surface design is
the lack of radial symmetry about its center. It reaches further out from the
center at its four vertex points than at its four midedge points. This produces
contours of information about the center that are not circular. This handicap,
although admittedly severe in plans in three or more factors, is at least
minimal in the 3%

The important idea of second-order rotatability has been well explained
many times, especially by Box [1954], Box and Youle [1955], and Box and
Hunter [1957], as well as by Chew [1958], Cochran and Cox [1957], and
Guttman, Wilks, and Hunter [1971]. It will not be discussed here. We regress
to the old-fashioned 32,
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Elementary analytical geometry suffices to derive the estimates of the co-
efficients in (4.1). First, for a single, equally spaced x-variable, we look at
Figure 4.2 and at the one-variable equation

4.3) Y = a + bx + x>
J’aa;
//
/7
.72) a ,/
/
}c //
y /
7
/1
,/
//
4
/, ’
/
/
N T~-——~—~1-———~-——-
X
-1 0 1
Figure4.2 Geometric interpretation of coefficientsin ¥ = a + bx + ex?*whenx = —1,0, +1.

No least-squares fitting is required; only direct substitution of the three
observed responses, y;, y,, and y,, is needed in this equation to produce the
three estimates:

(4~4) a =y, = %(J’J - YI)’
c =3y — 2y + y3) = 3y + y3) — »a
= 4{(y1 - ya) — (y2 — y3)}

The “linear” coefficient b is the slope of the line through the two extreme
points. The quadratic coefficient ¢ is the negative of the amount by which y,
differs from the average of y, and y,. It may be viewed alternatively as the
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difference in slope between the two line segments y, — y; and y; — y,. The
third way of writing this estimate, shown first in (4.4), gives the multipliers f,
—2,and 1 for yq, y,, and y, in simplest integer form.

The same forms apply to row averages (averages over x,) and to column
averages (over x,), and all four estimates (h,, b,, b, ,, b,, corresponding to
the first four betas in (4.1) are orthogonal. Following Yates we will use the
symbols 4,, B, , Ay, By (the subscripts L and Q stand for linear and quadratic)
instead of by, b,, . . ..

Still intuitively, we note that the term b;,x,x, can have effect only when
both x; and x, are nonzero and so should take the same {form here that it did
for the 22, using only the four “corner” values of the 32, Direct check shows
the estimate

biz = &(¥o — y1 — ¥3 + »1)

to be orthogonal to the others.

We tabulate the estimates of the six effects [the f's in (4.1)]—five of them
contrasts-—in Table 4.1, The captions A, - - - A B, are identical in meaning
with their corresponding b's. The divisors are the sums of squares of the mutti-
pliers shown in each column. The whole table is, then, a coded “transforma-
tion matrix” for the 32

TABLE 4.1.
ESTIMATES OF S1x EFFECT PARAMETERS FROM A 32

Cell
AEX. BEXZ Obs. bo ALEbl BLEbz ZQEb‘l BQEbzz A/I);LEbIZ (3,3)

[,
—

-1 =1y —1 ~1 1
0 -1 y o 1 -2 ! 1
I — 1 Vs i -1 ! I -1 -2
—1 0 Va -1 0 1 -2 0 1
0 0y, 0 0 -2 -2 0 1
1 0y 1 0 1 -2 0 -2
-1 1 Vs -1 i 1 1 -1 -2
0 I ys 0 i -2 1 0 -2
i Loy, I i 1 1 1 4
Divisor: 6 6 18 18 4 36

It is easy to verify that all six vectors are orthogonal. [ The column headed
“Cell (3, 3y” will be explained in Section 44.] We can compute a sum of
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squares for each column. Each will be the square of a single number (the inner
product of the coefficient vector times the y-vector) divided by the given
divisor. These values will be put into analysis of variance form in Table 4.3
in the next section. In my opinion it is more intelligible to show this partition
arithmetically than algebraically.

The three d.f. for lack of fit to a full quadratic can be used to provide a
“sum of squares for lack of fit.” It is more in accord with my point of view to
use them to estimate three more parameters. The classical parameters first
given by Yates correspond to the three additional terms in the fitting
equation:

2 2 2.2
by1axixy 4+ biaaxixi + byygpxixs,

chosen no doubt because they have easily derivable estimates orthogonal to
all others and to each other. They do not appear to me to be plausible geo-
metrically or analytically, but an effort will be made in Section 10.6 to give
them two more intuitive interpretations.

When the three levels of each factor are evenly spaced, an extension of
Yates'’s 2" algorithm is available [ Davies et al. 1959, pages 363-366] for the
32 and for the 3", m > 2. A further extension to factorial plans of the form
2"3™ js given by Margolin [1967].

4.3. STANDARD COMPUTATIONS IN A 3?

First we set down a standard computation that should precede any com-
putation of a “sum of squares for interactions.” Indeed we propose an inflex-
ible rule: Do not try to interpret sums of squares of quantities whose
summands you do not know. Refusal to inspect the items surnmed may lead
(and, as we will abundantly document later, often has led) to the overlooking
of a sensible subdivision that is informative. As a prime example, nearly all
of the sum of squares may be in a simple single contrast or summand.

Since the arithmetic operations are simple, and their algebraic representa-
tions tedious, we start with a classical example from Cochran and Cox {1957,
Ed. 2, page 164]. We reduce the arithmetic by subtracting the mean, 353,
from each value in their Table 5.6. We then compute the row averages and
column deviations, fitted values to the additive model, and residuals from
the observed values, that is, the estimated interactions, as shown in Table 4.2
The rows correspond to three equally spaced levels of a phosphate fertilizer;
the columns, to three equally spaced nitrogen levels. The responses are totals
over 12 plots of the numbers of lettuce plants emerging.



TABLE 4.2,
STANDARD COMPUTATIONS ON CoHRAN AND Cox's 32 [1957, PAGE 164]

ON LETTUCE
Row
Data Data—353 Sx Averages
449 413 326 96 60 --27 129 43
409 358 29i 56 5 -62 —1 0
341 278 312 -12 =75 -4l - 128 ~43
ZC: 140 —-10 - 130 0
Column Deviations: 47 -3 43

Fitted Values First Residuals
90 40 0 6 20 27
47 -3 —-43 = 9 8 —19

4 —-46 —86 -6 -29 45

SS residuals = 4793; SS [cell (3, 3)] = $(45) = 4556; MS residual = 1198,
Maximum normed residual (MNR)* = 45/4793V2 = 0,650; MNR (0.05,3 x 3) = 0.648.

¥O3,3) = (27 — 62)/2 + (12 — 75)/2 -- (96 + 60 + 56 + 54 = —142.2.
Row
Revised Data Sk Averages  Second Residuals
9% 60 27 129 43 -5 9 -4
56 5 —62 -1 0 -2 -3 4
-12 -7 142 -229 ~76 6 -7 0
Z - 4 %: 1'32 w;g :f;; B 10: New SS residual = 235
Colu(mn o New MS residual = 235/3
Deviations: 58 8 -66 =787

* Stefansky [1972] and Appendix 4.A.

39
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TABLE 4.3,
TwoO ANALYSES OF VARIANCE FOR THE 3 x J OF TaBLE 4.2,

Unrevised Data One Cell [Cet! (3, 3)] Revised
Source of Degrees Sum of Mean
Variation of Freedom Squares Square d.f Ss MS
Phosphate, P 2 11,008.67
P.. 1 11,008.17 1 21,360.67
Pyaa | 0.50 | 533.56
Nitrogen, N 2 12,200.00
Nl 1 12,150.00 i 22,940.17
Noud. 1 50.00 ! 280.06
Interaction P, N, 1 2,209.00
Remainder 3 4,791.33 1,198.00 3 235.10 784
Total 8 28,000.00 7 45,349.56

4.4. ONE-CELL INTERACTION

On inspection of the nine residuals (first residuals) we spot the largest in
cell (3, 3), but we need some objective way of judging this largeness. Ignoring
the deplorable gaffe in the paper “Residuals in Factorials” [ Daniel, 1961], we
find an excellent answer in Stefansky [1972]). Her “maximum normed
residual,” 2@, is easy to compute; it is the ratio of the maximum residual to
the square root of the residual sum of squares. For the present case we have
a significance probability of roughly 0.05. See Appendix 4.A.

If these were engineering data, and if it could be done tactfully, we
would ask the experimenters whether by any chance the reported 312 (coded
to —41 in Table 4.2} could have been misrecorded by 100. But this can
hardly be dong, even tactfully, for ancient data in another field. We try instead
to remove the disturbing eflects of this value, to see whether anything else
is afoot. We replace the offending value by another, y°, which is computed
to give a zero residual, and then carry through the whole computation again.
This is done at the bottom of Table 4.2. The drastic effect on all residuals is

apparent.
The replacement value y° is given by the formula:
(4.5) Y= Y=y,

where y; means the average of all other values in row i,
y'; means the average of all other values in column j,
¥ means the average of all values in neither.
This formula is exactly equivalent to the usual “missing value formula” for
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randomized blocks, but seems to me more intelligible, easier to remember,
and simpler to compute. It holds for any size of two-way layout.
A simple check on any residual in a 32 is provided by the identity

(4.6) dij = ¥y = Ly — Lyirh
provided that
SYy;=0; Var(dy) = $a’.

For the present case dyy = [ —41 — (=27 - 62 — 12 — 75)] = 450.

Our sums of squares {SS’s) are just 12 times those of Cochran and Cox since
we have so far ignored the fact that each response is the sum of 12 observa-
tions. On a plot basis our revised residual mean square (RMS) is 78.7/12 =
6.56. This is significantly smaller (P = 0.05) than the error mean square (MS)
of 59.0 given on page 166 of the reference.

We have an example, then, of a one-cell interaction. These interactions
are, in my experience, the commonest of all forms of nonadditivity, and for
“guantitative-level” factors they occur most frequently in a corner cell. We
can derive the coefficients for the “one-cell contrast” most directly by simply
placing a single disturbance in one cell, and then following it through the
computation corresponding to Table 4.2. To get minimal integers we put a
9 in one cell. Thus we have

3k Averages Residuals
Y 0 ¢ 9 3 4 -2 =2
0 0 0 0 0 -2 1 t
0 0 0 0 0 -2 | |
Yer 9 0 0 9
3 6 -3 -3
Column Deviations: 2 -1 —1

We have used cell (1, 1) above, but of course the same pattern can emerge
from any cell. The simplest way to remember the pattern is to place a 4 in
the offending cell and then fill out the rest, forcing rows and columns to sum
to zero.

The reader may wish to verify that this pattern, or some constant multiple
of it, will emerge from any 3 x 3 table of additive data when one value is
perturbed by any amount, A constructed example follows. If the data also
contain random error, the pattern will of course be more or less obscured.
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28 36 47
58 48 359
8 75 86
Although the contrast just derived for a one-cell interaction is correct and

can be used with the original data, there is little point in its use with the
residuals. Naming the residuals,

r

e w o
T - S

u
x’

we see that —2¢ — 2r = 2p, —2s — 20 = 2p, and (t + u) + (w + x} =
—s — v = p. So our integer contrast is identically 9p! The corresponding
SS is (9p)*/36 = $p*. For the present case we have that the SS [interaction
in cell (3, 3)] = %(45%) = 4556, exactly as would be found by subtracting the
SS new residuals from the original SS residuals, 4793 — 237 = 4556. The
computation of “second residuals” gives more detail on what is left, even
though containing only three degrees of freedom.

We now see the most direct way to calculate the replacement value y?j, and,
once the first residuals have been computed, all the second residuals. For the
3%y = yy — 3d;;. For the present case y3 3 = —41 — 345 = — 142,

The pattern of differences between second and first residuals is just the
negative of the familiar pattern, hence here,

-1 -1 2
-1 -1 2
2 2 —4

each coefficient scaled by 45/4, or 11.25. Thus the new d;; = 6 — 11.25 =
—5.25.

The weakness of Lhe standard representation of interactions in a factorial
plan

4.7 My =p+o+ B +yy

is nearly at its maximum in the 3% The y, are defined by subtraction of
“main effects” from #;;, but as the little table above with one 9 in it makes
clear, if one value is off from a clear pattern set by the rest of the table, then
all consistent main effects are biased, as is the mean, and the rest of the
disturbance gets spread throughout the table as shown. These j; do not
estimate anything real, but by good luck, the largest of them can be used to
recover the real discrepance which is 3 x 45 = 101.25. In general, in an
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R x Ctable, this correction factor will be RCAR — 1)(C — 1).See Table8.1b.
If this value is actually an error, and not a permanent interaction, then we
do the experimenter no favor by reporting biased main effects and a spurious
linear-by-linear interaction.

4.5. SIMPLER COMPUTATION AND INTERPRETATION OF
ALBg, AgBL, AND doB,

I the data analyst has a completed 32 before him (4 and B continuous)
and a good estimate of o, he may want to see explicitly the three higher-order
coefficients, b,;;, by, and by, ,, (alternatively, 4,B,, etc.) There are two
ways of computing these that are simpler than the usual ones, originally
given by Yates [1937], shown at the top of Table 4.4,

TABLE 4.4.
COMPUTATION OF A4, B, ,A, By, £TC., FROM RESIDUALS IN A 32

p q ¥ ] ! u 14 W X
12408, -1 1 2 -2 -1 1
124, B, -1 2 -1 T
364,B, 1 -2 1o-2 4 =2 -2 1
4ALBL l - l - l l
44,8, -1 -1 ! !
44,B, —1 1 ~1 1
444B, I I 1 1
44,B, 1 -1 ~1 1
44,48, 1 ~1
44,8, | -1
4408, 1

Since there are but four d.f. in the nine residuals, we choose four of the
latter, p, r, v, x, and represent the four parameter estimates by the familiar
contrasts for the 22 among these four and by their sum. Because of the re-
straints on the nine residuals, ¢ = —p — r, etc, it is not necessary or even
sensible to use all nine in computation. Going further, we see in the lowest
panel of the table that we can replace —p — r by ¢, etc, and so represent
4A, By, for example, by (s — u), and 44,B,, by ¢!

On soberer thought these quantities make good sense as aspects of lack
of fit. Take 44.By, for example. This will be large when the four corner
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residuals have the following signs:

—-p +r
(+5)  (-u)
-v + x.

This can happen only when there is a sort of reversal from left to right in the
response surface, since if p and v are negative, then s must be large and
positive, while u must be large and negative. Thus the apparent curvature
of the response away from the fitted quadratic surface at the lowest level of B
is the reverse of that at its highest level. This can be visually represented as a
bit of

overlaid on an otherwise quadratic and additive surface.
The usual (Yates).contrast for AyBy is given by the coefficients

1 -2 1
-2 4 -2
1 -2 1,

and this is, by analogy with our earlier one-called interaction, identical with
9t (¢ is the residual in the center cell). Some sombrero-type deviation from
additivity is indicated:

When a three-level factor is continuous but not equally spaced, there is
also a simple way of writing orthogonal L and Q contrasts and SS's. We
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could call the three levels u, v, and w, (these have nothing to do with the
residuals u, v, w) but things are easier to remember if we rescale the levels to
0, 1, and d, where d > 1 but is otherwise unrestricted. We give the formulas
in both codings:

Levels, L, 0, Levels,* L, aQ,

[ 2u— v— W v~ w 0 -1 - d 1 —d

v ~44+2v—- w w-—u i 2—d d

w —~tt— v+2w u-—v d —1+2d —1

Divisors for SS: 61l ~d+ddy 20 —-d+d?

* Exactly equivalent to L,, since subtracting « from each of Levels, gives 0, v — 4,
and w — u; then division by v — wgives 0, 1, (w — w)/(v — u). I have set the latter ratio
equal to d.

The mnemonic is: Each term in @, is the difference in cyclical order
between the other two levels. I advise the reader not to try to get a comparably
simple formula for four unevenly spaced levels.

4.6. TUKEY’S TEST FOR MULTIPLICATIVE NONADDITIVITY

As is explained most simply in Scheffé [1958, page 130], the interactions,
with (R — 1)(C — 1) degrees of freedom (for us here 4 d.f.), may be repre-
sentable as

Yy = Gaiﬁjr

where G is a constant, and so a single degree of freedom for interaction.
Scheffé shows that, if the y;; are representable by a second-degree polynomial
in the row and column parameters, it must be of the form just given. Tukey
showed [1949] that G can be estimated by

G = Zzﬁiﬁj)’u _ b

Yai Yp Q@

and that SS (G) = P?%/Q.

These are most simply computed as shown in Snedecor {1965, Ed. 5,
seventh printing, pages 321-323]. We repeat the calculation in Table 4.5 for
the 32 under discussion, and we regret that the test does not reach the 0.05
level. It should be noted that the $;; can be used in place of the y;;. The
estimated “error sum of squares” for testing nonaddivity is found to be 2817,
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which far exceeds the 236 found by our brutally ad hoc removal of y, 5. The
¥, estimated from G&;ﬁj do not suffice to remove a large part of the residual
SS, as they will when this relation holds strongly, and when, therefore, the
& and the § ; are sufficiently large to permit its accurate estimation.

TABLE 4.5.*
TuUkey's TesT FOR REMOVABLE NONADDITIVITY, DATA FROM COCHRAN AND CoOx
[1957, Pace 164]

Row d
Data Yx Averages Dev. ” dip; pi — P*
449 413 326 1188 396 43 5397 232,071 1377
409 358 291 1058 353 0 5227 0 1207
341 2718 312 931 310 —43t 1436 —61,748 2584
ZC: 1199 1049 929 3177 0 12060 170,323
Column Averages: 400 350 310 353 4,020
Column
Deviationsd;: 46 -3 43" 0

po= Y Xyd;; py = (449 x 46) — (413 x 3) — (326 x 43) = 5397
SYabyi; = P = Ydip = 170,323; Y d? = 3698; Y4} = 3974,

SS (nonadditivity) = P¥/Yd} - ¥di = 1974, G = P/Q = 0.01159.

SS (testing) = Residual 8S — SS (nonadditivity) = 4791 — 1940 = 2817,
MS (testing) = 2817/3 = 939; F-ratio (nonadditivity) = 1940/939 = 2.07, ns.

* Var(p, — ) = $Y.d%; MS (testing) = 4 x 3974 x 939 = 2.488 x 10% s(p, - P) = 1577
*Force Y d; = ¥d; = Q.

4.7. AN EYEBALL TEST FOR INTERACTION

When additivity holds, differences between observations in adjacent rows
should be tolerably constant. The writing down of these differences usually
suffices to spot a single nonadditive cell, and does so in these data. Thus,
even for the uncoded data,

Row Differences

449 413 326
409 358 291 zg 3(5) _ ;f
341 278 312

It is clear with no knowledge of o at all that the last difference, y, ;3 — y,3,
is far from its mates, 68 and 80. The “tolerable™ agreement of the three
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differences from rows 1 and 2 tells us that y, , is the culprit, not y, ;. The
objective statistician will wince at the word tolerable, but it is our experience
that when this test fails, objective tests do too. On the contrary, we will see
several cases in which we can spot the most aberrant cell or cells by the row
difference pattern, but cannot prove a real discrepancy by the maximum
normed residual (MNR) method.

4.8. WHAT IS THE ANSWER? (WHAT IS THE QUESTION?)

There is a single failure of additivity in the data of Table 4.2, If we bar the
invidious suspicion that the value at (3,3)is a misprint, in error by 100, the
discrepancy is in such a direction that the adverse effects on lettuce plant
emergence of increasing phosphate and nitrogen are not so great at the
extreme condition (highest P and N) as the other data would lead us to
expect. This can hardly be an agriculturally important finding, however,
since the general conclusion already visible is that the least amounts of
phosphate and of nitrogen are most favorable. Presumably, if fertilizer is
needed on this variety of lettuce, it should be applied after emergence.

4.9. AN UNREPLICATED 3* ON AIR-POLLUTION DATA

The August 1972 (Third Annual) Report of the Council on Environmental
Quality gives on page 9 a table of “extreme value indexes” or EVI’s, which
are measures of the worst air conditions observed for each of three years
(columns), and for communities of three sizes, <10°, <4 x 10° and
>4 x 10*® (rows). Table 4.6 gives these values, multiplied by 100, followed
by standard computations.

The very satisfactory partition given in the analysis of variance table—with
both row and column effects highly significant against a 4 d.[. error estimate—
tempts us to let well enough alone. But a rather peculiar improvement is
still possible. We have carried through, but do not show here, the 1 d.f. test
for removable nonadditivity. Its F-value is 6.94, while F(.05) is 10.1, and
F(.1) is 5.5. However, since there appears to be a positive trend of p; with &,
we have taken the liberty of extracting the square root of each EVI and
carrying through the standard computations once more. We now get F-
values of 379. and 299. and significance probabilities below .0005. Since the
coefficient of variation of the transformed variable is 1.46%;, the imputed
coefficient of variation of the back-transformed EVI would be about 3%,

The EVI's are themselves the square roots of sums of squares of con-
centrations of three pollutants. We cannot imagine why the square roots
should more nearly fit an additive model, but we have made the facts known
to the proper authorities.
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TABLE 4.
100 x EVI (EXTREME VALUE INDEXES) OF AIR POLLUTION, 1968~ 1970, For
THREE Sizes of COMMUNITIES

Row
Cities 1968 1969 1970 Deviations Residuals
Small 1035 768 641 96 —-12 13 -2
Medium 661 410 334 -251 -39 2 38
Large 1156 799 666 155 G -15 -3
Column Deviations: 232 -60 —172 9 =y

MNR = 50/7306"2 = 0.585; 2(0.2, 3 x 3) = 0.620,s0 P > .2,

Analysis of Variance

Degrees of Sums of Mean
Source Freedom Squares Squares F P
Sizes (R) 2 287,723 143,861 79 <.001
Years (C) 2 260,560 130,280 T <.001
Residuals 4 7,306 1,827 s = 42.8; decoded, 0.43.

CV = 43/719 = 6%,

4.10. THE 3* WITH BOTH FACTORS DISCONTINUOUS

We take Cochran and Cox’s third 3%, given in their Section 5.29, pages
170175, which was actually replicated four times so that an error estimate
with 24 d.f, is available. The nine treatment means are given in Table 4.7,
followed by a table of residuals from the usual additive model.

We notice the largest residual at (1, 3), but we do not judge its importance
by the maximum normed residual because we have a better estimate of ¢.
We use, rather, the Studentized extreme deviate ¢’ [Pearson and Hartley
1954, page 173], which allows for the error degrees of freedom and for the
number of values of which d, , is the extreme. Since the residuals in a 3% have
variance §¢?, we estimate s(d, ,) as % x 2.58 = 1.72, and so our t' =
5.9/1.72 = 3.43. Since the .01 value from the table is 3.22, we appear to have
an excessive d;;.

As for the earlier example, it is easier to compute the SS due to the single
residual by (9/400)59% = 78.3 rather than by the elaborate contrast with
coefficient 4 in cell (1, 3), balanced symmetrically in the other eight cells.
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TABLE 4.7.
ABBREVIATED COMPUTATIONS FOR COCHRAN AND Cox's 32
on CoMPosT
Data (Data — 70.5) x 10
536 568 670 -169 137 -35
80.8 823 80.5 103 118 100
743 69.1 700 38 ~-14 -5

First Residuals SS (residuals)/100 = 97.02.
—46 —12 59 s(dy;) = &s(y) = § x 2.58* = L1
5 22 27 Studentized extreme deviate = 5.9/1.72
4 -9 -3 = 343.
1'(0.01,9,24) = 322; P < Ol

Tukey's I d.[. for nonadditivity gives F = 4.4, nonsignificant.
SS(d, ;) = x 59% = 783,
Remaining SS (residual) = 970 — 783 = 18.7.

* Residual MS = 18.7/3 = 6.2; Error MS from 24 d.f. = 6.56

4.11. THE 3? WITH ONE FACTOR CONTINUOUS,
ONE DISCRETE-LEVELED

Our data are again taken from Cochran and Cox [ 1957, pages 169-170].
The first paragraph of their general comment on interpretation of the analy-
sis of variance is too valuable to paraphrase.

The separation of the treatment comparisons into main effects and interactions is
a convenient and powerful method of analysis in cases where interactions are small
relative to main effects. When interactions are large, this analysis must be supple-
mented by a detailed examination of the nature of the interactions, It may, in fact,
be found that an analysis into main effects and interactions is not suited to the data
at hand. There is sometimes a tendency to apply the factorial method of analysis
mechanically without considering whether it is suitable or not, and also a tendency
to rely too much on the initial analysis of variance alone when writing a summary of

the results.

The experiment involved the response to three levels of nitrogen fertilizer
(150, 210, 270 Ib/acre) by three varieties of sugar cane. The 32 was done in
four replications, and the error MS with 24 d.f. was 43.91. The corresponding
coeflicient of variation was about 5%,.
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TABLE 4.8.
DaTa FROM COCHRAN AND Cox’s 32 oN SuGAR CANE

ny "y ny Row Differences
v, 266.1 27159 303.8 203 257 221
U, 245.8 250.2 281.7 ~286 —19 501
vy 2744  258.1 2316 ) ’ )

The row differences in Table 4.8 show instantly that v, and v, are nearly
“parallel,” and that v, is entirely different. A simple plot of the level of N
versus ¥ for each variety shows the same thing. We decline, therefore, to
report on an analysis of variance of all three varieties since we know that
it will show large ¥ x N interaction, all due to »,. The data can, as in many
cases, be partly interpreted before a routine analysis of variance. We sub-
divide our analysis even in the first round, then, taking v, and v, without v,.
This is shown in Table 4.9. We partition the three v; means separately, but
use the pooled error to test the partition.

It appears, then, that the following hold:

1, There was a consistent difference between v, and v, 0f 68.1/12 = 5.67 tons
of cane per plot.

2. There was an upward roughly linear trend of yield with increasing N for
varieties I and 2.

3. There was an almost exactly linear downward trend of yield with N for v,.

There are oddities in items 1 and 3. The parallelism of v, and v, is im-
probably close, and for v, the linearity of yield with N is too exactly linear!
Both are significantly smaller than the error MS, given as 43.91. The mystery
is only deepened by the authors’ footnote on page {70, which points out that
much of variety 3 ripened earlier than the other two but was left on the ground
until harvest. Not having the actual data from which the error was computed,
we terminate our analysis.

The attentive reader will notice that, if we had gone ahead with our
standard computations, without taking account of the disparate variety, no
great harm would have befallen us beyond wasted time. The rounded re-
siduals are as follows:

l n, 1y ny

v, -13 -2 15
Uy —10 -5 15
vy 23 7 =30

These results would have told us that v, and v, are closely alike, whereas
v, is quite different.
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TABLE 4.9,
COMPUTATIONS AND ANALYSIS OF VARIANCE FOR 3% ON SuGar CANE

Data Coded by —270.6 h Data for ¥;
vy -45 53 332 34.0 "y 19.7
vy -248 204 1.t -341 "y 34
ny —23.1
ZC: —-293 151 44.3 -0.1
vy — Uy 20.3 25.7 221 68.1
Differences —22.7: —-24 30 06
SS{v, — v;) = (34.1 + 34.0)*/6 x 4 = 193.32. SS (vy) = 233.31.
SS [(N)v,u,] = 3048.99/2 x 4 = 381.12, S8 (v,, linear)
SS(v,, v, x N) = (24% + 3.0% + 0.6%)/8 = (197 + 23.1)}2 x 4
= 15.12/8 = 1.89. = 228.98.

ANALYSIS OF VARIANCE

Degrees of Sum of Mean

Source Freedom Squares Square F P
v, — U, f 193.32 193.3 44 05
N.(vy, v;) 1 338.56 338.6 7.7 05
Nolvy, v3) 1 425 425 1.0 5
vy —v)) X N 2 1.89 0.945 0.0215 9995
vy x N, lincar t 22898 229.0 5.22 05
vy x N, guad. 1 433 4.3 0.099 9995
Error 24 4391

4.12. SUMMARY

Our analysis of 3 x 3 tables of data differs from the analyses of others
mainly in the detailed treatment of interactions (nonadditivity of row and
column effects, residuals, 7).

Simplification of “linear by quadratic” and of “quadratic by quadratic”
interaction terms has given them new meanings.

The commonest interactions appear to be either in one cell or in one row
(or column). (This finding is extended in Chapter 8 for larger arrays.)

The numerical methods of analysis of variance remain valuable, but rather
different partitions are used.



APPENDIX 4.A

CRITICAL VALUES OF THE
MAXIMUM NORMED RESIDUAL (MNR)*

TABLE 4.A.1,
STEFANSKY'S TABLE 6.1 : CRITICAL VALUES OF THE MNR AT
LEVEL a = 0.01
R
C 3 4 5 6 7 8 9
3 660 675 664 .646 626 606 .587
4 665 640 613 .588 .565 544
5 .608 578 551 527 .506
6 546 519 495 A75
7 492 469 449
8 446 426
9 407
TABLE 4.A.2.
STEFANSKY'S TABLE 6.2: CRITICAL VALUES OF THE MNR AT
LEvEL a = 0.05
R
C 3 4 5 6 7 8 9
3 .648 645 624 600 577 555 535
4 .621 .590 .561 535 513 493
5 555 .525 499 A1 457
6 495 469 447 428
7 444 423 405
8 402 385
9 .368

* Reprinted by permission from W. Stefansky [1972a].
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5.1. WHEN TO USE THE 2°

The experimenter hearing of factorial experiments for the first time may
feel that he should start with the simpler, more manageable plans. But if he
does this, he will be postponing the time when he can easily see their ad-
vantages. Sixteen-run plans are usually more than twice as informative per
run as eight-run plans. My advice to the experimenter considering a 23 is,
then: If you really have three and only three factors that it makes sense to
vary, if your time and money budgets are so restricted that eight runs will
consume quite a large part of your effort, if you are quite sure that differ-
ences larger than two standard deviations are all that you are interested in,
and if you are quite sure that you can choose levels for your factors so that
all eight combinations will be operable, then the 23 is the one to use.
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54 UNREPLICATED THREE-FACTOR, TWO-LEVEL EXPERIMENTS

5.2. A REAL 2?

The data given in Table 5.1 come from the early stages of a study of the
effects of three well-known factors—time of stirring 4, temperature B, and
pressure C—on the thickening time of a certain type of cement. The response
y was the time in minutes required to reach a certain degree of hardness. The
exact specification of the two levels of each factor and the name of the par-
ticular cement type, although crucial for the experimenter, are not important
here. The error standard deviation for single runs was known to be about
12 minutes. The runs were made in random order but are presented in the
table in “standard” order.

TABLE 5.1.
DATA FOR AN UNREPLICATED 23 IN
STANDARD ORDER: SD = ]2

) 297
a 300
b 106
ab 131
c 177
ac 178
be 76
abce 109

Most obviously the simple A-effects are small and rather uneven, They are
as follows: 300 — 297 = 3,131 — 106 = 25,178 — 177 = l,and 109 — 76 =
33. Taken individually, these results are hardly striking, since their standard
error is about 12,/2 or 17.

Second, the results at high B are all much lower than their counterparts
at low B. Thus with no computation at all we see that

b—(1)= —-191,
ab — a = —169,
be — ¢ = —101,
abc — ac = —069.

It is clear that all these differences are real and that they do not agree very
well with each other.

Finally, looking at the simple C-efiects, we find — 120, — 122, —30, and
—22. The C-differences are large at low B and small at high B. Some readers
will see immediately that, when the B-effects are larger at low C than at high,
the C-effects at low B must be larger than those at high B.
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5.3. YATES’S TABLE OF SIGNS

Table 3.4 shows the four ways in which the four results of a 22 are combined
to give the four (regression) coefficients of the factorial representation, and
Table 3.5 shows the corresponding computation. Both the table of signs and
the computational method are due to Yates. We now extend the table of signs
and the corresponding computation to the 2.

The 22 in the upper left corner of Table 5.2 is seen to be made up of four
squares, three of the form 7, and one in the upper right of the reverse
form, —*. The 2* table of signs will require eight rows and columns. The
eight parameters are symbolized in the column headings of Table 5.2. The
signs in the table may be written down directly as three squares identical
with the 2 table, and one in the upper right the same with all signs reversed.
The dotted lines in Table 5.2 are meant to guide the eye to the component 2!
and 2 tables. In this table we have dropped the 1’s and retained only the signs.
The letter T is used to indicate “Total”"—formerly “Sum.”

Table 5.2 is the “transformation matrix” that shows how the eight re-
sponses are to be handled to get their sum T and the seven contrast-sums
(A), . .., (ABC). If the latter are divided by 4, we have the “effects and inter-
actions” as these are usually defined; dividing by 8, we get the “regression
coefficients™ of the factorial representation. The reader will remember that
this expresses each result as the sum of a set of displacements due to different
combinations of the factor levels, up or down from the grand average. Each
column of Table 5.2 contains the ordered elements of an eight-dimensional
vector. All eight are pairwise orthogonal (the Greek word for “perpen-
dicular”). The definition of orthogonality of two column vectors is that the
sum of the products of corresponding elements in the two columns is zero.

TABLE 5.2
FACTORIAL TRANSFORMATION MATRIX FOR THE 23
Spec. Obs. T A B AB C AC BC ABC
m » + -1 - + - + + -
a Y2 LA H N B + +
b Vs + - + - ) - + - +
ab Ya + + + + } - - - -
c o T T T T e - o
ac Yo + + - - + + - -
be V1 + - + - + - + -
abe s + + + + + + + +
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54. YATES’S ALGORITHM FOR THE 2°

The reader will have guessed that the data from a 2* can be made to yield
all eight “effects” by extending the algorithm of Yates, given in Section 3.3
for the 22, through three columns. This is done in Table 5.3. The algorithm
works of course for any 27 set of data. It has been programmed for all com-
puters for p = 4, 5, 6, 7, but a single 2% computation by hand takes only
from 10 minutes to § hour, depending on the number of figures in each
response. It is rare for three figures to be required, unheard of for four.

TABLE 5.3.
YATES’S ALGORITHM APPLIED TO A 23
Spec. ©) ) 7)) 3 3 +8 Name
Q) 297 597 834 1374 172 Average
a 300 237 540 62 8 A Time of stirring
b 106 355 28 ~530 ~ 66 B Temperature
ab 131 185 34 54 7 AB
¢ 177 3 -360 @ -294 ~37 € Pressure
ac 178 25 ~-170 6 1 AC
be 7 1 22 190 24 BC
abe 109 33 32 10 1 ABC

It is instructive to remove an eye average, say 170, from each of the eight
observations, and then to repeat the calculation. The reader will find too
that rounding the numbers to the nearest /0 before computation yields
results that closely resembie those given. It is not aiways safe to round a
number to a major fraction of its standard deviation. Cochran and Cox
[1957] recommend rounding to not more than one quarter of a standard
deviation. This rule is safe whatever the size of the collection of data under
study, but it will be found to be increasingly conservativeas N = 2P increases.

5.5. FIRST INTERPRETATION OF THE 2?

Knowing that the error standard deviation of a single run is 12, we estimate
the standard error (abbreviated as SE hereafter) of the contrast-sums in
column (3) of Table 5.3 to be 12,/8 or 34. Alternatively, the estimated SE
of the regression coefficients in the next column is 12/\/§ or 4.2. On direct
inspection of the magnitudes of all seven effects, B and C and BC appear to
be real,
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TABLE 54.
B x C TABLE FOR THE DATA OF THE 23

B B

— b . b
— 297 106 1298 118
300 131
C c
177 76 178 92
18 100

These judgments confirm our first inspection of the data. Table 5.4 shows
at the left the eight values of observations arranged in a “B x C™ two-way
table. These pairs are averaged to give the form shown on the right.

It is clear that the effect of higher temperature B, in decreasing the setting
time is much larger at low pressure (low C) than at higher pressure,

5.6. REVERSE YATES’S ALGORITHM

The fitted values just found can be computed directly by the “reverse
Yates” used in Section 3.3. Although there is no gain in economy in the
present case, the work is carried through in Table 5.5 for practice.

TABLE 5.5.
REVERSE YATES'S ALGORITHM APPLIED TO THE REAL EFFECTS TO
Give THE FITTED VALUES

©) 8y 2 (2) +8=1Y  Name y
(BCO) 190  —104 740 92 be 76, 109
(©) | —294 844 1420 178 é 177, 178
(B) | —530  —484 948 118 b 131, 106
T 1374 1904 2388 298 1)) 297, 300

5.7. INTERPRETATION WITH ONE
FACTOR DISCONTINUOUS

If factor B were one with discontinuous versions or levels while C was a
“continuous” variable, it would not make good sense to report the fitting
equation as the last column of Table 5.3 implies, namely, as

(5.1) Y = 172 — 66x; — 37xy + 24x,%5,
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where x; = —1 at low B,
= +1 at high B;

xy = —1atlowC,

= +1 at high C.

Since the interaction term has no obvious interpretation under these
conditions, it would be simpler to give two linear equations, one holding at
the low level of B, the other at high B:

(5.2) Ys- = 238 — 6lx,,
(5.3) Yoe = 106 — 13x5.

Each of these equations is derived (if that is not too pretentious a word)
from the relevant half of the 2° by setting x, = —1 or +1 in (5.1). The
reader should carry through these calculations, which require a small piece
of paper and no computing equipment.

Y
300 |-
280+
260 -
240 |-

220+

180 Low B
Xy = —~1

Set—time in minutes

160 |-

140 -

120

H‘gh A, Xy = +1 :ﬁﬂ:ﬁ
2

i i § x
-1 0 +1 3

Level of factor C

Figure 5.1 Y versus x, if & is discontinuous.
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The experimenter felt strongly that factor 4 must have had some effect.
He may well have been right. As the reader will note if he carries through
the arithmetic work just recommended, the computed 4-effect is as large
as the C-effect at high B. It does not appear, however, at low B. This state
of affairs is shown in Figure 5.1.

But these equations all spring from the premise, contrary to fact, that B
is a discontinuous factor. We now return to reality.

5.8. REPRESENTATION WHEN
ALL FACTORS ARE CONTINUOUS

When all factors are continuous, the familiar apparatus of quadratic
equations is available. But I have rather disingenuously concealed up to this
point the fact that a ninth observation was indeed taken in this experiment.
It was made at the center of the design, that is to say, at the midrange of each
of the three factors. The response observed was yo = 168, This is quite close
to the average, 172, of the other eight observations.

Suppose that we had tried to fit a general quadratic equation in x, and

x5 to the five points in (x,, x,) space (since x, appears to have a very small
coefficient). Thus we would have
(54) = bO + b2x2 + ng:; + b23X2X3 + bzzxg + b33x§.
We would have found, almost instantly, that not all of the six coefficients
can be estimated. We can estimate the first four, however, without even
using the fifth data point. We can estimate (b, + bj3) by (¥ — ¥), where
¥ is the average of the first eight y-values. This estimator will be (168 — 172)
or —4 in this case. Its standard error will be (1 + §'?¢ = 1.060 or about
12.7.

Only in an introductory example of the sort under discussion would we
dare to “conclude” that this quantity is 0 just because it is about a third of
its standard error. A more serious statement about the true value of the sum
of the two pure quadratic coefficients would be that it lies, with 95% con-
fidence, between (—4 + 254) = +21 and (—4 — 25.4) = —29. But here,
to make other points, we are moving even further in the direction of simpli-
fication, and assuming that, since the sum appears to be small, both its
summands are (. We do this in order to show a tolerably simple response
surface. The reader, however, should not ever make so irresponsible a set of
judgments in a real-life case. Do as I say, not as I do.

We are accepting, then, the equation:

(5.9) Y = 172 — 66x; — 37x; + 24x,x,.

This equation looks exactly like (5.1), but it has a different meaning.
Here x, and x; are continuous variables, and the equation is that of a
continuous response surface.
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Figure 5.2 shows a few of its contours. These can be sketched quite easily
by solving the equation for x,, giving Y a fixed value, and then running
through a sequence of x5, x, points. Thus:

172~ 3T, ~ ¥
X2 =TT — 24x,

X3

1770 1.0 © 92

- 0.8 ¥y = 100

0.6
N
- 0.2

! i { presl
-1.0 -08 -06 -04 —02 (

- ~0.2

2

Xz

o

i 1 1 i
02 04 08 V08 1

Y = 200

Y = 250 - —04 Y = 125

- 0.6

Y = 150

288 O 1.0 ) 118

Figure 5.2 Contours of ¥ when x, and x, are continuous. Y = 172 — 66x, — 37x; + 24x,x;
Circled dots represent data points.

