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Foreword

This book is devoted to some stochastic models that present scale invariance.
It is structured around three issues: probabilistic properties, statistical estimation
and simulation of processes and estimators. The interested reader can be either
a specialist of probability, who will find here a friendly presentation of statistics
tools, or a statistician, who will have the occasion to tackle the most recent theories
in probability in order to develop central limit theorems in this context. Both will
certainly be interested in the last part on simulation, which, to my knowledge, is
highly original. Algorithms are described in great detail, with concern of procedures
that is not usually seen in mathematical treaties. The theoretical part is also partly
original and finds its origin in previous work of the first and third authors, which
they improve and extend here.

Models under study are fractional Brownian motions (fBm) and processes
that derive from them through stochastic differential equations. Their use for
modeling financial markets is by now well established in the presence of long-
range dependence: fBm with parameter H larger than 1

2 may then be preferred
to Brownian motion. Other applications are not as standard as this first one, even
if some of them, such as the description of network traffic, have played a central
role in the development of the theory, as well as in its extension to multifractal
analysis. The diversity of applications will certainly develop with time. I had the
pleasure to work separately with the first and third authors on questions that arose
from the description of bone micro-architecture. The tissue of a bone may be seen as
a porous medium with some scale invariance, and these models by fBm have been
tested by different authors. Fractional Brownian motions can also be used to model
environmental phenomena, such as, for instance, diffusion of pollution in a lake or
a river. It is certainly difficult to predict which application will prove to be really
efficient for practical issues, but one has a strong motivation to develop theoretical
studies and statistical tools in order to identify parameters, which is done here.

Even if this book does not directly deal with applications, it could not have been
written if the authors did not have some of them in mind. Since the choice of terms
can be an indicator of their preferences, it looks significant that they call “local
variance” what is usually called “volatility”, by reference to the financial market!
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viii Foreword

They borrow this denomination from Mario Wschebor, who passed away recently
and marked deeply the first and third authors through longstanding collaboration.
The influence of Wschebor can in particular be felt through the presence of
harmonic analysis all along the book: the authors use what they call mollified
versions of processes and would be called filtered versions in signal processing.
Such approximations of processes are central in the work of Wschebor.

Most fields of mathematics are, more than ever these days, the object of collective
work. A huge number of mathematicians have contributed to the study of fractal
Brownian motions, stochastic integrals and properties of estimators of parameters.
It is one of the merits of the present book to rely on this very rich literature but
guide the readers in such a way that issues and proofs are easily accessible. They
let them profit from their intuition and vision but refer also carefully to previous
work. It is impossible to enumerate here all contributors, but two major scientific
figures, who also died recently, deserve to be mentioned first and foremost: Benoît
Mandelbrot and Paul Malliavin. Even if they were opponents in many aspects of
scientific life, and specifically concerning the use of Brownian motion in finance,
their contributions add up for the greatest happiness of specialists of such random
processes.

Everyone now agrees on the fact that Mandelbrot taught us how to see fractal
patterns everywhere in natural objects. FBm was first introduced by Kolmogorov,
but Mandelbrot is really the first to have seen how it connected with fractal analysis
and could be used as a model for different kinds of phenomena. Recall that roughly
speaking the fractional Brownian bH has the property that

jbH .t C�t/ � bH .t/j ' .�t/H :

The parameter H , which lies between 0 and 1, is called the Hurst exponent in honor
of the physicist Harold E. Hurst. The latter, who, as a hydrologist, studied the flow
of Nile during the first half of the last century, remarked that the rescaled difference
between the maximum and the minimum values of this flow during a length of time
T behaves like TH , with H approximately 0:7. Mandelbrot has described in detail
how he got interested in the discovery of Hurst, and was led to the definition of the
fBm, in his book “Fractales, hasard et finance”. Even if his interest for finance was
already present, environmental issues have been clearly evoked from the beginning
to justify the use of fBm as a model.

Malliavin, who contributed deeply to analysis and probability, introduced pow-
erful theoretical tools for the study of functionals of Gaussian processes as part
of what is called, “Malliavin calculus”. They may be very useful to establish
central limit theorems and are indirectly used in this book through the “Fourth
Moment Theorem”, which is due to Nualart and Peccati (2005) and has led to
a considerable literature. Roughly speaking, for functionals that belong to some
Wiener chaos (in particular for quadratic variations, which are currently used in
signal processing), the consideration of fourth moments is sufficient to prove central
limit theorems. This is systematically used in this book, while it not so well known
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from statisticians. It leads the authors to rapid and nice proofs, which deserve to
serve as models for the future.

Last but not least, the reader will also find elegant and new proofs for almost sure
convergence. This is only one example of the many contributions of the authors
(others concern the back and forth between discrete and continuous models, for
instance) that he/she will discover all along this book. Not to mention again the last
part, whose approach is likely to change practices in computational statistics. But
now it is time to start reading. As a conclusion let me say what a pleasure it is for
me to recommend this.

Orléans, France Aline Bonami
November 23, 2013

Reference

Nualart, D., & Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic
integrals. The Annals of Probability, 33(1), 177–193.





Preface

The use of diffusion models driven by fractional noise has become popular for
more than two decades. The reasons that produced this situation have been varied
in nature. We can mention, among others, those that come from mathematics and
other from the applications.

With respect to the first group, it should be noted that fractional Brownian motion
(fBm) has interesting properties. First, it is self-similar. This property implies that
such a process is, from the standpoint of its distribution, invariant with respect to
scale transformations. Moreover the fractional noise, the process of increments of
the fBm taking in a mesh of equally spaced points, satisfies a strong dependence
condition that is a notion away from independence and mixing. Using this last
property, it has been possible to model natural phenomena, which exhibit temporal
correlations tending to zero so slowly that their sum tends to infinity.

With regard to the applications, we should mention that fractional models have
become popular for modeling real-life events such as the value assets in financial
markets, models of chaos in quantum physics, river flow along the time, irregular
images, weather events and contaminant transport problems, among others.

The fBm is a mean zero Gaussian process with stationary increments and whose
covariance function is uniquely determined by the Hurst’s parameter, which we
denote by H and that is between zero and one. The value H D 1

2 is important
because the associated process results in the Brownian motion (Bm). The parameter
H determines the smoothness of the fBm trajectories. More regular are the
trajectories as closer to one is the parameter. The exact opposite happening if H
is near zero.

In the forties and fifties of the twentieth century, in the study of Bm, the
introduction of the stochastic integral by Kiyosi Itô and Paul Levy was the key to
the definition of diffusion processes. This important event led to the development of
a whole area of probability and mathematics. Similarly, the introduction of several
definitions of stochastic integrals with respect to fBm, from the 1990s, has led to
the definition of pseudo-diffusion processes driven by this noise. As in the case of
a Bm, the introduction of these processes significantly enriched the theory and the
horizon of their applications.
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xii Preface

In these notes we develop estimation techniques for the parameterH and the local
variance (volatility) of the pseudo-diffusion. The estimation of the two parameters is
made simultaneously. We will use the observation of the process in a discrete mesh
of points. Then the study of the asymptotic properties will be done when the mesh’s
norm tends to zero.

We start by defining the second order increments of the process. Using these
increments, we build the order p variations. These variations allow the definition of
an estimator of the parameter H for all its range. The reason to work with second
order increments, instead of the first order increments, is that variations built through
them are asymptotically Gaussian in all the range 0 < H < 1, instead of 0 < H < 3

4

that is the case for the variations constructed by using first order increments. From
the asymptotic normality of the variations, we deduce that the estimators of H are
asymptotically Gaussian, for all their possible values.

After estimating the Hurst parameter, we study the local variance estimation
in four pseudo-diffusion models. For each of them, we construct a local variance
estimator and study its asymptotic normality. If we do not know in advance the
value of the Hurst parameter, this procedure will reduce the rate of convergence in
the central limit theorem (CLT) for the estimator of the variance.

Then we assumeH known and try to estimate local variance functionals for more
general models. For instance in the case where the variance is not constant, for this
estimation procedure we will recover the lost speed, noted in the previous paragraph.

Finally, one of the main purposes of these notes is to provide a set of tools
for computational statistics: efficient simulation of the processes, assessment of the
goodness of fit of the estimators and the selection of the best estimator in each of
the presented situations.

We will develop this program once the asymptotic properties of estimators have
been studied. We will discuss simulations and their computer implementations as
well as some of the codes developed.

We note that the study of the asymptotic normality of the estimators we construct
has been dramatically simplified using the techniques of the CLT for nonlinear
functional Gaussian processes. These new techniques have been developed since
2005, from the seminal article of D. Nualart and G. Peccati by various authors.
We can mention some of them: O.E. Barndorff-Nielsen, H. Biermé, A. Bonami,
J.M. Corcuera, M. Kratz, C. Ludeña, I. Nourdin, S. Ortiz-Latorre, M. Podolskij, M.
Taqqu and C. Tudor, and the two authors mentioned above.

The notes are aimed at a mixed audience. They can be used in a graduate course
in statistics of Gaussian processes, as well as a reference book for researchers in the
field and as a guide for those interested in the applications of fractional models.

The book has eight chapters. Chapter 1 contains the motivation for the study that
we will realize in the text. It begins pointing out two types of research problems
in the estimation of Brownian diffusions. In first place one considers the situation
when the Brownian trajectory is observed smoothed by a convolution filter, tending
to the Dirac’s delta distribution when some specific parameter tends to zero. A CLT
for the increments of Brownian motion is established. This last theorem has as a
consequence a stable CLT for the quadratic variation of a general diffusion. Then
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we sketch the same type of study when the process is observed in a discrete mesh of
points. The chapter ends considering the convergence of the number of crossings for
the smoothed fBm towards the local time of this last process, when the smoothing
parameter tends to zero. We should point out the relationship between this result and
the theorem proved for the quadratic variation of a diffusion.

In Chap. 2, we introduce the basic tools that we will use. We define: the fBm,
Hermite’s polynomials and the complex Itô-Wiener chaos. Also we give some
preliminaries about the stochastic integration with respect to the fBm and the chapter
concludes with the hypothesis and notations that we will use in what follows.

Chapter 3 contains the statements and demonstrations of some of the main
theoretical results. The different estimators of H are defined, studying after their
asymptotic properties. Then the local variance estimator is introduced, and the
simultaneous estimation of H and of the local variance is considered. Some tests of
hypothesis are defined and the asymptotic behavior of the test function is obtained,
both under the null hypothesis and under contiguous alternatives. The chapter ends
studying the estimator of a functional of the local variance.

Chapter 4 presents a deep study by simulation to evaluate the performance of
the estimators and the tests. First, we give some information about the computing
environment and random generators. Afterwards the Durbin-Levinson algorithm
is implemented to efficiently simulate the fBm. Finally in some subsections, we
explore the goodness of fit of the estimators and the quality of the hypothesis tests.

Chapter 5 contains the proofs of the results of Chap. 3. In Chap. 6, there are some
complementary results. Chapter 7 shows using tables and graphs the results of the
simulation experiments of Chap. 4. Chapter 8 includes some Pascal procedures and
function used in Chap. 4.

Grenoble, France Corinne Berzin
Grenoble, France Alain Latour
Caracas, Venezuela José R. León
February 2014
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Notations

Throughout the document, we use the following notations:

Of : Fourier transform of function f
f � g : convolution of functions f and g
f �.`/ : `-th convolution of function f with itself
R x
f .u/ du : a primitive of f

1A : characteristic function of set A
#A : cardinality of set A
C : a generic constant; its value may change during a proof
C .!/ : a generic constant depending on !, a trajectory; its value

may change during a proof
N : fx 2 Z W x > 0g
N� : fx 2 Z W x > 0g
R� : fx 2 R W x ¤ 0g
RC� : fx 2 R W x > 0g
log : Naperian logarithm
E ŒX� : expected value of the random variable X
N.�; �2/ : the normal distribution with mean � and variance �2

N : standard Gaussian random variable
kNkkk : for real k > 0, we note kNkkk D E ŒjN jk�

kC.�/kkk : for real k > 1, denotes the integral

1Z

0

jC.u/jk du for a

measurable function C
Y > : transpose of vector Y

L1.R/ : complex absolutely integrable functions with respect to
Lebesgue measure on R

L2.Rk/ : complex square-integrable functions with respect to
Lebesgue measure on Rk
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xxii Notations

L1.R/ : essentially bounded complex functions with respect to
Lebesgue measure on R

L2e.R
k/ : subspace of L2.Rk/ made of complex-valued function  

such that  .�x/ D  .x/, 8x 2 Rk

h�; �i
L2.R/

: scalar product in L2.R/

k�k2 : the norm induced by the scalar product in L2.R/
k�k1 : the norm associated with L1.R/ space
L2s .R
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Lp.�.x/ dx/ : functions from R to R p-integrable with respect to the
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bxc : the integer part of the positive real number x
� : the Lebesgue measure
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nQ

jD1
.2j�1/
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k�
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Law����!
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P����!
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"!0

: convergence in law as " ! 0

P���!
"!0

: convergence in probability as " ! 0

a.s.���!
"!0

: almost-sure convergence as " ! 0

L2.PH /�����!
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Chapter 1
Introduction

1.1 Motivation

The book is mainly addressed to study nonparametric estimation for fractional
diffusions. We can defined these processes as the solution of the following stochastic
differential equation (SDE)

dX.t/ D �.X.t// dbH .t/C b.X.t// dt;

where � and b are functions smooth enough to ensure existence and uniqueness
of the process, bH is a fractional Brownian motion (fBm) with Hurst parameter
H , see Sect. 2.2.1, page 30, for its definition. We will only consider solutions of
these equations whenever H>1=2, the case H D 1=2 corresponds to Brownian
diffusions.

The framework for the statistical inference is here the infill one, that means that
we use the observations taken in a fixed interval, refining the mesh.

In the literature two types of infill estimation have been considered. The first one,
studied in these notes, consists in observing the process in a regular mesh (with step
equal to k

n
), i.e. fX.k

n
/gnkD1, the asymptotic considered in that case is when n ! 1,

or as the step tends to 0. The second one consists in observing a mollified version
of the process X".t/ D '" � X.t/, where � stands for the convolution product and
where '".�/ D 1

"
'. �

"
/, ' being a smooth probability density function. In that case,

the considered asymptotic is when " ! 0.
The inference is directed to look for estimators of the Hurst parameterH and of

the local variance �.x/. The estimation of the drift function b usually requires that
the underlying processX.t/ is ergodic and moreover that the estimation takes place
in an infinite interval framework.

The following sections aim to give to the reader some insight about the types of
results we attend. First, we consider for sake of completeness in first place the case
of Brownian diffusions and mollified observations. Then, in the penultimate section,

C. Berzin et al., Inference on the Hurst Parameter and the Variance of Diffusions Driven
by Fractional Brownian Motion, Lecture Notes in Statistics 216,
DOI 10.1007/978-3-319-07875-5__1,
© Springer International Publishing Switzerland 2014
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we will compare this method with the case where the observations are given in a
uniform mesh, establishing similarities and differences between the two procedures.

To build our estimators, we need Central Limit Theorems (CLT) and this is how
we begin our study.

1.2 CLT for Non-linear Functionals of Gaussian Processes

The article of Breuer and Major (1983) is considered now as an important classic
work. The authors proved a CLT for non-linear functionals of a stationary Gaussian
process fX.t/gt2RC . They considered occupation functionals of the form

Tt D
Z t

0

F .X.s// ds;

for some function F , belonging to L2.�.x/ dx/, where �.x/ dx stands for the
standard Gaussian measure. This result was extended in Chambers and Slud (1989)
to general functionals into the Itô-Wiener chaos. This last work allows getting CLT
for functionals that depend on an infinite number of coordinates. However, their
method requires the existence of the spectral density of the process X.t/.

1.3 Main Result

Let fX.t/gt2RC be a zero mean stationary Gaussian process with covariance r.t/ D
E ŒX.t/X.0/�, such that r.0/ D 1. We assume also that X has a spectral density f
in L1.R/.

The process X has the following spectral representation:

X.t/ D
Z 1

�1
eit�.f .�//1=2 dW.�/; (1.1)

where W is a complex centered Gaussian random measure on R with Lebesgue
control measure, such thatW.�A/ D W.A/ a.s. for any Borel set A of R. Moreover,
let ' be an even continuous function on a bounded support included in Œ� 1

2
; 1
2
�.

Let us define .x/ D '�'.x/, with support in Œ�1; 1�. We suppose that the norm
L2.R/ of ' is equal to one. Then  .0/ D 1

2�
k O'k22 D k'k22 D 1. Let us introduce

the approximated stationary Gaussian process

X".t/ D
Z 1

�1
eit�.f � O ".�//1=2 dW.�/;
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where O ".�/ D 1
2�"

ˇ
ˇ O'.�

"
/
ˇ
ˇ2, and " > 0. The covariance function ofX".t/ is r".t/ D

r.t/ ."t/.
In the following, we use Hermite polynomials, denoted by Hp . We have:

exp.tx � 1
2
t2/ D

C1X

pD0

Hp.x/t
p

pŠ
:

Hermite polynomials form an orthogonal system for the standard Gaussian measure
�.x/ dx. If h 2 L2.�.x/ dx/ then there exist coefficients hp such that h.x/ D
PC1

pD0 hpHp.x/.
Mehler’s formula (see Breuer and Major 1983) gives a simple form to compute

the covariance between two L2 functions of Gaussian random variables. In fact, if

k 2 L2.�.x/ dx/ and is written as k.x/ D
C1P
pD0

kpHp.x/ and if .X; Y / is a Gaussian

random vector with correlation 	 and unit variance then

E Œh.X/k.Y /� D
C1X

pD0
hpkppŠ	

p:

We obtain by using the Mehler’s formula Proposition 1.1.

Proposition 1.1. Let ` 2 N�. If r` 2 L1.R/ then

lim
"!0

lim
t!1 E

�
1p
t

Z t

0

fH`.X.s//�H`.X
".s//g ds

�2
D 0:

Proof. Note that if r` 2 L1.R/ and if f �.`/ denotes the `-order convolution of f
with itself, the inversion formula for the Fourier Transform implies that f �.`/ is
bounded and continuous.

By using Mehler’s formula we get

E

�
1p
t

Z t

0

fH`.X.s//�H`.X
".s//g ds

�2

D 2`Š

Z t

0

�
1 � s

t

�
.r`.s/C r`" .s/� 2	`".s// ds

D 2`Š

�Z t

0

�
1 � s

t

�
.r`" .s/ � r`.s// ds C 2

Z t

0

�
1 � s

t

�
.r`.s/ � 	`".s// ds

�

;

where 	".s/ D E ŒX.0/X".s/�. Let us study each term separately. For the first, we
have jr".s/j` 6 jr.s/j`.
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By the dominated convergence theorem and by using the fact that r` is integrable,
we get that

lim
"!0

lim
t!1

Z t

0

�
1 � s

t

�
.r`" .s/ � r`.s// ds D lim

"!0

Z 1

0

.r`" .s/� r`.s// ds D 0:

For the second term we have

Z t

0

�
1 � s

t

�
.r`.s/� 	`".s// ds

D 2

Z t

0

�
1 � s

t

�
�Z 1

�1
cos�s.f �.`/.�/ � g�.`/

" .�// d�

�

ds;

where g�.`/
" .�/ is the `-th convolution of the function

g".�/ D .f � O ".�//1=2.f .�//1=2;

with itself.
Fubini’s theorem gives

Z t

0

�
1 � s

t

�
�Z 1

�1
cos�s.f �.`/.�/� g�.`/

" .�// d�

�

ds

D
Z 1

�1
1 � cos�t

t�2
.f �.`/.�/ � g�.`/

" .�// d�

D
Z 1

�1
1 � cos�

�2

�
f �.`/. �

t
/� g�.`/

" . �
t
/
�

d�:

The case with ` D 1 is easy. Since the function f is bounded and continuous, by
using

g"
�
�
t

� D
�
f � O ".�t /

	1=2 �
f .�

t
/
�1=2 ! .f � O ".0//1=2.f .0//1=2;

when t ! 1, we get

lim
"!0

lim
t!1

Z 1

�1
1 � cos�

�2

�
f .�

t
/ � g".�t /

�
d� D 0:

For ` > 1, we must study the behavior of the function f �.`/.�/ � g
�.`/
" .�/, in a

neighborhood of zero. Since f �.`/.�/ is continuous it holds

lim
t!1f �.`/. �

t
/ D f �.`/.0/:
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Now let us consider the behavior of g�.`/
" . �

t
/. We have

g�.`/
" . �

t
/ D

Z 1

�1
g"
�
�
t

� �1
�
g�.`�1/
" .�1/ d�1:

But g"
�
�
t

� �� converges towards g".�/ inL1.R/when t ! 1; this is a consequence
of the continuity of the translation operator in L1.R/. For fixed ", we have

g�.2/
" .�/ 6






f � O "






1

Z 1

�1
.f .� � �1//1=2.f .�1//1=2 d�1 6






f � O "






1 ;

and for k > 2,

g�.k/
" .�/ 6




g�.k�1/

"




1

Z 1

�1
.f � O ".�//1=2.f .�//1=2 d� 6




g�.k�1/

"




1

6





f � O "






1 :

The duality between L1.R/ and L1.R/ implies g�.`/
" . �

t
/ ���!

t!1 g
�.`/
" .0/. Since

f �.`/.�/ is bounded, we get

Z t

0

�
1 � s

t

�
.r`.s/ � 	`".s// ds ���!

t!1 .f �.`/.0/� g�.`/
" .0//2

Z 1

0

1 � cos�

�2
d�:

But now we have

g�.`/
" .0/ D

Z 1

�1
g".�`�1/g�.`�1/

" .�`�1/ d�`�1:

First, by using a subsequence if needed, Fatou’s lemma gives

lim inf
"!0

g�.`/
" .0/>f �.`/.0/: (1.2)

Then, we get

I ` D
Z 1

�1
g".�`�1/g�.`�1/

" .�`�1/ d�`�1

D
Z

R`�1

g".�`�1/g".�`�1 � �`�2/ � � �g".�2 � �1/g".�1/ d�
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where d� D d�`�1 d�`�2 : : : d�2 d�1. Yielding, using Schwarz’s inequality

I ` 6
�Z

R`�1

f � O ".�`�1/f � O ".�`�1 � �`�2/ � � � f � O ".�2 � �1/f � O ".�1/ d�

�1=2

�
�Z

R`�1

f .�`�1/f .�`�1 � �`�2/ � � �f .�2 � �1/f .�1/d�

�1=2
:

The properties of the convolution entail

I ` 6 Œ.f � O "/�.`/.0/�1=2Œf �.`/.0/�1=2

D Œ.f �.`/ � O �.`/
" /.0/�1=2Œf �.`/.0/�1=2 ! f �.`/.0/; (1.3)

the last line is a consequence of the continuity of f �.`/. Then, (1.2) and (1.3) allow
getting lim

"!0
g�.`/
" .0/ D f �.`/.0/, and the results of the proposition are established.

Remark 1.2. The results of the Proposition 1.1 were proved in Berman (1992) for
` D 2.

Let F be a function in L2.�.x/ dx/. It has the following Hermite expansion:

F.x/ D
1X

nD0
cnHn.x/ where cn D 1

nŠ

Z 1

�1
F.x/Hn.x/�.x/ dx:

In the last expression Hn is the Hermite polynomial of degree n, see the definition
given in Sect. 1.3, page 2. Moreover, the norm ofF inL2.�.x/ dx/ satisfies kF k22 D
1X

nD0
c2nnŠ. See Mehler’s formula given in Sect. 1.3, page 2.

We define the Hermite rank of F as the smallest n such that the coefficient cn is
different from zero.

We have the following well-known Breuer and Major (1983) result (see also
Chambers and Slud 1989).

Theorem 1.3. Let us assume that F belongs to L2.�.x/dx/, whose Hermite rank
is `>1 and suppose also that r` 2 L1.R/. Then

St D 1p
t

Z t

0

F .X.s// ds
Law���!
t!1 N.0; �2.F //;

where

�2.F / D 2

1X

kD`
c2kkŠ

Z 1

0

rk.s/ ds:
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Remark 1.4. We will give here a proof of this result based on Proposition 1.1 and
a CLT for m-dependent process. We give a standard type proof commonly used
before the modern and powerful approach based on the Fourth Moment Theorem
and developed by Nualart and Peccati (2005) became available. After this standard
proof, we therefore propose a new one based on this innovative approach. However,
we will only give a sketch as we will later have the opportunity to exploit these new
techniques in the proofs of Theorem 3.4 and Lemma 5.10.

Proof. Let us define FM.x/ D
MP

nD`
cnHn.x/ and SMt D 1p

t

tR

0

FM .X.s// ds. The

Mehler’s formula entails

var
�
St � SMt

� D 2

1X

kDMC1
c2kkŠ

Z t

0

.1 � s
t
/rk.s/ ds

���!
t!1 2

1X

kDMC1
c2kkŠ

Z 1

0

rk.s/ ds < ı (1.4)

if M > M.ı/. Hence we only need to prove the asymptotic normality for SMt . Let

us introduce the process SM"
t D 1p

t

Z t

0

FM .X
".s// ds. Using Proposition 1.1 and

recalling that if r` 2 L1.R/ then rk 2 L1.R/; 8k > `, it yields:

lim
"!0

lim
t!1 var

�
SMt � SM"

t

� D 0:

It only remains to prove that SM"
t is asymptotically Gaussian.

A stationary sequence fXtgt2I (I D RC or N) is m-dependent if Xi is
independent of Xj whenever ji � j j > m. The CLT is a consequence of Hœffding
and Robbins (1948) theorem form-dependent sequences, that we will show in what
follows. To apply the aforementioned theorem, we write SM"

t in the following form

SM"
t D 1

pbtc
btcX

iD1
Xi C oL2.1/;

where .Xi /i2N are zero mean and stationary .b 1
"
cC1/-dependent random variables,

having a second moment and defined as

Xi D
MX

kD`
ck

Z iC1

i

Hk.X
".s// ds:

All the moments of these random variables exist by Breuer and Major (1983,
Diagram Formula Lemma, p. 432).
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Moreover, let us note that

�2" D lim
t!1 var ŒSM"

t � D 2

MX

kD`
c2kkŠ

Z 1
"

0

rk" .s/ ds;

and �2" ! �2.FM/ when " ! 0. Besides, �2.FM / ! �2.F / when M ! 1,
assuring in this form the required convergence.

We will give a proof of the CLT for m-dependent random variables.
The following result is a particular case of the Lindeberg’s theorem, see

Billingsley (1995, Theorem 27.2, p. 359 and Lyapounov’s condition (27.16), p. 362).

Theorem 1.5. Let fXn;igiD1;:::;K.n/In2N be a triangular array of zero mean and
i.i.d. random variables and assume E ŒXn;1�

2 D 1 and limn!1 K.n/ D C1.
Furthermore, suppose that jXn;1j2Cı is integrable for some positive ı and that

E
h
jXn;1j2Cı

i
� C . Let us define Sn D 1p

K.n/

PK.n/
iD1 Xn;i : Then:

Sn
Law����!
n!1 N.0; 1/:

Now, we have all the ingredients to prove Hœffding and Robbins (1948) theorem.
Let fXigi2N a zero mean stationary m-dependent sequence (m 2 N�), having finite
second moment. We can define

�2 D E
�
X2
1

�C 2

mC1X

iD2
E ŒX1Xi �;

and also assume that � > 0.

Theorem 1.6. Let fXigi2N� a stationary m-dependent sequence of zero mean
random variables such that jXn;1j2Cı is integrable for some positive ı. Let Sn D
1p
n

nP

iD1
Xi then

Sn
law����!
n!1 N.0; �2/:

Remark 1.7. It is possible to get rid of the hypothesis that the random variable X1
has a finite moment of order 2C ı and replace it by the existence of its second order
moment. We refer the reader to Orey (1958, Corollary, p. 546). In this article the
author state a CLT for centered m-dependent variables with finite second moment
satisfying some Lindeberg-like conditions obviously fulfilled in the stationary case.

Proof. Let p.n/ D bn˛c and q.n/ D 
nˇ
˘

with 1 > ˛ > ˇ > 0. The first sequence
allows us to decompose the interval of integers Œ1; n� in large blocks and the second
one in small blocks. Thus, we define the following intervals:
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I1 D Œ1; p.n/�; J1 D Œp.n/C 1; p.n/C q.n/�

I2 D Œp.n/C q.n/C 1; 2p.n/C q.n/�; J2 D Œ2p.n/C q.n/C 1; 2p.n/C 2q.n/�

and

Ik D Œ.k � 1/p.n/C .k � 1/q.n/C 1; kp.n/C .k � 1/q.n/�;

Jk D Œkp.n/C .k � 1/q.n/C 1; kp.n/C kq.n/�;

for k>3. Let K.n/ D
�

n

p.n/C q.n/

�

thus

K.n/ � .p.n/C q.n// 6 n:

Then we have two disjoint sets of indices H1 D K.n/[
jD1 Ij and H2 D K.n/[

jD1 Jj . In this

form Œ1; n� D H1 [ H2 [ H3, with H3 having a number of elements less or equal
to p.n/ C q.n/. The definitions of p.n/ and of q.n/ imply that lim

n!1
K.n/p.n/

n
D 1.

Now, let

Sn D 1p
n

X

i2H1
Xi C 1p

n

X

i2H2
Xi C 1p

n

X

i2H3
Xi :

First, we show that the last two terms tend to zero in probability. In fact, we only
prove it for the second one. The proof for the third term is easier because it involves
indices belonging to only one block. Now, using independence and stationarity, we
have

E

2

4 1p
n

X

i2H2
Xi

3

5

2

D K.n/

n
E

2

4
X

i2J1
Xi

3

5

2

D K.n/

n

 

q.n/E
�
X2
1

�C 2

mC1X

iD2
.q.n/ � .i � 1//E ŒX1Xi �

!

6 C
K.n/

n
q.n/E

�
X2
1

� ����!
n!1 0:

Let us see the asymptotic normality of the first term. Let �2n D E
hP

i2Ij Xi
i2

. We

have

�2n D p.n/

 

E
�
X2
1

�C 2

mC1X

iD2

�
1 � i�1

p.n/

	
E ŒX1Xi �

!

:
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In this form

1p
n

X

i2H1
Xi D 1p

n

K.n/X

jD1

X

i2Ij
Xi D

r
�2nK.n/

n

0

@ 1
p
K.n/

K.n/X

jD1
Xn;j

1

A :

The random variables Xn;j D 1
�n

P
i2Ij Xi are independent and identically

distributed, with mean 0 and variance 1. Furthermore,

�2nK.n/

n
D K.n/p.n/

n

 

E
�
X2
1

�C 2

mC1X

iD2

�
1� i�1

p.n/

	
E ŒX1Xi �

!

! �2:

Theorem 1.5 allows to conclude if we prove that for some positive ı,

E
h
jXn;1j2Cı

i
6 C . For this purpose we use an old inequality of Ibragimov and

Linnik (1971, Lemma 18.5.1, p. 340) restated here.

Lemma 1.8. Let fXigi2N� a stationary uniformly mixing sequence of zero mean
random variables such that jX1j2Cı is integrable for positive ı < 1. If �2n D
E
h�Pn

iD1 Xi
�2i ! C1, there exists a constant C such that

E

2

4

ˇ
ˇ
ˇ
ˇ
ˇ

nX

iD1
Xi

ˇ
ˇ
ˇ
ˇ
ˇ

2Cı3

5 6 C�2Cın :

To conclude the proof of Hœffding and Robbins (1948) theorem, let us remark that
a stationary m-dependent sequence of random variables is uniformly mixing. In
fact, according to Doukhan (1994, p. 17), the �-mixing coefficients of a stationary
m-dependent sequence are such that �.n/ D 0 for n > m. For the definition of
the uniformly mixing see Doukhan (1994, p. 3 and 16) and Ibragimov and Linnik
(1971, Definition 17.2.2, p. 308).

As announced in Remark 1.4, we give a sketch of the new proof based on Nualart
and Peccati result.

