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Foreword

This book is devoted to some stochastic models that present scale invariance.
It is structured around three issues: probabilistic properties, statistical estimation
and simulation of processes and estimators. The interested reader can be either
a specialist of probability, who will find here a friendly presentation of statistics
tools, or a statistician, who will have the occasion to tackle the most recent theories
in probability in order to develop central limit theorems in this context. Both will
certainly be interested in the last part on simulation, which, to my knowledge, is
highly original. Algorithms are described in great detail, with concern of procedures
that is not usually seen in mathematical treaties. The theoretical part is also partly
original and finds its origin in previous work of the first and third authors, which
they improve and extend here.

Models under study are fractional Brownian motions (fBm) and processes
that derive from them through stochastic differential equations. Their use for
modeling financial markets is by now well established in the presence of long-
range dependence: fBm with parameter H larger than % may then be preferred
to Brownian motion. Other applications are not as standard as this first one, even
if some of them, such as the description of network traffic, have played a central
role in the development of the theory, as well as in its extension to multifractal
analysis. The diversity of applications will certainly develop with time. I had the
pleasure to work separately with the first and third authors on questions that arose
from the description of bone micro-architecture. The tissue of a bone may be seen as
a porous medium with some scale invariance, and these models by fBm have been
tested by different authors. Fractional Brownian motions can also be used to model
environmental phenomena, such as, for instance, diffusion of pollution in a lake or
a river. It is certainly difficult to predict which application will prove to be really
efficient for practical issues, but one has a strong motivation to develop theoretical
studies and statistical tools in order to identify parameters, which is done here.

Even if this book does not directly deal with applications, it could not have been
written if the authors did not have some of them in mind. Since the choice of terms
can be an indicator of their preferences, it looks significant that they call “local
variance” what is usually called “volatility”, by reference to the financial market!
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viii Foreword

They borrow this denomination from Mario Wschebor, who passed away recently
and marked deeply the first and third authors through longstanding collaboration.
The influence of Wschebor can in particular be felt through the presence of
harmonic analysis all along the book: the authors use what they call mollified
versions of processes and would be called filtered versions in signal processing.
Such approximations of processes are central in the work of Wschebor.

Most fields of mathematics are, more than ever these days, the object of collective
work. A huge number of mathematicians have contributed to the study of fractal
Brownian motions, stochastic integrals and properties of estimators of parameters.
It is one of the merits of the present book to rely on this very rich literature but
guide the readers in such a way that issues and proofs are easily accessible. They
let them profit from their intuition and vision but refer also carefully to previous
work. It is impossible to enumerate here all contributors, but two major scientific
figures, who also died recently, deserve to be mentioned first and foremost: Benofit
Mandelbrot and Paul Malliavin. Even if they were opponents in many aspects of
scientific life, and specifically concerning the use of Brownian motion in finance,
their contributions add up for the greatest happiness of specialists of such random
processes.

Everyone now agrees on the fact that Mandelbrot taught us how to see fractal
patterns everywhere in natural objects. FBm was first introduced by Kolmogorov,
but Mandelbrot is really the first to have seen how it connected with fractal analysis
and could be used as a model for different kinds of phenomena. Recall that roughly
speaking the fractional Brownian by has the property that

byt + At) — by (1)| ~ (A

The parameter H, which lies between 0 and 1, is called the Hurst exponent in honor
of the physicist Harold E. Hurst. The latter, who, as a hydrologist, studied the flow
of Nile during the first half of the last century, remarked that the rescaled difference
between the maximum and the minimum values of this flow during a length of time
T behaves like T, with H approximately 0.7. Mandelbrot has described in detail
how he got interested in the discovery of Hurst, and was led to the definition of the
fBm, in his book “Fractales, hasard et finance”. Even if his interest for finance was
already present, environmental issues have been clearly evoked from the beginning
to justify the use of fBm as a model.

Malliavin, who contributed deeply to analysis and probability, introduced pow-
erful theoretical tools for the study of functionals of Gaussian processes as part
of what is called, “Malliavin calculus”. They may be very useful to establish
central limit theorems and are indirectly used in this book through the “Fourth
Moment Theorem”, which is due to Nualart and Peccati (2005) and has led to
a considerable literature. Roughly speaking, for functionals that belong to some
Wiener chaos (in particular for quadratic variations, which are currently used in
signal processing), the consideration of fourth moments is sufficient to prove central
limit theorems. This is systematically used in this book, while it not so well known
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from statisticians. It leads the authors to rapid and nice proofs, which deserve to
serve as models for the future.

Last but not least, the reader will also find elegant and new proofs for almost sure
convergence. This is only one example of the many contributions of the authors
(others concern the back and forth between discrete and continuous models, for
instance) that he/she will discover all along this book. Not to mention again the last
part, whose approach is likely to change practices in computational statistics. But
now it is time to start reading. As a conclusion let me say what a pleasure it is for
me to recommend this.

Orléans, France Aline Bonami
November 23, 2013

Reference
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Preface

The use of diffusion models driven by fractional noise has become popular for
more than two decades. The reasons that produced this situation have been varied
in nature. We can mention, among others, those that come from mathematics and
other from the applications.

With respect to the first group, it should be noted that fractional Brownian motion
(fBm) has interesting properties. First, it is self-similar. This property implies that
such a process is, from the standpoint of its distribution, invariant with respect to
scale transformations. Moreover the fractional noise, the process of increments of
the fBm taking in a mesh of equally spaced points, satisfies a strong dependence
condition that is a notion away from independence and mixing. Using this last
property, it has been possible to model natural phenomena, which exhibit temporal
correlations tending to zero so slowly that their sum tends to infinity.

With regard to the applications, we should mention that fractional models have
become popular for modeling real-life events such as the value assets in financial
markets, models of chaos in quantum physics, river flow along the time, irregular
images, weather events and contaminant transport problems, among others.

The fBm is a mean zero Gaussian process with stationary increments and whose
covariance function is uniquely determined by the Hurst’s parameter, which we
denote by H and that is between zero and one. The value H = % is important
because the associated process results in the Brownian motion (Bm). The parameter
H determines the smoothness of the fBm trajectories. More regular are the
trajectories as closer to one is the parameter. The exact opposite happening if H
is near zero.

In the forties and fifties of the twentieth century, in the study of Bm, the
introduction of the stochastic integral by Kiyosi Itd and Paul Levy was the key to
the definition of diffusion processes. This important event led to the development of
a whole area of probability and mathematics. Similarly, the introduction of several
definitions of stochastic integrals with respect to fBm, from the 1990s, has led to
the definition of pseudo-diffusion processes driven by this noise. As in the case of
a Bm, the introduction of these processes significantly enriched the theory and the
horizon of their applications.
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xii Preface

In these notes we develop estimation techniques for the parameter H and the local
variance (volatility) of the pseudo-diffusion. The estimation of the two parameters is
made simultaneously. We will use the observation of the process in a discrete mesh
of points. Then the study of the asymptotic properties will be done when the mesh’s
norm tends to zero.

We start by defining the second order increments of the process. Using these
increments, we build the order p variations. These variations allow the definition of
an estimator of the parameter H for all its range. The reason to work with second
order increments, instead of the first order increments, is that variations built through
them are asymptotically Gaussian in all the range 0 < H < 1, instead of 0 < H < %
that is the case for the variations constructed by using first order increments. From
the asymptotic normality of the variations, we deduce that the estimators of H are
asymptotically Gaussian, for all their possible values.

After estimating the Hurst parameter, we study the local variance estimation
in four pseudo-diffusion models. For each of them, we construct a local variance
estimator and study its asymptotic normality. If we do not know in advance the
value of the Hurst parameter, this procedure will reduce the rate of convergence in
the central limit theorem (CLT) for the estimator of the variance.

Then we assume H known and try to estimate local variance functionals for more
general models. For instance in the case where the variance is not constant, for this
estimation procedure we will recover the lost speed, noted in the previous paragraph.

Finally, one of the main purposes of these notes is to provide a set of tools
for computational statistics: efficient simulation of the processes, assessment of the
goodness of fit of the estimators and the selection of the best estimator in each of
the presented situations.

We will develop this program once the asymptotic properties of estimators have
been studied. We will discuss simulations and their computer implementations as
well as some of the codes developed.

We note that the study of the asymptotic normality of the estimators we construct
has been dramatically simplified using the techniques of the CLT for nonlinear
functional Gaussian processes. These new techniques have been developed since
2005, from the seminal article of D. Nualart and G. Peccati by various authors.
We can mention some of them: O.E. Barndorff-Nielsen, H. Biermé, A. Bonami,
J.M. Corcuera, M. Kratz, C. Ludeiia, I. Nourdin, S. Ortiz-Latorre, M. Podolskij, M.
Taqqu and C. Tudor, and the two authors mentioned above.

The notes are aimed at a mixed audience. They can be used in a graduate course
in statistics of Gaussian processes, as well as a reference book for researchers in the
field and as a guide for those interested in the applications of fractional models.

The book has eight chapters. Chapter 1 contains the motivation for the study that
we will realize in the text. It begins pointing out two types of research problems
in the estimation of Brownian diffusions. In first place one considers the situation
when the Brownian trajectory is observed smoothed by a convolution filter, tending
to the Dirac’s delta distribution when some specific parameter tends to zero. A CLT
for the increments of Brownian motion is established. This last theorem has as a
consequence a stable CLT for the quadratic variation of a general diffusion. Then
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we sketch the same type of study when the process is observed in a discrete mesh of
points. The chapter ends considering the convergence of the number of crossings for
the smoothed fBm towards the local time of this last process, when the smoothing
parameter tends to zero. We should point out the relationship between this result and
the theorem proved for the quadratic variation of a diffusion.

In Chap. 2, we introduce the basic tools that we will use. We define: the fBm,
Hermite’s polynomials and the complex It6-Wiener chaos. Also we give some
preliminaries about the stochastic integration with respect to the fBm and the chapter
concludes with the hypothesis and notations that we will use in what follows.

Chapter 3 contains the statements and demonstrations of some of the main
theoretical results. The different estimators of H are defined, studying after their
asymptotic properties. Then the local variance estimator is introduced, and the
simultaneous estimation of H and of the local variance is considered. Some tests of
hypothesis are defined and the asymptotic behavior of the test function is obtained,
both under the null hypothesis and under contiguous alternatives. The chapter ends
studying the estimator of a functional of the local variance.

Chapter 4 presents a deep study by simulation to evaluate the performance of
the estimators and the tests. First, we give some information about the computing
environment and random generators. Afterwards the Durbin-Levinson algorithm
is implemented to efficiently simulate the fBm. Finally in some subsections, we
explore the goodness of fit of the estimators and the quality of the hypothesis tests.

Chapter 5 contains the proofs of the results of Chap. 3. In Chap. 6, there are some
complementary results. Chapter 7 shows using tables and graphs the results of the
simulation experiments of Chap. 4. Chapter 8 includes some Pascal procedures and
function used in Chap. 4.

Grenoble, France Corinne Berzin
Grenoble, France Alain Latour
Caracas, Venezuela José R. Ledn

February 2014
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Notations

Throughout the document, we use the following notations:

N

f : Fourier transform of function f

f*xg : convolution of functions f and g

f*O : {-th convolution of function f with itself

J* f)du : a primitive of f

T4 . characteristic function of set A

#A : cardinality of set A

C : a generic constant; its value may change during a proof

C(w) : a generic constant depending on w, a trajectory; its value
may change during a proof

N 1 {xeZ:x=0}

N* c{xeZ: x>0}

R* t{xeR:x #0}

RH* t{xeR:x >0}

log : Naperian logarithm

E[X] : expected value of the random variable X

N(w,0?) : the normal distribution with mean y and variance o2

N : standard Gaussian random variable

||N||’,§ : for real k£ > 0, we note ||N||’,§ =E[IN[{]

1

||C(-)||§ : for real k¥ = 1, denotes the integral / |C(u)[* du for a
measurable function C ’

Y’ : transpose of vector Y

L'(R) : complex absolutely integrable functions with respect to
Lebesgue measure on R

L2(RK) : complex square-integrable functions with respect to

Lebesgue measure on R¥

XX1



XXii
L®(R)
L3 (RY)

(', ')Lz(m

lIll2

[/l oo

L2(RF)

Lk(82, P) or L¥(2)

L2(PH)
HW)

o

Hp

¢(x)dx
LP(p(x)dx)

[x]
A
2n -1

Ck

h, i

.

h

C([0,1]. R)

Law

e—>0

L2(P)

n—o0

Notations

: essentially bounded complex functions with respect to

Lebesgue measure on R

: subspace of L?(R¥) made of complex-valued function v

such that ¥ (—x) = ¥ (x), Vx € R¥

: scalar product in L2(R)

: the norm induced by the scalar product in L?(R)

: the norm associated with L°°(R) space

: the subspace of symmetrical functions of L2(R¥)

: functions from £ in R k-integrable with respect to the

underlying probability P

: L? space for the probability measure generated by the fBm
: the subspace of random variables in L?(£2) measurable with

respect to the Brownian motion W

: the space of real constants

: Hermite polynomials

: standard Gaussian measure

: functions from R to R p-integrable with respect to the

standard Gaussian measure (p € RT*)

: the integer part of the positive real number x
: the Lebesgue measure
: product of all odd positive integers up to 2n—I1, i.e.

[T @j—1)
j=1

: k-times continuously differentiable functions from R to R
: first and second derivatives of &

. kth derivative of i, k € N
: the space of continuous real functions from [0, 1] to R

: equality in law

: convergence in law as n — oo

: convergence in probability as n — oo

: almost-sure convergence as n — oo
: convergence in law as ¢ — 0
: convergence in probability as ¢ — 0

: almost-sure convergence as € — 0

: convergence in LZ(P)asn — oo
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Chapter 1
Introduction

1.1 Motivation

The book is mainly addressed to study nonparametric estimation for fractional
diffusions. We can defined these processes as the solution of the following stochastic
differential equation (SDE)

dX () = o(X(2)) dby () + b(X(2)) dt,

where o and b are functions smooth enough to ensure existence and uniqueness
of the process, by is a fractional Brownian motion (fBm) with Hurst parameter
H, see Sect.2.2.1, page 30, for its definition. We will only consider solutions of
these equations whenever H>1/2, the case H = 1/2 corresponds to Brownian
diffusions.

The framework for the statistical inference is here the infill one, that means that
we use the observations taken in a fixed interval, refining the mesh.

In the literature two types of infill estimation have been considered. The first one,
studied in these notes, consists in observing the process in a regular mesh (with step
equal to f), ie. {X(%)}Z=1 , the asymptotic considered in that case is when n — oo,
or as the step tends to 0. The second one consists in observing a mollified version
of the process X®(f) = ¢. * X(t), where % stands for the convolution product and
where ¢.(-) = %(p(é), ¢ being a smooth probability density function. In that case,
the considered asymptotic is when ¢ — 0.

The inference is directed to look for estimators of the Hurst parameter H and of
the local variance o (x). The estimation of the drift function b usually requires that
the underlying process X () is ergodic and moreover that the estimation takes place
in an infinite interval framework.

The following sections aim to give to the reader some insight about the types of
results we attend. First, we consider for sake of completeness in first place the case
of Brownian diffusions and mollified observations. Then, in the penultimate section,

C. Berzin et al., Inference on the Hurst Parameter and the Variance of Diffusions Driven 1
by Fractional Brownian Motion, Lecture Notes in Statistics 216,

DOI 10.1007/978-3-319-07875-5_1,

© Springer International Publishing Switzerland 2014



2 1 Introduction

we will compare this method with the case where the observations are given in a
uniform mesh, establishing similarities and differences between the two procedures.

To build our estimators, we need Central Limit Theorems (CLT) and this is how
we begin our study.

1.2 CLT for Non-linear Functionals of Gaussian Processes

The article of Breuer and Major (1983) is considered now as an important classic
work. The authors proved a CLT for non-linear functionals of a stationary Gaussian
process { X (¢)},cg+- They considered occupation functionals of the form

T = /0 F(X(5)) ds.

for some function F, belonging to L?(¢(x)dx), where ¢(x)dx stands for the
standard Gaussian measure. This result was extended in Chambers and Slud (1989)
to general functionals into the It6-Wiener chaos. This last work allows getting CLT
for functionals that depend on an infinite number of coordinates. However, their
method requires the existence of the spectral density of the process X (¢).

1.3 Main Result

Let {X(f)},cr+ be a zero mean stationary Gaussian process with covariance r () =
E [X(¢) X(0)], such that r(0) = 1. We assume also that X has a spectral density f
in L'(R).

The process X has the following spectral representation:

X(t) = /_ ” SN2 AW (L), (1.1)

o0

where W is a complex centered Gaussian random measure on R with Lebesgue
control measure, such that W(—A) = W(A) a.s. for any Borel set A of R. Moreover,
let ¢ be an even continuous function on a bounded support included in [—% %]

Let us define ¥ (x) = ¢ *@(x), with supportin [—1, 1]. We suppose that the norm
L?*(R) of ¢ is equal to one. Then v (0) = ﬁ ||¢3||§ = ||g0||§ = 1. Let us introduce
the approximated stationary Gaussian process

Xe(t) = /_ T G AW ),

(o]
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where g@s 1) = ﬁ ‘qﬁ(%) 2, and ¢ > 0. The covariance function of X°(¢) is r.(t) =
r(t)y(et).

In the following, we use Hermite polynomials, denoted by H,. We have:

+o00

exp(tx — %tz) = Z

p=0

Hpy(x)t?
p

Hermite polynomials form an orthogonal system for the standard Gaussian measure
¢(x)dx. If h € L*(¢(x)dx) then there exist coefficients 4, such that h(x) =

Z;—:(J) hpHp(x).
Mehler’s formula (see Breuer and Major 1983) gives a simple form to compute
the covariance between two L? functions of Gaussian random variables. In fact, if

+oo

k € L?(¢(x)dx) and is written as k(x) = Y. k,H,(x) andif (X,Y) is a Gaussian
p=0

random vector with correlation p and unit variance then

+o0
E[h(X)k(Y)] =) hyk,plp’.
p=0
We obtain by using the Mehler’s formula Proposition 1.1.
Proposition 1.1. Let £ € N*. If r® € L'(R) then

o 1 . >
lim lim E [ﬁ/@ {Hy(X(s)) — Hy(X (s))}dsi| = 0.

e—=>01t—>00

Proof. Note that if r* € L'(R) and if f*(® denotes the £-order convolution of f
with itself, the inversion formula for the Fourier Transform implies that f*© is
bounded and continuous.

By using Mehler’s formula we get

1 [ 2
E [7 /0 {HU(X() — Ho(X*(5))} ds}

=20 /[ (1=2) (r(s) + rl(s) —2pL(s)) ds
0

t

= 20! [/t (1=2) (ri(s) —r(s))ds + 2/ (1=2) (r(s) — pi(s) ds} ,
0 0

where p.(s) = E[X(0)X*(s)]. Let us study each term separately. For the first, we
have |r+(s)|" < [r(s)]".
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By the dominated convergence theorem and by using the fact that r¢ is integrable,
we get that

lim lim [ (1= %) @i(s) —rf(s))ds = 111%/oo(rf(s) —rt(s))ds = 0.
&—>! 0

g—>01—>00 0

For the second term we have

/(; (1 %) (ré(s)—pﬁ(s)) ds
= t -2 os A *OQ) — g*(l) A))dA)d
2/0 (1 t)(/ooC S S(f ( ) A ( )) ) N

where g, ® (A) is the £-th convolution of the function

ge(A) = (f % ()2 (fO)"?,

with itself.
Fubini’s theorem gives

/t (1-2) (/00 cos As(f* O ) — gXO ) d)&) ds
0 —

= [T e - g oo ar

oo IAZ

= [T (o - o)

A2

The case with £ = 1 is easy. Since the function f is bounded and continuous, by
using

g (2= (12 9e0) (1) = (% ) (10,
when ¢t — oo, we get

® 11— cosk

lim lim ———— (f(}) = g.()) dA

e—>0t—>00 [ _

For { > 1, we must study the behavior of the function f*®(.) — g~ © (-),ina
neighborhood of zero. Since f*®)(-) is continuous it holds

lim f*O%) = f*O0).
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Now let us consider the behavior of g, © (%). We have
o
g0 = [ g (=) g0 dh.
—0o0

But g, (% - ) converges towards g, (-) in L' (R) when t — oo; this is a consequence
of the continuity of the translation operator in L' (R). For fixed &, we have

g0 < | f

’
o0

e an e e < |1
and for k > 2,
€0 < ¢ o [ By PGy R a < g,

< |7 v

(o]

The duality between L'(R) and L*®(R) implies g, (6)(%) =< g © (0). Since
—>00
f*®() is bounded, we get

' s\ (o0 ¢ () *(0) 1 —cosA
(1=3) () = pe(s)) ds —= (f*0(0) = gF0(0)2 | —5—dA.
) ' . 100 ¢ ) 22
But now we have
o0
00 = [ g Gueng ) dhenr
—00
First, by using a subsequence if needed, Fatou’s lemma gives
lim inf g*©(0)= £ *®(0). (1.2)
e—>0

Then, we get

1t = / 2o D (o)) dAems

—0o0

— [ @8t = 2+ = 21)ge) 42
o
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where dA = dAy—; dA¢—;...dA; dA,. Yielding, using Schwarz’s inequality

12
It < [/W_l F ko)) f Yooy — Apa) -+ f % V(Ao — Ay) f @g(z\l)dl]
12
- [/W—l Q) f Aot = Aea) - fRa = M)f(/\l)d}»] :

The properties of the convolution entail

1< [(f * 9O 0)]) 21 f*O0)]' 2
= [(f*© % PrO)O0)]' [ *O0)]* — f*D(0), (1.3)

the last line is a consequence of the continuity of f *() Then, (1.2) and (1.3) allow
getting liII(l) gr ©©0) = £*©(0), and the results of the proposition are established.

Remark 1.2. The results of the Proposition 1.1 were proved in Berman (1992) for
=2

Let F be a function in L?(¢(x) dx). It has the following Hermite expansion:
o0 1 00
F(x) = E cnHy(x) where ¢, = = / F(x)H,(x)¢(x)dx.
n! J_
n=0 : 0

In the last expression H,, is the Hermite polynomial of degree n, see the definition
givenin Sect. 1.3, page 2. Moreover, the norm of F in L?(¢(x) dx) satisfies || F ||§ =
o0

Z c,fn I. See Mehler’s formula given in Sect. 1.3, page 2.
n=0

We define the Hermite rank of F as the smallest n such that the coefficient ¢, is
different from zero.

We have the following well-known Breuer and Major (1983) result (see also
Chambers and Slud 1989).

Theorem 1.3. Let us assume that F belongs to L*(¢(x)dx), whose Hermite rank
is £=1 and suppose also that r* € L' (R). Then

S, = % /0 t F(X(s)) ds t:—:g N(0,0%(F)),

where

02(F) = 2Zc§k!/ r*(s) ds.
k=t 0



1.3 Main Result 7

Remark 1.4. We will give here a proof of this result based on Proposition 1.1 and
a CLT for m-dependent process. We give a standard type proof commonly used
before the modern and powerful approach based on the Fourth Moment Theorem
and developed by Nualart and Peccati (2005) became available. After this standard
proof, we therefore propose a new one based on this innovative approach. However,
we will only give a sketch as we will later have the opportunity to exploit these new
techniques in the proofs of Theorem 3.4 and Lemma 5.10.

M 1
Proof. Let us define Fy/(x) = Y ¢, Hy(x) and SM = JL; [ Fu(X(s))ds. The
n={ 0

Mehler’s formula entails

o t
var[S, —SM]=2 c,fk!/ (1= 2)rk(s)ds
k=M+1 0
o0 [es)
— 2 cgk!/ rk(s)ds <8 (1.4)
—>00 0
k=M+1

if M > M(8). Hence we only need to prove the asymptotic normality for SM. Let
1 t
us introduce the process S,M = E / Fr(X®(s)) ds. Using Proposition 1.1 and
0
recalling that if ¢ € L'(R) then r* € L'(R), Vk > £, it yields:

lim lim var [SM SMS] =0.
e—>01—>00

It only remains to prove that StM ¢ is asymptotically Gaussian.

A stationary sequence {X;},c; (I = R* or N) is m-dependent if X; is
independent of X; whenever |i — j| > m. The CLT is a consequence of Heeffding
and Robbins (1948) theorem for m-dependent sequences, that we will show in what
follows. To apply the aforementioned theorem, we write S [M ¢ in the following form

L]

1
s = /_ZX +os2(1),
i=1

where (X );en are zero mean and stationary (L%J + 1)-dependent random variables,
having a second moment and defined as

X = Ck Hk (XS(S)) ds.
k=t /’

All the moments of these random variables exist by Breuer and Major (1983,
Diagram Formula Lemma, p. 432).



8 1 Introduction

Moreover, let us note that

1

M Y
0?2 = lim var[SM¢] = ZZc,%k!/Olrsk(s)ds,

t—>00
k=t

and 02 — o%(Fy) when ¢ — 0. Besides, 0?(Fy) — 0*(F) when M — oo,
assuring in this form the required convergence.

We will give a proof of the CLT for m-dependent random variables.

The following result is a particular case of the Lindeberg’s theorem, see
Billingsley (1995, Theorem 27.2, p. 359 and Lyapounov’s condition (27.16), p. 362).

Theorem 1.5. Let {X,;}i=1,. .k@m)men be a triangular array of zero mean and
i.i.d. random variables and assume E[X,1]* = 1 and lim, o, K(n) = +oo0.
Furthermore, suppose that |X,,,1|2+"S is integrable for some positive § and that

E[|Xn,1|2+8] < C. Let us define S, = «/ﬁ ZZK!{) X,.i. Then:

Law

Now, we have all the ingredients to prove Heeffding and Robbins (1948) theorem.
Let {X;};en a zero mean stationary m-dependent sequence (m € N*), having finite
second moment. We can define

m—+1
o> =E[X]]+2) E[X,X)],
i=2

and also assume that o > 0.

Theorem 1.6. Let {X;};en+ a stationary m-dependent sequence of zero mean

random variables such that | X, |2+8 is integrable for some positive 8. Let S, =
n

\/LZ > X; then

i=1

S, —2 5 N(0, 0?).
n—>oo

Remark 1.7. 1t is possible to get rid of the hypothesis that the random variable X,
has a finite moment of order 2 4 § and replace it by the existence of its second order
moment. We refer the reader to Orey (1958, Corollary, p. 546). In this article the
author state a CLT for centered m-dependent variables with finite second moment
satisfying some Lindeberg-like conditions obviously fulfilled in the stationary case.

