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Preface

Although several books already exist on statistical data analysis in the natural sciences, there
are few books written at a level that a non-statistician will easily understand. In our experience
many colleagues in earth and environmental sciences are not sufficiently trained in mathematics
or statistics to easily comprehend the necessary formalism. This is a book written in colloquial
language, avoiding mathematical formulae as much as possible (some may argue too much)
trying to explain the methods using examples and graphics instead. To use the book efficiently,
readers should have some computer experience and some basic understanding of statistical
methods. We start with the simplest of statistical concepts and carry readers forward to a deeper
and more extensive understanding of the use of statistics in the natural sciences. Importantly,
users of the book, rather than readers, will require a sound knowledge of their own branch of
natural science.

In the book we try to demonstrate, based on practical examples, how data analysis in envi-
ronmental sciences should be approached, outline advantages and disadvantages of methods
and show and discuss the do’s and don’ts. We do not use "simple toy examples" to demonstrate
how well certain statistical techniques function. The book rather uses a single, large, real world
example data set, which is investigated in more and more depth throughout the book. We feel
that this makes it an interesting read from beginning to end, without preventing the use of single
chapters as a reference for certain statistical techniques. This approach also clearly demon-
strates the limits of classical statistical data analysis with environmental (geochemical) data.
The special properties of environmental data (e.g., spatial dependencies, outliers, skewed dis-
tributions, closure) do not agree well with the assumptions of "classical" (Gaussian) statistics.
These are, however, the statistical methods taught in all basic statistics courses at universities
because they are the most fundamental statistical methods. As a consequence, up to this day,
techniques that are far from ideal for the data at hand are widely applied by earth and envi-
ronmental scientists in data analysis. Applied earth science data call for the use of robust and
non-parametric statistical methods. These techniques are extensively used and demonstrated
in the book. The focus of the book is on the exploratory use of statistical methods extensively
applying graphical data analysis techniques.

The book concerns the application of statistical and other computer methods to the manage-
ment, analysis and display of spatial data. These data are characterised by including locations
(geographic coordinates), which leads to the necessity of using maps to display the data and the
results of the statistical methods. Although the book uses examples from applied geochemistry,
the principles and ideas equally well apply to other natural sciences, e.g., environmental sci-
ences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology.
That is, to anybody using spatially dependent data. The book will be useful to postgraduate
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students, possibly final year students with dissertation projects, students and others interested
in the application of modern statistical methods (and not so much in theory), and natural sci-
entists and other applied statistical professionals. The book can be used as a textbook, full of
practical examples or in a basic university course on exploratory data analysis for spatial data.
The book can also serve as a manual to many statistical methods and will help the reader to
better understand how different methods can be applied to their data – and what should not be
done with the data.

The book is unique because it supplies direct access to software solutions (based on R, the
Open Source version of the S-language for statistics) for applied environmental statistics.
For all graphics and tables presented in the book, the R-codes are provided in the form
of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was
developed by the last author for convenient, fast and interactive data analysis. Providing
powerful software for the combination of statistical data analysis and mapping is one of
the highlights of the software tools. This software may be used with the example data as a
teaching/learning tool, or with the reader’s own data for research.

Clemens Reimann Peter Filzmoser Robert G. Garrett Rudolf Dutter
Geochemist Statistician Geochemist Statistician

Trondheim, Vienna, Ottawa
September 1, 2007.
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Figure 1.2 Geological map of the Kola Project survey area (modified from Reimann et al., 1998a)
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Figure 5.1 Geological map (upper left, see Figure 1.2 for a legend) and simple topographical map
(upper right) of the Kola Project area used as base maps for geochemical mapping (lower maps). Lower
maps: distribution of Mg in O-horizon soils added to base maps.



Figure 5.12 Colour smoothed surface maps for As in Kola C-horizon soils. Different colour scales are
used. Upper left, percentile scale using rainbow colours; upper right, inverse rainbow colours; middle
left, terrain colours; middle right, topographic colours; lower left, continuous percentile scale with
rainbow colours; and lower right, truncated percentile scale
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Figure 8.2 The same data as above (Figure 8.1) compared using CP-plots. These plots are more
impressive when different colours are added to the different symbols
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Figure 8.8 Scatterplot of Ni versus Cu in moss (compare Figure 6.1). The country of origin of the
samples is encoded into the symbols
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Figure 8.9 Map identifying the location of the subsets (left) and a scatterplot of Cu versus Ni (right),
using the same symbols for the subsets
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Figure 8.11 Cu in moss and the O- and C-horizon soils along the east–west transect through
Monchegorsk (compare Figure 6.6) and along the north–south transect at the western project boundary
(compare Figure 6.7)

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●● ●
Ni Cu

Pb

0.8

0.6

0.4

0.2

0.
8

0.
6

0.
4

0.
2

0.8

0.6

0.4

0.2

Kola Project

Moss

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Al Fe

Mn

0.8

0.6

0.4

0.2

0.
8

0.
6

0.
4

0.
2

0.8

0.6

0.4

0.2

●

●

Nikel/Zapolj.
Monchegorsk
Other

Figure 8.12 Two ternary diagrams plotted with data from the Kola moss data set
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Figure 12.9 Parallel coordinates plot using three lithology-related data subsets (lithology 9, Caledo-
nian sediments; lithology 82, alkaline rocks; and lithology 7, granites – see geological map Figure 1.2)
from the Kola C-horizon soil data set
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Figure 13.5 Maps identifying multivariate (p = 7) outliers in the Kola Project moss data. The left map
shows the location of all samples identified as multivariate outliers, the right map includes information
on the relative distance to the multivariate data centre (different symbols) and the average element
concentration at the sample site (colour, here grey-scale, intensity)
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Figure 17.3 Map showing the distribution of the vegetation zones in the Kola Project survey area
(upper left) and maps of the predicted distribution of the three vegetation zones in the survey area
using LDA with cross-validation. The grey scale corresponds to the probability of assigning a sample to
a specific group (boreal-forest, upper right; forest-tundra, lower left; tundra, lower right)
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Figure 17.6 Map showing the distribution of the vegetation zones in the Kola Project survey area
(upper left) and maps of the predicted distribution of the three vegetation zones in the survey area
using allocation. Classical non-robust estimates were used in the upper right map, robust estimates
(MCD) were used for the map below (lower right), and in the lower left map the allocation was based
on a subset of 11 elements using robust estimates



1
Introduction

Statistical data analysis is about studying data – graphically or via more formal methods.
Exploratory Data Analysis (EDA) techniques (Tukey, 1977) provide many tools that transfer
large and cumbersome data tabulations into easy to grasp graphical displays which are widely
independent of assumptions about the data. They are used to “visualise” the data. Graphical
data analysis is often criticised as non-scientific because of its apparent ease. This critique
probably stems from many scientists trained in formal statistics not being aware of the power
of graphical data analysis.

Occasionally, even in graphical data analysis mathematical data transformations are useful
to improve the visibility of certain parts of the data. A logarithmic transformation would be
a typical example of a transformation that is used to reduce the influence of unusually high
values that are far removed from the main body of data.

Graphical data analysis is a creative process, it is far from simple to produce informative
graphics. Among others, choice of graphic, symbols, and data subsets are crucial ingredients
for gaining an understanding of the data. It is about iterative learning, from one graphic to
the next until an informative presentation is found, or as Tukey (1977) said “It is important to
understand what you can do before you learn to measure how well you seem to have done it”.

However, for a number of purposes graphics are not sufficient to describe a given data set.
Here the realms of descriptive statistics are entered. Descriptive statistics are based on model
assumptions about the data and thus more restrictive than EDA. A typical model assumption
used in descriptive statistics would be that the data follow a normal distribution. The normal
distribution is characterised by a typical bell shape (see Figure 4.1 upper left) and depends on
two parameters, mean and variance (Gauss, 1809). Many natural phenomena are described by
a normal distribution. Thus this distribution is often used as the basic assumption for statisti-
cal methods and estimators. Statisticians commonly assume that the data under investigation
are a random selection of many more possible observations that altogether follow a normal
distribution. Many formulae for statistical calculations, e.g., for mean, standard deviation and
correlation are based on a model. It is always possible to use the empirical data at hand and the
given statistical formula to calculate “values”, but only if the data follow the model will the val-
ues be representative, even if another random sample is taken. If the distribution of the samples
deviates from the shape of the model distribution, e.g., the bell shape of the normal distribu-
tion, statisticians will often try to use transformations that force the data to approach a normal

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6
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distribution. For environmental data a simple log-transformation of the data will often suffice
to approach a normal distribution. In such a case it is said that the data come from a lognormal
distribution.

Environmental data are frequently characterised by exceptionally high values that deviate
widely from the main body of data. In such a case even a data transformation will not help to
approach a normal distribution. Here other statistical methods are needed, that will still provide
reliable results. Robust statistical procedures have been developed for such data and are often
used throughout this book.

Inductive statistics is used to test hypotheses that are formulated by the investigator. Most
methods rely heavily on the normal distribution model. Other methods exist that are not based
on these model assumptions (non-parametric statistical tests) and these are often preferable
for environmental data.

Most data sets in applied earth sciences differ from data collected by other scientists (e.g.,
physicists) because they have a spatial component. They present data for individual specimens,
termed as samples by earth scientists, that were taken somewhere on Earth. Thus, in addition to
the measured values, for example geochemical analyses, the samples have spatial coordinates.
During data analysis of environmental and earth science research results this spatial component
is often neglected, to the detriment of the investigation. At present there exist many computer
program systems either for data analysis, often based on classical statistics that were developed
for physical measurements, or for “mapping” of spatial data, e.g., geographical information
systems (GIS). For applied earth sciences a data analysis package that takes into account the
special properties of spatial data and permits the inclusion of “space” in data analysis is needed.
Due to their spatial component, earth science and environmental data have special properties
that need to be identified and understood prior to statistical data analysis in order to select the
“right” data analysis techniques. These properties include:

� The data are spatially dependent (the closer two sample sites are the higher the probability
that the samples show comparable analytical results) – all classical statistical tests assume
independence of individuals.

� At each sample site a multitude of different processes can have had an influence on the
measured analytical value (e.g., for soil samples these include: parent material, topog-
raphy, vegetation, climate, Fe/Mn-oxyhydroxides, content of organic material, grain size
distribution, pH, mineralogy, presence of mineralisation or contamination). For most sta-
tistical tests, however, it is necessary that the samples come from the same distribution –
this is not possible if different processes influence different samples in different propor-
tions. A mixture of results caused by many different underlying processes may mimic a
lognormal data distribution – but the underlying “truth” is that the data originate from mul-
tiple distributions and should not be treated as if they were drawn from a single normal
distribution.

� Like much scientific data (consider, for example, data from psychological investigations),
applied earth sciences data are imprecise. They contain uncertainty. Uncertainty is unavoid-
ably introduced at the time of sampling, sample preparation and analysis (in psychological
investigations some people may simply lie). Classical statistical methods call for “precise”
data. They will often fail, or provide wrong answers and “certainties”, when applied to im-
precise data. In applied earth sciences the task is commonly to optimally “visualise” the
results. This book is all about “visualisation” of data behaviour.

� Last but not least environmental data are most often compositional data. The individual vari-
ables are not independent of each other but are related by, for example, being expressed as a
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percentage (or parts per million – ppm (mg/kg)). They sum up to a constant, e.g., 100 percent
or 1. To understand the problem of closed data, it just has to be remembered how percentages
are calculated. They are ratios that contain all variables that are investigated in their denom-
inator. Thus, single variables of percentage data are not free to vary independently. This has
serious consequences for data analysis. Possibilities of how to deal with compositional data
and the effect of data closure are discussed in Chapter 10 (for an in depth discussion see
Aitchison, 1986, 2003; Buccianti et al., 2006).

The properties described above do not agree well with the assumptions of “classical”
(Gaussian) statistics. These are, however, the statistical methods taught in all basic statistics
courses at universities because they are the most fundamental statistical methods. As a
consequence, up to this day techniques that are far from ideal for the data at hand are widely
applied by earth scientists in data analysis. Rather, applied earth science data call for the
use of robust and non-parametric statistical methods. Instead of “precise” statistics so called
“simple” exploratory data analysis methods, as introduced by Tukey in 1977, should always
be the first choice. To overcome the problem of “closed data” the data array may have to be
opened (see Section 10.5) prior to any data analysis (note that even graphics can be misleading
when working with closed data). However, working with the resulting ratios has other severe
shortcomings and at present there is no ideal solution to the problems posed by compositional
data. All results based on correlations should routinely be counterchecked with opened data.
Closure cannot be overcome by not analysing the major components in a sample or by not
using some elements during data analysis (e.g. by focussing on trace elements rather than
using the major elements). Even plotting a scatterplot of only two variables can be severely
misleading with compositional data (compare Figures 10.7 and 10.8).

Graphical data analyses were largely manual and labour intensive 30 or 40 years ago,
another reason why classical statistical methods were widely used. Interactive graphical data
analysis has become widely available in these days of the personal computer – provided the
software exists to easily prepare, modify and finally store the graphics. To make full use of
exploratory data analysis, the software should be so powerful and convenient that it becomes
fun to “play” with the data, to look at the data in all kinds of different graphics until one
intuitively starts to understand their message. This leads to a better understanding about what
kind of advanced statistical methods can and should (or rather should not) be applied to the data
at hand. This books aims at providing such a package, where it becomes easy and fun to “play”
with spatial data and look at them in many different ways in a truly exploratory data analysis
sense before attempting more formal statistical analyses of the data. Throughout the book it
is demonstrated how more and more information is extracted from spatial data using “simple”
graphical techniques instead of advanced statistical calculations and how the “spatial” nature
of the data can and should be included in data analysis.

Such a data analysis and mapping package for spatial data was developed 20 years ago
under the name “DAS” (Data Analysis System – Dutter et al., 1990). A quite similar system,
called IDEAS, was used at the Geological Survey of Canada (GSC) (Garrett, 1988). DAS was
only available for the DOS environment. This made it more and more difficult to run for people
used to the Microsoft Windows operating system. During recent years, R has developed into
a powerful and much used open source tool (see: http://www.r-project.org/) for
advanced statistical data analysis in the statistical community. R could actually be directly
used to produce all the tables and graphics shown in this book. However, R is a command-line
language, and as such it requires more training and experience than the average non-statistician
will usually have, or be willing to invest in gaining. The R-scripts for all the graphics and tables

http://www.r-project.org/
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shown in this book are provided and can be used to learn R and to produce these outputs with
the reader’s own data. The program package accompanying this book provides the link between
DAS and R and is called DAS+R. It uses the power of R and the experience of the authors in
practical data analysis of applied geoscience data. DAS+R allows the easy and fast production
of tables, graphics and maps, and the creation and storage of data subsets, through a graphical
user interface that most scientists will find intuitive and be able to use with very little training.
R provides the tools for producing and changing tables, graphics and maps and, if needed, the
link to some of the most modern developments in advanced statistical data analysis techniques.

To demonstrate the methods, and to teach a user not trained to think “graphically” in data
analysis, an existing multidimensional data set from a large environmental geochemical map-
ping project in the European Arctic, the Kola Ecogeochemistry Project (Reimann et al., 1998a),
is used as an example. The Kola Project data include many different sample materials, more
than 60 chemical elements were determined, often by several different analytical techniques.
The book provides access to the data set and to the computer scripts used to produce the
example statistical tables, graphics and maps. It is assumed that the reader has a spreadsheet
package like Microsoft ExcelTM or Quattro ProTM installed and has the basic knowledge to
effectively use a spreadsheet program.

The Kola Project data set is used to demonstrate step by step how to use exploratory data
analysis to extract more and more information from the data. Advantages and disadvantages
of certain graphics and techniques are discussed. It is demonstrated which techniques may
be used to good effect, and which should better be avoided, when dealing with spatial data.
The book and the software can be used as a textbook for teaching exploratory data analysis
(and many aspects of applied geochemistry) or as a reference guide to certain techniques. The
program system can be used with the reader’s own data, and the book can then be used as
a “handbook” for graphical data analysis. Because the original R scripts are provided for all
tables, graphics, maps, statistical tests, and more advanced statistical procedures, the book can
also be used to become familiar with R programming procedures.

Because many readers will likely use the provided software to look at their own data rather
than to study the Kola Project data, the book starts out with a description of the file structure
that is needed for entering new data into R and DAS+R (Chapter 2). Some common problems
encountered when editing a spreadsheet file as received from a laboratory to the DAS+R
(or R) format are discussed in the same chapter. A selection of graphics for displaying data
distributions are introduced next (Chapter 3), before the more classical distribution measures
are introduced and discussed (Chapter 4). The spatial structure of applied earth science data
should be an integral part of data analysis and thus spatial display, mapping, of the data is
discussed next (Chapter 5) and before further graphics used in exploratory data analysis are
introduced (Chapter 6). A “classical” task in the analysis of applied geochemical data is the
definition of background and threshold, coupled with the identification of “outliers” and of
element sources – techniques used up to this time are discussed in their own chapter (7). A
key component of exploratory data analysis lies in comparing data. The use of data subsets is
an especially powerful tool. The definition of subsets of data and using a variety of graphics
for comparing them are introduced in Chapter 8, while Chapter 9 covers the more formal
statistical tests. Statistical tests often require that the data are drawn from a normal distribution.
Many problems can arise when using formal statistics with applied earth science data that
are not normally distributed or drawn from multiple statistical populations. Chapter 10 covers
techniques that may be used to improve the data behaviour for statistical analysis as a prepara-
tion for entering the realms of multivariate data analysis. The following chapters cover some of



THE KOLA ECOGEOCHEMISTRY PROJECT 5

the widely used multivariate techniques such as correlation analysis (Chapter 11), multivariate
graphics (Chapter 12), multivariate outlier detection (Chapter 13), principal component and
factor analysis (Chapter 14), cluster analysis (Chapter 15), regression analysis (Chapter 16)
and discriminant analysis (Chapter 17). In all chapters the advantages and disadvantages of the
methods as well as the data requirements are discussed in depth. Chapter 18 covers different
aspects of an integral part of collecting data in applied earth sciences: quality control. One
could argue that Chapter 18 should be at the front of this book, due to its importance. However,
quality control is based on graphics and statistics that needed to be introduced first and thus it
is treated in Chapter 18, notwithstanding the fact that it should be a very early consideration
when designing a new project. Chapter 19 provides an introduction to R and the R-scripts
used to produce all diagrams and tables in this book. The program system and graphical
user interface under development to make R easily accessible to the non-statistician is also
explained.