As we explained in the previous proof, it is sufficient to demonstrate the CLT for
the functional SMt . Furthermore, we can show that SMt and SMbtc are equivalent in
L2.˝/. The key comes from the fact that this functional SMbtc can be decomposed
into a finite number of Wiener chaos.

More precisely, using the spectral decomposition of the process X in the chaos
of order 1, see (1.1) and Itô’s formula (see Breuer and Major (1983, p. 30)), we can
decompose SMbtc in the multiple chaos in the following way:

SMbtc D
MX

kD`
Ik.hbtc;k/;
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where the operator definition of Ik is given later by (5.5), page 80, and the function
hbtc;k 2 L2s.R

k/ (cf. notations of Sect. 2.2.2 and Slud 1994) is defined by the
following equality:

hbtc;k.�1; : : : ; �k/

D ck kŠ
1

pbtc
Z btc

0

exp.i.�1 C � � � C �k/s/
p
f .�1/ � � �

p
f .�k/ ds:

To establish the convergence of SMbtc, we use Theorem 1 of Peccati and Tudor
(2005).

By Mehler’s formula, since r` 2 L1.R/, it is easy to see that

E.SMbtc/
2 D 2

MX

kD`
c2kkŠ

Z btc

0

�
1 � s

btc
	
rk.s/ ds �����!

t!C1 �2.FM /:

This latter convergence gives the required conditions appearing in the beginning
of this latter theorem. So we will just verify condition (i). In other words, let s and
k fixed such that s D 1; : : : ; k � 1 and k such that k D sup.`; 2/; : : : ;M . We need
to show that all the contractions of hbtc;k of order s tend to zero. These contractions
are defined by (5.6).

It is sufficient to establish that lim
t!C1At;k;s D 0, with

At;k;s D 1

btc2
Z btc

0

Z btc

0

Z btc

0

Z btc

0

rs.u1 � v1/r
s.u2 � v2/

rk�s.u1 � u2/r
k�s.v1 � v2/ du1 du2 dv1 dv2:

With a convenient change of variables we get

jAt;k;s j 6 1

btc
Z btc

�btc

Z btc

�btc

Z C1

�1

jr.x/js jr.x � z/js jr.y/jk�s jr.y � z/jk�s dz dy dx:

We split the indices intervals into two parts, BN and Bc
N , where we defined for a

fixed positive real numberN ,

BN D f.x; y/ 2 R
2; jxj > N or jyj > N g:

Applying Hölder inequality with p D k
s
> 1 and q D k

k�s > 1 to both terms
corresponding to BN and Bc

N . Because jr j � 1, it follows that
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jAt;k;s j 6 C

"�Z C1

�1
jr.z/jk dz

�2� s
k
�Z

jxj>N
jr.x/jk dx

� s
k

C N2

btc
�Z C1

�1
jr.z/jk dz

��

:

Consequently, since for all k>`, we have rk 2 L1.R/, we showed that:

lim
t

jAt;k;s j 6 C

�Z

jxj>N
jr.x/jk dx

� s
k

�����!
N!C1 0;

since s > 0. This completes the new proof.

1.4 Brownian Motion Increments

In this section, we will show some applications of Theorem 1.3 to the increments of
the Bm.

Let X.t/ be a standard Bm. We can assume that X.t/ is defined in terms of its
harmonizable representation (see Hunt 1951)

X.t/ D 1p
2�

Z 1

�1
exp.i t�/ � 1

i�
dW.�/:

To verify that X.t/ is actually a Bm, given that it is centered and Gaussian, it is
enough to compute the variance of the increments. Thus, for h > 0,

E ŒX.t C h/ �X.t/�2 D 1

2�

Z 1

�1

ˇ
ˇ
ˇ
ˇ
exp.i.hC t/�/ � exp.i t�/

i�

ˇ
ˇ
ˇ
ˇ

2

d�

D 1

�

Z 1

�1
1 � cosh�

�2
d� D 2

�
h

Z 1

0

1 � cos�

�2
d�

D 2

�
h

Z 1

0

sin2 u

u2
du D h:

We want to study the asymptotic behavior, as " ! 0, of the random variables

X.s C "/� X.s/p
"

;

when we consider it, for almost all !, as a random variable in the probability space
.Œ 0; 1 �;B; �/ with the Lebesgue measure �, B being the Borel sets. Let us denote
by ˚ the distribution of a standard Gaussian random variable.

Wschebor (1992) showed Theorem 1.9, a remarkable result.
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Theorem 1.9. For almost all ! one has

lim
"!0

�

�

s 6 1 W X.s C "/.!/� X.s/.!/p
"

6 x

�

D ˚.x/:

Proof. Let G W R ! R be a bounded and continuous function. Consider the
sequence

Z 1

0

G

�
X.s C "/� X.s/p

"

�

ds:

Initially, we will show that the above sequence tends to E ŒG.N /� in L2.˝/, where
N denotes a standard Gaussian random variable. To do so, let us compute its limit
variance, when " ! 0. Set QG D G � E ŒG.N /�. We must prove

var

�Z 1

0

G

�
X.s C "/� X.s/p

"

�

ds

�

D E

�Z 1

0

QG
�
X.s C "/� X.s/p

"

�

ds

�2
���!
"!0

0: (1.5)

Now

X.s C "/�X.s/p
"

D 1p
2"�

Z 1

�1
exp.i.s C "/�/� exp.is�/

i�
dW.�/

D 1p
2"�

Z 1

�1
exp.is�/

exp.i"�/� 1

i�
dW.�/:

Let "� D u into the stochastic integral. We get

X.s C "/� X.s/p
"

D 1p
2�

Z 1

�1
exp.i s

"
u/

exp.iu/� 1
iu

dW.u/:

If our interest is to observe the process on the scale s D "v, we obtain that
there exists a stationary Gaussian process Y.v/, such that the following equality
in distribution holds

Y.v/ D X."vC "/� X."v/p
"

D 1p
2�

Z 1

�1
exp.ivu/

exp.iu/� 1
iu

dW.u/:

Let us compute the covariance of process Y .
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r.v/ D E ŒY.v/Y.0/� D 1

2�

Z 1

�1
exp.ivu/

ˇ
ˇ
ˇ
ˇ
exp.iu/� 1

iu

ˇ
ˇ
ˇ
ˇ

2

du

D 1

�

Z 1

�1
exp.ivu/

.1� cos u/

u2
du D 1 � jvj ;

for jvj 6 1 and zero if jvj>1. Such a process is named Slepian’s process. Let us
return to the computation of the variance

E

�Z 1

0

QG
�
X.s C "/� X.s/p

"

�

ds

�2
D E

"

"

Z 1="

0

QG.Y.v// dv

#2

:

Since the function QG is bounded and continuous, it has a Hermite expansion that

converges in L2.�.x/ dx/, i.e. QG D
1P
kD1

QGkHk . Under this form, using Mehler’s

formula it follows that

E

"

"

Z 1="

0

QG.Y.v// dv

#2

D 2"

Z 1="

0

.1 � "u/E � QG.Y.0// QG.Y.u//� du

D 2"

1X

kD1
QG2
kkŠ

Z 1

0

.1 � "u/.1� u/k du

D O."/:

Under a more precise form

1

"
E

"

"

Z 1="

0

QG.Y.v// dv

#2

! 2

1X

kD1
QG2
kkŠ

Z 1

0

.1 � u/k du D 2

1X

kD1
QG2
k

kŠ

k C 1
D �2QG:

(1.6)

Then we have

Z 1

0

G

�
X.s C "/� X.s/p

"

�

ds ���!
"!0

E ŒG.N /�;

in L2.˝/. If "n D n�a for a > 1, then
P1

nD1 "n < 1. The Borel-Cantelli lemma
assures us that under this sequence the convergence is for a.s. in !. A more delicate
analysis is required to prove

Z 1

0

G

�
X.s C "/� X.s/p

"

�

ds ���!
"!0

E ŒG.N /�;

for a.s. in !, whereof we deduce Theorem 1.9 result. Before completing the proof,
let us recall that the Levy’s theorem about the modulus of continuity of the Bm (see
Karatzas and Shreve 1991), implies that for ı > 0 it holds
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sup
t2Œ 0; 1 �

jX.t C h/� X.t C h0/j 6 C
ˇ
ˇh � h0ˇˇ1=2�ı : (1.7)

Let us consider that G is continuous and Lipchitz. The class of functions with
these properties determines the weak convergence. Let " such that "nC1 < " < "n,
then

sup
"nC1<"<"n

ˇ
ˇ
ˇ
ˇ

Z 1

0

G

�
X.s C "/� X.s/p

"

�

ds �
Z 1

0

G

�
X.s C "n/� X.s/p

"n

�

ds

ˇ
ˇ
ˇ
ˇ

6 sup
"nC1<"<"n

C

Z 1

0

ˇ
ˇ
ˇ
ˇ
X.s C "/�X.s/p

"
� X.s C "n/� X.s/p

"n

ˇ
ˇ
ˇ
ˇ ds

6 C

��
1p
"

� 1p
"n

�

sup
06s61

jX.s C "/�X.s/j

C 1p
"n

sup
06s61

jX.s C "/� X.s C "n/j
�

6 C .!/

�
"1=2�ı

"
1=2
n

��"n
"

	1=2 � 1

�

C ."n � "/1=2�ı
"
1=2
n

�

6 C .!/

(

"�ı
n

"�
"n

"nC1

�1=2
� 1

#

C ."n � "nC1/1=2�ı

"
1=2
nC1

)

6 C .!/

�
1

n1�aı
C .nC 1/aı

n1=2�ı

�

;

this last term tends to zero if .a C 1/ı < 1=2. This choice is always possible by
taking ı small enough. In the third inequality, we used inequality (1.7).

Using Theorem 1.3 we can show the following theorem (see Berzin-Joseph and
León 1997):

Theorem 1.10. Let QG a continuous function belonging to L4.�.x/ dx/ then

S"t D 1p
"

Z t

0

QG
�
X.s C "/� X.s/p

"

�

ds
Law���!
"!0

� QGW.t/;

where W.t/ is another standard Bm, QG D G � E ŒG.N /� and � QG is given by (1.6).
Moreover if QG Hermite rank is greater than or equal to two the two Bm, W and X ,
are independent.

Proof. The one-dimensional convergence is obtained from Theorem 1.3 and from a
change of variables in the stochastic integral as in the proof of the previous theorem.
In fact, from the equality in distribution follows
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S"t D 1p
"

Z t

0

QG
�
X.s C "/� X.s/p

"

�

dsD p
"

Z t="

0

QG.Y.u// du
Law���!
"!0

N.0; t�2QG/:

Consider t1 < t2 6 t3 < t4, some points of the interval Œ 0; 1 �. If " 6 t3 � t2 then
S"t2 �S"t1 and S"t4 �S"t3 are independent. Since the distribution of S"t2 �S"t1 is the same
as the one of S"t2�t1 and each of the variables converges to a Gaussian variable, then

.S"t2 � S"t1 ; S
"
t4

� S"t3/
Law���!
"!0

� QG.W.t2/ �W.t1/;W.t4/�W.t3//:

If t2 D t3, the same result is obtained by removing a subinterval of size "
2

in each
interval and using the 1-dependence, the two removed terms tend to zero in L2.˝/.
The whole procedure can be repeated for any n-vector of increments. In this form
the finite dimensional convergence follows.

For the tightness, we need to prove

E
�
S"t2 � S"t1

�4 D E
�
S"t2�t1

�4 D E

"
p
"

Z .t1�t2/="

0

QG.Y.u// du

#4

6 C .t2 � t1/2:

To obtain this bound, set t D t2 � t1 to simplify the notation. If t < " the bound is
immediate by Jensen’s inequality. Consider then t > " and let N."/ D bt="c. Then

E
�
S"t
�4 6 C

0

B
@E

2

4
p
"

N."/�1X

iD0

Z iC1

i

QG.Y.u// du

3

5

4

C E

"
p
"

Z t="

bt="c
QG.Y.u// du

#4
1

C
A :

For the second term, Jensen’s inequality entails

E

"
p
"

Z t="

bt="c
QG.Y.u// du

#4

6 C "2 6 C t2:

Defining the set of indices I D f0 6 i1; i2; i3; i4 6 .N."/� 1/g, then for the first
term, we have the following decomposition

E

2

4
p
"

N."/�1X

iD0

Z iC1

i

QG.Y.u// du

3

5

4

D "2
X

I

E

"Z i1C1

i1

Z i2C1

i2

Z i3C1

i3

Z i4C1

i4

QG.Y.u1// QG.Y.u2// QG.Y.u3// QG.Y.u4//du

#

;
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where du D du1 du2 du3 du4. We can assume without loss of generality that i1 6
i2 6 i3 6 i4. We need to consider the following cases:

• If i4 � i3 > 2 then by using the independence, these terms are zero.
• If 0 6 i4 � i3 6 1 then i4 depends on i3 and one has:

– If i3 � i2 > 2 the independence implies that the term of interest is equal to

E

�Z i1C1

i1

Z i2C1

i2

QG.Y.u1// QG.Y.u2// du1 du2

�

�

E

�Z i3C1

i3

Z i4C1

i4

QG.Y.u3// QG.Y.u4// du3 du4

�

– If i2 � i1 > 2 the corresponding terms vanish.
– If 0 6 i2 � i1 6 1 the sum is over two indexes and because

E

�Z iC1

i

QG.Y.u// du

�2
6 C ;

we obtain that this sum over the corresponding indices is less than or equal to

C"2N 2."/ 6 C t2:

The remaining cases can be treated in a similar fashion.

Let us prove now the last result of the theorem: if the function QG has a Hermite
rank greater than or equal to two, we obtain that W is independent of X .

To prove this let us consider the following vector process defined in C Œ 0; 1 � �
C Œ 0; 1 �, X ".t/ D .X.t/; S"t /. Each coordinates process is tight hence the vector
process is also tight. Let us denote by Y .t/ any continuous limit point for the
sequence. By construction, the following vector

..S"t1 ; X.t1//; .S
"
t2

� S"t1C"; X.t2/� X.t1 C "//; : : : ;

.S"tm � S"tm�1C"; X.tm/ �X.tm�1 C "///;

has all its coordinates independent and moreover converges when " ! 0 to
.Y .t1/;Y .t2/ � Y .t1/; : : : ;Y .tm/ � Y .tm�1//. Then we deduce that Y is an
independent increment process. Moreover process Y has finite second moment then
it must be Gaussian.

Thus to prove the asymptotical independence we need only to compute the
following covariance

E
�
.S"tm � S"tm�1

/.X.tm/� X.tm�1//
� D 0;
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because the function QG has Hermite rank equal to 2. Consequently, all the limit
points have the same Gaussian distribution and its two coordinates are independent.

Remark 1.11. The fact of obtaining the asymptotic independence between the
original Bm and the limit process, implies that we have a stronger convergence.
This convergence is a particular case of stable convergence that we will reconsider
later.

We can obtain Theorems 1.9 and 1.10 for more general diffusion processes. The
same type of study was undertaken by Perera and Wschebor (1998) in a more
general form than ours.

We will begin with the Bm with drift. Let b W R ! R be a continuous function.

Also assume that Ex
h
exp.

R t
0 b

2.X.s// ds/
i
< 1, where Ex is the expectation with

respect to Bm such that X.0/ D x, for all x 2 R. The following SDE

dZ.t/ D dX.t/C b.Z.t// dt Z.0/ D x;

admits a unique weak solution that can be expressed through the Girsanov’s formula
(see Karatzas and Shreve 1991). In first place, we have the exponential martingale

M.t/ D exp

�Z t

0

b.X.s// dX.s/� 1

2

Z t

0

b2.X.s// ds

�

with ExŒM.t/� D 1:

And in second place if H W C Œ0; t � ! R is a measurable and integrable functional,
we have the Girsanov’s formula

ExŒH fZ.s/ W 0 6 s 6 tg� D ExŒM.t/H fX.s/ W 0 6 s 6 tg�:

We can obtain the two following results.

Corollary 1.12. For almost all ! one has

lim
"!0

�

�

s 6 1 W Z.s C "/.!/�Z.s/.!/p
"

6 x

�

D ˚.x/:

Proof. Let G be a continuous and bounded real function and consider

� D
�

! W
Z 1

0

G

�
Z.s C "/.!/ �Z.s/.!/p

"

�

ds ���!
"!0

E ŒG.N /�

�

;

and

Q� D
�

! W
Z 1

0

G

�
X.s C "/.!/ � X.s/.!/p

"

�

ds ���!
"!0

E ŒG.N /�

�

:
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By using Girsanov’s formula we get

Px.�/ D ExŒ1�.!/� D Ex
�
M.t/1 Q�.!/

� D ExŒM.t/� D 1:

The third equality is a consequence of Theorem 1.9, i.e. Pxf Q�g D 1.

Remark 1.13. Let G be a continuous function such that jG.x/j 6
Pm

iD0 ai jxji for
a certain m > 0 and f another continuous function. One can show by using the
above result that a.s. in !

Z t

0

G

�
Z.s C "/.!/�Z.s/.!/p

"

�

ds ���!
"!0

tE ŒG.N /�:

and

Z t

0

f .Z.s//G

�
Z.s C "/.!/ �Z.s/.!/p

"

�

ds ���!
"!0

E ŒG.N /�
Z t

0

f .Z.s// ds:

Corollary 1.14. Let G a continuous an even function belonging to L4.�.x/ dx/,
such thatG has a Lipchitz derivative then

QS"t D 1p
"

Z t

0

QG
�
Z.s C "/�Z.s/p

"

�

ds
Law���!
"!0

� QGW.t/;

where W.t/ is a standard Bm and QG D G � E ŒG.N /� and � QG is defined by (1.6).

Remark 1.15. This last Bm is the same as in Theorem 1.10. Hence, for this class
of functions QG, the second conclusion of the theorem is in force and a fortioriW is
also independent of the process Z.

Proof. We can write

QS"t D S"t C 1p
"

Z t

0

�
QG
�
Z.s C "/�Z.s/p

"

�

� QG
�
X.s C "/� X.s/p

"

��

ds

D S"t C I "t :

Using a Taylor expansion of first order, we get that there exists a real number ˛,
0 < ˛ < 1, such that

I "t D
Z t

0

:QG
 
Z.s C "/ �Z.s/p

"
� ˛p

"

Z sC"

s

b.Z.u// du

! 
1

"

Z sC"

s

b.Z.u// du

!

ds:

Then the Lipchitz property of function
:QG yields

I "t D
Z t

0

:QG
�
Z.s C "/�Z.s/p

"

��
1

"

Z sC"

s

b.Z.u// du

�

ds C J "t ;
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where

jJ "t j 6
p
"

Z t

0

sup
s6u6sC"

b2.Z.u// ds ���!
"!0

0; a.s. in !:

Moreover,

Z t

0

:QG
�
Z.s C "/�Z.s/p

"

��
1

"

Z sC"

s

b.Z.u// du

�

ds

D
Z t

0

:QG
�
Z.s C "/�Z.s/p

"

�

b.Z.s// ds

C
Z t

0

:QG
�
Z.s C "/�Z.s/p

"

�
1

"

Z sC"

s

Œb.Z.u//� b.Z.s//� du ds:

Obtaining in the first place:

ˇ
ˇ
ˇ
ˇ

Z t

0

:QG
�
Z.s C "/�Z.s/p

"

�
1

"

Z sC"

s

Œb.Z.u//� b.Z.s//� du ds

ˇ
ˇ
ˇ
ˇ

6 sup
06s6t

sup
s6u6sC"

jb.Z.u//� b.Z.s//j
Z t

0

ˇ
ˇ
ˇ
ˇ

:QG
�
Z.s C "/�Z.s/p

"

�ˇˇ
ˇ
ˇ ds ���!

"!0
0;

a.s. in !, because the last integral is bounded thanks to Remark 1.13.

And in the second place, as a consequence of the same remark,
:QG being an odd

function, we have
Z t

0

:QG
�
Z.s C "/�Z.s/p

"

�

b.Z.s// ds ���!
"!0

E Œ
:QG.N/�

Z t

0

b.Z.s// ds D 0;

a.s. in !. Theorem 1.10 yields Corollary 1.14 and Remark 1.15.

The study we have previously addressed concerning the oscillation of the Bm
and other diffusion processes allows us to build a nonparametric estimator of the
quadratic variation for a general one dimensional diffusion process.

The observed process will be the solution of the SDE

dZ.s/ D �.Z.s// dX.s/C b.Z.s// ds Z.0/ D x:

We assume that functions � and b satisfy the hypotheses of existence and
uniqueness. The estimator of the quadratic variation ofZ in the interval Œ0; t � is

OV ".t/ D
Z t

0

�
Z.s C "/�Z.s/p

"

�2
ds:

Now we prove Theorem 1.16.
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Theorem 1.16. Let � be a continuously differentiable function satisfying �.x/ > 0
and b a continuous function then

OV ".t/ ���!
"!0

Z t

0

�2.Z.s// ds D V.t/; a.s. in !:

Moreover, there exists W , a standard Bm independent of Z such that

1p
"
. OV ".t/ � V.t// Law���!

"!0

2p
3

Z t

0

�2.Z.s// dW.s/:

Proof. Let us define function F�.x/ D R x 1
�.u/ du, thus PF�.x/ D 1

�.x/
and RF�.x/ D

� P�.x/
�2.x/

. The function F� allows us to introduce the process Y.t/ D F�.Z.t//. By
using Itô’s formula, see (Karatzas and Shreve, 1991, Chap. 3) we get

dY.t/ D dX.t/C �.Y.t// dt; Y.0/ D F�.x/;

where

�.x/ D b.F�1
� .x//

�.F �1
� .x//

� 1

2
P�.F�1

� .x//:

We will assume that the function � satisfies the technical conditions ensuring that

Ex
h
exp.

R t
0
�2.X.s// ds/

i
< 1.

There exists a real number ˛.s; "/, 0 < ˛.s; "/ < 1, such that

OV ".t/ D
Z t

0

f
:
_
F�1
� .Y.s/C ˛.s; "/ ŒY.s C "/� Y.s/�/g2

�
Y.s C "/� Y.s/p

"

�2
ds

�
Z t

0

�2.Z.s//

�
Y.s C "/� Y.s/p

"

�2
ds ���!

"!0
E
�
N2
� Z t

0

�2.Z.s// ds

a.s. in !. The last limit is a consequence of Remark 1.13.
The second assertion of the theorem is more involved, we will give only a sketch

of the proof. First, we point out that

1p
"
. OV ".t/ � V.t// � 1p

"

Z t

0

�2.Z.s//H2

�
Y.s C "/� Y.s/p

"

�

ds:

Defining as before QS"t D 1p
"

R t
0
H2

�
Y.sC"/�Y.s/p

"

	
ds, we consider first a fixed

discretization of the integral say,
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bntc�1X

iD0
�2.Z. i

n
//
� QS"iC1

n

� QS"i
n

	

Law���!
"!0

2p
3

bntc�1X

iD0
�2.Z. i

n
//
�
W.iC1

n
/�W. i

n
/
�
;

by Corollary 1.14. Moreover, by Remark 1.15, one has

2p
3

bntc�1X

iD0
�2.Z. i

n
//.W. iC1

n
/�W. i

n
//

Law����!
n!1

2p
3

Z t

0

�2.Z.s// dW.s/:

To finish the proof we need to show that

lim
n!1 lim

"!0
E

2

4 1p
"

Z t

0

�2.Z.s//H2

�
Y.s C "/� Y.s/p

"

�

ds

�
bntc�1X

iD0
�2.Z. i

n
//
� QS"iC1

n

� QS"i
n

	
3

5

2

D 0:

We do not prove this last fact. A complete proof is given in Berzin-Joseph and León
(1997, pages 577–578).

1.5 Other Increments of the Bm

Consider the function '.u/ D 1Œ�1; 0�.u/, such a function is of bounded variation. Set
'".�/ D 1

"
'. �

"
/. Defining X" D '" � X , where � denotes the convolution between

functions or measures and X is again a standard Bm. The process X" is almost
everywhere differentiable and it holds

p
" PX".t/ D X.t C "/�X.t/p

"
:

This fact allows us to formulate the problem of the previous section for more
general functions '. We will make this in what follows leaving the details as
exercises. Let ' a bounded support density with a continuous derivative. Again,
let us define X" D '" �X .

The outline of the approach is the following.

1. Write the harmonizable expression for X".
2. Show that process

p
" PX"."u/ is equal in distribution to a stationary Gaussian

process Y.u/. Determine its spectral density and its covariance.
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3. Let us define �2 D var
�p
" PX"."u/

� D var ŒY.u/� and compute this last constant.
4. Repeat the same steps of the proof of Theorem 1.9 to show that, for all t and

almost all !

�

(

s 6 t W
p
" PX".s/

�
6 x

)

���!
"!0

t˚.x/:

5. In such a case, what is the value of the constant �2QG?
6. Prove the corresponding Theorem 1.10.

1.6 Discretization

Let us consider the Bm X , observed in a uniform mesh of Œ 0; 1 �. Using the strong
law of large numbers for independent array of random variables the first result is
that for all continuous functionG such that E

�
G4.N /

�
< 1,

SGn .t/ D 1

n

bntc�1X

iD0
G
�p
n
�
X
�
iC1
n

� � X
�
i
n

��� a.s.����!
n!1 tE ŒG.N /�:

Moreover, defining QG.x/ D G.x/ � E ŒG.N /� the Lindeberg’s CLT and Donsker’s
invariance principle (see Billingsley 1995) yield

p
nS

QG
n .t/

Law����!
n!1 � QGW.t/;

in the Skorohod’s space DŒ 0; 1 �, where �2QG D P1
kD1 QG2

kkŠ:Again, the BmW turns
out to be independent of X if the function G does not have a first order coefficient
in the Hermite basis.

These two results can be extended by using the absolutely continuity of the
measures given by Girsanov’s formula to the Bm with drift, let

dY.t/ D dX.t/C b.Y.t// dt:

To get the asymptotical independence,G ought to be an even function.
For a general diffusion dZ.s/ D �.Z.s// dX.s/ C b.Z.s// ds, the same

procedure of change of variables leads us to the following two results:

bntc�1X

iD0

�
Z. iC1

n
/�Z. i

n
/
�2 a.s.����!

n!1

Z t

0

�2.Z.s// ds
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and

p
n

2

4
bntc�1X

iD0

�
Z. iC1

n
/�Z. i

n
/
�2 �

Z t

0

�2.Z.s// ds

3

5

Law����!
n!1

p
2

Z t

0

�2.Z.s// dW.s/:

As we can see, things seem easier in this case of discretization. However, the
difficulty is more or less the same.

Now, our interest turns to the fractional models. Two main difficulties arise. First,
we have to estimate two things, the Hurst parameter H and also the local variance
�.x/. Second, the underlying process, actually the fBm, has not the independence
properties of the Bm and some more involved CLT are needed. In the next section
we will illustrate these matters with some preliminaries examples.

1.7 Crossings and Local Time for Smoothing fBm

In this section we consider an estimation problem seemingly far from what we have
seen in previous sections. The problem consists in approaching the local time of the
fBm bH , by means of the number of crossings of a mollified version of this process
b"H .t/ D 1

"

R1
�1 '. t�s

"
/bH.s/ ds D R1

�1 '".t � s/bH.s/ ds; where ' is a probability
density function of bounded variation with a compact support. We will denote by P'
its continuous derivative.

Let us see some properties of this process. The spectral representation for the
fBm (see Hunt 1951) yields the following formula

Pb"H .t/ D 1p
2�

Z 1

�1

Z 1

�1
P'".t � s/.eis� � 1/ 1

j�jHC 1
2

dW.�/ ds

D 1p
2�

Z 1

�1

Z 1

�1
'".t � s/i�eis� 1

j�jHC 1
2

ds dW.�/

D 1p
2�

Z 1

�1
eit�i� O'".��/ 1

j�jHC 1
2

dW.�/

D 1p
2�

Z 1

�1
eit�i� O'.�"�/ 1

j�jHC 1
2

dW.�/

LawD 1p
2�

1

"1�H

Z 1

�1
ei

t
" �i� O'.��/ 1

j�jHC 1
2

dW.�/;
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the last equality is in law. As a consequence, if we define Y".t/ D "1�H Pb"H ."t/; then
Y" is a zero mean Gaussian stationary process whose spectral density is

fH.�/ D 1

2�
j O'.�/j2 1

j�j2H�1 :

Observe that this function belongs to L2.R/ wheneverH < 3=4. Moreover,

E
�
Y 2" .t/

� D 1

2�

Z 1

�1
j O'.�/j2 1

j�j2H�1 d� D �2Y :

Hence, we can introduce the unit variance process Z".t/ D Y".t/=�Y .
The problem mentioned above about the convergence of the crossings for the

process b"H towards the local time for bH , has its origins in Wschebor (1992) work
on the Bm. The problem can be precisely formulated as follows. Given that the
process b"H is differentiable, the random variable: number of crossings in Œ0; T � of
level u of the process b"H , defined as

N
b"H
T .u/ D #ft 6 T W b"H .t/ D ug

is well defined and has a first moment. If h W R ! R is a continuous function the
area formula (Azaïs and Wschebor, 2009, Chapter 3) allows writing

Z 1

�1
h.u/N

b"H
T .u/ du D

Z T

0

h.b"H .t//j Pb"H .t/j dt:

Besides a result similar to the one given in Sect. 1.5 is obtained in Azaïs and
Wschebor (1996).

Indeed, almost surely

"1�H
Z 1

�1
h.u/N

b"H
T .u/ du D "1�H

Z T

0

h.b"H .t//
ˇ
ˇ
ˇ Pb"H.t/

ˇ
ˇ
ˇ dt

���!
"!0

r
2

�
�Y

Z T

0

h.bH .t// dt D
r
2

�
�Y

Z 1

�1
h.u/LT .u/ du; (1.8)

where LT .u/ is the local time of level u for bH , that exists and is continuous (see
Berman 1970).

The rate of convergence in the almost sure convergence result (1.8), that
constitutes the following theorem, was obtained in Berzin and León (2005). To state
such a result, let us introduce first the function QG.x/ D p

�
2

jxj � 1. By defining
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J".T / D 1p
"

�r
�

2

"1�H

�Y

Z 1

�1
h.u/N

b"H
T .u/ du �

Z 1

�1
h.u/LT .u/ du

�

;

we get Theorem 1.17.

Theorem 1.17. Suppose that 1
4
< H < 3

4
and that h 2 C4 such that j4�h.x/j 6

P.jxj/ where P is a polynomial. Then, there exists a Bm W independent of bH and
a constant CH;' such that,

J".T / D 1p
"

Z T

0

h.b"H .t//
QG.Z". t" // dt C 1p

"

Z T

0

fh.b"H .t// � h.bH .t//g dt

(1.9)

Law���!
"!0

CH;'

Z T

0

h.bH .t// dW.t/:

Note that as indicated in the notations,
k�
h is the kth derivative of h.

Proof. We only give a sketch of the proof. A complete demonstration can be found
in Berzin and León (2005).

Let us begin with the second term in the expression for J".T /. By using a Taylor
expansion we have

1p
"

Z T

0

Œh.b"H .t// � h.bH .t//� dt

D "Hp
"

Z T

0

Ph.bH .t//b
"
H .t/ � bH .t/

"H
dt

C "2H

2
p
"

Z T

0

Rh.
."; t/bH .t/C f1 � 
."; t/gb"H.t//
�
b"H.t/ � bH.t/

"H

�2
dt;

where 0 < 
."; t/ < 1. First, in Berzin and León (2005), it is shown that

E

�Z T

0

Ph.bH.t//b
"
H .t/ � bH .t/

"H
dt

�2

D �
O."/CO."2H /

�
1H<1=2 C o.1/1H>1=2:

Second, if
3�
h is continuous and if jh.x/j 6 P.jxj/, it holds

Z T

0

Rh.
."; t/bH.t/C .1 � 
."; t//b"H .t//
�
b"H .t/ � bH .t/

"H

�2
dt D OP .1/:

Hence, the whole term tends to zero whenever 1
4
< H .
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This implies that the weak limit will be provided by the asymptotic behavior
of first term of the sum in equality (1.9). To study this convergence we proceed
according to the following steps:

1. Let us define S"t D 1p
"

R t
0

QG.Z". s" // ds. Given that H < 3
4
, Theorem 1.3 implies

that there exists a Brownian motion W.t/ and a constant CH;' such that the
finite dimensional distributions of S"t converge towards the finite dimensional
distribution of CH;'W.t/ as " ! 0.
The tightness in this convergence is far from trivial. It was established in a recent
article, Cohen and Wschebor (2010).