When values for x, thus found become too far from the region of interest,
it is sensible to use instead the equation for x,:
x _ 172 — 66x, — Y
3T 37 - 24y,

If less than an hour is required to obtain computing services, any of the
many available contour-plotting routines may be used.
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5.9. CONTOURS OF STANDARD ERROR OF Y

The fact that the lines in Figure 5.2 are sharp does not mean that the true
contours of constant Y are exactly known. On the contrary, contours of
constant s(Y) to be used with Figure 5.2 are given in Figure 5.3. Since the four
coefficients in (5.5) all have the same variance, ¢2/N, and are uncorrelated
(orthogonal), the equation for the variance of a fitted value, Y, is

o’ 2 2 2,2 o’ 2
(56) Var (Y) = (0 + x3 + 53 + xdxd) = - &,

when all x; are coded +1 at the data points, and ¢ is a multiplier of o/\/N,
also shown in the figure, which can be used in other 2¥s, See Appendix 5.A.

Figure 8.3 s(Y) = &o,/N as a function of x, and x,.
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A special case of this equation, for use only at the data points ofany 27 = N,

is:

(5.7)

~-0.6 -04 -0.2 0.2 04

Figure 5.4 Y- and s(¥)-contours.

0.6 /

g *

Var (Y at design points) = N

where k is the number of constants, including b, or 3.

It is of some interest to note that inside the design area the standard error
of Y is largest at the data points and is minimal at the center of the design.
Some readers will find it easier to look at Figure 5.4, in which the Y-

1
08 1

g

* I am indebted to Professor Allan Birnbaum for this remarkably useful equation.
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contours of Figure 5.2 have been overlaid in light dotted lines with the
a(Y) contours of Figure 5.3.

5.10. A NUMERICAL CHECK FOR YATES’S 2°-ALGORITHM

Here is a numerical check for the 2° computation which is simpler but
slightly less thorough than that given by Yates:

1. Sum the observations in column 0, in sequence, writing down the

subsums under column 0.

Ss is the last observation, abc,

S, is abc + ab, that is, The sum of every fourth observation;

S, is abe + ab + ac + a, that is, The sum of every second observation;
S, is the sum of all observations.

2. After column 1 is completed, sum its upper half. The result should agree
with §,, Then continue summing to get the whole column sum. This
musl equal 25,.

3. After column 2 is completed, sum its entries from the top. The sum of
the first two must be S;; the sum of the first four must be 25,. The sum
of all eight must be 45,

4. After column 3 is completed, sum its entries, noting the following as
you go:

a. The first entry is S;.

b. The sum of the first two is 25,.
¢. The sum of the first four is 4S5,
d. The sum of alt eight is 8S,.

This check will always catch a single error, but of course, compensating
errors are possible. The extension to larger powers of 2 is obvious.

5.11. INTERPRETATION OF THE 2*

To admit the simple truth, the main interests of the experimenter in these
nine data points were {a) to see that his equipment was working, and (b) to
note that the responses were acceptably high. He could then go ahead with
his program, which required tests on several types of cement.

The experimenter knew that the form of equation being used could not
be exactly right since it implied that Y, the hardening time, would increase
at much lower values of x, and x;.

If we compare the observed y-values with those fitted, assuming that
B, C, and BC are the only real effects (sece Table 5.5), we see that a tolerably
good fit has been obtained. Indeed the MS for lack of fit [computed most
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easily from the differences of the observations in the four cells as (32 + 252 +
12 + 33%)/2 x 4] is 216 with four d.f. This is not greatly larger than the
expected a2 of 122 or 144,

If we add the two terms, A and AB, that are next largest, the residual MS
is reduced to 8.5. The latter is found from the two contrasts not used in the
new equation, namely, (AC) and (4BC), in column 3 of Table 5.3. Thus
(6% + 10%)/8 x 2 = 8.5. This smacks of overfitting, but of course nothing
can be proved in such a small experiment since we have left ourselves only
two d.I. for judging lack of fit. ‘

The reader should take it as an exercise to fit the six-term equation in
A, B, AB, C, BC, and the mean, by using the reverse Yates device. He should
then compare the fitted values with the observed ones and see whether he
likes the new equation better. He will note that the fit is rather strained with
only B, C, and BC, since the values at high B apparently fit worse than those
at low B. On the other hand, the equation with six effects gives almost too
good a fit.,

The ambiguity haunting the detailed interpretation of these data is
entirely typical of “small” factorials. Quite a large proportion of the eflects
we are finding are in the doubtful range; both 4 and AB are larger than their
expected standard error, but smaller than twice that value. The set of data
is not large enough to establish a clear pattern. The detection of revecaling
patterns, both of concurrence and of discordance, will be one of our main
themes when larger sets of data are discussed.

5.12. ONE BAD VALUE IN 2**°

The artificial data given in column 0 of Table 5.6, panel a, would produce
the “eflects” shown in the adjacent column (3). On casual inspection it
appears that the factors A4, B, and C are all influential and additive in their
effects. On more thoughtful inspection it appears that all four interaction
terms, though small compared to the main effects, have the same magnitude.
Only an extremely casual data analyst would pool the four 50's and call the
result an unbiased estimate of the random error.

In column 4 the signs of these four are isolated. A gross error in a single
piece of data would enter each contrast-sum and influence it by the same
absolute amount. Inspection of the rows of the table of signs, Table 5.2,
shows that only eight patterns of disturbance (with their negatives) are
possible, and that only one of these would produce the pattern of signs of
column 4, Table 5.6. We complete the pattern in column 5. If Table 5.2
were not available, we could use the reverse Yates operation on this set of
signed ones, as in panel b of Table 5.6, to find that only run a could be respon-
sible, and that it must be off by +50. We can revise the column of effects
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TABLE 5.6.
PATTERNS IN THE EFFECT CONTRASTS JUDGED NONSIGNIFICANT

Panel ¢ Panel b

Spec. (0) 3 @ G (6 (6) - 8 Reverse Yates

(1) 158 1650 + 1600 200 ABC +1 2 0 0 abe
a 132 -254 + ~304 38 4 BC +1 -2 0 0 be
b 212 166 - 216 21 B AC ~-1 -2 0 0 ac
ab 136 50 — - ¢ 0 C -1 2 00 ¢

c 264 374 - 424 53 C| AB -1 0 -4 0 ab
ac 188 ~-50 - - 0 0 B -1 0 40 b

be 318 50 + 4+ 0 0 A +1 0 08 g

abe 242 50 + + 0 0 T +1 0 00 ()

directly, without repeating the whole computation, by adding 50 to or
subtracting 50 from each of its members with signs reversed from those in
column 5. In this way we get the revised contrast-sums shown in column
6, panel a.

Our conclusion about the magnitude of the random error is now entirely
different. Each of the effects has been increased. Of course with real data
the nonrandomness induced by a bad value will not be so obvious since it
will be somewhat obscured by random error.

A heavy price must be paid for this piece of cleverness, just as it would be
if one value were missing altogether. Although the computation of Table
5.6 gives no hint of the fact, all effects are now estimated with twice the
variance of the unmodified set. P. W. M. John [1973] was the first to point
out this rather horrifying fact, but he also shows some ways of ameliorating
the loss in the larger factorials.

Since we cannot hope to estimate all eight factorial parameters from
seven observations, the natural one to forgo is ABC. This is equivalent to
estimating each of the other effects plus or minus ABC. We can tease each
of these out by reverse Yates, asking, for example, what combination of
observations estimates 4—-ABC. A simple rule emerges: A different set of
four observations is required for each estimate; those for main effects are
in a pair of diagonally opposite edges that do not include the bad value, and
those for two-factor interactions are in the face that varies the two com-
ponents but is away from the bad value. Thus in Figure 5.54, for factor 4
and for observation (1) to be excluded, we use the four points marked in the
“diagonal square”: ab, b, ac, c. For the 2fi AB the four points marked in
Figure 5.5b should be chosen. It should be obvious or verifiable that the
contrast (abc — bc) — (ac ~ ¢) has expected value 4(AB + ABC).
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(a) b)

Figure 5.5 Data points for estimation of (a) 4 and (b)) ABina 2’ — |.

5.13. BLOCKING THE 2°

The familiar advantage of blocking (and often the only one mentioned)
is the possibly improved precision if the blocking isolates sets of experimental
material that are more homogeneous than the whole. There will be many
cases in which (wo litters of four are easier to obtain than one of eight, and
many in which two smaller batches of raw material will give better compa-
risons within batches than will one large batch, or a random assignment
of runs to material regardless of batch. But the other side of blocking needs
more emphasis.

Even when all cight runs could be run on one batch of raw material,
there is an important reason for not doing so. We are always trying to get
conclusions that are widely applicable. If we confine all the data to a single
batch, and then suppose that our conclusions must hold for all batches we
make a needlessly reckless extrapolation. Our results will be as precise, and
our base broader, if we plan to take half the data on one batch and haifon a
batch separated as widely as possible from the first.

Of course something must be sacrificed if we are to eliminate batch-to-
batch differences from our comparisons. It is usually thought safest to
confound the ABC interaction with batch differences by doing in one batch
the runs that are on the “plus” side of the ABC contrast. This requires doing
(1), ab, ac, and bc in one batch, and q, b, ¢, and abc in the other. These are
sometimes called the “even” and “odd” blocks for the number of letters in
the specification of each run.

A conscientious seeker after truth will remember that the blocks should
be done in random order, and that the set of four runs inside each block
should also be objectively and separately randomized. The tables of Moses
and Oakford [1963] provide a very convenient way to do this.

Unfortunately there are not many choices for such small sets, and many
of them are distasteful because they are sensitive to any linear or simply
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curved trend in time. Some methods for avoiding these difficulties will be
discussed in Chapter 15 on trend-free plans.

When blocks of two experimental units are called for, an unreplicated 2°
cannot be expected to give much information on interactions. The inter-
action contrasts will generally be aliased with block differences, and so the
first set of four blocks will measure only main effects with within-block
precision, while the two-factor interactions will be measured with the
among-block variance. The four blocks, each a pair of points at the ends of
a different major diagonal of the cube, are:

I. (1), abc
1. a bc
IH. b, ac
IV. ¢, ab

Estimates of the three main effects, freed of any aliasing with 2fi’s but not
of the 3fi ABC, can be made with two-thirds efficiency after any three of these
blocks have been completed. Other sets of blocks must be done if the three
2fi’s are to be estimated with the within-block variance. See Sections 10.3.2
and 10.3.3.

5.14. SUMMARY

Much of the content of this chapter is standard and is a reflection of the
treatment in many earlier works. Much of it is clearly presented in Yates's
pamphlet {1937]. Davies [1971] contains a good exposition of the 27,
although the factorial representation (displayed on page 235 of that work)
is not employed in the body of the text, nor are data used there to derive
fitting equations.

The representation of the response surface as a factorial function of the
factor levels is not new, but is carried through here in elementary detail for
several cases (Sections 5.7 and 5.8) for experimentalists and engineers who
may not have seen the statistical textbooks or papers in which this is
explained.

The numerical check for Yates’s algorithm is new but owes something
to R. Freund, who showed me a similar one¢ long ago. The search for “bad
values” in Section 5.12 has not, I believe, been published elsewhere. The
emphasis on blocking for generality rather than for precision is new, or at
least original.

But, as I warned in'Section 5.1, the 2 is not widely recommended. It is
treated here at such length as a miniature exemplification of the 2? plans,
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to introduce several sets of nomenclature and several modes of represen-
tation of the facts that are unfamiliar to most experimenters, Every one of
the topics introduced in the sections of this chapter will appear repeatedly
in later chapters.

APPENDIX 5.A

THE VARIANCE OF LINEAR FUNCTIONS OF
UNCORRELATED RANDOM VARIABLES

Most readers already know the results of this appendix. Those who do not,
however, must acquire them to profit fully from this chapter and from most
of those to follow.

I assume first that y is a random variable with expectation u and variance
0. The variance of a random variable is defined as the expected value of its
squared deviation from its expected value. Thus:

E{y}=n E{(y-w}=o]

We take the simple linear function of y, z = a + cy, where a and ¢ are
known constants, and we write in turn the expected values of z and of its
squared deviation from its expectation;

E{z} = E{(a + cy)}

= E{a} + E{cy}  since E{ } is a linear operator
E{a} + cE{y} since E{ } is a linear operator
a+ cp;
Var (z) = E{(z — E{z})*}

= E{{a + cy — a — cp)?}

E{[c(y — w]*)
c2E{(y — w?}  since E{ } is a linear operator

= o242
= c‘ay.

i

i

In summary, we may write
(5.A.1) Var (a + ¢y) = c?al.

We extend this to find the variance of a weighted sum of n uncorrelated
random variables y;,, which may have different expectations, different
variances o7, and different weights c,.

(5.A.2) Var ) ¢y =Y, cfa}.
=i 1
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If the weights are all set at 1,

n
(5.A.3) Var) y, = Yot
1
In words, the variance of a sum of uncorrelated random variables is the

sum of their variances.
If each weight is set at 1/n, and if 7 = o} (constant),

1 1 ol
Var Y gy = Var;Zy, = Vary = ?Zo? = 711

The equation

= i‘€QN

(5.A.4) Var y =

for uncorrelated or independent y, all with the same variance, is perhaps the
most important equation in statistics.
Perhaps the second most useful equation, at least in our work, is

(5.A.5) Var Yoy = a2,

which again holds when all y; are uncorrelated with the same variance but
not necessarily with the same population means.
Applying (5.A.5) to a general equation like (5.5), i.e. to:

Y = 3+ byxy + baxy + byaxixy;

and, remembering that the b's and 7 are the random variables, all uncor-
related (orthogonal) and all of the same variance, ¢/N, while the x's are
exact, we have

Var Y

i

Var 7 + x} Var b, + x% Var b, + xIx3 Var b,

i

2
a
T\T(l + x2 + x3 + xixd),

which is (5.6).
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Two-Level Factorial Experiments

6.1 Introduction, 71

6.2 The First Computations, 71

6.3 Interpretation of the First Computations, 76
6.3.1 The Empirical Cumulation Distribution of the Residuals, 76
6.3.2 The d, versus Y Plot, 77

6.4 Looking for Simple Models, 78

6.5 A Note on Rounding in Yates’s Algorithm, 82

6.6 Snares (and Delusions), 83
Appendix 6.A Forty Empirical Comulative Distribution, Fach of

16 Independent Standard Normal Deviates, 84

6.1. INTRODUCTION

Sixteen-run plans are generally much more valuable than eight-run plans.
The gain does not occur primarily because of the improved precision of the
larger plans, nor is it heavily influenced by the larger number of independent
contrasts available for estimating effects and interactions, I believe that it is
due mainly to the opportunity for studying the data—to learn about the
presence of one or more defective values, about possible transformations, and
about the randomization pattern and its defects—which just begins to appear
in the 24,

6.2. THE FIRST COMPUTATIONS

The data come from a well-executed unreplicated four-factor experiment.
They were the first observations taken on a prototype piece of equipment for
which no error estimate was available. The experimenters hoped for a stan-
dard deviation of about 5%, Three of the factors were known to have positive
effects: A, the load on a small stone drill; B, the flow rate through it; and C, its
rotational speed. The fourth factor, D, was the “type of mud used in drilling.”

71
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The response was the rate of advance of the drill. Table 6.1 gives the data in
column 0, and shows the details of the usual computation to arrive at the
contrast-sums listed in column (4).

TABLE 6.1.
STANDARD FIRST STAGES IN THE NUMERICAL ANALYSIS OF A 24
Obs.

Spec. 0) {1) 2) (3) 4) Effect
(1) 1.68 1.66 10.38 40.10 98.48 Total
a 1.98 6.72 29.72 58.38 7.30 A
b 3.28 10.68 13.13 0.28 26.38 B
ab 3.44 19.04 45.25 7.02 1.20 AB
c 498 4.51 0.46 11.42 51.46 C
ac 5,70 8.62 -0.18 14.96 4.76 AC
be 9.97 17.20 0.81 —-1.76 12.04 BC
abe 9.07 28.05 6.21 2.96 1.34 ABC
d 207 0.30 _ 306 19.34 18.28 D
ad 244 0.16 8.36 32.12 6.74 AD
bd 4.09 0.72 4.11 —0.64 354 BD
abd 453 —-0.90 10.85 5.40 4.72 ABD
cd 1.1 0.37 -0.14 5.30 12.78 (o))
acd 943 0.44 ~1.62 6.74 6.04 ACD
bed 11.75 1.66 0.07 —1.48 144 BCD

abed 16.30 4.55 2.89 282 430  ABCD

There are many ways of judging the set of 15 factorial effects, none of them
objective. The commonest method is to take an oath before the data are
taken that we will use the three- and four-factor interactions as estimates of
error, and to then use “F- or t-tests” on each of the remaining contrasts,
judging all those to be significant which are larger than a critical F-value,
usually taken as the 5% point for the number of degrees of freedom pooled
for error, This method, recommended in most textbooks, is frequently violated
as soon as the data are in, first of all by the use of several levels of significance
to indicate which effects are more and which less “significant.” The lack of
seriousness of the whole enterprise is revealed by the fact that no statistician
has thought to investigate the operating characteristic (frequency of missing
real effects) of the combined multilevel test. Examples will be given later of
entirely jejune conclusions drawn in this way.
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At this point only a commonsense inspection of the relative magnitudes
of the contrasts is urged. It is entirely obvious that the five largest effects-—B,
C, BC, D, and CD—are dominant as well as plausible. They are dominant
because of the wide gap (of 4.74} separating them from the remaining 10
contrasts, which are all smaller than 7.32. They are plausible because the two-
factor interactions coantrasts—BC and CD-—are nonadditivities of pairs of
the most influential factors.

One way of expressing the dominance of the five largest contrasts is by
computing the “coefficient of determination,” R2. This is the fraction of the
total scatter of the original 16 observations, expressed as a sum of squares
about their mean, that is accounted for by the five effects we have chosen. The
total sum of squares (abbreviated as TSS henceforth) of deviations of our
observations about their mean is 262.68. The SS accounted for by the five
effects chosen is (26.38% + 51.46% + - - -)/16 or 249.15. Then R} is 249.15/
262.68 or 0.948.

We seem to have done quite well, but of course we need some control since
we have chosen the five largest effects after the fact. A rough computation
(using Owen’s tables [ 1962] to find expected values and variances of normal
order statistics) indicates that the five Jargest of 15 normally distributed values
may be expected to account for 75% of their TSS.

If we assume—as we are not really entitled to-—that the residual SS, 13.52,
measures random error, then 13.53/10 or 1.35 is an estimate of the error
variance. Since the mean square for the five effects is 249.15/5 or 49.83, we see
that the ratio of these two MS's, one for effects and one for random error, is
49.83/1.35 or 36.8. There is little point in judging the “statistical significance”
of this value by reference to F-tables. In the first place, we may have under
estimated the error variance by our arbitrary assignment of BC to the set of
real effects. In the second place, we may have over estimated the error variance
by leaving some real effects in the residual SS. Third, we compute this value
only to compare it with later ratios of the same sort. It is not our aim to
develop a test for the significance of the difference in significance of two
significance tests.

Table 6.2 shows in detail (for the last time) the “reverse Yates computation”
to get fitted values Y. The residuals d, are calculated in the last column of the
same table. Some readers may find it interesting to compute the residuals
directly, without the computation of the Y, by dropping the effects judged
real from the column of effects, and carrying the reverse Yates operation
through only on the effects judged not seal. The values in the last column of
this operation must of course be divided by N, the number of observations,
to give the residuals in original units.

We now explore in some detail the consequences of judging that factors
B, C, D are the only influential ones, and that B, C, BC, D, and CD are the
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TABLE 6.2.
“REVERSE YATES” COMPUTATION OF FITTED VALUES ¥ AND OF RESIDUALS d,

Contrast-

Effect Sum () (2) 3 (A)+16 +62=Y Spec ¥ d,

BCD 0 13 3t 120 +175 13.7 bed 118,163 —19,+26
CD 13 I8 89 4 +28 9.0 cd 78, 94 12, +04
BD 0 63 3 32 -20 4.2 bd 4.1, 45 -01, +03
D i8 26 13 —-60 -38 24 d 21, 24 -03, 00
BC 12 13 5 58 +3.6 98 be 100, 9.1 +0.2, —-0.7
C 51 18 -37 -1i8 - 1.1 5.1 ¢ 50, 5.7 -0, +06
il 26 39 5 —42 =26 36 b 33, 34 -03,-02
T 0 ~26 65 70 —4.4 1.8 (1 1.7, 20 —-0.1, +0.2

only real effects. This is done by study of the empirical cumulative distribu-
tion (abbreviated as e.c.d. from now on) of the residuals and of their possible
relations with their corresponding Y-values. Ideally, the the e.c.d. should
approximate a normal one, and there should be no visible relation of the d,
tothe Y.

Figure 6.1 shows the 16 residuals from Y(7, B, C, BC, D, CD) plotted as
ane.c.d. ona “16-residual normal grid.”* The d, are first entered directly near
the left margin of the grid. They are then easily moved in, each one going to
the succeeding line on the grid. Figure 6.2 is an “Anscombe-Tukey plot”
[1963] of all 16 residuals against their corresponding Y-values. Both plots
fail to conform to our hopes. The e.c.d. does not give a straight line; there is
a clear trend to increasing d, with increasing Y. We will discuss these matters
somewhat more objectively in the next section, after reviewing here the nu-
merical operations that should become routine.

The work may be listed under five steps:

Yates’s algorithm on y to get effects.
Reverse Yates on large effects to get Y.
Computation of d,.

Normal plot of d,.

Plot of d, versus Y.

- H

NN

The choice of terms to put into the fitting equation was subjective but
rather easy in this example. The examination can be made more thorough
when fast computing service is available. First the forward computation of

* ‘T'wo full-size blank grids are included for copying.
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Figure 6.1 Residuals from equation Y(7, B, C, D, s, (fb).

the whole set of effects is carried out. Then a sequence of fitting equations is
run through, each equation adding the next smallier effect, regardless of its
meaning, to the fitting equation. If this is carried through automatically,
without human intervention or arbitrary stopping rule, for, say, half of the
total number of effects, a lot of paper will be wasted, but 99%, of all the ex-
periments I have seen will have been covered. As very crude guesses, about
four real eflects is average for 2 24, and seven for a 2°. Thee.c.d. and d,versus Y
plot must be made for each fitting equation. These can be (and indeed have
been} programmed for many computers.
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Figure 6.2 Residuals df versus fitted values Y.

If this is done for the present 24, it will be found that the largest residuals
continue to appear excessive in the e.c.d. plot, and that the dependence of
d, on Y persists.

6.3. INTERPRETATION OF THE FIRST COMPUTATIONS

6.3.1. The Empirical Cumulative Distribution of the Residuals

The vertical lines of the “16-residual normal grid” of Figure 6.1 are spaced
to give a straight line—on the average—when a set of normally distributed
independent values is ordered and plotted. But of course a particular sample
of 16 numbers derived from observations never gives an exact straight line.
In addition to the inevitable fluctuations of samples of independent normal
deviates, our sets will always have a further distortion caused by their being
residuals from a fitted equation and hence not independent.

I see no prospect for gaining insight into the behavior of sets of residuals
by study of the variances and covariances of the usual normal order statistics
as they are published. There is at present no substitute for the direct examina-
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tion of a considerable collection of e.c.d’s of the size we need. We would like
a set originating from independent random normal deviates, and another
set from fitted equations. Appendix 6.A gives 40 plots of 16 independent
standard normal deviates (r.s.n.d.) as drawn from the Rand tables {1955,
pages 1-200] with nothing removed. If five or so d.f. are removed from a set
of rs.nd. by multiple regression, some of the irregularities of the original
e.c.d. will be removed, so that the normal slot will appear more nearly normal,
even “supernormal,” that is, with extreme deviates smaller than expected.
Although it is salutary to note the variations in shape that these little sets
show, none has the shape of Figure 6.1.

I conclude that something is amiss. Either there are two excessive values
which were disturbed by some factors that did not operate on the other 14
observations, or the random error is not normally distributed, or the factorial
representation is far from the best, or the response is not in the right units.
We must strongly resist accepting the first alternative. It should be considered
only if all else fails.

6.3.2, The d, versus ¥ Plot

Figure 6.2 shows heavy dependence of the magnitude of d, on Y. This
dependence is of the simplest kind, suggesting that d, increases with the true
value of y. The true value of y is often designated as n (read “eta”). If the “per
cent error,” or the “coefficient of variation” o/, is constant, we expect that
log y will have constant error. A constant coefficient of variation (usually
abbreviated as CV) implies that the uncontrolled factors producing random
variation somehow know how large the quantity is that they are disturbing.
The simplest assumption needed to account for this behavior is that the
random factors are operating multiplicatively, rather than additively. If the
same mode of influence extends to the controlled factors, we may hope that
some or all of the interactions found in fitting an additive equation, as we
did above, will be removed.

Using log y as a response, after a study of y shows residuals increasing with
Y, is not simply a lazy statistician’s way of reinstating his assumption of con-
stant average error. If its use simplifies the fitting equation, if a notably better
fit is obtained, and if the dependence of d, on Y is removed or greatly de-
creased, we can feel quite sure that log y is a more informative response than y.

Many properties of physical systems meet the obvious mathematical re-
quirements for “logging.” The response must of course be intrinsically posi-
tive. The ratio of the largest response to the smallest should be fairly large,
say at least 5:1. These conditions are met by the present data. Indeed, when
speedy computer service is available, my own practice is to ask for the whole
sequence of computations and plots listed in the preceding section, both for
y and for log y.
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6.4. LOOKING FOR SIMPLE MODELS

Table 6.3 and Figures 6.3 and 6.4 show the results of the usual computa-
tions, using z = 100 log,, y as a response. We have simplified our equation,
and we have improved our fit. Main effects 4, B, C, D now give an R? 0f0.986;
adding CD raises this to 0.9908. But we still have one suspiciously large
residual—that at bed—and we still have a whole collection of residuals that
increase with Z, though perhaps less than they did in the corresponding
situation with Y.

1 have not been entirely fair to the experimenters in my rather slow ap-
proach to “logging.” They knew that many factors operated exponentially
on the rate of advance y, but they did not think that as small a set of observa-
tions as this one could throw much additional light on the matter, Two
suggestions emerged after discussion: It is possible that some low rate of
drilling is itself a zero level, and it is conceivable that some fixed low power
of y is the response on which the factors might operate additively.

TABLE 6.3.
EFFECTS ON z = 100 log,, y; FiTTED VALUBS Z(Z, 4, B, C, D, CD);
ResibuALS 4

Panel a Panel b

Spec. y z (4) Effects (1)) VA d,
(1) 1.68 22.5 1110.0 T 1110 239 —-14
a 198 29.6 452 A 45 29.6 0.0
b 328 51.6 2018 B 202 49.2 +24
ab 344 53.7 ~-11.8 AB 0 54.8 - 1.1
c 498 69.7 401.0 c 401 69.8 -0.1
ac 5.70 75.6 38 AC 0 75.5 +0.1
be 997 99.8 —-17.6 BC 0 95.1 +4.7
abc 9.07 95.8 36 ABC 0 100.7 ~-49
d 207 316 1134 D 113 338 -22
ad 244 38.7 23.0 AD 0 394 -0.7
bd 4.09 61.2 —~5.2 BD 0 59.1 +2.1
abd 4.53 65.6 18.0 ABD 0 64.7 +09
cd 7.7 89.0 340 cD 34 88.2 +0.8
acd 943 974 184 ACD 0 938 +3.6
bed 11.75 107.0 ~11.8 BCD 0 113.5 —6.5
abed 16.30 121.2 134 ABCD 0 119.1 +2.1
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9

The first possibility can be tested by trying log (y — ¢) 4s 4 response, letting
¢ take each of several values, say 0.5, 1.0, and 1.25. Figures 6.5 and 6.6 show
the residual e.c.d. and d,, versus W plots for w = 100 log 100(y — 1). The
second set of alternatives can be canvassed by using y, y'/2, log y, y~'/2, and
y~ ! as responses. Table 6.4 gives a summary of all nine cases. In the first five
we have varied the exponent of y; in the latter five (case V11 = case I11) we

have tried five values of c.

We see that log y does best if we look only at overall fit to four main effects.
But y~ /2 does somewhat better if one two-factor interaction is allowed. It
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TABLE 6.4.
SuMMARY OF A 2* UNDER NINE y-TRANSFORMATIONS
Bad Added
Transform  Response  R}A, B, C, D) Values d,vs.Y CV Interactions R}
I y 0.8878 bed, 19% BC,CD 0.9485
abed
1] pH? 0.9562 abed cb 09757
1 log y 0.9856* bed cp 0.9908
v yy? 0.9683 ' OK BC 0.9930*
A p! 0.9168 t BC 0.9857
Vi log(y + 1) 0.9828 BC 0.9902
VIL(=IIl) logy 0.9856* bed ch 0.9908
Vil log (y — 0.5) 0.9851 BC 09898
X log(y — 1.0) 0.9777 OK il% BC 09915
X log (7 — 1.25) 0.9673 BC 09891

* Highest R? in its column.

* Obviously nonnormal because of absence of BC.

has the further advantage that the residuals from this equation show no trend
with response. There is little to choose between y~'/2 and log (y — 1), so far
as our analysis shows. Both require BC, and neither shows any excessive

residuals or trend of residuals with response.

This is an appropriate time at which to return the data and the analysis to
the experimenters. It is they who will decide whether the equation in y /2 is
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intriguing or is merely a curiosity. A summary of our findings can be written
entirely in engineering terms, with no more mathematical apparatus than
elementary algebra and tables of data and residuals.

6.5. A NOTE ON ROUNDING IN YATES’S ALGORITHM

I am indebted to Ms. E. (Reid) Flaster for an ingenious suggestion that
often saves time in hand or desk-machine computation of the 27 factorial
effects. Suppose that we round the y-data of Table 6.1 to the nearest integer
and then carry through the usual four-column caleculation. The result will be
the column label “(4)” in Table 6.5, panel a. We see immediately that there
are too many ties. These are two ('s, three 4’s, four 6, and two 12's. These
numbers are not behaving like a set of random variables from a continuous
distribution.

We can carry through a set of one-digit corrections as in panel b of the
same table. The new column 4 values designated as (4), are then (10 times)

TABLE 6.5.
A CriTERION FOR ROUNDING RESPONSES IN A 24

Panel a. Rounding to digits produced too many ties
Panel b. Revision to one decimal reduces ties to unimportance

o m @ ¢ @& O 0 @ @ @ @+o19

2 4 10 40 98 -3 -3 4 2 6 98.6
2 6 30 58 6 0 7 -2 4 10 7.0
3 11 0 26 ] -3 1 2 4 264
3 19 45 6 2 4 1 3 8 -8 1.2
3 4 0 10 52 0 5 4 14 -4 516
6 9 0 16 4 -3 -4 -2 ~10 8 48
0 17 I -2 12 -0 2 -3 2 2 122
9 28 5 4 O i 1 11 -10 14 1.4
2 0 2 2 18 i 3 10 -6 2 18.2
2 0 8 32 6 4 1 4 2 6 6.6
4 5 0 6 t -3 -9 -6 -4 KX
5 - i1 4 6 -5 1 -1 4 -—J2 4.8
8 0O 0 6 12 -2 3 -2 -6 8 12.8
9 1 =2 6 4 4 -6 4 8 20 6.0
12 1 1 -2 0 -2 6 -9 6 14 14
16 4 3 2 4 3 5 -1 8 2 4.2
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the corrections to column 4 of panel a. These are added in the last column of
the table to give us closer estimates of the correct values. We note that there
are now only two pairs of ties, one at 1.4 and one at 4.8.

A set of corrections to 0.01 will surely not change any of these values
greatly. Even if all the revisions were of size 0.04, their maximum possible
effect on a value in column 4 would be 16 x 0.04 or 0.64. This is only half
the smallest of our panel b results.

6.6. SNARES (AND DELUSIONS)

A parting glance at the computation in Table 6.1 may induce the reflection
that «ll the contrasts in column 4 should not be positive. Even though three
of the four factors were known to have positive efects, it is not credible that
all the interactions be positive. Nor is it likely that all the error contrasts,
which should have an expected value of O, will be an one side of 0.

In casting about for the simplest possible cause for this run of plus signs, the
reader may come upon the fact that an excessive result for one and only one
of the 16 observed responses—that at abcd-—would bias all the contrasts in
the same direction. It is tempting to revise this offending value by an amount
that would make the set of 15 contrasts (or perhaps only the 9 smaller inter-
action contrasts) look more like a set of random normal deviates. This should
not be done.

If the pattern of signs in column 4 indicated a bad value anywhere but at
abcd, a more persuasive case for revision could be made. But just here we
have the extreme condition—high levels f{or all factors, all with positive
average effects. By inspection we see that all the other results lead up to this
one. It would be too bad to lose the knowledge that we really can drill fastest
under these conditions just to enforce a good fit for a rather arbitrary form
of equation. If the large discrepancies had appeared at intermediate values
of the response, our hesitation in criticizing or even revising them would have
been less. In positive terms, an interior point, either in factor space or in
response range, is more safely judged to be excessive than is an extreme one.
We note, finally, that the predominance of long runs of signs in the effect
column is removed by the transformation to log y = z (Table 6.3).

Sermon 111 is only a short reiteration of points already made: Therc is much
information in large sets of balanced data, not only about the effects of the
factors varied, but also about the appropriateness of the fitting equation and
about the form of the error distribution. The balancc and symmetry of the
2?7 plans give them properties of response by pattern to many sorts of dis-
turbance. In the example just treated, such patterns showed in the behavior
of whole sets of residuals under various transformations of the response.
There will be many more.
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APPENDIX 6.A.

EMPIRICAL CUMULATIVE DISTRIBUTIONS, EACH OF
16 INDEPENDENT STANDARD NORMAL DEVIATES
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CHAPTER 7

Three Five-Factor, Two-Level
Unreplicated Experiments

7.1
7.2

73

7.4

75
7.6

Three 2° factorials are studied in this chapter. They were not chosen after
inspection of a larger set; they are simply the three best-known examples.
The program of analysis is like that of earlier chapters but is now augmented.

We expect a small number of real effects and low-order interactions. At
most all main eflects, some two-factor interactions, possibly a three-factor
interaction, and some block effects will be large. We will have, then, about
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16 d.f. above and beyond the real effects. These can be used poetically, as
degrees of freedom for the imagination. The key assumptions of the standard
analysis (uncorrelated errors with constant variance, no block-factor inter-
actions, no bad values) need not remain unexamined. They can sometimes be
roughly verified, and sometimes shown to be invalid, by the data. Almost as
often, the analysis can be modified to take account of the observed failures
of the standard assumptions.

The extra degrees of freedom are sufficiently numerous, as they were not
in the smaller experiments discussed earlier, to manifest many identifiable
patterns and parts of patterns. The number of contingencies is finite in the
sense that a single data analyst will have time to think of only a finite number
of things to study, but it is infinite in the sense of being unbounded. This
chapter will be successful to the degree that it stimulates readers to study
critically the data produced by their own experimental systems.

There will be many failures in that frequently no pattern is detected. Since
patterns are often indications of nonrandomness, their absence is desirable,
and such failures are welcome.

Some readers will not be able to repress a natural feeling: “If you look
long enough, you are bound to find something.” Aside from the question-
begging term long enough, 1 deny the allegation. 1 look longer than most,
and usually find nothing. But a deeper objection to the statement is that it
cxcuscs those who do not look at all, and who believe that the ancient wisdom
requiring the analysis to be determined before the data are taken is the only
true way. If some of the key assumptions underlying the standard analysis
of all factorial experiments can be tested or even refuted by examination of
the data, then onc who has not noticed this has not looked long enough.

The standard form of the “analysis of variance,” which is widely used in
summarizing factorial designs with factors at many levels, does not seem to
me to be useful for 2" data. All the contrasts from a 27 data set must be
examined together. Their order, their distribution, and their signs are all
lost in the standard analysis of variance table. The habit of summarizing
the results in such a table (manifested in so many textbooks that it would be
unkind to name) has had a tranquilizing effect with much information lost.

The data juggling that appears in this chapter might be charitably de-
scribed as a series of efforts to get the data into such shape that they will
admit of valid standard significance tests. I do not know the effects of these
revisions on the operating characteristics of the tests, and I await the results
of further research with fear and trembling,

The three classic experiments are taken from Yates [1937], Davies [1971],
and Kempthorne [1952]. They have been studied many times before. Each
analysis brings new questions, and no final answers are offered. The work
presented here should of course have been carried out in close collaboration
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with the experimenters, who could have categorically ruled out many of my
questions and doubts, and who surely would have raised other more realistic
ones.

7.2. YATES’S 2° ON BEANS

7.2.1. Description

This early experiment, described in Yates's classic pamphlet [ 1937], was
carried out at Rothamsted in 1935. The five factors were as follows: spacing
of rows S (18 and 24 in.), amount of dung D (0 or 10 tons/acre), amount of
nitrochalk N (0 or 50 lb/acre), amount of superphosphate P (0 or 60 Ib
P,0;/acre), and amount of muriate of potash K (0 or 100 Ib K,O/acre). As
Yates writes, “The spacing was varied to test the theory that the best effects
of manures might be obtained with closely spaced rows.” The field plan is
reproduced in Table 7.1. The actual data, arranged in standard order on
s, d, n, p, k, are given in Table 7.2.

TABLE 7.1.
FisLp PLAN FOR YATES'S 2%

i v

nk ) P npk
snp  sdn sdnp  sn
dp spk d sk
sdk dnpk " dnk sdpk
$ sdp n k
snk dk sdnk dpk
np sdnpk sp dnp
dn pk sd snpk

i Il

The test was arranged in four blocks of eight plots, confounding SDP,
SNK, and DNPK with block means. This was accomplished by choosing
(or the “principal block” { which is II1 in this case and can always be identified
by its containing the treatment combination (1)] those conditions which have
an even number of letters in common with SDP and with SNK. These can
be most expeditiously found by first writing down three such combinations
which can be used as “generators of the principal block”; the third must not
be the product of the other two. Thus dp, nk, and sdn will do. Their products
(see Chapter 10) in all combinations, along with (1), give the set used in
block 111, whose mean is then aliased with —SDP — SNK + DNPK. The
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TABLE 7.2.
RESULTS OF STANDARD COMPUTATIONS ON YATES'S 25 ON BEANS
Rounded
Data  and —59  Contrast- Effect Fitting

Spec. %) ) Sum Symbol  Equation Y d

i 66.5 7 —~4 T -4 3 +4
5 36.2 ~23 - 128 S —128 —26 +3
d 74.8 16 252 D 252 6 +10
sd 54.7 ~4 80 2 —6
" 68.0 9 50 3 +6
sn 233 —36 54 -26 10
dn 673 8 82 6 +2
sen 70.5 1 30 2 +9
D 56.7 -2 —84 -9 +7
sp 299 ~29 48 -4 —15
dp 76.7 i8 -8 18 0
sdp 498 -9 - 188 SDP ~— 188 —10 +1
np 36.3 -23 —82 -9 -4
shp 45.17 —13 18 -~ 14 +1
dnp 60.8 2 18 I8 16
sdnp 64.6 6 —10 - 10 + 16
k 63.6 5 120 K 120 1 +4
sk 39.3 -20 136 SK 136 -10 -10
dk 51.3 ~8 —64 5 -—13
sdk 73.3 i4 —-24 18 —4
nk 71.2 12 70 ] +11
snk 60.5 l ~98 ~10  +11
dnk 73.7 15 38 h] +10
sdnk 92.5 33 ~35 I8 +15
pk 49.6 -9 —8 - 10 +1
spk 74.3 15 —56 2 +1i3
dpk 63.6 5 ~28 17 12
sdpk 56.3 -3 ~ 60 6 -9
npk 48.0 — 11 -~78 ~10 -1
snpk 479 — 11 —102 2 -13
dnpk 77.0 I8 46 17 +1
sdnpk 61.3 2 78 - 10 -4
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treatment combinations for any other block are found by multiptying the
eight just obtained by any letter or combination of letters not in the block.
As these were allocated to the four blocks shown, we have the confounding:

Block sbp SNK DNPK

I + + +
I - + -
1 - - +
v + - -

7.2.2. Standard Computations

As always, the total and the 31 contrast-sums are computed by Yates’s
method. The results are given in Table 7.2 for the data rounded to the nearest
unit. We see that S, D, SDP (one of the block contrasts), K, and SK are the
largest effects. We use these five effects, transferred to the column marked
“Fitting Equation” in Table 7.2, in the reverse Yates computation to find
the fitted values Y’ and thence the residuals d, also given in the table.

The usual plots (empirical cumulative distribution of residuals, and re-
siduals versus Y) are shown in Figures 7.1 and 7.2. These plots show no
cause for alarm or even suspicion. The imputed standard deviation of y from
Figures 7.1 is 9.8 with 26 d.f, only a little larger than the 9.06 that Yates
found (with 13 d.f) by his more conservative pooling of higher-order inter-
actions not used for blocking.

7.2.3. Residuals in Place

The residuals can also be placed in their respective plot positions, as in
Table 7.3. Here we see a region of high fertility in the area inside the dotted
line. This region extends into all four blocks, but the largest residuals appear
in the two right-hand columns ( + 15, — 15, +16, — 16).