The following books can be suggested for further reading. Some cover “graphical statistics”,
some the interpretation of geoscience and environmental data, some give an introduction to the
computer language S (the base of R) and the commercial software package S-Plus (comparable
to R), and several provide the mathematical formulae that were consciously avoided in this
book. Davis (1973, 2002) is still one of the “classic” textbooks about computerised data analysis
in the geosciences. Tukey (1977) coined the term “Exploratory Data Analysis” (EDA) and
introduced a number of powerful graphics to visualise data (e.g., the boxplot). Velleman and
Hoaglin (1981) provide an introduction to EDA including the computer codes for standard
EDA methods (Fortran programs). Chambers et al. (1983) contains a comprehensive survey of
graphical methods for data analysis. Rollinson (1993) is a classical textbook on data analysis
in geochemistry, the focus is on interpretation rather than on statistics. Rock (1988), and Helsel
and Hirsch (1992) provide an excellent compact overview of many statistical techniques used
in the earth sciences with an early focus on robust statistical methods. Cleveland’s papers
(1993, 1994) are general references for visualising and graphing data. Millard and Neerchal
(2001) provide an extensive introduction to environmental statistics using S-Plus. Venables
and Ripley (2002) explain a multitude of statistical methods and their application using S.
Murrell (2006) provides an excellent and easy to read description of the graphics system
in R.

1.1 The Kola Ecogeochemistry Project

The Kola Ecogeochemistry Project (web site http://www.ngu.no/Kola) gathered
chemical data for up to more than fifty chemical elements from four different primary sample
materials (terrestrial moss, and the O-, B-, and C-horizon of podzolic soils) in parts of north-
ern Finland, Norway and Russia. Two additional materials were collected for special purposes
(Topsoil: 0–5 cm, and lake water – the latter in the Russian survey area only). The size of the sur-
vey area in the European Arctic (Figure 1.1) was 188 000 km2. The four primary materials were
collected because in combination they can reflect atmospheric input (moss), interactions of the
biosphere with element cycles (moss and O-horizon), the atmosphere–biosphere–lithosphere
interplay (O-horizon), the influence of soil-forming processes (B-horizon), and the regional
geogenic background distribution (the lithosphere) (C-horizon) for the elements investigated.
Topsoil was primarily collected for the determination of radionuclides, but later a number of
additional parameters were determined. Lake water reflects the hydrosphere, samples were

http://www.ngu.no/Kola
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Figure 1.1 Location of the Kola Ecogeochemistry Project survey area

collected in Russia only because the 1000 lakes project (Henriksen et al., 1996, 1997) col-
lected lake water samples over all of Scandinavia at the same time (1995). All results for the
four primary sample materials and topsoil are documented in the form of a geochemical atlas
(Reimann et al., 1998a). Lake water geochemistry is documented in a number of publications
in international journals (see, e.g., Reimann et al., 1999a, 2000a).

The main aim of the project was the documentation of the impact of the Russian nickel
industry on the vulnerable Arctic environment. The result was a database of the concentration
of more than 50 chemical elements in the above sample materials, reflecting different com-
partments of the ecosystem, in the year 1995. Each material can be studied for itself, the main
power of the project design, however, lies in the possibility to directly compare results from
all the different sample materials at the same sites.

This book provides access to all the regional Kola data, including topsoil and lake waters.
Throughout the book examples were prepared using these data and the reader is thus able to
reproduce all these diagrams (and many others) by using DAS+R and the Kola data. There are
certainly many features hidden in the data sets that have not yet been covered by publications.
Feel free to use the data for your own publications, but if a fellow scientist wants to use these
data for publications, due reference should be given to the original source of the data (Reimann
et al., 1998a).

1.1.1 Short description of the Kola Project survey area

The survey area is described in detail in the geochemical atlas (Reimann et al., 1998a). This
book also provides a multitude of maps, which can be helpful when interpreting the data.
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The project covered the entire area north of the Arctic Circle between longitudes 24◦ and
35.5◦ east and thence north to the Barents Sea (Figure 1.1). Relative to most of Europe, the
Finnish and Norwegian parts of the area are still almost pristine. Human activities are mostly
limited to fishery, reindeer-herding and forestry (in the southern part of the project area). Excep-
tions are a large iron ore mine and mill at Kirkenes, N-Norway; a small, brown coal-fired power
station near Rovaniemi at the southern project border in Finland and some small mines. Popula-
tion density increases gradually from north to south. In contrast, the Russian part of the project
area is heavily industrialised with the nickel refinery at Monchegorsk, the nickel smelter at Nikel
and the Cu/Ni-ore roasting plant at Zapoljarnij, which are three of the world’s largest point-
source emitters of SO2 and Cu, Ni and Co and a number of other metals. These three sources
together accounted for emissions of 300 000 t SO2, 1900 t Ni and 1100 t Cu in 1994 (Reimann
et al., 1997c). Apatite ore is mined and processed near Apatity, iron ore at Olenegorsk and
Kovdor, Cu-Ni-ore near Zapoljarnij. An aluminium smelter is located near Kandalaksha. The
major towns of Murmansk and Apatity have large oil- and coal-fired thermal heating and power
plants.

Topographically, large parts of the area can be characterised as highlands. In Norway, the
general landscape in the coastal areas is quite rugged, and the mountains reach elevations of
700 m above sea level (a.s.l.). In Russia, in the south-western part of the Kola Peninsula, there
are mountains reaching 200–500 m a.s.l. Near Monchegorsk and Apatity and near the coast of
the White Sea there are some higher mountains (over 1000 m a.s.l.).

The geology of the area is complex and includes a multitude of different bedrock
types (Figure 1.2). Some of the rock types occurring in the area are rare on a global
scale and have unusual geochemical compositions. The alkaline intrusions that host the fa-
mous apatite deposits near Apatity are an example. The main rock types in the area that
are occasionally mentioned in later chapters due to their special geochemical signatures,
are:

� Sedimentary rocks of Caledonian (c. 1600–400 million years (Ma) old) and Neoproterozoic
(1000–542 Ma) age that occur along the Norwegian coast and on the Rhybachi Peninsula in
Russia (lithologies 9 and 10 in the data files).

� The rocks of the granulite belt that runs from Norway through northern Finland into Russia.
These rocks are of Archean age (2300–1900 Ma) and “foreign” to the area (see Reimann
and Melezhik, 2001). They are subdivided into “felsic” and “mafic” granulites (lithologies
31 and 32 in the data files).

� Diverse greenstone belts, which occur throughout the area. These are Palaeoproterozoic
(2400–1950 Ma) rocks of volcanic origin (lithologies 51 and 52 in the data files). These
rocks host many of the ore occurrences in the area, e.g., the famous Cu-Ni-deposits near
Zapoljarnij in Russia.

� Alkaline and ultramafic alkaline intrusions of Palaeoproterozoic to Palaeozoic age (1900–
470 Ma) (see above). These host the important phosphate deposits near Apatity (lithologies
81, 82 and 83 in the data files).

� Granitic intrusions of Palaeoproterozoic age (1960–1650 Ma), occurring in the south-western
corner of the survey area in Finland and as small bodies throughout the survey area (lithology
7 in the data files).

� Large gneiss masses of Archean (3200–2500 Ma) and uncertain age (lithologies 1, 4 and 20
in the data files) that do not show any geochemical peculiarities.



8 INTRODUCTION

Figure 1.2 Geological map of the Kola Project survey area (modified from Reimann et al., 1998a). A
colour reproduction of this figure can be seen in the colour section, positioned towards the centre of
the book
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The study area is part of the glaciated terrain of Northern Europe. The main Quaternary
deposits are till and peat. There are also large areas without any surficial cover, dominated by
outcrops and boulder fields (Niemelä et al., 1993).

The north–south extent of the survey area is about 500 km. Within this distance, three
vegetation zones gradually replace each other (for a vegetation map in colour see Kashulina
et al., 1997; Reimann et al., 1998a). The southern and central parts of the area fall into the
northern boreal coniferous zone. Towards the north, this zone gradually gives way to subarctic
birch forest, followed by the subarctic tundra zone close to the coast of the Barents Sea. These
changes in vegetation zones can also occur with altitude. Major characteristics of the forest
ecosystems in this area are the sparseness of the tree layer, a slow growth rate, and the large
proportion of ground vegetation in the total biomass production.

The dominant soil-forming process in forested and treeless regions of Northern Europe is
podzolisation of mineral soils (Borggaard, 1997). Podzols are thus the most important soil type
present throughout the survey area. Soils in the area are young. Their age ranges between 5000
and 8000 years, having formed since the retreat of the continental ice sheet in Northern Europe.
A typical podzol profile consists of five main layers, the O (organic), E (eluvial), B (illuvial),
BC (transitional) and C (weathered parent)-horizon. Colour photographs of typical podzol
profiles from the area can be found in Reimann et al. (1998a) or on the Kola Project web site:
http://www.ngu.no/Kola/podzol.html. The O-horizon of podzol is characterised
by a low pH-value (MEDIAN in the survey area 3.85 – Reimann et al., 1998a). pH increases
systematically with depth. In the C-horizon it reaches a MEDIAN value of 5.8. The O-horizon
varies in thickness from less than 0.5 cm to more than 20 cm, the MEDIAN for the survey area
being 2.5 cm. The thickness of the soil profiles can vary considerably – the depth to the top of
the C-horizon varies between 10 and 123 cm, the MEDIAN being 35 cm (maps for all these
parameters are presented in Reimann et al., 1998a).

Major climatic differences occur within the survey area. In the northwest, summers are cool
and winters mild, with most precipitation between September and January (coastal climate). In
the central part, warm summers and relatively cold winters are typical; the main precipitation
takes the form of rain showers in July and August (continental climate). The easternmost part is
similar to the central part, but with colder winters. Precipitation is in general low. The average
for the whole area is <500 mm/year. The yearly average temperature is −1◦C. Maps showing
average rainfall and temperature for summer and winter can be found in Reimann et al. (1998a).

1.1.2 Sampling and characteristics of the different sample materials

Sampling of the 188 000 km2 area took place from July to September 1995. The av-
erage sample density was 1 site per 300 km2. Samples were collected from 617 sites.
Depending on availability the total number of samples, n, ranges for any one sample
material from 594 (moss) to 617 (O-horizon). Sample site selection for the project was
such that only locations where podzol had developed on glacial drift were visited, giving
genetically comparable samples over the whole area. At each site the following samples
were collected (for more detailed information see Äyräs and Reimann, 1995; Reimann
et al., 1998a):

Moss (n = 594): Terrestrial moss, preferably the species Hylocomium splendens, and if it
was absent Pleurozium schreberi, was collected. Only shoots representing the previous
three years’ growth were taken.

http://www.ngu.no/Kola/podzol.html
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Terrestrial moss (Hylocomium splendens and Pleurozium schreberi) receives most of its
nutrients from the atmosphere. In Scandinavia it has been used to monitor the atmospheric
deposition of chemical elements for more than 30 years (see, e.g., Rühling and Tyler,
1968, 1973; Tyler, 1970). It was thus included in the Kola Project to reflect the input
of elements from the atmosphere (wet and dry deposition, including both geogenic and
anthropogenic dust) over the previous 2–3 years. At the same time the moss reflects
element concentrations in an important component of the arctic ecosystem in terms of
total biomass production and ecological function. It is an important supplier of litter for
the formation of the organic horizon of the soils (Kashulina et al., 1997). Results of an
interspecies comparison between Hylocomium splendens and Pleurozium schreberi are
presented in Halleraker et al. (1998). A review of the moss technique and a discussion of
possible problems related to it as well as a comparison with the chemical composition
of lichen and crowberry from the Kola Project area are given in Reimann et al. (1999b,
2001c). Results of regional mapping are also discussed in Äyräs et al. (1997a); de Caritat
et al. (2001); Reimann et al. (1997b).

O-horizon (n = 617): This was collected with a custom-built tool to facilitate and systematise
sampling, and to allow easy measurement of the volume of each sample (Äyräs and Reimann,
1995). For the O-horizon samples only the top 3 cm of the organic layer were taken. If the
total thickness of the O-horizon was less than 3 cm, only the organic layer was sampled, and
the thickness was recorded on the field notes. From seven to ten sub-samples were collected
at each site to give a composite sample with a minimum volume of one litre.

The O-horizon consists mostly of plant residues in differing stages of decay and humus,
almost inevitably mixed with some minerogenic particles. Due to its location and genesis,
the organic horizon reflects the complex interplay between the lithosphere, the biosphere
and the atmosphere. The O-horizon is a major sink for plant nutrients in northern ecosys-
tems. It can accumulate and enrich many chemical elements, e.g., via organic complexing
and the formation of metallo-organic compounds. For many elements, both from natural
and anthropogenic sources, it thus acts as a very effective “geochemical barrier” as defined
first by Goldschmidt (1937). A separate interpretation of the regional distribution patterns
found in the O-horizon from the survey area is given in Äyräs and Kashulina (2000). Other
publications discussing special properties of the O-horizon include Reimann et al. (1998c,
2000b, 2001a).

Podzol profiles (B-horizon, n = 609; C-horizon, n = 605): Before sampling a podzol pro-
file, homogeneity of the soil cover was checked over an area of 10 × 10 m. The exact
location of the profile was chosen so that both ground vegetation and micro-topography
were representative. The sampling pits were dug by spade to the C-horizon. Samples of
the O-, E-, B-, BC- and C-horizons were collected, starting from the bottom to avoid con-
tamination and mixing of the horizons. With the exception of the C-horizon, each layer
was sampled over its complete thickness. If there were distinguishable layers within the
B-horizon, these were collected in the same ratio as present in the profile. Each sample
weighed about 1–1.5 kg, depending on parameters like grain size, mineralogy, and water
content. At present only the samples of the B- and C-horizon have been studied, all other
samples have been archived in air dried condition for future reference.

The B-horizon is clearly affected by soil-forming processes. Compared to the C-horizon
it is relatively enriched in clay minerals, organic matter, and free and organically-bound
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amorphous Fe- and Al-oxides and -hydroxides, which have been leached from the upper
soil horizons. It is less active than the O-horizon, but can still act as a second “geochemical
barrier” for many elements (independent of origin) within the soil profile, e.g., via co-
precipitation with the Fe-oxides/-hydroxides. Some soil-forming processes within podzol
profiles from the Kola Ecogeochemistry Project area are discussed in Räisänen et al. (1997)
and Kashulina et al. (1998a).

The deepest soil horizon of podzols, the C-horizon, is only slightly influenced by soil-
forming processes and sometimes by anthropogenic contamination, and thus mostly
reflects the natural, geogenic, element pool and regional variations therein. A geological
interpretation of the C-horizon results is given in Reimann and Melezhik (2001b).

Topsoil (n = 607): Samples were taken for the analysis of radionuclides. Topsoil samples
(0–5 cm) were collected at all sample sites using the same procedure as for the O-horizon.
These samples were also analysed by Instrumental Neutron Activation Analysis (INAA)
for about 30 elements. These results are not used within this book but provided on the web
page http://www.statistik.tuwien.ac.at/StatDA/R-scripts/data/.

For reasons of completeness, analytical results of lake water samples collected in the Russian
survey area are also included on the web page of the book. These are not used within this
book, interested readers can find a description of the sampling procedures and some first
interpretations of the results in Reimann et al. (1999a).

In addition to the sample media documented in the atlas and provided with this book,
snow, rain water, stream water, lake water, ground water, bedrock, organic stream sediments,
topsoil 0–5 cm, and overbank sediments were studied during different stages of the project
(Äyräs and Reimann, 1995; Äyräs et al., 1997a,b; Boyd et al., 1997; de Caritat et al., 1996a,b,
1997a,b, 1998a,b; Chekushin et al., 1998; Gregurek et al., 1998a,b, 1999a,b; Halleraker et al.,
1998; Kashulina et al., 1997, 1998a,b; Niskavaara et al., 1996, 1997; Reimann et al., 1996,
1997a,b,c, 1998c, 1999a,b, 2000a,b; Volden et al., 1997), often on a spatially detailed scale.
These data can be used to assist in the interpretation of the observed regional features. They
are not provided here but are available from the Norwegian Geological Survey (NGU) upon
request. A complete and regularly updated list of publications with data from the Project can be
found at the following project website: http://www.ngu.no/Kola/publist.html.

1.1.3 Sample preparation and chemical analysis

Detailed descriptions of sample preparation and analysis are provided in Reimann et al. (1998a).
In general, selection of elements, extractions and detection limits was based on a conscious
decision to make all results as directly comparable as possible.

Both the Geological Survey of Finland (GTK) and NGU chemical laboratories and the
methods described above for analysing the Kola samples are accredited according to EN
45001 and ISO Guide 25. All methods have been thoroughly validated and trueness, accuracy
and precision are monitored continuously. Some of the quality control results are presented in
Reimann et al. (1998a) – and in the last chapter of this book. The data files include information
about the analytical method used and the detection limits reached.

http://www.statistik.tuwien.ac.at/StatDA/R-scripts/data/
http://www.ngu.no/Kola/publist.html


2
Preparing the Data for Use in R
and DAS+R

Finally – the long-expected analytical results have arrived from the laboratory. With print-out
in hand and the spreadsheet-file with the results on the computer hard-disk the scientist burns
to look at the data. Are there any interesting patterns and information hidden in the data, and
if yes, what are the locations of the respective individuals/samples?

First things first. It is prudent, some would argue essential, to make a back-up copy of the
received data, giving the file a name that clearly identifies it as the original received data, ideally
making it “read-only”, and placing a copy in a project archive. Depending on the importance of
the project, copies of the project archive, which will grow as other critical files and output are
generated, may be stored on an institutional server, or even on some media, e.g., a CD, off-site.
The original received data should never be modified. If this procedure is not followed, it is
almost guaranteed that serious problems will be encountered when returning to a project after
some months or years of working with other data. It is important that the data, both field and
laboratory, and all related information are captured as soon after they are created as possible.
Otherwise they may get lost over time as scientists move on to other projects, switch computers
or even jobs. In an ideal world the scientist’s institution will have a geochemical database where
analytical results, together with other vital project information, are stored for easy retrieval.

In the less than ideal, but often real, world the scientist will work in an institution without
an established geochemical database and without an Information Technology (IT) support
group. Most likely the scientist has learned to use a spreadsheet like Microsoft ExcelTM or
Quattro ProTM for daily work and would like to keep the data in this format (note that the
input (and output) tables of a database are commonly such spreadsheet files). Although we do
not want to advocate the use of spreadsheets exclusively, we will discuss how to work with
spreadsheets and the pitfalls that exist when working with them. For speed of graphical data
analysis, DAS+R has been constructed in a way that it can handle many situations that would
usually require an additional database program. It is for example possible to keep auxiliary
information like method of analysis, detection limits of the analytical method and comments
concerning the data set, as well as any variable. This auxiliary information, if provided in the
data file, can be read into DAS+R together with the data. It is also possible to link and/or
append data files, to create and store data subsets, and to manipulate variables using different
mathematical operators. Linking and/or appending data in R has the advantage that almost no

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6
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limits exist as to the final length or width of the data file. Today’s spreadsheet software is limited
as to the allowed width of a file, e.g., many do not allow for more than 256 variables in one file.

