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Preface 

In the summer of 1991, M. Duflo, J. Faraut, and J. Waldspurger organized 

a summer school in Luminy (France) for Ph.D. students in the field of 

Lie groups. Subsequently this initiative has become an annual event, held 

in one of the European countries under the name of "European School of 

Group Theory". In the following years the school took place in Twente (the 

Netherlands) and in Trento (Italy), and this year it will be in Sonderborg 

(Denmark). During the two-week session of the school four series of main 

lectures are given, each by a specialist in some area within the theory of 

Lie groups. A set of lecture notes is furnished by the lecturers. 

This book consists of two major parts, containing the notes for lectures 

given at the summer schools in Luminy (GH) and in Twente (HS). These 

two sets of lecture notes were written and can be read totally independently 

of each other. 'The idea of publishing them together came up only after 

they were finished. A shorter third part by one of us (GH) is added, in 

order to explain the connection between the two topics. It provides the 

direct motivation for our choice of publishing these notes together. 

The theory of harmonic analysis has always been intimately connected 

with the theory of special functions. This is apparent, for example, on the 

2-sphere S 2, where the harmonic analysis with respect to the action of the 

orthogonal group essentially is contained in the classical theory of spherical 

functions (the spherical harmonics). In spherical coordinates these spher- 

ical functions are the Legendre polynomials Pn(cos0). Also the very root 

of harmonic analysis, the Fourier theory on S 1 and IR, is of course based 

on the trigonometric functions. 

The two main parts of this book both have their origin more generally 

in the theory of harmonic analysis and spherical functions on Riemannian 

symmetric spaces G / K ,  as developed by Harish-Chandra, S. Helgason, and 

others. In both parts we search for generalizations of this theory, but the 

directions of generalization are quite different. 

The first part deals with a generalization of the elementary spherical 

functions from the point of view of special functions. For example, the 

elementary spherical functions on the k-sphere S k - SO(k ~- 1)/SO(k), 

(k - 1 ,2 ,3 , . . . ) ,  are given by the Gegenbauer (or ultraspherical) poly- 

nomials C,~(x)  with ~ = ( k - 1 ) / 2  (in case k = 2 they specialize to 

ix 
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the Legendre polynomials Pn(X) -- C~/2(x), as mentioned above). Here 

x - cos0 C [-1; 1] is the height function on S k, and n is the degree of 

the polynomial. In connection with harmonic analysis the basic property 

of the Gegenbauer polynomials is that  they are orthogonal polynomials on 

the interval [-1,  1] with respect to the weight function ( 1 - x 2 ) ~ - � 8 9  In fact 

this weight function is integrable and the Gegenbauer polynomials C,~(x) 
1 but they appear "in nature" are naturally defined for all values of c~ > - 3 ,  

1N. More generally the elementary spherical functions on only for c~ C 

a Riemannian symmetric space of rank one can all be expressed in terms 

of the classical (Gaussian) hypergeometric functions (in the compact case 

the Jacobi polynomials), which make sense for more general values of the 

parameters than those resulting from the harmonic analysis on G/K. A 
similar phenomenon is seen for Riemannian symmetric spaces of higher 

rank. The structure of a Riemannian symmetric space is described by a 

(restricted) root da tum together with certain multiplicities attached to the 

roots. In the lecture notes it will be explained that  one can introduce a 

theory of Jacobi polynomials and hypergeometric functions in several vari- 

ables associated with a root system R and a multiplicity parameter k on R. 

The number of variables is the rank of the root system, and the root multi- 

plicities are allowed to be arbitrary real (and nonnegative). When the root 

multiplicities do correspond to those of a Riemannian symmetric space, 

then these Jacobi polynomials and hypergeometric functions are exactly 

the elementary spherical functions of the two associated Riemannian sym- 

metric spaces of the compact and noncompact type, respectively, expressed 

in suitable coordinates. 

In the second part we generalize the harmonic analysis on G/K in a 

different direction; the differential structure is now allowed to be pseudo- 

Riemannian. More precisely we develop the harmonic analysis on semi- 

simple symmetric spaces G/H. An example of such a non-Riemannian 

symmetric space is the one sheeted hyperboloid 

2 2 H - { x  C [I~ nnul [ x  2 --~ x 2 -Jr- . . .  x n - X n +  1 - -  1} 

with the action of the Lorentz group G = SOt(n, 1). Another example, 

referred to as the group case, is a semisimple group G viewed as a homo- 

geneous space for G x G via the G-action from the left and the right. The 

harmonic analysis on G/H is concerned with the spectral decomposition 
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of L2(G/H) as a representation space for G. In the group case, as well 

as in the Riemannian case, this problem was ultimately solved by Harish- 

Chandra, and it was a primary motivation for his work on semisimple Lie 

groups. The discrete part of the decomposition of L2(G/H) is fairly well 

understood in general from the work of Flensted-Jensen [107] and Oshima 

and Matsuki [166]. In contrast this part of the book deals with the decom- 

position of the most continuous part L2mc of L2(G/H). In the Riemannian 

case we have L2mr - L2(G/H), but in the group case L2mc is in general 

a proper subspace of L2(G/H); it is the space of wave packets for the 

minimal principal series, and it decomposes as the direct integral of these 

representations. Our purpose is to explain how this decomposition can be 

generalized to the case of an arbitrary semisimple symmetric space G/H. 
In order to reach this goal we first have to develop some basic theory of 

semisimple symmetric spaces and the corresponding principal series repre- 

sentations - in fact the development of this theory composes most of these 

lecture notes. One of the complications in comparison with the group and 
2 Riemannian cases is that  the decomposition of Lmc is not multiplicity free 

in general; the multiplicity is equal to the cardinality of a factor space W 

of a certain Weyl group. 

The analogs for G/H of the elementary spherical functions on G/K are 

called Eisenstein integrals. The Eisenstein integrals, which are K-invariant 

(where K is a maximal compact subgroup of G), are particularly simple. 

These are the "spherical functions" which are needed for the harmonic 

analysis of the K-invariant functions on G/H. The presentation of the 

harmonic analysis on G/H, which we give in Part  II, is simplified by con- 

sidering primarily the K-invariant case. 

Finally, in Part  III, we draw a connection between the two generaliza- 

tions of the spherical function theory on G/K by examining whether the 

theory of the K-invariant Eisenstein integrals developed in Part  II can be 

integrated in the theory of generalized hypergeometric functions as devel- 

oped in Part  I. Indeed this seems to be the case; the K-invariant Eisenstein 

integrals can be expressed in terms of hypergeometric functions correspond- 

ing to a root system and a multiplicity parameter  k determined from the 

structure of G/H. This observation opens up some interesting problems 

with which the book is brought to its end. 

As mentioned above, the main part of this book was written as lecture 

notes for courses meant for Ph.D.  students. The participants (who were 
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at varying phases of their education) were encouraged before the session 

of the summer school to prepare by studying some prerequisites. For the 

lectures on hypergeometric functions these were the theory of root systems 

and Weyl groups as can be found for example in [7] or in various text 

books on semisimple Lie theory. Moreover some basic knowledge of the 

gamma function and the Gaussian hypergeometric function is assumed (as 

for example in the standard text book by Whittaker and Watson [74]). 

For the last chapter some familiarity with the structure theory and the 

analysis of Riemannian symmetric spaces is also needed. For this material 

the two text books by Helgason [35, 36] are the standard reference (as an 

alternative one could read Part  II, and then return to this chapter). Some 

knowledge of the theory of spherical functions (as in [36]) could in fact also 

be useful for understanding the motivation behind the theory developed in 

the first four chapters of Part  I. For the lectures in the second part of the 

book the suggested preparation was the first five chapters of the textbook 

by Knapp [130]. In order to reach a deeper understanding of the material 

in the final lectures some knowledge of the Riemannian symmetric space 

theory is an advantage (see the above mentioned books by Helgason). 

The summer school in Luminy was organized by M. Duflo, J. Faraut,  

and J.L. Waldspurger, and the one in Twente by E. van den Ban, G. van 

Dijk, G. Heckman, G. Helminck, and T. Koornwinder. We are grateful 

to these people for the establishment of the schools and for inviting us to 

give lectures there. In addition the second author is grateful to E. van 

den Ban for the permission to present here (for the first time in print) 

several results of their joint work. Finally, we both express our gratitude 

to Sigurdur Helgason for his interest and enthusiasm, which paved the way 

for the realization of this project. 

March 1994 G.J. Heckman 

H. Schlichtkrull 
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Introduction 

The theory of the hypergeometric function 

F ( a ,  /3, 7; z)  - 1 + ~ z + 
7 

a ( a + l ) 3 ( ~ + l ) z 2  + - ' -  
7(7+ 1) 2! 

was developed mainly in the 19th century by the work of Euler, Gauss, 

Kummer, Riemann, Schwarz, and Klein. In the 20th century the the- 

ory of semisimple Lie groups has come to flourish, and as observed by 

E. Cartan and V. Bargmann some hypergeometric functions (Jacobi poly- 

nomials) appear as spherical functions on (compact) rank one symmetric 

spaces. Explicit calculations for the root systems A2 and B C 2  by Koorn- 

winder in his thesis (1975) made it plausible that spherical functions on 

higher rank symmetric spaces are part of a hypergeometric function theory 

in several variables. These hypergeometric functions can be thought of as 

"spherical functions" corresponding to arbitrary complex root multiplici- 

ties. Subsequently such a hypergeometric function theory associated with 

a root system was established by the joint work of Opdam and the author. 

The hypergeometric theory is exposed from Chapter 1 to Chapter 4. 

The first three chapters are elementary algebraic in nature, and study the 

hypergeometric differential operators and the associated Jacobi polynomi- 

als. In comparison with the theory of spherical functions the surprising 

new concept is that of shift operator. It is at this level (of differential 

operators) that the c-function (rather a variant the ~'-function) enters in a 

natural way. Chapter 4 is of a more analytic nature. 

Chapter 5 deals with elementary spherical functions not only correspond- 

ing to the trivial K-type but also to an arbitrary one-dimensional K-type. 

Whereas the former were the natural example from which the hypergeomet- 

ric theory was generalized, it turns out that the latter are easily expressible 

as hypergeometric functions. 
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The hypergeometric differential operators 

1.1. D i f f e r e n t i a l - r e f l e c t i o n  o p e r a t o r s  for  r o o t  s y s t e m s  

Let E be a real vector space of finite dimension, endowed with a positive 

definite symmetr ic  bilinear form (., .). For a C E with a # 0 we write 

(1.1.1) a v =  C E 

for the covector of a and 

(1.1.2) E -+ E, - 

for the orthogonal  reflection in the hyperplane  perpendicular  to a .  

D e f i n i t i o n  1.1.1.  A root s y s t e m  R in E is a finite set of nonzero vectors 

in E spanning E with r~(/3) E R and (/3, a v) r Z for all a , /3 C R. 

Note tha t  we do not require R to be reduced. The s t andard  reference for 

the theory of root systems (structure,  classification, and tables) will be [7]. 

The  group W - W ( R )  generated by the reflections r~, a C R is called the 

W e y l g r o u p o f R .  Let P -  {A E E ; ( A , a  v) E Z Va r R} be the weight 

latt ice of R. We write IR[P] for the group algebra over IR of the free abel ian 

group P.  For each )~ E P let e a denote the corresponding element of IR[P], 

so tha t  e ~ .  e" - e ~+", (ca) -1 - e - a ,  and e ~ - 1, the identi ty element of 

IR[P]. The  elements e a, A C P form an lR-basis of IR[P]. The  Weyl group 

W of R acts on P and hence also on IR[P]" w ( e  ~) - e w~ for w C W, A r P .  

It is easy to see tha t  for a C R the opera tor  

ln t_e  -c~ 
= (1 - r~ ) "  IR[P] -+ IR[P] (1.1.3) A~ 1 - e  -~  
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is a well-defined endomorphism of R[P]. Clearly A - s  - - A s  and w A s w  

= A~s for c~ E R, w E W. For ~ E E the partial derivative 

-1  

(1.1.4) 0~" R[P] ~ R[P] 

is a linear operator defined by 0~(e a) - (~,~)e a. Clearly the map ~ ~ 0( 

is linear, and wO~w -1 - 0 ~  for ~ E E, w E W. 

Def in i t ion  1.1.2. A (real) multiplicity function on R is a map R --+ R, 

denoted by c~ ~ ks and such that  kws - ks for w E W, c~ E R. Given 

a multiplicity function on R, and R+ C R a fixed set of positive roots we 

write for ~ E E 

(1.1.5) 1 D~ - D~(k) - O~ + -~ E ks(c~,~)As" R[P] --+ RIP]. 
sER+ 

Clearly the map ~ ~ D~ is a linear map" E -+ End(RIP]). Note that  

D~ is independent of the choice of R+ C R, which in turn implies that  

wD~w -1 - Dw~ for w E W, ~ E E. 

R e m a r k  1.1.3. The operator (1.1.5) is a global analog of differential- 

reflection operators associated to finite real reflection groups by Dunkl [17, 

32]. However, in the infinitesimal case (where the definition (1.1.3) of As 

is replaced by As -- 2 c t - l ( 1 -  rs))  the operators D~, ~ E E commute, 
whereas in the global case 

1 (1.1.6) [D~'Dv]-  4 E 
s,/3ER+ 

for ~, ~ E E. This formula can be derived along the same lines as in [17, 

32]. Operators of the form (1.1.3) appeared in the work of Demazure on 

Schubert varieties [15, 16], and their infinitesimal analogs were introduced 

by Bernstein, Gel'land, and Gel'land [6, 38]. 

For k = (ks) a multiplicity function on R we write 

1 (1.1.7) p(k) - ~ E ksc~ E E, 
sER+ 

(1.1.8) 5(k ) - } -  H (e-}S--e-�89 
sER+ 
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1R, and ks E 2Z, k~+k2~ E Z+ L e m m a  1.1.4. If  ks E Z+ for a E R \5  
1R then 5(k) �89 E NIP]. f o r a E R N  5 

1R it is easily seen that Proof. For S an orbit of W in R \5  

1 E ps'-- 5 a E P + ,  
c~ESnR+ 

where P+ = {A E P ; (A ,a  v) E Z+ Va E R+} is the set of dominant 

weights (for this statement we can assume that R is reduced and irre- 
1 ducible). Writing ks - 5k�89 + ks for a E S (with the convention k�89 - 0 

if 1 7a ~ R) we conclude from the assumptions on k that ks E Z+, and 

hence p (k )=  Y~ ksps E P+. Write (with k�89 - k�89 for a E S) 
s 

6(k)�89 = e p(k) n (1--e-a)k~ 
aER+ 

- -  eP(k) H n (1--e-�89189189 
S a E S n R +  

S aESnR+ 

(l_e-�89189189 (l+e-�89189189 

1 1R. Since ks + 5k_}s where the product goes over W-orbits S in R \5  
lk, lS)--(kS - 1  l k�89 E Z+ and (ks+5 5k�89 = k_}s E 2Z the lemma k s -  5 

follows. [:] 

For F = ~ a~e ~ E N[P] with aA E ]R and a~ r 0 for only finitely many 

A E P we write 

e A (1.1.9) F -  E a - ~  , 

(1.1.10) CT(F)  - ao. 

Here CT denotes the constant term. 

P r o p o s i t i o n  1.1.5. If  the multiplicity function k - (ks) on R satisfies 

the conditions of Lemma 1.1.~ then 

(1.1.11) (F, G)k: : CT(F-G6(k) } 5(k) �89 ) F, G E R[P] 
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defines a positive definite symmetric bilinear form on R[P]. 

Proof. Clearly the formula (1.1.11) defines a symmetric bilinear form on 

R[P]. Since the standard bilinear form (F, G) - CT(Fa) on NP]  is posi- 

tive definite the form (1.1.11) is positive definite as well because R[P] has 

no zero divisors. V1 

Note that the inner product (1.1.11) is independent of the choice of R+ C 

R. Consider the torts  T - iE/27riQ v where QV is the coroot lattice 

spanned by R v. An element F - ~ a~e ~ E RIP] can be considered as 

a Fourier polynomial on T by F(t) - ~ aae (~'l~ where logt C iE  is a 

representative of t C T. With this notation the inner product (1.1.11) can 

be rewritten as 

(1.1.12) (F, G)k -- IT F(t)G(t)]5(k, t)Idt , 

where dt is the normalized Haar measure on T. From this formula it is 

obvious how to define (F, G)k for ks _> 0 Va C R (the precise restriction on 

the multiplicity function k - (ks) is that 15(k,-)l C Ll(T,  dt) C L'(T, dt) 

which is a slightly more general condition). 

T h e o r e m  1.1.6. For all ~ E E the operator Dr R[P] + R[P] given 

by equation (1.1.5) is symmetric with respect to the inner product (1.1.11) 
on R[P], i.e., 

(1.1.13) (D~(k)F, G)k = (F,D~(k)G)k VF, G e R[P]. 

Proof. Observe that for the standard inner product (F,G) - C T ( F G )  

we have (O~F, G) - (F, O~G) VF, G C RIP]. Indeed this follows from 

CT(O~(FG)) - 0 and the fact that 0~ is a derivation of RIP] (note that 

O~G - -O~G). Hence the adjoint D~ of D~ with respect to the inner 

product (1.1.11) is given by 

1 

_ 1 D~ (5(k) �89 5(k) ~) -1 o {0~+~ E ks(a,  ~c)(1-rs) o l+eSl_e s } o (5(k) } 5(k) 1 ). 
s > 0  

First observe that 

1 l+eS 1 l + e - S  
E k s ( a , { ) ( 1 - r s ) o  l _ e  s -- 2 E ks(a ,{)  l _ e _  s ( - 1 - r s )  
c~>O s > O  

l + e - S  1 
- -  - E ks(a,  ~) l _ e _  s + -~ E ks(a ,  { ) A s .  

s > 0  a > 0  



8 G. H e c k m a n  

If we write IR[P]W for the space of W-invariants in IR[P] then it is clear 

that  

A s o F - F o A s  V F c R [ P ]  w,  V a E R  

as endomorphisms of R[P]. 

Since 

5(k)~ 5(k)~ _ _ e-�89 e R[P] ~ 

and 

I I  1 ( e$c ,  

sER 

( (~(k)  �89 (~(k)  �89 ) - 1  m 1 o0 o(a(k) a(k) Z 
s C R  

1 1 e S S + e - ~  s 
1 - � 8 9  e2  s ~ e 

= + Z 
s > 0  

l + e  - s  
1 - -  e - s  

we find D~ - D~. [3 

1.2. T h e  c o n s t a n t  t e r m  of  d i f f e r en t i a l  o p e r a t o r s  in ID~ 

Consider the algebra ~ 1 -  ~I(R) (with 1) generated by the functions 

1 for a C R+ (1.2.1) 1 - e  - s  

(viewed as a subalgebra of the quotient field of I~[P]). Note that  for a C R+ 

1 1 
= 1  

1 - e  s 1 - e  - s  

Hence 91 is independent of the choice of R+, and the Weyl group W acts 

on ffl in a natural  way. 

The symmetric  algebra SE has a double interpretation: we write p C 

SE if we consider p as a polynomial function on E* = Hom (E,R) ,  and 

Op C SE if we consider Op as a constant coefficient differential operator 

on E. Let I[}~: = ~ | SE denote the algebra of differential operators on 

E with coefficients in ~1. Note that  W acts on I[}~ in an obvious way: 

w(f  @ Op) - -w( f ) |  Ow(p). We write D~ y - {P e IDa; w(P)  - P Vw e W} 

for the subalgebra of W-invariants in lI)~. If RA [P] = uAJIR[P] (union over 

integral j )  denotes the localization of R[P] along the Weyl denominator  

(1.2.2) A -- H (e �89 ~ - e -  �89 s) e IR[P] 
seR+\IR 
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then RA [P] has an obvious structure as a faithful (left) ]]}~-module. 

For P, Q E ID~ and w, v C W it is easy to check that 

(1.2.3) P | w .  Q | v - Pw(Q) | wv 

defines on IDR ~ ' -  D~ | N[W] the structure of an associative algebra. We 

call ]I}R~t the algebra of differential-reflection operators on E with coeffi- 

cients in ~R. Note that IRA [P] has a ]I}R~-module structure by 

P |  F -  P .  w(F). 

With this notation we view D~(k) C I[}R~. Define a linear map ~: ]I}R~ -+ 

D~ by 

(1.2.4) / 3 ( E  P~ | w ) -  E P~ C ]I}~t. 
w w 

Then it is obvious that 

P - F - / 3 ( P ) .  F 

for P C ]I)R~ and F C Rzx [p]W. 

L e m m a  1 . 2 . 1 .  For P - } - ~  P~ | w C DR~ we have [P, 1 | v] - 0 if  and 

only if ~(P~)  - P w ~ - ~  V~ C W .  

Proof. Using the definition (1.2.3)we have (1 | v ) . P -  ~-~w v (Pw) |  vw 

and P.1 |  - } - ~ P ~  |  y:~wPv~v-~ |  [--1 

L e m m a  1.2.2. If  we write I[}R~ | = {P e DR~; [P, 1 • v] - 0 Vv e 

W } then 

9: | Dg 

is an algebra homomorphism. 

Proof. If P -  ~ P~ | w C DR~ | then for all v E W 
w 

v ( / 3 ( P ) ) -  E v ( P ~ ) -  E P ~ v - '  - E P~ - / 3 ( P ) .  
w w w 
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. ~ p l |  HenceZ(P) e D ~  F o r P - - E P ~ |  ~ c D R ~ , Q - E Q v |  ~ e ~ - ~  
we have 

P.Q - ~ ( P ~  | ~).(Q~ | v) - ~ P~w(Q~) | ~v 
W~V W~V 

W~V W~V 

and hence ~ ( P Q )  - E P~Qv - ~ (P)~(Q) .  [3 
W~V 

P r o p o s i t i o n  1.2.3. If ~1,...  , ~nCE is an orthonormal basis then the op- 

erator ~-~.~ D~ (k)2e IDR~t is given by 

(1.2.5) 
n ]gc~ (O/, C~) 1 

E D2~j = L ( k ) -  E e~_e-~  As  + ~ E k~kz(a, fl)A~AZ 
1 ce>O ot,/3>O 

with 

n 

(1 2.6) L ( k ) -  E 02 E l+e-~ 
�9 ~ + k s  l _ e _  ~ 

1 ce>O 

In particular ~-~ D 2 is independent of the choice of the orthonormal basis ~j 
n ~1 ~n for E Moreover E 1  D2 ~l| , . . . ,  . ~ E ~ t  and L(k) - ~ ( E 1  D2~j) C 

Proof. Since 

l + e - ~  ( 1 - r ~ ) +  {0~: o ( 1 - r ~ ) + ( 1 - r ~ ) o  0~} os 
-- l _ e - ~  l _ e - ~  

. . . . .  ~ l+e  -~ 
_ -~_2(~. ~ ,~  + . { 2 0 ~ - ( 0 ~  o r ~ + r .  o 0~)} 

e - e -  1 - e  -~ 

we get (using 0~ o ra + r~ o 0~ -- 0) 

n - 2 ( a ,  a) l + e - S  0~ 
E ( ~ , ~ j ) { %  o ~ .  + ~ ~  = ~_~_~ ~ + 21__~  

1 

and (1.2.5) follows immediately. [3 
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Def in i t ion  1.2.4. Suppose F is a face of the Weyl chamber E+ in E 

corresponding to R+, and let RF = {c~ C R; (c~, ~) = 0 V~ E F} denote the 

corresponding standard parabolic subsystem of R. Let 

1 (1.2.7) p F ( k ) -  -~ E k~o~ 
c~CR+\RF 

be the orthogonal projection of p(k) onto the I~-span of F. Then there 

exist unique algebra homomorphisms 

(1.2.8) "T~F,")'F(k)" ]I}~(R) -+ I[}~(RF)'-- ~ ( R F )  | S E  

characterized by 

1 
, ( 1 ) (  1 ) f o r c ~ E R F ,  c~>0 

- - - ~ / F ( k )  - - -  1 - - e - ~  

~/F l_e_~  1--e-~ 1 for c~ C R + \ R F  

and 

~/'F(O~) -- 0~, ~/F(k)(O~) -- O~--(pF(k),~) for r e e .  

In other words " ) ' F ( k ) ( O p )  - -  Oq with q(A) = p(, 'k-pg(k))  and we have 

formally 

(1.2.9) , e-p~(k) "TF(k)(P) - e pF(k) o ~/F(P) o for P e Din. 

The operator ~g(k ) (P)  C ~R(RF) | S E  is called the k-constant term of the 

differential operator P C lI)~ along the face F. Note that both mappings 

(1.2.8) are equivariant for the action of W(RF). Hence we have 

(1.2.10) ~W(R) ~W(Rr)  
~F(k)" ~ ( R )  --+ ~ ( R ~  ) �9 

In the special case F = E+ we simply write ~(k) = ~E+ (k). Note that 

there is a transitivity of k-constant terms (writing also ~/g(k) = ~nF,n(k))  

(1.2.11) ( k ) o  = 

if F is a face of G and G a face of E+. 
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E x a m p l e  1.2.5. For L(k) the operator given by (1.2.6) we have 

n n 

"~'(L(k)) - E O: ~j + 20o(k) 
1 s > O  1 

and hence 

(1.2.12) 
n 

"~(k)(L(k)) - E 02 (p(k), p(k))e S E  
1 

For F a codimension one face of E+ with RF -- {-t-a} or RF -- {-t- 1 ~ a , + a }  

- O i f  1 we have (with the convention k s  ~a ~ RF) 

n 1 

' E O  2 20oF + { l k  l + e - s S  l + e  - s  ~/F(L(k)) = ~ + (k) -~ �89 l_e_�89 + ks l_e_----~}0s 
1 

and hence 

~/F(k)(L(k)) - 
n 

(1.2.13) E 02 �89 
~' + { l - e -  �89 ~ + k~ 1 - e  - - - - - -g  ' " 

�89189 l + e -  l + e - S  }cOs - (pF(k) pF(k)) 

1 

L e m m a  1.2.6. Consider the algebra IR(x) | N[0] of ordinary differential 

operators on the line with rational coefficients (here 0 - x d ) .  If  P e 

N(x) N IR[0] is invariant under the substitution x ~-+ x -1, and P commutes 

with the operator 

L(kl ,  k2) - 02 -t- {kl 1+x-1  
l _ x - 1  

l + x  -2 
+ 2ku l _ x _  2 }0 

then P is a polynomial in L(kl ,k2) .  

Proof. By induction on the order of P. Write P - ~-~N o ajO j with aj C N(x) 

and aN 7s O. Then we have 

0 - [L(kl, k2), P] - [02, aN]O N + terms of order < N, 

and since [02, aN] -- 0[0, aN] + [0, aN]O -- 20(aN)0 + 02(aN) we conclude 

O(aN) -- 0 or equivalently aN C I~ is constant. Because P is invariant under 
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substi tution x ~ x - 1  (which transforms 0 into - 0 )  we also have N E 2Z. 

Now Q ' -  P -  aNL(kl,k2)-} N satisfies again the conditions of the lemma 

and the order of Q is strictly less than the order of P. [-1 

Let Q+ be the cone spanned over Z+ by R+ or equivalently by the simple 

roots C~l,... , c~n C R+. Write 

(1.2.14) #_<A ~ A - # E Q +  

for the usual partial ordering on Ec - C| E. An element of the algebra of 

differential operators R [ [ e - ~ l , . . . ,  e-~n]] | S E  can be writ ten as a formal 

infinite sum 

(1.2.15) P -  E e"Op. 
u_0  

with multiplication derived from Op o e u = euOq where q E S E  is obtained 

from p C S E  by q(A) = p(A+p).  Expanding ( 1 - e - ~ )  -1 = 1 + e  -~ + e  -2~ + 

�9 .. for (~ C R+ (either formally or as a convergent power series on E+) we 

can view II)~ as a subalgebra of R [ [ e - ~ l , . . . ,  e - ~ ] ]  | SE.  For example the 

operator L(k) has the expansion 

(1.2.16) 
n 

L(k) - 0 
1 c~>O j_>l 

and we have -),' ( P ) -  Opo. 

L e m m a  1.2.7.  For P e R[[c-C~l, . . . ,  C--~n]] @ S E  a differential operator 

of the form (1.2.15) we have [L(k),P] - 0 if and only if the polynomials 

Pu C S E  satisfy the recurrence relations 

(2A+2p(k)+p,  p)pu(A) 

= 2 E ks E { ( A + p + j a ,  a)pu+j~(A ) - (A ,a )pu+j~(A- jc~)} .  
c~>0 j_>l 

Proof. An easy formal computat ion,  left to the reader. D 
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Corollary 1.2.8. Write D~ (k) for the algebra of all differential operator 

P e D~ with [L(k),P] = O. Then the k-constant term 

(1.2.17) ~(k)" ]I} L(k) --+ S E  

is an injective algebra homomorphism. In particular ID L(k) is a commutative 

algebra. Moreover if P E D L(k) is a differential operator of order N then 

the symbol of P of order N has constant coefficients, and ~(k)(P) is a 

polynomial of degree N whose homogeneous component of degree N equals 

the Nth order symbol of P. 

Proof. The first s ta tement  is clear from the previous lemma. The last 

s ta tement  is clear from the recurrence relation since deg(p,)  < deg(p0) = 

deg(~(k)(P))  for # < O. [::] 

T h e o r e m  1.2.9.  IfD(k): = {P e DW; [L(k), P] = 0} denotes the commu- 

taut of L(k) in D W then the map 

(1.2.18) ~(k): ID(k)-+ S E  W 

is an injective algebra homomorphism. 

Proof. It remains to show that  ~/(k)(P) C S E  W for P E ID(k). Factor 

y(k) through ~/F(k) where F is a codimension one face of E+ (cf. (1.2.11)). 

Then ~/g(k)(P) is invariant under W(RF)  by (1.2.10), and commutes with 

~/g(k)(i(k)) given by (1.2.13). Applying Lemma 1.2.6 we conclude that  

~y(k)(P) is invariant under W(RF).  Since W(R)  is generated by the sub- 

groups W(RF)  as F runs over all codimension one faces of E+ we conclude 

that  "y(k)(P) E S E  W. D 

In the next section we will see that  the map (1.2.18) is an isomorphism 

onto. 

1.3. The Jacobi polynomials 

Since each W-orbit  in P meets P+ in exactly one point it follows that  the 

monomial symmetr ic  functions 

(1.3.1) M()~) - E e" 
ttCW)~ 

form an R-basis for I~[P] W as A varies over P+. 
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Def in i t ion  1.3.1. The gacobi polynomials P(A,k) C R[P] w are defined 

by 

(1.3.2) P ( A , k ) -  E c~,(k)M(#),  c ~ ( k ) -  1 
tt  e P +  , p < A 

and 

(1.3.3) (P(A,k) ,M(p))k  -O ,  V# e P+, # < A. 

Note that the Jacobi polynomials are defined whenever the inner product 

(1.1.11) is defined. Indeed P(A, k) is equal to M(A) minus the orthogonal 

projection of M(A) onto span{M(p); p < A, p C P+}. Clearly the Jacobi 

polynomials also form an R-basis of N[P] W. 

E x a m p l e  1.3.2. For R of type BC1, say R -  {-[)~1, q-2A1} with P+ - 
1 Z+A1, we have N[eAI,e-A1] W " I~[x] with x - 7 ( e~ l+e -~ ) .  

Then the weight function 5(k)�89 ~ becomes 

5(k)lS(k) ~ --(2_C~I_c--I~I)kl-~-k2(2+C,'~I+c--,'~I)k2 
: 2kl-~-2k2 (l_x)kl +k2(1 +X) k2 

and for the corresponding weight measure we get (cf. (1.1.12)) 

IS(k,t)ldt - 
2kl+2k2 

27r 
~ ( 1 - x )  k~+k2-1 (l+x)k2-�89 

Hence up to normalization the Jacobi polynomials P(A,k), A C P+ for R 

of type BC1 are the classical Jacobi polynomials P(~'~)(x), n C Z+ with 

1 1 
c t - -  k l + k 2 -  ~, 3 - k 2  2" 

The case of the Gegenbauer polynomials occurs for a - / 3  ~ kl - 0, or 

equivalently for R of type A1. See [19, Vol 2]. 

E x a m p l e  1.3.3. In case ks = 0 Va E R the Jacobi polynomials P(A, k) 

specialize to the monomial symmetric functions M(A). In case R is reduced 

and ks = 1 Vc~ C R the Jacobi polynomials P(A,k) become the Weyl 

characters Ch(A): = A -1. E e(w) ew(~+p) where A is the Weyl denominator 
1 (1.2.2) and p -  PR - -~ ~ a. 

c~>O 
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Defini t ion 1.3.4. A linear operator L: RIP] W 

gular if 

R[P] w is called trian- 

(1.3.4) L(M()~)) -  ~ a~t,M(# ) V)~ E P+. 

Proposition 1.3.5. If L" N[P] W ~ R[P] W is triangular and symmetric 

with respect to the inner product (., ")k then the Jacobi polynomials P()~, k), 

)~ E P+ are eigenfunctions of L. 

Proof. Since L is triangular we have using (1.3.2) 

L(P()~ ,k ) ) -  ~ c~t , (k)L(M(#))-  ~ b~M(v)  
~<_)~ v<_~ 

with the coefficients b~v given by b~v - ~-~<t,<a c~,(k)a,~. Using that L 

is symmetric we get 

(L(P()~,k)),M(p))k - (P()~ ,k) ,L(M(p)) )k  

= ~ a~v(P(,k,k),M(v))k - 0 

if # < A. Hence L(P()~,k)) - a~P()~,k). E3 

Corol la ry  1.3.6. All symmetric triangular linear operators on NIP] W are 
simultaneously diagonalized by the Jacobi polynomials, and therefore com- 

mute with each other. 

Proposition 1.3.7. A differential operator P C I[~ is completely deter- 
mined by the corresponding endomorphism P e Hom(R[P] W, Ilia [P]). 

Proof. We expand P - ~-~<o et'Op, as in Section 1.2. Let r l , . . .  , rnCW 
be the simple reflections corresponding to the simple roots c~1,..., O / n E  

n R+. Suppose # -  ~-~1 rnjaj ~_ 0 or equivalently rnj C Z_ for j -- 1 , . . .  , n. 

Knowing P(M()~)) for A e P+ means that we know the polynomial p~ e SE 

o n  

{A cP+; )~+# ~ rj(/~) for j - 1, . . .  ,n} 
v = { A E P + ;  (A, a j ) a j  ~ - #  f o r j - 1 , . . . , n }  
v = { A c P + ;  (A, a j ) _ > l - m j  f o r j - 1 , . . . , n } .  
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Since the latter set is Zariski dense in E we can recover the polynomial 

Pt, C SE. V] 

For A C P+ we write 

(1.3.5) C(A) - {p  E P; wp <_ A Vw C W }  

for the integral convex hull of WA. 

P r o p o s i t i o n  1.3.8. For fixed A C P+ the linear space 

(1.3.6) { F -  E aue" E IR[P]; a u 
tt 

-- 0 unless # E C (A) } 

is invariant under the operators D~ (k) for ~ C E. 

Proof. This is clear since the space (1.3.6) is easily seen to be invariant 

under both 0~, ~ C E and As,  a E R. V1 

P r o p o s i t i o n  1.3.9. For ~ C E and N C Z+ we put 

(1.3.7) P~,N(k) - E ~(D,(k)N)  C D W. 
v~w~ 

Then P~,N(k)" R[P] w -+ N[P] w is a symmetric triangular operator. More- 

over 7(k)(P~,N(k)) C SE  is a polynomial on E* of degree <_ N with homo- 
geneous component of degree N equal to A ~-+ }-~(rl, A) N. 

rl 

Proof. Since wDn(k ) - Dwn(k)w it is clear that  

(1.3.8) D~,N(k) - E Dv(k)N E DR~ 
~cw~ 

is a differential-reflection operator which commutes with I| Hence 

D~,N(k) C End(IR[P]) leaves the subspace R[P] W invariant, and on this 

subspace D~,N (k) and P~,N (k) coincide. The operator D~,N (k) is symme- 

tric on RIP] by Theorem 1.1.6, and D~,N(k)is triangular on  R[P] W by 

the previous proposition. Hence P~,N (k)" ]R[P]W _+ ]R[P]W is triangular 

and symmetric. The second statement on the homogeneous component of 

degree N of 7(k)(P~,N(k))is trivial. V1 
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P r o p o s i t i o n  1.3.10. With the notation (1.2.6) the operator L(k) e D W 

leaves the space •[p]W invariant, and is a symmetric triangular operator 
on IR[P] w . 

Proof. Using Proposition 1.2.3 the same arguments work as in the proof of 

the previous proposition. V! 

Coro l l a ry  1.3.11. For ~ e E and N e Z+ we have P~,N (k) 6 D(k). 

Proof. From the previous two propositions and Corollary 1.3.6 it follows 

that P~,g(k) and L(k) commute as operators on R[P] W. But then P~,N(k) 

and L(k) also commute as elements of IDm by Proposition 1.3.7. K] 

T h e o r e m  1.3.12. The Harish-Chandra homomorphism 

(1.3.9) "7(k)" D(k) --+ S E  W 

is an isomorphism of (commutative) algebras. Here D(k) is the commutant 

of L(k) in D~,  and I[~ - 9~|  is the algebra of differential operators on 

E with coefficients in the algebra ~R generated by the functions (1 -e  -~) -1 ,  

h E R + .  

Proof. It remains to be shown by Theorem 1.2.9 that the map (1.3.9) is 

surjective. This follows by induction on the degree from Proposition 1.3.9, 

Corollary 1.3.11, and Theorem 1.2.9, since the polynomials A ,-+ ~--]~n (r/, A)N 

with the sum over W~C generate the algebra S E  W as ~c ranges over E and 

N over Z+. K] 

Coro l l a ry  1.3.13. For A, # 6 P+ with ,k ~ p we have 

(P(A,k) ,P(# ,k ) )k  - 0 .  

Proof. For P E D(k) we have for A E P+ 

(1.3.10) P(P(A,k))  - "~(k)(P)(A + p(k)).P(A,k),  

and because of the Harish-Chandra isomorphism (1.3.9) the algebra ID(k) 

of operators on I~[P] w , symmetric with respect to (., ")k, is sufficiently rich 

to separate the points of P+ + p(k). K] 
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R e m a r k  1.3.14. Consider the C-vector space 

(1.3.11) 

of complex-valued multiplicity functions on R. The results of Section 1.2 

immediately generalize to the case k C K (replace ]~[P] by C[P], etc.). 

The construction of the operator P~,N(k) also goes through for k E K. 

However, for the proof of Theorem 1.3.12 we need the inner product (., ")k 

which imposes a Zariski dense restriction on k C K (cf. Proposition 1.1.5 for 

the algebraic description or (1.1.12) for the analytic description of (., ")k). 

Nevertheless, since the operator P~,N(k) depends polynomially on k E K 

(of degree _< N) it follows that the Harish-Chandra isomorphism 

(1.3.12) 

holds for all k C K, where Dc (k) = C | ID(k) and Ec = C | E. 

R e m a r k  1.3.15. Let zj = M(Aj) be the monomial symmetric functions 

corresponding to the fundamental weights A1,... , )~n E P+.  Then it is well 

known (see [7])that 

(1.3.13) R[p] W ~- I ~ [ z l , . .  " , Zn], 

and we can view the commutative algebra I[}(k) also as a subalgebra of the 

W e y l  a l g e b r a  An = R [ Z l , . . .  , Zn, O z l , . . .  , OZn]. 

N o t e s  for C h a p t e r  1 

The results of this chapter were obtained in a series of four papers [34, 30, 

58, 59] by transcendental and computer algebra methods. The computer 

algebra part was removed in [31]. The elementary approach to Theorem 

1.3.12 as given here was derived in [33]. Previously Theorem 1.3.12 was 

found by Koornwinder for R of type A2 and BC2 [42], and for R of type 

An in [68, 12, 49]. 



CHAPTER 2 

The periodic Calogero-Moser system 

2,1. Q u a n t u m  i n t e g r a b i l i t y  for t h e  C a l o g e r o - M o s e r  s y s t e m  

We write 

(2.1.1) [ 3 : = E ~ = C |  a : = E ,  t : = i E  

and view these as (abelian) Lie algebras of the complex torus 

(2.1.2) H:= i~/27riQ v 

and its two real forms 

(2.1.3) A: = a, T = t/27dQ v, 

respectively. Write also 

(2.1.4) exp: [3--~ H 

for the canonical map and 

(2.1.5) log: H ~ [3 

for the multivalued inverse. Then 

(2.1.6) exp: a ~ A, exp: t --~ T 

are both surjective and 

(2.1.7) log: A ~ a 

is a singlevalued inverse. Viewing H as an affine algebraic variety the 

algebra C[P] is just the ring of regular functions on H, or equivalently the 

ring of holomorphic functions on H with moderate growth at infinity. 

Writing 

(2.1.8) H reg - -  { h  e H; A(h) # 0} = {h e H; wh # h Vw C W, w # e} 

we view 5(k; h)�89 for k e K as a Nilsson class function on g rag (see [13] for 

the concept of Nilsson class functions). 

20 
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T h e o r e m  2.1.1. We have for  all k E K the equality of  differential opera- 
tors o n  H reg 

(2.1.9) 

6(k;h)�89 o { L ( k ) + ( p ( k ) , p ( k ) ) }  o 5 ( k ; h )  
n 

. 

Proof. Clearly we have for { E 11 

1 1 1 
6 ~ o o~ o 6~ - o~ + ~o~(log 6) 

a -~  o o~ o a�89 - o~ + O~(log a) o o~ + a-�89 o~(a~) 

n 

and if we write [::]- ~ 02 ~j we get 
1 

n 1 _i~ 

(2.1.10) O(j (log S)oq(j -- ks  
1 c~>O e�89 -- e- �89176 

(2.1.11) 

-7 k~(~' ~) . . . . . . .  
6-1G(a~) _ ( ~ _  _�89 

c~>O 

1 c ~  1 + a ( ~ _ ~ - ~ ) ( ~ - ~ _ ~ - ~ )  
o~,fl>O 

Observe that the right-hand side of (2.1.10) is precisely the first-order term 

of the differential operator L(k) .  We rewrite the second term on the right- 
hand side of (2.1.11) as 

, -~k,~kZ(a, fl) --~- . . . . .  f . . . . . . .  ~ . . . . .  T -  - 1 ( ~ - ~ - ~ ) ( ~  _ ~ - ~ )  
a,fl>O 

E l k ~ k z ( a ,  fl) 2(e�89 + e-�89 = (p(k), p(k)) + ~ ( ~ _  _ ~ ) ( ~ _  _~) 
c~,fl>O 

= (p(k), p(k))+ ~ k"(k~-+2k~---~)(2: ~) 
~>o ( 1~_ _~)~ 

+ E l k~kfl(a' fl) 
a,fl 

2(~ �89  
1 1 ( ~ _  _ ~ . ) ( ~ _  _1~) 
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where the ~-'~'~'s,Z denotes the sum over all pairs c~,/3 E R+ for which a and/3 

are not multiples of each other. The formula (2.1.9) follows if we show that 

the D--~'~'s,~ term vanishes identically. Note that  this term is a W-invariant 

function, and that  its product with the Weyl denominator A is holomorphic 

on all of H. From this we conclude that  it belongs to C[P] W, and we can 

deduce that  it vanishes by taking the constant term 7' along A+. 0 

C o r o l l a r y  2.1.2. For all k, 1 E K we have 

(2.1.12) 

n 1 

~, + k~ ~ -~-�89 ~ + ( ~ _ ~ _ � 8 9  
1 s > 0  e 2 S  s > 0  

= 6(m-k)�89 o {L(m)+(p(m),p(m))-(p(k) ,p(k))}  oS (m-k )  

with m e K satisfying m s ( 1 - m s - 2 m 2 s )  - 12 + k s ( l - k s  - 2k2s). 

Proof. Indeed we have by (2.1.9) 

�9 12~(c~' ~) } o 5(k)  �89 5(k)�89 o {L(k) + (p(k), p(k)) + E (e�89189 
s > 0  

n 2 
-- E 02 E (ls + ks(1-ks-2k2s))(~,c~) 
- -  I S  1 s ~ + (e~ - e -~  )2 

1 s>O 

- 5(m)�89 o {L(m)+(p(m),p(m))} o 5(m)-�89 

with m e K given by m s ( 1 - m s - 2 m 2 s )  - 1 2 + k s ( l - k s  - 2k2s). E] 

R e m a r k  2.1.3. The operator L(k) is the standard second-order hyper- 

geometric operator. The operator (2.1.12) is like the Riemann-Papperitz 

operator in the one-variable case, which indeed is equal up to conjugation 

by a suitable function to a standard second-order hypergeometric operator 

[66, 64, 74]. 

De f in i t i on  2.1.4. The periodic Calogero-Moser potential with coupling 

constant g2 E K (the 2 is a square) is the function 

g2 
( 2 . 1 . 1 3 )  , 

s > 0  ( e ~ s  -- e - � 8 9  2 
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E x a m p l e  2.1.5.  For the root system R of type An we have a = {x = 

(Xl,... ,Xn-t-1 ) E I~n+l; E Xj -- 0} and the Calogero-Moser potential  be- 

comes 

1 
(2.1.14) g2. E 4sinh2 1 ~<j 5 ( x i - x J )  

On the space t - ia this potential  corresponds to a system of n +  1 points on 

the circle R/27rZ whose potential  is proportional to the sum of the inverse 

squares of the pairwise distances. 

T h e o r e m  2.1.6.  For g C K consider the Schr6dinger operator 

n g2 
1E(02 E a (2.1.15) S ( g )  -- - -~ ~J _Jr_ ( elO~ 1 e I [ ~  

1 a>O -- e - T a )  2 

associated with the Calogero-Moser potential (2.1.13). Then the (unshifted) 

constant term (cf. (1.2.8)) 

(2.1.16) 7': I[}~ w,s(g) - -~  s o w  

is an isomorphism of commutative algebras. Here 

(2.1.17) [P, s(g)] o} = { P  e D g ;  - 

is the algebra of quantum integrals for S(g) in ID W . 

Proof. Observe that  the map P e D w ~ 5(k)-�89 o P o S ( k ) � 8 9  e ID W is an 

automorphism of D W. Taking 

(2.1.18) g2 __ l k a ( l _ k ~  k2a)(a,a) 

we deduce from Theorem 2.1.1 that  the map 

(2.1.19) _ 1 L ( k )  P C I[} W's(g) ~ 5(k) �89 o p o S ( k ) ~  C D W' 

is an isomorphism of algebras. Since the diagram 

D w's(g) P ~ ~_lopo~�89 ) D~,L(k )  

k ) 

w 
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is commutative the theorem follows immediately from the Harish-Chandra 

isomorphism (1.3.9). [~ 

The expansion of the operator S(g) on A+ analogous to the expansion 

(1.2.16) for the operator L(k) becomes 

n 

1 2 (2.1.20) S(g) - -~ E 02 - +E oEJ  
1 a > O  j k l  

and the analog of Lemma 1.2.7 is now 

L e m m a  2.1.7. For the operator P -  }-~t,<_o et'Op, we have [S(g),P] - 0 

if and only if the polynomials p~, C SO satisfy the recurrence relations 

(2A+#, p)p.(A) = - 2  E g2 E j { p , + j , ( ) ~ _ j c ~ ) _ p , + j ~ ( A ) } "  
~>0 j>_l 

Proof. An easy computation. W1 

Coro l l a ry  2.1.8. If  Po C SO W ~- C[b*]w is a polynomial in A E b* inde- 

pendent of g C K then Pt, E C[K x b*] are polynomials in both the mul- 

tiplicity function g E K (even in g2) and the spectral parameter A C b*. 

More precisely, if deg(p0) < N for some N E N then also deg(p,) <_ g 

Vp < O. Here deg(p~) means the degree of p~ as element of C[K x b*]. 

Proof. This follows from the above recurrence relations by induction on # 

with respect to the partial ordering <_. V1 

2.2. Classical  in tegrab i l i ty  for the  Ca loge ro -Mose r  s y s t e m  

Consider the algebra of differential operators 

(2.2.1) ~ ' =  C[K] | 91 | Sb 

where the multiplicity parameter g E K is considered as an indeterminate 

commuting with ffl | SO. For N E N we put 

(2.2.2) i 

qi | pi C C[K x b*] has degree <_ NVi}.  
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Then it is easily seen that 

(2.2.3) ~D- U ~N, 
N>O 

~ N I . ~ N 2  C ~ N I + N 2  

gives a filtration of the algebra ~3. Since 

(2.2.4) [~N1, ~N2] C ~ N I + N 2 - 1  

the associated graded gr(~)  is commutative, and inherits a Poisson bracket 

{., .} from the commutator bracket [-, .] in ~ .  

P r o p o s i t i o n  2.2.1. With the above notation we have 

(2.2.5) 

as functions space on K • H reg • [~ 

Poisson bracket is given by 

* (pointwise multiplication), and the 

n { O f l O f 2  0 f l O f 2 }  
(2.2.6) { f l , f 2 } -  E Oyi OXi OXi Oyi " 

i--1 

Here X 1 , . . .  , X n are linear coordinates on O and Y l , . . . ,  Yn the dual coor- 
0 0 , dinates on O* (so ~ acts on ~ and ~ on C[O ]). 

Proof. Easily verified. [:3 

T h e o r e m  2.2.2. The Hamiltonian 

g2 
(2.2.7) H(g) - ~(A, A) + (e�89189 2 

as function on T*A  - A x a* is completely integrable with integrals in 

C[K] | ~R | C[I~*]. More precisely this means that for each p C C[b*]w 

homogeneous of degree N there exists an integral Ip for H(g)  with 

(2.2.8) Ip - p()~) + (terms of degree < N - 1  in A), 

and all the integrals Ip Poisson commute among each other. 

Proof. This is clear from Theorem 2.1.6, Corollary 2.1.8, and the previous 
proposition. 73 
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N o t e s  for C h a p t e r  2 

The complete integrability for the inverse square potential of three particles 

on a line was found already in 1866 by Jacobi [41]. Marchioro rediscoverd 

this fact and discussed the classical and quantum mechanical scattering 

problem [51]. Calogero subsequently studied the quantum scattering prob- 

lem for an arbitrary number of particles on the line [9]. Moser proved the 

classical integrability (still in case R of type An) by giving a Lax representa- 

tion [53]. Generalizing the method of Moser partial results on the classical 

integrability were obtained by Olshanetsky and Perelomov for classical root 

systems R [56]. Theorem 2.2.2 for general R goes back to Opdam, and our 

exposition follows his paper [59]. In our form Theorem 2.1.1 is due to [57], 

but the conjugation of the operator L(k) with 5�89 was previously carried 

out by Gangolli in order to obtain uniform estimates of spherical functions 

[22]. For a nice introduction to the various concepts of classical mechanics 

we refer the reader to [2]. 



CHAPTER 3 

The hypergeometric shift operators 

3.1. Algebra ic  p r o p e r t i e s  of shift o p e r a t o r s  

Rather than the operator L(k) given by (1.2.6) we will now use the modified 

operator 

(3.1.1) ML(k) - L(k) + (p(k), p(k)) E D(k) 

which maps under the Harish-Chandra isomorphism (1.3.9) onto the La- 
place operator ~ 1  02 ~j E sow.  

Def in i t ion  3.1.1. We say that 1 E K is integral if l~ E Z Va E R\  1 j R  

1 (l) C P if 1 E K is integral An and l~ E 2 Z V a  E R n  jR.  Note that p 

operator D(k) E C[K] | Czx [P] | SO is called a shift operator with integral 
shift 1 E K if 

(3.1.2) D(k) o ML(k) - ML(k+l) o D(k) Vk e K, 

and on A+ the operator D(k) has an expansion of the form 

(3.1.3) D(k) - E e-V(t)+"OP, 
~<_o 

with p ,  E C[K x 17"] (by expanding: (1 -e  -~) -1  _ _  1 + e -~ + . . .  Va E R+). 

We write g(l,k) for the C[K]-module of all shift operators with integral 

shift 1 E K. 

We substitute a formal series on A+ with leading exponent A E D* 

(3.1.4) O'(A, k ) -  E Fu(A'k)eU FI(A k ) -  1 
u___A 

27 
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into the differential equation 

(3.1.5) ML(k)(O'(A,k)) = (A+p(k),A+p(k))O'(A,k). 

~(A k) are given by Freudenthal type recurrence Then the coefficients F t, , 

relations 

(3.1.6) 

k) 

= 2 E ks E(p+ja,  a)F~+j~(A,k) 
a>O j_>l 

which can be solved uniquely if 

(3.1.7) 2(A+p(k), a ) -  (a, a) ~: 0 for all a > O. 

In  order to get rid of the shift over p(k) we can reformulate the above by 

substi tut ing a formal series 

(3.1.8) (I)(A, k) -- E F,~(A, k)e "x-p(k)+'~, 1-'o(A, k) -- 1 
g<O 

with leading exponent A-p(k) into the differential equation 

(3.1.9) ML(k)(O(A, k)) = (A, A)O(A, k). 

Now the coefficients F~(A,k) satisfy the Harish-Chandra type recurrence 

relations 

(3.1.10) = 2 E k~ E(A-p(k)+n+ja, a)F~+j~(A, k), 
a>O j_>l 

which can be solved uniquely if 

(3.1.11) 2(A, ~) + (~, ~) -~ 0 for all ~ < O. 

Observe that  (I)'(A,k) = ~(A+p(k),k) and F~+~(A,k) - F,~(A+p(k),k). 
The conditions (3.1.7) and (3.1.11) mean that  A lies outside a locally finite 

set of affine hyperplanes in t~* which become more and more dense in the 

direction of a* +.  
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P r o p o s i t i o n  3.1.2. If  k E K with ks >_ 0 Vc~ is generic then the series 

(3.1.4) terminates for A E P+ and P(A, k) = (I)'(s k) for all )~ E P+. 

Proof. Immediate, since for ks >_ 0 generic (e.g., irrational) the conditions 

(3.1.7) are satisfied for all ,~ E P+. [3 

P r o p o s i t i o n  3.1.3.  For A E [~* satisfying (3.1.11) and D(k) E g(l,k) a 

shift operator with shift l E K we have 

(3.1.12) D(k)(O()~, k)) = r/(k, A)O(A, k+l) 

, ) E C[K x b*]. 