2. Given that function QG is an even function then by an argument of Gaussian
convergence into the Wiener chaos it follows that process W is independent of
bH .

3. Let n be a positive integer and define ti D i
n

. The weak convergence entails the
following one

bnT c�1X

iD0
h.b"H .ti //.S

"
tiC1

� S"ti /

Law���!
"!0

CH;'

bnT c�1X

iD0
h.bH .ti // .W.tiC1/�W.ti // :

Moreover the asymptotic independence yields

lim
n!1CH;'

bnT c�1X

iD0
h.bH .ti // fW.tiC1/�W.ti /g D CH;'

Z T

0

h.bH .t// dW.t/;

this last convergence is in L2.˝/.
4. To conclude it is necessary to prove the following result

lim
n!1 lim

"!0
E

"
1p
"

Z T

0

h.b"H .t//
QG �Z"

�
t
"

��
dt

�
bnT c�1X

iD0
h.b"H .ti //.S

"
tiC1

� S"ti /

3

5

2

D 0:

This results is a non-trivial computation completely developed in Berzin and
León (2005).
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Chapter 2
Preliminaries

2.1 Introduction

The use of Brownian diffusions for modeling environmental phenomena, financial
markets, physical and molecular interaction and biological issues, has been very
successful in the past decades. However, in the various branches of application
persistence or rather strong dependence is often encountered. This last property is
sometimes interpreted as a slow rate in the convergence to zero of the covariances,
when the delay goes to infinity. Moreover, from a physical point of view when
the diffusion of pollution particles is observed on the water surface, for some
substances, the behavior of the trajectories of the particles seems more regular than
in a Brownian case.

These issues lead physicists and probabilitists to introduce new models aimed to
solve or better model the above phenomena. The first authors to define such models
were Mandelbrot and Van Ness (1968) who introduce the fractional Brownian
motion (fBm). This is a stationary increments and autosimilar Gaussian process
whose covariance depends on a parameter H (the Hurst parameter) such that
0 < H < 1.

More recently, there has been a renewed interest in this process and in the
possibility of defining a stochastic calculus by using the trajectories of such process
as integration measure. Various authors reached this goal. One of the first intents
was the work of Lin (1995) who built the integral by means of Riemann sums in the
case whenH > 1

2
. We must point out that the case whenH D 1

2
corresponds to the

Bm, and the integral results the Îto’s integral.
When the bases for the integration are completed it is natural to extend the

notion of stochastic differential equation (SDE) driven by a fractional noise. A very
complete study of these equations was realized by Nualart and Răşcanu (2002).

This work has three main goals, all are of statistical nature. First, we define
an estimator of the parameter H , through the observation of one trajectory, on a
regular grid of points. We use the k-variations of the order two increments. These

C. Berzin et al., Inference on the Hurst Parameter and the Variance of Diffusions Driven
by Fractional Brownian Motion, Lecture Notes in Statistics 216,
DOI 10.1007/978-3-319-07875-5__2,
© Springer International Publishing Switzerland 2014
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variations allow the estimation of the H parameter all over its range, leading also
to consistency and asymptotically normality. If the first order increments were used,
we would only have the asymptotic normality forH 2 �0; 3

4
Œ.

Second, we consider four models of SDE allowing our method the simultaneous
estimation of H and the local variance �2.x/. This estimation procedure leads to a
loss of convergence rate for the Central Limit Theorem (CLT) for the estimator of
�2. We also consider the case whereH is supposed to be known and in this case our
method leads us to define a test of hypothesis for certain functionals of the function
�2.x/ and, as a bonus, we can made an evaluation of the asymptotic power of the
test.

The third goal consists in the realization of a deep simulation study of the
performance of our estimators. To achieve this task we simulate the fBm with the
help of the Durbin-Levinson algorithm. Then the different models are simulated
using an Euler’s finite difference schema. Afterwards, for each of the four models,
the estimators of the parameters are computed and then we assess the quality of each
estimator and we conclude by comparing their performance.

We must indicate that to demonstrate the asymptotic normality of our estimators,
we use the technique of the CLT for functionals that belong to the Wiener Chaos.
This method has been developed by Nualart and Peccati (2005), Nourdin and Peccati
(2010), Peccati and Tudor (2005), among others. Application of these tools leads to
an enormous simplification in the computations.

2.2 Fractional Brownian Motion, Stochastic Integration
and Complex Wiener Chaos

2.2.1 Preliminaries on Fractional Brownian Motion
and Stochastic Integration

In this section some properties and notions related to fBm are presented. The fBm of
Hurst parameterH is a mean zero Gaussian process bH , with stationary increments
whose covariance function is

E ŒbH.t/bH .s/� D 1

2
v22H

h
jt j2H C jsj2H � jt � sj2H

i
;

where v22H D Œ� .2H C 1/ sin.�H/��1. Let us point out that the Bm corresponds
to the case where H D 1

2
. This process is autosimilar. In fact, by using the above

covariance, one readily gets bH.˛t/
LawD ˛HbH .t/;where “

LawD ” denotes the equality
in law of the processes.

There exists a harmonizable representation of this process (see Hunt 1951)

bH .t/ D 1p
2�

Z 1

�1
Œexp.i�t/ � 1� j�j�H� 1

2 dW.�/;
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whereW is a complex white noise. The variance of the increments �H results

�H.t � s/ D E Œ.bH .t/ � bH .s//2� D v22H .t � s/2H ; t > s:

Proposition 2.1. The trajectories of bH are continuous, with Hölder coefficient
h < H .

Proof. Since we have E
�jbH .t/ � bH .s/jp

� D Cp jt � sjpH , the Kolmogorov

continuity criterion implies that jbH .t/ � bH .s/j 6 C.!/ jt � sjh for 0 < h <
pH�1
p

. The result follows by taking p large enough. �

The fractional Brownian noise (fBn) is defined as the following stationary
discrete time Gaussian process

XH
n D bH.nC 1/� bH.n/:

Computing the covariance

rH .n/ D E
�
XH
n X

H
0

� D 1

2
v22Hn

2H
hˇ
ˇ1C 1

n

ˇ
ˇ2H � 2C ˇ

ˇ1 � 1
n

ˇ
ˇ2H

i
� CHn

2.H�1/

when n ! 1.
Thus for H > 1

2
, we have

P1
nD1 jrH.n/j D C1. This phenomena has been

interpreted, in the literature, by saying that the fBn exhibits a long range dependence
whenever 1

2
< H < 1. The spectral density for the fBn can be obtained from

rH.n/ D 1

2�

Z 1

�1
ein�j exp.i�/ � 1j2 j�j�2H�1 d�;

by using the Poisson’s summation formula, this yields

rH .n/ D 1

2�

Z 2�

0

ein� jexp.i�/ � 1j2
1X

kD�1

1

j�C 2�kj2HC1 d�:

Let us define for a process X with time parameter t in Œ 0; 1 � the p-variation index
as

I.X; Œ 0; 1 �/ D inf

(

p > 0 W sup
�

nX

kD1
jX.tk/� X.tk�1/jp < 1

)

where � is the set of all the finite increasing sequences fti gniD1 in the interval Œ 0; 1 �.
A process X is a semi-martingale if I.X; Œ 0; 1 �/ 2 Œ 0; 1 � [ f2g.
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Proposition 2.2. The fBm is not a semi-martingale for H ¤ 1
2
.

Proof. Considering the following sum for the fBm

Vn;p D
nX

kD1

ˇ
ˇbH .kn /� bH.

k�1
n
/
ˇ
ˇp D n.�pHC1/ 1

n

n�1X

kD0
jXH

k jp;

where the last equality holds by using autosimilarity. If p D 1
H

, the ergodic theorem
implies that

Vn;1=H
a.s.����!

n!1 v
1=H
2H E ŒjN j1=H �

and we also have the convergence in L1.˝/. Moreover Vn;p tends to zero or to
infinity in probability, whenever p > 1

H
or p < 1

H
respectively. Hence this implies

that I.bH ; Œ 0; 1 �/ D 1
H

and the result follows. �

Now we are ready to introduce the stochastic integral with respect to fBm.
Several types of stochastic integrals with respect to bH can be defined, we chose
to work with the notion of pathwise integrals.

Definition 2.3. Let fu.t/ W t 2 Œ0; T �g a process with integrable trajectories. The
symmetric pathwise integral with respect to bH is defined as

lim
"!0

1

2"

Z T

0

u.t/
�
bH.t C "/� bH.t � "/

�
dt;

whenever that limit exists in probability. The integral will be denoted asR T
0

u.t/ dsbH .t/.

Remark 2.4. Two other notions can be introduced. The forward integral

Z T

0

u.t/ db�
H.t/ D lim

"!0

1

"

Z T

0

u.t/
�
bH .t C "/� bH .t/

�
dt;

and the backward integral

Z T

0

u.t/ dbC
H.t/ D lim

"!0

1

"

Z T

0

u.t/
�
bH .t/ � bH .t � "/

�
dt:

In Lin (1995), another pathwise definition is given. Let Z be a continuous process,
with Z.0/ D 0 and zero quadratic variation. An important example is bH C V ,
where V is a continuous process with finite variation with initial value equal to zero
andH > 1

2
. Lin (1995) shows Theorem 2.5.
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Theorem 2.5. For any function � 2 C1 and a sequence of partitions
�n D f0 D t0 6 t1 6 � � � 6 tn D tg of Œ 0; t � with j�nj ����!

n!1 0,

lim
j�nj!0

nX

iD1
�.Z.ti //ŒZ.ti /�Z.ti�1/� D

Z Z.t/

0

�.u/ du:

The limit is taken in probability.

Proof. The proof goes easily by using the facts that the function˚.x/ D R x
0 �.u/ du

is twice differentiable, that its second derivative is locally bounded, and the
following Taylor expansion

˚.Z.t// D
nX

iD1
Œ˚.Z.ti //� ˚.Z.ti�1//�

D
nX

iD1
�.Z.ti //ŒZ.ti /�Z.ti�1/�C

nX

iD1
1
2

P�.�i /ŒZ.ti /�Z.ti�1/�2;

where �i is between Z.ti / and Z.ti�1/. �

The above theorem allows to define
R t
0 �.Z.s// dZ.s/ as the limit of the Riemann

sums in probability. Another formulation is a sort of fundamental theorem of
calculus i.e.,

˚.Z.t// � ˚.Z.0// D
Z t

0

�.Z.s// dZ.s/:

By using this observation, we can search for the solution of the following SDE

X.t/ D c C
Z t

0

�.X.s/;Z.s// dZ.s/; � 2 C1; Z.s/ D bH .s/C V.s/; (2.1)

where V is as before, a continuous process with finite variation and initial value
equal to zero andH > 1

2
. To solve that equation, let g be the unique solution of the

following ordinary differential equation (ODE)

dg.t/

dt
D �.g.t/; t/ (2.2)

g.0/ D c:

The solution of Eq. (2.1) isX.t/ D g.Z.t//. An important example is the fractional
version of the Black-Scholes SDE defined in Cutland et al. (1995). This process is
the solution of the SDE

dX.t/ D X.t/.� dbH .t/C � dt/; �; � 2 R; H > 1
2
:
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Here the ODE is dg.t/=dt D g.t/ and g.0/ D c. It yields that the solution of (2.1)
is

X.t/ D c exp.Z.t// D c exp.�bH .t/C �t/:

We can now explore the relationship between the three notions of stochastic
integrals with respect to dsbH , db�

H and dbH . The following discussion is based
on Biagini et al. (2008, Section 5.5 of Chapter 5). Let us begin with the following
definition.

Definition 2.6. The process .f .s/; 0 6 s 6 t 6 1/ is said to be a bounded
quadratic variation process if there are constants p > 1 and 0 < Cp < 1 such
that for any partition�n D f0 D t0 6 t1 6 � � � 6 tn D tg,

nX

iD1
E1=pŒjf .ti /� f .ti�1/j2p� 6 Cp:

Let us examine the following example. Consider f W R ! R a continuously
differentiable function with bounded first derivative. Then f .bH .s// is a bounded
quadratic variation process for H > 1=2. In fact, let �n be a partition of Œ 0; t �,

nX

iD1
E1=p

h
jf .bH .ti // � f .bH .ti�1//j2p

i

D
nX

iD1
E1=p

" ˇ
ˇ
ˇ
ˇ

�Z 1

0

Pf .bH.ti�1/C 
.bH.ti / � bH .ti�1/// d


�

� ŒbH .ti /� bH .ti�1/�
ˇ
ˇ
ˇ
ˇ

2p
#

6 Cp

nX

iD1
jti � ti�1j2H 6 Cpt:

The following theorem states that the definition of the integral does not depend
on the point where the integrand is evaluated.

Theorem 2.7. Let .f .bH .s//; 0 6 s 6 t 6 1/ be a bounded quadratic variation
process. Let �n D f0 D t0 6 t1 6 � � � 6 tn D tg be a sequence of partitions of
Œ 0; t � such that j�nj ! 0 as n ! 1 and

nX

iD1
f .bH .ti�1//ŒbH .ti / � bH .ti�1/�;

converges, for H > 1
2
, to a random variable G in L2.PH/ (the L2 space for the

probability measure generated by the fBm). Then
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nX

iD1
f .bH .ti //ŒbH .ti /� bH.ti�1/�;

also converges to G in L2.PH /.

Proof. For simplicity’s sake, let us write f .t/ instead of f .bH .t//. The result
follows by showing that

nX

iD1
Œf .ti / � f .ti�1/�ŒbH .ti /� bH.ti�1/�

L2.PH /�����!
n!1 0:

Using Hölder’s inequality, we get

8
<

:
E

"
nX

iD1
Œf .ti /� f .ti�1/�ŒbH .ti / � bH .ti�1/�

#2
9
=

;

1=2

6
nX

iD1

˚
E
�ff .ti /� f .ti�1/g2fbH.ti / � bH .ti�1/g2

��1=2

6
nX

iD1

�
E
�ff .ti /� f .ti�1/g2p

��1=.2p/ �
E
�fbH .ti /� bH.ti�1/g2q

��1=.2q/

6
(

nX

iD1

�
E
�
.f .ti / � f .ti�1//2p

��1=p
) 1=2

�
(

nX

iD1

�
E
�
.bH .ti /� bH .ti�1//2q

��1=q
) 1=2

6 Cp

(
nX

iD1
jti � ti�1j2H

) 1=2

The last term goes to 0 as n goes to infinity because H > 1=2. Thus the result
follows. �

As pointed out in Biagini et al. (2008, page 137), a more general result can be
proved. If for a choice of �i 2 Œ ti ; ti�1 �, the sum:

nX

iD1
f .�i /.bH .ti /� bH.ti�1//

converges to
R t
0
f .u/ ds bH .u/, it converges for any other choice.

If f 2 C1 and H > 1
2

the notions of symmetric pathwise integral
R t
0
f .bH .u// dbsH.u/ and integral

R t
0
f .bH .s// db�

H.s/, are the same. To obtain
such a result, let us compute first the covariation between Y.s/ D f .bH .s// and
bH .s/. For the definition of the covariation, see (Biagini et al., 2008, Chap. 5, p.
124). By definition the absolute value of this covariation is
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jŒY; BH �t j D
ˇ
ˇ
ˇ
ˇlim"!0

1

"

Z t

0

ŒY.u C "/� Y.u/�ŒbH .u C "/� bH .u/� du

ˇ
ˇ
ˇ
ˇ

6 C .!/ lim
"!0

1

"

Z t

0

ŒbH .u C "/� bH .u/�
2 du

6 C .!/ lim
"!0

"2H�2ı

"
D 0;

where we used the fact that

sup

� ˇ
ˇ
ˇ Pf .z/

ˇ
ˇ
ˇ W jzj 6 sup

06s62t
jbH .s/j

�

is a finite random variable and the modulus of continuity of bH , see Proposition 2.1.
The following equality gives the result

Z t

0

f .bH .u// ds bH .u/ D
Z t

0

f .bH .s// db�
H.s/C 1

2
ŒY; bH �t :

Let us prove now for H > 1
2

the equality between the two definitions of pathwise
integrations that is, db�

H and dbH . Let f be a continuously differentiable function,
the following equality holds

Z t

0

f .bH .s// db�
H.s/ D lim

j�nj!0

nX

iD1
f .bH .ti�1//ŒbH .ti / � bH .ti�1/�

D
Z t

0

f .bH .s// dbH .s/:

Indeed, consider the step function f�.s/ D Pn
iD1 f .bH .ti�1//1.ti�1Iti �.s/; f�.s/

converges boundedly almost surely to f .bH .s// when j�nj ! 0. Moreover

Z t

0

f�.s/ db�
H.s/ D lim

"!0

Z t

0

f�.s/
bH .s C "/� bH .s/

"
ds

D lim
"!0

nX

iD1
f .bH .ti�1//

Z ti

ti�1

1

"

Z sC"

s

dbH .u/ ds

D lim
"!0

nX

iD1
f .bH .ti�1//

�Z ti�1C"

ti�1

u � ti�1
"

dbH .u/

C
Z ti

ti�1C"
dbH.u/C

Z tiC"

ti

ti � u C "

"
dbH .u/

�

D
nX

iD1
f .bH .ti�1//ŒbH .ti / � bH .ti�1/�:
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The last equality follows from an integration by parts of the first and third terms of
the second last equality because both tend to 0 as " goes to 0.

Taking the limit in both sides when j�nj ! 0, the result follows.

2.2.2 Complex Wiener Chaos

The discussion in this section comes from Major (1981). Let W be a complex
centered Gaussian random measure on R with Lebesgue control measure dx such
that, for any Borel set A of R we haveW.�A/ D W.A/ almost surely. We consider
complex-valued functions  defined on R for almost every x 2 R,

 .x/ D  .�x/:

We write L2e.R/ for the real vector space of the functions that are square integrable
with respect to the Lebesgue measure on R. Endowed with the scalar product of
L2.R/, which we also note

h ; 'i
L2.R/

D
Z

R

 .x/'.x/ dx;

L2e.R/ is a real separable Hilbert space. Moreover, for any  2 L2e.R/, one can
define its stochastic integral with respect to W as

I1. / D
Z

R

 .x/ dW.x/:

Then I1. / is a real centered Gaussian variable with variance given by k k22, where
k � k2 is the norm induced by the scalar product h�; �i

L2.R/
. To introduce the k-th Itô-

Wiener integral, with k > 1, we consider the complex functions belonging to

L2e.R
k/ D f 2 L2.Rk/ W  .�x/ D  .x/g:

The inner product in the real Hilbert space of complex functions of L2e.R
k/ is given

by

h ; 'i
L2.Rk/

D
Z

Rk

 .x/'.x/ dx:

The space L2s.R
k/ denotes the subspace of functions of L2e.R

k/ a.e. invariant under
permutations of their arguments. By convention L2s .R

k/ D R for k D 0. Let us
define H.W / the subspace of random variables in L2.˝/ measurable with respect
to W . The k-Itô-Wiener integral Ik is defined in such a way that .kŠ/�1=2Ik is
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an isometry between L2s .R
k/ and its range Hk � H.W /, so that we have the

orthogonal decomposition

H.W / D
1M

kD0
Hk;

where H0 is the space of real constants. Each Y 2 H.W / has a L2.˝;P /
convergent decomposition

Y D
1X

kD0
Ik. k/;  k 2 L2s.Rk/:

2.3 Hypothesis and Notation

We give the definitions of the fBm and of the Hermite polynomials. Mehler’s
formula is recalled. The covariance function at different scales of time of the second
order increments of the fBm is also brought in this section as well as the definition of
a functional variation of the fBm, for a general function including the definition of
the absolute k-power variation. Finally, the definitions of the associated asymptotic
variances are also presented in different scales of time.

Let fbH.t/; t 2 Rg be a fBm with Hurst parameterH such that 0 < H < 1, see
for instance Samorodnitsky and Taqqu (1994, Chapter 7). The covariance function
of this centered Gaussian process is:

E ŒbH .t/bH .s/� D 1

2
v22H

h
jt j2H C jsj2H � jt � sj2H

i

where v22H D Œ� .2H C 1/ sin.�H/��1.
Here, let us recall that Hermite polynomials, denoted byHp , are defined by

exp.tx � 1
2
t2/ D

C1X

pD0

Hp.x/t
p

pŠ
:

Hermite polynomials form an orthogonal system for the standard Gaussian measure
�.x/ dx. If h 2 L2.�.x/ dx/ then there exist coefficients h such that h.x/ DPC1

pD0 hpHp.x/.
Also recall that Mehler’s formula (see Breuer and Major 1983) gives a simple

form to compute the covariance between two L2 functions of Gaussian random
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variables. In fact, if k 2 L2.�.x/ dx/ and is written as k.x/ D
C1P
pD0

kpHp.x/ and if

.X; Y / is a Gaussian random vector with correlation 	 and unit variance then

E Œh.X/k.Y /� D
C1X

pD0
hpkppŠ	

p: (2.3)

We define the Hermite rank of k as the smallest p such that the coefficient kp is
different from 0.

Let g be a function in L2.�.x/ dx/ such that

g.x/ D
C1X

pD1
gpHp.x/; with kgk22;� D

C1X

pD1
g2ppŠ < C1:

Let Ag be the set fp W p > 2 and gp ¤ 0g.
Let Z be a random process on the interval Œ 0; 1 �. For an integer n > 2, let

�nZ.i/ D nH

�2H
ınZ.i/; i D 0; 1; : : : ; n � 2;

where ın is given by

ınZ .i/ D �
Z
�
iC2
n

�� 2Z
�
iC1
n

�CZ
�
i
n

��
;

and where

�22H D v22H
�
4 � 22H

�
:

Also, if Yn is a random variable defined on the subset f0; 1; : : : ; n � 2g, we define
the random variable Y �

n on the interval Œ 0; 1 � by

Y �
n .u/ D Yn.i/ if u 2 � i

n�1 ;
iC1
n�1

�
:

Thus the process �nbH is a centered stationary Gaussian process with variance 1.
Its covariance function is given by 	H .i � j / for i; j D 0; 1; : : : ; n � 2, where for
any real number x, 	H .x/ is

	H .x/ D 1

2 .4� 22H/

h
�6 jxj2H C 4 jx C 1j2H

� jx C 2j2H � jx � 2j2H C 4 jx � 1j2H
i
:
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In the following, �2g stands for the following summation:

�2g D
C1X

pD1
g2ppŠ

 C1X

rD�1
	
p
H .r/

!

:

Note that since
PC1

rD�1 	H .r/ D 0, then

�2g D
C1X

pD2
g2ppŠ

 C1X

rD�1
	
p
H .r/

!

:

More generally, for x 2 R and b; c 2 R�, we define

	b;c.x/ D 1

2 .4 � 22H /.bc/
�H

h
� jxj2H C 2 jx � bj2H � jx � 2bj2H

C2 jx C cj2H � 4 jx C c � bj2H C 2 jx C c � 2bj2H � jx C 2cj2H

C2 jx C 2c � bj2H � jx C 2c � 2bj2H �

D 	c;b.�x/

and note that 	1;1.x/ D 	H .x/. With this definition, we get

EŒ�bnbH.i/�cnbH.j /� D 	b;c .ci � bj /:

For k; ` 2 N�, we also define

	g.k; `/ D 1p
k`

C1X

pD1
g2ppŠ

 
k�1X

sD0

C1X

rD�1
	
p

k;`.kr C `s/

!

:

Since 	b;c .x/ D 	b=c;1.x=c/ it follows that 	g.k; k/ D �2g .
For all m 2 N�, for all k D .k1; : : : ; km/ 2 .N�/m and for all d D

.d1; : : : ; dm/ 2 Rm, we denote by �2g;m.k;d/ the following sum:

�2g;m.k;d/ D
mX

iD1

mX

jD1
di dj 	g.ki ; kj /:

For n 2 N� and t 2 Œ 0; 1 �, let

Sg;n.t/ D 1p
n

bntc�2X

iD0
g.�nbH .i//; (2.4)
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with Sg;n.t/ D 0 if bntc 6 1 and where bxc denotes the integer part of the positive
real number x.

Remark 2.8. We chose to work with the double increment operator rather than the
simple increment operator.

In fact, one of our goals is to study the asymptotic behavior of functionals of the
fBm increments in order to estimate its Hurst parameter H . If we use the simple
ones and if the Hermite rank of the functional is two, we get to distinguish between
three cases, 0 < H < 3

4
, H D 3

4
and 3

4
< H < 1.

It does not really make sense to tackle the estimation problem of H with such
distinctions. When H < 3

4
we get a Gaussian limit and if H > 3

4
, the convergence

takes place in the second order Wiener chaos, and more generally in the `th order
Wiener chaos (` > 1), ` being the Hermite rank of the functional. Finally, ifH D 3

4
,

a Gaussian limit is obtained through a convenient normalization.
We can refer for this case study to one of the first papers on the subject Guyon and

León (1989) and Corcuera et al. (2006). This case study has also been considered by
Berzin and León (2005). A classification of the possible limits is provided for the
different values of H according to the Hermite rank. These results are obtained
in the more general context of functionals of the regularization derivative, the
regularization being obtained by the convolution of the fBm with a kernel '. In the
particular case where ' D 1Œ�1; 0 �, this derivative is just the first order increments
of the fBm.

The idea of working with higher order differences to diminish the long memory
effect is not new. Istas and Lang (1997) is one of the pioneer works on the subject;
it uses the filter notion.

León and Ludeña (2007) is one of the first papers working with the double
increments. A Gaussian limit is obtained for all the H ranks, 0 < H < 1.

Note that in Berzin and León (2005) previously cited, this latter convergence is
obtained for the second derivative of the smoothed fBm. The particular case based
on the kernel ' D 1Œ�1; 0 � � 1Œ 0; 1 � leads to the double increments of the fBm.
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Chapter 3
Estimation of the Parameters

3.1 Introduction

The first theorem of this chapter establishes the almost sure convergence for the
k-power second order increments of the fBm toward the k-th moment of a standard
normal distribution. Then we give the rate of this convergence in law. Moreover,
for a general functional variation of the fBm, see (2.4), page 40, including the
absolute k-power variation, the result remains true. This allows us to propose several
estimators of the Hurst parameterH of a fBm using classical linear regression. The
first one, OHk , uses the function jxjk , and the second one, OHlog, uses the Napierian
logarithm and both lead to unbiased consistent estimators.

A Central Limit Theorem (CLT) is also obtained for both estimators. These
estimators are linked in the sense that if k.n/ is a sequence of positive numbers
converging to zero with n, and if OHk.n/ denotes the corresponding estimator of the
H parameter, we establish that the asymptotic behaviors of OHk.n/ and of OHlog are
the same.

The same techniques can be used to provide simultaneous estimators of
parameterH and of the local variance � , in four particular simple models all
driven by a fBm. As before, a regression model can be written and least squares
estimators ofH and of � are defined. These estimators are built on the second order
increments of the stochastic process solution of the proposed model. We prove their
consistency and a CLT is given for both of them.

Furthermore, we consider testing the hypothesis �n D � against an alternative in
the four previous models.

Finally, we propose functional estimation of the local variance of general
stochastic differential equation (SDE). This estimation is based on the observation
of the second order increments of the solution of such an SDE. We highlight that to
show the convergence in these models, it is sufficient to prove it in the special case
where the solution process is the fBm.

C. Berzin et al., Inference on the Hurst Parameter and the Variance of Diffusions Driven
by Fractional Brownian Motion, Lecture Notes in Statistics 216,
DOI 10.1007/978-3-319-07875-5__3,
© Springer International Publishing Switzerland 2014
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3.2 Estimation of the Hurst Parameter

We propose several estimators of theH parameter for fBm, through the observation
of one trajectory, on a regular grid of time points.

We study two estimators, say OHk and OHlog, respectively built with the k-power
and the Napierian logarithm of the modulus of the second order increments of fBm.
Working with the order two increments allows the estimation ofH over all its range,
� 0; 1 Œ , and provides consistent and asymptotic normal estimators.

We also give the explicit link between OHk.n/ and OHlog, k.n/ being a sequence of
positive numbers converging to zero when n goes to infinity. We state properties and
a CLT for the estimator OHk.n/.

3.2.1 Almost Sure Convergence for the Second Order
Increments

We present the almost sure convergence in law for the second order increments of
the fBm, seen as a variable on .Œ 0; 1 �; �/, where � is the Lebesgue measure.

Theorem 3.1. For all 0 < H < 1, almost surely for all k 2 N�,

1

n � 1
n�2X

iD0
.�nbH .i//

k �!
n!C1 EŒN �k .

Corollary 3.2 is a direct consequence of Theorem 3.1.

Corollary 3.2. For all 0 < H < 1, almost surely

.�nbH /
� Law����!

n!1 N .

The above convergence is in law, the random variable .�nbH /
� is seen as a variable

on .Œ 0; 1 �; �/ where � is the Lebesgue measure.

From Theorem 3.1 and Corollary 3.2, we deduce Corollary 3.3.

Corollary 3.3. For all 0 < H < 1, almost surely for all k 2 RC�,

1

n � 1
n�2X

iD0
j�nbH .i/jk �!

n!C1 EŒjN jk� .
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3.2.2 Convergence in Law of the Absolute k-Power Variation

We establish out the finite-dimensional convergence in law for a g functional
variation of the fBm, function g being centered and such that g 2 L2.�.x/ dx/.
The obtained limit is a cylindrical centered Gaussian process.

Theorem 3.4. For all 0 < H < 1,

Sg;�n.1/
Law����!
n!1 X ,

where X is a cylindrical centered Gaussian process with covariance 	g.k; `/ D
EŒX.k/X.`/�, k; ` 2 N�.

The above convergence is in the sense of finite-dimensional distributions.

Remark 3.5. If g has a finite expansion with respect to the Hermite basis, then
E
�
Sg;n.1/

�4 6 C , for n large enough.

Remark 3.6. Sg;2nC..1/
Law����!
n!1 X , where X is a cylindrical centered Gaussian

process with covariance 	g.k; `/ defined by

	g.k; `/ D 2.k�`/=2
C1X

pD1
g2ppŠ

 C1X

rD�1
	
p

1;2`�k
.r/

!

when k 6 `, and then X is a stationary process.

Remark 3.7. If k 2 N� is fixed, Sg;kn.1/
Law����!
n!1 �gN .

The two following lemmas can be used to show that 	g.k; `/ is a covariance
function and are proved in Sect. 5.2.2.

Lemma 3.8. For all m 2 N�, for all k 2 .N�/m and for all d 2 Rm,

�2g;m.k;d/ D lim
n!C1 E

"
mX

iD1
di Sg;kin.1/

#2

;

and then �2g;m.k;d/ > 0.

Lemma 3.9. For all k; ` 2 N�, 	g.k; `/ D 	g.`; k/:
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3.2.3 Estimators of the Hurst Parameter

We chose to work with the centered functions gk and glog, respectively defined by
gk.x/ D jxjk � EŒjN jk� and by glog.x/ D log.jxj/ � EŒlog.jN j/�, in the definition
of functional variation of the fBm. This choice allows us, via a regression model, to
propose two estimators of the parameter H , say OHk and OHlog. Their properties are
studied here.

A third estimator of H , say OHk.n/, links the two previous estimators and its
properties are also studied; more, a CLT is given.

For n 2 N� � f1g and for k 2 RC�, let us define

Mk.n/ D 1

n � 1

n�2X

iD0
jınbH.i/jk . (3.1)

Thanks to Corollary 3.3,

�
nH

�2H kN kk

�k
Mk.n/

a:s:�!
n!C1 1.