2.1 Required data format for import into R and DAS+R

The question could be asked, “what is the problem with using the original data file as received
from the laboratory for data analysis?” Firstly, the laboratory’s result file will likely not contain
the geographic coordinates of the samples, field information, and other ancillary data that may
be required in the following data analyses, nor the “keys” identifying field duplicates, analytical
duplicates, the project standards (control reference materials), or even the original sample site
number. The data file must thus be linked with a “key-file” containing all this information.
Secondly, data will often be received from several different laboratories, and the different files
must be linked somehow. Thirdly, the received files most likely contain a lot of information
that are necessary to know and may be useful to view in a table, but are of no use in statistical
analysis. Tables prepared for “nice looks” are actually often especially unsuited as input for
data analysis software and may require much editing. Thus it is sensible to not spend time on
“table design” at this stage.

However, during data analysis it is often advantageous to have all variables in the same unit
in the data file (for example for direct 1:1 comparisons or if a centred logratio transformation
(see Section 10.5.2) is necessary). For the Kola data mg/kg was used as it was the most frequent
laboratory reporting unit. For example, results of XRF analysis reported as oxides in wt%, e.g.,
Al2O3, were re-calculated as element concentrations in mg/kg resulting in the new variable
Al XRF (Figure 2.1). A data file for import into data analysis software packages should not
contain any special signs such as “<”, “>”, “!”, “?”, “%” or characters from a language
other than English, e.g., “å”, “ø”, “ü”, or “�” (�g/kg). Sometimes these can cause serious
problems during data import or cause the software to crash later on. All variables need to have
different and unique names. Missing values (see Section 2.3) need to be marked by an empty
field, or some coded value, e.g., −9999, which can be used to tell the program that this is a
missing value. Data below (or above) the analytical method detection limit must be treated in
a consistent manner (see Section 2.2) – in the case of the Kola data sets all values below the
detection limit (there were no data above an upper detection limit) were set to a value of half
of the detection limit. Thus there usually is a certain amount of editing necessary to make the
data file software-compatible.

Most statistical software, including R, require as input a rather simple data format, where
the first row identifies the variables and all further rows contain the results to be used
during data analysis. Some further requirements will be discussed below. DAS+R will read
such files, but accepts data files with additional auxiliary information like project name, a
description of sampling and analytical methods used, the lower and upper detection limits,
and the units in which the data of each variable are reported; these can be directly stored
(and thus retrieved during data analysis) with the data. This special DAS+R data file format
is constructed such that it can be turned into a “normal” R file with no more than two
commands.

The most simple file format that can be read by almost all statistical data analysis packages
consists of a header row, identifying the variables, and the results following row by row
underneath (Figure 2.1). Such a file should be stored in a simple “csv” (variables and results
separated by a comma: csv = comma separated values) or “txt” format.
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Figure 2.1 Screen snapshot of a simple Microsoft ExcelTM-file of Kola Project C-horizon results. These
are ready for import by most statistical data analysis packages, including R, once stored in a simple
format, e.g., the “csv” format

The special DAS+R file format, fine-tuned for use in applied geochemistry, allows the
storing of much more information about the data and about each single variable, so it can be
retrieved and used during data analysis. This format requires an empty first column, providing a
number of predetermined key words (up to but not more than eleven) telling the software about
the auxiliary information that it is expected to handle (see Figure 2.2). The sequence in which
the keywords are provided is flexible, only HEADER and VARIABLE need to be specified,
none of the other keywords need to be used, the software checks for the keywords and stores
the information if it detects one or several of the keywords. Of course other variable-relevant
information than “EXTRACTION” and “METHOD” could be stored using these fields. The
keywords are:

HEADER: holding information on the data file, e.g., “Kola Project, regional mapping 1995,
C-horizon”.

COMMENT DATASET: this row can contain free text with additional comments that will
be kept with the data and are valid for the whole file or large parts thereof, e.g., “<2 mm
fraction, air dried, laboratories: Geological Survey of Finland (all ICP and AAS results);
Geological Survey of Norway (all XRF results); ACTLABS (all INAA results)”.

These two keywords are not linked to any specific variable but to the data file as a
whole.
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Figure 2.2 Kola Project Moss data file prepared with auxiliary information (project name, sample type
and preparation, analytical method, detection limit, unit) that may be needed during data analysis.
This format will be accepted by DAS+R. If the data file is to be used outside of DAS+R, for example in
R, the first column and the uppermost ten rows should be deleted or commented out

SAMPLE IDENTIFIER: this keyword is used to identify the table column (variable) that
contains the sample or site number (or code) via entering “ID” in the column that contains
this information in the VARIABLE record. This can also be done later after the data are
imported into DAS+R if necessary. If no sample identifier is provided, the samples are
numbered from 1 to n, the number of observations (samples), and identified using this
number in the graphics and tables where samples are identified.

COORDINATES: used to identify the two columns holding the information about the
geographical coordinates via entering “XCOO” (east) and “YCOO” (north) in the columns
containing this information. If the two variables containing the coordinates are not iden-
tified, mapping and spatial functions within the software will not be available during data
analysis.

COMMENT VARIABLES: can hold a free comment that is linked to each single variable,
e.g., a remark on data quality or number (or percentage) of samples below detection.

EXTRACTION: holds a second comment linked to each variable separately like “aqua regia”
or “total” (or any other variable-related comment).

METHOD: holds a third comment, the method of determination for each variable like
“ICP-AES” or “XRF” (or any other variable-related comment).

UDL: the value of the upper limit of detection for each variable (if not applicable for the data
at hand, it is simplest to not provide this keyword and row), e.g., “10000”.

LDL: the value of the lower limit of detection for each variable, e.g., “0.01”.
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UNIT: the unit of the measurement of each variable, e.g., “mg/kg”, “wt-percent”, “micro g/kg”
(it is generally wise to try to avoid “special” signs like “%” or “�” – see above), and finally

VARIABLE: the line usually starting with the sample identifier and providing the coordinate
and variable names. Attention: a “unique” name must be used for each variable. If the same
element has been analysed by different methods a simple text or numeric extension can be
used. Note that variable names should not contain blanks.

The data array can contain empty cells (missing values, see above, R replaces empty cells by
the code NA – not available) but should normally not contain any special signs like “<”, “>” or
“!” if the variable is to be used for statistical analyses. Text variables or variables consisting of
a mixture of text and numbers are allowed and will be automatically recognised as such. They
can for example contain important information that is linked to each sample and can be used
to create data subsets or groups (see Chapter 8). Figure 2.2 shows the above example file in
the special DAS+R format with all auxiliary information (except the upper limit of detection)
provided.

Note that different types of variables exist and can be used in DAS+R. When importing a
data file, DAS+R will try to allocate each variable automatically to a certain data type. These
types are later displayed in the software and can be changed. It is important to assign the
“correct” data type to each variable. It determines what can be done with this variable during
data analysis. If the automatic assignment is wrong, this should be a clear indication to check
the data for this variable for inconsistencies before continuing with data analysis.

Logical: TRUE/FALSE or T/F, e.g., used to identify samples that belong to a certain subset.
Integer: a number without decimals.
Double: any real numerical value, i.e. a number with decimals.
Factor: a variable having very few different levels, which can be a character string (text) or

a number or a combination thereof.
Character: any text; the sample identifier (sample number) is a typical “character” variable

because it is the unique name of each sample. It can consist of a number, a text string, or
combination of text and numbers.

2.2 The detection limit problem

A common problem in the analysis of applied geochemical and environmental data is that a
data set as received from the laboratory will often contain a number of variables where a certain
percentage of the samples return values below the detection limit (DL) (see, e.g., Levinson,
1974; AMC, 2001). There are both lower and an upper DLs for any analytical method – in
practice it is the lower DL that will most often be of concern in applied geochemistry and
environmental projects (when analysing ore samples or samples from an extremely contami-
nated site, the upper DL of the method may also need consideration). In a spreadsheet or file
as received from the laboratory these samples will most often be marked as “<DL” (or “<rl”,
“<reporting limit”), where DL is the actual value of the detection limit (e.g., 2 mg/kg). While
values marked “<” are desirable in a printed data table, they cannot be used for any numerical
processing or statistical studies. Means and standard deviations cannot be computed for sam-
ples marked “<” – and graphics or maps cannot be easily prepared. Because most statistical
tests are based on estimates of central tendency (e.g., MEAN) and spread (e.g., variance or
standard deviation), such tests cannot be carried out.
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Thus selecting analytical procedures that provide adequate DLs is one of the most important
considerations in planning any applied geochemistry project. The (lower) DL is commonly
understood to be the smallest concentration that can be measured reliably with a particular
technique. Different analytical techniques will have different DLs for the same element, and
different laboratories may well quote different DLs for the same element using the same
analytical technique. In addition the DL will change with the model of the instrument, the
technician performing the analysis, and the solid-to-liquid ratio in any procedure requiring
sample dissolution.

The choice of the analytical method for a given project is often a compromise between cost,
a careful evaluation of expected concentrations, and the need to have a complete data set for
the elements required (e.g., for geochemical mapping). In many instances the practitioner will
end with a data set containing a substantial number of “<” signs. As mentioned above, these
create problems in data analysis. There are several approaches to dealing with variables where
some analytical results are “<DL”. Options are:

� Delete the whole variable or all samples with values “<DL” from data analysis;
� Mark all observations “<DL” as missing;
� Model a distribution in the interval [0, DL], and assign an arbitrarily chosen value from this

distribution to each sample <DL;
� Try to predict a value for this variable in each sample via multiple regression (imputation)

techniques using all other analytical results; or
� Set all values marked “<DL” to an arbitrarily chosen low number, e.g., half the DL.

None of these solutions is ideal. To delete samples from data analysis is not acceptable, it
will shift all statistical estimates towards the “high” end (or “low” end – in the rare case
of observations above the upper limit of detection), although there is information that the
concentration in a considerable number of samples is low (high). The same happens if the
values are marked as “missing”.

Modelling a distribution based on the existing data and an assumption about the shape of
the distribution (e.g., lognormal) will give the statistically most satisfying result. On the other
hand it is then no longer easy to differentiate between true (measured) values and “modelled”
values that have no geochemical legitimacy beyond the model, especially in the multivariate
context. This is again an undesirable situation.

To predict the values <DL, for example via regression techniques using all other analytical
results or kriging (for spatial data – Chapter 5), is only sensible when the value is really
needed, e.g., for mapping. The problem of differentiating between true (measured) values and
“modelled” values that have no geochemical legitimacy beyond the model, especially in the
multivariate context, remains.

Thus the most widely applied solution to the “<DL” problem is to set the value to an
arbitrarily chosen value of half the DL, some practitioners use the value of the DL (but note
that there may be “true” measurements at this value, thus 1/2 of the DL is the better choice).
This is easy to do in a spreadsheet and works well as long as the number of values <DL is
relatively low (say less than 10–15 percent of all samples). A more realistic value than half
the DL can often be estimated from an ECDF- or CP-plot (see Chapter 3). This method is
acceptable for constructing statistical graphics or maps – the value of half the DL is used as
a “place holder” and marks “some low value” in the graphics. Often it is easy to recognise
<DL situations in a graphic, e.g., a scatterplot (e.g., Figure 18.8) or an ECDF- or CP-plot
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by a straight line of values at the lower end of the data (e.g., Figure 18.7). An element that
contains values below the detection limit is called “censored”. In case of data below the limit
of detection, they are stated to be “left censored”; conversely, in case of data above the upper
limit of detection, they are stated to be “right censored”.

To just replace the values <DL by an arbitrary low value is not, however, acceptable if we
need to calculate a “reliable” estimate (e.g., for complying with some environmental regulation)
of central tendency and spread (see Chapter 4), as needed for most statistical tests. Helsel and
Hirsch (1992) and Helsel (2005) provide a detailed description of these problems and possible
solutions. A first and easy solution is to use MEDIAN (Section 4.1.4) and MAD (median
absolute deviation, see Section 4.2.4) as estimators of central value and spread instead of
MEAN (Section 4.1.1) and SD (standard deviation, Section 4.2.3) (but remember that the
values representing “<DL” need to be kept in the data set as the lowest (highest) values for a
correct ranking). MEDIAN and MAD can be used as long as no more than 50 per cent of the
data are below the limit of detection.

To further complicate the issue, analytical methods exist where the laboratory will report
different DLs for different samples depending on the matrix of the actual sample (typical
for Instrumental Neutron Activation Analysis, INAA). It is also not unusual to find different
detection limits over time because a laboratory has improved its methodology or instrumen-
tation, or when employing different laboratories reporting with different DLs. One possible
solution in this situation is to use the value of half the lowest DL reported as “place holder”
for all samples <DL.

To solve these problems, the reporting of values below detection limit as one value has been
officially discouraged in favour or reporting all measurements with their individual uncertainty
value (AMC, 2001). However, at the time of writing, most laboratories are still unwilling to
deliver instrument readings for those results that they consider as “below detection” to their
clients and the replacement of values that are marked “<DL” by a value of half the DL prior
to data analysis is still a practical, if not perfect, solution for many applications.

In general a conscious decision is required as to whether a variable with censored data is to
be included in a multivariate data analysis. A variable can, for example, contain 10 per cent of
censored data, an amount that could probably be handled by the selected multivariate method.
However, a second variable can also contain 10 per cent of censored observations, but the
samples with censored values do not need to be the same as those with censored values in
the first variable. In the worst case all censored values occur in different samples and this
will accumulate to 20 per cent of censored observations for the multivariate data set. Before
entering multivariate analysis, it is thus important to check how many observations (samples)
are plagued with missing values for any variable. The proportion of such samples should be as
low as possible. If standard multivariate methods are to be used, the total proportion of samples
with censored data should probably not exceed 10 per cent. Even when planning to use robust
methods (which could in theory handle up to 50 per cent of “outliers”), care is necessary
because further data quality issues or missing values in the remainder of the data set may exist.

The problem of censored data can create a serious dilemma when dealing with several
sample materials that are to be compared. For example, when excluding variables with more
than 5 per cent of censored data from all four sample materials collected during the Kola Project
(moss, O-, B-, and C-horizon), only 24 (out of more than 40) variables remain in common for
direct comparison.

To avoid as many “DL-problems” as possible, one of the most important first steps in the
design of the Kola Project was to construct a list of all the chemical elements for determination,
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setting a “priority” for each element (how important is the element for project success), and
identifying the detection limit that was needed to obtain a complete data set for this element
for all of the sample materials. This list can then be compared against the analytical packages
offered by different laboratories together with their respective detection limits. The list can
then be used to discuss detection limits, costs (if appropriate), and terms with the most suitable
laboratories. This list is of course an “ideal” that cannot be achieved for all elements. For some
elements no analytical technique may exist that provides a low enough DL for obtaining a
“complete” data set (no sample <DL) at the time of the project. For others, procedures may
exist but be so expensive that it is not possible to use them within a given budget. Thus in the
end the final choice of the elements to be determined, the detection limits, and the choice of
the laboratory that undertakes the work will be a compromise. It is always good practice to
archive a complete sample set to be recoverable later when analytical techniques are improved
(or cheaper) or interest in some element(s) arises that was of no interest at the time of the
original project.

2.3 Missing values

In any large data set some values may be missing due to a variety of reasons. It may be that
there was not enough sample material to carry out a certain determination; it may be that a
single number got lost somewhere in the data processing. Such situations lead to values that
are missing at random. A different situation arises if there are missing samples due to some
particular event. In that case the missing values could be concentrated in particular parts of the
data distribution or survey area.

If any variable or sample has many missing values, this will again create problems for
statistical data analyses. In contrast to censored data having some information value (e.g.,
that the concentration in the sample is very low, lower than the “limit of detection”), missing
data are “no information” and are not limited to low (or very high – upper limit of detection)
concentrations. Several possibilities to treat missing values exist:

� Delete the whole variable or all samples with missing values from data analysis;
� Set the missing result to an arbitrarily chosen value; or
� Try to predict the missing values, for example via multiple regression (imputation) techniques

using all other analytical data (Chapter 16).

None of these suggestions is an optimal solution. The most usual approach to the missing value
problem is to just ignore them. This is a possibility as long as the number of missing values
is low. When a data set contains missing values, it is generally a good idea to only use robust
statistical methods.

To predict a missing value, for example via regression techniques (imputation – Chapter 16),
using all other analytical results or kriging (for spatial data – Chapter 5), is only sensible when
the value is really needed, e.g., for mapping.

If the missing values do not occur at random, this will result in biased statistical estimates,
independently of the selected approach for accommodating the missing values.

For multivariate data analysis the same problem of “accumulating” missing values occurs
as described above for “<DL” data. Therefore, obtaining as complete a data set as possible is
always an important consideration during project design.
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2.4 Some “typical” problems encountered when editing a laboratory data
report file to a DAS+R file

A data file as received from a laboratory will usually contain a lot of text that is necessary
only for general information purposes. Figure 2.3 shows a screen snapshot of one of the Kola
Project result files as received from the laboratory. This kind of file cannot be easily imported
by most data analysis software. The file will probably contain information on the analytical
technique(s) used for the determination of each element, the detection limit, the unit of the
measurement for each variable, and more. Some of these text lines contain the information
DAS+R can hold in the first 11 comment rows, others may need to be deleted or edited. Files
may contain “accessory” information or comments at the beginning as well as at the end of
the data array (check the bottom line of any file – see Figure 2.3), or this information may be
given in other worksheets (check for multiple work sheets!) within the file. If the laboratory
has invested some time in table design and merged cells somewhere, e.g., at the top of the file,
this will create severe problems when trying to import such a file into data analysis software.

In contrast an “ideal” file for most data analysis packages will only contain one row identi-
fying the variables (with the first variable being the “Identifier” for the sample (i.e. the sample
number), and then row by following row will contain the identifier and the analytical results

Figure 2.3 One of the “original” laboratory data files as received for the Kola Project C-horizon results
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for all variables listed in the first row in the same sequence (see above). If possible such a
file format should be agreed upon with the laboratory at an early stage of the project. The
“optimal” data report file from a laboratory will look like the files in Figures 2.1 or 2.2 rather
than like a “nice table”.