Proof. Immediate from Definition 3.1.1. Note that  in the notation (3.1.3) 

we have , (k ,  A) = po()~-p(k)). D 

C o r o l l a r y  3.1.4.  For )~ E P+ and D(k) E g(1, k) we have 

(3.1.13) D(k)(P(A, k)) = rl(k, A + p(k)) .P(A-p( l ) ,  k+l) 

with ~(k, )~ + p(k)) = 0 if )~-p(1) ~ P+. In particular shift operators are 
W-invariant differential operators on H reg which map C[P] W into itself, 

and hence they can also be viewed as elements of some Weyl algebra An 
(cf. Remark 1.3.15). 

Proof. Immediate since (I)()~,k) = O'(A-p(k) ,k ) .  [3 

Def in i t i on  3.1.5. Let 1 E K be integral. Then the mapping 

(3.1.14) r /=  r/(1) = r/(l, k): S(l, k) -+ C[K • D*] 

defined by 

(3.1.15) r/(l, k)(D(k))(A) = po(A-p(k)) ,  

where D(k) E S(1, k) has expansion (3.1.3), is called the Harish-Chandra 

mapping for shift operators with shift 1 E K. Note that  for shift operators 

with shift l = 0 (i.e., operators commuting with L(k)) we see that  ~(0, k) = 

?(k) becomes the Harish-Chandra mapping of Theorem 1.3.12. 
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Proposi t ion 3.1.6. The mapping (3.1.14) is injective, and a shift operator 
of order N is mapped onto a polynomial of degree N.  

Proof. The proof is analogous as for Corollary 1.2.8. For a differential 

operator D - y'~t,<_oe-~ we have D E S(1, k) if and only if the 

polynomials p ,  E C[13"] satisfy the recurrence relations 

(2)~+2p(k)+p, p)pt,()~) - 2 E E{ (k~+l" ) ( )~+P-P(1 )+Ja '  a)Pt'+J "('x) 
a>Oj_>l 

-ks(A,  a)pt,+j~ ( )~- ja  ) } 

and the proposition follows easily. [--1 

We have bilinear mappings 

(3.1.16) 
IIll,12: S(/1, k) x N(/2, k) -+ ~(/1-~-12, k) 

(Dl(k), D2(k)) ~ D1 (k+/2) o D2(k) 

and for the corresponding Harish-Chandra mappings this yields 

(3.1.17) ~7(ll +12, k)(1-Ill,12 (D1, D2)) -- ~7(ll, k+12)(D1).rl(12, k)(D2). 

In particular ~(l, k) is a right S(0, k)-module, and in view of the Harish- 

Chandra isomorphism for ID)(k) - •(0, k) we conclude that the image of the 

Harish-Chandra mapping (3.1.14) is a C[O* ]W-module in C[[}* ]. 

Proposi t ion 3.1.7. For D = D(k) C S(1, k) we put 

(3.1.18) D(k) - 5 ( l - k ) o  D*(k-1)  o 3(k) 

viewed as differential operator on H reg. Here the asterisk signifies formal 

transpose as differential operator on A with respect to the Haar measure 

da: (DID2)* = D~D~ and (Op)* = Op, with p*(A) = p(-)~). Then we have 

D E S(-1,  k) and ~7(-1, k)(D) - ~7(1, k-1)(D)*.  

Proof. Indeed D has the correct asymptotic expansion on A+. From The- 

orem 2.1.1 it follows that operator M L(k )  is symmetric with respect to the 

measure 5(k; a)da on A, or equivalently 

M L(k )  = 5 ( - k )  o ML*(k)  o 6(k). 
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Hence we have 

D(k) o ML(k)  - 5( l - k )o  D*(k-1) o 5(k) o 5( -k )  o ML*(k) o 5(k) 

= 5( l -k)  o {ML(k)  o D(k-1)}* o 5(k) 

= 5 ( l - k )o  {D(k-1)o  ML(k-1)}*  o 5(k) 

= 5 ( l - k )o  ML* ( k - l ) o  5 ( k - l ) o  5 ( l - k )o  D* ( k - l ) o  5(k) 

= M L ( k - 1 ) o  D(k), 

which implies t h a t / ) ( k )  e S(-1, k). If D(k-1 )  - E e-P(I)+"COp, then 
tL<0 

[)(k) - e2~ + . . .  ) o { Z  CO*p, o e -p(1)+" ) o e2p(a)(1 + . . .  ) 
~,<0 

= E eP(l)+ttCOq~ , 

~<_o 

' ' 4  

with qo(,k)=p;(A+2p(k)-p(1))=po(-)~-2p(k)+p(1)). Hence rl(-1, k)(D)()~) 
= qo()~-p(k)) - po( - )~-p(k - l ) )  - rl(1, k-1)(D)(-)~).  [-1 

P r o p o s i t i o n  3.1.8. Suppose R of type BCn with root multiplicities 

(ks, km, kl) C C 3 corresponding to the short, medium, and long roots, re- 

spectively. Then we have 

(3.1.19) 
A-~l+2k~+2k'oML(ks, km, kl) o A~ -2k~-2k~ 

= M L ( 1 - k s - 2 k l , k m , k l ) ,  

w h e r e  A ~  - l-[ 
c~>0,c~ short 

1 1 1 
( e ~ - e - ~ ) - - 5 ( 1 , O , O ) ~ .  

Proof. Just apply Corollary 2.1.2 with k and m given by k - (ks,km,kl) 

and m - ( 1 - k s - 2 k l ,  kin, kl). Then indeed lm -- ll -- 0 and ls is given by 

C o r o l l a r y  3.1.9. With the notation of the previous proposition suppose 

that G+(ks, kin, kl) is a shift operator with shift (0, 0, 1). Then the operator 

(3.1.20) 
kin, 

--- A 3 - 2 k s - 2 k l  0 G+(1-ks -2k l ,  kin,  k l )  0 A s  1+2ks-+-2kl 
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is again a shift operator with shift ( -2 ,  0, 1). 

Proof. Indeed the operator (3.1.20) has the correct asymptotic  expansion 

on A+. Using (3.1.19) we have 

E_(ks,km,kl)ML(ks,km,kl) 
-- A 3 -2ks -2k l  oG+ ( 1 - k s - 2 k t ,  kin, kz) 

oA~- 1+2ks +2k~ oML( ks, kin, kz ) 

= A3-2ks-2k~oG+(1-ks-2kl,km,kl) 

oML(1- k s -  2kl, km, kl)oA~- 1 +2k~ +2k~ 

= A 3-2k~-2k~ oML(1-ks-2kl, km, kl + 1) 

oG+ (1-ks-2kt , km , kl )oA~- 1+2ks +2k~ 

= ML(ks-2, km,kl+l)oA 3-2k~-2k~ 

oG+ ( 1 - k s - 2 k l ,  km, kz)oA~ - 1+2k~+2k~ 

= ML(ks-2, km, kt+l)o E-(ks,km,kz) 

and the s ta tement  follows. [:3 

3.2. T h e  c o n s t r u c t i o n  of  t h e  f u n d a m e n t a l  sh i f t  o p e r a t o r s  

Assume that  S is a W-orbit  of inmultiplyable roots in R (i.e., 2S N R - ~) .  

Writ ing S+ = S N R+ the function 

(3.2.1) As  - H (e �89189 6 Z[P] 
a6S+ 

transforms under W according to a character r and every F 6 C[P] which 

transforms under W according to r is divisible (inside C[P]) by As .  We 

write l s for the multiplicity function on R which is 1 on S and 0 outside 

S. 

D e f i n i t i o n  3.2.1.  For N : -  # S +  and ~ 6 a later to be specified the 

(1 ) 
(3.2.2) Gs,+(k) - ~ -~s o E es(w)D~r 

wEW 

(3.2.3) Gs,_(k)-/3(w~WCS(w)Dw~(k-ls)NoAs ) 

are called the raising and lowering operators associated with S. 

operators 
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P r o p o s i t i o n  3.2.2. The raising and lowering operators (3.2.2) and (3.2.3) 

are differential operators in C[K]| [P]@SO which map C[P] W into itself, 

and hence they can also be viewed as elements of the Weyl algebra i~ n (cf. 
Remark 1.3.15). Moreover on A+ they have asymptotic expansions of the 

form 

(3.2.4) as,+(k) -- E e-OS+"OP. 
tL<o 

(3.2.5) Gs,-(k)  -- E ePS+"Oq. 
tt <_o 

1 with Ps - p( l s ) - 7 ~ c  s+ a. 

Proof. This is obvious. [3 

P r o p o s i t i o n  3.2.3. For all F, G C R[P] w we have 

(3.2.6) ( a s , + ( k ) f  ~ a)k+l s -- (F, Gs,_(k -J- l s )G)k .  

Proof. Indeed we have for F, G C R[P] w 

(as,+(~)F'G)k+ls - E 8s(w) (~-~ Dw((t~)NF'G) 
wEW k+ls 

= Z e s ( w ) ( D ~ ( k ) N F ' A s G ) k  -- (F, Gs , - ( k+l s )G)k  
wEW 

by Theorem 1.1.6. [7 

Coro l l a ry  3.2.4. There exist polynomials Us,+ and rls,- in C[K x 13"] such 

that 

(3.2.7) 

(3.2.8) 

Gs,+(k)(P(A,k)) - r}s,+(k,A+p(k)).P(A-ps, k+ l s )  

a s _ ( k ) ( P ( A , k ) )  - 71s,-(k,A+p(k)).P(A+ps, k - l s )  

and the degree of rls,+ and 71s,- is <_ N as polynomials in A C O* and the 

homogeneous part of degree N is independent of k C K and given by 

(3.2.9) A ~-~ E ~s(w)(w~, A) N 
wCW 
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Proof. In view of the expansion (3.2.4) it follows that Gs,+(k)(P(l, k)) is a 

linear combination of monomial symmetric functions M(p) with p <_ l - p s .  

Using (3.2.6) and (3.2.5) we get 

(Gs,+(k)(P(l,k)),M(p))k+ls = (P(I ,  k), Gs,_(k)(M(p)))k = 0 

if p < l - p s .  Hence as,+(k)(P(A, k)) is a multiple of the Jacobi polynomial 

P ( I -  ps, k+ l s ) .  Moreover the scalar multiple r/s,+(k, A+p(k)) is given by 

p0(A) using (3.2.4). Hence r/s,+ C C[K x b*] and the last statement is clear 

from (3.2.2). A similar argument works for Gs,_ (k). D 

Coro l l a ry  3.2.5. The operators Gs,+(k) and Gs,_(k) are shift operators 
with shift ls and - ls, respectively, and 

= 

is just the Harish-Chandra mapping for Gs,+(k). 

Proof. Clear from the above and Definition 3.1.5. D 

By composing shift operators as in (3.1.16) we conclude from Proposition 

3.1.7, Corollary 3.1.9, and the results of this section that S(I, k) # 0 for 

each integral 1 6 K. 

3.3. T h e o r y  of t h e  c o n s t a n t  t e r m  for shift  o p e r a t o r s  

We start by discussing the rank one situation R of type BC1. Say R = 
{ + a , + 2 a }  with (a ,a )=  1 and put k I - -ka ,  k 2 - -k2a.  Then the modified 

operator ML(k) becomes 

{ } 1k1+k2)2 (3.3.1) M L  - 0 2 -~- k 1 1+x-1 1+x-2 
l _ x _  1 + 2k2 l _ x _  2 0 + (3 

d with the identification C [ P ] -  C[x, x-i] and 0 -  X~x. 

P r o p o s i t i o n  3.3.1. The operators 

1 
(3.3.2) G+ = ~ 0  

X--X--1 

(3.3.3) G_ -- (X--x--l)0 -~- (kl+2k2-1)(x+x -1) + 2kl 

lq-x -1 
1 

(3.3.4) E+ = l - x -  10 + (k2-~)  

--1 1--X 
(3.3.5) E_ = l+x~_l 0 + (kl-~-k2 - 1 )  
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are shift operators for (3.3.1) with shifts (0, 1), (0,-1) ,  (2,-1) ,  (-2,  1), 
respectively. 

Proof. In our notation A - (X--X -1) is the Weyl denominator. The re- 
flection operator r: C[x,x -1] is given by r(x j) - x - j  and the differential- 

reflection operator becomes 

lk D(kl, k2) - 0 + 
l+x  -1 l+x  -2 } 
l - -x-  1 ~- k 2 l - -x-  2 (l--r) 

1 in accordance with (1.1.5). Taking ~ -  ~a in Definition 3.2.1 yields 

G+ /9(  1 ) 1 
- -  o D(kl  k2) - - - 1  O ,  

X - - X  - 1  ~ X - - X  

a _  --/3(D(kl, k2-1)o  (X- -x - - l ) )  

- (ikll+X-i 
- -  / ~ ( ( X - - X  1 ) O + ( X - [ - X - 1 ) - [ - 2  -~ l - - x -  1 

- -  ( X _ X  - 1  )0-[-(k 1-1-2k2-1) (x- [ -x  -1  )-[-2kl,  

l+x  -2 ) 
+(k2-1) l _ x ,  2 ( X - - X  - 1  )) 

the desired expressions for G+ and G_. Using (3.1.20) the operator E_ is 
given by 

1 1 
• 2 k 2 \ 

o (i+ o - x  ) E _  - -  ( X 2 - - X  ~ )3--2kl (X 1 1 _l_t_2klnt_2k2 

(x�89 (x -x  )(x�89 
_ _  1 
-- (X__x_l )  O+-~(-l+2kl+2k2) (X__x_l )  

I _ X  -1  
1 

- -  1 + x -  10-+-kl "-~-k2 2 

and the operator E+ - - E _  is derived from E_ using (3.1.18). [3 

Corol lary  3.3.2. The Harish-Chandra mapping for the rank one shift op- 

erators of the previous proposition becomes 

1 kl-t-k2) 

l k l  -~- 1 

1kl+k2-1 ) 

l k l  1 

Proof. Immediate from Definition 3.1.5 and the previous proposition. V1 
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C o r o l l a r y  3.3.3.  For 1 = (l l, 12) E 2Z x Z we write 

1l +12)(0, 1) - e N1(2 1) + e2N2(0, 1) 11 ( 2 , - 1 )  + (7 1 1 , - -  (11,/2) -- ~ 1 

1ll I N2 -1�89 e Z+ and c1,c 2 e {-t-1}. The differential with N1 -I-~ , 

operator of order N = N I + N 2  defined by 

G(1) = G(l, k): = E~ 1 (k1+2el (N1-1) ,  k2-e1(Nl -1)+c2N2)  o . . .  

�9 . .o  E~(ki ,k2+e2N2)  o as2(kl ,k2+e2(N2-1))  o . . . 0  Gs2(kl,k2) 
N1 -- 1 N 2  - -  1 

= H Ee~(kl"4-2sl j 'k2-el j+e2N2)~ H Gs2(kl'k2+e2J) 
j =o j =o 

is a shift operator for (3.3.1) with shift l =  (11,12). Moreover 

(3.3.6) _ _ 1  _ 1 - l ~ o N  G(1) (x�89 - x ) 11 ( x - x - )  + lower order terms, 

and 

(3.3.7) r ( l ,  k, 0): ~-- ? 7 ( G ( I ) )  e C[kl ,  k2,0] 

is a polynomial of degree N which can be calculated explicitly from Corollary 

3.3.2 as a product of N linear factors. 

Proof. Obvious. [21 

P r o p o s i t i o n  3.3.4.  Every rank one shift operator D(k) with integral shift 

1 = (/1,12) C 2Z x Z is of the form 

D(k) = G(1, k )P(ML(k ) )  

with P a polynomial in one variable (independent of k C K) .  

Proof. Suppose D(k) = aO N + . . .  has order N.  Looking at the (N- t - l )  st 

order part  of the equation 

D(k) o ML(k )  = ML(k+l )  o D(k) 
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yields a first-order differential equation for a of the form 

1-t-x- 1 l + x  -2 ) 
20(a) -- a --11 l_x_------------- ~ -- 212 i _ x _  2 .: :. 

1 
1 x 5  + x  1 x + x -  1 
-O(a)  - -111 1 1 - - 1 2 ~  
a x~ --X X--X--1 

which has as its solution 

a - c ( x } - x  1 )  - l l  (X - -X  - 1 ) - 1 2  with c C C[K], c # 0. 

1111 -- I 111+121 C 2Z+. Indeed then the It remains to be shown that N -  I~ 
proposition follows by induction on N using (3.3.6). 

Using Corollary 3.1.4 it follows that D ( k )  when expressed in the co- 

ordinate z - x + x  -1 lies in fact in the Weyl-algebra C[k , z ,  ~] .  Since 
1 1 1 1 

0- -  (X--x-l)  d and x l - x  } - - ( z - 2 ) 5 ,  x ~ + x - 5  -- (z+2)5 we get 

1 d N 
aO N _ c[z_2)5(N_l l_12)[z+2)5(N_12  . !  . . b " "  

dz N 

which in turn implies 

N - 1 1 - 1 2 ,  N - 1 2  C 2Z+. 

Because D ( k )  is also in the Weyl algebra (cf. Proposition 3.1.7) we have 

N + l l + 1 2 , N + 1 2  C 2Z+. 

1/1[ -t- [1 Observe that [~ ~11+/2[ - max([/1+/21 [/2[) and the desired relation 
1 /1[ -  [1/1+/2] C 2Z+ follows. [] N-I  

C o r o l l a r y  3.3.5. For l -  (/1,/2) C 2Z x Z the space S(1) of  shift  operators 

for  the operator (3.3.1) is a free rank one (right) S(O)-module with generator  

G(1) given in Corollary 3.3.3. In part icular  the generators  G(1, k) sat is fy  

G(/+rn, k) - G(1, k+rn) o G(rn, k) - G(m, k+l)  o G(1, k) 

1 11 ) -- sign(7 f o r  1 -- ( /1, /2) ,  m -- ( m l , m 2 )  C 2Z X Z with sign(~ 1 m l )  al~d 
1 s ign( l / l+/2)  - s ign(~ml+m2).  

Proof. Obvious. [-1 
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We are now in a position to describe the image of the Harish-Chandra 

mapping 

(3.3.8) ~: ~(1) -~ C[K • ~'1 

in the case of arbi t rary rank root systems. Similarly to the results of Section 

1.2 the crucial ingredient will be the asymptotic  behavior of a shift operator 

along codimension one walls of A+. This reduces the situation to rank one. 

Therefore the above computat ions with rank one shift operators are not 

merely illustrative but basic for understanding the higher rank situation. 

For R a possibly nonreduced root system we write R ~ - R \  1 ~R for 

the corresponding reduced root  system of inmultiplyable roots, and let 

3 1 , . . .  , c~n be the simple roots in R~_. Write 

R 0 -- S 1 U S 2 U . . .  u Smo 

as a disjoint union of W-orbits.  For k C K we write ki for the restriction 
1 of the multiplicity function from R to (Si u 7 Si) N R. 

T h e o r e m  3.3.6.  For 1 C K integral and D C ~(1) a shift operator with 

shift 1 the polynomial 71(0) C C[K • ~*] is of the form 

} (3.3.9) o(D)(k ,  ,k) = I I  1-I r(li, ki, (~, o~V)) p(k, ~) 
i=1 c~ESi,+ 

with p E C[K • [},]w and r(li, ki, O) the polynomial defined by (3.3.7). 

Proof. We have from Definition 1.2.4 and Definition 3.1.5 that  

~(D)(k,  )~) - y (k) (e  ~ o D). 

For F a face of A+ we put 

 F(D) - o D ) .  

Then ~F(D) is a shift operator for ~/F(k)(ML(k))  with shift 1F the restric- 

tion of 1 to RE -- {c~ e R; ((~, ~) - 0 V~ e F}.  Indeed 

rlF(D ) o ~ F ( k ) ( M L ( k ) )  - ~/F(k)(e pF(t) o D(k)  o M n ( k ) )  

= ~g(k)(e  pF(t) o M L ( k + l ) o  e-PF (l) o ePF (l) o D(k))  

= ,yy(k)(e pF(z) o M L ( k + l )  o e-PF (z)) o -,/g(k)(e p~(l) o D(k))  

= ,~F(k+l) (ML(k+l) )  o v y ( n ) .  
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Suppose F is a codimension one face (a wall) of A+ with R~ - {+cU} 

for some simple root o~j in R~. If i E {1 , . . . ,  m0} with aj E Si then we 

conclude from Proposition 3.3.4 that r/(D) is divisible (as a polynomial) 
v by r(li, k~, (t, aj )) and the remainder is invariant under the reflection rj. 

Since rj leaves the set R~ invariant the expression 

m o  

i=1 aCS~,+ 

is also invariant under rj. Hence the rational function 

TI(D)(k,A) 
m o  

1-[ I1 
i--1 (~ESi,+ 

is W-invariant in A with its set of poles P contained in the set of hyperplanes 
m o  

U U {r(/i, ki, (~, av)) - 0}. 
i=1 aES~,+ 

o not simple in R+ 

Hence P is empty or equivalently p(k, ~) is a polynomial. [3 

T h e o r e m  3.3.7. For l E K integral the space S(1) of shift operators with 

shift l is a free rank one (right) S(O)-module generated by an operator 

G(1) - G(1, k) with 
m o  

(3.3.10) 71(G(1))(k, ~) - H H r(li, ki, (l,c~v)). 
i=1 c~ESi,+ 

1R. Here R ~ - S1 U . . . U S~  o is the disjoint union of W-orbi t  in R ~ - R\-~ 

The generators G(1) are differential operators of order 

(3.3.11) E max(l/~l, I/1~+/.I) 
o~E R~_ 

and satisfy the relations 

(3.3.12) G(l+m,  k) - G(1, k+m)  o G(m, k) - G(m, k+l) o G(1, k) 

if l m E K are both integral with I/~1 + Im, I - II~+m~l and II~ +/-I + 
- ~ + m l  + / ~ + m ~ ]  Im  +m l �9 

Proof. This follows from the previous theorem, Corollary 3.1.9, and the 
construction of the fundamental shift operators in Section 3.2. E] 



40 G. Heckman 

R e m a r k  3.3.8. By Theorem 3.3.6 (and Proposition 3.1.6) the fundamen- 

tal shift operators G+(k) of Section 3.2 depend on ~ E a only up to a 

multiplicative constant. In view of the identity (with N = # S +)  

(3.3.13) E es(w)(w~, A)N _ c. I I  (~' a ) .  11 (A' av) 
wEW c~ES+ c~ES+ 

for some c C C x , and because the leading symbol of order N of G+(k) is 

given by 
A~I" E Cs(W)(W~'')N 

wEW 
(independent of k as should) we choose ~ E a such that 

(3.3.14) c. H (~'a) = 1. 
aCS+ 

With this choice of ~ E a the Harish-Chandra mapping of the operators 

G + (k) becomes 

lk�89 ) (3.3.15) r l+ (k ,A) -  H ( ( A ' a v ) -  2 - 
aES+ 

(3.3.16) •_(k, A) - H ((~' av) + lk�89 ~ + k ~ - l )  
aES+ 

and r ]_(k ,A)= (--1)Nrl+(k--ls,  

(since G_(k) - (-1)NG+(k)). 
-A) in accordance with Proposition 3.1.7 

3.4. Ra i s ing  and  lower ing  o p e r a t o r s  

m Def in i t ion  3.4.1. Let R - Ui--1 Si be the disjoint union of W-orbits in 

R and define ei C K by ei,~ = 6ij for a C Sj. Let B = {bl , . . .  ,bin} be the 

following basis of K 

(3.4.1) 
bi - { ei 

2ei -ej 

if 2S~ N R = o 

if 2Si = Sj for some j. 

Note that 1 G K is integral (Definition 3.1.1) if and only if 1 E Z.B. A shift 

operator with shift 1 E Z.B is called a raising operator if 1 E Z+.B and a 

lowering operator if 1 G Z_ .B. 
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D e f i n i t i o n  3.4.2.  The meromorphic functions ~, c: b* x K -+ C are defined 

by 

(3.4.2) 

and 

1~�89 r ( (~,~v)  + ~ 

- n0 lk�89 -~- ~c~) ~(~, k) r((~; ~ i  7 ~ 

(3.4.3) c(A k) -- ~(A, k) 

with the convention that  k�89 - 0  if 1 

T h e o r e m  3.4.3.  For 1 C Z _ . B  there exists a lowering operator G_(1) - 

G_(1, k) with shift 1 whose image under the Harish-Chandra mapping is 

given by 

(3.4.4) ~l(G_(1))(k, A) - 
"5(A, k+l) 

~()~, k) 

Proof. For S a W-orbit  in n ~ we take G_ ( - l  s, k ) ' -  G_ (k) in  the notation 

of Remark 3.3.8. Using the functional equation F ( z + l )  - zF(z) for the F- 

function relation (3.4.4) follows in case l -  - l s  from (3.3.16). 

For a C R we write 

(3.4.5) c~"~ (A, k) - 
l k l a )  r ( ( ~ , ~ )  + ~ _ 

- -  1 and using the duplication formula r(2z) - 22z-17r l r ( z ) r ( z + ~ )  for the 

F-function we get for l a , a  C R 

(3.4.6) 1 r((~, ~ ) ) r ( ( ~ ,  ~ )  + ~) 
lk +k.) k 1~�89 + I ) F ( ( / \  ,O~V) _~_ 2 1 

Hence we have 

~�89 (A, k�89 k~+l)~'~ (A, k l ~ - 2 ,  k~+ l )  
1 = 4((A, av)  + �89189 
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which implies that for R of type BCn we should take (in the notation of 

Corollary 3.1.9) for the lowering operator with shift ( -2 ,  0, 1) the operator 

G_ ((-2 ,  0, 1), k) = 4nE_(k) (cf. Corollary 3.3.2). This proves the existence 

of the lowering G_(1) for each 1 = -bi  with i = 1 , . . . ,  m. By composing 

these lowering operators as in (3.1.16) the theorem follows by induction on 

-~--~>0/~. D 

Coro l la ry  3.4.4. For 1 E Z+.B the differential operator 

(3.4.7) a+(1, k). - 5( -1-k)  o a* (-1, k+l) o ~(k) 

is a raising operator with shift 1 and 

(3.4.8) 
, (a+(/))(k,  ~) - ~ C - 5 ; i ~ )  

The order of G+(1) as a differential operator is equal to ~-~-~>0 l~. 

Proof. Immediate from Proposition 3.1.7 and the previous theorem. D 

For a reduced root system R the lowering operators G(1) given by (3.3.10) 
and G_(1) given by (3.4.4) for 1 6 Z_ .B coincide and the raising operators 

G(1) and G+(1) for 1 6 Z+.B only differ by a possible sign (-1)E~>o l~. In 

case R is nonreduced the shift operators G(1) and the lowering and raising 

operators G_(1), G+(1) can differ in addition by some factors of 4 (cf. the 

proof of Theorem 3.4.3). 

3.5. T he  L2-norm of the  Jacob i  po lynomia l s  

With the help of shift operators we can compute the L2-norm of the Jacobi 

polynomials. 

Proposition 3.5.1. For 1 6 Z+.B and k E K with ks > 0 and k~ - l~  > 0 

we have for I 6 P+ 

(3.5.1) 

IP(~ k)l ~ k 

IP(~+p(/) k-1)l ~ k - I  

= (-1)~o>o~o ~(a+0(k),k-Z)~(-(a+o(k)), k) 
~(~+o(k), k)~(-(~+o(k)), k-l)" 
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Proof. Replacing A by ik+p(1) and k by k-1 in (3.1.13) yields 

G+(1, k-1)(P(A+p(1),k-1))  - ~?(G+(1))(k-l,A+p(k))P(A,k). 

Hence we get 

1 
IP(~X'k)l~ = ~7(G+(1))(k-l, .k+p(k))(G+(l,k-1)P()~+p(1),k-1),P(.k,k))k 

(_l)zo>o,o 
= (P(A+p(1), k - l ) ,  G_( - I ,  k)P(A, k))k-, 

~?(G+(1)(k-1, )~+p(k)) 

2 = ( _ I ) E . > o G .  , (G_( -1 ) ) ( k  )~+p(k))ip()~+p(1)k_l)[k_t 
,(G+(l))(k-i, ~+p(k)) 

and the proposition follows from (3.4.4) and (3.4.8). [3 

We write 

(3.5.2) 
l k l  - k ~ + l )  

' 1 k l  + 1 )  ~>o r ( - ( ~ , ~ v ) -  ~ ~ 

which is equivalent to (using r(z)r(~-z)- sin~Trz) 

~()~, k) 
(a s a) c,(~ k ) -  17I 

' c~>O 

k�89 +G) sinTr((A,c~ v) + ~ , 

lk�89 sin:r((A, ~ v )  + ~ _ 

Coro l l a ry  3.5.2. We can rewrite (3.5.1) as 

(3.5.4) 
[P(A, k)[~ c*(-()~+p(k)),k)'5()~+p(k)),k-1) 

[P(A+p(1), k-1)[2k_t ~(~+p(k), k)c, (-(A+p(k)), k-l) ' 

which has the advantage over (3.5.1) that each of the four functions on the 
right hand side has no poles for/k C P+. 

Proof. Obvious. K] 

Coro l l a ry  3.5.3. For k r K integral with ks >_ 1 we have 

(3.5.5) IP(A, k)l~ - IWl c*(-(~+p(k)), k) 
~(~+p(k), k) 

Proof. Take k=l in (3.5.4) and use that ~(A+p(k), 0) - 1, c*(-()~+p(k)), O) 
= 1 together with [P(A+p(k), 0)12 -IM()~+p(k))l  2 - I W l .  D 
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C o r o l l a r y  3.5.4. For k C K real with ks >_ 0 we have 

(3.5.6) 
IP(A,k)l~ c*(-(A+p(k)),k)~(p(k),k) 
IP(O,k)l~ ~(~+p(k), k)c*(-p(k), k) " 

Proof. For k C K integral with ks _> 1 this is immediate from (3.5.5). 

However, both sides of (3.5.6) are rational functions of k E K and therefore 

(3.5.6) remains valid for real ks > 0. [5] 

T h e o r e m  3.5.5. For k C K real with ks >_ 0 we have 

(3.5.7) IP(,~, k)l ~ - IWI. 
c*(-(~+p(k)), k) 

~(~+p(k), k) 

Proof. In view of Corollary 3.5.4 it suffices to show the theorem for ~ - 0. 

Clearly the function 

k e K ~ f ( k ) -  ~(p(k),k) f~ ~ I  I e�89189 
c~>O 

is holomorphic on the domain {k E K; Re(ks) > 0}. Moreover it is periodic 

with period lattice Z.B using (3.5.4) and (3.5.6). Now fix k C K integral 

with ks >_ 1. Then the function 

(3.5.8) z e I2 ~+ f ( z k )  

is holomorphic on the half plane {z E C; Re(z) > 0} and periodic with 

period lattice Z. We claim that 

(3.5.9) i f (zk)  I ~_ e a Re ( z ) W b l o g l z l W c  

for some a, b, c E N. Together with the periodicity this implies that the 

function (3.5.8) is of moderate growth at infinity and hence equal to a 

constant. Taking z - 1 we conclude from Corollary 3.5.3 that 

(3.5.10) ]f(zk)l - IWI. 
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As k varies over integral points in K with ks > 1 the theorem follows 

by continuity. It remains to check (3.5.9). From Stirling's asymptotic 

expansion 

1)), 
(3.5.11) F ( z ) -  (2~)~ e-Z+(~-�89176 

valid for I arg z I < ~, we get for a > 0, b arbitrary 

F(az+b) - (27~) �89 e(--a+al~189 l~189 l~ 

which in turn implies 

)) cs(p(zk) , zk)  - ea~z+b~-k~zl~ 

1)) C* (--fl(Zk), Zk) -- r a*z+b:+d* l~176176 

~-"  $ $ $ 

for some as, bs, a s, b s, d s C IK (Note that  d* - 0 unless a is simple in R~_ 
1 in which case d* - - ~ . )  Hence we get 

C(p(Zk), Z]r = eAz+B log z+C 1 )) 
c*( -p ( zk ) , z k )  ( l + O ( z  

for some A, B, C C I~, and the desired estimate (3.5.9) follows easily. [:] 

C o r o l l a r y  3.5.6. For k C K real with ks >_ 0 we have 

(3.5.12) ./~ 15(k, t)ldt 

lk l  - k s + l )  r((p(k), av)+ � 8 9  a v ) -  ~ ~ 
- 

lk  +1) s>0 l k �89 a v ) _ ~  ~s 

Proof. Specializing (3.5.7) for ~ -  0 yields 

(3.5.13).IT 15(k' t)ldt 

l k � 8 9  ) l k �89  c~v)-~ _ 
= Iwl 1-I r((p(k). ~v)+~ _ 

�9 1 l k l s + l )  .>0 r((p(k). ~v)+~k�89 ~v)_~ _ 

and taking the limit for k -+ 0 gives 

(3.5.14) I-I . . . . . . . .  v----f . . . . .  I WI. 
~>0 (p(k), ~ )+-~k~ 

Now relation (3.5.12) follows by combining (3.5.13) and (3.5.14). [:] 
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E x a m p l e  3.5.7. In case R is of type BCn formula (3.5.12) can be rewritten 

in the form (see [48]) 

(3.5.15) 

/o 1 1 �9 .. ( t l . . . t n ) X - l { ( 1 - - t l ) . . .  (1- tn)}Y-1]A( t ) [2Zdt l . . .d tn  

n 

= I I  r ( l+ j z ) r (x+( j -1 ) z ) r (y+( j -  1)z) 
F(l+z)r(x+y+(n+j-2)z) ' 

j = l  

where A(t) -- A ( t l , . . .  , tn) -- l-Ii<j(ti--tj) is the discriminant. This is 

Selberg's multivariable B-integral formula [69]. 

E x a m p l e  3.5.8. In case R is irreducible and reduced with k - ks Va C R 

formula (3.5.12) takes the form 

(3.5.16) 

where d: <_ d2 < . . .  < dn are the primitive degrees of R. Indeed p(k) - kp 
1 ctv with p -  : ~ c~ and (p, ) -  ht(c~v). Hence 

]T IA(t)I 2kdt -- l-I (kht(aV)+k)!(kht(aV)-k)! 
~>o (kht(c~v))!(kht((~v))! 

k! ( kd j - k ) !  
�9 _ _  . =  

since the partition of positive roots by height is conjugate to the partition 

formed by the exponents m l , . . .  ,ran (mj - d j -1 ) .  See [47, 48]. For R 

of type An formula (3.5.16) was conjectured by Dyson [18] and proved by 

Gunson [26], Wilson [75], and Good [25]. 

3.6. T h e  value  of  J a c o b i  p o l y n o m i a l s  at  t h e  i den t i t y  

Let C~[a] denote the localization of C[a] along the polynomial 

(3.6.1)  7 r -  I I  ( a " )  E C[a]. 
aE R~ 
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The Euler operator on a is defined by 

n 

(3.6.2) E -  Z ( ~ i ,  .)0~, e C[a] | UO. 
1 

For D C CA [P] | U[~ we have a convergent expansion 

(3.6.3) D -  E DN 
N C Z , N ~ _ N o  

for some No E Z and DN C C~[a] | U0 with [E, DN] = NDN. If DNo r 0 
then we say that  D has lowest homogeneous degree equal to LHD(D):-  No 

and LHP(D): = DNo is called the lowest homogeneous part  of D. 

Suppose 01,02  e Czx[P] | GO with LHD(D1) = N1, LHD(D2) = N2. 
Then it is obvious that  

(3.6.4) LHD(DID2) - LHD(D1) + LHD(D2) 

and 

(3.6.5) LHP(DI D2) - LHP(D1) LHP(D2). 

E x a m p l e  3.6.1.  For the operator L(k) e 9~| we have LHD(L(k)) - -2  

and 

n 

(3.6.6) LHP(L(k)) - E 02 ks 
1 c~>O 

P r o p o s i t i o n  3.6.2.  The elements of C~ [a] | U0 

(3.6.7) 

n 

1 

1 

a>O 

1LHP(L(k)) f - f (k) - - ~  

satisfy the sl(2) commutation relations 

(3.6.8) [h, el - 2e, [h, f] - - 2 f ,  [e, f] - h. 

Proof. An easy calculation. F-] 
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Propos i t ion  3.6.3. I f  D C D(k) - S(O,k) is a differential operator of 

order N then LHD(D) - - N .  

Proof. By Corollary 1.2.8 D has the form 

D - Op + terms of order < N 

for some nonzero polynomial p E Sb homogeneous of degree N. Hence 

LHD(D) < _ - N .  

On the other hand 

I [LHP(L(k))  LHP(D)] - 0 a d ( f ) ( L H P ( D ) )  - - ~  

by (3.6.5), and since LHP(D))  is a differential operator of order _< N we 

also get 
ad(e)N+I(LHP(D))  - O. 

Hence LHD(D) > - N  by standard s/(2)-representation theory. [::] 

T h e o r e m  3.6.4. I f  1 E Z_ �9 B then we have 

(3.6.9) LHD(G_(1)) - O, 

where G_(1) is the lowering operator given by Theorem 3.~.3. 

Proof. By (3.1.16) the operator G + ( - l ,  k+l)G_(1,  k) e S(0, k) and has or- 

der - 2  ~--~>0 l~. Here G+ is given by Corollary 3.4.4. Hence using (3.6.4) 

and Proposition 3.6.3 we get 

(3.6.10) LHD(G_(1, k)) + LHD(G+(-1 ,  k+I)) - 2 E l~ - O. 
a > 0  

On the other hand using (3.4.7) and (3.6.4) we get 

(3.6.11) LHD(G_(1, k)) - LHD(G+(-1 ,  k+I)) + 2 E l~ - 0 
a > 0  

since LHD(5(1)) - 2~-~'~>0l~. The theorem follows immediately from these 

equations. D 
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C o r o l l a r y  3.6.5.  For F E C~(A)  w and 1 C Z_ �9 B we have 

(3.6.12) G_(1)(F)(e) - G_(1)(1)(e) . F(e). 

0 0 Proof. Since G_(1) lies in the Weyl algebra C [ Z l , . . .  , Zn,  O Z l ' ' ' "  OZ n ] w e  

conclude tha t  G_(1)(F) C C~(A)  W. If we write 

G _ ( 1 ) -  Z 
N1 ,... ,Nn 

oN~ 
aN1, . . .  ,Nn E1 " " " O~nn 

with aN~ ..... Nn E CA [P] then by Theorem 3.6.4 we get 

LHD(aN1 . . . . .  N n )  2 N 1  J r - ' "  + N n .  

Hence (3.6.12) follows from G_(1)(F)(e) - limt_~oG_(1)(F)(expt~) for 

some ~ C a with 7r(~) 7~ O. [-1 

T h e o r e m  3.6.6.  For k C K with ks >_ O Vc~ C R we have 

(3.6.13) P(~, k. ~) - ~(p(k), k) 

Proof. We apply (3.6.12) with F - P(A, k; h) equal to a Jacobi polynomial. 

Using (3.1.13) and Theorem 3.4.3 we get 

"5(.X+p(k), k+l) , h) 
(3.6.14) G_(1, k)(P(A, k; h)) - ~ - ~ ~ i ~ - ~ )  P(A-p(1) k+l; 

and since 1 - P(0,  k; h) we also have 

( 3 . 6 . 1 5 )  G_(1 k ) ( 1 ) -  ~5(P(k)'k+l)p(-p(1) k+l h) 
' ~ ( p ( k ) , k )  ' ; " 

Here 1 C Z _ - B .  Hence we have from (3.6.12), (3.6.14), (3.6.15) 

~5()~+p(k), k+l)~d(p(k), k) 

and taking k - -1 C Z+ �9 B this yields 

P(A-p(1),k+l;e)  
P(-~(1),  k+l; ~) 

S(p(k), k) 
P(A, k; e) - ~ (~P(k i l ) r  " 

Since both sides are rational functions of k E K (use A C P+) the extension 

to k C K with ks _> 0 Vc~ C R is immediate,  n 
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C o r o l l a r y  3.6.7. For k C K and 1 C Z_  �9 B we have 

(3.6.16) G_(1,  k)(1)(e) = k) 

Proof. Clear from (3.6.13)and (3.6.15). [-3 

N o t e s  for C h a p t e r  3 

Shift operators are multivariable generalizations of the familiar identity 

__d F(c~,/3, y; z) - __c~ F((~+I , /3+1,  "y+l; z) 
dz ~/ 

That  shift operators should exist for higher rank root systems was first 

hinted at by Koornwinder who found a shift operator for R of type B C 2  

[42]. A systematic study of shift operators was made by Opdam in  his 

thesis [58, 59]. We have followed these papers closely with a simplified 

treatment of the existence of shift operators in Section 3.2 due to [33]. The 

results of Sections 3.5 and 3.6 are due to Opdam as well [58, 60]. Corollary 

3.5.4 was obtained before in [30] and Corollary 3.5.6 had been conjectured 

in [48]. Proposition 3.6.2 was inspired by [27]. 



C H A P T E R  4 

The hypergeometric function 

4.1. T h e  h y p e r g e o m e t r i c  d i f fe ren t ia l  e q u a t i o n s  

Everything we have presented so far is essentially formal algebra, but now 

we will start a more analytic study. 

D e f i n i t i o n  4 .1 .1 .  

equations 

Fix A C 1~* and k C K. The system of differential 

(4.1.1) D(u) - y(D, k, A)u VD e D(k) 

is called the system of hypergeometric differential equations with spectral 

parameter A E [~* and multiplicity parameter k C K associated with the 

root system R. Here u = u(h) is some scalar valued function depending 

on the variable h in (an open subset of) H reg : {h C H; A(h) r 0}, and 

y(D, k, A) denotes the value at A C 1~* of the polynomial "),(k)(D), which is 

the image under the Harish-Chandra isomorphism ~/(k): D(k) --+ SO W of 

the differential operator D C D(k). 

In view of Chevalley's theorem (stating that  SD W is itself a polynomial 

algebra) the system of hypergeometric differential equations (4.1.1) is just 

the simultaneous eigenvalue problem for the commuting algebra D(k) of 

differential operators on H. We write UI? for the translation invariant 

differential operators on H and SO for the polynomial functions on [~* (but 

clearly U[~ -~ SD are canonically isomorphic). An element Oq C U[} is called 

harmonic if Oq(p) = 0 for all W-invariant polynomials p only with p(0) = 0. 

The harmonics in U[~ are denoted by H[~. The dimension d of H[~ is equal 

to the order IWI of the Weyl group W. A well known result of Chevalley 

shows that  

(4.1.2) UO ~- H[~ | U[~ w. 

51 
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For A E [~*, k E K we write 

(4.1.3) I(A, k) - {P E D(k); ~/(P, k, A) - 0} 

and with this notation the system (4.1.1) gets the form P ( u )  - O, V P  E 

P r o p o s i t i o n  4.1.2. We have an i somorph i sm of  left ~ - m o d u l e s  

(4.1.4) ~R | UO - {~R | HI)} | {fit | Hi). I(A, k)}. 

Proof. To simplify the notation we write U, H, and I instead of U[~, HO, 

and I(A, k). Let U j denote the homogeneous elements in U of degree j,  

and Uj -- ~ i~_ j  Ui the elements of degree < j. Also write H j - H M U j,  

Hj  - H n Uj, and Ij  - I N {~R | Uj }. We prove by induction on j that 

(4 .1 .5 )  9~ ~ Vj ~ { ~  ~ Hj } �9 { E  ~ ~ H j - l  " Ii} 
i:>1 

as left 9~-modules. The case j - 0 is clear. Now suppose j _> 1. By (4.1.2) 

we can write Oq E U j as 

i 

with Oq~ E H j-j~ and Op~ E U j~ Weyl group invariants. By Corollary 1.2.8 

and Theorem 1.3.12 there exists Pi E Ij~ with 

Vi - (Opi-pi(~)) E ~)~ ~ Vii-1. 

S i n c e  Oq, (9~ | Vj~_ 1 ) C ~ ~ Vj_l  w e  get 

Oq -- {Epi()~)Oqi "~- E Oqi " Pi} E ~ ~ Uj_l 
i i 

and using the induction hypothesis we have 

(4.1.6) | | Hi} + | Hi_l-I ). 
i > l  

It remains to be shown that the sum is direct. This follows again by induc- 

tion on j by taking the j t h  order symbol in (4.1.6) and using (4.1.2). V1 
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C o r o l l a r y  4.1.3. Let J()~, k) - 91 | UO" I()~, k) be the left ideal of 91 | UI? 

generated by I()~, k). Then we have a direct sum decomposition of left 91- 
modules 

(4.1.7) 91 | UO - {91 | HI3} | J(A, k). 

D e f i n i t i o n  4 . 1 . 4 .  F ix  a basis  { q l , . . .  , qd} of homogeneous harmonics with 

ql - -  1 and deg(qi) _< deg(qi+l). The map 

(4.1.8) A" 9l | U b --+ g l ( d, 91), 

defined by the requirement (use (4.1.7)) 

(4.1.9) 
d 

P o Oq~+ E Aij(P)Oqj C J()~, k), 
j--1 

is a morphism of left 91-modules. 

P r o p o s i t i o n  4.1.5. For all ~, 77 C b we have 

(4.1.10) [0~ + A(Or Ov + A(0~)] - 0. 

Proof. Using the Leibniz rule we get 

(4.1.11) A(Or o P ) +  A(P)A(O~) - O~(A(P)) 

for ~c r 11 and P C R | Ut?. Hence 

[O~+A(O~), Ov+A(Ov)] 

= [Oa,A(Ov)] + [A(O~),Ov] + [A(O~),A(Ov)] 

= O~(A(On) ) - On(d(O~) ) + [A(O~),A(O~)] 

= d([O~,O~]) + d(On)m(o~) - m(O~)d(O~) + [d(O~),d(O~)] - O. [:] 
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Definition 4.1.6.  The system of first-order differential equations 

(4.1.12) ( O ~ + A ( O ~ ) ) U -  0 V~ e O 

with U = ( U l , . . . ,  Ud) t is called the matrix  fo rm of the hypergeometric 

differential equations (4.1.1). 

Proposition 4.1.7.  I f  u is a solution of  (4.1.1) then U---(OqlU,... ,Oqd~.L) t 
is a solution of  (4.1.12). Conversely, i f  U -  ( U l , . . . ,  Ud) t is a solution of 

(4.1.12) then u = ul is a solution of (4.1.1) and uj - OqjUl. 

Proof. Suppose u is a solution of (4.1.1), i.e., P(u)  - 0 VP  e J()~, k). If we 

write U - (Oql u, . . . , Oq~U) t then it follows from (4.1.9) that  ( P + A ( P ) ) ( U )  

= 0 VP E ffl | Ui?. In particular U is a solution of (4.1.12). 

Now suppose U - ( u l , . . . ,  Ud) t is a solution of (4.1.12). Using (4.1.11) 

and induction on the order of differential operators it is easy to see that  

( P + A ( P ) ) ( U )  - 0 VP  E 9~ | UO. Since A l j ( P )  - 0 for P E J(~,  k) we get 

P ( u l  ) - 0 VP e J()~, k). 

Moreover uj - Oaf(U1) because Alj(Oq~) - - b i j .  [-1 

Corollary 4.1.8.  Locally on H reg the solution space of the sys tem of hy- 

pergeometric differential equations (4.1.1) has dimension d = [W I and con- 

sists of  holomorphic functions.  More precisely a local solution u of  (4.1.1) 

near a point ho E H reg is completely determined by its harmonic  derivatives 

- u ( h o ) ,  . . . , 

at the point ho, which can be freely prescribed. 

4.2. Regular singular points at infinity 

The central subgroup C of H is defined by 

(4.2.1) C - { h E H ;  h a - 1  V a C R }  

with the notation h a - -  e c~(l~ h ) ,  and the to r t s  H / C  has rational character 

lattice equal to the root lattice Q of R. 
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Let { O ~ 1 , . . .  ,O~n} be the simple roots in R+, and put x j  - e - `~  consid- 

ered as function on H or H / C ,  j - 1, . . .  , n. The map 

(4.2.2) x -  (Xl , . . .  ,Xn)" H / C  ~ C n 

is injective with image (C • Hence (4.2.2) defines a partial compacti- 

fication of H / C ,  and using the action of the Weyl group W this can be 

extended to a smooth global compactification of H / C .  This is nothing but 

the toroidal compactification corresponding to the decomposition of a into 

Weyl chambers (see for example [11, 55]). Note that  the positive chamber 

A+ is mapped by (4.2.2) onto (0, 1) n. 

E x a m p l e  4.2.1.  For R of type A2 the image of (4.2.2) has the picture 

X 2 
X l = l  

x2=l 

X1X2 = 1 

X r 1 

The point (1, 1) is the image of the identity element, and the curves Xl  - -  1, 

X 2 - -  1, X l X  2 - -  1 are the image of {h E H; A(h) -- 0}. 

Let { r ] l , . . .  , Tin } be a basis of a such that  c~(r/j) - 6~j. In the coordinates 

a for j - 1 .. n and the (4.2.2) the differentiation 0~j becomes - x j ~  , . , 

matrix form of the hypergeometric differential equations (4.1.12) becomes 

OU 
(4.2.3) XJOxj  = A j U  for j - 1 , . . .  ,n. 

It is important  to note that  A j ( x )  - A(O,l~ ) E gl(d)  is a matrix whose 

entries are convergent power series on the polydisc {x E Cn; Ixjl < 1, j - 
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1 , . . . ,  n}. This means that  the system (4.2.3) has regular singular points 

along the divisor X lX2. . .  Xn -- 0 and is in normal form. 

With  the notation a" - e ~(l~ a) for # E I)*, a E A the Harish-Chandra 

series O()~, k; a) is defined by 

(4.2.4) O()~, k; a) - E F~(&, k)a ~-p(k)+~ 
~ 0  

with F~()~, k) defined by the recurrence relations 

(4.2.5) 

(4.2.6) 

F0(s k) - 1, 

= 2 E k,~ E ( ) ~ - p ( k ) + a + j o ~ ,  c~)F~+j,()~, k). 
c~>0 j>_l 

Note that  these recurrence relations can be solved uniquely if 

(4.2.7) 2()~, to)+ (to, a) ~= 0 Vtr 0. 

L e m m a  4.2.2.  Let U C D* x K be a bounded domain and d(A, k) a holo- 

morphic funct ion on U such that the funct ion (A,k) ~-+ d(A,k)F,c(A,k)  is 

holomorphic on U for all ~ ~_ O. (This means that d(A, k) has to be divisible 

by those linear functions A ~-~ (2A+n,n) for which the right-hand side of 

(4.2.6) is not divisible by A ~-~ (2A+n,n) and whose zero locus intersects 

U.) For a E A+ fixed there exists a constant M -  Mv, a > 0 such that 

w 

(4.2.8) Id(&,k)F~(~,k)l <__ M a  ~ Vn <_ 0, (A,k)E U. 

Proof. With  a l ,  . an E R+ simple and p - ~:~n a* "" ' 1 mia i  E consider 
n N ( p ) -  ~--~1 ]mi] as a norm on a*. Choose el > 0 such that  

I()~-p(k)-~--t~, ol)] ~_ Cl ( I + N ( a ) )  

w 

V(s k) E U, tr <_ 0, a E R+. Choose N1 E l~ and c2 > 0 such that  

> 
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VA C 1~*" 3k C K with (~, k) c U, Va _< 0 with N(a) _> N1. Hence if tr _< 0 
with N(a) > N1, we get (with c -  2ClC~ 1) 

(4.2.9) Id(A, k)F,~(A, k)l _< cN(g) -1 E Ik~l ~ Id(A, k)F,~+j,~(A, k)l, 
a>O j_>l 

m 

V()~, k) C U. Choose N2 E N such that 

c~-~ lk~l ~-~a j~ < N2 
a>O j > l  

Vk C K: 9A C 1?* with (A,k) c U. Let N -  max(N1,N2) C N. Finally 
choose M > 0 such that 

Id(A, k)r~(A, k)] < Ma ~ 

m 

V(A,k) C U, and V~ _< 0 with N(tr < N. We now prove (4.2.8) by 
induction on N(n). Let tr < 0 with N(tr > N and suppose (4.2.8) is true 
for all # < 0 with N ( # )  < N(n). Using (4.2.9) we get 

[d(A, k)F~(A, k)l _< cN(n) -1 E Ikal E MaJa+~ 
a>O j k l  

<_ N ( ~ ) - I M N a  '~ <_ M a  '~. F-1 

Coro l la ry  4.2.3. With the above notation the series 

(4.2.10) E d(A, k)F~(A, k)a ~-p(k)+~ 
~<0 

converges absolutely and uniformly on U x aA+. Hence it defines an ana- 

lytic function on U x A+. 

Coro l l a ry  4.2.4. For A C 1~* satisfying (4.2.7) and k C K arbitrary the 

Harish-Chandra series (4.2.4) converges to an analytic function on A+. As 

a function of the spectral parameter A C 1?* it is meromorphic with simple 

poles along hyperplanes of the form {(2A+a, tr = 0} for t~ < O. Moreover 

for Ao E O* with (2Ao+~, ~) = 0 for precisely one ~ = no < 0 we have 

(4.2.11) 
{ (2A+tr no)~(A, k; a)}~=~o 

= {(2A+a0, a0)F~o(A, k)}~=,Xo- (I)(Ao+a0, k; a). 
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Proof. Take d(A, k) = (2A+n0, n0) in the previous corollary and U a small 

neighborhood of (,k0, k) e 13" x K (some k e K).  Now the recurrence 

relations (4.2.6) for the coefficients of the Harish-Chandra series (4.2.4) 

were derived from the differential equation 

(4.2.12) ML(k)O(A ,  k; a) - (A, A)O(A, k; a). 

Observe that  with our choice of d(A, k) we have 

{d(~,k)r~(~,k)}~:~o - 0  Vn <_ 0 with n / ;  n0. 

Hence {d(A,k)O()~,k;a)}~:~ o is a multiple of O(,k0+n0, k;a).  D 

Since the algebra ID(k) is commutative it is immediate that  the Harish- 

Chandra series (4.2.4) is in fact a solution of the full system (4.1.1) of 

hypergeometric differential equations. With  the equivalence of (4.1.1) and 

(4.2.3) in mind we can therefore say that  the exponents at infinity of (4.1.1) 

are of the form 

(4.2.13) w ) ~ -  p(k) for w C W 

and the Harish-Chandra series (I)(wA; k; a) are the series solutions of (4.1.1) 

with leading exponent wA - p(k), w C W. 