Just as a trial, we look at the effects of the factors in blocks I and 1I1. By
good luck, these two blocks comprise a superblock with only DNPK aliased
with their mean. Each of the contrasts found from these 16 plots estimates
the sum of two aliased effects, but no serious confusion appears. Table 7.4
shows the results of the usual computations, including the pairs of aliased
effects and the residuals, from an equation that includes D, K, SK, DK + NP,
and SDP + SNK (between blocks I and IiI).

The 16 residuals now have a MS value of 24.7 with 10 d.f, a striking
reduction from the 82 found by Yates for the whole 25. The reader is spared
the necessity of looking at another set of plots and residuals in place. All of
them look all right.
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TABLE 7.3.

RESIDUALS FROM 2% ON BiANS, IN PLACE.

{1} v
N
+11 +4 +7 N\ -1
\
\\”\ +9 +16 \; -10
~ !
™ /
0 \ +13 o -10
] |
-4 // +1 +10 ]f -9
i |
/ ]
/+3 +1 +6 | +4
/ |
A7 ]
1+ _~7 -3 N\ +5 / -12
L ~ \\_‘//
-14 -4 -16 —18
+2 + -6 -13
1 H
TABLE 7.4,
StANDARD CoMPUTATIONS UsSING BLOCKS | anD 111 ONLY
Contrast- Effect
Spec. y—5 Sum Symbol Equation Y d
n 7 +21 T +21 0 +7
) -23 -25 S ~26 +3
dk ~8 +87 D + NPK +87 -7 —1
sdk 14 — 1 SD 9 +5
nk 12 + 1 N + DPK 9 +3
snk 1 -3 SN —1 +2
dn 8 +37 DN + PK 2 +6
scn 3] —13 SDN 12 ~1
pk -9 -23 P + DNK -8 -1
spk IS +7 SP 17 +2
dp I8 +31 DP + NK 20 -2
sdp -9 —143 SDP + SNK — 143 —6 ~3
np —-23 -T3 NP + DK -7 -18 -5
snp - 13 ~3 SNP + SDK -8 -5
dnpk 18 + 69 DNP + K +69 11 +7
sdnpk 2 +63 SDNP + SK +63 1 +1
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7.2.4. Dropping the Factorial Representation

The complex of large main effects and 2fi’s, all involving S, D, and K, may
be trying to tell us something, but they are not saying anything simple in the
factorial representation. We may have another case before us—they are not
rare-—in which Nature is not behaving “factorially,” at least not in terms of
our present factors. Since the four effects, D, K, SK, and DK, are of roughly
the same magnitude (87, 69, 63, and — 73, respectively), we set them all at + |
or — | and put them through a reverse Yates computation in Table 7.5. The
resulting eight (coded) fitted values are placed on a 23 diagram in Figure 7.3.
A 23 suffices since N and P are without effects.

Although we do not see any simple way to summarize these results, some-
thing should be said. From the whole 2% Yates had found, concerning the

TABLE 7.5.
JUDGING THE SIMULTANEOUS IMPACT OF
D, K, SK, DK

0) ) (2) 3)

SDK 0 -1 I 2 sk
DK -1 2 i 0 dk
SK I R 7 %
| 0 ] 0 &
PFa N
SD 0 -1 3 0 sd
D 1 -1 2 4
s 0 i I -4 5
T 0 0 -1 -2 M
0 +2
0 +2

Pl e

-2 2 ©

Figure 7.3 Coded responses o §, D, and K in Yates's 2% on beans.
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carlier conjecture that the best effects might be obtained at closer spacing,
that “the interaction between spacing and manures turned out to be the
opposite of what had been expected.” If the results of these two blocks are
to be believed, then dung alone on closely spaced rows (i.c., treatment com-
bination d) is as good as any other combination found. Indeed at wide
spacing potash helps, as sk shows, but adding dung after (or before?) potash,
as at sdk, gives no further increase.

There are, then, three favorable combinations, and they are of rather
unexpected variety d, sk, and sdk. We suppose that no one would add
potash and dung if either alone did as well, and we presume that wide spacing
would be easier to manage and cultivate. This puts sk ahead. Not surprisingly,
the worst combination is wide spacing and no fertilizer of any kind (i.e,, s).
Finally, as is usually the case in this country too, fertilizer nitrogen does not
appear to increase the yield of beans.

7.2.5. A COMMON RESULT: |4| = |B]} = |48

Returning for a moment to the full 2° shown in Table 7.2, we see that the
total effects for S, K, and SK are — 128, 120, and 136, respectively. This
rough equality turns up quite frequently and has a simple interpretation. If
we put the three effects at —1, 1, and 1 for simplicity, and go through a 2*
reverse Yates computation, we have the following:

011 -3

K
111 1

There are, then, three nearly identical combinations, and one exceptional
one, here s. (Other assortments of signs of the three effects simply move the
exceptional response to some other cell or change its sign.) The simple inter-
pretation of such an equality of magnitude of A4, B, and 4B is: One combina-
tion is exceptionally high (or low), and the other three combinations produce
the same average response.

7.3. DAVIES’ 2* ON PENICILLIN {1971, PAGES 383, 415|

7.3.1. Description

This was a full 2° done in two blocks (weeks) to study the effects on yield
of variation in the concentrations of five components of a nutrient medium
for growing Penicillium chrysogenum in surface culture.
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Table 7.6 gives the yields y and their coded logs, z = 100(log y — 2), to-
gether with the usual contrasts. We see by inspection that the influential
factors must be A, C, and E, with perhaps CE and blocks (ABCDE) having
some influence. This is true both for y and for log y. We note that the per
cent of the total sum of squares accounted for by 4, C, E, and CE is 86.5 for
y, and 76.2 for z,

TABLE 7.6,
Davigs' 2% oN PenICILLING 3 = yicld — 130; z = 100(log yicld — 2)

Effects Effects Revised Effects
Spec. ¥ on y Name z onz Effectsony Y’ d'  onjd)
(1) 12 -4 T 15 304 61* 9 +3
a ~16 --562* A 6 -19 —487* ~21 +$5 -27
b -1 18 B I -6 93 9 - 10 61
ab —21 - 190 AB 4 —64 — LIS ~21 0 - 59
¢ 55 514* C 27 153 583+ 72 ~17 1
ac 32 -194 AC 21 -53 - 119 41 ~9 13
be 70 142 BC 30 53 217 72 -2 25
abe 42 —~42 ABC 24 Q0 13 41 +1 17
d 18 32 D 17 9 107 9 +9 -1
ad -22 —160 AD 3 -54 -85 ~21 -1 79
bd 16 - 32 BD t6 -7 43 9 +17 23
abd - 35 ~92 ABD -2 -4 -17 -2 -4 27
cd 70 -32 cb 30 -4 43 72 -2 -4
aed 34 56 ACD 22 33 131 41 ~7 kY|
bed 85 -84 BCD 33 —18 -9 72 +13 35
abed -12 128 ABCD 7 58 203 41 +22 —-49
¢ —-24 -668* E 2 =24 - 743* - 12 ~12 157*
ae -24 84 AE 2 2 9 ~42  +18 -19
be —42 96 BE -6 29 21 ~12  ~30 29
abe —32 - 52 ABE -1 -2 - 127 ~42 +10 -87
ce -17  -336* CE 5 -93 —411* - -16 ~47
ace —-42 -104 ACE -6 —58 - 179 -3t -1 -5
bee 36 88 BCE 22 39 13 ~-1 437 45
abce - 51 84 ABCE - 10 3 9 -3 -2 1
de -29 70 DE ¢ 30 -5 -12 -17 -5
ade - 16 90 ADE 6 2t 15 ~-42 +26 19
bde 10 74 BDE 15 28 -1 ~-12  +22 -93
abde - 58 58 ABDE —14 14 —17 ~42  —16 -21
cde 0 18 CDE it 12 —59 -1 1 ~53
acde - 47 134 ACDE -8 47 59 -31 -16 -1
bede ~15 34 BCDE 16 16 —4} -1 +16 -45
abede  —20 202* ABCDE 4 i 127 -3 +11 i1

* Judged significant.

' Results after revising abed by +75.
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7.3.2. When to Log

The authors write, “The logarithmic transformation was used because the
error was expected to be proportional to the result.” The basic reason for
“logging” the dependent variable must be that the equation representing

the data is expected to be of the form
(1.1 Y =aexp(bx; + c¢x; +dxy +-)

= qCHDVEY - .. .

I

where C = In b, etc.

Thus the factors are expected to operate exponentially on the response. It
may well be that the uncontrolled factors, which are producing the random
variation in y, also operate exponentially. But even if there were no error at
all, the logarithmic transformation of y would be obligatory if the system
followed an equation like (7.1) for its influential factors. In the present case
overall per cent error appears to be about 13% from Davies’ analysis. For
coefficients of variation (i.e., per cents error) less than 209, the random error
will usually not be useful in deciding on logging. In these data, most of the
variation is being produced by the systematically varied factors, not by the
random error. It is the former, then, not the latter, that will give more infor-
mation about transforming,

At this point we would choose y, not z.

7.3.3. A Bad Value

There are 13 effects (contrasts) in the latter 16 that should be error esti-
mates. 1 exclude E, CE, and ABCDE since the former two are plausible
effects and the last is a blocking contrast. Of these 13, there are 11 that are
positive. A discrepancy from evenness as large as this would occur only with
refative frequency 0.01123 (National Bureau of Standards, Tables of Binomial
Probability Distribution, 1950, page 211, p = .50, n = 13, r = 11). Since an
equal discrepancy in the opposite direction would be equally striking, 1
find a tail probability of 0.02246.

Of the 13 candidates for random error in the upper 16 effects of Table 7.6
(here I exclude T, A4, and C) I count 9 in the expected negative direction,
and hence 5 (namely, AB, BC, D, ACD, and ABCD) are in the adverse direc-
tion. There are, then, 7 out of 26 adverse, 19 in favor. A divergence as large
as this in either direction from 13:13 is of probability .02896 (ibid., page 252,
p = .50,n = 26, r = 19), and so is still quite unlikely.

There is only one response that can bias the contrasts in this way, and it
is abcd. Looking at the magnitudes of the lower set, I guess that abed must
be off by about 75. If I revise the value of y at abcd to +63, I get a new
set of total effects, each differing by +75 from the former one. The entire
revised set is shown in Table 7.6, along with the new residuals found by
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using the revised effects 4, C, E, and CE. The block difference, ABCDE,
has now dropped to an inconsequential level.

7.3.4. Effects on Residuals

We now have a set of data that looks “all right,” but an upsetting aspect
appears in the residuals as ordered: those at high E are clearly larger than
those at low. We cannot count on being so fortunate in the future as we are
here, where the unstabilizing factor appears to be E and so is clearly visible
on inspection. We might take the absolute values of the residuals and put
them through the Yates procedure. The result is seen in the last column of
Table 7.6. Not surprisingly, factor E emerges clearly separated from all other
“effects on the magnitude of |d,|.”

We are forced to study the 2° as two 2%s, Table 7.7 shows the usual results,
obtained first without revision of abcd. In panel a for low E we see that in this
context a revision by about + 50 will suffice. The table shows the results of
this revision, both on the effects and on the residuals from the obvious
fitting equation in 4 and C. The MS residual is now 77.2; the estimated
standard deviation (std. dev.), 8.8. This corresponds to a 6% precision and
an R? of 0.953, both welcome changes from the 13% precision and R? of
0.865 that we might have reported for the whole 2°.

The 16 results at high E present a much less satisfactory picture. Panel b
of Table 7.7 gives the results of the routine computations. No bad values
are obvious in this set. The std. dev. is 19, which, with the mean of 109, gives
a precision of 17%. The two effects detected are 4 and ABCD, which is
aliased with the block difference in this half replicate. These two effects
give an R? of 0.524.

Davies writes, “Information existed from earlier work that interaction
CE was likely to be appreciable.” This can now be given fuller justification
and a simpler statement: Factor C was strongly influential at low E, and
not at all at high.

We must reject the set of high-E runs as having too great a variance, as
showing a block effect not present at low E, and as not being of practical
importance anyway since E has a large adverse effect on yield. We may take
some comfort from the fact that the improved precision of the low-E set
permits us to estimate the effects of 4 and of C as precisely as they were
apparently estimated from the whole 2°.

7.3.5. Conclusions

Only the low-E half of this 2° is safely interpretable. It has excelient
precision (6%;), one bad value (at abed}, and two clear main effects, 4 and C.
The other half has poor precision (17%) and one clear effect, A. But since
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DAVIES' 25 ON PENICILLIN [1971, PAGES 383, 415]

TABILE 7.7.

Davies' 25 As Two 24's, Ong AT Low E Anp ONE AT HiGH E
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Panel ¢. y = yield — {50

Effects Revised
Specs. ¥ ony Name Effects’ Y! dl
M -8 7 T 57 -9 +1
a -36 -323 A —273* -43 +7
b i -39 B 1t -9 ~-12
ab —41 - 09 AB —19 -43 +2
¢ 35 425 C 475* 50 —15
uc 12 —45 AC 5 16 -4
be 50 27 BC 77 50 0
abc 22 —-63 ABC -13 16 +6
d -2 - 19 D K} -9 +7 Std, Dev. (d) = 8.8.
ad ~42 -125 AD 75 -43 +1
bd -4 - 53 BD -3 -9 +5 R? = 0.953.
abd —55 - 75 ABD ~25 —-43 -12
cd 50 -25 CD 25 50 0
acd 14 -39 ACD it 16 -2
bed 65 — 59 BCD -9 50 +15
abed -32 - 37 ABCD 13 16 +2
Pancl b, y = yield — 109
e -3 -5 25 —28
ae -3 ~239* A ~25 +22
be ~21 57 B 2 -23
abe -1 ~121 ~2 -9
ce 4 89 C 2 +2
ace -2 - 149 -2 -19
bee 57 115 25 +32
wbee -30 21 ~25 -5
de -8 51 D 2 ~10
ade 5 -35 -2 +7 Std. Dev. (d) = 19.2.
bde 31 2 25 +6
abde -37 -17 -25 -12 R? = 0524,
cde 21 -7 25 -4
acide -26 95 - 25 -1
bede 36 ~25 2 +34
abcde 1 165¢ ABCD + blocks -2 +3

* Judged real.

t abed revised by + 50,
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high E itself is unfavorable to yield, we have lost the less useful half of this
experiment.

More generally, statisticians have too long applied a weak criterion for
deciding whether to use p or log y. The decisive criterion is: Which form
gives the better representation of the data, not of its error distribution? We
must not let the tail wag the log.

We can get clues to the dependence of the magnitude of the error on
experimental conditions by putting the absolute values of the residuals
through the usual process for two-level factorials.

A simple bad value can be spotted before commitment to a set of effects
judged real. There are certain patterns (2 x 2") in the ordered contrasts
that indicate just which value is biased and in which direction the bias lies.

7.4. ROTHAMSTED’S 25 ON MANGOLDS
(COPIED FROM KEMPTHORNE)

7.4.1. Description

The data are taken from Section 14.7 of Kempthorne [1952], pages
267 270. The five factors—S, P, K, N, D—were amounts of sulfate of
ammonia, superphosphate, muriate of potash, agricultural salt, and dung,
respectively. Each was varied from none to some. The experiment was
divided into four blocks, all in a single field. Table 7.8 gives the actual ficld
arrangement and yields.

TABLE 7.8.
Fizh PLAN AND YIELDS FOR ROTHAMSTED'S 25 FitoM KEMPTHORNE [1952)

I ' 11

pkd nd sk spknd d pknd k snd
844 1104 1156 1506 1248 1100 784 1376
spn kn sd P spkd skn sp pn
1312 1000 1176 888 1356 1376 1008 964
kd spd pnd pkn skd spkn knd spnd
896 1284 996 860 1328 1292 1008 1324
sn spk n skod pd Pk " s
1184 984 740 1468 1008 692 780 1108

H v

The confounding pattern can be found expeditiously by setting down the
three generators (any three) of the principal block (here TII), and then finding
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the interactions that have an even number of letters in commeon with each of
these generators, Thus, if we choosc sn, kd, and spd as generators, we find by
direct trial that —SPN, — PKD, and so necessarily their product, + SKND,
are confounded with thc mcan of block I (see Chapter 10). We note that
SPN is + in blocks [ and IV and — in blocks H and I, and that PKD is
+ inland Il and — in [} and V. So, necessarily, SKND is + in I and 1L
We will want to remember that PKD is confounded with the “north” versus
“south” pairs of blocks, that SKND is confounded with the “east-west”
distinction, and that SPN is confounded with the difference between the
diagonal pairs, that is, (I + 1V) — (11 + 111},

7.4.2. Standard Computations

The usual 31 contrast-sums are computed in Kempthorne’s Table 14.11.
(The yield at pn should be 964, not 864.) Since we know that the error std.
dev. is about 80, there can be no harm in rounding the observations (o the
nearest 10. Table 7.9 shows as y (column 3} the yields in units of 10 Ib, in
standard order. The next column, headed y', gives (y — 110}. The next
column lists the resulting contrast-sums. These are shown to demonstrate
how closely they match those given by Kempthorne and to simplify future
reference.

Since S, N, and D are visibly controlling, I use only these three at first to
construct a fitting equation and to find the residuals, d,. The fitted values
are produced from the fitting equation in Table 7.10, and the residuals are
placed in standard order in Table 7.9. They are plotted as an ecd in Figure
7.4. We hardly need a test for outliers to justify studying the effect of the
observation at d on the estimate of error and on the choice of “real” effects,

7.4.3. One Bad Value?

The MS residual computed rom the d, is 2720/28 = 97.2. We can find
the change in each residual—when the value at d is revised by an amount
O—without recomputing all effects. A change of any one observation by the
amount @ will change every contrast-sum by + Q. Here we are interested in
only three effects, namely, S, N, and D and in the mean. The signs can be read
from Davies’ Table M or can be written down directly. Since we are con-
sidering a decrease in the value at d, we know that this will appear positively
in § and in N, and negatively in D and in T. The four values, most simply set
at +1, +1, —~ 1, and — |, respectively, are run through reverse Yates (see
Table 7.10, panel b) and then rescaled in units of Y by multiplication by
d,/2°. In the present case d, /27 is 29/32, which is so closerto | that no rescaling
is needed. I apologize for the inapt use of the symbol A for a change in a
statistic and not, as is usual, for a parameter.



142 THREE FIVE-FACTOR, TWO-LEVEL UNREPLICATED EXPERIMENTS

TABLE 7.9,
ROTHAMSTED’S 2°: EFFECTS, FITTED VALUES, RESIDUALS

) (2) 3) ) &) 6) N ® 9 (i9)
Block  Specs. y y Effects  Real Y, d, Ad, d,

1} (1) 74 36 -32 —4 +2 -2
v 5 (B 1 534 5348 1 0 0 0
I r 89 21 -34 -32 411 +2 +13
1 sp 101 -9 8 1 —10 0 -0
1 k 7% -32 16 -32 0 0 0
I sk 116 6 126 1 +5 +2 +17
v pk 69 —41 —46 ~32 -9 0 -9
11 spk 98 12 —8 I -13 +2 11
1A n 78 -32 214 214N -—-19 13 0 -13
HI sn 118 8 72 14 -6 ~2 -8
3] pn 9% 14 44 —19 +5 0 +35
I spn 131 21 —10 14 +7 -2 +35
I kn o0 —10 102 - 19 +9 0 +9
i skn 138 28 —60 14 +14 -2 412
1111 pkn 86 24 -4 —19 -5 ) -5
v spkn 129 19 to 14 +5 -2 +3
I d 125 15 292 2920 -4 +29 29 0
1 sd 118 8 —10 19 -1l +2 -9
v pd 101 -9 —6 - 14 +5 +4 +9
1 spd 128 18 76 19 -1 +2 +1
HI kd 9% 20 —16 —14 —6 +4 -2
1v skd 133 23 78 19 +4 +2 +6
1 pkd 84 26 126 PKD —-14 -—12 +4 -8
] spkd 136 26 —60 19 +7 +2 +9
I nd 110 0 — 66 -1 +1 +2 +3
11 snd 138 28 —8 32 -4 0 —4
i pnd 100 —10 —16 —1 -9 +2 -7
v spnd 132 22 —-78 32 -0 0 -—1i0
v knd ]} -9 14 -1 -8 +2 -6
I sknd 147 37 —36 32 +5 0 +5
I phnd 110 0 40 -1 +1 +2 +3

1 spknd 151 41 22 32 +9 0 +9




7.4. ROTHAMSTED'S 2° ON MANGOLDS (COPIED FROM KEMPTHORNE) 143

TABLE 7.10.
CoMpuTATION OF Y, AND EFFECTS ON d,

Panel u. Y, Panel b. d,
0 M ¥ (3) (3) + 32 o (1) @ O

FaN PaN
SND 0 292 1040 32 spd SND 0 -t 2 gd
ND 292 748 ~28  —1 nd ND -1 3 0 nd
LY)) 214 292 612 19 sd sb 1=t 0 sd
D 292 534 —320 45 -—14 d D —1 2 I -2 4
SN 0 202 456 14 @ SN 0 ~1 4 @
N 214 292 320 —612 —19 & N Po-1 i 2 a
s 534 214 292 28 I s s 1 1 -1 2§
T 0 -534 -—748 1040 -32 (D) T ] 0 —1 0 0

OR

] H 2)

SN~ D -292 -8 456 f/i: -d
N~ SD 214 534 ~28 nd= -§
S~ ND 534 506 612 sd = —i
T — SND 0 -53 1080 (I)= —sid

The changes in d,, designated as Ad,, will be the negatives of those in Y,
and these values are transferred to Table 7.9. The revised residuals d, are
also shown. Their MS is 1755/27 or 65.00, which is close to the 67.91 given
by Kempthorne with 13 d.f.

7.4.4. Dependence of Residuals on ¥ or X?

Figure 7.5 shows no visible tendency of the d, residuals (obtained after
revision of the response at d by —29) to vary with Y. We have put the absolute
values of the d, through Yates’s algorithm to see whether there is any
dependence of the sizes of the residuals on experimental conditions. Since
nothing striking emerges, we have not reproduced the results,

7.4.5. Block-Factor Interactions?

The contrast labeled PKD in Table 7.9 appears large and has a simple
alias. It is the difference between the total yield in the upper pair of blocks
and that in the lower pair. We ask, then, whether the effects of factors S, N, D
are the same in these two pairs.

Two more standard computations, one on the “half replicate” defined by
I + PKD, the other on the half I — PKD, give the total effects listed in
Table 7.11 (see Chapter 11). The effects do not seem the same. It appears
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Figure 7.5 Rothamsted’s 2°. Residuals d, versus ¥, (one value revised).

TABLE 7.11.
Facrtoriar EFeects NorTH (I anp 1) anp Souts (11 ann TV)
Blocks Fand If: 7 + PKD Blocks Hl and IV: !/ — PKD
¥ Contrasts d, ¥ Contrasts dy

M kK =32 -2 (1) -36 ——— +3
s k 6 267* S8 +3 s 1 297* +3
p - 21 5 P +9 p k-4 -9 -2
sp -9 13 ~-12 sp kK —12 —35 -10
n kK —10 5™ N +1 n -32 87 —4
sn k 28 17* —-6 sn 8 25 —1
pn —14 -1 -3 m k24 I5 +4
spn 21 7 -2 spn k 19 13 +10
dt - 15 93* D +4 d kK =20 169* -2
sd 8 21 -7 sd k 23 -1 +3
pd k=26 35 K -7 pd -9 -1 +9
spd  k 26 71 +11 spd 18 —-25 -2
nd 0 —5 -1 nd  k -9 -31 ~2
snd 28 29 +5 sud  k kY -9 +7
pnd  k 0 13 -1 pnd - 10 -59 -3
spnd  k 41 -39 +7 spnd 22 -9 -8

* Judged real.
' Revised from +15.

145



146 THREE FIVE-FACTOR, TWO LEVEL UNREPLICATED EXPERIMENTS

that D has a larger eflect in the lower, less fertile pair of blocks, and that N,
on the contrary, has a larger eflect in the upper pair.

Using the six observed effects to derive new residuals, we obtain the values
given as d, in Table 7.11. These are plotted as a combined e.c.d. in Figure 7.6
and are shown in place in Table 7.12. Lacking any two-dimensional run or
cluster theory, I remark only that there appears to be a ridge of high fertility
running north and south in the middle of the field.
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Figure 7.6 Residuals d, f[rom two equations. See Table 7.11.
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TABLE 7.12
RESIDUALS dy IN PLACE ON FIELD PLAN

1 P 11

7 )
-7 -1 ( +3 +7 w1 -2 +5
\N,\ l
\ i
-2 +1 -7 | +9 +11 | -8 -12 -3
\ \
-1 \-
/ \\"\
~2 -2 -3 / +4 +3 +10 } -2 -8
e prd
/
-1 -0 (43 +7 9 0 2 -4 +3
mo— T T - v

Computing an error MS from the dy with 23 d.f. (32 observations — 2
means — 6 effects — 1 bad value), we {ind 1078/23 or 46.8, and so an esti-
mated errvor std. dev. of 6.8, checking closely enough with the 6.6 estimated
from Figure 7.6. The MS is 702, of that found by Kempthorne with 13 d.f.

7.4.6. Conclusions

We have found rather strong evidence that the factors S, N, and D operated
additively in the north pair of blocks and in the south pair, but with different
effects. The random error is (of course) considerably reduced from that found
earlier, and was due largely to a ridge of high fertility in the middle of the field.

7.5. GENERAL CONCLUSIONS

These studies of ancient 2* experiments should not be taken as destructive
exercises. Although our results cannot now be useful to the original experi-
menters, they should be suggestive to the reader now working on large 2°
factorials.

Many experimenters have instinctively-—and rightly—resisted turning
over their data to a statistician for “analysis,” that is, for routine analysis.
They have resisted, I believe, because they did not know what the statistician
was doing, what unstated assumptions he was making, or what many of his
technical terms meant. Many statisticians have been obscure in describing
their operations; many have not inquired of the experimenter about his
private assumptions; most have referred experimenters to textbooks for
definitions of terms.

In this chapter I have tried to show how some of the key assumptions about
the system under study can be checked when the data from a 2% are at hand.
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In most cases the analysis of the data can be suitably modified when some of
the assumptions are found inapplicable.

Let us review once more the assumptions of the experimenter and those of
the statistician. I believe that the former nearly always assumes the following:

1. Some of the factors varied will have large and uniform, that is, additive,
effects.

2. Some factors will have negligible effects or none at all.

3. A few factors may operate nonadditively. Thus one factor may be quite
influential at one level of another factor, but much less influential, or
even without effect, at another level of the second factor.

4. Sets of data taken close together—blocked—will have small random
error for internal comparisons, but the same effect for each factor should
show in each block.

5. There may be a few wild values, caused by mistakes or by factors other
than those deliberately varied,

To these assumptions the statistician will want to add two others:

6. The random errors operating may be viewed as uncorrelated from a
single distribution, roughly normal, with zero mean and all with the
same variance. To “guarantee” the validity of this assumption, the treat-
ment combinations must be assigned to the plots or experimental units
at random.

7. The experimental plots are a fair sample of those to which it is desired
to generalize.

To particularize these generalities, see Table 7.13. We note the frequent
failure of several key assumptions in these by no means exceptional examples.

TABLE 7.13.
SuMMARY OF RESuULTS OF CHAPTER 7
Assumption Yates Davies Kempthorne

I. Few large effects S, D, K ACE SN D
2. Some negligible effects N, P B, D P K
3. Few interactions SK CE None
4. a. Block differences Yes Yes Yes

b. No block interactions Large Present  Large
5. No wild values None abed low  d high
6. Normal error Yecs, in 2 blocks Yecs, in Yes

2 blocks

7. Homogeneous, High and low strips; —-- North-south ridge;

typical plots sec Table 7.3 see Table 7.12
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All that remains is to point out a new virtue of factorial 2” experiments.
Just as these plans are sensitive to certain defects—especially to bad values,
to large differences in variance of groups of observations, and to block-
effect interactions—so their high degree of articulation makes it easier to find
these defects. As Yogi Berra is said to have said, “You can observe a lot by
just watching.”

7.6. HALF-NORMAL PLOTS

1 have of course made half-normal plots [ Daniel 1959] of the contrast-sums
from each of the 2° experiments discussed in this chapter. To my great
chagrin none of the peculiarities discovered above is reflected in these plots,
nor have any other notable irregularities been found. The reasons are not
far to secek. The defects found are all strongly sign dependent, and all are
properties of subsets of the data set which are obscured in the half-normal
plots by overaggregation.

The signed contrasts in standard order have more information in them
than do the unsigned contrasts ordered by magnitude. The signed residuals
from a fitting equation made from the largest effects will often tell us if some-
thing is awry. Repeated trials, subdividing the data in plausible ways and
inspecting residuals from each trial, will sometimes reveal just what the
trouble is. )

These failures of half-normal plots prompt Sermon 1V: Do not ever assume
that a statistic aggregated over a whole data set is distributed as required by
some unverified assumptions. The homogeneity of the parts of an aggregate
can be tested before or after the aggregation, but such testing must be done
before conclusions can be drawn from the experiment.
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CHAPTER 8

Larger Two-Way Layouts

8.1 Introduction, 151

8.2 A7 x 4 from Yates, 152

8.3 AS x 3 x 4from Davies, 153

8.4 An8 x 5 via Scheffé, 155

8.5 A6 x 5 x 2from Fisher, 159

8.6 A 33 x 31 from Pfister, 162

8.7 Generalities on the Analysis of Balanced Data, 170
8.8 Partial Replication of Twe-Way Layouts, 171

8.9 Summary, 172

8.1. INTRODUCTION

We rcturn now to two-way layouts of larger size than the 3 x 3 discussed
in Chapter 4. Some new devices for analysis emerge, justified by the higher
cost of such data and by the more detailed information they supply. The data
sets used as examples range from 3 x 5to 33 x 31.

The standard factorial representation, including nonadditivity parameters,
is less objectionable in the larger data sets. But it is found repeatedly that
interactions are localized, not spread irregularly over whole tables. Large
interactions appear most often in single cells, in a single row (or column), or
occasionally in a few rows or columns. No clear examples of widely dissemi-
nated interaction are evident.

We show in detail why the usual residuals behave more nearly like un-
biased estimates of true interactions in the larger tables, and we make
suggestions for separating these interactions from random error, even in
unreplicated data. When the data are as large a set as an 8 x 5, it becomes
possible to learn something about the form of the error distribution. Even
row-wise heterogeneity of error begins to be detectable.

Large, properly replicated R x C tables are rare in industrial and physical
research, probably because experimenters have recognized that they do not
usually need replication for secure interpretation. Although it must be ad-
mitted that unrandomized data cannot be as securely interpreted, there is
still a lot of room between full security and worthlessness.

151
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Some large two-way layouts have quantitative, even equally spaced, levels
of both factors; most of the others have qualitative, usually not orderable,
factors both ways. J. Mandel is the vnrivaled master of model making and
data fitting for the first type, and any exposition here would be only an echo
of his work [1971; 1964, Chapter 11; 1969a, b]. We concentrate therefore
on the unordered discrete-leveled R x C case,

The effort required to complete a large R x C table, and the experience
that main effects dominate—with occasional interaction cells or rows—
combine to suggest that some form of fractionation might be appropriate.
Section 8.8 is devoted to this situation.

8.2. A7 x 4 FROM YATES {1970, PAGE 55]

The data come from a comparative trial of four varieties of cotton (in
4 x 4 Latin squares) at each of seven centers. “Log yields were tabulated
because of evidence of rough proportionality of means to standard errors.”

TABLE 8.1.

YIELDS OF 4 VARIETIES OF COTTON AT 7 CENTERS YATES [1970, PaGi: 55]
The entries y in the table arc related to Yates's values y’ as follows: y = 100(y’ — 0.49).

Panel a
Data Sums  Averages Residuals
~30 -39 -34 -24 -127 -318 18 ~45 28 00
4 5 -4 10 15 38 2 39 -28 ~16
~20 =21 -25 —13 -79 -19.8 -2 15 -02 -10
3 41 49 76 | +225 62 -32 ~65 -22 (20
-33 -3t -3 -26 —124 -31.0 -20 27 20 -28
8 6 0 14 28 70 10 17 ~20 —-08
16 12 1t 16 55 13.8 22 09 22 -56
Sums: -2 -2t -37 53 -7 Residual MS = 335/18 = 18.6.
Sums +2: 0 —19 35 55 1 $S(4,4) = 12* x 18/12 = 224,
Deviations: 0 -27 -50 178 Remaining MS = 111/17
= 6,53.
MNR = 12/335!2 = 0.656.
P« 0L

Panel b. Propugation of a disturbance of RC in cell (1, |) throughout an R x C table:
r=R - 1,¢=C — | The residuals are:

- - e
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Yates also wrote that “when a set of interactions is found to be significant,
there is a probability that the whole of this significance may be accounted for
by a single outstanding value.” He tabulates the contrast D — (4 + B + C)/3
for each center and judges that it is notably larger for center 4. The one-
celled interaction must have been spotted before construction of this contrast.
Our usuval rigmarole for estimating residuals is repeated in Table 8.1. In its
lower panel, the table gives the pattern of attenuation of a single exceptional
disturbance in a general R x C table.

It is evident from Table 8.1, b, that a maximum residual of size d;; implies
an estimated disturbance of (RC/r¢) d;;. For the data of Table 8.1, panel a,
we see that (28/18)12% = 224 is removed from the original 335. The remainder
of 111 with 17 d.f. gives a decoded residual MS of 0.000658, less than the MS
for error given by Yates of 0.000869. We have again found a single aberrant
cell which accounts for all of the visible interaction.

8.3. A5 x 3 x 4 FROM DAVIES {1971, ED. 2, PAGES 291-295]

This was a three-factor unreplicated factorial design, all factors (A, B, C)
at discrete levels. The 5 x 4 table for 4 x C (Table 8.2) is chosen to make

TABLE 8.2,
A x C INTERACTION FROM Davies’ 5 x 3 x 4 [1971, PacGe 294), Data CoDED BY —954 AND
Rounptp 10 10

Panel a
Coded Data
¢, ¢ G, Cy Sums  Averages Residuals

A, 46 139 13 St 149 37 -3 10 -3 -3

A, 29 -21 -3 133 5 1 i6 —14 —f6 15

Ay 24 23 0 78 19 -7 12 2 -5

Ag -3 -3t ~-29 -1 --64 ~ 16 t -7 8 -2

As | -34 —47 -49 -28 -~ 158 -39 ~-7 0 11 -6

Sums: 62 —37 —101 86 10 SS (AC) = 1606/3 = 535.

Sums -~ 2! 60 -39 —-103 84 2 MS (AC) = 535/12 = 45.
Deviations: 12 -8 -2t 17

Panel h. With row 4, removed

Residuals
SS [(AC) - A;] = 406/3 = 135. (_; f; :; :
Decoded + = 1500, -3  —4 7 -2
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a petty point. The four largest residuals are in row A, (Filler Quality). We
do need a test for residual heterogeneity for doubtful cases, but this is hardly
a doubtful case. Filler Quality 2 gives wear resistances with the four qualities
of rubber {factor C) in a different pattern from the other four fillers. We set
row 2 aside and repeat the computation in the lower part of Table 8.2. We see
that there is still some 4 x C interaction when compared to the original MS
(ABC) of 320(3.20 in our coding). We have located only two thirds of the 4C
interaction in row A,.

Contrary to the remark in Davies (“In the general case, the interaction
sum of squares cannot be conveniently calculated by direct methods and it
is usual to derive it by subtraction from the total” [ 1971, page 294}), we find
it both convenient and more illuminating to compute the interaction cell
by cell and to get the interaction SS directly by squaring and summing the
residuals. The reader—used to desk or computer results to many more
significant figures than the work shown—may be uncomfortable at the sight
of such gross rounding. He should be reminded that the high precision to
which he is accustomed is required only when some SS's are to be estimated
by subtraction. The method shown does not get any SS in that way.

It is appropriate to show the computation of the three-factor interaction,
ABC, here, even though it does not strictly fall under the title of this chapter.
The ABC interaction may be viewed as (4B)C, as (AC)B, or as (BC)A. Since B
has the smallest number of levels, the arithmetic is lightened a little by
choosing the second alternative. This requires that we make up an 4 x C
table for each level of B, and find the three sets of residuals. The deviations of
these from their averages, cell by cell, give the 60 components of the three-
factor interaction. In Table 8.3 these are put into the same arrangement as the
original data. Nothing remarkable emerges, unless we clutch at the straw
floating by in the form of the three largest components (—27, — 25, and 25),
all in row A,. The table is given so that the reader can, perhaps for the first
time, see all the terms of a three-factor interaction.

TABLE 8.3.
COMPONENTS OF THE ABC INTGRACTION FOR THE 5 x 3 x 4 OF
Davigs [1971, PAGE 291}

C, C, C, Cs

B, B8 B B B B B B B B B B

A4, | —-10 10 -1 3 15 13 18 -6 -13 -10 12 0
A, | —12 4 4 14 4 -~19 6 —13 3 -1t 2 8
Ay | —4 11 0 —15 0 13 19 -4 -7 P -7 6
Ay 19 =27 7 =7 7 1 25 25 0 14 -5 ~6
As 8 3 ~1l 3 3 -6 -~18 -6 22 2 -3 -5




8.4. AN 8 X 5 VIA SCHEFFE 155

T 1 T 11T 1T 111 T1T7T 1T 1711111 11

2% o]

16 e

ol =

.
JY
o

JETY; S

~20} .

-5} . "
-27f= -

[ [ _— 1 T A R S T S N |l
001 0060102 06 1 2 6 10 20 30 40 50 60 70 89 90 65 98 99 995

Figure 8.1 E.cd. for the 60 components of 4 x B x C from Davies’ 5 x 3 x 4. ¢ =
11.5,/59/24 = 18. See Table 8.3.

Figure 8.1 shows, on a normal grid, the outer 16 terms plus the 30th term.
The observed s of 11.5 is of course the root mean square of 60 values, but
since 36 constants have been fitted, (1 +4 +2 + 3 + 8+ 12 + 6 = 36d.f
for mean, A, B, C, AB, AC, BC, respectively) only 24 d.f. remain. We make
a rough correction by multiplying by (59/24)"/? = 1.569 to get 18.05, which
matches nicely the 17.9 given by Davies.

8.4. AN 8 x 5 VIA SCHEFFE (1959, HIS TABLE B, PAGE 138]

The 8 x 5 data set from a randomized block experiment on eight varieties
of oats, originally from Anderson and Bancroft [1952], is large enough to
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provide some evidence on the shape of the error distribution. The residuals,
shown in panel b of Table 8.4, are plotted in Figure 8.2 on an “arithmetic
normal grid.” The plotting is done in two stages. First the grid is scaled, in
this case from — 80 to + 80. Then each residual is picked up from the residual
table and plotted as a dot near the left margin, as shown in the figure. In this
way, we avoid the necessity of searching for the largest, then for the next
largest, etc. When all are transferred, we count them to make sure that none
has been lost.
Each point is now moved in to a per cent probability point, which is
, i-$
P = 100 N

for the ith point.*

The per cents can be read from a slide rule with ample precision, and two
points (one at each end of the cumulative distribution) can be plotted for
each per cent computed. The straight line is drawn by eye, using a transparent
rule, and is lorced through the (0, 50%;) point. The data near the 16 and 84%,
points should be given somewhat greater (vertical) weight in deciding on the
slope of the line. The error std. dev. is most easily estimated as half the differ-
ence on the residual scale between the 16% and 84%; points taken from the
line drawn. Since the N = RC residuals have only (R — 1}(C —~ 1) degrees
of freedom, we get a fairer estimate of the standard deviation of observations
by multiplying the graphical value by [RCAR — I}(C - 1)]*

There is a crudity in this correction that may be deplored, but that does
not seem to me to be serious for R x C tables larger than 5 x 5. It is well

® [ am aware of some differing opinions on the choice of plotting positions—in particular,

those of Blom [ 1958], Harter [ 19691, and Tukey [ 1962]. Blom recommends for a in the equation
i—a

P’ = 100 —

N+l —ua

the value § as a general compromise, since the optimum value varies with N. Harter shows
that this value (0.375) is generally a bit low, but for N = 20 he gives 0.378 and for N = 50, 0.389.
If we use, Lhen,

. i-038
TN + 062
we have for N = 40
; P P
1 1250 1.526
2 375 399
3 6.25 644
The discrepancy for i = | is less than § inch on the usual 8% x 1! inch grid and decreases for

larger i. Deviations of this magnitude are negligible compared to those that we will be judging
important,
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TABLE 8.4.
AN B X 5 +ROM ANDERSON AND BANCROFT, via SchErk: [1959, Pace 138),
Data Cobib sy —354

Pancl ¢ Panel b
Blocks Residuals
Variety I 11 11 v v Sk S [ H 1 A
1 ~58 3 -14 ~23  -6] -98 -20 Q @ 20 -23 10 6
2 48 36 T ~14 34 113 23 =4 10 25 —-24 -9
3 8 -20 72 -34 -58 43 9 45 -32 34 -30 -2
4 -5t ~-35 —-44 -94 112} -336 67| —-13 29 ~-6 -4 3
5 115 51 88 133 40 4271 85 1 =37 -26 6l 3
6 -9 -12 4 -S54 46| —117 23| -15 8§ -2 -8 25
7 -30 15 3 -2 —-134 ] -178 -3 | -23 18 10 47 -50
8 13 20 47 -i6 -34 154 30 6_9 -13 —-12 =33 -16
Residual MS, = 37,514/28
Yer 232 28 233 -104 -384 5 1340
Ye—1: 231 27 232 —105 -385 0 5, = 36.6.
de+ 8 29 3 29 13 --48 See Figure §8.2.
Panel ¢ Panel d
Residuals,, Block | Removed Residuals,, Ordered by %; and B,-
Variety 4 111 v v Variety Hi i | v A
I 3 42 -7 46 5 - 26 P -37 6! 3
2 10 23 -2 -8 8 -12 751 ~13 =33 -—-16
3 -20 4 18 -6 2 25 ~4 10 24 -9
4 26 -1t 17 1 3 34 451 ~32 -30 -21
5 -39 16 59 -2
6 5 -1 -2 23 i -23 67 20 HY) 62
7 12 2 4t 55 6 -2  —~15 8 18 25
8 6 5 -14 4 7 10 -23 18 47 -50
Residual MS, = 20,423/21 = 972.5. 4 -6 -13 29 14 3

sy = 31,2

known that the correlation coefficient between pairs of residuals in the same
row (column) is —1AC — 1) [ - 1R — 1)], while that between residuals in
different rows and columns is —1/(R — 1)(C — 1). This disparity becomes

less when R and C are larger.