2.4.1 Sample identification

Laboratories often add their own “laboratory number” to all samples received for analysis
according to the laboratory’s standards (see Figure 2.3). This laboratory number is used as a
“unique” number for storage in the laboratory’s database. Make sure that the laboratory reports
the results according to the original sample numbers and not with these “new” laboratory
numbers only. In the case where samples were randomised and given new numbers prior to
submission (see Chapter 18), it is necessary to ensure that the laboratory analyses the samples
in the exact sequence of the new numbers and not in the sequence of the laboratory’s own
numbers. This requires that the “submitter” must keep and safely back-up the table that relates
the original sample numbers to the new randomised sequence numbers that are on the physical
samples submitted to the laboratory.

2.4.2 Reporting units

Units used to report the values are often quite different from variable to variable and information
on units is provided somewhere in the data file. In the given example (Figure 2.3) several
different units as identified in row five are used for the few variables (�g/kg, mg/kg, g/kg) visible
in the screen snapshot. Thus the units of analysis are important information. Unfortunately,
most statistical data analysis packages do not appreciate the presence of this row. For many
packages this row disrupts the connection between variable names and values. Keeping the
row in this position will create severe problems in entering the data into most data analysis
software, deleting it will create severe problems during data analysis when it becomes important
to know the units! It is tempting to think that this need not be a problem because the unit can
usually be guessed from the analytical values, and if not it is always possible to go back to the
“original” data file (good if “the original” data file was stored somewhere safely as suggested
above – a problem if this was not done and the units were deleted for data analysis). It is
often not so easy to “guess” the correct unit of a measurement just from the analytical values.
Thus information on the unit needs to be preserved – but where and how? DAS+R can store
the information about the unit, but it is often better to transfer all results to one unit only.
For geochemical projects “mg/kg” (mg/L for water) is the most universal unit. This approach
cannot be followed in all situations because, for example, pH measurements come without
a unit, conductivity measurements are reported in mS/m, and radioisotopes are measured in
Bq/kg, and all these may appear in the same data file. It is, nevertheless, a good start to “unify”
the units as much as possible. In case another unit is needed later on for “nice looks”, for
example in a data table, it is easy to transform any values to that unit. It is also necessary to
check that the unit the data are reported in is not changed during the lifetime of a project or
even within just one data file (e.g., different staff measuring different batches of samples and
using different reporting units!). It is often possible, and advisable, to agree on the unit for
reporting measurements when formulating an analytical contract with a laboratory. That way
a lot of unnecessary and always dangerous file editing can be avoided.



SOME “TYPICAL” PROBLEMS ENCOUNTERED WHEN EDITING 23

2.4.3 Variable names

Variable names need to be unique. For the laboratory it may be sufficient to use the same
variable name if the method code or extraction is identified as different in another row of the
data file – for data analysis this is not sufficient! If one and the same element is analysed
by a variety of techniques or in a variety of different extractions, this information needs to
be incorporated into the variable name (e.g., Ca aa, Ca ar and Ca tot for Ca determined in an
ammonium acetate extraction, Ca determined in an aqua regia extraction and Ca determined by
XRF or INAA, giving total concentrations). The same applies when files with different sample
materials are linked (e.g., Ca MOSS, Ca OHOR, Ca BHOR, Ca CHOR). Note that most data
analysis programs cannot handle variable names containing a space – it is thus advisable to use
another sign as separator and an underscore is a common solution. If material and method need
to be included in a variable name (e.g., Ca CHOR ar, Ca CHOR tot), very long variable names
may result. Note that lengthy variable names may not be convenient during data analyses (e.g.,
when the variable names are displayed in graphics).

2.4.4 Results below the detection limit

The laboratory will have marked results below the detection limit (Section 2.2) somehow –
either via a “<” sign followed by the value of the detection limit or by the actual reading of
the instrument marked in some specific way as “below detection” (e.g., via an exclamation
mark before or after the result or by a “−”). Such markers are acceptable in a printed table,
however, a computer or a data analysis package will not know what to do with such special
symbols. In the example file (Figure 2.3) the laboratory has managed to use different ways
to identify measurements that fall below the lower limit of detection. For some variables a
“!” marks such values, for other samples a “<” was used. As most data analysis software
cannot handle such special signs they need to be removed. However, these signs cannot just
be deleted because the file will most likely contain true measurements with exactly this value,
and then these true values could no longer be differentiated from values that are lower. It
may also be tempting to just delete the contents of the whole cell marked as “lower than
the detection limit”. However, an empty cell denotes a “missing value”, a value “below de-
tection” denotes a value too small to measure with the chosen analytical method, which is
an important difference when making statistical estimations. It is also no solution to replace
these values with a “0” – for some variables “0” may be a true data value, importantly “0”
will often provide a far too low estimate of the real concentration, and in case there are any
“0” in a data file, logarithmic transformations become impossible. One standard solution to
the situation (the solution chosen for the Kola data) is to replace all values marked as “lower
than detection limit” by a value of one half of the detection limit. Therefore, in the example
data file from the Kola Project all values marked with a “!” or a “<” need to be replaced
by a value of one half of the detection limit. Before starting to replace the “<” sign, it is
necessary to check that the laboratory is operating with one detection limit per variable only.
It may happen that the laboratory has operated with different detection limits, depending on
the matrix of the samples (a common situation in neutron activation analyses (NAA or INAA
(“I” for “instrumental”)). When replacing all “<” values with one half of their value in such
a situation some of these replaced values may suddenly be in the range of “real” values. Thus
this situation requires special care (one possible solution is to replace all the “<” values with
one half of the lowest DL value reported – see Section 2.2). Afterwards it is easy to use the
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“find” and “replace” functions in spreadsheet software to get rid of all the “<” signs (and of
the “!”).

When actually doing this for the example file, it turned out to be more difficult than antici-
pated – the laboratory had used blanks (sometimes none or one, two, three, four, and even five
blanks) between the actual number and the sign. Each single one of these possibilities needs
thus to be checked until in the end there are no more “<” or “!” in the data file. Thus great care
is necessary when replacing all values below detection with a value of one half of the detection
limit. To avoid confusions (e.g., when a file contains values <1 and <10) this should be done
variable by variable when using “find” and “replace” options of the spreadsheet software rather
than for the whole data file at once. It is good practice to agree with the laboratory beforehand
exactly how values below (or above) detection limit are to be reported. As can be seen this
editing process can be error prone; this just emphasises the importance of making a back-up
copy of the original file received from a laboratory, so it can always be referred to in case it is
thought that an editing error may have occurred.

2.4.5 Handling of missing values

Empty fields may exist in a data file, indicating “missing values” (Section 2.3), e.g., a sample
that got lost during transport or where there was not enough material available for all the
different analytical techniques that were ordered. Never replace empty fields by a number (for
example it could be tempting to use a “0”). Empty fields indicate “no information”, if these
fields are replaced with zeros, which may be valid for a measurement, their original meaning
will be lost. The “empty” information thus needs to be preserved or replaced by a term that the
software recognises as “missing value”. In Figure 2.3 in row 14 (and row 798) the special sign
“−” was used by the laboratory to identify whole samples or single variables for a sample that
were not analysed. Here the “−” thus marks “missing values”, a directly dangerous approach.
Such a “−” should be immediately replaced by an empty cell. When doing this replacement,
it is wise to use the “find entire cells only” option to ensure that no real “−” sign, identifying
possibly existing negative values, is replaced. Also, it is not a good idea to just delete a whole
row with “missing values”. At some point it may either be important to identify the samples
with missing values, to know the absolute number of missing values, or another data file will
be linked with the first data file, and this new file may contain data for the sample that contains
missing values in the first file. The standard in R to identify missing values is to use NA
(not available) as marker for a missing value, NA is automatically inserted when a data file
containing empty fields is imported to R (or DAS+R). Thus empty fields should be left empty
when editing the data file.

2.4.6 File structure

In case the file contains a column identifying the variables and the results follow in columns
rather than in rows, it is possible to use the “copy” and “paste special” – “transposed” - features
in a spreadsheet to produce a transposed file that follows the above standard. Again it is essential
to ensure that the original data file is safely stored somewhere before attempting to transpose
the file so that it cannot be destroyed by this procedure.

Data tables as received from different laboratories as spreadsheets may have a very dissimilar
structure, and thus there is no simple way around a substantial amount of file editing, no matter
whether these files are to be incorporated into a database or directly imported into a data
analysis package.



APPENDING AND LINKING DATA FILES 25

For R (outside DAS+R) there exists the possibility to mark several leading (top) rows with
a “#”. The software will ignore lines marked this way (just like comment lines in a computer
program) when importing data, and the information is at least not deleted. Data files prepared
with all auxiliary information for DAS+R can thus be directly read into other R-routines using
this facility without having to re-edit the file.

2.4.7 Quality control samples

However, before the file is really ready for import into R or DAS+R, more work may still
be required. Hopefully the file contains Quality Control (QC) samples (i.e. duplicates and
standards inserted among the “real” samples). These QC-samples must be removed prior
to data analysis (and used for quality control (see Chapter 18)). The “key-file” identifying
QC-samples needs to be used to identify and remove the QC samples from all other samples.

2.4.8 Geographical coordinates, further editing and some unpleasant
limitations of spreadsheet programs

For geochemical mapping and thus identifying the location of unusual results the samples also
need coordinates. Thus these coordinates need also to be linked to the data file. Furthermore,
analytical results may be received from more than one laboratory, and all these different results
will be needed in just one large file for data analysis. A “cut” and “paste” job in a spreadsheet
has to be carried out with great care. If very many variables exist, or if results for different
materials are to be linked into just one file, it is possible to reach the limits of the most common
spreadsheet software packages. These are usually limited to 256 columns. In such a case it is
also possible to link the different files in R (or DAS+R). Alternatively, those users familiar
with database software, e.g., Microsoft AccessTM, may choose to import the different field,
laboratory, and other tables into the database manager and undertake the editing and final table
construction in that environment.

Many packages used for data analysis will not be able to read the special spreadsheet file
format (e.g., “.xls” files). Furthermore, software manufacturers sometimes change their formats
with each upgrade of their spreadsheet software with the consequence that older versions of
the program are no longer able to read files that were saved in a newer version. This can turn
out to be a real nuisance when data files are to be exchanged between colleagues. Thus the
“final” file should be saved separately in both the spreadsheet format (for easy handling and
editing) and in a simple text or ascii format. For this it is best to use the “.csv” format, which
is a simple file format where the variables and values are separated by commas. To use the
“.csv” format, it is necessary to make sure that the comma was not used as decimal sign in
the file. This may actually even depend on the “country” setting of the spreadsheet used for
editing. Note that the “.csv” format does not support multiple worksheets; information stored
in different worksheet will be lost when storing a former Microsoft ExcelTM file in “.csv”
format. The major advantage of this format is that almost all “foreign” software packages are
able to import the “.csv” format. This is the file format used to import all Kola data into R (and
DAS+R).

2.5 Appending and linking data files

The Kola Project was a typical multi-element multi-medium regional geochemical mapping
project. In consequence there is not only one regional data set, but there are four such regional
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data sets, one for each sample material (there are actually even more data sets, one for
Topsoil (0–5 cm) and one for lake water (Russia only)). Thus similar files with analytical
results were received for the C-, B- and O-horizon of Podzol profiles and for terrestrial
moss, all collected at the same sample sites. All these files needed to be prepared accord-
ing to the above example. The prepared files are provided in “.csv” format on the web page
http://www.statistik.tuwien.ac.at/StatDA/R-scripts/data/.

However, it may be required to do more with the data than just look at them layer by layer.
A direct comparison between the different sample materials will be of interest, it may thus be
necessary to be able to produce diagrams and statistics using all four layers at the same time.
For that it is necessary to merge the different data sets in some sensible way. This can actually
be done in two different ways, and depending on how it is done, different comparisons and
diagrams can be produced.

For example, it is possible to just add additional rows to the “first” file (Moss or C-horizon)
for each additional material. Hopefully as many variables as possible are identical (i.e. the
same analytical program was used for all materials), otherwise this is a substantial data-editing
job, which needs a lot of care. Now the sample material needs to be identified in one of the
variables, e.g., as “MOSS”, “OHOR”, “BHOR” and “CHOR”. Using this variable it is then
possible to prepare “data subsets” according to sample material and compare results for these
subsets in tables and different diagrams. It is possible to append data directly in DAS+R.
However, it may also be necessary to be able to make a direct comparison sample for sample.
This is not easily achieved with such a file structure.

Hopefully this possibility was considered when designing the fieldwork and sample-
numbering scheme (data analysis starts with project design). Many organisations may require
that a “unique sample number” per sample should be used because organisations such as a
Geological Survey often build a project-independent database and want to minimise the chance
of mixing up sample numbers. However, working with unique sample numbers can create a
nightmare during data analysis because it is necessary to somehow tell the data analysis soft-
ware which samples are related. In cases where unique sample numbers were used, this will
have to be done sample by sample – an unnecessary and time-consuming task that can waste
a lot of time for a large data set.

For the Kola Project this issue was considered during project design as it was recognised
that at some stage it would be informative to be able to compare results for the different sample
materials. The sample number thus included a unique component that identified each catchment
where all samples that belong together were taken. An additional unique code identified the
sample material. Care was taken that these codes were obviously different from one another in
order to minimise the chance of mixing up different materials (e.g., C-, B-, and O-horizon soil
samples) in the field or later during sample preparation in the laboratory. For example, parts of
the number can disappear from a sample bag during transport and handling of the samples and
it should still be possible to identify the material and the identity of the sample beyond doubt.
Thus “CHOR”, “BHOR” and “OHOR” (as in the data files) was not used in the field but P5C,
P4B and “HUM” (for “humus”). In consequence, all samples that were taken at one and the
same sample site can then be easily linked via the sample number (ID in the data files). It is
only necessary to add on the data from the additional materials as additional columns.

Data analysis software is often not able to handle a file containing several variables with
the same name (R will recognise such a situation and “number” such variables, e.g., Ca1, Ca2,
Ca3). For the Kola data set, in many instances, four variables exist with the same name, e.g.,
the variable silver (Ag) in the C-, B- and O-horizons, and moss. Thus the sample material needs

http://www.statistik.tuwien.ac.at/StatDA/R-scripts/data/
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to be indicated in the variable name. Again the problem arises that variable names tend to get
too long when a lot of information needs to be incorporated (e.g., different extractions and/or
analytical techniques used, different grain size fractions analysed, different sample materials
analysed). It may thus be beneficial to limit the number of variables included in this file to the
“critical variables” where results between the materials are really comparable and most of the
samples returned values above the detection limit.

As mentioned above (Section 2.4.8), spreadsheet software has clear limitations as to the
number of variables that one file can contain. At present this limit is 256 – with four different
sample materials with 60 variables determined, this limit is easily reached when additional field
information needs to be incorporated into the file. To append data to a spreadsheet requires
that at the very beginning a complete set of “sample numbers” (and coordinates) existed for
all materials and that no rows in the data files were deleted just because only “missing values”
were present for one of the samples in one of the different layers sampled. It is also necessary
to treat the field and analytical duplicates in the different layers the same way (i.e. always
removing the second result), otherwise a considerable amount of extra editing work can result.
Instead of doing all this in a spreadsheet where this kind of work requires a lot of attention,
files can be directly linked in DAS+R using the link command, which will automatically
link all samples with the same ID. Or alternatively, this can be done externally in a database
package.

In the end there may exist as many as six separate data files: one for each sample material
(e.g., CHOR, BHOR, OHOR, and MOSS), one with all results and the sample material encoded
in the variable name for the creation of subsets according to sample material, and a last file
with four results per analysed element (e.g., Ag C, Ag B, Ag O, and Ag M), one for each
material. Using six different files can create problems if results of one sample are changed or
deleted somewhere in one data file during some point of data analysis – it is thus necessary to
consider the possibility of keeping all the files up-dated to the newest version at all times, as
is done when using a database.

2.6 Requirements for a geochemical database

A geochemical database can be relatively easily built using existing software solutions like
OracleTM or Microsoft AccessTM. A number of questions need to be addressed when building
a geochemical database. A database needs an administrator to guarantee its longevity. It is
very difficult to build an “ideal” institutional database for an organisation because this requires
an almost inhuman amount of foresight in terms of what kind of work will be carried out in
future projects. A database constructed without an in-depth system analysis can easily turn
into quite a secure data grave, with the guarantee that the data are there and safely stored but
never used because they are too difficult to retrieve in the form needed for further data analysis.
Even building a good database for just one project requires a thorough system analysis – what
are the data going to be used for, and in which form does one need to recover the data for
data analysis are some of the very first questions that need to be answered before starting to
construct a project database.

In general the data should be entered into the database as soon as possible after collection
to minimise the chance that any are lost or important details are forgotten. On first sight,
constructing a database may look like an additional bureaucratic effort; in the long run it will
pay back the time spent on database design. These days most data are provided by laboratories
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in the form of spreadsheets, e.g., Microsoft ExcelTM or Quattro ProTM files. Unfortunately, such
files are not a secure medium to archive data. However, they do provide a widely available and
familiar tool for original data capture and reporting, and some table re-arrangement functions.

2.7 Summary

For entering data into a statistical data analysis package a file structure is needed that deviates
from nicely designed tables. Usually substantial data editing is necessary before being able to
start any data analysis. Especially with large data tables there is a high risk that errors may be
introduced during data editing. Before starting with any data editing, a copy of the original file
as received from the laboratory needs to be safely stored to be able to check that any questions
that may arise during data analysis are not related to mistakes introduced during data editing.
This file should never be modified in any way. A data file usually contains important auxiliary
information (e.g., measurement units and techniques) that need to be taken care of. At the same
time variable names should be kept as short as possible. Variable names should not contain any
blanks or any language specific special characters. When working with chemical analyses, it is
important to consider the handling of values below (or above) the detection limit, and missing
values. It is also important to consider how to preserve information on sample preparation,
analytical technique used, detection limit reached and the data unit. Much work can be spared
if a contract is formulated with the laboratory on how the report file for a project should be
constructed.

It is an advantage to work with simple standardised file formats, e.g., “csv” (comma
separated values) or “txt” because these are independent of the computer’s operating system.
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Graphics to Display the Data
Distribution

As the Kola Project progressed, chemical analyses for c. 50 chemical elements in four differ-
ent sample materials collected at about 600 sample sites were received. These needed to be
summarised, compared and mapped; now we enter the realms of statistical data analysis. For
data collected in space, two types of distribution need to be considered: the spatial distribution
of the data in the survey area and the statistical data distribution of the measured values. At
the beginning of data analysis the focus is on the statistical distribution, temporarily setting
the spatial component aside (see Chapter 5, where the spatial data distribution is studied).