P r o p o s i t i o n  4.2.5.  The Harish-Chandra series O(,k,k; a) is a meromor- 

phic function on 1?* x K x A+ with simple poles along hyperplanes of the 

form 

(4.2.14) (A, c~ v) - j for some (~ E R+, some j E N -  { 1 , 2 , . . .  }. 

Proof. The fact that  for certain A E ~* (cf. (4.2.7)) the recurrence rela- 

tions break down is the phenomenon of logarithmic terms caused by the 

differences of exponents being integers. In our notation this amounts to 

(4.2.15) , k -  wA C Q for some w E W, w 7~ 1. 

However, the only w C W in (4.2.15) which matter  are those for which 

(4.2.15) is a codimension one condition on A E ~*, i.e., w - r~ for some 

a E R. Hence the condition (4.2.15) becomes 

(4.2.16) (~ ,a  v) e Z for some a e R, 
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and combined with (4.2.7) the proposition follows. E:] 

Apparently for those ~ < 0 not of the form tr - - j a  for some a C R+ 

and j E N the right-hand side of (4.2.6) is divisible by the linear function 

(2A+~, ~). 

C o r o l l a r y  4.2.6.  I f  (A,a v) ~ Z for  all a e R then the Harish-Chandra 

series 

(4.2.17) O(w;~, k; a) for  w C W 

are a basis for  the solution space of the sys tem of hypergeometric differential 

equations (4.1.1) on A+ . 

Proof. This follows from Corollary 4.1.8 and the above since Harish-Chan- 

dra series with different leading exponents are clearly linearly independent 

over C. [::] 

4.3. T h e  m o n o d r o m y  r e p r e s e n t a t i o n  

The system of hypergeometric differential equations (4.1.1) is invariant un- 

der W, and hence can be viewed as a system on the space W \ H  ~- C. n 

(cf. Remark 1.3.15). As such it has singular points at infinity and along 

the discriminant D - 0, where D ( z )  - A(h) 2 with zj - M ( A j ) .  We start 

by describing the fundamental group of the regular orbit space W \ H  reg -~ 

C n \ { D = 0 } .  Fix a base point a0 C A+ and let Zo - Wao  the corresponding 
point in C n. 

D e f i n i t i o n  4.3.1.  Let {O~1,... , O~n} be the basis of simple roots for R~_ = 

1 R, and let rj C W denote the corresponding simple reflections. For R+\~ 
j -- 1 , . . .  , n define curves Gy, Ly in H reg by 

(4.3.1) 

(4.3.2) 

Gj( t )  - exp{ (1 - t ) l og  ao + trj  log ao + r  } 

L j ( t )  - exp{log a0 + 21titan}, 

1 where t C [0, 1] and c: [0, 1] --+ [0, 5) a continuous function with c(0) - 
1 1 r  0 and r > 0 (for example take r  ~ sin 7rt). 

Note that  II1 (H, ao) ~- 27riQ v is a free abelian group on the generators 

L1 , . . .  ,Ln. Write g l , - . - , g n , l l , . . .  ,ln C l-Ii(W\Hreg, zo) for the corre- 

sponding closed curves in W \ H  reg with base point z0. 
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T h e o r e m  4.3.2.  The f u n d a m e n t a l  group II1 ( W \ H  reg, z0) has a presenta-  

t ion with generators g l , . . .  , gn , 11, . . .  , ln , and relations 

(4.3.3) gig jg~ . . .  - gjgigj  

(4.3.4) lilj - ljli 

(4.3.5) g lj -ljl[g l; 
(4.3.6) gilj - ljl~+l gil~ ~ 

1 < i ~ j < n, m i j  factors  on both sides 

l < i , j < n  

l < i r j < n, nij  - - 2 r  even 

1 <_ i ~ j <_ n, n~j - - ( 2 r + l )  odd, 

where m i j  - ((~i, a j  )(c ~v, a j )  is the order of  r ir j  e W and nij  - (ai, a j )  

are the Cartan integers. 

R e m a r k  4.3.3.  For x E QV of the form x - -  m l ~  + ' "  + mnOlVn we write 

lx - - l l ~ . . .  I mn e II1 ( W \ H  reg, z0). Then it is easy to see that  

(4.3.7) lxly - lylx for all x, y E QV 

(4.3.8) gjl~ - l~gj if (x, ~j)  - 0 

(4.3.9) gjlrj(~) - l ~ g j  if (x,c~j) - 1. 

R e m a r k  4.3.4.  Suppose R is irreducible with highest root s0. If r~ o = 

r i l . . . r i p  C W is a reduced expression then let go E I I l ( W \ H r e g ,  zo) be 

defined by 

(4.3.10) l ~  -- gogil . . .  gip. 

One can show that  H I ( W \ H  reg, Z0) has another presentation with genera- 

tors go, gl, . . .  , gn and relations 

(4.3.11) 

g i g j g i . . .  -- g j g i g j . . .  0 <__ i ~ j <_ n, m i j  factors on both sides, 

v where mi j  - (o~, a j  )(a~/, a j )  as before. Note that  the situation is similar as 

for the affine Weyl group, which on the one hand has a Coxeter presentation 

on ( n + l )  generators and on the other hand is a semidirect product of the 

finite Weyl group and its translation lattice 27riQ v. 

We do not prove the above results, but instead make some references to 

the literature. The presentation (4.3.11) is due to Nguy~n Vi~t Dung and 

was inspired by the work of Brieskorn [54, 8]. Theorem 4.3.2 is due to Van 

der Lek and Looijenga. See [44] for a description of the results and [45] for 

the proofs. The work of Van der Lek was inspired by Deligne's paper on 

braid groups [14]. 
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P r o p o s i t i o n  4.3.5. I f  (~j(Q v) - Z then ljg~ 1 and gj are conjugate inside 

I I l ( W \ H r e g ,  zo). I f  R ~ is irreducible and (~j a long simple root then l j g ;  1 

and go are conjugate inside 1-Ii ( W \ H  rag, Zo). 

Proof. Suppose (x, ~j) - 1 for some x E Qv. Using (4.3.9) we get 

lxgjl_x - lx l_r j (x)gj  I - l j g j  1, 

which proves the first statement. For the second statement observe that 

we can choose a sequence j l  - j, j 2 , . . .  , jp E {1 , . . .  , n} with 

+ - 
31 �9 �9 Otj~ 

- -  O / 0 .  

Now r#~+l - rj~+lrz, rj~+l and l(r~+~) - l ( rz~)+ 2. Hence the expression 

r~o = r i p . . ,  r j2r j l r j2 . . ,  rjp is reduced, and using (4.3.9) it is easily seen 

that 

- - i  - - I  - - i  go -- lz~ gjp . . . . . . . . . . . .  gjl gjp -- gjp gj2 ( l jg j  1)g~1 gjp-1, 

which proves the second statement. F-1 

Denote by V(A, k) the local solution space of (4.1.1) around the point a0 C 

A+ or equivalently on A+ by analytic continuation. We write 

(4.3.12) M(A, k): I11 ( W \ H  reg, z0) ~ GL(V(A ,  k)) 

for the monodromy representation. Assuming that A E b* satisfies the 

condition 

(4.3.13) (A, c~ V) ~ Z Vc~ E R 

it follows from Corollary 4.2.6 that the Harish-Chandra series (I)(wA, k; a), 

w E W are a basis for the solution space V(A, k) and 

(4.3.14) M(A,  k)(l~)O(wA, k; a) -- e2~i(~-~ k; a), 

which implies that the Harish-Chandra series O(wA, k; a), w G W are the up 

to a constant unique simultaneous eigenvectors for the monodromy opera- 

tors M ( A , k ) ( l x ) ,  x E Qv.  Using (4.3.8) it is clear that the two-dimensional 

subspace 

(4.3.15) span{O(wA, k; a), O(rjwA, k; a)} 

of V(A, k) is invariant under the monodromy operator M(A, k)(gj) .  
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T h e o r e m  4.3.6. If  A E ~* satisfies (4.3.13) then the solution 

(4.3.16) ~5(wA, k)O(w%, k; a) + ~5(rjwA, k)O(rjwA, k; a) 

is an eigenvector for the monodromy operator M(A,k ) (g j )  with the eigen- 

value 1. 

Proof. Observe that  the system (4.1.1) can be brought in the equivalent 

form (4.2.3) in which it has regular singular points at infinity. Taking 

boundary values along hyperplanes at infinity is an operation that  com- 

mutes with monodromy along these hyperplanes. This allows induction 

on the dimension n, and the situation ultimately reduces to rank one. 

1 a} and the differential equation (4.1.1) becomes In this case R+ - { ~a, 

the ordinary hypergeometric differential equation with solution F(a, b, c; z) 
1 1 +ks  and z -  with a - (A+p(k) ,av) ,  b - ( - A + p ( k ) , a v ) ,  c -  7+k ~ , 

1 1 !a -- 2 ~(e= +e �89 The theorem follows in this case from Kummer 's  iden- 

tity 

(4.3.17) F(a, b, c; z) = c(A, k)O(A, k; z) + c( -A,  k ) ~ ( - A ,  k; z) 

by analytic continuation of z along the negative real axis. Here 

22ar(c)r(b-a) 
c ( ~ , k )  = r(b)r(c-a) 
o(A, k; z) - 2 -2a( -z ) -aF(a ,  l + a - c ,  l+a-b; z -1) 

and the same expressions for c(-A, k) and (I)(-A, k; z) with a and b inter- 

changed in these formulas. 71 

C o r o l l a r y  4.3.7. For k E K let k ~ E K be defined by 

(4.3.18) k~ - 1-k~for  a E R ~ ~ 1R. , k s - - k ~ f o r a E R M  

If  A E [~* satisfies (4.3.13) then the solution 

(4.3.19) ~ ( ~ ,  k ' )~(~ ,  k; a) + ~(~j~,  k')~(~j~,  k; a) 
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is an eigenvector for the monodromy operator M()~, k)(gj) with eigenvalue 
2~(k +ks ) 

--e �89 J . 

Proof. Since the r ight-hand side of (2.1.9) is invariant under the substitu- 

tion k ~ k' we get 

(4.3.20) 
1 1 

5(k; a)~ (I)(w/~, k; a) - 5(k'; a)~ (I)(wA, k", a) 

and since 

(4.3.21) 5(k'; a)-�89 5(k; a)�89 - A(a)5(k; a) 

-27ri(k +k~j ) 
transforms by the factor - e  1.j under monodromy along the 

loop gj, the result follows from Theorem 4.3.6. [:3 

C o r o l l a r y  4.3.8.  The monodromy operators given by M(A,k)(gj)  and 
M(A, k)(ljg-f l ) satisfy in End(V ()~, k)) the quadratic relations 

(4.3.22) 

(4.3.23) 

(M(A,k)(gj)- l)(M(A,k)(gj)+e2"i(k�89 +k"j)) - 0 

(M(A,k)(ljg~l)-l)(M(A,k)(ljg~l)nt-e27rik~3 ) -- O. 

In particular the monodromy representation (4.3.12) of the affine braid 
group l-I 1 (W\Hreg ,  zo) factors through a representation of the ajfine Hecke 
algebra. 

Proof. Relation (4.3.22) is immediate from Theorem 4.3.6 and Corollary 

4.3.7. Relation (4.3.23) can be derived along the same lines by working 

in Theorem 4.3.6 and Corollary 4.3.7 with the loop ljg-j I instead of gj. 
Note that  in the rank one reduction the loop ljg~ 1 goes once around the 

point z = 1 in the negative direction whereas the loop gj goes once around 

z - 0 in the negative direction. The exponents of the hypergeometric 

function F(a, b, c; z) at the point z = 0 are 0, 1 - c  and at the point z = 1 

are 0, c - a - b .  Wi th  the notat ion as in the proof of Theorem 4.3.6 we 

have 1 - c -  ~ l - k � 8 9  and c - a - b -  ~l-ks and (4.3.23) follows. Note 

that  in case a j ( Q  v) - z we have k l - 0 and (4.3.22) and (4.3.23) 5 s j  

are compatible in accordance with Proposition 4.3.5. The last s ta tement  

that  the monodromy representation factors through a representation of the 

affine Hecke algebra follows from Proposition 4.3.5 and the definition of the 

Hecke algebra associated with a Coxeter group (see [7]). V1 
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Coro l l a ry  4.3.9. If  )~ E 1}* satisfies (4.3.13) then the solution 

(4.3.24) F()~, k; a) - E ~(w)~, k)ap(w)~, k; a) 
w C W  

is a simultaneous eigenvector for the monodromy operators M()~, k)(gj) 

with eigenvalue I for j - 1 , . . . ,  n. In other words the function (4.3.24) has 

an analytic continuation from A+ to a single-valued W-invariant  function 

on U fq H reg, where U is a W-invariant tubular neighborhood of A in H.  

Proof. Clear from Theorem 4.3.6. l--] 

P r o p o s i t i o n  4.3.10. Suppose )~ C I~* satisfies both (4.3.13) and 

l k -~- ks ~ Z Va E R. (4.3.25) + 

Then the monodromy representation (4.3.12) is irreducible. 

Proof. If both (4.3.13) and (4.3.25) hold then "d(w)~,k) ~ 0 for all w e W. 

Now it is clear from Theorem 4.3.6 that the two-dimensional representa- 

tion on the space (4.3.15) of the group generated by M()~,k)(lx), x e QV 

and M()~,k)(gj) is irreducible. From this it easily follows that the full 

representation (4.3.12) is irreducible. V] 

T h e o r e m  4.3.11. The system (4.1.1) has regular singular points along 

the discriminant D = O. Moreover the exponents along the image of the 
1 - k  - k s  subtorus {a E A; a s - 1} in W \ H -  C n are of the form 0 and -~ �89 

1 both with multiplicity equal to ~d, d -  IWI. 

Proof. In case ks = 0 Va E R this is obvious. Indeed viewing the system 

on H (rather than W \ H )  the points {h e H; A(h) = 0} are just regular 

points, and hence on W \ H  the points {D=0} become regular singular 

points. Observe that for 1 E Z_.  B the lowering operator G_(1) of Theorem 
0 0 3.4.3 lies in the Weyl algebra C[z l , . . .  , Zn, OZl'''" ' Ozn ] and satisfies 

(4.3.26) V_(1)F()~, k; a) - F()~, k+l; a). 

Hence for A e I3" satisfying (4.3.13) and (4.3.25) we conclude from Propo- 

sition (4.3.25) that 

a_(z): k) k+Z) 
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is a linear isomorphism. In particular if the system is regular singular 

along D = 0 for some (A, k) then it remains regular singular along D = 0 

for ()~,k+l). The conclusion is that  the system (4.1.1) is regular singular 

along D = 0 for all (~, l) C 13" x K with A satisfying (4.3.13) and 1 C Z_.  B. 

However, this is a Zariski-dense subset of 0* x K, and since the coefficients 

of the system (4.1.1) are polynomial in (A,k) C ~* x K the first statement 

follows. The second statement follows from the single differential equation 

M L ( k ) u  = ()~, )~)u 

contained in (4.1.1). [-I 

R e m a r k  4.3.12. If c~(Q v) = 2Z for some c~ e R then (the image under the 

map H ~ W \ H  = C n of) the variety {h E H; h ~ = 1} has two connected 

components, {h C H; h�89 ~ - 1} and {h e H h 1~ - -1} .  Along the former, 

going through the identity element, the system (4.1.1) has exponents 0 and 

1-k~  In both cases each exponent 1 k~ - k ~  and along the latter 0 and ~ . 2 ~c~ , 

has multiplicity ~ld. This is in accordance with Corollary 4.3.8 

C o r o l l a r y  4.3.13. Tl~'.full~'li()ll (4.3.24) has an analytic continuation to a 

sil~.qh-~'alu~d lV-il~'arial~l h~)h)ll~()l'td~ic function on a W-invariant  tubular 

l~ci~.fl~borhood [" of .4 il~ H. 

Proof. Clear fi'om Corollary 4.3.9 and Theorem 4.3.11. W1 

T h e o r e m  4.3.14. The function F(,~, k; h) given by (4.3.24) is a holomor- 

phic function of 

e x K x u 

with U a W-invariant  tubular neighborhood of A in H. It satisfies 

(4.3.27) F(wA, k; h ) -  F(A, k; h) for all w e W 

(4.3.28) F(A, k; wh) - F(A, k; h) for all w C W 

and (~ ,k ,h )  C O* x K x U. 

Proof. Everything is clear except that  the word holomorphic should be 

replaced by meromorphic with simple poles along hyperplanes of the form 

(~,c~ v) C Z for some c~ C R. Using (4.3.27) it is clear that the simple 
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poles along hyperplanes of the form ()~, c~ v) = 0 for some c~ C R are all 

removable. Fix c~ C R+, j E N and put no = -jc~ < 0. Let ,~o C O* 

with (2,~0+~o,~0) = 0 ~ (,~0,c~ v) = j but ,~0 on none of the other 

hyperplanes (2,\+n, ~) = 0 with ~ r n0, n E Z~ for some ~ E R. We claim 

that  for a C A+ the residue 

Res{F(,~, k; a ) } : -  ~-+~olim {(2)~+~o, no)F()~,k;a)} 

of F(A, k; a) along (2A+no, n0) - 0 vanishes at A0. If we can prove this the 

theorem will follow from Hartogs extension theorem. 

Using (4.3.11) we get 

Res{F()~,k;a)} - E 
Ao w~w, w(~)<o 

d(w, ,~0, k)O(w,~0, k; a) 

l d Harish-Chandra series with coefficients as a sum of 

d(w )~o,k)- lim (2)~+)~+no, no){~d(wr~)~,k)F,~o(Wr~ik, k)+~(w)~ k)} 
~--+~o 

being holomorphic in (,~o, k). On the other hand, we have that  the residue 

Res;~o{F()~,k;a)} e Y()~o,k) remains a solution which is a simultaneous 

eigenvector of M(,~0, k)(gj) with eigenvalue 1. Arguing as in the proof of 

Theorem 4.3.6 this leads by rank one reduction to a contradiction unless 

all coefficients d(w, )~0, k) = 0. D 

4.4. T h e  h y p e r g e o m e t r i c  f u n c t i o n  

D e f i n i t i o n  4.4.1.  The function 

(4.4.1) F()~, k; a) - E c(w)~, k)O(w)~, k; a) 
wCW 

is called the hypergeometric function associated with R. Here c(,~,k) is 

defined by (3.4.3). 
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T h e o r e m  4.4.2.  With S C K defined by 

(4.4.2) 
1 

S - {pole locus of the meromorphic function ~d(p(k), k) } 

the hypergeometric function F(A, k; a) is a holomorphic function on 

(4.4.3) ~* x ( K \ S )  x U 

with U a W-invariant tubular neighborhood of A in H and satisfies 

(4.4.4) F(wA, k; a) = F(X, k; a) for all w e W 

(4.4.5) F(A, k; wa) = F(A, k; a) for all w e W 

and (A, k, a) in the set (4.4.3). 

Proof. This is immediate from Theorem 4.3.14 and the definition of the 

c-function. [~ 

R e m a r k  4.4.3.  From the definition of the ~'-function it is easy to see that  

the open set K \ S  contains the closed set 

(4.4.6) {k C K; Re(k_}~+k~) > 0 Vc~ C R ~ 

which in turn contains the closed set C+ �9 B with B the basis of Definition 

3.4.1 and C+ = {z e C;Re(z)  >_ 0}. 

P r o p o s i t i o n  4.4.4.  We have F(A, 0; e) = 1 for all ~ E ~*. 

Proof. Since ~'(A, 0 ) =  1 we have 

F(/~, 0; a) - E aw'x 
wEW 

for a C A and A E 1?*. Using (3.5.14) we have 

lim ~'(p(k), k) : IW] 
k--+O 

and hence 
1 

F()~,0;a)  - IW I E 
wOW 

aW)~ 

from which the proposition follows immediately. V1 
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T h e o r e m  4.4.5. For 1 E Z .  B and k E K with k, k+l ~ S we have 

(4.4.7) k; = k + l ;  

Proof. For 1 E Z_ .  B, k C K with k, k+l ~ S we apply Corollary 3.6.5 with 

F = F(/~, k; a). From (4.3.26) we get 

(4.4.8) G_(1)F(A,k;a) = k+l) k+l; a) 
k) 

and the theorem follows from (3.6.12) and Corollary 3.6.7. [3 

C o r o l l a r y  4.4.6. For k C Z .  B with k�89 >_ 0 Vc~ C R ~ we have 

(4.4.9) F(A, k; e) = 1 

for all ~ C ~*. 

Proof. This is clear from the previous remark, proposition, and theorem. 

D 

Observe that for A C P+ and ks _> 0 Vc~ C R we have 

(4.4.10) F()~+p(k), k; a) = c()~+p(k), k)P()~, k; a). 

For the normalization problem at the identity element of Jacobi polyno- 

mials as given in Theorem 3.6.6 the extension from integral K to real k 

was obvious (see the last sentence of the proof of Theorem 3.6.6). For the 

normalization problem at the identity of the hypergeometric function as 

given by (4.4.9) the extension from integral k to real k is more subtle. The 

analysis in this case has been carried out by Opdam [61, 62]. The result is 

as follows. For the proof we refer to these papers. 

T h e o r e m  4.4.7. For ~ C b* and k C K \ S  we have 

(4.4.11) F(A, k, e) = 1. 
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N o t e s  for C h a p t e r  4 

The hypergeometric function studied in this chapter is a generalization of 

the spherical function for a real semisimple Lie group in a sense which will 

be explained in the next chapter. Essentially all the results obtained here 

go back in the case of spherical functions to the pioneering papers [28, 24]. 

Whereas in the case of spherical functions on a real semisimple Lie group 

one has both differential and integral operators at hand we have in the 

case of hypergeometric functions only the differential equations available. 

Certain results which are fairly obvious from the integral aspect require 

here longer proofs. Of course one expects the integral theory of spherical 

functions to have an appropriate generalization to the context of hyperge- 

ometric functions but this remains a project for future research. See [5] for 

the root system A2. 

The theory of differential equations in several variables with regular 

singular points was developed most elegantly by Deligne [14, 50] and its 

applicability to the situation of spherical functions was stressed in [10]. The 

observation that  the monodromy representation of the affine braid group 

factor through a representation of the affine Hecke algebra as stated in 

Corollary 4.3.8 was made in [34, 30, 31]. This seems to be a new result 

even in the case of spherical functions on a real semisimple Lie group. 

The hypergeometric function of this chapter was introduced in [34] under 

the assumption of the existence of the hypergeometric differential, which 

was only known at that  time for some root systems. Subsequently the 

hypergeometric function was constructed in [30] from its monodromy using 

the Riemann-Hilbert correspondence, at least for generic parameters. The 

analytic continuation in the parameters was exhibited in [59], and from 

this the existence of the hypergeometric differential equations was derived. 

Later the existence of the hypergeometric differential equations was proved 

by elementary means in [33]. 
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Spherical functions of type X on 
a Riemannian symmetric space 

5.1. The Harish-Chandra isomorphism 

Suppose Gc is a connected simply connected complex semisimple Lie group 

and G C Gc a real form. Let K C G be a maximal compact subgroup and 

(5.1.1) X: K --+ C • 

a one-dimensional representation. Of course if the symmetric space G/K is 

irreducible then we have necessarily X = 1 unless G/K is of Hermitian type 

in which case the set of such X's is parameterized by Z. For f E C ~ (G) 

and X I , . . .  XN E g (g is the Lie algebra of G) we put 

(5.1.2) 

( X I . . . X N f ) ( g )  

{ ON--- ...exptNXN) } 
Otl .-. OtN f (g exp tl X1 tl . . . . .  tN=0 

which means that  the elements of the Lie algebra g and its universal en- 

veloping algebra U(g) are considered as left-invariant differential operators 

on a .  

We write 

(5.1.3) C~(G/K; X) = {f e C~(G) ;  f(gk) = x(k)-l f(g) Vk e K} 

and think of these functions geometrically as sections in a homogeneous 

line bundle L(X) --+ G/K. For f e C~(G/K;x) and z e U(~)K: = 

{invariants in V(g) for the adjoint action of K} it is clear that  zf  E 
C~(G/K;x). Moreover zf  depends only on the class Dz of z modulo 

U(g) K N ~'~xee U(g)(X+x(X)). Here we write tt for the Lie algebra of K 

and X: ~ --+ C for the Lie algebra representation associated with (5.1.1). 

70 



Hypergeometric and Spherical Functions 71 

P r o p o s i t i o n  5.1.1. The natural map identifies 

(5.1.4) D(x) - u(~) ~/U(~) ~ n ~ u (~) (x+x(x ) )  
XE~ 

as the algebra of all G-invariant differential operators on sections in the 

homogeneous line bundle L(X) ~ G/K.  

Proof. See [70, Thm 2.1] or [71, Prop 2.1]. [--1 

Denote 

(5.1.5) 
c~(c//K;x) 

= {f C Coo(C); f ( k l g k 2 ) -  X(klk2)-l f(g)Vkl,k2 E K} 

for the subspace of (5.1.3) of spherical functions of type X. It is clear that  

Dzf  C COO(G//K; X) for f C COO(G//K; X) and Dz C D(X). Let g = t~| 

G = K exp(p) be the Cartan decomposition, and choose a C p, A = exp(a) 

a maximal split torus. 

P r o p o s i t i o n  5.1.2.  The map f e Coo(C)~-~ r e s ( f ) ' - -  flA e C~176 

defines a linear bijection 

(5.1.6) res" COO(G//K; X) --+ Coo(A) w. 

Proof. This is immediate from the Cartan decomposition and the Chevalley 
isomorphism Coo(p) K ~ Coo(a) w. [] 

N o t a t i o n  5.1.3.  Let E - E(g, a) be the restricted root system and m(c~), 

c~ C E the corresponding root multiplicity. We put 

- l m ( ~ )  (5.1.7) R -  2E, k2~ ~ , 

1 kc~Ct- p(k) M o r e -  l m ( ~ ) ~  -- ~ E ~ +  which implies that  p - ~ }--~-~cr.+ 

over the root system R of type Cn will always be considered as being of 

type BCn with ks - 0 (with k8 the multiplicity of the short roots in BCn 

as in Proposition 3.1.8). 
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T h e o r e m  5.1.4. For each D~ C D(X) there exists a unique differential 

operator rad(D~) E (91 | Ua) W such that 

(5.1.8) res(Dzf) -- rad(Dz)res(f)  vs e x). 

The differential operator rad(Dz) is called the radial part of the differential 

operator Dz E D(X). The mapping 

(5.1.9) rad: D(X) -+ (91 | ua)W 

is an injective homomorphism of algebras. Let Ch: (Sa) w -% (Sp) K be 

the Chevalley isomorphism and Sym: Sg -% Ug the symmetrizer (which is 

a G-equivariant linear bijection). For p C (Sa) W homogeneous of degree 

N the operator rad(Dsym(Ch(p))) is a differential operator of order N with 

leading symbol of order N having constant coefficients and equal to Op. 

Proof. This follows from [10, Sections 2 and 3] except that their ring 91 is 

slightly bigger than ours. However, with the convention for R of type Cn 

as in Notation 5.1.3 it follows from the sequel that our ring ~tl suffices. [-1 

P r o p o s i t i o n  5.1.5. For the Casimir operator f~ E U(g) the differential 

operator 

(5.1.10) r a d ( D a ) -  L(k) e 91 

has order 0 (i. e. is a function in 91). Here the inner product on a is obtained 

from the Killing form on g. 

Proof. By the previous theorem r a d ( D a ) -  L(k) has order _ 1. Using 

the integral formula for the Cartan decomposition we have for fl ,  f2 C 

Cc (a//K;x) 

(5.1.11) (fl, f 2 ) -  fl(g)f2(g)dg - - ~  fl(a)f2(a)lS(k,a)lda. 

The symmetry (a  fl ,  f2) = (fl, a f2) for the Casimir operator is obvious. 

The symmetry of the operator L(k) with respect to the measure 15(k, a)lda 

follows from Theorem 2.1.1. Hence rad(Da) - L(k) is also symmetric with 

respect to the measure lS(k,a)ida. But a first-order differential operator 

being symmetric with respect to a smooth measure has order 0. [-1 
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C o r o l l a r y  5.1.6. If X -  1K is trivial then r a d ( D a ) -  L(k). 

Proof. Apply the operator rad(Da)  - L(k) to the function 1A and observe 
that  1A -- r e s ( l c )w i th  l c  E C ~ ( G / / K ) .  Hence rad(Dn)lA - res(f t lc)  - 

0. [] 

T h e o r e m  5.1.7. Suppose that G / K  is an irreducible Hermitian symme- 

tric space (which is equivalent with the fact that R is of type B Cn (or Cn) 

and kz - 3,1 either from the classification [35, pp.532-534] or from the the- 

ory of strongly orthogonal roots). Choose a generator X1 for the rank one 

lattice of one-dimensional characters of K and say X - Xz - X~ for some 

1 C Z. Then the radial part of the Casimir operator is given by 

rad(D~) 

(5112)  - L ( k ) +  E 12 { (c~,c~) (2c~,2c~) } ftm(XIM) 
�9 " I s  - XIM ~ +  (~ -~ ~)~ ( ~ _  ~ : a ) ~  ' + 

(x short 

where M - ZK(a), rn - $~(a) and (XIM)-l fbn(XIM) is the scalar by which 

the Casimir operator ftrn of m (with respect to the restriction of the Killing 

form of g to m) acts on the one-dimensional representation XIM of M. 

Before proving the theorem (in Section 5.3) we start by giving some corol- 

laries. 

C o r o l l a r y  5.1.8. We have 

(5.1.13) 

rad(Df~ + (p(k),p(k))) 

II II ' ' )+l'l M L ( m + ) o  ( e l ~ + e - ~ )  Tj'l = ( e ~ + e - ~  ~ o 

~CR+ c~ER+ 
c~ short c~ short 

+ 
xlM 

with multiplicity function rn+ C K ~_ C 3 given by 

(5.1.14) 1 m +  - (k~ T I/I, k~ ,  k, i I/I), k , -  ~. 

Here the + sign indicates that both possibilities are valid�9 

P r o o f .  Apply (2.1.12) to (5.1.12). Observe that the equations 

rnl(1--ml) -- --12 + kl(1-kl) ,  rns(1-rns-2mt)  -12 -F ks (1 -ks -2k l )  
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1 have as a possible solution: ml - 7 + Ill, ms - ks =FII[ which in turn implies 

that  

5(m+-k)�89 - - ( A s l A l )  • : H (elc~q-e-�89 

~>0,~ short 

Hence (5.1.13) follows. E] 

D e f i n i t i o n  5.1.9. The Harish-Chandra homomorphism 

(5.1.15) ~/HC" D(X) ~ Sa 

is defined by "YHc(Dz) -- "y(k)(rad(Dz)). Indeed it is a homomorphism 

since both the k-constant term 3'(k) (see Definition 1.2.4) and the radial 

part  (see Theorem 5.1.4) are algebra homomorphisms. 

T h e o r e m  5.1.10.  The Harish-Chandra homomorphism ")'HC is an iso- 

morphism 

(5.1.16) D(x) -+ (sa) w 

of commutative algebras. 

Proof. The statement follows by induction on the order of differential op- 

erators from the last part  of Theorem 5.1.4 once we have proved that  

"YHc(Dz) E Sa w VDz E II}(x). For this observe that  rad(Dn)  commute 

with rad(Dz) VDz E lI)(x). Indeed ft lies in the center of Ug and rad is a 

homomorphism. Hence in case X = 1~ we conclude "YHc(Dz) E Sa W from 

Theorem 1.2.9, Theorem 5.1.4, and Corollary 5.1.6. 

Now suppose G / K  is an irreducible Hermitian symmetric space and keep 

the notation as in Theorem 5.1.7. Again we have 

[rad(Dz), rad(D~)] - 0 VDz E ]I)(x) 

which is equivalent (using (5.1.13)) to 

H (el~+e-�89 o r a d ( D z ) o  
c~ER+ 
c~ short 

H (e�89189177 - 0 
hER+ 
a short 
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and since (use (1.2.9) with F -  A+) 

7 ( r n + ) (  H (e}~+e-}~)~:l/I o r a d ( D z ) o  H (e�89 
\ cxER+ c~ER+ 

c~ short  c~ short  

= "~(k)(rad(Dz)) 

we conclude YHc(Dz) E Sa W VDz C D(X) as before. [:3 

C o r o l l a r y  5.1.11. In case X -  1K we have 

(5.1.17) rad: D(X) ~ ) D ( k )  

and in case G / K  is an irreducible Hermitian symmetric space we have 

rad: D(Xl) - 

(5.1.18) H (e�89189176176 1-I (e�89189 
c~E R+ ceC R+ 
cx short  ce short  

Proof. Clear from (the proof of) the previous theorem. 0 

5.2. E l e m e n t a r y  sphe r i ca l  func t ions  as h y p e r g e o m e t r i c  func t ions  

Elementary spherical functions can be defined in various ways: by integral 

or differential equations or via representation theory. With the preparations 

of the previous section the approach with differential equations is the most 

convenient. 

De f in i t i on  5.2.1. A spherical function ~ E C ~ ( G / / K ; x )  of type X is 

called elementary with spectral parameter A E [~* (~ is the complexification 

of a) if 

(5.2.1) Dz~ = "~gc(Dz)(A)~ VDz e D(X) 

and ~ is normalized by 

(5.2.2) qo(e) = 1. 

The function ~ is uniquely characterized by these two conditions and we 

write ~ = ~x,~" In case X = 1K we also write ~x,~ = ~ and in case G / K  
is an irreducible Hermitian symmetric space with X - Xt for 1 C Z we put 

~x,~ - ~l,~. 
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Theorem 5.2.2. In case X -  1K we have 

(5.2.3) res (~)  - F(A, k;-) 

and in case G / K  is an irreducible Hermitian symmetric space we have 

(5.2.4) res(~l,x)_ n (e�89189 I ,  ~>0 2 

c~ short 

F(A, m+;-) 

with k E K given by (5.1.7) and m+ given by (5.1.14). 

Proof. This is immediate from Chapter 4 and Corollary 5.1.11. [3 

Suppose U C Gc is the Lie group with Lie algebra u -  t~ | ip. Then U / K  

is the compact dual symmetric space for the noncompact symmetric space 
a / K .  

Corollary 5.2.3. The elementary spherical function ~Px,~ which is an ana- 

lytic function on G extends to a holomorphic function on Gc (and by restric- 

tion gives an elementary spherical function for the compact pair (U, K ) )  if 

and only if in case X = 1K we have (by choosing A in its orbit WA such 

that Re(A, (~v) > 0 for all (~ E R+) 

(5.2.5) A E p ( k ) +  P+ 

and in case G / K  is an irreducible Hermitian symmetric space we have 

(5.2.6) A E p ( m + ) +  P+, 

1 where p(m+) - p(k) + IZlp, w i t h  p ,  - E 
a>O 

c~ short 

Proof. Just apply Theorem 5.2.2. We write 

oz. 

C ~ ( U / / K ; x ) -  {f E C ~ ( U ) ;  f ( ] g l ~ t k 2 ) -  ~ ( k 1 ~ 2 ) - 1 f ( ~ )  Mkl,k2 E K }  

and 
T - exp( in) /exp( in)  M K - exp(ia)/points  of order 2. 
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In case X -  1K the restriction map 

res" C ~ ( U / / K )  --7+ C~176 w 

is a linear bijection, and the result follows from (4.4.10) since (apart  from 

normalization) the Jacobi polynomials are the only hypergeometric func- 

tions which are holomorphic on the full complex torus H. 

In case G / K  is an irreducible Hermit ian symmetr ic  space observe that  

the restriction map 

res" C~ X.) --+ C~ W 

defines a linear bijection 

res: C~(U/ /K;  Xt)) -% H ~ ~ ~)1/I C ~ w (eS~+e -5  �9 (T) 
c~>0 

c~ shor t  

and (5.2.6)follows similarly from (5.2.4). [] 

We write 

E(X, )~) - { f  C C~ k~); Dzf  - 7Hc(Dz)(i~)f 

L(k~, A)" G -+ Au t (E(x ,  A)), or" g ~ End(E(x ,  A)) 

VDz C D(k:)} 

for the eigenspace representation of G on the space of smooth functions 

which transform on the right under K according to X -1 and are simulta- 
A 

neous eigenfunctions of the invariant differential operators. For 5 C K let 

E(X, A)~ denote the 5-isotypical component of E(X, A). Then it is clear (cf. 

Definition 5.2.1) that  dimE(k~, A ) x -  1. 

P r o p o s i t i o n  5.2.4.  Any subrepresentation V of the eigenspace represen- 
tation E(X, ~) contains the elementary spherical function ~x,~ of type X. 

Proof. Suppose V C E(X, ~) is a subrepresentation and let f C V, f r 0. 

Replacing f by L(X, )~)(g)f for some g C G we can assume that  f(e) =/: O. 
Then the function / ,  

f (kg)x(k)dk 

again lies in V and is spherical of type 5s Here dk is the normalized 

Haar measure on K.  Moreover 9~(e) = f(e) and we conclude that  9~ = 

f (e)~x,,X. V1 
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C o r o l l a r y  5.2.5. The subrepresentation V(X,)~) of E(X,)~) generated by 
the elementary spherical function ~x,~ is irreducible. The representation 
V(X, )~) is called the spherical representation of type X with parameter )~. 

C o r o l l a r y  5.2.6. The center 3 of U(g) acts on V(X,)~) by a scalar. 

P r o p o s i t i o n  5.2.7. Suppose b C m is a Caftan subalgebra and a | b c g 
the corresponding full Cartan subalgebra. Write F~(g, a), E(m, b), F~(g, a| b) 

for the various root systems, which implies that with compatible positive 
systems the corresponding p-vectors satisfy p(g, a | b) = p(9, a)+ p(m, b), 

where p(9, a) = p(k). Then the central character of V(X,A) is given by 

~1~ + p(m, b)+ ~ 

Proof. This follows from the description of the natural map 3 --+ ID(X) in 

terms of the Harish-Chandra isomorphisms for 3 and ID(x) respectively. 

For details we refer to [37]. D 

C o r o l l a r y  5.2.8. If and only if the conditions of Corollary 5.2.3 hold 
then the spherical representation V(X, )~) is an irreducible finite dimensional 

representation with highest weight XIm + )~-  p(k). 

Proof. Indeed the central character and the highest weight differ by p - 

p(g, aGb).  [-3 

R e m a r k  5.2.9. The above corollary is a reformulation of the Cartan- 

Helgason theorem [36, Chap. 5, Thm. 4.1] in case X - 1g and a theorem of 

Schlichtkrull [67, Thm. 7.2] in case G / K  is an irreducible Hermitian sym- 

metric space which give necessary and sufficient conditions for the highest 

weight of a finite dimensional irreducible representation of g in order that 

the representation has one-dimensional K-types. 

P r o p o s i t i o n  5.2.10. If the conditions of Corollary 5.2.3 hold then the 
dimension d(x, )~) of the finite dimensional spherical representation V(X, )~) 

of type X is given by 

(5.2.7) 

d(x, )~) - 4 nl/I .'c(p(m+), m+)c* ( -p(k) ,  k) 
~(p(k), k)c, (-p(m+), m+) 

~(p(m+ ), m+ )c* (-p(m+ ), m+) 
~(~, m+)~*(-~, m+) 
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Proof. By the Schur orthogonality relations we have 

/u I~,~, (u)12du - d(x, ~) - -1 .  /U d~ 

and the formula follows from the integral formula for the Cartan decomposi- 

tion, Theorem 5.2.2, Theorem 4.4.7, Theorem 3.6.6, and Theorem 3.5.5. 73 

E x a m p l e  5.2.11. In case X = 1K formula (5.2.7) becomes 

( 5 . 2 . 8 )  = 
~(p(k), k)c* (-p(k), k) 

and was derived by Vretare [72, 73]. 

E x a m p l e  5.2.12. Suppose G/K is an irreducible Hermitian symmetric 

space and X = Xt as before. The smallest dimensional representation 

containing the K-type X has parameter A = p(m+) and its dimension 

d(1, p(m+)) is given by (use the transcription from (3.5.12) to Selberg's 

integral (3.5.15) as in [48, p.993]) 

(5.2.9) 
Ill n Yl  ~ k8 + 1 + i + (n+j-2)km 

d(1, p(m+)) 

R e m a r k  5.2.13. Considering a compact Lie group as a symmetric space 

formula (5.2.8) boils down to Weyl's dimension formula. However, it does 

not seem clear (without using the classification of symmetric spaces) how 

to derive (5.2.7) from Weyl's dimension formula [63]. 

5.3. P r o o f  of T h e o r e m  5.1.7 

The proof of Theorem 5.1.7 given here will be similar to the proof of Corol- 

lary 5.1.6. In view of Theorem 5.2.2 a natural choice is to replace the 

function 1A in the proof of Corollary 5.1.6 by 

1 _ �89  Ill 
(5.3.1) H e ~  + e 

2 
c~0  

c~ short 
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and to verify in an independent way that  this function is the restriction to 

A of an elementary spherical function of type Xz. Moreover this spherical 

function is an eigenfunction of the Casimir operator 12 with eigenvalue (in 

the notat ion from below) ([l[Xl, lllx I + 2 p ( k ) +  2 p r o ) -  ( p ( m + ) , p ( m + ) ) -  

( t o ( k ) ,  t o ( k ) ) +  ( v a l u e  o f  ~-~m o n  I t [Hi ) .  H e n c e  (5.1.13) or equivalently (5.1.12) 

follows. 

We recall some structure theory for an irreducible Hermitian symmetric 

space G / K  and its Car tan  dual U / K  (keep in mind that  both G and 

U are real forms of the simply connected complex semisimple group Go). 

Choose a Car tan  subalgebra t of [~ which is also a Car tan  subalgebra for g. 

The root system E(g, t) - Ec u Y]~, decomposes into compact roots Er - 

E(~, t) and noncompact roots )--In --  )-~(~, [) .  Let X1 be a generator for the 

orthocomplement of Er in the weight lattice of E(9, t). In comparison with 

Theorem 5.1.7 we change from a global multiplicative to an infinitesimal 

additive notation. Choose a positive system E+(g,  t) such that  (a, X1) _> 

0 Va E E+(g , t ) .  There exists a unique simple noncompact root a l  in 

E+ (g, t). Let "yl, . . .  , ")/, be the strongly orthogonal roots in E,,+" "yl - a l  

and "yj is the smallest root in E , ,+  strongly orthogonal to ~1 , . . .  , ~/j-1. Let 

V be the subspace of it* spanned over R by the ~/'s and 7r: it* --+ V the 

orthogonal projection. 

The following result is due to C.C. Moore [52, Thm 2]. 

T h e o r e m  5.3.1.  There are two possibilities for 7r(E+(it, t)) except for O: 
1 Case I"  I t (E+) \0  - {~i, ~(~j +'yk); 1 _ i _< n, 1 _ k < j _< n} 

1 1 Case H: 7r(E+)\0 - {~'yi,'yi, ~(~/j • "Yk); 1 < i < n, 1 < k < j < n}. 

Furthermore the nonzero projections of the compact roots have the form 
1 1~/i or 7( 'YJ-  ~/k), and the projections of the noncompact roots have the 

1 1 form -~i , "Yi o r  -~ ( '~j-~-~k ) . 

P r o p o s i t i o n  5.3.2.  We have 7r(x1) - 

Proof. Since ~1 and ~-~ezn,+ a are multiples of each other we conclude 

1 (71 +"  ~/,) are also multiples. The proposition follows that  71"(~1) and ~ .. 

since (Tr(xi), ~/~/) - (X1, ~/1/) --  (X1, o/1/) --  1. D 

Consider the finite dimensional irreducible representation V(XI) of ~ with 

highest weight Xz - 1X1 for some 1 E N. Let v+ be a highest weight vector. 

Then it is obvious that  v+ is also a spherical vector for K of type Xl. 
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Hence V(Xl) is a spherical representation of type Xl and the corresponding 
elementary spherical function on the compact form U is given by 

(5.3.2) y)(u) = (v+, u.  v+) for u e U. 

Here (., .) is the Hermitian inner product on V(xl) invariant under U and 
normalized by (v+, v+) = 1. It remains to be shown that the restriction 
of the function (5.3.2) to a maximal split torus for (U, K) is given by 
(5.3.1). Using the Cayley transform (see [43]) this will be reduced to the 
computation for sl(2), and this will be straightforward. 

More precisely, let 5 be the subalgebra of gc isomorphic to the direct 
sum of n copies of sl(2, C) corresponding to the strongly orthogonal roots. 

L e m m a  5.3.3. The ~-submodule V' of V(Xl) generated by the highest 
weight vector v+ is isomorphic to the n-fold tensor product V(1) | where 
V(1) is the irreducible sl(2)-module with highest weight 1 of dimension l+l .  

Proof. This is immediate from Proposition 5.3.2. [-7 

Propos i t ion  5.3.4. Let 

( 0  1)  (1  O )  ( 0  O) 
x - -  h -  , y -  

0 0 ' 0 - 1  1 0 

be the standard basis for sl(2). Let V(1) be the finite dimensional irre- 
ducible representation of sl(2) with highest weight 1 and basis vo, Vl,...  , vl 
satisfying (see [40, Section 7]) 

hvj = (1-2j)vj 

yvj = (jq-1)Vj+l 

xvj = (1- j+l)v j_ l .  

Let (., .) be the su(2, C)-invariant Hermitian inner product on V(1) nor- 
malized by (vo, vo) = 1. Then we have 

(5.3.3) (V j ,V j ) - - ( I . )  for j - -  0, . . .  ,l. 

Consider the element (cf. [43, p.272]) 

1 (1  i ) ( 1  0 )  (@22 
c - ~  i 1 - i 1 0 

0 1 i 

v / 2 ) ( O  1)  
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which satisfies 
( 0 - - 1 )  1 ( i  O )  

C C - -  - -  . 1 0 0 -i 
Hence conjugation by c (= Cayley transform) maps the compact Cartan 

( cos0  - s i n 0 )  
subgroup sin0 cos0 of the group SL(2, R) onto the diagonal sub- 

group 0 e -iO of SU(2, C). Then 

( 1 )  2 ( 1 ) '  
(5.3.4) c(vo)-  --~ exp(iy)vo- --~ (Vo + iv1 + i2v2 + " "  + itvl) 

and hence 

( (cosO - s i n O )  ) (el~ 0 ) 
(5.3.5) vo, sinO cosO vo - ( cvo ,  0 e_iO cvo) -  (cosO) l 

Proof. Easy and left to the reader. [--1 

R e m a r k  5.3.5. Harish-Chandra has given a formula for the radial part 
of the Casimir operator acting on ~--spherical functions where ~- is just 
any double representation of K, see [29, Lemma 22]. Of course (5.1.12) 
could also have been derived from Harish-Chandra's formula, but this still 

requires some work since (5.1.12) is more explicit. 

5.4. In t eg ra l  representations 
In this section we assume that G/K is an irreducible Hermitian symmetric 
space and X = Xz, l C Z as before. Let G = K A N  be the Iwasawa 
decomposition corresponding to R+ - 2E+ as in Notation 5.1.3. Write 
g E G as g = kan = k(g)a(g)n(g) correspondingly. 

P r o p o s i t i o n  5.4.1. The elementary spherical function ~l,~ of type X - Xl 

with parameter ~ E [1" has the integral representation 

(5.4.1) r (g) -- ~ a(gk)'X-PXl(k(gk)-l k)dk. 

Proof. This formula is analogous to Harish-Chandra's integral formula for 
the usual spherical function in the case X = 1K and the proof goes along 
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the same lines [23, 36]. 
stated. 7-t 

See also [67, 70] where the formula is explicitly 

Consider the following integral transformations. 

S p h e r i c a l  F o u r i e r  t r a n s f o r m  (also H a r i s h - C h a n d r a  t r a n s f o r m ) :  

For f E C~(G/ /K;  Xt) we put for ~ C ~* (recall 1? = .4c) 

(5.4.2) 7-if(A) - L f (g)~-l,-), (g)dg. 

Clearly 7-if is a holomorphic function of ~ C l~*. 

Abel transform (of Harish-Chandra): 

F o r f c C ~ ( G )  we put f o r a C A  

(5.4.3) A f (a) - a p IN f (an)dn. 

Clearly .Af E C ~  (A). 

(Euclidean) Fourier transform: 

For f C C~(A) we put for s C b* 

(5.4.4) 3of(A) - ]A f(a)a-~da. 

Then $ ' f  E 7)(I) *), the space of Paley-Wiener functions on ~*. 

T h e o r e m  5.4.2.  We have a commutative diagram 

~,(~,)w 

u/~ % 7  

C~(G//K;  ~)  ~ C~(A) w 
A 
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Proof. Indeed we have 

-H 
G x K  

-H 
G x K  

-H 
G x K  

/ /  

{f(g)a(gk)-~-PX_l(k(gk)-lk)} dg dk 

{f(gk-1)a(g)-~-PX_z(k(g)-lk)} dg dk 

{ f (g)x,(k)a(g)-~-PX_,(k(g)-l k) } dg dk 

{f(g)a(g)-~-Pxz(k(g)) }dg dk 
G x K  

=/a{f(g)a(g)-~-~ } dg 

- f / I "  {f(kan)a-~-~176 } dk de dn 
K x A x N  

- / / /  {f(an)a -~+~ dk de dn 
K x A •  

-- /A{aP JN f(an) dn}a-~ da-- ~Af()~) �9 D 

Propos i t i on  5.4.3. For a E A we put 

(5.4.5) C(a) - exp (convex hull of W log a). 

If f e C~(G/ /K;xI )  with supp(f) C KC(a)K for some a E A then 
supp(.Af) C C(a). 

Proof. This is immediate from IAfl ~ A(Ifl) and the corresponding result 
for A: C~ --+ C~ W, which is a corollary of Kostant's convexity 

theorem (in fact only of the inclusion part of this theorem) [36, Chap. IV, 
w [1]. W1 
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5.5.  T h e  P l a n c h e r e l  t h e o r e m  a n d  t h e  P a l e y - W i e n e r  t h e o r e m  for  

s p h e r i c a l  f u n c t i o n s  o f  t y p e  X in t h e  s t a n d a r d  c a s e  

D e f i n i t i o n  5.5 .1 .  A real mult ipl ici ty function k = (ks) on a root sys tem 

R is said to be s t andard  if 

l k�89 q- kc~ > 0 Vet E R. (5.5.1) g _~ 

L e m m a  5.5 .2 .  If  the multiplicity function k = (ks) on R is standard then 

3C, N > 0 such that 

(5.5.2) 
1 

__ c ( I + I A I )  N if Re(A)C Cl(a+) .  

Proof. This  is immedia te  from the expression for the c-function as a product  

of F-factors and Stirling's formula, cf. [36, Chap.  IV, Proposi t ion 7.2]. f--1 

C o r o l l a r y  5 .5 .3 .  With G / K  an irreducible Hermitian symmetric space 

and R = 2E of type BC,~ (cf. Notation 5.1.3) the multiplicity function 

1 (5 .5 .3)  m _  - (k~ + I/I, ~,,,,,, ~ , , -  Ill), k , -  

given by (5.1.14) is standard if and only if IZl < k~ + 1. 

l (k~§ + kl Ill > 0 ~ IZl < < + 2 k t -  hi + 1 Proof. Indeed ~ - , , . D 

We now recall the classical Paley-Wiener  theorem. For this we need the 

notion of suppor t ing  function. Let C be a compact  convex set in A. The  

suppor t ing  function H e :  a* --+ R is defined by 

H c ( { )  = sup{(~c,X}; X C log(C)},  

and C can be recovered from Hc by 

l o g ( C ) = { X c  a; (~, X)  _< H c  ({) g~Ea*} .  

For this result and the Paley-Wiener  theorem see for example [39, p.105 

and p.181]. 
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T h e o r e m  5.5.4. ( E u c l i d e a n  P a l e y - W i e n e r  t h e o r e m ) :  Let C C A be 

a compact convex set with supporting function H = Hc .  Then the Fourier 

transform (5.4.4) maps the space of C~-funct ions  on A with support in 

C onto the space of entire functions on b* (D is the complexification ac) 

satisfying 

(5.5.4) VN e N, SCN > 0 s.t. 17f(~x)l ~ CN(I+[)~I)-Ne H(-Re(~)). 

Note that  (5.4.4) differs from the usual Fourier transform by a factor 
A 

i" .~f(i)~) -- f()~). We write Pc([}*) for the Paley-Wiener space of entire 

functions on ~* satisfying (5.5.4). 

From now on we assume that  Ill _< ks+l .  In this case a proof of the 

Plancherel theorem and the Paley-Wiener theorem for the spherical Fourier 

transform can be established along the following lines: 

Step I: 

Step II: 

For f e C ~ ( G / / K ;  Xl) with supp(f)  C K C ( a ) K  for some a e A 

the function 7-l f C ~i~C(a) (o* ) w. 

For F C PC(a)(D*) W for some. a c A we define the normalized 

wave packet operator ,7 by 

d~ 
(5.5.5) J f ( g )  -- F()~)~l,)~(g) 4nlltc()~, m ) c ( - )~ ,m_) '  Eia* 

where d)~ is the regularly normalized Lebesgue measure on ia*. 

Then ,TF E C ~ ( G / / K ;  Xl) with s u p p ( J f )  C K C ( a ) K .  

Step III: The linear operator 

(s.5.6) r e s o J  o 7-/o res-1- Cc~(A) W --+ C ~ ( A )  w 

preserves (or possibly diminish) support, and hence is a differen- 

tial operator by the theorem of Peetre [65]. 
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Step IV: The operator (5.5.6) commutes with the algebra rad(D(Xt)) which 

amounts to a system of differential equations for the coefficients 

of the differential operator (5.5.6). More precisely the differential 

operator (5.5.6) behaves at infinity in A+ like a constant coef- 

ficient differential operator from which the full operator (5.5.6) 

can be recovered (cf. Lemma 1.2.7). 

Step V: By a scaling argument we conclude that the operator (5.5.6) 

equals IWl.Id. 