Panel b of Table 8.4 shows the residvals from the usual additive model.
This suggests, without being entirely convincing, that block I was more
disturbed than the other four. Carrying through the analogous arithmetic
for blocks II, 111, IV, and V, we acquire the residuals and summary statistics
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Figure 8.2 E.c.d. for the 40 residuals from Schefle’. ¢ = 33,/39/28 = 39. Sce Table 8.4,

shown in panel c. The normal plot of the new residuals looks “better,” but
this opinion is subjective and tendentious,

It is natural to consider applying Tukey's G-test (Section 4.6), but a simple
rearrangement of the table shows this to be unnecessary. Panel d gives the
8 x 5 display of residuals, but rearranged by (decreasing) row and column
averages. As Scheffé mentions [1959, page 132], Tukey’s statistic can be
written as

Z Z a'ﬁ]ylj
Z Z By
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The rearrangement of panel ¢ puts the &; and f§ ; into decreasing orders
and so induces maximum positive correlation between them as they stand.
If G is to be large, the §;; must be in the general form of a “linear by linear”
interaction contrast. This means a predominance of residuals of the same
sign in the diagonal quadrants with the largest residuals near the corners.
Since Panel d does not reveal this pattern, the detailed test is not carried
through.

I conclude that these data are satisfactory in the sense that the standard
assumptions (normal, uncorrelated, constant-variance observations, with
additive row and column cffects) are satisfied for blocks 1I-V. There appear
to be two exceptional values (for varieties | and 8) in block 1.

85. A6 x5 x 2 ON BARLEY (IMMER ET AL.) FROM
FISHER {1953}

The data are given as a “practical example” by R. A. Fisher [1953, page 66].
Results are shown for the total yields of five varieties of barley in two suc-
cessive years at six locations in the state of Minnesota. We can view the data
table as two 6 x 5 layouts, one summed over the two years, the other
showing the difference between the 2 years. Although the data were originally
given to one decimal place, they are rounded to the nearest unit in Table 8.5,
panel a. Also, 101, the approximate mean, has been subtracted from each
value.

Panels b and ¢ of Table 8.5 show the sums over and the differences between
the yields in the two years. We look first at the differences and at the cor-
responding table of residuals. The large residual in row 5, at column 3, is .05
significant by the maximum normed residual test. (These residuals are of
course just twice the components, Si'i,‘, of the three-factor interaction.) Inspec-
tion of the corresponding difference in panel ¢ shows it to be — 28, while the
other items in the same row are 32, 39, 27, and 24. The sum of the cor-
responding two items (in panel b) is 36, close to the average of the other
entries in that row. These facts suggest that the two entries have been inter-
changed in error. If this is so, the error MS should be revised from its original
value of 143 to 89. This has serious consequences for judgments on main
effects and on two-factor interactions. The only other serious change would
be in the overall yearly difference, which is not now (and was not then) an
important parameter.

Turning now to panel b, we can see that all of the four largest 5, are for
variety 4 (Trebi), which gave the highest average yield. The remaining MS
for six locations by four varieties is 109, a value negligibly larger than the
corrected error MS of 89 (3fi).



TABLE 8.5.
YiELDs OF BARLEY IN Six LocaTions, ror Five VariETits, IN Two YEaRs;
DATA BY IMMER 1T AL. FroM Fisuer {1953], Rounpen 1o 1 anb Conen ry — 101

Panel a.
Varieties
Location Year M S v T P
| 1 -20 4 19 9 -3
2 —~20 - 19 -2l -~ 14 - 17
2 I 46 4f 50 91 45
2 -1 15 i1 47 7
3 I - 19 —-24 -23 30 -1t
2 2 4 16 39 29
4 1 19 20 23 40 24
2 -2 -39 -5 25 —25
5 { —2 -2 - 32 —-12 3
2 -35 -51 -4 -39 -21
6 1 - 14 ~24 -22 1 -5
2 -33 —34 ~34 -9 -7
Pancl b.
Sums over Years
Varieties
Locations M S vV T P Averages Residuals
| -40 -~-i5 -2 -5 -2 - 16 - 11 21 18 -7
2 45 56 61 138 52 70 -12 6 -5 33 21
3 -7 =206 -1 69 18 9 -13 -9 —12 6
4 17 -19 18 65 —t 16 14 —15 6 14 20
5 -37 -63 -3 ~51 —18 -41 17 2 9 20
6 —-47 -58 -5 -8 -12 ~36 2 -2 -6 -1 21
Column
deviations: ~13 ~20 —4 35 3
Panel ¢.
Locations Year Differences (1931-1932) Averages Residuals
i 0 23 39 23 14 20 ~-20 -3 26 1 -5
2 46 26 39 44 38 39 7 -19 7 3 0
3 ~21 -28 -38 -9 -4 -27 6 -7 -4 6 —12
4 2t 59 28 15 49 35 -14 18 0 -22 15
5 32 39 -8 27 A 19 13 14 6 6
6 19 10 12 10 2 t 8 -7 8 -3 -8
Column
deviations: 0 6 -7 2 —1
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It is natural to try Tukey’s test for multiplicative nonadditivity (called the
G-test below), on these data. The details are given in Table 8.6 because they
reveal that, even when a test turns out to be significant, there may be reasons
for not accepting the outcome at face value. We reorder the table of residuals
(7;;) of panel a, Table 8.5, by row and column means to get panel a of Table 8.6.
We do see the largest positive residual at cell (1, 1) and the largest negative
one at cell (5, 1), but the agreement is not striking elsewhere. Since the
F-test for G is significant, we proceed to compute G and the resulting residuals,
¥, = G8,f,. These are shown in panel b. The resemblance of these doubly

TABLE 8.6.
TukEy's G-TesT ON REsipuaLs OF TABLE 8.5, PANEL b, REORDERED BY ROw AND
CoLuMN MEANS

Panel Varieties

Locations 4 5 3 ] 2 Averages & [
2 33 -21 -5 —12 6 136 35 553
4 14 -21 6 4 15 109 8 236
3 25 6 —~12 -~13 -9 105 4 642
1 —24 -7 {8 —1i 21 93 -8 —3591
6 —45 20 9 17 -2 83 ~18 —842
5 —-7 2t ~16 2 -2 80 -2t -39

]
Deviations (f;): 17 2 -2 =7 i

P = Z y{}ﬁj; P = Z“sl’l = 44,514.
i i
Y&t = 2134; Y B2 = 446.
SS (nonadditivity) = 44,514%/(2134 x 446) = 2082.
F (nonadditivity) = 2082/(2 x 143) = 7.28; Pr < .025,
G = 44,514/(2134 x 446) = 0.0468.

Panel b
Residuals Predicted by G Residual Residuals
¥y = G&iﬁj =9y ~ Vi

28 3 ~3 ~11 -16 5 —-24 -2 ~1 10
6 t —1 -2 -4 g -2 7 16 11
3 0 0 -1 ~1 22 6 —12 -12 -8
-6 -1 1 2 4 -18 —~6 17 13 17
~-14 -2 2 6 8 -3t 22 7 It - 10
-17 =2 2 7 10 10 23 18 -5 =12




162 LARGER TWO-WAY LAYOUTS

ordered residuals to a “linear by linear” interaction contrast is strong. Sub-
tracting the “predicted residuals” of panel b from those of panel 4, we reach
the “residual residuals” of panel ¢. Some of the original residuals have been
nicely reduced, but others have not changed and a third group has even been
increased. It is obvious that nearly all of the reduction in residual SS produced
by the G-transform has come from the two variety 4 (now in column 1)
residuals + 33 and — 45, spotted earlier. It is also noteworthy {(and deplorable)
that all the residuals for location 5 (fast row) have been increased.

We must decline, then, to give strong weight to the significance of the
G-test in this case, since its value depends so largely on two residuals.

Locations 5 seems to have produced less reliable data than the other
locations. Two of its values (for variety 3) appear to have been transposed;
the largest residual in Table 8.5, panel b (for Trebi), is to be laid at its door,
and it had the lowest yield overall. We have therefore dropped the data
from this location and redone the whole analysis, but, as the weary reader
will be relicved to see, we do not display all the arithmetic. There remain
consistent differences between varieties, locations, and even years. The yearly
diflerences were consistent for four locations but were reversed for location 2.
No large location-variety interaction remains. The error std. dev. (3fi) is
reduced to 10 as compared to the 12 computed from the full set of data.

8.6. A 33 x 31 FROM PFISTER [LIGHTFASTNESS (y) OF 33
DYE BASES (4), EACH COUPLED TO 31 NAPHTHOLS (B)}

The data were published by Pfister Chemical Company [1955] and were
given as scores from 1 to 8, that is, from “very poor” to “excellent,” with
occasional + or — suffixes to indicate intermediate scores. These have been
dropped so that only integers appear in Table 8.7. It is not plausible to
assume that the random error in these observations is normally distributed
with constant variance, nor is it likely that the observations were taken under
randomized or other statistically independent conditions. The code letters
at the head of each column identifying the naphthols in the Pfister publication
are commercial designations, related to chemical composition. All codes
containing the letter G are chemically related, and those containing LG are
a more closely related subset.

Since both row and column categories are discrete, not ordered or con-
tinuous, any rearrangement of rows or column loses no information. Indeed
we will see that rearranging by decreasing row and column averages produces
considerable clarification and eases computation. Table 8.8 shows the re-
arranged data. The expected and visible result of this reordering is to sur-
round most observations with numbers of similar magnitudes. Exceptions
to this near matching are then evidences of nonadditivity. The ordered table



30

G GR ITR KB LB LC LG L3G L4G LT MCAMX OL P RL RP RT SG SR SW

18 19 20 21 22 23 24 25 26 27 28 2

?

.8 = Excepnionai*

TABLE 8.7.
} = Very Poor, .

Naphthols
13 14 15 16

12

LiGHTEASTNESS OF 33 Dye BasEs x 31 NapHTHOLS: DATa FROM PrISTER CHEMICAL CoMBANY [1955)

4 S5 6 7 8 9% 10 I
BG BO BR BS CL. D DB E

3

2
3 AN

|

PRI NN VMO MNVMNITATANO TN NNNT NS
F e RO OO RN OOV OOETRVIT RO DL D NN OO
TTOTONCCE OO OVNEGOOLCOOTRINOONT RO TN
MINCT DI OAN O ALNONNVANOT AT LN e MmN
M OONOOONNOOEOOT VG T OO TNW0WO TN onn
O N DNOEARE MO OVIOOR NNV OYFNNINDann
CVENENONEENNNVONDVOTOONOOONNNAD NN
NGO TNVIE QOO L OWWODLNOT N0 T NGB RO MmN
D AD T AB N DN NI NS SO D T IS0 D 00N TN N O N A
GPanmmemnNnmMYIiT NN MAaYTANYTMTmn YT RN NNN TS
WO VOO WOVr NORFOWOE BW0NVIYYNMmDOowmon
GO A WO TN A G ORI DT T ONM o TS g T
O FNF DL QAT M NN NGO DN MO AR o
MM OGN ONNY T T TN T T I N e = e
MErNOOOONE VO TOOOENNTNOOTmENnT NN
VO DOWW RO D VNI~ OWON O VO V00 C0o T ow
MO ONONNONOTONNYTONETNTONMANGN T NGO
VIO 00Ot 00O OONVINE Ot nomnn
MM YOS OMANMNATELTETMNATNTMOICAINTSNNT O TS
MOV =N NN LIV T TETTMNEIONAACON O
LM MAMmAT NIRRT NINT M INSEY TN Mm Y o
WVMIn OO NOOIEE OO OV ONT IO OOr MY
VA OTVT ORI NBNONANNND TN TN TN D Mo
VOONVOACNTONNEI IV OO TONNNNETENT TN
TS ARLOAOTILTLANTETSMNOTN DTSN NO NN
CELETMNNN AT ONTTNPALTANINT N NSV M @BCETIOLM MN
MNBNNVONNEONONY IO DORCT VN0 T AN NN @ ND
MO OV NN NOONYOY O VINVON TN NSt O

T L TGS ANV ENY PPN NG T THNOGRE S TS RO N ND

L e e ek i/ A e L wd A L w2 W W I A WD M W

177 167 176 197 163
ig 13

12

18}

192 131 179 {80 183
3 26 10

144

22

175 168 179 120 124 114 186 165 200 177 12 1
19 1m 29 30

141

172 133

132 179

i down.

60



TABLE 8.8.

Dyt Bases AND NAPHTHOLS REORDERED BY AVERAGE LIGHTFASTNESS
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is bordered with row averages and column deviations so that fitted values
and residuals can be computed without pencil. For example, the average
for row 1 is 6.2 and the column deviation for column 1 is 1.2, so the fitted
value in celt (1, 1} is 7.4. The residual is then (5 — 7.4) or —24. Is this large
or small? We can get a (conservative) view of this by evaluating the residual
root mean square for the whole table, including, at first, all interactions.

The “analysis of variance identity” for a two-way table (which holds with-
out any assumption about the distribution of error) can be used to partition
each observation into four components: a grand mean, a row “effect” or
deviation from the grand mean, a column effect or deviation from the grand
mean, and a residual term. Using y__to denote the grand average, y; for the
ith row average, and y ; for the jth column average, we can write the identity
as

8.1 Y=y, W=y )+ -y ) - -yt y)
(8.2) or =y A=y )+ Wy =i -y, +y)

(8.3) or = Row average + Column deviation + Residual

(84) or =4, + B, + i

From (8.4) it is easy to compute the §;;. By squaring both sides of (8.1) and
summing over i and j, we obtain the corresponding sum of squares identity;
then, transposing to isolate the SS for interaction, we have

(8.5) ZZ??] = ZZ(}’U - Y..)z - C;(}’i. -y ) -R Z(.V.j - y‘,)z-
i i i

since all cross-product terms vanish identically. The three sums on the right
are easily computed, All are given in Table 8.10 in standard analysis of
variance form. v

The square root of the residual MS estimates the error std. dev. if there
are no interactions. This is hardly likely, however, so we have in 0.82'2 =
091 a somewhat inflated estimate. We have gone carefully through ordered
Table 8.8, spotting discrepant values by their failure to nearly match their
neighbors, estimating their residuals, and circling them (in Table 8.9} if the
latter are as large as 2.1. There appear to be 31 such entries. Figure 8.3 shows
these residuals plotted as circled dots on a normal grid. A straight line through
the upper six points and through the (50%, 0) point suggests that quite a few
of the negative residuals are not part of the implied normal distribution.
Indeed, if six of these, all less than — 3, are removed, the remaining circled
points find themselves moved over onto the straight line (as x’s). | suppose,
then, that we have a nearly normal distribution of error holding for all but
six of our 1023 points. The empirical cumulative distribution found suffices
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TABLE 8.10.
ANALYSIS OF VARIANCE FOR THE 33 x 31 Data OF TaBLE 8.8.

Degrees of
Source Freedom Sum of Squares Mean Square F
Column: dye base 32 337 10.5 12.8
Row: naphthol 30 571 19.0 232
R x C: residual 960 188 0.82
Total 1022 1696
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Figure 8.3 E.c.d. of 3t extreme residuals from Pfister's 33 x 3t - = data; x = after deletion
of six points. See Tablc 8.9.
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only to rule out six points as excessive—or, rather, deficient. There are reasons
for believing that more than this number of cells in fact contain interactions.

As we look at Table 8.9 from a little distance, focusing now on the circled
cells, we see that every circle except that at (1, 1) appears in a row or column
with at least one other. We ask, then, how probable the observed row and
column associations are, if the 31 largest residuals were simply dropped at
random into the data table. The column n; at the extreme right and the values
n; at the very bottom of Table 8.9 give us the required associations. Table 8.11
accumulates these as the numbers of rows N; and columns N, which contain
one, two, etc.,, large residuals. Expected values of N; and N; have been com-
puted from the binomial expansion of (p + ¢)*, where n = 33 for rows and
31 for columns, p = (1023 — 31)/1023 = 32/33 = 096, and ¢g/p = 1/32 for
rows and columns. (The computation from the hypergeometric distribution
gives so closely the same results that it is omitted here.) After the first term
in the expansion, p" = A,, the succeeding terms were calculated.by

n—i+1 ,
VR i 0SS T 1 R )
! p
TABLE 8.11.
Numser o Rows N; AND COLUMNS N; CONTAINING
Lf=0,1,2,...,7 RESIbuaLs WiTH EXPECTED VALUES AND
CHI-SQUARE COMPONENTS
i, Jj N E{N} X N; E{N;} xi
0 it 11.94 0.074 21 11.22 8.52
1 12 11.57 0016 2 1159 794
2 5 5.42 0.033 3 5.79 1.34
3 3 2
4 0 0
5 0 2.07 0.418 2,5 239 2.85
6 0 0
7 0 1
Sums 31 3100 0541 31 3100 2065

The results are almost too clear. For rows (i.e., for dye bases), expected
values under the assumption of independence match the observations very
well (P = 90). For columns (i.e., for naphthols), the two with five (columns
22 and 28 in Table 8.9) and the one with seven (column 30) take up far too
many of the interactions, leaving too many empty columns and too few with
only one large residual. The significance probability is less than .0005.
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If we had the strength, we would replace all 31 large residuals by their
values estimated from the unchanged row and column means, and redo the
analysis of variance and the normal plot. The residual SS would be reduced
by about 205 to 583 with (960 — 31) or 929 d.f. The revised MS residual would
then be 0.628, and the “error std. dev.” 0.79. But we do not have the strength.

As further subjective evidence that the circled values in Table 8.9 are inter-
active, we note that all columns with more than two excesses have the letter G
in their specification, and that the three columns (22, 29, and 30) with five or
more excesses all have LG in their names. These naphthols are chemically
related, and this, for me, settles the matter. I have no doubt at all that these
coupling agents did not operate additively on lightfastness with the dye bases
indicated. From the point of view of the manufacturer of the naphthols, it
must be advantageous to do the following:

1. Check the data for naphthols LG and L3G with dye bases 29, 30, 26,
and 28 (in rows 22, 23, 26, and 27) since these are adverse interactions.
The six combinations with asterisks are maximally disappointing.

2. Tell users that G, LG, and L3G give unusually favorable results (positive
interactions) with the obvious dye bases.

I add only a sharp reproof to the statistician who would report the MS
{R x C)as“random error.” It is not. A less sharp rebuke, but stiil an admoni-
tion, should be given to those who simply report that this mean square is a
mixture of random error and interaction. It is, but one can say exactly how,
and so one should. We can even answer the question “Is the AB interaction
due to 4 or to B?" It is widely stated that the 2fi’s are symmetrical and that
it is logically impossible to make a distinction between the statements “A
operates differently at the different levels of B” and “B operates differently
at the different levels of A.” The interaction in our last case is due almost
entirely to the naphthols and not to the dye bases. We all understand that
the naphthols only operate nonadditively with some dye bases, but it is
almost entirely the three naphthols L4G, LG, and 1.LBG that produce the
interaction. There is no trouble-making dye base. The observed interaction
is not symmetrical in 4 and B.

Exactly analogous comments apply to most othcr cases when the non-
additivity is in more than one cell. In Table 8.2 all the interaction was in
row 2. In Table 8.4 it was in variety 1 and in block L. In Table 8.5 (Immer on
barley) the interaction was entirely due to one variety. I have not seen a case
of lack of row or column association for 2fi’s in data tables larger than4 x 4.

These findings criticize implicitly my own overhasty drawing of the e.c.d. of
the original residuals for this large table. I found only 6 excessive residuals
from that plot, whereas I have found 31 by taking advantage of the structure
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of the table, that is, by the identification of the residuals, which is lost in the
e.c.d. This is the same criticism that we made earlier of the use of half-normal
plots in 2% experiments. Premature aggregation of visibly heterogeneous
residuals is the hurried statistician’s besetting sin, corresponding to the
criticism made in Chapter 3 of the experimenter who generalizes prematurely.

8.7. GENERALITIES ON THE ANALYSIS OF
BALANCED DATA

It will not have escaped the reader that little has been said in this chapter
about the “statistical design of experiments.” I take it for granted that any
large balanced set of data, collected by a careful experimenter, is worth some
study in its own right. The thorough statistician may retort that there is
little value in this effort (especially for the data of Section 8.6) since no secure
inferences can be drawn from such data. He will add that all the so-called
tests of significance made are meaningless, and that all estimates are of un-
known bias since the data were surely taken under nonrandomized condi-
tions, probably in groups by columns or rows, by different, unspecified dye
chemists, and perhaps on single batches of dye bases or coupling agents.
(This statistician uses long sentences, doesn't he?)

I rely, more heavily than the skeptical statistician, on the intetligence and
integrity of the producers of the data. It is true that all the “interactions”
that I have uncovered may be due to defective randomization, to careless
experimentation or record keeping, or to unstated changes in technique or
technician. But the relatively small number of large deviations, and the
resulting relatively small s of 0.91 inciuding all interactions, make me believe
that large interactions have not been overlooked, and that the row and
column effects are consistent enough to be largely correct. It seems safe to me
to conclude that the effects of these naphthols and dye bases on lightfastness
are nearly all additive.

If I had been an advisor in the planning of this study, I would have recom-
mended that at least six rows (if, as I suspect, rows were swept through in
sequence) be repeated at random, and that the single cells showing residuals
of, say, 2.5 in the first full replicate be repeated, changing technicians, material
batches, or whatever conditions the dye chemist in charge thought desirable.

If a repeated row average came out far from its mate, say discrepant by
0.6 or more [we expect an s (row average) of 0.91/31"2 = 0.163], 1 would
require still more row replication. Moreover, I could justify this to the dye
chemists by the experience before us, rather than by appeal to the theory of
statistics. (A further recommendation, which I have called partial replication,
is discussed in Section 8.8)



8.8. PARTIAL REPLICATION OF TWO-WAY LAYOUTS 171

Further checks are conceivable, without further data. We could list all
residuals to the nearest tenth unit, in a table like Table 8.8, and study their
homogeneity, omitting of course those circled in Table 8.9. This is left “as an
exercise for the student.” The reader may ask, rhetorically, “When does one
cease analyzing the data?” My answer must be, “Only when time or money or
strength runs out.”

It has been a primary purpose of this chapter to give examples for analysis
guided by-—stimulated by—the data as they stand. There may be some in-
dications of a future systematic program in these pages, but for the moment
the emphasis should be on step-by-step study, aided by the usual tools and by
any others the reader may think helpful. Is a transformation of the data desir-
able? Should four columns be removed from Table 8.7, and the rest reana-
lyzed? Does an analysis of variance of the absolute values of the residuals
reveal anything? I welcome further suggestions.

8.8. PARTIAL REPLICATION OF TWO-WAY LAYOUTS

Balanced (or partially balanced) incomplete block designs, for comparing
v varieties, in b blocks, with k trials per block, can be written as two-way
layouts with blocks for columns and varieties for rows. We can get an idea of
k, for any given R x C (i.c, v x b), by considering that we will need at least
R + C — | degrees of freedom for separating out row and column param-
eters, and perhaps as many (surely not less than half as many) degrees of
freedom for “error,” in which we include, at the moment, interaction. We need,
then, at least 3(R + C)/2 observations. When R is about the same as C, this
comes to roughly 3R, and hence designs with k = 3 seemn minimal and those
with k = 4 better.

Such partial replications may find use in two different ways. They may
provide an economical fraction of the full R x C table in cases where only
rough screening of row and column parameters is envisaged. In situations
like the one in Section 8.6, where more thorough calibration is required since
the data will be used over a long period, a small fraction of the full R x C
set might be added to a full replicate to get a well-scattered sampling of
replication error.

It would be natural in planning the naphthol study to look for a supple-
mentary set of, say, 36 varieties in 36 blocks of three (or four). Clatworthy
{1973, page 274] gives a partially balanced incomplete block (PBIB) plan,
L.S68, that would spot five cells in each row and column of 2 36 x 36 two-way
layout. If no design of the size needed were available, 1 would not hesitate to
scatter a set of the size required (roughly 3R in number) over the whole grid.
These observations would be used primarily to get an error estimate. The
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gain through including them in the row and column parameter estimation
would be trifling.

For smaller two-way tables, with b and v of the order of 5-10, numerous
balanced incomplete block (BIB) and PBIB designs with k = 3, 4, provide
suitable fractions. Computer estimation of row and column parameters and
of all residuals in the observed cells is always much easier than hand calcu-
lation, but for plans in this size range the familiar formulae for adjusted
means are not difficult. There is a list of five BIB plans in Davies [1971]
and a somewhat larger list of references in Cochran and Cox [1957].

8.9. SUMMARY

The operations described above and summarized below are not to be taken
as inflexible ruies but only as a reflection of my own moderate success in
analysing my clients’ data.

1. Ifan R x Carray has been replicated, learn about the mode of replication

. and study the empirical distribution of random error. If error appears

Gaussian, nearly Gaussian, or Gaussian except for a few points, make
and record reasonable revisions and estimate o from the revised set.

2. If row and column categories are not orderable a priori, compute row
and column sums and re-order table by decreasing sums both ways.
This will help to detect localizable interaction and to make Tukey’s
G-test.

3. Compute, tabulate, and study the ,; (residuals) from the combined
data. Tabulate row differences—if rows are longer than columns—and
see whether the disparities spot the same cells as the 7;;. They will
sometimes find more.*

4. Ifmajor 3;; are in a few rows or columns, and are only a small set com-
pared to R x C, they should be revised to get more interesting, stable,
and informative & and /?j from the remainder of the data. The large
residuals should of course all be reported, preferably after reflation to
estimate the actual deviations from additivity. An analysis of variance
table is useful when it partitions the total sum of squares into localizable
interaction and into parts allocable to consistent row and column dif-
ferences. One that uncritically spreads disturbances among row, column,
and interaction SS’s is not useful.

The most satisfactory partitions are those that put all of the significant
interaction SS into a few cells (or even into a single cell) except for a
remainder which nicely matches that expected from random error.

*A paper on this possibility will appear shortiy.



5.

8.9. SUMMARY 173

The greater the care exerted by the experimenter to sample just the
population desired, the more valid are his findings. When objective
randomization is assured, we arc assured of a faircr aliocation of sums
of squares to effects and to random crror. But cven unrandomized data
are often worthy of study, even if only to justily criticism. The result of
such study may only be the spotting of a few values that the experimenter
will want to repeat, or it may only find deplorable trends inextricably
aliased with desired effects. Such findings can be useful educationally.
A large proportion of large R x C sets of data contain disturbances
that are only technical or clerical errors. A large proportion of the
remainder show disturbances that are in a few columns or rows (usually
not in both). These must be pointed out to the experimenter.

When it makes experimental sense to sweep through rows or columns
in sequence, the experimenter should be asked to repeat a few rows,
perhaps thosc showing the largest and the smallest averages plus a small
random subset. Even when this cannot be done, carefully worked trials
are worth study. The data may provide internal evidence of coherence
and of scientific value.
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CHAPTER 9

The Size of Industrial Experiments

9.1 Introduction, 175
9.2 Efficiency and Its Deficicncies, 177
9.3 Power and Sensitivity, 178

9.1. INTRODUCTION

The prime difference between industrial and academic experimenters seems
to me to be that the former start with a budget, a staff, and a laboratory (or
pilot plant or full-scale plant), and wish to improve a working system or to
improve their knowledge of a working system. The latter start with a problem
and then try to find the budget, the stafl, and the equipment to cope with the
problem, or at least with some manageable aspect of it.

Industrial research workers can often tell in advance about how many
“runs” they will be able to make. This number, N, will depend heavily on
the order in which runs can be made. It will usually be minimal if full ran-
domization is required. In nearly all experimental situations some factors
are hard to vary, whereas others, if not easy, are at least amenable to deliberate
variation. Most industrial experiments are, then, split plot in their design.
The total number of runs is largely determined by the number of combi-
nations of the hard-to-vary factors that can be afforded.

It is usually not advisable to propose that all of the work be done in
“balanced” or statistically planned sets. It is better to agree that some fraction,
S, of the budget be set aside for “statistical experiments” so that the experi-
menters, perhaps all novices in statistical design, can watch the effectiveness
of such designs and can evaluate their disadvantages, without the strain of
being fully committed to a new and unfamiliar technique. In favorable situ-
ations, a fair value for f is 0.5,

Perhaps the hardest decision of the classical experimenter, in considering
statistical designs, is committing himself to do a considerable piece of work,

175
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which will require a substantial portion of his budget of time and funds,
without being able to draw any quantitative conclusions until the whole
set is completed. On the other side of the scale is the fact that the planning
of larger blocks of work has often been recalled later by experimenters as a
most valuable discipline.

As first mentioned in Chapter 3, all experimental campaigns should start
with the preparation of an influence matrix. Using a row for each factor that
is thought to influence any outcome, and a column for each response, the
experimenter should make up a table that indicates the current state of
opinion and knowledge about the system under study. In each cell of this
table the experimenter can enter a summary of what he knows or guesses.
Thus a +, or — in the (i, m} cell would signal opinion about the direction
of the effect of x;, in the range considerced, on y,,. If no opinion can be given,
a “DK” (for “don’t know”) or an “i.” (for “ignorance™) should be entered.
If a regression coefficient and its standard crror are available, they can be
written in. If the general shape of the relation is known, it can be sketched
casily in a I-inch squarc.

The independent variables, the factors, should be named and symbolized,
and the range judged sensible for experimentation should be recorded. It is
always important to know which factors are easiest to change and which
hardcst, and this information too should be set down. The degree of nesting
to be used is determined almost entirely by the relative difficulty of varying
the factors. Thus a change of feedstock to a large piece of equipment may
require a long time to “line out,” but a small change in pressure may be
quick to equilibrate. In such a case the experimenter will surely want to run
through several pressure levels before changing feedstock.

Assume now that the information matrix has been completed. Initial de-
cisions have been made on the reasonable ranges over which to vary each
important factor. The number of hard-to-vary factors ny has been given.
The number of runs N, each at different choices of levels of the hard-to-vary
factors, has been roughly fixed for the budget period, perhaps for the project,
in question. We do not propose to change any factor over a wide range. We
are not exploring the outermost limits of operability of the system. We want
only to get a generally valid picture of the conditions to which the system is
sensitive, and of those toward which it is robust.

The cautious experimenter will rarely commit more than half his N, or
half his time to deadline, to a single “statistical experiment.” In this, he is of
course enlirely right. It often takes a number of additional runs, and may
even require several more fractions of a factorial, to obtain satisfactory clarity
about the operation of a system. Perhaps half of N, should be reserved for
this purpose. Hence the number of runs in the first set is guessed to be of the
order of fN,/2 = Ny,/2 = N,, say.
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Experimenters usually have (or can develop), a rather large list of factors
whose effects they would like to know. It will be necessary to choose ny, the
number of hard-to-vary factors, from this list to be of the order of N,/4 to
N,/2, but in any case less than N,. If this is not possible, some sort of group
screening is called for. (See Watson [1961] and Patel [1962, 1963].) I expect
ny to be between 2 and 10, although the total number of candidate factors
may be as large as 40.

If ny, is less than N, /2, that is to say, if the number of hard-to-change
factors is less than half the projected size of the first balanced set of runs, a
good case can be made for committing all the statistical effort to a single
design that will estimate all main effects separated from all 2fi’'s. Smaller
plans of this type {called main-effect-clear plans, plans of Resolution IV, or
four-letter plans) are given in Chapter 12, and larger examples are shown in
Chapter 13,

When a few extra runs, say 4-8, can be spared beyond the balanced set
just mentioned, the experimenter will have a better chance of disentangling
and identifying any suspiciously large interaction strings. This operation is
described in Chapter 14.

Only rarely must a plan of experimentation be set up in advance that will
guarantee estimation of each main effect and of each 2fi aliased only with
higher-order interactions. This will require at least 16, 22, 29, 37, 46, and 56
ruus for 5, 6, 7, 8, 9, and 10 two-level factors, respectively. Such “two-factor-
interaction-clear” or Resolution V plans are needed when the responses being
studied demand long-term storage or the testing of equipment through many
cycles ol operation. In such cases, the possibility of experimenting or testing
in stages is severely restricted.

9.2. EFFICIENCY AND ITS DEFICIENCIES

The term efficiency as used in statistics has little to do with the engineering
or even with the commonsense use of the word. As E. S. Pearson has pointed
out, we statisticians are oftentimes trapped by the honorific overtones of the
words we choose. If an experimenter can get good estimates of seven main
effects and all their 2fi’s in 29 runs, it is stultifying to tell him that he can
obtain “100% efficiency” of estimation only by doing 64 runs. The larger
plan will give him the 28 desired estimates, of course with greater precision,
but a large proportion of them will be estimates of zero. Thus this 100%
cfficicnt plan may waste 35 runs. Webb’s saturated plan [1965] in 29 runs
(consisting of (1), all 21 two-lctter trcatments, and all 7-six-letter combina-
tions) is “only” 687 efficient, and so cach effect is mecasurcd as precisely as if
replicated about 10 times. Most experimenters had not dreamed that such
precision was attainable with no replication.
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A better measure of the usefulness of an experimental plan would take
account both of the degree of saturation of the plan with useful effects and
of the effective replication of statistical efficiency. Perhaps the product of the
statistical efficiency and of the ratio (number of estimates/number of runs)
can be called the efficacy or the economy of the plan. It would measure the
efficiency per useful degree of freedom. Thus for Webb’s 29-run plan just
mentioned the economy would be 0.68 x 1.0 or 0.68. The economy of the
standard 64-run plan for the same purpose would be 1.0 x 29/64 or 0.45.
The fact that all the runs of the former are included in the latter is advanta-
geous when sets of runs can be made and studied in sequence.

9.3. POWER AND SENSITIVITY

No mention has been made so far of the statistical power of the tests made
to judge the reality of effects, or of the expected values of confidence-interval
widths for parameters of interest. These both depend on advance knowledge
of ¢, the true error variance, and this is not usually known in advance. I
still remember the few cases in which research workers gave estimates of the
error variance that were supported by later work. Most commonly | have
been given gross underestimates, based on the known high precision of the
measuring instruments used on product properties.

My attempts to get good estimates of error variance by fitting equations
to past data taken on the same system have occasionally been successful, but
more frequently have been failures, and in both directions. The commonest
cause of my undercstimates is, I believe, my failure to spot replication degen-
eracy, some form of plot splitting, in old data. The commonest cause of my
overestimates has been my failure to detect a few very bad runs. In historical
unbalanced data it is often not possible to spot these. (For some examples of
modecratc success, see Daniel and Wood [1971].) The aberrant runs are less
likely to show as having large residuals in poorly balanced data.

In working with experimenters who have already done large balanced
multifactor tests, I have noted a third factor that has invalidated earlier
variance estimates. The presence of an “external examiner” sometimes in-
creases the care with which data are collected. This, in turn, may decrease
the random error in new sets of data. A sort of reverse Heisenberg effect
appears to operate. At the same time, undetected bad values in earlier tests
must have invariably increased the estimates of error from these tests.

Finally, it has been my experience that research administrators have some-
times decided to proceed with an experimental campaign even after a power
calculation has shown that a sequence of feasible size has low probability of
detecting effects of the magnitudes desired. In such cases the objectives of
the project were made more modest so that some experimentation could go
forward.
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The general conclusion seems to be that we must learn to do the best with
what we have, using variance and confidence-interval-length estimates only
as uncertain warnings of what may well be missed.

A more detailed treatment of the number of runs required must wait our
discussion of fractional replication and of other incomplete factorials (Chap-
ters 12 and 13). When the experimenter can see clearly the number of param-
eters (usually main eflects and 2£i’s) that he will want to estimate, he should
then count on doing at least 1.3 times, and perhaps twice, that number of runs.

In risky summary of this discussion, an N, of 8 is minimal in industrial
research. An N, of 16 is much commoner and usually more productive per
run. Even such a set, however, [requently requires some augmentation, often
with 8 more runs. Initial sets of 32 are less common but are of high yield
when feasible. Finally, N;'s of 64100 are not rare.
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10.1. INTRODUCTION

We have been discussing factorial experiments ever since Chapter 3, but
we now need to go into more detail about their subdivision into useful parts.
The reader will surely know that factors are not necessarily all at two or three
levels, and that there may well be more than two factors at more than three
levels (as in Chapter 8).

Factorial experiments have been done since time immemorial by research
engineers and by many others, but not under the name that Fisher gave them,
and without using randomization, the factorial representation, or the general
ideas of main effects and interactions. The data have usually been summarized
as multiple plots, with all factors continuously variable.

An unreplicated factorial plan with n, levels of A4, etc., requires Ny =
nanghe . . . results for each response, and this number may be too large, or
perhaps only so large as to raise concern about the stability of the system
over the long time or wide area required. It is natural to look for sensible
subgroups of the full factorial that will permit closer comparisons because of
greater homogeneity within subgroups.

181
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Such subgroups are called blocks. The classic examptle in agricultural ex-
perimentation is the subdivision of a single field in which a crop is grown
into parts thought to be more homogeneous than the whole field. In indus-
trial research, batches of raw material are frequently used to determine the
size of blocks. In this way differences among batches are prevented from
entering the error term, and hence greater precision is attained for the im-
portant comparisons, which are arranged to be estimable within blocks.

The practice of blocking for increased homogeneity is of course not con-
fined to factorial plans. Any set of different treatments, varieties, or experi-
mental conditions may be combined and applied to one batch of raw material,
to one laboratory setup, or (o one day's operation. If there is random allo-
cation of treatments to experimental units, one randomized block has been
accomplished. Confirmation by repetition in other randomized blocks pro-
vides maximum security .in making inferences about systematic differences
among the responses to different treatments.

Since it is often not possible to insert all treatments into each block,
attention must be given to the selection of sub-subsets that will yield maxi-
mum precision in comparing the effects of treatments. The best subdivision
will be that in which each treatment appears to be matched with every other
treatment the same number of times. Such subdivisions are called balanced
incomplete blocks (BIB for short). The BIB are best in the sense of giving
maximum precision per observation, that is, highest efficiency. But although
great ingenuity and effort have been expended in producing these designs,
they often require an unacceptably large number of observations to attain
full balance.

We are then forced to make a further compromise, by reneging on the
requirement that all pairs be equally represented within blocks. These com-
promise plans are called partially balanced incomplete blocks (PBIB); and, if
each pair of treatments appears either 2, or 2, times, together, they are called
PBIB with two associate classes. The book by W. H. Clatworthy [1973] is
certain to become the standard atlas of PBIB’s.

An excellent discussion of the subdivision of factorial plans into random-
ized BIB's is to be found in Chapter 7 of Davies [1971] and is continued in
Chapter 9. Part of the present chapter is a repetition, with admiration, of
that discussion. However, a new system of blocking the 22 in pairs is given
in Section 10.3.2 (none is given in Davies for this case). Such systems will be
found useful when the cffects of interest are of the order of 204, where oy is
the error standard deviation within blocks. A new blocking system for the 24
in blocks of four, given in Section 10.4.2, makes it possible to acquire estimates
of all but two 2fi’s with full efficiency (the two exceptions with efficiency 3).
This is done by using different contrasts in blocking from the usual ones.
Incidentally, or perhaps fundamentally, the standard dictum (that if P and Q
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are confounded among four blocks, then PQ is also) is refuted by these
designs.