The statistical data distribution can be explained using some small artificial data sets. The
data are simply plotted against a straight line as a scale for the data values. Depending on the
data, the distribution of the values can look symmetrical (Figure 3.1, upper left, the data are
distributed symmetrically around the value 20). The data could fall into two groups, i.e. be
bimodal, and show a gap around the value 20 (Figure 3.1, upper right). The data could show a
single extreme outlier (Figure 3.1, lower right). The data could show an asymmetrical distri-
bution with a high density of points at the left side and a decreasing density towards the right
side (Figure 3.1, lower right). All these different characteristics, or a mixture thereof, define
the statistical data distribution. For further statistical treatment of the data it is essential to get
a good idea about the data distribution. Many statistical methods are, for example, based on
the assumption of a certain model for the data distribution (see Section 4.1, Figure 4.1 for a
number of different model distributions).

With more than 600 measurements it will not be sufficient to simply plot the measured
values along an axis as in Figure 3.1, because many data values will plot at the same point.
Other graphics are needed to visualise the data distribution. These will be introduced on the
following pages.

3.1 The one-dimensional scatterplot

Plotting the data along a straight line works fine as long as the data set is small and the data
do not plot too close to, or on top of, one another. Figure 3.2, upper diagram, demonstrates
the problem using the analytical results of Sc in the Kola C-horizon. Many more data points
may be hidden behind one point plotted along the line. To view samples that have the same
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Figure 3.1 Some possible data distributions. Upper left: symmetric; upper right: bimodal with a gap
around 20; lower left: left skewed; lower right: right skewed

value it is, however, possible to add a second dimension and add such values as additional
symbols against the y-axis (Figure 3.2 middle, stacked scatterplot). With many values at the
same position the y-axis starts to dominate the plot. With some further modifications the
one-dimensional scatterplot is obtained (see, e.g., Box et al., 1978); an informative and simple
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Sc in C−horizon [mg/kg], points stacked
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Figure 3.2 Evolution of the one-dimensional scatterplot demonstrated using Sc as measured by
instrumental neutron activation analysis (INAA) in the samples of the Kola C-horizon
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graphic to study the data distribution. This plot is typically displayed as an elongated rectangle.
Each value is plotted at its correct position along the x-axis and at a position selected by chance
(according to a random uniform distribution) along the y-axis (Figure 3.2, lower diagram). This
simple graphic can provide important insight into structure in the data.

In Figure 3.2 (stacked and one-dimensional scatterplot) a significant feature is apparent that
would be important to consider if this variable were to be used in a more formal statistical
analysis. The data were reported in 0.1 mg/kg steps up to a value of 10 mg/kg and then rounded
to full 1 mg/kg steps – this causes an artifical “discretisation” of all data above 10 mg/kg.

3.2 The histogram

One of the most frequently used diagrams to depict a data distribution is the histogram. It is
constructed in the form of side-by-side bars. Within a bar each data value is represented by
an equal amount of area. The histogram permits the detection at one glance as to whether a
distribution is symmetric (i.e. the same shape on either side of a line drawn through the centre
of the histogram) or whether it is skewed (stretched out on one side – right or left skewed). It is
also readily apparent whether the data show just one maximum (unimodal) or several humps
(multimodal distribution). The parts far away from the main body of data on either side of the
histograms are usually called the tails. The length of the tails can be judged. The existence or
non-existence of straggling data (points that appear detached from the main body of data) at
one or both extremes of the distribution is also visible at one glance. The Kola C-horizon data
set provides some good examples.

Figure 3.3 shows four example histograms plotted for the variable Ba (aqua regia extraction)
from the Kola C-horizon data set. The x-axis is scaled according to the range of the data, the
starting point is usually a “nice looking” value slightly below the minimum value. Intervals
along the x-axis are adapted to the number of classes it is required to display, and the number
of classes is chosen such that the whole data range of the variable is covered (several rules of
thumb exist for the “optimum” interval length or number of classes, one of the easiest is

√
n

for the number of classes, where n is the number of individuals/samples in the data set). The
y-axis shows the number of observations in each class or, alternatively, the relative frequency
of values in percent.

In theory, when dealing with a very large data set, the length of the intervals could be
decreased so much by increasing the number of classes that the typical histogram steps disap-
pear. This results in a plot of a smooth function, the density function. This smooth function is
thought to represent the distribution from which the data are sampled by chance. If the data
were drawn from a normal distribution the density function would take on the classical bell
shape (see Figure 4.1).

One situation that often arises with environmental (geochemical) data is that the distributions
are strongly right-skewed. In addition, extreme data outliers occur quite frequently. In such
cases a histogram plotted with a “linear” scale may appear as a single bar at the left hand side
and a far outlier at the right hand side of the graphic. Such histograms contain practically no
information of value about the shape of the distribution (see upper left histogram, Figure 3.3).
Statisticians will usually solve such problems via scaling the data differently. In the case at hand
it appears advisable to reduce the influence of the high values and to focus on the main body of
data that lie in the first bar of the histogram. One solution that meets these requirements is to
scale the data logarithmically (lower right histogram, Figure 3.3). This re-scaling is called log-



32 GRAPHICS TO DISPLAY THE DATA DISTRIBUTION

Ba in C−horizon [mg/kg]

F
re

qu
en

cy

0 200 400 600 800 1000 1200

0
10

0
20

0
30

0
40

0
50

0

Ba in C−horizon [mg/kg]

F
re

qu
en

cy

0 50 100 150 200 250

0
50

10
0

15
0

20
0

Maximum = 1300 mg/kg

Ba in C−horizon [mg/kg]

F
re

qu
en

cy

0 50 100 150 200 250

0
20

40
60

80
10

0

Maximum = 1300 mg/kg
F

re
qu

en
cy

0.5 1.0 1.5 2.0 2.5 3.0

0
50

10
0

15
0

5 10 20 50 100 200 500 2000

log10(Ba) and Ba in C−horizon [mg/kg]

Figure 3.3 Histograms for Ba (aqua-regia extraction) from the C-horizon of the Kola data set. Upper
left: original data; upper right: truncated data; lower left: truncated data as upper right but with double
the number of classes; and lower right: log-transformed data. The lower right histogram has two scales
to demonstrate the logarithmic transformation, the upper scale indicating the logarithms and the lower
scale the original untransformed data

transformation of the data; a variety of data transformations are used in statistics to improve the
visibility (or more generally, the behaviour) of the data (see Chapter 10). In geochemistry the
log-transformation is the transformation that is most frequently used. Note that in the example
the log-transformation results in an almost symmetrical distribution of the strongly right-
skewed original data and that the range (i.e. maximum value − minimum value) of the data is
drastically reduced because the influence of the outliers has been reduced. Plotting a histogram
of the log-transformed values has, however, the disadvantage that the direct relation to the
original data is missing (upper scale on the x-axis). This can be overcome by using a logarithmic
scale for the x-axis (lower scale on the x-axis), this is the procedure adopted by DAS+R.

To permit scaling in the original data units, which are easier to read than a log-scale, it is also
possible to plot a histogram for a certain part of the data only, e.g., for a certain data range (upper
right histogram, Figure 3.3, range 0 to 250 mg/kg). In that case the outliers are not displayed;
and the “real” maximum value should be indicated in the plot so that an unsuspecting reader
does not gain an erroneous impression about the complete data distribution from the truncated
histogram. Plotting more classes will result in a better resolution of the distribution (lower left)
and will often considerably change the histogram’s shape. Plotting too many classes will result
in ugly gaps in the histogram.
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The choice of starting point and class interval will substantially influence the appearance
of the resulting histogram. This is shown in the lower left, where the only difference from
the histogram in the upper right position is that the number of classes was increased from
13 to 26 (according to the simple

√
n rule of thumb, 25 would be the “optimum” number

of classes for the Kola Project C-horizon data). While the lower right histogram could be
taken as an indication that a lognormal distribution is present (i.e. the log-transformed data
follow a normal distribution), the more detailed histogram suggests that this may be in fact
a multimodal distribution, approaching symmetry if log-transformed. The histogram could
clearly be misused to demonstrate a “lognormal” distribution by reducing the number of classes
(a statistical test of the distribution – see Chapter 9 – will indicate that even the log-transformed
data for Ba do not follow a normal distribution). It may also be possible that the spikes in the
distribution only appear because too many classes were chosen for the number of samples –
the spikes might then be artefacts of the way the data were reported by the laboratory, e.g., to
the nearest 1, 2, 5, or 10 mg/kg. This demonstrates how important the choice of the optimum
interval length (number of classes) is when constructing histograms. Modern software packages
will automatically use more sophisticated mathematical models than the

√
n rule of thumb for

that purpose (see, e.g., Venables and Ripley, 2002).
It can be concluded that by studying or displaying just one histogram, important aspects of

the distribution may be missed. It may thus be necessary to plot a series of histograms for a
variable (as above), or the histogram should be augmented with some other graphics displaying
the data distribution and showing additional features.

One possibility is to combine the histogram with the one-dimensional scatterplot
(Figure 3.4).
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Figure 3.4 One-dimensional scatterplot for Sc (total concentrations as determined by INAA) in the
Kola C-horizon data set, combined with the histogram
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3.3 The density trace

The density trace (kernel density estimate – Scot, 1992) is on first inspection a “smoothed line,
tracing the histogram” (Figure 3.5). It is another approximation of the underlying density func-
tion of the data. Each point along the curve is calculated from data within a defined bandwidth
using a “weight function” (in most packages; including R, these parameters are chosen by
default but can be changed manually). Choice of bandwidth and weight function will crucially
determine how the final density trace appears (compare Figure 3.5 density trace upper right with
density trace lower left). Although at first glance the density trace is a more “objective” graphic
to display the data distribution than the histogram, it can also be manipulated substantially. Den-
sity traces are better suited for comparing data distributions than histograms because they can
easily be plotted on top of one another (e.g., in different line styles or colours – see Chapter 8).
The plots (Figure 3.5) are for the distribution of Ba from the Kola C-horizon data set previ-
ously displayed as histograms (Figure 3.3). Compared to the histogram not much information is
gained. More or less the same problems are experienced as above when plotting the histograms.
Note that for plotting the density trace of the log-transformed data in the lower right display,
a log-scale was used to preserve the direct relation to the original data range (Figure 3.5).

A density trace can also be combined with a histogram to give a more realistic impression
of the data distribution.
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Figure 3.5 Density traces for Ba (aqua regia extraction) from the C-horizon of the Kola data set.
Compare to Figure 3.3
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3.4 Plots of the distribution function

Plots of the distribution function, e.g., the cumulative probability plot, were originally intro-
duced to geochemists by Tennant and White (1959), Sinclair (1974, 1976) and others. They
are one of the most informative graphical displays of geochemical distributions. There exist
several different plots of the distribution function that all have their merits.

3.4.1 Plot of the cumulative distribution function (CDF-plot)

Histogram and density trace are based on the density function. However, the percentage of
samples plotting above or below a certain data value x could be of interest. The percentage
equals an area under the curve of the density function. Percentages can also be expressed as
probabilities, i.e. the probability that a value smaller than or equal to the chosen data value x1
(Figure 3.6) appears is p1. This probability can be taken as a point in a new plot, where the
data values along the x-axis are plotted against probabilities along the y-axis (Figure 3.6). By
varying the chosen value x, additional probabilities are obtained that can then be drawn as new
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Figure 3.6 Construction of the cumulative distribution function (CDF-plot). The graphic to the left
shows the density function and the graphic to the right shows the resulting cumulative distribution
function
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points in the right hand plot for the corresponding x values (e.g., p2 for the data value x2). If
this is carried out for the whole x-range, a new plot is generated, the cumulative distribution
function or CDF-plot (right hand diagrams).

If the data follow a normal distribution (bell shape in the left hand plot), the distribution
function will have a typical symmetrical, sigmoidal S-shape (right hand plot).

3.4.2 Plot of the empirical cumulative distribution function (ECDF-plot)

Just like trying to approach the density function via plotting histograms or density traces,
it is possible to approach the distribution function by displaying the empirical cumulative
distribution function (the ECDF-plot). The ECDF-plot is a discrete step function that jumps
with each data value by 1

n
, where n is the number of data points. As n becomes increasingly

large, to infinity, this function will approximate the underlying distribution function.
The ECDF-plot shows the variable values along the x-axis (either scaling according to

non-transformed data or following a transformation, e.g., logarithmic). The y-axis shows the
probabilities of the empirical cumulative distribution function between 0 and 1 (which could
also be expressed as percentages 0–100 percent).

As an example, the gold (Au) results for the Kola Project C-horizon soils are displayed
(Figure 3.7). The histogram and density trace demonstrate that the distribution is not nor-
mal but extremely right skewed, as a result the typical S-shape mentioned above for the
CDF-plot (Figure 3.7, upper right) is not present. Two very high values dominate the plot.
The ECDF-plot of the original data is still informative because it graphically displays the
distance of these two high values from the main body of the data. However, to provide a
more useful visualisation of the main body of data, a log-transformation should be applied.
Following log-transformation, the histogram and density trace still show a slight right skew
(Figure 3.7, middle left). The resulting ECDF-plot begins to display an S-shape (Figure 3.7,
middle right), however, the right skew is still clearly reflected. Instead of using a log-transform,
the plotting range of the data could be limited to focus on the main body of data (Figure 3.7,
lower left and right). This permits the study of the main body of data in far greater detail
than in the upper plot. Displaying the data in this manner requires that the viewer be re-
minded that the diagrams are displaying only a limited part of the range of the complete data
set.

One of the main advantages of the ECDF-plot is that every single data point is visible. A
geochemist would now start to search for any unusually high (or low) values and breaks in the
distribution. Very high values might, for example, indicate a mineral deposit or anthropogenic
contamination source. A break in the distribution could be caused by the presence of different
natural factors like geology, weathering and climate, or different contamination sources influ-
encing the data. In a large regional survey, the data may reflect both multiple natural processes
and anthropogenic sources. The ECDF-plot can be used with advantage to identify classes for
geochemical mapping that have a direct relation to the underlying statistical data distribution
via assigning class boundaries to these breaks (see Chapters 5 and 7).

3.4.3 The quantile-quantile plot (QQ-plot)

It is often quite difficult to judge whether the S-shape as displayed in the ECDF-plot indicates a
normal or a lognormal (or some other) distribution. When it is necessary to judge the underlying
distribution of the empirical data, a different plot is required, and it is advantageous to change
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Figure 3.7 Combination of histogram, density trace, and one-dimensional scatterplot (left hand side)
and ECDF-plot (right hand side) used to study the distribution of Au in the Kola Project C-horizon soil
data set. Upper diagrams: original scale, middle diagrams: log-scale, lower diagrams: truncated plotting
range

the y-axis scaling while keeping the x-axis the same. It is easiest to detect changes from an
expected distribution if the points fail to follow a straight line. Thus the best approach is to
change the y-axis in such a way that the plotted points fall on a straight line if they follow
the assumed distribution (normal, lognormal, or any other). To achieve this, the cumulative
distribution function must be transformed. A non-linear transformation, the inverse of the
expected distribution function of the y-axis, is used for this purpose. The values of the inverse
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Figure 3.8 QQ-plots for Au in the Kola Project C-horizon soil data set as shown in Figure 3.6. Left
hand side: x-axis non-transformed data, y-axis quantiles of the lognormal distribution; right hand side:
x-axis log-transformed data, y-axis quantiles of the normal distribution

of the expected distribution function are called quantiles. The sorted data values along the
x-axis can be considered as the quantiles of the empirical data distribution.

Quantiles are the linear measure underlying the non-linear distribution of the probabilities.
Quantiles are expressed as positive and negative numbers, they can be compared to standard
deviation units (see Chapter 10). This plot is called the quantile-quantile (QQ-) plot because
quantiles of the data distribution are plotted against quantiles of the hypothetical normal or
lognormal distribution. Figure 3.8 shows the QQ-plot for the Kola C-horizon Au data. In the
left hand diagram the original data are plotted along the x-axis. In the right hand diagram the
log-transformed values are plotted along the x-axis to reduce the impact of the two extreme
values. By changing the scaling of the y-axis, it is possible to check the distribution for log-
normality in both diagrams. When plotting the original data, the y-axis is scaled according
to the quantiles of the lognormal distribution. When plotting the log-transformed data, the
y-axis is scaled according to the quantiles of the normal distribution. This is possible because
the lognormal distribution is simply the logarithm of the normal distribution. For the standard
normal distribution 0 corresponds to the MEDIAN and the RANGE [−1, 1] indicates the
inner two-thirds of the data distribution. Unfortunately, the construction and interpretation
of the QQ-plot for different data distributions requires statistical knowledge about these data
distributions and their quantiles that is far beyond the scope of this book. The interested reader
can consult Chambers et al. (1983).

In general, when checking for other distributions (e.g., Poisson or gamma distributions), the
x-axis is always scaled according to the original data, and only the y-axis is changed according
to the quantiles of the expected distribution.

When plotting empirical data distributions in the QQ-plot, it may still be quite difficult to
determine whether the data points really follow a straight line. A simple and robust way to plot
a straight line into the diagram is to connect first and third quartiles of both axes. In addition
to the straight line 95 percent confidence intervals around that line can also be constructed.

The confidence interval encloses 95 percent of the data points that could have been drawn
from the hypothetical distribution. These limits can be used to support a graphical decision
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Figure 3.9 QQ-plots as shown in Figure 3.8 with a straight line indicating the hypothetical distribution
and the 95 percent confidence intervals as dashed lines

as to whether the empirical data originate from the hypothetical distribution. The width of
the confidence interval varies because the “allowed” deviation of data points from the straight
line depends on the number of samples. In the example plot (Figure 3.9) the upper tail of the
distribution clearly deviates from log-normality.

3.4.4 The cumulative probability plot (CP-plot)

The examples above demonstrate that a scale forcing the points in the plot to follow a straight
line is useful. Because in the QQ-plot the scaling of the y-axis is different from distribution
to distribution, it would be much easier if the y-axis were expressed in probabilities. In the
pre-computer times such a plot was constructed on probability paper that was especially de-
signed for a normal (or lognormal) distribution. This procedure was originally introduced to
geochemists by Tennant and White (1959), Sinclair (1974, 1976) and others. The graph in the
plot is exactly the same as in the QQ-plot. When using a computer, it is no longer necessary to
limit the QQ-plot to a normal (lognormal) distribution. Any other distribution could be intro-
duced for scaling the y-axis. If the scale on the y-axis is expressed in probabilities rather than in
quantiles, the plot is generally named the cumulative probability plot (CP-plot) (Figure 3.10).
Note that when checking for normality, the probabilities as expressed along the y-axis can
never reach zero or one because these values would correspond to quantiles of minus infinity
or plus infinity, respectively.