Then,

kH log.n/ � k log.�2H kN kk/ C log.Mk.n//
a:s:�!

n!C1 0.

Thus

log.Mk.n// D �kH log.n/ C k log.�2H kN kk/ C oa:s:.1/. (3.2)

Let ni D rin, ri 2 N�, i D 1; : : : ; `. Equation (3.2) can be written as a classical
linear regression equation:

Yi D aXi C k bk C �i , i D 1; : : : ; `;

where a D H and for i D 1; : : : ; `, Yi D log.Mk.ni //, Xi D �k log.ni / and
bk D log.�2H kN kk/.

Hence, the least squares estimator OHk of H is given by

OHk D � 1
k

X̀

iD1
zi log.Mk.ni //, (3.3)

where for i D 1; : : : ; `,

zi D yi
P`

iD1 y2i
and yi D log.ri / � 1

`

X̀

iD1
log.ri /: (3.4)
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Note the following property

X̀

iD1
yi D 0 and

X̀

iD1
zi yi D 1. (3.5)

Corollary 3.10 follows from Theorem 3.4.

Corollary 3.10. For k 2 RC�,

(1) OHk is an asymptotically unbiased strongly consistent estimator of H .
(2) Furthermore,

p
n
� OHk �H

	
Law����!
n!1 N

�

0; �2gk;`

�

r ;
1

k

�
z=

p
r
�
��

,

where

gk.x/ D jxjk
EŒjN jk� � 1 D

1X

pD1
g2p;kH2p.x/, (3.6)

with

g2p;k D 1

.2p/Š

p�1Y

iD0
.k � 2i/ . (3.7)

Remark 3.11. As in Berzin and León (2007) and Cœurjolly (2001), for k D 2, the
variance �2gk;`

�
r; 1

k

�
z=

p
r
��

is minimal. This fact is shown in Sect. 5.2.3, after the
proof of Corollary 3.10.

Remark 3.12. For k D 2 and ri D 2i�1, for i D 1; : : : ; `, the asymptotic variance
of

p
n OHk is

�
6

log.2/

�2
1

`2 .`2 � 1/2

0

@2
X̀

i<j I i;jD1
2�j .2i � .`C 1// .2j � .`C 1//�

C1X

rD�1
	2
1;2j�i .r/C

X̀

iD1
2�i .2i � .`C1//2

C1X

rD�1
	2H .r/

!

:

Now, let us define

Mlog.n/ D 1

n � 1
n�2X

iD0
log .jınbH .i/j/ . (3.8)
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Lemma 3.8 following Theorem 3.4, also entails that

1

n � 1
n�2X

iD0
glog .�nbH .i//

P����!
n!1 0,

as well as it converges to 0 in L2.˝/, the function glog is defined by (3.11).
Thus

1

n � 1
n�2X

iD0
log .j�nbH .i/j/ P����!

n!1 EŒlog.jN j/�,

i.e.

Mlog.n/ D �H log.n/ C log.�2H / C EŒlog jN j� C op.1/. (3.9)

Proceeding as before the least squares estimator OHlog of H is given by

OHlog D �
X̀

iD1
zi Mlog.ni /. (3.10)

Theorem 3.4 leads the following corollary.

Corollary 3.13. (1) OHlog is an unbiased weakly consistent estimator of H .
(2) Furthermore,

p
n
� OHlog �H

	
Law����!
n!1 N

�

0; �2glog;`

�

r;
zp
r

��

;

where

glog.x/ D log.jxj/ � EŒlog.jN j/� D
1X

pD1
g2p;logH2p.x/, (3.11)

with

g2p;log D .�1/p�1

2p.2p � 1/ŠŠ
. (3.12)

Remark 3.14. As shown in Sect. 5.2.3 after the proof of Corollary 3.13, the variance

�2glog;`

�
r; zp

r

	
is always greater than �2g2;`

�
r ; 1

2

�
zp
r

		
and �2g4;`

�
r; 1

4

�
zp
r

		
.
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Remark 3.15. In the case where ri D 2i�1, for i D 1; : : : ; `, the asymptotic
variance of

p
n OHlog is

�
3

log.2/

�2
1

`2 .`2 � 1/2

0

@2
X̀

i<j I i;jD1
2�jC1 .2i � .`C 1// .2j � .`C 1//�

C1X

pD1
.2p/Š

�
1

p.2p � 1/ŠŠ

�2 C1X

rD�1
	
2p

1;2j�i .r/C
X̀

iD1
2�iC1.2i � .`C 1//2 �

C1X

pD1
.2p/Š

�
1

p.2p � 1/ŠŠ

�2 C1X

rD�1
	
2p
H .r/

1

A :

We can link the two estimators OHk and OHlog. For this, let k.n/ be a sequence
of positive numbers converging to zero as n tends to infinity and let OHk.n/ be the
corresponding estimator, say

OHk.n/ D �
X̀

iD1
zi

log.Mk.ni /.ni //

k.ni /

where, Mk.n/.n/ D 1

n � 1

n�2X

iD0
jınbH .i/jk.n/ .

(3.13)

We have the following corollary.

Corollary 3.16. If k.n/ D o.1=
p
n/ then OHk.n/ is an asymptotically unbiased

weakly consistent estimator ofH and the asymptotic behaviors of
p
n
� OHk.n/ �H

	

and
p
n
� OHlog �H

	
are the same.

3.3 Estimation of the Local Variance

In this section, we give two kinds of results concerning the estimation of the local
variance � .

First we provide simultaneous estimators of parameters H and � in four simple
SDE driven by a fBm. These estimators come from a regression model and are built
on the second order increments of the stochastic process solution of the SDE. We
study their properties and a CLT is obtained.

The estimation procedure leads to a loss of convergence rate for the CLT for
the estimator of function � . However, if H is known, an other estimator of �
is proposed, giving the actual convergence rate for the CLT. Then we propose
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an hypothesis test on � in the context of the four previous models. Finally, we
propose functional estimation of the function � in a general pseudo-diffusion driven
by a fBm.

3.3.1 Simultaneous Estimation of the Hurst Parameter
and of the Local Variance

We propose simultaneous estimators of the parameter H and of the local variance
� for solutions of the SDE:

dX.t/ D �.X.t// dbH .t/C �.X.t// dt:

Four cases are considered: depending on the form of functions � and �: �.x/ D
� or �x and �.x/ D � or �x.

Using results of Sects. 3.2.1 and 3.2.2, we obtain consistent estimators of H and
� . Observing the second order increments of X at several scales of the parameter
time, we obtain regression models that give least squares estimators of H and � . A
CLT is stated for both of them.

As a bonus, if H is supposed to be known, we propose an other estimator of
H based on the absolute k-power of the second order increments of X . A CLT is
also stated, the rate of convergence being better than in the case where we perform
simultaneous estimation.

We would like to provide simultaneous estimators of H and � in the four
following models. For H > 1

2
and t > 0

dX.t/ D � dbH .t/C � dt , (3.14)

dX.t/ D � dbH .t/C �X.t/ dt , (3.15)

dX.t/ D �X.t/ dbH .t/C �X.t/ dt , (3.16)

dX.t/ D �X.t/ dbH .t/C � dt , (3.17)

with X.0/ D c.
The solutions of these equations are respectively:

(3.14) W X.t/ D �bH .t/C �t C c;

(3.15) W X.t/ D �bH .t/C exp.�t/

�

��

�Z t

0

bH .s/ exp.��s/ ds

�

C c

�

;

(3.16) W X.t/ D c exp.�t C �bH .t//;

(3.17) W X.t/ D exp.�bH .t//

�

c C �

Z t

0

exp.��bH .s// ds

�

:
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For (3.14), see Lin (1995) and for (3.16), as detailed in Sect. 2.2.1 by (2.2), see
Cutland et al. (1995) and Klingenhöfer and Zähle (1999).

We consider the problem of estimating simultaneously H and � > 0. Suppose
X is observed on a grid f i

n
; i D 0; 1; : : : ; ng so that the increments ınX.i/, for

i D 0; 1; : : : ; n � 2, can be computed.
For models (3.16) and (3.17) we will suppose that c ¤ 0. For model (3.17) we

will make the additional hypothesis that � and c have the same sign or that � is
eventually null.

From now on, we shall note for each n 2 N� � f1g and i 2 f0; 1; : : : ; n � 2g,

�nX.i/ D

8
<̂

:̂

�nX.i/; for the first two models

�nX.i/

X. i
n
/
; for the other two.

(3.18)

In a similar way, we define nX.i/ substituting ın to �n in the last expression.
For a real number k > 1, let us denote

AXk .n/ D 1

�k kN kkk

 
1

n � 1
n�2X

iD0
j�nX.i/jk

!

� 1: (3.19)

Corollary 3.3 allows us to state the following theorem.

Theorem 3.17. (1) For each real k > 1,

AXk .n/
a.s.����!

n!1 0.

(2) Furthermore

n� 1p
n
AXk .n/ D Sgk;n.1/C oa:s:.1/,

where the function gk is defined by (3.6).

At this step, we can propose estimators of H and � , by observing nX.i/ at several
scales of the parameter n, i.e. ni D ri n, ri 2 N�, i D 1; : : : ; `. In this aim, let us
define

MX
k .n/ D 1

n� 1

n�2X

iD0
jnX.i/jk : (3.20)

Using assertion (1) of Theorem 3.17, we get

�
nH

� �2H kN kk

�k
MX
k .n/

a:s:�!
n!C1 1,
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from which we obtain

log.MX
k .n// D �k H log.n/C k log.� �2H kN kk/C oa:s:.1/. (3.21)

The following regression model can be written, for each scale ni :

Yi D aXi C k bk C �i , i D 1; : : : ; `,

where a D H , bk D log.� �2H kN kk/ and for i D 1; : : : ; `, Yi D log.MX
k .ni //,

Xi D �k log.ni /. Hence, the least squares estimators OHk of H and OBk of bk are
defined as

OHk D � 1
k

X̀

iD1
zi log.MX

k .ni //; (3.22)

and

OBk D 1

k

 
1

`

X̀

iD1
log.MX

k .ni //

!

C OHk

 
1

`

X̀

iD1
log.ni /

!

; (3.23)

where zi are defined by (3.4).
Finally, we propose as an estimator of �

O�k D exp. OBk/
�2 OHk kN kk

: (3.24)

Theorems 3.17 and 3.4 imply the following results for anyH in the interval � 1
2
; 1 Œ .

Theorem 3.18. For each real k > 1,

(1) OHk is a strongly consistent estimator of H and

p
n
� OHk �H

	
Law����!
n!1 N

�

0; �2gk;`

�

r ;
1

k

�
z=

p
r
�
��

,

where the function gk is defined by (3.6) and the coefficients g2p;k by (3.7).
(2) O�k is a weakly consistent estimator of � and

p
n

log.n/
. O�k � �/

Law����!
n!1 N

�
0; �2 �2gk;`

�
r; 1

k

�
z=

p
r
��	

.
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Remark 3.19. As in Corollary 3.10, the asymptotic variance �2gk;`
�
r; 1

k

�
z=

p
r
��

is
minimal for k D 2 and then the best estimators forH and � in the sense of minimal
variance are obtained for k D 2.

Theorem 3.17 also provides estimators for � when H is known. Indeed, for each
real k > 1 we set,

Q�k D

�
1
n�1

n�1P
iD0

j�nX.i/jk
�1=k

kN kk
where �nX is given by (3.18).

Theorem 3.20 follows from Theorem 3.17 and Remark 3.7.

Theorem 3.20. For each real k > 1, if H is known, 1
2
< H < 1, then

(1) Q�k is a strongly consistent estimator of � and
(2)

p
n. Q�k � �/

Law����!
n!1 N

�
0; �

2

k2
�2gk

	
;

where the function gk is defined by (3.6).

Remark 3.21. Note that the rate of convergence in assertion (2) is
p
n instead ofp

n= log.n/ as it is in assertion (2) in Theorem 3.18. This is due to the fact that here
H is known.

Remark 3.22. The variance �2gk =k
2 is minimal for k D 2 and then the best estimator

for � in the sense of minimal variance is obtained for k D 2.
This fact will be shown in Sect. 5.3.1 after the proof of Theorem 3.20.

3.3.2 Hypothesis Testing

Tests of hypothesis on � are proposed, for the four models proposed in Sect. 3.3.1,
where parameterH is supposed to be known.

We test the hypothesis �n D � against �n D � C 1p
n
.d C F.

p
n//, where d is

positive constant and F a positive function tending to zero with n. An evaluation of
the asymptotic power of the test is made.

Let us consider the four stochastic differential equations, for known H , H > 1
2
,

t > 0 and n 2 N�,

dXn.t/ D �n dbH .t/C �n dt , (3.25)

dXn.t/ D �n dbH.t/C �n Xn.t/ dt ,
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dXn.t/ D �n Xn.t/ dbH .t/C �n Xn.t/ dt , (3.26)

dXn.t/ D �n Xn.t/ dbH .t/C �n dt , (3.27)

with Xn.0/ D c.
We consider testing the hypothesis

H0 W �n D � ,

against the alternatives

Hn W �n D � C 1p
n
.d C F.

p
n/),

where � , d are positive constants, F is a positive function such that F.
p
n/

converges to 0 as n ! 1 and �n is supposed bounded, possibly except for model
(3.25). For models (3.26) and (3.27) we will suppose that c ¤ 0. For model (3.27)
we will make the additional hypothesis that �n and c have the same sign or that �n
is eventually null.

The reason why we must choose this sequence of alternatives Hn, is that we are
interested in the asymptotic behavior of the test. If the alternative is fixed, the two
hypotheses are well separated. Then at the end when n goes to infinity, our test
always chooses one of the two hypotheses. However for a sequence of alternatives
tending to the hypothesis H0, with a rate of convergence similar to the one of the
CLT, it would be more difficult to choose. A good result to discriminate between
one of the hypotheses can be understood as a proof of the quality of the test.

By Sect. 3.3.1 for each model there exists an unique solution to the stochastic
equation, say Xn. We are interested in observing the following functionals

Fn D p
n

"r
�

2

1

n � 1
n�2X

iD0
j�nXn.i/j � �

#

;

where �nXn is defined by (3.18), where we replaced X by Xn.
Using Corollary 3.3 and Remark 3.7, we can prove the following theorem.

Theorem 3.23. Suppose that H is known with 1=2 < H < 1, then

Fn
Law����!
n!1 �g1 � N C d ,

where the function g1 is defined by (3.6).

Remark 3.24. There is an asymptotic bias d , and the larger is the bias the easier is
discriminating between the two hypotheses.

Remark 3.25. Xn plays the role of X , in Sect. 3.3.1, with �n D � and �n D �.
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3.3.3 Functional Estimation of the Local Variance

We propose functional estimation of the local variance � in the following model:
dX.t/ D �.X.t// dbH .t/ C �.X.t// dt . Some regularity conditions need to be
satisfied by the functions � and �.

At this state we give an outline of the proof of the results. Indeed we do the
remark that when � 	 0, the solution for the previous SDE can be expressed as
X.t/ D K.bH .t//, where K is solution of an ordinary differential equation (ODE).

Then we explain how in that case results concerning functional estimation for
� can be held by considering the particular case where the solution process of the
SDE is a fBm. In the case where the function � is not necessarily null, we use the
Girsanov’s theorem.

We consider the following equation with respect to bH :

X.t/ D c C
Z t

0

�.X.u// dbH .u/C
Z t

0

�.X.u// du, (3.28)

for t > 0, H > 1=2 and positive � . We want to estimate � .
In this aim, we consider the following assumptions on the coefficients � and � :

(H1) – � is a Lipchitz function on R of class C1, bounded and bounded away
from zero.

– There exists some constant �, 1=H � 1 < � 6 1, and for every N > 0, there
exists MN > 0 such that

j P�.x/ � P�.y/j 6 MN jx � yj� , 8 jxj , jyj 6 N .

(H2) – � is C1, bounded and Lipchitz function on R.

Remark 3.26. Hypotheses (H1) and (H2) require that � is bounded and bounded
away from zero and that � is C1 and bounded. These two last assumptions can
be relaxed, ensuring that there exists an unique process solution of the stochastic
equation (3.28).

Furthermore, X will almost-surely have .H � ı/-Hölder continuous trajectories
on all compact set included in RC (see Nualart and Răşcanu 2002).

Using similar arguments to the ones of Theorem 3.1 we can prove the following
theorem.

Theorem 3.27. Let 1
2
< H < 1, under hypotheses (H1) and (H2), almost surely

for all continuous function h and for all real k > 1 then,

1

n � 1

n�2X

iD0
h.X. i

n
//

j�nX.i/jk
EŒjN jk� �!

n!C1

Z 1

0

h.X.u// Œ�.X.u//�k du.
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Remark 3.28. If � 	 0, hypotheses (H1) and (H2) can be replaced by � 2 C1.

Moreover, we can also obtain the following theorem giving the convergence rate in
the last theorem.

Theorem 3.29. Let us suppose that 1
2
< H < 1, h 2 C2, � 2 C2, � is bounded

and bounded away from zero and supfj R�.x/j; j Rh.x/jg 6 P.jxj/, where P is a
polynomial, then under hypotheses (H1) and (H2) and for all real k > 1,

p
n

"
1

n � 1
n�2X

iD0
h.X. i

n
//

j�nX.i/jk
EŒjN jk� �

Z 1

0

h.X.u// Œ�.X.u//�k du

#

Law����!
n!1 �gk

Z 1

0

h.X.u// Œ�.X.u//�k d OW .u/,

where gk is defined by (3.6) and OW is a standard Brownian motion independent
of bH .

Remark 3.30. If � 	 0, hypotheses (H1) and (H2) can be relaxed and convergence
becomes stable convergence.

We give here an outline of the proofs of Theorems 3.27 and 3.29 in order to state
two other quite interesting theorems.

On the one hand, we consider the case where � 	 0 and prove Remarks 3.28
and 3.30 in this case.

On the other hand, we consider the case where � is not necessarily null. We then
prove Theorems 3.27 and 3.29 using Remarks 3.28 and 3.30 and Girsanov’s theorem
given in Decreusefond and Üstünel (1999).

Indeed, in the case where � 	 0 and � 2 C1, as seen in the introduction, X is
solution of ODE (2.2). More precisely, since bH has zero quadratic variation when
H > 1

2
, Lin (1995) proved that the solution for the SDE (3.28) can be expressed as

X.t/ D K.bH .t//, for t > 0, where K.t/ is the solution of the ODE

PK.t/ D �.K.t//I K.0/ D c; (3.29)

see also (2.2). We then need the two following lemmas for which proofs are provided
in Chap. 6 (pages 110 and 111).

Lemma 3.31. In model (3.28), if H > 1
2
, � 	 0 and � 2 C1, then for i D

0; 1; : : : ; n � 2,

�nX.i/ D �.X. i
n
//�nbH .i/C an.i/;

with

jan.i/j 6 C .!/
�
1
n

�H�ı
; for any ı > 0.
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This lemma allows us to enunciate the following one.

Lemma 3.32. In model (3.28), let H > 1
2
, � 	 0 and � 2 C1. Then almost surely,

for all continuous function h and for all real k > 1, we have

1

n � 1

n�2X

iD0
h.X. i

n
// fj�nX.i/jk � Œ�.X. i

n
//�k j�nbH.i/jkg D o

�
1p
n

	
:

Thus if we choose f D h ıK � .� ıK/k in following theorem, that will be enough
to obtain Remark 3.28.

Theorem 3.33. Let 0 < H < 1, almost surely for all continuous function f and
for all real k > 0 then,

1

n� 1

n�2X

iD0
f .bH .

i
n
//

j�nbH .i/jk
EŒjN jk�

a.s.����!
n!1

Z 1

0

f .bH .u// du.

Now let us remark that almost surely for all C1 function f and for all H > 1
2
,

one has

 Z 1

0

f .bH .u// du � 1

n � 1
n�2X

iD0
f .bH .

i

n
//

!

D o. 1p
n
/:

Thus using once again Lemma 3.32 and last equality, Remark 3.30 will ensue from
the following theorem.

Theorem 3.34. Let us suppose 1
2
< H < 1, f 2 C2 and

ˇ
ˇ
ˇ Rf .x/

ˇ
ˇ
ˇ 6 P.jxj/, where

P is a polynomial, then for all real k > 0,

1p
n

n�2X

iD0
f .bH .

i
n
// gk.�nbH .i//

stably converges as n goes to infinity toward

�gk

Z 1

0

f .bH .u// d OW .u/.

Here OW is still a standard Brownian motion independent of bH and gk is defined
by (3.6).

Remark 3.35. Let g be a general function with four moments with respect to the
standard Gaussian measure, even, or odd, with Hermite rank greater than or equal to
one and such that Ag ¤ ; (for the definition of Ag , see Sect. 2.3). It can be proved
that, under the same hypotheses onH and f ,
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1p
n

n�2X

iD0
f .bH .

i
n
// g.�nbH .i//

stably converges as n goes to infinity toward �g
R 1
0
f .bH .u// d OW .u/. Furthermore

if f 2 C4 and
ˇ
ˇ
ˇ
4�
f .x/

ˇ
ˇ
ˇ 6 P.jxj/, this result is still valid under the weaker hypothesis

that H > 1
4

and under the supplementary condition, in case where g is odd, that g
has Hermite rank greater than or equal to three.
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Chapter 4
Simulation Algorithms and Simulation Studies

4.1 Introduction

In this chapter, we present the basic ideas for the simulation of a stationary Gaussian
process from which we deduce the simulation of a fBm and the simulation of
processes driven by a fBm.

Our approach is based on the Durbin-Levinson’s algorithm. Since the process
formed by the first order increments of a fBm is a stationary Gaussian one, we
first simulate the increments of the process and then, by a simple “integration”, we
obtain a trajectory of the fBm. For models defined by differential equations, first
an observation of the fBm is generated and then, it is transformed according to
differential equation.

Simulating these processes, we can explore the statistical properties of the
estimators defined in the previous chapter from an empirical point of view. We study
the distribution of the estimators of H and of � . Special attention is devoted to the
construction of a confidence interval for H . Some simulation results concern the
estimation of the parameters of a pure fBm, some others are for the parameters of
models that are excited by a fBm.

In the first two simulation studies, the uniform generator is based on three linear
congruential generators (cf. Press et al. 2007, p. 196). Random normal deviates are
obtained by Box and Muller’s method (see Knuth 1981, p. 104).

In the other simulations studies, uniform deviates are obtained by a linear
congruential generator given in Langlands et al. (1994, p. 36) and for the normal
deviates, we use Algorithm M described in Knuth (1981). It is a very fast generator.
Pascal programs are given in Chap. 8.

C. Berzin et al., Inference on the Hurst Parameter and the Variance of Diffusions Driven
by Fractional Brownian Motion, Lecture Notes in Statistics 216,
DOI 10.1007/978-3-319-07875-5__4,
© Springer International Publishing Switzerland 2014
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4.2 Computing Environment

The computation resources required for the simulation studies are quite important.
As we will see in Sect. 4.5.1.1, the simulation studies are supported by a design of
experiment in which 10,000 trajectories are simulated. An important time machine
is needed to achieve this goal. We decided to use compiled code to perform
these computations. The Pascal language was retained. We wrote the programs in
the Apple’s Macintosh environment with the Mac OS X operating system. Two
compilers were used: the GNU Pascal compiler (see http://www.gnu-pascal.de/gpc/
h-index.html) and the Free Pascal compiler (see http://www.freepascal.org/).

4.3 Random Generators

For the first two simulation studies, concerning the uniform generator, the reader is
referred to Press et al. (2007). For the third simulation study, in conjunction with the
following linear congruential generator:

xiC1 D .a xi C c/ mod m

with

a D 142 412 240 584 757D .4 � 35 603 060 146 189/C 1; m D 248; c D 11;

(see Langlands et al. 1994, p. 36), we use Marsaglia’s algorithm for the normal
deviates.

This algorithm is very fast, easily implemented and described in details in
Knuth (1981, p. 122). A Pascal implementation is given in Chap. 8, page 160.
Implementation of the congruential generator is not straightforward: clever pro-
gramming is required to avoid overflows. Again, see Chap. 8, page 160 for a Pascal
implementation.

There are good reasons to prefer Marsaglia’s algorithm to Box and Muller’s
method. In the following, we will shortly describe the approach. To increase the
procedure performance, some programming ingenuity was also brought by Knuth
who asserts that the final version of this algorithm “is a very pretty example of
mathematical theory intimately interwoven with programming ingenuity—a fine
illustration of the art of computer programming!”

Marsaglia’s algorithm is primarily aimed at generating X , the absolute value of
a standard Gaussian variable with distribution function F given by (4.1).

F.x/ D
r
2

�

Z x

0

e�t 2=2 dt; x > 0: (4.1)

http://www.gnu-pascal.de/gpc/h-index.html
http://www.gnu-pascal.de/gpc/h-index.html
http://www.freepascal.org/
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Fig. 4.1 Density function of X broken into 31 parts. The area of each part is the probability pj
of selecting the associated distribution. Knuth, Donald K, The Art of Computer Programming,
Volume 2: Seminumerical Algorithms, 2nd Edition, c�1981. Reprinted by permission of Pearson
Education, Inc., Upper Saddle River, NJ

Fig. 4.2 Wedge-shaped densities (f18 and f22) and the tail of the distribution (f31). Knuth,
Donald K, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 2nd Edition,
c�1981. Reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ

A negative sign is then given to this absolute value with probability 1
2

to get a normal
deviate. The distribution functionF can be seen as a mixture of several distributions:

F.x/ D
31X

iD1
piFi .x/

where F1; : : : ; F31 are appropriate distributions and p1; : : : ; p31 are probabilities.
More precisely, to generate X , first we chose Fj with probability pj and then we
generate a random deviate according to this distribution.

The density ofX is represented in Fig. 4.1. There are three types of distributions:
rectangular (f1; : : : ; f15), wedge-shaped (f16; : : : ; f30) and the tail (f31). Magnified
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views of these different types are presented in Fig. 4.2. Obviously, rectangular parts
correspond to uniform variables. We easily see that

pj D
r

2

25�
e�j 2=50; j D 1; : : : ; 15

and also note that
P15

jD1 pj � 0:92. It shows that 92 % of the normal deviates are
generated using an uniform generator that does not require important computing
resources.

For nearly linear densities like f18 or f22, a very efficient algorithm, based
on a rejection approach, has been designed, see Algorithm L in Knuth (1981,
p. 121). More computer time is required only when density f31 is chosen. But this
distribution needs to be treated with probability � 0:00270.

Based on Walker’s alias method, Knuth (1981, exercise 7, p. 134), the random
choice of the distribution fj , j D 1; : : : ; 31, is cleverly done. In fact, the choice of
fj among ff1; : : : ; f31g corresponds to a random experiment, whose outcome is C
and that can be described in the following way.

Let ˝ D ff1; : : : ; f31g. Let U be an uniform variate and define C as

C D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

f1; if 0 6 U < p1I
f2; if p1 6 U < p1 C p2I
:::

f31; if p1 C p2 C � � � C p30 6 U < 1I

(4.2)

where and p1 C p2 C � � � C p31 D 1.
As mentioned by Knuth (1981, page 115), there is a best possible way to do the

comparisons of U against the various values of p1 C p2 C � � � C ps , as implied in
(4.2) and known as Walker’s alias method (see Kronmal and Peterson 1979).

We do recommend the reading of Knuth (1981, p. 119–123).

4.4 Simulation of a Stationary Gaussian Process
and of the fBm

Based on the ideas of the Durbin-Levinson algorithm, we tackle the problem of
simulating a stationary Gaussian process. Since the increments of a fBm is a
stationary Gaussian process, we simulate a trajectory of the increments and by a
simple “integration”, we obtain a trajectory of the fBm.

First, we considered the standardized process of the simple differences of a fBm:

�.1/
n bH .i/ D nH

v2H

�
bH .

i
n
/� bH.

i�1
n
/
�
;
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for i D 1; 2; : : : ; n. This sequence is a centered stationary Gaussian vector. The
covariance function is denoted by H.i � j /, for i; j D 1; 2; : : : ; n, and for x 2 R,

H .x/ D 1

2

h
jx C 1j2H � 2 jxj2H C jx � 1j2H

i
:

Our primary aim is to simulate .Y1; : : : ; Yn/> a vector with a covariance structure
identical to that of .�.1/

n bH .i//i2f1;:::;ng.
The idea consists in writing

YkC1 D �k;1Yk C � � � C �k;kY1 C akC1

D OYkC1 C akC1

where coefficients �k;j , j D 1; : : : ; k, are chosen at each step k to minimize:

EŒ.YkC1 � OYkC1/2� D EŒa2kC1�:

The covariance matrix of Y k D .Y1; : : : ; Yk/
> is a Tœplitz symmetrical matrix

given by � k :

� k D

2

6
6
6
6
6
4

H.0/ H .1/ H .2/ : : : H .k � 1/

H.1/ H .0/ H .1/ : : : H .k � 2/

H.2/ H .1/ H .0/ : : : H .k � 3/
:::

:::
:::

: : :
:::

H .k � 1/ H .k � 2/ H.k � 3/ : : : H.0/

3

7
7
7
7
7
5

The Durbin-Levinson algorithm has been originally designed to recursively predict
the value of time series at time .� C 1/ given the values at times 1; : : : ; �. An easy
adaptation of this algorithm can be done to simulate observations of a fBm on a
regular grid on the interval Œ 0; 1 �.

The Durbin-Levinson algorithm allows to find the �k;j , j D 1; : : : ; k coefficients
in a recurrent way. A description of the algorithm follows:

Initialization. For k D 1, let

v0 D H .0/I �11 D H.1/

H.0/
I v1 D v0.1 � �211/.

Recurrence. For k D 2; : : : ; n

�k;k D 1

vk�1

2

4H.k/ �
k�1X

jD1
�k�1;j H .k � j /

3

5 ;
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2

6
4

�k;1
:::

�k;k�1

3

7
5 D

2

6
4

�k�1;1
:::

�k�1;k�1

3

7
5 � �k;k

2

6
4

�k�1;k�1
:::

�k�1;1

3

7
5

vk D vk�1Œ1 � �2k;k�

To simulate n successive observations of the process, we suggest to use the
following recurrence:

Y1 D a1I

YkC1 D akC1 C
kX

jD1
�k;j YkC1�j ; k D 1; : : : ; n � 1

where fakgkD1;:::;n is a sequence of independent variables N.0I vk�1/, k D 1; : : : ; n.
We assert that for all n, vector .Y1; : : : ; Yn/> is N.0nI � n/ (see Brockwell and Davis
1991).

Finally, to obtain a simulated trajectory of the fBm process, we let

(
Z0 D 0; if k D 0I
Zk D Zk�1 C Yk; if k > 0;

and bH.kn / D v2H

nH
Zk , 0 6 k 6 n. In fact, we simulate the simple increment

process. Some trajectories are exhibited in Fig. 4.3.
For the models defined by a differential equation as in Sect. 3.3.1, first a trajectory

of the fBm is generated and then, it is transformed according to differential equation.
See Fig. 4.4.

4.5 Simulation Studies

In this section, we report three simulation studies. First, we describe the design of
experiment. Then, referring to tables and figures of Chap. 7, a discussion of the
results follows.

In the first simulation study, we empirically assess the estimation qualities of the
different proposed estimators of H . A paragraph is devoted to the construction of
a confidence interval. We compare the confidence interval based on the empirical
distribution fractiles with the confidence interval based on a normal approximation.

In the second simulation study, we are interested in the joint estimation ofH and
� for models defined in terms of a differential equation (see (3.14)–(3.17)).