We now comment on the above outline with more details. Step I is immedi- 

ate from Theorem 5.4.2, Proposition 5.4.3, and the classical Paley-Wiener 

theorem. Step II follows by shifting the integration over ia* into the com- 

plex space b* in the direction of the negative chamber. Using the explicit 

expression (5.2.4) for the elementary spherical function as a hypergeometric 

function the arguments are exactly the same as in the Helgason-Gangolli 

proof of the spherical Paley-Wiener theorem. The crucial point is that 

(since we are in the standard case) under the integration shift we do not 

encounter poles of the function c(--)~,m_) -1. For details we refer to [36, 
Chap. IV, Section 7.2]. Combining Step I and Step II we conclude that 

the linear operator (5.5.6) leaves the space of functions f E C ~ ( A )  W with 

supp(f)  C C(a) invariant for all a C A. 

For f l ,  f2 E C ~ ( G / / K ;  X~z) we have 

(5.5.7) J o ~ f~  (g)f2(g)dg - . "Hfl (A)~f2(A) 4nlZllc( A, m_)l ~ 

which implies that the operator (5.5.6) is formally symmetric with respect 

to the measure IS(k, a)lda. Leaving invariant supports of the form 

1~HA A + 

we conclude by symmetry that supports of the form 
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~iiiiiiiiiii A + 

are left invariant as well. Combining these two we conclude that the oper- 

ator (5.5.6) preserves supports. 

The steps III, IV, V are a variation on Rosenberg's proof of the spherical 

Plancherel formula [36, Chap. IV, Section 7.3] and were found by van den 

Ban and Schlichtkrull in their study of the Plancherel decomposition for a 

pseudo-Riemannian symmetric space [3]. We refer to this paper or to the 

other part of this book for details. Assuming Ill < ks + 1 we arrive at: 

C o n c l u s i o n  5.5.5. (The  invers ion  fo rmula ) .  The inversion of the 
1 spherical Fourier transform is given by -[-W[J where J is the normalized 

wave packet operator (5.5.5). 

C o r o l l a r y  5.5.6. (The  P a l e y - W i e n e r  t h e o r e m ) .  The spherical Fourier 

transform maps the space C ~ ( C )  bijectively onto the space Pc(l?*) for any 

W-invariant  compact convex set C C A ~_ a. 

C o r o l l a r y  5.5.7. (The  P l a n c h e r e l  t h e o r e m ) .  

transform extends to a unitary isometry 

The spherical Fourier 

7-l: L 2 ( G / / K ;  X~l) --+ L 2 (ia* ) 
' lWl4nllllc(A , m_)l  2 �9 

Proof. Use the inversion formula for f -  fl * f l ,  fl(g) - f l (g -1). V-1 

N o t e s  for C h a p t e r  5 

The theory of spherical functions (corresponding to the trivial K-type) is 

a beautiful part of harmonic analysis going back to the work of Gel'land, 

Godement (for the abstract setting), and Harish-Chandra (in the concrete 
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setting for a Riemannian symmetric space). The theory has been exposed 

in textbooks [36, 23] to which we refer for further reading. 

The main point of this chapter is that the theory of spherical functions 

corresponding to one-dimensional K-types admits a treatment as explicit 

and of the same level of difficulty as for the trivial K-type. The work of this 

chapter was motivated by [20, 21] where (among other things) the rank one 

situation was worked out. For example formula (5.2.4) in the rank one case 

can be found in [21, Theorem 2.1]. For nontrivial K-types Theorem 5.1.10 

is due to Shimeno, whose proof is along the same lines as the corresponding 

result in case X = 1K (using the integral formula (5.4.1), see [70]). Our 

proof is somewhat different and purely algebraic. 
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L E C T U R E  1 

Introduction 

In these lectures my goal will be to explain some recent joint work with 

Erik van den Ban on harmonic analysis on semisimple symmetric spaces. 

In the first lecture I intend to give some motivation and background in- 

formation. The following seven lectures will be more precise on definitions 

and statements, though I will have to omit many details. 

Harmonic analysis, in its commutative and noncommutative forms, is 

currently one of the most important and powerful areas in mathematics. It 

may be defined broadly as the at tempt to decompose functions by super- 

position of some particularly simple functions, as in the classical theory of 

Fourier decompositions. To be more explicit, let X be a space acted on by a 

group G. Assume that this action leaves invariant a positive measure dx on 

X. Then there is a natural unitary representation t~ (the regular represen- 
tation) of G on the Hilbert space L2(X) of square integrable functions on 

X. The aim of harmonic analysis on X is to decompose this representation 

into irreducible subrepresentations. Under mild assumptions on G such a 

decomposition is possible within direct integral theory; this is known as the 

"abstract Plancherel formula." However, X and G will usually have more 

structure, and then a more explicit form of the decomposition is desirable. 

Typically, G will be a Lie group and X will be the homogeneous space 

G/H, where H is a closed subgroup. Very often there will be some differ- 

ential operators on X which commute with the action of G (hence called 

invariant differential operators), and which are essentially selfadjoint op- 

erators on L2(X). Then G preserves their spectral decomposition, and 

thus the solution of the spectral problem for these operators will lead to 

decompositions of t~ into subrepresentations, which at best happen to be Jr- 

reducible, and at least give a first step toward the complete decomposition. 

The spectral theory of the invariant differential operators thus becomes an 

important tool in the harmonic analysis (sometimes harmonic analysis is 

simply defined this way). 

From an explicit decomposition of a function f on X a Fourier transform 
is obtained. As is well known from classical analysis, such a transform is ex- 

93 
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tremely useful for example in solving differential equations. The differential 

equations of primary interest happen to be those which are invariant under 

the transformation group G (or G could be chosen such that it preserves 

a given differential equation of particular interest). Thus the theories of 

harmonic analysis and of invariant differential operators on X are closely 

related. When Sophus Lie developed his theory of transformation groups 

he was motivated by the intent to apply it to differential equations. Thus, 

to him the group was a tool in the study of the differential equations. Since 

then the mathematical focus has been shifted somewhat. The space G/H 
has become at least as fundamental as its invariant differential operators, 

which primarily serve as a tool for the harmonic analysis on G/H; in some 

sense this is the opposite of Lie's way of thinking (see [122, 154]). 

Before I continue describing the goal of the lectures, I would like to give 

some simple examples. 

Example 1.1. The Euclidean spaces. The most familiar examples of har- 

monic analysis are of course the ordinary theories of Fourier analysis on 

the torus group T and on Euclidean space R n. For example in the latter 

case, X - R n is viewed as a homogeneous space of itself, G - R n (act- 

ing by translations), with trivial subgroup H. The invariant measure is 

Lebesgue measure, and the invariant differential operators are just the dif- 

ferential operators with constant coefficients. Their eigenfunctions are the 

exponential functions, and hence their spectral decomposition is exactly 

the decomposition of functions by superposition of exponential functions 

(plane waves), as obtained in the classical inversion formula, 

f (x) - c fRn f (A)ei~'x dA, 

where f e Cc~(X) and 

f ()~) - Ix  f (x)e-i'~'~ dx, 

and c is a nonzero constant. The Fourier transform enables us to pick 

out the irreducible components of the regular representation: the Fourier 

transform extends to an isometry of L2(X) onto L2(R n) and gives a de- 

composition of ~ as the direct integral over A E R n of the one-dimensional 
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representations 7r~ defined by Try(a) = e iA'a (a C Rn),  

g ~ 7r~ dA, 
n 

the Plancherel decomposition for R n (with respect to the group action of 

G = Rn).  

In the case of T the decomposition of the regular representation is ob- 

tained similarly from the theory of Fourier series; g decomposes as the 

direct sum (over Z) of all the one-dimensional representations of T. How- 

ever, since G is abelian and H is trivial in both cases, these examples are 

really too simple to reveal the complexities encountered in general. 

Example 1.2. Euclidean space revisited. When n _> 2 a more sophisticated 
way of looking at R n is to view it as a homogeneous space of the nonabelian 

group G - M(n) of all its motions (isometries); then H - O(n) is the 

orthogonal group leaving the origin fixed, and G is the semidirect product  

of H and a n. In this case it is easily seen that  the only invariant differential 

operators are the polynomials in the Laplacian L. Since all the exponential 

functions e i~x with a given length of A are eigenfunctions for L with the 

same eigenvalue, it is natural  from the point of view of spectral theory of L 

to change the interpretat ion of the Fourier t ransform as follows: Instead of 

viewing ] as an L2-function in A C R n we shall now view it as an L2(S n-1)- 

valued function on R + by means of the polar coordinates A - pw, (p > 

O, co C B -  sn-1)"  

] ( P ' W ) -  Jx f (x)e-~P~Xdx" 

Let 7 - / -  L2L2(B)(R+,pn-ldp) be the space of L2(B)-valued functions r on 

R + which are square integrable with respect to the measure pn-ldp, then 

] C 7-/, and the Fourier t ransform maps L2(X) isometrically onto 7-/. The 

decomposition of the regular representation g can now be read as follows. 

For each p E R we define a representation 7rp of H x R n on L2(B) by 

7rp(k, y )~(~)  -- eipy'w~(k-lcd), (y e Rn, k e O(n)) .  

This is easily seen to give a unitary representation of the semidirect product  

group G. One can prove that  it is irreducible for p ~= 0, and that  7rp ~ 7r_p. 

Next we define a unitary representation 7r of G on 7-/ by (Tr(g)r - 
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7C_p(g)(r then 7r is equivalent with the direct integral of the 7r_p. Let 

1 C L2(S n - l )  denote the distinguished vector given by l(a~) - 1, then we 

have 

f(p) - / f(gH)Tr_p(g)l dg - 7r_p(f)l  
Ja 

for f C C~(X) ,  from which it follows that  the Fourier transform is a G- 

equivariant map from C~(X)  into 7/. It follows from the above that  the 

Fourier transform extends to an isometry of L2(X) onto 7-/, and we have 

f R  pn-ldp, ~'~7~ "~ 7r_p + 

the Plancherel decomposition for R n with respect to the group action of 

G - M(n). The inversion formul~ can be reformulated as follows: for 

f C Cc ~ (X) we get \ 

f (gH) - c/a+ (f(p) 17r_p (g)1} pn-ldp, 

where ('l'} is the sesquilinear form on the Hilbert space L2(B). 
Note that  we have got an essentially different theory of harmonic analysis 

on the same space X by choosing another group G of transformations. For 

this reason it is more correct to speak of harmonic analysis on X with 
respect to G, rather than just on X. 

Example 1.3. Compact homogeneous spaces. The classical theory of Fourier 

series on T has a far reaching generalization as follows. Let G be any 

compact topological group endowed with its normalized Haar measure. 

Let me first recall the famous theorem of Peter and Weyl. Let G denote 

the set of equivalence classes of irreducible representations of G, and for 

C G let V~ be a Hilbert space on which 5 can be realized (I use the 

customary abuse of notation by not distinguishing a representation from 

its equivalence class). Let 5 be the contragradient representation, realized 

on the dual space V~ = V~*. There is a natural  map from V6| into L2(G), 

the matrix coejficient map, defined by v | ~ dim(5)l/2(v,5(.)v*l. It is 

easily seen that  this map is a G x G-homomorphism of the tensor product  

into L2(G) with the left times right action, and it follows from the Schur 

orthogonality relations that  it is an isometry. Identifying V~ | V~* with its 
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matrix coefficient image the Peter-Weyl theorem states that we have the 

orthogonal direct sum decomposition 

This gives the decomposition of the regular (left times right) representation 

of G x G on L2(G) into irreducible subrepresentations (harmonic analysis 

on G with respect to G x G). 

Let H be a closed subgroup of G, then it easily seen that the homoge- 

neous space G/H inherits an invariant measure from the Haar measure on 

G. It was observed by Cartan (in the Lie case) and Weyl (in general) that 

the Peter-Weyl theorem has the following generalization, 

(1.1) L2(G/H) - | | (V~) H, 

where (V~) H is the space of (~(H)-fixed vectors in Va*. The decomposition 

is orthogonal and equivariant for the G-action (G acts on the tensor prod- 

ucts by its action on the first factors), and thus it gives the decomposition 

of t~ (harmonic analysis on G/H with respect to G). Its derivation from 

the Peter-Weyl theorem as formulated above is immediate, once we ob- 

serve that L2(G/H) may be identified with the space of right H-invariant 

functions in L2(G). Note that the decomposition only contains the repre- 

sentations 5 for which (V~) H r O, or equivalently, for which Va N -/- 0. If 

dim V H _< 1 for all 5, the decomposition of t~ is said to be multiplicity free. 

Example 1.4. The spheres. Let X be the n-sphere S n, viewed as the homo- 

geneous space O(n + 1)/O(n). This is a particular example of the situation 

in the previous example. In this case the harmonic analysis on S n with 

respect to O(n) is classical: it is the theory of spherical harmonics. Since 

it is probably familiar to most readers, it may serve as a good example. 

Recall that a spherical harmonic (of degree k) on S n is the restriction of 

a harmonic homogeneous polynomial (of degree k) on R n+l. Equivalently, 

it is an eigenfunction for the Laplace operator on X (with the eigenvalue 

-k(n  - 1 + k)). Let Hk be the space of spherical harmonics of degree k, 

then Hk (as an eigenspace for L) is G-invariant, and we have the orthogonal 

decomposition 

L2(S n) - | 
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In fact each Hk is irreducible, and this decomposition is thus an explicit 

form of (1.1) for this case, with a multiplicity free decomposition. The 

one-dimensional subspace H ~ of Hk is the space of zonal spherical har- 

monics of degree k. Note that  the decomposition is realized as a spectral 

decomposition for the invariant differential operator L, in accordance with 

the view on harmonic analysis suggested earlier. 

In the examples above there is an essential difference between the non- 

compact a n and the compact S n. In the former case the Plancherel decom- 

position is a direct integral over a continuous parameter,  and in the latter 

case it is a direct sum over a discrete parameter.  In general one expects 

a combination of these phenomena, such that  the decomposition of t~ will 

invoke both continuous and discrete parameters. 

A class of homogeneous spaces, for which the program of harmonic anal- 

ysis via spectral decomposition of invariant differential operators is partic- 

ularly compelling, is the class of symmetric spaces. A symmetric pair may 

be defined as a pair (G, H) with a Lie group G, for which there is an invo- 

lution a of G such that  G~ C H C G ~, where G ~ is the subgroup of fixed 

points for a and G~ denotes its identity component. A symmetric space is 

a space X for which there exists a symmetric pair such that  X = G/H. 
The map gH ~-+ a(g)H of X to itself is then called the symmetry around 

the origin o - ell. By parallel t ransport  there are symmetries around all 

other points of X as well. 

One can prove that  a connected smooth manifold X is a symmetric space 

if and only if there exists on it an affine connection, for which the reflexion 

in geodesics around any point x extends to an affine diffeomorphism Sx of 

X. If X is such a manifold with a given point of origin it can be realized 

as the symmetric space corresponding to a certain canonically determined 

symmetric pair (G(X),H(X)) of subgroups of the group of affine trans- 

formations of X (G(X) is the group of "displacements" generated by all 

the products SxSy, (x, y e X),  and H(X) is the stabilizer of the origin). 

Note however, that  if X - G/H is a symmetric space, then G may dif- 

fer from G(X). The same space with the same symmetries and the same 

point of origin may thus correspond to several symmetric pairs, as in Ex- 

amples 1.1 and 1.2 above, where R n is the symmetric space corresponding 

to the symmetric pairs (R n, {0}) and (M(n), O(n)), respectively. In this 

case (G(X) ,H(X)) is  the former pair. 
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In these lectures I shall only consider harmonic analysis on symmetric 

spaces. Clearly Examples 1.1 and 1.2 mentioned above fall into this cate- 

gory; the symmetry around a point is the reflexion in the point. 

Example 1.5. The group case. Let 'G be a Lie group, let G = ' G  x 'G, 

and define a: G --+ G by a(x, y) = (y, x). Then H = G ~ is the diagonal, 

and via the mapping (x,y) ~ xy -1 we have that  the symmetric space 

G / H  is isomorphic to 'G, viewed as a homogeneous space for the left times 

right action of 'G • 'G. This example, referred to as the group case in the 

following, shows some of the scope of the program of harmonic analysis on 

all symmetric spaces: it contains as a subprogram that  of doing harmonic 

analysis on all Lie groups. 

In fact, I shall restrict attention even further than just to symmetric 

spaces; they will also be required to be semisimple or, slightly more general, 

reductive. In order to explain these notions, I have to discuss some of the 

geometric structure of X a bit. Let g be the Lie algebra of G, and let a 

denote also the involution of g obtained from that  of G by differentiation. 

Let g - t)§ q be the decomposition of g into the • eigenspaces for a, then 

[} is the Lie algebra of H and q may be identified with the tangent space 

of X at o. Associated with the affine connection on X there is a canonical 

2-form, the Ricci curvature tensor (or the Ricci form), on the tangent space 

TX.  It is G-invariant, and at o it is given by 

r(X, Y) = Trq (ad X o ad Y) 

for X, Y E q. The space X is called semisimple if this form is nondegenerate 

and symmetric (the latter property actually implies that  r is a constant 

multiple of the restriction of the Killing form B(., .) of g to q x q.) In 

Example 1.5 we have that  r can be identified with the Killing form of the 

Lie algebra 'g of 'G, and thus 'G is semisimple as a symmetric space for 

'G • 'G if and only if it is a semisimple Lie group. It is clear that  the 

Ricci tensor gives rise to a G-invariant pseudo-Riemannian structure on a 

semisimple symmetric space X. 

A symmetric pair (G, H) is called a semisimple symmetric pair if G is 

semisimple. One can prove that  a symmetric space X is semisimple if and 

only if there is a semisimple symmetric pair (G,H) with G acting on X 

by affine transformations, such that  X is the symmetric space G / H  (in 
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particular, if X is semisimple, then the group G ( X )  of displacements is 

semisimple). Again it is noted that the same space X with the same sym- 

metries may correspond to several symmetric pairs (G, H), among which 

only some are semisimple. In the following, when I speak of a semisimple 

symmetric space G / H ,  it is to be understood that (G, H) is a semisimple 

symmetric pair. 

As motivation for restricting the attention to semisimple symmetric 

spaces it is noted that an irreducible symmetric space (one that has no 

nontrivial invariant "subsymmetric spaces") is either semisimple or one- 

dimensional. Note, however, that none of the spaces mentioned in Exam- 

ples 1.1, 1.2, and 1.4 are semisimple, since the Ricci tensor in these cases 

is the trivial 2-form. For this reason it is sometimes more convenient to 

extend focus a bit and consider reductive symmetric spaces. By definition, 

in a reductive symmetric space every invariant subsymmetric space has an 

invariant complementary subsymmetric space. Equivalently, a symmetric 

space is reductive if it is a symmetric space G / H  for a symmetric pair 

with G reductive (a reductive symmetric pair). The pairs in Examples 1.1 

and 1.4 are reductive, whereas that in Example 1.2 (where G is a solv- 

able Lie group) is not reductive. Note that reductive symmetric spaces 

are only slightly more general than semisimple symmetric spaces, since any 

reductive group G is the product of its semisimple part and its center. 

Example 1.6. Hyperbolic spaces. Let p and q be positive integers, and let 

X = Xp,q be the real hyperbolic space 

2 2 2 --1} {x C R p+q I x 2 + . . .  Jr- Xp - Xp+ 1 . . . . .  Xp+q 

( i fp  - 1 it is also required that x l > 0 to get only one sheet of the 

hyperboloid), then X is the symmetric space corresponding to the pair 

(SOt(p, q), S O t ( p -  1, q)) (the involution of G is given by a(g) = I g I  where 

I is the diagonal matrix with diagonal entries 1 , - 1 , . . . , - 1 ) .  Thus X is a 

semisimple symmetric space except if p = q = 1 (in which case X _~ R is 

reductive). It has a pseudo-Riemannian structure of index ( p -  1, q). Sim- 

ilarly, one can define hyperbolic spaces over the complex and quaternion 

fields; when viewed as real manifolds they (or rather, their projective im- 

ages) correspond to the symmetric pairs (SV(p, q), S(U(1) x U ( p -  1, q)) and 

(Sp(p, q), Sp(1) x S p ( p -  1, q)) (when formulated suitably, the construction 



Semisimple Symmetric Spaces 101 

can be given a sense even for the Cayley octonions, but only when (p, q) is 

(2, 1) or (1, 2), where one gets that  G is the exceptional group G = F4(-20)). 

Example 1.7. Symmetric spaces of SL(2, R).  Let G = SL(2, R).  There are 

two (nonconjugate) involutions of G, given by 

~9(ab) -- ( d -c  ) and o'(ab)--(adb ) 
c d  - -  a c d  - c  " 

To these involutions correspond three symmetric spaces: G/G e, G/G ~, 
and G/G~. The first two can be realized within ~[(2, R)  as the spaces 

{YIB(Y, Y) = ~}, with e = -t-1, respectively; the action of G is then the 

adjoint action. It follows that  they are equal to the spaces X1, 2 and X2,1 

of the previous example. The third is a double cover of the second (here 

the action does not factor through the adjoint map). 

Example 1.8. Riemannian symmetric spaces. Let G be a connected linear 
semisimple Lie group, and let 0 be the Cartan involution of G. Then the 

fixed point group K = G e is a maximal compact subgroup of G. Let 

g = ~ + p be the Car tan decomposition of g, then the Killing form B(., .) 

is positive definite on p. Thus G/K is a semisimple symmetric space, and 

its structure is Riemannian. 

As it is apparent from the title, the goal of these lectures is to do hat- 

monic analysis on semisimple symmetric spaces. Looking back at the def- 

inition I gave of harmonic analysis, it should first of all be noted that  a 

semisimple symmetric space does carry an invariant measure associated 

to the nondegenerate 2-form r (I shall return to this measure in the next 

lecture). Moreover, it is also encouraging for the mentioned program of 

obtaining spectral decompositions that  the algebra D(G/H) of all the in- 

variant differential operators on G/H is known to be commutative, and 

that  the formally self-adjoint ones among these operators are essentially 

self-adjoint operators on L2(G/H) (I shall return to these points in Lecture 

4). Thus they will have a simultaneous G-invariant spectral decomposition. 

The program of finding an explicit Plancherel decomposition for a gen- 

eral semisimple symmetric space G/H is too ambitious a task for these 

lectures. In fact, as a consequence of Example 1.5 it would necessarily ex- 

tend Harish-Chandra 's  work on harmonic analysis for semisimple groups. 

Indeed such a result does not exist in the mathematical  literature of today 
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(though a result like that  has been announced by Oshima and Sekiguchi) 

only special cases have been treated. Most of the known examples are 

spaces of rank one (the notion of the rank of G / H  will be defined in the 

next lecture). In particular, all the spaces mentioned in Example 1.6 are of 

rank one, and for these spaces the above-mentioned "Plancherel program" 

has been carried out. The basic idea is to introduce a kind of polar coor- 

dinates on X, in which the radial part of the Laplace-Beltrami operator L 

(which exists on any semisimple symmetric space, thanks to the pseudo- 

Riemannian structure) becomes a singular ordinary differential operator, to 

which a general theory of Weyl, Kodaira, and Titchmarsh can be applied. 

However, this theory is not applicable in higher rank, since one cannot re- 

duce in any way to an ordinary differential operator. (See the notes at the 

end for more details and a list of references.) 

Apart from the cases mentioned above, the harmonic analysis program 

has also been carried out in the class of Riemannian symmetric spaces (see 

Example 1.8). In this case explicit inversion and Plancherel formulae are 

known from the work of Harish-Chandra and Helgason. I shall return to 

this case later, as a motivating example. 

In these lectures I shall consider general semisimple symmetric spaces, 

but with a more moderate goal than the full decomposition of g. I shall 

now describe this goal. It is known from Harish-Chandra's work on the 

group case mentioned in Example 1.5 that  g decomposes into several se- 

ries of representations, the most famous of which are the "discrete series" 

and the "(minimal) principal series." The former enters discretely into the 

decomposition of g (as in Example 1.3) and the latter enters as a direct in- 

tegral over a continuous parameter (as in Examples 1.1 and 1.2). A similar 

phenomenon is expected (and indeed seen in the cases where the program 

has been carried out) for the general semisimple symmetric space. In short, 

the goal of these lectures will be the generalization of the (minimal) prin- 

cipal series part, which will be called "the most continuous part" of the 

decomposition (the reason for this terminology is that  in general one ex- 

pects several series of representations, each parametrized with a continuous 

parameter running in a finite dimensional real vector space, and the series 

that  we shall consider here are those for which this parameter space has 

the highest dimension). 

Even this goal is out of reach in eight lectures, at least with full at- 

tention to details, but at least we shall reach the stage where the main 
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theorem concerning this decomposition can be stated (Theorem 7.1). In 

lectures 2-6 leading up to this, the basic structure of G/H and the related 

representations of G will be developed. Finally, Lectures 7 and 8 will be 

devoted to a sketch of the proof of the main theorem. 

In the notes at the end some historical remarks are given, together with 

references for the skipped proofs. In particular, the notes to this lecture 

contain some hints about the discrete series for G/H. I am not going to 

explain this series any further during these lectures, since I shall not be 

using it. 



L E C T U R E  2 

Structure theory 

In the Introduct ion I defined the notion of a semisimple symmetric  space 

X - G / H .  In this lecture I shall discuss some of the basic s t ructure of X.  

For simplicity it is assumed that  the semisimple Lie group G is connected 

and linear, and tha t  the subgroup H is connected (for various reasons one 

would actually like to consider a more general class, the so-called Harish- 

Chandra  class, of reductive symmetric  spaces, but I shall not do so here, 

since the generalization usually is ra ther  straightforward).  Let 0 be the 

Caf tan  involution of G with corresponding maximally compact  subgroup 

K,  and with the corresponding Car tan  decompositions g - t~ | p and G - 

K exp p. 

Recall tha t  a is the involution of G for which we have H - G~. In 

general it may not be the case tha t  a and 0 commute,  but  this can always 

be accomplished by replacing a with a conjugate ag = A d g - l o  (y o A d g  

for some g C G. 

P r o p o s i t i o n  2.1. There exists g C G such that the conjugate involution 

fig commutes  with O. 

Proof. I shall not stop to prove Proposi t ion 2.1 here. 

references. 71 

See the notes for 

Replacing a by a conjugate corresponds to replacing the chosen origin of 

X with another  point. Since this does not affect the harmonic analysis on 

X with respect to G, we shall from now on assume that  this has been done. 

At the same time H is replaced by a conjugate. Thus we assume that  a 

commutes  with 0, and then we also have tha t  a ( K )  = K and O(H) = H.  

Thus H is a connected linear reductive group and K n H is a maximal  

compact  subgroup. In particular,  it follows tha t  K A H is connected. 

Let g = O | q be the decomposit ion of g induced by a (I shall use the 

same symbol for an involution on G and its differential on g). Then  we have 

tha t  ~ and q are 0-invariant, and tha t  ~ and p are a-invariant.  Moreover 

104 
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we have the joint decomposition 

(2.1) .g-- t~n~ �9 t~nq Q pAi l  G ::,. n q. 

Note also that  since the two involutions commute, their product aO is also 

an involution. Hence we have three symmetric pairs" (G,K)  - (G,G~ 

(G,H)  - (G, G~), and (G, G~~ For later purposes it will be useful with 

some names related to the latter pair: Let 

G+ - G[ O, g+  _ gzo _ t~ N b @ P N q, a n d  ft- -- t~ N q �9 p N t]. 

Since O(G+) - G+ we have that  G+ is a connected linear reductive group 

with the maximal compact subgroup K n G+ - K n H. 

Example 2.1. Let X be the real hyperbolic space G / H  = SOe(p, q ) / S O e ( p -  

1, q) as in Example 1.6. In this case K = SO(p) x SO(q) and the decom- 

position (2.1) of the Lie algebra g = ~o(p, q) is indicated in the following 

diagram, which shows where the matrices in each of the four subspaces 

have their nonzero entries. 

1{ 
p - l {  

q{ 

1 p - 1  q 

0 t~nq pnq 
t~nq t~nb pnb 
pnq pnl~ t~nb 

It follows that  g+ ~ ,~o(p-  1) x ~0(1, q). 

For the semisimple group G there are four important decompositions" 

G - K exp p 

G - K A K  

G - K A N  
_ 

G - U~cwNCvP 

(the Cartan decomposition), 

(the K A K  decomposition), 

(the Iwasawa decomposition), 

(the Bruhat decomposition). 

(The K A K  decomposition is sometimes also called the Cartan decompo- 

sition. / In this and the following lecture we shall be looking for related 

decompositions for the semisimple symmetric space G / H .  
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The Car tan  decomposit ion G = K exp p __ K x p implies tha t  the sym- 

metric space G / K  as a manifold is diffeomorphic via the exponential  map 

to the Euclidean space p. The direct analog of this, tha t  G/H ~_ q, is false 

in general. For this reason the exponential  map exp: q --+ G/H is most 

useful locally around the origin. The following proposit ion may be seen as 

a generalization of the Car tan  decomposition. 

P r o p o s i t i o n  2.2. The map (k, II, X)  ~-~ k exp Y exp X is a real analytic 

diffeomorphism of K x (p M q) x (p N [1) onto a. 

It follows tha t  G/H is diffeomorphic to the vector bundle K x KnH P N q 

over K / K  N H (where K M H acts on p N q by the adjoint action). 

Proof. Clearly the map is real analytic. We will now construct  an inverse 

map. Let g C G be given. By G = K e x p p  there is a unique S E p such 

tha t  g E K exp S. 

Let us analyze the relation we want, tha t  is g C K exp Y exp X with 

Y C p n q and X E p M 1~. If we had this we would have 

(2.2) exp 2S = (Og)-lg = exp X exp 2Y exp X, 

and hence also 

exp 2aS  = exp X exp - 2Y exp X. 

Eliminat ing Y this would imply 

(2.3) exp 2oS = exp 2X exp - 2 S  exp 2X. 

We shall now solve this equation with respect to X.  We use Lemma 2.3 

below, which shows tha t  if T C p is defined by 

(2.4) exp 2T = exp - S  exp 2aS  exp - S ,  

then (2.3) is equivalent with 

(2.5) exp 2X = exp S exp T exp S. 

This analysis shows how to obtain X.  Given g E K exp S we define X 

by (2.5), where T is defined by (2.4). Next we define Y by (2.2) and k by 

g = k exp Y exp X.  It is easily verified tha t  g ~ (k, Y, X)  is the inverse 

map we are looking for. [-1 , 
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L e m m a  2.3. Let U,S E p be given, and let T E p be defined by the 

expression exp 2T -- exp - S  exp U exp - S .  Then the equation exp U - 

exp X exp - 2 S  exp X has the unique solution X E p given by exp X - 

exp S exp T exp S. 

Proof. The proof is straightforward. [::] 

We shall now see how the KAK-decomposit ion can be generalized to 

G/H.  In the next lecture I will then take a look at the other decomposi- 

tions. 

First I would like to recall the restricted root theory for G / K .  Let a be 

a maximal  abelian subspace of p (such a space is called a Cartan subspace 

for G/K) .  It is unique up to conjugacy by K.  The elements of ad a can be 

simultaneously diagonalized, with real eigenvalues (for this reason a is said 

to be split). The nonzero eigenspaces 

(2.6) 9~ - ( Y  E g I [ H , Y ] -  ~ ( H ) Y  for all H E a} 

with c~ E a* nonzero are called the root spaces and the corresponding c~'s 

the restricted roots. The set of restricted roots, denoted ~(a,  g), is a root 

system (it satisfies the axioms of an abstract  root system).  Note however 

tha t  in contrast  to the diagonalization of a Car tan  subalgebra of a complex 

Lie algebra where the root spaces are always one-dimensional, the root 

has a multiplicity ms  - dim g~ which may exceed 1. Moreover, both ~ and 

2c~ can be roots. The eigenspace go is the centralizer of a. By maximali ty  

of a we have g0 n p - a. Denoting the centralizer of a in t by m, we have 

g0 - a (~ m, and hence 

Choose a positive set ~E+(a, g) for ~(a,  g), and let n and fi denote the sums 

of the root spaces for the positive and negative roots, respectively, then we 

get the Iwasawa and Bruhat decompositions of g, 

g = t @ a @ n = f i @ m @ a O n .  

A regular element H E a is an element for which a ( H )  r 0 for all a E 

~(a,  g). A connected component of the set of regular elements is called 
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an open Weyl chambe~ in particular we have the positive chamber a + 

corresponding to E+(a ,g) ,  where the positive roots take positive values. 

Finally, the Weyl group W(a, g) is defined as the quotient of the normalizer 

NK(a) with the centralizer M = Z/((a); it acts naturally on a and coincides 

via this action with the reflection group of the root system E(a,g) .  In 

particular,  it acts simply transitively on the Weyl chambers as well as on 

the different choices for E+(a,  9). 

Let A = expa  and A + = expa  +, then the K A K  decomposition says 

that  every element g C G can be writ ten as g = klak2 with hi, k2 C K 

and with a C A. The a C A is uniquely determined up to conjugacy by 

W(a,  9); in particular it can be chosen in the closure A + of A +. This 

decomposition is the basis for the use of polar coordinates on G/K: the 

map (kM, a) ~ kaK C G / K  maps K / M  • A + onto G / K  and it maps 

K / M  • A + diffeomorphically onto an open dense subset of G/K.  

We now return to the setting of semisimple symmetric spaces. Let aq be 

a maximal  abelian subspace of p n q. Since 9+ = ~ n ~ | p N q is the Car tan  

decomposition of 9+, and K n H is a maximal compact subgroup of G+, we 

can apply the theory outlined above to G+ and obtain that  aq is unique up 

to conjugacy by K n H. Moreover, let E(aq, 9+) be the corresponding set 

of restricted roots, E+(aq, 9+) a set of positive roots, a + the corresponding 

positive chamber, A + - expa  + and W K N .  - -  N K A H ( f l q ) / Z K N H ( f l q )  - -  

W(aq, 9+) the Weyl group. The KAK-decomposition applied to G+ gives 

that  G+ - (K n H)A + (K n H). 

T h e o r e m  2.4. (KAqH-decomposition.) Every element g C G has a de- 

composition as g = kah with k E K, a E Aq and h C H. In this decompo- 

sition the a is unique up to conjugacy by WKN H. The mapping 

(2.7) (kZKnH(aq), a ) ~  kaH E G / H  

maps K/ZKnH(aq) • A + onto G/H,  and it maps K/ZKnH(aq) • A+q dif- 

feomorphically onto an open dense subset of G/H.  

Proof. This follows from Proposition 2.2 combined with the K A K  decom- 

position for G+ and the Car tan  decomposition H = (HNK)exp(pN[~) .  I-7 

The map (2.7) is called polar (or spherical) coordinates on X. 
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Example 2.2. Let X be as in Example  2.1, tha t  is 

X - SO~(p, q)/SO~(p - 1, q) 
2 2 -~ {X C R p+q I x 2 + . . .  + X p - X p +  1 2 - 1 }  . . . . .  Xp+q 

(with Xl > 0 if p -- 1). For 1 <_ i , j  <_ p+q let Eij denote  the (p+q) x (p+q) 
matr ix  with 1 on the ( i , j ) t h  entry and zero on all o ther  entries, and let 

Y - Ep+q,1 + El,p+q. Then  f l q  - -  R Y  is maximal  abel ian in p n q. The 

central izer of Y in K n H consists of the elements  of the form 

1 0 0 0 

0 V 0 0 

0 0 W 0 

0 0 0 1 

where V C S O ( p -  1) and W C S O ( q -  1). Hence K/ZKnH(aq) can be 

identified with S p -1  X S q-1 , and the polar  coordinate  map  is then  given by 

S p -1  X S q-1 X R ~ ( v , w , t )  

~-> x ( v ,  w,  t) -- (v I cosh  t , . . . ,  Vp cosh  t, w 1 sinh t , . . . ,  Wq sinh t) C X. 

Note tha t  if p = 1 or q = 1 we should read S o as {1}. Note also tha t  there  

is a significant difference between the cases q > 1 and q = 1. In the former 

case we have x(v, w , - t )  = x ( v , - w ,  t) and the map  is a diffeomorphism of 

Sp-1 X S q- 1 X R + onto an open dense set, whereas in the la t ter  case one has 

to use bo th  signs on t in order to get an open dense set in X.  In the te rms  

of Theorem 2.4, the open chamber  a + is different in the two cases. The 

explanat ion  is tha t  (as ment ioned  in Example  2.1) g+ = ~o(p- 1) x ~o(1, q), 
which means  tha t  E(aq, g+) and WKnH are trivial  when q = 1, whereas 

otherwise WKnH --~ {+1}. 

It will be very impor t an t  for us to be able to in tegrate  over G/H. As 

ment ioned in the In t roduct ion ,  a semisimple symmet r ic  space does have 

an invariant measure.  This measure  is unique up to scalar mult ipl icat ion.  

The following theorem gives a formula for it in polar  coordinates.  

For c~ C aq we define g~ in analogy with (2.6) by 

g~ -- (Y  C g l [ H , Y ] -  (~(H)Y for all H C aq}, 
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and  we denote  by E(aq, 9) the  set of those nonzero a ' s  for which 9s # 0. As 

we shall soon discuss this set is a root  system. In par t icular ,  this means  tha t  

we can select a posit ive set E+(aq,  9). Note  tha t  E(aq, 9+) C E(aq, g). We 

require tha t  E+(aq,  g) is chosen such tha t  it contains the  set E+(aq,  g+).  

Note  also tha t  aO(gs) = 9s,  which shows tha t  9s decomposes  as 9s = 

9 + | 9~ where 9~ - 9s N 9• Let m s  - dim 9s be the  multiplicity of c~, 

and  define rn~ - dim 9~, then  m s  - m + + rn~,  and  m + is the  mult ipl ici ty  

of c~ as a member  of E(aq, 9+). Let 

aEE+ (aq,tt) 

sinh m+ c~(Y)cosh m~ c~(Y) 

f o r Y  C aq. 

T h e o r e m  2.5.  An invariant measure dx on X = G / H  is given by 

/ x  f ( x ) d x  -- / g  j[a+ f (k exp Y . o )J (Y)  d Y  dk, 

where d Y  denotes a Lebesgue measure on aq and dk a Haar measure on 

K ,  and where the Jacobian J ( Y )  is given above. 

Proof. I give the  proof  only in the  special case of the  example  below. W1 

Example 2.3. As before let X be the  real hyperbol ic  space. On R p+q the  

Lebesgue measure  dx = d x l . . ,  dxp+q is invariant  for G = SO~(p, q). If we 

use the  polar  coordinates  (v, r) C S p - i  • R + and (w, s) C S q-1 • R + on 

the  first p and  last q entries, respectively, we get 

dx = dv dw r p- 1dr s q- l ds , 

where dv and dw are the  ro ta t ion  invariant  measures  on the two spheres.  

Res t r ic t ing  to the  open set where r > s we can write the  pair  (r, s) as 

(~Ccosht,~Csinht), and  by compu ta t i on  of the  Jacobian  we have dr ds = 

~d~ dt. Hence we get in these coordinates  tha t  

dx = dv dw ~P+q- l d~ cosh p-  1 t sinh q- 1 t dt. 

Now X is given by ~ = 1, and we get t ha t  the  measure  

dv dw cosh p-  1 t sinh q- 1 t dt 
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is invariant on X (along the way we have implicit ly assumed tha t  p, q > 1 

but  the a rgument  is quite easily extended to the other  cases as well). This 

result is in accordance with Theorem 2.5. Indeed, we have seen tha t  aq = 

R Y  where Y - Ep+q,1 n t- El,p+q. It is easily seen tha t  E(aq, g) - {-t-a} 

where a ( Y )  - 1, and tha t  the root  space for a is the span of the vectors 

X i  - -El+i,1 + E1,i+1 ~- Ep+q,i-.F1 n t- E l+i ,p+q E g -  

for i - 1 , . . . , p -  1 and the vectors 

Z j  - Ep+j ,  1 -Jr- E l , p + j  n a Ep+q,pwj  - Ep_Fj,pWq E 1~+ 

for j -- 1 , . . . , q -  1. Hence rn~ - p -  1 and m + - q -  1. 

I will end this lecture by giving some more details about  E(aq, g). Let a 

be a maximal  abel ian subspace of p containing aq, then a N q = aq by the 

maximal i ty  of aq. Define the Weyl group of aq in g by W -- W(aq, g) = 

N K ( a q ) / Z K ( a q ) .  The first s t a t emen t  of the following proposi t ion was men- 

t ioned earlier. 

T h e o r e m  2.6.  The set E(aq,g)  is a root system. Its reflection group is 

naturally identified with W(aq, g), and each element w in this group has a 

representative (v C NK(aq) which at the same time also normalizes a. 

Proof. See the notes for a reference. 77 

The s i tuat ion is thus tha t  we have two root systems on aq, •(aq,g) 

and the subset  E(aq ,g+) .  Correspondingly,  we have two Weyl groups, 

W = W(aq,g)  and the subgroup WK• H -~ W ( a q , g + ) .  The quot ient  of 

these two groups turns  out to be very impor tan t .  If a + is a Weyl chamber  

for E(aq, 0+), it contains in general several chambers  for E(aq, g), and these 

subchambers  can be pa ramet r i zed  by W / W K n H .  

Example 2.4. Let X be as in Examples  2.1-2.3. We saw tha t  E(aq,g) - 

{-t-a}, which is clearly a root system. The Weyl group is W ~_ {=El}. We 

also saw tha t  E(aq,g+) - E(aq,g) if q > 1 and E(aq,g+) - 0 if q - 1. In 

the la t te r  case WKnH is str ict ly smaller than  W. 
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Example 2.5. Let G/H = SL(n,R)/SOe(1,  n -  1). Here the involution 

is given by a(x) = JO(x)J, where J is the diagonal matr ix  with entries 

- 1 ,  1 , . . . ,  1. A maximal abelian subspace of pNq is the space aq of diagonal 

matrices in 9 = ~[(n, R).  Then aq is in fact at the same time maximal  

abelian in 9. The restricted root system E(aq,9) is then An-I ,  tha t  is 

E(aq, 9) = { e i -  ej [ 1 < i ~ j < n}. All roots have multiplicity one in this 

case. The reflection group W is the corresponding group of permutat ions 

of the n entries. 

It is easily seen that  G+ consists of the matrices 

(a0) 
0 A e SL(n ,R) ,  

where A E G L ( n - I , R )  and a -1 - d e t A  > 0. Hence E(aq,9+)  - { e i - e j  [ 

2 _< i ~ j _< n} and WKnH is the subgroup of W leaving the first entry 

fixed. Thus the quotient W/WKnH has n elements. 

Example 2.6. The group case. Let G be 'G x 'G and H the diagonal, so 

tha t  G/H is isomorphic to 'G by the map (x, y)H ~ xy -1. I shall denote 

objects related to 'G with a ' in front of the symbol used for the similar 

object defined earlier for a group G. For example '0 is a Car tan  involution 

for 'G and 'K is the corresponding maximal compact subgroup. This said, 

we have the following equalities" 0 -  '0 x '0, K -  'K x ' K  etc. A maximal 

abelian subspace aq of p A q is obtained by letting aq - { ( -Y,  Y) I Y C 'a}, 

where 'a is maximal abelian in 'p, and its root system is 

E(aq, g) - {a ]3& e E('a,'9)" a ( - Y ,  Y) - &(Y)}. 

The map a ~-+ & is a bijection (the root space corresponding to a is g~ - 

' g -a  x 'ga, thus the multiplicity of a is twice the multiplicity of d). Hence 

E(aq, g) is really a root system. Its Weyl group W is easily seen to consist 

of the elements w given by w(-Y ,  Y) = (-(vY, (vY) for some ~b e 'W. As 

a representative for w we can take any element (Xl,X2) C K for which 

xl ,x2 E 'K both are representatives for zb. Clearly this element (Xl,X2) 

normalizes a = 'a x 'a; thus the final s tatements  of Theorem 2.6 are verified 

for this case. In particular, if we take Xl = x2 we obtain a representative 

in K N H, and hence we have WKnH = W in this case. 



LECTURE 3 

Parabolic subgroups 

In this lecture I shall begin by describing the parabolic subgroups of G 

related to G/H. As in the group case, parabolic subgroups are indispens- 

able for the harmonic analysis; all the representations of G that  enter in 

the decomposition of L2(G/H), except the discrete series, are (supposedly) 

constructed by means of induction from parabolic subgroups. 

Recall that  the minimal parabolic subgroups of G are the conjugates of 

the subgroup P0 = MoAoNo. Here A0 and No are the subgroups given in 

the Iwasawa decomposition G = KAoNo, and M0 is the centralizer of A0 

in K (note the deviation from earlier notation; since we shall be dealing 

mainly with other parabolic subgroups than P0, it is convenient to reserve 

M, A, and N for a better use). It follows from the Iwasawa decomposition 

that  all minimal parabolic subgroups are conjugates of P0 by elements from 

K. 

Recall also that  a parabolic subgroup of G is a subgroup containing a 

minimal parabolic subgroup, and that  each parabolic subgroup P has a 

Langlands decomposition P = M1N = M A N  _~ M x A x N, where N is 

nilpotent and M1 = M A  is reductive, and where A is the vectorial part of 

the center of M1. 

The parabolic subgroups with which we shall be dealing mostly here are 

the so-called a-minimal parabolic subgroups P. Before I introduce these, I 

need some notation from the previous lecture. Let aq be a maximal abelian 

subspace of pAq. Given a set E + (aq, 9) of positive roots for the root system 

of aq in g, let n = n(E+(aq, 9)) be the sum of the root spaces corresponding 

to the roots in this set, and put N = N(E+(aq,g)):= expn. Let M1 denote 

the centralizer of aq in G, and put P = P(E+(aq,g)) :  = MIN. It is easily 

seen that  M1 normalizes N and hence P is a subgroup of G. By definition, 

a a-minimal (or minimal aO-stablc) parabolic subgroup of G is a conjugate 

by an element from K cq H of P(E+(aq ,g) )  for some set E+(aq,t~). It is 

clear that  the 0-minimal parabolic subgroups are the minimal parabolic 

subgroups. The terminology is motivated by the following lemma. 

113 
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L e m m a  3.1. The a-minimal parabolic subgroups are parabolic subgroups 
satisfying the identity aO(P) = P, and they are minimal among all parabolic 
subgroups P satisfying this identity. 

Proof. Only the first s ta tements  will be proved, since the last one will not 

be used. 

Extend aq to a maximal  abelian subspace a0 of p, then E(aq, 0) consists 

of the nonzero restrictions to aq of the elements of E(a0, 0). Given a positive 

set E+(a0,0)  for E(a0,0),  the set E+(aq, 0) of its nonzero restrictions to aq 
is a positive set for E(aq, 0) (and any positive set for E(aq, 0) is obtained 

by restriction from a (possibly several) E+(a0,0)  the sets E+(a0,0)  

and E+(aq,0)  are said to be compatible). It follows that  n(E+(aq, 0)) is 

spanned by those root spaces from no that  correspond to roots with nonzero 

restrictions to aq. The remaining root spaces are contained in ml,  the 

centralizer of aq. It follows that  No C P(E+(aq,O)). Since we also have 

MoAo C M1 we conclude that  Po C P(E+(aq, 0)). Hence P = P(E+(aq, 0)) 
is a parabolic subgroup. The identity aO(P) = P easily follows from the 

fact that  the composed involution aO acts trivially on aq. 
By definition a a-minimal  parabolic subgroup is a K N H-conjugate  of 

a subgroup of the form P(E+(aq ,  0)), hence it is also a a0-stable parabolic 

subgroup. [=] 

Example 3.1. Let us again take a look at X = SO~(p, q) /SOr  1, q). As 

in the previous lecture we have that  aq = R Y  where Y = Ep+q,1 + El,p+q. 
We then get that  the centralizer M1 consists of the matrices in SOr q) 

of the form 

(3.1) 

0 0) (cosh  0 sinh ) 
0 m 0 0 1 0 , 

0 0 e s inht  0 cosht  

where ~ = +1, m C S O ( p -  1, q -  1), and t E R.  The root spaces gen- 

erating n were described earlier (Example 2.3). It follows easily that  P is 

the subgroup of G = SO~(p,q) leaving the space spanned by the vector 

(1, 0 , . . . ,  0, 1) C R p+q invariant. Note that  P is only minimal if p = 1 or 

q - 1 .  

Example 3.2. The group case. The parabolic subgroups of 'G x 'G are 

given by P = 'P1 x 'P2, where 'P1, 'P2 are parabolic subgroups of 'G. It is 
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clear that  P is a0 stable if and only if 'P1 and 'P2 are opposite, that  is, 

'P1 - 'P2"-  0('P2), and that  P is minimal among these if and only if in 

addition we have that  'P1 is minimal. Thus the minimal a0-stable parabolic 

subgroups are the parabolic subgroups 'P0 x 'P0, where 'P0 is a minimal 

parabolic subgroup of 'G. Comparing with Example 2.6 we see that  these 

are exactly the parabolic subgroups we get from the construction above. 

Fix Y]+(aq, ~) and let P - P(2+(aq,l~)).  As in the proof of Lemma 3.1, 

let Po - M o A o N o  be a minimal parabolic subgroup corresponding to a 

compatible choice E+(n0, g) of positive roots, then P0 C P. Note that  we 

have a(n0) - a0 by the maximality of aq (if Y C n0 then Y -  a(Y) must 

belong to aq, and it follows that  a(Y) C n0). Hence M0 is also a-stable. 

Let P - M A N  be the Langlands decomposition of P,  then N = 

N(2+(nq , l~ ) )  and M1 - M A  is the centralizer of nq. Since nq is a-stable 

we have that  M1 is also a-stable. Moreover, the vectorial part A is a-stable 

as well (use that  n is the intersection of the kernels of all roots of E(n0, g) 

that  vanish o n  a q ) ,  and so is M (use that  M - MeMo) .  Since conjugation 

by K n H preserves these properties it follows that  the Mp and the AQ are 

a-stable for any a-minimal parabolic subgroup Q - M Q A Q N Q .  

In particular we have that  A splits as the direct product A - AqAh  

where Ah -- A n H and Aq - exp aq. We now have the following a-stable 

subspaces of p, 

flq C fl C flO 

with 

(3.2) nq - a N q -- a0 N q and nh -- a N ~ C ao N ~. 

In contrast to the case of minimal parabolic subgroups, the M-par t  of 

a a-minimal parabolic subgroup is in general not compact. The following 

lemma shows that  this is actually not a serious complication, from the 

symmetric space viewpoint. Note first that  since M is a-invariant, the 

homogeneous space M / ( M  N H)  is a symmetric space (note however that  

M, M n H, and their quotient may all be disconnected). 

L e m m a  3.2. The symmet r i c  space M / ( M  n H )  is compact. 

Proof. Let Mn be the connected normal subgroup of M which is maximal 

subject to the condition that  {e} is its only compact normal subgroup. If 
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we prove that  

(3.3) Mn C H 

and that  

(3.4) M = MoMn, 

then it follows that  M/(M n H) ~_ Mo/(Mo n H) is a compact symmetric 

space. 

To see (3.3) note that  the Lie algebra mn of Mn is the Lie algebra 

generated by the intersection m n p .  Since aq is maximal in p O q we have 

m n p C [? from which it follows that  mn C ~. Since Mn is connected we 

conclude that  it is contained in H. 

Finally (3.4), which is valid for any parabolic subgroup, easily follows 

from the fact that  M = MoM,, where Me is the identity component of 

M. [::3 

Example 3.3. For the hyperbolic spaces, we saw in Example 3.1 that  M1 

consists of all matrices in SO~(p, q) of the form (3.1). The decomposition 

of M1 as MA is indicated in this matr ix product; in particular we have 

tha t  A = Aq (with an exception for the case p = q = 2). The group M 

has two components, corresponding to the two values of e (with exceptions 

for p = 1 or q = 1, where ~ is forced to be 1). The elements of M n H are 

obtained by requiring ~ = 1. Thus M/(M n H) has at most 2 elements. 

As mentioned in the previous lecture the quotient W/WKN H is im- 

portant .  Note that  we can identify W/WKA H naturally with the double 

quotient (M n K)\NK(aq)/NKAH(aq) because W ~_ NK(aq)/(M n K),  

WIrnH ~-- NKnH (aq) / (M n K n H) and M n K is a normal subgroup of 

NK(aq). It will be convenient to work with a fixed set of representatives 

in NK(aq) for W/WKnH. This set will be denoted W. By Theorem 2.6 we 

may assume 142 C NK(aO). 
Note that  conjugation by an element w from NK (aq) leaves M invariant, 

and that  hence M/(w(M n H)w -1) = M/(M n wHw -1) is a symmetric  

space, corresponding to the restriction to M of the conjugate involution 

a w-1 . It follows from Lemma 3.2 that  this space is also compact.  
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I now come to the heart of this lecture, which is the description of the 

orbits of P on G/H.  This description may be seen as a generalization of the 

Iwasawa decomposition, from which it follows that  the minimal parabolic 

subgroup P0 has one orbit (acts transitively) on G/K.  In general it turns 

out that  the picture is much more complicated, as can be seen already in 

the group case (Example 3.2). Here P = ,/5 x 'P, and the description we 

are looking for is the description of the ,/5 x 'P double cosets on 'G. This 

picture is given by the Bruhat  decomposition 

m 

' G - U  ~, W'P~'P. 

A description of the P-orbi ts  on the general G / H  will thus be a gener- 

alization of both the Iwasawa and the Bruhat  decomposition at the same 

time. 

It turns out that  in general there is also a finite number of P-orbi ts  on 

G/H,  but here I shall in fact not give the full description of all these orbits. 

Only the open orbits will be described. In the group case we know from 

the Bruhat  decomposition that  there is exactly one such orbit, ,/5,p. As 

we shall see in the following theorem, this corresponds to the fact that  the 

quotient W/WKNH in this case is trivial (just as it is in the case of G/K) .  

The theorem gives a one-to-one correspondence of the set of open P-orbits  

on G / H  with W/WKAH. 

T h e o r e m  3.3. Let P be a a-minimal parabolic subgroup of G with the 

Langlands decomposition P = M A N ,  and let w C NK(aq). The mapping 

qD: M • Aq x N ~ (m, a, n) ~-~ manwH 

gives a diffeomorphism of M / ( M n w H w  -1) x Aq x N onto the open subset 

P w H  of G/H.  Moreover, the union 

(3.5) U~cw P w H  

is disjoint and dense in G/H.  Its complement is a finite union of P-orbits. 