The CP-plot with log-scale for the data (Figure 3.10, right hand side) is especially use-
ful because it allows direct visual estimation of the MEDIAN (50th percentile) or any
other value from the x-axis or the percentage of samples falling below or above a cer-
tain threshold (e.g., a maximum admissible concentration (MAC)) from the y-axis. It also
allows the assigning of a percentage to any break in the curve; in the example several
breaks in the Au data are visible, the first one occurs at about 85 per cent (c. 1.5 �g/kg
Au), the next at 95 per cent (c. 3 �g/kg Au) of the data. Just as in the QQ-plot, the
straight line to judge whether the empirical data follow the hypothetical distribution can be
shown.
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Figure 3.10 CP-plots for Au in the Kola Project C-horizon soil data set as shown in Figures 3.6, 3.7
and 3.8. Left hand side: x-axis non-transformed data, y-axis probabilities in per cent; right hand side:
x-axis log-transformed data, y-axis probabilities in per cent

3.4.5 The probability-probability plot (PP-plot)

Yet another version of these diagrams is the probability-probability (PP-) plot. Instead of
plotting quantiles of the hypothetical distribution against the quantiles of the data distribution
at fixed probabilities (QQ-plot), the probability of the hypothetical distribution is plotted against
the probability of the empirical data distribution at fixed quantiles (PP-plot). The advantage
of the PP-plot is that while the QQ-plot and the CP-plot can be dominated by extreme values,
these cannot dominate the PP-plot because of their low probability. The PP-plot will thus focus
the attention on the main body of data. In the example plot (Figure 3.11) an additional flexure
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Figure 3.11 PP-plots for Au in the Kola Project C-horizon soil data set as shown in Figures 3.7, 3.8, 3.9,
and 3.10. Left hand side x-axis: probabilities referring to the non-transformed data, y-axis: probabilities
for lognormal distribution; right hand side x-axis: probabilities referring to the log-transformed data,
y-axis: probabilities for the normal distribution
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at about 20 percent of the Au distribution becomes visible. This is visible as a weak flexure
in the ECDF-plot (Figure 3.7) at 0.5 �g/kg Au. The main disadvantage of the PP-plot is that
the relation to the original data is completely lost, whereas it is retained in the ECDF- and
CP-plot. It is of course possible to use the PP-plot in combination with the CP-plot to identify
the data value for 20 percent. A combination of CP-plot and ECDF- or PP-plot may thus be
quite powerful in obtaining a more complete picture of the data distribution. Single extreme
values are of course hardly visible in the PP-plot though they are in the ECDF-plot. Just as in
the QQ- and CP-plot, a straight line can be introduced in the PP-plot to check for agreement
with a hypothetical distribution.

3.4.6 Discussion of the distribution function plots

Depending on the empirical data distribution of a given variable, the different versions of
these plots all have their merits, especially when the task is to detect fine structures (breaks
or flexures) in the data. If only one plot is to be presented, it is advisable to look first at the
different possibilities and then select the most informative for the variable under study because
this will depend on the actual data distribution of each variable. In applied geochemistry the
CP-plot with logarithmic x-axis is probably the most frequently used (Figure 3.10, right).
In combination with the less frequently used ECDF-plot and the almost never used PP-plot
(Figure 3.11, right), it holds the potential to provide a very realistic picture of the complete
data distribution.

As mentioned above, one of the main advantages of these diagrams is that each single data
value remains observable. The range covered by the data is clearly visible, and extreme outliers
are detectable as single values. It is possible to directly count the number of extreme outliers
and observe their distance from the core (main mass) of the data.

When looking at a selection of these plots for As (Figure 3.12), several data quality
issues can be directly detected; for example, the presence of discontinuous data values at the
lower end of the distribution. Such discontinuous data are often an indication of the method
detection limit or too-severe rounding, discretisation, of the measured values reported by the
laboratory. The PP-plot corresponding to the log-transformed data shows most clearly how
serious an issue this data discretisation due to rounding of the values by the laboratory can
become.

Values below the detection limit, set to some fixed value, are visible as a vertical line at
the lower end of the plots, and the percentage of values below the detection limit can be
visually estimated. The CP-plot with logarithmic scale (middle right figure) displays this best.
The detection limit for As was 0.1 mg/kg, about two per cent of all values plot below the
detection limit (Figure 3.12). From 0.1 to 1 mg/kg the As values were reported in 0.1 mg/kg
steps – obviously a too-harsh discretisation for the data at hand, causing artificial data structures
(Figure 3.12). The presence of multiple populations results in slope changes and breaks in the
plots (Figure 3.12).

3.5 Boxplots

The boxplot is one of the most informative graphics for displaying a data distribution. It is
built around the MEDIAN (see Chapter 4), which divides any data set into two equal halves.
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Figure 3.12 Six different ways of plotting distribution functions. Upper row: empirical cumulative
distribution function plots (ECDF-plots); middle row: cumulative probability plots (CP-plots); lower
row: probability-probability plots (PP-plots). Left half of diagram: data without transformation; right
half of diagram: plots for log-transformed data

3.5.1 The Tukey boxplot

Tukey (1977) introduced the boxplot to exploratory data analysis. The construction of the
Tukey boxplot is best demonstrated using a simple sample data set, consisting of only nine
values:

2.3 2.7 1.7 1.9 2.1 2.8 1.8 2.4 5.9.
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The data are sorted to find the MEDIAN:

1.7 1.8 1.9 2.1 2.3 2.4 2.7 2.8 5.9.

After finding the MEDIAN (2.3), the two halves (each of the halves includes the MEDIAN)
of the data set are used to find the “hinges”, the MEDIAN of each remaining half:

1.7 1.8 1.9 2.1 2.3 2.4 2.7 2.8 5.9.

These upper and lower hinges define the central box, which thus contains approximately
50 percent of the data. In the example the “lower hinge” (LH) is 1.9, the “upper hinge” (UH)
is 2.7. The “inner fence”, a boundary beyond which individuals are considered extreme values
or potential outliers, is defined as the box extended by 1.5 times the length of the box towards
the maximum and the minimum. This is defined algebraically, using the upper whisker as an
example, as

Upper inner fence (UIF) = UH(x) + 1.5 · HW(x).
Upper whisker = max(x[x ≤ UIF]).

where HW (hinge width) is the difference between the hinges (HW=upper hinge–lower hinge),
approximately equal to the interquartile range (depending on the sample size), i.e. Q3−Q1
(75th − 25th percentile); and the square brackets, [. . . ] indicate the subset of values that meet
the specified criterion.

The calculation is simple for the example data:

Hinge width, HW = UH − LH = 2.7 − 1.9 = 0.8.

Lower inner fence, LIF = LH − (1.5 · HW) = 1.9 − (1.5 · 0.8) = 0.7.

Upper inner fence, UIF = UH + (1.5 · HW) = 2.7 + (1.5 · 0.8) = 3.9.

By convention, the upper and lower “whiskers” are then drawn from each end of the box to
the furthest observation inside the inner fence. Thus the lower whisker is drawn from the box
to a value of 1.7, the lower whisker and minimum value are identical, and the upper whisker is
drawn to the value of 2.8. Values beyond the whiskers are marked by a symbol, in the example
the upper extreme value of (5.9) is clearly identified as an extreme value or data outlier (see
Chapter 7) and is at the same time the maximum value.

Figure 3.13 shows a “classical” Tukey boxplot for Ba in the Kola C-horizon samples. No
lower extreme values or outliers are identified. The lower inner fence is lower than the minimum
value, and thus the lower whisker terminates at the location of the minimum value. The upper
inner fence and termination of the upper whisker fall together in this example, and all values
to the right of the upper whisker are identified as upper extreme values or outliers.

In summary, the Tukey boxplot – one of the most powerful EDA graphics – shows in
graphical form:

� the “middle” (MEDIAN) of a given data set, identified via the line in the box;
� spread (see Chapter 4) by the length of the box (the hinge width);
� skewness (see Chapter 4) by the symmetry of the box and whisker extents about the median

line in the box;
� kurtosis (see Chapter 4) by the length of the whiskers in relation to the width of the box;
� the existence of extreme values (or outliers – see Chapter 7), identified by their own

symbol.
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Figure 3.13 Tukey boxplot for Ba in the Kola C-horizon soil samples

Furthermore, because the construction of the boxplot is based on quartiles, it will not be
seriously disturbed by up to 25 percent of “wild” data at either end of the distribution. It is not
even seriously influenced by widely different data distributions (Hoaglin et al., 2000).

3.5.2 The log-boxplot

It is important to recognise that the calculation of the whiskers in the above formula assumes
data symmetry, lack of which is easily recognised by the median line not being close to the
middle of the box. The recognition of extreme values and outliers is based on normal theory,
and the standard deviation (SD) of the distribution is estimated via the hinge width (HW)
or interquartile range (IQR). So for the estimate of SD to be appropriate, there has to be
symmetry in the middle 50 percent of the data (see Chapter 4). Thus for strongly right-skewed
data distributions, as frequently occur in applied geochemistry, the Tukey boxplot based on
untransformed data will tend to seriously underestimate the number of lower extreme values
and overestimate the number of upper extreme values.

Figure 3.13 demonstrates that the boxplot detects a high number of upper extreme values
for the Ba data and no lower extreme values. The reason for this is due to the right-skewed
data distribution, indicated by the MEDIAN falling only one-third of the hinge width (HW)
above the lower hinge (LH). This feature was also apparent in the histogram and density
trace (Figures 3.3 and 3.5). These figures demonstrate that the Ba distribution approaches
symmetry when the data are log-transformed. The Tukey boxplot of the log-transformed data
will thus be suitable for providing a realistic estimate of the extreme values at both ends of the
data distribution. Figure 3.14 shows the Tukey boxplot for the log-transformed Ba data. As
expected, the number of upper extreme values is drastically reduced, and one lower extreme
value is now identified (Figure 3.14, upper diagram). It is of course possible to plot a log-scale
for the original data to regain the desirable direct relationship (Figure 3.14, middle). Because
the boxplot is reliable for symmetric distributions, it is appropriate to calculate the values for
the whiskers for the log-transformed distribution and then back-transform the values for the
fences to the original data scale (Figure 3.14 lower diagram). Note that the MEDIAN and
hinges will not be changed by log- and back-transformation because they are based on order
statistics. This version of the boxplot is called the log-boxplot and should be used when the
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Figure 3.14 Boxplots for Ba. Upper diagram: the boxplot of the log-transformed data. Middle diagram:
the same but scaled according to the original data. Lower diagram: log-boxplot of the original data
with whiskers calculated according to the symmetrical log-transformed data and back-transformed to
the original data scale – compare with the Tukey boxplot in Figure 3.13

original data are strongly skewed and it is still desirable to preserve the data scale. Comparison
of Figure 3.13 with Figure 3.14 (lower diagram) demonstrates that the limits of the box are not
changed; however, the extent and position of the whiskers and the number of extreme values
has changed dramatically.

In conclusion, the Tukey boxplot should not be applied to strongly skewed data distributions
without an appropriate data transformation because it will result in a wrong impression about
the upper and lower extreme values. Thus for applied geochemical data, the data distribution
should always be checked for symmetry before drawing either a Tukey boxplot or the log-
boxplot. In the majority of cases the log-boxplot (Figure 3.14, lower plot) will be better suited
to identify the number and position of extreme values.
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If the log-transformed data still deviate from symmetry, versions of the boxplot exist that
can deal with strongly skewed data sets and will still provide useful fences for extreme values
at both ends of the data distribution. They are based on a robust measure of skewness (Section
4.4) for the calculation of the fences for the lower and upper whiskers (Vandervieren and
Hubert, 2004).

3.5.3 The percentile-based boxplot and the box-and-whisker plot

The data symmetry problems with the Tukey boxplot are probably the reason why some workers
prefer to use a modified version, the percentile-based boxplot, where all definitions are based
on percentiles (see Chapter 4): MEDIAN and 25th and 75th percentile for the box and 2nd (or
5th to 20th) and 98th (or 80th to 95th) percentile for the whiskers.

However, when using a percentile-based boxplot, one of the major advantages of the Tukey
boxplot is lost, i.e. the “automatic” identification of extreme values. The percentile boxplot
will always identify a certain percentage of extreme values while it is possible that no extreme
values will be identified with the Tukey boxplot. When studying boxplots, it is essential to be
aware of the exact conditions used for their construction.

Because the Tukey boxplot, log-boxplot, and percentile-based boxplot all look the same to
the unsuspecting reader (compare Figures 3.13, 3.14 and 3.15), it should be good practice to
explain in the figure caption which version of the plot was used.

In the box-and-whisker plot (see, e.g., Garrett, 1988) the whiskers are drawn to stated
percentiles, e.g., the 5th and 95th, and the minima and maxima plotted as crosses. No attempt
is made to identify extreme values. The box-and-whisker plot is simply a graphical summary
of the data based on the order statistics (percentiles) with no assumptions concerning the

0 200 400 600 800 1000 1200

Ba [mg/kg]

0 200 400 600 800 1000 1200

Ba [mg/kg]

Figure 3.15 Percentile-based boxplot using the 5th and 95th (upper boxplot) and 2nd and 98th

percentile (lower boxplot) for drawing the whiskers. Variable Ba, Kola Project C-horizon; compare with
Figures 3.13 and 3.14
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n = 606

Figure 3.16 Box-and-whisker plot of the variable Ba, Kola Project C-horizon

underlying statistical model. Figure 3.16 is the box-and-whisker plot for Ba in Kola Project
C-horizon soils. The resulting plot is the same as the boxplot shown in Figure 3.15, upper
boxplot, without identifying all outliers or extreme values.

3.5.4 The notched boxplot

Often the information included in the Tukey boxplot is extended by adding an estimate of the
95 percent confidence bounds on the MEDIAN. This leads to a graphical test of comparability
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Figure 3.17 Histogram, density trace, one-dimensional scatterplot, and boxplot in just one display,
combined with the ECDF-plot. Variable Ba, Kola Project C-horizon. Upper diagrams: original data (with
log-boxplot); lower diagrams: log-transformed data
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– much like the more formal t-test (see Chapter 9) – of MEDIANS via notches in the boxplot.
This use of boxplots is discussed in Section 9.4.1.

3.6 Combination of histogram, density trace, one-dimensional scatterplot,
boxplot, and ECDF-plot

Several of the plots named so far – one-dimensional scatterplot, histogram, density trace and
boxplot – can advantageously be combined into just one display (Reimann, 1989). Figure 3.17
(left) shows this combined graphic for Ba. The ECDF-plot is another graphic that will reveal
interesting properties of the data distribution (Figure 3.17, right). In contrast to the QQ-, CP-,
or PP-plot, the ECDF-plot is not based on the assumption of any underlying data distribution.
It is thus ideally suited as an exploratory data analysis tool in the first stages of data analysis.

In combination these graphics provide an excellent first impression of the data, as each of
them highlights a different aspect of the data distribution (Figure 3.17). Figure 3.17 shows that
Ba is strongly right skewed for the original data. It displays an almost symmetrical distribution
for the log-transformed data. For the log-transformed data both the one-dimensional scatterplot
and ECDF-plot show some minor disturbances at the lower end of the Ba distribution. For
further work with most statistical methods requiring symmetrical data, the log-transformed
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Figure 3.18 Combination of histogram, Tukey boxplot, ECDF-, and CP-plot for the variable Ba, Kola
Project C-horizon
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values of this variable should obviously be used. One could also conclude that the log-boxplot
should be used for further work with this variable for a realistic identification of extreme values
whenever the data are kept in the original scale.

3.7 Combination of histogram, boxplot or box-and-whisker plot,
ECDF-plot, and CP-plot

A different combination of the plots in this chapter has also proven informative in a single
display (Figure 3.18). Using the data for Ba in Kola C-horizon soils, the histogram in the
upper left is the same as in Figure 3.17. The upper right display is either a Tukey boxplot
or a box-and-whisker plot, the user’s choice. The lower left display is an ECDF-plot and the
lower right a CP-plot. The ECDF-plot and CP-plot permit easy inspection of the middle and
extreme parts of the data distribution, respectively. The choice of Tukey boxplot or box-and-
whisker plot depends on whether the user wishes to identify potential outliers or simply have
an order statistics based replacement for the histogram. The plotting of the Tukey boxplot
above the CP-plot permits easy comparison of the two plots. Figure 3.18 indicates that all plots
are dominated by some few extreme values. Thus the whole display should be plotted using
logarithmic scaling (Figure 3.19).
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Figure 3.19 The same plot as Figure 3.18 using logarithmic scales



50 GRAPHICS TO DISPLAY THE DATA DISTRIBUTION

3.8 Summary

When working with a new data file it is highly advisable to study the data distribution in detail
before proceeding to all subsequent statistical analyses. Many statistical methods are based
on assumptions about the data distribution. A documentation of the data distribution will help
to decide which statistical methods are appropriate for the data at hand. A histogram alone is
not sufficient to get a good impression of the data distribution. The impression gained from
histogram and density trace alone depends strongly on the choice of parameters. A combination
of different graphics will often provide greater insight into the data distribution. All variables
should thus be documented in a combination of summary plots, e.g., histogram combined with
density trace, boxplot and one-dimensional scatterplot and ECDF- or CP-plots.

It is advisable to have copies of a number of distribution graphics for all variables under
study at hand for easy reference when more advanced data analysis methods are applied.



4
Statistical Distribution Measures

When studying the data distribution graphically, it is apparent that the distributions of the
variables can look quite different. Instead of looking at countless data distributions, it may
be desired to characterise the data distribution by a number of parameters in a table. What is
required?

First the central value of the distribution needs to be identified, together with a measure
of the spread (variation) of the data. Furthermore, the quartiles and different percentiles of
the distribution may be of interest (i.e. above what value fall the uppermost two, five, or ten
per cent of the data).

When working with “ideal” data, two further measures are often provided in statistical
tabulations: skewness and kurtosis. Skewness is a measure of the symmetry of the data dis-
tribution, kurtosis provides an expression of the curvature – the appearance of the density
trace can be flat or steep. Such “summary values” are frequently used to compare data from
different investigations. For real data there is often the problem that the presence of outliers
and/or multimodal distributions will bias these measures. Both can be easily recognised from
the graphics described in the previous chapter.