Proof. Let p(n) = [n®] and g(n) = |nf | with 1 > & > B > 0. The first sequence
allows us to decompose the interval of integers [1, ] in large blocks and the second
one in small blocks. Thus, we define the following intervals:
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L =[1, p(m)]. Ji=[p(m)+ 1. p(n) +qm)]
L=[pn)+qn)+1.2p(n) +q@)]. J=[2pn)+q()+1.2p(n)+2q(n)]

and
= [(k =) p(n) + (k — Dgq(n) + 1,kp(n) + (k — )g(n)],
Je = [kp(n) + (k — Dgq(n) + 1,kp(n) + kq(n)],

for k>3 Let K(I’l) = Lmj thl.lS

K(n) x (p(n) +qm)) <n.

K(n) K(n)
Then we have two disjoint sets of indices H; = 'Ul I; and H, = 'Ul Jj. In this
j= j=
form [1,n] = H; U H, U H3, with H3 having a number of elements less or equal
to p(n) + g(n). The definitions of p(n) and of g(n) imply that lim M =1.
n—o0
Now, let

ZX—i— ZX+ ZX

zeHl IEH IEH‘;

First, we show that the last two terms tend to zero in probability. In fact, we only
prove it for the second one. The proof for the third term is easier because it involves
indices belonging to only one block. Now, using independence and stationarity, we
have

2 2
K(n)
E X | = X;
K(n) 5 m+1 ‘
=== | amE[XT] +2 3 (g0 - ( — 1)E[X1Xi]
i=2
<C Qq( YE[X7] ——0.

2
Let us see the asymptotic normality of the first term. Let crnz =E [Zie I X i] . We
have

m+1
o2 = p(n) (E (x]+2) (1 - ]’,(;1)) E [XIX,-]) .

i=2
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In this form

K(n) 2K () K(n)
VPREE DR RENE S FIr s

zeHl j—llelj

The random variables X, ; = LY .. 1; Xi are independent and identically
distributed, with mean O and variance 1. Furthermore,

m+1
G,?K(n) _ K(")P(“)( [Xl +2Z(1— (n)) [XIX])
i=2

n n

Theorem 1.5 allows to conclude if we prove that for some positive &,
E [|X,,,1 |2+8] < C. For this purpose we use an old inequality of Ibragimov and
Linnik (1971, Lemma 18.5.1, p. 340) restated here.

Lemma 1.8. Let {X;},cn+ a stationary uniformly mixing sequence of zero mean
random variables such that |X 1|2+"S is integrable for positive § < 1. If 02 =

E [(27:1 Xi)z] — +00, there exists a constant C such that

n 248
ZX,‘ < CO"12+8.

i=1

To conclude the proof of Heeffding and Robbins (1948) theorem, let us remark that
a stationary m-dependent sequence of random variables is uniformly mixing. In
fact, according to Doukhan (1994, p. 17), the ¢-mixing coefficients of a stationary
m-dependent sequence are such that ¢(n) = 0 for n > m. For the definition of
the uniformly mixing see Doukhan (1994, p. 3 and 16) and Ibragimov and Linnik
(1971, Definition 17.2.2, p. 308).

As announced in Remark 1.4, we give a sketch of the new proof based on Nualart
and Peccati result.

As we explained in the previous proof, it is sufficient to demonstrate the CLT for
the functional SM. Furthermore, we can show that SM and S, 7] are equivalent in
L?*(£2). The key comes from the fact that this functlonal sM 7] can be decomposed
into a finite number of Wiener chaos.

More precisely, using the spectral decomposition of the process X in the chaos
of order 1, see (1.1) and Itd’s formula (see Breuer and Major (1983, p. 30)), we can
decompose S f‘t’lj in the multiple chaos in the following way:

M
S =" Ie(hygw).

k=t
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where the operator definition of I is given later by (5.5), page 80, and the function
higke € L2(RF) (cf. notations of Sect.2.2.2 and Slud 1994) is defined by the
following equality:

hige(Aa, .. Ar)

lz]
—ckk'— / exp(i (b1 + -+ 10)8) /D) -+ /T ) ds.

To establish the convergence of SM r)> We use Theorem 1 of Peccati and Tudor
(2005).
By Mehler’s formula, since r* € L'(R), it is easy to see that

M 2]
E(S})? = 2Zc§k!/ (1 - ﬁ) r(5)ds —— 0(Fu).

k=¢ 0

This latter convergence gives the required conditions appearing in the beginning
of this latter theorem. So we will just verify condition (i). In other words, let s and
k fixed such that s = 1,...,k — 1 and k such that k = sup(¢,2),..., M. We need
to show that all the contractions of /1|, x of order s tend to zero. These contractions
are defined by (5.6).

It is sufficient to establish that lim A, = 0, with

t—>+00

1 Ll plel plel pled
Arks = —2/ / / / r*(ur — v)r'(uz — v2)
lz]° Jo 0 0 0

rk_s(ul - u2)rk_S(U1 — Uz) duy duy dvy dos,.

With a convenient change of variables we get

| Ul oo o o
< g [ [ I =9 0 I - 9 dedy
— Lt t —0o0

We split the indices intervals into two parts, By and B}, where we defined for a
fixed positive real number N,

By ={(x,y) e R%, |x| > Nor |y| > N}.

Applying Holder inequality with p = ]f > land g = %

corresponding to By and Bj,. Because |r| < 1, it follows that

> 1 to both terms



12 1 Introduction

+o0 -1 3
Al < € [(/ rore) ([ rora)
N2 +o00 i
+ m (/_oo |7 (2)| dz)]

Consequently, since for all k>, we have r* € L'(R), we showed that:

s

- k
lim |A; 4 ] < C (/ |r(x)|kdx) —0,
t |x|>N N—>+00

since s > 0. This completes the new proof.

1.4 Brownian Motion Increments

In this section, we will show some applications of Theorem 1.3 to the increments of
the Bm.

Let X(¢) be a standard Bm. We can assume that X(¢) is defined in terms of its
harmonizable representation (see Hunt 1951)

exp(i t/\)

X(1) = L awon.

7L

To verify that X (¢) is actually a Bm, given that it is centered and Gaussian, it is
enough to compute the variance of the increments. Thus, for z > 0,

E[X(+h) - X()2 = = / * |expGi (h + I)IAA)

:_/ l—cosh/\ Qi — zh/ l—coskd/\
0

T A2
S [Ty,
s 0 u

We want to study the asymptotic behavior, as ¢ — 0, of the random variables

X(s+28)—X(@s)
ﬁ ki
when we consider it, for almost all @, as a random variable in the probability space
([0, 1],8, 1) with the Lebesgue measure A, B being the Borel sets. Let us denote

by @ the distribution of a standard Gaussian random variable.
Wschebor (1992) showed Theorem 1.9, a remarkable result.
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Theorem 1.9. For almost all w one has

{s <1 X(s+£)(c3§— X(@s)(w) < x} — o).

Proof. Let G : R — R be a bounded and continuous function. Consider the

sequence
! X(s +¢)— X(s)
/0 ¢ (T) &

Initially, we will show that the above sequence tends to E [G(N)] in L?($2), where
N denotes a standard Gaussian random variable. To do so, let us compute its limit
variance, when ¢ — 0. Set G = G — E [G(N)]. We must prove

! X(s +¢)— X(s)
ol e ()
2

_ V([ X(s+e)— X(s) N
—E|:/0 G(—\/E )ds:| = 0. (1.5

lim A

e—>0

Now
X(s+e)—X(s) exp(i(s + &)A) —exp(isi)
A
Ve m / 7 W
= «/E 3 exp(z A)% dwW(d).
Let eA = u into the stochastic integral. We get
X+ f/)E X6) _ x/_ / exp(i 3 u) p(l u) dW(u).

If our interest is to observe the process on the scale s = ev, we obtain that
there exists a stationary Gaussian process Y (v), such that the following equality
in distribution holds

xp(iu)

X(ev + &) — X(ev) exp(ivu)el.—u_l dW (u).

o mL

Let us compute the covariance of process Y.

Y(v) =
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2

r(v) =E[Y(v)Y(0)] = % /_00 exp(ivu) % du
L[ . (1 —cosu)
= ;/_ooexp(zvu)u—zdu =1—|vl,

for [v| < 1 and zero if |v|=1. Such a process is named Slepian’s process. Let us
return to the computation of the variance

Vo (X(s+e)— X(s) 2_ e | ’

Since the function G is bounded and continuous, it has a Hermite expansion that
o0

converges in L2(¢(x)dx), ie. G = G H;.. Under this form, using Mehler’s
k=1
formula it follows that

1/e 2 1/e
E [e / G(Y(v)) dv] =2¢ (1 —ew)E[G(Y(0))G(Y(w))] du
0 0

0 1
= 2sZG§k!/ (1 —eu)(1 — w)* du
k=1 0

= O(e).

Under a more precise form

2
: /1/‘9 ¢ 3 G2 1 k .- ~2 k! 2
—Ele G(Y(v))dvi| —>2sz/¢!/ (I—wrdu=2)" G} =0}
€ [ 0 k=1 0 k=1 k+1
(1.6)

Then we have

! X(s 4+ &) — X(s)
[ 6(F 7)o — piow

in L2(£2).1f &, = n~® fora > 1, then Y 2 ' &, < 0o. The Borel-Cantelli lemma
assures us that under this sequence the convergence is for a.s. in w. A more delicate
analysis is required to prove

! X(s+¢e)—X(s)
/0 G( 7 )ds — E[G(V)]

for a.s. in w, whereof we deduce Theorem 1.9 result. Before completing the proof,
let us recall that the Levy’s theorem about the modulus of continuity of the Bm (see
Karatzas and Shreve 1991), implies that for § > 0 it holds
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sup |X(t +h)— Xt +h)|<C ‘h—h"l/z_g,

tefo, 1]

(1.7)

Let us consider that G is continuous and Lipchitz. The class of functions with
these properties determines the weak convergence. Let ¢ such that ¢, < ¢ < g,

then
1 _ 1 _
w |6 (R0 [ (Mot
Ent1<E<én 0 \/E 0 \/a
1 _— —_
< sp C X(s+e)—X(s) X +en) X(S)d
En41<E<&n 0 \/E \/S_n
1 1
<C|ll—=——) sup |X(s+¢)—X(s
[(JE ﬁn)os};'( )= XE)
1
— X+ e,
\/Enosssl ( )|:|

1/2—8 172 ( _ )1/2—8
& & & &
§C(0))%1—/2|:(—n) —1i|+n1—/2}
En € En
s En 1/2 (en — 8n+1)1/2_8
&, -1+ V7 E—
En+1 &1

1 (n+ 1)
C(a))[ a5 T s :|

<C(w)

this last term tends to zero if (a + 1)é < 1/2. This choice is always possible by
taking § small enough. In the third inequality, we used inequality (1.7).

Using Theorem 1.3 we can show the following theorem (see Berzin-Joseph and
Ledn 1997):

Theorem 1.10. Let G a continuous function belonging to L*(¢ (x) dx) then

X X aw
Sy f/ ( (s+8) (S))ds j_)o osW(1),

where W(t) is another standard Bm, G = G — E[G(N)] and og is given by (1.6).
Moreover if G Hermite rank is greater than or equal to two the two Bm, W and X,
are independent.

Proof. The one-dimensional convergence is obtained from Theorem 1.3 and from a
change of variables in the stochastic integral as in the proof of the previous theorem.
In fact, from the equality in distribution follows
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X(S+8) X(s)
Se \/_/ ( NG )d —\/_/ G(Y(u))du—)N(O 1o )

Consider t; < t, < 13 < 14, some points of the interval [0, 1]. If ¢ < t3 — £, then
S;— S, and Sf, — S, are independent. Since the distribution of Sf — Sj, is the same

as the one of sz -4 and each of the variables converges to a Gauss1an vanable then

(S, =SS, —S.) —> o (W) — W(t), W(ts) — W(13)).

If 1, = 13, the same result is obtained by removing a subinterval of size 5 in each

interval and using the 1-dependence, the two removed terms tend to zero in L?(£2).
The whole procedure can be repeated for any n-vector of increments. In this form
the finite dimensional convergence follows.

For the tightness, we need to prove

(n—n2)/e 4
E[s; - s;] =E[s;_,]" =E[¢Z/O G(Y(u))du} <C(h—1)

To obtain this bound, set t = #, — #; to simplify the notation. If # < & the bound is
immediate by Jensen’s inequality. Consider then ¢t = ¢ and let N(¢) = |t/¢]. Then

4

N(e)—1 4
E[s]'<cC E|:f Z/ G(Y(u))du:| +E|:f/ G(Y(u))du:|
For the second term, Jensen’s inequality entails

t/e

4
E [ﬁ G (Y (u)) du:| <Cg<Ct
L¢/e]

Defining the set of indices I = {0 < iy, ip,i3,i4 < (N(g) — 1)}, then for the first
term, we have the following decomposition

N(e)—1 4
{f Z/ G(Y(u))dui|

i1+l pic+1 piz+1 pig+1
=g’ E{ G(Y(u1))G (Y ()G (Y (u3))G (Y (u ))du]
e[ coecoaoio
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where du = du; du, dus dus. We can assume without loss of generality that i} <
ip < i3 < iy. We need to consider the following cases:

» Ifiy —i3 = 2 then by using the independence, these terms are zero.
e If0 < iy —i3 < 1then i, depends on i3 and one has:

— Ifiz —i, = 2 the independence implies that the term of interest is equal to

i+l pitl .
B [ / / G (¥ ()G (¥ (1)) du du2:| x

il pigtl 3
E [ / / G (¥ ()G (¥ (ug)) dus du4}

— If iy —i; = 2 the corresponding terms vanish.
— If 0 < i, — iy <1 the sum is over two indexes and because

2

E[/iH G(Y(u))du} <C,

we obtain that this sum over the corresponding indices is less than or equal to
Ce’N?(e) < Ct%.

The remaining cases can be treated in a similar fashion.

Let us prove now the last result of the theorem: if the function G has a Hermite
rank greater than or equal to two, we obtain that W is independent of X .

To prove this let us consider the following vector process defined in C[0, 1] x
C[0, 1], X°(¢) = (X(¢),S/). Each coordinates process is tight hence the vector
process is also tight. Let us denote by Y (¢) any continuous limit point for the
sequence. By construction, the following vector

(S5, X(11)). (Sf, = Sfiye. X(12) = X(11 + 8)), - ..,
(Sp, = Sp_i4es X(tm) — X(tm—1 + €))),

tm
has all its coordinates independent and moreover converges when ¢ — 0 to
Y@®),Y(®) — Y(),....Y(#t,) — Y(tn—1)). Then we deduce that Y is an
independent increment process. Moreover process Y has finite second moment then
it must be Gaussian.

Thus to prove the asymptotical independence we need only to compute the
following covariance

E[(S¢ —S¢

Im tm—1

)(X(tm) - X(tm—l))] =0,
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because the function G has Hermite rank equal to 2. Consequently, all the limit
points have the same Gaussian distribution and its two coordinates are independent.

Remark 1.11. The fact of obtaining the asymptotic independence between the
original Bm and the limit process, implies that we have a stronger convergence.
This convergence is a particular case of stable convergence that we will reconsider
later.

We can obtain Theorems 1.9 and 1.10 for more general diffusion processes. The
same type of study was undertaken by Perera and Wschebor (1998) in a more
general form than ours.

We will begin with the Bm with drift. Let » : R — R be a continuous function.

Also assume that E, [exp( fot b (X(s)) ds)] < oo, where E, is the expectation with
respect to Bm such that X(0) = x, for all x € R. The following SDE

dZ(t) =dX(t) + b(Z(t))dt Z(0) = x,

admits a unique weak solution that can be expressed through the Girsanov’s formula
(see Karatzas and Shreve 1991). In first place, we have the exponential martingale

M(t) = exp (/Ot b(X(s))dX(s) — % /Ot b(X(s)) ds) with E.[M(t)] = 1.

And in second place if H : C[0,¢] — R is a measurable and integrable functional,
we have the Girsanov’s formula

E[H{Z(s): 0<s <t} = E[M(O)H{X(s): 0 <5 <1}].

We can obtain the two following results.

Corollary 1.12. For almost all w one has

R Z(s +¢e)(w)— Z(s)(w) <.
~ . ﬁ ~

Proof. Let G be a continuous and bounded real function and consider

! Z(s + &)(w) — Z(s)(w)
AZ%LU./O G( NG )ds - E[G(N)]},

e—>0

lim A { } = &(x).

and

- ! X(s + &)(w) — X(5)(0)
A:%w./o G( o )ds — E[G(N)]}.
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By using Girsanov’s formula we get
Pi(4) = Ex[1a(0)] = E{[M(1)1 ()] = E[M(0)] = 1.

The third equality is a consequence of Theorem 1.9, i.e. Pi{A} = 1.

Remark 1.13. Let G be a continuous function such that |G(x)| < Y7 a; |x|" for
a certain m = 0 and f another continuous function. One can show by using the
above result that a.s. in @

! Z(s + &)(w) — Z(s)(w)
/0 G ( 7 ) ds — (E[G(N)]

and

! Z(s + &) (@) — Z(s)(w) !
[ rzene g )os = El6w [ rzonas

Corollary 1.14. Let G a continuous an even function belonging to L*(¢(x) dx),
such that G has a Lipchitz derivative then

VA VA aw
Se «/_ / ( (s + 8) (S)) ds gL—>o osWi(t),

where W(t) is a standard Bm and G = G —E [G(N)] and o is defined by (1.6).

Remark 1.1 5.~ This last Bm is the same as in Theorem 1.10. Hence, for this class
of functions G, the second conclusion of the theorem is in force and a fortiori W is
also independent of the process Z.

Proof. We can write
. Z(s+8) Z(s) A X(s+¢e)— X(s)
i=si+ e [ o (P ) e () e
=S+ 1.

Using a Taylor expansion of first order, we get that there exists a real number «,
0 < a < 1, such that

e [TA(Zs+e)—Z(s) a [FF 1 ote

Then the Lipchitz property of function G yields

e [TA(Zs+e)—Z(s)\ (1 [t .
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where

t
|JF| < Ve sup  b*(Z(u))ds — a.s.in w.

Os
0 s<u<s+te =0

Moreover,

YL (Z(s+e)—Z(s)\ (1 [*T¢
/0 G (—ﬁ ) (E/s b(Z(u)) du) ds

[T A(Z(s+e)—Z(s)
—/0 G(—\/E )b(Z(s))ds

P (Z(s4+e)—Z(s)\ 1 [T

Obtaining in the first place:
t . _ s+e
/0 G (M) é / [b(Z(w)) — b(Z(s))] duds

NG
< sup  sup |b(Z(u))—b(Z(s))|/0t ('}(Z(H?E_ Z(s))‘ds —0,

0<s<t s<us<s+e
a.s. in w, because the last integral is bounded thanks to Remark 1.13.

And in the second place, as a consequence of the same remark, G being an odd
function, we have

t s Z _ Z s t

/ G (M) b(Z(s))ds —> E[G(N)]/ b(Z(s))ds =0,
0 \/g e—>0 0

a.s. in w. Theorem 1.10 yields Corollary 1.14 and Remark 1.15.

The study we have previously addressed concerning the oscillation of the Bm
and other diffusion processes allows us to build a nonparametric estimator of the
quadratic variation for a general one dimensional diffusion process.

The observed process will be the solution of the SDE

dZ(s) = 0(Z(s))dX(s) + b(Z(s))ds Z(0) = x.

We assume that functions o and b satisfy the hypotheses of existence and
uniqueness. The estimator of the quadratic variation of Z in the interval [0, ] is

t 2
176(t)=/0 (W) ds.

Now we prove Theorem 1.16.
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Theorem 1.16. Let o be a continuously differentiable function satisfying o(x) > 0
and b a continuous function then

t
Ve(r) — / 02(Z(s))ds = V(t), as. inw.
e—0 0
Moreover, there exists W, a standard Bm independent of Z such that

7(V€<z> Vi 2 2 / o2(Z(s)) dW(s).

Proof. Let us define function Fy(x) = f (u) du, thus F,(x) = and Ey(x) =
—(fz((xx) The function F; allows us to introduce the process Y (t) = F (Z(t)). By

using [t6’s formula, see (Karatzas and Shreve, 1991, Chap. 3) we get
dY(r) = dX(1) + p(Y (@) de,  Y(0) = F5(x),
where

b(Fy'\(x) 1

TGy~ 3

p(x) =

We will assume that the function p satisfies the technical conditions ensuring that

E, [exp(fot w2 (X(s)) ds)] < o0.
There exists a real number (s, ), 0 < a(s, &) < 1, such that

Y(s+¢e)—Y(s) 2d
NG ) ’

[ Y(s+¢)—Y(s)\* !
~ /0 aZ(Z(s))( NG ) ds — E[N?] /0 o2 (Z(s))ds

a.s. in . The last limit is a consequence of Remark 1.13.
The second assertion of the theorem is more involved, we will give only a sketch
of the proof. First, we point out that

V0 = [ 060+ a0 Y6+ o) - Y(s)])}z(

1 e NL ! 2
S0 -ve) ~ /0 o (Z(S))Hz(

Y(s+¢)— Y(s)) ds
NG ——— ] ds.

NG

Defining as before Sf = «/LE fot H, (%) ds, we consider first a fixed

discretization of the integral say,
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lnt]—1

> ozl (Sin - 57)

i=0

lnt]—1

=Y e (W - W),
i=0

by Corollary 1.14. Moreover, by Remark 1.15, one has

2 lnt]—1

-~ 207(L i+l o2
7 ; o (Z(LNW(EL) —w(k ) —— f/ (Z(s)) dW(s).

To finish the proof we need to show that

im i L[ Y(s +¢) —Y(s)
i it |z [L oo (7 o

lnt]—1

- ) Az (S-St | =0

i
n
i=0

We do not prove this last fact. A complete proof is given in Berzin-Joseph and Le6n
(1997, pages 577-578).

1.5 Other Increments of the Bm

Consider the function ¢(u) = 1—1, (1), such a function is of bounded variation. Set
(1) = é(p(é). Defining X° = ¢, * X, where * denotes the convolution between
functions or measures and X is again a standard Bm. The process X? is almost
everywhere differentiable and it holds

X(t+¢e)—X@)
—ﬁ .

This fact allows us to formulate the problem of the previous section for more
general functions ¢. We will make this in what follows leaving the details as
exercises. Let ¢ a bounded support density with a continuous derivative. Again,
let us define X% = ¢, x X.

The outline of the approach is the following.

VeXi(1) =

1. Write the harmonizable expression for X°.
2. Show that process /X ?(su) is equal in distribution to a stationary Gaussian
process Y (u). Determine its spectral density and its covariance.
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(O8]

. Let us define 02 = var [\/EX S(eu)] = var [Y(u)] and compute this last constant.
4. Repeat the same steps of the proof of Theorem 1.9 to show that, for all # and
almost all @

Ads <t:

VEXT) 1B(x).
o 0

W

. In such a case, what is the value of the constant oé ?
6. Prove the corresponding Theorem 1.10.

1.6 Discretization

Let us consider the Bm X, observed in a uniform mesh of [0, 1]. Using the strong
law of large numbers for independent array of random variables the first result is
that for all continuous function G such that E [G4(N )] < 00,

lnt]—1 "
S90 = 3 G (VX () - X (5)]) -2 B
i=0

Moreover, defining G (x) = G(x) — E[G(N)] the Lindeberg’s CLT and Donsker’s
invariance principle (see Billingsley 1995) yield

VS () s 0a W),

in the Skorohod’s space D[ 0, 1], where aé =) e ng!. Again, the Bm W turns
out to be independent of X if the function G does not have a first order coefficient
in the Hermite basis.

These two results can be extended by using the absolutely continuity of the
measures given by Girsanov’s formula to the Bm with drift, let

dY(r) =dX(t) + b(Y(¢)) dr.

To get the asymptotical independence, G ought to be an even function.
For a general diffusion dZ(s) = o(Z(s))dX(s) + b(Z(s))ds, the same
procedure of change of variables leads us to the following two results:

lnt]—1 - o as ¢
> (2 =20y 2 [ ez

i=0
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and

lnt]—1 t
vil| Y (2 -z - [ oz e

i=0

LN f 2(Z(s)) AW (s).

n—00

As we can see, things seem easier in this case of discretization. However, the
difficulty is more or less the same.

Now, our interest turns to the fractional models. Two main difficulties arise. First,
we have to estimate two things, the Hurst parameter H and also the local variance
o (x). Second, the underlying process, actually the fBm, has not the independence
properties of the Bm and some more involved CLT are needed. In the next section
we will illustrate these matters with some preliminaries examples.

1.7 Crossings and Local Time for Smoothing fBm

In this section we consider an estimation problem seemingly far from what we have
seen in previous sections. The problem consists in approaching the local time of the
fBm b, by means of the number of crossings of a mollified version of this process
by (1) =1 [0 o(=2)bp(s)ds = [ ¢:(t —5)bp (s) ds, where ¢ is a probability
density function of bounded variation with a compact support. We will denote by ¢
its continuous derivative.

Let us see some properties of this process. The spectral representation for the
fBm (see Hunt 1951) yields the following formula

1

& _L R R _ isA _
b == [ [ aa-se Dw*’

= \/_/ / e t—s)l/\e“AI/\|

/OO itA 1
—= | €"irg(=1)
V21 J-co A

7 WO ds

_ds dW(})

- dW (1)

e iAG(—ed)———

1 1
E/_ |A |H+l v

Law 1 1 /OO )L 1
@ [ eftiag-n) —— [ AW,
V2m et A+
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the last equality is in law. As a consequence, if we define Y, () = ¢!~ bf{ (et), then
Y, is a zero mean Gaussian stationary process whose spectral density is

1
fu(d) = | I ||2T
Observe that this function belongs to L?(R) whenever H < 3/4. Moreover,

E[Yﬁ(t)]=%/_ pI° 3 |2H —dA =0},

Hence, we can introduce the unit variance process Z.(¢) = Y.(¢)/oy.

The problem mentioned above about the convergence of the crossings for the
process b§; towards the local time for by, has its origins in Wschebor (1992) work
on the Bm. The problem can be precisely formulated as follows. Given that the
process by, is differentiable, the random variable: number of crossings in [0, T'] of
level u of the process bé;, defined as

NP () = #{t < T : b%, (1) = u}

is well defined and has a first moment. If 2 : R — R is a continuous function the
area formula (Azais and Wschebor, 2009, Chapter 3) allows writing

0 bE T .
[N wan= [ ool

Besides a result similar to the one given in Sect. 1.5 is obtained in Azais and
Wschebor (1996).
Indeed, almost surely

o] e T
gl / h(u)NTb”(u) du = '~ / h(by; (1))
—oo 0

b, (t)) dr

T o)
— 3ay/ h(by(2))dt = WECW/ h(u)Lr (1) du, (1.8)
T 0 T —o0

e—>0

where L7 (u) is the local time of level u for by, that exists and is continuous (see
Berman 1970).