Proof. Only the first s ta tement  will be proved. 

It is easily verified that  ~ gives rise to a map q) from M / ( M N w H w  -1) x 

Aq • N onto the subset ft = P w H  of G/H.  Note that  Ft only depends on 
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the side class ( M  N K ) w N K n H ( a q ) .  It is also clear tha t  for the proof of the 

first s t a tement  we may  take w - e (after tha t  we can apply the s t a t emen t  

for w - e to the parabolic  subgroup w - l p w ) .  

To see tha t  (I): M / ( M  M H )  x Aq x N -+ G / H  is injective we need tha t  

P n U -  ( M  cl U ) A h .  Let m a n  E P N U.  Then  a ( m )  C M and a(a)  C A, 

whereas a(n)  is in the ni lpotent  par t  J~ of the opposite parabolic  subgroup 
_ 

P (because a reverses the sign on all the roots of aq). Since a ( m a n )  - m a n  

and P n P - M A  it follows tha t  n - a (n )  - e. Moreover it also follows 

tha t  a(a)  = a and a ( m )  - m.  Thus  a E Ah as claimed, and then m a  C H 

implies tha t  m also has to be in H (the identi ty a(rn) - m only implies 

tha t  rn is in G~). 

In order to finish the proof of the first s t a tement  it is sufficient to show 

tha t  

(3.6) 9 - - m + a + n + b .  

Indeed, if G is a Lie group and H1, H2 closed subgroups whose Lie algebras 

satisfy 9 - [31 + 02, then  the map  hi ~-~ h i l l2  gives a diffeomorphism of 

H 1 / ( H 1  N / / 2 )  onto an open subset of G / H 2  (use t rans la t ion  by Hi  to 

reduce to a neighborhood of the origin). 

Since 1~ - fi + m + a + n it suffices for (3.6) to prove tha t  fi C n + b- 

Let c~ C E+(aq,  9) and Y E it -~ .  Then  -ac~ is also in E+(aq,  g), and hence 

a (Y)  E g- r  C n. Thus  Y - (Y + a (Y) )  - a (Y)  C t) + n. UI 

Example 3.4. In the case of the hyperbolic space X it follows from the 

theorem above tha t  there is one open P orbit on X,  unless when q - 1, 

where there are two. This can be seen directly as follows (for simplicity 

we assume tha t  we are in the non-Riemannian  case p > 1). Recall tha t  

2 2 2 - 1} and tha t  P is the X -  {x E RP+q l x2 + . . . - k - X p -  Xp+ 1 . . . . .  Xp+q 

subgroup of G leaving the space spanned by the vector e0 - (1, 0 , . . . ,  0, 1) 

stable. Let ft be the set of all elements x C X with (x, e0) - Xl - Xp+q =/= 0 

(here (., .) denotes the s t andard  O(p, q)-invariant bilinear form on RP+q), 

then  it is clear tha t  ft is open and dense in X,  and moreover it is P-  

invariant.  It can be seen tha t  if q > I then  P acts t ransi t ively on ft, whereas 

if q = 1 it divides into the two P-orbi ts  f t i  - {x C X l ( x ,  e0) ~ 0}. 

From the Iwasawa decomposi t ion G - K A o N o  "~ K x Ao x No one 

gets the impor tan t  Iwasawa projection H: G -+ a0, defined by the require- 

ment  g C K e x p H ( g ) N 0 .  Reformulat ing it in te rms of the symmetr ic  
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space G / K  we have the map g K  ~-~ a0(gK) - - H ( g  -1) C a0 given by 

g C e x p a 0 ( g K ) N o K .  Since we have just generalized the Iwasawa decom- 

position to G / H  it is natural  also to look at the corresponding general- 

ization of this projection. Let P - M A N  be a fixed a-minimal  parabolic 

subgroup and let ~t be the open subset P H  of G / H .  Then we define the 

generalized Iwasawa projection a: ft --4 aq by 

g C M exp a (gH)  N H .  

More generally, we can of course similarly define maps aw" P w H  --+ aq for 

each w E NK(aq), but let me for simplicity just concentrate on the trivial 

W .  

Later on it will be useful to know some details about this map. More 

specifically, I shall need the following result. For any u C aq let H ,  C aq be 

the dual element with respect to the Killing form (that is u(Y)  - B(Y,  H , )  

for all Y C aq). Recall from the previous lecture that  rn2 is the dimension 

of the - 1  eigenspace of aO in ft a. 

T h e o r e m  3.4. Let a C Aq be fixed and let Ka be the open subset {k C K I 

ka E ft} of K .  The map 

Ka ~ k ~ a(ka) C aq 

is proper and has the image 

(3.7) a(Kaa) - conv(WKnH log a) + F - ,  

where cony denotes convex hull, and where F -  is the closed convex cone in 

aq spanned by the vectors Ha, where c~ C E+(aq, 1~) with rn~ ~ O. 

(Recall that  a continuous map is called proper if the preimage of each 

compact set is compact.) 

Before discussing the proof of this theorem, let me give some examples. 

Example 3.5. Let a be the Car tan  involution so that  G / H  - G / K .  Then 

f~ - G so that  K a  -- K ,  and moreover m~ - 0 for all c~ so that  F -  - {0}. 

The theorem then states that  the map k ~-+ H(ak)  has the image 

H ( a K )  - conv(W0 log a), 

where W0 is the Weyl group of the root system E(a0,1~) (in this case the 

properness is obvious). This result is known as Kostant's convexity theorem. 
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Example 3.6. In the group case, the theorem comes down to the following 

result (for simplicity I omit the "s). 

P r o p o s i t i o n  3.5. Let b" NoAoMoNo -+ ao be the Bruhat projection de- 

fined by g C No exp b(g)MoNo. Let a C Ao be fixed and let (K • K)a be 

the open subset {(kl ,k2) l klak2 C NoAoMof~o} of K • K.  Then the map 

(K X K)a ~ ( ]g l ,  ]g2)I - -}  b(klak2) e ao 

is proper and has the image 

(3s) b ( K a K  ;3 NoAoMof~o) - cony(W0 log a) + F0, 

where F0 is the closed convex cone in ao spanned by the vectors Ha for 

E E+(a0, g) (the dual cone to the open positive chamber). 

Proof. Let me indicate a proof of the properness and the inclusion "C" 

of (3.8), independent of Theorem 3.4. I need the following two lemmata, 

whose proofs I omit. See the notes for references. 

L e m m a  3.6. Let nj and ~j be sequences in No and No such that the 

sequence nj~tj converges in G. Then each of the sequences nj and ftj also 

converges. 

L e m m a  3.7. Let H: G -~ ao be the Iwasawa projection. Then H(No) C 

Fo. 

Let (ku ,k2j )  be a sequence in (K x K)a for which b(kljak2j)  stays 

inside a compact set. To get the properness in Proposition 3.5 we must 

prove that  (kl j ,k2j)  has an accumulation point in (K x K)a. Write 

kljak2j - n j a j m j f t j  C NoAoMoNo, 

then aj - exp b(kljak2j).  By passing to a subsequence we may assume that  

the sequences klj, k2j, aj, and mj converge. Using that  AoMo normalizes 

No it then follows from Lemma 3.6 that  nj and nj also converge. Hence 
_ 

the limit of kljak2j belongs to NoAoMoNo. This proves the claim, and 

hence the properness of b. 
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To prove that  the left side of (3.8) is contained in the right side note 

that  if x - nbmf i  then log b - H(xfi  -1). Hence 

b ( K a K  N NoAoMof?o)  C H ( a K N )  - H ( a K )  + H ( N ) .  

Now use Example 3.5 together with Lemma 3.7. El 

Proof of Theorem 3.4. I shall only give part  of the proof. The proof of the 

properness is based on the following observation: 

(3.9) 2a(ka) - b ( k a 2 c r ( k ) - l ) ,  (k C Ka) ,  

where b is the Bruhat  projection (see Proposition 3.5 above). Indeed, if 

we write k a - m  exp(a)nh,  then we have 

ka2o.(k) -1 - kao.(ka) -1 

= m e x p ( a ) n o ( n )  -1 exp(a)a(m)  -1 C N exp(2a)ma(m)  -1N.  

Now N C No, N C iV0 and by (3.3) and (3 .4)we have met(m)  -1 C Mo. 

This gives (3.9), and then the properness easily follows from Proposition 

3.5. 

By a similar computation,  a weak version of the inclusion "C" of (3.7) 

can be obtained as follows. I am going to prove that  

a(ka) e conv(W log a ) +  F, 

where F is the closed convex cone in aq spanned by all the vectors Ha,  

a C P~+(aq, g). 

Choose an element w E W such that  w log a is antidominant with respect 

to 2+(aq,  g), then s log a C w log a + F for all s C W, and hence 

conv(W log a) + F - w log a + F. 

By Theorem 2.6 there exists an element in W0 which normalizes aq and 

acts as w there. Since w log a is also antidominant with respect to E + (a0, g) 

we thus obtain 

conv(W0 log a) + F0 - w log a + F0. 

It now follows from (3.9) and Proposition 3.5 (the part  of it that  was 

proved) that  

a(ka) C w log a + F0. 

It remains to be seen that  F0 N aq - F, but this is quite easy. [3 
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Example 3.7. For the hyperbolic space X we found in Example 3.4 that  

P H  = gt = {x e X I X l - X p + q  ~: 0} if q >  1 a n d P H = ~ +  = {x e X [ 

x l - X p + q  > 0} if q =  1. It is now easily seen that  a : P H  ~ aq is given 

by a(x) = - l o g l x l -  xp+ql Y ,  and Theorem 3.4 can be verified for this 

case. Note the essential difference between the Riemannian ( p -  1) and 

the non-Riemannian (p > 1) cases, and also between the cases q = 1 and 

q > l .  



LECTURE 4 

Invariant differential operators 

I shall now turn to another important  mat te r  for the harmonic analysis, 

the description of the invariant differential operators. 

Let us for the moment  consider any homogeneous space G/H of a Lie 

group G. Let D(G/H) be the set of invariant differential operators on 

G/H; this is a subalgebra of the algebra of all differential operators on X. 

Let U(0) be the universal enveloping algebra of 0c, the complexification of 

0, and denote by U(0) H the subalgebra of elements invariant for the adjoint 

action of H. The elements of U(0) act on G as left-invariant differential 

operators, by means of the action generated by 

d 
(4.1) X f(g) - -~ f (gexp tX)  

t = 0  

for X C 0 and f C C~(G). Viewing functions on G/H as right H-invariant  

functions on G it follows that  there is a natural  action of the elements of 

g(o) H on C~(G/H).  It is easily verified that  this action is an action 

of differential operators on G/H, and that  a homomorphism of algebras 

r" U(O) H -~ D(G/H) is thus obtained. It is clear that  U(O) H n U(O)O 
is an ideal (both left and right) in U(O) H, and that  it is annihilated by 

r. Thus we have a homomorphism, also denoted r, from the quotient 

U(O) H/(U(O) H n U(0)b) in to  D(G/H). 

P r o p o s i t i o n  4.1. Assume that ~ has an H-invariant complement in O. 
Then r is an isomorphism of the algebra U(o)H/(u(o) H N U(0)Oc) onto 

D(G/H).  

Proof. Omitted.  See the notes for a reference. F7 

Assume now that  G/H is a semisimple symmetric space. Then Propo- 

sition 4.1 applies, since q is H-invariant.  

A particularly important  element of D(G/H) is the Laplace-Beltrami 
operator (or Laplacian) L on G/H. As on any pseudo-Riemannian manifold 

123 
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this is defined in local coordinates by 

L ~ _  

1 
V/] det g] E Oj V/] det g]gij Oi, 

where g -- g/j is the pseudo-Riemannian structure and gij is the inverse ma- 

trix. It is an invariant differential operator, because the pseudo-Riemannian 

structure is invariant. On the other hand, we have in U(I~) the Casimir 
. . . .  

element f~ defined by ft - ~i , j  ~/~3XiXj where Xi is a basis of 1~, and .~,3 

the inverse matr ix  of B(Xi, Xj). It can be seen that  L and r(ft) coincide, 

up to a positive scalar multiple. 

Before I continue with the description of D(G/H) for the general semi- 

simple symmetric  space G/H, I will first give the description of D(G/K). 
The description of D(G/K) is based on the Iwasawa decomposition ft = 

n0 | a0 | t~, and on the Poincard-Birkhoff-Witt theorem. From these we get 

that  

U(~) = (no,~U(g) + U(~)~)  ~ U(ao), 

and hence we can define a map '~/o: U(9) --+ U(ao) as the projection with 

respect to this decomposition. Since ao is abelian it is customary to identify 

its universal enveloping algebra with its symmetric  algebra, and write S(ao) 

instead of U(ao). It is not difficult to see that  the restriction of ")/o to 

U(9) K is a homomorphism. Moreover, it is clear tha t  "~0 annihilates U(9)~r 

and hence it follows from the proposition above that  '~/0 gives rise to a 

homomorphism of D(G/K) into S(a). This homomorphism is called the 

Harish-Chandra homomorphism. We denote it also by "Y0. Note that  it 

depends on the choice we made for E+(a0, g), because no depends on it. 

It turns out that  a modified version of '~0 is actually more fundamental  

than "~0 itself. Let p0 E a~) be given by 

1 
po-  E 

c~EE+ (co,g) 
?Ttc~ Ct, 

that  is, half the trace of ad on no, and let Tpo be the automorphism of 

S(ao) generated by Tpo(Y ) = Y + p0(Y), for Y e a0. We now define 

~/o: U(I~) H --+ S(ao) by "y0 = Tpo ~ This map is called the Harish- 

Chandra  isomorphism because of the following theorem. 
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T h e o r e m  4.2. The map ~'o is an algebra isomorphism of D(G/K)  onto 
S(ao) W~ the set of Wo-invariant elements in S(ao). It is independent of 
the choice of ~+ (ao, 9). 

Proof. It remains to be seen that  ~0(D) is W0-invariant for all invariant 

differential operators D, and that  70 is bijective (the independence on 

E + (a0, fl) is an easy consequence of the W0-invariance). 

The proof of the W0-invariance is surprisingly complicated. One proof 

involves the spherical functions ~ on G/K (a reference to a different one 

can be found in the notes). Let me recall how these are defined. As in the 

previous section let H: G -+ a0 be the Iwasawa projection. Then 

(4.2) qDx(g)" -- /K e-(X+~176 

for A C a;,~ and g E G. Clearly each ~ is a smooth function on G/K. I 
shall return to the importance of these functions soon. For the moment, 

let me note the following two facts: 

(a) The spherical functions are eigenfunctions for D(G/K).  In fact we 

have 

D ~  = y0(D, A ) ~  

for all D e D(G/K).  This follows, because the integrand in (4.2) is 

already an eigenfunction with this eigenvalue (this is easily seen). 

(b) We have y)w~ = ~a for all w e 1470 (see [130, Prop 7.15]). 

It follows from (a) and (b) that  70(D, wA) = 70(O, A) as claimed. 

The proof that  70 is bijective is too extensive to be given here. [:3 

Note that  it follows immediately that  D(G/K) is commutative. In fact, 

one can say more: from the theory of finite reflexion groups it follows that  

it is a polynomial ring in dim a algebraically independent generators. 

We shall now generalize this result to G/H. By definition, a Caftan sub- 
space for G/H is a maximal abelian subspace of q, consisting of semisimple 

elements. In particular, there exists a Cartan subspace al containing aq. 

Then aq = al Np. The elements of ad al can be simultaneously diagonalized, 

but in general there will be complex eigenvalues. In analogy with what we 

had for a0 and aq we get a root system E(alc, l~c) (but the complexified 

Lie algebras are needed), and corresponding to each choice of positive set 

E +(al~, gc) an analog of the Iwasawa decomposition gc = nl  @alc @ bc, 
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where nl is the sum of the root spaces corresponding to the positive roots. 

However, this decomposition will not in general correspond to a decom- 

position of the real Lie algebra ft. Nevertheless, the construction of the 

Harish-Chandra homomorphism can be generalized to this setting: a map 

'-y: U(~) -+ U(al)  is defined by projection with respect to the Iwasawa 

decomposition, and this gives rise to a homomorphism from D(G/H) to 

S ( f l l ) .  As before we define -y = Tpl o,.7, where Pl E a~c is half the trace of 

ad on nl, and denoting by W1 the Weyl group of E(al~, ft~) we have: 

T h e o r e m  4.3. The map "7 is an algebra isomorphism of D(G/H) onto 
S(al) W1 . It is independent of the choice of E+(al~, l~c). 

Proof. The proof consists of reduction to Theorem 4.2 by means of an 

important  technique, called "duality". We have seen that  D(G/H) is iso- 

morphic via r to U(I~)H/(u(g)[?c n U(I~) H) (this isomorphism is implicit 

already in the construction of -7 as a map from D(G/H)).  
Define 

g d = t ~ N ~  @ pNq @ i(t~Nq @ pND) Cgc,  

then 1~ a is a real semisimple Lie algebra with the same complexification as 

1~. Let 
U - ~ n ~  |  d 

and 

pd _ p n q | i(t~ N q) - -  qc N gd, 

then 1~ d - t~ d (9 pd is a Cartan decomposition of 1~ d (by this I mean that  

the Killing form is negative definite o n  t~ d and positive definite on pd). The 

pair (gd, t~d) is called the noncompact Riemannian form of the pair (it, 1?). 

Let 

a0 e - aq | i ( a l  n e) -- al~ n ~d, 

then a g is a maximal abelian subspace of pd. Since a0 d and fll have the 

same complexification, the root system E(alc, go) is essentially the same as 

the root system E(a d, 1~ d) (the space a d is the subspace of ale on which the 

roots are real), and their root spaces in g~ are identical. Let (G d, K d) be a 

symmetric pair with (gd, U) as Lie algebras, then Gd/K d is a Riemannian 

symmetric space. Using Theorem 4.2 on Gd/K d we get the Harish-Chandra 
d d S (ao  d)w~ w d isomorphism 3 ,d of u(ga)Kd/(u(ga)Kd NU(g ) t~)onto  , where 

is the Weyl group of E(a0d, ga). Since u(ga)  Kd - U(g) ~c - U(g) H and 
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s ( a d )  Wd --  S(al)W1, it follows from the definition of yd that  it is actually 

identical with y. 71 

As for D(G/K) it follows that  D(G/H) is a polynomial algebra with 

dim al independent generators, and in particular it is commutative. In 

the terminology of the proof above we have actually that  D(G/H) ~_ 
D(Gd/Kd). 

As another application of the technique of proof in Theorem 4.3 we 

get the following: all Cartan subspaces for G/H are conjugate under the 

complex group Hc (they are, however, in general not conjugate under H). 

In particular they have the same dimension; this dimension is called the 

rank of G/H. The dimension of the maximal abelian subspace aq of p A q 

is called the split rank of G/H (because aq is a maximal subspace of q for 

which g splits over the reals). The rank is the number of generators for 

D(G/H). 

Example 4.1. For the real hyperbolic space X = SOe(p, q)/SOe(p- 1, q) we 

have that  the maximal abelian subalgebra aq = R Y  of p A q defined earlier, 

is actually maximal abelian in q. Hence al = aq is a Cartan subspace, 

and X has rank one as well as split rank one. In particular it follows from 

Theorem 4.3 that  D(G/H) consists of all polynomials in the Laplacian. 

Let 3(9) denote the center of U(9), then 3(g) C U(9) H. Let Z(G/H) 
denote the subalgebra r(3(9)) of D(G/H). Note that  for D = r(z) e 
Z(G/H) we have that  the action of D on G/H can also be obtained from 

the left action of 9 on G/H as follows. All the elements of U(9 ) act on G 

as right-invariant differential operators, by means of the action generated 

by 
d 

g(X) f (g) - -~ f ( e x p - t X  g) 
t--0 

for X C 9. Identifying functions on G/H with right H-invariant functions 

on G, this action gives a homomorphism, also denoted g, from U(9 ) into 

the algebra of differential operators on G/H. Clearly, the restriction of 

to 3(9) maps into the invariant differential operators. In fact, it is not 

difficult to see that  g(z) = r(~) for z C 5(9), where u ~-+ ~ is the principal 

antiautomorphism of U(9) determined by X ~+ - X  for X E 9c. 

In general Z(G/H) is a proper subalgebra of D(G/H), but this is actu- 

ally quite exceptional: 
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L e m m a  4.4. If G is a classical Lie group, or if the rank of G/H is one, 
then Z(G/H) = D(G/H). 

Proof. By the same argument as in the proof of Theorem 4.3 we may assume 

that  H - K.  For the classical groups one proceeds case-by-case (see the 

references in the notes). If the rank of G/K is one it follows from Theorem 

4.3 that  D(G/H) is generated by the Laplace-Beltrami operator L, which 

equals a constant times r(f~) e Z(G/H). D 

As mentioned in the Introduction, the spectral theory for the invariant 

differential operators is an important  tool for the harmonic analysis on 

L2(G/H). The operators D e D(G/H) are of course unbounded as opera- 

tors on L2(G/H); as their domain it is convenient to take the dense subset 

C~(X)  of compactly supported smooth functions on X. 

Recall that  the formal adjoint D* of D C D(G/H) is the differential 

operator defined by 

/a  D f (x)g(x)dx - / c  f (x)D* g(x)dx 
/H /H 

for f ,g  e C~(X).  Clearly we have D* e D(G/H). If D = D* then D is 

called formally self-adjoint (this means that  D is a symmetric operator). 

P r o p o s i t i o n  4.5. Let D E D(G/H) be formally self-adjoint. Then D is 
essentially self-adjoint. 

Recall that  an unbounded operator is called essentially self-adjoint if it 

has a self-adjoint closure. 

Proof. I first need to recall some general representation theory. If (Tr, 7-/) 

is a representation of G on a Hilbert space 7/, the space of C~-vectors  for 

7r is denoted 7-/~ (by definition it is the space of vectors v E 7 / fo r  which 

g ~ 7r(g)v is smooth). It is a dense subspace of 7-/, and it carries a natural  

representation of U(g). It also has a natural  Fr~chet topology, with respect 

to which the action of U(ft) is continuous. 

Applying this to the representation (t~, L2(X)), it is easily seen that  the 

space of C ~ vectors for this representation is the space 

L2(X) ~ = {y e c~(x) lt(~)f e L2(G/H) for all u e U(g)}, 

with the topology induced by the seminorms pu(f) -][g(u)fll. 
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Let me first note that  C ~ ( X ) i s  dense in L2(X) ~ This can be seen by 

a s tandard argument as follows: There exist functions hn C C~  (G) with 

hn >_ O, fc  h,~(g)dg-1 and whose support  shrinks to {e} as n ~ oo. Let 

h~ �9 f be the convolution product of hn with f defined by 

(ha * f)(x) - (E(hn)f)(x) - / c  h~(g)f(g-lx)dg, 

then I claim that  for any f C L2(X) ~ we have that  h n , f --+ f in L2(X) ~ 

as n -+ oo, and that  each hn * f is in the closure of C ~ ( X )  in L2(X) ~.  
Both claims are easily seen, and they clearly imply the stated density of 

Cc (X). 
Obviously each D C D(G/H)  extends to an operator with domain 

L2(X) ~176 In fact, it can be seen that  D maps L2(X) ~ continuously 

into itself. I shall not a t tempt  to prove this here, but only note that  for 

D C Z(G/H) this is clear because t~(U(~)) is continuous on L2(X) ~ (thus, 

by Lemma 4.4 all symmetric spaces of the classical groups or of rank one 

are covered). It follows from the continuity combined with the density of 

C ~ ( X )  that  if D C D(G/H)  is formally self-adjoint then the extension to 

L 2 (X) + is symmetric. 

Now let 

Dom(D) = {f  e L 2 ( X ) [ D f  e L2(X)} 

(where D f  is defined in the distributional sense) and let /9 denote the 

extension of D to this domain. I claim that  this extension is self-adjoint. 

First of all we have that  (D f, g ) -  ( f , /gg)  for all f ,g  C Dom(/~), because 

this holds for f ,g  C L2(X) ~176 and with hn as above we have hn* f C L2(X) ~ 
with hn �9 f -+ f and D(hn �9 f)  - h n .  D f  ~ Dr. This shows that  D is 

symmetric, that  is, /9 C /)*. Conversely, if f is in the domain of D*, we 

have by definition that  (D*f ,g )  - (f, Dg) for all g E Dom(/9), hence in 

particular for g E C~(X) .  This shows that  the distribution D f  equals 

/ )* f ,  which is in L2(X), so f C Dom(/9). [::] 

It follows from Theorem 4.3 and Proposition 4.5 that  the formally self- 

adjoint elements of D(G/H)  admit a simultaneous spectral decomposition 

of [156, Cor. 9.2]). 
We have defined two Harish-Chandra isomorphisms, 

70" D(G/K)--+ S(ao) w~ and 7: D(G/H)  --+ S(a, ) w~ , 
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but we shall actually need one more analogous map, 

"yq" D(G/H) -+  S(aq) w. 

(Recall that  aq is a maximal abelian subspace of p n q, and that  W is 

the reflection group of the root system E(aq, 9)-) As the other maps it is 

defined by means of projection along a decomposition of g, followed by a 

p-shift. More precisely we have (see (3.6) and (3.2)) g - n | m | aq | I~, 
and define 'Tq" D(G/H)  --4 U ( a q )  by 

u - '-~q(D) E (n + m)~U(9) + U(9)b~, 

where u is any element in U(9) H with r ( u ) -  n .  Furthermore we define 

1 , 
(4.3) P -  2 E m,c~ E aq 

c~EE+ (aq,9) 

and "yq - T o o '~q. We now have: 

L e m m a  4.6. The map ~/q is an algebra homomorphism of D(G/H)  into 
S(aq) w. It is independent of the choice of E+(aq,g) .  

Remark. In general ~q does not map on to  S (aq )W.  

Proof. Choose compatible positive sets of roots E+(aq, ~) and E+(al~, tt~), 

* be half the trace of ad on n l n m .  Using that  n is and let p~ E alc 

a0-invariant it is easily seen that  Pl - -  P + Pro, or equivalently, that  the 

restriction of pl - Pm to al n m -  al n t~ vanishes. 

Let A E aq~ and D E D(G/H) .  Then it is easily seen that  '~q(D)(A) - 

'~,(D)(A), and hence we get 

-yq(D)(A) - -y(D)(A - Pro). 

Now every element w C W can be represented by an element ~ E Nw~ (aq) 
(apply Theorem 2.6 to gd). This element then also normalizes al  n 11l, and 

multiplying it with an element from the Weyl group of E(al~, m) we can 

obtain that  it leaves Pm fixed. Now the W-invariance of -yq(D) follows from 

the W-invariance of ~(D). A similar argument shows the independence on 

2 + (aq, ~). ['7 

The map 7q is significant because of the following result. Let S C aq be 

a convex, compact WKnH-invariant set, and put 

Xs  - {kaH C X ik  C K, loga C S}. 
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T h e o r e m  4 .7 .  Let D e D ( G / H )  be nonzero, and assume that yq(D) has 

the same degree as the order of D. Then we have 

(4.4) supp f C X s  ,-e---> supp D f  C X s  

for all f C C ~ ( X ) .  In particular we have that D is injective on this class 

of functions. 

Proof. Here I shall only give the proof of the nontrivial implication "< " 

of (4.4) for the empty set S = 0. The general case is only slightly more 

complicated. Note that  the final s ta tement  of the theorem is obtained with 

S = 0. I am going to use Holmgren's uniqueness theorem, which states the 

following (see [129, Thm. 5.3.1]): 

T h e o r e m  4.8. Let r be a real valued C 1 function on an open set ~ C R n 

and D a differential operator with analytic coefficients on ~. Let Xo be a 

point in ~ where the principal symbol a(D) of D satisfies 

(4.5) a(D)(dr  ~= O. 

Then there exists a neighborhood ~, C ~ of xo such that every distribution 

f C D'(~)  satisfying the equation D f  = 0 and vanishing when r > r 

must also vanish in ~'.  

The idea is to apply this at a point x0 on the boundary of the support  

of f .  If we can find a function r with the property that  f ( x )  = 0 when 

r > r then a contradiction is reached. 

Assume supp D f  = 0. I shall use the expansion of f as a sum of K-finite 

functions. Recall that  this is given by 

(4.6) f -  E f~' 
5oR 

where /~  is the set of (equivalence classes of) irreducible K-representat ions,  

and where fa is the function given in terms of the character Xa by 

fa(x) - dim 5 / K  X s ( k ) f ( k - l x ) d k ,  

which transforms on the left according to the K- type  5. The sum is abso- 

lutely convergent, and its terms are unique. It is easily seen that  D can 
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be applied termwise to the sum, hence D f  = 0 implies that  each term is 

annihilated by D. It follows from this analysis that  we may assume f to 

be K-finite. Then the support  of f is K-invariant,  and it suffices to prove 

that  supp f N AqH = O. 

Let m = orderD,  then m = deg-~q(D) by the assumption on D. Let 

u0 denote the homogeneous part of ~/q(D) of degree m, then u0 ~: 0. Note 

that  u0 is also the homogeneous part of '-~q (D) of degree m = deg '-~q (D) 

for any choice of E+(aq, g). 

Assume that  supp f N AqH is not empty, and let S t denote the set 

S 1= {Y e aq 13w e W: exp(wY)H e suppf} .  

This set is clearly compact. Since u0 ~ 0 there exists an antidominant 

C aq with u0(A) % 0. Choose Y0 C S' such that  A attains its maximum 

over S / in this point: 

(4.7) )~(Y) _< )~(Yo), (Y E S'). 

Let a0 - exp Y0. The point aoH is going to be the x0 in Holmgren's 

theorem. 

As in the previous lecture, let ~t denote the open subset P H  of X = G / H  

and define a: gt -~ flq by a(manH) = log a for m E M, a E Aq, n C N. I 

claim that  

(4.8) f = 0 on {x E f~ I A(a(x)) > A(Yo)}, 

which shows that  r = A(a(x)) is a suitable function for the application 

of Holmgren's theorem. 

To prove (4.8) let x - manH C f~ N supp f .  Then a(x) - log a and we 

must show that  A(log a) _~ A(Y0). To see that  this holds, write 

x = k e x p ( Z ) H ,  (k e K, Z e aq) 

according to the G = K A q H  decomposition. Then by Theorem 3.4 we 

have that  log a = U + V, where U C conv(WZ) and V C F - .  In particular, 

A(V) _< 0 by the antidominance of )~, and hence 

)~(log a) _< )~(U) _< max )~(wZ). 
w C W  
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Now e x p ( Z ) H  = k - i x  and since the support  of f is K-invariant  it contains 

this point. Hence wZ E S' for all w C W, and we conclude by (4.7) that  

)~(log a) _< A(Y0). 

This implies (4.8). 

We still need to check the condition (4.5). The principal symbol a(D) 

is given at a point xo C X by 

(4.9) 
1 

a(D)(dO(xo)) - ~-~.v D ( ( r  r 

for r E C a ( X ) .  In particular,  let r = A(a(x)). Regarding r as a 

right H-invariant  function on G, it follows immediately that  for the right 

action defined by (4.1) we have r (u ) r  = 0 for u C U(g)[~c. Moreover, 

since a is left NM-invar iant ,  and since n and m are normalized by A, 

we also have that  r(u)r = 0 for a C Aq,u C (n + m)cU(g). Hence 

De(a l l )  = r("yq(D))r Applying the same reasoning to the function 

( r  r m we obtain that  

(4.10) D( ( r  - r  = r("yq(D))((r - r = m! to(A). 

Combining (4.9) and (4.10) we obtain that  a(D)(dr - u0()~) for all 

a C Aq. In particular,  (4.5) holds by the assumption on A. Hence we can 

apply Holmgren's theorem and reach a contradiction. [5 

Remark. Note that  we only used the parts of Theorem 3.4 that  were proved 

in the previous lecture. 



LECTURE 5 

Principal series representations 

In this lecture I am going to consider the representations that enter in 

the decomposition of the most continuous part of L2(X). They constitute 

what is known as the principal series for G/H. 
Let me first recall the principal series of representations for G. Let 

P = M A N  be any parabolic subgroup with the indicated Langlands de- 

composition, and let (~, 7/~) be an irreducible unitary representation of M. 

For each element ~ C a~ one defines a representation (7r~,~, 7-Q,~) of G as 

follows. Let pp C a* be half the trace of ad on n. The Hilbert space 7-/~,~ 

is the completion of the space C(~: ~) of continuous functions f: G -+ 7/~ 

satisfying 

(5.1) f(gman) = a-'X-vP~(m-1)f(g), (g e G,m e M,a e A,n e N), 

with respect to the sesquilinear product 

( f l l f 2 ) -  L<fl(k)]f2(k))dk. 

The action 7r~,~ (g) of G is given by the left regular action 

7re,:~(g)f(x) - f ( g - l x ) .  

It is easily seen that one gets a bounded representation of G this way (the 

representation is induced from the representation ~ | e ~ | 1 of MAN),  and 

that the sesquilinear product defined above is G-invariant if A is purely 

imaginary on a, so that the representation in that case becomes a unitary 

representation. It is also easily checked that the equivalence class of 7r~,~ 

only depends on the equivalence class of ~. 

Note that because G = K M A N  we have that restriction to K is a 

bijection of C(~: A) onto the space C(K: ~) of continuous functions f: K --+ 

7-Q satisfying 

(5.2) f(km) =~(m-1)f(k),  (k C K, m C M N K ) .  

134 
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Using this picture it follows that  ~t~,a is isomorphic to the space L2(K: ~) 

of L 2 functions from K to Nr satisfying (5.2). 

It turns out that  the parabolic subgroups which are best suited for the 

study of G/H are the cr0-stable parabolic subgroups, and the simplest of 

these are the minimal ones, the a-minimal parabolic subgroups. From now 

on I confine myself to the principal series representations induced from or- 

minimal parabolic subgroups. However, not all 7rr of these qualify for 

being "the principal series for G/H." Before I proceed with defining which 

and ~ qualify, let me for the purpose of motivation consider the "abstract" 

Plancherel decomposition of L2(X). 
It is known (because G is a so-called type I group) that  any unitary 

representation V of G on a separable Hilbert space Nv  has a direct integral 

decomposition 

(5.3) V ~ V ' d # v  (Tr), 
cO 

where (~ is the unitary dual (the set of equivalence classes of unitary irre- 

ducible representations) of G, d#v a Borel measure on (~ and V ~ a (possibly 

infinite) multiple of 7r. 

In particular this applies to the regular representation g of G on L2(X). 

If we denote by rn~ the multiplicity of 7r in U we can thus write down the 

abstract Plancherel decomposition 

jr 
| 

(5.4) e ~ . ~  d ~ ( ~ ) .  
cO 

The measure d# (whose class is uniquely determined) is called the Planche- 
tel measure for G/H, and rn~ (which is unique almost everywhere) the 

multiplicity of 7r in L2(X). As mentioned in the Introduction, the aim of 

the harmonic analysis on X is to make this decomposition more explicit. 

Let (V, 7/v) be as above, and let 7-t~ be the Fr6chet space of C ~ vectors 

for V. Its topological anti-dual is denoted 7-t~ ~ and called the space of 

distribution vectors for V. It follows from the unitarity of V that  

One can prove that  together with the decomposition (5.3) of the repre- 

sentation V (and the corresponding decomposition of 7/v) one also has 
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compatible decompositions of the spaces 7{~ and 7-/v ~" 

(5.5) 7-/~ _ ( V ' )  ~ dpv(Tr) and 7-/y ~ ~_ (V~) - ~  dpv(Tr). 

Thus each element 5 E ~ v  ~ can be decomposed as 

f 

J~ 

with distribution vectors 5 ~ C (V~) - ~ ,  which are uniquely determined 

almost everywhere. The 5~ are cyclic distribution vectors for V ~, in the 

sense that  if u e (Y~) ~ and 5~(Tr(g -1)u) = 0 for all g E G then u = 0. 

We apply this to g and 50, the Dirac measure of G/H at the origin: 

(5.6) 5o ~" 5: dp(r 

Since 50 is H-invariant  it follows from the uniqueness of the 50 ~ that  they 

(or at least almost all of them) are also H-invariant.  Being cyclic vectors 

the 50 ~ must be nonzero, and hence it follows that  only the representations 
7~ C G which have nonzero H-fixed distribution vectors contribute to the 
Plancherel decomposition of ~ (the remaining representations form a dp- 

null set). The space of H-invariant  distribution vectors for V is denoted 

by (7-/v~) H, and the set of ~ C (~ with (7-/~-~) H r 0 is denoted (~H. This 

gives the following refinement of (5.4): 

(5.7) g __ m.~ dp(Tr). 
CGH 

(In fact it is not clear whether the subset G H of (~ is measurable; never- 

theless (5.7) makes sense because d# is concentrated on the (measurable) 

set where m~ ~= 0, and this set is contained in (~H because of (5.9) below). 

Note tha t  since 50 ~ is a cyclic vector for t~ ~ the map u ~-~ 5~(Tr(g -1)u) is 

a G-equivariant continuous linear injection of the space (g~)~ of smooth 

vectors for t~ ~ into C~(G/H) .  In fact this property of allowing an injection 

into C~(G/H)  is characteristic for all of (~H" 
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L e m m a  5.1. Let 7r E G. There is a bijective antilinear map from the space 

(7 - l~ )  H of H-fixed distribution vectors for :r onto the space of continuous 

equivariant linear maps from ~ to C ~ ( G / H ) .  

Proof. For v' C 7-/~ -~  and v E N ~  define the "matrix coefficient" T~,v, C 

C~(G)  by 

(5.s) = 

then T is antilinear in v and linear in v'. It is clear that  if v' is H-fixed 

then v ~-~ T~,~, is a continuous equivariant linear map 7-l~ --+ C ~ ( G / H ) .  

Conversely, if such a map j: 7-l~ --+ C ~ ( G / H )  is given, then an element 

v' e (7 - l~ )  H is obtained by letting v'(v) = j(v)(e). The proof is easily 

completed. [:3 

Since (g~)~, which is an m~-fold multiple of ~ ,  can be embedded into 

C ~ (G/H) it follows tha t  

(5.9) m r  < d im(n~-~)  H 

for almost all 7r. Note that  according to the lemma the multiplicity of 7r in 

C ~ ( G / H )  is d i m ( 7 - / ~ ) H ;  since m~ is the multiplicity of 7r in L2(G/H) 

(hence by (5.5) also of n 7  in L2(G/H)~) ,  the s ta tement  in (5.9) is quite 

natural:  the extra requirement of square integrability gives a smaller or 

equal multiplicity. 

Wi th  these results in mind it is interesting tha t  we have 

P r o p o s i t i o n  5.2. The space (~.~r is finite dimensional for all 7r C G. 

Proof. (sketch) Fix a nonzero K-finite vector v in 7-/~. It follows Lemma 

5.1 and its proof that  the map taking an element v' C (-/./~-~)g to the 

matr ix  coefficient Tv,v, E C ~ ( G / H )  given by (5.8) is injective. Since 7r is 

irreducible it has an infinitesimal character X. Hence it follows that  Tv,~, 

is a K-finite eigenfunction for the center 3(9) of g(9) .  In fact it can be 

shown that  the space of functions f on G/H,  which are K-finite of a given 

type and eigenfunctions for 3(9) with a given infinitesimal character X, is 

finite dimensional. If G / H  has split rank one this can be seen roughly 

as follows. Since f is an eigenfunction for L its restriction to aq satisfies 

a second-order ordinary differential equation, and hence lies in the two- 

dimensional solution space. It follows easily that  all such functions f lie 
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in a space of dimension at most twice the square of the dimension of the 

K-type.  For spaces of higher split rank the argument is of a similar nature. 

The proposition follows from this. [:2 

Note that  it can be proved that  the decomposition (5.6) also can be 

wri t ten in the following fashion, which is less abstract  because the integrand 

has its values in the distributions on G/H.  There exist for each 7r E (~H 

distribution vectors 5~ C (q~;oc)H, (1 _< i <_ rn~) such that  

mTr 

(5.10) 50 - f~ E T6~,67 dp(Tr), 
COIl i=1 

where Tv,,v, for v' C ( ~ - ~ ) H  is the H-fixed distribution on G / H  given by 

(5.11) v , ( r  - 

for r C CF(G ), where CV(g ) - r  (The expression (5.11) makes sense 

because rc ( C ~ ( G ) ) ":'rt -~ ~~ C "r'l ~ . ) 

Example 5.1. If H = K is compact the space  ( , '~oc)H has dimension at 

most one. This can be seen as follows. First of all, the elements of (7-/~-~) K 

are K-finite (since they are actually K-fixed). It follows from the irre- 

ducibility of rr that  if v is any nonzero element in (7-/~-~) K then rr(U(g))v 
equals the space of all K-finite vectors in 7-t~. In particular we have that  

(7-tj~) K C rr(U(l~))v. But for any element a C U(g) we have that  if rr(a)v 
is also K-fixed, then rc(a)v - rr(a~)v where a ~ - fK Ad(k)(a)dk e U(g) K. 
This shows that  U(tj) K acts irreducibly on (7-t~-~) K. Since U(fl)t~ clearly 

annihilates (7-/~ -~)K this action passes to an irreducible action of D ( G / K ) .  
Since D(G/K) is abelian it follows that  the dimension of (7-t j~) K is at 

most one. 

As given above, the argument  applies to the situation where G / K  is a 

noncompact  Riemannian symmetric  space (K is maximal  compact in G). 

In fact it applies to a compact symmetric  space as well (where rr is finite 

dimensional), because also in this case D ( G / K )  is abelian. This follows 

from Theorem 4.3. 

It follows now from (5.9) that  the decomposition of L2(G/K)  is multi- 
plicity free, that  is, rn~ - 1 for all rr E (~K. Moreover the distributions Tv,v 
in (5.10) are K-biinvariant  eigenfunctions for D(G/K) .  Such a function 
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is called a spherical function if it takes the value 1 at the origin. To a 

given eigenvalue homomorphism X: D ( G / K )  --+ C there corresponds one 

and only one spherical function r = r (this follows easily from the fact 

that  r as an eigenfunction for the elliptic operator L on G / K ,  is real 

analytic, because the Taylor series at o is determined from the set of all 

(r(a)r where a C U(I~), and by integration of a over K as above these 

are determined by the (r(at~)r Thus (5.10) says that  

f 
(5.12) 50 - [ r dp(Tr) 

J .  cd, K 

for some Borel measure dg on (~K. 

Example 5.2. The group case G - 'G x'G. The unitary dual G is equal to the 

Cartesian product '(~ x '(~. Its elements are the representations 7r - 7l- 1 @ 7 1 - 2 ,  

where 7rl, ~r2 C '(~. It is easily seen that  the representation 7r belongs to (~H 

if and only if 7r2 is the contragradient to 7rl, and that  the space (7-/~-~) H 

then has dimension 1. (For example one can use Lemma 5.1 combined with 

the following observation: The space of continuous G-equivariant linear 

maps j: 7-/~ | 7-t,~ --~ C ~ ('G) is in bijective correspondence with the space 
o o  of continuous 'G-equivariant bilinear pairings 7-/~1 x 7-/~2 --+ C; the map j 

corresponding to a given pairing (., .) is the map that  takes u | v to the 

matrix coefficient g ~ (Trl (g-1)u,  v ) =  (u, 7r2(g)v) on 'G.) 

After this motivational digression it is time to return to the principal 

series. The conclusion we draw is that  if we want the representations we 

have constructed to enter into the decomposition of L2(X),  we should look 

for representations with nontrivial H-fixed distribution vectors. 

As is easily seen, the C ~ vectors for 7c~,a are the smooth functions 

f" G --+ 7-/~ satisfying the transformation rule (5.1). Similarly, the distri- 

bution vectors for 7r~,a are the 7-/~-~-valued distributions on G which satisfy 

(5.1). Recall from the previous lectures (see (3.2)) that  for the a-minimal 

parabolic subgroup P = M A N  we have a = ah | aq, where aq is maximal 

abelian in pNq. By means of this orthogonal decomposition aq, c is naturally 

viewed as a subspace of a~. Since P is cr0-stable we have that  crOpp - pp, 

and hence pg C aq (it vanishes on ah). Moreover, it then follows from the 

definition of pp that  it coincides with the element p defined in (4.3). 
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Recall also from Lecture 3 that U w c ~ H w  -1P  is the union of open H • P 

cosets in G. It follows that an H-fixed distribution vector for 7r~,~ restricts 

to a smooth 7-/~-~-valued function f on each open coset H w - I p ,  and this 

restriction is uniquely determined by the value f (w-1) .  Moreover, this 

value has to satisfy 

a-A-pP~(m-l)f(w -1) -- f(w-lma)- f(w-lmaww -I) -- f(w -I) 

for each ma E M A  n wHw -1. Thus if the restriction of f to H w - I P  is 

nonzero, ~ must have a nonzero distribution vector fixed by M n w H w  -1 = 

w ( M n H ) w  -1, and )~+pg must vanish on aNAd(w)([~) - ah (here it is used 

that w has been chosen according to Theorem 2.6, so that it normalizes 

ah) Since pp -- p E aq it follows that we must have A E a* 
�9 q , c  �9 

L e m m a  5.3. Let w E NK(aq), and let ~ be an irreducible unitary repre- 

sentation of M for which the space (7-/~-~ w(MnH)~-I of w ( M  n H)w -x 

fixed distribution vectors is nonzero. Then this space is one-dimensional, 

and ~ is finite dimensional. 

Remark. Note that the dimension of the space ('~-~c~) w(MnH)w-1 depends 

only on the double coset (M n K)wNKnH(aq) (but the space itself may 

vary). 

Proof. It suffices to consider the trivial w. Recall Lemma 3.2 and its proof, 

according to which there is a normal subgroup Mn of M contained in H 

such that M - MoMn. It follows easily that if (q~-c~)MnH is nonzero 

then ~lMn is trivial and ~IMo is irreducible. Hence dim~ < c~ by the 

compactness of M0. Moreover we then have 

(5.13) (7_l-~)Mng ~_ (7.l~o)Mong 

Under our general assumption on G that it is linear there exists a finite 

central subgroup g of M0 such that Mo - (Mo)eg (see [123, p. 435, Ex- 

ercise A3]). It follows that also ~](M0)~ is irreducible. Now according to 

Example 5.1, the space (7_t~M ~ )(M0)~nH has dimension zero or one, and 

hence the same holds for the (possibly smaller) spaces in (5.13). [2] 

Motivated by Lemma 5.3 and the preceding discussion we define the 

principal series for G / H  (or the H-spherical principal series) related to the 
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a-minimal  parabolic subgroup P - M A N  as the series of representations 

:r~,x where ~ is a finite dimensional irreducible unitary representation of 

M having a nonzero w(M N H)w -1 fixed vector for some w E 142, and 

where A E aq, c. The unitary principal series is the subseries with A purely 

imaginary on aq. 

Note that  I did not argue that  these conditions on ~ and A are neces- 

sary for the induced representation to have a nonzero H-fixed distribution 

vector, but only that  if these conditions do not hold, such a distribution 

has to be more singular in the sense that  it has to be concentrated on the 

nonopen H x P cosets. On the other hand, we shall see in the next lec- 

ture that  the representations in the principal series for G/ H really do have 

nonzero H-fixed distribution vectors. 

Example 5.3. In continuation of Example 5.2 let H - K.  By the defini- 

tion above the principal series for G / K  related to the minimal parabolic 

subgroup Po - MoAoNo is the spherical principal series consisting of the 

induced representations :rl,x where 1 C A~/0 denotes the trivial representa- 

tion. In this case it is in fact clear from the definition that  the induced 

representation 7r~,x has a K-fixed vector (which is then unique up to scalar 

multiplication) if and only if ~ is the trivial representation. One K-fixed 

vector is the function v E C(I" A) defined by v - l x ( g ) ' -  e -(A+p~ 

where H is the Iwasawa projection. The corresponding spherical function 
r - Tv,v is then given by 

- /  (g)i (g-ik)dgdk- 

where ~ax(g ) -  fK l x (g - l k )  dk (see (4.2)), and we get that  

r -- (PA- 

Example 5.4. Consider again the hyperbolic spaces SO~ (p, q)/SO~ (p - 1, q). 

Recall that  a a-minimal  parabolic subgroup is the stabilizer in G of the 

line R(1,  0 , . . . ,  0, 1) C R p+q. The group M consists of the matrices of the 



142 H. Schlichtkrull 

form 

( ~ 0 O)  

0 m 0 

0 0 

where m C S O ( p -  1 , q -  1),e = :t:1, and M N H is the subgroup where 

= 1 (if p =  1 o r q =  1 then e is always 1 a n d M N H = M ) .  Thus the 

representations of M that  we need for the principal series are the trivial 

representation, and the representation which assigns e to the element above 

(if p = 1 or q = 1 this is also the trivial representation). We denote these 

by ~0 and ~Cl, respectively. 

Let F. be the set 

- 2 2 2 - 0 ,  x r  - - { x  e R "+~ I x 1  ~ + . . .  + x ,  - X , + x  . . . . .  x , + ~  

(if p = 1 it is also required that  Xl > 0, and if q = 1 that  Xp+l > 0). Then 

G acts transitively on E, and we get that  E _~ G / ( M  N H)N.  

For A C C and i = 0,1 let Ci,~(=~) denote the space of continuous 

functions f on = satisfying 

f (vx) = sign(v)~lv]-:'-P f (x) 

1 2). Then there is a natural  representation for all v :/: 0, where p -  ~ ( p + q -  
of G on this space, and it can be seen that  the Hilbert space norm 

llfl12 -- L If(x)12dx 
p--1 XSq--1 

is invariant if A is purely imaginary. By this construction we get an explicit 

model for the principal series representation 7r~,, where u E aq,c is given 

by u ( V ) =  A. 

The following result is clearly important .  

T h e o r e m  5.4. Let 7r~,~ be a unitary principal series representation for 

G/H,  and assume that (A,a) -~- 0 for all a C E(aq,$).  Then 7r~,~ is 

irreducible. 

Proof. See the notes for references to this theorem, rq 
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Example 5.5. In the case of the hyperboloids one can show that the repre- 

sentations 7r~,~ constructed above are irreducible if A + p is not an integer. 

In particular, they are irreducible if A is purely imaginary and nonzero. See 

the notes for references. 

In general two principal series representations 7r~,~ and ~r~, ~, with differ- 

ent pairs (~, A) and (~', A') may well be equivalent. It is important to study 

these equivalences as well as the corresponding intertwining operators. 

Let s E W - NK(aq) / (M N K),  and let g be a representative. Conju- 

gation by g preserves M, and hence from each representation (~, ~ )  of M 

another representation denoted (g~, ~ )  is obtained by letting 7-/~ - 7-/~ 

and g~(m) - ~(g-lmg).  It is easily seen that the equivalence class of g~ 

only depends on s and the equivalence class of ~c. For this reason I shall 

often write s~ instead of g~c. We shall see below that for generic A we have 

7r~,A "~ 7rs~,sX. 

When working with intertwining operators between the principal series 

it is convenient to be able also to switch between representations induced 

from different parabolic subgroups. Thus I write 7rp,~,~ for the principal 

series representation associated to the parabolic subgroup P, and C(P: ~: )~) 
for space denoted C(~" A) above. However, only the nilpotent part N of 

the parabolic subgroup P - M A N  will vary, and thus the space C(K: ~) 
of restrictions to K is the same for all P (it is the G-action which varies). 

Note that switching the P is basically a technical matter, because any two 

a-minimal parabolic subgroups are related by conjugation, and there is 

an equivalence 7rsps-ls~,s~ ~ 7rp,~,~ obtained by the simple intertwining 

operator 

R(s)" C(P: ~" /k) -> C(sPs  -1" s~: s/k) 

defined by R(s) f (g) = f (gg). 
There is a well known set of intertwining operators between principal 

series representations, called the standard intertwining operators. Let me 

sketch the construction of these in case of the a-minimal principal series. 

Let P = M A N  and P '  = M A N '  be a-minimal parabolic subgroups, and 

let ~c be a finite dimensional unitary representation of M and A C aq, c. For 

f C C~ A)define 

(5.14) A(P"  P: ~: A)f(g) - / N n g '  f(gfi)dfi, 
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m 

where d~ is a (suitably normalized) Haar measure on N N N'.  Disregarding 

the convergence of (5.14) it is easily checked that  A(P"  P:~: A) is inter- 

twining from 7rp,~,~ to 7rp,,~,~. The problem of convergence is serious, but 

at least the following holds. 

P r o p o s i t i o n  5.5. There exists a constant C >_ 0 such that if <Re A, a) > C 

for all roots c~ C E+(aq, g) such that $~ C fi N n', then the integral (5.14) 

converges absolutely and defines a continuous intertwining operator from 

C ~ ( P :  ~" )~) to C~(P ' :  ~: i~). 

Proof. The proof uses results from Chapter 7 of [130]. For the case H - K,  

where P and pI are minimal parabolic subgroups, see loc. cit., Prop 7.8. 

Here C - 0. For the general case let Pm C a~ denote half the trace of 

ad on no M m (then Pm is zero on a), and for a C E+(aq, $) let Ca denote 

the maximum of the (~,Pml where /3 E E(a0,$) with /31% - a. Then 

- C a  is the minimum of these numbers. Hence if (Re A, a) > Ca we have 

(Pm + Re A,/3) > 0. We can now apply loc. cit., Theorem 7.22 with )~ - Pro. 

(The reason for taking A -  Pm is that  then cM _ 1 in the notation of loc. 

cit. In the cited theorem f is assumed K-finite, but this is not needed 

when ~ is finite dimensional.) [2] 

For parameters A outside the domain of convergence of (5.14) given in 

Proposition 5.5, an intertwining operator can be constructed by means of 

analytic continuation. The result is as follows (see [172, pp. 78-79] for the 

notion of a Fr~chet space valued analytic function). 

T h e o r e m  5.6. Let f E C ~ ( K : ~ ) .  Then A(P': P:~:)~)f ,  which is defined 
by the convergent integral (5.14) for )t in the region given in Proposition 

5.5, extends to a meromorphic C ~ (K" ~)-valued function of )~ in ha, c. The 

operator A(P': P:~: ~) thus obtained for generic )t is a continuous inter- 

twining operator from C ~ ( P :  ~: )~) to C~(P ' :  ~: )~). 