10.2. THE SIMPLEST BLOCKING: THE 22 IN BLOCKS OF TWO

It might happen that natural blocks admit only two treatments (for ex-
ample, twin goats or very small batches of some expensive raw material) and
that only two two-level factors are under study. I do not consider this a
likely case, but the fundamental principles of blocking are already involved
and just escape degeneracy.

As in Chapter 3, we call the factors A and Band designate the four possible
treatment combinations or experimental conditions as (1), @, b, and ab. We
take two observations (1) and ¢, as a first attempt, and we look at the expected
value of the only possible comparison and at the expected value of the sum
of the two observations. By Yates'’s algorithm or by direct inspection,

9.1 E{(1)} = —A — B + AB + average level of block 1,
9.2) E{a} = A — B — AB + average level of block I,

Hence, E{a — (1)} = 24 — 24B,
and E{a + (1)} = —2B + 2(average level of block I).

So we see that the block difference estimates 2(4 — AB) and the sum
2(average level of block I — B). In the jargon of blocking, AB is aliased with
A, and B is confounded with the mean. The two new terms are, so far as I can
See, Synonymous,

There are only six possible pairings of the four treatment combinations,
which are shown diagrammatically in Figure 10.1 and are designated here as

b ab

vl v

m ' a
A —>

Figure 16.1  The six possible blocks of two for the 22,
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TABLE 10.1q.
EXPECTED VALUES OF AND ESTIMATES FROM DIFFERENCES IN THE 22///2

Estimates from Block Differences

No. Computation } Expected Value and Sums

L a— (1) A — AB I + I, = 24,*
i, ab — b A+ AB H, — 1, = 24B,
i, b - (1) B - AB HI; + 1V, = 28,
v, ab — a B + AB IV, - NI, = 24B,}
V,‘ a—b A-B V,+VL,=2A2
Vi, ab — (1) A+ 8B VI, — V, = 2B,

* A, means “first estimate of A4.”
' AB, means “second estimate of AB.”

L I,..., VL The expected values of the six block differences are shown in
Table [0.1a4 and should be verified by the reader.

It comes as no surprise that at least three blocks of two must be done in
order to get even the crudest estimates of A, B, and 4B. Since the experimenter
would only rarely do a 2% unless he was interested in the 2fi, 4B, the two
blocks V and VI are the least useful. Their internal comparisons do not
contain AB. If the first four blocks are done, we see (and can verify computa-
tionally) that AB is estimated with half the variance of 4 and B. If alf six
blocks are done, then all three parameters are estimated equally precisely.

It should be apparent without computation that each of the three effects
is estimated with efficiency £, since only four out of six block differences are
used to estimate each one.

Since six differences are ultimately available, we must look for and make
use of the three “degrees of freedom” not consumed in the estimation of the
three parameters. These three are measures of (twice) the random error within
blocks: they are found from A, — A,, B, — B,, and AB; — AB,. This
“intrablock variance” will be symbolized by o3.

The expectations of two times the six block means are given in Table 10.1b.

The new symbols, ;,i = 1, 2,..., 6, are parametric deviations of block
mcans from the grand average, M. If the blocks can be viewed as a random
sample of a population of blocks, the I, may be used to estimate the variance
of this population, which we will call 7. This may be useful for judging the
effectiveness of the blocking. If 6}/s? is large, blocking has been in some
degree effective. This ratio should be greater than 3 for real gains in precision.

Estimates of the [; may be computed by correcting each block sum for the
indicated effect, to get six estimates of (M + /). The deviations of these from
their average (which estimates M) are the values desired.
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TABLE 10.15.
ExpecTED VALUES AND ESTIMATES FROM BLOCK SUMS IN THE 22///2

No. Computation 1 Expected Value Estimates from Block Sums
i, () + a M* —~ B+ I L+H, =2M + 1, + I;
11, h + ab M+ B+, I, -, =28~ +1
I, (1) + b M=A+1 L+ IV, =2M + I, + I,
v, a+ ab M+ A+, IV, -, =24 -1, + I,
v, a+b M — AB + I Vo+ VI, =2M + is + g
vi, (1) + ab M + AB + I VI, -V, =24B — I, + I,

* M stands for the parametric vatue of the mean of all six blocks.
! Sce text for definition of /.

The block parameters have obviously been assumed to enter additively
into their expectations in Table 10.1h, and so any block-treatment inter-
actions have been taken to be zero. If this assumption is in error, the three
effect diflerences, (4, — A4,), etc., will reflect these interactions. If all such
differences are small (compared to 4, B, AB), we need not worry about them
at this stage. The practical reader will recognize that this pathetically small
example, with only three d.f. for the estimation of a2 (and five for o?), is
not recommended for actual use except in dire circumstances. It may be
said, however, to be better than nothing. It is certainly better than the
absolutely minimal design of blocks I, II, and HI for estimation of 4, B,
and AB. But modesty will not guarantee usefulness, It is only the principles
and computations that are to be remembered from this section.

Looking back at Tables 10.1a and b, we ask, “What is confounded with
the within-block differences?” For blocks 1 and Il we see that B is confounded
with the difference between results in each, and that 4 and AB are estimable
with variance 03/2. We have, then, deliberately lost B for the sake of better
estimation of A and AB, Ceteris paribus in blocks Il and IV, we lose 4 but
get estimates of B and AB.

103. THE 2° IN BLOCKS OF FOUR AND TWO

10.3.1. The 23 in Two Blocks of Four

Here we come, {or the first time, to a tolerable experimental situation in
that we can “lose,” that is, confound, a parameter that we do not usually
cherish. The 3fi ABC is estimated by a contrast among the eight responses of
the 2°. If we put the four trials that have + ABC in one block and the re-
maining four in the other, we have confounded ABC with the block difference.
But we can estimate the remaining six parameters (the three main effects and
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the three 2fi’s) with full efficiency and minimum variance. Thus we have
Block 1 Block 11

(1) a
ab b
ac c
he abce

It is easiest to remember this partition by noting that the “even” trials are in
one block. The symmetry is pleasant to see diagrammed (Figure 10.2). Here
the circled vertexes specify block I. These appear nicely spaced in a tetrahe-
dron, two at the high and two at the low level of each factor. We can discover

A~

Figure 10.2 The two blocks of four for the 23, confounding 4 BC.

(again) just what each of the three obvious contrasts (e.g., the difference be-
tween the two results at high A and the two at low A) is measuring by the
standard procedure of Yates on the 23, entering +1 for each of the four
treatment combinations as it will enter the desired contrast. Thus for the
A-contrast we have

Spec.  (0) (1) @ 3)

(h -1 -
a
b
ab
¢
ac +1
be ~1
abc

(4)

1

OO NN NN OO

Oh OO0 OO Ao

(BC)

+
—
|

— v —a e et -
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We see that the A-contrast, called (A), has expected value 4(4 — BC), mea-
sured with the within-block precision. The other two obvious contrasts
measure 4(B - AC)and 4(C — AB). Since the other block yields estimates of
4(A + BC), etc., we can estimate all six parameters with full precision, that is,
with variance 63/8. All six effects can be computed in one “Yates calculation,”
ignoring the result for ABC since it measures that interaction plus the block
difference.

10.3.2. The 2° in Blocks of Two

Blocks of two factorial treatments are often needed but are not frequently
discussed in the statistical literature. They should always be considered when
the variance between identifiable pairs is known to be a small fraction, say
one third or less, of the variance of unblocked observations. There is usually
some loss in variance efficiency in using blocks of two; but, as we will see,
this efficiency factor is 4 in the worst case (6 blocks of two for estimating six
parameters in the 23) and is § when 8 -12 blocks can be managed for the same
factorial.

The familiar textbook example used to exemplify “partial confounding”
will be skipped over lightly here. If the 2 is covered in the four blocks:

I I HI v

(1) a b ab
abe be ac ¢

the three main effects can be estimated with full efficiency, since each block
gives an estimate of A + B + C, and all four differences can be combined to
yield main effect estimates with variance ¢3/8. This seems to me shortsighted
since all 2fi’s have been confounded with block differences. Surely, if a facto-
rial plan is contemplated, the 2fi’s are of interest. It would be satisfying if the
three 2fi’s could all be estimated from a new set of four blocks, but this is not
feasible by the usual method of confounding, which confounds some effect,
say A, between the first pair of blocks and the second, and then confounds
another effect, say B, between the pair I + I and the pair I1 + IV. If this is
done, their product, AB, is inevitably confounded between the pairs 1 + IV
and Il + I, and there goes one of our desired 2fi's. Yates [1937] (and,
following him, Cochran and Cox, Davies, and all other authors) recommends
that another set of four blocks be done to get the missing 2fi's and that then
still another set of four be carried out to attain balance, that is, equal variance
for all estimates.

We tackle first the specification of six blocks of two that will permit
estimation of the six first- and second-order effects in the 23, assuming ABC
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to be negligible. Since we know that this cannot be done by using one set of
confounded effects throughout, we employ a different set for each puir of
blocks. We will want to cstimate 4 and (AB + AC) from blocks [ and II, B
and(AB + BC)from blocks IIl and IV,and C and (AC + BC)from blocks V
and VL. For block 1, since A and (AB + AC)are to be estimated, B, C, and BC
must be confounded with its mean, so the block must contain only (1) and a.
Block Il must estimate the same two parameters with one reversed sign and so
contains bc and abc. Similarly blocks Il and 1V are to estimate B and the
sum of its 2fi’s and so must be aliasing A4, C, and AC with their means. We
work this out a little more formally below for blocks I and II, and summarize
the whole plan and its efficiencies in Table 10.2.

TABLE 10.2.
THE 23 v Six BLocks oF Two
| i1 Hi v Vv VI
m be 1 ac n ab
a abc b abe ¢ abc
Estimable
effects: A B C
(AB + AC) (AB + BC) {AC + BC)
= 7,/4 = 7/4 = Z3/4
Effects: A B C AB AC BC
Efficiency factor: R T T T

Starting with the block differences for I and I1; we have
E{a — (1)} = 2(4 — AB — AQ),
E{abc — be} = 2(A + AB + AC).
Adding and then subtracting these two equations gives
Ef(abc — bc) + (a — (1))} = 44,
E{{abc — bc) — (¢ — (1))} = 4(AB + AC) = z,.

We proceed similarly for the other two pairs of blocks, getting estimates of a
main effect and of the sum of its two 2fi’s and calling the latter z, and z,,
respectively. It is then easy to separate the three 2fi’s:

N

8AB =  z, + z; ~ Za,
F

SAC == Z, hd 22 -+ 23,
o

8BC = —z, + 2, + 2.
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The variance of each of these estimates is 3¢%/16. The minimum possible
variance obtainable for a 2fi would come from six blocks around the edges
of a 22 (sic!) and is 36%/32, so all of our efficiency factors for the three 2fi’s
are 1. These factors are hardly to be boasted about, but they do provide
estimates of the six effects and so have full “degree of freedom” efficiency; the
plan is saturated with within-block estimates. The efficiencies are improved
il eight or more blocks are manageable.

10.3.3. The 23 in Eight and in Twelve Blocks of Two

Table 10.3 shows, in its first two lines, the generation and specification of a
superblock containing four blocks of two. It provides four useful estimates,
the maximal number for four blocks of two. The next two lines specify another
set of four blocks of two, and now all six desired parameters are estimable
with the efficiency factors given below in the table. When a third set of four
can be added, we attain equality of efficiency for all six parameters, although
the average factor has not changed.

TABLE 10.3.
THE 2% 1IN EiGHT AND IN TWeLVE BLocks oF Two

Alias Subgroups
(Superblocks) Estimable Parameters Treatment Combinations

+A4 + BC + ABC B, C, AB, AC (1) « b ab
be abc ¢ ac

+B + AC + ABC 4,C, AB, BC (t) b ab
ac ¢ abc  bc

+C + AB + ABC A, B, AC, BC (1) a c ac
ab b abc  bc

Effect: A B C AB AC BC Average Efficiency

Efficiency (8 blocks): LN T N A T | 3

Efficiency (12 blocks): 1 3 3 1 i !

In each of the sets-of-four blocks there is a “principal block” containing
treatment (1) and one other. The other blocks can always be generated from
the principal block by multiplication by any admissible treatment not already
present. The principal block is always determined by the alias subgroup. The
rule is as follows: Each member of the principal block has an even number of
letters in common with each member of the alias subgroup (0 is taken as an
even number). To be strict, all effects with an odd number of letters are
aliased negatively with the mean of the principal block, and all with an cven
number of letters are aliased positively with the mean of that block.
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The gains in estimability of these tiny designs are obtained by two changes
from the standard plans. First, we have placed ABC in the alias subgroup,
not among the estimable effects, since it is assumed to be 0 or at least negli-
gible. Second, instead of using blocks that estimate only main effects, we have
chosen combinations that give 2fi estimates as well. There seems to me to be
little point in using complementary pairs [like (1) and ahc] that can give no
within-block information on 2fi’s.

10.4. THE 2° IN BLOCKS OF TWO, FOUR, AND EIGHT

10.4.1. The 24 in Sixteen Blocks of Two

We have 10 parameters to estimate (four main effects and six 2fi’s), Exhaus-
tive trial dashes the hope that these might be arranged in two superblocks of
eight blocks each. However, by using four superblocks of four blocks each,
each superblock confounded differently, it is possible to reach an efficiency
factor of 4 for all main effects and for four 2fi’s, The remaining two 2fi's are
estimable with full efficiency.

Table 10.4 shows the four superblocks, the four parameters estimable from
each, and the required treatments for each block. It is easy to see that the
estimate of (AC + BD) from I can be combined with the estimate of
(AC — BD)from Il to separate the two components, and that similar opera-
tions can be carried out on all the other pairs.

TABLE 104,
SPECIFICATION OF SUPERBLOCKS AND BLOCKS OF TWO FOR THE 2*

Superblock: I 1 11} 1A%
Estimabile effects: A A B C
B C D D

(AC + BD} (AC — BD) {(AB + CD} (AB - CD)

(AD + BC) (AD —~ BC) (AD + BC) (AD — B(C)
Specifications: (1), ab a,c¢ (i), bd a, acd

ac, be b, abe ab, ad b, bed

ad, bd d, acd ac, abed cd

cd, abed abd, bed be, cd abe, abd
Parity: Even Odd Even Odd
Generation: AB-~ab A C-ac BD-bd CD—-e¢d

= {{1),ac} x a = {1}, ed} x ¢

The reader is remined of the two-weight problem discussed in Chapter {.
It will be remembered that, when the sum and the difference of two weights
(P and Q) can be observed, the variance of the estimates of the two weights is
halved as compared to direct observation of each weight singly. Here too we
estimate sums and differences, and so we name and then invoke the P-Q
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PRINCIPLE. We set up one set of four blocks of two (superblock 1) so that
four estimates are obtained. It is not possible to arrange for (4 — B) and
{C — D) at the same time, so we settle for 4, B, (AC + BD),and (AD + BC).
Each of the four blocks of two must then have these four “parameters” in
the expected value of its single contrast, but with different signs, so that the
four desired combinations can be orthogonally estimated. Again, the P-Q
principle is being applied, but now perhaps it should be called the P-Q-R-S
principle, which is the optimal generalization for four weights.

Since we want A4, B,(4C 4+ BD),and{AD + BC)tobeintheexpected value
of the block contrast, the parameters C, D, AB (and their products) must be
confounded with the block mean. For the principal block, we must always
take “odd™ parameters with the minus sign, and so we generate the alias
subgroup as

I ~C~ D+ CD+ AB — ABC — ABD + ABCD,

where the three underlined terms are taken as generators.
Checking 1o make sure that the desired parameters are in the block differ-
ence, we multiply each term of the alias subgroup by A4, say, and get

A — AC — AD + ACD + B — BC — BD + BCD
=A+ B~ (AC + BD) — (AD + BC) + ACD + BCD,

and so all is well.

To find the corresponding treatment combinations automatically, we can
do reverse Yates (on a set of 0's and 1's), either on the members of the alias
subgroup or on the string of efiects just given. We find (1) and ab, and we note
that each of these has an even number of letters in common with every member
of the alias subgroup. It suffices to check only the three generators for
evenness, as can easily be proved. Pains are taken to change the signs of two
generators in each line, so that the superblock in toto will have only ABCD
confounded with its mean (plus the sum of all block differences). Here is the
sequence of signs for each of the four blocks of two:

I C D CD AB ABC ABD ABCD Treatment Combinations

+ - - o+ o+ - - + (1) ab
+ + - = = - + + ac be
+ - 4+ = = + — + ad bd
+ + + 4+ o+ o+ + + cd abed

Superblock 11 is generated from a different set of four target parameters,
now including (4C — BD) and (AD — BC) so that we can use the P-Q
principle, and similarly for the two superblocks H1 and 1V. A price is paid
for this rather irregular blocking, however, and those seeing the penalty
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for the first time may find it too high. Only half the data are used (with full
efficiency) in estimating 8 of the 10 desired parameters, while all are used to
estimate AD and BC. Thus, in the old-fashioned sense, this plan has 50%
efficiency for all but two parameters. We have accepted this deficiency in
order to be able to estimate all 10 parameters in 16 blocks of two. These
cannot be acquired by standard “balanced” methods without using twice
as many blocks in ail.

10.4.2. The 2//4 x 4, That Is, the 24 in Four Blocks of Four

Standard dogma requires us to choose two factorial parameters, preferably
higher-order interactions, and their product, which are assuredly negligible.
We resist using ABCD for one of the blocking parameters because its product
with any other undesired parameter is either a main effect or a 2fi. If we
choose any two 3fi’s, their product is a 2fi, and so it might appear that one
2fi must be lost. This is the choice recommended by Cochran and Cox, by
Davies, and by all other authors known to me, following Yates [1937]. To
regain some kind of balance, six repetitions of the 2* are recommended by
these authors, each using a different confounding pattern, and each losing
a different 2fi. This may be feasible in agricultural experiments when 96 plots
are needed to attain adequate precision. But even two repetitions, losing
one 2fi in each, may suffice. We would then have full efficiency on all but the
two blocking 2fi’s, which would be estimated with efficiency factor 1.

Table 10.5 gives a blocking scheme for a single replicate of the 2% which
permits estimation of all 10 main effects and 2fi’s, 8 with full efficiency, but
BD and CD with efficiency 4. The four defining contrasts* are as follows:

I. 1 - ABC ~ ABD + CD.
If. I -~ ABC + ABD — CD.
HI. I+ ABC — ACD — BD.
IV. I+ ABC + ACD + BD.

TABLE 10.5.
THE 2* IN FOur BLOCKS OF
Four (AtL 26i’s ESTIMABLE)

1 H i v

1] abd a abe
ab ac abed ad
acd be bd b
bed d ¢ cd

* I have not used the name “defining contrasts” before. It designates the sum of the térms in
the alias subgroup and hence the list of parameters that are confounded with the mean of one
block. Ali other aliases can be found by multiplying this string by any effect not in the string.
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The reader should be warned that, although in this case a single Yates’s
computation on the 16 results will give correctly the estimates of eight of the
desired parameters, a different computation—using only the half of the data
in which it is not confounded-—wiil be required for BD and for CD.

I hear a voice muttering, “But this is merely partial confounding.” |
mutter back, “Yes, but not ‘merely,’ since the plans produced have long
been needed but not offered.”™

There are 3 d.I. within each block and hence 12 in the four blocks, so there
must be 2 d.f. for error. These are BCD and ABCD and are estimated with
full efliciency.

10.4.3. The2*//8 x 2

It seems inevitable to choose ABCD for confounding. This divides the 24
into an “even” and an “odd” half. It is of some interest to note that the four
main effects (each along with the complementary 3fi) can be estimated from
either block.

10.5. THE BLOCKED 2°

For two blocks of 16, the 5fi ABCDE is clearly the parameter to lose.
For four blocks of eight, any two 3fi's with one letter in common should be
chosen, since their product will then be a 4fi. If the experimenter suspects
that certain 2fi’s may be large, their letters should be split between the two
3fi’s.

There must be subdivisions of the 2° into blocks of four, and even of two,
but they are not given here. Enough has been said about the 2% and the 2*
to show what rules to follow and which to circumvent.

10.6. THE 3 IN BLOCKS OF TWO AND THREE

The authors of Davies [1971] have in their Chapter 9, Sections 5-9,
and in Appendix 9F and G, given an excellent discussion of the natural
ways to block the 32, the 33, and the 3% in blocks of 3, 9, and 27. Since these
arrangements have been exactly duplicated in dozens of textbooks, I decline
to repeat them here, but only recommend their use when blocks of three are
the natural ones to use.

The partitioning of the interactions originated by Yates is described in all
texts as uninterpretable. A little space is taken here to rectify this judgment.

The I interaction pair of degrees of freedom is defined [ Yates 1937, page
95; Cochran and Cox 1957, page 193; Quenouille 1953, page 120; Davies
1971, page 399] by the three “diagonal sums” of the observations in a 32,

* Sce Youden [1961] for a differcnt constructive use of partial confounding.
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Labeling the nine cells as follows:

BLOCKING FACTORIAL EXPERIMENTS

bo by by
ag I 4 7
a, 2 5 8
a, 3 6 9

we have the definitions
Li=14+5+49 J,=1+6+38,
I, =246+7, Jy=2+4+9,
Jy=3+5+7

Yates partitions the interaction sum of squares into two pairs of two d.f,,
one among the [, the other among the J, but does not give orthogonal
contrasts corresponding to individual degrees of freedom.

Taking the {only) two natural contrasts, I define

Uy=2,~1, -1 W=2U,-J, - Jy
Uz';lz—lg V2=J1_JZ'

The U; and ¥, (i = 1, 2) are free of main effects and of the grand average
and are therefore solely functions of the 2fi, that is, the §,; of the factorial
representation. Using now the j;; or residuals in the 32 instead of the obser-
vations, we can list the multipliers of each residual in a standard 3 x 3 array
to represent each U and V.

and

and

2 -1 =1 3 0 -1 1
U =|-1 2 =1 = . v, = 1 0 —1§
-1 ~1 2 3 -1 1 0
-1 -1 2 3 I -1 0
Vi =1-1 2 ~1f = R V, = ~1 0 L
2 -1 -1 3 0 I -1
From these it follows that:
Uy + Vy = (4pBy), Ui — Vi =3(4,BL);

among the residuals.”

U, -V, = (AQBL),

Uz + Vz = (ALBQ)’

where the parcntheses on the right mean “the standard integer contrast
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We can now put into words what the I and J components mean.
Ui(=21, — I, — I;) is a single-degree-of-freedom contrast which will
respond to a diagonal ridge (or trench) in the responses in the direction \.
Vi(=2J, — J, — J,) will be large only when a diagonal ridge (or trench)
goes in the opposite direction, /. U, and ¥, are simply orthogonal remainders,
representing lack of fit to one or the other ridge. If both U, and V; came out
large, we would of course prefer to represent their sum as A,Bg.

I leave to fresher minds the working out of the corresponding extensions
to the 3, and so forth. The actual partitions are given in all four references
cited above.

We try as always to reach a reasonable compromise between the number
of blocks required for exact balance (equality of variance of all estimates)
and the number of parameters to be estimated. For the 32 there are of course
eight parameters to be estimated from within-block comparisons. If we re-
quire all 36 blocks of two (9 x 8/2 = 36), we will reach exact balance.
Remembering that we want good row and column comparisons, we start
with the 12 pairs that compare each cell with its edge neighbor. These will
give good estimates of the comparison of row (or column) | with row (or
column) 2 and of row {or column) 2 with row (or column) 3. Numbering the
cells as follows:

1 23
4 5 6
7 8 9
we are proposing, then, these blocks: 12, 23, 36, 25, 14, 45, 56, 69, 58,47, 78, 89.
The 12 differences can be used to estimate the row and column differences
and the interaction parameters. There will be 4 d.f. for within-block error.
If this is not deemed sufficient, the natural augmentation is to the com-
parison of row {(and column) 1 with row (and column) 3; hence we add
blocks 17, 28, 39, 13, 46, 79. This will give six more d.f. for error and notably
improved efficiency and precision in all estimates. The {8-block plan appears

as Design LS1 on page 260 of Clatworthy [1973].

10.7. DISCUSSION AND SUMMARY

There has been insufficient warning in the preceding sections about the
hazards of blocking. It has been assumed that the true effects and their
interactions are the same in all blocks. In the jargon of this chapter, it has
been assumed that blocks do not interact with factors.

In serious experimentation, however, this is almost never known before-
hand. The relative success of blocking must depend on the fact that inter-
actions are commonly rarer than effects, at least when factors are varied
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over the ranges actually chosen by experimenters. Extensive retrospective
reviews (by Kempthorne [1952] and others) have verified that, in experi-
mental agriculture, block-factor interactions must have been small. This
assumption can be partly tested by using a larger number of blocks than the
absolute minimum for estimability, so that several effect estimates can be
made and then compared,

Three factors have motivated this rather lengthy discussion of blocking,
The first is the need to counter the inveterate habit of many experimenters
who believe that the only way to guarantee “controlled experiments” is to
use a large part of their experimental time and effort in repeated measurement
of “standards.” Blocking provides, as Fisher never tired of emphasizing,
local control, that is, within-block comparisons that largcly climinate the
long-term drifts of many experimental systems. The sccond factor is my
desire to shake up a little those statisticians who take it for granted that no
improvements in blocking factorials are to be expected. The third is the
need to prepare the reader for “fractional replicates,” which are merely
rather large blocks, used singly to estimate lower-order parameters aliased
with negligible higher-order ones.
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11.1. INTRODUCTION

A fractional replicate is simply a block of a full factorial plan. A chosen
set of effects, usually interactions that can safely be judged negligible, is con-
founded with the mean. This set, together with the identity I, is the alias
subgroup.

Every effect in a fractional replicate is biased by the complement of each
member of the alias subgroup. It is important therefore that all these com-
plements be interactions that are either safely negligible or easily identifiable.

There are two reasons for proposing a fractional replicate instead of a
full replicate:

1. The effects of the factors of primary interest can be examined over a
wider range of conditions than would otherwise be possible,

2. The number of runs required to investigate a given number of main
effects and 2fi’s is decreased.

The principal disadvantages are:

1. Too few degrees of freedom may remain for testing for the multifarious
varieties of lack of fit.

2. The vulnerability of fractional replicates to the usual hazards of experi-
mentation—wild values, interchanged observations, inoperable or un-
attainable test conditions—is greater than that of whole replicates.

197
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After discussion of these gains and hazards, we will make suggestions for
reaching an acceptable balance. These proposals will be largely on the side
of conservatism, judging only relatively large effects to be real, and reserving
about half of the available degrees of freedom for study of the data.

11.2. FRACTIONS OF 27

The 2* plans have been praised so extensively in earlier chapters that the
reader must be convinced of their superiority. Why, then, do we rock this
steady boat by putting forth modifications, especially if they are riskier,
require more restrictive assumptions, and are harder to analyze?

Every 27 factorial experiment is a {raction of a larger 27 (P > p) in which
some factors have not been varied, but have deliberately been held constant,
possibly not at their best levels. Thus any 22 is a half of a 23, the third factor
being any condition held constant during all four runs of the 22, There may
be better halves. These will be considered below. Every 2% is a quarter
replicate, a 2* 2, too.

In other words, there are usually more than p factors in each experimental
situation. Very naturally, the experimenter’s censoring judgment has been
exercised in choosing the factors that scem worth studying and feasible to
vary. He needs to be informed that some of the factors he has chosen not to
vary might well be varied, and their effects noted, with no great increase
(sometimes with no increase at all) in the number of runs required.

Put still another way, we may be able to broaden the base of our inferences
about the cffects of the p important factors by varying some other factors
which “probably” produce no effects. We do not know that thesc latter factors
are uninfluential; we only hope that they are. If our data show that they are
indeed negligible, a point has been gained. If, on the other hand, one or more
of them do influence results, an even more important fact has been learned.

There are of course nice matters of judgment in any decision to vary more
factors. Shall we try to find out more about the more restricted system, or to
find out less about the wider set of conditions implied in varying more
factors?

11.3. SOME OVERSIMPLE FRACTIONAL REPLICATES

11.3.1. One Run

The single run is made at the “low” levels of three factors. (The naming of
factor levels is generally a matter of nomenclatural convenience.) We specify
the conditions of this run by the symbol (1}. To be neat, we should specify
the outcome—the response of the system to the run made at condition
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{(1)—by some different symbol, say y, But it is vsually typographically
convenient, when no ambiguity is likely, to designate the value of the res-
ponse also as (1}.

The factorial representation of the result (1) shows only how its expected
value is related to the expected value of the average response to the full
factorial. Thus, if three factors are being held at their lower levels, we can
write

(LY E{(l)} =M ~A—-B+ AB - C + AC + BC — ABC,

just as the first line of Table 5.2 shows. The expected value of the result at
{1} is quite obviously biased from M by any of the seven factorial effects
which are not zero.

Although this “experiment” has been called oversimple, it represents the
commonest of all tests or experiments. A run is made under some conditions,
mainly to see whether an interesting or an acceptable “yield” is obtained.
I we want some yield but get none, this is often a crucial finding. Even getting
a very low yield is informative. When this happens, the experimenter may in
his next run try conditions as different as possible from those tried at first.

11.3.2. Two Runs

Suppose the experimenter now tries abc. He has changed the levels of all
three factors, guessing that all three may influence the response in the same
direction. The last line of Table 5.2 shows how the factorial effects hit this
run. The difference between the two responses has the expected value:

(11.2) E{abc — (1)} = 2(4 + B + C + ABC).

Now only four effects are aliased. We have done one fourth of the 23 that
would be required to give us estimates of all eight factorial effects unaliased
with each other. We can call our two runs a quarter replicate of the 2* and
symbolize this as a 2372,

11.4. THE HALF REPLICATE, 2° !

We cannot conceivably get separate estimates of the main effects of factors
A, B, and C unless we do four runs. Let us ask first a simple question, “Where
should we place four runs in a 237" Intuitively we say that they should span
the cube as well as possible. This forces us to one of the two complementary
blocks of four of Section 10.3.1 {(diagrammed in Figure 10.2). As we saw in
that section, ABC is confounded with the block difference. As we should see
now, the mean of the odd block is aliased with + ABC, and that of the even
block with — ABC. If this is not clear, the reader should either consult Table
5.2 (which will show that the odd treatment combinations are all on the plus
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side of ABC, all the even ones on the negative side), or carry through the
forward Yates computation, using + 1 for the four even combinations and
—1 for the rest, or do forward Yates on a set of + 1's in the even positions,
to find that the mean and — ABC are measured by the average of the four
runs.

Just as in Chapter 10, here we can multiply the defining contrast by any
effect not present to display all factorial effects aliased with the multiplier.
Thus for block 1 we have

E{7} = I — ABC,
E{(4)} = 4(4 — BC),
E{(B)} = 4(B — AC),
E{(C)} = 4(C — 4B),

where ¥ is the block mean, and (A) is the contrast ab + ac — (1) — bc, etc.

A more deliberate way to produce the 23~ * may prove more illuminating,
1t is the approach used by the authors represented in Davies [1971] and is
beautifully explained in Box and Hunter [1961]. Table 11.1 gives at the left
the standard transformation matrix for the 22.

TABLE 11i.1.
IDENTIFICATION OF £ AB witH C 10 PRODUCE
A 23 -1

Spee. T A B AB C+ C,—
(1) + = - + c )
g + + - - a ac
b + - 4+ - b be
ab + + 4+ 4+ abc ab

We surely want to estimate A4 and B, but we ask whether AB is needed.
it is not, the AB-contrast can be used to measure the effect of C. We have two
choices: we can assign the first and fourth runs to high C, as in the column
headed C, ; or we can use the other two runs for high C, as in C,.

We have, in effect, set AB = Cin C,,and = —~C in C,. More correctly,
we use the AB-contrast to measure (C 4+ AB)in C, and (C — AB)in C,. I
am happy to report that Box and Hunter express defining contrasts as the
sums of aliased terms, as | have, instead of the confusing “equalities” of
earlier works. (Davies [1971], Brownlee et al. [1948], and Finney [1945]
use expressions like 4 = — BC to indicate that (4 — BC) is measured by the
A-contrast.)
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11.5. THE 2¢-!

The 2%~ ! has 23 or eight runs. We therefore identify the — ABC-contrast
in the standard 23 with the new factor, D. The specifications and aliases are
as follows:

Specs. Aliases
(1 I + ABCD
ad A+ BCD
b d B + ACD
ab AB + CD
cd C + ABD
ac AC + BD
bc BC + AD

abe d ABC + D

This alias pattern has a qualitative advantage over those shown earlier in
that main effects are now estimated with no bias from 2fi’s. The latter are of
course aliased in pairs.

We will call plans of this sort four-letter plans or plans of Resolution IV
{following Box and Hunter). Plans which force main effects to be aliased
with 2fi’s (like the 2° ™! of Section 11.4) are called, by various writers, three-
letter plans, plans of Resolution I1I, or main effect plans.

The dataand column 3 of the standard computations for the example which
follows are taken from Davies [ 1971, pages 454-457, 491). “The error vari-
ance was known to be about 4.0.” Using 7, (4), and (B) in the “reverse Yates”
shown in panel b of Table 1 1.2, we find the fitted values ¥, and the residuals d,.

The conclusions appear simple and straightforward. The residual MS, of
6.0 with five d.f. is compatible with the given error variance of 4.0.

A suspicious mind would notice that the two largest residuals (— 3 and +4)
appear at the same experimental condition (a, since C and D are without
effects). Since the true standard deviation is stated to be 2.0, the standardized
range of this pair is 7.0/2.0 or 3.5, and this has a P-value of 0.025. This might
suffice to raise one eyebrow, but not two.

We note that the signs of the ordered residuals (except for the first, which
is 0) are those of — AC. Since AC is 12/8 or 1.5, we can revise the Y-values
shown by this amount—and hence the residuals d, in the opposite sense—to
get new residuals d,, also shown in the table. The new residual mean square,
residual MS,, is 12/4 or 3, so we do not seem to be overfitting,

Our conclusions about effects are the same as Davies’. The 4 and B-effects
are undoubtedly real and closely additive. The AC interaction is “probably”
present, probably positive, and probably less than 2 x 1.5 or 3.
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TABLE 1.2,

Pancl «. Forward Yates on Davies® 24~}

. ~ Including
Specs. ¥y k)] Aliases Y\(7, 4, B) d, AC =15 d,

(B 107 952 T 107 0 - + LS
ad 114 42* A 17 -3 + -15
bd 122 56* B 12t +1 - -0.5
ab 130 ~2 AB + CD 131 —1 + +0.5
cd 106 6 C 107 ~1 + +0.5
ac 121 12 AC + BD 117 +4 - +2.5
he 120 -6 BC + AD 121 -1 + +035
abed 132 —4 ABC + D 131 +1 - ~Q.5

Panel b. Reverse Yates on T, (4), (B)

Specs. - Effects 't (2) +8=1Y, d,
(AB) 0 56 1050 131 -1, -1
{B) 56 994 966 121 +1, -1
(A) 42 56 938 117 -3, +4
T 952 910 854 107 0, -1
From d,, residual MS, = 30/5 = 6.0,
From d,, residual MS, = 12/4 = 3.0.

* Judged significant

11.6. A NOTE ON THE CHOICE OF I £ ABCD

There is an apparent asymmetry between the two half replicates, I +
ABCD and I — ABCD! Suppose that all four main effects were present, were
large, and were of about the same size. If one is of opposite sign to the other
three, then, aside from random disturbances, we will see a pattern in the
data taken according to I + ABCD of the form shown in Table 11.3, panel a.

If the same experimental situation had been studied using the other half
replicate, we would get results with a pattern like that in panel b. We now
see six data values at the mean, one well above and one equally far below,
This pattern is of course entirely acceptable mathematically and will give
the right estimates of all four effects if all the data are all right. But the
suspicious experimenter or data analyst, noting that all but two of his values
are nearly the same, might be tempted to revise these two, or at least to doubt
their validity. This would of course be disastrous, since then no effects at all
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TABLE 11.3.
CoNSTRUCTED DATA FROM THE TwWO HALF REPLICATES
I + ABCD: |A| = |B| = || = |D]

Panela. I + ABCD Pancl b. I — ABCD

D + ABC 1 1 2 2 | abed —-D + ABC -t -1 0 0o
BC 1 0 -2 he BC 1 0o 0
AC —~1 0 2} ac AC -1 2 4
C 1 t -2 24 «d C I I -2 0
AB -1 0 -2| ab AB 1 2 0
B -1 I 2 =21 M B —1 1 2 -4
A I -1 2 21 ad A I -1 0 0o
T -1 0 -2 ) T -1 0 0

would be found. A revision of two values in the data of panel a will not
remove all effects.

If the experimenter knows or is able to guess the signs of his cflccts, he can
run through the little reverse Yates required, to sec whether he is likely to
get a pattern like that of panel « or that of panel b. He can then change the
names of the levels of one factor if necessary and so give himself a better
chance of secing some effect in every data point, instead of just in two out of
eight.

We close this chapter with a warning. We have so far found no fault with
fractions-of-27 plans, but this is a consequence of our not having put these
small plans to sufficiently severe test. Such tests will be made in the following
chapter.

The mature reader will understand that the small fractions, 23~ and
2471 are too heavily saturated and too imprecise for most practical uses.
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If you want to make sense, you had better take all important factors into
account. PauL. GOGDMAN.

12.1.  INTRODUCTION

There are several excellent atlases of 2777 plans for 4 < p < 16 and for
16 < 2777 < 256. They will all be praised in this chapter. The impatient
experimenter or statistician may feel that he can bypass this plodding ex-
position and proceed to these references. So he can, but not safely. I have
seen many—perhaps a hundred—ili-conceived, misleading, and therefore
very expensive fractionally replicated experiments. The commonest defects
are the following:

1. Oversaturation, that is, too many effects demanded for the number of
trials used.

205
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2. Overconservativeness, that is, too many observations for the desired
estimates.

3. Failure to study the data for bad values.

4. Failure to take account of all the aliasing.

5. Imprecision, that is, insufficient hidden replication, due principaily to
ignorance of the error variance and of its constancy.

We will first look at fractions of some large factorials. Then, after this
cautionary tale, some higher fractions, 2~ %34, will be discussed. Finally
the published listings for two- and three-fevel plans will be reviewed.

12.2. HALVING THE 25

12.2.1. Yates’s 2° on Beans

We have already divided this 2° (in Section 7.2.3) into two half replicates,
using the defining contrasts I + DN PK asshown in Table 7.4. This was done,
the reader will remember, to study the responses in blocks I and 111, which

TABLE 12.}.
CONTRAST-SUMS FROM Two 257 '°s FROM YATES'S 25 ON BEANS
(BLOCKING : SDP, SNK, DNPK)*

I — SDNPK I+ SDNPK
Specs. Effects Aliascs Specs. Effects Aliascs
0] k
sk —87 A s —44 S
dk 117 D d 75 D
sd 79 SD sdk | SD
nk 55 N " —~5 N
sn 41 SN snk 13 SN
dn 69 DN dnk 13 DN
sdnk 19 SDN ~ PK sen il SDN + PK
Pk —-25 P P ~59 P
sp 5 SpP spk 43 SP
dp 45 DP — SNK* dpk —53 DP + SNK*
sdpk —~ 129 SDP* — NK selp -59 SDP* + NK
np -~29 NP npk —53 NP
snpk 41 SNP — DK snp -23 SNP + DK
dnpk -~ 59 DNP — SK dnp 77 DNP + SK

sanp —65 SDNP — K sdnpk 55 SDNP + K
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had on average smaller residuals and yielded, he will not forget, a dusty
answer. We will now divide Yates's 2% into the two halves that would be
most natural a priori, ignoring for the moment the original blocking. We use
then the defining contrasts [ + SDNPK and find effects as contrast-sums,
listed in Table 12.1 and plotted in Figure 12.1.
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Figure 12.1 Contrasts from [ — SDNPK versus those from 7 + SDNPK (Yates’s 2° on beans).

I have used a t-value of 2.63—tabled at the 0.975 level and 10 d.f.—along
with a pooled estimated standard error of contrast-sums of 36.2, to get a
radius of 2.63 x 36.2 or 95.2 for the circle shown in the figure. Each half
replicate gives roughly 10 d.f. for error, and even though the two halves do
not give exactly the same s, | have taken the ecasy way out to avoid drawing
ellipses. The circle in Figure 12.1 does appear to separate the largest effects
(S, D, and SDP blocks) from the ruck, but the interesting finding discussed in
Chapter 7--that § & K ~ SK—would barely be suspected in the half called
I, and would be missed entirely in II.
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We could have read in Yates’s pamphlet [ 1937, page 30] that “The experi-
ment is not of high precision, being of only 32 plots and having a high stan-
dard error per plot (beans have at Rothamsted proved a very variable crop)
but in combination with other similar experiments it should provide useful
information . .. .” We have then really gone in the wrong direction in trying
to interpret half of this experiment and have done so only as an exercise, not
as a suggested economy. The 2%~ ! is by far the commonest fractional rep-
licate actually done, so we should be warned that much may be missed.