The rate of convergence in the almost sure convergence result (1.8), that
constitutes the following theorem, was obtained in Berzin and Le6n (2005). To state
such a result, let us introduce first the function G (x) = ﬂ |x| — 1. By defining
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J(T) = % (\/; o7 / h(u)Np ”(u) du—/ h(u)L7 () du)

we get Theorem 1.17.

"
Theorem 1.17. Suppose that i < H < % and that h € C* such that |h(x)| <

P(|x|) where P is a polynomial. Then, there exists a Bm W independent of by and
a constant Cy , such that,

1 (7 . 1 [T
1T = /0 MGG (Z.(2) dr + /0 (B (1)) — h(by (1))} dr
(1.9)
T
—>cwa (b (1) AW (D).
0

.
Note that as indicated in the notations, h is the k™ derivative of h.

Proof. We only give a sketch of the proof. A complete demonstration can be found
in Berzin and Le6n (2005).

Let us begin with the second term in the expression for J,(7"). By using a Taylor
expansion we have

— / (b5, (1)) — h(bi (1))] di

e b, (1) — by (1)
= —8/ h(bH(t))S—Hdt

e _ 2
/ o, + 11 -0, (OO g,

where 0 < 0(e,t) < 1. First, in Berzin and Ledn (2005), it is shown that

T bEO=ba@) T
E [/0 h(bH(t))S—Hdt}
= (0(8) + O(SZH)) /HH<1/2 + 0(1)'[]1-1;1/2.

Second, ifz is continuous and if |2(x)| < P(]x]), it holds

2
bH(t)) dt = 0p(1).

T . bg .
/0 h(0(e, )by (1) + (1 = O(e, 1))y (1)) (%

Hence, the whole term tends to zero whenever i < H.
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This implies that the weak limit will be provided by the asymptotic behavior

of first term of the sum in equality (1.9). To study this convergence we proceed
according to the following steps:

1.

4.

Let us define S7 = 4 f(; G(Zs(i)) ds. Given that H < %, Theorem 1.3 implies

&
that there exists a Brownian motion W(¢) and a constant Cy, such that the

finite dimensional distributions of S/ converge towards the finite dimensional
distribution of Cyy , W(t) as ¢ — 0.

The tightness in this convergence is far from trivial. It was established in a recent
article, Cohen and Wschebor (2010).

. Given that function G is an even function then by an argument of Gaussian

convergence into the Wiener chaos it follows that process W is independent of
bu.

. Let n be a positive integer and define #; = ”7 The weak convergence entails the

following one

|nT]—1

> hb5))(SE,, = SE)

i=0

aw [nT]-1
%) Crg Z h(bp (t)) (W (ti1) — W(1)) .

i=0
Moreover the asymptotic independence yields

[nT]—1 T
Jim iy 32 Wi () (W04 = W)} = Cog [ @) W),

i=0

this last convergence is in L?(£2).
To conclude it is necessary to prove the following result

n—>00 g—>0

: . 1 ’ & ~ t
lim limE [% /0 h(b5 ()G (Z. (%)) dr

|nT]—1

— > kM ))(SE,, =S| =0.

i=0

This results is a non-trivial computation completely developed in Berzin and
Ledn (2005).
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Chapter 2
Preliminaries

2.1 Introduction

The use of Brownian diffusions for modeling environmental phenomena, financial
markets, physical and molecular interaction and biological issues, has been very
successful in the past decades. However, in the various branches of application
persistence or rather strong dependence is often encountered. This last property is
sometimes interpreted as a slow rate in the convergence to zero of the covariances,
when the delay goes to infinity. Moreover, from a physical point of view when
the diffusion of pollution particles is observed on the water surface, for some
substances, the behavior of the trajectories of the particles seems more regular than
in a Brownian case.

These issues lead physicists and probabilitists to introduce new models aimed to
solve or better model the above phenomena. The first authors to define such models
were Mandelbrot and Van Ness (1968) who introduce the fractional Brownian
motion (fBm). This is a stationary increments and autosimilar Gaussian process
whose covariance depends on a parameter H (the Hurst parameter) such that
0<H<I1

More recently, there has been a renewed interest in this process and in the
possibility of defining a stochastic calculus by using the trajectories of such process
as integration measure. Various authors reached this goal. One of the first intents
was the work of Lin (1995) who built the integral by means of Riemann sums in the

case when H > % We must point out that the case when H = 1 corresponds to the

2
Bm, and the integral results the Ito’s integral.

When the bases for the integration are completed it is natural to extend the
notion of stochastic differential equation (SDE) driven by a fractional noise. A very
complete study of these equations was realized by Nualart and Ragcanu (2002).

This work has three main goals, all are of statistical nature. First, we define
an estimator of the parameter H, through the observation of one trajectory, on a
regular grid of points. We use the k-variations of the order two increments. These

C. Berzin et al., Inference on the Hurst Parameter and the Variance of Diffusions Driven 29
by Fractional Brownian Motion, Lecture Notes in Statistics 216,
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variations allow the estimation of the H parameter all over its range, leading also
to consistency and asymptotically normality. If the first order increments were used,
we would only have the asymptotic normality for H €0, %[.

Second, we consider four models of SDE allowing our method the simultaneous
estimation of H and the local variance o>(x). This estimation procedure leads to a
loss of convergence rate for the Central Limit Theorem (CLT) for the estimator of
o%. We also consider the case where H is supposed to be known and in this case our
method leads us to define a test of hypothesis for certain functionals of the function
0%(x) and, as a bonus, we can made an evaluation of the asymptotic power of the
test.

The third goal consists in the realization of a deep simulation study of the
performance of our estimators. To achieve this task we simulate the fBm with the
help of the Durbin-Levinson algorithm. Then the different models are simulated
using an Euler’s finite difference schema. Afterwards, for each of the four models,
the estimators of the parameters are computed and then we assess the quality of each
estimator and we conclude by comparing their performance.

We must indicate that to demonstrate the asymptotic normality of our estimators,
we use the technique of the CLT for functionals that belong to the Wiener Chaos.
This method has been developed by Nualart and Peccati (2005), Nourdin and Peccati
(2010), Peccati and Tudor (2005), among others. Application of these tools leads to
an enormous simplification in the computations.

2.2 Fractional Brownian Motion, Stochastic Integration
and Complex Wiener Chaos

2.2.1 Preliminaries on Fractional Brownian Motion
and Stochastic Integration

In this section some properties and notions related to fBm are presented. The fBm of
Hurst parameter H is a mean zero Gaussian process by, with stationary increments
whose covariance function is

1
E b (0bi ()] = 5 03y [ + 15" =l = 5P|

where v3,; = [['(2H + 1)sin(xH)]™". Let us point out that the Bm corresponds
to the case where H = % . This process is autosimilar. In fact, by using the above

. . L Law,, .
covariance, one readily gets by (at) = a by (t),where “"=" denotes the equality

in law of the processes.
There exists a harmonizable representation of this process (see Hunt 1951)

bu(t) = [exp(i ) — 1] A2 aw(d),

=l
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where W is a complex white noise. The variance of the increments 'y results
2 2 2H
Tyt —s5)=E[by@)—bu(s))]=v5—5)"", t=s.

Proposition 2.1. The trajectories of by are continuous, with Holder coefficient
h<H.

Proof. Since we have E[|by(t) —bu(s)|”] = C,lt — s|P", the Kolmogorov
continuity criterion implies that |by (t) — by (s)] < C(w) |t — s|h for0 < h <
"HT_I. The result follows by taking p large enough. |

The fractional Brownian noise (fBn) is defined as the following stationary
discrete time Gaussian process

XH =by(m+1)—byn).
Computing the covariance

(o) = BLXIXY] = o3 [[1+ P =2 |1 = 1] s a0

n
when n — oo.

Thus for H > %, we have Y °2 | |ry(n)| = +oo. This phenomena has been
interpreted, in the literature, by saying that the fBn exhibits a long range dependence
whenever % < H < 1. The spectral density for the fBn can be obtained from

1 [ o
rH(n):Z/ e™|exp(id) — 112 |A| 72 da,
—00

by using the Poisson’s summation formula, this yields

oo

1 2 - ) 1
rg(n) = — e lexp(id) — 1 ————dA.
w = 5 [ e lexpin 1P Y
k=—o00
Let us define for a process X with time parameter ¢ in [0, 1] the p-variation index
as

I(X,[0, 1)) = inf{p >0: supZ | X () — X(t—1)|P < o0
T k=1

where 7 is the set of all the finite increasing sequences {#; };_, in the interval [0, 1].
A process X is a semi-martingale if 7(X,[0, 1]) € [0, 1]U {2}.
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Proposition 2.2. The fBm is not a semi-martingale for H # %

Proof. Considering the following sum for the fBm

n n—1
—15\ |7 - H
Vip =Y |bu(t) = by (1|7 = n D LN x e,
k=1 k=0

where the last equality holds by using autosimilarity. If p = %, the ergodic theorem
implies that

Vi —— vyy B[IN|"]

and we also have the convergence in L'(£2). Moreover V, , tends to zero or to
infinity in probability, whenever p > % or p < % respectively. Hence this implies
that I(by,[0, 1]) = % and the result follows. |

Now we are ready to introduce the stochastic integral with respect to fBm.
Several types of stochastic integrals with respect to by can be defined, we chose
to work with the notion of pathwise integrals.

Definition 2.3. Let {u(¢) : ¢ € [0, T]} a process with integrable trajectories. The
symmetric pathwise integral with respect to by is defined as

1 T
lim 2_5/0 u(@)[bu(t + &) —bu(t —¢)]dt,

e—>0

whenever that limit exists in probability. The integral will be denoted as
[ u(t) &by ().

Remark 2.4. Two other notions can be introduced. The forward integral

T 1 T
/0 u(t)dby (t) = !E’%E/o u(®)[bu(t + &) —bp ()] dr,

and the backward integral

T 1 T
/0 ”(Z)db;(t):y_%gfo u(®)[bu (1) — by (t —e)]dr.

In Lin (1995), another pathwise definition is given. Let Z be a continuous process,
with Z(0) = 0 and zero quadratic variation. An important example is by + V,
where V is a continuous process with finite variation with initial value equal to zero
and H > % Lin (1995) shows Theorem 2.5.
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Theorem 2.5. For any function ¢ € C' and a sequence of partitions
={0=t<t; <---<t, =t} of [0, t]with|A"| —— 0,
n—>0o0

Z(1)

lim Z¢<Z(r D2 = Z-n] = | $pwdu.

‘A”

The limit is taken in probability.

Proof. The proof goes easily by using the facts that the function @(x) = fox ¢ (u) du
is twice differentiable, that its second derivative is locally bounded, and the
following Taylor expansion

n

D(Z(1) = Y _[D(Z(1) — D(Z(ti-1))]

i=1

=Y ZWNNZW) — Z(G-0)) + Y 3 E)Z0) — Z@-)],
i=l1 i=l1
where &; is between Z(¢;) and Z(t;—1). |

The above theorem allows to define fot ¢(Z(s)) dZ(s) as the limit of the Riemann
sums in probability. Another formulation is a sort of fundamental theorem of
calculus i.e.,

t
O(Z(1)) — P(Z(0)) = /O P (Z(s)) dZ(s).
By using this observation, we can search for the solution of the following SDE
t
X(t) =c +/ a(X(s), Z(s))dZ(s), o €C', Z(s) = bu(s) + V(s), (2.1)
0

where V' is as before, a continuous process with finite variation and initial value

equal to zero and H > % To solve that equation, let g be the unique solution of the

following ordinary differential equation (ODE)
dg(®) _
1)t 2.2
= =000 22)
g(0) =c.

The solution of Eq. (2.1)1is X(¢#) = g(Z(¢)). An important example is the fractional
version of the Black-Scholes SDE defined in Cutland et al. (1995). This process is
the solution of the SDE

dX(#) = X@)(cdby(t) + ndt), o, pnelR, H> %
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Here the ODE is dg(z)/dt = g(¢) and g(0) = c. It yields that the solution of (2.1)
is

X(t) = cexp(Z(t)) = cexp(oby (t) + ut).

We can now explore the relationship between the three notions of stochastic
integrals with respect to d*by, dby; and dby. The following discussion is based
on Biagini et al. (2008, Section 5.5 of Chapter 5). Let us begin with the following
definition.

Definition 2.6. The process (f(s), 0 < s < ¢t < 1) is said to be a bounded
quadratic variation process if there are constants p = 1 and 0 < C, < oo such
that for any partition A" = {0 =1y <, <--- <1, =1},

n

Y EVP[f@) — f-)?) < Cp.

i=1

Let us examine the following example. Consider f : R — R a continuously
differentiable function with bounded first derivative. Then f(bg(s)) is a bounded
quadratic variation process for H > 1/2. In fact, let A” be a partition of [0, 7],

S EV?[1£bu ) ~ fbu)P]

i=1

n 1
= ZEI/P |:H/o fbu(tizy) + 0(bu(t) — by (ti1))) d@}

i=1

X [by(t;) —bu(ti-1)]

2p n
:| <C, Z |t: — ti1 |7 < Cpt.

i=1

The following theorem states that the definition of the integral does not depend
on the point where the integrand is evaluated.

Theorem 2.7. Let (f(bu(s)), 0 < s <t < 1) be a bounded quadratic variation
process. Let A" = {0 = th <t < --- < t, = t} be a sequence of partitions of
[0, ] such that |A"| — 0 asn — oo and

> Fbu ) ba () — bu(ti)),
i=1

converges, for H > %, to a random variable G in L*>(P™) (the L? space for the
probability measure generated by the fBm). Then
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> flu)but) — buti-1)].

i=1

also converges to G in L*(P™).
Proof. For simplicity’s sake, let us write f(¢) instead of f(by(¢)). The result
follows by showing that

n 2( H)
D L@ = f@=)lbr @) = b (ti-)] ——— 0.
i=1
Using Holder’s inequality, we get

1/2

n 2
E [Z[f(t,-) — f@-)lbu () — b <z,-_1)]]

i=1

=

< SB[ @) — )P ib @) — ba ()]}

i=1

=

< YE[@) = £ ) (€t ) — baai—p])

i=1

n 1/2
< {Z [(f@) - <z,_1))2f’])‘”’}

" 1/2
thi —li—1|2H}
i=1

The last term goes to 0 as n goes to infinity because H > 1/2. Thus the result
follows. a

i

1/2
X { (E [(bH(ti) — bH(ti_l))Zq])l/lI§ < Cp
i=1

As pointed out in Biagini et al. (2008, page 137), a more general result can be
proved. If for a choice of §; € [#;, t;— ], the sum:

Y FE)bu () = buti1)

i=1

converges to fot f(u) & by (u), it converges for any other choice.

If f € C'and H > % the notions of symmetric pathwise integral

fy f(br(u))db,(u) and integral [, f(bp(s))dby(s), are the same. To obtain
such a result, let us compute first the covariation between Y(s) = f(bu(s)) and
by (s). For the definition of the covariation, see (Biagini et al., 2008, Chap. 5, p.
124). By definition the absolute value of this covariation is
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|[Y7 BH]tI =

Jim © / t [Y(u + &) — Y@)][brr (u + &) — by (u)] du
t—0 & 0

< C(w) lim 1 /t[bH(u +&) — by w)]*du
e—0 & 0

2H—-26

< C(w) lim =0,
e—0 &

where we used the fact that

sup |70 121 < _sup 16w o)

0<s<2t

is a finite random variable and the modulus of continuity of by, see Proposition 2.1.
The following equality gives the result

/ Sbu ) d by (u) =/ S (b (s))dby(s) + %[Y,bH]t.
0 0

Let us prove now for H > % the equality between the two definitions of pathwise
integrations that is, db7; and dby . Let f be a continuously differentiable function,
the following equality holds

[ SO0 a6 = tim S Fbuti)n ) ~ b
i=1

_ /0 F (b (5)) dby (s).

Indeed, consider the step function fa(s) = Y ', f(bu(ti=1))V_1z1(5); Fa(s)
converges boundedly almost surely to f(by (s)) when |A”| — 0. Moreover

/ fa(s)dby (s) = lin})/ 1a(s) bu(s +¢&)—bu(s) ds
0 =0 Jo A
! ti 1 s+e
= im 3= /Guti-) / . [ wutas
! ti—1+e ,, 4.
= tim 3 b [ / e

ti ti+e 4 _
n / by (u) + / %de(u)}
1,

i—1+e ti

dbp (u)

= Z JOu @) ) — by (ti-1)].
i=1
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The last equality follows from an integration by parts of the first and third terms of
the second last equality because both tend to 0 as & goes to 0.
Taking the limit in both sides when |A”| — 0, the result follows.

2.2.2 Complex Wiener Chaos

The discussion in this section comes from Major (1981). Let W be a complex
centered Gaussian random measure on R with Lebesgue control measure dx such
that, for any Borel set A of R we have W(—A) = W(A) almost surely. We consider
complex-valued functions v defined on R for almost every x € R,

Y(x) = Y (—x).

We write L2(R) for the real vector space of the functions that are square integrable
with respect to the Lebesgue measure on R. Endowed with the scalar product of
L*(R), which we also note

09,y = [ WG

L2(R) is a real separable Hilbert space. Moreover, for any ¥ € L2(R), one can
define its stochastic integral with respect to W' as

L) = /R ) AW ().

Then 7, (V) is a real centered Gaussian variable with variance given by ||/ |3, where
Il - |2 is the norm induced by the scalar product (-, ')LZ(R)' To introduce the k-th It6-
Wiener integral, with k = 1, we consider the complex functions belonging to

LXR*) = {y € L*(RF) : y(—x) =y (x)}.

The inner product in the real Hilbert space of complex functions of Lg(Rk ) is given
by

(wv w)Lz(Rk) = /;gk I/I(X)mdx

The space L2(R¥) denotes the subspace of functions of L2(R¥) a.e. invariant under
permutations of their arguments. By convention L2(R¥) = R for k = 0. Let us
define H(W) the subspace of random variables in L2(£2) measurable with respect
to W. The k-Itd-Wiener integral I is defined in such a way that (k!)~'/21; is
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an isometry between L2(R¥) and its range #, C H(W), so that we have the
orthogonal decomposition

HW) = P #.
k=0

where #, is the space of real constants. Each ¥ € H(W) has a L*(£2, P)
convergent decomposition

Y =3 L), vk € LIRY).

k=0

2.3 Hypothesis and Notation

We give the definitions of the fBm and of the Hermite polynomials. Mehler’s
formula is recalled. The covariance function at different scales of time of the second
order increments of the fBm is also brought in this section as well as the definition of
a functional variation of the fBm, for a general function including the definition of
the absolute k-power variation. Finally, the definitions of the associated asymptotic
variances are also presented in different scales of time.

Let {by(t),t € R} be a fBm with Hurst parameter H such that 0 < H < 1, see
for instance Samorodnitsky and Taqqu (1994, Chapter 7). The covariance function
of this centered Gaussian process is:

1
E i (0ba ()] = 5 vy [P + 1P = 1t =" ]

where v, = [[(2H + 1) sin(H)] ™.
Here, let us recall that Hermite polynomials, denoted by H,, are defined by

+o00

exp(tx — %tz) = Z

p=0

Hpy(x)t?
pl

Hermite polynomials form an orthogonal system for the standard Gaussian measure
¢(x)dx. If b € L?(¢p(x)dx) then there exist coefficients / such that i(x) =
S S hy Hy(x).

Also recall that Mehler’s formula (see Breuer and Major 1983) gives a simple
form to compute the covariance between two L2 functions of Gaussian random



2.3 Hypothesis and Notation 39

+00

variables. In fact, if kK € L?(¢(x) dx) and is written as k(x) = Y k,H,(x) and if
p=0

(X, Y) is a Gaussian random vector with correlation p and unit variance then

+o0
E[R(X)k(Y)] =) hpkpplp”. (2.3)

p=0

We define the Hermite rank of k as the smallest p such that the coefficient k, is
different from 0.
Let g be a function in L?(¢(x) dx) such that

oo +o00
g(x) =Y g, Hp(x). with [[g[3, =Y g2p! < +oc.
r=1 p=1

Let Ag betheset{p: p =2and g, # 0}.
Let Z be a random process on the interval [0, 1]. For an integer n = 2, let
nH
A, Z(0) = —308,Z(i), i=0,1,...,n—2,
02K

where §, is given by
aZ)=[Z(5F)-2Z(5H) +Z(3)].

and where

Also, if Y, is a random variable defined on the subset {0, 1,...,n — 2}, we define
the random variable Y,* on the interval [0, 1] by
_ N i il
Yn*(lxl) = Yn(l) ifue [m, m[
Thus the process A,by is a centered stationary Gaussian process with variance 1.

Its covariance function is given by py (i — j) fori, j = 0,1,...,n — 2, where for
any real number x, pg (x) is

P (x) = [=6 [xP + 4 [x+ 1124

a7

x2S =2 4 |x—1|2H].
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In the following, cr; stands for the following summation:

+o00 +o00
z( 5 pzm).
p=1

r=—00

Note that since 3" __ oy (r) = 0, then

+o00 +o00
z( 5 pzm)-
p=2

r=—00
More generally, for x € R and b, ¢ € R*, we define

1
2(4—22H)
F2x + el —d|x +c—bPT +2|x + ¢ =267 — |x + 2¢

ppe(x) = (he)™ [— X7 42 |x —bPPH — |x — 257

+2|x 4+ 2¢ = b — |x 4+ 2¢ —2b 7]

Peb(—x)
and note that p; 1 (x) = pgy(x). With this definition, we get
E[Apnbp (1) Acnbr ()] = ppe(ci —bj).
For k, £ € N*, we also define
| k=1 +oo
pe(k, 0) = W Z:lg;p! (Z; ; pp o (kr + Ks)) .
p= §=0 r=—00
Since pp.c(x) = ppje.1(x/c) it follows that pg (k, k) = o7.

For all m € N*, for all k = (ki,....kn) € (N*)" and for all d =
(dy,....dy) € R™, we denote by O-;,m (k. d) the following sum:

o,k d) =" "d;d; pg(ki . kj).

i=1j=1

Forn e N*andt € [0, 1], let

lnt]—2
1
Senlt) = Wi > g(Aubu (i), (2.4)
i=0
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with S, ,(t) = 0if [nt] < 1 and where | x| denotes the integer part of the positive
real number x.

Remark 2.8. We chose to work with the double increment operator rather than the
simple increment operator.

In fact, one of our goals is to study the asymptotic behavior of functionals of the
fBm increments in order to estimate its Hurst parameter H. If we use the simple
ones and if the Hermite rank of the functional is two, we get to distinguish between
three cases,0 < H <3, H =3and 3 < H < 1.

It does not really make sense to tackle the estimation problem of H with such
distinctions. When H < % we get a Gaussian limit and if H > %, the convergence
takes place in the second order Wiener chaos, and more generally in the £th order
Wiener chaos (£ = 1), £ being the Hermite rank of the functional. Finally, if H = %,
a Gaussian limit is obtained through a convenient normalization.

We can refer for this case study to one of the first papers on the subject Guyon and
Leén (1989) and Corcuera et al. (2006). This case study has also been considered by
Berzin and Leén (2005). A classification of the possible limits is provided for the
different values of H according to the Hermite rank. These results are obtained
in the more general context of functionals of the regularization derivative, the
regularization being obtained by the convolution of the fBm with a kernel ¢. In the
particular case where ¢ = 1[_;, o], this derivative is just the first order increments
of the fBm.

The idea of working with higher order differences to diminish the long memory
effect is not new. Istas and Lang (1997) is one of the pioneer works on the subject;
it uses the filter notion.

Leén and Ludefia (2007) is one of the first papers working with the double
increments. A Gaussian limit is obtained for all the H ranks, 0 < H < 1.

Note that in Berzin and Ledn (2005) previously cited, this latter convergence is
obtained for the second derivative of the smoothed fBm. The particular case based
on the kernel ¢ = 1[_; o] * [, 1] leads to the double increments of the fBm.
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Chapter 3
Estimation of the Parameters

3.1 Introduction

The first theorem of this chapter establishes the almost sure convergence for the
k-power second order increments of the fBm toward the k-th moment of a standard
normal distribution. Then we give the rate of this convergence in law. Moreover,
for a general functional variation of the fBm, see (2.4), page 40, including the
absolute k-power variation, the result remains true. This allows us to propose several
estimators of the Hurst parameter H of a fBm using classical linear regression. The
first one, I:Ik, uses the function |x|k, and the second one, I:Ilog, uses the Napierian
logarithm and both lead to unbiased consistent estimators.

A Central Limit Theorem (CLT) is also obtained for both estimators. These
estimators are linked in the sense that if k(n) is a sequence of positive numbers
converging to zero with n, and if I:Ik(,,) denotes the corresponding estimator of the
H parameter, we establish that the asymptotic behaviors of I:Ik(n) and of I:Ilog are
the same.

The same techniques can be used to provide simultaneous estimators of
parameter H and of the local variance o, in four particular simple models all
driven by a fBm. As before, a regression model can be written and least squares
estimators of H and of o are defined. These estimators are built on the second order
increments of the stochastic process solution of the proposed model. We prove their
consistency and a CLT is given for both of them.

Furthermore, we consider testing the hypothesis 0, = o against an alternative in
the four previous models.

Finally, we propose functional estimation of the local variance of general
stochastic differential equation (SDE). This estimation is based on the observation
of the second order increments of the solution of such an SDE. We highlight that to
show the convergence in these models, it is sufficient to prove it in the special case
where the solution process is the fBm.
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44 3 Estimation of the Parameters
3.2 Estimation of the Hurst Parameter

We propose several estimators of the H parameter for fBm, through the observation
of one trajectory, on a regular grid of time points.

We study two estimators, say Hy and I:IIOg, respectively built with the k-power
and the Napierian logarithm of the modulus of the second order increments of fBm.
Working with the order two increments allows the estimation of H over all its range,
10, 1[, and provides consistent and asymptotic normal estimators.

We also give the explicit link between I:Ik(,,) and I:IIOg, k(n) being a sequence of
positive numbers converging to zero when n goes to infinity. We state properties and
a CLT for the estimator I:Ik(n).

3.2.1 Almost Sure Convergence for the Second Order
Increments

We present the almost sure convergence in law for the second order increments of
the fBm, seen as a variable on ([0, 1], A), where A is the Lebesgue measure.

Theorem 3.1. Forall 0 < H < 1, almost surely for all k € N*,

1 n—2 o .
—n_I;(A,,bH(z)) et E[N]F.

Corollary 3.2 is a direct consequence of Theorem 3.1.

Corollary 3.2. Forall0 < H < 1, almost surely

(Avbp)* =25 N.
n—>oo

The above convergence is in law, the random variable (A,by )™ is seen as a variable
on ([0, 1], A) where A is the Lebesgue measure.

From Theorem 3.1 and Corollary 3.2, we deduce Corollary 3.3.
Corollary 3.3. Forall0 < H < 1, almost surely for all k € RT*,

1 n—2 o .
— ; |Anbr () —> E[N[].
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3.2.2 Convergence in Law of the Absolute k-Power Variation

We establish out the finite-dimensional convergence in law for a g functional
variation of the fBm, function g being centered and such that g € L?(¢(x)dx).
The obtained limit is a cylindrical centered Gaussian process.