Proof. Too complicated to be given here. D 

It follows easily from the definitions that  we have 

(5.15) R(s )A(s - Ips :P:~: )~)  = A(P:sPs- l : s~:s )~)R(s ) .  

For generic ~ this is a nonzero intertwining operator from ~g,~,~ to ~g,~,~x. 

By Theorem 5.4 these representations are irreducible and must hence be 

equivalent. 



LECTURE 6 

Spherical distributions 

In the previous lecture I defined the principal series of representations 

7r~,~ for G/H.  The motivation for the requirements on ~ and ~ was the 

demand that  7r~,~ should have a nonzero H-fixed distribution vector (a 

spherical distribution). In this lecture I shall show that  this is indeed the 

case by a rather explicit construction of some spherical distributions. 

Let P = M A N  be a a-minimal parabolic subgroup, ~ a finite dimen- 

sional unitary representation of M, ~ an element in aq,c, and 7r~,~ the 

corresponding principal series representation. Let C - ~ ( ~ :  ~) denote the 

space of H~-valued distributions on G satisfying the transformation rule 

(5.1). It is convenient to have a model for this space which is indepen- 

dent of ~. This is obtained by taking restrictions to K (it follows from 

the transformation rule that  this makes sense also on distributions). Thus 

C - ~ ( ~ :  ~) is isomorphic to the space C - ~ ( K : ~ )  of 7-t~-valued distribu- 

tions on K satisfying the transformation rule (5.2). The space C ~ ( K : ~ )  

is defined similarly. By definition C - ~ ( K :  ~) is the topological antidual of 

C~(K:  ~); by means of the sesquilinear product on 7-t~ and the normalized 

Haar measure on K we view the latter space as a subspace of the former. 

Fix an element ~ in the one-dimensional space 7 /~  nil, and define a 

7-t~-valued function fx on the open set H P  by 

f ~ (hrnan) = a-~-P~(rn -1)rJ 

;r for h C H, rn C M , a  C A ,n  C N and ~ C aq. Since r/ is M N H  fixed it 

follows from Theorem 3.3 that  this function is well-defined and smooth. We 

now extend f~ to G by letting it equal to zero on the complement of HP. 

It is clear that  f~ satisfies (5.1), and also that  f~ is H-invariant.  However, 

it is by no means clear that  it is a distribution on G. For ~ in a certain 

range, this is true. In fact it is even a continuous function. 

P r o p o s i t i o n  6.1. If <Re A+p, a} < 0 for all a C E + (aq, 9) then fA belongs 
to the space C((:  A) H. As a C(K: ~)-valued function of A it is holomorphic 
on this domain. 

145 
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Proof. For the first statement it only remains to check the continuity. We 

must prove that f~(Xn) ~ 0 for xn C H P  with limxn ~ H P .  By (5.1) and 

the continuity of the Iwasawa decomposition it suffices to have xn C K. As 

in Lecture 3, define a: P H  -+ aq by a ( m a n h )  - log a for m C M ,  a C Aq, 

n E N, h C H, then we have 

for x C H P .  Now according to Theorem 3.4 the restriction of a to P H  N K 

is proper, and hence limxn ~ H P  implies that the sequence a(Xn 1) will 

eventually exit any compact subset of aq. According to the same theorem 

we also have that a ( P H  N K )  is contained in the nonnegative span of the 

vectors Ha (defined by c~-  (Ha,-}) for c~ C E+(aq, g). Writing 

a(x~l)  - E Sn,aHa 
a 

we thus have Sn,a >_ 0 for all c~ and Sn,a --+ c~ for at least one c~. It now 

follows from the assumption on A that 

(ReA + p)a(Xn' ) - E Sn,a(Re)~ + p,c~} -+ -oo.  
a 

This shows the asserted continuity. 

It is easily seen that the argument given above can be carried through 

also for the derivative of f~ with respect to A. The holomorphicity in A 

follows. [:3 

Remark. Note that I only used the parts of Theorem 3.4 that were proved. 

Using Theorem 3.4 in its full strength one gets that the conclusions of 

Proposition 6.1 can be drawn for A in the larger set, where (Re A + p, c~} < 0 

is required only for the positive roots c~ with nonzero multiplicity rn~. 

Example 6.1. In the case of G / H  - G / K  the function f~ is identical with 

the function l~(g) - e -(~+po)H(g) defined previously (see Example 5.3). It 

is clear that it is holomorphic in A on all of a~ (this also follows from the 

remark above, since m~ - 0  for all roots). 
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Example 6.2. Consider the real hyperbolic space X.  In Example  5.4 G / ( M N  
H ) N  was identified with the space 

--  2 2 2 - - 0 ,  X # 0 }  = -= {X  E R p+q I x 2 -Jr-. . .-1 t- Xp - Xp+ 1 . . . . .  Xp+q 

(with x 1 > 0 if p - 1 and Xp_t_ 1 > 0 if q -- 1), and C(~C~ �9 A) with the space 

of continuous functions on s satisfying 

(6.1) f ( vx )  - sign(v)ilvl-~'-p f (x )  

for all v -r 0. The function fa constructed above is the function on E given 

by 

f),(x) - sign(xl)ilXl] - a - ~  

for i - 0, 1 and A C C. Clearly this is continuous if and only if Re A + p <_ 0, 

except for p - 1 where it is always continuous. Moreover, its restriction 

to S p-1 x S q-1 is holomorphic in A. Consider the case p > 1. In this 

case Xl has [-1;  1] as its range, and hence fA is not locally integrable if 

Re A + p _> 1. Nevertheless it is well known (see for example [111, p. 50]) 

tha t  the distr ibut ions [-1;  1] ~ t ~ sign(t)~lt[ ", which are locally integrable 

for R e p  > - 1 ,  can be given a sense beyond this range of p's by means 

of analytic continuation.  Indeed they extend meromorphical ly  to p C C 

with simple poles at p -  - 1 , - 3 , . . .  and p -  - 2 , - 4 , . . . ,  respectively, for 

i - 0, 1. It follows tha t  fa extends meromorphical ly  to a family of H-fixed 

distr ibut ions satisfying (6.1). For any function ~ in the space C ~ ( K : ~ i ) ,  

which can be identified with the space of smooth  even (for i - 0) or odd 

(for i - 1) functions on S p-1 X S q - 1  , w e  thus have tha t  A ~ fa (~)  is the 

meromorphic  function on C, which is given by the convergent integral 

- fs p--I XSq--1 
sign(xl) i  ]x 1 i-)~-p qo(x)dx 

for Re A + p < O. For example for i - 0 and p(x)  - 1 we have 

(6.2) f,x(1) -- c ~o ~ I c o s O - ) ' - V s i n P - 2 O d O - c B (  1 - A - p 2  ' P-2 1 )  

for a constant  c depending on the normalizat ion of measures. Here B is 

the beta  function B(u, v) - r ( ~ ) r ( v ) / r ( ~  + v). 
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As can be seen from the previous example, the function f.x as we have 

defined it, will not in general be locally integrable outside the range of )~'s 

given in Proposition 6.1. The example also shows that  to overcome this 

obstacle (which was not present in Example 6.1) we have to invoke analytic 

continuation. Let me sketch one more example supporting this strategy. 

Example 6.3. In the group case, G = 'G x 'G we have (see Example 3.2) 

that  the minimal parabolic subgroup P = '/5o x 'P0 in G is also a a-minimal 

parabolic subgroup of G. The irreducible representations of M = 'Mo x 'M0 

are given by ~ = '~ | '~' where '~ and '~' are irreducible (necessarily finite 

dimensional) representations of 'M0, and since M n H is the diagonal in M 

this ~ has a nonzero MAll-f ixed vector if and only if '~ is the contragradient 

,~v to '~ (see also Example 5.2). It is then natural  to identify 7-/~ - 7-/,~ | 

with the space Homc(7-/,~,7-/,~). The subspace q~Z NH is then identified 

with HOm,M0 (H,~, 7-/,() -- CI ,  where I is the identity map. Furthermore 

a -  ao - ' a 0  x 'a0, and aq - { ( Y , - Y )  I Y c 'a0}. Hence the ~ E aq, c are 

given by A(Y, Z) = ' A ( Y ) -  'A(Z)wi th  'A E 'a;,~ (but note that  dominant 

,~'s correspond to antidominant 'A's). It follows that  C(P: ~: ,~) consists of 

the continuous functions f:  'G x 'G --+ Hom(7-/,r 7-/,~) satisfying 

f (gmafi ,  g'rn'a'n) -- ( a - l a ' )  ('~-'~176 '~(m-1) f (g ,  g')'~(rn'). 

If in addition f is H-invariant we can view it as a function F on 'G by 

means of F ( x - l y )  - f ( x ,  y). Hence C(P: ~" )~)H may be identified with the 

space of continuous functions F: 'G --+ Hom(7-/,~, 7-/,~) satisfying 

(6.3) F( f iamxm'a 'n )  - (ca') ('~-'p~ '~(m)F(x)'~(m').  

Note that  F is the kernel of an intertwining operator A from C('P: '~" '~) to 

C('/5" '~" A) obtained from 

(6.4) 
f f 

A(~(x) -- l f (x - lk )~(k , )d]g  -- f ( e )  I ~(x~t)dn 
J'K /'Mo d'2 

(the last equality follows from [130, Eq. (5.25)]), provided the integrals 

converge. Similar considerations on the level of distributions lead to the 

observation that  the H-fixed distribution vectors for 7r~,~ are the intertwin- 

ing operators between the principal series for 'G corresponding to opposite 
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minimal parabolic subgroups. In particular it follows from the irreducibility 

of 7r,~ ,a for generic '~ that  C - ~ ( ~  �9 ~)H is one-dimensional for those ~. 

The standard intertwining operators are obtained by defining F by 

F(e) = 1 together with (6.3). In this case this is exactly what the fa 

amounts to (taking ~ = I). Note that  the condition in Proposition 6.1 

for continuity in this case means that  R e ' ~ -  'P0 is strictly dominant,  a 

slightly stronger condition than that  of Proposition 5.5 for convergence of 

the defining integral (recall that  the constant C in Proposition 5.5 is zero 

for the minimal parabolic). As we know from above (Theorem 5.6), the way 

to extend the s tandard intertwining operator to all of'a0, c* is by analytic 

continuation. 

As these examples indicate we have the following general result. 

T h e o r e m  6.2. The map ~ ~-~ f~ E C-~  initially defined when 

Re)~ + p is strictly antidominant, extends to a meromorphic function on 
:r  - -  ( N ~  aq, c. The distribution vectors f~ E C (~: ~) so obtained are H-fixed. 

Remark. Since C - ~ ( K :  ~) is not a Frdchet space it is probably in order to 

discuss the notion of analyticity used here. A map h from a complex space 

to C - ~ ( K :  ~c) is called analytic if, locally, it is analytic into the Banach 

space of distributions of some finite order. (One can prove, along the lines 

of [172, p. 79], that  h is analytic if and only if it is weakly analytic, that  

is, s --+ h(s is analytic for all test functions ~.) 

It is clear that  for s in the initial domain, the support of fa is the 

closure of H P  in G. In the proof we need also the H-fixed distribution 

vectors analogous to fa, but supported on the closure of the other open 

H x P double cosets on G. Let me discuss these before I give the proof of 

Theorem 6.2. 

Recall that  the open H x P double cosets on G are given by H w - I P  

for our fixed set 14; of representatives w E NK(aq) for W/WKnI-I. Recall 

also from the previous lecture that  each H-fixed distribution vector for 7rr 

restricts to a smooth function on these open sets. We can thus define an 

evaluation map evw from C - ~ ( ( :  ~)H to 7/r by 

evw(f) = f ( w  -1), 
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and then ev~ actually takes its values in the one-dimensional (cf. Lemma 
w ( M n H ) w  -1 

5.3) space 7-/~ Let V(~ c) denote the formal sum 

- - 1  
W V ( ~ )  -- @wE1A2"~'~( ( M n H ) w  

provided with the direct sum inner product. Thus by definition the sum- 

mands are mutually orthogonal, even though this may not be the case 

inside 7-Q (for example if ~ is the trivial representation). For r/ E V(~) 

let rlw denote the w-component, now viewed as an element of 7-Q. We can 

then collect all the maps evw into one map ev: C - ~ ( ~ :  ,~)H _+ Y(~) defined 

by ev( f )~  = ev~(f) .  It turns out that  for generic ,~ there is no element 

in C-~(~c: A)H whose support  is disjoint from all the open cosets H w - I p .  

More precisely we have the following. 

T h e o r e m  6.3. Let 7r~,a be a principal series representation for G / H .  

There is a countable set of complex hyperplanes in aq, c such that ev is 

injective when )~ is in the complement of all these hyperplanes. 

Proof. This is based on an analysis similar to that  of Bruhat  (sketched in 

[130, Section 7.3], see also [112] for a more thorough sketch), which leads to 

the fact that  for generic ,~, the representation 7r~,a in the minimal principal 

series is irreducible (as seen in Example 6.3 above, this is actually related 

to a special case). See the example below for an idea of the proof. D 

Example 6.4. Consider the real hyperboloids for the simplest case where 

p > 2, q > 1. In analogy with what we have seen earlier for continuous 

functions we have that  C - ~ ( ~ i  �9 A) consists of the distributions f on E 

satisfying (6.1). The only open H x P coset in G is H P  (see Example 3.4). 

This corresponds to the subset E0 - {x E -=ix1 r 0}. The action of H on 

the complement " ~ ' 1  - -  {X E =--IxI -- 0} is transitive (here p > 2 is used). 

By the general structure of distributions supported in a submanifold we 

have that  if f has support  on El then it is given uniquely by a distribution 

on E1 together with some transversal derivatives. If f E C - ~ ( ( i "  ,~)H then 

the distribution on =.1 must be H-fixed, and hence it is a constant. Thus 

it follows that  f is the distribution 

qP ~ ~ (P(OqXl)~)(y)dy 
1 
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for some polynomial P (where dy is the H-invariant measure o n  ~-1). The 

homogeneity in (6.1) now forces P(v)  = v - a - p  for v > 0. This shows that  

- A -  p has to be a nonnegative integer in order for such a distribution to 

exist. This proves Theorem 6.3 for this case. The cases p -  2 or q = 1 are 

similar. 

Let me now turn to the construction of the analogs of fa for all the open 

double cosets H w  -1P.  It is convenient to collect all these together and at 

once define a linear map j({: A) = j (P:  so: A) from V(s c) to C({: A)H by 

(6.5) j(~c: A)(r l ) (hw- lman)  - a-,X-p{(m-1)~7~ e "H~ 

on U w e ~ , H w - l p ,  and by j(~:A)(r/) = 0 on the complement of this set. 

The f~ constructed above is obtained by composing j with the embedding 

of o,_/~4nH as a subspace of V(sC), and its analog supported on the closure 

of H w - I p  is similarly obtained by composition with the embedding of 

7/~ (MnH)w-1 The proof of Proposition 6.1 is easily generalized to show 

that  we really do have j({: A)r/ C C(~: A)H for all r/ when Re A + p is 

strictly antidominant.  For such A we then have that  ev o j({: A) is the 

identity operator on V(~), and if in addition A is generic then it follows 

from Theorem 6.3 that  j(~: A) is a bijection of V({) onto C - ~ ( { :  A)H. We 

can now state the following extension of Theorem 6.2. 

T h e o r e m  6.4. The map A ~+ j(~:A) C H o m ( V ( { ) , C - ~ ( K : { ) )  initially 

defined for A C aq,c with Re A + p strictly antidominant, extends to a mero- 

morphic function on a'q, c. For generic A the j({" A) so obtained is a bijection 

from V({)  onto C - ~ ( ~ :  A) H, and ev is its inverse. 

We call the distributions j({:A)r/ C C-~(K:~C),  where r/ C V(~c), the 

standard spherical distributions, and j(~c: A) the standard spherical distri- 

bution map. 

Proof. The idea of the proof is as follows. From Theorem 6.3 we know 

that  ev for generic A is a bijection. If we can prove the existence of a 

meromorphic Hom(V(~), C - ~ ( K : ~ ) ) - v a l u e d  function J(A) on all of %,c, 

which for generic A gives rise to an inverse of ev, then we are done, because 

J has to coincide with j on the initial domain for j .  The J is obtained in 

two steps. 
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The first step is to prove the existence of J on the opposite of the initial 

domain, that  is, where Re A -  p > 0. This is obtained by means of the stan- 

dard intertwining operator A(P: P: ~: ~)" C - ~ ( P :  ~: A) ~ C - ~ ( P :  ~" A) 

(actually it was defined as a continuous operator between spaces of smooth 

functions, but the action is easily extended to distributions, with meromor- 

phic dependence on A), by defining j~ A) - j ~  ~" A) by 

(6.6) jo (p:  r A) - A(P: P: ~. A)-~j (P:  r A). 

By the equivariance of the intertwining operator we have 

j ~  A) 6 Hom(V(~) ,C-~(P:~ 'A)H) ,  

and this homomorphism is bijective for generic ~. But then ev o j~  is 

generically a bijection of V(~) onto itself, and hence it has an inverse which 

is meromorphic in ~, and then we can take J - j~  o (ev o j o ) - l .  

The second step consists of extending the existence of J from the do- 

main R e ) ~ - p  > 0 to larger sets. This is done by multiplication with 

matr ix  coefficients of some special finite dimensional representations. Let 

j be a Car tan  subalgebra of gc containing a0,c, choose a positive set of 

roots E + ( j , ~ )  compatible with E+(a0,g) ,  and let # C j* be the highest 

weight of a finite dimensional representation (Try, V.) of G, with highest 

weight vector v. .  One can show that  M acts trivially on v.  if # restricts 

to zero on the complement of a. If it is furthermore assumed that  the 

* it follows contragradient representation has a nonzero H-fixed vector V H, 
that  the matr ix  coefficient ~(g) - V*H(Tc(g)v,) is a real analytic function 

on G satisfying ~(hgrnan) - a'~(g).  Hence f C C - ~ ( ~  ")~ + p)H im- 

plies ~ f  C C - ~ ( ~ :  A)H. Moreover, by the real analyticity we must have 

that  ~ has no zeros on the open H x P cosets. Let �9 be the operator 
w ( M N H ) w  -1 

on V(~) given by multiplication with ~(w -1) on ~ , and put 

J l (~)  - ~d (~  + # ) ~ - 1  for Re ~ -  p + # > 0, then it follows easily that  

e v  o J l ( ~ )  - -  1 .  

Finally one has to prove the existence of sufficiently many 7r, as above 

such that  any point belongs to the domain Re ~ -  p + # > 0 for some such 

#. See the notes for references to this fact. [-1 

This also finishes the proof of Theorem 6.2. D 
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Note that  Theorem 6.4 in the group case (see Example 6.3) gives the 

meromorphic continuation of the s tandard intertwining operators for oppo- 

site parabolic subgroups. However, these were actually used in the proof. 

For the decomposition of L2(X) we are particularly interested in the 

imaginary values of )~, where 7r~,a is unitary. Note however that  these 

values are in the domain where the analytic continuation was necessary 

to obtain the standard spherical distribution map j(~c: A). In particular, 

j(~c: A) may have poles at imaginary points (this is for example the case for 

the real hyperboloids when p+q is even and p > 1 (see Example 6.2 above), 

where there is a pole at A = 0). This unpleasantness can be overcome by a 

suitable "renormalization." During the proof of Theorem 6.4 the operator 

jo(~c: A) C Hom(V(~C), C-~(P:~C: A) H) was introduced by normalization of 

the standard spherical distribution map with the inverse of a s tandard 

intertwining operator (see (6.6)). This turns out to be a very fundamental 

operator. 

T h e o r e m  6.5. Let (G, H) be as mentioned above. The meromorphic func- 

tion ,~ ~ N~ ~: A) given by (6.6) has no singularities in iaq. 

Proof. The proof will be briefly sketched in the next lecture (see the remark 

below Theorem 7.6). Below is an example (note however that  the proof in 

the general case is quite different). [] 

We call j~ )~) the normalized spherical distribution map. 

Example 6.5. In this example I shall prove Theorem 6.5 for the real hyper- 

boloids X, when q > 1 and ~c is the trivial M type ~c0 = 1, except for the 

omission of the explicit evaluation of a certain integral. Since q > 1 the 

space of H-fixed distribution vectors for 7rl,a is one-dimensional for generic 

A (see Example 6.4), and hence we have 

j~ (P: 1-A) - h(A)j(P: 1" A) 

for some meromorphic function h(X). By the definition of j~ we now have 

(6.7) j(/5: 1" A) - h()~)A(P" P: 1" A)j(P: 1" A). 

The function h can be explicitly determined by applying the distributions 

in (6.7) to the test function ~(x) - 1. In Example 6.2 we computed 
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j(P" 1: A)(1); analogously we get on the left side of (6.7) 

(6.8) - 1 1 j(P: 1" A)(1) - cB(-~(A - p -4- 1), ~(p - 1)). 

In analogy with (6.4) we have that  A - A(P: P: ~: A) has an integral kernel 

F~ as follows, 

Af(x) - / f(xfi)dfi- /K F),(x-lk)f(k)dk, 
/MC3K 

where F~ is the continuous 7Q-valued function on G given by F), (fiamn) - 
a~-P~(m) for A - p > 0. Hence with f,x - j(P: 1" A) we have 

A A  (qD) -- fK ~ / M n  K 
r (k ' - l  k) f ,x (k)dk dk', 

but here it should be noted that  Fa and f~ are not both continuous at the 

same time. Fortunately for ~ -  1 the above integral splits 

(6.9) A f ~ ( 1 ) -  ~ F),(k')dk' ~ f~,(k)dk, 
/MnK 

and the two factors can be computed separately. The second factor is 

given by (6.2) with convergence for Re A + p < 0. The first factor is more 

complicated. It is not difficult to check that  Fa can be identified with the 

function on = given by 

X ~ IX 1 -4- Xp+ql )'-p 

(use that  X 1 -4- Xp+q -- (1, 0 , . . . ,  0, 1) �9 x) and hence 

/0 /0 F~,(k)dk - ~ l cos Ox + cos 0~1 ~'-p sin p-2 01 sin q-2 02 dO1 dO2. 

This double integral is computable (see [182, Appendix A]). It converges 

for Re A -  p > 0 and the value is a constant times 

(6.10) 
1(~ ,4,1)) r ( a ) r ( ~  - p  

'(a+p q+2)) P ( ~ l ( ~  -4- p))F(I(A~ + p - p + 2 ) ) r ( 7  - 
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Note that  as mentioned the domains where the two factors in (6.9) converge 

are disjoint. By combining equations (6.2, 6.7-6.10) one obtains 

1(~ -I- p)) 1 1()~ + p _  p + 2))F(~ , r ( ~ ( - ~ -  ~ + p ) ) r ( ~  
1 h(~) c r ( ~ ( - , x  - p + 1))r(,x) 

! 
- -C  

1()~ _~_ p)) 7r r (~  
~" 1 1) (A) sin 7(- )~ - p + p )  F(7( - )~  - p + )F 

We know already (see Example 6.2) that  j(P: 1: ~) has its only poles at the 

points where ~ + p is a positive odd integer and these poles are simple. It 

follows that  the first gamma factor in the denominator  of h will cancel all 

these poles. It is easily seen that  the poles of the rest of h are not imaginary 

(the sine may give a pole at ~ = 0, but this is killed by the F(~) in the 

denominator) .  Hence j~ is regular on the imaginary axis, as asserted in 

Theorem 6.5. 



LECTURE 7 

The Fourier transform 

The first topic of this lecture will be the definition of the Fourier trans- 
form on G/H. When that is given I will be ready to state the main theorem 

of these lectures, which is Theorem 7.1 below. 

The Fourier transform f(~: ~) e Hom(Y (~), C ~ (~" -,~)) is defined for 

functions f e C~(G/H) by 

(7.1) 
f(~: ~) - 7r~,_~ (f)j~ ( ( : - ~ )  

- I"  f(gH)Tr~,_~(g)j~ d(gH), 
JG /U 

for a finite dimensional unitary representation ~c of M and ~ C iaq. Here 

j~ ~) is the normalized spherical distribution map given by (6.6). The 

map f ~-~ f is G-equivariant: 

(g(g)f)A(~: A) - 7rr (g)f(5" A). 

Note the importance of Theorem 6.5 without that ] might not be 

defined on all of iaq. The function f(~" A) is analytic in A, and more gener- 

ally we can define f(A) for A E aq, c by (7.1). This f is then meromorphic 

in A. 

Example 7.1. For the Riemannian symmetric space G/K the Fourier trans- 

form is usually defined by 

(7.2) f (~,kM) -- L f(g)e(~-P~ 

where f C C~(G/K),  )~ E a~),~, and kM C K/Mo. Since j ( l :  s in this case 

is the function l~(x) = e (-~-po)H(x) (see Example 6.1), this is equivalent 

with 

f ( A ) -  7ri,_,x(f)j(l:-A) C C~(K/M),  

that is, (7.1) with the unnormalized j. Here the normalization is unneces- 

sary, because j (1: - ~) is holomorphic. 

156 
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As we shall see later (in Example 7.3 below), the normalized j is also sig- 

nificant in this case. The function A(P0" P0" 1" A)I~ is clearly K-fixed, and 

hence it is a constant times the function 1~ C C(/50" 1: A) whose restriction 

to K is the function 1. Denoting the constant by c(A) we have 

A(/50" P0" 1" A)la - c(A)ia.  

m 

By the definition of A(Po" P0" 1" A), 

C(/~) -- J]9 e(-~-P~ 
0 

for (Re A, c~) > 0, c~ C E+(a0, g). This is the famous c-function of Harish- 

Chandra.  We thus get 

j~  A ) -  c(A)-11~, 

and our Fourier transform is the one in (7.2) divided by c ( -A) .  It is known 

that  c(A) ~ 0 on ia;  (this follows for example from the Gindikin-Karpelevic 

formula for c(A) (see [130, Section 7.5])), so that  j~ A)is regular on this 

set, as it should be according to Theorem 6.5. 

Example 7.2. For the real hyperbolic space X with q > 1 where V(~) is 

one-dimensional, we saw in the final example of the previous lecture that  

j~ 

where h was explicitly computed. Recall that  j ( l"  A) was identified with 

the distribution on _= given by 

f~(y) - [yxl -~-p, (y E ~), 

for Re A + p < 0. It follows that  the Fourier transform is given by 

(7.3) 
f(A)(y) - h(-A) /G f(gH) I(g-Xy)xl ~-p dg 

: h(-A)Jx f(x)I(x, y)l ~'-p dx 
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(where (.,-) is the standard O(p,q)-invariant bilinear form on R p+q) for 

Re A > p, and by analytic continuation for other values of A. 

The theorem that I am now going to state shows how the Fourier trans- 

form is used to get a Plancherel decomposition of the part of L2(G/H)  
which is associated with the principal series of representations induced from 

a-minimal parabolic subgroups. We shall have to work with the direct in- 

tegral of these representations, so let me begin by making this explicit. At 

the same time, the multiplicities with which the representations are going 

to occur are also taken into account. The direct integral representation will 

be denoted 

jf 
G 

(Ir,s 2) ~ (Try,_), | 1,7-Q,_), | V(~)*) dA. 

Here/~/H denotes the set of (equivalence classes of) finite dimensional irre- 

ducible unitary representations of M having a nonzero w ( M  n H ) w  -1 fixed 

vector for some w C NK(aq). 
An explicit model for (~, s is obtained roughly as follows. Let dA be 

some Lebesgue measure on ia*q. Then s is the Hilbert space consisting of 

the measurable functions F of the two variables ~ C /~?/H and A C iaq with 

values 

F(~: A) e Hom(V(~) ,L2(K:~))  ~- L2(K:~) |  Y(~)*, 

satisfying 

(7.4) [ dim(~)llF(~" A)[I 2 dA < -t-~, 

with (7.4) as the square norm of F (of course one has to mud out the null 

space for the norm in order to get a proper Hilbert space). Furthermore 

is the representation given by (Tr(g)F)(~: A) = ( ~  _~(g) |  1)F(~C: A). 

In the following I shall also consider the subrepresentation 

f e | I dA 71"~,_A 
e-g/H ,~cia~ + 

of ~, where aq *+ is the positive chamber for the Weyl group W - W(aq, ~) 
in aq. The reason for this is that we have the equivalences ~r ~ ~sr 

s C W .  
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T h e o r e m  7.1. For suitably normalized Lebesgue measure dA on iaq the 

following holds. 

(a) If f E C y ( a / H )  then ] E 2, 2, and 

Ilfll~= - ~ /~ dim(g)llf(g" A)II 2 dA < Ilfll~=(c/H). 
~EMH ,3 

In particular f ~ f extends uniquely to a G-equivariant continuous 

linear map ~ from (f, L2(G/H)) into (7r,s Moreover: 

(b) This map ~ is a partial isometry, that is, its restriction to the 

orthocomplement L2mc of its kernel in L2(G/H) is an isometry. 

(c) We have the following decomposition: 

(el ~mc L L ) ~  
C Y4H,;~Cia~ + 

(Try_), | 1, 7-t~ _), | V(~)*) dA. 

In particular the multiplicity of each 7r~_a in L2mc equals the di- 

. ~ ~ o ~  of v (~). 

The subspace L2mc is called the most continuous part of L2(G/H).  As 

mentioned already in the Introduction I shall not be able to give a detailed 

proof of this theorem during these lectures my pr imary goal was just to 

reach the point we have reached now, where it can be stated. 

Example 7.3. The Riemannian symmetric  spaces. As seen in Example 7.1 

we have that  our Fourier transform is c ( -A)  -1 times the one given by (7.2). 

Moreover, 5~/H consists in this case only of the trivial representation ~ - 1. 

Translated in terms of (7.2) we get the following content of Theorem 7.1 

in this case. 

Let t~ 2 denote the L 2 space L2(a; x KIMo, Ic(A)l-2dA d(kMo)) with the 

representation (Tr(g)F)(A, kMo) = F(A, g-lkMo) (here F(A, .) is extended 

to a function on G by means of F(A, kan) = a~-PF(kMo)). We then have: 

(a) If f E C ~ ( G / K )  then f E 2. 2 and 
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In particular, f ~ f extends uniquely to a G-equivariant continuous linear 

map ~ from (g, L2(G/K))  into (7r,,~2). Moreover: 

(b) This map ~ is a partial isometry, that  is, its restriction to the 

orthocomplement L2mc of ker-~" in L2(G/K)  is an isometry. 

(c) We have the following decomposition: 

( 7 . 5 )  , Lmc L2mc),-~ +ia~ + 
L 2 (K/Mo)) 

So much is the content of Theorem 7.1, but in this case one can actually 

say more: 

(d) We have L2mc - L2(G/K) ,  so that (7.5) gives the full decomposi- 

tion of L2(G/K) .  

The result can also be phrased as follows (see (5.12))" 

f 

- l J~ Ciao + 

that  is, 
/ ,  

f(e) - ] f(A)lc(A)[ -2 dA, 
J~ Eiao + 

where 

f (x)~_~ (x) dx 

is the spherical Fourier transform of f C C ~ ( G / K ) .  Note the significance 

of normalizing the Fourier transform: it will cause the cancellation of the 

terms ]c(A)[ -2 from these formulas. 

In contrast to the Riemannian case we do not have L2mc - L 2 ( X ) i n  

general, since discrete series may occur (since L2mc is given by a continuous 

integral, it has no irreducible subrepresentations).  The following result 

shows that  nevertheless we have that  L2mc is quite big in L2(X). 

T h e o r e m  7.2. If f e C ~ ( X )  and f - 0 then f - O. 

In general there are in fact other obstacles than the discrete series which 

prevent L2c from being equal to L2(G/H),  but if the split rank of G / H  

is one this is not so. In this case there are only the most continuous series 

and the discrete series in the Plancherel decomposition of L2(G/H) �9 
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T h e o r e m  7.3. Assume that dim aq --  1. Then the orthocomplement of 
L2mc in L2(G/H) has a discrete decomposition (that is, it is the direct sum 
of its irreducible subrepresentations). 

Example 7.4. For the real hyperboloids with q > 1 we have from Theorems 

7.1 and 7.3 that  

g'~ ~ J R  7I-J'--A dA + ~ Discrete series, 
j=O,1 + 

and the Fourier transform is given explicitly by (7.3) for j - 0, and by a 

similar formula for j - 1. (A more explicit form of the decomposition will 

be given later, in Example 8.3.) 

The first step in the proof of these theorems is to expand f as a sum of K- 

finite functions (as in (4.6)), and then prove a similar result for the functions 

transforming on the left according to a given K-type.  For simplicity I 

will here only consider the trivial K-type,  thus restricting myself to K- 

invariant functions on G/H. The analysis for other K-types is similar, but 

considerably more complicated. 

For f E C ~ ( G / H )  we have that  f(~: A)r/for r/C V(~ c) is the element in 

C~(K:  c~) given by 

f (gH)jO (~. _~)(?])(g--1 k)d(gH), 

and if f is K-invariant it follows that  this is a constant function. Now if ~c 

is irreducible and C(K" ~) contains a nonzero constant function it follows 

that  ~c has a nonzero M n K-fixed vector, and then ~ must be the trivial 

representation of M (this follows from the facts that  ~ also has a nonzero 

w(]F/N H)w- l - f ixed  vector, and that  M - (M N K)(w(M n H)w -1) by 

Lemma 3.2). Thus for K-invariant functions on G/H we need only consider 

the principal series with the trivial M-type 1. 

It follows from the definition of V(~ c) that  for ~ - 1 we have V(~) 

C w. From now on I shall therefore replace V(~) by C w whenever it is 

convenient. Thus for example, in place of (6.5) we have 

(7.6) j ( l :  A)(TI)(hw-lmam) -- a-~'-PTI~ E C, 
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for r/G C w, w 6 ]4;. Let the functions E(A: 7/) = E(P: A: 7/) and E~ 7/) = 

E ~ (P: A: ~) be defined on G/H by 

and 

E(A: rl)(gH) --/K j ( l"  A)(rl)(g-lk)dk 

f 
E~ rl)(gH) - ]K J~ )~)(r/)(g-lk)dk'  

for 77 6 C w and A 6 ha, c (a priori E and E ~ are just distributions, but we 

shall see soon that  they are actually analytic functions on G/H). These 

functions are K-invariant and we have for a K-invariant f e C~(G/H)  
that  its Fourier transform f( l"  A), from now on denoted just ](A), is the 

linear form on C w given by 

] ( A ) ~ -  f x  f(x)E~ rl)(x)dx, (7/e c w ) .  

The functions E(A: r/) (and their counterparts for other K-types) are called 

Eisenstein integrals and similarly the E~ r/) are called normalized Eisen- 
stein integrals. They are meromorphic functions of A (in a suitable sense), 

and by Theorem 6.5 the normalized Eisenstein integral E ~ is nonsingular 

on ia*q. In the special case of G/H - G / K  the Eisenstein integrals are 

the spherical functions ~ ,  and the normalized Eisenstein integrals are the 

functions c ( A ) - l ~ .  

Just  as the spherical functions are joint eigenfunctions for D(G/K)  we 

have the following generalization. Recall from Lemma 4.6 that  for D 6 

D(G/H) we defined "yq(D) e S(aq) W by 

(7.7) u e (n + m)cU(g) + T_p~/q(D) + U(g)Oc, 

where u 6 U(g)H with r(u) : D. 

P r o p o s i t i o n  7.4. The K-invariant Eisenstein integrals are joint eigen- 
functions for the invariant differential operators. More precisely, we have 

(7.8) DE(A: ~l) = ~/q(D: )~)E(/~: ~) 

for all D 6 D(G/H),  A 6 aq, c and rl 6 C w. The equation (7.8) also holds 
for the normalized Eisenstein integrals E~ r/). 
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Remark. The non-K-invariant  Eisenstein integrals will in general only be 

D(G/H)-finite. 

Proof. In fact already the function gH ~-+ j(P: 1" A)(g -1) satisfies the dif- 

ferential equation (7.8). To see this it suffices to consider the A's where j is 

defined by a continuous function and then prove that  the smooth restric- 

tion to the open P x H cosets satisfies this equation. Now this restriction 

is given by namwh ~ a'X+Prlw. For w - e it follows easily from (7.7) 

that  this is an eigenfunction for D with eigenvalue ~q(D" A). For other w's 

the independence of "/q(D) on the choice of positive system E+(aq, g) can 

be used. Now (7.8) follows. The independence on E+(aq,g)  also implies 

that  gH ~ j(/5: 1" A)(g -1) satisfies (7.8), and the intertwining property of 

A(P:  P: 1" A) then gives that  so does gH ~ j~ 1" A)(g-1), and hence also 
Eo(  �9 D 

Note that  it follows from Proposition 7.4 that  the Eisenstein integrals 

are analytic functions on X (viewed as functions on K \ G  they are eigen- 

functions for the Laplace operator,  which is elliptic). 

An essential tool for the proof of Theorem 7.1 is the existence of as- 
ymptotic expansions for the Eisenstein integrals. The purpose of these 

are to determine the behavior of E(A: r/)(a) when a C Aq tends to infin- 

ity. Let me begin by specifying what is meant  by this. Fix a positive set 

~+(flq, 9) with corresponding parabolic subgroup P. Then a -+ oc means 

that  c~(loga) --+ oc for all c~ C E+(aq, g). Let a + be the open positive 

chamber in aq corresponding to E + (aq, g) and let A + - exp a +. Note that  

A + is different from the A + of the KAqH-decomposition in Theorem 2.4; 

with the present definition of A + this decomposition can be writ ten as 

G - UwcwKA+wH. 

In order to control all the directions to infinity we must then consider the 

behavior as a --+ cc of the functions E(A: rl)(aw)-  E(A: rl)(w-law) for all 

w C 1/Y. 

Regarding A + as a submanifold of X one can show that  for each differ- 

ential operator D on X there is a unique differential operator II(D) on A + 

such that  (Df)lA+ -- I I(D)(f lA+ ) for all K-invariant  functions f C C~(X) .  
The operator II(D) is called the radial part of D (see the notes for a ref- 

erence). On A + we then have that  the K-invariant  Eisenstein integrals 
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satisfy the differential equation 

(7.9) II(D)O = Tq(D: )~)(b 

for all D C D ( G / H ) .  The first step is to consider formal power series 

solutions to this equation (actually taking D = L would be sufficient here). 

P r o p o s i t i o n  7.5. Let S denote the union of all the hyperplanes given by 

a ,  - {A e a*q,c I (2)~-  It, p) - 0}, where It r N r + ( n q , g ) \  {0}. There 

exists, for )~ ~ S, a unique formal  series 

(I)~ ( a ) -  a ~-" E a-t'Ft'(A) 
pCN~+ (aq,g) 

on A + with r , (A)  e C, Fo - 1, which solves (7.9). 

absolutely and can be differentiated term by term. 

For R E R let 

The series converges 

(7.10) nq(R) - {A C nq, c [ ne (A,a)  <_ R for all a r E+(nq,9)}, 

then the set XR - {p e NE+(nq ,g)  \ {0} I a ,  N n*q(R) # 0} is finite. Let 

pR()~) be the polynomial 

- H - , , , ) ,  
ttC XR 

then pR()~)(~(a) is holomorphic as a funct ion of )~ in nq(R). Moreover it 

satisfies the following bound. There exists a constant c > 0 (depending on 

R )  such that for each c > 0 the following holds. Let 

A +~ - {a C A s I ~(log a) > ~ for all ~ C E + (n s, 9)}. 

There exists a constant C such that 

(7.11) ]pR(A)(I)~(a)] _< C(1 + [Ai)Ca Re~-p 

for  all a C A +~ and all )~ C nq(R). 
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Remark. It is easily seen that  there exists R > 0 such that  S n aq(R) is 

empty. For this value of R it follows that  p• - 1 and that  (I)a is holomor- 

phic o n  aq(R). In particular we have that  (I)A is holomorphic on the set 

where Re A _< 0, and that  the estimate (7.11) holds on this set without the 

polynomial factor pR(�94 However, the analogous statement for the other 

K-types  is false. 

T h e o r e m  7.6. There exists for each s C W a unique endomorphism- 

valued meromorphic function I ~ C~ �9 I)  E End(C w) on aq, c such that 

- 

.sEW 

for a E Aq  w E W,  rl E C w as a meromorphic identity in I 6 a* 
~ q , c  �9 

Moreover we have 

(7.12) co( . - 1 

for all s E W and A C aq, c. In particular we have that C ~ A) is unitary 

for purely imaginary A. 

Proof. The proofs of these results are too long to be given here. See the 

references in the notes and the examples below. F1 

Remark. It follows from the remark above that  (I)a is regular o n  iflq. On the 

other hand, the final statement of Theorem 7.6 implies (by the Riemann 

boundedness theorem) that  C~ �9 A) is also regular on this set. Hence we 

obtain from the expansion above that  E~ ~)(aw) is regular on iaq, for all 

a, w, and r/as above. From this it can be seen, independently of Theorem 
,r 6.5, that  E~194 r/) is regular on iflq. (Say there was a singularity at 10, then 

X H p(k)E~ r/) would be regular and nonzero (as a function on G / H )  at 

A0 for a suitable polynomial p in I with p(k0) - 0. However, on the dense 

set of the points x - kaw, with k E K and a, w as above, it would have 

to vanish at A0 by the regularity just obtained; being an eigenfunction 

for D ( G / H ) ,  hence analytic, it would then have to vanish for all x, a 

contradiction.) For the non-K-invariant normalized Eisenstein integrals 

the statement of Theorem 7.6 is also valid, and the regularity on iaq can 

be derived (though not with the same ease) from (7.12), independently of 

Theorem 6.5. In fact, going backward the regularity in Theorem 6.5 is 

deduced from the regularity of the normalized Eisenstein integrals. 
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Example 7.5. Consider again the real hyperboloid with q > 1. 

seen that  the radial part  of the Laplace operator is given by 

It can be 

(7.13) H(L)(I) -- J -1 /2[LA(J1 /2 (~)  - LA(J1/2)(~],  

where J( t )  - cosh p-1 t sinh q-1 t is the Jacobian in Theorem 2.5 and LA = 

(d /d t )  2 the Laplacian on A. It is convenient to introduce the function 

~p~ _ j 1 / 2 ~ ,  which then satisfies the equation 

(7.14) ~ - d " ~  - ( ~  - ~ ) ~ ,  

where d -  j - 1 / : ( j 1 / 2 ) , , .  We have d(t) - }-~.n~__O dne 

dn, explicitly given by 

-~t for some constants 

do - p2 and dn - ( ( q -  1 ) ( q -  3 ) +  ( - 1 ) n ( p -  1 ) ( p -  3))n. 

In particular, we have ]dnl <_ c o n  for some co > O. Now if 

o o  

~ ( t )  - ~ Z ~m(~)~-~ 
r n = 0  

satisfies (7.14) then it follows by insertion that  

m 

n = l  

1 3 . then the Fm can be determined recursively. Hence if A :/: 3, 1, 7 , . .  

Consider for simplicity only the case where the real number R in Propo- 

sition 7.5 is less than 1/2. Then the set X R  is empty, and we get for m > 0 

that  
m 

I~m(~)l <_ Co 
m(1 - 2R) E nlPm-n(A)l" 

n - - i  

Let e > 0 be arbitrary, then a straightforward induction shows that  there 

exists for each m a constant Cm > 0 such that  [f'm(A)[ < Cme m~. I claim 

that  Cm in fact can be chosen independently of m. To see this let C be 
o o  the maximum of all the Cm for which m < c0(1 - 2R) -1 ~ 1  ne-n~,  and 

apply induction once more. We now have 

(7.15) I~m(~)l _< c ~  ~ 



Semisimple Symmetric Spaces 167 

for all m and all A with ReA < R. 

It follows immediately from (7.15) that  the series for (~ ( t )  converges 

uniformly on the set t > e, with the sum bounded by C~e Rear. It fol- 

lows easily that  (I)a is bounded by C ' e  (Rea-p)t. The result is also easily 

generalized to the situation where R is not necessarily less than 1/2. 

Now consider the s ta tements  of Theorem 7.6 for this case. Since q > 1 

we have that  W only consists of the trivial element 1. The first s ta tement  

is then that  there exist scalar-valued meromorphic functions C~(A) such 

that  

- + c ~  

on A +. It follows immediately from the fact that  E~ satisfies a second- 

order ordinary differential equation on A, and that  q)~ and (I)_~ for generic 

are linearly independent solutions to the same equation, that  E~ is a 

linear combination of 0h and (I)_~. It remains to be seen that  the functions 

C~(A) are meromorphic. This follows easily from the meromorphicity of 

E~ combined with the linear independence of (I)a and O_a. Alternatively 

we have from the following proposition that  C~ (A) - 1, and in the following 

lecture (see Example 8.1) we shall derive an explicit expression for C ~ (A), 

from which it also follows that  it is meromorphic. The identity of (7.12) 

will likewise follow from this expression. 

The following result shows that  the normalization of E ~ is determined 

so that  it has particularly simple asymptotics.  

P r o p o s i t i o n  7.7. Let )~ C aq,  c 

Then 

with Re A strictly dominant, and let w C 142. 

(7.16) aP-'XE~ rl)(aw) -+ rlw 

as a --+ oc in A +. We have C~ - 1 (the identity operator on C W) for 

all )~. 

Proof. The following formal computat ions can be justified. It is easily seen 

that  j(/5: 1" A ) ( g ) -  j(P" 1:-;~)(Og), and hence by definition we have 

L jo (p:  1" A)(gfi) dfi - j (P:  1"-A)(Og). 
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Integration over K gives 

/N ~ jo (p:  1" A)(gkfi) dk dfi - ~ j(P: 1"-A)(O(g)k) dk. 

On the left we apply the Iwasawa decomposition to fi, and on the right we 

rewrite the integral over K as an integral over N,  using [130, Eq. (5.25)]. 

The result is the equation 

2 e (-~-p)H(n) dfi /K jo(p. 1: A)(gk) dk 

- - / 2  j(P: 1"-,X)(O(g)fi)e (-)'-p)H(n) dfi. 

Note that  we now have E ~  -1)  present on the left side. Now if g = 

(aw) -1 with w C W and a C A + we have and 1 ~ e as a ~ (X), and hence 

the integral on the right behaves as follows 

Nj(P: 1"-/~)(w-lafi)e (-A-p)H(n) dfi 

-- a)'-~ IN j(P: 1"-A)(w-lafia -1)e (-)~-~ dfi 

aX-Oj(p: 1"-~)(w -1) IN e(-'X-P)H(n) dfi. 

Now the integrals over iV cancel and we get (7.16). The final s ta tement  is 

an immediate consequence. [7 

Example 7.6. For G/K we have Harish-Chandra 's  famous asymptot ic  ex- 

pansion for the spherical functions: 

~(a) -- Z c(sa)e~ (a). 
sC Wo 

Hence the normalized c-functions are given by C~ A) = C(~)--1C(8/~). In 

particular we have C~ A) = 1 as stated in Proposition 7.7. Since c(A) = 

c(A) the s ta tement  of (7.12) comes down to the relation c( -sA)c(sA)  = 

c(-A)c(A),  which follows from the Gindikin-Karpelevic product formula 

for c(A) (see [130, Section 7.5]). 
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I would like to end this lecture by mentioning the following result. We 

have seen in Proposition 7.4 that  the K-invariant Eisenstein integrals are 

solutions to the eigenequation (7.8). One can prove in analogy with Theo- 

rem 6.4 that  the map ~ ~-~ E(A: ~) for generic A is a bijection of C ~v onto 

the space of K-invariant solutions to (7.8). See [167, Prop. 4.2] (the result 

is actually stated only for symmetric spaces of so-called G//K~-type, but 

the proof can be adapted to the general case of K-invariant functions on 

C/H). 



LECTURE 8 

Wave packets 

In this final lecture I shall try to indicate some of the steps in the proof 

of Theorems 7.1, 7.2, and 7.3. The most important ingredient is the con- 

struction of a candidate for the "inverse" of the Fourier transform. As is 

well known, the inverse of the Euclidean Fourier transform 

f ~ $ - / ( A ) -  f ( A ) -  JR" f ( x ) e - i ~ x  dx 

is given by the transform 

qo 

measures suitably normalized. One may regard ,fq0(x) as a superposition 

of the plane waves e i~~ with the amplitudes qo(A). For this reason it is 

called a wave packet. 
In order to find the appropriate analog, recall first that  to each A corre- 

sponds a I1/Yl dimensional space of "waves" on X, the Eisenstein integrals 

E(A: r/)(x) (as in the previous lecture I only consider the K-invariant Eis- 

enstein integrals). Hence the amplitude function qD has to be a CW-valued 

function on iaq. The wave with "amplitude" r/ is E(A: r/) (x). As in the 

definition of the Fourier transform it is preferable to use here the normal- 

ized Eisenstein integral, because of the regularity on ia*q. This leads to the 

following definition of the wave packet corresponding to q~: 

(8.1) Jqo(x) - f E~ qo(A))(x)d)~. 
Jia 

We first have to make this definition rigorous. For this we need an 

estimate of the normalized Eisenstein integral which is uniform in A E iaq. 
At a later point we also need such an estimate on the set -aq(O) defined 

by 

- a q ( 0 ) -  {/~ e aq,~ I (Re~,c~) > 0 for all c~ e E+(aq,g)} 

(see also (7.10)). Since in general E ~ has poles on this set we first have to 

cancel these. 

170 
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P r o p o s i t i o n  8.1. There exists a complex polynomial p~ on aq,e, which 

is a product of first-order polynomials of the form A ~ (A, c~) - c o n s t a n t ,  

(c~ E E(aq,g)),  such that p~176 is holomorphic on a neighborhood 

of-aq(O), for all 71. 
Moreover, there exist constants C, N, and s such that 

(8.2) Ip~176 7/)(a)[ < C(1 + IAI)Ne(~+lR~l)ll~ 

for all ~ C -aq(O), r/C C w and a E Aq. 

Remark. In particular it follows that  there exists a constant R such that  

E~ is holomorphic in A on the set where (Re A, c~) >_ R for all c~ E 

Proof. This is derived by means of a functional equation for j ,  but it is 

too complicated to be given here. See the references in the notes, and the 

example below. FI 

Example 8.1. The real hyperboloids, q > 1. It follows from (7.13) that  the 

differential equation for the K-invariant Eisenstein integrals E()~)(exptY) 

and E~ given by 

(8.3) j - 1 / 2 [ ( j t / 2 f ) , , _  ( j1 /2) , , f ]_  ()~2 _ p2)f, 

where J(t) = cosh p-1 t sinh q - i t .  This differential equation is actually a 

well known equation; by the change of variables z = - s i nh2  t it becomes 

the hypergeometric equation 

z(1 - z)u" + (c - (a + b + 1)z)u' - abu = 0, 

1 1 )k), C - -  1 with a - ~(p+A), b - ~ ( p -  ~q. One can show that  this equation has 

a unique solution which is regular at z = 0 with the value 1. This solution 

is called the hypergeometric function F(a,b; c; z). It follows immediately 

that  the unnormalized Eisenstein integral E(A) is given by 

E()~)(t) = E()~)(O)F(a, b; c ; -  sinh 2 t), 

but it takes some effort to compute the constant E(A)(0) (see for example 

[105, Appendix B]). The normalized Eisenstein integral E~ more easily 
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determined, because we know its asymptotic behavior from Proposition 7.7. 

It follows that  

E~ - [lim e(P-~)SF(a, b; c ; -  sinh 2 s ) ] - lF (a ,  b; c ; -  sinh 2 t) 
8--+OO 

for Re A > 0. The limit is determined from the identity (see [104, p. 63, 

Eq. (17)])" 

(8.4) 

F ( a ,  b; c; z )  _ r(c)r(a  - b) ( _ z ) _ b F ( b  ' 1 - c + b; 1 - a + b; Z - 1 )  
F ( a ) F ( c - b )  

r ( c ) r ( b -  a) 
-+- ( - z ) - a F ( a ,  1 - c + a; 1 - b + a; Z -1) .  

r ( b ) r ( c - a )  

It follows that  

E~ - 

1 1(~ __ + q)) 2"X-OF( a, b; c ; -  sinh 2 t). r (5(;~+p)) r (5 p 
1 F(A)F(~q) 

In particular we can determine the poles from this expression; they are 

caused by the F-functions in the numerator (but some of them may be 

cancelled by the denominator).  It is seen that  there are only finitely many 

poles with positive real part (if p < q + 2 there are none, otherwise they 

occur at p -  q, p - q -  2 , . . .  ), and (in accordance with Theorem 6.5) no 

purely imaginary poles (because of the F(A) in the denominator).  This 

establishes the first statement of Proposition 8.1 for this case. Note also 

that  we get from (8.4) that  

E ~ - ~ ( t )  + ~_~ ( t ) c  i (~), 

where 

(s .5)  
1 1 

Oh(t) - ( 2 s i n h t ) a - P F ( - ~ ( p -  A), -~(p - p -  A); 1 - A ; - s i n h  -2 t) 

and 

co_(~) - 

1 )~) 1 r ( ~ ( p  + ) r ( - ~ ) r ( ~ ( q  - ~ + ~)) 
r ( ~ ( p l  - ~))r(+~)r(~ (ql _ p _  )~)) 

in accordance with Theorem 7.6. 

The estimate (8.2) is harder to obtain, but it can be deduced from [132, 

Lemma 2.3] (in fact this gives a stronger estimate). 
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In particular, by combining Proposition 8.1 with Theorem 6.5, which 

implies that  E ~ is not singular on iaq, we get that  

(8.6) IE~ C(1 + IAI)Ne~ll~ 

for ~ E iaq. This shows that  the integral (8.1) converges provided ~(~) 

has a reasonable decay in ~, for example as a Schwartz function. Similar 

estimates for the derivatives of E ~ with respect to x show that  J ~  is 

smooth. 