4.1 Central value

What is the most appropriate estimator for the central value of a data distribution? What is
actually the central value of a distribution? It could be the “centre of gravity”, it could be the
most likely value, it could be the most frequent value, it could be the value that divides the
samples into two equal halves. Accordingly there exist several different statistical measures of
the central value (location) of a data distribution.

4.1.1 The arithmetic mean

The most frequently used measure is probably the arithmetic mean. Throughout this book we
will use the term MEAN for the arithmetic mean. All values are summed up and divided by
the number of values. If x1, x2, . . . , xn denotes the values of the data with n indicating the

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6
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number of samples, the simple formula for calculating the arithmetic mean is:

MEAN = 1

n

n∑
i=1

xi.

4.1.2 The geometric mean

The geometric mean G is often used with advantage for right-skewed (e.g., lognormal) distri-
butions. G is calculated by taking the n-th (n = number of samples) root of the product of all
the data values. It requires that all values are positive, negative values or zeros in the data set
are not permitted. When dealing with applied geochemical data, this is the usual case, negative
concentrations of a chemical element cannot exist, and the concentration is always conceptu-
ally greater than zero, even if it is so low that it cannot be measured. An exception may be
measurements of organic pollutants that do not occur in nature, where the concentration could
actually be zero. The formula is:

G = n
√

x1 · x2 · · · xn or n

√√√√
n∏

i=1

xi.

Using this form of calculation should be avoided as rounding errors may occur due to the
arithmetic precision limitations of computers. A preferable method is to use logarithms, then:

mean = 1

n

n∑
i=1

log(xi) and G = 10mean or G = emean

depending on whether logarithms to the base 10 or natural logarithms were used.

4.1.3 The mode

The MODE is the value with the highest probability of occurrence. There is no simple formula
to estimate the mode; however, the mode is often estimated from a histogram or density trace –
the MODE being the value where the histogram or density function shows a maximum.

4.1.4 The median

The MEDIAN divides the data distribution into two equal halves. The data are sorted from the
lowest to the highest value, and the central value of the ordered data is the MEDIAN. In the
case that n is an even number, there exist two central values and the average of these two values
is taken as the MEDIAN. This may best be demonstrated by a simple example:

2.3 2.7 1.9 2.1 1.8 2.4 2.0 5.9.

The data are then sorted:

1.8 1.9 2.0 2.1 2.3 2.4 2.7 5.9.

The two central values are:

1.8 1.9 2.0 2.1 2.3 2.4 2.7 5.9,

and the MEDIAN is (2.1 + 2.3)/2 = 2.2.
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For comparison, the MEAN of these eight values is 2.64, the geometric mean, G, is 2.44,
and to estimate a MODE does not make much sense when dealing with so few data. Looking at
the differences between the MEAN, G, and MEDIAN demonstrates that it may be difficult to
define a meaningful central value. These large differences between the estimates of the central
value are caused by the one high value (5.9) that clearly deviates from the majority of data.
When computing the MEAN, each value enters the calculation with the same weight. The high
value of 5.9 thus has a strong influence on the MEAN. The logarithm of the geometric mean
G is the arithmetic mean of the log-transformed data. Log-transforming (base 10) the above
data:

0.26 0.28 0.30 0.32 0.36 0.38 0.43 0.77;

the MEAN of these log-transformed values is 0.39. When this value is transformed back
(100.39), the value of the geometric mean G, 2.44, is obtained. Thus the same problem observed
for the MEAN remains, G is attracted by the (still) extreme value of 0.77, though to a lesser
extent due the nature of the logarithmic transformation. Using the above example, the difference
between the MEDIAN and maximum is 3.7 units, but in logarithmic units the difference is
only 0.43. Clearly, when calculating the arithmetic mean, the maximum value will have less
leverage when using logarithmically transformed data.

Because the MEDIAN is solely based on the sequence of the data values, it is not affected
by extreme values – the extreme value could even be much higher without any influence on
the MEDIAN. The MEDIAN would not even change when not only the largest value but also
the next two lower values were much higher (or the lowest values much lower). For large n the
MEDIAN is resistant to up to 50 per cent of the data values being extreme. Thus the MEDIAN
may be the best measure of the central value if dealing with data containing extreme values.

4.1.5 Trimmed mean and other robust measures of the central value

To this point four methods of obtaining a central value have been discussed. However, others
exist, such as calculating a trimmed mean. Here a selected proportion of extreme data values
are excluded before calculating the mean. Thus the five per cent trimmed mean would be the
mean of the data between the 5th and 95th percentiles, i.e., the top and bottom five per cent of
the data have been discarded from the calculation. Because the exact proportion that should be
trimmed is unknown, the procedure introduces an amount of subjectivity into computing the
mean. Graphical inspection of the data distribution, e.g., in the CP-plot, can be very helpful in
deciding on the trimming percentage. There are other robust estimators (i.e. estimators that are
less influenced by data outliers and deviations from the model of a normal data distribution) of
the central value, based on the M-estimator (Huber, 1964). Data points that are far away from
the centre of the distribution are down-weighted by these robust estimators. The M-estimator
is less robust than the MEDIAN. However, because the MEDIAN uses less information it is
less precise in estimating the central value of the underlying distribution.

4.1.6 Influence of the shape of the data distribution

It has been demonstrated how the different measures of the central value behave when the data
contain one (or several) extreme value(s). How does the shape of the distribution influence the
central value? Figure 4.1 shows, starting with a normal distribution, how the different measures
of the central value depend on the shape of the data distribution.
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Figure 4.1 Graphical presentation of a selection of different statistical data distributions (normal,
lognormal, chi-square, Student t, exponential and multimodal) and the location of the four different
measures of the central value discussed in the text

In the case of a normal distribution, all four measures will, theoretically, take the same
value (Figure 4.1), though there may be slight differences depending on the actual data. For a
normal distribution the MEAN is the best (most precise) central value.

For a lognormal distribution important differences occur – the arithmetic mean is strongly
influenced by high values (Figure 4.1). The MEDIAN and G are (theoretically) equal. The
reason is that the logarithm of the lognormal distribution is a normal distribution. Thus the
geometric mean G of the lognormal distribution corresponds to the MEAN of the normal
distribution. For a normal distribution the MEAN is the best measure of the central value. Thus
G can be considered as the best measure of the central value of a lognormal distribution. The
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position of the MEDIAN will not be influenced by a logarithmic transformation. Thus we get
the same value for G and MEDIAN. The MODE is lower than all other measures and identifies
the peak of the lognormal distribution. Still, the MODE may not be the best measure of the
central value because far fewer data occur below the mode than above. The MEDIAN still
separates the data into two equal halves and is, together with the geometric mean G, a good
measure of the central value for a lognormal distribution. The most precise measure is again
the MEAN, calculated for the log-transformed data and then back-transformed to the original
data scale.

The Student t distribution is a symmetrical distribution with a different shape than the normal
distribution (Student (W.S. Gosset), 1908). The likelihood that it contains values that are far
away from the centre of the distribution is much higher; it has “heavy tails”. The “heaviness” of
the tails depends on a property named the degrees of freedom (df) (see, e.g., Abramowitz and
Stegun, 1965). A small value of df results in very heavy tails. With ever increasing df the shape
of the normal distribution is approached. Because the distribution is symmetrical, in theory all
four measures of the central value are again equal (Figure 4.1). However, in practice the Student
t distribution describes data with many extreme values, and thus the measures can strongly
deviate from each other. Of the measures discussed here, the MEDIAN is the only reliable
measure of the central value because it is resistant to a high proportion of extreme values.

The chi-square distribution is a right-skewed distribution (see, e.g., Abramowitz and Stegun,
1965). As for the t distribution, the parameter df (degrees of freedom) determines the shape.
With increasing df the distribution becomes more and more symmetric and will in the end
approximate the normal distribution. All four measures of the central value will usually differ
(MODE < G < MEDIAN < MEAN – Figure 4.1). The MEAN is influenced by the high
values (right-skewed distribution). The geometric mean G will be influenced by the low values
because the log-transformed values of a chi-square distribution are left skewed. The MODE
identifies the peak, but in a right-skewed distribution fewer values will occur below the MODE
than above. The MEDIAN is thus the best measure of the central value.

The exponential distribution is again right skewed, and the same sequence of the measures
of the central value as for the chi-square distribution is observed. The reasons are the same.
Here the MODE is zero and uninformative. Again the MEDIAN is the best measure of the
central value.

A multimodal distribution has more than one peak. All four measures of the central value
will generally provide different locations. In the case shown in the example plot (Figure 4.1),
it is very difficult to decide which measure is the best indication of the central value because
three data populations are clearly present where the distribution functions are superimposed on
one-another. It would be best to separate the three distributions and estimate the central value
of each distribution individually. This is impractical because of the extent of the area of overlap
and one central value for the whole distribution has to be estimated, even knowing that the
central value will not be meaningful for any of the three underlying distributions. The MODE
will be meaningful as a central value for one population. MEAN and G can both be strongly
influenced by outliers or skewness. The MEDIAN still divides the resulting total distribution
into two equal halves and may thus again be the best measure of the central value. Note that it
is impossible to transform this distribution to approach symmetry.

In conclusion, it can be stated that the MEDIAN is the most suitable measure of the
central value when dealing with distributions with different shapes (i.e. when working with
real data). It is also preferable because it is robust against a sizeable proportion of extreme
values.
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4.2 Measures of spread

The central value can be used to compare data. However, even with the same central value,
the data can exhibit completely different distributions. An additional measure of variation is
required for a better description of the data.

How can the variation of data be characterised? Statisticians define the variance as the
average squared deviation from the central value. For practical purposes variance may not be
the most usable measure because it is expressed in squared units. A measure expressed in the
same unit as the data may thus be desired. Such a measure is called a “measure of spread”
rather than the measure of variance.

One possibility to estimate a measure of spread is to look at the interval into which the data
fall, i.e. maximum value minus minimum value. To make this measure more robust against
(i.e. less influenced by) extreme values one could choose to look at the interval defined by
the “inner” 50 per cent of the data. Another possibility is to consider the variation of the data
points around the central value.

4.2.1 The range

The RANGE is defined as maximum (MAX) minus the minimum (MIN) and thus gives directly
the interval length from the smallest to the largest values:

RANGE = MAX − MIN.

However, real data often contain extreme values (data outliers). The RANGE is extremely
sensitive to outlying data and thus not usually a good descriptor of the data variation when
working with applied geochemical or environmental data.

4.2.2 The interquartile range (IQR)

A more robust equivalent of the RANGE is the interquartile range, IQR. Instead of calculating
MAX − MIN, the difference between the 3rd and the 1st quartile of the data is calculated. Thus
the upper and lower 25 per cent of the data are not used in the calculation; the IQR measures the
range of the inner 50 per cent of the data. To reach conformity with the spread measure of the
underlying data distribution, the IQR needs to be multiplied by a constant. For an underlying
normal distribution the value is 0.7413. The resulting formula for the spread-measure IQR of
a normal distribution is:

IQR = 0.7413 · (Q3 − Q1),

where Q1 and Q3 are 1st and 3rd quartiles of the data.
The IQR is robust against 25 per cent of data outliers or extreme values, and thus considerable

deviations in the tails of the normal distribution can be tolerated. Because the IQR is robust, it
can be used as a measure of spread even for real data that are skewed and have a high proportion
of outliers.
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4.2.3 The standard deviation

The standard deviation, SD, considers (just like the MEAN) each single data point. The average
of the squared deviations of the individual values from the arithmetic mean is computed. This
describes the average spread (n is replaced by n − 1 to correct for the estimated mean) of the
data around the central value. To report the measure in the original data units, the square root
of the results is defined as the SD:

SD =
√√√√ 1

n − 1

n∑
i=1

(xi − MEAN)2.

When calculating the standard deviation for real data, the problem again is that each data value
has the same weight. If the data are skewed and/or extreme values are present, not only will the
MEAN be biased (see above), but the SD will be even more biased (because squared deviations
are used to estimate it). Because of this fact, the SD should never be calculated for data without
a prior check of the distribution. If the data do not show a symmetrical distribution, it is most
prudent to not estimate and provide a SD.

To get a meaningful estimate of the standard deviation, the distribution must approach
normality before any calculations (see Chapter 10 on transformations). In the case of data
with a normal distribution, the SD is the best measure of spread. In applied geochemistry
and the environmental sciences, the data are sometimes strongly right skewed, and then
the standard deviation is not a useful measure of spread. The MEAN can be calcu-
lated for the log-transformed data and then re-transformed to the original data scale. The
spread (expressed as SD), however, cannot be calculated for the log-transformed data
and then back-transformed to the original data scale, because the scale is changing un-
der transformation (see Figure 3.3, histogram, and compare range for the original data
(RANGE = MAX(Ba) − MIN(Ba) = 1300 − 4.7 = 1295.3) and for the log-transformed data
(RANGE = MAX(log10(Ba)) − MIN(log10(Ba)) = 3.11 − 0.67 = 2.44)).

4.2.4 The median absolute deviation (MAD)

The robust equivalent of the SD is the median absolute deviation, MAD. It is also a measure
of average deviation from the central value. In contrast to the SD, for calculating the MAD
the MEDIAN is taken as the central value. The absolute deviations are computed and their
average estimated with their MEDIAN. Unlike the standard deviation, and like the IQR-based
estimate of spread, it is not necessary to take the square root because the MAD is already in
the same unit as the data. The median of the absolute deviations provides a value that again
has to be multiplied by a constant so that it conforms to the underlying distribution, to provide
the MAD. For the normal distribution the constant is 1.4826.

MAD = 1.4826 · mediani(|MEDIAN − xi|).

The MAD is robust against up to 50 per cent of extreme values in the data set because it is
based solely on MEDIANS. Due to the robustness of the MAD considerable deviations from
the normal distribution are tolerable.
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When looking at the above example data set (Section 4.1.4):

1.8 1.9 2.0 2.1 2.3 2.4 2.7 5.9,
MEDIAN = 2.2;

to estimate the MAD, the difference between the values and the MEDIAN is calculated, namely:

−0.4 −0.3 −0.2 −0.1 +0.1 +0.2 +0.5 +3.7.

Then the differences are arranged in order of magnitude (neglecting the sign) and the MEDIAN
of these ordered values is determined:

0.1 0.1 0.2 0.2 0.3 0.4 0.5 3.7,
MEDIAN = 0.25.

The MEDIAN of the deviations is 0.25. Note that this value is again not influenced by the
absolute value of the outlier. The MAD is calculated by multiplying the MEDIAN of the
deviations with the “normal distribution” factor (1.4826, see above).

MAD = 1.4826 · 0.25 = 0.37.

Just for comparison the RANGE of our simple data set is 4.1, the SD is 1.35, and the IQR is:

IQR = 0.7413 · (2.55 − 1.95) = 0.44.

Note that if we use R to calculate the IQR, we will get a slightly different result (IQR = 0.37)
because R uses a better approximation of the quartiles. As mentioned above, just like IQR, the
MAD can be applied as a useful measure of spread for real data even when working with the
untransformed (original) data.

4.2.5 Variance

Range, IQR, SD, and MAD all have a direct relation to the unit of the data. All these measures
of spread can be used to estimate the variance by simply taking the square of the obtained
values. The “sample variance” is defined as

VAR = 1

n − 1

n∑
i=1

(xi − MEAN)2,

and the SD is calculated as the square root of VAR.

4.2.6 The coefficient of variation (CV)

The coefficient of variation (relative standard deviation) is independent of the magnitude of
the data and thus of the data measurement units. It is usually expressed in per cent (CV values
times 100 in percent). It is well suited to compare the variation of data measured in different
units, or the variation in data sets where the MEDIANS are quite different. The coefficient of
variation (CV), also known as the relative standard deviation (RSD), is defined as:

CV % = 100 · SD

MEAN
.
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4.2.7 The robust coefficient of variation (CVR)

The robust coefficient of variation, CVR, is defined as:

CVR % = 100 · MAD

MEDIAN
.

Just as the CV, it is usually expressed in per cent.

4.3 Quartiles, quantiles and percentiles

Quartiles, quantiles and percentiles have already been used in the previous chapter when dis-
cussing QQ-, CP- and PP-plots and constructing a boxplot. Quartiles divide the data distribution
into four equal parts. One-quarter of the data occur below the first quartile, three-quarters of the
data above the first quartile. The MEDIAN has been defined in Section 4.1.4 – half of the data
occur above the MEDIAN, accordingly the other half of the data occur below the MEDIAN.
Three-quarters of the data occur below the third quartile and one-quarter above.

For studying the tails of a given data distribution, one could be interested in other fractions
than quartiles. Generally, an α-quantile is defined as the value where a fraction α of the data is
below and the fraction 1 − α is above this value. Values of α = 0.02, 0.05, 0.1, 0.9, 0.95, and
0.98 are often of special interest to identify extreme values of a given data distribution.

Percentiles are defined analogously to quantiles. For percentiles the sought fractions of α

are expressed in percent, i.e. 2, 5, 10, 90, 95, and 98 per cent of the data distribution.
The position of quartiles, quantiles, and percentiles in a given data set is not changed

by strictly monotone transformations like the log-transformation. This fact was used when
constructing the log-boxplot (Section 3.5).

4.4 Skewness

Skewness is a measure of the symmetry of the data distribution, it is computed as the third
moment about the mean (the variance is the second moment about the mean) (see, e.g.,
Abrramowitz and Stegun, 1965). Skewness is zero if a distribution is symmetric, it takes
on negative values for left-skewed data and positive values for right-skewed data. The value
in itself conveys little. Skewness should be standardised with a constant, depending on the
sample size. The standardised skewness should be in the range ±2, otherwise the skewness
must be considered to be extreme.

4.5 Kurtosis

Kurtosis is a measure that will indicate whether the data distribution is flat or peaked, it is
computed as the fourth moment about the mean (see, e.g., Abrramowitz and Stegun, 1965).
For a normal distribution the normalised kurtosis is zero, the “raw” kurtosis is three. It takes
negative values for peaked (most values in the centre of the distribution) and positive values
for flat (many values towards the tails of the distribution) distributions. Just as skewness, it
should be standardised with a constant depending on the number of samples. If the standardised
kurtosis is outside the limit ±2, it is considered to be extreme.
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4.6 Summary table of statistical distribution measures

As a first general description of a data set, a summary table of some (or all) of the above
distribution measures is often needed. Table 4.1 shows such a table for selected variables of
the Kola Project Moss data set. It is up to the individual scientist to decide which parameters,
and especially how many percentiles, are included in such a table. According to the above
discussions, the variable name, minimum and maximum values, a central value (the MEDIAN
will usually be the most suitable choice when working with “real” data), and a measure of spread
(if the MEDIAN is provided as the central values MAD or CVR will be the best measures of
spread) should be provided as a minimum. Number of samples, 2nd and 98th percentile, and
the IQR are also of considerable interest. For environmental or geochemical data, the unit of
the variable and the lower detection limit should also be included.