In the third study, we want to assess the power of a test on � . As in the two
previous studies, discussion is based on tables and graphics presented in Chap. 7.
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a

b

c

Fig. 4.3 FBm observed on a grid of 1/2,048-th on the interval Œ 0; 1 �: (a) with an Hurst parameter
equal to 0:25; (b) with an Hurst parameter equal to 0:75; (c) with an Hurst parameter equal to 0:9

4.5.1 Estimators of the Hurst Parameter and the Local
Variance Based on the Observation of One Trajectory

4.5.1.1 Design of the Experiment

In order to assess the quality of the estimation procedures, we used some reference
values forH :

H 2 H D f0:05; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:95g:
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a

b

c

d

Fig. 4.4 Processes driven by a fBm using H D 1
2

observed on a grid of 1/2,048-th on the interval
Œ 0; 1 � (a) Model 1; (b) Model 2; (c) Model 3; (d) Model 4 with � D 2, � D 2 and c D 1
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We computed the estimators OHk , for k D 1; 2; 3 and 4; the estimator OHlog was also
computed. The value of ` appearing in (3.3) and (3.10) was set to ` D 2; 3; 4 and 5.

Simulation programs are written in Pascal and compiled using GNU Pascal 3.4.5
compiler under Mac OS X, 10.4.8.

For each value of H 2 H, 10,000 trajectories were simulated. To all these
trajectories, we applied the estimation procedure for the values of k and ` previously
given. The trajectories were observed at a higher resolution of 1/2,048-th.

Let us explain with some details the computation done for the case where ` D 2.
We got five subcases; estimation can be done for different choices of n1 and n2 as
used in Eq. (3.3): these are .64; 128/, .128; 256/ . . . .1;024; 2;048/. Note that these
ni ’s are powers of 2. So, the number of points used inMk.n2/ is twice the number of
points used inMk.n1/. Here and for future references n2 is said to be the maximum
number of points used in the summation for a given subcase.

All the tables and figures referred in this section are displayed in Chap. 7, starting
on page 123.

4.5.1.2 Empirical Distributions of the Estimators of the Hurst Parameter

For this first study, basic statistics concerning the empirical distributions obtained
by simulation appear in Tables 7.1–7.5 (pages 125–129). A close look to these tables
can help to understand the following.

First, we know that OHk is biased while OHlog is not. If we compare the empirical
biases O� OHlog

�H to O� OHk �H , we realize that they are quite the same. This assertion

is illustrated taking H D 1
2
. There are no major differences between this case and

the others. This can be seen in Figs. 7.2 and 7.3, pages 130 and 131. This remark
also applies to the other values of H , as suggested by Tables 7.1–7.5. Note that the
scales are all the same for an easy comparison between graphs.

The estimator OHlog is unbiased, nevertheless, as indicated by Fig. 7.3, it has the
largest standard error. As we noted previously, all the other parameters being equal,
the standard error is better with k D 2. Let us look at the particular case where
k D 2, H D 0:05, H D 1

2
and H D 0:95.

Obviously and as expected, a higher resolution in observing the trajectory
produces a better estimation ofH . For ` > 3, results are quite similar. Sure, there is
some gain in using a higher resolution of 1/2,048-th compare to 1/1,024-th.

Figure 7.1 on page 124 shows the distribution of OH2 using a resolution of 1/2,048-
th and ` D 5. As we can see, the empirical distribution is very close to the normal
distribution.

4.5.1.3 Confidence Intervals for H Using the Fractiles

Let us consider the optimal case with k D 2. Using these simulations results, we
can give a confidence interval for H given an observed value OH2Iobs. The idea
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is the following one. Suppose we would like to have a 1 � ˛ confidence interval.
Let Qˇ.H/ be the ˇ-fractile of the sample distribution of OH2, i.e. Qˇ.H/ is such
that Pr. OH2 < Qˇ.H/ j H/ D ˇ and let

H1D inf
H

fH W Q1�˛=2.H/ > OH2Iobsg and H2D sup
H

fH W Q˛=2.H/ 6 OH2Iobsg:

To illustrate the procedure, we plotted the values of Q0:025.H/ and Q0:975.H/:
see Fig. 4.5.1 The points are quite close to straight lines.

For the observed estimated value OH2Iobs of H , let us denote by I1�˛. OH2Iobs/ the
interval

I1�˛. OH2Iobs/

D fH W Q1�˛=2.H/ > OH2Iobsg \ fH W Q˛=2.H/ 6 OH2Iobsg D Œ H1; H2 �: (4.3)

Let H? be the actual value of H . If H? … I1�˛. OH2Iobs/, then

Q1�˛=2.H?/ < OH2Iobs or OH2Iobs < Q˛=2.H
?/:

Note that 8H; Q1�˛=2.H/ > Q˛=2.H/, so

f OH2 W Q1�˛=2.H/ < OH2g \ f OH2 W OH2 < Q˛=2.H/g D ;

1The procedure can be done for any confidence level.
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and we get that

Pr.f OH2 W Q1�˛=2.H?/ < OH2g [ f OH2 W OH2 < Q˛=2.H
?/g/ D ˛

because the probability of both events is ˛=2. We conclude that the probability that
the actual value is recovered by the interval I1�˛. OH2Iobs/ is 1 � ˛.

In general, the fractiles Q1�˛=2.H/ and Q˛=2.H/ can be estimated using the
empirical distribution we got by simulation. Let us give an example with ˛ D
0:05. For H D 0:3, we got 0:2434 and 0:3508 respectively for QQ0:025.0:3/ and
QQ0:975.0:3/; for H D 0:5, we got 0:4447 and 0:5491 respectively for QQ0:025.0:5/

and QQ0:975.0:5/. The regression line equations are:

OQ0:025.H/ D �0:06008C 1:011H

OQ0:975.H/ D C0:05362C 0:9901H

Using these regression lines we get:

H OQ0:025.H/ OQ0:975.H/

0.3 0.2432 0.3507
0.5 0.4453 0.5487

These values are almost the same as the previous ones.
Now suppose that we observe OH2 D 0:4. The smallest value of H such that

OH2 D 0:4 is recovered by I0:95.H/ is 0:3498 whilst the greatest one is 0:4552. So,
the “95% confidence interval” is2: Œ 0:3498; 0:4552 �:

Based on the previous simulation results we computed the coefficients of the
regression lines and we wrote another simulation program to assess the confidence
level of the procedure. In other words, we used other simulations to compute the
values of OH2 and check if H was recovered by the confidence interval. In all cases,
the empirical confidence level was very close to 0.95. In fact, if the real covering
probability is 0.95, the estimated value should be between 0.9365 and 0.9635 in
95 % of the cases. As we can see, there are only three cases, indicated by a “�” in
Table 7.6, for which the value is outside this interval. So, the approximate procedure
is quite satisfactory.

2These values are obtained using the following equations:

UL. OH2/ D 0:9893 OH2 C 0:05944

LL. OH/ D 1:0010 OH2 � 0:05415

where UL and LL stand for upper and lower limits respectively.
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4.5.1.4 Confidence Intervals for H Using the Normal Approximation

The procedure corresponding to Fig. 4.5 can be compared with the one based on
the normal approximation. From the first simulation study, for all the empirical
distributions we can compute the standard deviation of OH2. In Fig. 4.6, we plotted
the values of

OH2 ˙ 1:96 O� OH2

as functions ofH . The two straight lines are very close to the ones we get in Fig. 4.5.
In the same way these regression lines can be used to determine confidence intervals.
So we conducted another simulation study to assess the recovering probability of
the proposed confidence interval. As one may expect, the results are as good as in
the previous method. There are only two cases, again indicated by the symbol “�”
in Table 7.7, for which the value is outside the interval Œ 0:9365; 0:9635 �. So, the
approximate procedure is quite satisfactory.

4.5.2 Estimation of �

In (3.14)–(3.17), fbH.t/; t 2 Rg is a fBm with parameter 0 < H < 1. Note
that if H > 1

2
, these processes are solutions of some specific stochastic differential

equations. See Eq. (2.2) and Sect. 3.3.1 for details.
The parameter H is estimated using OH2. To estimate � , we use: O�2 as estimator

of � defined by
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O�2 D exp. OB2/
�2 OH2

(4.4)

where

OB2 D 1

2

 
1

`

X̀

iD1
log.MX

2 .ni //

!

C OH2

 
1

`

X̀

iD1
log.ni /

!

:

4.5.3 Estimators of H and � Based on the Observation of X.t/

We already studied the performance of OH2, when we directly observe bH .t/. Here,
we study the distribution of OH2 and the distribution of O�2 when trajectories are
generated according to models proposed in Sect. 3.3.1: we observe X.t/ instead
of bH.t/.

The design of the experiment is the same. Simulations where done using � D
2, � D 2 and c D 1 in (3.14)–(3.17). Simulation of the four processes is quite
straightforward: first bH.t/ is simulated and then it is transformed into X.t/.

For each value of H 2 H, 10,000 trajectories were simulated, for a total of
90,000. To all these trajectories we applied the estimation procedure for the values
of k and ` previously given. The trajectories were observed at an highest resolution
of 1/2,048-th.

All the basic statistics concerning the empirical distributions obtained by simu-
lation appear in Tables 7.8–7.15. A close look at these tables can help to understand
the following. Graphical representations are also provided in Figs. 7.4–7.11.

4.5.3.1 The First and Second Models

As indicated in Tables 7.8 and 7.10, the estimation of H by OH2 in the case of the
first two models leads to results almost identical to the results we got for the simple
fBm process. All previous comments made previously for the simple fBm process
still apply.

There is a major problem concerning the estimation of � . (See Tables 7.9 and
7.11). The reader should bear in mind that when we estimate H , the computed
value of OH2 may be negative or greater than 1. Obviously, with a low resolution, if
the actual value ofH is close to 0, there is a quite important probability that OH2 6 0.
In the same way, if the actual value ofH is close to 1, there is also a quite important
probability that OH2 > 1. For example, look at Table 7.9, with H D 0:05, ` D 2 and
a 128-point resolution, only 59:2% of the estimated values OH2 were in the interval
� 0; 1 Œ ; in all the other cases we got unacceptable values.
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Looking at (4.4) we see that forH close to 0:

O�2 D exp. OB2/
�2 OH2

	
s
� OH2

3
exp. OB2/

and when OH2 < 0, we dare say that there is nothing to do and we cannot estimate
� . In this case our computer program returns O�2 D 0 considered as a missing value.

In the case where OH2 > 1, we suggest to use the limit value we get as H ! 1

which is:

O�2 	 1

2

r
�

ln 2
exp. OB2/: (4.5)

We know that for H > 1
2
, model 1 is the solution of a stochastic differential

equation. So, if we are only interested in this case, we do not have to consider
what happens for low values of H . An interesting point is the fact that if a 2,048-
point resolution is used, with ` 2 f3; 4; 5g, about 95 % of the trajectories produce
admissible values for OH .

The bias of O�2 is positive, but for ` D 4 or 5, it is not so important. Let us mention
that results seem to be slightly better for model 2 for low values of H . Over all the
10,000 trajectories, the average value of O�2 is a little higher than the actual value
which is � D 2. For this model, ifH is not too close to 0, the estimation of � seems
to be acceptable as soon as the maximum resolution is 1,024 points and ` > 4. As
we may expect with a 2,048-point resolution, we have a quite small standard error
decreasing withH . It is important to note that forH D 0:95, we got very interesting
results, considering the correction proposed in Eq. (4.5).

4.5.3.2 The Third and Fourth Models

With models 3 and 4, the estimations are not as good as they are for the other two
models. First, the average of OH2 is often negative when H D 0:05, even with a
2,048-point resolution and ` D 5. Otherwise, the bias is important for values of H
less than 0:5. In general, the averages of OH2 and the standard errors are similar for
both models 3 and 4.

Concerning the estimation of � , when H D 0:05, O�2 has a very poor
performance. For example, with a 2,048-point resolution and ` D 5, we have
O�2 D 1:3� 1011 (In Tables 7.13 and 7.15 the notation 1:4.24/ stands for 1:4� 1024).
In fact, forH D 0:05, the percentage of admissible estimated values is never higher
than 50 %. Even with H D 0:2, we get major problems. We see in Tables 7.13
and 7.15 that the bias is important for values of H less than 0:5. Bias are better for
H 2 f0:6; 0:7; 0:8; 0:95g, but never as good as they are for models 1 and 2.
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4.5.4 Hypothesis Testing

To study the performance of test on � when the value of H is known, we choose
to simulate 10,000 trajectories for each model. As in Sect. 4.5.3, the values of
the parameters were: � D 2, � D 2, c D 1. Here again, we consider different
resolutions: n 2 f128; 256; 512; 1;024; 2;048g. Five different values were used
under H1: �i D 2 C 1=28�i . So, under H1, we look at values of � in the interval
Œ 2; 2:125 �.

First, let us see if the asymptotic law provides good critical points when we want
to test:

H0 W �1 D �0:

The results are presented in Table 7.16, on page 150. As we may expect for high
values of n, the level is very close to 5 %, at least for the first two models. In that
case too, even for values of n, as low as 128, the empirical level is closer to 6 %.

Things are not so nice for models 3 and 4. If we accept that 7 % is not so far from
5 %, with a resolution of 1,024 or 2,048 points, the level seems to be acceptable. But
for resolutions of 128, 256 or 512 points, the level may be far from what we expect.
In some cases, they are higher than 10 %, and can be as high as 15.9 %. So, some
prudence is required when working with models 3 and 4.

The power of the test is also assessed. The test size being far from 5 % in some
cases, we prefer to use the empirical distributions of O�2 to design a test that have a
size close to the level. The performance is quite the same for the four models. See
Figs. 7.12–7.19.

When the asymptotic distribution is used to assess the power function, it turns
out that this approximation is quite good. It seems that the power is very slightly
overestimated in the case of models 1 and 2, while it is very slightly underestimated
in the case of models 3 and 4.
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Chapter 5
Proofs of All the Results

5.1 Introduction

In this chapter dedicated to the proofs of the various results, we explore the
properties of three kinds of estimators for the Hurst parameter of the fBm. These
estimators are built on the second order increments of fBm that allows estimation
all over the range of parameter H in � 0; 1 Œ . We prove a CLT for simultaneous
estimators of the Hurst parameterH and of the local variance � in the four following
models: dX.t/ D �.X.t// dbH .t/ C �.X.t// dt , where �.x/ D � or �x and
�.x/ D � or �x.

When H is supposed to be known, test of hypotheses on � are proposed.
Finally, functional estimation is considered for function � in the following

model: dX.t/ D �.X.t// dbH.t/ C �.X.t// dt , where functions � and � verify
technical hypotheses.

In this chapter we used the techniques of the CLT for functionals that belong to
Wiener chaos and more precisely the one of the Peccati-Tudor theorem.

5.2 Estimation of the Hurst Parameter

The aim of this section is to establish properties for three kinds of estimators for
H , the Hurst parameter. To reach this objective, we first prove an almost sure
convergence for the absolute k-power variation of the fBm, using the Borel-Cantelli
Lemma. Then, we prove a CLT for the rate of this convergence, using the
Peccati-Tudor theorem. It allows some insight into the properties of a first estimator,
say OHk of H .

Indeed, with the same work tools a more general CLT is proved, establishing
convergence in law for a g functional variation of the fBm, see (2.4) page 40, the
function g belongs to L2.�.x/ dx/, �.x/ dx standing for the standard Gaussian

C. Berzin et al., Inference on the Hurst Parameter and the Variance of Diffusions Driven
by Fractional Brownian Motion, Lecture Notes in Statistics 216,
DOI 10.1007/978-3-319-07875-5__5,
© Springer International Publishing Switzerland 2014
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measure. The particular case where g is g.x/ D jxjk giving previous CLT and OHk ,
we chose to bring out function g equal to g.x/ D log.jxj/. This choice gives rise to
a second estimator ofH , say OHlog, and permits to establish its properties.

Finally, we link the estimators OHk and OHlog proposing a third estimator, OHk.n/,
built as the first one but with a sequence k.n/ converging to zero with n instead of
fixed k. We establish that the asymptotic behavior of OHlog and of OHk.n/ are the same
by showing that their associated functional is equivalent in L2.

5.2.1 Almost Sure Convergence for the Second Order
Increments

We prove the almost sure convergence in law for the increments of the fBm. In this
aim, we consider An, the centered k-power of the fBm increments. We link An to
the g.k/ functional variation of the fBm, that is Sg.k/;n.1/, where function g.k/ is,
g.k/.x/ D xk � EŒN k�. Then, because the function g.k/ has a finite expansion in
terms on the Hermite basis, we announce that using Remark 3.5 proved later in
Sect. 5.2.2 the fourth moment of Sg.k/;n.1/ is bounded. Since An is equivalent to
Sg.k/;n.1/=

p
n, we show that the last remark implies that the fourth moment for An

is bounded by C =n2. Finally, the Borel-Cantelli Lemma yields the required result.

Proof of Theorem 3.1. For all k 2 N� and n 2 N� � f1g, let:

An D 1

n � 1
n�2X

iD0
.�nbH .i//

k � EŒN �k:

Now defining

g.k/.x/ D xk � EŒN �k D
kX

pD1
gp;.k/Hp.x/; (5.1)

one obtains

An D
p
n

n � 1
Sg.k/;n.1/;

and then

EŒAn�
4 6 n2

.n � 1/4
EŒSg.k/;n.1/�

4:

The function g.k/ has a finite expansion with respect to the Hermite basis. Applying
Remark 3.5 page 45 to g D g.k/, one obtains
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EŒAn�
4 6 C

1

n2
; for n large enough.

The Borel-Cantelli lemma yields Theorem 3.1. ut

5.2.2 Convergence in Law of the Absolute k-Power Variation

We prove the convergence in law for a g functional variation of the fBm, say Sg;n.1/,
see (2.4), page 40, function g being centered, belonging to L2.�.x/ dx/, �.x/ dx
standing for the standard Gaussian measure. Note that in the particular case where
g is gk.x/ D jxjk � EŒjN jk�, the result deals with the absolute k-power variation
convergence.

More precisely, we prove that the variation Sg;`n.1/ seen as a variable with
parameter ` converges to a cylindrical centered Gaussian processX with covariance
	g.`;m/. In this aim, using the Mehler’s formula, we first compute the asymptotic
variance of the random variable defined as a linear combination of variables of the
type Sg;`i n.1/, that are g functional variation seen at different scales of time. Then
we prove that function 	g is actually a covariance function.

Finally we prove a CLT for this linear combination. The work tool to build
this proof is based on the Peccati-Tudor theorem; it consists in decomposing the
functional we are interested in into a sum of functionals belonging to distinct
Wiener chaos. Then we prove that the p-th contractions of functions defining each
functional tend to zero in L2. This fact and the finiteness of the asymptotic variance
ensuring the required convergence.

To complete the proof, we show how the Peccati-Tudor’s Theorem permits to
bound the fourth moment of Sg;n.1/ in the case where the function g possesses a
finite expansion with respect to the Hermite basis.

Proof of Lemma 3.8. For any choice of m 2 N�, k 2 .N�/m and d 2 Rm, we have

EŒ
mX

iD1
diSg;kin.1/�

2 D
mX

iD1

mX

jD1
didjEŒSg;ki n.1/Sg;kj n.1/�:

For fixed k 2 N� and ` 2 N� and by Mehler’s formula (2.3), we get

EŒSg;kn.1/Sg;`n.1/� D
C1X

pD1
g2ppŠ

1p
k`

0

@1

n

kn�2X

iD0

`n�2X

jD0
	
p

k;`.`i � kj/

1

A :

To conclude the proof we need Lemma 5.1 proved in the Chap. 6 (see page 111).
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Lemma 5.1. For all k; `; p 2 N�,

lim
n!C1

1

n

kn�2X

iD0

`n�2X

jD0
	
p

k;`.`i � kj/ D
k�1X

sD0

C1X

rD�1
	
p

k;`.kr C `s/:

Since 	k;`.x/ is a correlation, we have j	k;`.x/jp 6 j	k;`.x/j for all p 2 N�. So
proving a lemma similar to Lemma 5.1 for p D 1, replacing function 	k;` by j	k;`j,
we get the following bound for large enough values of n,

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

n

kn�2X

iD0

`n�2X

jD0
	
p

k;`.`i � kj/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

6
 
k�1X

sD0

C1X

rD�1
j	k;`.kr C `s/j

!

C 1 < C1:

The last summation finiteness comes from the fact that, 	k;`.x/ is equivalent to

�1
4 � 22H

.k`/2�HH.2H � 1/.2H � 2/.2H � 3/ jxj2H�4

for jxj large enough. Since kgk22;� D PC1
pD1 g2ppŠ < C1, the dominated

convergence theorem and Lemma 5.1 entail that

E
�
Sg;kn.1/Sg;`n.1/

� �!
n!C1 	g.k; `/ thus EŒ

mX

iD1
diSg;kin.1/�

2 �!
n!C1 �2g;m.k;d/,

this yields Lemma 3.8. ut
Proof of Lemma 3.9. For each function f such that

PC1
rD�1 jf .r/j < C1, we

shall use the identity, form 2 N�,

C1X

rD�1
f .r/ D

C1X

rD�1

m�1X

uD0
f .mr C u/: (5.2)

We shall denote for fixed k, ` and p 2 N�, ık;` D 	
p

k;`. We shall prove the following
identity

C1X

rD�1

`�1X

sD0
ı`;k.`r C ks/ D

k�1X

sD0

C1X

rD�1
ık;`.kr C `s/;

that will be sufficient to prove Lemma 3.9. Knowing that for x 2 R, ık;`.x/ D
ı`;k.�x/, we have

C1X

rD�1

`�1X

sD0
ı`;k.`r C ks/ D

C1X

rD�1

 
`�1X

sD0
ık;`.`r � ks/

!

:
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Applying identity (5.2) to the summation on the right-hand member, for function
f .r/ D P`�1

sD0 ık;`.`r � ks/ and form D k, we get

C1X

rD�1

`�1X

sD0
ı`;k.`r C ks/ D

k�1X

uD0

 C1X

rD�1

`�1X

sD0
ık;`.k.`r � s/C `u/

!

:

Making the change of variable s � ` D �v � 1 in the last summation, one obtains

C1X

rD�1

`�1X

sD0
ı`;k.`r C ks/ D

k�1X

uD0

 C1X

rD�1

`�1X

vD0
ık;`.k.`r C v/ � k`C k C `u/

!

:

Finally applying (5.2) once again to the summation on the right-hand member, for
function f .r/ D ık;`.kr � k`C k C `u/ and for m D `, we get

C1X

rD�1

`�1X

sD0
ı`;k.`r C ks/ D

k�1X

uD0

C1X

rD�1
ık;`.kr � k`C k C `u/:

Now, making the change of variables r D i C `� 1 in the last summation, we have

C1X

rD�1

`�1X

sD0
ı`;k.`r C ks/ D

k�1X

uD0

C1X

iD�1
ık;`.ki C `u/;

so we proved that 	g.`; k/ D 	g.k; `/ and Lemma 3.9 follows. ut
Proof of Theorem 3.4 and Remark 3.5. For any m 2 N�, k 2 .N�/m and d 2 Rm,
let us define

Sg;kn.1/ D
mX

iD1
diSg;kin.1/:

We want to prove that

Sg;kn.1/
Law����!
n!1 N.0I �2g;m.k;d//:

Let

SgM ;kn.1/ D
mX

iD1
diSgM ;ki n.1/ with gM .x/ D

MX

`D1
g`H`.x/;

whereM > 1 is a fixed integer. We will prove that

SgM ;kn.1/
Law����!
n!1 N.0I �2gM ;m.k;d//:
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In this aim, using the chaos representation for the fBm (see Hunt 1951), we can
write for t > 0

bH .t/ D 1p
2�

Z C1

�1
Œexp.i�t/ � 1� j�j�H� 1

2 dW.�/:

Thus, for j D 0; 1; : : : ; n � 2

�nbH .j / D
Z C1

�1
f .n/.�; j / dW.�/; (5.3)

where we defined function f .n/ by

f .n/.�; j / D nH

�2H
p
2�

exp.i� j
n
/Œexp.i �

n
/� 1�2 j�j�H� 1

2 : (5.4)

Now, since
R
R

ˇ
ˇf .n/.�; j /

ˇ
ˇ2 d� D 1, using Itô’s formula, see Major (1981, p. 30),

for fixed ` > 1,

H`.�nbH .j // D
Z C1

�1
: : :

Z C1

�1
f .n/.�1; j / : : : f

.n/.�`; j / dW.�1/ : : : dW.�`/:

To get the asymptotic behavior of SgM ;kn.1/, we use notations introduced in
Sect. 2.2.2 and in Slud (1994).
For ` 2 N? and f` 2 L2s .R`/, we define

I`.f`/ D 1

`Š

Z C1

�1
: : :

Z C1

�1
f`.�1; : : : ; �`/ dW.�1/ : : : dW.�`/; (5.5)

and for p D 1; : : : ; `, we write f` ˝p f` for the p-th contraction of f` defined as

f` ˝p f`.�1; : : : ; �2`�2p/ D
Z

Rp

f`.�1; : : : ; �`�p; x1; : : : ; xp/

f`.�`�pC1; : : : ; �2`�2p;�x1; : : : ;�xp/ dx1 : : : dxp: (5.6)

With these notations, one gets

SgM ;kn.1/ D
MX

`D1
I`.h

.n;k/

` /; (5.7)

where function h.n;k/` is

h
.n;k/

` .�1; : : : ; �`/ D g``Š

mX

iD1
di

1p
nki

nki�2X

jD0
f .nki /.�1; j / : : : f

.nki /.�`; j /:
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To obtain convergence of SgM ;kn.1/, we will use Theorem 1 of Peccati and Tudor
(2005).
Lemma 3.8 page 45 gives the required conditions appearing in the beginning of
this latter theorem. So we will just verify condition (i) while proving the following
lemma.

Lemma 5.2. For fixed ` and p, such that ` > 2 and p D 1; : : : ; ` � 1,

lim
n!C1

Z

R2.`�p/

ˇ
ˇ
ˇh
.n;k/

` ˝p h
.n;k/

` .�1; : : : ; �`�p; �1; : : : ; �`�p/
ˇ
ˇ
ˇ
2

d�1 : : : d�`�p d�1 : : : ; d�`�p D 0:

Proof of Lemma 5.2.

Z

R2.`�p/

ˇ
ˇ
ˇh
.n;k/

` ˝p h
.n;k/

` .�1; : : : ; �`�p; �1; : : : ; �`�p/
ˇ
ˇ
ˇ
2

d�1 : : : d�`�p d�1 : : : ; d�`�p

D .`Š/4g4`

mX

i1D1

mX

i2D1

mX

i3D1

mX

i4D1

di1di2di3di4
1

p
nki1

1
p
nki2

1
p
nki3

1
p
nki4

�

nki1�2X

j1D0

nki2�2X

j2D0

nki3�2X

j3D0

nki4�2X

j4D0

	
`�p

ki1 ;ki2
.ki2j1 � ki1j2/�

	
`�p

ki3 ;ki4
.ki4j3 � ki3j4/	

p

ki1 ;ki3
.ki3 j1 � ki1j3/	

p

ki2 ;ki4
.ki4j2 � ki2j4/:

Now, since 	k;`.x/ is a correlation, p > 1 and `� p > 1, we just have to prove that
for fixed k1; k2; k3; k4 2 N�, lim

n!C1An D 0, where we defined

An D 1

n2

nk1�2X

j1D0

nk2�2X

j2D0

nk3�2X

j3D0

nk4�2X

j4D0
j	k1;k2.k2j1 � k1j2/j �

j	k3;k4.k4j3 � k3j4/j j	k1;k3 .k3j1 � k1j3/j j	k2;k4 .k4j2 � k2j4/j :

We split the indices intervals into two parts, BN and Bc
N , where we defined for a

fixed positive real numberN ,

BN D f.j1; j2; j3; j4/ 2 N
4; jk2j1 � k1j2j > N or jk3j1 � k1j3j > N

or jk4j2 � k2j4j > N g:

We can write An as the sum of two terms corresponding to BN andBc
N respectively.



82 5 Proofs of All the Results

For the first term, we use the fact that, as already seen in proof of Lemma 5.1 (page

78), for all k; ` 2 N� and for n large enough 1
n

kn�2P
iD0

`n�2P
jD0

j	k;`.`i � kj /j 6 C and

that, j	k;`j 6 1. Furthermore for N large enough and jxj > N , we use the bound
j	k;`.x/j 6 C jxj2H�4 6 CN2H�4.
For the second term, we bound each of the four functions j	k;`j by 1, so that for all
N large enough we get

lim
n
An 6 C

�
N2H�4 CN3lim

n
. 1
n
/
	

6 CN2H�4;

and since 0 < H < 1 then lim
n!C1An D 0 and Lemma 5.2 follows. ut

Hence, we proved that

SgM ;kn.1/
Law����!
n!1 N.0I �2gM ;m.k;d//:

Furthermore,
1P

pDMC1
g2ppŠ �!

M!C1 0, so we get

lim
M!C1 sup

n>1
EŒSgM ;kn.1/� Sg;kn.1/�

2 D 0:

Now, since

N.0I �2gM ;m.k;d//
Law����!

M!1 N.0I �2g;m.k;d//;

applying Lemma 1.1 of Dynkin (1988), Theorem 3.4 is proved.
Now, Remark 3.5 page 45 follows from the following argumentation. First we
establish the following inequalities:

EŒ
MX

`D1
I`.h

.n;k/

` /�4 6 M3

MX

`D1
EŒI`.h

.n;k/

` /�4 6 C :

The last inequality follows from (v) of Theorem 1 of Peccati and Tudor (2005) and
from the fact that for each ` 2 f1; : : : ;M g, one has EŒI`.h

.n;k/

` /�2 6 C , for n large
enough.

So Remark 3.5 follows by considering equality (5.7) and noting that SgM ;n.1/ D
SgM ;kn.1/ for m D 1 D d1 D k1. ut
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5.2.3 Estimators of the Hurst Parameter

In Sect. 5.2.1, as a corollary of the main result, we have shown the almost sure
convergence of the absolute k-power variation of the fBm. This convergence permits
then to write a classical linear regression equation and to propose the least squares
estimator OHk of the parameter H . This estimator being thus an asymptotically
unbiased strongly consistent estimator of H . To prove the asymptotic normality
of this estimator, results proved in previous Sect. 5.2.2 are useful.

Indeed, in Sect. 5.2.2, we have proved that the g functional variation of the fBm,
say Sg;�n.1/, converges in law to a cylindrical Gaussian process. The function g
being very general, centered and belonging to L2.�.x/ dx/, the idea consists in
choosing two particular functions of that type, say, gk.x/ D jxjk � EŒjN j�k and
glog.x/ D log jxj�EŒlog jN j�. The first one concerns OHk . The fact that this estimator
is equivalent to a linear combination of functionals of the type Sgk;�n.1/ will ensure
its asymptotic normality. In the same way, since the functional Sglog;�n.1/ converges
in law to a Gaussian process, this implies the convergence in probability of the
Napierian logarithm of the modulus of the second order increments of the fBm.
So, as for the estimator OHk , a least squares estimator of the parameter H will be
proposed, OHlog, leading to an unbiased weakly consistent estimator of H .

As for the previous estimator, this new estimator OHlog is equivalent to a linear
combination of functionals of the form Sglog;�n.1/ leading again to a CLT. As a

remark, we then prove that in the class of estimators OHk , the best estimator in terms
of minimal variance is obtained for k D 2 and that the asymptotic variance for the
second estimator OHlog is always greater than the one obtained for OHk in the case
where k D 2 or k D 4.

Finally we link the two estimators defined above by introducing a third estimator,
say OHk.n/, built as OHk , except that k.n/ is a sequence of positive numbers converging
to zero as n goes to infinity more rapidly than the sequence 1p

n
. We prove that the

corresponding functional is equivalent in L2 to the one built to get OHlog. We obtain
that the asymptotic behaviors of estimators OHk.n/ and OHlog are the same. We also
prove that the estimator OHk.n/ is asymptotically unbiased for the parameterH .

Proof of Corollary 3.10.