Let us now return to the Fourier transform. Recall that  for K-invariant 

functions we have 

f(A)rl - / x  f(x)E~ rl)(x) dx, r/E C w, 

thus f(A) is a linear form on C w. It is actually more convenient to have a 

Fourier transform which takes its values in C TM. For this reason I define a 

new Fourier transform jc f  as follows, 

(~-f(~X)l~) - ( f l E ~  ~)), f E C~(K\G/H), 

for all rl, where the sesquilinear product ('I') on the left side is the s tandard 

inner product on C w, and on the right is given by 

(8 .7 )  ( f l i f 2 ) -  IX fl(x)f2(x) dx 

for complex functions f l ,  f2 on X. It follows from (7.6) that  

- O ) ( x ) ,  

and hence $-f(A) E C w is simply the element for which f()~)rl - .Tf(k) �9 r/ 

for all rl E C TM (the dot denotes the s tandard bilinear product on c w ) .  

Note that  5of(A) is meromorphic in ~ E aq, c. 

We can use Proposition 8.1 to obtain an estimate of Y f  for functions 

f E C~(K\G/H). Let p~ be a polynomial on flq, c with the properties of 

this proposition and let p(A) - pO(_A). Then p.Tf is holomorphic on aq(0), 

and we have 

(8.8) Ip(A).Tf(A)] < C(1 + IAI)Ne '~IRr 
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for all A E aq(0), with constants C,N,r .  Here N is independent of f ,  

whereas C and r depend on f .  However, r depends only on the size of the 

support  of f.  In fact we can take 

( 8 . 9 )  r = sup I loga[. 
aCsupp fNAq 

There is an important  duality between the transforms ~- and J ,  ex- 

pressed in the following lemma. As above let {'1"} denote the standard 

inner product on C w. Furthermore let also 

(8.10) 
f (~1~2) - [ {~DI(A)I~D2(A))dA, 
Jia 

for CW-valued functions ~1, ~2 o n  iflq. 

L e m m a  8.2. Let f C C ~ ( X )  be K-invariant and let ~ be a CW-valued 

Schwartz function on iaq. Then 

where ('1") is defined by (8.7) and (8.10), respectively. 

Proof. This is a straightforward application of Fubini's theorem. EEl 

Now it is time to invoke the invariant differential operators. Recall from 

the previous lecture that  we have 

DE~ ~) = 7q(D: A)E~ rl) 

for D e D(G/H) .  It follows that  

(8.11) 

(8.12) 

D J ~ ( x )  = J(~/q(D)~) 

~ ( D f )  = ~/q(D)Ff. 

and 

Here the first equality is obvious, but for the second one needs the following 

relation for the formal adjoint D* of D. Define v* C S(aq) for v C S(aq) 

by v* (,~) = v(-A) .  
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L e m m a  8.3. Let D C D ( G / H ) .  Then "yq(D*) - 7q(D)*. 

Proof. Let u C U(~) H with D - r(u).  It is easily seen that  D* - r(~t), 

where v ~ ~3 is the principal ant iautomorphism of U(IJ). Let s: S(g) --+ U(g) 

be the symmetr izat ion map, then it is known (this is part  of the proof of 

Proposition 4.1) that  we can choose u - s(v) for an element v C S(q) H. 

Since s(v) v - a(s(v))  we obtain D* - r (a(u)) .  It follows immediately from 

the definition of ~yq that  ya(a(u))* equals the ~yq(u) one would obtain from 

using the opposite positive system. Since yq(D) is actually independent of 

the choice of positive roots, the lemma follows. [3 

The equation for . T ( D f )  can be used to improve the est imate (8.8). 

Proposition 8.4. Let p()~) be as above. Let f C C ~ ( K \ G / H )  and n C N .  

There exists a constant C such that 

(8.13) Ip(A)>-f(A)I <_ C(1 § IAI)-~e ~lRe~l 

for all )~ C aq(O), ~ C C ~ .  Here r is given by (8.9); in particular it depends 

only on the size of the support of f .  

Proof. Just  to give the idea, assume for simplicity that  dimaq - 1. It is 

easily seen that  ~q(L" A) - (A, A) - (p, p). By using suitably high powers 

of L we can obtain a D with I~q(D: A)I-> (1 § IA[) N+n for all ~. Applying 

(8.8) to D f  and using (8.12) we get (8.13). [3 

The purpose of the polynomial p(A) in (8.13) is to cancel the singularities 

of .T'f(A). Hence p is not needed for ~ E ia*q (because of Theorem 6.5), 

and it follows that  9vf(A) is bounded by C(1 + IAI) -n  for all n. Similar 

estimates for the derivatives with respect to A imply that  ~ f  is actually 
$ a Schwartz function on iaq. In particular it makes sense to apply ,7 to 

~ f .  This is important ,  because as mentioned, the wave packet transform 

is the candidate for the "inverse" of the Fourier transform on K-invariant  

functions. As we shall see below, it is actually not the inverse of 9 v in 

general (it will only be the inverse of the restriction of ~ to L2mc). The 

main step in the proof of Theorems 7.1-7.3 consists of the following result, 

which shows that  5T is the inverse of ? in a certain weak sense. 

T h e o r e m  8.5. There exists an invariant differential operator D on G / H  

for  which deg ~/q(D) - order D ~ O, and a positive constant c such that 

(8.14) D , 7 ~  f - cD f 
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for all K-invariant  f E C ~ ( X ) .  

Note that  it follows from Theorem 4.7 that  D is injective as an operator 

on C ~ ( X ) .  Nevertheless, since J g v f  in general does not have compact 

support,  one cannot conclude from (8.14) that  J g v f  = cf .  
The rest of this final lecture will be spent on discussing the proof of 

this result, but before that  let me indicate how it is applied to Theorems 

7.1-7.3. First of all, Theorem 7.2 follows immediately, by means of the 

injectivity of D. To obtain Theorem 7.1 one has to introduce a notion of 

Schwartz functions on X. Without  giving the details, let C(X)  denote the 

space of such functions. A rather delicate refinement of the estimates for 

E ~ given above shows that  ~ maps Schwartz functions on X to Schwartz 

functions on iaq, and vice versa for J ,  and these operations are continu- 

ous. Applying 9 ~ on both sides of (8.14) we get by means of (8.12) that  

~/q(D)JZ,7~f = C~/q(D).~f, and hence by division with "~q(D) (which is 

permissible on meromorphic functions) 

(8.15) 9~Jg~f = cJZf. 

(Note that  the Schwartz estimates are implicitly used when ~" is allowed to 

operate on J ~ f . )  Normalizing measures suitably we may assume c = 1. 

The relation (8.15) shows that  J 9  ~ is idempotent,  by Lemma 8.2 it is 

symmetric, and hence it is a projection operator. Now Theorem 7.1 (a) is 

obtained by 

(8.16) IINfll 2 = < ~ f l ~ f }  = < S ~ f l f }  = <(Jg~)2flf} = IIJJZfll 2 ~_ Ilfll 2, 

and (b) by noting that  (8.15) implies that  the kernel of $" is identical with 

the kernel of the projection operator J ~ ;  hence L2mc is the image of this 

projection, on which it is easily seen that  ~ is isometrical, 

IINJJzfll  2 = I]Nfll 2 = IlSJzfll 2, 

by (8.15) and (8.16). It follows that  $" embeds L2mc isometrically into the 

space 

jf e 7-/ C w d~ | 1,)~ 
Ciaq 
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(recall that  we only consider K-invariant  functions for simplicity). The 

fact that  there are nontrivial intertwining operators between 7rl,a and 7rl,sa 

for s E W results in the existence of a simple relation between 9of( t )  and 

.Tf(sl)  for s E W, which implies that  the image of L2mc is completely 

determined by its restriction to only one chamber. This shows that  L2mc is 

equivalent with a subrepresentation of the representation in the r ight-hand 

side of (c) in Theorem 7.1. The proof that  it is actually equivalent with 

the full r ight-hand side requires a further analysis of the map 9c J ,  which I 

cannot give here. 

Finally, let me sketch how to deduce Theorem 7.3 from Theorem 8.5. Let 

D E D(G/H) be as in the latter theorem. As mentioned 9 r and J extend 

continuously to Schwartz space, and hence (8.14) holds also for the K- 

invariant functions f E C(X). In particular,  if f is orthogonal to L2mr which 

by definition means that  9rf  = 0, then D f  = 0. If dim flq = 1 the space of 

smooth K-invariant  functions annihilated by D has finite dimension, say d 

(they satisfy an ordinary linear differential equation on Aq). It follows that  

the subrepresentation of L2(G/H) generated by f is the sum of at most d 

irreducible subrepresentations of L2(G/H) (otherwise it could be writ ten 

as the direct sum of d + 1 nontrivial invariant subspaces; one of these would 

necessarily have no K-fixed vectors, and hence would be orthogonal to f ,  

a contradiction). 

The relation between 9 r f ( s l )  and 9of(1) mentioned above is the follow- 

ing. 

P r o p o s i t i o n  8.6. We have 

5~f(sA) -- C~ A)S'f(A) 

for all f E C ~ ( K \ G / H )  s E W and l E a* 
q , c  " 

Proof. This is easily obtained as a consequence of (7.12) and the relation 

(S.lr) Eo(~ �9 co(~: a)~) - Eo(~: ~), 

for s E W, I E aq,c, and r/E C TM, of which I shall now sketch the proof. 

Consider the distribution 

R(s)A(s- lps:  P: 1-A)j~ 1" A)(r/) E C - ~ ( 1 "  s t ) ,  
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obtained by applying the intertwining operator of (5.15) to jo(p:  1: A)(r/). 

Since the operator is intertwining this is an H-fixed distribution, so for 

generic A it is given by 

R(s )A( s - lp s :  P: 1: A)j~ 1: A)(rl) = jo(p:  1: sA)(B~ A)rl), 

for some endomorphism B~ A) of C w, meromorphic in A. We evaluate 

this identity at g- l k  and integrate over k C K. On the right-hand side we 

obtain E~ B~ A)~)(gH). Let us compute the left-hand side by means 

of the formula (5.14) for the standard intertwining operator, 

~ R ( s ) A ( s - l p s  �9 P :  1: A)j~ (P: 1: )~)(r])(g-lk)d]~ 

- - / K  ffirn~-lN~ j~  1" ~)(?~)(g-l~,~)d~td~, 

where ~, the representative in K for s, immediately is swallowed by the 

K-integration. Disregarding all questions of convergence we exchange the 

order of the integrals. Furthermore we define a(fi) C A such that  fi C 

KMa(f i )N,  then it follows from (5.1) (with ~c = 1) that the double integral 

splits as the product of 

jo (p: 1" A) (rl) (g - lk )  dk - E ~ (A" rl)(gH) 

and 

/f i  a(fi) -A-p dfi. 
n s - l N s  

Let c(s: A) denote the latter quantity, then we have obtained the identity 

(8.18) E o B o a ) , )  = a ) E  ~ (a:  , ) .  

Apart from the justification of these formal manipulations, which I skip, 

it remains to be seen that c(s:A)-lB~ = C~ in order to have 

(8.17). By meromorphy we may assume that s Re A is strictly dominant. 

Then it follows from Proposition 7.7 and Theorem 7.6, respectively, that  

the two sides of (8.18), evaluated at aw, behave like aSa-~176 A)r/)w and 

aS~-Pc(s �9 A)(C~ A)r/)w, respectively, when a -+ ~ in A +. From this the 
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desired identity between B ~ and C ~ follows, since c(s: ,~) is not identically 

zero. [2 

I am now ready to sketch the main steps leading to Theorem 8.5. Consider 

the integral (8.1) defining the wave packet J ~ .  Inserting the expansion for 

E~ r/) from Theorem 7.6 we obtain 

f 
,.7p(aw) - I E~ "~" ~(,~))(aw) d)~ 

Jia 

- /a Z 49~;~(a)(C~ "k)~(~))~ d~. 
sEW 

For ~ = P f  we can use Proposition 8.6 and obtain 

(8.19) 

J.T f (aw) - - / a  E o ~  (a)'T f (s~)w d~ 
s E W  

= IWl [ (I)~ (a).Tf(A)w dA. 
dia 

We would like to use Cauchy's theorem on this integral in order to obtain 

f 
JUf(aw)  - I W I  I O~+f,(a).Tf()~ + #)w d)~ 

clio 

for p C aq antidominant ,  but of course this is not permit ted  since $-f  is only 

meromorphic.  Recall however that  p.Tf is holomorphic on a neighborhood 

of %(0). We now need the following. 

L e m m a  8.7. There exists an element D E D(G/H) such that p divides 
7q (D), and such that deg 7q (D) = order D :/: 0. 

Proof. Roughly the idea is that  I-IsEw p(s,~) is a Weyl invariant polynomial, 

hence in the image of 7q. (This is not quite good enough, however, since 

actually % is not surjective on S(aq)W in general.) [2 

Wi th  D as in this lemma, we now apply (8.19) to Df  instead of f .  By 

means of (8.11-8.12) we then obtain 

f 
DJ.Tf(aw) -- J.TDf(aw) --IWl [ ~(a)%(D)(A).Tf(A)~ d)~, 

clio 
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and (since p divides ~q(D)) the integrand has become holomorphic on a 

neighborhood %(0). The estimates of Propositions 7.5 and 8.4 allow the 

use of Cauchy's theorem to conclude that  

(8.20) DJ.T f (aw) - IWI  J~i~ O~,+.(a)%(D)(A + #).Tf(A + #)~ dA 

for # antidominant.  The strategy is now to let # pass to infinity in this 

direction. It follows from the estimates that  the integral is bounded by 

a constant times a~e ~1~1, where r is given by (8.9). Now if a E A + and 

I loga I > r then we can find an ant idominant  #0 such that  #0(log a) < 

- r i p 0  I. Taking # proportional to #0 it follows that  the integral tends to 

zero, so that  DJYf(aw)  = 0. The conclusion we reach is that  D,YYf has 

compact support,  and that  this support has roughly the same size as the 

support  of f .  

Refining the argument given above it is actually possible to prove that  

if S C aq is a convex, compact,  W-invariant set, then 

(8.21) supp f C X s  ---> supp D,.7".Ff C Xs. 

(Recall that  X s  = K exp SH.) The next step in the proof of Theorem 8.5 

consists of a strong improvement of this statement:  we have actually 

(8.22) supp D,.7"Yf C supp f, 

that  is, (8.21) holds for all compact WKnH-invariant sets S. Let me sketch 

the proof of this under the simplifying assumption that  WKA/-/= W. Let 

G denote the collection of all closed W-invariant  sets S C flq for which 

(8.21) holds for all K-invariant  f E C~(X). We know that  the convex 
closed W-invariant sets S belong to | Now clearly | is stable for taking 

intersections. Furthermore,  if S belongs to | then the closure S c of its 

complement also belongs to (3. To see this, first note that  we may assume 

D is formally selfadjoint (otherwise we replace it by D* D). Then if ~ is any 

K-invariant  smooth function with support in Xs  we have by (8.21) that  

supp D J . T ~  C Xs, and hence by Lemma 8.2 {DJ~fl~)  = (flDJJZ~) = 0 
for all K-invariant  f C C~(X) with support in Xsc. Hence the lat ter  

condition implies that  D J ~ f  vanishes on the interior of S, that  is, S c 

belongs to G, as claimed. Combining this with the property of intersections, 
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it follows that  the closure of a union of sets from G again belongs to 6 .  Now 

it is easily seen that  any closed W-invariant set can be obtained by these 

operations starting with convex closed W-invariant sets. This establishes 

(8.22). 

From (8.22) it follows by means of Peetre's theorem ([124, Thm. 1.4]) 

that  the operator D J J  c" is a differential operator D ~ on G / H  (more pre- 

cisely, on the image of A + in K \ G / H ) .  It remains to be seen that  D' - cD 

for some constant c r 0. This can be proved roughly as follows: Observe 

that  D' commutes with all elements from D(G/H)  (use (8.11-8.12)). This 

commutat ion relation may be seen as a system of differential equations on 

the coefficients of D'. One can show that  this system has a regular singu- 

larity at infinity. In particular this implies that  D' is uniquely determined 

by its asymptotic behavior. Using the asymptotic expansion in Theorem 

7.6 one can analyze how D ~ behaves at infinity: b r and J become the Eu- 

clidean Fourier and inverse Fourier transforms, respectively, and hence they 

cancel each other (up to a positive constant c) and we obtain D ~ ,.~ cD. As 

said, this implies D' = cD. This finishes my sketch of the proof of Theorem 

8.5. F-] 

Example 8.2. For the Riemannian symmetric spaces G / K  we have that  ~a 

is holomorphic and c(A) -a has no poles in - a ; ( 0 ) .  Hence we can take 

p~ - 1 in Proposition 8.1, and hence also D - 1 in Lemma 8.7 and in 

Theorem 8.5. It follows that  L2mc(G/K) - L2(G/K),  as stated in (d) of 

Example 7.3. 

Example 8.3. The real hyperboloids, q > 1. We have seen in Example 8.1 

that  the poles of E~ with positive real part are located at A - Aj = 

p - q -  2j where j - 0, 1 , . . . ,  say for j <_ k, and these poles are simple. 

Hence Uf(A) has poles at the negative of these locations (depending on f 

only some of them may occur). Instead of introducing the operator D in 

order to cancel these poles in (8.19) we can in this case perform the shift 

leading to (8.20), keeping track of the residues. Instead of (8.20) we obtain 

(8.23) J S ' f ( a w )  - IWI  J a  ~a+u(a)gCf(A + p)~ dA 

k 

Res .T'f (A). + 27ri[WI Z ~-~J (a) a=-~'J 
j=O 
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By [104, p. 64, (22)] the expression (8.5) for O,x can be rewrit ten as 

(8.24) 
1 1 

(I)~ ( t ) -  (2 cosh t )~-PF(-~(p-  ~) , -~(q-  p -  A); 1 -  A; cosh -2 t), 

and this hypergeometric function becomes a polynomial in cosh -2 t exactly 

when A = -A j  = q - p + 2j (the Taylor series for F(a, b; c, z) at z = 0 (the 

Gauss s u m m a t i o n  formula) terminates when a or b is a negative integer). 

In particular,  it is regular at cosh -2 t = 1, and it follows that  (8.24) for A = 

- A j  extends to a K-invariant  smooth function on X, which is of Schwartz 

type (because of the factor (2cosh t ) -~J-P) .  Moreover, since E~ has a 

simple pole at Aj, its residue is also a smooth K-invariant  eigenfunction, 

and hence it must be proportional to O-~5" 

It follows from these remarks that  the summation term in (8.23) is the 

restriction of a global Schwartz function on X. Let 

k 

D f  - -2~-i Z Res ~f()~)(I)_~j. A=-Aj 
j=O 

It is now easily seen that  the operator D commutes with the Laplace op- 

erator, and also that  it is symmetric  (use the above-mentioned proportion- 

ality). Following the argumentat ion in the general proof above we then 

obtain that  

(ff  .T + D ) f  = cf, 

the Plancherel formula for X; it shows how f is decomposed into its L2mc 

part  f f .T f  and its discrete series part  D f .  Note that  if we insert D f  
instead of f in this equation we obtain (8.14), because Resa=_aj ~'Df()~) = 
",/q(D)(-,~j) Res,x=_,xj ~f()~) = 0, so that  D D f  = O. 



Notes 

LECTURE 1. A readable introduction to the theory of semisimple symme- 

tric spaces, with some more details on the geometric viewpoints, is given 

in the first chapter of [108]. Thorough treatments are given in the books 

[123], [124], [131, Chap. 9], [139], [177]. The example of the real hyper- 

boloids (Example 1.6) has been treated thoroughly by several authors. See 

for example [170], [105], [178] (some further references can be found in the 

list of rank one symmetric spaces below). The account in [170] is particu- 

larly recommendable as a companion to these notes. In addition to these 

examples, other examples of harmonic analysis on particular semisimple 

symmetric spaces can be found, for example in [185] and [95] (see also the 

list below). Very much of the analysis done in the first of these lectures 

has been done in [167] for a class of semisimple symmetric spaces called 

K~-type. 

Research on the program of harmonic analysis on general semisimple 

symmetric spaces was basically begun in the late 1970's and developed 

rapidly in the 1980's. An overview is given in [84]. Up to now, the part 

of the decomposition which is best understood is the discrete series. Be- 

low are given some hints and some references. These notes deal with the 

"opposite" part, the most continuous part. The basic references are the 

forthcoming papers [90,91], on which the final lectures (7 and 8) will be 

built. Finally, there are also series of representations that lie "between" 

the most continuous series and the discrete series. These series have only 

been studied quite recently, see [97], [101] and [98]. 

By definition, a discrete series representation of a locally compact group 

G with respect to a homogeneous space G/H is an irreducible representa- 

tion 7r of G, which can be embedded as a subrepresentation of L2(G/H) (it 

is assumed that G/H has an invariant measure). Let G/H be a semisimple 

symmetric space. It is known from the pioneering work of Flensted-Jensen 

[107] that the discrete series is nonempty if the rank of G/H equals that of 

K/(K a H) (here K is a cr-invariant maximal compact subgroup of G, see 

Prop. 2.1 for its existence). In the cited paper a construction of "most" of 

the discrete series is given. The basic tool in the construction is the duality 

(see the proof of Thm. 4.3). The construction was extended by Oshima and 

183 
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Matsuki [166], who showed that  the mentioned rank condition is also nec- 

essary for the existence of the discrete series (a significant simplification of 

their proof is given in [141]). The construction of Flensted-Jensen, Oshima, 

and Matsuki (see also [85], [86]) gives a series of subrepresentations 7r~ of 

L2(G/H),  whose span equals the span of the discrete series. For a few of 

the 7r~ it remained an open problem whether they are irreducible (a priori 

they might decompose as finite sums of irreducibles) and nonzero. The ir- 

reducibility was settled by Vogan in [188], and Matsuki gave in [141] some 

necessary conditions for the nonvanishing, and announced them also to be 

sufficient. The final problem is whether there are equivalences among the 

7r~. The answer is believed to be no, and this has been confirmed by Bien 

[93] in all cases except for a handful of "exceptional" symmetric spaces. 

Differently put, this means that  no irreducible representations occur more 

than once in ~ (the discrete series have multiplicity one). 

In the group case the discrete series was known beforehand from Harish- 

Chandra [117]. For a noncompact (that is, G has no compact factors) 

Riemannian symmetric space there is no discrete series (also by Harish- 

Chandra). 

As mentioned in the lecture, the basic method for finding the Plancherel 

decomposition in symmetric space of rank one is to use polar coordinates in 

which the Laplacian L becomes an ordinary singular differential operator 

of the type  treated by Weyl, Kodaira, and Titchmarsh. For a Riemannian 

symmetric space G / K  of rank one, the obvious way of obtaining polar co- 

ordinates comes from the Cartan decomposition G - K exp a K, with the 

angular parameter being furnished by K and the radial parameter  by a. 

Thus the system of coordinates is obtained from the fact that  the regular 

orbits of K on G / K  constitute a one-dimensional family. The generaliza- 

tion to non-Riemannian spaces G / H  of rank one offers two possibilities: 

one can use the orbits of K or the orbits of H on X to obtain polar coordi- 

nates. In both cases the regular orbits constitute one-dimensional families. 

These two ways of introducing coordinates on X give rise to two essentially 

different ways of obtaining the spectral resolution of L on L2(X). 

The first method has only been applied successfully to the hyperbolic 

spaces (Example 1.6; the first four blocks of the list below). It was in- 

troduced by Limid et al. in [138]. The second method works for all rank 

one spaces, but it has the drawback of being more complicated. A method 

of this kind was first used by Molchanov in the announcement [144] (with 
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detailed proofs given in [147]). It is based on a study of spherical distribu- 
tions on X (i.e., generalized functions on X, which are H-invariant and are 
eigenfunctions for L), and the final result is a decomposition of the Dirac 
measure concentrated at the origin in terms of positive definite spherical 
distributions (that is, an explicit version of (5.10)). Faraut [105] gives 

a careful exposition of both methods, applied to the classical hyperbolic 

spaces. 

Below is a list of all the non-Riemannian semisimple symmetric spaces 

of rank one (up to covering), with some references to papers treating the 
Plancherel formula. (The list of references is not complete, and some of the 

papers contain full proofs of the theorems, whereas others are announce- 

ments only.) 

T h e  n o n - R i e m a n n i a n  semis imp le  s y m m e t r i c  spaces  of r a n k  o n e  

SO~(p, q)/SO~(p-  1, q), (p > 1, q > O) (the real hyperbolic spaces). 
[115] (p = 2, q = 2); [110], [175] (p = 3, q = 1); [144], [181] (p > 1, q = 1); [145] 

(p > 1, q odd); [138], [182], [170], [105], [147] and [152]. 

SU(p, q)/S(U(1) x U ( p -  1, q)), 

(p > 1,q = 1); [105], [152]. 
(p > 1, q > O) (the complex hyperbolic spaces). [143] 

Sp(p, q)/(Sp(1) • Sp(p - 1, q)), 
[105], [152]. 

(p > 1, q > 0) (the quaternion hyperbolic spaces). 

F4(-20)/Spin(I,8),  (the octonion hyperbolic space). [134], [152]. 

S L ( n , R ) / G L + ( n -  1, R), 
[184], [152]. 

( n >  1). [150], [151] (n=2); [149] (n=3); [148], [185], 

Sp(n,R)/(Sp(1,  R) x S p ( n -  1, R)), (n > 1). [136], [152]. 

F4(4)/Spin(n, 5). [152] 

For all these spaces, the decomposition of L2(X) contains a discrete part 

and a continuous part (the discrete series and the principal series). In 

particular, one finds that the multiplicities are one, except when X is (or 

covers) the real hyperbolic space SOe(p, 1 ) /SOe(p -  1, 1) (cf. [184]), where 
the representations of the principal series have multiplicity 2. 

LECTURE 2. One of the first systematic studies of semisimple symmetric 

spaces is the paper [92] by Berger, which gives a classification of these 

spaces. Proposition 2.1 is in that paper. A proof is easily derived from 

[123, Thm. III.7.1] (see [177, Prop. 7.1.1]). The Cartan decomposition of 

Proposition 2.2 is from Mostow [153], and Theorems 2.4 and 2.5 are from 
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Flensted-Jensen [106, 107]. The proof of Theorem 2.5 consists of a root 

space computation of the Jacobian J (see [177, Thm. 8.1.1]). Theorem 2.6 

is from Rossmann [171], the proof (for the involution a0) is also given in 

[177, Prop. 7.2.1] (see also [168]). 

LECTURE 3. For details on parabolic subgroups in general, see for example 

[130, Sect. 5.5], [187, Sect. II,6], or [189, Sect. 1.2]. The a-minimal parabolic 

subgroups are introduced in Rossmann [171], where Theorem 3.3 is given 

as Cor. 17. The proof can be found in this paper, and also in Matsuki 

[140], where also the nonopen P • H cosets are determined (for further 

material on these coset decompositions see also [142]). For the proof Lemma 

3.1, and for more details about these parabolic subgroups, see [80, Sect. 

2]. Theorem 3.4 is from van den Ban [77], where the full proof can be 

found. It was first found by Kostant [133] in the Riemannian case (cf. 

Example 3.5) (see also [124, Thm. IV,10.5]). Lemmas 3.6 and 3.7 are 

from Harish-Chandra [116, Lemmas 39, 43]; the proofs are based only 

on finite dimensional representation theory (for Lemma 3.7 see also [124, 

Cor. IV,6.6]). The proof of the properness of a based on Lemma 3.6 is 

taken from [167, Lemma 3.7] 

LECTURE 4. For generalities on invariant differential operators, see [124, 

Chap. II] where Proposition 4.1 is given as Theorem 4.6. The result is 

independent of our assumption that H is connected, and then U(g) H can 

also be replaced by U(g) He (see [164, Lemma 2.1] or [81, Lemma 2.1]) so 

that  in fact D(G/H)-  D(G/He). Theorem 4.2 is due to Harish-Chandra 

[116], for the proof see [124, Thm. II,5.17]. An alternative proof of the W0- 

invariance (without the use of spherical functions) has been given in [137]. 

Theorem 4.3 and its proof are due to Helgason ([124, Thm. II,5.7]), but 

the "duality" used in the proof goes further back to Berger [92]. The use 

of this duality has been exploited by Flensted-Jensen (see [108] and refer- 

ences mentioned there). For example, the isomorphism between D(G/H) 
and D(Gd/K d) appears as an algebraic isomorphism, but it can actually 

be given an analytic sense essentially by looking at G/H and Gd/K d as 

submanifolds of the same complex symmetric space Gc/Hc. For the proof 

of Lemma 4.4, see [119] (see also [125]). Proposition 4.5 is from van den 

Ban [78]; the part of the proof given here is an elaboration of [170, Lemma 

9]. Lemma 4.6 and Theorem 4.7 are from [89], where the full proof of the 

latter can be found. In the Riemannian case it goes back to Helgason [121]. 
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LECTURE 5. For more details on general principal series representations 

and the s tandard intertwining operators, see [130, Chap. 7], and for more 

details on the specialization to the a-minimal case, see [80, Sects. 3-4]. The 

abstract  integral decomposition theory can be found in [103] (see also [169] 

for (5.5)). For details on the application to G/H, see van den Ban [78] 

(where the full proof of Proposition 5.2 can be found) and [105, Sect. 1], 

[185]. The theory of spherical functions on G/K (Example 5.1) can be 

found in [124, Chap. IV]. Lemma 5.3 is due to 'Olafsson [157] (for further 

discussions see also [88]). The irreducibility in Theorem 5.4 is due to Bruhat  

(see [96, p. 203, Thm. 4], and also [80, Prop. 3.7]). The idea of Bruhat ' s  

proof is sketched in [130, Sect. 7.3], and more thoroughly in [112]. See also 

[157, Thm. 3.7]. Proposition 5.5 and Theorem 5.6 are from [80, Sect. 4]; the 

proof of Theorem 5.6 is based on [130, Thm. 8.38], but matters  simplify 

because ~ is finite dimensional. The proof of Theorem 5.4 for the real 

hyperboloids (Example 5.5) can be found, for example, in [182] (see also 

[146]). 

LECTURE 6. The basic reference for this lecture is [80] (see also [157]). 

Proposition 6.1 and Theorem 6.2 are given in both these papers. The 

existence of the meromorphic extension of f~ was originally announced in 

[162]. Se~ also [167, Prop. 3.8] for a special case. Theorems 6.3 and 6.4 are 

[80, Thms. 5.1 and 5.10]. In the proof of Theorem 6.4 a finite dimensional 

representation rr~ is used. The existence of this representation with the 

properties mentioned in the proof follows from a general theorem on finite 

dimensional representations of G with both a nontrivial K-fixed vector 

and a nontrivial H-fixed vector (a K • H-spherical representation). For 

H = K these have been classified by Helgason, see [124, Thm. V,4.1]. For 

the generalization to arbi t rary H, see [157] or [81] (the generalization is 

due to Hoogenboom). Theorem 6.5 is announced in [88, Thm. 2] under a 

certain Condition (F), which at the time of the announcement was needed 

for the proof of [80, Thm. 6.3] (the proof given in [80] has an error, which 

is easily repaired under the assumption of Condition (F) - see [88]). Since 

then van den Ban [82] has found a proof of this theorem independent of 

Condition (F). The proof of Theorem 6.5 will appear in [90]. 

LECTURE 7. The definition of the Fourier transform is given in [90]. Theo- 

rems 7.1-7.3 are announced in [88] (see also [84]), their proofs (sketched in 

Lecture 8) will appear in [91]. Note that  as a consequence of Theorem 7.3 
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and the known results for the discrete series (see the notes to Lecture 1), the 

full decomposition of L2(G/H) is known for symmetric spaces G/H of split 

rank one. This class of spaces is considerably wider than that of symmetric 

spaces of rank one (a table is given in [168, p. 462]). In the Riemannian 

case (Ex. 7.3) the full Plancherel decomposition is obtained from Theorem 

7.1. In this case, the result is well known and due to Harish-Chandra and 

Helgason (see [120], [121], [126]). A substantial simplification of the origi- 

nal proof was found by Rosenberg; this is the line of proof followed in [124, 

Thm. 7.5]. At the same time, a proof of Helgason's Paley-Wiener theorem 

for G/K (that is, the description of the image ~(Cc~(G/K))) is obtained 

(see [124, Thm. 7.1]). The proof of Theorem 7.1 of these notes is built 

similarly; in particular, a Paley-Wiener theorem is also obtained for spaces 

G/H of split rank one. However, major complications arise from the fact 

that the spherical distribution in general is not holomorphic in the param- 

eter A, and from fact that dim V(~ c) can be larger than one in general (so 

that the Plancherel decomposition will have multiplicities larger than one). 

The Eisenstein integrals (unnormalized as well as normalized) are defined 

and studied in [81] (see also [90]); Propositions 7.4 and 7.7 are from [81]. In 

the group case the Eisenstein integrals were introduced by Harish-Chandra 

[117, I]. The asymptotic expansions in Proposition 7.5 and Theorem 7.6 

will be proved in [91]. For G/K and 'G, they were obtained by Harish- 

Chandra (see [124, Thm. 5.5] for the former case, and [189] for the latter). 

The relation (7.12), which is quite crucial, is established in [81, Thm. 16.3]. 

It was obtained by Harish-Chandra in the group case (the "Maass-Selberg 

relations" [117, III p. 153]), and in the Riemannian case by Helgason [121, 

Thm. 6.6]. For the general theory of radial parts of differential operators, 

see [124, Thm. II,3.6], and for the application to the Laplace operator in 

the KAqH decomposition, see [106, Eq. (4.12)], where (7.13)is proved for 

arbitrary semisimple symmetric spaces. 

LECTURE 8. Most of the material of this section will be published in [90] 

and [91]. The only exception is Proposition 8.1 which follows directly from 

[81, Prop. 10.3 and Cor. 16.2]. Example 8.1 shows that the K-invariant 

Eisenstein integrals on the real hyperboloids are hypergeometric functions; 

see [118] for the generalization to arbitrary semisimple symmetric spaces. 
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1. I n t r o d u c t i o n  

At the Roskilde conference in honor of the 65th birthday of S. Helgason 

the last lecture was given by E.P. van den Ban, who spoke about his joint 

work with H. Schlichtkrull on the spectral decomposition (of the most con- 

tinuous part) of L2(G/H) with G a reductive Lie group of Harish-Chandra 

class and H an open subgroup of the fixed points of some involution cr of 

G [190-192, 209]. In order to limit technicalities only the decomposition 

of the K-spherical part L2(G/H) K = L2(K\G/H) was discussed. Here K 

is the maximal compact subgroup of G fixed by a Cartan involution 0 of 

G commuting with a. After the lecture J. Faraut brought up the question 

whether the spectral decomposition of L2(K\G/H) could be described in 

terms of hypergeometric functions associated with a root system as devel- 

oped by E.M. Opdam and the author (see [199] for a survey). In this paper 

we show that the answer to this question is yes. 

In Section 2 we discuss the generalized Caftan decomposition in case G 

is replaced by a compact real form U. These results were obtained by B. 

Hoogenboom in his thesis [201]. It follows from these results that  there ex- 

ists a root system R and a multiplicity function k such that the radial part 

of the Laplace-Bertrami operator on G/H (acting on K-invariant functions) 

is exactly the same as the operator L(k) associated with R and k. Since 

the algebra D(G/H) of invariant differential operators on G/H is commu- 

tative it follows that the radial parts of an eigensystem of D(G/H), plus 

invariance by K, gives rise to a commutative eigensystem for an algebra 

differential operators containing L(k). Hence this system is a subsystem of 

the hypergeometric system (by the very definition of the latter). Since both 

systems are commutative and have finite dimensional solution spaces the 

conclusion is that K-invariant eigenfunctions for D(G/H) are finite linear 

combinations of hypergeometric functions. In particular this applies to the 

K-invariant Eisenstein integrals. 

In Section 3 we discuss the natural context of the spectral problem for 

the hypergeometric function associated with a root system. Partly this is 

a review of know results, and leads to a description of the spectral problem 

on noncompact vector groups. We give a little extra evidence that the 

spectral theory in the noncompact case works for all nonnegative values of 

the multiplicity parameter k E K rather than just some (integral or half- 

integral) group values of k (coming from harmonic analysis on K\G/H) 

191 
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by checking that  the Maass-Selberg relations just go through. In the group 

case of G / H  (not only for the trivial but for all K-types) the Maass-Selberg 

relations were obtained by E.P. van den Ban by a rank one reduction and 

certain manipulations with an integral formula [191,209]. We also use rank 

one reduction, but instead of using an integral formula we use the Kummer 

relations for the Gaussian hypergeometric function. In Section 5 we end 

this paper with the discussion of some open problems. 

We hope that  the content of this paper will stimulate a further search for 

integral representations for the hypergeometric function associated with a 

root system, because these seem to be the main obstacle for dealing with 

the spectral problem [193, 195, 199, 210]. 

Finally I would like to thank E.P. van den Ban and H. Schlichtkrull for 

enlightening discussions about their work. 

0 T h e  g e n e r a l i z e d  C a r t a n  d e c o m p o s i t i o n  

( a f t e r  B. H o o g e n b o o m )  

Suppose U is a compact, connected and simply connected Lie group. Let 

O, a: U-+U be a pair of commuting involutions of U, and denote K - U s, 

H - U ~ the respective groups of fixed points. It is known that  both K and 

H are connected (see [200], Chap. VII, Theorem 8.2). On the Lie algebra 

level we have the corresponding decompositions 

(2.1) u = e �9 ip = 0 �9 iq = (e n O) �9 (e n iq) �9 (ip n O) �9 i(p n q). 

Choose a maximal abelian subspace apq C p N q, and put tpq = iapq. Then 

Tpq:= exp(tpq) is a torus in U maximal with respect to the conditions 

O(t) = t - l , a ( t )  = t -1 for all t e Tpq. We also have the restricted root 

system 

(2.2) Y]pq : - -  ~ ( ~ = llc , tlpq ) C fl;q 

with corresponding Weyl group 

(2.3) Wpq:= W(Epq) ~- Ng( tpq) /Zg( tpq)  ~- NH(tpq)/ZH(tpq).  

Note that  the group Wpq acts on Tpq in a natural way: w(t) = ntn  -1 if 

w = nZg( tpq)  e Wpq, n e NK(tpq), t e Tpq. Since w(t l )w(t2)  = w(t l t2)  we 
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can consider the  semidirect  p roduc t  group Tpq >4 Wpq with  mul t ip l ica t ion  

defined by (tl ,  Wl)(t2, w2) - ( t lw l ( t2 ) ,  WlW2). Note  tha t  Tpq >~ Wpq acts on 

Tpq by (tl, w)" t 2 -  tlw(t2). 

D e f i n i t i o n  2.1.  We put  

N -  { ( t -  kh, w) 6 (Tpq N XK( tpq)NH(tpq) )  x Wpq; 
(2.4) 

W -  kZK(tpq) - h-lZH(tpq)} 

viewed as a subset  of the  group Tpq :~ Wpq. 

L e m m a  2.2.  N is a subgroup of Tpq :~ Wpq. 

Proof. Suppose  (tl - k l h l , W l ) , ( t 2  - k 2 h 2 , w 2 ) e  N .  T h e n  we have 

(tl, Wl)(t2, W2) -- (klhlWl(k2h2), WlW2) - (]glhlh11]~2h2hl, WlW2) 

= (klk2h2hl, WlW2) C N, 

and hence also ( t -  kh, w) -1 - ( k - l h  -1,  w - I )  e N.  r-1 

As a subgroup  of Tpq )4 Wpq the  group N also acts on Tpq. Wri t t en  out  

explicitly this becomes (kh,  w) �9 t - k th.  

L e m m a  2.3.  I f  k 6 K ,  h 6 H,  and t l , t2  6 Tpq with k t l h -  t2 then 
t4 - k t 4 1 k - 1 -  h - l t 4 h .  

Proof. Suppose  k t l h  = t2 for k 6 K,  h 6 H, t i, t2 6 Tpq. T h e n  by apply ing  

0 we get kt~lO(h)  = t~ -1 or equivalent ly O(h) = t l k - l t 2 1 ,  and  by applying cr 

we get cr(k) t~lh  = t21 or equivalent ly a(k)  = t 2 1 h - l t l  . Apply ing  Oa = aO 

yields a(k) t lO(h)  = t2, and  hence t 2 1 h - l t l . t l . t l k - X t 2 1  = t2 or equivalent ly  

t 3 - h - l t ~ k  -1. In tu rn  we get t 4 - t2" t 3 - kt  4k -1 - t 3. t2 - h - i tCh .  D 

C o r o l l a r y  2.4.  I f  we denote 

(2.5) L: = Tpq n Zg( tpq)ZH(tpq)  = N N (Tpq x {1}), 

then we have Tpq[2] C L C Tpq[4], when for  m e N we write Tpq[m] = {t e 

t : 1} point  of (divi o  4 )  m. 

Proof. Indeed Tpq[2] = {t e Tpq;t = t - I }  = {t e Tpq;t = 0(t)} = T p q A g  C 

Zg( tpq) ,  and similarly for H.  Hence Tpq[2] C L is clear. Now suppose  

t = kh 6 Tpq for some k C K,  h C H.  Apply ing  the previous l emma with  

tl = 1, t2 = t yields t 4 = 1. Hence L C Tpq[4]. [:] 

In par t icu la r  L (and hence N)  is finite. 
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L e m m a  2.5. We have a short exact sequence of groups 

(2.6) 1 ~ L ", N ~ Wpq --+ 1, 

where N ~ Wpq is projection on the second factor. 

Proof (Sketch). The only nontrivial point of this s ta tement  is that  the map 

N --+ Wpq is onto. Since Wpq is generated by reflections it suffices to 

prove that  each reflection lies in the image, and this reduces to an su(2)- 

computat ion (for more details see [201], Chap. 5 and Lemma 8.3). [-1 

T h e o r e m  2.6. ( G e n e r a l i z e d  C a r t a n  d e c o m p o s i t i o n ) .  We have the 

decomposition U - KTpqH.  Moreover for t l ,  t2 C Tpq there exist kl, k2 C 

K ,  h i ,h2  C H with k l t l h l  - k2t2h2 if and only if  n .  tl - t2 for some 

n O N .  

Proof (Sketch). The proof of the decomposition U = K T p q H  is similar to the 

corresponding decomposition G = K A p q H  in the noncompact  case. More- 

over the component in Apq is now unique modulo the action by the reflec- 

tion subgroup NKnH(apq)/ZKnH(apq) of Wpq = NK(flpq)/ZK(flpq) (see, 

e.g., [209], Theorem 2.4). For the proof of the second s ta tement  we re- 

strict ourselves to the case that  tl E Tpq is generic. Then k t l h  = t2 with 

k = k21k1,h  = hlh21,  and we conclude by Lemma 2.3 that  k E NK(tpq), 

h C NH(tpq) and t = kh C Tpq. By the very definition of N this amounts  

to n .  t l = t 2  for some n E N. [:] 

T h e o r e m  2.7. For suitably normalized Haar measures we have 

(2.7) du - J( t )  dt dk dh 

where u - k th is the generalized Caftan decomposition, and the weight 

function J on Tpq is given by 

( 2 . 8 )  J(t) - H It~-t-~lm+ " lt~+t-~lm2" 
c~EEp+q 

Here m + - d i m  g + ,  r n ~  - d i m  g ~ ,  rn~  - d i m  fl~ = rn + 

multiplicities of the root spaces 

+ m ~  are the 

VH E apq} 

- { X  e r - X } ,  - { X  e r - - X } .  
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Proof. This is a calculation of the Jacobian  J entirely similar to the for- 

mula  in the corresponding noncompact  case (see [201], Chap.  9 and [209], 

Theorem 2.5). Vl 

Now the Jacobian  J on Tpq is invariant under  the action of the group 

N,  i.e., 

(2.9) J ( n .  t) - J(t)  Vn 6_ X ,  Vt 6_ Tpq. 

Note tha t  (t - kh, w ) .  1 - 1 if and only if t - 1, or equivalently tha t  

StabN(16_Tpq) - NKnH(tpq)/ZKnH(tpq).  Under  the na tura l  ep imorphism 

N ~ Wpq this group maps  bijectively onto the subgroup of Wpq generated 

by the reflections r~ 6_ Wpq for which m + _> 1. The  invariance (2.9) near 

t -  1 amounts  to + rn +, - rrt-s Vw 6_ NKnH([pq) /ZKnH( tpq)  m w a  - -  ? / two  ~ - -  

Vet 6_ Epq. 

Now put  in the nota t ion  of Corollary 2.4 

(2.10) T -  L\Tpq, W -  N / L  

and let W act on T in the obvious way: nL(Lt )  = L ( n .  t) Vn 6_ N, Vt 6_ 

Tpq. One should keep in mind tha t  the identi ty element 1 6. T is not 

necessarily fixed by all w 6. W. However from the existence of special points 

(a consequence of the fact tha t  W is generated by n = rk(Epq) reflections, 

cf. [194] Chap.  5, w Prop. 10) we conclude the existence of a point to E T 

with w(to) = to Vw 6. W.  In fact choosing to 6. T appropr ia te ly  we can 

arrange tha t  

(2.11) J(tto)- 1-[ It~-t-~l~+~ 
c~EE+q 

for suitable integers n +, n 2 with {n +, n 2 } - {m +, rn 2 } Va e }]pq. More- 
0 -- {Oz C 2pq, 1 o v e r n  + _> n 2 Va C Epq "~c~ ~ Epq}, a n d n w ~  + - n + ,nw~ -- 

n 2 Vw E W,  V c~ E Y]pq. By abuse of nota t ion  we have not dist inguished 

between t E T and its representat ive t C Tpq. Note tha t  to 4~ - 1 Va C ~pq. 

Now there exists a new (possibly nonreduced)  root sys tem E with E C 

2pq U 22pq such tha t  (2.11) can be rewri t ten  in the form 

(2.12) J ( t t o ) -  H I t~ - t -~ ln~ ,  
c~EE+ 
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by just using ( t ~ - t - ~ ) ( t ~ + t - ~ )  = ( t2~- t -2~) .  By W-invariance we have 

n ~  = n~ Vw E W, Va E E. 

Finally in order to match with the notat ion used in the theory of hy- 

pergeometric functions associated with a root system we put R = 2E and 
k 2 ~ -  1 ~n~ for a E E. Then (2.12) becomes 

(2.13) J(tto) - l -I  ]t�89189 k" 
a E R  

and the point to E T satisfies to 2~ - 1 Vc~ E R. Let V be an irreducible 

uni tary representation of U having a nonzero K-fixed vector VK and a 

nonzero H-fixed vector VH. The matrix coefficient U ~ u ~-~ (Vk, UVH) is 

called a (K, H)- intertwining function. By restriction such a function gives a 

W-invariant Fourier polynomial on T. If V runs over the set of equivalence 

classes of irreducible (K, H)-spherical representations of U we obtain in 

this way an orthogonal basis of L 2 ( K \ U / H ,  du) ~_ L2(T, J( t  to)dt) W. 

By a further analysis one can show that  the restriction of the (K, H)- 

intertwining functions are obtained from the basis of monomial symmetric 

functions on T by a triangular operation. 

C o n c l u s i o n  2.8. The restriction of the (K, H)-intertwining functions on 

U to a split torts  are Jacobi polynomials associated with the root system R 

and with multiplicity parameter k = (k~)~eR. 

0 T h e  s p e c t r a l  p r o b l e m s  for h y p e r g e o m e t r i c  f u n c t i o n s  

a s s o c i a t e d  w i t h  a r o o t  s y s t e m  

We start  by fixing some notation, cf. [199]. Let a be a Euclidean space 

with inner product (., .). Let R C a* = Hom(a,I~) be a possibly non- 

reduced root system, and R v - {c~ v -- (~,~);c~2~ E R} C a the dual root 

system (using the linear isomorphism a ~ a* coming from the inner prod- 

uct). The weight lattice 

P = { ) ~ E a * ; ( A , a  v) E Z  Vc~ER} 

of R can be viewed as the character lattice of the complex to r t s  H -- 

[/27riQ v. Here b : =  C |  = a |  t : =  ia and QV = ZR v c 1~ is the 

coroot lattice of R. Clearly H - A T  (unique decomposition) with A: = a 
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a vector group and T: = t/27riQ v a torus. For A C P we write e a for the 

corresponding character  of H, and the value of e a at a point h C H is 

wri t ten as h a E C*. Similarly for A C b* we write e a for the corresponding 

character  of A, and the value of e a at a point a E A is denoted by a a. The 

group algebra C[P] of the abelian group P now becomes identified with the 

ring of Laurent polynomials on H. 

Consider the algebra 7~ (with unit 1) generated by the functions of the 

form ( 1 - e - s )  -1 for c~ C R. Note that  the Weyl group W acts on 7~. 

Clearly 7~ is invariant under the algebra SO of linear differential operators 

on H with constant coefficients. Hence the algebra ~ | SO represents 

the algebra of differential operators on H with coefficients in 7~. Since 

(1 - e~ )  -1 = 1 - ( 1 - e - S )  -1 7~ is generated by the functions ( 1 - e - S )  -1 

with c~ C R+. Here R+ is a fixed set of positive roots corresponding to 

a positive chamber a+ C a. Writing ( 1 - e - s )  -1 = l + e - S + e  -2s  + . . .  

Vc~ E R+ we can expand any differential operator  P C ~ | SO in the form 

P = 7 ' ( P ) + "  �9 �9 with 7 ' (P )  E SO. Clearly these formal expansions in ~|  

(viewed as subalgebra of C ~ e - s l , . . .  , e-sn~ | SO where C~l,... , c~n are the 

simple roots in R+) are convergent on the positive chamber A+: = a+. The 

element 7~(P) E SO is called the constant term of the differential operator  

P along A+. For example the differential operator  

02 1 + e  - s  0 
(3.1) L ( k ) ' -  ~1 -~J + ~ ks l ~  " Oc~ 

c~>0 

has constant te rm along A+ equal to 

n 02 0 
(3.2) 7' (L(k)) - ~ -~j + Z ks 0---~" 

s>0 

Here ~ 1 , - - - ,  ~n is an or thonormal  basis of a, and k = (k~)s~R C K is a 

multiplicity function on R, i.e., ks E C Vc~ C R and kws = ks Vw C W, 

Vc~ E R. We also define a map 

(3.3) > 

by the formulae 

(3.4) "y(k)(P) = e p(k) o y'(P) o e -p(k) 
1 

(3.5) p ( k ) -  e 0", 
s>0 
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and call it the k-constant term along A+. Obviously both .yt and ~/(k) are 

algebra homomorphisms. For the operator L(k) given by (3.1) we get 

n 02 
(3.6) "/(k)(L(k)) - ~ (p(k),p(k)).  

0 ~  -7" 

The advantage of ~/(k) over ~/' is that (3.6) is independent of the choice of 

the positive Weyl chamber A+. We put 

(3.7) ID(k) = {P e n | SO; wPw -1 - P Vw e W, [P, L(k)] = 0}. 

for the algebra of all W-invariant differential operators commuting with 

L(k). The following theorem is a crucial result (due to Opdam [205]; see 

also [198, 199] for a simplified proof). 

T h e o r e m  3.1. The k-constant term 

(3.8) ~(k). D(k)-%so w 

is an isomorphism of (commutative) algebras. 

Hence the second-order operator L(k) is part of a commutative set of 

n algebraically independent differential operators. The map (3.8) is called 

the generalized Harish-Chandra isomorphism, because for special values of 

k C K (referred to as the group values) the isomorphism (3.8) is intimately 

connected with Harish-Chandra's description of the algebra of invariant 

differential operators on a Riemannian symmetric space. The map (3.8) is 

natural in the sense that it is independent of the choice of A+. 

The purpose of this section is to discuss the various spectral problems 

associated with the commutative algebra I[}(k). For this we will impose the 

restriction (always satisfied for group values) 

(3.9) k,~+k2~ > 0 Va E R. 

Here we put kz = 0 if 3 ~ R. Consider the functions 

(3.10) p(k) -- H le�89189 2k~ 
a > O  

(3.11) 5 ( k )  - H (e�89176189 2k'~ 
c~>0 
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Because of (3.9) the function #(k) is a nonnegat ive continuous function on 

all of H,  whereas the function 6(k) is viewed as a mult ivalued holomorphic 

function on 

(3.12) H r e g "  - {h E H; h a # 1 Va E R} 

obta ined by analyt ic  cont inuat ion of #(k) on A+ C H reg. 

P r o p o s i t i o n  3.2.  Let k E K vary subject to the condition (3.9). The 

funct ion ~(k) is locally constant on T N H reg For t E T the funct ion ~(k) �9 ~ ( k )  

is locally constant on A t  C3 H reg if  and only if t 2 E C. Here 

(3.13) C � 9  a - 1  V a E R } C T  

is the central subgroup of H associated with R (C is a finite subgroup of H 

of order equal to the index [g: Q] of Q in P)�9 

Proof. If we write h E H reg as h - at with a E A, t E T then 

5(k; h) _ (h} 
- go .(k;h) 

i kc~ i k(~ - (h o- 

I 1 1 1 i I ~ot a~at~a _ a - ~ a t - ~ a  

- [I>o - --t T - T  . . . . .  - f - - u  
a ~ a  - ~ a  _ a - ~ a t ~ a  

6(k) 1 o { L ( k ) + ( p ( k ) ,  p(k)) } o 6(k) 1 

(3.14) n 02 ka(1 - ka - 2k2a) (a ,a )  

= 1E +E i s-_1o)2 
a > 0  

Now observe tha t  the r ight -hand side of (3.14) is (formally) symmetr ic  with 

respect to bo th  Haar  measures  dt on T and da on A. In tu rn  the following 

consequences can easily be derived. 

show tha t  

= t a Va > 0 ,e--->, t 2 a  - -  1 Va > 0 ~ t 2 E C, 

and the proposi t ion is proved�9 V-1 

By algebraic manipula t ions  (see [199, Theorem 2.1.1]) it is not hard  to 

1 1 1 1 
a s a t - ~ a  _ a - T a t s a  

1at1 1at 1 a5 5a _ a - ~  - s a  

On the one hand,  if a - 1 then  ,(k;t)~(k;t) = l--[a>0(--1) k~ is locally constant  on 
6 ( k ; a t )  T C3 H reg. On the other  hand,  if t E T is fixed then ,(k;at) is independent  

of a E A+ if and only if 
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Coro l l a ry  3.3. With k C K subject to (3.9) define an inner product (., ")k 

on C ~ (T) W by 

(3.15) (F, G)k" -- IW I F(t)G(t)p(k;  t)dt, 

where dt is the normalized Haar measure on T. Then the algebra D(k) 

leaves invariant C ~ ( T )  W and is invariant under taking adjoints with re- 

spect to (3.15). In fact under the generalized Harish-Chandra isomorphism 

(3.8) the adjoint corresponds to conjugation of s o w  with respect to the real 

form a oft'). 