Theorem 3.4. Forall0 < H <1,

Sen(l) —s X,
n—oo

where X is a cylindrical centered Gaussian process with covariance pg(k,f) =
E[X(k)X(0)], k, € € N*.
The above convergence is in the sense of finite-dimensional distributions.

Remark 3.5. If g has a finite expansion with respect to the Hermite basis, then

E[Sg,,,(l)]4 < C, for n large enough.

Remark 3.6. S, yn+-(1) L ox , where X is a cylindrical centered Gaussian
; n—od

process with covariance p, (k, £) defined by

+o00 +00
pe(k.l) = 2<"—“/22g§,p!( > pf,zu(r))

p=l r=—00
when k < £, and then X is a stationary process.
Remark 3.7. 1f k € N* is fixed, Sgn(1) ——> 0, N.
n—o0

The two following lemmas can be used to show that pg(k,{) is a covariance
function and are proved in Sect. 5.2.2.

Lemma 3.8. Forallm € N*, forall k € (N*)" and for alld € R™,

n—>-+o00

m 2
o2, (k.d)=lim E[Zdi Sg,k,.n(l)] ,

i=1

and then aé’m (k,d) = 0.
Lemma 3.9. Forallk,{ € N*, pg(k,£) = pg(£, k).
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3.2.3 Estimators of the Hurst Parameter

We chose to work with the centered functions g and gi,e, respectively defined by
gk (x) = |x|* —E[|N|*] and by giee(x) = log(|x|) — E[log(|N )], in the definition
of functional variation of the fBm. This choice allows us, via a regression model, to
propose two estimators of the parameter H, say Hj and I:IIOg. Their properties are
studied here.

A third estimator of H, say ﬁk(n), links the two previous estimators and its
properties are also studied; more, a CLT is given.

Forn € N* — {1} and for k € R™*, let us define

1 n—2
M) = — > 16:b ()] 3.1)
i=0

Thanks to Corollary 3.3,

k

HH a.s.
(—) M) 5 1,
O2H ”N”k n—-+00
Then,
KH log(n) — k log(oa [|N [l¢) + log(M(n)) 5 0.
Thus

log(My(n)) = —kH log(n) + k log(oam [|[N;) + 04s.(1). 3.2)

Letn;, = rin, r; € N*,i = 1,...,£. Equation (3.2) can be written as a classical

linear regression equation:
Yi ZGX,‘ +kbk+g,', i = 1,...,€,

where a = H and fori = 1,...,¢, Y; = log(Mi(n;)), X; = —klog(n;) and
by = log(oan | Nl;)- R
Hence, the least squares estimator Hy of H is given by

. 1 o
H, = - ZZ’ log(Mj(n;)), 3-3)

i=1

where fori =1,...,¢,

¢
Ji 1

= —p— and y; =log(r) — - Y log(ri). (34)
Yzt Vi b=
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Note the following property

l l
D> yi=0and Y zy =1 (3.5)
i=1 i=1

Corollary 3.10 follows from Theorem 3.4.
Corollary 3.10. Fork € Rt*,

(1) H, is an asymptotically unbiased strongly consistent estimator of H.
(2) Furthermore,

«/E(I-Alk - H) n (0,0;04 (r% (z/«/F)))

n—o0

where
gr(x) = | Ikk 1= io:gZP,kHZp(x)y (3.6)
E[[N "] e
with
1=
820k = ]1 (k —2i). (3.7)

Remark 3.11. As in Berzin and Le6n (2007) and Ceeurjolly (2001), for k = 2, the
variance Ug,%k,z (r.+ (z/+/r)) is minimal. This fact is shown in Sect. 5.2.3, after the
proof of Corollary 3.10.

Remark 3.12. For k=2andr; =27 fori = 1,...,{, the asymptotic variance
of \/n Hy is

L

6 \° 1 o .
(10g(2)) 22 —1)> 2 Z 277 Q2i-(l+1)2j -+ 1)) x

i<jiij=1
PN PSGEDIMCEICINEDS pi,m).
r=Too i=1 oo

Now, let us define

1

n—2
Miog(n) = —— > Jlog (18:bn (1)) - (3.8)
i=0
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Lemma 3.8 following Theorem 3.4, also entails that

n—2
. P
— leog (Anbir (1)) —— 0,

as well as it converges to 0 in L?(£2), the function g is defined by (3.11).
Thus

1 n—2 ‘ P
—— > " log (|Aubn (i)]) —— Ellog(IN )],
n—1 i—o n—00
ie.
Miog(n) = —H log(n) + log(02sr) + Ellog|N|] + 0,(1). (3.9
Proceeding as before the least squares estimator I:Ilog of H is given by
¢
Higg = = zi Miog(n;). (3.10)
i=1

Theorem 3.4 leads the following corollary.

Corollary 3.13. (1) ﬁlog is an unbiased weakly consistent estimator of H.
(2) Furthermore,

~ Law Z
Vi (g = H) =1 (0, o2 0 (r, 7)) :

where
o0
g0s(x) = log(x]) — Elog(IND] = 3 gapiog Hop(x),  (3.11)
p=1
with
(= (3.12)
§2rlee = 5 ap — DI ‘

Remark 3.14. As shownin Sect. 5.2.3 after the proof of Corollary 3.13, the variance
2

P (r, %) is always greater than (r;zj (r, % (%)) and 054’[ (r, % (%))
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Remark 3.15. In the case where r; = 2171 fori = 1,...,£, the asymptotic
variance of \/n Hg is

3 \2
(log(z)) gzwz Z 27—+ 1) (2 =L+ 1) x
i<jyi,j=1

2 +oo 4
Z( ! ( 1),,) 3 P )+ Y 27 @i — (£ + 1) x

r=—00 i=1
2 +oo
Z( p)! ( 1),,) Z P (r)

We can link the two estimators I:Ik and I:IIOg. For this, let k(n) be a sequence

of positive numbers converging to zero as n tends to infinity and let ﬁk(n) be the
corresponding estimator, say

{

A log(Micn;)(n))
Hk(n) = - ZZ' T
i=1 !

1 n—2

where, Mk(,,)(n) = m Z |5an(i)|k(n) .
i=0

(3.13)

We have the following corollary.

Corollary 3.16. If k(n) = o(1/./n) then ﬁk(n) is an asymptotically unbiased
weakly consistent estimator of H and the asymptotic behaviors of \/n (I;V k) — H )

and \/n (ﬁlog — H) are the same.

3.3 Estimation of the Local Variance

In this section, we give two kinds of results concerning the estimation of the local
variance 0.

First we provide simultaneous estimators of parameters H and o in four simple
SDE driven by a fBm. These estimators come from a regression model and are built
on the second order increments of the stochastic process solution of the SDE. We
study their properties and a CLT is obtained.

The estimation procedure leads to a loss of convergence rate for the CLT for
the estimator of function o. However, if H is known, an other estimator of o
is proposed, giving the actual convergence rate for the CLT. Then we propose
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an hypothesis test on ¢ in the context of the four previous models. Finally, we
propose functional estimation of the function o in a general pseudo-diffusion driven
by a fBm.

3.3.1 Simultaneous Estimation of the Hurst Parameter
and of the Local Variance

We propose simultaneous estimators of the parameter H and of the local variance
o for solutions of the SDE:

dX(t) =0 (X())dby (t) + n(X(2))dt.

Four cases are considered: depending on the form of functions o and u: o(x) =
o orox and pu(x) = por pux.

Using results of Sects. 3.2.1 and 3.2.2, we obtain consistent estimators of H and
o. Observing the second order increments of X at several scales of the parameter
time, we obtain regression models that give least squares estimators of H and 0. A
CLT is stated for both of them.

As a bonus, if H is supposed to be known, we propose an other estimator of
H based on the absolute k-power of the second order increments of X. A CLT is
also stated, the rate of convergence being better than in the case where we perform
simultaneous estimation.

We would like to provide simultaneous estimators of H and o in the four
following models. For H > % andt =0

dX(t) = o dby (t) + pdt, (3.14)
dX() = odby(t) + nX(t)dt, (3.15)
dX () =oX()dby(t) + uX () de, (3.16)
dX(t) = oX(t)dby (t) + p dt, (3.17)

with X(0) = c.
The solutions of these equations are respectively:

(B.14):  X(@) =oby(t) + ut +c,

(3.15):  X(@) = oby(t) + exp(ut) [a,u (/ by (s)exp(—us) ds) + c:| ,
0

(3.16):  X(t) = cexp(ut + oby (1)),

(B.17):  X(t) = exp(oby (1)) (c +un /Ot exp(—aby(s)) ds) .
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For (3.14), see Lin (1995) and for (3.16), as detailed in Sect.2.2.1 by (2.2), see
Cutland et al. (1995) and Klingenhofer and Zihle (1999).

We consider the problem of estimating simultaneously H and o > 0. Suppose
X is observed on a grid {%,i = 0,1,...,n} so that the increments 8, X (i), for
i =0,1,...,n—2, can be computed.

For models (3.16) and (3.17) we will suppose that ¢ # 0. For model (3.17) we
will make the additional hypothesis that © and ¢ have the same sign or that p is
eventually null.

From now on, we shall note for eachn € N* — {1} andi € {0,1,...,n — 2},

A, X(i), for the first two models

[X(G) = X 3.18
@) w for the other two. ( :
X

In a similar way, we define y, X (i) substituting §, to A, in the last expression.
For a real number k > 1, let us denote

1 1 n—2
AXn) = —— [ — N nLx@)k) -1. 3.19
0 = e (n_1 §| O] ) (3.19)

Corollary 3.3 allows us to state the following theorem.

Theorem 3.17. (1) Foreachrealk = 1,
AX (n) = 0.
n—oo

(2) Furthermore

-1
AN = Spa () + 00 ()

where the function gy is defined by (3.6).

At this step, we can propose estimators of H and o, by observing y,, X (i) at several

scales of the parameter n, i.e. n; = r;n, r; € N*, i = 1,...,£. In this aim, let us
define
1 n—2
MX(n) = — LX) 3.20
&) n_lgw @) (3.20)

Using assertion (1) of Theorem 3.17, we get

nt k

a.s.

) MEm) 5,
oo |IN |y n—+00
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from which we obtain
log(M{¥ (1)) = —k H log(n) + k log(0 0217 [N }) + 00, (D). (3:21)
The following regression model can be written, for each scale n;:
Yi=aXi+kb+&,i=1,... ¢,

where a = H, by = log(c oo ||N|;) andfori =1,...,£,Y; = log(MkX(n,-)),

X; = —k log(n;). Hence, the least squares estimators I:Ik of H and ék of by are
defined as
1 ‘
Hye = gzi log(M; (n7)), (3.22)
and

N Y L1
B, = E (Z glog(MkX(n,-))) + H (Z ;105’(’11‘)) , (3.23)

where z; are defined by (3.4).
Finally, we propose as an estimator of o

. exp(By)

6 = . (3.24)
oy, INT;

Theorems 3.17 and 3.4 imply the following results for any H in the interval | %, 1[.
Theorem 3.18. Foreachrealk > 1,
(1) H isa strongly consistent estimator of H and

i (- 1) 2 (o,a;kj (% (z/ﬁ))),

n

where the function gy is defined by (3.6) and the coefficients g, i by (3.7).
(2) 6 is a weakly consistent estimator of o and

log(n) 6k —0) nlj:o n (O’ otog o (r g (z/\/’T)))
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Remark 3.19. As in Corollary 3.10, the asymptotic variance ‘7;,(.[ (r, % (z/ Jr )) is
minimal for k = 2 and then the best estimators for H and o in the sense of minimal
variance are obtained for k = 2.

Theorem 3.17 also provides estimators for 0 when H is known. Indeed, for each
real k = 1 we set,

n—1 1/k
(& Z i)
I,

O =

where I, X is given by (3.18).
Theorem 3.20 follows from Theorem 3.17 and Remark 3.7.

Theorem 3.20. For each real k = 1, if H is known, % < H < 1, then

(1) oy is a strongly consistent estimator of o and

2)
- Law
Vi@ =) = (0,507

where the function gy is defined by (3.6).

Remark 3.21. Note that the rate of convergence in assertion (2) is /7 instead of
A/1n/log(n) as it is in assertion (2) in Theorem 3.18. This is due to the fact that here
H is known.

Remark 3.22. The variance aék / k? is minimal for k = 2 and then the best estimator
for ¢ in the sense of minimal variance is obtained for k = 2.
This fact will be shown in Sect. 5.3.1 after the proof of Theorem 3.20.

3.3.2 Hpypothesis Testing

Tests of hypothesis on ¢ are proposed, for the four models proposed in Sect. 3.3.1,
where parameter H is supposed to be known.

We test the hypothesis 0, = ¢ againsto, = 0 + \/L;(d + F(4/n)), where d is
positive constant and F a positive function tending to zero with n. An evaluation of
the asymptotic power of the test is made.

Let us consider the four stochastic differential equations, for known H, H > %,
t =>0andn € N*,

dX,(t) = o dby (t) + pn dt, (3.25)

dX, (1) = 0, dbp(t) + pn Xu (1) dt,
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dX, () = 0, X, (2) dby (t) + pun Xa(2) dt, (3.26)
dX,(t) = 0, X, (t) dby (t) + p, dt, (3.27)

with X, (0) = c.
We consider testing the hypothesis

Hy:0, =0,

against the alternatives

Hn:(rn:o—i-%(d—i-F(ﬁ)),

where o, d are positive constants, F is a positive function such that F(/n)
converges to 0 as n — oo and p, is supposed bounded, possibly except for model
(3.25). For models (3.26) and (3.27) we will suppose that ¢ # 0. For model (3.27)
we will make the additional hypothesis that y,, and ¢ have the same sign or that p,
is eventually null.

The reason why we must choose this sequence of alternatives H,,, is that we are
interested in the asymptotic behavior of the test. If the alternative is fixed, the two
hypotheses are well separated. Then at the end when n goes to infinity, our test
always chooses one of the two hypotheses. However for a sequence of alternatives
tending to the hypothesis Hj, with a rate of convergence similar to the one of the
CLT, it would be more difficult to choose. A good result to discriminate between
one of the hypotheses can be understood as a proof of the quality of the test.

By Sect.3.3.1 for each model there exists an unique solution to the stochastic
equation, say X;,. We are interested in observing the following functionals

[\f DFX (,)|_a}

where I}, X, is defined by (3.18), where we replaced X by X,,.
Using Corollary 3.3 and Remark 3.7, we can prove the following theorem.

Theorem 3.23. Suppose that H is known with 1/2 < H < 1, then
Law
F, —— o0, 0N +d,
n—>oo

where the function g is defined by (3.6).

Remark 3.24. There is an asymptotic bias d, and the larger is the bias the easier is
discriminating between the two hypotheses.

Remark 3.25. X, plays the role of X, in Sect.3.3.1, with 0,, = 0 and pu,, = p.



3.3 Estimation of the Local Variance 55
3.3.3 Functional Estimation of the Local Variance

We propose functional estimation of the local variance o in the following model:
dX() = o(X(@))dby(t) + u(X(¢))dt. Some regularity conditions need to be
satisfied by the functions o and u.

At this state we give an outline of the proof of the results. Indeed we do the
remark that when p = 0, the solution for the previous SDE can be expressed as
X(t) = K(bu(t)), where K is solution of an ordinary differential equation (ODE).

Then we explain how in that case results concerning functional estimation for
o can be held by considering the particular case where the solution process of the
SDE is a fBm. In the case where the function p is not necessarily null, we use the
Girsanov’s theorem.

We consider the following equation with respect to by

t

X(t)=c+ /0 o (X (u)) dby (u) + /O (X () du, (3.28)

forz = 0, H > 1/2 and positive 0. We want to estimate o.
In this aim, we consider the following assumptions on the coefficients p and o

(H1) - o is a Lipchitz function on R of class C', bounded and bounded away
from zero.
— There exists some constant n, 1/H — 1 < n < 1, and for every N > 0, there
exists My > 0 such that

l6(x) =6 <My |x—y[", Vx|, Iy <N

(H2) - pis C', bounded and Lipchitz function on R.

Remark 3.26. Hypotheses (H1) and (H2) require that o is bounded and bounded
away from zero and that y is C' and bounded. These two last assumptions can
be relaxed, ensuring that there exists an unique process solution of the stochastic
equation (3.28).

Furthermore, X will almost-surely have (H — §)-Holder continuous trajectories
on all compact set included in R* (see Nualart and Riscanu 2002).

Using similar arguments to the ones of Theorem 3.1 we can prove the following
theorem.

Theorem 3.27. Let % < H < 1, under hypotheses (HIl) and (H2), almost surely
for all continuous function h and for all real k = 1 then,

A 1
—Z Oy 12200 |XN(|’)]' e | ) et
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Remark 3.28. 1f . = 0, hypotheses (H1) and (H2) can be replaced by o € C'.

Moreover, we can also obtain the following theorem giving the convergence rate in
the last theorem.

Theorem 3.29. Let us suppose that i< H<1,heC?*o0 eC? o is bounded
and bounded away from zero and sup{|a(x)| |h(x)|} P(|x|), where P is a
polynomial, then under hypotheses (HI) and (H2) and for all real k = 1,

e

AXOF [
Z KGR - [ hx@) ) d]

2 o / RX (W) [0 (X @) W (),

where gy is defined by (3.6) and W is a standard Brownian motion independent
OfbH.

Remark 3.30. If p = 0, hypotheses (H1) and (H2) can be relaxed and convergence
becomes stable convergence.

We give here an outline of the proofs of Theorems 3.27 and 3.29 in order to state
two other quite interesting theorems.

On the one hand, we consider the case where © = 0 and prove Remarks 3.28
and 3.30 in this case.

On the other hand, we consider the case where (1 is not necessarily null. We then
prove Theorems 3.27 and 3.29 using Remarks 3.28 and 3.30 and Girsanov’s theorem
given in Decreusefond and Ustiinel (1999).

Indeed, in the case where u = O ando € C 1 as seen in the introduction, X is
solution of ODE (2.2). More precisely, since by has zero quadratic variation when
H > %, Lin (1995) proved that the solution for the SDE (3.28) can be expressed as
X(t) = K(by (1)), fort = 0, where K(¢) is the solution of the ODE

K(t) = o(K(t)); K(0)=c, (3.29)

see also (2.2). We then need the two following lemmas for which proofs are provided
in Chap. 6 (pages 110 and 111).

Lemma 3.31. In model (3.28), if H > %, uw = 0and o € C!, then fori =
0,1,...,n -2,

AuX (i) = 0(X(£) Aubp (i) + an(i).
with

lan ()] < C(w) (%)H_S, forany § > 0.
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This lemma allows us to enunciate the following one.

Lemma 3.32. In model (3.28), let H > %, u=0ando € C'. Then almost surely,
for all continuous function h and for all real k = 1, we have

n—2

n_il SR E) A XOF — o (XEDI 1Ak} = 0 ().
i=0

Thus if we choose f = h o K - (o o K)¥ in following theorem, that will be enough
to obtain Remark 3.28.

Theorem 3.33. Let 0 < H < 1, almost surely for all continuous function f and
for all real k > 0O then,

1 22 C A s
m;f(bH(;)) EINF] oo

1
/0 F(bu ) du.

Now let us remark that almost surely for all C ! function f and for all H > %,
one has

1 1 n—2 .
( /0 Jn ) du — —— ; f(bH(’;») = o(Z).

Thus using once again Lemma 3.32 and last equality, Remark 3.30 will ensue from
the following theorem.

Theorem 3.34. Let us suppose % <H<1, feC?and ‘f(x)} < P(|x]|), where
P is a polynomial, then for all real k > 0,

n—2
1 4
— Y f(bu (L)) g (Anbu (i)
a i=0 !
stably converges as n goes to infinity toward

l A
ng/o S(bu(uw) dW (u).

Here W is still a standard Brownian motion independent of by and gy is defined
by (3.6).

Remark 3.35. Let g be a general function with four moments with respect to the
standard Gaussian measure, even, or odd, with Hermite rank greater than or equal to
one and such that Ag # @ (for the definition of A, see Sect.2.3). It can be proved
that, under the same hypotheses on H and f,
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n—2

% > Fbu (L)) g(Aubi (i)
i=0

stably converges as n goes to infinity toward o, fol f(br(u) dW(u). Furthermore
4
if f € C*and ‘ f (x)‘ < P(]x]), this result is still valid under the weaker hypothesis

that H > % and under the supplementary condition, in case where g is odd, that g
has Hermite rank greater than or equal to three.

References

Berzin, C., & Ledn, J. (2007). Estimating the Hurst parameter. Statistical Inference for Stochastic
Processes, 10(1), 49-73.
Ceeurjolly, J.-FE. (2001). Estimating the parameters of a fractional Brownian motion by discrete
variations of its sample paths. Statistical Inference for Stochastic Processes, 4(2), 199-227.
Cutland, N. J., Kopp, P. E., & Willinger, W. (1995). Stock price returns and the Joseph effect:
A fractional version of the Black-Scholes model. In Seminar on Stochastic analysis, random
fields and applications, Ascona, 1993 (Volume 36 of Progress in probability, pp. 327-351).
Basel: Birkhduser.

Decreusefond, L., & Ustiinel, A. S. (1999). Stochastic analysis of the fractional Brownian motion.
Potential Analysis, 10(2), 177-214.

Klingenhofer, F., & Zihle, M. (1999). Ordinary differential equations with fractal noise.
Proceedings of the American Mathematical Society, 127(4), 1021-1028.

Lin, S. J. (1995). Stochastic analysis of fractional Brownian motions. Stochastics and Stochastics
Reports, 55(1-2), 121-140.

Nualart, D., & Ragcanu, A. (2002). Differential equations driven by fractional Brownian motion.
Collectanea Mathematica, 53(1), 55-81.



Chapter 4
Simulation Algorithms and Simulation Studies

4.1 Introduction

In this chapter, we present the basic ideas for the simulation of a stationary Gaussian
process from which we deduce the simulation of a fBm and the simulation of
processes driven by a fBm.

Our approach is based on the Durbin-Levinson’s algorithm. Since the process
formed by the first order increments of a fBm is a stationary Gaussian one, we
first simulate the increments of the process and then, by a simple “integration”, we
obtain a trajectory of the fBm. For models defined by differential equations, first
an observation of the fBm is generated and then, it is transformed according to
differential equation.

Simulating these processes, we can explore the statistical properties of the
estimators defined in the previous chapter from an empirical point of view. We study
the distribution of the estimators of H and of o. Special attention is devoted to the
construction of a confidence interval for H. Some simulation results concern the
estimation of the parameters of a pure fBm, some others are for the parameters of
models that are excited by a fBm.

In the first two simulation studies, the uniform generator is based on three linear
congruential generators (cf. Press et al. 2007, p. 196). Random normal deviates are
obtained by Box and Muller’s method (see Knuth 1981, p. 104).

In the other simulations studies, uniform deviates are obtained by a linear
congruential generator given in Langlands et al. (1994, p. 36) and for the normal
deviates, we use Algorithm M described in Knuth (1981). It is a very fast generator.
Pascal programs are given in Chap. 8.
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4.2 Computing Environment

The computation resources required for the simulation studies are quite important.
As we will see in Sect.4.5.1.1, the simulation studies are supported by a design of
experiment in which 10,000 trajectories are simulated. An important time machine
is needed to achieve this goal. We decided to use compiled code to perform
these computations. The Pascal language was retained. We wrote the programs in
the Apple’s Macintosh environment with the Mac OS X operating system. Two
compilers were used: the GNU Pascal compiler (see http://www.gnu-pascal.de/gpc/
h-index.html) and the Free Pascal compiler (see http://www.freepascal.org/).

4.3 Random Generators

For the first two simulation studies, concerning the uniform generator, the reader is
referred to Press et al. (2007). For the third simulation study, in conjunction with the
following linear congruential generator:

Xi41 = (ax; +¢) mod m
with
a = 142412240584757 = (4 x 35603060146 189) + 1, m =2%¥, ¢ =11,

(see Langlands et al. 1994, p. 36), we use Marsaglia’s algorithm for the normal
deviates.

This algorithm is very fast, easily implemented and described in details in
Knuth (1981, p. 122). A Pascal implementation is given in Chap. 8, page 160.
Implementation of the congruential generator is not straightforward: clever pro-
gramming is required to avoid overflows. Again, see Chap. 8, page 160 for a Pascal
implementation.

There are good reasons to prefer Marsaglia’s algorithm to Box and Muller’s
method. In the following, we will shortly describe the approach. To increase the
procedure performance, some programming ingenuity was also brought by Knuth
who asserts that the final version of this algorithm “is a very pretty example of
mathematical theory intimately interwoven with programming ingenuity—a fine
illustration of the art of computer programming!”

Marsaglia’s algorithm is primarily aimed at generating X, the absolute value of
a standard Gaussian variable with distribution function F' given by (4.1).

2 X
F(x) = \/j/ e A, x> 0. 4.1)
T Jo
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Fig. 4.1 Density function of X broken into 31 parts. The area of each part is the probability p;
of selecting the associated distribution. Knuth, Donald K, The Art of Computer Programming,
Volume 2: Seminumerical Algorithms, 2nd Edition, (©)1981. Reprinted by permission of Pearson
Education, Inc., Upper Saddle River, NJ

fis

Fig. 4.2 Wedge-shaped densities (fis and f>;) and the tail of the distribution (f3;). Knuth,
Donald K, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 2nd Edition,
(©1981. Reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ

A negative sign is then given to this absolute value with probability % to get a normal
deviate. The distribution function F can be seen as a mixture of several distributions:

31

F(x) =) piFi(x)

i=1

where Fi,..., F3 are appropriate distributions and py, ..., p3; are probabilities.
More precisely, to generate X, first we chose F; with probability p; and then we
generate a random deviate according to this distribution.

The density of X is represented in Fig. 4.1. There are three types of distributions:
rectangular (f1, ..., fi5), wedge-shaped ( fis, - - - , f30) and the tail ( f3;). Magnified
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views of these different types are presented in Fig. 4.2. Obviously, rectangular parts
correspond to uniform variables. We easily see that

2 o .
pj= ,/Ee R =1,...,15

and also note that 2;5:1 pj ~ 0.92. It shows that 92 % of the normal deviates are
generated using an uniform generator that does not require important computing
resources.

For nearly linear densities like fig or f», a very efficient algorithm, based
on a rejection approach, has been designed, see Algorithm L in Knuth (1981,
p. 121). More computer time is required only when density f3; is chosen. But this
distribution needs to be treated with probability ~ 0.00270.

Based on Walker’s alias method, Knuth (1981, exercise 7, p. 134), the random
choice of the distribution f;, j = 1,...,31, is cleverly done. In fact, the choice of
Jfj among { fi,..., f31} corresponds to a random experiment, whose outcome is C
and that can be described in the following way.