(1) Using (3.3) and (3.2) we get

OHk D � 1
k

X̀

iD1
zi Œ�kH log.rin/C kbk�C oa:s:.1/,

and property (3.5) gives

OHk D H C oa:s:.1/:

We proved that OHk is a strongly consistent estimator of H .
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Now, let us see that OHk is an asymptotically unbiased estimator of H .
By (3.3)

EŒ OHk� D � 1
k

X̀

iD1
ziEŒlog.Mk.rin//�,

where Mk.n/ is defined by (3.1). Since

1

n � 1

n�2X

iD0
j�nbH .i/jk D

�
nH

�2H

�k
Mk.n/, (5.8)

by property (3.5), one has

EŒ OHk� D � 1
k

X̀

iD1
ziE

2

4log

0

@ 1

.rin � 1/
ri n�2X

jD0
j�rinbH .j /jk

1

A

3

5CH: (5.9)

Hence, it is enough to prove that

E

"

log

 
1

n � 1
n�2X

iD0
j�nbH .i/jk

!#

�!
n!C1 k log .kN kk/ :

To prove the last convergence we just have to prove the following one:

E

�

log

�Z 1

0

j.�nbH/
�jk .u/ du

��

�!
n!C1 k log .kN kk/ : (5.10)

For this, let us notice that since log is a concave function and log.x/ 6 x when
x > 0, by Jensen’s inequality we have

Z 1

0

log
�
j.�nbH /

�jk .u/
	

du 6 log

�Z 1

0

j.�nbH /
�jk .u/ du

�

6
Z 1

0

j.�nbH/
�jk .u/ du:

Thus, if we let

Xn D
Z 1

0

j.�nbH/
�jk .u/ du C k

ˇ
ˇ
ˇ
ˇ

Z 1

0

log
�j.�nbH /

�j .u/� du

ˇ
ˇ
ˇ
ˇ ,

we have shown that
ˇ
ˇ
ˇ
ˇlog

�Z 1

0

j.�nbH /
�jk .u/ du

�ˇˇ
ˇ
ˇ 6 Xn: (5.11)



5.2 Estimation of the Hurst Parameter 85

Now, since jN jk and log.jN j/ are in L1.˝/, the same result is true for Xn, say

Xn 2 L1.˝/: (5.12)

Furthermore using Lemma 3.8 page 45, it is easy to see that

Xn
L1�!

n!C1 EŒjN jk�C k jEŒlog.jN j/�j : (5.13)

Finally, using Corollary 3.3 page 44, we get:

log
�Z 1

0

j.�nbH/
�jk .u/ du

	
a:s:�!

n!C1k log .kN kk/ : (5.14)

Hence, (5.11)–(5.14) yield (5.10).

(2) Formula (5.8) entails that

EŒMk.n/� D �k2Hn
�kH kN kkk :

As in Berzin and León (2007), let us define

Ak.n/ D Mk.n/ � EŒMk.n/�

EŒMk.n/�
:

With this definition, the Taylor expansion of the log function gives

log .Mk.n// D log .EŒMk.n/�/C log .1C Ak.n//

D �kH log.n/C kbk CAk.n/

C A2k.n/
�� 1

2
C ".Ak.n//

�
:

(5.15)

Let us see that

A2k.n/
�� 1

2
C ".Ak.n//

� D oP

�
1p
n

	
: (5.16)

By the definition of gk (see (3.6)), one has

Ak.n/ D
p
n

n� 1
Sgk;n.1/, (5.17)

and by Lemma 3.8 page 45,

EŒ
p
nA2k.n/� D n3=2

.n� 1/2
EŒS2gk;n.1/� D O

�
1p
n

�

, (5.18)

so
p
nA2k.n/ D op.1/ and then (5.16) is proved.
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Using (5.15)–(5.18), we obtain

log .Mk.n// D �kH log.n/C k log.�2H /

C log
�

EŒjN jk�
	

C 1p
n
Sgk;n.1/C oP

�
1p
n

	
: (5.19)

Thus, by (3.3) and property (3.5), we have

OHk D H � 1

k

X̀

iD1

zip
rin

Sgk;ri n.1/C oP

�
1p
n

	
:

Thus

p
n
� OHk �H

	
D � 1

k

X̀

iD1

zip
ri
Sgk;ri n.1/C op.1/:

Theorem 3.4 gives the required result.
The computation of the coefficients g2p;k is explicitly made in Berzin and León
(2007) and Cœurjolly (2001).

ut
Proof of Remark 3.11. Let us note that g2;k D k

2
. Then for i; j 2 N�,

	gk .i; j / D k2

4
	g2.i; j /C 	g0

k
.i; j /,

where g0
k.x/ D P1

pD2 g2p;kH2p.x/ which belongs to L2.�.x/ dx/.
Then,

�2gk;`

�

r ;
1

k

�
z=

p
r
�
�

D �2g2;`

�

r;
1

2

�
z=

p
r
�
�

C �2
g0
k ;`

�

r;
1

k

�
z=

p
r
�
�

> �2g2;`

�

r;
1

2

�
z=

p
r
�
�

,

since the last term in the above equality is positive by Lemma 3.8 (see page 45). ut
Proof of Corollary 3.13.

(1) By (3.10) and (3.9) and using property (3.5) we get

OHlog D �
X̀

iD1
zi .�H log.rin/C log.�2H /C EŒlog jN j�/C op.1/

D H C op.1/:
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We have proved that OHlog is a weakly consistent estimator of H .
Let us show now that OHlog is unbiased.

Since by (3.8)

1

n � 1

n�2X

iD0
log .j�nbH .i/j/ D Mlog.n/CH log.n/ � log.�2H / (5.20)

one has,

EŒMlog.n/� D EŒlog.jN j/� �H log.n/C log.�2H /, (5.21)

and by (3.10) and property (3.5), we get

EŒ OHlog� D �
X̀

iD1
ziEŒMlog.rin/� D H , (5.22)

and OHlog is an unbiased estimator of H .

(2) Now, (3.10), (5.20), (5.21), (3.11) and (5.22) entail that

OHlog D �
X̀

iD1
zi
�
Mlog.rin/ � EŒMlog.rin/�

� �
X̀

iD1
ziEŒMlog.rin/�

D �
X̀

iD1

zip
rin

Sglog;ri n.1/CH �
X̀

iD1

zip
rin.rin � 1/

Sglog;ri n.1/:

Thus by Lemma 3.8 (see page 45)

p
n
� OHlog �H

	
D �

X̀

iD1

zip
ri
Sglog;ri n.1/C op.1/:

Theorem 3.4 gives the required result.
Explicit computation of coefficients in the Hermite expansion of function glog can
be found in Berzin and León (2007). ut
Proof of Remark 3.14. Since g2;log D 1

2
(see equality (3.12)), then for i; j 2 N�,

	glog.i; j / D 1

4
	g2.i; j /C 	g0

log
.i; j /,

where g0
log.x/ D P1

pD2 g2p;logH2p.x/ which belongs to L2.�.x/ dx/.
Then, as in the proof of Remark 3.11,

�2glog;`

�
r; z=

p
r
�

> �2g2;`

�

r ;
1

2

�
z=

p
r
�
�

:



88 5 Proofs of All the Results

In the same way, knowing that g22p;log D 1

16
g22p;4, for p D 1; 2 (see equalities (3.7)

and (3.12)), we have

�2glog;`
.r ; z=

p
r/ > �2g4;`

�
r; 1

4
.z=

p
r/
�
:

ut
Proof of Corollary 3.16. Let S.n/ D 1

k.n/
Sgk.n/;n.1/, where

gk.n/.x/ D jxjk.n/
E
h
jN jk.n/

i � 1 D
1X

pD1
g2p;k.n/H2p.x/:

In a similar way as in Berzin and León (2007) and Cœurjolly (2001), we have
Lemma 5.3 proved in Chap. 6.

Lemma 5.3.

S.n/� Sglog;n.1/
L2�!

n!C1 0:

Let us show now that from the definition of Mk.n/.n/ given by (3.13), one has

log.Mk.n/.n//

k.n/
D �H log.n/C log.�2H /

CEŒlog.jN j/�C 1p
n
S.n/C oP

�
1p
n

	
. (5.23)

Indeed, as in the proof of Corollary 3.10 (see (5.19)), we get

log.Mk.n/.n//

k.n/
D �H log.n/C log.�2H /

C
log

�
EŒjN jk.n/�

	

k.n/
C 1p

n
S.n/C oP

�
1p
n

	
:

Since

log
�

EŒjN jk.n/�
	

k.n/
� EŒlog.jN j/� D O.k.n//, (5.24)

and k.n/ D o
�

1p
n

	
, (5.23) holds.
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A proof similar to the one given for Corollary 3.10 leads to

p
n
� OHk.n/ �H

	
D �

X̀

iD1

zip
ri
S.rin/C op.1/,

where OHk.n/ is defined in (3.13). From Lemma 5.3 and Theorem 3.4 we can
conclude that OHk.n/ is asymptotically normal.
Let us show now that OHk.n/ is an asymptotically unbiased estimator ofH . As in the
proof of Corollary 3.10 (see (5.9) and (5.10)), it is enough to prove that

1

k.n/
E

�

log

�Z 1

0

j.�nbH /
�jk.n/ .u/ du

��

����!
n!1 EŒlog.jN j/�: (5.25)

To show this convergence, we use the fact that the log function is concave and then,
by Jensen’s inequality,

k.n/EŒlog.jN j/� D E

�Z 1

0

log
�
j.�nbH /

�jk.n/ .u/
	

du

�

6 E

�

log

�Z 1

0

j.�nbH /
�jk.n/ .u/ du

��

6 log

�

E

�Z 1

0

j.�nbH /
�jk.n/ .u/ du

��

D log
�

E
h
jN jk.n/

i	
:

Dividing by k.n/ on both sides of the inequality and using (5.24), we get (5.25).
ut

5.3 Estimation of the Local Variance

Using techniques of Sect. 5.2 we proved a CLT for the vector . OHk; O�k/, respectively
estimators of the Hurst parameterH and of the local variance � in the four following
models:

dX.t/ D �.X.t// dbH.t/C �.X.t// dt;

where �.x/ D � or �x and �.x/ D � or �x.
These two estimators are based on the second order increments of the process X

solution of the previous SDE and come from a linear regression model.
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Then we propose hypothesis testing on � , that is we test if �n D � C 1p
n
.d C

F.
p
n// and we assess the asymptotic power of the test. Working tools are those of

Sect. 5.2.
Finally, we proposed functional estimation for function � in the following model:

dX.t/ D �.X.t// dbH.t/ C �.X.t// dt , where functions � and � verify some
technical conditions. Here, the techniques we use are the Girsanov’s theorem and
techniques implemented in Sect. 5.2.

5.3.1 Simultaneous Estimators of the Hurst Parameter
and of the Local Variance

Here we propose simultaneous estimators of the parameter H and of the local
variance � through the observation of one trajectory of the X process on a regular
grid of points. The X process is solution of one of the four following models:

dX.t/ D �.X.t// dbH.t/C �.X.t// dt;

where functions � and� are respectively defined by �.x/ D � or �x and�.x/ D �

or �x and H > 1
2
.

As in Sect. 5.2.3 the idea consists in using the absolute k-power variation of such
a process (eventually normalized). We prove a lemma establishing the almost sure
equivalence between the second order increments ofX (eventually normalized byX
evaluated at the grid points) and of � times the increments of the fBm. This lemma
also provides a regression model that leads to simultaneous estimators of H and of
� , say OHk and O�k . Thus the same techniques are used to show that estimator OHk is a
strongly consistent estimator of H and to obtain its asymptotic normality. Then we

prove that �
p
n OHk and

p
n

log.n/ O�k are equivalent in probability, leading to a degenerate

Gaussian limit for vector . OHk; O�k/.
Finally, in the case where the parameter H is supposed to be known, the lemma

cited above gives rise to a strongly consistent estimator of parameter � based on
the absolute k-variations of process X . Moreover, a CLT is shown giving a rate of

convergence in
p
n instead of

p
n

log.n/ as obtained before.

Proof of Theorem 3.17. We need Lemma 5.4 proved in Chap. 6, page 116.

Lemma 5.4. For i D 0; 1; : : : ; n � 2,

�nX.i/ D ��nbH .i/C an.i/;

with jan.i/j 6 C .!/
�
1
n

�H�ı
, for any ı > 0.
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Remark 5.5. Indeed, for the first model one has, an.i/ D 0 and for the second one,

jan.i/j 6 C .!/
�
1
n

�1�ı
:

We write

n � 1p
n
AXk .n/ D Sgk;n.1/C n � 1p

n�k kN kkk
�
k.�nX/�kkk � k�.�nbH /

�kkk
	
:

Let us prove now that k.�nX/�kkk � k�.�nbH /
�kkk D oa:s:

�
1p
n

	
.

Using Hölder’s inequality, one can show the following inequality.
ˇ
ˇ
ˇkf kkk � kgkkk

ˇ
ˇ
ˇ 6






jf jk � jgjk







1

6 2k�1k kf � gkk
h
kgkk�1

k C kf � gkk�1
k

i
: (5.26)

Applying previous inequality to f D .�nX/
� and to g D �.�nbH/

� and using
Lemma 5.4 and Corollary 3.3, one has

ˇ
ˇ
ˇk.�nX/�kkk � k�.�nbH /

�kkk
ˇ
ˇ
ˇ

6 2k�1k k.�nX/� � �.�nbH /
�kk

�
h
k�.�nbH/

�kk�1
k C k.�nX/� � �.�nbH /

�kk�1
k

i

6 C .!/ ka�
nkk

h
C .!/C ka�

nkk�1
k

i

6 C .!/
�
1
n

�H�ı D oa:s:

�
1p
n

	
,

for ı small enough, i.e. for 0 < ı < H � 1
2
.

Thus assertion (2) follows. Assertion (1) follows from Corollary 3.3 (see page 44).
ut

Proof of Theorem 3.18.

(1) Using (3.22) and (3.21) we obtain

OHk D � 1
k

X̀

iD1
zi Œ�kH log.rin/C kbk�C oa:s:.1/,

and property (3.5) gives

OHk D H C oa:s:.1/:

We proved that OHk is a strongly consistent estimator of H .
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Now by using definitions of AXk .n/ and of MX
k .n/ (see (3.18)–(3.20)), one

obtains

AXk .n/ D nkH exp.�kbk/MX
k .n/ � 1:

With this definition and using a Taylor expansion of the logarithm function one
has

log
�
MX
k .n/

� D log
�
n�kH exp.kbk/

�C log
�
1C AXk .n/

�

D �kH log.n/C kbk C AXk .n/

C �
AXk .n/

�2 �� 1
2

C ".AXk .n//
�
:

(5.27)

Let us verify that

�
AXk .n/

�2 �� 1
2

C ".AXk .n//
� D oP

�
1p
n

	
: (5.28)

By assertion (2) of Theorem 3.17, we know that

p
nAXk .n/ D n

n � 1Sgk;n.1/C oa:s:.1/, where (5.29)

the function gk is defined by (3.6), and by Lemma 3.8,

EŒS2gk;n.1/� D O.1/, (5.30)

so
p
n.AXk .n//

2 D oP .1/ and then (5.28) is proved.
Using (5.27)–(5.30), we obtain

log.MX
k .n// D �kH log.n/C kbk C 1p

n
Sgk;n.1/C oP

�
1p
n

	
: (5.31)

Thus (3.22), (5.31) and property (3.5) entail that

OHk D H � 1

k

X̀

iD1
zi

1p
rin

Sgk;ri n.1/C oP

�
1p
n

	
:

Then

p
n
� OHk �H

	
D � 1

k

X̀

iD1

zip
ri
Sgk;ri n.1/C oP .1/:

Theorem 3.4 gives the required result. The computation of the coefficients in
the Hermite expansion of function gk is explicitly made in Berzin and León
(2007) and Cœurjolly (2001).
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(2) Let us see that OBk is a weakly consistent estimator of bk . By using (3.23) and
(5.31), one has

OBk � bk D 1

`
. OHk �H/

X̀

iD1
log.ni /

C 1p
n

1

k`

X̀

iD1

1p
ri
Sgk;ni .1/C 1p

n
oP .1/:

Thus

OBk � bk D log.n/. OHk �H/C 1

`
. OHk �H/

X̀

iD1
log.ri /

C 1p
n

1

k`

X̀

iD1

1p
ri
Sgk;ri n.1/C 1p

n
oP .1/:

Using assertion (1) of Theorem 3.18 and (5.30), we obtain

p
n

log.n/

� OBk � bk

	
D p

n
� OHk �H

	
C oP .1/, (5.32)

and then using again assertion (1) of Theorem 3.18 we proved that OBk is a
weakly consistent estimator of bk .

Now using the order one Taylor expansion of the exponential function,
equality (5.32) and the first point of Theorem 3.18, we finally get

p
n

log.n/

�
exp. OBk/� exp.bk/

	
D exp.bk/

p
n
� OHk �H

	
C oP .1/: (5.33)

Thus if we get back to the definition of O�k (see (3.24)) and use (5.33), we get

p
n

log.n/
. O�k � �/

D � exp.�bk/
p
n

log.n/

(

exp. OBk/� exp.bk/C exp. OBk/
 

1

�2 OHk

� 1

�2H

!

�2H

)

D �
p
n
� OHk �H

	
C �

�2 OHk

exp.�bk/ exp. OBk/
p
n

log.n/

�
�2H � �2 OHk

�C oP .1/:

At this step of the proof, we are going to show that

p
n

log.n/
. O�k � �/ D �

p
n
� OHk �H

	
C oP .1/: (5.34)
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Using the fact that OBk is a weakly consistent estimator of bk it is enough to
prove the following convergence

p
n

log.n/

�
�2H � �2 OHk

	
P����!

n!1 0,

which is the same as showing

p
n

log.n/

�
�22H � �2

2 OHk
	

P����!
n!1 0:

The last convergence is an immediately consequence of the following fact

p
n

logn

� OHk �H
	

D oP .1/;

which follows from assertion (1) of Theorem 3.18.
Thus by equality (5.34) and assertion (1) of Theorem 3.18, the proof of assertion
(2) is completed.

ut
Proof of Theorem 3.20.

(1) Assertion (1) follows from the first assertion of Theorem 3.17.

(2) Assertion (2) of Theorem 3.17 and Remark 3.7 imply that
p
n

�h Q�k
�

ik � 1

�

converges weakly to �gkN that yields assertion (2).

Remark 3.22 page 53 follows from the fact that since g2;k D k
2

(see equality (3.7)),
one has

�2gk
k2

D 1

k2

1X

nD1
g22n;k.2n/Š

C1X

rD�1
	2nH .r/

> 2

k2
g22;k

C1X

rD�1
	2H .r/ D 1

2

C1X

rD�1
	2H .r/ D 1

4
�2g2 :

ut

5.3.2 Hypothesis Testing

We consider the following four stochastic models, for known parameterH > 1
2
:

dXn.t/ D �n.Xn.t// dbH .t/C �n.Xn.t// dt;
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where the functions �n and �n are respectively defined by �n.x/ D �n or �nx
and �n.x/ D �n or �nx. We test H0: �n D � again the alternatives: Hn: �n D
� C 1p

n
.d C F.

p
n//, where � , d are positive constants, and F a positive function

tending to zero with n.
Note that under hypothesis H0 (and �n D �) the studied model is the one of
Sect. 5.3.1. We observe the absolute variation of such a process Xn. Note that this
is equivalent to let k D 1 in the previous section. A lemma similar to Lemma 5.4
is proposed, replacing � by �n. This allows, using what we did in last section for
the estimation of � in the case whereH is known and using results of Sect. 5.2.1 to
show a CLT for theses variations of the process X .

We show that there is an asymptotic bias d , and the larger is the bias the easier is
discriminating between the two hypotheses.

Proof of Theorem 3.23. We need the following lemma proved in Chap. 6.

Lemma 5.6. For i D 0; 1; : : : ; n � 2,

�nXn.i/ D �n�nbH .i/C an.i/;

with

jan.i/j 6 C .!/
�
1
n

�H�ı
; for any ı > 0:

Now we write Fn as

Fn D �
n

n � 1Sg1;n.1/C d CGn , where,

Gn D d

 
1

n � 1

n�2X

iD0

r
�

2
j�nbH.i/j � 1

!

C F.
p
n/

r
�

2

1

n � 1
n�2X

iD0
j�nbH .i/j

C
r
�

2

p
n

n � 1
n�2X

iD0
.j�nXn.i/j � j�n�nbH .i/j/ :

Note that F.
p
n/ tends to zero with n. This fact and Corollary 3.3 ensure that the

first two terms almost surely tend to 0. From Lemma 5.6 and the fact thatH > 1
2

we
see that the third term almost surely tends to 0 and finallyGn D oa:s:.1/. Remark 3.7
page 45 yields the result. ut
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5.3.3 Functional Estimation of the Local Variance

In case where H > 1
2
, we consider the following model:

dX.t/ D �.X.t// dbH.t/C �.X.t// dt;

where functions � and � verify technical hypotheses, ensuring the existence and
the uniqueness of the solution of such a SDE. Our aim is to propose functional
estimation for function � .

First, for a continuous function h, we propose a demonstration of an almost sure
convergence result for the random variable

1

n � 1
n�2X

iD0
h.X. i

n
// j�nX.i/jk ;

�n standing for the operator of the second order increments. We decompose this
objective into two cases � 	 0 and � 6	 0.

In the case where� 	 0, the solution for the SDE isX.t/ D K.bH .t//, where the
functionK is solution of an ODE. Thus we show that proving the required result is
equivalent to prove it for the fBm, this is done using techniques of Sect. 5.2.1. Then
in the case where� 6	 0, the idea consists in applying the Girsanov theorem and the
last convergence result obtained when � 	 0.

Second, we show an asymptotic result and get the rate of convergence. Here
again, we decompose the analysis into the same two cases. As before, in the case
where � 	 0, we show that it is enough to consider the case of the fBm, that it is
done and we show the stable convergence of the required functional.

To achieve this goal, the working tools are those of Sect. 5.2.2, the use of the
chaos representation of the fBm increments and the decomposition of the functional
in the multiple Wiener chaos. Then the Peccati-Tudor theorem allows to obtain a
CLT. In the case where � 6	 0, we still use the Girsanov theorem and the stable
convergence showed before.

Proof of Theorem 3.27. First, we suppose that the function � 	 0 and that � 2 C1.
As mentioned in Sect. 3.3.3, we have to prove Theorem 3.33. Suppose for the
moment that it is done, then Remark 3.28 page 56 is true. To conclude the proof of
this theorem we just have to get back to model (3.28) where � is not necessarily
identically null. As in Berzin and León (2008), with the additional hypotheses
(H1) and (H2) on � and � , we can apply Girsanov’s theorem (see Theorem 4.9
of Decreusefond and Üstünel 1999). That is, for G a measurable and bounded real
function defined on the space C.Œ 0; 1 �;R/ of continuous real functions, we have
the following equality:

EŒG.X/� D EŒG.K.bH//��; (5.35)

where� is the Radon-Nikodym derivative and K is solution of the ODE (3.29).
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Let us define the set of trajectories

� D
(

x 2 C.Œ 0; 1 �;R/ W for any continuous function h and for all real k > 1;

lim
n!C1

1

n � 1

n�2X

iD0
h.x. i

n
//

j�nx.i/jk
EŒjN jk� D

Z 1

0

h.x.u// Œ�.x.u//�k du

)

:

If we choose G as 1�, using (5.35) we obtain

EŒ1�.X/� D EŒ1�.K.bH //�� D EŒ�� D 1;

with the help of Remark 3.28, i.e. P.K.bH / 2 �/ D 1, thus Theorem 3.27 follows.
ut

Proof of Theorem 3.33. We need Lemma 5.7.

Lemma 5.7. For all 0 < H < 1, for all interval Œ a; b � � Œ 0; 1 � and for all
k 2 N�, almost surely one has

Z b

a

�
.�nbH/

��k .u/ du �!
n!C1 .b � a/EŒN �k:

Remark 5.8. Note that in the case where a D 0 and b D 1 we get Theorem 3.1.

We will show this lemma after the proof of this theorem.
By a density argument, this lemma implies that if we take intervals of Œ 0; 1 � with
rational extremities, then almost surely for any real k > 0 and any interval Œ a; b � �
Œ 0; 1 �,

Z b

a

ˇ
ˇ.�nbH /

�ˇˇk .u/ du �!
n!C1 .b � a/E

h
jN jk

i
:

Again, by a density argument, if we approximate continuous function by stepwise
functions, we get that almost surely, for any continuous function h and for any real
k > 0,

Z 1

0

h.u/
ˇ
ˇ.�nbH /

�ˇˇk .u/ du �!
n!C1

�Z 1

0

h.u/ du

�

EŒjN jk�:

To conclude the proof of this theorem, let us consider the following equality:

Z 1

0

h.u/
ˇ
ˇ.�nbH /

�ˇˇk .u/ du

D 1

n � 1
n�2X

iD0
h. i

n
/ j�nbH .i/jk
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C 1

n � 1

n�2X

iD0

�
h. i

n�1 /� h. i
n
/
� j�nbH .i/jk

C 1

n � 1

n�2X

iD0
.n � 1/

 Z iC1
n�1

i
n�1

.h.u/� h. i
n�1 // du

!

j�nbH .i/jk :

By Corollary 3.3 page 44 and since h is uniformly continuous on any compact,
the two above last terms almost surely tend to zero. This yields Theorem 3.33 by
taking h D f ı bH . ut
Proof of Lemma 5.7. Let us suppose that 0 < a < b < 1. The cases where 0 D a <

b < 1 or where 0 < a < b D 1 would be treated in the same fashion. Note that the
case where a D 0 and b D 1 has been treated in Theorem 3.1.

For n large enough, a > 2
n

, b 6 1 � 3
n

and b � a > 3
n

, so that

Z b

a

�
.�nbH /

��k .u/ du D
n�2X

iD0
.�nbH .i//

k

Z iC1
n�1

i
n�1

1Œa;b�.u/ du

D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

bnacX

iDbnac�1
.�nbH.i//

k

Z iC1
n�1

i
n�1

1Œa;b�.u/ du

C 1

n � 1

bnbc�2X

iD0
.�nbH .i//

k � 1

n � 1

bnac�2X

iD0
.�nbH.i//

k

� 1

n � 1
bnacX

iDbnac�1
.�nbH.i//

k

C
bnbcX

iDbnbc�1
.�nbH.i//

k

Z iC1
n�1

i
n�1

1Œa;b�.u/ du

(5.36)

D T1 C T2 C T3 C T4;

where Ti , i D 1; : : : ; 4 are the four terms of (5.36). Using that the trajectories of bH
are .H � ı/-Hölder continuous, see Proposition 2.1, in other words for any ı > 0,
u; v > 0,

jbH .u C v/ � bH .u/j 6 C .!/ jvjH�ı , (5.37)

one obtains that 8i 2 f0; : : : ; n � 2g, j�nbH .i/jk 6 C .!/nık , for any ı > 0.
Thus for n large enough, supfjTi j ; i D 1; 3; 4g 6 C .!/nık�1. With ı small
enough, that is ık < 1, we proved that T1, T3 and T4 converge to zero with n. To
prove Lemma 5.7, we need to show that T2 tends to .b � a/EŒN k�. In fact, it is a
consequence of the following convergence. For any a such that 0 < a < 1, for all
k 2 N�, almost surely one has
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1

n

bnac�2X

iD0
.�nbH .i//

k �!
n!C1 aEŒN �k ,

which is equivalent to

1

na

bnac�2X

iD0
g.k/.�nbH.i// �!

n!C1 0,

where function g.k/ is defined by (5.1).
This last convergence is a consequence of Remark 5.11 forthcoming on page 101,
where g D g.k/ 2 L4.�.x/ dx/, with Hermite rank > 1 and of the Borel-Cantelli
lemma. This yields Lemma 5.7. ut
Proof of Theorem 3.29. We first suppose that � 	 0 and that the function � still
verifies hypotheses given in Theorem 3.29, exceptH1 and H2.

As mentioned in Sect. 3.3.3, we still have to prove Theorem 3.34. Suppose for
the moment that it is done, then Remark 3.30 is true. So if we consider Y D K.bH /

whereK is as before, a solution of the ODE (3.29), then

Mn.Y / D p
n

"
1

n � 1

n�2X

iD0
h.Y. i

n
//

j�nY.i/jk
EŒjN jk� �

Z 1

0

h.Y.u// Œ�.Y.u//�k du

#

;

stably converges toward

M.Y; OW / D �gk

Z 1

0

h.Y.u// Œ�.Y.u//�k d OW .u/:

To complete the proof of this theorem, we have to consider model (3.28) where � is
not necessarily identically null. As in Berzin and León (2008), with the additional
hypotheses (H1) and (H2) on � and � we can apply the Girsanov’s theorem. That is,
let F be a continuous and bounded real function then applying once again equality
(5.35) to G D F ıMn, one gets

EŒF .Mn.X//� D EŒF .Mn.K.bH ///��:

Using the property of stable convergence (see Aldous and Eagleson 1978) and last
convergence, we have

EŒF .Mn.K.bH///�� ����!
n!1 EŒF .M.Y; OW //��;

and using again Girsanov’s theorem, we have

EŒF .M.X; OW //� D EŒF .M.Y; OW //��,

that yields Theorem 3.29. ut
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Proof of Theorem 3.34. We prove Remark 3.35 page 57 in the case where f 2 C4,ˇ
ˇ
ˇ
4�
f .x/

ˇ
ˇ
ˇ 6 P.jxj/, H > 1

4
and for general function g 2 L4.�.x/ dx/, with Hermite

rank > 1 and we suppose that Ag is not an empty set (see Sect. 2.3 for definition).
Furthermore, we will suppose that g is even, or odd with Hermite rank greater than
or equal to three. A proof similar to the last one could easily be given to obtain
the other cases described in the Remark 3.35. It is sufficient to adapt forthcoming
Lemma 5.9 to the new hypotheses that is proved in Chap. 6.

The proof will proceed in several steps. Let us define

Tn.f / D 1p
n

n�2X

iD0
f .bH .

i
n
//g.�nbH .i//:

On the one hand, we prove in forthcoming Lemma 5.10 that
�
bH ; Sg;n

�
stably

converge to
�
bH ; �g OW

	
. We will show this lemma after the proof of this theorem.

On the other hand, we will consider a discrete version of Tn.f /, defining

T .m/n .f / D
m�1X

`D0
f .bH .

`
m
//
1p
n

j
n.`C1/
m

k
�2

X

iDb n`
m c�1

g.�nbH .i//:

The stable convergence of .bH ; Sg;n/ implies that

T .m/n .f / ����!
n!1 T .m/.f / D �g

m�1X

`D0
f .bH .

`
m
//
� OW .`C1

m
/� OW . `

m
/
	
:

Furthermore, it is easy to show that T .m/.f / is a Cauchy sequence in L2.˝/. Using
the asymptotic independence between bH and OW , it follows that

T .m/.f / ����!
m!1 �g

Z 1

0

f .bH .u// d OW .u/:

To conclude, that is to prove the convergence of Tn.f /, it is sufficient to prove the
following Lemma 5.9 for which a proof is given in Chap. 6.

Lemma 5.9. Let f 2 C4,
ˇ
ˇ
ˇ
4�
f .x/

ˇ
ˇ
ˇ 6 P.jxj/, H > 1

4
and function g 2

L4.�.x/ dx/, let g.x/ D PC1
pD1 gpHp.x/. Furthermore we will suppose that g is

even, or odd with Hermite rank greater than or equal to three, then

lim
m!C1 lim

n!C1 EŒTn.f /� T .m/n .f /�2 D 0:

ut
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Proof of Lemma 5.10. We only make the hypothesis that g 2 L4.�.x/ dx/, with
Hermite rank > 1 and we suppose that Ag is not an empty set (See Sect. 2.3 for
definition). We shall prove the following lemma.

Lemma 5.10. For 0 < H < 1,

(1)

Sg;n ����!
n!1 �g OW :

(2) Furthermore,

�
bH ; Sg;n

� ����!
n!1

�
bH ; �g OW

	
,

where OW is a standard Brownian motion independent of bH .
The convergence in (1) and (2) is stable.

Remark 5.11. If g 2 L4.�.x/ dx/, with Hermite rank > 1, then for all t such that
0 6 t 6 1, one has E

�
Sg;n.t/

�4 6 C .