Coro l l a ry  3.4. Let k C K satisfy (3.9). Fix t C T with t 2 C C, and put 

W(t )  - {w C W; w(t) - t} for the stabilizer o f t  in W.  Define the inner 

product (.,.)k on C ~ ( A t )  W(t) by 

(3.16) 1 L (F, G)k -- iW(t)l F(at)G(at)p(k;  at)da, 

where da is a Haar measure on A (a natural choice could be the contin- 

uation of the normalized Haar measure dt on T).  Then the algebra D(k) 

leaves invariant the space C ~ ( A t )  W(t) and is invariant under taking ad- 

joints with respect to (3.16). In fact under the generalized Harish-Chandra 

isomorphism (3.8) the adjoint corresponds to conjugation of SO W with re- 

spect to real form t = ia of b. 

The spectral problem connected with Corollary 3.3 has an exact solution 
due to Opdam and the author [197, 206] which we briefly recall. For A C P+ 

the monomial symmetric functions M(A) - ~--~,ew~ e€ form a basis of 

C[P] W. For A, p C O* write p _< A if and only if A-p  - k lC~ l  - ~ - . . . - ~ -  kn~n, 
with k l , . . . ,  kn C Z>_o. Then _< is a partial ordering on P+ (which is only 

a total ordering in case n - 1). 

Def in i t ion  3.5. For ~ C P+ the Jacobi polynomials P(A,k) C C[P] w 

defined by the following two properties" 

(3.17) P ( A , k ) -  E c~ , (k )M(#) ,  c ~ ( k ) -  1 
~eP+,~_<~ 

(3.18) (P(;~, k), M(#) )  k - 0 V# e P+, # < ~. 

are 
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Def in i t ion  3.6. The meromorphic functions ~, c*" D* x K --+ C are defined 

by 

(3.19) 

(3.20) 

l k l ~ )  r ( ( ~ ,  ~ ) +  ~ 

- no lklo~ ~l_ kS ) 

xk -k~+l) 
1~ -[-1) ~>o r ( - ( ~ , ~ ) -  ~ 1~ 

T h e o r e m  3.7. For all P C ID(k) and A r P+ we have 

(3.21) P ( P ( A , k ) )  - "y(k)(P)(A+p(k)) . P(A,k) .  

Hence the Jacobi polynomials are a complete orthogonal basis of the Hilbert 

space L2(T, It(k;t)dt) W. Moreover their L2-norms are given by 

(3.22) ( P ( A , k ) , P ( A , k ) )  k = 
c* ( -  (~ + p(k)), k) 

~(a + p(k), k) 

This gives the solution of the simultaneous spectral problem problem 

of D(k) in the context of Corollary 3.3. The first part of this theorem is 

an easy consequence of Theorem 3.1 and Corollary 3.3. The formula for 

the L2-norm of P(A, k) as an explicit product of F-factors can be derived 

using so-called shift operators [206, 199]. For group values of the parameter 

k C K formula (3.22) goes back to Vretare [211]. 

We now consider the spectral problem related to Corollary 3.4. If A C b* 

with (A, c~ v) ~ Z Vc~ C R then the system of differential equations 

(3.23) P(~)  - -y(k)(P)(~) �9 ~ v P  c D(k) 

has a basis of (formal) solutions of the form 

(3.24) ff)(It, k) -- E F,(It, k)e "-p(k)+€ 
v<0 

where r0(#,  k ) -  1 and F . (# ,  k ) i s  defined by recurrence relations (L, < 0) 

and It runs over the orbit WA C [~*. These are called the Harish-Chandra 

series. The (power) series 

v<O 
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(in the variables e -~1 e - ~  , . . . ,  ) converges to a holomorphic function on 

the (polydisc) domain A+ x T. 

Now fix t E T with t 2 C C. If we specify e t~-p(k) on A+t by 

e € (at) - a t L - p ( k )  = e ( t L - p ( k ) ' l ~  a) 

then the functions 

(3.25) O(A+t,  p, k) - e "-p(k) E F~(p, k)e ~, p C WA 
v<0 

are a basis for the solution space of (3.23) on A+t. Let V(At ,  A, k) denote 

the linear space of W(t) - invar iant  analytic solutions of (3.23) on At. Let 

wl = 1, w2 , . . .  , Wd E W be representatives for W modulo  W(t)  such tha t  

U d w j ( A + ) i s  dense in the chamber  in A for W(t)  containing A+. This 

la t ter  chamber  corresponds to R+ A R(t) where R(t) = {c~ E R; t ~ = 1}. 

Define a linear map 

(3.26) C(A, k)" V(At ,  A, k) ---+ C d 

by means of 

(3.27) 

C ( ) ~ , k ) ( l t )  - ( c1 , . . .  ,Cd) t ~ cj -- c ( w j ,  w j )  w i t h  

ulw~(A+) t -- E c(wj ,w)O(wj(A+)t ,  wA, k) Vj. 
wCW 

P r o p o s i t i o n  3.8.  For (A, k) C [~* • K generic the map (3.26) is a linear 

injection. 

In fact what  can be shown is the existence of a linear map  (or matr ix)  

(3.28) C~ k)" C d ; C d, w c W 

such tha t  we have a commuta t ive  diagram 

V(At ,  A,k) = V(At ,  wA, k) 

 c(a,k) 
C d > C d. 

C~ 
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Moreover the entries of the matr ix C~ k) are meromorphic in ()~, k) e 

[~* x K.  Indeed this immediately implies the proposition since a solution 

u C V(At,  ~, k) is completely determined on A+t (and hence on all of At) 

by the numbers c(1, w), w C W in (3.27). The existence of the matr ix  (3.28) 

is immediate from the trivial relation 

(3.29) C ~  �9 )~, ~)  - C~ �9 w2~ , ]g)C~ �9 k) 

together with the construction of the matr ix  C~ A,k) where ri C W 

is a simple reflection (corresponding to A+). For j = 1 , . . .  ,d there are 

two possibilities" either wjriw~ 1 C W(t) or equivalently wjr~ ~ wj, for 

all j '  - 1 , . . .  ,d, or wjr~wj 1 ~ W(t) or equivalently wjr~ - wj, for 

some jl = 1 , . . .  ,d. Let e l , . . . ,  ed denote the s tandard basis vectors for 

C d. In the former case the one-dimensional space Cej is invariant under 

C~ )~, k), whereas in the latter case the two-dimensional space Cej +Cej, 

is invariant under C~ ~, k). Moreover by taking boundary values the ex- 

plicit computat ion of the matr ix  coefficients of C~ )~, k) reduces to the 

rank one case of the Gaussian hypergeometric function. The next result is 

also clear from the explicit form of these matr ix  coefficients. 

Theorem 3.9. (Maass-Selberg relations). For all A C [~*, k C K and 

w E W we have 

(3.30) �9 �9 k )  - 

with A -  AI-iA2 the conjugate of A -  AI-+-iA2 C [~*()kl,/~2 C a*) and the 

conjugate k C K defined by (k)~ - ks Va C R. Moreover the star * 

denotes the adjoint (= conjugate and transposed) matrix. In particular for 

A C ia* purely imaginary and k C K real-valued (afortiori if (3.9) holds) 

the matrix C O (w" A, k) is unitary. 

E x a m p l e  3.10.  The case t - 1 is a simple and illuminating example. Un- 

der condition (3.9) the space V(A, A,k) is one-dimensional, and generated 

by the (hypergeometric) function 

(3.31) /~(~, k; .) - Z ~'(wA, k)(I)(wA, k) 
w E W  
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with ~(A, k) given by (3.19) and ~(#, k) the Harish-Chandra series on A+, 

cf. [199, Section 4.3]. With respect to this basis vector the matrix of C(A, k) 

just becomes ~(A, k), and in turn 

(3.32) C~ )~, k) -- " 

The Maass-Selberg relations in this case follow from ~(A, k) - ~(A, k) and 

the fact that ~(-A, k)~(A, k) is a W-invariant function of A C 0". 

The standard Hermitian inner product o n  C d can be transferred by the 

map C()~,k) to a Hermitian inner product on V(At,)~,k),  and for A E ia* 

purely imaginary and k E K real-valued it follows from the Maass-Selberg 

relations that this inner product only depends on the orbit WA (as does the 

system of differential equations (3.23) and the solution space V(At,)~,k) 

on At). For A E ia* purely imaginary and k E K satisfying (3.9) this will 

be the canonical Hilbert space structure on V(At,  )~, k). 

C o n j e c t u r e  3.11. The Hilbert space L2(At, p(k; a)da) W(t) has a closed 
2 (called the most continuous part of the Plancherel decompo- subspace Lmc 

sition), which admits a direct integral decomposition 

( 3 . 3 3 )  Lmc = V(At,  i)~, k)d)~. 
\a* 

Here d)~ is the regularly normalized Lebesgue measure on a*. The ortho- 

complement of 2 Lmc has lower spectral dimension, which can be rephrased 

by saying that it is annihilated by a suitable differential operator. 

For group values of k C K this has been proved by van den Ban and 

Schlichtkrull [192] (see also [209]) by a variation of the Helgason-Gangolli- 

Rosenberg proof of the spherical Plancherel theorem on a Riemannian sym- 

metric space. Their proof carries over to the situation of arbitrary k sat- 

isfying (3.9) except that a suitable integral representation for functions in 

V(At ,  )~, k) is missing. In the group case these integral representations are 

precisely given by the (K-invariant) Eisenstein integrals [190, 191]. 
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E x a m p l e  3.12. For t -  1 we have V(A, A,k) - C F ( A , k ;  .). If in addition 

condition (3.9) is sharpened to 

(3.34) ks > 0  Vc~CR, 

2 then Lmc should be equal to L2(A, it(k; a)da) W 
can be writ ten in the equivalent form 

�9 The decomposition (3.33) 

(3.35) f( .)  - f(a)F(-iA, k; a)p(k; a)da F(iA, k; �9 
k)l 2 ; + 

For group values of k C K this is Harish-Chandra 's  spherical Plancherel 

theorem. 

4. T h e  case  of  t h e  G a u s s i a n  h y p e r g e o m e t r i c  f u n c t i o n  

In the previous section the existence of the matrix C~ A,k), w C W 

was reduced to the rank one case. In this reduction one had to discuss two 

c a s e s  separately: e i t h e r  wjriwj 1 C W(t) o r  wjriw; 1 r W(t)�9 Since the 

former case is essentially covered by Example 3.10 we now look at the latter 

case. Consider three copies of the complex plane with coordinates x,y,  

and z connected by 2 - 4 y  = x + x  -1, z = 4y (1 -y ) ,  and 2 - 4 z  = x2+x -2, 
respectively�9 

Consider the following scheme of exponents�9 

points - 1  0 1 cx~ 

exponents in 0 A+k 0 A+k 

the x-variable 1 - 2 k  - A + k  1 - k  - A + k  

exponents in 0 0 A+k 
- 1 k 1 k - - ) ~ - ~ - k  the y-variable 2 2 

i k exponents in 0 0 a -- 1A+ 

-- 1 k 1 1A_+_ 1 k the z-variable 1 - ~ -  ~ ~ / 3 -  - ~  

In the z-plane these are the exponents of the Gaussian hypergeometric 

equation with parameters c~,/3, ~/. The set At equals iI~>0 in the x-plane, 
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and the system of differential equations (3.23) is the pull-back of the hy- 
pergeometric equation in the y-plane or z-plane. Let the functions 

(4.1) ~a~(z) - l + O ( z - 1 ) ,  ~0(z) - (z- l ) �89 ( l + O ( z - 1 ) )  

be a basis for the solution space near z - 1, and let 

(4.2) (I)~(z)-  z - ~ ( l + O ( 1 ) ) ,  
Z 

O Z ( z ) -  z - Z ( l + O ( 1 ) )  
Z 

be a basis for the solution space near z = +oc ( a - 3  r Z). The Kummer 
relations give the connection between these two bases by analytic continu- 
ation along the interval (1, oc), and the outcome is [196, Section 2.9]: 

1 r ( ~ ) r ( z  - ~) r ( � 8 9  - Z) ~ 
- 1 _ ~ ) r ( 9 )  e~ + r (  1 (4.3) ~ae F(7 7 -/3)F(c~) 

3 3 r ( ~ ) r ( 9  - ~) r ( ~ ) r ( ~  - ~) 
1 (I)c~ -]- 1 OL) (I)fl. (4.4) ~a0 -- F(1 - a)F(~ +/3) F(1 - /~)F(~ + 

With respect to the basis {~Pe, ~0} of V(At ,  A, k) the matrix of the operator 
C(A, k): Y ( A t ,  A, k) ~ C 2 takes the form 

(4.5) ( r(�89 
C(A, k) =: C(c~ /3) - r(1-~)r(/~) 

, r ( � 8 9  

r(�89 

r(~)r(Z-~) ) 
r(1-~)r(�89 
_ r ( ~ ) r ( z - ~ )  , 

r(1-~)r(�89 

and a straightforward calculation yields 

C~ -- C(/~,  oz )C(~ , /3 ) - -1  
( sin ~r(c~+f~) 1 ) 

(4.6) _ 22(~-Z)F(1-2c~)F(2~) sin lr(c~--~) 

- F ( f l - a ) F ( / 3 - a + l )  1 sin r r ( .+~)  " 
sin 7r(c~--~) 

In turn it is easy to check that 

(4.7) C O (~, a ) C  ~ (~, ~) = Id. 

Together with C~ = C~ ~) and C~ t = C~ this implies 

(4.8) C~ ~)*C~ = C~ c~)tc~ /3) = C~ c~)C~ /3) = Id, 
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which proves the Maass-Selberg relations (3.30). 

1 A + l k  / 3 -  1A+lk  Now if A - k - 1  k - 3  k - 5 ,  Recall that  a -  7 ~ , - 3  7 �9 , , "'" 
1 3 5 (/3 - ~, 2, 7 , ' - - )  then ~e is a multiple of (I)~ by (4.3). Similarly if A - 

k - 2 ,  k - 4 ,  k - 6 , . . .  (/3 - 1, 2 , 3 , . . . )  then ~0 is a multiple of O~ by (4.4). 

If in addition A > 0 then O~ becomes #(k)-square integrable on At. In 

fact the condition (3.9) can be weakened to k C K being real-valued and 

#(k) being locally integrable on At. In this rank one situation this sim- 

ply means k E R rather than k > 0. By a similar reasoning as before 

we have: If A - k,k+2, k+4(/3 - 0 , - 1 , - 2 , . . . )  then ~e is a multiple of 
1 3 5 (I)z. If A - k+l,k+3, k+5(/3 - 2, 2, 3 , ' " )  then ~0 is a multiple 

of O/~. If in addition A < 0 then (I)/~ becomes p(k)-square integrable on 

At. The conclusion is that  for k C [0, 1] there are no p(k)-square inte- 

grable eigenfunctions on At, and the most continuous part  7-I is equal to 

all of L2(At, p(k; a)da) in the notation of Conjecture 3.9. For k C tt~ ar- 

bi trary the most continuous part 7-I will always have finite codimension in 

L 2 (At, p(k; a)da). Indeed this codimension, which is equal to the number 

of linearly independent p(k)-square integrable eigenfunctions, is given by 

N E H if k e [ - N , - N + I )  U (N, N+I ] .  

5. O p e n  p r o b l e m s  

Indeed compared with the case t - 1 the general situation of the spectral 

problem on At with t C T and t 2 C C gives rise to several complications 

caused by the fact that  the space V(At, A,k) of W(t)-invariant analytic 

solutions of (3.23) on At need no longer be one-dimensional. 

Q u e s t i o n  5.1. For (A, k) C [3* • K generic the solution space V(At, A, k) 
has dimension d: = ]W/W(t)I. Is this also true for all A e [3" as long as 

k C K is restricted by condition (3.9), or more generally as long as p(k) is 

locally integrable on At? 

Probably the answer to this question is yes. In fact one might even expect 

that  a solution in V(At, A, k) is uniquely characterized by prescribing its 

W(t)-invariant  W-harmonic derivatives at the point t. 

Q u e s t i o n  5.2. Is the connection problem on At between the origin t and 

the points at infinity explicitly solvable? 
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Although in the rank one case the answer is yes and given by formulas (4.3) 

and (4.4) I do not expect this to be possible in general, cf. [207]. 

Question 5.3. Is the subspace of V(At, A,k) of #(k)-square integrable 

eigenfunctions always at most one-dimensional? 

I do not even know what answer to expect for this question. In fact if we 

relax condition (3.9) to the weight function (3.10) being locally integrable 

on At then I am inclined to believe that  the answer is negative. The 

reason is the following. There is an analogy between this type of question 

and a corresponding question for the Hecke algebra associated with an 

affine Weyl group (see [203], Section 5.3). Let WI, I - {0, 1 , . . .  ,n} be 

an affine Weyl group with I indexing the nodes of a connected extended 

Dynkin diagram, and let Wj (J C I) be a parabolic subgroup where J 

is obtained from I by deleting either two nodes with mark 1 or one node 

with mark < 2. Here the marks come from the coefficients of the highest 

root. Indeed this is the analog of the condition t 2 E C in Proposition 

3.2. Then the reflection representation gives a counter example that  each 

square integrable representation of the relative Hecke algebra H(WI, Wj, q) 
is one-dimensional (see [202, 204]). 

Recently Conjecture 3.11 has been solved by E.M. Opdam (see [208]) in the 

special case discussed in Example 3.12. The approach is very remarkable. 

Instead of having an integral representation (as for group values of k E K) 

the desired estimates for the hypergeometric function can be obtained from 

the differential equation (by rewriting it as a Knizhnik-Zamolodchikov type 

differential equation). 

Question 5.4. 
approach? 

Can Conjecture 3.11 be solved in general by a similar 



R e f e r e n c e s  

Part I 

[1] J.-Ph. Anker, The spherical Fourier transform of rapidly decreas- 

ing functions. A simple proof of a characterization due to Har- 

ish-Chandra, Helgason, Trombi and Varadarajan, J. Funct. Anal. 96 
(1991), 331-349. 

[2] V.I. Arnold, Mathematical Methods of Classical Mechanics, Graduate 
Texts in Mathematics 60, Springer-Verlag, 1978. 

[3] E.P. van den Ban and H. Schlichtkrull, The most continuous part 

of the Plancherel decomposition for a reductive symmetric space (in 

preparation). 

[4] V. Bargmann, Irreducible unitary representations of the Lorentz 

group, Ann. of Math. 48 (1947), 568-640. 

[5] R.J. Beerends, A transmutation property of the generalized Abel trans- 

form associated with root system A2, Indag. Math., N. S. 1 (1990), 

155-168. 
[6] I.N. Bernstein, I.M. Gel'fand, and S.I. Gel'fand, Schubert cells and 

the cohomology of G/P,  Russian Math. Surveys 28 (1973), 1-26. 
[7] N. Bourbaki, Groupes et alg~bres de Lie, Chapitres ~, 5 et 6, Masson, 

1981. 
[8] E. Brieskorn, Die Fundamentalgruppe des Raumes der regulSren Or- 

bits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 
(1971), 57-61. 

[9] F. Calogero, Solution of the one dimensional N-body problems with 

quadratic and/or inversely quadratic pair potentials, J. Math. Physics 

12 (1971), 419-436. 

[10] W. Casselman and D. MiliSi(:, Asymptotic behavior of matrix co- 

efficients of admissable representations, Duke Math. J. 49 (1982), 
869-930. 

[11] V.I. Danilov, The geometry of toric varieties, Russian Math. Surveys 

33 (1978), 97-154. 

[12] A. Debiard, Polynomes de Tchdbychev et de Jacobi dans un espace 

Euclidien de dimension p, C. R. Acad. Sc. Paris 296 (1983), 529-532. 

209 



210 References, Part I 

[la] 

[14] 

[15] 

[16] 

[lr] 

[IS] 

[19] 

[20] 

[21] 

[22] 

[26] 

[24] 

[25] 

[26] 

[2r] 

[28] 

P. Deligne, Equations differentielles ~ Points Singuliers Reguliers, 

LNM 163, Springer Verlag, 1970. 

P. Deligne, Les immeubles des groupes de tresses ggn&alis&, Invent. 

Math. 17 (1972), 273-302. 

M. Demazure, D6singularisation des varigt6s de Schubert g6ngralisgs, 

Ann. Sci. Ec. Norm. Sup. 7 (1974), 53-88. 

M. Demazure, Une nouvelle formule des caract~res, Bull. Soc. Math. 
98 (1974), 163-172. 

C.F. Dunkl, Differential-difference operators associated to reflection 

groups, Trans. AMS 311 (1989), 167-183. 

F.J. Dyson, Statistical theory of the energy levels of complex systems 

/, J. Math. Phys. 3 (1962), 140-156. 

A. Erd(~lyi, Higher Transcendental Functions, R.E. Krieger Publ. Co., 

Florida, 1985. 

M. Flensted-Jensen, Spherical functions on a simply connected semi- 

simple Lie group, Amer. J. Math. 99 (1977), 341-361. 

M. Flensted-Jensen, Spherical functions on a simply connected semi- 

simple Lie group II. The Paley-Wiener theorem for the rank one case, 

Math. Ann. 228 (1977), 65-92. 
R. Gangolli, On the Plancherel formula and the Paley-Wiener theo- 

rein for spherical functions on semisimple Lie groups, Ann. of Math. 
93 (1971), 150-165. 

R. Gangolli and V.S. Varadarajan, Harmonic Analysis of Spherical 

Functions on Real Reductive Groups, Ergebnisse der Mathematik 101, 
Springer-Verlag, 1988. 

S.G. Gindikin and F.I. Karpelevi~, Plancherel measure of Riemannian 

symmetric spaces of nonpositive curvature, Dokl. Akad. Nauk SSSR 
145 (1962), 252-255. 

I.J. Good, Short proof of a conjecture of Dyson, J. Math. Phys. 11 
(1970), 1884. 

J. Gunson, Proof of a conjecture of Dyson in the statistical theory of 

energy levels, J. Math. Phys. 3 (1962), 752-753. 

Harish-Chandra, Differential operators on a semisimple Lie algebra, 

Amer. J. Math. 79 (1957), 87"120 (= Coll. Papers, Vol. 2, 243-276). 

Harish-Chandra, Spherical functions on a semisimple Lie group, I-II, 

Amer. J. Math. 80 (1958), 241-310 and 553-613 (= Coll. Papers, 
Vol. 2, 409-539). 



References, Part I 211 

[29] 

[30] 

[31] 

[32] 

[33] 

[34] 

[35] 

[36] 
[37] 

[3s] 

[39] 

[40] 

[41] 

[42] 

[43] 

[44] 

[45] 

Harish-Chandra, Differential Equations and Semisimple Lie groups, 

Coll. Papers, Vol. 3, 57-120. (Unpublished, 1960). 

G.J. Heckman, Root systems and hypergeometric functions II, Comp. 

Math. 64 (1987), 353-373. 

G.J. Heckman, Hecke algebras and hypergeometric functions, Invent. 

Math. 100 (1990), 403-417. 

G.J. Heckman, A remark on the Dunkl differential-difference opera- 

tors, Harmonic Analysis on Reductive groups, Proceedings, Bowdoin 

College 1989, Progr. Math. 101, Birkh~user (1991), 181-191. 

G.J. Heckman, An elementary approach to the hypergeometric shift 

operators of Opdam, Invent. Math. 103 (1991), 341-350. 

G.J. Heckman, E.M. Opdam, Root systems and hypergeometric func- 

tions I, Comp. Math. 64 (1987), 329-352. 

S. Helgason, Differential Geometry, Lie Groups and Symmetric 

@aces, Academic Press, 1978. 

S. Helgason, Groups and Geometric Analysis, Academic Press, 1984. 

S. Helgason, Some results on invariant differential operators on sym- 

metric spaces, Amer. J. Math. 114 (1992), 789-811. 

H.L. Hiller, Geometry of Coxeter Groups, Research Notes in Mathe- 

matics 54, Pitman, Boston, 1982. 

L. HSrmander, The Analysis of Linear Partial Differential Operators, 

Vol I, Springer-Verlag, 1983. 

J.E. Humphreys, Introduction to Lie Algebras and Representation 

Theory, Springer-Verlag, 1972. 

C. Jacobi, Problema trium corporum mutis attractionibus cubus dis- 

tantiarum inverse proportionalibus recta linea se moventium, Ges. 

Werke 4, Berlin (1866). 

T.H. Koornwinder, Orthogonal polynomials in two variables which are 

eigenfunctions of two algebraically independent differential operators 

I-IV, Indag. Math. 36 (1974), 48-66 and 358-381. 

A. Kors and J.A. Wolf, Realization of Hermitian symmetric spaces 

as generalized half-planes, Ann. of Math. 81 (1965), 265-288. 

H. v.d. Lek, Extended Artin groups, Proc. Symp. Pure Math. 40 

(1981), 117-122. 

H. v.d. Lek, The homotopy type of complex hyperplane complements, 

Thesis, Nijmegen (1983). 



212 References, Part I 

[46] 

[47] 

[48] 

[49] 

[50] 

[51] 

[52] 

[53] 

[54] 

[55] 

[56] 

[57] 

[58] 

[59] 

[60] 

[61] 

I.G. Macdonald, Spherical functions on a group of p-adic type, Pub- 
lications of the Ramanujan Institute No. 2, Madras, 1971. 

I.G. Macdonald, The Poincard series of a Coxeter group, Math. An- 

nalen 199 (1972), 161-174. 

I.G. Macdonald, Some conjectures for root systems, SIAM J. Math. 

Analysis 13 (1982), 988-1007. 

I.G. Macdonald, Commuting differential operators and zonal spherical 

functions, Algebraic groups, Utrecht 1986, LNM 1271, 189-200. 

B. Malgrange, Regular connections after Deligne, in A. Borel (Ed.), 
Algebraic D-modules, Perspectives in Mathematics 2, Academic 

Press, 1987. 

C. Marchioro, Solution of a three body scattering problem in one di- 

mension, J. Math. Physics 11 (1970), 2193-2196. 

C.C. Moore, Compactifications of symmetric spaces II: The Caftan 

domains, Amer. J. Math. 86 (1964), 358-378. 

J. Moser, Three integrable Hamiltonian systems connected with iso- 

spectral deformation, Adv. Math. 16 (1975), 197-220. 

Nguy~n Vi~t Dung, The fundamental groups of the regular orbits of 
affine Weyl groups, Topology 22 (1983), 425-435. 

T. Oda, Convex Bodies and Algebraic Geometry, Springer Verlag, 
Berlin, 1988. 

M.A. Olshanetsky and A.M. Perelomov, Completely integrable Hamil- 
tonian systems connected with semisimple Lie algebras, Invent. Math. 
37 (1976), 93-108. 

M.A. Olshanetsky and A.M. Perelomov, Quantum systems related 

to root systems, and radial parts of Laplace operators, Funct. Anal. 

Appl. 12 (1978), 121-128. 

E.M. Opdam, Root systems and hypergeometric functions III, Comp. 

Math. 67 (1988), 21-49. 

E.M. Opdam, Root systems and hypergeometric functions IV, Comp. 

Math. 67 (1988), 191-209. 

E.M. Opdam, Some applications of hypergeometric shift operators, 

Invent. Math. 98 (1989), 1-18. 

E.M. Opdam, An analogue of the Gauss summation formula for hy- 
pergeometric functions related to root systems, Math. Z. 212 (1993), 

313-336. 



References, Part II 213 

[62] 

[63] 
[64] 

[65] 

[66] 

[67] 

[68] 

[69] 

[70] 

[71] 

[72] 

[73] 

[74] 

[75] 

E.M. Opdam, Dunkl operators, Bessel functions and the discriminant 

of a finite Coxeter group, Comp. Math. 85 (1993), 333-373. 

J. Orloff, private communication. 

E. Papperitz, Uber verwandte s-Funktionen, Math. Ann. 25 (1885), 

212-238. 

J.Peetre, Une caracterization abstraite des opdrateurs diffdrentiels, 

Math. Scand. 7 (1959), 211-218; Rectification, Math. Scand. 8 

(1960), 116-120. 

B. Riemann, Beitriige zur Theorie der durch die Gauss'sche Reihe 

F(c~,/~, ~;x) darstellbaren Funktionen, Ges. Werke (1857), 67-83. 

H. Schlichtkrull, One-dimensional K types in finite dimensional rep- 

resentations of semisimple Lie groups: a generalization of Helgason's 

theorem, Math. Scand. 54 (1984), 279-294. 

J. Sekiguchi, Zonal spherical functions on some symmetric spaces, 

Publ. RIMS Kyoto Univ. 12 (1977), 455-459. 

A. Selberg, Bemerkninger om et multipelt integral, Norsk Mat. Tids- 

skr. 26 (1944), 71-78 (= Coll. Papers, Vol 1,204-213).  

N. Shimeno, Eigenspaces of invariant differential operators on a ho- 

mogeneous line bundle of a Riemannian symmetric space, Thesis, 

Tokyo (1989). 

G. Shimura, Invariant differential operators on hermitian symmetric 

spaces, Ann. of Math. 132 (1990), 237-272. 

L. Vretare, Elementary spherical functions on symmetric spaces, 

Math. Scand. 39 (1976), 343-358. 

L. Vretare, On a recurrence formula for elementary spherical func- 

tions on symmetric spaces and its applications, Math. Scand. 41 
(1977), 99-112. 

E.T. Whittaker, G.N. Watson, A course of modern analysis, Cam- 

bridge Univ. Press, 1927. 

K. Wilson, Proof of a conjecture of Dyson, J. Math. Phys. 3 (1962), 

1040-1043. 

Par t  II 

[76] W. Baldoni-Silva and A. W. Knapp, Intertwining operators into 

L2(G/H),  in T. Kawazoe, T. Oshima and S. Sano (eds.), Repre- 



214 References, Part II 

[77] 

[7s] 

[79] 

[so] 

[Sl] 

[s2] 

[s3] 

[s4] 

[s5] 

[s6] 

[s7] 

[ss] 

[s9] 

[90] 

sentation Theory of Lie Groups and Lie Algebras, Fuji-Kawaguchiko 

1990 (1992), 95-115. 

E. P. van den Ban, A convexity theorem for semisimple symmetric 

spaces, Pac. J. Math. 124 (1986), 21-55. 

~ ,  Invariant differential operators on a semisimple symmetric 

space and finite multiplicities in a Plancherel formula, Ark. fSr Mat. 

25 (1987), 175-187. 

~ ,  Asymptotic behaviour of matrix coefficients related to reduc- 

tire symmetric spaces, Indag. Math. 49 (1987), 225-249. 

~ ,  The principal series for a reductive symmetric space L H-fixed 

distribution vectors, Ann. Sci. t~c. Norm. Sup. 4, 21 (1988), 359-412. 

~ ,  The principal series for a reductive symmetric space II. Eis- 

enstein integrals, J. Funct. Anal. 109 (1992), 331-441. 

~ ,  The action of intertwining operators on H-fixed generalized 

vectors in the minimal principal series of a reductive symmetric space 

(to appear). 

E. P. van den Ban and P. Delorme, Quelques proprietds des reprdsen- 

tations sphdriques pour les espaces symdtriques rdductifs, J. Funct. 

Anal. 80 (1988), 284-307. 

E. P. van den Ban, M. Flensted-Jensen, and H. Schlichtkrull, Basic 

harmonic analysis on pseudo-Riemannian symmetric spaces, in E. 

Tanner and R. Wilson (Eds.), Noncompact Lie Groups and Some of 

Their Applications, Kluwer 1994. 

E. P. van den Ban and H. Schlichtkrull, Asymptotic expansions and 

boundary values of eigenfunctions on Riemannian symmetric spaces, 

J. reine und angew. Math. 380 (1987), 108-165. 

~ ,  Local boundary data of eigenfunctions on a Riemannian sym- 

metric space, Invent. Math. 98 (1989), 639-657. 

~ ,  Asymptotic expansions on symmetric spaces, in W. Barker and 

P. Sally (Eds.), Harmonic Analysis on Reductive Groups, Progress in 

Mathematics 101, Birkh/iuser (1991), 79-87. 

~ ,  Multiplicities in the Plancherel decomposition for a semisim- 

ple symmetric space, Contemporary Math. 145 (1993), 163-180. 

~ ,  Convexity for invariant differential operators on semisimple 

symmetric spaces, Compos. Math. 89 (1993), 301-313. 

~ ,  Fourier transforms on semisimple symmetric spaces, in prepa- 

ration. 



References, Part II 215 

[91] 

[92] 

[93] 

[94] 

[95] 

[96] 

[97] 

[gs] 

[99] 

[100] 

[101] 

[102] 

[103] 

[104] 

[105] 

[106] 

~ ,  The most continuous part of the Plancherel decomposition for 

a reductive symmetric space, in preparation. 

M. Berger, Les espaces symdtriques non compacts, Ann. Sci. l~cole 
Norm. Sup. 74 (1957), 85-177. 

F. Bien, D-modules and spherical representations, Princeton Univer- 
sity Press, Princeton, New Jersey, 1990. 

N. Bopp, Analyse sur un espace symdtrique pseudo-Riemannien, The- 

sis, Univ. Strassbourg (1987). 

N. Bopp and P. Harinck, Formule de Plancherel pour 

GL(n ,R) /U(p ,q) ,  J. reine und angew. Math. 428 (1992), 45-95. 

F. Bruhat, Sur les reprdsentations induites des groupes de Lie, Bull. 
Soc. Math. France 84 (1956), 97-205. 

J.-L. Brylinski and P. Delorme, Vecteurs distributions H-invariants  

pour les sdries principales gdneralisdes d'espaces symdtriques rdductifs 

et prolongement mdromorphe d'integrales d'Eisenstein, Invent. Math. 

109 (1992), 619-664. 

J. Carmona and P. Delorme, Base mdromorphe de vecteurs distribu- 

tions H-invariants pour les sdries principales gdneralisdes d'espaces 

symdtriques rdductifs. Equation fonctionelle, preprint (1992). 

P. Delorme, Injection de modules sphdriques pour les espaces symd- 

triques rdductifs dans certaines reprdsentations induites, Lect. Notes 
in Math. 1243 (1987), 108-143. 
~ ,  Coefficients gdneralises de sdries principales sphdriques et dis- 

tributions sphdriques sur Gc /GR ,  Invent. Math. 105 (1991), 305-346. 

~ ,  Intdgrales d'Eisenstein pour les espaces symdtriques rdductifs" 

temperance, majorations. Petite matrice B., preprint (1994). 

P. Delorme and M. Flensted-Jensen, Towards a Paley-Wiener the- 

orem for semisimple symmetric spaces, Acta Math. 167 (1991), 
127-151. 

J. Dixmier, Les C*-alg~bres et leurs representations, Gauthiers-Vil- 
lars, Paris, 1964. 

A. Erddlyi et al, Higher Transcendental Functions, Vol 1, McGraw- 
Hill, New York, 1953. 

J. Faraut, Distributions sphdriques sur les espaces hyperboliques, J. 

Math. Pures Appl. 58 (1979), 369-444. 

M. Flensted-Jensen, Spherical functions on a real semisimple Lie 

group. A method of reduction to the complex case, J. Funct. Anal. 



216 References, Part II 

30 (1978), 106-146. 

[107] ~ ,  Discrete series for semisimple symmetric spaces, Ann. of 

Math. 111 (1980), 253-311. 

[108] ~ ,  Analysis on Non-Riemannian Symmetric @aces, Regional 

Conference Series in Math. 61, Amer. Math. Soc., Providence, 1986. 

[109] M. Flensted-Jensen, T. Oshima and H. Schlichtkrull, Boundedness of 

certain unitarizable Harish-Chandra modules, Adv. Stud. Pure Math. 

14 (1988), 651-660. 

[110] I. M. Gel'fand and M. I. Graev, Application of the method of horo- 

spheres to the spectral analysis of functions in ordinary and in imag- 

inary Lobachevskian spaces (Russian), Tr. Mosk. Mat. Obshch. 11 

(1962), 243-308. 

[111] I. M. Gel'fand and G. E. Shilov, Generalized Functions Vol 1, Aca- 

demic Press, New York, London, 1964. 

[112] R. Godement, Reprgsentations induites des groupes de Lie, S~minaire 

Bourbaki, Expos(~es 126~ 131 (1956). 

[113] P. Harinck, Fonctions ggngralisges spheriques sur Gc/Gn,  Ann. Sci. 

t~c. Norm. Sup. 4, 23 (1990), 1-38. 

[114] ~ ,  Fonctions ggngralisges spheriques induites sur Gc/G~r et ap- 

plications, J. Funct. Anal. 103 (1992), 104-127. 

[115] Harish-Chandra, Plancherel formula for the 2• real unimodular 

group, Proc. Nat. Acad. Sci. USA 38 (1952), 337-342. 

[116] ~ ,  Spherical functions on a semisimple Lie group, I-II, Amer. J. 

Math. 80 (1958), 241-310, 553-613. 

[117] ~ ,  Harmonic analysis on real reductive groups, L The theory 

of the constant term, J. Funct. Anal. 19 (1975), 104-204; II. Wave 

packets in the Schwartz space, Invent. Math. 36 (1976), 1-55; III. The 

Maass-Selberg relations, Ann. of Math. 104 (1976), 117-201. 

[118] G. Heckman, Are K-invariant Eisenstein integrals for G / H  hyperge- 

ometric functions ?, Part III of this book. 

[119] S. Helgason, Fundamental solutions of invariant differential operators 

on symmetric spaces, Amer. J. Math. 86 (1964), 565-601. 

[120] ~ ,  A duality for symmetric spaces with applications to group rep- 

resentations, Adv. in Math. 5 (1970), 1-154. 

[121] , The surjectivity of invariant differential operators on symme- 

tric spaces I, Ann. of Math. 98 (1973), 451-479. 



References, Part II 217 

[122] 

[123] 

[124] 

[125] 

[126] 

[127] 

[128] 

[129] 

[130] 

[131] 

[132] 

[1331 

[134] 

[135] 

[136] 

[137] 

[138] 

~ ,  Invariant differential equations on homogeneous manifolds, 

Bull. Amer. Math. Soc. 83 (1977), 751-774. 

~ ,  Differential Geometry, Lie Groups, and Symmetric @aces, 

Academic Press, New York, San Francisco, London, 1978. 
~ ,  Groups and Geometric Analysis, Academic Press, Orlando, 
1984. 

~ ,  Some results on invariant differential operators on symmetric 

spaces, Amer. J. Math. 114 (1992), 789-811. 
~ ,  Geometric Analysis on Symmetric @aces, American Mathe- 
matical Society, Providence, 1994. 

J. Hilgert, G. Olafsson and B. Orsted, Hardy spaces on affine sym- 

metric spaces, J. Reine Angew. Math. 415 (1991), 189-218. 

K. Hiraoka, S. Matsumoto and K. Okamoto, Eigenfunctions of the 

Laplacian on a real hyperboloid of one sheet, Hiroshima Math. J. 7 
(1977), 855-864. 

L. HSrmander, Linear Partial Differential Operators, Springer Verlag, 
Berlin, 1963. 

A. W. Knapp, Representation theory of semisimple Lie groups, Prin- 
ceton University Press, Princeton, New Jersey, 1986. 

S. Kobayashi and K. Numizu, Foundations of Differential Geometry, 

Vol. II, Interscience, 1969. 

T. Koornwinder, Jacobi functions and analysis on noncompact semi- 

simple groups, Special Functions: Group Theoretical Aspects and 
Applications, Reidel, 1984, pp. 1-84. 

B. Kostant, On convexity, the Weyl group and the Iwasawa decom- 

position, Ann. Sci. l~cole Norm. Sup. 6 (1973), 413-455. 
M. T. Kosters, Spherical distributions on rank one symmetric spaces, 

Thesis, Univ. of Leiden (1983). 

M. T. Kosters and G. van Dijk, Spherical distributions on the pseudo- 

Riemannian space S L ( n , R ) / G L ( n - 1 ,  R), J. Funct. Anal. 68 (1985), 
168-213. 

W. A. Kosters, Harmonic analysis on symmetric spaces, Thesis, Univ. 
of Leiden (1985). 

J. Lepowsky, On the Harish-Chandra homomorphism, Trans. Amer. 
Math. Soc. 208 (1975), 193-218. 

N. Limi5, J. Niederle and R. R~czka, Eigenfunction expansions asso- 

ciated with the second order invariant operator on hyperboloids and 



218 References, Part II 

cones, III, J. Math. Phys. 8 (1967), 1079-1093. 

[139] O. Loos, Symmetric Spaces. I: General theory, Benjamin, New York, 

Amsterdam, 1969. 

[140] T. Matsuki, The orbits of ajfine symmetric spaces under the action of 
minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331-357. 

[141] ~ ,  A description of discrete series for semisimple symmetric 

spaces II, Adv. Studies in Pure Math 14 (1988), 531-540. 

[142] ~ ,  Closure relations for orbits on affine symmetric spaces under 

the action of minimal parabolic subgroups, Adv. Studies in Pure Math 

14 (1988), 541-559. 

[143] S. Matsumoto, The Plancherel formula for a pseudo-Riemannian 
symmetric space, Hiroshima Math. J. 8 (1978), 181-193. 

[144] V. F. Molchanov, Harmonic analysis on a hyperboloid of one sheet, 
Soviet Math. Dokl. 7 (1966), 1553-1556. 

[145] ~ ,  Analogue of the Plancherel formula for hyperboloids, Soviet 

Math. Dokl. 9 (1968), 1382-1385. 

[146] ~ ,  Representations of pseudo-orthogonal groups associated with 

a cone, Math. USSR Sb. 10 (1970), 333-347. 

[147] ~ ,  The Plancherel formula for hyperboloids, Proc. Stekl. Inst. 

Math. (1981), 63-83. 

[148] ~ ,  The Plancherel formula for the tangent bundle of a projective 
space, Soviet Math. Dokl. 24 (1981), 393-396. 

[149] ~ ,  Plancherel formula for the pseudo-Riemannian space 
SL(3, R)/GL(2, R), Sib. Math. J. 23 (1983), 703-711. 

[150] ~ ,  Harmonic analysis on pseudo-Riemannian symmetric spaces 

of the group SL(2, R), Math. USSR Sbornik 46 (1983), 493-506. 

[151] ~ ,  Plancherel formula for pseudoriemannian symmetric spaces 

of the universal cover of SL(2,R), Sib. Math. J. 25 (1984), 903-917. 

[152] ~ ,  Plancherel's formula for pseudo-riemannian symmetric spaces 

of rank 1, Soviet Math. Dokl. 34 (1987), 323-326. 

[153] G. D. Mostow, Some new decomposition theorems for semisimple Lie 

groups, Mem. Amer. Math. Soc. 14 (1955), 31-54. 

[154] ~ ,  Continuous Groups, Encyclopedia Britannica (1967). 

[155] K.-H. Neeb, Convexity theorems in harmonic analysis, Semin. Sophus 

Lie 1 (1991), 143-151. 

[156] E. Nelson, Analytic vectors, Ann. of Math. 70 (1959), 572-615. 



References, Part II 219 

[157] G. Olafsson, Fourier and Poisson transformation associated to a 

semisimple symmetric space, Invent. Math. 90 (1987), 605-629. 

[158] ~ ,  Causal symmetric spaces, Habilitationsschrift, Univ. of G5t- 

tingen, 1990. 

[159] ~ ,  Symmetric spaces of Hermitian type, Diff. Geom. Appl. 1 

(1991), 195-233. 

[160] G. Olafsson and B. Orsted, The holomorphic discrete series for affine 

symmetric spaces. /, J. Funct. Anal. 81 (1988), 126-159. 

[161] ~ ,  The holomorphic discrete series of an affine symmetric space 

and representations with reproducing kernels, Trans. Am. Math. Soc. 

326 (1991), 385-405. 

[162] T. Oshima, Poisson transformations on affine symmetric spaces, 

Proc. Japan. Acad., A 55 (1979), 323-327. 

[163] ~ ,  Asymptotic behavior of spherical functions on semisimple 

symmetric spaces, Adv. Stud. Pure Math. 14 (1988), 561-601. 

[164] ~ ,  A realization of semisimple symmetric spaces and construc- 

tion of boundary value maps, Adv. Stud. Pure Math. 14 (1988), 

603-650. 

[165] ~ ,  A method of harmonic analysis on semisimple symmetric 

spaces, in M. Kashiwara and T. Kawai (ads.), Algebraic Analysis. 

Papers Dedicated to Professor Mikio Sato on the Occasion of his 

Sixtieth Birthday, Vol. 2, Academic Press, Boston. 

[166] T. Oshima and T. Matsuki, A description of discrete series for semi- 

simple symmetric spaces, Adv. Stud. Pure Math. 4 (1984), 331-390. 

[167] T. Oshima and J. Sekiguchi, Eigenspaces of invariant differential op- 

erators on a semisimple symmetric space, Invent. Math. 57 (1980), 

1-81. 

[168] ~ ,  The restricted root system of a semisimple symmetric pair, 

Adv. Stud. Pure Math. 4 (1984), 433-497. 

[169] R. Penney, Abstract Plancherel theorems and a Frobenius reciprocity 

theorem, J. Funct. Anal. 18 (1975), 177-190. 

[170] W. Rossmann, Analysis on real hyperbolic spaces, J. Funct. Anal. 30 

(197s), 44s 477. 

[171] ~ ,  The structure of semisimple symmetric spaces, Canad. J. 

Math. 31 (1979), 157-180. 

[172] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973. 



220 References, Part II 

[173] Z. Rudnick and H. Schlichtkrull, Decay of eigenfunctions on semi- 
simple symmetric spaces, Duke Math. J. 64 (1991), 445-450. 

[174] S. Sano, Invariant spherical distributions and the Fourier inversion 

formula on GL(n,C)/GL(n,  IR), J. Math. Soc. Japan 36 (1984), 
191-219. 

[175] S. Sano and J. Sekiguchi, The Plancherel formula for 

SL(2, C)/SL(2, IR), Sci. Pap. Coll. Gen. Educ., Univ. Tokyo 30 
(1980), 93-105. 

[176] H. Schlichtkrull, The Langlands parameters of Flensted-Jensen's dis- 
crete series for semisimple symmetric spaces, J. Funct. Anal. 50 

(1983), 133-150. 

[177] ~ ,  Hyperfunctions and Harmonic Analysis on Symmetric Spaces, 

Birkh~user, Boston, 1984. 

[178] ~ ,  Eigenspaces of the Laplacian on hyperbolic spaces: Com- 

position series and integral transforms, J. Funct. Anal. 70 (1987), 
194-219. 

[179] J. Sekiguchi, Eigenspaces of the Laplace-Beltrami operator on a hy- 
perboloid, Nagoya Math. J. 79 (1980), 151-185. 

[180] ~ ,  Fundamental groups of semisimple symmetric spaces, Adv. 
Stud. Pure Math. 14 (1988), 519-529. 

[181] T. Shintani, On the decomposition of regular representation of the 
Lorentz group on a hyperboloid of one sheet, Proc. Japan Acad. 43 
(1967), 1-5. 

R. S. Strichartz, Harmonic analysis on hyperboloids, J. Funct. Anal. 
12 (1973), 341-383. 

[183] Y. L. Tong and S.P. Wang, Geometric realization of discrete series 

for semisimple symmetric spaces, Invent. Math. 96 (1989), 425-458. 

[184] G. van Dijk, On a class of generalized Gelfand Pairs, Math. Z. 193 

(1986), 581-593. 

[185] G. van Dijk and M. Poel, The Plancherel formula for the pseudo-Rie- 

mannian space S L ( n , R ) / G L ( n -  1, R), Compos. Math. 58 (1986), 

371-397. 

[186] ~ ,  The irreducible unitary GL(n-1 ,  R)-spherical representations 

of SL(n ,R) ,  Compos. Math. 73 (1990), 1-30. 

[187] V. S. Varadarajan, Harmonic Analysis on Real Reductive Groups, 

Lecture Notes in Mathematics 576, Springer Verlag, Berlin-Heidel- 

berg-New York, 1977. 

[182] 



References, Part III 221 

[188] D. Vogan, Irreducibility of discrete series representations for semisim- 

ple symmetric spaces, Adv. Studies in Pure Math. 14 (1988), 191-221. 
[189] G. Warner, Harmonic Analysis on Semisimple Lie Groups, Vol. I-II, 

Springer Verlag, Berlin-Heidelberg-New York, 1972. 

Part III 

[190] 

[191] 

[192] 

[193] 

[194] 
[195] 

[196] 

[197] 

[198] 

[199] 

[200] 

[201] 

[202] 

[2031 

E.P. van den Ban, The principal series for a reductive symmetric 

space I. H-fixed distribution vectors, Ann. Sci. t~c. Norm. Sup. 4, 21 
(1988), 359-412. 

E.P. van den Ban, The principal series for a reductive symmetric 

space II. Eisenstein integrals, J. Funct. Anal. 109 (1992), 331-441. 

E.P. van den Ban and H. Schlichtkrull, The most continuous part 

of the Plancherel decomposition for a reductive symmetric space, 

preprint (to appear). 
R.J. Beerends, A transmutation property of the generalized Abel trans- 

form associated with the root system A2, Indag. Math. N.S. 1 (1990), 
155-168. 

N. Bourbaki, Groupes et Alggbres de Lie, Ch. 4, 5 et 6, Masson, 1981. 
R. Brusse, G.J. Heckman, E.M. Opdam, Variation on a theme of 

Macdonald, Math. Z. 208 (1991), 1-10. 
A. Erd~lyi, Higher Transcendental Functions, Vol. 1, Krieger Publ. 
Co., Florida, 1985. 
G.J. He@man, Root systems and hypergeometric functions II, Comp. 
Math. 64 (1987), 353-373. 

G.J. Heckman, An elementary approach to the hypergeometric shift 

operators of Opdam, Invent. Math. 103 (1991), 341-350. 
G.J. He@man, Lectures on hypergeometric and spherical functions, 

Notes for the European school of group theory, Luminy 1991 (= Part 

1 of this book). 

S. Helgason, Groups and Geometric Analysis, Academic Press, 1984. 

B. Hoogenboom, Intertwining functions on compact Lie groups, CWI 
tract 5, Amsterdam, 1984. 

G. Lusztig, Some examples of square integrable representations of 

semisimple p-adic groups, Trans. AMS 277 (1983), 623-653. 

I.G. Macdonald, Spherical functions on a group of p-adic type, Ra- 

manujan Institute Publications, 1971. 



222 References, Part III 

[204] 

[205] 

[206] 

[207] 

[208] 

[209] 

[210] 

[211] 

H. Matsumoto, Analyse harmoniques dans les syst~mes de Tits borno- 

logiques de type affine, Lect. Notes Math. Vol. 590, 1977. 
E.M. Opdam, Root systems and hypergeometric functions IV, Comp. 
Math. 67 (1988), 191-209. 

E.M. Opdam, Some applications of hypergeometric shift operators, 
Invent. Math. 98 (1989), 1-18. 

E.M. Opdam, An analogue of the Gauss summation formula for hy- 

pergeometric functions related to root systems, Math. Z. 212 (1993), 
313-336. 
E.M. Opdam, Harmonic analysis for certain representations of graded 
Hecke algebras, Preprint (1993). 
H. Schlichtkrull, Harmonic Analysis on Semisimple Symmetric Spa- 

ces, Notes for the European school of group theory, Twente, 1992 (= 

Part 2 of this book). 

N. Shimeno, The Plancherel formula for spherical functions with one- 

dimensional K-type on a simply connected simple Lie group of her- 
mitian type, Preprint (1992). 

L. Vretare, On a recurrence formula for elementary spherical func- 
tions on symmetric spaces and its applications, Math. Scand. 41 
(1977), 99-112. 



Index 

asymptotic expansion, 163 

Bruhat projection, 120 

Calogero-Moser potential, 22 

Cartan subspace, 125 

compatible, 114 

completely integrable, 25 

constant term, 11, 197 

cyclic distribution vector, 136 

As, 4 

differential-reflection operators, 9 

discrete series, 183 

distribution vector, 135 

Eisenstein integral, 162 

essentially selfadjoint, 128 

exponents, 65 

formally selfadjoint, 128 

Freudenthal type recurrence relations, 28 
Gegenbauer polynomials, 15 
group case, 99 

Hamiltonian, 25 

Harish-Chandra homomorphism, 18, 124 

Harish-Chandra mapping, 29 

Harish-Chandra series, 56 

Harish-Chandra type recurrence relations, 28 

Holmgren's uniqueness theorem, 131 

hypergeometric differential equations, 51 

hypergeometric function, 66 

infinitesimal case, 5 

intertwining function, 196 

Iwasawa projection, 118 

Jacobi polynomials, 15 

223 



224 Index 

KAH-decomposition, 108, 194 

k-constant term, 11 

Laplace operator, 123 

leading exponent, 58 

L(k), 10 

localization, 8 

lowering operator, 40 

lowest homogeneous degree (LHD), 47 

lowest homogeneous part (LHP), 47 

Maass-Selberg relations, 188, 203 

ML(k), 27 

monodromy representation, 61 

monomial symmetric functions, 14 

multiplicity function, 5 

multiplicity, of representation, 135 

multiplicity, of root, 110 

Nilsson class function, 20 

noncompact Riemannian form, 126 

parabolic subgroup, 113 
Plancherel decomposition, 135 

polar coordinates, 108 

principal series for G/H, 140 

rad, 72 

radial part, 163 

raising operator, 40 

rank, 127 

real hyperbolic space, 100 

reductive, 100 

reflection, 4 

regular element, 107 

res, 71 

restricted root, 107 

root space, 107 

root system, 4 

Schwartz function, 176 

Selberg's multivariable B-integral formula, 46 

semisimple, 99 



Index 225 

shift operator, 27 

~-minimal parabolic subgroup, 113 

spherical distribution, 145 

spherical function, 75, 125 

spherical principal series, 141 
split rank, 127 

standard intertwining operator, 143 

standard spherical distribution, 151 
symmetric pair, 98 

symmetric space, 98 

triangular, 16 

wave packet, 170 

weight lattice, 4 
Weyl denominator, 8 

Weyl group, 4 



This Page Intentionally Left Blank