Let 2 = {fi,..., f31}. Let U be an uniform variate and define C as

fi, f0<U < py;

S, ifpr <U < pr+ pa
c=1 (4.2)

S, ifpr+pr+--+po<U<I;

whereand p; + po + -+ p31 = 1.

As mentioned by Knuth (1981, page 115), there is a best possible way to do the
comparisons of U against the various values of p; + p» 4+ --- + p;, as implied in
(4.2) and known as Walker’s alias method (see Kronmal and Peterson 1979).

We do recommend the reading of Knuth (1981, p. 119-123).

4.4 Simulation of a Stationary Gaussian Process
and of the fBm

Based on the ideas of the Durbin-Levinson algorithm, we tackle the problem of
simulating a stationary Gaussian process. Since the increments of a fBm is a
stationary Gaussian process, we simulate a trajectory of the increments and by a
simple “integration”, we obtain a trajectory of the fBm.

First, we considered the standardized process of the simple differences of a fBm:

(1) N nt! i i—1
Aby (i) = - (bu(L) —bu(=1)),
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fori = 1,2,...,n. This sequence is a centered stationary Gaussian vector. The
covariance function is denoted by yy (i — j), fori,j = 1,2,...,n,and for x € R,

1
yi () = 3 [l 1P =2 x4 e — 1]

Our primary aim is to simulate (Y, ..., Yn)T a vector with a covariance structure

The idea consists in writing

Yir1 = GpaYe + -+ dra Y1 + ar4

= Yit+1 + ar+1

where coefficients ¢ ;, j = 1,...,k, are chosen at each step k to minimize:

E[(Yi41 — Ye+1)’] = Elal,,].

The covariance matrix of Y, = (Y1,..., Yk)T is a Teeplitz symmetrical matrix
given by I':

v (0) yu (1) yu(2) ...yu(k—=1)
yu (1) yu (0) yu(l) ...yu(k—=2)
r,= YH(2) yu(1) yu(©) ... yn(k—3)

vk =1) yu(k =2) yu(k —3) ... yu(0)

The Durbin-Levinson algorithm has been originally designed to recursively predict
the value of time series at time (v + 1) given the values at times 1, ..., v. An easy
adaptation of this algorithm can be done to simulate observations of a fBm on a
regular grid on the interval [0, 1].

The Durbin-Levinson algorithm allows to find the ¢ ;, j = 1, ...,k coefficients
in a recurrent way. A description of the algorithm follows:

Initialization. Fork =1, let
vo = yun(0); ¢

Recurrence. Fork =2,...,n

_yua(l),

= m, v = vp(l —¢121)-

k—1

1
¢k,k:m yu(k) =Y i1 jvuk —j) | .

j=1
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D1 Pr—1.1 Pr—1,k—1
: = : — Pk :
O k-1 Dr—1k—1 dr—1.1
vk = vt [l — 4]

To simulate n successive observations of the process, we suggest to use the
following recurrence:

Yi =ay;
k
Yir1 = ak+1 + Z¢k,;Yk+1—j, k=1,...,n—-1
j=l1
where {ay }x=1.., is a sequence of independent variables 71(0; vi—;), k = 1,...,n.
We assert that for all n, vector (Y7, ..., Yn)T is 11(0,,; I' ) (see Brockwell and Davis

1991).
Finally, to obtain a simulated trajectory of the fBm process, we let

Zy=Zi1 + Y, ifk>0,

V2H . . .
and bH(K) = —Z, 0 < k < n. In fact, we simulate the simple increment
n l’lH

process. Some trajectories are exhibited in Fig. 4.3.

For the models defined by a differential equation as in Sect. 3.3.1, first a trajectory
of the fBm is generated and then, it is transformed according to differential equation.
See Fig. 4.4.

4.5 Simulation Studies

In this section, we report three simulation studies. First, we describe the design of
experiment. Then, referring to tables and figures of Chap.7, a discussion of the
results follows.

In the first simulation study, we empirically assess the estimation qualities of the
different proposed estimators of H. A paragraph is devoted to the construction of
a confidence interval. We compare the confidence interval based on the empirical
distribution fractiles with the confidence interval based on a normal approximation.

In the second simulation study, we are interested in the joint estimation of H and
o for models defined in terms of a differential equation (see (3.14)—(3.17)).

In the third study, we want to assess the power of a test on 0. As in the two
previous studies, discussion is based on tables and graphics presented in Chap. 7.
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Fig. 4.3 FBm observed on a grid of 1/2,048-th on the interval [0, 1]: (a) with an Hurst parameter
equal to 0.25; (b) with an Hurst parameter equal to 0.75; (c¢) with an Hurst parameter equal to 0.9

4.5.1 Estimators of the Hurst Parameter and the Local
Variance Based on the Observation of One Trajectory

4.5.1.1 Design of the Experiment

In order to assess the quality of the estimation procedures, we used some reference
values for H:

H e # ={0.05, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.95}.
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Fig. 4.4 Processes driven by a fBm using H = % observed on a grid of 1/2,048-th on the interval
[0, 1] (a) Model 1; (b) Model 2; (¢) Model 3; (d) Model 4 with u = 2,0 =2andc =1
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We computed the estimators I:Ik, for k = 1,2, 3 and 4; the estimator I;ﬁ(,g was also
computed. The value of £ appearing in (3.3) and (3.10) was setto £ = 2, 3,4 and 5.

Simulation programs are written in Pascal and compiled using GNU Pascal 3.4.5
compiler under Mac OS X, 10.4.8.

For each value of H € #, 10,000 trajectories were simulated. To all these
trajectories, we applied the estimation procedure for the values of k and £ previously
given. The trajectories were observed at a higher resolution of 1/2,048-th.

Let us explain with some details the computation done for the case where { = 2.
We got five subcases; estimation can be done for different choices of n; and n, as
used in Eq. (3.3): these are (64, 128), (128, 256) ... (1,024, 2,048). Note that these
n;’s are powers of 2. So, the number of points used in My (n,) is twice the number of
points used in My (n,). Here and for future references 7, is said to be the maximum
number of points used in the summation for a given subcase.

All the tables and figures referred in this section are displayed in Chap. 7, starting
on page 123.

4.5.1.2 Empirical Distributions of the Estimators of the Hurst Parameter

For this first study, basic statistics concerning the empirical distributions obtained
by simulation appear in Tables 7.1-7.5 (pages 125—129). A close look to these tables
can help to understand the following.

First, we know that ﬁk is biased while ﬁlog is not. If we compare the empirical
biases [t Fog ™ Htfi A, — H, we realize that they are quite the same. This assertion
is illustrated taking H = % There are no major differences between this case and
the others. This can be seen in Figs.7.2 and 7.3, pages 130 and 131. This remark
also applies to the other values of H, as suggested by Tables 7.1-7.5. Note that the
scales are all the same for an easy comparison between graphs.

The estimator ﬁlog is unbiased, nevertheless, as indicated by Fig. 7.3, it has the
largest standard error. As we noted previously, all the other parameters being equal,
the standard error is better with k = 2. Let us look at the particular case where
k=2, H=005H=1and H =0.95.

Obviously and as expected, a higher resolution in observing the trajectory
produces a better estimation of H. For £ > 3, results are quite similar. Sure, there is
some gain in using a higher resolution of 1/2,048-th compare to 1/1,024-th.

Figure 7.1 on page 124 shows the distribution of H, using a resolution of 1/2,048-
th and £ = 5. As we can see, the empirical distribution is very close to the normal
distribution.

4.5.1.3 Confidence Intervals for H Using the Fractiles

Let us consider the optimal case with k = 2. Using these simulations results, we
can give a confidence interval for H given an observed value Hy..ps. The idea
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Fig. 4.5 Regression lines for

Qo.025(H) and Qo.975(H ) 1.0
withn = 2,048, k = 2 and )
(=5
0.8 1
0.6 1
2
o
s 0.4 —
0.2 1
0.0

is the following one. Suppose we would like to have a 1 — o confidence interval.
Let Qg(H) be the B-fractile of the sample distribution of H>, i.e. Qg(H) is such
that Pr(H, < Qp(H) | H) = p and let

Hy=inf{H : Q1-a/o(H) = Haor} and  Hr=sup{H : Qu/o(H) < Haons}.
H

To illustrate the procedure, we plotted the values of Q¢.25(H) and Q.975(H):
see Fig.4.5.! The points are quite close to straight lines.

For the observed estimated value Hz .obs Of H, let us denote by 11—, (Hz obs) the
interval

o (Haps)
={H : Qi—g2(H) = Hyops} N {H : Quja(H) < Haors} = [Hy, Hy]. (4.3)
Let H* be the actual value of H.If H* ¢ [1_, (ﬁz;obs), then
Q1—a/2(H*) < Hyons o8 Haobs < Quja(H*).
Note that VH, Q1—q/2(H) > Qu2(H), so

{Hy: Qi—ap(H) < oy N {H>: Hy < Qupa(H)} = 0

IThe procedure can be done for any confidence level.
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and we get that
Pr({H> : Qi—app(H*) < Ho} U{Hy : Hy < Qupp(H*)}) =«

because the probability of both events is or/2. We conclude that the probability that
the actual value is recovered by the interval /1_q (I:Iz;obs) isl—oa.

In general, the fractiles Q—4/2(H) and Qy/2(H) can be estimated using the
empirical distribution we got by simulation. Let us give an example with o =
0.05. For H = 0.3, we got 0.2434 and 0.3508 respectively for Qy, 025(0.3) and
Qo 975(0 3); for H = 0.5, we got 0.4447 and 0.5491 respectively for QO 025(0.5)
and Q(.975(0.5). The regression line equations are:

Oo02s(H) = —0.06008 + 1.011 H
Oo975(H) = 4+0.05362 + 0.9901 H

Using these regression lines we get:

H Oo.005(H) Oo.975(H)
0.3 0.2432 0.3507
0.5 0.4453 0.5487

These values are almost the same as the previous ones.

Now suppose that we observe H, = 0.4. The smallest value of H such that
I—AIZ = 0.4 is recovered by Iy, 95(H) is 0.3498 whilst the greatest one is 0.4552. So,
the “95% confidence interval” is>: [0.3498, 0.4552].

Based on the previous simulation results we computed the coefficients of the
regression lines and we wrote another simulation program to assess the confidence
level of the procedure. In other words, we used other simulations to compute the
values of I:IZ and check if H was recovered by the confidence interval. In all cases,
the empirical confidence level was very close to 0.95. In fact, if the real covering
probability is 0.95, the estimated value should be between 0.9365 and 0.9635 in
95 % of the cases. As we can see, there are only three cases, indicated by a “*” in
Table 7.6, for which the value is outside this interval. So, the approximate procedure
is quite satisfactory.

These values are obtained using the following equations:
UL(H,) = 0.9893 H, + 0.05944
LL(H) = 1.0010 H, — 0.05415

where UL and LL stand for upper and lower limits respectively.
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Fig. 4.6 Regression lines for
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4.5.1.4 Confidence Intervals for H Using the Normal Approximation

The procedure corresponding to Fig.4.5 can be compared with the one based on
the normal approximation. From the first simulation study, for all the empirical
distributions we can compute the standard deviation of H,. In Fig. 4.6, we plotted
the values of

H, £ 1,966,

as functions of H. The two straight lines are very close to the ones we get in Fig. 4.5.
In the same way these regression lines can be used to determine confidence intervals.
So we conducted another simulation study to assess the recovering probability of
the proposed confidence interval. As one may expect, the results are as good as in
the previous method. There are only two cases, again indicated by the symbol “*”
in Table 7.7, for which the value is outside the interval [0.9365, 0.9635]. So, the
approximate procedure is quite satisfactory.

4.5.2 Estimation of ¢

In (3.14)-(3.17), {by(t), t € R} is a fBm with parameter 0 < H < 1. Note
thatif H > %, these processes are solutions of some specific stochastic differential
equations. See Eq. (2.2) and Sect. 3.3.1 for details.

The parameter H is estimated using ﬁz. To estimate o, we use: 0, as estimator
of o defined by
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exp(B2)

0,

0y = 4.4)

where

i=1 i=1

Vi J4
B = % (% 3 log(MS (nf))) + i (% Zlog(n,-)) .

4.5.3 Estimators of H and o Based on the Observation of X(t)

We already studied the performance of ﬁz, when we directly observe by (¢). Here,
we study the distribution of H> and the distribution of &, when trajectories are
generated according to models proposed in Sect.3.3.1: we observe X(¢) instead
of by (t).

The design of the experiment is the same. Simulations where done using u =
2,0 = 2and ¢ = 1 in (3.14)—(3.17). Simulation of the four processes is quite
straightforward: first by (¢) is simulated and then it is transformed into X (¢).

For each value of H € #, 10,000 trajectories were simulated, for a total of
90,000. To all these trajectories we applied the estimation procedure for the values
of k and £ previously given. The trajectories were observed at an highest resolution
of 1/2,048-th.

All the basic statistics concerning the empirical distributions obtained by simu-
lation appear in Tables 7.8—7.15. A close look at these tables can help to understand
the following. Graphical representations are also provided in Figs. 7.4-7.11.

4.5.3.1 The First and Second Models

As indicated in Tables 7.8 and 7.10, the estimation of H by I:IZ in the case of the
first two models leads to results almost identical to the results we got for the simple
fBm process. All previous comments made previously for the simple fBm process
still apply.

There is a major problem concerning the estimation of o. (See Tables 7.9 and
7.11). The reader should bear in mind that when we estimate H, the computed
value of H, may be negative or greater than 1. Obviously, with a low resolution, if
the actual value of H is close to 0, there is a quite important probability that H, <0.
In the same way, if the actual value of H is close to 1, there is also a quite important
probability that 1:12 > 1. For example, look at Table 7.9, with H = 0.05, £ = 2 and
a 128-point resolution, only 59.2 % of the estimated values H, were in the interval
10, 1[; in all the other cases we got unacceptable values.
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Looking at (4.4) we see that for H close to 0:

" exp(B /nﬁ «
= p(B2) = 2 exp(Ba)
%, 3

and when A, < 0, we dare say that there is nothing to do and we cannot estimate
0. In this case our computer program returns 6, = 0 considered as a missing value.
In the case where H, > 1, we suggest to use the limit value we get as H — 1

which is:
R | 4 A
Oy = E m exp(Bz). (45)

We know that for H > %, model 1 is the solution of a stochastic differential
equation. So, if we are only interested in this case, we do not have to consider
what happens for low values of H. An interesting point is the fact that if a 2,048-
point resolution is used, with £ € {3,4,5}, about 95 % of the trajectories produce
admissible values for H .

The bias of &5 is positive, but for £ = 4 or 5, it is not so important. Let us mention
that results seem to be slightly better for model 2 for low values of H. Over all the
10,000 trajectories, the average value of 6, is a little higher than the actual value
which is 0 = 2. For this model, if H is not too close to 0, the estimation of o seems
to be acceptable as soon as the maximum resolution is 1,024 points and £ > 4. As
we may expect with a 2,048-point resolution, we have a quite small standard error
decreasing with H . It is important to note that for H = 0.95, we got very interesting
results, considering the correction proposed in Eq. (4.5).

4.5.3.2 The Third and Fourth Models

With models 3 and 4, the estimations are not as good as they are for the other two
models. First, the average of ﬁz is often negative when H = 0.05, even with a
2,048-point resolution and £ = 5. Otherwise, the bias is important for values of H
less than 0.5. In general, the averages of H, and the standard errors are similar for
both models 3 and 4.

Concerning the estimation of o, when H = 0.05, 6, has a very poor
performance. For example, with a 2,048-point resolution and { = 5, we have
5_72 = 1.3 x 10'! (In Tables 7.13 and 7.15 the notation 1.4?% stands for 1.4 x 10%*).
In fact, for H = 0.05, the percentage of admissible estimated values is never higher
than 50 %. Even with H = 0.2, we get major problems. We see in Tables 7.13
and 7.15 that the bias is important for values of H less than 0.5. Bias are better for
H € {0.6, 0.7, 0.8, 0.95}, but never as good as they are for models 1 and 2.
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4.5.4 Hpypothesis Testing

To study the performance of test on o when the value of H is known, we choose
to simulate 10,000 trajectories for each model. As in Sect.4.5.3, the values of

the parameters were: © = 2, 0 = 2, ¢ = 1. Here again, we consider different
resolutions: n € {128, 256, 512, 1,024, 2,048}. Five different values were used
under Hy: 0; =2+ 1/ 28~ So, under H;, we look at values of ¢ in the interval
[2, 2.125].

First, let us see if the asymptotic law provides good critical points when we want
to test:

H()ZCT] = 0y.

The results are presented in Table 7.16, on page 150. As we may expect for high
values of n, the level is very close to 5 %, at least for the first two models. In that
case too, even for values of n, as low as 128, the empirical level is closer to 6 %.

Things are not so nice for models 3 and 4. If we accept that 7 % is not so far from
5 %, with a resolution of 1,024 or 2,048 points, the level seems to be acceptable. But
for resolutions of 128, 256 or 512 points, the level may be far from what we expect.
In some cases, they are higher than 10 %, and can be as high as 15.9 %. So, some
prudence is required when working with models 3 and 4.

The power of the test is also assessed. The test size being far from 5 % in some
cases, we prefer to use the empirical distributions of 6, to design a test that have a
size close to the level. The performance is quite the same for the four models. See
Figs.7.12-7.19.

When the asymptotic distribution is used to assess the power function, it turns
out that this approximation is quite good. It seems that the power is very slightly
overestimated in the case of models 1 and 2, while it is very slightly underestimated
in the case of models 3 and 4.
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Chapter 5
Proofs of All the Results

5.1 Introduction

In this chapter dedicated to the proofs of the various results, we explore the
properties of three kinds of estimators for the Hurst parameter of the fBm. These
estimators are built on the second order increments of fBm that allows estimation
all over the range of parameter H in |0, 1[. We prove a CLT for simultaneous
estimators of the Hurst parameter H and of the local variance ¢ in the four following
models: dX(¢) = o(X())dbu(t) + n(X(z))dt, where o(x) = o or ox and
p(x) = por pux.

When H is supposed to be known, test of hypotheses on ¢ are proposed.

Finally, functional estimation is considered for function o in the following
model: dX(¢) = o(X(¢))dbu(t) + n(X(z))dt, where functions o and p verify
technical hypotheses.

In this chapter we used the techniques of the CLT for functionals that belong to
Wiener chaos and more precisely the one of the Peccati-Tudor theorem.

5.2 Estimation of the Hurst Parameter

The aim of this section is to establish properties for three kinds of estimators for
H, the Hurst parameter. To reach this objective, we first prove an almost sure
convergence for the absolute k-power variation of the fBm, using the Borel-Cantelli
Lemma. Then, we prove a CLT for the rate of this convergence, using the
Peccati-Tudor theorem. It allows some insight into the properties of a first estimator,
say Hy of H.

Indeed, with the same work tools a more general CLT is proved, establishing
convergence in law for a g functional variation of the fBm, see (2.4) page 40, the
function g belongs to L%(¢(x)dx), ¢(x)dx standing for the standard Gaussian
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DOI 10.1007/978-3-319-07875-5_5,
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measure. The particular case where g is g(x) = |x|k giving previous CLT and Hy,
we chose to bring out function g equal to g(x) = log(|x|). This choice gives rise to
a second estimator of H, say I:Ilog, and permits to establish its properties.

Finally, we link the estimators I:Ik and ﬁlog proposing a third estimator, ﬁk(n),
built as the first one but with a sequence k() converging to zero with n instead of
fixed k. We establish that the asymptotic behavior of ﬁlog and of I:Ik(n ) are the same
by showing that their associated functional is equivalent in 2.

5.2.1 Almost Sure Convergence for the Second Order
Increments

We prove the almost sure convergence in law for the increments of the fBm. In this
aim, we consider 4,,, the centered k-power of the fBm increments. We link A4, to
the g functional variation of the fBm, that is Sg(k),,,(l), where function g, is,
giy(x) = xK — E[N*]. Then, because the function &k has a finite expansion in
terms on the Hermite basis, we announce that using Remark 3.5 proved later in
Sect.5.2.2 the fourth moment of S, »(1) is bounded. Since 4, is equivalent to
Sgun(1)/+/n, we show that the last remark implies that the fourth moment for 4,
is bounded by C /n?. Finally, the Borel-Cantelli Lemma yields the required result.

Proof of Theorem 3.1. For all k € N* andn € N* — {1}, let:

n—2
1 .
=7 > (Aubu ()" —EINT"
i=0
Now defining
k
gy (x) = x* —E[NI =" g, Hp(),. (5.1)
p=l1
one obtains
Jn
A, = msg(km(l)’
and then
4 n’? 4
E[A4,]" < WE[ng,n(l)] .

The function g) has a finite expansion with respect to the Hermite basis. Applying
Remark 3.5 page 45 to g = g, one obtains
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1
E[4,]* < C —., forn large enough.
n

The Borel-Cantelli lemma yields Theorem 3.1. O

5.2.2 Convergence in Law of the Absolute k-Power Variation

We prove the convergence in law for a g functional variation of the fBm, say S, (1),
see (2.4), page 40, function g being centered, belonging to L?(¢(x) dx), ¢ (x) dx
standing for the standard Gaussian measure. Note that in the particular case where
gis gr(x) = |x|k — E[|N |k], the result deals with the absolute k-power variation
convergence.

More precisely, we prove that the variation Sg¢,(1) seen as a variable with
parameter £ converges to a cylindrical centered Gaussian process X with covariance
pg (£, m). In this aim, using the Mehler’s formula, we first compute the asymptotic
variance of the random variable defined as a linear combination of variables of the
type Sgn(1), that are g functional variation seen at different scales of time. Then
we prove that function p, is actually a covariance function.

Finally we prove a CLT for this linear combination. The work tool to build
this proof is based on the Peccati-Tudor theorem; it consists in decomposing the
functional we are interested in into a sum of functionals belonging to distinct
Wiener chaos. Then we prove that the p-th contractions of functions defining each
functional tend to zero in L. This fact and the finiteness of the asymptotic variance
ensuring the required convergence.

To complete the proof, we show how the Peccati-Tudor’s Theorem permits to
bound the fourth moment of S, ,(1) in the case where the function g possesses a
finite expansion with respect to the Hermite basis.

Proof of Lemma 3.8. For any choice of m € N*, k € (N*)" and d € R, we have

m

EDY " diSein(D =YY didjE[Sgsin(1D)Sg i n(D)].

i=1 i=1j=1
For fixed k € N* and £ € N* and by Mehler’s formula (2.3), we get
—2 {n—2
E[Sgtn(1)Sg.a(1)] = Zg,,p'— Z 3" ol (ki k)

10]0

To conclude the proof we need Lemma 5.1 proved in the Chap. 6 (see page 111).
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Lemma 5.1. Forallk,l, p € N*¥,

—2 {n—2 k—1 +oo
li Li —k P (k Ls).
n—il—lI-loo n g ]X_;)pkl( ! J) ;r;oopk,(( r+ S)

Since pg¢(x) is a correlation, we have |pg.¢(x)|” < |pr.e(x)] for all p € N*. So
proving a lemma similar to Lemma 5.1 for p = 1, replacing function pi ¢ by | ok ¢/,
we get the following bound for large enough values of n,

—2 {n—2 k—1 +oo
Z Do pheti k| < (Z > lpralkr + KS)I) +1 < +oo0.

i=0 j=0 §s=0r=—00

The last summation finiteness comes from the fact that, py ¢(x) is equivalent to
o= 22H — (k&)™ M HQH —1)QH —2)(2H —3) |x|**~*
+o0 2

for |x| large enough. Since ||g||§q¢ Zp 18,P! < +oo, the dominated
convergence theorem and Lemma 5.1 entail that

E[Sgin(1)Sgen(D] —> pg(k, €) thus EZd Sern(DF —> o, (k.d),
i=1

this yields Lemma 3.8. O

Proof of Lemma 3.9. For each function f such that Zr__oo f(r)] < o0, we
shall use the identity, for m € N*,

+o00 +o0o m—1
Yoofry= D0 flmr+uw). (5.2)
r=—00 r=—00 u=0

We shall denote for fixed k, £ and p € N*, §;, = ,o,fj. We shall prove the following
identity

+oo (-1 k=1 +oo
DD bualr+k) =) Y Salkr+ Ls),
r=—00 s=0 §s=0 r=—00

that will be sufficient to prove Lemma 3.9. Knowing that for x € R, §((x) =
8¢ i (—x), we have

o0 (-1 too i1
SO Sulr k)= Y (Z(ﬁk,g(ﬁr—ks)).

r=—00 s=0 r=—00 \s=0



5.2 Estimation of the Hurst Parameter 79

Applying identity (5.2) to the summation on the right-hand member, for function
F(r)y = Y28 8r.e(£r — ks) and for m = k, we get

+oo £—1 k=1 / 400 (—1
PN NEEISEDY ( DY Seelk(tr —s) + eu)) .

r=—00 s=0 u=0 \r=—00 s=0
Making the change of variable s — £ = —v — 1 in the last summation, one obtains
400 (-1 k—1 +oo (-1
DD Suxllr k) =" ( D0 Skalk(tr +v) — kL +k + eu)) .
r=—00 s=0 u=0 \r=—00 v=0

Finally applying (5.2) once again to the summation on the right-hand member, for
function f(r) = Sk.e(kr — k€ + k + £u) and for m = £, we get

+oo (-1 k—1 4o0
DD enlr+ks) =" Y Spalkr — kL +k + Lu).
r=—00 s=0 u=0r=—00
Now, making the change of variables » = i + £ — 1 in the last summation, we have
+oo (-1 k—1 +oo
S s k) =D Stk + tu),
r=—00 s=0 u=0i=—00
so we proved that p4({, k) = pg(k, £) and Lemma 3.9 follows. O

Proof of Theorem 3.4 and Remark 3.5. For any m € N*, k € (N*)" andd € R",
let us define

Sean(1) =Y di Sgiin(1).

i=1

We want to prove that
Sedn(1) —s N(0: 02, (k. ).
n—>oo ’

Let

m M
Serden(D) =Y di Sgpy kin(1) with g (x) = geHe(x).

i=1 (=1

where M = 1 is a fixed integer. We will prove that

Law
Sgu e (1) —— 11(0; og, mk.d)).
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In this aim, using the chaos representation for the fBm (see Hunt 1951), we can
write for t > 0

bu(t) = \/% /_::o[exp(i/\t) —1] |A|_H_% dW ().
Thus, for j =0,1,...,n —2
+00
b = [ OGS aw . (53)
where we defined function 7 by
) = —— explialexp(iZ) — 1A (5:4)
Uzﬂm § 8

Now, since [ | f (4, j)|2 dA = 1, using Itd’s formula, see Major (1981, p. 30),
for fixed £ > 1,

+o0 +o00
Hz(Aan(j))Z/_ /_ SO0 ) s fP 0, J) AW .. AW o).