Remark 5.12. In Theorems 3 and 2 of Corcuera et al. (2006, 2009) and in
Theorems 1 and 2 of León and Ludeña (2004, 2007), the result is proved for an
even function g or for the function g.x/ D jxjp � E jN jp , p > 0. In both cases,
as mentioned in Remark 2.8, page 41, the result stands for values of H such that
0 < H < 3

4
, since these authors consider the first order increments of bH . However,

in Theorem 3 of León and Ludeña (2007) working with second order increments of
the discrete sample bH , the authors obtain analogous results for the whole interval
0 < H < 1, considering function g such as even polynomials or polynomials of
absolute values.

(1) For m 2 N� and 0 D t0 < t1 < t2 < � � � < tm 6 1, let t D .t1; : : : ; tm/ and

Sg.nt/ D
mX

iD1
˛i
�
Sg;n.ti /� Sg;n.ti�1/

�
,

where

˛i D diqPm
iD1 d 2i .ti � ti�1/

,

while d1; : : : ; dm 2 R. We want to prove that

Sg.nt/
Law����!
n!1 N.0I �2g/:
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We consider SgM .nt/ where gM .x/ D
MP

`D1
g`H`.x/, where M > 1 is a fixed

integer. We will prove that

SgM .nt/
Law����!
n!1 N.0I �2gM /:

As in the proof of Theorem 3.4, the chaos representation of the fractional
Brownian motion increments (see (5.3)) allows us to write SgM .nt/ in the
multiple Wiener chaos:

SgM .nt/ D
MX

`D1
I`.h

.n;t/
` /;

where h.n;t/` is

h
.n;t/
` .�1; : : : ; �`/ D g``Š

mX

iD1
˛i

1p
n

bntic�2X

jDbnti�1c�1
f .n/.�1; j / � � �f .n/.�`; j /;

and where I` is given by (5.5) and f .n/ by equality (5.4).

First, let us compute the variance of SgM .nt/:

EŒSgM .nt/�2 D
MX

`D1

1

`Š

Z

R`

ˇ
ˇ
ˇh
.n;t/
` .�1; : : : ; �`/

ˇ
ˇ
ˇ
2

d�1 : : : d�`

D
MX

`D1
`Šg2`

mX

i1D1

mX

i2D1
˛i1˛i2

0

B
@
1

n

bnti1c�2X

j1Dbnti1�1c�1

bnti2c�2X

j2Dbnti2�1c�1
	`H .j1 � j2/

1

C
A :

Now for ` > 1,

1

n

bntic�2X

s1Dbnti�1c�1

bntj c�2X

s2Dbntj�1c�1
	`H .s1 � s2/

�!
n!C1

8
<̂

:̂

.ti � ti�1/
C1P
rD�1

	`H .r/; if i D j I
0; otherwise.

(5.38)
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A proof of the latter convergence is obtained in the case where i D j by considering
Lemma 5.1 page 78. To prove it for i ¤ j , once again, we use Lemma 5.1, showing
that for k > 2, 1

n

Pn
aD0

Pnk
bDn j	H .a � b/j tends to zero as n goes to infinity. Thus

lim
n!C1 EŒSgM .nt/�2 D

 
mX

iD1
˛2i .ti � ti�1/

! 
MX

`D1
`Šg2`

C1X

rD�1
	`H .r/

!

D �2gM :

To conclude the proof of (1), Theorem 1 of Peccati and Tudor (2005) is used and as
in the proof of Theorem 3.4, it is enough to prove that for fixed ` and p, ` > 2 and
p D 1; : : : ; ` � 1, lim

n!C1Bn D 0, where Bn is

Bn D
Z

R2.`�p/

ˇ
ˇ
ˇh
.n;t/
` ˝p h

.n;t/
` .�1; : : : ; �`�p; �1; : : : ; �`�p/

ˇ
ˇ
ˇ
2

d�1 : : : d�`�p d�1 : : : ; d�`�p;

remembering that we defined the p-th contractions ˝p in (5.6).
Now we compute Bn and we get

Bn D .`Š/4g4`

mX

i1D1

mX

i2D1

mX

i3D1

mX

i4D1
˛i1˛i2˛i3˛i4�

1

n2

bnti1c�2X

j1Dbnti1�1c�1

bnti2c�2X

j2Dbnti2�1c�1

bnti3c�2X

j3Dbnti3�1c�1

bnti4c�2X

j4Dbnti4�1c�1

	
`�p
H .j1 � j2/	`�pH .j3 � j4/	

p
H .j1 � j3/	

p
H .j2 � j4/:

Using the same arguments as in the proof of Theorem 3.4, it is easy to see that for
N large enough, one has

lim
n!1Bn 6 CN2H�4;

and then lim
n!C1Bn D 0.

Hence, we proved that

SgM .nt/
Law����!
n!1 N.0I �2gM /;

where t D .t1; : : : ; tm/ and SgM .nt/ D
mX

iD1
˛i
�
SgM ;n.ti / � SgM ;n.ti�1/

�
:
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Furthermore, using that
C1P

pDMC1
g2ppŠ �!

M!C1 0, we can prove that

lim
M!C1 sup

n>1
EŒSg.nt/ � SgM .nt/�2 D 0;

and since

N.0I �2gM /
Law����!

M!1 N.0I �2g/;

by applying Lemma 1.1 of Dynkin (1988), we proved that

Sg.nt/
Law����!
n!1 N.0I �2g/:

To obtain assertion (1) about the convergence of process Sg;n, we just have to prove
the tightness of the sequence of this process. We need the following lemma.

Lemma 5.13. Let G a function in L4.�.x/ dx/ with Hermite rank m > 1 and let
fXig1

iD1 a stationary Gaussian sequence with mean 0, variance 1 and covariance
function r such

P1
iD0 jr.i/jm < C1.

For I > 1,

E

"
1p
I

IX

iD1
G.Xi/

#4

6 C :

Proof of Lemma 5.13. Since
P1

iD0 jr.i/jm < C1, 80 < " < 1
3
, 9j D j."/ 2 N,

such that 8i > j , jr.i/j 6 " < 1
3
.

Let i? D I � bI=j c j . We have

ˇ
ˇ
ˇ
ˇ
ˇ

IX

iD1
G.Xi/

ˇ
ˇ
ˇ
ˇ
ˇ

6
i?X

iD1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

bI=j cX

kD0
G.XiCkj /

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
C

jX

iDi?C1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

bI=j c�1X

kD0
G.XiCkj /

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
:

Jensen’s inequality leads to

 
IX

iD1
G.Xi/

!4

6 8

2

6
4.i?/3

i?X

iD1

0

@
bI=j cX

kD0
G.XiCkj /

1

A

4

C.j � i?/3
jX

iDi?C1

0

@
bI=j c�1X

kD0
G.XiCkj /

1

A

4
3

7
5 :
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Consequently

E

2

4

 
IX

iD1
G.Xi /

!43

5 6 8j 3

8
<̂

:̂

i?X

iD1
E

2

6
4

0

@
bI=j cX

kD0
G.XiCkj /

1

A

4
3

7
5

C
jX

iDi?C1
E

2

6
4

0

@
bI=j c�1X

kD0
G.XiCkj /

1

A

4
3

7
5

9
>=

>;
:

First, note that by Proposition 3.1 (ii) of Taqqu (1977), since 0 < " < 1
3
, we getG 2

NG4."/ (the notation NGp."/ for p > 2 can be found in Taqqu (1977, Definition 3.2,
p. 209)).

The process fXiCkj ; k > 0g is "-standard Gaussian, see Taqqu (1977, Defini-
tion 3.1, p. 209), with covariance function r.kj /. Applying Proposition 4.2 (i) of
Taqqu (1977) with m > 1, p D 4, G 2 NG4."/, N D bI=j c C 1 and also with
N D bI=j c we get

E

2

4

 
IX

iD1
G.Xi/

!43

5 6 8j 4K.";G/.bI=j c C 1/2

 1X

kD0
jrm.kj /j

!2

6 8j 2K.";G/.I C j /2

 1X

iD0
jrm.i/j

!2

So, we showed, since I > 1, that

E

"
1p
I

IX

iD1
G.Xi/

#4

6 8j 2K.";G/.j C 1/2.

1X

iD0
jrm.i/j/2:

To complete the proof of this lemma, it is sufficient to note that the right-hand side
expression of the previous inequality is uniform in I , that " is fixed and that j."/ is
consequently a fixed integer. ut

Now for any t > s, we have

E
�
Sg;n.t/ � Sg;n.s/

�4 D 1

n2
E

2

4
bntc�2X

iDbnsc�1
g.�nbH .i//

3

5

4

D 1

n2
E

2

4
bntc�bnscX

iD1
g.�nbH .i//

3

5

4

;

since the process bH has stationary increments.
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We apply Lemma 5.13 to g 2 L4.�.x/ dx/, m D 1 and to the process
f�nbH.i/g1

iD1 with covariance r D 	H satisfying
P1

iD0 j	H .i/j < C1.
The last finiteness comes from equivalence (6.2), page 116.
We get

E
�
Sg;n.t/ � Sg;n.s/

�4 6 C

�bntc � bnsc
n

�2
: (5.39)

Now, let fixed t1 < t < t2.
If t2 � t1 > 1

n
, the Cauchy-Schwarz inequality implies that

E
�
.Sg;n.t2/� Sg;n.t//

2.Sg;n.t/ � Sg;n.t1//
2
�

6 C

�bnt2c � bntc
n

��bntc � bnt1c
n

�

6 C

�bnt2c � bnt1c
n

�2
6 C .t2 � t1/2:

Now, if t2 � t1 <
1
n

, two cases occur. If t1 and t2 are in the same interval, that is
t1; t2 2 . k

n
; kC1

n
/, then t1 and t are in the same interval, and Sg;n.t/ � Sg;n.t1/ D 0.

Otherwise, t1 and t2 are in contiguous intervals and in this case, then t1 and t are in
the same interval, or t and t2 are in the same interval. Then in both cases, we have
.Sg;n.t/ � Sg;n.t1//.Sg;n.t2/� Sg;n.t// D 0.

The tightness of process Sg;n follows by Theorem 15.6. in Billingsley (1968) and
assertion (1) follows.

Note that if g 2 L4.�.x/ dx/, with Hermite rank greater than or equal to one,
the bound given in (5.39) for s D 0 implies that for all 0 6 t 6 1, EŒSg;n.t/�4 6 C .
Consequently, Remark 5.11 follows.

(2) We can suppose that g.x/ D
C1P
`D2

g`H`.x/. Indeed, since
C1P
rD�1

	H .r/ D 0, it

follows that 1p
n

Œn���2P

iD0
�nbH .i/ tends to zero in L2 as n tends to infinity.

Let c0; : : : ; cm; be real constants. As before, it is enough to establish the limit
distribution of

mX

jD0
cj bH.tj / C SgM .nt/:

As in the proof of part (1), Theorem 1 of Peccati and Tudor (2005) allows us to
conclude the convergence of finite dimensional distributions of .bH .t/; Sg;n.t//.

Indeed it is enough to remark that
mP

jD0
cj bH .tj / belongs to the first Wiener chaos and
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then is a Gaussian random variable with finite variance and that SgM .nt/ belongs to
the superior order one.
Furthermore the tightness of the sequence of processes .bH ; Sg;n/ follows from
that of the sequence of process Sg;n proved in part (1) and implies convergence
of .bH ; Sg;n/. Thus assertion (2) of Lemma 5.10 follows. Then, this convergence
ensures stable convergence in part (1) and (2) of this Lemma (see Proposition 1 (B)
of Aldous and Eagleson (1978)). ut
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Chapter 6
Complementary Results

6.1 Introduction

In this chapter, we prove seven lemmas required in the detailed proofs of the results.
The first two are related to the functional estimation seen in Sect. 5.3.3. Indeed, in
that section we explained that in the case where � 	 0, the solution of the SDE
is X.t/ D K.bH.t// where K is a solution of an ODE and thus we assert that
proving results enunciated in Remarks 3.28 and 3.30 is equivalent to prove them for
the fBm. These lemmas give in an explicit manner how the increments of X can be
approximated by those of the fBm. The proofs required the use of the modulus of
continuity for the fBm and other results proved in Sect. 5.2.1.

The third lemma is a straightforward calculation of the asymptotic variance of the
random variable defined as a linear combination of variables of the type Sg;`i n.1/,
used in Sect. 5.2.2.

The fourth lemma is concerned by Sect. 5.2.3 where we link OHk.n/ with OHlog. In
this lemma we proved that the corresponding functionals are equivalent in L2. For
this aim we show that the Hermite coefficients for function gk.n/

k.n/
converge to those

of function glog.
In the fifth lemma, we prove the almost sure equivalence between the second

order increments of X and of � times the increments of the fBm, referred to in
Sect. 5.3.1. Giving the explicit solution for each of the four models and using the
modulus of continuity for the fBm lead to the proof.

A similar lemma is then demonstrated in the case where we do hypotheses
testing seen in Sect. 5.3.2 replacing � by �n and the techniques are the same that
for previous lemma.

Finally in last and seventh lemma, we get back to functional estimation seen in
Sect. 5.3.3 where � is supposed to be null and where we want to prove the stable
convergence for a functional of the fBm. This lemma is a step in this progression.
More precisely, we prove the L2 equivalence between the looked for functional

C. Berzin et al., Inference on the Hurst Parameter and the Variance of Diffusions Driven
by Fractional Brownian Motion, Lecture Notes in Statistics 216,
DOI 10.1007/978-3-319-07875-5__6,
© Springer International Publishing Switzerland 2014
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and its approximation. That is done using regression techniques and straightforward
calculus of expectations.

6.2 Proofs

Proof of Lemma 3.31. Recall that H > 1
2
, � 	 0 and � 2 C1. Using that

X.t/ D K.bH .t//, for t > 0, where K is the solution of the ODE (3.29), for
i D 0; 1; : : : ; n � 2 one has,

�nX.i/ D nH

�2H

�
K.bH .

iC2
n
// �K.bH .

iC1
n
//
	

C nH

�2H

�
K.bH .

i
n
// �K.bH .

iC1
n
//
	
:

The Taylor expansion for the functionK gives

�nX.i/ D �.X. iC1
n
//�nbH .i/C 1

2

nH

�2H

n�
bH .

iC2
n
/� bH.

iC1
n
/
�2

RK �bH. iC1n /C 
1
�
bH.

iC2
n
/� bH.

iC1
n
/
��
�

C1

2

nH

�2H

(�

bH.
i

n
/� bH.

iC1
n
/

�2

RK �bH . iC1n /C 
2
�
bH .

i
n
/� bH .

iC1
n
/
��
)

,

where 
1 (resp. 
2) is a point between bH . iC1n / and bH . iC2n / (resp. between bH. iC1n /
and bH . in /).

Using the modulus of continuity of bH (see (5.37)), one has

�nX.i/ D �.X. i
n
//�nbH .i/

C �
�.X. iC1

n
// � �.X. i

n
//
�
�nbH.i/COa:s:..

1
n
/H�ı/.

Using the Taylor expansion of PK, one obtains

�.X. iC1
n
//� �.X. i

n
// D PK.bH . iC1n //� PK.bH . in //

D �
bH.

iC1
n
/� bH.

i
n
/
� RK �bH. in /C 


�
bH.

iC1
n
/� bH.

i
n
/
��

,

where 
 is a point between bH . in / and bH . iC1n /.
Once again, using the modulus of continuity of bH , we finally get the

result. �
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Proof of Lemma 3.32. Let

An.h/ D 1
n�1

n�2X

iD0
h.X. i

n
//
n
j�nX.i/jk � �

�.X. i
n
//
�k j�nbH .i/jk

o
:

Recall that � 	 0, � 2 C1 and H > 1
2

so that X.t/ D K.bH .t//, for t > 0, where
K is the solution of the ODE (3.29).

We will prove that almost surely, for all continuous function h and for all real

k > 1, An.h/ D O.. 1
n
/H�ı/ D o

�
1p
n

	
for ı small enough.

On the one hand

jAn.h/j 6 C .!/





j.�nX/

�jk � �
.� ıX. �

n
//�
�k j.�nbH/

�jk






1

.

On the other hand, we apply the second part of inequality (5.26) to f D .�nX/
�

and to g D .� ı X. �
n
//�.�nbH /

�. Thus, using Lemma 3.31 and Corollary 3.3, we
finally get

jAn.h/j 6 C .!/ ka�
nkk

h
k.�nbH /

�kk�1
k C ka�

nkk�1
k

i

6 C .!/. 1
n
/H�ı �C .!/C . 1

n
/.H�ı/.k�1/�

6 C .!/. 1
n
/H�ı;

that yields lemma. �

Proof of Lemma 5.1. We need to prove the following lemma. For fixed p; k; ` 2
N�, let us denote by ık;` the expression 	pk;`.

Lemma 6.1. For all k; ` 2 N�,

knX

iD0

`nX

jD0
ık;`.`i � kj/ D

`nX

rD0

�
n � 

r
`

˘�
ık;`.kr/C

`nX

rD0
r
`2N

ık;`.kr/

C
`nX

rD`

�
n � r

`

˘C 1
�
ı`;k.kr/C

 

n

`�1X

rD1
ı`;k.kr/

!

1f`>2g

C

2

6
6
4

k�1X

sD1

0

B
B
@

`.n�1/X

rD0

�
n � 

r
`

˘ � 1� ık;`.kr C `s/C
`.n�1/X

rD0
r
`2N

ık;`.kr C `s/

C
 

n

`�1X

rD1
ı`;k.kr � `s/

!

1f`>2g C
`nX

rD`

�
n � r

`

˘C 1
�
ı`;k.kr � `s/

1

C
C
A

3

7
7
51fk>2g:
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Proof of Lemma 6.1.

knX

iD0

`nX

jD0
ık;`.`i � kj/ D

knX

iD0

`nX

jD0
ı1; `k

. `
k
i � j /;

since for x 2 R, ık;`.x/ D ı1; `k
. x
k
/.

Let i D kz C s, with 0 6 s 6 k � 1. We get

knX

iD0

`nX

jD0
ık;`.`i � kj/ D

nX

zD0

`nX

jD0
ı
1; `k
.`z � j /C

0

@
k�1X

sD1

n�1X

zD0

`nX

jD0
ı
1; `k
.`z � j C `

k
s/

1

A1fk>2g

D S1 C S2:

We study S1 and S2 separately.

We suppose k > 2, in this case S2 D
k�1P
sD1

Ts where for s D 1; : : : ; k � 1,

Ts D
n�1X

iD0

`nX

jD0
ı1; `k

.`i � j C `
k
s/:

Now, we study Ts for fixed s, 1 6 s 6 k � 1 .

Ts D
n�1X

iD0

`iX

jD0
ı1; `k

.`i � j C `
k
s/C

n�1X

iD0

`nX

jD`iC1
ı1; `k

.`i � j C `
k
s/:

Making the changes of variables r D `i � j in the first summation and r D j � `i
in the second one and using that ı1; `k

.�x/ D ı `
k ;1
.x/, one gets

Ts D
n�1X

iD0

`iX

rD0
ı1; `k

.r C `
k
s/C

n�1X

iD0

`.n�i /X

rD1
ı `
k ;1
.r � `

k
s/:

Inverting the indices of summation for the first summation, one obtains

Ts D
`.n�1/X

rD0
r
`2N

n�1X

iD r
`

ı1; `k
.r C `

k
s/C

`.n�1/X

rD0
r
`…N

n�1X

iDŒ r` �C1
ı1; `k

.r C `
k
s/

C
 
n�1X

iD0

`�1X

rD1
ı `
k ;1
.r � `

k
s/

!

1f`>2g C
n�1X

iD0

`.n�i /X

rD`
ı `
k ;1
.r � `

k
s/;

and then
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Ts D
`.n�1/X

rD0
r
`2N

�
n � 

r
`

˘�
ı1; `k

.r C `
k
s/C

`.n�1/X

rD0
r
`…N

�
n � 

r
`

˘ � 1
�
ı1; `k

.r C `
k
s/

C
 

n

`�1X

rD1
ı `
k ;1
.r � `

k
s/

!

1f`>2g C
n�1X

iD0

`.n�i /X

rD`
ı `
k ;1
.r � `

k
s/:

Inverting the indices of summation for the last summation, ensures that

Ts D
`.n�1/X

rD0

�
n � 

r
`

˘ � 1� ı1; `k .r C `
k
s/C

`.n�1/X

rD0
r
`2N

ı1; `k
.r C `

k
s/

C
 

n

`�1X

rD1
ı `
k ;1
.r � `

k
s/

!

1f`>2g C
`nX

rD`

bn� r
`cX

iD0
ı `
k ;1
.r � `

k
s/:

Finally, we proved that

Ts D
`.n�1/X

rD0

�
n � 

r
`

˘ � 1� ı1; `k .r C `
k
s/C

`.n�1/X

rD0
r
`2N

ı1; `k
.r C `

k
s/

C
 

n

`�1X

rD1
ı `
k ;1
.r � `

k
s/

!

1f`>2g C
`nX

rD`

�j
n � r

`

k
C 1

	
ı `
k ;1
.r � `

k
s/:

Thus using that for x 2 R and k; ` 2 N�, ık;`.x/ D ı1; `k
. x
k
/ D ı k

` ;1
. x
`
/, we obtain

S2 D
 
k�1X

sD1
Ts

!

1fk>2g D
2

4
k�1X

sD1

0

@
`.n�1/X

rD0

�
n � 

r
`

˘ � 1
�
ık;`.kr C `s/

C
`.n�1/X

rD0
r
`2N

ık;`.kr C `s/C
 

n

`�1X

rD1
ı`;k.kr � `s/

!

1f`>2g

C
`nX

rD`

�
n � r

`

˘C 1
�
ı`;k.kr � `s/

!#

1fk>2g:

Now,

S1 D
nX

iD0

`nX

jD0
ı1; `k

.`i � j / D
nX

iD0

`iX

jD0
ı1; `k

.`i � j /C
n�1X

iD0

`nX

jD`iC1
ı1; `k

.`i � j /:
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Making the same changes of variables as in the computation concerning Ts , we
obtain

S1 D
`nX

rD0

�
n� 

r
`

˘�
ık;`.kr/C

`nX

rD0
r
`2N

ık;`.kr/

C
`nX

rD`

�
n � r

`

˘C 1
�
ı`;k.kr/C

 

n

`�1X

rD1
ı`;k.kr/

!

1f`>2g;

and Lemma 6.1 follows. �

Using Lemma 6.1 and the fact that 	k;`.x/ is equivalent to C jxj2H�4 for jxj large

enough (see the proof of Lemma 3.8), so that
k�1P
sD0

C1P
rD�1

jr j jık;`.kr C `s/j < C1,

we get

lim
n!C1

1

n

.kn�2/X

iD0

.`n�2/X

jD0
ık;`.`i � kj/

D
C1X

rD0
ık;`.kr/C

C1X

rD`
ı`;k.kr/C

 
`�1X

rD1
ı`;k.kr/

!

1f`>2g

C
"
k�1X

sD1

 C1X

rD0
ık;`.kr C `s/C

 
`�1X

rD1
ı`;k.kr � `s/

!

1f`>2g

C
C1X

rD`
ı`;k.kr � `s/

!#

1fk>2g

D
k�1X

sD0

 C1X

rD0
ık;`.kr C `s/C

C1X

rD1
ı`;k.kr � `s/

!

:

Using that for x 2 R, ık;`.x/ D ı`;k.�x/, one gets Lemma 5.1. �

Proof of Lemma 5.3. Lemma 3.8 page 45 gives the asymptotic behavior of
EŒSglog;n.1/�

2, that is

EŒSglog;n.1/�
2 �!
n!C1�2glog

. (6.1)

Now, (3.7) in Corollary 3.10 gives the expression of the Hermite coefficients,
g2p;k.n/, of gk.n/, let
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g2p;k.n/ D 1

.2p/Š

p�1Y

iD0
.k.n/ � 2i/ ,

and as in the proof of Lemma 3.8, Mehler’s formula (2.3) allows us to compute
EŒS.n/�2, and

EŒS.n/�2 D
1X

pD1

�
g2p;k.n/

k.n/

�2
.2p/Š

0

@1

n

n�2X

iD0

n�2X

jD0
	
2p
H .i � j /

1

A :

On the one hand, by Lemma 5.1,

lim
n!C1

1

n

n�2X

iD0

n�2X

jD0
	
2p
H .i � j / D

C1X

rD�1
	
2p
H .r/:

Furthermore, the expression of the Hermite coefficients, g2p;log, of function glog is
given in (3.12) in Corollary 3.13 and we observe that

g2p;k.n/

k.n/
�!

n!C1
1

.2p/Š

p�1Y

iD1
.�2i/ D g2p;log.

On the other hand for large enough n

ˇ
ˇ
ˇ
ˇ
g2p;k.n/

k.n/

ˇ
ˇ
ˇ
ˇ D 1

.2p/Š

p�1Y

iD1
.2i � k.n// 6 1

.2p/Š

p�1Y

iD1
.2i/ D jg2p;logj.

Now we consider the following inequality. Let f be an even function, then for n >
1, one has

nX

iD0

nX

jD0
f .i � j / D 2

nX

iD1
.n � .i � 1// f .i/C .nC 1/f .0/,

and then
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

nX

iD0

nX

jD0
f .i � j /

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

6 2n

C1X

iD0
jf .i/j .

Thus we obtain the following inequality

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

n

n�2X

iD0

n�2X

jD0
	
2p
H .i � j /

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

6 2

C1X

iD0

ˇ
ˇ
ˇ	2pH .i/

ˇ
ˇ
ˇ 6 2

C1X

iD0
j	H .i/j < C1.
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The last finiteness provides from the fact that, as for 	k;` in the proof of Lemma 3.8,
it can be seen that 	H .x/ is equivalent to

�1=.4 � 22H / jxj2H�4 H.2H � 1/.2H � 2/.2H � 3/ (6.2)

for large values of jxj. Thus j	H .x/j is bounded from above by C jxj2H�4.
Since kglogk22;� < C1, we finally proved that

EŒS.n/�2 �!
n!C1�2glog

. (6.3)

To achieve the proof of Lemma 5.3, we compute EŒS.n/Sglog;n.1/� by Mehler’s
formula and we proceed as for EŒS.n/�2 to obtain

EŒS.n/Sglog;n.1/� �!
n!C1�2glog

, (6.4)

(6.1), (6.3) and (6.4) give the required result. �

Proof of Lemma 5.4. We shall proof this lemma for the third model. The other
models could be treated in a similar way.

For i D 0; 1; : : : ; n � 2, one has

�nX.i/ D nH

�2H

��

exp

�
2�

n
C �

�
bH .

iC2
n
/ � bH . in /

�
�

� 1
�

�

2
n
exp

��

n
C �

�
bH .

iC1
n
/� bH .

i
n
/
�	� 1

oi
.

By the Taylor expansion of the exponential function one gets

�nX.i/ D ��nbH .i/C nH

2�2H

�
2�

n
C �

�
bH.

iC2
n
/� bH .

i
n
/
�
�2

�

exp

�




�
2�

n
C �

�
bH.

iC2
n
/� bH.

i
n
/
�
��

�

nH

�2H

h�

n
C �

�
bH.

iC1
n
/� bH.

i
n
/
�i2 �

exp
�

 0 h�

n
C �

�
bH .

iC1
n
/� bH.

i
n
/
�i	

,

with 0 < 
 < 1 and 0 < 
 0 < 1.
Using the modulus of continuity of bH (see (5.37)), one obtains

�nX.i/ D ��nbH .i/C an.i/; and
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jan.i/j 6 C .!/
h�

1
n

�H�ı C �
1
n

�2�H i

6 C .!/
�
1
n

�H�ı
:

Remark 6.2. For the fourth model, we prove that

�nX.i/ D �X. i
n
/�nbH .i/COa:s:..

1
n
/H�ı/:

If � and c are of the same sign or if � D 0, then jX. i
n
/j > jcj exp .�a.!// > 0,

where a.!/ D � supt2Œ 0; 1 � jbH .t/.!/j.
Thus �nX.i/ D ��nbH .i/COa:s:..

1
n
/H�ı/.

�

Proof of Lemma 5.6. The proof is based on the proof of Lemma 5.4. It consists in
bounding the expression an.i/ appearing in this lemma, with �n and �n taking the
role of � and �, using the fact that both are bounded. �

Proof of Lemma 5.9. First we compute EŒTn.f /�2. In this aim, we decompose this
expectation into two terms S1 and S2 where

S1 D 1

n

n�2X

i;jD0
i¤j

EŒf .bH . in //f .bH .
j

n
//g.�nbH.i//g.�nbH .j //�

S2 D 1

n

n�2X

iD0
EŒf 2.bH .

i
n
//g2.�nbH .i//�:

Let us consider S1. We fix i; j 2 f0; 1; : : : ; n � 2g, i ¤ j and we consider the
change of variables

bH .
i
n
/ D Z1;n.i; j /CA1;n.i; j /�nbH .i/C A2;n.i; j /�nbH .j /,

bH .
j

n
/ D Z2;n.i; j /C B1;n.i; j /�nbH.i/C B2;n.i; j /�nbH.j /,

with .Z1;n.i; j /; Z2;n.i; j // a zero mean Gaussian vector independent of
.�nbH .i/;�nbH .j // and

A1;n.i; j / D EŒbH . in /�nbH.i/� � 	H .i � j /EŒbH . in /�nbH .j /�

1 � 	2H .i � j / ,

A2;n.i; j / D EŒbH . in /�nbH.j /� � 	H .i � j /EŒbH . in /�nbH .i/�

1 � 	2H .i � j / .

Two similar formulas hold for B1;n.i; j / and B2;n.i; j /.
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A straightforward computation shows that since ji � j j > 1, then .1 � 	2H
.i � j // > C > 0 and then for i ¤ j we get

max
kD1;2 jAk;n.i; j /; Bk;n.i; j /j 6 Cn�H . (6.5)

Writing the Taylor expansion of f one has,

f .bH .
i
n
// D

3X

kD0

1

kŠ

k�
f .Z1;n.i; j // ŒA1;n.i; j /�nbH .i/C A2;n.i; j /�nbH.j /�

k

C 1

4Š

4�
f .
1;n.i; j //ŒA1;n.i; j /�nbH .i/C A2;n.i; j /�nbH .j /�

4,

with 
1;n.i; j / between bH . in / and Z1;n.i; j /.
A similar formula holds for f .bH .

j

n
//.

We can decompose S1 as the sum of 25 terms. We use the notations Jj1;j2 for the

corresponding sums, where j1; j2 D 0; . . . , 4 are the subscripts involving
j1�
f and

j2�
f .

We only consider Jj1;j2 with j1 6 j2. Then we obtain the following

(A) One term of the form

J0;0 D 1

n

n�2X

i;jD0
i¤j

EŒf .Z1;n.i; j //f .Z2;n.i; j //�EŒg.�nbH .i//g.�nbH.j //�.

We will denote by an.i; j / D EŒf .Z1;n.i; j //f .Z2;n.i; j //� and let

ˇ.k/ D EŒg.�nbH.0//g.�nbH.k//� D
C1X

pD1
g2ppŠ	

p
H .k/:

With these notations and making the change of variable .i � j / D k in last
summation one obtains

J0;0 D
 
1

n

n�2X

iD0
EŒf 2.bH.

i
n
//�

!
0

B
B
@

C1X

kD�1
k¤0

ˇ.k/

1

C
C
A

C 1

n

n�2X

iD0

iX

kDi�nC2
k¤0

�
an.i; i � k/ � EŒf 2.bH.

i
n
//�
�
ˇ.k/
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� 1

n

n�2X

iD0

i�nC1X

kD�1
EŒf 2.bH .

i
n
//�ˇ.k/ � 1

n

n�2X

iD0

C1X

kDiC1
EŒf 2.bH .

i
n
//�ˇ.k/

D .1/C .2/C .3/C .4/.