12.2.2. Davies’ 2% on Penicillin

This experiment (see Section 7.3) was indeed blocked on ABCDE, and so
each block was a 2%~ ' of the sort that one might do singly.

The usual computations give the contrasts shown in Table 12.2 and the
correlation plotted in Figure 12.2. Here the two halves find the same main
effects significant. The circle drawn is of radius 2.63 x 68 = 179. The

TABLE 12.2,
Two 2%~ FrOM DaviEs’ 23
I —~ ABCDE I+ ABCDE
—298 A —264 A
—58 B 76 B
— 104 —86
228 C - 286 C
—134 —60
26 116
—56 14
—26 D 58 D
—~124 —36
36 —68
122 ABD — CE —214 ABD + CE
10 —-42
—-20 76
—84 —AE 0
398 —E =270 E
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troublesome CE interaction is large in one half, but much smaller in the other,
and so might well have been missed. The value at abced, called bad in Section
7.3.3, cannot be detected in its 257!,

- 300 oC
L 200
[+
— 100
Bo o
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L L d.° ol | !
-300 —~200 100 300
<
o
[+]
o CE
A
%/E(-398) | _300

Figure 12.2  Contrasts from two 25~ (Davies’ 2% on penicillin).

12.2.3. Rothamsted’s 2° on Mangolds

As in Sections 12.2.1 and 12.2.2, we give the usual contrast-sums and their
aliases for the two half replicates in Table 12.3.

As Figure 12.3 makes clear, the effects of S, D, and N are detected and well
matched in both halves; the 2ft KN is a false positive in the principal block,
but not in the other one. The 2fi SK was judged significant in the original 2°
and is easily spotted in both halves.



TABLE 12.3,
Two 257! FrROM ROTHAMSTED 2° ON MANGOLDS
(BLOCKING : SPN, PKD, SKND)

I — SPKND I + SPKND
247 S 287 S
I P — SKND blocks —35 P + SKND blocks
-3 11
47 K —-31 K
H SK 55 SK
- 19 -27
29 SPK — ND —37 SPK + ND
137 N 77 N
-27 SN ~ PKD blacks 99 SN + PKD blocks
—17 61
3 SPN —~ KD blocks —13 SPN + KD blocks
13 89
~27 -33
3 -7
-~ 141 SPKN - D I51 SPKN + D
i
— 300 g
- 200
D
Biocg(s - 100
KN No

/E’ SK
L 1 j J 1 i ] !
~300 200 —100 :j 100 200 300

[+ ]

Figure 12.3 Contrasts from I — SPKND (1) versus those from J + SPKND (11) (Rothamsted).
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12.2.4. An Industrial 2° from Johnson and Leone

The 2° discussed by Johnson and Leone [1964, Vol. 2, page 184] has a
special interest because it contains a large three-factor interaction that turned
out to have a rather simple interpretation. The 32 observations coded by — 8§
are, in standard order, 1,2,0, -2, -5, -3, -2,2;3,5, 1,8, - 1,2, -1, §;
=51, -4,-2 -3, -2,-4,2;0, ~1,0, -2, -1, —1, =3, -2, The four
largest contrasts in these data are 4 = 36, D = 36, E = —42, and ADE =
—30. These are nearly enough equal in magnitude that we code all to + 1 and
put all through the reverse Yates algorithm to see whether some pattern of
response emerges:

Spec. ) (n (2) (3
ADE -1 -1 =2 0
DE ~1 2 0
AE i 0 0
E 1 1 0 -4 @
AD i 0 4
D 1 -1 0 0
A 1 1 =2 0
T -1 =2 0

The combined impact of the four factorial contrasts is a cancellation of all
effects except in two positions. These two, ad and 2, are equally far from the
mean, one low, one high. This was not easy to see in the original data, but it
does provide a simpler description of the whole set of data. The four condi-
tions predicted to be “low” in y are the four that contain e but not @ or d
(e, be, ce, bee); the four predicted to be “high” are ad, abd, acd, abed. These are
underlined in the data listing above. There are two failures in that ¢ (double
underline) is not supposed to be low, and acd (double underline) is not high
enough.

The effects as judged by the two halves I + ABCDE arelisted in Table 12.4.

These contrasts are plotted in Figure 12.4, with a circle of the usual radius.
Although most large contrasts are in the right quadrants {upper right and
lower left), this fractionation must be admitted to be a failure. The rough
equality of the three main effects and their 3 fi’s might have been guessed
from part I but is obscured by the large 21i, DE. Both DE and ADE disappear
in IT!



TABLE 12.4.

H

H

{ — ABCDE I + ABCDE
t6 A 20 4
-4 8
6 2
-6 - 16
8 2
24 BC —- ADE -6 BC + ADE
18 —DE -4
14 D 22 D
4 —~8
0 ~4
—6 ABD —~ CE 14 ABD + CE
-2 -8
4 —6
-4 BCD —~ AE —-14 BCD + AE
14 ABCD — E —~28 ABCD+ E
u
—~ 30
ob
- 20 oA
CE
[+]
- 10
[+]
l I
~30 -20
o
o DE

ADE

E

- —30
Figure 12.4 Johnson and Leone's 2°. I - ABCDE (1) versus I + ABCDE (1I).
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In summary, three of our four exemplary 2%'s have survived halving, with
some obscurities, but the fourth is a half failure. As we can see from the half-
normal plot given in Johnson and Leone (Example 15.4, page 189), the four
largest eflects are only a little too large for the pattern set by the smaller
27 contrasts. This bare significance in the 2% is destroyed or at least seriously
distorted in the halves.

12.3. QUARTER REPLICATES: 2¢?

12.3.1. Of Resolution HI, 2f;; *

There will be three interactions or “words” in the alias subgroup for any
2772 in addition to the identity, since effects will be aliased in sets of four.
Since each letter will be present in two of these words, the average word
length L will be 2p/3. We will always want all main effects to be estimable
separately; and so even if all 2fi’s are negligible, as is required for a Resolution
HI plan, we must have all word lengths greater than or equal to 3 and hence,
in symbols,

L_>_3=%2, so p = 4% or 5.
In words, we cannot have a quarter replicate of Resolution III for fewer
than five factors.

The 25 ? is indeed realizable. We choose two 3fi's having one letter in
common, say ABC and CDE, and inevitably include their product, ABDE,
in the alias subgroup. To produce the principal block [containing treatment
combination (1)] we make our confounding pattern of defining contrasts out
of the negative (because odd-lettered) 3fi’s, together with their necessarily
positive product. Thus

I — ABC — CDE + ABDE

specifies by implication all the strings of four effects in our confounding
pattern, The generators of the principal block are {ound by direct trial,
requiring each to have an even number of letters in common with ABC and
with CDE. Thus ab, acd, and de suffice to generate the principal block.

1t is useful 10 write out the full aliasing for each of the contrasts that will
emerge in any fractional replicate. But for the present 2~ 2 this may suffice to
repel the cautious statistician or experimenter. Thus, including only main
effects and 2fi’s, the expected values of the mean and of the seven standard
contrasts are as follows:

I — ABC — CDE + ABDE
A - BC



214 FRACTIONAL REPLICATION—INTERMEDIATE

B - AC
C - AB - DE
D - CE
E-CD
AD + BE
AE 4+ BD

The experimenter must know his system very well indeed if he can ignore
six 2fi’s and so be able to estimate his main effects without 2fi biases.

In the 2%~ 2 given by Davies [ 1971, Example 10.3, pages 457 ff., 492] the
alias subgroup was I + ABE — ACD — BCDE, and the standard deviation
of single observations was known to be about 1. The data, the effects, and the
aliasing are shown in Table 12.5.

TABLE 12.5.
SumMARY OF DATA AND ErFrECTs IN Davies® 252
Total Effects

Spec. Yield Alias (std. error = 1.0,/8 = 2.8)
¢ 59.1 533.5
a d 57.0 A+ BC—CD 5.3
b 58.6 B 4 AE 23.7
ab de 63.9 AB + E 0.7
¢ de 67.2 C— AD 56.3
ac 71.6 AC - D - 1.1
be d 79.2 BC - DE 10.9
abe ¢ 76.9 ABC + CE ~ BD —14.1

Since the standard error of the total effects must be 1.0 x /8 or 2.8, we
are forced to conclude not only that B and C are large and real but also that
the two aliased pairs of 2fi’s are too large to be due to chance. After making
up all four 2 x 2 tables (to show the expected yields) for BC, DE, CE, and
BD, the statisticians and experimenters concluded that the conditions giving
the highest yield would be bed [ Davies 1971, bottom of page 459]. Inspection
of the data reveals exactly the same thing, that is, the yield at bed is 79.2 and
the next highest yield (abce at 76.9) is noticeably lower, I am not implying
that the standard statistical analysis should have been skipped; but when it
produces results as complex in its second-order aspects as this one—clearly
not expected by the experimenters—it is safer to view the whole [ractional
replicate as an attempt to get a broad but thin sampling of the resuits in
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ABCDE space. Something intelligible has been learned from the fraction,
namely, that factors B and C dominate the yield. If high yield is very impor-
tant, then at the very least another fractional replicate should be done, and
(the P-Q principle!) it should estimate (BC + DE) and (BD + CE). Since
both these can be guaranteed by putting + BCDE in the alias subgroup, we
should arrange to separate C and — AD by including + ACD in the alias
subgroup (a.s.g.) and so have, finally, I + ACD + ABE + BCDE. The new
set will now be odd on ACD and on ABE. Rather than searching for all eight
treatment combinations with these properties, I suggest deriving first the
principal block with these defining contrasts. The new plan can then be
found by multiplying all members of the principal block by one combination
of lowercase letters that is odd on both ACD and ABE. Thus by trial I found
abc, ade, and be as generators of the principal block, multiplied all out to
get the first column of treatment combinations shown below, and then mul-
tiplied all of them by « (which is odd on ACD and ABE) to obtain the desired
plan shown in the last column below.

Principal Desired

Generation Block Set
H a
| abe be
2 ade de
1 x2 bede abcde
3 be abe
1 x3 ace ce
2x3 abd bd
I x2x3 cd acd

it should now be clear to the reader how to write out the aliasing pattern
for the new desired set, and how to combine these results with those found
earlier to separate the 2fi strings as planned. To see in full the results of
combining the two 2°~ s, we note that together they make a half replicate
with a.s.g. I + ABE (alas), and so we still have Resolution [1I on factors 4,B,
and E. On the assumption that all interactions greater than the two-factor
ones are negligible, the fifteen contrasts will now estimate (4 + BE),(B + AE),
(E + AB), C, D, AC, AD, BC, BD, CD, CE, and DE, plus three contrasts for
error. The reader can see, by writing out the treatment combinations for the
two quarter replicates not used, that each contains one and only one treat-
ment combination with B, C, and D, all at high levels. Thus the post hoc
hypothesis that bed is always highest in yield can be checked after any one
of the three quarters is completed.
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12.3.2. Of Resolution 1V, 2§, 2

More commonly, the experimenter will want to see good estimates of main
effects not aliased with any 2fi, but will be able to tolerate aliasing of main
effects with 3fi’s, This requires “four letter” or Resolution IV plans. Since we
are still discussing quarter replicates, we now require that L> 4 = 2p/3,
so that p = 6. In words, we can get a quarter replicate of Resolution 1V only
if at least six factors can be varied, and then in 2672 = 16 trials.

We take I + ABCD 4+ CDEF + ABEF for our as.g. (any permutation
of the six letters gives an equivalent plan). We write down four generators of
the principal block ; ab, ace, ade, and ac, say. By using as few letters as possible
in each generator, and by adding one letter in each new one, we can be sure
even before multiplying out that no product is like any of its predecessors.
Table 12.6 gives the alias structure and the treatment combinations required.
The reader is reminded that there is no correspondence between the entries
in the two columns; they are printed side by side solely to save space. The
last two contrasts as listed would be used as a start in estimating error.

TABLE 12.6.
ALIASING AND PLAN FOR THE 2§72

I. Mean + 4fi (1)
2. 443 ab
3. B+ 34 ace
4. C+3f bee
5. D43 ade
6. E+3fi bde
7. F+ 3 od
8. AB+ CD + EF abed
9. AC + BD acf
10. AD + BC bef
1l. AE + BF o
12. AF + BE abef
13. CE + DF cdef
14. CF + DE abedef
15. ACE + BDE + ADF + BCF adf
16. ACF + BDF + ADE + BCE bdf

The thoughtful reader may well have been asking himself whether there
is any use in a plan that mixes up 2fi’s in pairs and triples. Even if such a
contrast comes out experimentally to be very large, how can it be interpreted?
The answer, to be expanded in Chapter 14, is that, while the sum of two or
more 2fi’s can be reliably decomposed only by acquiring further data, this
may be only a single observation—or two, four, or eight, depending on the



12.4. EIGHTH REPLICATES: 273 217

ratio of the magnitude of the large contrast to its standard error. With much
greater risk, we sometimes jump to the conclusion that, say, the (AC + BD)
contrast is due largely to AC, if the effects of A and/or C are large, but those
of B and D are small,

12.3.3.  Of Resolution V: 2§~

If a quarter replicate is lo be of Resolution V, then all members of the
a.s.g. must contain five or more letters. We can choose two five-letter inter-
actions whose product is a six-letter word by allowing two letters of overlap.
Thus we will have I — ABCDE — DEFGH + ABCFGH. Therefore the
smallest 2% must have p = 8 and so requires 64 trials, This seems quite
wasteful since the number of degrees of freedom needed for eight factors is
8 x 9/2 or 36. We will discuss more economical alternatives in Chapter 13.

124. EIGHTH REPLICATES: 2°~?

There will be seven members of the a.s.g. beyond the identity, and each
factor (letter) must appear four times. The average word length L must be
> 4p/1. Hence for Resolution [V minimum p must be 7, and for Res. V, 9.
The Res. IV plan is attainable and will be discussed below. The Res. V plan
is not attainable.

Consider the a.s.g. of a 2972, Start with two generators, P and Q, which
must be of length 5. Their product must be of length 6. We have now con-
sumed 16 of the 9 x 4 = 36 letters present in the whole a.s.g. We have,
then, 20 letters left for four words, and so all must be of length 5. But this is
impossible since the product of the third generator (which must be of length 5)
and the two earlier generators must be of length 6,

We proceed then to a compromlse plan that has Res. IV for some factors
{six, in fact) and Res. V for two, all in 32 trials. We choose two 4fi’s as initial
generators and so get three members of the as.g.:

ABCD + ABEF + CDEF.

We seek a 5fi that has two letters in common with ABCD, two in common
with ABEF, and hence two in common with CDEF, and that includes the
two new letters to make an eight-factor plan, namely, G and H. Thus we
arrive at ACEGH, and on multiplying this by the three members above we
have the as.g.:

1+ ABCD + ABEF + CDEF — ACEGH — BDEGH — BCFGH — ADFGH.

It is clear, is it not, that G and H are the factors all of whose 2fi’s are estimable.
An experiment with these properties was reported [ Daniel and Riblett
1954]. For some unknown reason the a.s.g. was not given. Let us recover it.
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We pick up five generators of the principal block from Table I1I of the paper
cited, and we then find by search three generators for the as.g.:

Generators of

Principal Block Alias Subgroup
L. gh 1. ABCD 1 x2 CDEF
2. efh 2. ABEF
3. cdh 3. —ADEGH 1 x3 —BCEGH
4. bdfh  2x3 —BDFGH
5. adf 1 x2x3 —-ACFGH

We see then that the 2fi's of factors A-F are aliased in strings:
AB + CD + EF,(AC + BD),(AD + BC),(AE + BF),(AF + BE),(CE +
DF), and (CF + DE). All 2(i’s, including G and H, are aliased only with 3fi's,

It is worth repeating that each effect (main effect or 2fi) is estimated as
precisely as if all other factors were held constant, It is worth adding that,
since all 2fi and 3fi contrasts were small, they were pooled to give an estimate
of random error with 31 —~ 8 = 23 d.f. These estimates (two responses were
measured) gave the experimenters their first real knowledge of the random
error of the process under study. The estimates were resisted for some iime,
being larger than was thought acceptable, but later replicates, pooled from
several separate trials, confirmed them both.

Because this was the first published multivariate (actually bivariate)
fractional replicate, its data have been studied by several authors [e.g.
R. Gnanadesikan and M. W. Wilk 1969], with interesting further findings
and suggestions.

12.5. SIXTEENTH REPLICATES OF RESOLUTION 1V: 2§74

Since L must be at least 4, since each letter must appear 8 times, and since
there are 15 interactions in the a.s.g., we have L > 4 = 8p/15, so p must be
over 74 or 8. This fraction is actually attainable and is very well known
[Box and Hunter 1961, National Bureau of Standards 1962, Hahn and
Shapiro 1966, Davies 1971, Daniel 1962]. There are 28 2fi’s, which are
estimable only in seven strings of four each. If, as in Daniel [ 1962], the four
4fi's ABCD, ABEF, ABGH, and ACEG are chosen to generate the plan, the
seven strings are as follows,

AB + CD + EF + GH
AC + BD + EG + FH
AD + BC + EH + FG
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AE + BF + CG + DH
AF + BE + CH + DG
AG + BH + CE + DF
AH + BG + CF + DE

Since all 15 orthogonal contrasts are used for estimation in this plan, no
subdivision into blocks is possible without some further sacrifice. To divide
this fraction into two blocks, we must assume away one string of 2fi’s,
involving (alas) each of the eight factors once. It may be more sensible to
give up one factor entirely and so to revert to a 2}y 3. An excellent discussion
of such a plan is given in Box and Hunter [1961] with a clearly worked out
example. The discussion in Davies [1971, Chapter 10, page 486] is also
helpful.

12.6. RESOLUTION V FRACTIONAL REPLICATES, 2§ 1:
PUBLISHED LISTS

Of the industrial experimenters with whom I have talked, a large propor-
tion—perhaps half-—have wanted to know whether their systems were
“interactive.” They have not usually required all 2fi’s, but they have ordinarily
insisted on getting clear estimates of some—perhaps half.

The minimum possible number, N,,;,, of trials for a Resolution V fractional
replicate is [p(p + 1) + 2]/2, and so, for p = 5, 6, 7, 8, 9, 10, is 16, 22, 29,
37, 46, 56, respectively. These minima are not attainable as balanced fractions
except for p = 5. I will indicate in the next chapter some irregular (un-
balanced) fractions that have good efficiencies (although never 100%) and
that come closer than the balanced fractions to the indicated minima. For the
present, we stay with the regular, “orthogonal” fractions, These have, to
repeat, full efficiencies for all estimates, but the price paid is sometimes high
in the number of trials required.

The Res. V (and Res. IV) fractional replicates in the interesting range
(5§ < p <12 16 £ N < 256) have been listed several times. The original
papers by Finney [ 1945] were followed by the more extended list of Brownlee,
Kelly, and Loraine [1948]. Later papers by Box and Hunter [1961], by the
Statistical Engineering Laboratory of the National Bureau of Standards
[1962], by Hahn and Shapiro [1966], and by others have been even more
extensive, more explicit, and more easily usable.

The convenient listing by Box and Hunter [1961] uses numbers to tag
factors instead of letters, but this is an easy translation to make.

The National Bureau of Standards (NBS) booklet, which goes to p = 16,
N = 256, does not classify the plans by resolution. However, since full a.s.g.'s
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are given, it is not hard to see that the smallest Res. V plans are those num-
bered 2.6.16,2.7.8,4.8.16,4.9.16,8.10.16, 16.11.16, 16.12.16,64.14.32, 128.15.32,
where “q.p.b” means a 2777 in blocks of size b. This bulletin also gives all
treatment combinations explicitly, but not in standard or even alphabetical
order. It is understandable that in the early 1950’s it was not considered safe
to transpose all these meaningless sets of letters by hand, but without an
ordering of some sort it is impossible even to proofread the plans. Let us hope
that someone will eventually produce a clearly printed, lexical, computer-
checked printout of all these valuable plans.

Another useful compendium, which includes plans for factors at more than
two levels, is Catalog and Computer Program for the Design and Analysis of
Orthogonal Symmetric and Asymmetric Fractional Factorial Experiments by
G. J. Hahn and S. S. Shapiro [1966]. This work, as well as that of Addelman
and Kempthorne [1961] on orthogonal main effect plans, will be discussed
in detail in Chapter 13.

12.7.  FRACTIONAL REPLICATES IN THE 3 SERIES

The authors of Davies [1971, Section 10.8, page 475] give a first-rate
description of the fractionation of the 3” factorial plans, As they write,
“Fractional replication is not as satisfactory in 3" design as in 2" design;
relatively large experiments are required to free the 2fi’'s even when dealing
with as few as four factors.” The principal reason for this unsatisfactoriness
is the relatively large number of degrees of freedom in the 2fi’s for the 37
series, which is obviously four times that for the 2%, To this increased gross
requirement must be added the combinatorial restrictions, which increase
still further the required number of observations.

The classic NBS document on fractions of the 3% series by Connor and
Zclen [1959] gives the best Resolution V plans. Defining as above the “degree
of freedom efficiency” (d.f.¢.) as the ratio of the number of degrees of freedom
required for estimation of main effects and 2fi’s to the number of observations
specified, we have, for the smallest Res. V. plans in this document, the
following:

NBS No. p g N d.fe.

353 5 1 81 0.625
3.69 6 1 243 297
9.79 7 2 243 405
27.89 8 3 243 529
8199 9 4 243 670
243.10.81 10 5 243 .827
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If 243 trials are feasible, we may as well vary up to 10 factors. 1 have
not seen a 243-trial experiment in my own work, but one is described in
Kempthorne [ 1952, page 426]. The d.f.e.’s quoted above, although they come
from very large plans, are nevertheless comparable with those for the 2°
series in the same range of p. (The smallest 21° "9 is of size 128 and so has a
d.fe. of 0.433)) Unless an experiment requires a long waiting time, it will
usually be more economical to carry through a Res. IV plan and then to
distentangle the suspiciously large contrasts measuring strings of 2fi's, as
is recommended for the 2772 in Chapter 14.

When all the factors have continuous levels, the response surface methods
of Box, Youle, [1954, 1955, 1957, 1958] and Hunter in [Chew, Ed. 1958,
pages 138-190] and of their successors are far superior and require in general
fewer trials. This is due to the reduction from 4 d.[. for each 2fi to one d.I.
for the cross-product term since only that one makes sense for continuous
variables.
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Incomplete Factorials
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13.1. INTRODUCTION AND JUSTIFICATION

We have praised factorial designs and their balanced fractions at great
length. We have seen that, in addition to their maximum precision and mini-
mum bias, the larger of these plans permit study, so that defects, even failure
of some basic assumption, can be spotted. These advantages give the frac-
tional replicates—and the full factorials—their priority when new experi-
mental systems are being investigated, when precision is not known, and
when occasional bad values are likely.

But some experimenters will feel that none of these restrictions applies to
their present work. They are familiar with the system; it has constant, even
known, precision; bad values are rare and are detectible by technical methods.
There is, then, no great need to allow 10-30 d.f. for free-standing data analysis.
All that is needed, the experimenter may insist, is a plan that will permit
good estimates of the parameters in which he is interested, with perhaps some
indication of their stability over a range of variation of some other experi-
mental conditions.

In the terms of Chapters 11 and 12, there are some multifactor situations
in which the experimenter is justified in demanding higher saturation of the
design with parameter estimates—higher degree of freedom efficiency, then.
The idea of resolution still holds some water, although not quite as much as
earlier. The experimenter may want some interactions to be estimable, but

223
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not all. He may even be willing to state just which 2fi’s he is quite sure are
negligible, which he is doubtful about, and which he must have quite clear
estimates of. The plan he wants, then, is of Resolutions IlI, IV, and V for
different factors and factor combinations.

I have not been able to produce a logical outline for organizing this com-
plex of situations. Hence I will simply start with plans of pure Res. III, proceed
to those of Res. 1V, then to mixed Res. [1l and 1V, and so vaguely on.

The earliest work in this area, that of Plackett and Burman [ 1946 ] remains
a classic, unsurpassed when a large number of factors (9-99!) are to be varied
and when additivity of effects of all factors is assured. The penalty for the
extreme saturation of these plans lies in the heavy aliasing of every main
effect with 2fi’s. Some lightening of this burden is offered later.

The very thorough atlas of “orthogonal main effect” plans, abbreviated in
this chapter as OME plans, by Addelman and Kempthorne [ 1961] can hardly
be praised too highly. The plans may, however, require augmentation in one
respect. The atlas does not show the 2fi aliases of each main effect estimate.
This is no omission if the assumption of no 2fi’s is entirely correct. But if the
experimenter’s assumption of total additivity of effects is only, say, 90%
secure, so that on average one 2fi in 10 is large even though all were assumed
to be 0, then it will be well to know where these rare 2fi’s may show, and with
what main effect each is aliased. I will show how to expose these aliases, at
least for the simpler plans.

Much work has been done on irregular parts of the 2"3" series, as well as
on the pure 3" series. Some of this work, especially that of B. H. Margolin
[1968]), will be summarized and recommended. Rather unexpectedly, there
is often a limit in that some saturated plans are of poor efficiency, but equally
unexpectedly, this situation can often be improved by the addition of a small
number of trials. The work of A. T. Hoke [1974] is quoted in this connection.

Very compact 2"3™ combinations in less than 20 trials, with some 2fi’s
estimable, are often useful for the experimenter described above, and are
dangerous only if he is wrong in his judgments about negligible 2fi’s, S. Webb
[1965] has produced an atlas of such plans that is bound to be widely used.

13.2. PLACKETT-BURMAN DESIGNS

These plans [ Plackett and Burman 1946] are described primarily to warn
experimenters of their sensitivity to the multiple assumption about total
additivity of effects of factors. We use the smaller plan for 11 factors in 12
trials shown in Table 13.1. Although we may take comfort from the 100%
efficiency of all {1 main effect estimates, we must remember that we have
“assumed away” 11 x 10/2 or 55 2fi’s.
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TABLE 13.1,
PLACKETT-BURMAN PLAN: 2'!//12

- i

Trial A B C E F G H J K L
i 0 0 Y 0 0 0 0 0 0 0 0
2 0 1 t 0 t 1 1 0 0 0 1
3 1 0 I 1 0 1 ] i 0 0 0
4 Y 1 0 i 1 0 i 1 i 0 0
5 0 0 f 0 i 1 0 I f 1 0
6 0 0 0 I 0 ! 1 0 1 1 1
1 { 0 0 0 1 0 { 1 0 I i
8 1 H 0 0 0 i 0 i | 0 i
9 1 1 i 0 0 0 1 0 1 ! 0

10 0 1 I t 0 0 0 1 0 t i
i1 1 0 i | 1 0 0 0 1 0 1
12 ) H 0 1 1 1 0 0 0 1 0

In a 2f; ? the consequence of erroneously supposing a 2fi to be 0 is that
one contrast will have a serious bias. In the Plackett-Burman (P-B) plans it
turns out that all the 2fi’s not involving factor P are aliased with the P-
contrast. There is, then, a string of 45 2fi’s behind each main effect contrast,
and each 2fi appears in 9 of the 11 contrasts. The aliasing is less drastic if
the plan is used for fewer than 11 factors, but each 2fi appears in more than
one string of aliases.

The P-B plans are advantageous in the sense that each 2fi has coefficient
+1} (not +1) when it appears. The pattern of signs is different for cach 2fi
and is identifiable for each main effect contrast. Thus, for the 11-factor plan
(A -+ L, I omitted), the 2fi AB appears positive in F, J, and K, and negative
elsewhere. If then all 11 contrasts were of about the same nonzero magnitude,
but with signs in the pattern — — —~ — - + — — + + —,lIforonewould
say, “This is the 2fi AB.” But this pattern will not generally be clear, due to
the presence of other effects and of random error. The highly irregular pattern
of signs for each main effect contrast (15 pluses, 30 minuses) is not, I think,
worth publishing.

As Box and Wilson showed long ago in their pioneering paper [1951],
any Res. II1 plan for factors at two levels can be complemented by an equal
plan, with all levels replaced by their alternative versions, to give a Res. [V
plan. Such a scheme, with 24 trials then, seems permissible when the experi-
menter is quite sure that very few 2fi’s are large. The prospect of disentan-
gling a number of long strings of 2fi’s, although ameliorated somewhat by
the known patterns, is not enticing.
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13.3. SEVERAL FACTORS AT SEVERAL LEVELS:
2"y, v

The work of Addelman and Kempthorne [1961, 1962a, b, and Appendix
13.A of this book ] on OME plans is valuable as a reference if one is consid-
ering experimental work with more than, say, four factors, of which one or
more are at three or more levels. The introductory 121 pages of the larger
work [1961] are well worth scanning. The listing of basic plans [ 1961, pages
123-138] is essential. The 26 basic plans (N = 8-81) cover a very wide range
of situations. We need not repeat the substance of the many excellent papers
showing how these plans were derived. Rather, we are concerned with their
use and analysis.

The OME plans to be discussed do not have alias structures as neat as
those of the fractional replicates—in which each 2fi appears but once—but
they are much less muddled than the P-B plans. We take Basic Plan 2 {1961,
page 139] to show a tolerably simple way to find all 2fi aliases for each main
effect, and we choose the most difficult case, which is for a 3'24//8. (I have
reversed the order of the factors to conform to the quoted text.)

Table 13.2 gives the plan as transcribed from Addelman and Kempthorne
(henceforth A-K).

Only the contrast for Ay is unexpected. Tables are given in A-K [1961,
pages 106-119] for all other cases in which there are unequal numbers of
appearances of levels of factors. Our example is shown in the second panel
of their Table 18 on page 113.

Fourteen separate 2fi terms have been suppressed in the main effect
parametrization. We sort these out in the third panel at the top of Table 13.2,
which is labeled X, and is called the confounding matrix. As always, the set
of entries in each column of X, is found as the product of the two corre-
sponding numbers in the main effect columns. I find it convenient to tran-
scribe each vector (e.g., that for 4;) onto the edge of a 3 x § index card, and
then to move this set up to each other main effect set in turn. I can then
write down the eight entries in each 2fi column in a few seconds without
eyestrain. The marked index card should be kept for the next operation.

The X, matrix shows how each 2fi enters each observation. We need to
know also how cach 2fi enters each main effect estimate. This is particularly
eagy to determine when X |, the matrix of independent variables, is orthogonal,
as it is here, because then the direct estimates are the least squares ones.
Each coefficient in the diagonal set below X is just the sum of squares of
the entries in X,. The aliases which come with each main effect are also easy
to write down. One simply puts the vertical pattern for each main effect,
say A, namely, —1, —1,0,0, 1, 1,0, 0, adjacent to each of the nine columns
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228 INCOMPLETE FACTORIALS

of X, and so forms the inner product to make one entry in the row of aliases,
here 0, 0, 0, —4, 0, —4, in about a minute. The first line of numbers in the
alias matrix is, then;

E{A,} = A, — BC — DE — BE ~ CD

Since five pairs of columns had identical entries (or their negatives), | have
further shrunk the confounding and alias matrices in the column headings.
This rather blind procedure produces all seven lines of the alias matrix.
The reader who requires a little more insight into the situation may want to
look at the third set of panels in the table. We have here identified each of
the main effect vectors with its older, more familiar name as we have used
these names since Chapter 4, where they were first shown in Yates’s table of
signs. They are now given the subscript , to distinguish them from their
current designations at the top of the table. The six contrasts — B, to ABC,
are easy to identify, but the odd couple for 4, needs to be explained. The
simplest way to make the identification is by putting the four signed
“observations” for A, through Yates's algorithm. Thus we have

© (1) ) 3

e 0
~1 0 2 0
0 2 0 0
0 0 0 0
i 0 2 4 G,
1 0 -2 0
0 0 0 -4 BG
0 0 0 0

We can now see, without a cell-by-cell check, which 2fi goes with each
main effect. For example, C, and — BC, appear in the 2fi columns only for
(BC + DE) and for —(BE + CD) so there are the aliases for A;.

After such a 3'2%//8 is completed, one should of course put the eight
results through Yates's algorithm. The “Standard contrasts” section of
Table 13.2 can then be used to relabel the effects with a simple calculation,
HCy ~ BCy), added to find 44,

The alias structure of this plan is worth looking at even if one is quite
sure that no 2fi’s are present. It makes explicit just what has been assumed
away, and just where each 2fi might turn up. The reader will notice that no
main effect is aliased with any of its own 2fi’s, and that only two pairs of 2fi’s,
namely, the 4, X components, appear in more than one main effect estimate.
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Margolin [1968] uses the same example (and gives the same results!) but
with a different assignment of letters to factors. Remembering that my
A, B, C, D, E are his R, A, E, F, G, respectively, one can see the identity of
his aliases (on his page 567) with those of Table 13.2.

Since we have handled the full 3'2% from Basic Plan 2, it is now straight-
forward to see the aliasing if fewer factors are chosen from the same plan.
If we drop E, making the plan a 3'23, we simply drop all 2fi’s containing E.

13.4. AUGMENTATION OF THE 3'24//8

When the experimenter finds one or two large effects, all others being of
lesser magnitude, there is not much risk in interpreting the results as simple
additive effects of the factors. But when there is no such clear separation,
and when in addition the error standard deviation is not known, I would
strongly advise augmenting the 8 trials by another 8, which use the opposite
levels of all the two-level factors, and which interchange the levels of A as
follows:

First Set Second Set

0 1
1 0
[ 2
2 1

Table 13.3 shows the new plan, labeled Plan 2, along with the corre-
sponding X, and X, matrices and, below, the new alias matrix, By adding
and subtracting the pairs of estimates for 4, - - - E (the P-Q principle), we
resolve some of the aliasing. Summarizing, we can make 12 estimates from
the 16 trials, namely,

Ay A,C — 24,B
B — A,C AD — 244E
C — AB AE — 244D
D — A.E BD + CE
E — A,D BE + CD

Although considerable ambiguity remains, we have been able to remove
two 2fi’s from each main effect string, and that accomplishment will be
judged worthwhile by some. Technical identification of one of a pair of 2fi’s
may now be undertaken with less risk.
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Margolin [1969] has given a lower bound (let us call it Ny) for the
minimum possible number of trials for a Res. IV plan for any 2"3":

Niy =3(n + 2m — 1),

For our case, n = 4, m = 1, so that Niy = 15. It is discouraging to me, but
perhaps a challenge to scholarly statisticians, that I have not been able to
come within 50% of the stated minimum.

The experimenter who feels that he is being told more than he cares to
know about aliasing and dealiasing may want to consult the valuable
Catalog and Computer Program for the Design and Analysis of Orthogonal
Symmetric and Asymmetric Fractional Factorial Experiments by G. J. Hahn
and S. S. Shapiro of General Electric [1966], which permits automatic
estimation of all main effects and of 2fi’s where feasible in any of the A-K
plans. This catalog is especially useful for the choice and analysis of the
larger plans. Good programs for computing any set of 2fi aliases have been
written at least twice but apparently have not been published. Hoke [1970]
and Webb 1965b have developed programs (Webb's is the larger) which
they may well send to the first few requesters. The experienced computing
statistician will recognize that for any matrix of independent variables X,
and for any confounding matrix X, the alias matrix is

A= (X{X) ' XX,

as Box and Wilson showed in their classical paper [1951]. For OME plans,
(X1X,) ! is diagonal and XX, is just the set of inner products of main
effects by 2fi that I went through slowly above for Basic Plan 2. (See Margolin
[1968, pages 562 fI.] for further simplifications.)

13.5. ORTHOGONAL MAIN EFFECT PLANS: 2"3"//16

Addelman and Kempthorne’s Basic Plan 5 [ 1961, page 141, and Appendix
13.A of this book] shows us how to produce all mixed plans from the 2!23!
to the 2334, and as such is a major contribution. My only addition is to give
some idea of the alias patterns for one of the more complex of these alter-
natives. I am indebted to B. H. Margolin for having first penetrated this
thicket. By methods more general (and more economical) than my simple
Table 13.2, using his concept of “non-zero-sum-column vectors,” he has
teased out the alias pattern for the 2°33 given in Table 13.4. This rather
repetlent array should really be viewed as a great simplification. There are
63 individual 2fi’s and 96 2fi terms in the array, so there is considerable
duplication, but of course nothing fike the amount threatened by the P-B
plans. It is left as an exercise for your friendly neighborhood statistician to
design an augmenting set that follows the pattern of my 243! above—or, as
I would hope, does better,
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TABLE 134,
ALIAS PATTERN OF 2fi’s FOR A 293% FROM BasiCc PLAN 5
A ..., EAT TWO LEVELS; R, S, T, AT THREE.
1. A - BF + CRy - DT, — $ES, — RS, — 4R, T\ — ST,
2. B~ AF + CS3 — DR, — $ET| — {R,S. — RyTy + 48, T,
3. C—DE+ ARy + BSq + FTy —~ §R,T, — RyT, — 48, T,
4. D — CE - AT, ~ §{BR, ~ §FS, + ¥R, Ty + $RyS; + $S,T,
S. E~ CD - }AS, — §BT, — 4FRy + R, Sg + §RyT, + 45, Ty
6. F— AB + CTy — DS, — $ER, — §RoT) ~ RySp — 48,.T,
7. R, - BD — EF — {4S, — }AT, — §BS, — 4CT, - §CS, + ST, + ESg —
EF — 3FTy + ST + $5,.T,

8. Rg+ AC — BTy + }DS, + YET, — FSy + 4S5, T,

9. S, — AE — }AR, — }BT, ~ 4BR, — }CR, - §CT, — DF + DRy + ETp —
YFT, + RyT, + $R, T,

10. S — ATy + BC + DT, + 4ER, — FR, + 3R, T,

Il T, — AD — }AR, — §BS, — BE — §CS, — §CR, + ERq + DSq ~ }FR, —
$FS, + {R.Sq + §R,S,

12. Tq — ASq — BRy + CF + $DR, + LES, + R.S,

13.6. SMALL, INCOMPLETE 2°3® PLANS (VN =< 20)

This section is entirely devoted to recommendations for, and warnings
about, the catalog of Webb [1965], which collects about 67 plans, most of
them developed by Webb himself. Some of these designs are outrageously
small (4, S, 6 trials). The reader should be warned that Webb considers his
factor levels as quantitative and only permits estimation of 2fi’s including
three-level factors of the form A,.B or 4;B; (not A, By or AyBy).

It is hard to see why Webb calls the plans 3"2", whereas Margolin terms
them 2"3™. We are in the hands of mathematicians, who cannot be required
to use a lexical or even a uniform notation.

By far the easiest way to analyze any of these irregular plans is by a
standard least-squares regression program, arranged to give all effects and
interactions as regression coefficients, with their standard errors, t-values,
and perhaps component effects and degrees of orthogonality.

Since most of these plans are nearly saturated, there is little to be learned
from the residuals from a full fitting equation. Of course if only 3 or 4 d.f.
are consumed by large effects and 10-15 are left for lack of fit, the residuals
will not be severely distorted and may reveal a wild value or even a localized
interaction.
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13.7. ESTIMATION OF SELECTED SUBSETS OF
TWO-FACTOR INTERACTIONS

Addelman [1962b] has given a useful list of plans (all are fractional
factorials from the 2” to the 57 series) which permit us to estimate some 2fi’s.
Hec has arranged his plans in three classes. Class One plans are for k factors
(k = 3---62) of which a subset of size d may interact, but only with each
other. Class Two plans are for k factors of which a subset of size d interact
only with each other, and the remaining set of size k — d factors also interact
with each other. Class Three plans provide estimation of all 2fi’'s with a
specified subset of factors,

Addelman’s three tables are reproduced here (with permission) as Tables
13.5, 13.6, and 13.7. As a first example of their use, suppose that the effects
of 10 two-level factors are under study, and that 4 of them are thought likely
to interact with each other. Table 13.5 (Addelman’s Tablc 1) shows us that
we must use 32 trials to accommodate these requircments. If we use A4, B,
C, D for the four interacting factors, then any of the 3-, 4-, 5-factor inter-
actions, or even AE, BE, CE, DE, may serve as the noninteracting factors.