To get the asymptotic behavior of Sg, x,(1), we use notations introduced in
Sect.2.2.2 and in Slud (1994).
For £ € N* and f; € L2(R"), we define

1 +00 +o0
I((f()=a/_ | S A AW ) W), (55)

andfor p = 1,..., ¢, we write f; ®, f for the p-th contraction of f; defined as

f[ ®p f[(/\l, ,Az[_zp) = / f[(/\l, ,M_p,xl,... ,xp)
R?
flf(/\l—p-l-ls . ,Az[_zp, X1y, —Xp) dxl e dxp. (56)
With these notations, one gets
M
Sewdn(1) = > Io(h{"™), (5.7)
=1
where function hy"k) is

m nki—2
hf{ By, d) = g[ggzdi—m Z FHD A, J) . D (A, ).
i=l1 bj=0
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To obtain convergence of Sg,, x,(1), we will use Theorem 1 of Peccati and Tudor
(2005).
Lemma 3.8 page 45 gives the required conditions appearing in the beginning of
this latter theorem. So we will just verify condition (i) while proving the following
lemma.

Lemma 5.2. For fixed £ and p, suchthat =2andp =1,...,{—1,

lim
n—>+00 Jp2(t—p)

2
hfzn’k) ®p hjgn’k)(lls e A e e p)

d/\l . ..dl(_p dle ...,du(_p =0.

Proof of Lemma 5.2.

/,;2(1—;;)

(k) (n.k) 2
hZ ®phé (ll,...,A[_p,,ul,...,ﬂg_p) d/\l...d/\g_pd,ul...,dﬂg_p

m

— 4 4 Shuly : /1 /n 1
— (@) Z 2=: Z=1i42=: dl]dzzdzzdu \/m \/le nk,3 14

i1=1

nkiy =2 nki,—2 nki;—2 nki,—2

Z Z Z Zpk,]k,z(ku]l kiy j2)x

=0 p=0 j=0 js=0
P;%iu (kiyjs = kis ja)og, g, iy 1 — ki ja)og, g, (kis 2 — ki Ja).-

Now, since px ¢(x) is a correlation, p = 1 and £ — p = 1, we just have to prove that
for fixed k1, ko, k3, ks € N*, lim A, = 0, where we defined

n—-+00

nk1—2 nky—2 nkz—2nk4—

A, = I’l2 Z Z Z Z |:Ok1 kz(kZJI k1]2)|x

J1=0 j2=0 j3=0 j4=0

|0 g (ka3 — k3 ja)| | oy s (k3 71 — k1 j3)| | Ok kg (ka2 — k2 ja)] -

We split the indices intervals into two parts, By and B}, where we defined for a
fixed positive real number N,

By = {(j1, jo, j3. ja) € N, |kaji —kijo| > N or |ksji —kijz| > N
or |k4jo —kajs| > N}.

We can write A, as the sum of two terms corresponding to By and Bj, respectively.
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For the first term, we use the fact that, as already seen in proof of Lemma 5.1 (page
kn—2 €n—2

78), for all k,£ € N* and for n large enough S lpkei —kj)| < C and
i=0 j=0

that, |px.¢| < 1. Furthermore for N large enough and |x| = N, we use the bound

loee ()| < € [xP~ < CN?H

For the second term, we bound each of the four functions |px ¢| by 1, so that for all

N large enough we get

fimd, < € (N~ 4+ NTim(})) < OV,

and since 0 < H < 1then lim A, = 0and Lemma 5.2 follows. O
n—-+o00

Hence, we proved that

Law
Sedn(1) —— N(0:05,, (k. d)).

o0
Furthermore, g2p! — 0,50 we get
p=%4:+l r M —+o00
— 2 —
i ing[ guden (1) = Sgan(D]” = 0.
Now, since
neo; o (k, d))—>7l(0 (k,d)),

ng

applying Lemma 1.1 of Dynkin (1988), Theorem 3.4 is proved.
Now, Remark 3.5 page 45 follows from the following argumentation. First we
establish the following inequalities:

M M
E[Y " Ie(h{")* < M* Y E[L(h"" )] < C.
=1 =1

The last inequality follows from (v) of Theorem 1 of Peccati and Tudor (2005) and
from the fact that for each £ € {1, ..., M}, one has E[Ig(hfz"’k))]2 < C, for n large
enough.

So Remark 3.5 follows by considering equality (5.7) and noting that S,,, , (1) =
SgM'k,,(l)fOI'm: 1 =d; =k. O
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5.2.3 Estimators of the Hurst Parameter

In Sect.5.2.1, as a corollary of the main result, we have shown the almost sure
convergence of the absolute k-power variation of the fBm. This convergence permits
then to write a classical linear regression equation and to propose the least squares
estimator Hy of the parameter H. This estimator being thus an asymptotically
unbiased strongly consistent estimator of H. To prove the asymptotic normality
of this estimator, results proved in previous Sect. 5.2.2 are useful.

Indeed, in Sect. 5.2.2, we have proved that the g functional variation of the fBm,
say Sg.x(1), converges in law to a cylindrical Gaussian process. The function g
being very general, centered and belonging to L?(¢(x)dx), the idea consists in
choosing two particular functions of that type, say, gr(x) = |x|k — E[|N|]F and
8log(x) = log|x|—E[log | N []. The first one concerns H;.. The fact that this estimator
is equivalent to a linear combination of functionals of the type S,, ., (1) will ensure
its asymptotic normality. In the same way, since the functional S, ..(1) converges
in law to a Gaussian process, this implies the convergence in probability of the
Napierian logarithm of the modulus of the second order increments of the fBm.
So, as for the estimator I:Ik, a least squares estimator of the parameter H will be
proposed, I:Ilog, leading to an unbiased weakly consistent estimator of H .

As for the previous estimator, this new estimator ﬁlog is equivalent to a linear
combination of functionals of the form S, .,(1) leading again to a CLT. As a

remark, we then prove that in the class of estimators ﬁk, the best estimator in terms
of minimal variance is obtained for k = 2 and that the asymptotic variance for the
second estimator ﬁlog is always greater than the one obtained for I:Ik in the case
where k =2 ork = 4.

Finally we link the two estimators defined above by introducing a third estimator,
say ﬁk(n), builtas Ay, except that k (n) is a sequence of positive numbers converging
to zero as n goes to infinity more rapidly than the sequence \/Lﬁ We prove that the
corresponding functional is equivalent in L to the one built to get I:Ilog. We obtain
that the asymptotic behaviors of estimators I:Ik(,,) and I—AIIOg are the same. We also
prove that the estimator ﬁk(n y is asymptotically unbiased for the parameter H .

Proof of Corollary 3.10.
(1) Using (3.3) and (3.2) we get

¢
N 1
He=—+ Zz,- [—kH log(rin) + kbi] + 04.5.(1),

i=1

and property (3.5) gives

A

H, = H + Oa_s,(l).

We proved that Hisa strongly consistent estimator of H .
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Now, let us see that Hy, is an asymptotically unbiased estimator of H.
By (3.3)

4

B[Ay] = _% 3" % Eflog(M(r;m))],

i=1
where My (n) is defined by (3.1). Since

n—2 k

H
—ZlA b () = (;) My (), 5.8

by property (3.5), one has

rin—2

. 1<
BH] =~ ) %E| log =5 Z |Arnbu (DI | | + H. (5.9)

i=1 (r,

Hence, it is enough to prove that

[log ( Z | Anbr ()] )} = klog (IN,).-
To prove the last convergence we just have to prove the following one:

1
E[log ([ 1cabnrw d)} o klog(INLp. (5.10)

For this, let us notice that since log is a concave function and log(x) < x when
x > 0, by Jensen’s inequality we have

1 1
/0 tog (1(4,b1)" () du < log ( /0 (Lobi)* | (@) du)
1
< Ab)* K (u) du.
< /0 (Lobi)* [ () du

Thus, if we let

B 1 ok 1 .
X —/0 [(Anbu)™| (u)du+k'/0 log (I(Auwbr)*| (w)) du

we have shown that

1
log ( /0 (Aubi)* | (@) du)

< X,. 5.11)
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Now, since |N|k and log(| N |) are in L'(£2), the same result is true for X,,, say

X, € LY(2).
Furthermore using Lemma 3.8 page 45, it is easy to see that
Ll
Xo —> E[IN[“]+ k [E[log(IN])]|.
n—-+o00

Finally, using Corollary 3.3 page 44, we get:

tog( /0 Baby T @ ) 5 klog (IN1)).
Hence, (5.11)—(5.14) yield (5.10).
(2) Formula (5.8) entails that
B[M(n)] = oyyn ™" | Nl
As in Berzin and Ledn (2007), let us define

My (n) — E[Mj(n)]
E[M; (n)]

Ax(n) =

With this definition, the Taylor expansion of the log function gives

log (M (n)) = log (E[My(n)]) + log (1 + Ax(n))
= —kH log(n) + kb, + Ai(n)
+ A2(n) [-1 + e(Ar(n))].

Let us see that
AR [=5 + e )] = 0r (L)
k 2 Jn
By the definition of g, (see (3.6)), one has

A(n) = %Sgk,,,(l),

and by Lemma 3.8 page 45,

1n3/2 2

1
BV m)] = iS00 (=),

50 /n A (n) = 0,(1) and then (5.16) is proved.

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)
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Using (5.15)—(5.18), we obtain
log (My(n)) = —kH log(n) + k log(o2)

+log (E[|N|k]) + \/iﬁsgk,n(l) +op (%) . (5.19)

Thus, by (3.3) and property (3.5), we have

N 1< i
H,=H - k ; erl'_nsgk”i”(l) +tor («/Lﬁ) '

Thus

4

i(f—m) =3 T Sunn()+0p(1).

Theorem 3.4 gives the required result.
The computation of the coefficients g5, x is explicitly made in Berzin and Ledn
(2007) and Cceurjolly (2001).

Proof of Remark 3.11. Let us note that g = % Then for i, j € N*,

P 2 P .o
pec(is J) = 5 pe i, J) + pg i ),

where g, (x) = Z;‘;Z g2k Ha,(x) which belongs to L?(¢(x) dx).
Then,

7 (reg @R = ok (v 3 @R + o (rop VP
> ok (r 3 6IvP)).

since the last term in the above equality is positive by Lemma 3.8 (see page 45). O
Proof of Corollary 3.13.
(1) By (3.10) and (3.9) and using property (3.5) we get

14
Hypy = =z (—H log(r;n) + log(02n) + E[log [N1]) + 0,(1)
i=1

=H +0,(1).
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We have proved that 1’:11Og is a weakly consistent estimator of H.

Let us show now that ﬁlog is unbiased.
Since by (3.8)

1 n—2
—— D log (| Auby (i)]) = Miog(n) + H log(n) —log(ozn) ~ (5.20)
i=0

one has,
E[Miog(n)] = E[log(|N|)] — H log(n) + log(oan), (5.21)

and by (3.10) and property (3.5), we get

¢
E[Hiog] = — ) zE[Myog(rin)] = H, (5.22)
i=1
and ﬁlog is an unbiased estimator of H.

(2) Now, (3.10), (5.20), (5.21), (3.11) and (5.22) entail that

L l
I:Ilog = - ZZ:‘ (Mlog(rin) - E[Mlog(rin)]) - ZZiE[Mlog(rin)]
i=1 | =

¢
N
= — § 1)+ H — E S a(1).
P ri glog rﬂl( )—‘f_ \/r(r, glogsrﬂl( )
Thus by Lemma 3.8 (see page 45)

4
\/ﬁ (ﬁlog - H) = _; %Sglog,rin(l) + 0])(1)'

Theorem 3.4 gives the required result.
Explicit computation of coefficients in the Hermite expansion of function gj,, can
be found in Berzin and Le6n (2007). O

1
Proof of Remark 3.14. Since g3 10g = 3 (see equality (3.12)), then for i, j € N*,

. L .
Paos (2 J) = 2P0 (0. J) + pg (. ),

where gj,. (x) = Z;ozz 22100 H2p (x) which belongs to L?(¢(x) dx).
Then, as in the proof of Remark 3.11,

7/ ) = ok (v 5 61VP)).
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1
In the same way, knowing that ggp!log = 1_6g§1”4’ for p = 1, 2 (see equalities (3.7)
and (3.12)), we have

Ot 12/ V1) Z 03, (1. 52/ /7))

Proof of Corollary 3.16. Let S(n) = gk (1), where

1
—3S
k(n)
|x|k(")

n(x) = ———=
&ie(m) (X) E[|N|"(”)]

o0
— 1= g2pkinHap(x).
p=1

In a similar way as in Berzin and Ledén (2007) and Ceeurjolly (2001), we have
Lemma 5.3 proved in Chap. 6.

Lemma 5.3.

12
S(}’l) - Sglog,n(l) . — O

—>+o00

Let us show now that from the definition of My,)(n) given by (3.13), one has

w = —H log(n) + log(oz2p)
k(n) :
+Ellog(N D]+ —=S0) +or (%) . (5.23)

Indeed, as in the proof of Corollary 3.10 (see (5.19)), we get

08k (M) _ _ 1y 100(n) + log(oan)
k(n)
log (E[|N|k(n)])
g e (%),
Since

tog (E[IN[“"])

k) — Ellog(IN])] = O(k(n)), (5.24)

and k(n) = o (%) (5.23) holds.
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A proof similar to the one given for Corollary 3.10 leads to
-
vn (Hk(n) - H) =— Z T%S(Viﬂ) +o0,(1),

i=1

where ﬁk(n) is defined in (3.13). From Lemma 5.3 and Theorem 3.4 we can
conclude that I:Ik(,,) is asymptotically normal.

Let us show now that Hy,) is an asymptotically unbiased estimator of H . As in the
proof of Corollary 3.10 (see (5.9) and (5.10)), it is enough to prove that

1 ! % k(n)
@E[Iog ( /0 (Abi)*| (u)du)}mE[loguNm. (5.25)

To show this convergence, we use the fact that the log function is concave and then,
by Jensen’s inequality,

1
k(mE[log(|N])] = E[ /0 tog (1(Aubi)* 1 ) du}

1
: E[log ( / Ay ) () d)}
0

< log (E[ / N Anbi) 1 w) dD
0
— log (E[|N|k(”)]) .

Dividing by k(n) on both sides of the inequality and using (5.24), we get (5.25).
O

5.3 Estimation of the Local Variance

Using techniques of Sect. 5.2 we proved a CLT for the vector (ﬁk, 6), respectively
estimators of the Hurst parameter H and of the local variance ¢ in the four following
models:

dX(t) = o(X (1)) dby (1) + n(X (1)) dr,
where 0(x) = o orox and u(x) = p or ux.

These two estimators are based on the second order increments of the process X
solution of the previous SDE and come from a linear regression model.
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Then we propose hypothesis testing on o, that is we test if 0, = o + ﬁ(d +

F(+/n)) and we assess the asymptotic power of the test. Working tools are those of
Sect.5.2.

Finally, we proposed functional estimation for function o in the following model:
dX() = o(X(t))dby(t) + pn(X(t))dt, where functions o and p verify some
technical conditions. Here, the techniques we use are the Girsanov’s theorem and
techniques implemented in Sect. 5.2.

5.3.1 Simultaneous Estimators of the Hurst Parameter
and of the Local Variance

Here we propose simultaneous estimators of the parameter H and of the local
variance o through the observation of one trajectory of the X process on a regular
grid of points. The X process is solution of one of the four following models:

dX (1) = o(X(1)) dbp (1) + n(X(1)) dz,

where functions o and p are respectively defined by o(x) = o orox and pu(x) = p
or ux and H > %

As in Sect. 5.2.3 the idea consists in using the absolute k-power variation of such
a process (eventually normalized). We prove a lemma establishing the almost sure
equivalence between the second order increments of X (eventually normalized by X
evaluated at the grid points) and of o times the increments of the fBm. This lemma
also provides a regression model that leads to simultaneous estimators of H and of
o, say Hk and 6. Thus the same techniques are used to show that estimator Hk isa
strongly consistent estimator of H and to obtain its asymptotic normality. Then we

prove that o «/n Hj, and 10;/(;)

Gaussian limit for vector (Hk Ok ).

Finally, in the case where the parameter H is supposed to be known, the lemma
cited above gives rise to a strongly consistent estimator of parameter o based on
the absolute k-variations of process X. Moreover, a CLT is shown giving a rate of

0y are equivalent in probability, leading to a degenerate

convergence in +/7 instead of “{) as obtained before.

Proof of Theorem 3.17. We need Lemma 5.4 proved in Chap. 6, page 116.
Lemma 54. Fori =0,1,...,n—2,

LX) =0A,by (i) + an(i),

with |a,(i)] < C(w) (%)H_é,for any § > 0.



5.3 Estimation of the Local Variance 91

Remark 5.5. Indeed, for the first model one has, a, (i) = 0 and for the second one,
. 1-8
la, ()] < C(w) (3) .

We write

n—1
—A,f(l’l) = Sgk,n(l) +

N (X = o (Anbi) )

n—1
—— (|
ok [N

Let us prove now that [|(I7, X)*[I{ — 6(Aubs)* |k = 04, (%)

Using Holder’s inequality, one can show the following inequality.
171 = Ngl] < it 1],

< 27N f =gl [IslE +1F gl ] 5260

Applying previous inequality to f = ([, X)* and to g = 0(A,by)* and using
Lemma 5.4 and Corollary 3.3, one has

15X = llo (Aubi) I
< 27U (X" — o (Aubu) "Ik
x [lo(nbm) I + 15, X)* = o (Anbi) "]

< C@) lafl [C@) + a1 ]

H—$§
<C@ " =0us (L)
for § small enough, i.e. for0 <§ < H — %

Thus assertion (2) follows. Assertion (1) follows from Corollary 3.3 (see page 44).
O

Proof of Theorem 3.18.
(1) Using (3.22) and (3.21) we obtain

¢
N 1
Hy = 7 ;Zi [—kH log(rin) + kbi] + 04.5.(1),

and property (3.5) gives
I"}k = H +044.(1).

We proved that Hy isa strongly consistent estimator of H.
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Now by using definitions of A,f (n) and of MkX(n) (see (3.18)—(3.20)), one

obtains

A (n) = n* exp(—kbr)M¥ (n) — 1.

With this definition and using a Taylor expansion of the logarithm function one

has

log (M (n)) = log (n=*" exp(kbr)) + log (1 + A} (n)

= —kH log(n) + kby + A} (n)
+(AX )[4 + e(AF m))].

Let us verify that
(4F )[4 +e4af ()] = or ().
By assertion (2) of Theorem 3.17, we know that
VrA¥ (n) = #Sg,ﬁ,,(l) + 04..(1), where
the function gy is defined by (3.6), and by Lemma 3.8,
E[S; (D] = O(D),

50 /n(A} (n))* = op (1) and then (5.28) is proved.
Using (5.27)—(5.30), we obtain

1
log(My" (n)) = ~kH log(n) + kbi + —=Sg.a (1) + 0 (Z)-

Thus (3.22), (5.31) and property (3.5) entail that

i Seern(D) +o0r ().

Then

()=

FI

L
Z gk,r,-n(l) +0P(1)-

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

Theorem 3.4 gives the required result. The computation of the coefficients in
the Hermite expansion of function g is explicitly made in Berzin and Ledn

(2007) and Cceeurjolly (2001).
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(2) Let us see that ék is a weakly consistent estimator of by. By using (3.23) and
(5.31), one has

4

A 1 .

By — b = 5 (He — H) > log(ni)
i=1

1< 1
Tk_;T kn,(l)‘f‘TOP(l)
Thus

14
By~ by = logn) (i — H) + 5 (Hx — H) Y. log(r)

i=1

1
fkez gkrﬂl(l)—‘l_ﬁop(l)_

Using assertion (1) of Theorem 3.18 and (5.30), we obtain

N
log(n)

(ék - bk) = Jn (ﬁk - H) +op(l), (5.32)

and then using again assertion (1) of Theorem 3.18 we proved that By is a
weakly consistent estimator of by.

Now using the order one Taylor expansion of the exponential function,
equality (5.32) and the first point of Theorem 3.18, we finally get

f
og(n)

Thus if we get back to the definition of 63 (see (3.24)) and use (5.33), we get

y
log(n)

(exp(Be) — exp(bi)) = exp(bi) Vi (A = H ) +0p(1). (5.33)

(6x —0)

=0 exp(—b) s

~ ~ 1 1
exp(By) — exp(bi) + exp(By) (a - —) 0211}

28, O2H

()
= o (f—H)+

exp(— bk)exp(Bk) v (02 —0y5,) +op(1).
%2/ og(n)

At this step of the proof, we are going to show that

Jn
log(n)

(Gr —0) = o/n (ﬁk - H) +op(1). (5.34)
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Using the fact that By is a weakly consistent estimator of by it is enough to
prove the following convergence

N
log(n)

P

(0211 — Uzgk) g 0,

which is the same as showing

28 ) nsoo

ﬁ(z Z)L)O'

log(n) \ 721

The last convergence is an immediately consequence of the following fact

Jn
logn

(A= H) = 0r(1),

which follows from assertion (1) of Theorem 3.18.
Thus by equality (5.34) and assertion (1) of Theorem 3.18, the proof of assertion
(2) is completed.

Proof of Theorem 3.20.
(1) Assertion (1) follows from the first assertion of Theorem 3.17.
L~ Tk
(2) Assertion (2) of Theorem 3.17 and Remark 3.7 imply that </n ([?"] — 1)

converges weakly to g, N that yields assertion (2).

Remark 3.22 page 53 follows from the fact that since g, = % (see equality (3.7)),
one has

02 1 00 +o0
= @ Y e ()
n=1 r=-—00

) +o0 +00
> 58k D ) =3 ) py() = jog,.

r=—o00 r=—0o0

5.3.2 Hpypothesis Testing

We consider the following four stochastic models, for known parameter H > %:

dX, (1) = 0,(X, (1)) dby (1) + pn (X, (2)) dt,
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where the functions o, and w, are respectively defined by o,(x) = 0, or o,x
and u,(x) = W, or u,x. We test Hy: 0, = o again the alternatives: H,: 0, =
o+ \/L;(d + F(4/n)), where o, d are positive constants, and F a positive function
tending to zero with n.
Note that under hypothesis Hy (and p, = ) the studied model is the one of
Sect.5.3.1. We observe the absolute variation of such a process X,,. Note that this
is equivalent to let k = 1 in the previous section. A lemma similar to Lemma 5.4
is proposed, replacing o by o,. This allows, using what we did in last section for
the estimation of o in the case where H is known and using results of Sect. 5.2.1 to
show a CLT for theses variations of the process X .

We show that there is an asymptotic bias d, and the larger is the bias the easier is
discriminating between the two hypotheses.

Proof of Theorem 3.23. We need the following lemma proved in Chap. 6.
Lemma 5.6. Fori =0,1,...,n—2,

13X, (i) = 00 Anbp (i) + an (i),
with
la,(i)] < C(w) (%) ,for any § > 0.
Now we write F,, as

F, = ULngl’n(l) +d + G, , where,
n J—

G, =d (n_lz\fm b ()] - )

ORI Zm i)

\ffzqrxw 0w Aubir ().

Note that F(4/n) tends to zero with n. This fact and Corollary 3.3 ensure that the
first two terms almost surely tend to 0. From Lemma 5.6 and the fact that H > % we
see that the third term almost surely tends to 0 and finally G, = 0, 5.(1). Remark 3.7
page 45 yields the result. O
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5.3.3 Functional Estimation of the Local Variance

In case where H > %, we consider the following model:
dX(t) = o(X(1) dbu (1) + w(X(1)) dr,

where functions o and p verify technical hypotheses, ensuring the existence and
the uniqueness of the solution of such a SDE. Our aim is to propose functional
estimation for function o.

First, for a continuous function /, we propose a demonstration of an almost sure
convergence result for the random variable

n—2

LS b 14,6l
=0

n—li

A, standing for the operator of the second order increments. We decompose this
objective into two cases u = 0 and u # 0.

In the case where . = 0, the solution for the SDE is X (¢) = K(by(t)), where the
function K is solution of an ODE. Thus we show that proving the required result is
equivalent to prove it for the fBm, this is done using techniques of Sect.5.2.1. Then
in the case where u # 0, the idea consists in applying the Girsanov theorem and the
last convergence result obtained when u = 0.

Second, we show an asymptotic result and get the rate of convergence. Here
again, we decompose the analysis into the same two cases. As before, in the case
where © = 0, we show that it is enough to consider the case of the fBm, that it is
done and we show the stable convergence of the required functional.

To achieve this goal, the working tools are those of Sect.5.2.2, the use of the
chaos representation of the fBm increments and the decomposition of the functional
in the multiple Wiener chaos. Then the Peccati-Tudor theorem allows to obtain a
CLT. In the case where i # 0, we still use the Girsanov theorem and the stable
convergence showed before.

Proof of Theorem 3.27. First, we suppose that the function & = 0 and that o € C!.
As mentioned in Sect.3.3.3, we have to prove Theorem 3.33. Suppose for the
moment that it is done, then Remark 3.28 page 56 is true. To conclude the proof of
this theorem we just have to get back to model (3.28) where p is not necessarily
identically null. As in Berzin and Ledn (2008), with the additional hypotheses
(H1) and (H2) on p and o, we can apply Girsanov’s theorem (see Theorem 4.9
of Decreusefond and Ustiinel 1999). That is, for G a measurable and bounded real
function defined on the space C([0, 1],R) of continuous real functions, we have
the following equality:

E[G(X)] = E[G(K(Dn)) Al (5.35)

where A is the Radon-Nikodym derivative and K is solution of the ODE (3.29).
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Let us define the set of trajectories

A=1xeC(0, 1],R) : for any continuous function / and for all real k > 1

lim
n—>+oo n —

A ! ‘
Z GO E /0 h(x () [0 (x ()] du

If we choose G as 14, using (5.35) we obtain
E[14(X)] = E[1a(K(bn))A] = E[A] = 1,

with the help of Remark 3.28, i.e. P(K(by) € A) = 1, thus Theorem 3.27 follows.
O

Proof of Theorem 3.33. We need Lemma 5.7.

Lemma 5.7. For all 0 < H < 1, for all interval [a, b] C [0, 1] and for all
k € N*, almost surely one has

b
/ [(Aubi)*]" () du = (b —aENT.

Remark 5.8. Note that in the case where a = 0 and b = 1 we get Theorem 3.1.

We will show this lemma after the proof of this theorem.
By a density argument, this lemma implies that if we take intervals of [0, 1] with

rational extremities, then almost surely for any real ¥ > 0 and any interval [a, b] C
[0, 1],

/ b Gae — - aE[INF].