Since
PC1

kD�1 jˇ.k/j < C1 (see equivalence (6.2)), it is obvious that .3/ and
.4/ tend to zero when n goes to infinity. Furthermore using inequality (6.5),

we can prove that for k ¤ 0,
ˇ
ˇan.i; i � k/� EŒf 2.bH .

i
n
//�
ˇ
ˇ 6 C

ˇ
ˇ k
n

ˇ
ˇH . Now,

since H < 1,
PC1

kD�1 jkjH jˇ.k/j < C1 (see again equivalence (6.2)), so
that .2/ tends to zero with n. Thus we proved that

lim
n!C1J0;0 D

0

B
B
@

C1X

kD�1
k¤0

ˇ.k/

1

C
C
A

�Z 1

0

EŒf 2.bH .u//� du

�

. (6.6)

(B) Two terms of the form J0;1 	 0 by a symmetry argument: if L.U; V / D
N.0;˙/ then EŒUg.U /g.V /� D 0 for g even or odd.

(C) Two terms of the form

J0;2 D 1

2n

n�2X

i;jD0
i¤j

EŒf .Z1;n.i; j // Rf .Z2;n.i; j //� �

EŒg.�nbH .i//g.�nbH.j // .B1;n.i; j /�nbH .i/

CB2;n.i; j /�nbH .j //
2�.

Since j	H .i � j /j 6 1, g is even, or odd with Hermite rank greater than or
equal to three, then

ˇ
ˇ
ˇEŒg.�nbH .i//g.�nbH .j // .B1;n.i; j /�nbH .i/C B2;n.i; j /�nbH.j //

2�
ˇ
ˇ
ˇ

6 C

�

max
kD1;2

B2
k;n.i; j /

�

j	H .i � j /j.

Using (6.5), and since
1

n

nX

iD0

nX

jD0
j	H .i � j /j 6 2

C1X

iD0
j	H .i/j < C1, we get

J0;2 D O.n�2H / D o.1/.

(D) Two terms of the form J0;3 	 0 by a symmetry argument: if L.U; V / D
N.0;˙/ then EŒ.aU C bV /3g.U /g.V /� D 0 for any two constants a and b
and for function g even or odd.
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(E) Two terms of the form

J0;4 D 1

4Šn

n�2X

i;jD0
i¤j

EŒf .Z1;n.i; j //
4�
f .
2;n.i; j //g.�nbH.i//g.�nbH .j //

�ŒB1;n.i; j /�nbH.i/C B2;n.i; j /�nbH .j /�
4�.

Therefore

jJ0;4j 6 C
1

n

n�2X

i;jD0
i¤j

�

max
kD1;2 B

4
k;n.i; j /

�

.

Finally using (6.5) once again, one obtains

J0;4 D O.n�.4H�1// D o.1/,

since H > 1
4
.

Using the same type of arguments as for (C), (D), (E) we can prove that the other
terms are all o.1/. Thus using equality (6.6) we proved that

lim
n!C1S1 D

0

B
B
@

C1X

kD�1
k¤0

ˇ.k/

1

C
C
A

�Z 1

0

EŒf 2.bH.u//� du

�

:

Let us now consider S2. Similar computations, holding i fixed and doing a
regression of bH . in / on �nbH.i/, give that

lim
n!C1S2 D ˇ.0/

�Z 1

0

EŒf 2.bH.u//� du

�

:

Thus we proved that

lim
n!C1 EŒTn.f /�2 D �2g

�Z 1

0

EŒf 2.bH .u//� du

�

. (6.7)

Now let us compute EŒT .m/n .f /�2. We decompose the last expression into two terms:
S1 C S2; where
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S1 D
m�1X

`1;`2D0
`1¤`2

1
n

j
n.`1C1/

m

k
�2

X

iD
j
n`1
m

k
�1

j
n.`2C1/

m

k
�2

X

jD
j
n`2
m

k
�1

EŒf .bH .
`1
m
//f .bH .

`2
m
//�

g.�nbH.i//g.�nbH .j //�,

and

S2 D
m�1X

`D0

1

n

j
n.`C1/
m

k
�2

X

iDb n`
m c�1

j
n.`C1/
m

k
�2

X

jDb n`
m c�1

EŒf 2.bH.
`
m
//g.�nbH.i//g.�nbH .j //�:

First we look at the first term. For fixed `1 ¤ `2 and i; j (in this case nec-
essarily i is different from j ), we use the regression of .bH.

`1
m
/; bH .

`2
m
// on

.�nbH .i/;�nbH .j //. We can prove in the same way as before that

lim
n!C1S1 D

m�1X

`1;`2D0
`1¤`2

EŒf .bH .
`1
m
//f .bH .

`2
m
//��

lim
n!C1

1

n

j
n.`1C1/

m

k
�2

X

iD
j
n`1
m

k
�1

j
n.`2C1/

m

k
�2

X

jD
j
n`2
m

k
�1
ˇ.i � j / D 0

(last equality follows from convergence seen in (5.38)).
Then for the second term S2, for fixed `; i; j , using a regression of bH . `m/

on .�nbH .i/;�nbH .j // if i ¤ j and on �nbH .i/ otherwise, as before similar
straightforward calculations show that

lim
n!C1 EŒT .m/n .f /�2 D lim

n!C1S2 D �2g

 
1

m

m�1X

`D0
EŒf 2.bH .

`
m
//�

!

;

and then

lim
m!C1 lim

n!C1 EŒT .m/n .f /�2 D �2g

�Z 1

0

EŒf 2.bH .u//� du

�

. (6.8)

To conclude the proof of lemma we have to compute EŒTn.f /T
.m/
n .f /�.

EŒTn.f /T
.m/
n .f /� D

m�1X

`D0

1

n

n�2X

iD0

j
n.`C1/
m

k
�2

X

jDb n`
m c�1

EŒf .bH . `m//f .bH .
i
n
//g.�nbH.i//g.�nbH .j //�.
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For fixed `; i; j , using a regression of .bH . in /; bH.
`
m
// on .�nbH .i/;�nbH .j // if

i ¤ j and on �nbH .i/ otherwise, as before similar straightforward calculations
show that

lim
n!C1 EŒTn.f /T .m/n .f /� D �2g

 
m�1X

`D0

Z `C1
m

`
m

EŒf .bH .u//f .bH . `m//� du

!

;

so that

lim
m!C1 lim

n!C1 EŒTn.f /T .m/n .f /� D �2g

�Z 1

0

EŒf 2.bH.u//� du

�

. (6.9)

(6.7)–(6.9) yield lemma. �



Chapter 7
Tables and Figures Related to the Simulation
Studies

7.1 Introduction

In this chapter we collect all the graphics and tables to which we refer in the text.
They are presented to help the understanding of the different comments concerning
the simulation results.

First, we display three graphics showing the empirical distribution of OH2

obtained with a resolution of 1/2,048-th for different values ofH .
Then, in Tables 7.1–7.5, we give the empirical mean and standard deviation of

the estimators of H in the case of a fBm. Graphical representations are presented
on pages 130–131.

Tables 7.6 and 7.7 present some results concerning the estimated covering
probability of the confidence intervals we developed in Sects. 4.5.1.3 and 4.5.1.4,
pages 67 and 70.

A series of Tables 7.8–7.15, followed by a series of graphics, Figs. 7.4–7.11
present results about the simultaneous estimation of H and � for models excited
by an fBm.

Table 7.16 gives the observed empirical level of the test on � . Figures 7.12–7.19
present the empirical and the asymptotic power function of the test.

C. Berzin et al., Inference on the Hurst Parameter and the Variance of Diffusions Driven
by Fractional Brownian Motion, Lecture Notes in Statistics 216,
DOI 10.1007/978-3-319-07875-5__7,
© Springer International Publishing Switzerland 2014
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a

b

c

Fig. 7.1 Empirical distribution of OH2 using a resolution of 1/2,048-th and ` D 5, for (a) H D
0:05, (b) H D 0:50 and (c) H D 0:95. Superimposed are the normal densities with empirical
means and standard errors
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Fig. 7.2 3D-diagrams showing the difference betweenH and the empirical mean of OHk for values
of k D 1; : : : ; 4 and OHlog, given H D 1

2
. The maximum number of observations of the process

used in estimation is 27Cj , j D 0; : : : ; 4. The number of points in the regression, `, varies from 2
to 5. Note that the z-scale goes from �0:02 to C0:02
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Fig. 7.3 3D-diagrams showing the empirical standard error of OHk for values of k D 1; : : : ; 4 and
OHlog, given H D 1

2
. The maximum number of observations of the process used in estimation is

27Cj , j D 0; : : : ; 4. The number of points in the regression, `, varies from 2 to 5. Note that the
z-scale goes from 0:00 to C0:25
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Table 7.6 Estimated
covering probability of the
confidence interval based onOQ0:025.H/ and OQ0:975.H/

n

H ` 128 256 512 1,024 2,048

0.05 2 0.9537 0.9529 0.9498 0.9502 0.9536
3 0.9587 0.9510 0.9468 0.9599
4 0.9546 0.9514 0.9521
5 0.9532 0.9512

0.2 2 0.9473 0.9521 0.9468 0.9459 0.9498
3 0.9457 0.9455 0.9439 0.9564
4 0.9448 0.9463 0.9488
5 0.9476 0.9486

0.3 2 0.9444 0.9526 0.9536 0.9436 0.9507
3 0.9468 0.9482 0.9446 0.9550
4 0.9461 0.9467 0.9500
5 0.9465 0.9478

0.4 2 0.9392 0.9510 0.9479 0.9429 0.9539
3 0.9375 0.9458 0.9463 0.9552
4 0.9387 0.9442 0.9496
5 0.9443 0.9479

0.5 2 0.9386 0.9520 0.9544 0.9434 0.9569
3 0.9393 0.9456 0.9469 0.9510
4 0.9417 0.9458 0.9498
5 0.9433 0.9473

0.6 2 0.9395 0.9514 0.9505 0.9463 0.9591
3 0.9378 0.9473 0.9493 0.9508
4 0.9423 0.9484 0.9508
5 0.9417 0.9505

0.7 2 0.9389 0.9521 0.9515 0.9476 0.9628
3 0.9390 0.9467 0.9525 0.9522
4 0.9395 0.9511 0.9484
5 0.9420 0.9501

0.8 2 0.9428 0.9509 0.9546 0.9522 �0:9648

3 0.9432 0.9522 0.9540 0.9548
4 0.9418 0.9518 0.9516
5 0.9435 0.9509

0.95 2 0.9442 0.9571 0.9577 0.9568 �0:9692

3 0.9426 0.9571 0.9609 0.9539
4 0.9372 0.9529 0.9540
5 �0:9362 0.9517
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Table 7.7 Estimated
covering probability of the
confidence interval based on
the normal approximation
using estimated values of O� OH2

n

H ` 128 256 512 1,024 2,048

0.05 2 0:9606 0:9555 0:9493 0:9504 0:9588

3 0:9585 0:9514 0:9574 0:9549

4 0:9573 0:9528 0:9531

5 0:9565 0:9497

0.2 2 0:9521 0:9517 0:9488 0:9486 0:9577

3 0:9562 0:9502 0:9504 0:9527

4 0:9547 0:9516 0:9516

5 0:9549 0:9482

0.3 2 0:9493 0:9520 0:9444 0:9483 0:9569

3 0:9521 0:9498 0:9497 0:9501

4 0:9520 0:9505 0:9518

5 0:9546 0:9476

0.4 2 0:9481 0:9508 0:9421 0:9459 0:9582

3 0:9527 0:9486 0:9484 0:9479

4 0:9532 0:9503 0:9502

5 0:9531 0:9508

0.5 2 0:9519 0:9530 0:9479 0:9517 0:9600

3 0:9519 0:9452 0:9488 0:9473

4 0:9536 0:9485 0:9527

5 0:9554 0:9469

0.6 2 0:9462 0:9495 0:9450 0:9532 0:9615

3 0:9497 0:9512 0:9486 0:9487

4 0:9540 0:9541 0:9479

5 0:9539 0:9553

0.7 2 0:9475 0:9553 0:9482 0:9475 0:9609

3 0:9485 0:9533 0:9487 0:9460

4 0:9524 0:9508 0:9448

5 0:9538 0:9500

0.8 2 0:9516 0:9543 0:9489 0:9529 �0:9656

3 0:9573 0:9534 0:9519 0:9506

4 0:9568 0:9535 0:9514

5 0:9562 0:9510

0.95 2 0:9436 0:9617 0:9571 0:9568 �0:9663

3 0:9504 0:9620 0:9599 0:9543

4 0:9554 0:9588 0:9549

5 0:9542 0:9533
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Fig. 7.4 3D-diagrams of the difference between the empirical mean and real value and of the
standard error of OH2 for model 1. The maximum number of observations of the process used in
estimation is 27Cj , j D 0; : : : ; 4. The number of points in the regression, `, varies from 2 to 5
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Fig. 7.5 3D-diagrams of the difference between the empirical mean and real value and of the
standard error of O� for model 1. The maximum number of observations of the process used in
estimation is 27Cj , j D 0; : : : ; 4. The number of points in the regression, `, varies from 2 to 5
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Fig. 7.6 3D-diagrams of the difference between the empirical mean and real value and of the
standard error of OH2 for model 2. The maximum number of observations of the process used in
estimation is 27Cj , j D 0; : : : ; 4. The number of points in the regression, `, varies from 2 to 5
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Fig. 7.7 3D-diagrams of the difference between the empirical mean and real value and of the
standard error of O� for model 2. The maximum number of observations of the process used in
estimation is 27Cj , j D 0; : : : ; 4. The number of points in the regression, `, varies from 2 to 5
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Fig. 7.8 3D-diagrams of the difference between the empirical mean and real value and of the
standard error of OH2 for model 3. The maximum number of observations of the process used in
estimation is 27Cj , j D 0; : : : ; 4. The number of points in the regression, `, varies from 2 to 5
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Fig. 7.9 3D-diagrams of the difference between the empirical mean and real value and of the
standard error of O� for model 3. The maximum number of observations of the process used in
estimation is 27Cj , j D 0; : : : ; 4. The number of points in the regression, `, varies from 2 to 5
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Fig. 7.10 3D-diagrams of the difference between the empirical mean and real value and of the
standard error of OH2 for model 4. The maximum number of observations of the process used in
estimation is 27Cj , j D 0; : : : ; 4. The number of points in the regression, `, varies from 2 to 5
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Fig. 7.11 3D-diagrams of the difference between the empirical mean and real value and of the
standard error of O� for model 4. The maximum number of observations of the process used in
estimation is 27Cj , j D 0; : : : ; 4. The number of points in the regression, `, varies from 2 to 5
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Fig. 7.12 Empirical power functions for H0 W � D 2 against H1 W � > 2, data generated
according to model (1)



152 7 Tables and Figures Related to the Simulation Studies

2,00 2,04 2,08 2,12
0,0

0,2

0,4

0,6

0,8

σ 2

A
sy

m
pt

ot
ic

 p
ow

er
H = 0 55.

2,00 2,04 2,08 2,12
0,0

0,2

0,4

0,6

0,8

σ 2

A
sy

m
pt

ot
ic

 p
ow

er

H = 0 65.

2,00 2,04 2,08 2,12

0,0

0,2

0,4

0,6

0,8

σ 2

A
sy

m
pt

ot
ic

 p
ow

er

H = 0 75.

2,00 2,04 2,08 2,12

0,0

0,2

0,4

0,6

0,8

σ 2

A
sy

m
pt

ot
ic

 p
ow

er
H = 0.85

2,00 2,04 2,08 2,12
0,0

0,2

0,4

0,6

0,8

20481024512256128

σ 2

A
sy

m
pt

ot
ic

 p
ow

er

n:

H = 0.95

Fig. 7.13 Asymptotic power functions for H0 W � D 2 against H1 W � > 2, data generated
according to model (1)
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Fig. 7.14 Empirical power functions for H0 W � D 2 against H1 W � > 2, data generated
according to model (2)
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Fig. 7.15 Asymptotic power functions for H0 W � D 2 against H1 W � > 2, data generated
according to model (2)
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Fig. 7.16 Empirical power functions for H0 W � D 2 against H1 W � > 2, data generated
according to model (3)
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Fig. 7.17 Asymptotic power functions for H0 W � D 2 against H1 W � > 2, data generated
according to model (3)
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Fig. 7.18 Empirical power functions for H0 W � D 2 against H1 W � > 2, data generated
according to model (4)
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Fig. 7.19 Asymptotic power functions for H0 W � D 2 against H1 W � > 2, data generated
according to model (4)



Chapter 8
Some Pascal Procedures and Functions

In this chapter, we give the important Pascal procedures used in the simulation
studies: the uniform and the normal generators. These are the basic functions use in
the procedure DurbinSim written to simulate a trajectory of a Gaussian stationary
process. If the increments are simulated, the function Somme is used to get the
trajectory. We also give the procedure Model that control the simulation of the four
different models defined by a stochastic differential equation considered in the text.


 Minimal interface for the procedures and functions

1 u n i t SimLib ;
2 i n t e r f a c e
3 u s e s Math ;
4 cons t
5 maxLag = 2051;
6 maxnObs = 2051;
7 type
8 CovSe r i e s = array [ 0 . . maxLag ] of ex t ended ;
9 T i meSe r i e s = array [ 0 . . maxnObs ] of ex t ended ;

10

11 { V a r i a b l e s f o r t h e random g e n e r a t o r s : }
12 var { GenNorm }
13 ChoixDeU : i n t e g e r ;
14 U1 , U2 : ex t ended ;
15 { Var f o r t h e un i f o rm random d e v i a t e s : }
16 var zRanLong0 , zRanLong1 , zRanLong2 , zRanLong3 : l o n g i n t ;
17 xRanLong : array [ 0 . . 3 ] of l o n g i n t ;
18 f u n c t i o n RandomLong : ex t ended ;
19 f u n c t i o n GenNorm : ex t ended ;
20 procedure Model ( var d a t a : T i m eSer i e s ; nObs , k : i n t e g e r ; sigma , &

!mu, c : ex t ended ) ;
21 procedure Somme ( var d a t a : T i m eSer i e s ; nObs : i n t e g e r ; consNorm : &

! ex t ended ) ;

C. Berzin et al., Inference on the Hurst Parameter and the Variance of Diffusions Driven
by Fractional Brownian Motion, Lecture Notes in Statistics 216,
DOI 10.1007/978-3-319-07875-5__8,
© Springer International Publishing Switzerland 2014
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22 procedure DurbinSim ( var g : CovSe r i e s ; n : i n t e g e r ; var d a t a : &

! Ti meSe r i e s ) ;
23

24 i m p l e m e n t a t i o n


 Simulation of an uniform random deviate

1 {======================================================}
2 f u n c t i o n RandomLong : ex t ended ;
3 {======================================================}
4 begin
5 zRanLong0 := (53� xRanLong [ 0 ] ) +11;
6 zRanLong1 := (53� xRanLong [ 1 ] ) +(15372� xRanLong [ 0 ] ) ;
7 zRanLong2 := (53� xRanLong [ 2 ] ) +(15372� xRanLong [ 1 ] ) +(6238�&

!xRanLong [ 0 ] ) ;
8 zRanLong3 := (53� xRanLong [ 3 ] ) +(15372� xRanLong [ 2 ] ) +(6238�&

!xRanLong [ 1 ] ) +(32� xRanLong [ 0 ] ) ;
9 xRanLong [ 0 ] := zRanLong0 mod 16384;

10 zRanLong1 := zRanLong1 +( zRanLong0 div 16384) ;
11 xRanLong [ 1 ] := zRanLong1 mod 16384;
12 zRanLong2 := zRanLong2 +( zRanLong1 div 16384) ;
13 xRanLong [ 2 ] := zRanLong2 mod 16384;
14 zRanLong3 := zRanLong3 +( zRanLong2 div 16384) ;
15 xRanLong [ 3 ] := zRanLong3 mod 64 ;
16 randomLong := ( xRanLong [ 3 ] � 0 . 0 1 5 6 2 5 ) +( xRanLong&

! [2]�0.9536743164 e �06) +( xRanLong [1]�0.5820766091 e �10) +( &

!xRanLong [0]�0.3552713679 e �14) ;
17 end ;


 Simulation of a Gaussian random deviate

1 {======================================================}
2 Funct ion GenNorm : ex t ended ;
3 {======================================================}
4 Const
5 h = 0 . 2 ;
6 pTab1 : array [ 0 . . 3 1 ] of ex t ended =
7 (0 . 000000000000000 , 0 .848737394964225 , &

! 0.969988979312695 , 0 .855031042869243 , &

! 0.994279264213257 ,
8 0 .995158709535307 , 0 .932743754634730 , &

! 0.923403371004114 , 0 .727370667776133 , &

! 1.000000000000000 ,
9 0 .691084371368807 , 0 .454074788431763 , &

! 0.286649987773989 , 0 .173862006191176 , &

! 0.101317780262144 ,
10 0 .056727659672807 , 0 .067274921216759 , &

! 0.160512263075615 , 0 .235534083919509 , &

! 0.285402151320344 ,
11 0 .307583983879102 , 0 .303895853638795 , &

! 0.279521143090448 , 0 .241484838292606 , &

! 0.197052219293015 ,
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12 0 .152447607174975 , 0 .112113015387796 , &

! 0.078528353915769 , 0 .052464259464977 , &

! 0.033469912108469 ,
13 0 .020407207450255 , 0 .086393474024337) ;
14 qTab1 : array [ 1 . . 1 5 ] of ex t ended =
15 (0 . 235644147632296 , 0 .206187909621112 , &

! 0.233909635992696 , 0 .201150730180674 , &

! 0.200972968516138 ,
16 0 .214421162303383 , 0 .216590069172608 , &

! 0.274962971233747 , 0 .200000000000000 , &

! 0.289400264693972 ,
17 0 .440456077050082 , 0 .697715013187760 , &

! 1.150337583129480 , 1 .973987186479330 , &

! 3.525616976860300) ;
18 yTab1 : array [ 0 . . 3 1 ] of ex t ended =
19 (0 . 000000000000000 , �0.922203858334308 , &

! �5.864218524383640 , �0.579605702892703 , &

! �33.160537849598600 ,
20 �39.511299426995400 , �2.573701533795050 , &

! �1.611080965596300 , 0 .666403220927925 , &

! 0.000000000000000 ,
21 0 .352574031666183 , �0.166350547221432 , &

! 0.919632723666887 , 0 .357909693660353 , &

! �0.022548077181653 ,
22 0 .187972156661961 , 0 .585574544365309 , &

! 0.961759474018363 , �0.061620558605705 , &

! 0.120122303237360 ,
23 1 .311156305828320 , 0 .312686670456606 , &

! 1.122406843612470 , 0 .536326958119326 , &

! 0.750917799630877 ,
24 0 .564026387403180 , 0 .174746106806203 , &

! 0.382955882744852 , �0.011073832304279 , &

! 0.393074212064835 ,
25 0 .195833532544245 , 0 .781087378084986) ;
26 zTab1 : array [ 0 . . 3 1 ] of ex t ended =
27 (0 . 200000000000000 , 1 .322203858334310 , &

! 6.664218524383640 , 1 .379605702892700 , &

! 34.960537849598600 ,
28 41 .311299426995400 , 2 .973701533795050 , &

! 2.611080965596300 , 0 .733596779072076 , &

! 0.000000000000000 ,
29 0 .647425968333817 , 0 .366350547221432 , &

! 0.280367276333114 , 0 .242090306339648 , &

! 0.222548077181654 ,
30 0 .212027843338040 , 0 .214425455634692 , &

! 0.238240525981638 , 0 .261620558605705 , &

! 0.279877696762641 ,
31 0 .288843694171683 , 0 .287313329543394 , &

! 0.277593156387527 , 0 .263673041880674 , &

! 0.249082200369123 ,
32 0 .235973612596820 , 0 .225253893193797 , &

! 0.217044117255148 , 0 .211073832304279 , &

! 0.206925787935166 ,
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33 0 .204166467455756 , 0 .218912621915015) ;
34 sTab1 : array [ 1 . . 1 6 ] of ex t ended =
35 ( 0 . 0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 . 0 , 1 . 2 , 1 . 4 , 1 . 6 , 1 . 8 , &

! 2 . 0 , 2 . 2 , 2 . 4 , 2 . 6 , 2 . 8 , 3 . 0 ) ;
36 dTab1 : array [ 1 6 . . 3 0 ] of ex t ended =
37 (0 . 505033500668897 , 0 .772956831816995 , &

! 0.876424317297063 , 0 .939211242857670 , &

! 0.986086815609050 ,
38 0 .995154501317651 , 0 .986748014243518 , &

! 0.979211358622571 , 0 .972273916173362 , &

! 0.965752340045163 ,
39 0 .959530972921599 , 0 .953534096080232 , &

! 0.947710264937407 , 0 .942023401989513 , &

! 0.936447524949834) ;
40 eTab1 : array [ 1 6 . . 3 0 ] of ex t ended =
41 (25 . 000000000000000 , 12 .500000000000000 , &

! 8.333333333333330 , 6 .250000000000000 , &

! 5.000000000000000 ,
42 4 .063773106920830 , 3 .367796140933380 , &

! 2.858295913510080 , 2 .469455364849140 , &

! 2.163169664002580 ,
43 1 .915849911234920 , 1 .712111865433360 , &

! 1.541494082536800 , 1 .396634659266460 , &

! 1.272202427870800) ;
44 var
45 j : i n t e g e r ;
46 u , v , x , f : ex t ended ;
47 n e g a t i f , r e j e t : boolean ;
48 Procedure i n t e r c h a n g e r ( Var u , v : ex t ended ) ;
49 Var
50 t : ex t ended ;
51 Begin
52 t := u ;
53 u := v ;
54 v := t ;
55 End ;
56 Begin
57 {M1}
58 u := 2 � RandomLong ;
59 n e g a t i f := u < 1 ;
60 {M2}
61 u := u � t r u n c ( u ) ;
62 u := 32 � u ;
63 j := t r u n c ( u ) ;
64 f := u � j ;
65 { Walker ’ s a l i a s method i s used }
66 I f f >= pTab1 [ j ] Then
67 Begin
68 x := yTab1 [ j ] + f � zTab1 [ j ] ;
69 End
70 E l se I f ( j <= 15) Then {An un i f o rm d i s t r i b u t i o n }
71 x := sTab1 [ j ] + f � qTab1 [ j ]
72 E l se I f ( ( 1 6 <= j ) And ( j <= 30) ) Then
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73 Begin {A wedge�shaped d i s t r i b u t i o n }
74 r e j e t := t rue ;
75 While r e j e t Do
76 Begin
77 u := RandomLong ;
78 v := RandomLong ;
79 I f u > v Then
80 I n t e r c h a n g e r ( u , v ) ;
81 x := sTab1 [ j � 15] + h � u ;
82 { (U, V ) i s i n t h e upper l e f t corner o f t h e u n i t square }
83 r e j e t := v > dTab1 [ j ] ;
84 I f r e j e t Then
85 r e j e t := ( v > ( u + eTab1 [ j ] � ( exp ( ( s q r ( &

!sTab1 [ j � 1 4 ] ) � s q r ( x ) ) / 2 ) � 1) ) )
86 End ;
87 End
88 E l se { T a i l d i s t r i b u t i o n i s r e q u i r e d }
89 Begin
90 r e j e t := t rue ;
91 While r e j e t Do
92 Begin
93 u := RandomLong ;
94 v := RandomLong ;
95 x := s q r t (9 � 2 � l n ( v ) ) ;
96 r e j e t := ( ( u � x ) >= 3) ;
97 End
98 End ;
99 {M9}

100 I f n e g a t i f Then
101 x := �x ;
102 GenNorm := x
103 End ;


 Simulation of a stationary process using the Durbin-Levinson’s algorithm

1 {======================================================}
2 procedure DurbinSim ( var g : CovSe r i e s ; n : i n t e g e r ; var d a t a : &

! Ti meSe r i e s ) ;
3 {======================================================}
4 Var
5 v : CovSe r i e s ;
6 ph i : array [ 1 . . 2 ] of Ti meSe r i e s ;
7 temp : ex t ended ;
8 i , j , pred , a c t u : i n t e g e r ;
9 Begin

10 d a t a [ 0 ] := 0 ;
11 v [ 0 ] := g [ 0 ] ;
12 d a t a [ 1 ] := GenNorm� s q r t ( v [ 0 ] ) ;
13 ph i [ 1 , 1 ] := g [ 1 ] / g [ 0 ] ;
14 v [ 1 ] := v [0]�(1 � s q r ( ph i [ 1 , 1 ] ) ) ;
15 temp := ph i [1 , 1 ]� d a t a [ 1 ] ;
16 d a t a [ 2 ] := temp+GenNorm� s q r t ( v [ 1 ] ) ;
17 p r ed : = 1 ;
18 a c t u : = 2 ;



164 8 Some Pascal Procedures and Functions

19 for i :=3 to n do
20 begin
21 { Computa t ion o f t h e ph [ i �1, j ] c o e f f i c i e n t s }
22 temp := g [ i �1];
23 for j :=1 to i �2 do
24 temp := temp�ph i [ pred , j ]� g [ i �1� j ] ;
25 temp := temp / v [ i �2];
26 ph i [ ac t u , i �1]:= temp ;
27 for j :=1 to i �2 do
28 ph i [ ac t u , j ] := ph i [ pred , j ]� temp�ph i [ pred , i �1� j &

! ] ;
29 v [ i �1]:= v [ i �2]�(1� s q r ( ph i [ ac t u , i �1]) ) ;
30 temp := 0 ;
31 for j :=1 to i �1 do
32 temp := temp+ ph i [ ac t u , i�j ]� d a t a [ j ] ;
33 d a t a [ i ] : = temp+ s q r t ( v [ i �1])�GenNorm ;
34 j := p red ;
35 p red := a c t u ;
36 a c t u := j
37 end ;
38 End ;


 Integration of the increments of a fBm producing a trajectory

1 {======================================================}
2 procedure Somme ( var d a t a : T i m eSer i e s ; nObs : i n t e g e r ; consNorm : &

! ex t ended ) ;
3 {======================================================}
4 Var i : i n t e g e r ;
5 begin
6 for i := 1 to nObs do
7 d a t a [ i ] : = d a t a [ i �1]+ d a t a [ i ] ;
8 for i := 0 to nObs do
9 d a t a [ i ] : = consNorm�d a t a [ i ] ;

10 end ;


 Simulation of the four models defined by an SDE

1 {======================================================}
2 procedure Model ( var d a t a : T i m eSer i e s ; nObs , k : i n t e g e r ; sigma , &

!mu, c : ex t ended ) ;
3 {======================================================}
4 cons t debug = f a l s e ;
5 var cumul , atom : ex t ended ;
6 i : i n t e g e r ;
7 begin
8 cumul : = 0 ;
9 case k of

10 0 : begin
11 end ;
12 1 : begin
13 for i := 0 to nObs do
14 begin
15 d a t a [ i ] := sigma�d a t a [ i ]+mu� i / nObs+c
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16 end ;
17 end ;
18 2 : begin
19 for i := 0 to nObs do
20 begin
21 atom := d a t a [ i ]� exp (�mu� i / nObs ) / nObs ;
22 cumul := cumul+atom ;
23 d a t a [ i ] := sigma�d a t a [ i ]+ exp (mu� i / nObs ) �(&

! sigma�mu�cumul+c )
24 end ;
25 end ;
26 3 : begin
27 for i := 0 to nObs do
28 begin
29 d a t a [ i ] := exp ( sigma�d a t a [ i ]+mu� i / nObs )�c
30 end ;
31 end ;
32 4 : begin
33 for i := 0 to nObs do
34 begin
35 atom := exp(� sigma�d a t a [ i ] ) / nObs ;
36 cumul := cumul+atom ;
37 d a t a [ i ] := exp ( sigma�d a t a [ i ] ) �( c+mu�cumul )
38 end ;
39 end ;
40 end ;
41 i f debug then for i :=0 to nObs do
42 w r i t e l n ( d a t a [ i ] : 2 4 : 2 0 ) ;
43 end ;
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