TABLE 13.5.
ADDELMAN'S TABLE 1: FACTOR REPRESENTATIONS FOR Cr.Ass ONE
COMPROMISE PLANS

Number Number of Total

of Interacting Number
Trials Factors of Factors Factor Representations
23 2 6 A, B; C, AC, BC, ABC
3 4 A, B,C; ABC
24 2 14 A, B; C, D, all interactions excluding AB
3 12 A, B, C; D, all interactions excluding AB,
AC, and BC
4 9 A, B, C, D; ABC, ABD, ACD, BCD, ABCD
5 5 A, B C,D, ABCD,
23 2 30 A, B; C, D, E, all interactions excluding AB
3 28 A, B, C; D, E, all interactions excluding
AB, AC, and BC
4 25 A, B, C, D; E, AE, BE, CE, DE, all 3-, 4-,
and 5-factor interactions
5 21 A B, C, D, E; all 3-, 4-, and 5-factor
interactions
[ 16 A, B, C, D, E, ABCDE; all 3-faclor

interactions



TABLE 3.5 (continued)

Number Number of Total
of Interacting Number
Trials Factors of Factors Factor Representations
26 2 62 A, B; C, D, E, F, all interactions excluding
AB
3 60 A, B, C; D, E, F, all interactions excluding
AB, AC, and BC
4 57 A, B, C, D; E, F, all interactions excluding
AB, AC, AD, BC, BD, and CD
5 3 A, B, C, D, E; F, AF, BF, CF, DF, EF, all
3-, 4-, 5-, and 6-factor interactions
6 48 A, B,C, D, E, F; all 3-, 4-, 5-, and 6-factor
interactions
7 42 A, B, C, D, E, F, ABCDEF; all 3- and 4-
factor interactions
8 35 A,B,C,D,E, F, ABCD, ABEF; ACE, ACF,
ADE, ADF, BCE, BCF, BDE, BDF, CDE,
CDF, CEF, DEF, ACDEF, BCDEF,
ABCDEF, all remaining 4-factor inter-
actions excluding CDEF
33 2 11 A, B; C, AC, AC?, BC, BC? ABC, ABC?,
AB2C, ABXC?
3 7 A, B, C; ABC, ABC?, AB*C, AB*C?
3 2 38 A, B; C, D, all interactions excluding AB
and AB?
3 34 A, B, C; D, ail interactions excluding 4B,
AB?, AC, AC?, BC, and BC?
4 28 A, B, C, D; all 3- and 4-factor interactions
5 20 A, B, C, D, ABCD; ABC? AB2C, AB*C?,
ABD? AB2D, AB*D? ACD? AC*D,
AC?D?, BCD?, BC*D, BC*D* ABC*D?,
AB*CD?, AB*C*D
43 2 18 A, B; C, all interactions excluding AB, 482,
and 4B}
3 12 A, B,C; ABC, ABC?, ABC?, AB*C, AB*C?,
AB2C?, AB3C, AB*C? ABC?
53 2 27 A, B; C, all interactions excluding AB, AB?,
AB? and AB*
3 19 A, B, C; all 3-factor interactions

234



TABLE 13.6.
ADDEIMAN'S TasLe 2: FACTOR REPRESENTATIONS FOR CLASS TwO
CoMPROMISE PLANS

Number Number of Factors
of
Trials First Set Second Set Factor Representations
23 2 5 A, B; C, D, E, ACD, BCE
3 4 A, B,C; D, E, ABC, ADE
26 2 8 A, B; C, D, E, F, ACD, BCE, AEF, BCDF
3 7 A, B, C;, D E F, ABC, ADE, BDF, CDEF
4 6 A4,B,C,D; E, F, ABC, BCDE, ACDF, BCEF
5 5 A, B, C, D, E; F, ABC, ADE, BDEF, ACEF
27 2 11 A4, B; C, D, E, F, G, ACD, BCE, ABCDE,
CDEF, ADEG, ABCFG
3 10 A B, C, D, E F, G, ABC, ABDE, ACFG,
BCDF, DEFG, BDEG
4 9 A,B,C,D;E, F,G, ABC, CEF, DEG, ADFG,
BCEG, BDEFG
5 8 A B C,D E,F,G ABC,ADE, ACEF, BCDG,
ABFG, DEFG
6 7 A,B,C,D,E, F;G, ABC, ADE, BDF, AEFG,
BCDG, ABDEG
3¢ 2 4 A4, B; C, D, ACD, BCD?
3 3 A, B, C; D, ABC, ABC*D
TABLE 13.7.

ADDELMAN'S TABLE 3: FACTOR REPRESENTATIONS FOR CLASS THREE
CoMPROMISE PLANS

Number Number of Total
of Interacting Number
Trials Factors of Factors Factor Representations
28 0 7 A, B, C, AB, AC, BC, ABC
i 4 A; B, C, BC
2 K} A, B, C
3 3 A, B C;
24 0 15 A, B, C, D, all interactions
i 8 A; B, C, D, BC, BD, CD, BCD
2 5 A B;C,D,CD
3 5 A, B,C, D, ABCD
4 5 A,B,C,D; ABCD
5 5 A, B, C, D, ABCD,
23 0 3l A, B, C, D, E, all interactions
1 16 A; B, C, D, E, all interactions not containing
A
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TABLE 13.7 (continued)

Number
of
Trials

Number of
Interacting
Factors

Total
Number
of Factors Factor Representations

26

33

34

43

53
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ABCEF, ABCDEF
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APPENDIX 13.A 237

For an example from Table 13.6 suppose that 7 factors are to be varied,
that 4, B, C interact, and that D, E, F, G interact but only among themselves.
Line 2 of the table tells us that again we require a 25, that A, B, C are to be
used for the first subset, and that D, E, ABC, ADE must be used for the
other subset. The reader must see by now that, whereas D and E can be used
directly, F and G are to be represented by ABC and ADE, so that the six
2fi's in the second set are to be identified with the contrasts in the 23 as

follows:
DE = DE,

DF = D x ABC = ABCD,
DG = D x ADE = AE,

EF = E x ABC = ABCE,
EG = E x ADE = AD,

FG = ABC x ADE = BCDE.

These six are all easily identifiable in the 23, all are mutually orthogonal,
and none involves main effects or 2fi’s among A4, B, and C.

APPENDIX 13.A

ORTHOGONAL MAIN EFFECT PLANS FROM
ADDELMAN AND KEMPTHORNE [1961]

Basic PLAN 1: 23; 4 trials

123

000

011

101

110

Basic PLAN 2: 4; 3; 27; 8 trials

* % 1234567
0 0 0000000
0 0 0001111
1 1 011001}
1 1 0111100
2 2 1010101
2 2 1011010
3 1 1100110
3 1 1101001

*e]lg203



BAsIC PLAN §: 4%; 35; 25, 16 trials

00000 00001
12345 67890
00000 00000
00001 10111
00010 11011
00011 01100
01100 00110
01101 10001
01110 11101
01111 0101¢
10100 01011
10101 11100
10110 10000
10111 00111
11000 01101
11001 11010
11010 10110
11011 0000}

3-000 4-111

12345
(22X X
00000
01123
02231
03312
10111
11032
12320
13203
20222
21301
22013
23130
30333
31210
32102
33021

12345
302 %
00000
01121
02211
01112
10111
11012
12120
11201
20222
21101
22011
21110
10111
11210
12102
11021

1-000 2-000
*=456

*-~123%
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Basic PLAN 6: 8; 7; 6; 5; 28; 16 trials
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23456789
00000000
11111111
00001111
11110000
00110011
11001100
00111100
11000011
01010101
10101010
01011010
10100101
01100110
10011001
01101001
10010110

11111
12345
00000
61110
16011
11101
11011
10101
01000
00110
0liol
00011
11110
10000
10110
11000
00101
01011

5-111
*=345



123456789
ARRRBRERR

000000000
011231111
022312222
033123333
101111032
110320323
123203210
132032301
202223102
213012013
220131320
231300231
303332130
312103021
321020312
330211203
002130213
013301302
020222031
031013120
103021221
112210330
121333003
130102112
200313311
211122200
222001133
233230022
301202323
310033232
323110101
332321010

1-000 2-000
*-456

*-123

Basic PLan 13

1236456789
ARBRARERE

000000000
011211111
022112222
011121111
101111012
110120121
121201210
112012101
202221102
211012011
220111120
211100211
101112110
112101021
121020112
110211201
002110211
011101102
020222011
011011120
101021221
112210110
121111001
110102112
200111111
211122200
222001111
211210022
101202121
110011212
1231110101
112121010

*-789

00000
12345

00000
00001
00010
00011
01100
c1101
01110
01111
10100
10101
10110
10111
11000
11001
11010
11011
00000
00001
00010
00011

- 01100

011cC1
01110
61111
10100
10101
10110
10111
11000
11001
11010
11011

3-000 4-111
*-012

49 39; 211 32 trials

00001}
67890

00000
10111
11011
01100
00110
10001
11101
01010
01011
11100
10000
00111
01101
11010
10110
00001
01010
11101
10001
00110
01100
11011
10111
00000
00001
10110
11010
01101
00111
10000
11100
01011

5-111
*=345
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1111
12345

00000
01110
10011
11101
11011
1010}
01000
00110
01101
00011
11110
10000
10110
11000
00101
01011
11110
10000
01101
00011
00101
01011
10110
11000
10011
11101
00000
01110
01000
0011¢C
11011
10101

6-111
*-578

11112
67890

00000
01101
10110
11011
01100
00001
11010
10111
11001
10100
01111
00010
10101
11000
00011
01110
00010
01111
10100
11001
01110
00011
11000
10101
11011
10110
01101
00000
10111
11010
20001
01100

7-122
*#~901

22222
12345

00000
10110
11011
01101
01101
11011
10110
000600
10001
00111
01010
11100
11100
01010
00111
10001
10111
00001
01100
11010
11010
01100
00001
10111
00110
10000
11101
01011
01011
11101
10000
00110

22
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00
11
01
10
01
10
00
11
01
10
oo
11
00
11
01
10
10
01
11
0o
11
0o
10
01
11
0o
10
01
10
a1
11
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2233
8901

0000
0000
0000
0000
0G11
0011
0011
0011
0101
0101
0101
0101
0110
0110
0110
0110
1111
1111
1111
1111
1100
1100
1100
1100
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1013
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1010
1001
1001
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CHAPTER 14

Sequences of Fractional Replicates

14.1 Introduction, 241
14.2  Simplest Augmentations: the 237 ¢ and the 2§77, 242
14.3  Augmenting the 2} ¢, 246
14.3.1 To Separate a Single Pair of Two-Factor Interactions, 246
14.3.2 To Separate Four Members of a Single String of Two-Factor
Interactions, 246
14.3.3 Al Seven Two-Factor Interactions with One Factor, 247
14.4 Conclusions and Apologies, 249

14.1. INTRODUCTION

Fractional replicates are done by those who do them because they are
economical. They are not done by those who do not do them because they
are risky. The risk lies in the ambiguity caused by their inevitable aliasing.
Experimenters sometimes feel that they can safely judge which 2fi's are
negligible and hence that they can securely interpret the strings of main
effects and 2fi’s which the fractional replicates produce. ’Ngy are often right,
and many successful fractional replicates are in the record. .

It does happen, however, that some fractional replicates produce ambig-
uous results which the experimenter may want to resolve by further work.
This chapter is devoted to proposals for dealiasing certain efects, if the
reader will pardon the neologism. 1t is restricted to the augmentation of the
27714 series, although there is no doubt that similar systems can be worked
out for other types of designs.

To put it at its simplest, we use the P-Q principle, sometimes extended
to the P-Q-R-S principle. When P + Q is known or at least estimated, we
produce plans which estimate P — Q—or P —~ Q + 4 + u, where 4 and
u are already estimable—and then we combine the two. We have already
used this principle in designing plans before any work is done. We now
extend it to fix up data sets that have failed to produce clear results.

241



242 SEQUENCES OF FRACTIONAL REPLICATES

The second-order response surface methodology of Box, Youle, and
Hunter [1954, 1955, 1957] and of Hill, and Hunter [ 1966] may also be viewed
as a system of augmenting Resolution V 2777 designs in order to get more
general and more intelligible results when all factors are continuous, The
augmentations of this chapter are of a more primitive type. They are aimed
at discovering which 2{i’s are there, and so in some cases will simplify the
response surface fitting that will come later. They will more frequently be
used after Res. IV plans, which commonly produce strings of 2fi’s as es-
timable quantities.

Most of the proposals made here can be found in the paper on sequences
[Daniel 1962]. Perhaps they are described more clearly here.

14.2. SIMPLEST AUGMENTATIONS:
THE 2};' AND THE 2§!

The first paper on augmentations of 2° 74 o separate aliases was that of
Davies and Hay [1950]. They required the addition of at lcast one more set
as large as the original sel. The plans proposed below are generally smallcr,
although cases will arise that demand equal or larger extra sets,

It must be obvious to any reader who is not opening this work to this
chapter that the 2°~', I — ABC, yields three contrasts, (4), (B), (C), which
have expected values (4 — BC), (B — AC), and (C — AB). Each main effect
is aliased with the complementary 2fi with opposite sign. The expected value
of each trial in the other 2° 7', I + ABC, will have matching signs on each
main effect and its attached 2fi. Thus we have

E{a) =pu+ A — B — C — AB — AC + BC (+ ABC).

Now after the first 23! is done, if it so happens that only the 4-contrast
is large, there is only one serious ambiguity to resolve. When we dare say,
then, that B, C, 4B, AC are all roughly 0, we can write

E{a} = p+ A + BC.

If we carry out only trial g, we can use the estimate of g from the first
fraction and so get an estimate of 4 + BC:

AF¥ BC=jfi —a.

We carry through the computation on the five responses because of the
rather counterintuitive outcome. We compute 4(4 + BC) as described
just above, write down the estimate 4(4 = BC) from the original fraction,
and then add and subtract:
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Step ( ab ac bc u
1. —4ji -1 -1 -1 -1

2, 4a 4
3.=1.+ 2 4(A 3 BC) -1 -1 -1 -1 +4
4, 4(A = B(C) -1 +1 +1 -1

5.=133. +4) 44 -1 -1 +2
6. =43 —-4) 4BC = +2

From steps § and 6 we see immediately that Var (A) = Var (327) = 3;and
since the minimum variance for five observations is 3} + 1) = 7, we have
attained an efficiency of 3. (Henceforth in this chapter we will take o2 to be
1)

It is shocking, is it not, to find that we require only three of the five observa-
tions for the unaliased estimates, even though it is pleasing that the efficiency
of each estimate is §, based on all five observations. This sounds slightly
superefficient.

The adding of a single trial to a 237! is safe only when the system is
assuredly stable, without time drift, A minimum block for separating A from
-~ BC will contain two trials. We are allowed to use only the within-block
contrast in estimation. Although the pair can be found by trial, it helps our
insight to derive it formally. Since we want a contrast that includes 4 + BC,
we choose an alias subgroup that contains only other effects. We must
include 4 ABC since all trials not yet made are in the 237 ': [ + ABC. We
add ~ AC to the group and so are forced to include the product + ABC x
—AC = —B. The trials corresponding can be found by reverse Yates
algorithm, putting 1, —1, — 1, 1 in the positions of the four elements of the
group. This pair is of course not the only one that mcets our requirements.
If we had chosen I + ABC — BC — A, the pair b, ¢ would emerge.

Returning to the pair a, ¢, we see that the contrast {(a — c) has expectation
2(4 — C — AB + BC) = 2{4 + BC) since we have “decided” that C and
AB are negligible. We now need no correction for y, and so we can utilize
the P-Q principle to combine this estimate with that for 4 — BC:

(1) ab ac be a c
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We see that Var (4) = Var (BC) = {& and hence that the efficiencies are
Ex ¥ =45

We proceed to the 2§, ' for the simplest case of two 2fi’s aliascd with cach
other. The reader will remember that the 28, ': I + ABCD provides scven
orthogonal contrasts, one for each main effect and three for the three pairs
of complementary interactions. Suppose that (4B + CD),(A), and (C) “come
out large” and that (B), (D), and the other two interaction sums are small.
Any treatment combination not in the first 247! will do, for example,

Ela} = u+ A - C — AB + CD % 11 negligible terms.

Since, then, (4B = CD) = ji — C+ A4 - aour single observation requires
threc corrections. We labulate 8(4B + CD) from the 2471 and then
8(AB = CD) = 8ji — 8C + 84 — 8a as they depend on the nine pieces of
data.

(1y ab ac bc ad bd cd abed a

8(4B F CD) 1 1 -1 -1 -1 -1 1 1
+8f I
—8C R B A N B B
+84 -1 1 1t -1 1 -1 -1 1
—8a -8
164B 2 4 0 -2 2 0 0 2 -8
16 CD 0 -2 -2 0 -4 -2 2 0 +8
8 4B 1 2 0 -1 1 0 0 1 -4
8CD 0 -1 -1 0 =2 -1 2 0 +4

Var (AB) = Var (CD) = &} = §; Min Var (9 obs) = g. Hence effi-
ciencies = 7%

The reader will find, if he carries the 4B-contrast through Yates’s forward
algorithm, that 4 and C have coefficients 0, while only 4B has coefficient 8.
There are |1 other nonzero multipliers, but these are all effects that we have
assumed negligible.

Our efficiency, %, is not dazzling, but [ do not find it disturbing either.
It will be even smaller for single augmentations of larger plans. 1 view it as
satisfactorily far above 0, rather than as disastrously far below 1.

We now choose a pair of trials for the same case. We take care that both
are at the same levels of 4 and of C to avoid variance-increasing corrections.
Our alias subgroup will then contain — 4ABCD, + 4, and, say, —C and so

will be:
I —ABCD + A — C - AC - BCD — ABD + BD.
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Now our desired contrast will estimate
B - ACD + AB —~ BC - ABC - CD — AD + D = AB - CD.

[ find it simplest to pick the two trial specifications by direct search, but
of course reverse Yates on the eight signed members of the alias subgroup
will produce the same result, namely, abd and a.

If we designate the original contrast for 8(4B + CD) by y, (with variance
8), and the new contrast from the pair by y, (with variance 2), we obtain:

164B = y, + 4y,;  16CD = y, - 4y,

each with variance 5 and so with efficiency 0.64.

It is not difficult to produce a set of four trials if they are necessary to get
more precision in separating AB from CD, when 4 and C (only) are large.
We use the alias subgroup ! — ABCD — AC + BDand acquire immediately
the set: a, ¢, abd, bcd. But since we now have three contrasts (among the
four augmenting trials) at our disposal, we consider what use to make of the
other two, which are

A—-C+ABD —BCD A ~-C and B — ABC + D — ACD.

We should use the first to improve our precision of estimation of 4 and
C, and the second as a degree of freedom for error. Designate the original
estimate of 4 as, 4,. The new estimate, 4,, will be (4 = C) from the new
set of four, plus €, estimated from the main experiment. We will combine
these two estimates by weighting them inversely as their variances, Variance
(A) = %,and Var (4,) = Var(4 = C), + Var(C,) = } + § = 3, whence,
as we mathematicians say,

’

_ 34, + 4
4

9 Var (4,) + Var(4,)
16 B
Ef. () = {5 x ¥ =8

+8 =4

e

Var (4) =

The same system is used to improve our earlier C-estimate.

If now we suppose that two pairs of 2fi’s require disentanglement, we
find that the only augmenting set of four that meets our requirements puts
all four 2fi’s into a single string and so cannot be used. We might hope to use
one of Addelman’s plans for estimating all main effects and 2fi’s in four
factors in 12 runs (a 2%//12, then), but this fails since his plans do not include
a 2y ' I see no satisfying alternative to the full set of eight, / — ABCD, if
two 2fi interaction strings appear large after the first half replicate.
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14.3. AUGMENTING THE 24

14.3.1. To Separate a Single Pair of Two-Factor Interactions

Since there is nothing new in this case, the separation design is left as an
exercise. Slightly betler use of the remaining contrasts (when four augmenting
trials are made) is available because we now get an estimate of C and one of
A separated from each other. Each is used to decrease the variance of the
weighted estimate of a main effect.

14.3.2. To Separate Four Members of a Single String of
Two-Factor Interactions

If four main eflects, say A4, C, E, G, and a single string of 2fi’s, say AB +
CD + EF + GH, all appeared large in a 28,*, the experimenter might well
wish to isolate all four 2fi components. Although it is possible to name
three treatment combinations that will permit estimation of the four 2fi’s
[Daniel 1962], their variances are so large as to be generally unacceptable.
Even the use of three pairs of observations gives poor efficiencies. (The
three pairs given in the 1962 paper [page 409, line 11] are erroneous. The
corrections given later [Daniel 1963] are rather opaque) The simplest
pairs are df — bh (to estimate the ordered string with signs + — -~ +),
dh — bf (toget + — + —),and fh — bd (for + + — ).

As we look at these six conditions, we note that all are in the 2%, ': 71 +
BDFH. We add the missing two, namely, (1) and bdfh, to form the full
“even” half replicate on B, D, F, and H, knowing full well that the eight are
really a 2873, I have chosen the low levels of 4, C, E, and G so that all treat-
ments are at the same levels of the four influential factors. In this way 1
avoid corrections for main effects. The alias subgroup for our eight trials is
then:

I+ BDFH - A-C—E -G+ AC
+ AE + AG + CE + CG + EG plus 5fi's.
We extract directly the four contrasts containing our 2fi components by
multiplication of each member of the alias subgroup in turn:
yy =AB - B+ BC + BE + BG + = 3f,
y =CD— D+ AD + DE + > fj,
y3 = EFE — F + AF + CF + 3f,
ve = GH — H + AH + EH £ 30

So our four 2fi’s are separated from each other by this “interaction ex-
traction fraction” (D. W. Behnken) and are aliased only with clouds of
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effects we have already judged to be negligible. The remaining three contrasts
in the 2873, which may be called BD + FH, BF + DH, and BH + DF,can

be used as error estimates,
Again we can attain a somewhat smaller variance for the 2fi estimates
by combining each one given above with the estimate of their sum (call it

ys) from the original 287 4:
ABx = yl’ Val’ (AB‘) = % = ]%

ABy = ys — ¥, ~— y3 — yo, Var(ABy) = fs + § + § + § = 1%5
1 WL
AB = :’ﬁ.’ﬁ_; 248 Var (4B) = f‘g—iv%;f—“-i--’f = 7.

Eff. (AB) = &4 x ¥ =3

Although algebraic formulae can be worked out for all cases’ it seems to
me simpler to make a computation like the above, always using the P-Q
principle when feasible, and otherwise always weighting each (orthogonal)
estimate inversely as its variance.

14.3.3. 'To Separate Al Seven Two-Factor Interactions with
One Factor

The separation of all 2fi’s with one factor is analogous to the preceding
case, although I did not know this in 1962. The seven 2fi’s with 4, for example,
appear in different alias strings, so we look for a set of trials from which we
can estimate AB — CD ~ EF — GH, and alse AC — BD — EG — FH,
and so on down to AH — BG — CF — DE. Clearly the alias subgroup
must contain — ABCD, — ABEF, — ABGH, and -~ ACEG, and equally
clearly we require one more generator since we hope to do only 8 = 28~
trials. We use — A as the last generator, so that all trials will be at low A.
The alias subgroup now contains 32 terms, but they are easy to view overall,
The first 16 members are:

123 - ABCDEFGH 34 +BCEH
I —~ABCD 24 +BCFG
2 —ABEF 14 +BDEG
3 - ABGH 1234 +BDFH
4 —ACEG 12 +CDEF
234 —ACFH 13 +CDGH
134 - ADEH 23 +EFGH
124 - ADFG I

and the second [6 members are the products of these with — 4.
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The corresponding trial specifications or treatment combinations are:

bedefgh ceqg

bed cfh
bef deh
bgh dfg

These are seen to be the lowercase counterparts of the first column of the
alias subgroup with a removed.

It is by now an elementary exercise to combine cach of the seven contrasts
from this 2879, after correction by a main effect if large, with the corre-
sponding string from the original 28 ~4. T give an example which I hope most
readers can skip. Designate the — B-contrast from the 285 as y,. Then

E{y;} = —B + AB — (CD + EF + GH).

Let

yy = B, - from the 2874,

y;, = AB + CD ¥ EF + GH from the 284,
Then

AB + (CD % EF + GH) = y,

AB —(CD + EF + GHY = y; + y;

AB =30 + y2 + 1)
and

Var (AB) = }(k + & + ) = 1%
Eff. (AB) = 44 x 16 = 4.

Similar operations with the remaining six contrasts from the 2875 will
separate the other interactions with A4.

The paper “Sequences of Two-Level Fractional Factorial Plans” by S.
Addelman [1969] discusses the same problem as this chapter, at greater
length and for a wider range of designs, but with less tailoring to specific
cases. | start with minimal augmentations (N = I, 2, 4, 8}, responding to
just what has been exposed earlier, and proposing only the smallest aug-
mentations which will remove known ambiguities with acceptably small
variance.

Addelman uses more general criteria. He shows what set to add to each
small initial block to gain maximal numbers of estimates of parameters.
His augmenting sets are usually as large as the initial block. The second
block is chosen for the large number of new estimates it permits, but these
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are not explicitly tailored to the set of ambiguities revealed by the first set.
The tailored, irregular, post hoc plans that I propose are not, as Addelman
very rightly says, easily categorized and listed.

144. CONCLUSIONS AND APOLOGIES

I have viewed the known aliases (of second order) of an estimate as am-
guities which can be counted. The separation of a string (sums and differ-
erences) of aliases into one unbiased member and a smaller string requires
one augmenting trial if precision is good enough and if the experimental
system is assuredly not drifting. The efficiency of parameter estimates is
doubled and drift removed if two new trials can be done. Four augmenting
trials—none of them replicates of earlier work—-provide still more precision
both for the target estimate and for some effects already estimated.

Muitiple ambiguities are more likely to require eight or more trials.
Care in choosing the augmenting set often permits efficient separation of
several ambiguities at once, whether or not they were originally in the same
string. I always try for sets which permit the P-Q principle (often extended
to the P-Q-R-S principle), since this gives the highest efficiency for all esti-
mates. When this cannot be done, because of the asymmetry of the effects
found, I patch together the best combination that will permit some estimation
of the entangled effects. This will, in my experience, nearly always be a new
fractional replicate, and not a congeries of unrelated pairs of observations,
one pair for each ambiguity.

Although I have no doubt that extensions to the 277 for p > 8, to the
377 series, and to the general augmentation of partially balanced incomplete
block systems are all manageable, 1 leave these pleasures to others.
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CHAPTER I5

Trend-Robust Plans

15.1 Introduction, 251

15.2  Simplest Trend-Robust Plans, 252

153 Trend-Robust 22*'//8 and 2¢~*//8, 253

154 Trend-Robust 2¢4//16, 2°2//16, 2%/32, and 2'4~?/[32, 256

15.1. INTRODUCTION

This chapter is largely a rephrasing and condensation of a paper published
in 1966.* Since no printed evidence of the usefulness of these plans has
appeared in nine years, my earlier enthusiasm for them has been somewhat
dampened.

Just as knowledge of a system’s stabilities and of its heterogeneities is
essential for the effective blocking of a factorial experiment, so similar
knowledge is required for systems which drift or trend or age. If the shape
of the drift curve is roughly known, use should be made of this knowledge.
Instead of randomly spreading the systematic trend to give a large random
error, we can get most of the trend into two d.f, separated from the random
error. This is proved for systems with linear and quadratic trend when a
2779 plan is to be done, and must, it seems to me, be true also for higher-order
trends and for more general factorials.

As Hald [1952b, page 510] has put it: “The possibility of eliminating
systematic variation effectively depends on whether the variation is smooth
[or whether] ... irregular fluctuations occur.” Later on the same page he
recognizes that the trend can be largely eliminated “if the systematic variation

* That paper [ Daniel and Wilcoxon 1966] fails to point out its obvious indebtedness to two
papers by D. R. Cox {1951, 1952] and to Section 14.2 of his book Planning of Experiments
[1958]. 1 make this acknowledgment now, with apologies. The basic idea of these plans was
F. Wilcoxon's, He noticed that the 8 ordered trials 0 1 1 0 1 0 0 | gave a sequence for one two-
level factor that was exactly orthogonal to linear and guadratic time trends. He then worked
out many larger ordered multifactor plans with the same orthogonality.

251
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is smooth and slow.” I take “smooth” to mean “representable by linear and
quadratic terms in time,” and “slow” to mean “being a considerable multiple
of the time required to make one trial. In the next sections, this multiple goes
from 3 to 32

Some orders of trials for the 27, and for the 277 are much more sensitive
than others to aliasing of linear (L) and quadratic (Q) trends with factorial
effect contrasts. Two contrasts in particular (C and BC in the 23, D and
CD in the 2%, E and DE in the 2%) are highly correlated with L and Q, respec-
tively. For B, C, D, E, the squared correlation coefficients with L are 0.80,
0.76, 0.75, and 0.75, respectively. For AB, BC, CD, DE, the squared coeffi-
cients with Q are 1.0, 0.80, 0.72, and 0.71, respectively. By choosing other
contrasts to determine the levels of factors, and by watching out for the
corresponding forced 2fi contrasts, we can estimate all main effects and all
2fi's with good efficiencies, using the random fluctuations about the drift
curve as a basis, rather than the uncontrollable variation including drift.

The factor levels in these plans appear in sequences that may be in-
convenient for the experimenter. But there is a wide choice of number of
changes of level in each plan, varying, for example, in the 2* from 5 to 13.
1 can see no theoretical objection to aliocating the factor hardest to change
to the letter that has the longest runs at one level.

Since most estimates are made with efficiencies near 1.00, some experi-
menters may see an advantage in following the specified sequence even when
little is known about the shape of the trend curve. If no trend appears, only
two d.f. are lost. If large L- or Q-trends appear, a substantial gain in precision
of all estimates is guaranteed.

15.2. SIMPLEST TREND-ROBUST PLANS

Suppose that one factor at two levels is to be studied in a system known
to be drifting linearly over periods as long as several trials. The minimum
conceivable plan contains three trials. Examples include the effect of some
diet change on the milk yield of a milch cow, and the effect of feedstock
change on the selectivity of a catalyst that ages slowly in use. Call the two
levels of the factor A and B [and not, because of the clumsiness of the designa-
tion, (1) and a]. The six possible orders for four trials are:

I. ABA IV. BAA
I. BAB V. ABB
[II. AAB VI. BBA

The two orders 1 and II have obvious advantage. Direct solution of the
equation Y = by + byx + d;t, putting x at —1 and +1, and t at —1 and
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+ 1, will show that 1 and Il have efficiency 1.00 whereas the other four
sequences have efficiencies 4 for b, and d, and % for b,,. Since more than onc
cow or catalyst batch would have to be used, [ and II would naturally be
used in alternation.

A severe randomizer will insist that, for each pair, I or I should be chosen
at random, to be followed by its complement. Let him.

This miniplan is entirely vulnerable to quadratic trend. The only four-trial,
one-factor, two-level, L- and Q-free plan is ABAB, which need not be dis-
tinguished from its complement, BABA. Our fitting equation,

(]5') Y = bo + blx +- d]t + dl‘tz,

requires four constants, so the fitting of four trials (at equal time intervals,
please} leaves no room for error estimation. Dircct substitution of the four
lines of our (X, Y) matrix:

Trial Spec. bo x t t? y
1 A 1 —1 -3 9 A
2 B 1 1 -1 1 Y2
3 A | ~1 1 I Y
4 B 1 1 3 9 Ya
gives us the following estimates of the four constants in (15.1):
4bo = yy + Y2 + V3 + s Var (bo) = &
8by = —yi + 3y2 — 3y3 + ya, | Var(b) =s;
8dy = —y, — y2 + y3 + ya Var(d,) = 1s;
4dyy = yy — V2 — Y3 + Ya Vard,,) = }

Since the minimum possible variances of the four constants are, respec-
tively, 1, &, &, and 4, we find efficiency factors of 1, £, $, and 1. Thus, when
the L- and Q-trends account for as little as 25% of the uncontrolled variability,
we will gain a more precise estimate of the effect of 4 by using this plan
instead of any other.

These two little plans are of course not for actual use except in very rare,
probably pedagogical, situations. The efficiency factors for the larger, more
realistic plans described below are all greater than %, with one exception in
each plan.

153. TREND-ROBUST 2%*'//8 AND 2*~'//8

We proceed to give plans and to show their properties, skipping derivations
and proofs. Table 15.1 (adapted from Daniel and Wilcoxon [1966]) shows
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TABLE 15.1.
A 2248, L— ano @-Rosust

= by + bexp + boxg + bpgxexg + dyt + dy(t2 — 5.25)

(X) 8 x 6 B = (X'X)"'x 8x6
Trial Spec. | xo x¢ Xo Xeg (1~ 525) | 8bo 32bs 80bg 16by 16d, 80d,,
| B )] I -t -1 t -35 7 { -3 -7 i1 ~1 3
2 fg 1 ) t 1 —25 i i 5 11 I -1 1
3 g i -1 i -1 —LS -3 I -3 9 -3 -t -1
4 f i I -t -1 05§ -5 { s -3 -3 -1 -3
5 () i -1 1 it 05 ~5 1 -5 -13 3 1 -3
6 Jz 11 1 1 15 -3 to3 9 31—
7 g I -1 t -1 2.5 I f -5 1t -1 § i
8 f i t -1 -1 35 7 i 3 -7 -1 1 3
(X' X) 6 x6 640(X' X} ! S5x35
8 0 o0 0 ¢ 0
0 g8 0 0 4 0 85 0 —-10 -10 0
0 0 8 0 O ~8 0 84 0 0 4
0 ¢ 0 8 -8 0 - 10 0 100 20 0
0 4 0 -8 42 0 - 10 0 20 20 0
0 0 -8 0 0 168 0 4 0 4] 4
Efficiencies: {% $ ¢ §# #
F 6 FG L ¢

a 2%+1//8, along with the ordinary least-squares results, (X), (X'X), (X'X) !,
B = (X'X)"'X’, and the efficiency factors for B.

The contrasts for F, G, FG, and d,, in Table 15.1 support a conjecture
made long ago that contrasts with varying but integral coefficients are
clarified by being decomposed into two or more contrasts each with the
same coefficient, only signs being varied. Thus we have

bp = ~3,5,-3,5 -5,3,-5,3
=[—-4,4,-4,4, — 4,4, —4,4]
@L,LLIL ~1, -~ -1 ~1]
= 4(Ay) — (Cp)
= 32F — L.
The decomposition here could be found by any idler, but more complex

cases can be solved by putting the ordered coefficients themselves through
the corresponding forward Yates algorithm. The regression coefficient b,

to take a more difficult example, looks from its signs like a disturbed — (A4B,).
Even if one guessed that — [0(A4B,) is the right amount (it is the average of
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the absolute values of the eight coefficients) and subtracted this to get

(Xy=-711,9, —13, - 13,9, 11, =7
@ {10, — 10, —10, 10, 10, — 10, — 10, 10]
=31 —-1,-3 -3, -1, 13,

it still might not be obvious that (X) can itself be partitioned into
2(ACy) + (BCy). But it is more insightful to note that (X) as it stands is
simply 80d,,. Thus b; is seen to be just the expected factorial contrast
[note that g is at its two levels in the 22* ! in the —(4B,) pattern], corrected
for one unit of Q (=d,,) to allow for the small correlation of G with Q.

Responding to natural greed we try to accommodate two more factors into
an eight-trial plan, since we have two d.I. left over after fitting F, G, FG,
L, and Q. We require firm assurance that the two new factors, H and J,
have entirely additive effects. There must be no interaction with H or J.
Table 15.2 gives the same results as were shown in 15.1. We have lost a
little efficiency in G, but we have gained efficient estimates of the main
effects of H and J.

TABLE 15.2.
THe 2%//8, — L AnND —Q

Y = bo + bpxp + boxg + bpgxexg + byxy + byx; + dit + dy (1 — 5.25)

(X) 8 x B AXX) X = 32B 8§ x7
Trial Spec. | xo Xp X Xpg Xy Xy & 13 £ 6 f6 A8 J L Q
b -1 -1 P -1 -1 =35 7 -3 -3 2 -4 -2 =2 ]
2 g |0 0t L1 1 o-25 4 5 s 2 4 6 -2 |
3 gh i —1 { —1 t -1 ~15 -3 -3 3 -6 4 -6 -2 -1
4 fi i P -1 -t -} I -05 -5 S -5 -6 -4 2 -2 -1
Sk 1 -1 -1 1 t t 05 -5 -5 -5 6 4 2 2 —1
6 fg 1 i i P -1 -1 15 -3 3 3 6 -4 -6 2 -1
7 g I =1 1 =L =1 1t 25 1 | -5 5 -2 —4 6 2 1
8 s i 1 -1 —1 [ | 35 7 3 -3 -2 4 -2 2 {
(X'X) 7 x7 128(X'X)"! 7x7

8 0 0 0 0 4 0 17 0 -2 o 0 -2 0
6 8 0 o0 0 O -8 0o 17 o0 0 -2 0 I
0o 0 8 0 0 -8 0 -2 0 2 0 0 4 0
¢ 0 0 8 0 0 0 6 0 0 16 0 0 ¢
a 0 0 ¢ 8 0 16 0 -2 0 0 20 0 -2
4 0 -8 o 0 42 0 -2 0 4 0 0 4 0
0 -8 0 0 16 0 168 0 1 0o 0 -2 0 I

Efficiencies: 4§ 4§ $ 1 {§ ¢ i8¢

F G FG R J L ¢
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15.4. TREND-ROBUST 2%//16, 2°-%//16, 25//32, AND 2'4-°//32

Since the arithmetic for the [6- and 32-run plans will usually be done
by computer, we omit the details given in preceding sections and present
only the generators of each design:

2%//16 2672716 25//32 21479//32
1. abd abde abe abdegjim
2. acd acdf ace acdfgkin
3. bed bed bede bedhjklo
4. abcd abcdef d efgikl
5. abede abcdefghjkimno

Orderly multiplication of these generators: 1. x 2,1, x 3,1. x 2. x 3.4,
etc., for the 2+ gives (1), abd, acd, be, bed, ac, ab, d, abed, ¢, b, ad, a, bd, cd,
abe. Details on confounding patterns and other matters are given in Daniel
and Wilcoxon [1966].
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16.1. INTRODUCTION

Most industrial experiments are not done in fully randomized sets, in
randomized blocks, or even in randomized incomplete blocks. Even most
experiments done after statistical advice do not conform. The reason is one
of convenience: some factors are very hard to vary, and others are much
easier. It does not make practical sense to vary at random, say, the internal
setup of a system operated at high vacuum which must be evacuated and
degassed after each takedown. If there are conditions—for example, cathode
voltages and emitter temperatures—to be varied within one setup, they will
surely be varied while the electrode configuration is maintained constant,
without disassembly. Then a new assembly will be made, and the easy-to-
vary factors again varied inside the newly evacuated system.

It may be advisable to return to the first assembly at some point, but it is
almost never technically sensible to test each assembly at only one set of
operating conditions. Although no statistical designer would forbid such a
plan, he would make sure that the analysis of the resulting data corresponded
to the realities of the design.

The fundamental difference between such a nested set of data and a fully
randomized set lies in their error structures. In the fully randemized plan
there is only one homogeneous random error system. Only one error term

257



258 NESTED DESIGNS

appears in the modeling equation. No restrictive assumption is made about
the sources of the uncontrolled variability. It may come from many physically
distinct causes, but it has an equal chance of perturbing each observation.
In the nested case, on the other hand, there are at least two independent
sources of random disturbance. One set, the nesting set, only hits each group
of data taken together, once. In the example used above each system setup
is affected by one manifestation of the “setup error.” The other set of random
causes affects each observation separately as the nested factor levels are
changed. These within-setup perturbations are assumed to be independent
of the among-setup disturbances. In the simplest nested situations, then,
there are two independent sources of random variation. More complicated
situations are common.

16.2. THE SIMPLEST CASE

A stratified sample provides the simplest possible example, The data
shown in Table 16.1 are taken from Brownlee [ 1965, Section 10.6, page 325].

TABLE 16.1
NESTED MEASUREMENTS ON 22 BATCHES OF A PLASTIC-LIKE MATERIAL

BrownLEE’s Table 10.4:

Batch: 1 2 3 4 3 6 7 8 9 10 it
58 49 45 28 54 47 45 49 43 37 48
48 41 44 55 49 45 54 47 48 43 52
47 46 44 50 53 47 50 46 49 47 57
65 46 44 41 52 41 57 50 47 27 31

Total: 218 182 177 174 208 186 206 192 I87 154 208
w: i8 8 1 27 5 2 12 4 6 20 9

Batch: 12 13 14 15 16 17 18 19 20 2t 22

45 55 42 45 41 43 53 41 43 34 50
43 42 4} 43 46 42 44 43 45 34 48
44 47 46 48 41 38 49 41 44 40 48
4 52 50 45 30 35 52 35 46 40 48
Total: 176 196 179 181 158 158 198 160 178 148 194
w: 2 13 9 5 16 8 9 8 3 6 2
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Here 22 batches of a “plastic-like material” are sampled, each four times.
A trial model equation may be written as

(16.1) Yup = 1+ & + By i=1,...,22;(j)=1,...,4 foreach i.
If the sampling of both batches and subbatches is random, then
Ele;} = Eley;) = Eleer} = Elepei} = Efet = 0.