Again, by a density argument, if we approximate continuous function by stepwise
functions, we get that almost surely, for any continuous function 4 and for any real
k>0,

1 1
/h(u)|(Aan)*|k(u)du — (/ h(u)du)E[lle].
0 n—>+o0o 0

To conclude the proof of this theorem, let us consider the following equality:
! k
[ b o a
0

n—2
1 . )
= — D h(D 8 @)
i=0
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n—2

1 . .
2 D (G = h(D) [Anbi ()]
i=0
1 = =t _
+ n—1 ;(n -D (/nz_l (h(w) = h(55 )d”) | Abp (D)

By Corollary 3.3 page 44 and since % is uniformly continuous on any compact,
the two above last terms almost surely tend to zero. This yields Theorem 3.33 by
takingh = f oby. O

Proof of Lemma 5.7. Let us suppose that 0 < a < b < 1. The cases where 0 = a <
b < 1 orwhere 0 < a < b = 1 would be treated in the same fashion. Note that the
case where a = 0 and b = 1 has been treated in Theorem 3.1.

For n large enough, a > %, b<1-— % andb —a = ”13, so that

b n—2 itl
k . n—1
[ @b =3 @b [T Yo du
a i=0 nl—l
Ina) it
> @abu ) [ V() du
i=|na]—1 P
lnb|—2 . 1 lnal—2 .
Aby (i) — —— Anby (i
+—— ;< n (@) = — ;< u (i)
= 1_ lna) - (5.36)
N
=T 2 Meba(@)
i=|nal—1
b =
b3 @b [ Y du
i=lnb|—1 =
=T+ + T3+ Ty
where T;,i = 1,..., 4 are the four terms of (5.36). Using that the trajectories of by

are (H — §)-Holder continuous, see Proposition 2.1, in other words for any 6 > 0,
u,v =0,

b (u+v) — by ()| < C(w) |v]*77, (5.37)

one obtains that Vi € {0,...,n — 2}, |Auby (V)|* < C(w)n®*, for any § > 0.

Thus for n large enough, sup{|T;|, i = 1, 3, 4} < C(w)n®*~'. With § small
enough, that is §k < 1, we proved that T3, 73 and T, converge to zero with n. To
prove Lemma 5.7, we need to show that 75 tends to (b — a)E[N*]. In fact, it is a
consequence of the following convergence. For any a such that 0 < a < 1, for all
k € N*, almost surely one has
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1 lnal—-2
= Y (Awbu(i))* — aE[NT,
n n—>—4+00

i=0
which is equivalent to

lnal—2

- Al‘l ) 5
o ; 8o bH(l))n_>—+>000

where function g, is defined by (5.1).

This last convergence is a consequence of Remark 5.11 forthcoming on page 101,
where ¢ = gu) € L*(¢(x) dx), with Hermite rank > 1 and of the Borel-Cantelli
lemma. This yields Lemma 5.7. O

Proof of Theorem 3.29. We first suppose that 4 = 0 and that the function o still
verifies hypotheses given in Theorem 3.29, except H; and H,.

As mentioned in Sect. 3.3.3, we still have to prove Theorem 3.34. Suppose for
the moment that it is done, then Remark 3.30 is true. So if we consider Y = K(by)
where K is as before, a solution of the ODE (3.29), then

1
M,(Y) = [ Z (2 OF - [ horw) [o(Y(u))]kdu]

E[IN ‘]

stably converges toward

1
MO = o [ BV @) oY @) a7 ).

To complete the proof of this theorem, we have to consider model (3.28) where p is
not necessarily identically null. As in Berzin and Leén (2008), with the additional
hypotheses (H1) and (H2) on 1 and o we can apply the Girsanov’s theorem. That is,
let F' be a continuous and bounded real function then applying once again equality
(5.35)to G = F o M,, one gets

E[F(M,(X))] = E[F(M,(K(bn)))A].

Using the property of stable convergence (see Aldous and Eagleson 1978) and last
convergence, we have

E[F (M, (K (b)) A] —— E[F(M(Y.W)) A].
and using again Girsanov’s theorem, we have
E[F(M(X.W))] = E[F(M(Y.W))A],

that yields Theorem 3.29. O
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Proof of Theorem 3.34. We prove Remark 3.35 page 57 in the case where f € C*,

4

’f(x)’ < P(|x]), H > % and for general function g € L*(¢(x) dx), with Hermite

rank > 1 and we suppose that A, is not an empty set (see Sect. 2.3 for definition).
Furthermore, we will suppose that g is even, or odd with Hermite rank greater than
or equal to three. A proof similar to the last one could easily be given to obtain
the other cases described in the Remark 3.35. It is sufficient to adapt forthcoming
Lemma 5.9 to the new hypotheses that is proved in Chap. 6.

The proof will proceed in several steps. Let us define

n—2

T.(f) = % S b (:)g(Aubi ().
i=0

On the one hand, we prove in forthcoming Lemma 5.10 that (b Hs Sg,n) stably
converge to (b H,0g W) We will show this lemma after the proof of this theorem.

On the other hand, we will consider a discrete version of 7, ( f), defining

Ln(é”rl)J_z

m

m—1
T =Y fba— 3 g(bubu(i)).
= S

The stable convergence of (by, S, ,) implies that

m—1
() —= T () =0, Y fbu o) (WEEH - W ().
£=0

Furthermore, it is easy to show that 70" ( f) is a Cauchy sequence in L?*(£2). Using
the asymptotic independence between by and W, it follows that

1
T o [ 1Bt ),

To conclude, that is to prove the convergence of 7,,( f), it is sufficient to prove the
following Lemma 5.9 for which a proof is given in Chap. 6.

Lemma5.9. Let f € C*

}(x)‘ < P(x|), H > % and function g €
L*(¢(x)dx), let g(x) = Z;:‘Xf gpHp(x). Furthermore we will suppose that g is

even, or odd with Hermite rank greater than or equal to three, then

lim  lim E[T,(f) - T (/)] = 0.

m——+00 n—>+00
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Proof of Lemma 5.10. We only make the hypothesis that g € L*(¢(x)dx), with
Hermite rank > 1 and we suppose that A, is not an empty set (See Sect.2.3 for
definition). We shall prove the following lemma.

Lemma 5.10. For0 < H < 1,
(1)

Sg,n m Og w.
(2) Furthermore,

(bH, Sg,n) m (bH,CTgW) ,

where W is a standard Brownian motion independent of by.
The convergence in (1) and (2) is stable.

Remark 5.11. 1f g € L*(¢(x) dx), with Hermite rank > 1, then for all ¢ such that
0 <t <1, one has E[Sg,n(t)]4 <C.

Remark 5.12. In Theorems 3 and 2 of Corcuera et al. (2006, 2009) and in
Theorems 1 and 2 of Le6n and Ludefia (2004, 2007), the result is proved for an
even function g or for the function g(x) = |x|” —E|N|”, p > 0. In both cases,
as mentioned in Remark 2.8, page 41, the result stands for values of H such that
0< H < %, since these authors consider the first order increments of by . However,
in Theorem 3 of Le6n and Ludefia (2007) working with second order increments of
the discrete sample by, the authors obtain analogous results for the whole interval
0 < H < 1, considering function g such as even polynomials or polynomials of
absolute values.

(1) FormeN*and0 =1t <t; <t <--- <ty <l,lett = (t,...,t,) and

Se(nt) =" i (Sen(ti) = Sga(ticr)) .

i=1

where
d;
o = s
\/Z?Ll d?(t; — ti—1)
while dy, ..., d, € R. We want to prove that

Se(nt) =5 N(0; 2.
n—>oo
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M
We consider Sg,, (nt) where gy (x) = Y g¢H(x), where M = 1 is a fixed
(=1
integer. We will prove that

Law 2
SgM(I’lt) m N(O,UgM).

As in the proof of Theorem 3.4, the chaos representation of the fractional
Brownian motion increments (see (5.3)) allows us to write S,,, (1) in the
multiple Wiener chaos:

M
Sew(nt) = > Io(h{"™"),

(=1
where hf{"’t) is
m 1 I_VlfiJ—Z
hfz"”(xl,...,m=gmza,-ﬁ Yo P00 SR ),
i=1 j=lnti—1]-1

and where 1 is given by (5.5) and £ by equality (5.4).

First, let us compute the variance of Sg,, (nt).

M
1 ; 2
E[S,,, (1) = ZE/Z ‘@ 't)(Al,...,AZ)‘ ... dig
(=1 /R

M m m 1 |_n liy J -2 |_n tin -2
=Ygy Yaen | > Yo puli—h)

t=1 n=li=l h=|nty—1]=1 ja=|nti—1 | -1

Now for £ = 1,

L] -2 [ntj]-2

% Z Z Pk (s1 — s2)

si=[nti—1]-1 SHp= |_ntj_1J—l

+o00 ’
(t —tie r), ifi = j;
o v 2 Pu / (5.38)

0, otherwise.
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A proof of the latter convergence is obtained in the case wherei = j by considering
Lemma 5.1 page 78. To prove it for i # j, once again, we use Lemma 5.1, showing
thatfork =2, 1 3™ "k |pu(a — b)| tends to zero as n goes to infinity. Thus

a=0
m M +o0o
HETOOE[SgM(nt)]Z = (Zaf(ti —z,-_l)) (Zz!gf > pﬁ,(r)) =02,
i=1 =1 r=—00

To conclude the proof of (1), Theorem 1 of Peccati and Tudor (2005) is used and as
in the proof of Theorem 3.4, it is enough to prove that for fixed £ and p, £ = 2 and
p=1,....,4—1, lim B, =0, where B, is

n—>—+o00
By = /
R2(t—p)

remembering that we defined the p-th contractions ® , in (5.6).
Now we compute B, and we get

2
hf{n,t) ®p hg"t)(kh . ,l(—wﬂl’ R ,M(—p)

dll . dl({_p d,ul ey d,ug_p,

m m m m

By = ('t Y Y3 a0, x

i1=1lix=liz=1lis=1
LntilJ—Z |_nt,-2J—2 |_ntl-3J—2 |_71ti4J—2

S D S VD S

/1=|_Vlfi1—1J—1 j2=|_nti2—1J—1 Jj3= |_nti3—1J—1 j4=|_nfi4—1J—1
{— . . {— . . . . . .
PH PG — 2Py P(js— j4)PZ(jl - j3)/01p1 (2 — Ja)-

Using the same arguments as in the proof of Theorem 3.4, it is easy to see that for
N large enough, one has

lim B, < CN*1—4
n—>o0

andthen lim B, = 0.

n—>+00
Hence, we proved that

Law )
SgM(nt) m n(O,UgM ,

where t = (t1.....1y) and Sg,, (1) = Y i (Sgyn(t:) — Sgpyn(ti=1))-

i=1
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+o0
. 2 '
Furthermore, using that )" g »P!

—> 0, we can prove that
p=M+1 M—+o00

lim  supE[S,(nt) — S,,, (n)]* = 0,

M—>+00 >
and since
) Law )
72(0, GgM) m 72(0, Gg)’
by applying Lemma 1.1 of Dynkin (1988), we proved that
Law 2
Sg(nt) —— N(0; 0,).
n—>oo

To obtain assertion (1) about the convergence of process S, ,, We just have to prove
the tightness of the sequence of this process. We need the following lemma.

Lemma 5.13. Let G a function in L*(¢(x) dx) with Hermite rank m = 1 and let
{Xi}52, a stationary Gaussian sequence with mean 0, variance 1 and covariance
function r such Y72 |r(i)|" < +o0.

Forl =1,

1 < )
E[f ZG(X,-)] <C.

i=1

Proof of Lemma 5.13. Since Y ;2 |r(i)|" < 400, V0 < & < 1,3j = j(e) €N,
suchthat Vi = j, |r(i)| < e < %
Leti*=1—|1/j]j. We have

I i* |L/j] J L7/j1-1
Y GX)| <D DY GXiwp) |+ D | D GXigwy)|-
i=1 i=1 | k=0 i=i*+1| k=0

Jensen’s inequality leads to

I 4 i* (l1/j]
(ZG(X,-)) <8 (i*)SZ ZG(Xi+kj)

i=1 i=l1 k=0

J L7/il-1

+G =i D0 Y] 6w

i=i*+1 k=0
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Consequently
I 4 i* L1/j) !
E (ZG(X,-)) <872 {Y E[| D] G(Xigsy)
i=1 i=l1 k=0
j L1/j1-1 !
+ Y E[| D GXigxy)
i=i*+1 k=0

First, note that by Proposition 3.1 (ii) of Taqqu (1977), since 0 < ¢ < %, we get G €

G4(e) (the notation Qp (e) for p = 2 can be found in Taqqu (1977, Definition 3.2,
p- 209)).

The process {X;1«j,k = 0} is e-standard Gaussian, see Taqqu (1977, Defini-
tion 3.1, p. 209), with covariance function r(k;). Applying Proposition 4.2 (i) of
Taqqu (1977) withm > 1, p = 4, G € Gy(e), N = |I/j] + 1 and also with
N = [1/j] we get

1 4 o) 2
E (Z G(Xi)) < 8K (e G)(I/j] + 1) (Zv’"(km)
i=1

k=0

0 2
<8/°K(e.G)(I + j) (Z |rm(i)|)

i=0

So, we showed, since I = 1, that

1 4 o]
E[% ; G(Xi)} < 8j2K(e. G)(j + 1’ _Ir" ()™

i=0

To complete the proof of this lemma, it is sufficient to note that the right-hand side
expression of the previous inequality is uniform in 7, that ¢ is fixed and that j(g) is
consequently a fixed integer. O

Now for any ¢t > s, we have

— 4
\nt]—2
4 1 .
E[Sen() = Sen)] = —E| Y g(Aubr (D))
Li=lns]—1
L [e=tos) 4
= —E Zl gAMby ()|

since the process by has stationary increments.
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We apply Lemma 5.13 to ¢ € L*(x)dx), m = 1 and to the process
{A,bp (i)}, with covariance r = py satisfying Y i, |pu (i)| < +o0.
The last finiteness comes from equivalence (6.2), page 116.
We get

2
E[Sent) — Sgan(9)]* < C (W:ﬂ) . (5.39)

Now, let fixed 1} <t < 15.
Iftp—1t = %, the Cauchy-Schwarz inequality implies that

E[(Sg,n (IZ) - Sg.,n (t))z(Sg,n (t) - Sg,n (tl))z]

<cC (Lntzj - Lntj) (Lntj - Lntlj)
n n

<C (M) <C( _tl)Z'

Now, if t, — 1) < % two cases occur. If 7; and #, are in the same interval, that is
t1,1p € (5,51 then 1; and ¢ are in the same interval, and S, (1) — Sg. (1) = O.
Otherw1se t; and 1, are in contiguous intervals and in this case, then #; and ¢ are in
the same interval, or ¢ and ¢, are in the same interval. Then in both cases, we have
(Sg,n (1) - Sen (tl))(Sg,n () — Sen (1)) =0.

The tightness of process S, , follows by Theorem 15.6. in Billingsley (1968) and
assertion (1) follows.

Note that if g € L*(¢(x)dx), with Hermite rank greater than or equal to one,
the bound given in (5.39) for s = 0 implies that forall 0 <7 < 1, E[S,,,(1)]* < C
Consequently, Remark 5.11 follows.

+o00 400
(2) We can suppose that g(x) = > g¢Hy(x). Indeed, since > pp(r) = 0, it
[n]—2 =2 =
follows that 7 Z A,by (i) tends to zero in L? as n tends to infinity.

Let co,...,cm, be real constants. As before, it is enough to establish the limit
distribution of

Y cibu(ty) + Sgy (1),

j=0
As in the proof of part (1), Theorem 1 of Peccati and Tudor (2005) allows us to
conclude the convergence of finite dimensional distributions of (by(¢), Sg,(2)).

m
Indeed it is enough to remark that ) ¢;by (¢;) belongs to the first Wiener chaos and
j=0
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then is a Gaussian random variable with finite variance and that S,,, (n¢) belongs to
the superior order one.

Furthermore the tightness of the sequence of processes (by, S, ,) follows from
that of the sequence of process Sg, proved in part (1) and implies convergence
of (b, S ). Thus assertion (2) of Lemma 5.10 follows. Then, this convergence
ensures stable convergence in part (1) and (2) of this Lemma (see Proposition 1 (B)
of Aldous and Eagleson (1978)). O
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Chapter 6
Complementary Results

6.1 Introduction

In this chapter, we prove seven lemmas required in the detailed proofs of the results.
The first two are related to the functional estimation seen in Sect. 5.3.3. Indeed, in
that section we explained that in the case where i = 0, the solution of the SDE
is X(t) = K(by(t)) where K is a solution of an ODE and thus we assert that
proving results enunciated in Remarks 3.28 and 3.30 is equivalent to prove them for
the fBm. These lemmas give in an explicit manner how the increments of X can be
approximated by those of the fBm. The proofs required the use of the modulus of
continuity for the fBm and other results proved in Sect. 5.2.1.

The third lemma is a straightforward calculation of the asymptotic variance of the
random variable defined as a linear combination of variables of the type Sg¢,,(1),
used in Sect. 5.2.2.

The fourth lemma is concerned by Sect. 5.2.3 where we link ﬁk(n) with ﬁlog. In
this lemma we proved that the corresponding functionals are equivalent in L. For
this aim we show that the Hermite coefficients for function i"((}:)) converge to those
of function gie,.

In the fifth lemma, we prove the almost sure equivalence between the second
order increments of X and of o times the increments of the fBm, referred to in
Sect.5.3.1. Giving the explicit solution for each of the four models and using the
modulus of continuity for the fBm lead to the proof.

A similar lemma is then demonstrated in the case where we do hypotheses
testing seen in Sect. 5.3.2 replacing o by o, and the techniques are the same that
for previous lemma.

Finally in last and seventh lemma, we get back to functional estimation seen in
Sect.5.3.3 where p is supposed to be null and where we want to prove the stable
convergence for a functional of the fBm. This lemma is a step in this progression.
More precisely, we prove the L? equivalence between the looked for functional

C. Berzin et al., Inference on the Hurst Parameter and the Variance of Diffusions Driven 109
by Fractional Brownian Motion, Lecture Notes in Statistics 216,

DOI 10.1007/978-3-319-07875-5_6,

© Springer International Publishing Switzerland 2014
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and its approximation. That is done using regression techniques and straightforward
calculus of expectations.

6.2 Proofs

Proof of Lemma 3.31. Recall that H > l u = 0and 0 € C'. Using that
X(t) = K(bu(t)), fort = 0, where K 1s the solution of the ODE (3.29), for
i=0,1,...,n—2one has,

nt! i+2 i+l n'! itl
2,X(0) = 2— (Kbu (F2) = Kb (1)) + 2— (Kbu (1) = Kbu(£))
O2H O2H
The Taylor expansion for the function K gives
‘ 1 nf ‘ .
A X() = o (XN Anbi () + 5 {(on(52) = bu(5h)?

R (b (1) + 6, [byr(£42) — bH(%)])}

. 2
+%n_ { (bH(l_) - bH(%))
O2H n
R (b () + 6, [bu (L) — zm(%)])} ,

where 6 (resp. 6,) is a point between by (%) and by (%) (resp. between by (%)
and by (%)).
Using the modulus of continuity of by (see (5.37)), one has

2,X(0) = 0(X(;)Anbi (i)
+[o(X(E) — o (X(EN] Anbr (i) + Ous (5)77).
Using the Taylor expansion of K, one obtains
o(X(Hh) —o(X(£) = K(bu () — K(bu (L))
= (bu() —bu(D)) K (bu(L) + 6 [bu () —bu (D))
where 6 is a point between by (+) and by (“£1).

Once again, using the modulus of continuity of by, we finally get the
result. a
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Proof of Lemma 3.32. Let
n—2
Ay = 75 DX E) [ X O = [o(XEDT 1 Aubu ()]
i=0

Recall that 4 = 0,0 € C' and H > % so that X(¢) = K(bu(?)), fort = 0, where
K is the solution of the ODE (3.29).
We will prove that almost surely, for all continuous function / and for all real

k=1, A,(h) = O((H)%) = o (Lf) for § small enough.
On the one hand

[4uh)] < € @) |14, X)" 1 = [0 0 XG)*T [(Aubi)* ] -

On the other hand, we apply the second part of inequality (5.26) to f = (A, X)*
andto g = (0 0 X(5))*(A,bp)*. Thus, using Lemma 3.31 and Corollary 3.3, we
finally get
|4,()] < € @) llag l [NCAbm) IE" + a1 ]
< @G (C) + (1))
< C@)(P)",
that yields lemma. |

Proof of Lemma 5.1. We need to prove the following lemma. For fixed p,k,£ €
N*, let us denote by §x ¢ the expression P/f,z-

Lemma 6.1. Forallk,{ € N*,

kn €n In In
DN Skalti —k) =Y (n—|5]) Skellr) + Y Seulkr)
i=0 j=0 r=0 r=0

7€N

In -1
+ 3 (ln = 5]+ 1) Seathr) + (n Zaz,k(kr)) T2y

r={ r=1

k=1 [ £L(n—1) Ln—=1)

Y DD (=5 =) Seakr + L)+ Y Stk + £s)

=1 r=0 r=0
7€N

{—1 In
=+ (n Z(Sl'k(kr_ Es)) 1]{[;2} =+ Z (Ln — %J =+ 1) 8¢,k(kr— @S) 1]{1{;2}.

r=1 r={
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Proof of Lemma 6.1.
kn  {n kn {n
DD Selti =k = 8, (i — ),
i=0j=0 i=0j=0

since for x € R, & ¢(x) = 81’%(%).
Leti = kz+s,with0 <s <k —1. We get

kn {n n k—1n—1 {n
ZZSHW—@:ZZS 4(zz—])+( ZZslﬁ(&—/Jr 9))’[I{k>2}
1 j=0

i=0 ;=0 z=0j=0 s=1z=0

=85+ 5.

We study S; and S, separately.
k=1
We suppose k = 2, in this case S, = Y Ty where fors = 1,...,k — 1,

s=1
n—1 {n
T, = ZZSL%@[ —J + £9).

i=0 j=0

Now, we study T for fixeds, | <s <k —1.

n—1 {i n—
=Y Y6 (i =+ s)+Z Z 8, ¢ (ti =]+ {s).
i=0 j=0 i=0 j=Lli+1

Making the changes of variables » = £i — j in the first summation and r = j — £i
in the second one and using that 81’% (—x) = 8%1 (x), one gets

n—1 4 n—1€(n—i)
To=) ) St +i)+D Y 80,0 —59)
i=0 r=0 i=0 r=1

Inverting the indices of summation for the first summation, one obtains

L(n—1) n—1 Ln—1) n—1

SIS DR DD T G 1)

Cegl i=5 %:’(\)‘ i=[7]+1
n—1 {—1 n—1L(n—i)

+ (Z Y 8- gs)) Tesn+ ) Y 80,0 —19)
i=0r=1 i=0 r=¢{

and then
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L(n—1) L(n—1)
Is = Z (n— L%J)Sl,f(” + %s) + Z (n—17]- 1)51,§(r + %s)
= 7
—1 n—1 L(n—i)
+ (n ZS%I(r - és)) Te=2y + Z Z 5£’1(r - fs).
r=1 i=0 r={

Inverting the indices of summation for the last summation, ensures that

Ln—1) L(n—1)

To= Y (=[5 =180 +)+ D 800+ 9
r=0 r=
7eN

-1 tn [n=%]
+ (n Z%,l(" — %S)) Tz + Z Z 8%1(}’ — FS)

r=1 r={ i=0

Finally, we proved that

Ln—1) Ln—1)
=Y (n—|}]-1)8 G L)+ Z 8¢ (r + Ls)
r=0
(eN

(nZé’ﬁl(r——s)) 11{£>2}+Z(L J+1)3“(r Ly),

Thus using that for x € R and k, £ € N*, 6 ¢(x) = 81%(%) = 8%’1(%), we obtain

k—1 k—1 [{(n—1)
= ( TS) Tz = Z (n — L%J — 1) Sk o (kr + £s)

s=1 s=1 r=0

tn—1) -1

+ Z Si.o(kr + £s) + (ﬂ > Suhr — 55)) Tiez2y
=0
eN

r=1

4

+ Z Ln— J—}-l Sgk(kr—ﬁs)):| k=23

Now,

n n n—1
ZZS (61—])—225 HUEIEDY Z 8 ¢ (i = ).

i=0 j=0 i=0 j=0 i=0 j=li+1



114 6 Complementary Results

Making the same changes of variables as in the computation concerning 7§, we
obtain

tn tn
S = Z (n - L%J) Sy ¢ (kr) + Z Ok.o(kr)
=0 2=
In {—1
+ Z ([n = 7]+ 1) 8exlhr) + (Vl Z5£,k(k")) Tie=2
r=t r=1
and Lemma 6.1 follows. O

Using Lemma 6.1 and the fact that p; ¢(x) is equivalent to C |x |2H_4 for | x| large
k=1 +oo
enough (see the proof of Lemma 3.8), so that > > |r||8k.c(kr + £s)| < +o00,

s=0r=—00

we get
) (tn—2)
n_ly}rloo - ,Zg sz Sk.e(Li — kj)
—1
= ng e(kr) + 254 K (kr) + (Z 8¢ k(kr)) Tiez2
r=0 r={ r=1
k=1 [+oo —1
+ |:Z (Z Sk.e(kr + £s) + (Z 8¢ (kr — ZS)) Te=2y
s=1 \r=0 r=1
+o00
+ ) Sexlhr— ES)):| D=2
r={
k—1
Z (Z Sk ((kr + ES) + Z 8¢ k(kr — es))
s=0 0 r=1
Using that for x € R, §x¢(x) = 6¢x(—x), one gets Lemma 5.1. O

Proof of Lemma 5.3. Lemma 3.8 page 45 gives the asymptotic behavior of
E[Sgiogn (1)]?, that is

E[Sg. n(l)] Oy (6.1)

Now, (3.7) in Corollary 3.10 gives the expression of the Hermite coefficients,
82pk(n)> O i(ny, let
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]_[ (k(n) —2i),

82p.k(n) =

(2 "

and as in the proof of Lemma 3.8, Mehler’s formula (2.3) allows us to compute
E[S(n)]?, and

-2
Z G —J)

S| =
i
I\)

EISm)* = Z(g,if’(k‘)”’)< P!