The random errors are all assumed to be unbiased and uncorrelated. The
usual criticism of experimenters—that they do not study their system under
a sufficiently wide range of experimental conditions—is here replaced by
the usual criticism of samplers—that they overdo the estimation of the
nested random error at the expense of the nesting error. There are to be
3 x 22 = 66 d.f. for estimating Var (g;) = E{e};,} = o} in this case, and
less than 21 for estimating Var (¢;) = E{e?} = o?.
We will get an estimate of o from

| 22 4
gg Z Z (.Vi(j) - .T’f.)z = A,

i=t j=1

that is, from the pooled sum of squares within batches. But the mean square
(among batches),

1 22 _ oy

31 .»-; (3. - 7)Y =B,

has the expected value (6 + 02/4) and so must be used with 4 to get an
estimate of a%.

We have plunged ahead and made statements about the standard way to
estimate o} and o7 in nested samples, with no warnings or cautions. When
data are taken in this standard way, the same number of subbatches being
inspected from cach batch, it is not difficult to examine the so-far-unspoken
assumptions of normality and of homogeneity of the two sets of random
effects. For the g, the ranges of the y;; over i should follow the known
distribution of ranges of four from a normal population. Figure 16.1 shows
by its solid curve the expected distribution of normal ranges of four, with
Gy taken as 4.2 = average range/d, = 8.68/2.06, where d, is taken from
Hald’s Table VIH [1952a, page 60]. This seems to me a clear case of a
smooth nonnormal distribution, not due to one or a few outlying observa-
tions. A smooth curve can be drawn through the observed cumulative
distribution of the 22 ranges, but it crosses the expected curve only once, all



260 NESTED DESIGNS

7. ;

18}

Subbatch ranges of four
T

| S (R AU VU SN RSN NS S N USUUN NS AN SN TN NNV SN S UUN BN 1
00t 0056102 08 ' 2 6 10 20 30 40 %0 6O 70 8O 0 95 o

Figure 16.1 X, E.c.d. of 22 ranges of sets of four.

the larger ranges being too large, all the smaller ones too small. To see
whether there is any clear dependence of range (and hence of a; or ¢2) on
batch mean, refer to Figure 16.2a. I see no connection whatever. In despera-
tion I try transforming the observations y,;, by taking logarithms, square
roots, and reciprocals, and by deleting the four largest observations. None
of these rectifies the nonnormality visible in the figure, and so none of them
is reproduced. The reason for trying to find a (simple} transformation to
normality is that we want to make a test of significance and even a confidence-
interval statement about the two components of variance, But these are
derived under the assumptions that the ¢; and the ¢;, are normally and
independently distributed. We try doubly hard here because, as Figure 16.3
shows, the batch means (totals) are nearly normal.
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Figure 16.2  (a) Twenty-two batch ranges (W) versus baich totals (3 y;):. See Table 16.1.

On plotting the 22 ranges of four in serial order (Figure 16.2b), a glimmer
emerges. Every third range is higher than its two successors. T guess therefore,
that we are seeing the effects of successive subbatch resuits from some mixing
process. The batch mean is not changing, but the within-batch homogeneity
is changing rapidly in cycles of three batches. I have divided the (first 21)
batches into three sets of seven, found the average range of each set (namely,
16.29, 6.57, 4.43), deduced a standard deviation by dividing by 2.06 (to get
791, 3.19, 2.15), standardized each set by dividing by its corresponding
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Figure 16.3 E.c.d. of twenty-two batch totals. sg = (200 — 165)/2 = 17.5.

standard deviation, and plotted the whole set of 21 “tristandardized ranges”
in Figure 16.4. As can be seen, we have a success of sorts.

Although 1 do not like the ripples in the e.c.d., they are not wide and the
extreme ranges now behave well compared to their mates. A more careful
and more sensitive test would take the residuals within each batch, group
them into three sets, and produce three new e.c.d.’s. Let’s do it. Table 16.2
gives the grouped residuals, and Figures 16.5q, b, ¢ show the e.c.d. on normal
grids for each set of 28 separately. The error within each “mixing stage” is
homogeneous, nearly normal, and so acceptable. But the model equation
(16.1) must be used separately on each stage since each represents a drastically
different relation between the two components of variance, o3 and o?.

We now feel safe in partitioning the total sum of squares for each set of
seven batches (TSS,, k = 1, I1, 111}, using the usual identity:

Dy =P =Wy =T+ i, =7 Do k = I, 1L I
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TABLE 16.2

RESIDUALS ¥FROM 21 BATCH MEANS GROUPED INTO THREE SETS [BROWNLEE 1965, PAGE 325]
i I i 11 i I

1 35, -65, 15 105} 2 35, ~45, 05 05§ 3 0.7, -0.2, -0.2, -0.2
4 155 115, 65 25 5 20, -30, 10, 0 6 05, ~15 05, 05
7 ~65 25 -15 55| 8 10, —10, -20, 203 9 38 12, 22, 02
10 15 45 B8S 11511 —-40, 0, 50, -10]1i2 16,-10, 0, 0
13 60, ~70, -20, 30j14 -28 -38, 12, S2Q1s ~02 -02 28, 02
16 1.5, 65 1.3, -95)17 35, 25, -15 -45}18 35, —55, -05, 25
19 10, 30, 10, -50520 --15 05 -05 1521 -360 -30, 30, 30
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Figure 16.5 (a) E.c.d. of residuals fromseven batches(1,4,7,...,19),5, = 7.5.(b) Same

for seven batches (2,5,8, ..., 20), 5; = 3.1 (¢) Same for seven batches (3,6,9,...,20),
5y = 3.6
Also,
7 4 7
TSS, = ) (yij — ¥ = ZZ(J’;; -%HP+4Y (3. -F )
i=1j=1 i=1

i

SS (within batches), + 4 SS (among batches),
=SS W, + 4SS B,.

Since E{MS (W,)} = o, + 401, we compute

w .
MS(W.,):ES-E(T“—)- and  MS(4) = =
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TABLE 16.3.

k MS(B) MS(W) iy F=MSBYMS(W) P dfy L U

i 165.29 58.14 26.79 2.84 05 24 007 277
2 79.74 9.50 17.56 839 0005 46 021 227
3 60.50 2.55 14.49 23713 0005 55 025 215

Table 16.3 shows the mean squares and variance component estimates.
The “equivalent degrees of freedom for 61," called d.f; in the table, is com-
puted by Satterthwaite’s formula* {1946}, when and only when the F-value
reaches Gaylor and Hopper’s criterion [ 1969], namely, when its significance
probability is below 0.025. For the present case, where f; is 6 and f; is 21,
this value is 3.09, and only sets Il and I (k = 2, 3) meet the requirement.
The cquivalent degrees of freedom are then 4.64 and 5.50—not too far
below their maximum possible value of 6.

Once we have df.; and once we have some assurance that our random
distributions are normal, we can put confidence ranges around o3 . As all
good elementary textbooks aver (e.g., Brownlee, [ 1965], Section 9.2, pages
282 fI.; Davies [ 1971], Section 2.363, pages 28 fI; Hald, [ 1952b], Section 11.4,
page 286), we need only multiply our estimates, s3, by d.I/x%s and by
di./x%s to get 90% intervals for 63 ,. These two values for our case are 0.75
and 4.75. These limits serve mainly to warn us that we do not know our
among-batch components of variance very well. This can hardly be news at
this stage. A variance estimated with fewer than 6 d.f. is of course poorly
estimated. Even that estimated by Brownlee [1965, page 327] with some-
thing less than 21 d.f. is, as he says, of disagreeably poor precision.

The conclusions for this set of data are now tolerably clear. The 22 sets-
of-four measurements were not taken from a system with homogeneous
error. When they are divided into three subsets of seven, we find reasonably
constant random normal error within each subset but widely different sub-
batch variation from set to set. It should not be argued by a critic of this
finding that we have deliberately divided the data into sets with visibly
different subbatch errors. We have dared to do this only because of the

*This formula may be written, for our case:

where F is the usual ratio: MS(B)/MS(W),
f; and f; are the numerator and denominator d.f,
d.f, is the approximated d.f. for 3.
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completely regular periods of three in the successive batches. We do seem
now to be looking at three nested cases, each with its own within-nest (i.e.,
with subbatch) normal error with variances 58.14, 9.50, and 2.55, rather than
at one jumble with average variance 23.39.

It is some consolation, I should hope, that there is mdre information about
the among-batch variation in the 7 batches, 3, 6, 9, 12, 15, I8, 21, than in
the other 14—or, of course, than in the whole scrambled set. We have not
destroyed the data; we have saved them, and found out which part is worth
saving.

The general conclusions are methodological:

1. One has little chance of finding anything objective about the system
that produced the data being analyzed if one declines to check the
correctness of the crucial assumptions required by the estimation and
test procedures being used.

2. There do not seem to be entirely general rules for studying such data.
There must be some more efficient ways than my own—I have spent
most of 3 weeks looking at these 88 values. Each time that I try to write
down a set of general rules, they seem to me to depend too heavily on
the last set of data I have studied. Just now | would recommend, for
balanced data the following:

a. Write down in detail what is wanted from the data. Write down
how you would attain these desiderata if all is well. Write down the
assumptions that must be valid if the statistics you would normally
compute are to be valid. See how many of these assumptions you
can check from these data alone. See how many of those which you
cannot check can be guessed, guaranteed, or refuted by the experi-
menter who secured the data.

b, Make all simple graphs: data in time order, internal versus cxternal
means, ranges, and e.c.d.’s of all subsets with more than 15 d.f,
especially if normality is required.

The title of this section is misleading. 1 have left it unchanged since it
more nearly reflects life as one thinks it is: this was an apparently simple
case.

16.3. SPLIT-PLOT DESIGNS

We have just discussed a case of simple nesting. Both systems of random
error—that within batches and that among baiches—affected each observa-
tion, but aside from the estimation of the two average (squared) random
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disturbances only one parameter of the system, its grand average, was esti-
mated. No factors were varied, so this was not really an experiment.

We come now to the much commoner case, in which some factor or factors
will be varied among batches (or plots), while some other factor or factors
will be varied within each batch or plot. There is an excellent discussion of
such an experiment in Cochran and Cox [1957, pages 293-302] with a
detailed example. In studying chocolate cakes, three recipes were used, at six
baking temperatures, for each of /5 replicate “mixes” or batches. The baking
temperature was varied (on separate subbatches) within each batch. Thus
temperature effects and all their interactions were affected only by subplot
random variation, whereas recipes had the whole-plot error. The recipe x
replication interaction was used to estimate the whole-plot error.

The detailed analysis of the sort indicated above for simple nesting is left
as an exercise for the reader, who will notice that some 28% of the SS for
whole-plot error is produced by two cakes (Nos. 4 and 14 in Recipe I) and
that, if these two are revised, the whole-plot error MS is reduced nearly to
insignificance. There is again, then, no possibility of estimating the precision
with which the whole-plot variance is estimated, since even the F-ratio of
1.63 for the unretouched whole-plot error is too small for Satterthwaite’s
formula to be valid.

There are also good examples in Cox [1958], Johnson and Leone [ 1964,
Vol. I1, page 232], Federer [ 1955, page 276], and Hicks [ 1965, pages 192 ff.].
Two of these are briefly discussed here.

The data given by D. R. Cox are described as a possible set (my emphasis)
and are used only to show the rationale and mode of interpretation for
plans in split units, as Cox calls them. His discussion of this experiment and
of other split-unit designs is well worth studying. There are irregularities in
the data (Day 2 does not seem like the other 7 days; there is an upsetting
three-factor interaction) that dash once again my hopes for a designed ex-
periment that produces both precise and simple results, but there is no use
crying over spilt plots.

The split-plot example in C. R. Hicks’s book is accompanied by a clear
and general discussion, including a straightforward method of deducing the
expected values of all mean squares and hence a means of seeing which
effects are testable by each error type. The data are given in Table 16.4a.
The plots are the sets of three pieces at one temperature within one replicate.
They were electronic components withdrawn {rom one oven at three bake
times. Thus all interactions with bake time, as well as the main effect, are
measured with within-plot precision. The among-plot MS for error (296)
appears to be indistinguishable from the within-plot MS (243}, and therefore
the main technical gain must have been the ease of putting three components
at a time into one oven.
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TABLE 16.4a, &

a. Hicks’s TabLe 13.3: SpLit-PLOT LAayouT FOr ELECTRICAL COMPONENT-LIFE

269

TeST DATA
Baking Oven Temperature (T), degrees
Time (B),
Rep. (R} min 580 600 620 640 Averages
I 5 217 158 229 223 207
i0 233 138 186 227 196
15 175 152 155 156 158
11 5 188 126 160 201 169
10 201 130 170 181 170
15 195 147 161 172 109
1§} 5 162 122 167 182 158
10 170 185 18t 201 184
15 213 180 182 199 194

b. Hick’s TasLe 13.5: ANOVA* ror SPLIT-PLOT BLECTRICAL COMPONENT DATA

Source d.f. SS MS EMS

R, 2 1,963 982 o2 + 1203

T, 3 12494 4165 o + 30k + 962
RT; 6 1,774 296  o? + 36k,

B, 2 566 283 a2 + 40k, + 1202
RB, 4 7,021 1755 ol + 46dp

TB,, 6 2601 434 ol 4 okpp + 0ks
RTB, 12 2912 243 0! + alpy

Total: 35 29,331

* Analysis of variance.

Although the author writes that the “results of the analysis” are shown in
the analysis of variance table (Table 16.4b), my own emphasis is that the
table tells us only which data subtables are worth examining. The strikingly
large R x B, mean square tells me to look at the R x B table of averages
or totals. This is given at the right of Table 16.4a. It tells something rather
unsettling. The effect of increasing bake time was negative and roughly linear
in Replicate I; it was zero in Replicate II; it was positive and roughly linear
in Replicate I11. This is not the way in which replicates are suppose to behave.
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The reader may feel that my attitude is antiscientific, or even perverse, in
that | am disturbed when experimental results do not come out consistently.
But we do replicates to gain precision; if they show different patterns, and
if we take the data seriously, then we can only point out to the experimenter
that just when his error is least (in Replicate II) his bake-time effects vanish,
and that he may want to look into his technique and records quite carefully.

16.4. FRACTIONAL FACTORIALS, 2779, IN
SPLIT-PLOT ARRANGEMENTS

The simplest nested two-level plan is the 22 Imagine, then, that only two
two-level factors are to be studied, and that A is hard to vary whereas B is
easy. We must now think of doing a 22 in two blocks of two:

I I
4)] a
b ab

We can estimate the average B-effect by the usual contrast, and it is clear,
is it not, that the difference between the two within-block B-effects measures
four times the AB interaction with the same, that is, with o3, the within-block,
variance. The A-effect is measured by a contrast across blocks and hence has
variance 6} + 03/2. Replicates must be done, of course, to gel estimates
of the two variances, as well as to gain more precision in estimating all
effects.

We can view each block or plot as a 227!, with alias subgroup I + A.
We may describe a split-plot plan as one in which some main effect(s), here
only A4, is (are) aliased with block means.

As more factors are considered, more alternatives for plot splitting become
available. For the 23 we might have blocks of four, with two factors varied
inside plots, and so have each block a 2*~! with, say, 4 again aliased with
blocks. Here too the alias subgroup for plot I is I — A and, for plot II,
I+ A:

I I
(1) a
b ab
c ac
bc abe

It is obvious that B, C, and BC are estimated within plots. It is not quite
so obvious that AB, AC, and ABC are also estimated with within-plot
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precision. For example, AB, which is always

() —a—b+ab+ ¢ — ac - bc + abc,

can be calculated from
(abc + ab — a — acy — [be + b — (1) — c]
= B-effect at high 4 — B-effect at low A4,
that is, from within-plot contrasts, and hence with the within-plot variance.
Only 4 is measured with among-plot, that is, with whole-plot, variance.
A second alternative for the 2° might demand blocks of two with C for

the within-plot factor and with 4 and B varied among plots. The single
plot, I, is now a 2372 with alias subgroup

I — A~ B+ AB,

whence the aliased effects within plots are
C — AC — BC + ABC = E{c — (1)}

The four plots are as follows:

l I 11 v

(1) a b ab
c ac be abc

Here it should be clear or be deducible by the reader that 4, B, and AB are
estimated with the “outer” variance; the other effects, with the inner variance.
And again it is taken for granted that the whole 2* will be run more than
once to get estimates of the two variance components.

Consider now a 2° with three factors nested. We should perhaps write
this as a 22 x 2¥ to separate the whole-plot factors from the others, and
to make our example one with plots containing four treatment combinations.
The principal plot, if we may call it that (and we may), is | below:

I I HI v

(n a b ab
cd acd bed abed
ce ace bce abce

de ade bde abde

Since we have outlined only half of a full 2%, we cannot hope to separate
all 2fi’s. The reader can see that CDE is aliased with the mean of all four
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plots, so that the overall as.g. is I — CDE. Thus the three 2fi's, CD, CE,
and DE, are not separable from their complementary main effects. This
half replicate would, then, be done only if C, D, and E were known to have
additive effects. We require the other 2°~', I + CDE, containing all treat-
ments with odd numbers of the letters c, d, ¢, if we are to separate all inter-
actions. We will still have A, B, and 4B estimated with whole-plot error,

It must have occurred to the reader that the greater convenience of plot
splitting entails a price that may be excessive. Two variances must be esti-
mated, and the number of degrees of freedom available for the two estimates
can be made equal only when plots are of size 2. As the reader can see from
the many text examples, the number of degrees of freedom usually increases
rapidly as one goes down to the inner components. This may be good for
the subplot eflects but is of course correspondingly bad for the whole-plot
effects.

All of the above discussion may be taken as an introduction to the useful
paper of Addelman [1964], which is reprinted in Appendix 16.A. A few
nomenclatural differences should be noted. Addelman uses P, @, R, ..., W
for subplot factors; he uses the symbol PQRS,, ; where I would write
+ PQRS, and his PQR, | corresponds to my FPQR; finally he calls the
alias subgroup the “identity relationship.”

Addelman writes [ 1964, page 255, four lines below Table 2], “If some or
all of the 3fi ... are known to be negligible, they may be pooled with the
interactions that are used to mecasure cxperimental error.” This is uncxcep-
tionable, but I have yet to meet an experimeter who kncw that his 3fs (or
even his 2fi’s!) were ncgligible. I would then advise looking at the results of
the experiment, pooling everything that looked as small as the higher inter-
actions. As I have so often said before, most 3fi’s (by which I mean far more
than 90%) are found to be indistinguishable from random error,

We take as an example the earliest published split-plot 2777 fractional
replicate [ Kempthorne and Tischer 1953] (see Tables 16.5q, b), even though
it is further complicated in two ways. In the first place, it was actually an
8 x 4% x 2%in 512 treatment combinations in which the seven d.f. for three
“pseudofactors” and all their interactions were used to represent the main
effects of one eight-level factor, and two extra pseudofactors were used for
each of the four-level factors. The second complication was that the plan
actually had its subplots split into sub-subplots, and so, for those whose
tongues are agile, it was a split-split-plot design with three error terms.

Although it is not directly relevant to the split-plot aspects of this experi-
ment, the energetic reader will want to verify that half of the 2fi variety x date
(the 8 x 4 table of means is given in Table 16.5b) interaction MS, which is
judged highly significant, comes from a single cell (7th row, 1st column) where
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4 3.63 average appears. If it were 2.63, the 2fi would not be significant!

A very energetic reader may notice that the S$S,’s computed from the
8 x 4tableappear to be less than those in Kempthorne's analysis of variance
table by a factor of 36. Mr. Kempthorne has kindly resolved this mystery.
Each of the treatment combinations was actually the sum of 6 judgments,
two from each of three judges.

TABLE 16.5¢, b.
TABLES FROM KEMPTHORNE AND TISCHER'S 8 x 42 x 2% iN 512 TREATMENTS

a. KEMPTHORNE AND TISCHER'S TABLE 2: ANALYSIS OF VARIANCE FOR APPEARANCE

Source of Variation Degrees of Freedom Sum of Squares Mean Square
Rep. 3 38.71
Var (4, B, C) 7 1190.19 170.03
Error A 21 635.23 30.25
Total 31 1,864.13
Date (D, E) 3 9046.14 3015.3¢'
Date x Var 21 1502.80 71.56¢
FG 1 116.28 116.28'
HJ { 578.00 578.00"
Error B 76 2787.96 39.83
Total 127 15,895.31
F 1 36.12 36.12
G 1 12.50 12.50
H 1 5189.26 5189.26
J f 2601.01 2601.01*
FH I 094 0.94
FJ 1 29.07 29.07
GH 1 23.63 23.63
GJ 1 1.76 1.76
Var x F 7 51.32 733
Var x G 7 146.63 2095
Var x H 7 418.62 59.80*
Var x J 7 722,62 103.2¥
Date x F 3 61.59 20.53
Date x G 3 39.02 13.01
Date x H 3 467.82 155.94'
Date x J 3 141.98 47.33
Error C 336 7303.68 2174
Total 511 33,142.88
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TABLE 16.5 (continued)

b. KeMPTHORNE AND TISCHER’s TABLE 3: VARIETY AND DATE EFFECTS AND
INTERACTIONS

Date
Variety 1 2 3 4 Mean
1 2.56 3.59 4.45 5.00 3.90
2 3.19 4.23 4.53 5.10 4.26
3 3.5t 504 5.17 492 4.66
4 309 434 4.68 5.28 4.35
5 278 392 5.08 501 4.20
6 324 3.89 497 517 4.32
7 3.63 3.50 405 395 378
8 3.08 4.06 4.83 507 4.26
Mean 314 407 4.72 494 4.22
Standard errors: of variety means: 0.12
of date means: 0.09
of entries in table for interaction: 0.26
Average Effects of Blanching, Dehydration, and Storage
F G H J
Storage
Blanching Dehydration
Temperature  Temperature 3 Months 6 Months  Mean
Low: 4.26 4.24 70°F 5.30 4.19 4.75
High: 447 4.19 100°F 388 349 3.69
4.59 3.84

* Significant at .05 level
t Significant at .01 level

16.5. PARTIALLY HIERARCHAL PLANS

I have neglected quite a number of important matters in this work. One
major omission has been “mixed models.” This term is meant to cover
experimental situations in which one factor has fixed levels, and one has
random levels, being, say a sample from some population, finite or infinite.
When a mixed model situation is investigated by a split-plot design, we have
a “partially hierarchal plan.” The earliest sizable example of such a “p.h.p.”
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was reported in two related papers by Vaurio and Daniel [1954] and by
Scheffé [ 1954]. Our detailed model was so greatly improved by Wilk and
Kempthrone [1955] that it is now entirely out of date. The example is
persistent, however, and has been discussed repeatedly ever since. I do not
think that the last word has been said. Perhaps a new controversy is in the
making. It would hardly be useful to write an exposition now that may well
be obsolete before it reaches print. Those who must do something in the
meantime are advised to read Scheffé rather than Brownlee. [ The reason
for this recommendation becomes clear when one reads in Scheffé that
Bennett and Franklin (whom Brownlee follows)} use a correct method, but
from an incorrect derivation. Schefté’s exposition is difficult, but there we
are.]

16.6. SUMMARY AND CONCLUSIONS

Nested designs (some factors held constant, others varied in each “nest™)
are common in industrial research. The larger the system under study, the
more likely it is that such plans will prove the more convenient or cven the
only possible ones. Their disadvantages are low replication for the factors
held constant for each nest, and the consequent loss of degrees of freedom
for estimating variances of the effects of the nesting factors.

The obligation to examine the data [rom nested designs (for defective
points and for nonnormal error distribution) is even more binding than for
other designs. Since we usually want to estimate each component of variance
{by subtraction of one mean square from another), the assumption of nor-
mality of residual distribution is a key one. It is clearly violated in some
published examples.

APPENDIX 16.A
SOME TWO-LEVEL FACTORIAL PLANS WITH
SPLIT PLOT CONFOUNDING*
SIDNEY ADDELMAN

Research Triangle Institute

The classical split plot experiment consists of plots within blocks and
blocks within replicates. The blocks are usually referred to as “whole plots”
and the plots as “split plots.” In most split plot experiments, the whole plots

* Reprinted by permission from Addelman {1964}
t This rescarch was supported by the U. S. Army Rescarch Office (Durham).
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are split into a number of parts equal to the number of split plot treatments.
It will frequently be found in practice that the number of split plot treatments
available exceeds the number of split plots. Assume that there are four whole
plot treatments and eight split plot treatments, the split plot treatments being
the treatment combinations of three two-level factors. It is usually reasonable
to assume that the three-factor interaction effect of the three split plot factors
is of less interest than the other split plot comparisons. When this is the case,
the three-factor interaction may be confounded with whole plots. The con-
founding of split interaction effects with whole plots is known as split plot
confounding. Examples of split plot confounding have been presented by
Kempthorne.* If the whole plot treatments are denoted by ¢, t,, t;, and ¢,,
and the split plot factors are denoted by P, Q, and R, one complete replicate
of the experimental plan would involve eight whole plots, each split into
four split plots, as follows, before randomization:

1 t t t; ts ty A A

000 00t 0600 001 000 001 000 001
011 010  Otl 010 011 010 o1t 010
101 100 101 100 101 100 101 100
110 111 110 11 110 111 110 1t

The treatment combinations 000, 011, etc., denote the combination of levels
of factors P, @, and R, respectively. If we denote those treatment combinations
for which the sum of the levels of the factors P, Q, and R is 0 (modulo 2) by
PQR, and | (modulo 2) by PQR,, the experimental plan can be represented
as follows:

t t t; t, t {3 ts ta

PQR,  PQR, PQR, PQR, PQR, PQR, PQR, PQR,

It is clear that the PQR interaction is confounded with the whole plot treat-
ment replicates. The analysis of variance for this plan will have the structure
shown in Table 16A.1,

* O.Kempthorne, Recent developments in the design of field experiments, Journal of Agricultural
Science, 37: 156-162 (1947); The Design and Analysis of Experiments, John Wiley & Sons, Inc.,
New York (1952).
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TABLE 16A.1
STRUCTURE OF ANOV roRr
A 2% FACTORIAL PLAN WITH
SpLiT PLOT CONFOUNDING

Source d.f.

f
Whole plot treatments: T' 3
PQR 1
TPQR 3
Split plot treatments: P, @, R,} 6
PQ, PR, QR
TP, TQ, TR } 18
TPQ, TPR, TQR

Total 31

If the higher order interactions are negligible, the TPQR interaction can be
used as an estimate of whole plot error with three degrees of freedom and the
TPQ, TPR, and TQOR interactions can be pooled to form an estimate of split
plot error with nine degrees of freedom.

There are many situations in which the whole plot treatments are the com-
binations of two-level factors. For example, the four whole plot treatments in
the experimental plan already described might be the four treatment com-
binations 00, 01, 10, and 11 of the whole plot factors 4 and B, In such a
situation, the three degrees of freedom for whole plot treatments, T, can be
partitioned into single degree of freedom contrasts, denoted by 4, B, and AB.

It should be noted that the experimental plan consists of a full replicate of
a 2° factorial arrangement, two of the factors representing whole plot treat-
ments and the remaining three factors representing split plot treatments.
Split plot confounding can also lead to fractional replicates of the factorial
arrangements. Consider, for example, a situation in which two factors, each
at two levels, are to be tested on whole plots while the treatment combinations
of a 2° factorial arrangement are to be tested on split plots. If the whole plot
factors are denoted by A and B while the split plot factors are denoted by
P,Q, R, §, and T, an experimental plan with eight whole plots, each split into
eight split plots, could be represented as follows before randomization:

00 00 01 01 10 10 11 11

PQRS, PQRS, PQRS, PQRS, PQRS, PQRS, PQORS, PQRS,
PQT, PQT, PQT, PQT, PQT, POT, PQT, PQT,
RST,  RST, RST, RST, RST, RST, RST, RST,




278 NESTED DESIGNS

The interaction PQRS is confounded with thc AB whole plot contrast, while
PQTand RSTare confounded with whole plot replicates. The 64 treatment
combinations of the plan constitute a half replicate of a 27 arrangement (a
277! plan) defined by the identity relationship I = ABPQRS,. A systematic
procedure for obtaining the treatment combinations that are defined by an
identity relationship was presented by Addelman.*

The analysis of variance for the above plan will have the structure shown in
Table 16A.2.

TABLE 16A.2
STRUCTURE oF ANOV OF A 27t FACTORIAL PLAN
wITH SPLIT PLOT CONFOUNDING

Source df.

A, B, AB + PQRS 3
PQT, RST 2
Whole plot error: APQT + BRST, ARST + BPQT 2
P,Q,R, 8, T, PQ, PR, PS8, PT, 15
QR, @S, ¢T, RS, RT, 8T

AP, AQ, AR, AS, AT, BP, BQ, BR, BS, BT 10
PRT, PST, QRT, QST, ABT, APT, AQT, 13

ART, AST, BPT, BQT, BRT, BST

ABS -+ PQR, ABR + PQS, ABQ + PRS, ABP + QRS,

APQ 4 BRS, APR + BQS, APS + BQR, ARS + BPQ, 10
AQS + BPR, AQR + BPS

Split plot error: ABPT -+ QRST, ABQT -+ PRST,

ABRT + PQST, ABST + PQRT, APRT + B@ST, 8
AQST + BPRT, APST + BQRT, AQRT + BPST,

Total 83

In this table, all five-factor and higher order interactions have been ignored.
The whole plot and split plot error terms are made up of sets of aliased four-
factor interactions, because it is likely that these four-factor interactions are
negligible. If some or all of the three-factor interactions or pairs of three-factor
interactions are known to be negligible, they may be pooled with the inter-
actions that are used as an estimate of experimental error.

A partial index of two-level factorial and fractional factorial arrangements
that involve split plot confounding is presented in Table 16A.3. The whole plot
treatments are the treatment combinations of n (= 2, 3, 4) two-level factors,
and the split plot treatments are the combinations of levels of n, (=3, 4, . . .,

* 8. Addelman, Techniques for constructing fractional replicate plans, Journal of the American
Statistical Association, 58: 45-71 (1963).
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8) two-level factors, where n; + n, = n(=5,6,..., 12). In some of the plans
the whole plot treatment combinations are replicated, and in some they are
not. The plans in which the whole plot treatment combinations are not
replicated are obtained by confounding some of the higher order interactions
among the split plot factors with some or all of the degrees of [reedom as-
sociated with whole plot treatments. This type of confounding results in a
fractional replicate of the 2" arrangement. For many of these fractional
replicate plans, the number of whole plot treatments is inadequate to permit
the estimation of all main effects and two-factor interaction effects of the
whole plot factors and also a valid whole plot experimental error. However,
even when no estimate of whole plot error is available, knowledge of the
relative sizes of whole plot effects is important. All of these plans permit the
evaluation of all split plot main effects and two-factor interaction effects, as
well as the interactions of the whole plot factors with the split factors, when
the three-factor and higher order interactions are negligible. Some of these
plans also permit the evaluation of some of the three-factor interactions when
the remaining three-factor and higher order interactions are negligible. The
plans in which the whole plot treatments are replicated are obtained by con-
founding some of the higher order interactions among the split plot factors
with whole plot replicates and, in some cases, also with some or all of the
whole plot treatment effects. The plans in which a split plot interaction effect
is confounded only with whole plot replicates are full replicates. The plans in
which somc intcractions among split plot factors are confounded with whole
plot replicates and some with whole plot treatment effects are fractional
replicates. The plans which contain whole plot replicates permit the evalua-
tion of all whole plot main effects and two-factor interactions, all split plot
main effects and two-factor interactions, and all two-factor interactions
between one whole plot factor and one split plot factor. The plans vary in the
degree to which they permit an evaluation of three-factor interactions.
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CHAPTER 17

Conclusions and Apologies

17.1 The Design and Analysis of Industrial Experiments, 283
17.2  Omissions, 285

17.3 Noveltics, 286

17.4 Cookbook or Research Monograph? 286

17.1. THE DESIGN AND ANALYSIS OF
INDUSTRIAL EXPERIMENTS

I have dealt only with confirmatory experiments, that is to say, with multi-
factor trials on operating systems. I have outlined, sometimes at tedious
length and with embarrassing simplicity, the steps that must be taken in
planning such experiments. You must:

1.

Analyze all the rclevant data that you have, including literature sources,
by some variant of “multiple regression.” (There is at least one book
on the analysis of miscellancous, unbalanced, historical data.) This
will sometimes (perhaps one time in four) be of direct aid in planning
further experimental work.

List all the factors you want to vary, with the range of variation and
the number of levels that you desire for cach.

List all the responses you plan to measure, with whatever is known
about the precision of measurement of each.

Construct an “influence matrix” with each factor of item 2 for a row,
and each response of item 3 for a column. Enter in each cell what you
know of the effect of that factor on that response.

Decide—or guess—which factors may not operate additively, and
record these potential two-factor interactions.

Decide how many trials (each under different experimental conditions)
you can afford to make.

See whether the number from item 6 exceeds the number of parameters
implied by your estimates in items 2 and 5. If it does not, you will not
even be able to study your factors at two levels each.

283
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8. Decide whether you will learn anything from a set of trials that includes
most factors at two levels, with some at three. If you are willing to
consider such a coarse survey of the system’s operation, then look for
a 2"3" subset of the full 2"3" factorial which will give you the estimate
you want, with an excess number of degrees of freedom for studying
the data. This excess should be greater than 8, I think, and may be 20
or 60.

9. Having found a plan, inspect it carefully for trials that may be imprac-
tical or unworkable. If there are several of these, you may have to
shrink some factor ranges, or even subdivide the work into two or more
subplans.

10. Ifthe plaa is inevitably nested, or/and if some factor is at random levels
(being a sample of some population), construct a ““‘dummy analysis of
variance table” for your chosen design, to make sure that you have
adequate degrees of freedom for judging each effect.

11. Build in ail that you know and can afford to study. Randomize over
what you do not know, insofar as possible.

12. If raw materials must be accumulated, be sure to have an excess for
repeated runs, for following promising leads, and for clearing up
confusion from aliasing.

13. Do the same for time and manpower as for raw materials. You are in
desperate straits if all your funds, time, and raw materials must go into
one plan, with final answers required at the end. Reserve, then, one third
to one half of your capacities for follow-up.

14. Repeat trials that you suspect are atypical.

These suggestions are not meant as substitutes for any of the rechnical
thought and preparation that all careful experimenters take for granted. They
are meant to replace old-fashioned notions about one-factor-at-a-time ex-
perimentation because of the gains in generality and in precision that are
possible.

The weary reader may well feel that this little book contains too much
postmortem analysis and not enough material on planning ahead. The
balance struck here is necessarily a reflection of my own predilections and
limitations. A few novelties have been turned up in experiment design, but
most of my own life in statistics has indeed been spent *‘between engage-
ments,” that is, in studying the results obtained by experimenters, and only
then trying to hclp them guess what should be done next.

The broad advice on the analysis of experimental data can be put into a
few words: *“Verify and revise if necessary the assumptions behind the stan-
dard analysis you would like to make.” These assumptions are of two kinds.
Some concern the “model,” whether descriptive or mechanistic, that is, the
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representing equation with its unknown, presumably fixed, constants; the
rest concern the distribution of the random fluctuations, including the un-
controllable appearance of occasional bad values. A number of examples
of each sort have been given.

The model assumptions most commonly violated (and so indicated by the
data) are these:

1. The response function is of the same form in X, at all settings of X, ...
X

2. The response pattern is the same in all blocks and in all replicates except
perhaps for constant offsets.

The distributional assumptions that most frequently fail are:

1. There are no bad values in the data (decimal point errors, or wild values
that are unlikely ever to appear again under the same experimental
conditions).

2. The variance of y is constant at all X.

3. Observed responses are normally distributed at all X.

4., Random disturbances in successive trials are independent or at least
uncorrelated.

The reader who has examined earlier chapters will not need to be told
again that, whereas homogeneity of variance (like normality and like statis-
tical independence of successive observations) cannot be proved, hetero-
geneity (like nonnormality and like serial correlation) can be detected in
some sets of data.

17.2. OMISSIONS

There are many omissions in these chapters. Those that weigh most heavily
on my conscience are:

1. New work on small 2"3" plans [Hoke 1974; Margolin 1968, 1972].

2. J. Mandel’s extended models for two-way layouts with interactions
[Mandel 1969a., b, 1971].

3. My own work on one-at-a-time plans [ Daniel 1973].

4. G. F. Watson’s work, with its successors, on group screening [Watson
1961 ; Patel 1962, 1963).

S. Partially hierarchal plans [Brownlce 1965, Chapter 16; Scheffé, 1958,
Sections 5.3, 8.3].
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6.

7.

8.

9.

10.
11,
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Balanced and partially balanced incomplete block plans [Clatworthy
1973].

Recent work on experiments with mixtures [Scheflé 1963; Gorman
and Hinman 1962; McLean and Anderson 1966].

Second-order response surface plans [Box et al. 1954, 1955, 1957; Hunter
and Box 1965; Draper and Stoneman 1968, Hill and Hunter 1966].
J. W. Tukey's work on exploratory data analysis and on robust analysis
in general [ Reportedly to be published in 1976].

Design of experiments for nonlinear models [ Herzberg and Cox 1969].
Recent work on the power of common significance tests [ Wheeler 1974].

There are others that do not weigh so heavily, including some, [ am sure,
that are not included because of my lack of awareness.

17.3. NOVELTIES

A large part of the book is entirely standard, following Fisher, Yates,
Davies, and Cochran and Cox as closely as possible. [ append a list for those
who want to proceed quickly to my less standard proposals and operations.

H

VRS RSN -

Interpretation of 2fi (Section 3.4).

Randomization and its limitations (Section 3.6).

Residuals in a 32 (Sections 4.3, 4.4, 4.5, 10.6).

One bad value in a 23 (Section 5.12).

Rounding in Yates’s algorithm (Section 6.5).

Interpreting effects and interactions (Section 7.2.5).
“Logging” (Section 7.3.2).

Dependence of residuals on factor levels (Section 7.3.4).
Structure in 2fi’s; separation of interactions from error {Sections 8.2,
8.3, 8.5, 8.6).

Estimating the size of an experiment or sequence (Chapter 9).
Minimal blocks of 2 (Sections 10.3.2, 10.3.3, 10.4.1).

Against Plackett-Burman two-level designs (Section 13.2).
Augmenting 2"3" main effect plans (Sections 13.3-13.5).
Nonnormal error and components of variance (Section 16.2}.
Fractional replication in split plots (Section 16.4).

17.4. COOKBOOK OR RESEARCH MONOGRAPH?

Earlier drafts of this work have been criticized for their lack of focus.
This criticism has aided me in rewriting many chapters, although usually, it
now seems to me, the focus has not been sharpened. One tries to see ahead as
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broadly as possible, although the word strategy has not once been used. One
tries to carry each precept, hunch, and suspicion as far as possible, down to
the tast arithmetical detail, But it often happens that the details of the arith-
metic uncover something unforeseen. It is standard scientific expository
practice (not mine) to conceal these lucky accidents, and to rewrite as if one
had proceeded deductively all the way. “First the hypothesis, then the as-
sumptions, then the mathematics; then stop. Leave the arithmetic to the
reader or to the lower orders.” I believe it is more instructive and more
stimulating to show how one finds out.

I have tried to state some tolerably general findings, and to carry them
back to some fairly general recommendations. I have tried to carry each
through to concrete numerical examples, demeaning though this may appear.
This is, then, a cookbook, but only very amateur cooks-—and perhaps some
philosophers of cooking—will not know that a good cookbook is used better
by a good cook.

It must have been clear long before Section 17.2 that this is not a general
handbook, not an exhaustive treatise, and surely not an introductory text-
book. But, as Section 17.3 rather immodestly insists, it does contain some
new results and so may charitably be called a monograph.

I have tried to avoid sybillic doubletalk. I never write “in a certain sense”
or “in essence.” I have nowhere issued warnings that such and such must be
used very cautiously without an immediate example of what is required for
caution. There is, then, I hope, no oracular pretension. The serious reply to
the question of the section title is, “A bit of each.”
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critical values, 52
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Split-plot data
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Satterthwaite’s formula for equivalent d.f., 266
Gaylor and Hopper’s criterion, 266
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Split-plot data, in a replicated two-way layout,
269
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Split-split-plot data, 273
Standard error of fitted Y, 61, 62
Statistical background required, 5

Table of signs for the 23, §5
for the 3%, 27

Tests versus experiments, 9

Transformations on y, for variance
homogeneity, 7881

when to log, 137

Trend-free and trend-robust designs, in the
2Pq serjes, 21 3ff

Tukey’s G-test, 161

Two-factor interactions, see Interaction

Two-way layouts, see Chap. 8, 151173

Variance, of fitted Y, 61, 62, 69
of a linear function of random variables, 6,
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numerical check for, 63
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