On the one hand, by Lemma 5.1,

n—2n-=2
lim —ZZp (i—-Jj)= Z P (r).
n—>+oonl =0 =0 r=—00

Furthermore, the expression of the Hermite coefficients, g2, 10¢, Of function gje is
given in (3.12) in Corollary 3.13 and we observe that
=1
82 p.k(n) 1
— —2i og-
Ky e Gt L1020 = e

On the other hand for large enough n

82p.k(n)
k(n)

= & ),H(zz k() < (2 il 1‘[(21) |82p.10e]-

Now we consider the following inequality. Let f be an even function, then for n >
1, one has

Z;ZOf(z -j) = 2Z(n — (i = 1) f() + (1 + 1) f(0),
=0
and then
ZOZOf(z —j)|<2n Z £ @)
=0
Thus we obtain the following inequality
12 i

A ) <22)p <z>)<22|pH(z)|<+oo

i=0 j=0
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The last finiteness provides from the fact that, as for pi ¢ in the proof of Lemma 3.8,
it can be seen that py (x) is equivalent to

—1/(4=22")|x)*""* HQH —1)(2H —2)(2H —3) (6.2)
for large values of |x|. Thus |pg (x)| is bounded from above by C |x|*~*.
Since ||g10g||§’¢ < 400, we finally proved that

00 8log*

E[S(n)]? = o’ (6.3)

To achieve the proof of Lemma 5.3, we compute E[S(n)Sg,,.(1)] by Mehler’s
formula and we proceed as for E[S(n)]? to obtain

E[S() (D] =2 o2 (6.4)

8log”’

(6.1), (6.3) and (6.4) give the required result. O

Proof of Lemma 5.4. We shall proof this lemma for the third model. The other
models could be treated in a similar way.

Fori =0,1,...,n — 2, one has
H 2 . 4
rxg) ="— [{exP (_“ o [bu (i) —bH(’;)]) _ 1} _
O2H n

2 {exp (% + o [bu(E) - bH(g)]) _ 1}] .

By the Taylor expansion of the exponential function one gets
i ' n' [2p i+2 i
LX(0) = 0Awby (i) + m— | — + 0 (bu(F2) —bu(L)) | x
20’21-1 n n n

2 . .
exp (9 [7“ + 0 (b (2) — bH(’;))D -
n" i+1 inT?
o[ o b —ba(D)] %
[H Ly _po(L
exp (8 [ = + o0 (bu (D) — b (1) ]).
with0 <0 <1and0 <6’ < 1.
Using the modulus of continuity of by (see (5.37)), one obtains

I, X(i)=0A4,bp(i)+ a,(), and
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jan)] < C@) [(H)" + (2)7"]
<C@ @)™
Remark 6.2. For the fourth model, we prove that
2, X(0) = 0X(£) Apbp (i) + Ous (HT 7).

If u and c are of the same sign or if © = 0, then |X(”14)| = |c|exp (—a(w)) > 0,
where a(w) = o sup;¢jg 17 1bu () (@)].
Thus I3, X (i) = 0Aubp (i) + Ous.(1)HF).

|

Proof of Lemma 5.6. The proof is based on the proof of Lemma 5.4. It consists in
bounding the expression a, (i) appearing in this lemma, with o, and pu, taking the
role of o and p, using the fact that both are bounded. O

Proof of Lemma 5.9. First we compute E[T},(f)]?. In this aim, we decompose this
expectation into two terms S| and S, where

-2
Si= Z () £ b (E)g(Aubi ) Aibu ()]

5 = %ZE[fz(bH(gngz(Aan(i))].
i=0

Let us consider S;. We fix i, j € {0,1,...,n —2},i # j and we consider the
change of variables

bu(L) = Zi1aG. j) + At ) Anbr () + Az (i, j) Anbr (),
biu(L) = Zan(i. j) + Bin(i. j)Anbr (i) + Ban(i. j) Aubu (),

with (Z1, (i, j), Z».,(i, j)) a zero mean Gaussian vector independent of
(Aan (l), Aan (/)) and

Elby (5)Anbu ()] = pu (i — j)Elbu () A, bH(j)]

Al,n(ivj)_ l_pH(l_j)
Aol ) = Elbu(5)Anbr ()] — puli — j)EDbH (L) A, bH(l)]
2t 1= 03—

Two similar formulas hold for By ,, (i, j) and B, , (i, j).
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A straightforward computation shows that since |[i — j| = 1, then (1 — p%{
(i—J)) = C > 0andthen fori # j we get

max [ A, (i, /), B (i, )] < cnt. (6.5)

Writing the Taylor expansion of f one has,

f®u))

3
1
Z 1 Zun ) A ) Anba () + Aanis ) Abi ()]

}(el,n(f, INALG. ) Dbt (D) + Agn (. ) Aubr ()],

#l»—t

with 0, ,(7, j) between bH(%) and Z,,(i, j).
A similar formula holds for f(by (%)).
We can decompose S as the sum of 25 terms. We use the notations J;, ;, for the

corresponding sums, where j;, j» = 0, ..., 4 are the subscripts involving 9” and jj2”
We only consider J}, ;, with j; < j>. Then we obtain the following

(A) One term of the form

n—2

Joo =~ S ELAZunlis ) f(Zon (i, DI (Arbi ()& (Duba )]
i,j=0
i#j

S

We will denote by a, (i, j) = E[f(Z1,(i, J)) f(Z2.,(i, j))] and let

+o00
Bk) = Elg(Aubu (0)g(Aubu (k)] =) & p'of (k).

p=1

With these notations and making the change of variable (i — j) = k in last
summation one obtains

n—2 +o00
Joo = (%ZE{fz(bH(,%))]) > Bk

i=0 k=—00
k#0
1 n—2 i )
+ (an(i,i —k) —E[f2(bu(£))]) B(k)
i=0k=i—n+2
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n—2 i—n+1 n—2 400

——Z > E[f2bu(t ))]ﬂ(k)——z > Ef2(bu(2)]Bk)

i=0k=—00 i=0k=i+1
=M+@+BG+®.

Since Zk__oo |B(k)| < 400 (see equivalence (6.2)), it is obvious that (3) and

(4) tend to zero when n goes to infinity. Furthermore using inequality (6.5),
; H

k) —E[f*(bu($))]] < C |£]7. Now,

since H < 1, Zk__oo k| |B(k)| < 400 (see again equivalence (6.2)), so

that (2) tends to zero with n. Thus we proved that

+o0 1
Jim o= | 3 p0 ([0 E[f2<bH(u>>1du). (6.6)

k£0

(B) Two terms of the form Jy; = 0 by a symmetry argument: if L(U,V) =
10, X) then E[Ug(U)g(V)] = 0 for g even or odd.
(C) Two terms of the form

n—2

Joz = 5- ZOE[f(zln(z N Zanli, )]
ij
i#j
Elg(Aubsr ()8 (Aubr () (Biu(i. j) Anbi (i)
+Bou(i. ) Anbu ()]

Since |py(i — j)| < 1, g is even, or odd with Hermite rank greater than or
equal to three, then

Elg(Anbr ()g(Anbn () (Bia(is ) Anbu (i) + Bonlis /) Anbu ()]

<c (knie}); B,f’n(i,j)) 1w i — ).

1 n n +o00
Usi 6.5), and si — i — ) <2 )| < s t
sing (6.5), an smceng;m(z ] ;mon +00, we ge

Joo = 02"y = o(1).
(D) Two terms of the form Jy3 = 0 by a symmetry argument: if L(U,V) =

1(0, X) then E[(aU + bV)3g(U)g(V)] = 0 for any two constants a and b
and for function g even or odd.
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(E) Two terms of the form

-2

Joa = — Z ELS (Zia (i ) f (B 7)g (Db (1))g(Anbir (7))
1] =0
i#j

X[Bia(i, j)Anbr () + Bay(i. j)Anbr ()I'].
Therefore

|Joul < C— Z(makan(l ,))

lj =0
i#j

Finally using (6.5) once again, one obtains
Joa =0~ "Dy = o(1),

since H > %.

Using the same type of arguments as for (C), (D), (E) we can prove that the other
terms are all o(1). Thus using equality (6.6) we proved that

+o0 1
Jin si=| 30 g | ([ B Gawna).

k=—o00

k£0

Let us now consider S,. Similar computations, holding i fixed and doing a
regression of by () on A, by (i), give that

1
i 52 = p0) ([ L Gn] o)
Thus we proved that
1
Jim EITCOF =02 ([ Bl eut)an). 67)

Now let us compute E[Tn(m) (f)]?. We decompose the last expression into two terms:
S1 + S», where
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= > 13 > Elfbu(R) f(bu(2))x
e =l -
g(Anbu(0))g(Anbu ()],

and
o 22 2

=> = Y Y ElOu(E)g(Abui)g(dibu ()]

=0 i1 =[]

First we look at the first term. For fixed £; # {; and i, (in this case nec-

essarily i is different from j), we use the regression of (bH(%),bH(fn—z)) on
(Anby (i), Ayby (j)). We can prove in the same way as before that

§|>—A

m—1
Jim Si= 3 E[f(br () S (br(Z)]
£1,6,=0
b#l

[0 o 2 |
i 1 —o
Jim )7 Yo Bli—j)=
[ [
(last equality follows from convergence seen in (5.38)).
Then for the second term S,, for fixed £,i, j, using a regression of bH(ﬁ)

on (A,by (i), Ayby(j)) if i # j and on A,bg (i) otherwise, as before similar
straightforward calculations show that

1 m—1
. (m) 2 _ g _ 2 2 ¢
lim E[T"( = lim S, =o; (E;E[f (bH(;m),
and then

lim lim E[T,"(f)]* = o, ( /0 l13[]f2(171L,(,4))]<;1,4). (6.8)

m—>+00 n—-+00

To conclude the proof of lemma we have to compute E[T},( f )T,,(m) (N1

E[T, (/)T ()] =

. . 2Ln(lrjl)J -
Y Bl bu(5) f(bu(2)g(Mnbu(i))g(Anbu ()]

=0 =]

m

~

Il

=)
§|>—A
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For fixed ¢, i, j, using a regression of (bH(%), bH(ﬁ)) on (Apby (i), Apbu(j)) if
i # j and on A,by (i) otherwise, as before similar straightforward calculations
show that

m—1 Ll
im E[T,()T," (/)] = og (Z / EL/ (bn () f (br ()] du) ,
0=0"m

so that

1
lim lim E[T,(/)T," (/)] = o ( /0 E[fz(bH<u))]du). (6.9)

m—>+00 n—>+00

(6.7)—(6.9) yield lemma. O



Chapter 7
Tables and Figures Related to the Simulation
Studies

7.1 Introduction

In this chapter we collect all the graphics and tables to which we refer in the text.
They are presented to help the understanding of the different comments concerning
the simulation results.

First, we display three graphics showing the empirical distribution of H,
obtained with a resolution of 1/2,048-th for different values of H .

Then, in Tables 7.1-7.5, we give the empirical mean and standard deviation of
the estimators of H in the case of a fBm. Graphical representations are presented
on pages 130-131.

Tables 7.6 and 7.7 present some results concerning the estimated covering
probability of the confidence intervals we developed in Sects.4.5.1.3 and 4.5.1.4,
pages 67 and 70.

A series of Tables 7.8-7.15, followed by a series of graphics, Figs.7.4-7.11
present results about the simultaneous estimation of A and o for models excited
by an fBm.

Table 7.16 gives the observed empirical level of the test on o. Figures 7.12-7.19
present the empirical and the asymptotic power function of the test.

C. Berzin et al., Inference on the Hurst Parameter and the Variance of Diffusions Driven 123
by Fractional Brownian Motion, Lecture Notes in Statistics 216,

DOI 10.1007/978-3-319-07875-5_17,

© Springer International Publishing Switzerland 2014
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Fig. 7.1 Empirical distribution of H, using a resolution of 1/2,048-th and £ = 5, for (a) H =
0.05, (b) H = 0.50 and (¢) H = 0.95. Superimposed are the normal densities with empirical
means and standard errors
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Fig. 7.2 3D-diagrams showing the difference between H and the empirical mean of A, for values
of k = 1,...,4 and H,o, given H = % The maximum number of observations of the process
used in estimation is 271/, j =0,...,4. The number of points in the regression, £, varies from 2
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Fig. 7.3 3D-diagrams showing the empirical standard error of Hy for values of k = 1, ..., 4 and
Hog, given H = % The maximum number of observations of the process used in estimation is
27+, j = 0,...,4. The number of points in the regression, ¢, varies from 2 to 5. Note that the
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Table 7.6 Estimated
covering probability of the
cgnﬁdence inter\,{d based on

Qo.025(H) and Qo.975(H)

Tables and Figures Related to the Simulation Studies

H ¢ 128 256 512 1,024 2,048
005 2 09537 0.9529 0.9498 0.9502 0.9536
3 0.9587 0.9510 0.9468 0.9599
4 0.9546 0.9514 0.9521
5 0.9532 0.9512
0.2 2 09473 09521 0.9468 0.9459 0.9498
3 0.9457  0.9455 0.9439 0.9564
4 0.9448 0.9463 0.9488
5 0.9476 0.9486
0.3 2 09444 09526 0.9536 0.9436 0.9507
3 0.9468  0.9482 0.9446 0.9550
4 0.9461 0.9467 0.9500
5 0.9465 0.9478
0.4 2 09392 09510 0.9479 0.9429 0.9539
3 0.9375  0.9458 0.9463 0.9552
4 0.9387 0.9442 0.9496
5 0.9443 0.9479
0.5 2 09386 09520 0.9544 0.9434 0.9569
3 0.9393  0.9456 0.9469 0.9510
4 0.9417 0.9458 0.9498
5 0.9433 0.9473
0.6 2 09395 09514 0.9505 0.9463 0.9591
3 0.9378  0.9473 0.9493 0.9508
4 0.9423 0.9484 0.9508
5 0.9417 0.9505
0.7 2 09389 09521 09515 0.9476 0.9628
3 0.9390  0.9467 0.9525 0.9522
4 0.9395 0.9511 0.9484
5 0.9420 0.9501
0.8 2 09428 09509 0.9546 0.9522  *0.9648
3 09432 0.9522 0.9540 0.9548
4 0.9418 0.9518 0.9516
5 0.9435 0.9509
095 2 09442 0.9571 0.9577 0.9568  *0.9692
3 09426  0.9571 0.9609 0.9539
4 0.9372 0.9529 0.9540
5 *0.9362 0.9517
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Table 7.7 Estimated
covering probability of the
confidence interval based on
the normal approximation
using estimated values of 8,;2

133
n

H L 128 256 512 1,024 2,048
005 2 09606 0.9555 0.9493 0.9504 0.9588
3 0.9585 0.9514 0.9574 0.9549
4 0.9573  0.9528 0.9531
5 0.9565 0.9497
0.2 2 09521 0.9517 0.9488 0.9486 0.9577
3 0.9562  0.9502  0.9504 0.9527
4 0.9547  0.9516 0.9516
5 0.9549 0.9482
0.3 2 09493 0.9520 0.9444 0.9483 0.9569
3 0.9521  0.9498  0.9497 0.9501
4 0.9520  0.9505 0.9518
5 0.9546 0.9476
0.4 2 09481 0.9508 0.9421 0.9459 0.9582
3 0.9527  0.9486  0.9484 0.9479
4 0.9532  0.9503 0.9502
5 0.9531 0.9508
0.5 2 09519 0.9530 0.9479 0.9517 0.9600
3 0.9519  0.9452  0.9488 0.9473
4 0.9536  0.9485 0.9527
5 0.9554 0.9469
0.6 2 09462 0.9495 0.9450 0.9532 0.9615
3 0.9497  0.9512  0.9486 0.9487
4 0.9540  0.9541 0.9479
5 0.9539 0.9553
0.7 2 09475 0.9553 0.9482  0.9475 0.9609
3 0.9485  0.9533  0.9487 0.9460
4 0.9524  0.9508 0.9448
5 0.9538 0.9500
0.8 2 09516 09543  0.9489 0.9529  *0.9656
3 0.9573  0.9534 0.9519 0.9506
4 0.9568  0.9535 0.9514
5 0.9562 0.9510
095 2 0.9436 09617 0.9571 0.9568 *0.9663
3 0.9504  0.9620  0.9599 0.9543
4 0.9554  0.9588 0.9549
5 0.9542 0.9533
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Chapter 8
Some Pascal Procedures and Functions

In this chapter, we give the important Pascal procedures used in the simulation
studies: the uniform and the normal generators. These are the basic functions use in
the procedure DurbinSim written to simulate a trajectory of a Gaussian stationary
process. If the increments are simulated, the function Somme is used to get the
trajectory. We also give the procedure Model that control the simulation of the four
different models defined by a stochastic differential equation considered in the text.

e Minimal interface for the procedures and functions

unit SimLib;
interface
uses Math;
const
maxLag = 2051;
maxnObs = 2051;

type
CovSeries = array [0..maxLag] of extended;
TimeSeries = array [0..maxnObs] of extended;

{Variables for the random generators:)}
var {GenNorm}

ChoixDeU : integer;

Ul1,02 : extended;
{Var for the uniform random deviates:)

var zRanLongO, zRanLongl, zRanLong2, zRanLong3 : longint;

xRanLong : array[0..3] of longint;
function RandomLong: extended ;
function GenNorm: extended ;
procedure Model(var data : TimeSeries; nObs,k:integer;
—mu, c:extended) ;

sigma ,

procedure Somme(var data:TimeSeries; nObs:integer ;consNorm:-\

—extended ) ;

C. Berzin et al., Inference on the Hurst Parameter and the Variance of Diffusions Driven

by Fractional Brownian Motion, Lecture Notes in Statistics 216,
DOI 10.1007/978-3-319-07875-5_8,
© Springer International Publishing Switzerland 2014
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procedure DurbinSim(var g : CovSeries; n:integer; var data:\
—TimeSeries ) ;

implementation

e Simulation of an uniform random deviate

{ }

function RandomLong: extended;

{ }
begin

zRanLong0 := (53*xRanLong[0])+11;

zRanLongl (53*xxRanLong[1])+(15372*xRanLong[0]) ;
zRanLong2 := (53*xRanLong[2])+(15372*%xRanLong[1])+(6238%*~,
—xRanLong[0]) ;

zRanLong3 := (53*xRanLong[3])+(15372*%xRanLong[2])+(6238%*~,
—xRanLong[1])+(32*xRanLong[0]) ;

xRanLong[0] := zRanLong0 mod 16384;

zRanLongl := zRanLongl +(zRanLong0 div 16384);
xRanLong[1] := zRanLongl moed 16384;

zRanLong2 := zRanLong2+(zRanLongl div 16384);
xRanLong[2] := zRanLong2 mod 16384;

zRanLong3 := zRanLong3 +(zRanLong2 div 16384);
xRanLong[3] := zRanLong3 mod 64;

randomLong := (xRanLong[3]*0.015625)+(xRanLong~

—[21%0.9536743164 e—06)+(xRanLong[1]*0.5820766091e—10)+(
—xRanLong[0]*0.3552713679e—14);
end ;

e Simulation of a Gaussian random deviate

{ /
Function GenNorm: extended ;
{ /
Const
h = 0.2;

pTabl : array [0..31] of extended =
(0.000000000000000, 0.848737394964225, ~
—0.969988979312695, 0.855031042869243, ~
—0.994279264213257,
0.995158709535307, 0.932743754634730, ~
—-0.923403371004114, 0.727370667776133, ~
—-1.000000000000000,
0.691084371368807, 0.454074788431763, ~
—0.286649987773989, 0.173862006191176, ~
—-0.101317780262144 ,
0.056727659672807, 0.067274921216759, ~
—-0.160512263075615, 0.235534083919509, ~
—-0.285402151320344,
0.307583983879102, 0.303895853638795,
—0.279521143090448, 0.241484838292606, ~
—-0.197052219293015,
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0.152447607174975,
—-0.078528353915769,
—0.033469912108469,
0.020407207450255,
qTabl : array[l..15] of
(0.235644147632296,
—0.233909635992696,
—-0.200972968516138,
0.214421162303383,
—-0.274962971233747,
—0.289400264693972,
0.440456077050082,
—-1.150337583129480,
—-3.525616976860300) ;
yTabl : array[0..31] of
(0.000000000000000,
- —5.864218524383640,
——33.160537849598600,
—39.511299426995400,
—-—1.611080965596300,
—-0.000000000000000,
0.352574031666183 ,
—-0.919632723666887,
—-—0.022548077181653,
0.187972156661961 ,
—-0.961759474018363,
—-0.120122303237360,
1.311156305828320,
—-1.122406843612470,
—-0.750917799630877,
0.564026387403180,
—-0.382955882744852,
—-0.393074212064835,
0.195833532544245,
zTabl : array[0..31] of
(0.200000000000000,
—6.664218524383640,
—-34.960537849598600,
41.311299426995400,
—-2.611080965596300,
-0.000000000000000,
0.647425968333817,
—-0.280367276333114,
—-0.222548077181654 ,
0.212027843338040,
—-0.238240525981638,
—0.279877696762641,
0.288843694171683,
—0.277593156387527,
—-0.249082200369123,
0.235973612596820,
—-0.217044117255148,
—-0.206925787935166,

0.112113015387796,
0.052464259464977 ,

0.086393474024337) ;
extended =
0.206187909621112,
0.201150730180674 ,

0.216590069172608 ,
0.200000000000000 ,

0.697715013187760,
1.973987186479330,

extended =
—0.922203858334308,
—0.579605702892703

—2.573701533795050,
0.666403220927925,

—0.166350547221432,
0.357909693660353 ,

0.585574544365309,
—0.061620558605705

0.312686670456606 ,
0.536326958119326,

0.174746106806203,
—0.011073832304279

0.781087378084986)
extended =
1.322203858334310,
1.379605702892700,

2.973701533795050,
0.733596779072076 ,

0.366350547221432,
0.242090306339648 ,

0.214425455634692,
0.261620558605705 ,

0.287313329543394,
0.263673041880674 ,

0.225253893193797,
0.211073832304279,

N

N

N

N

N

N

N

N

N

>

N

N
N

N

N

>

N

N

>

>
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0.204166467455756, 0.218912621915015) ;

sTabl : array[l..16] of extended =
(0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4,
-2.0, 2.2, 2.4, 2.6, 2.8, 3.0);

dTabl : array[16..30] of extended =
(0.505033500668897, 0.772956831816995,
—0.876424317297063, 0.939211242857670,
—-0.986086815609050,
0.995154501317651, 0.986748014243518,
—-0.979211358622571, 0.972273916173362,
—0.965752340045163,
0.959530972921599, 0.953534096080232,
—0.947710264937407, 0.942023401989513,
—0.936447524949834) ;

eTabl : array[16..30] of extended =

1.6,
N
N

N
N

N
N

(25.000000000000000, 12.500000000000000, ~

—8.333333333333330, 6.250000000000000,
—-5.000000000000000,
4.063773106920830, 3.367796140933380,
—2.858295913510080, 2.469455364849140,
—-2.163169664002580,
1.915849911234920, 1.712111865433360,
—1.541494082536800, 1.396634659266460,
—1.272202427870800) ;
var
j: integer;
u, v, x, f: extended;
negatif , rejet: boolean;
Procedure interchanger (Var u, v: extended);

Var
t: extended;

Begin

t = u;

u = v;

vV o= t;
End ;

Begin

(M1}
u := 2 x RandomLong;
negatif := u < 1;
(M2}
u := u — trunc(u);
u := 32 % u;
j := trunc(u);
f i=u—j;

{Walker’s alias method is used}
If f >= pTabl[j] Then
Begin
x := yTabl[j] + f * zTabl[j];
End

N

N
N

N
N

Else If (j <= 15) Then {An uniform distribution}

x := sTabl[j] + f % qTabl[j]
Else If ((16 <= j) And (j <= 30)) Then

1.8,
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Begin {A wedge—shaped distribution}
rejet := true;
While rejet Do
Begin
u := RandomLong;
v := RandomLong;
If u > v Then
Interchanger (u, v);
x := sTabl[j — 15] + h * u;
{(U,V) is in the upper left corner of the unit square}
rejet := v > dTabl[j];
If rejet Then
rejet := (v > (u + eTabl[j] * (exp((sqr(~
—sTabl[j — 14]) — sqr(x)) / 2) — 1)))

End;
End
Else {Tail distribution is required}
Begin
rejet := true;
While rejet Do
Begin
u := RandomLong;
v := RandomLong ;
X = sqrt(9 — 2 x In(v));
rejet = ((u * x) >= 3);
End
End;
(M9}
If negatif Then
X = —X;
GenNorm := X

End;
o Simulation of a stationary process using the Durbin-Levinson’s algorithm

{ /
procedure DurbinSim(var g : CovSeries; n:integer; var data:\
—TimeSeries ) ;
{ }
Var
v : CovSeries;
phi : array[l..2] of TimeSeries;
temp : extended;
i,j,pred, actu : integer;
Begin
data [0] := O;
v[0] :=g[0];
data[l] := GenNorm*sqrt(v[0]);
phi[1,1] := g[11/g[0];
v[1l] = v[0]*(l—sqr(phi[l,1]));
temp := phi[l,l]*data[1];
data[2] := temp+GenNorm*sqrt(v[1]);
pred :=1;
actu :=2;
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for i:=3 to n do
begin
{ Computation of the ph[i—1,j] coefficients }
temp:=g[i—1];
for j:=1 to i—2 do
temp := temp—phi[pred,jl*xgli—1—j];
temp:=temp/v[i—2];
phi[actu,i—1]:=temp;
for j:=1 to i—2 do
phi[actu,j] := phi[pred,j]—temp*phi[pred,i—1—j\
-1
v[i—1]:=v[i—2]*%(1—sqr(phi[actu,i—1]));
temp:= O0;
for j:=1 to i—1 do
temp:=temp+phi[actu,i—j]*data[j];
data[i]:=temp+sqrt(v[i—1])*GenNorm;

j:=pred;

pred:=actu;

actu:=j
end ;

End ;
o Integration of the increments of a fBm producing a trajectory

{

}

procedure Somme(var data:TimeSeries; nObs:integer ;consNorm:\
—extended ) ;

{ /
Var i:integer;
begin
for i:= 1 to nObs do
data[i]:=data[i—1]+data[i];
for i:= 0 to nObs do
data[i]:=consNorm=*data[i];
end ;
e Simulation of the four models defined by an SDE
{ }

procedure Model(var data : TimeSeries; nObs, k:integer; sigma,
—mu, c:extended);

{

const debug = false;
var cumul,atom : extended;
i : integer;
begin
cumul :=0;
case k of
0 : begin
end ;
1 : begin
for i:= 0 to nObs do
begin
data[i] := sigmaxdata[i]+muxi/nObs+c
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end ;
end ;
2 : begin
for i:= 0 to nObs do
begin
atom := data[i]*exp(—mu*i/nObs)/nObs;
cumul :=cumul+atom ;
data[i] := sigmaxdata[i]+exp (mu*i/nObs)*(\
—sigma*xmukxcumul+c)
end ;
end ;
3 : begin
for i:= 0 to nObs do
begin
data[i] := exp(sigma*xdata[i]+mu*i/nObs)x*c
end ;
end ;
4 : begin
for i:= 0 to nObs do
begin
atom := exp(—sigma*xdata[i])/nObs;
cumul:=cumul+atom;
data[i] := exp(sigmaxdata[i])*(c+mukcumul)
end ;
end ;

end ;
if debug then for i:=0 to nObs do
writeln (data[i1]:24:20);
end ;
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