Table 4.1 shows that for the Moss data set a detection limit problem exists for quite a number
of variables (minimum value < value of the detection limit, e.g., Ag, B, Bi, Cr, Na, Tl, U). For
these variables the number (or percentage) of samples below the detection limit is important to
know – if it is not provided in the summary table, it is important to consult the CP-plot of these
variables to determine the actual percentage. MEDIAN and G (also called “MEAN-log”, as it
is equal to the back-transformed arithmetic mean of the log-transformed data) are often quite
comparable and in the majority of cases considerably lower than the MEAN. This is a clear
indication of right-skewed distributions. For the same reason the values for SD are usually much
higher than those for MAD and IQR. The table clearly indicates that MEAN and SD do not
provide realistic measures of location and spread for most of the data. MEAN and SD are used
to calculate CV. It is thus no surprise to note the major difference between CV and its robust
counterpart CVR. For the data at hand, the CVR is the most reliable estimate of the coefficient
of variation. The elements Ni, Na, and Co show the highest CVR. The distributions of Ni and Co
are strongly influenced by the emissions from the Russian nickel industry, the distribution of Na
is strongly influenced by the steady input of marine aerosols along the coast of the Barents Sea.
Variables with a high CVR may thus suggest the existence of an unusual process in a survey area.

In Table 4.1 all variables are reported in the same unit (mg/kg). Many scientists use different
units to provide a more comparable data range for the variables. This is quite convenient for
tabulating data because all numbers can be shown in the same format and kept short. However,
for comparisons between variables, it is always necessary to consider two different pieces of
information, the data value and the unit, at the same time. The direct comparability of variables
is thus limited. For computing and graphical data analysis, the “beauty of the number” is of
no importance. Many data analysis systems do not permit storing and using both the unit and
the value of the variables. Unit and values can thus become separated, and it can be quite
difficult to “guess” a unit for a variable. For practical purposes and direct comparability of the
values it is thus a good idea to reduce all values to just one unit wherever possible. In applied
geochemistry the most convenient data unit is mg/kg, and to avoid confusion in case the unit
is lost at some stage of data processing, it may be a good idea to keep all values in all data files
in just this one unit (see discussion in Chapter 2).

4.7 Summary

A number of statistical parameters are available to characterise a distribution. For the “classical”
normal distribution arithmetic mean and standard deviation are best suited. Environmental
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data will usually deviate from the normal distribution and it is better to routinely use robust
counterparts, e.g., MEDIAN and median absolute deviation (MAD).

A good summary table of the variables contained in a data set will provide auxiliary in-
formation in addition to the “usual” statistical parameters, e.g., number of values, number of
missing samples (if any), the measurement unit(s), the detection limits. A comparison of “clas-
sical” and “robust” parameters will prove informative. If these clearly deviate there is good
reason to take great care during any subsequent statistical analysis of the data. Such deviations
indicate the presence of data outliers and/or skewed data distributions.



5
Mapping Spatial Data

As mentioned in the introduction, most data sets in applied earth sciences differ from data col-
lected by other scientists (e.g., physicists) because they have a spatial component. They present
data for individuals/samples that were taken somewhere on Earth. In addition to analytical re-
sults, the samples are characterised by coordinates. During data analysis of environmental
and earth science research results, this spatial component must be included. To effectively
study the spatial component, the data’s statistical structure must be shown in appropriate maps
(Reimann, 2005).

Many studies investigating the regional distribution of chemical elements in different sample
materials have been prepared during the last 40 years. Geochemical atlases or collections of
regional distribution maps of selected chemical elements are available for many countries
(see, e.g., Webb et al., 1964, 1978, Webb and Howarth, 1979, Weaver et al., 1983, Shacklette
and Boerngen, 1984; Fauth et al., 1985; Bølviken et al., 1986; Jianan, 1989; Thalmann et al.,
1989; Lahermo et al., 1990; Kolijonen, 1992; McGrath and Loveland, 1992; British Geological
Survey, 1993; National Environment Protection Agency of the People’s Republic of China,
1994; Rühling, 1994, Lis and Pasieczna, 1995; Lahermo et al., 1996; Mankovská, 1996; Rapant
et al., 1996; Rühling et al., 1996; Reimann et al., 1998a; Rühling and Steinnes, 1998; Siewers
and Herpin, 1998, Čurlı́k and Šefčı́k, 1999; Kadunas et al., 1999; Li and Wu, 1999; Rank et
al., 1999; Ottesen et al., 2000; Siewers et al., 2000; Gustavsson et al., 2001, Skjelkvåle et al.,
2001a,b; Reimann et al., 2003; Salminen et al., 2004, 2005).

The resulting maps from some of these investigations may look informative whereas others
are featureless. Is this a question of the area or element mapped, or the area’s size? Is it just a
question of whether there are anomalies, outliers, present in the mapped area? Has it something
to do with the way the map was designed, and is it thus a question of art? Or is it possible to
make technical mistakes when preparing a geochemical map that will result in a severe loss of
information? There is of course, also, the underlying additional question of whether this might
be a consequence of poor survey design and data quality.

Considering the costs invested in sample collection and chemical analyses to make a geo-
chemical map, and particularly for producing a multi-element geochemical atlas, it is surprising
that so little attention appears to have been paid to geochemical map preparation. Reliable and
informative geochemical maps are needed in mineral exploration, in environmental studies,
and for communicating relevant geochemical findings to environmental regulators and policy
makers. Studying many existing examples, it appears that practitioners in applied geochemistry
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R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6



64 MAPPING SPATIAL DATA

and environmental sciences have not evolved a common effective methodology. Sometimes
one has the impression that the geochemical data just have been dropped onto an existing base
map. Many different mapping techniques have been suggested and tried over the past 40 years,
but no standard has emerged. In contrast, geographers pay great attention to map design and
production (see, e.g., Monmonier, 1996).

In this chapter different mapping techniques suggested over the years will be reviewed and
the resulting maps illustrated. Advantages and disadvantages of these maps for understanding
the geochemical process(es) creating the distribution patterns and for highlighting geochemical
anomalies will be discussed. In the following it is demonstrated that several techniques are
well suited to present geochemical data, while others fail.

5.1 Map coordinate systems (map projection)

Map projections are needed to transform the three-dimensional surface of the planet Earth
onto a flat, two-dimensional plane, the map. Many different map projections, and thus many
different coordinate systems, are in use in geographical mapping. Due to the fact that a three-
dimensional globe is projected onto a two-dimensional plane, all resulting maps have some
kinds of scale distortion. It is important to know in what coordinate system the locations for
the samples were recorded – and preferably that system should match the coordinates of any
background maps to be employed. Most Geographical Information System (GIS) programs
are able to transform coordinates between the different systems, but it is essential that those
systems are known so that the correct transformations may be applied. In many parts of the
world the UTM-system (Universal Transverse Mercator projection) is widely used, and co-
ordinates are reported in metres easting (X-coordinates) and metres northing (Y-coordinates)
as in the example data sets in this book. The world is divided into 60 UTM-zones, each 6◦
of longitude wide. Thus it is possible for survey areas to span two or more zones, and it is
essential that prior to map preparation, the location coordinates are all transformed to a single
zone. When a survey area spans several UTM-zones it may be preferable to use a different
projection to minimise the distortions that occur in displaying a three-dimensional surface on
a plane, in such instances Lambert Conic Projections and Albers Equal Area may be used.
When using projections for small scale maps, the projection property of equal area is impor-
tant so that biased impressions of spatial extent of patterns are not introduced. In the field
the GPS-systems now widely used for determining location will automatically switch from
one zone to another when crossing the boundary between two zones. Thus it is necessary
to record the UTM-zone of the location in addition to the coordinates themselves, this leads
to a 15 digit coordinate that with a leading minus sign for locations in the southern hemi-
sphere uniquely locates any point on the Earth’s surface to one metre. Thus a geochemical
database often requires three fields to record the location of a sample site, UTM-zone, east-
ing, and northing. Only in surveys within a single UTM-zone could the zone information
be omitted, but the zone must be recorded in the metadata for the project, and if possible,
be recorded in the variable definitions table of the database, if one is being built. It must be
remembered that it is important to record the spheroid and datum used for field coordinate
acquisition and the display map projection. For example, in North America a change has been
made from North American Datum 1927 (NAD27) to North American Datum 1983 (NAD83).
As a result a GPS receiver may be set up to generate NAD83 coordinates using the WGS84
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spheroid, but old base maps may be for NAD27 on the Clarke 1866 spheroid; this can lead
to errors of up to 100 metres. Some organisations working internationally and in countries
with a wide east–west span may choose to record locations directly in geographic coordi-
nates, i.e. latitude and longitude. With the advent of GIS, the conversion to another coordinate
system and the use of an appropriate projection for map presentation has become a simple
task.

5.2 Map scale

One of the first questions arising when producing a map or an atlas is related to choice of scale.
In geography a long tradition of using well-defined mapping scales exists (e.g., ratio scales,
called “Representative Fractions”, like 1:10 000, 1:50 000, 1:100 000, 1:250 000, 1:500 000,
1:1 000 000, 1:10 000 000 where one unit of distance on the map relates to the stated unit of
distance on the ground), depending on the size of the mapped area and the purpose of the map.
A scale of 1:10 000 is larger than a scale of 1:250 000 because 1

10 000 is a larger fraction than
1

250 000 . Public authorities commonly use large scales, in urban areas 1:5000 or larger, because
they need to show much detail in the maps (e.g., the exact location of power and water lines).
The correct scale of a map depends on the amount of detail that needs to be shown and the
amount of generalisation, either smoothing out or omissions, that is acceptable. Note that often
several scales may be needed to provide a realistic impression of both local detail and the broad
overall picture. Scale should be optimised for purpose.

Geographical atlases are often large-format books because whole countries or even conti-
nents are fitted on a single page, yet the maps still contain a wealth of information. Geochemists
appear to have somewhat misunderstood that concept and concluded that “an atlas has to have
a large format”. As a consequence many geochemical atlases are large-format books or map
collections that are awkward to use. The key factor in designing geographical maps is scale;
the map should contain just enough information so that the user can easily grasp the inherent
facts at the selected scale. Too much information and the map is hard to read and assimilate, too
little information, and it is uninteresting and not fit for purpose. Sample density is an important
factor that should determine the scale of a geochemical map. Is it, for example, important to
see the exact location of every single sample point, or rather should the representation reflect
the processes influencing the regional distribution of the mapped variable?

Geochemical surveys usually result in many maps (at least as many maps as analysed
elements and additional parameters). Although handling many maps has become much easier
with the advent of GIS, many maps still have to be compared with one another and with maps
containing additional information that may explain some of the observed patterns. Experience
has shown that A4 (210 × 297 mm) or letter (8.5 × 11 inches) size is a good practical format
for a geochemical map. This size also allows the easy use of the maps for other purposes such
as readable slide presentations. The A4 (or letter) format may not be possible for high-density
surveys where it is important to show the results for each single sample location, such as in
some detailed mineral exploration or contamination studies, or in case of unfortunate survey
design (e.g., clusters of locations arising from a high spatial sampling density versus large tracts
of land with no samples collected). Geochemists need to be aware that usually the information
value of a geochemical map increases when the scale is decreased to give the smallest map
possible that still shows all the required information.
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5.3 Choice of the base map for geochemical mapping

A geochemical map could be plotted without any geographical (or other) background infor-
mation. Sample sites with coordinates and the analytical results are sufficient to start mapping
and identifying spatial structures in the data. However, the samples were collected somewhere,
and users more often than not will want to see the geochemical structure in an informative
geographical context. The identification of the geographical location is often essential to aid
interpretation of the identified spatial data structures. Thus a suitable base map for plotting the
geochemical results is required.

A geochemical map will thus usually be superimposed on some kind of topographical
background. The choice of base map can be the reason why geochemical atlases are often so
large. However, if the base map is primarily a geographical (or geological) map, well designed
for that purpose, it contains already the maximum possible information density for that scale.
The addition of geochemical information on such a map will frequently result in a cluttered
appearance, and such maps are hard to read. As one consequence, it may be necessary to map at
a considerably larger scale than the presentation of the geochemical data alone would require.

Figure 5.1 shows two examples of likely base maps for mapping the Kola Project data. The
geological map from the Kola Project area (from Figure 1.2) is one possible choice (Figure 5.1,
upper left). The other map (Figure 5.1, upper right) offers minimal topographical information to
provide orientation about the location of the samples. In terms of interpreting the geochemical
results in a geological context, it is tempting to opt for the geological map as base map.

However, there is already so much information in the geology map that adding geochemi-
cal data on top results in a thoroughly cluttered map where neither geology nor geochemistry
remain clearly visible (Figure 5.1, lower left). Furthermore, when choosing geology as the
background, the underlying assumption is that geology is the most important geochemical
process determining the element distribution in the area. This may not be the case, as several
other important geochemical processes in the area exist that can influence the regional distri-
bution of the mapped element. In the example map it is not the Caledonian sediments along
the coast of the Barents Sea that determine the Mg concentrations in the O-horizon, but rather
the steady input of marine aerosols along the coast of the Barents Sea. When selecting an
unsuitable base map the chance of recognising such processes unrelated to the base map will
be severely limited. The right-hand maps in Figure 5.1 (upper and lower right) are thus the
much better and more objective choice for geochemical mapping. The geological background
can, of course, still be a very informative addition in an advanced stage of data analysis and
mapping.

When producing geochemical maps or atlases, the most important information is the spatial
distribution of the chemical elements studied. This statement implies that it is the geochemistry
that should govern the mapping and not geography, geology, or other ancillary information.
Geochemical maps are primarily produced to understand the processes causing the spatial
distribution patterns of chemical elements and to determine the sources that account for those
patterns, such as an unusual rock type, a mineral deposit, or contamination from human ac-
tivities. When producing a set of multi-purpose geochemical maps, information not related
to geochemistry should be avoided because it distracts attention from the primary focus of
the maps. However, a minimum of geographical information is necessary to allow for easy
orientation. More background information, such as the geology, may be added later if required
for interpretation. Geology underlaid on a geochemical map right at the beginning may dis-
tract the eye from other important patterns in the data. It may also result in a biased map



CHOICE OF THE BASE MAP FOR GEOCHEMICAL MAPPING 67

Figure 5.1 Geological map (upper left, see Figure 1.2 for a legend) and simple topographical map
(upper right) of the Kola Project area used as base maps for geochemical mapping (lower maps). Lower
maps: distribution of Mg in O-horizon soils added to base maps. A colour reproduction of this figure
can be seen in the colour section, positioned towards the centre of the book

interpretation because it suggests that the features on the geological map should determine
the distribution of the elements. For instance, if the map shows only the geological units and
not the fault structures, geochemical patterns related to faults may not be discerned. If the
main process determining the distribution of an element is non-geological, it may not even
be noticed. Such maps should not be the first product of data analysis and mapping, but are
more appropriate for an advanced stage of mapping, making full use of the power of modern
GIS. A good first geochemical map should contain enough geographical information for basic
orientation.
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A map must also have a way to determine scale and orientation (north arrow), a legend and
a text stating the element mapped, and probably some information on the sample medium,
sample preparation, and method of analysis. In some applications it may also be important to
add the date of map generation. Geochemical maps are often copied and used out of context;
thus some basic geochemical information like element name, unit, method of analysis, and
sample material may be quite useful on the same sheet so that it will not be lost during
copying. Again, the amount of information that can be presented for assimilation depends on
the map’s purpose. Note that a map appropriate for a printed atlas is often too cluttered for a slide
presentation.

5.4 Mapping geochemical data with proportional dots

For presenting geochemical data in a map, usually the element values are grouped, and the
resulting classes are then displayed on a map, either in the form of black and white or coloured
symbols (see Section 5.5).

Björklund and Gustavsson (1987) discussed the advantages of avoiding classes altogether
and using symbols that increase in size continuously in relation to the absolute measured
analytical value for placing geochemical data into a map. This led to the “proportional dot
map”, that is today one of the most popular ways of preparing black and white geochemical
maps. The resulting maps are often graphically pleasing and are easy to read.

However, an interesting-looking proportional dot map depends crucially on the scaling of
the dots. If the dots just grow linearly with the analytical values, it soon becomes obvious that
depending on the data distribution, some maps will result in clear differences in the spatial
data distribution while on others most of the dots will have almost the same size. Depending
on the distance of the maximum value from the main body of data, there may appear only
one really large dot on the map – or a whole lot of dots of almost the same size (Figure 5.2,
left).

To overcome the problems with different data distributions, an exponential dot size func-
tion determining the relative proportions of the dots was introduced. Gustavsson et al. (1997)
describe in detail an exponential dot size function, which is monotonically increasing and
empirically fitted to two percentiles (e.g., 10 and 99 per cent) of the empirical cumulative
distribution of observed values on the map area. Thus the symbol sizes for the smallest (10
per cent) and largest (1 per cent) data points are constant. In between the two selected per-
centiles the dots grow exponentially. Thus the exponential growth of the dot sizes is slow near
the detection limit (where there is often large variation due to poor analytical quality, see Chap-
ter 18) and becomes steeper towards larger values. The size function is purposely designed for
geochemical variables following a lognormal or positive skew distribution. It does, however,
have a disadvantage: it over-emphasises the highest and the lowest values, indirectly indicating
that in-between there is nothing of much importance. However, about 90 per cent of all data fits
into this “in-between” category. In general, the size function will down-weight the low values
and put more weight on the high values.

Using this technique, proportional dot maps showing clear regional patterns can be prepared
for almost any data set (Figure 5.2, right). However, because some users appear unaware of
the potential of these maps, and others may not have the software for constructing the dot
size function, proportional dot maps can be uninformative. A general problem with propor-
tional dot maps is that dots sized on a continuous scale are often difficult to distinguish from
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Figure 5.2 Two maps showing the distribution of As in C-horizon soils of the Kola Project area. A map
based on a linear relationship between analytical value and proportional dot size (left) and a map of
the same data using an exponential weighting function (right)

one another in a map unless they occur in close proximity. A further disadvantage may be
that due to their optical weight, the attention of the reader is completely drawn to the high
values.

5.5 Mapping geochemical data using classes

It is often assumed that geochemical data follow a single (log)normal distribution, which
is “disturbed” by a limited number of extreme values, the outliers. Traditionally the high
extremes have been of greatest interest. The problems with this concept are discussed in a
number of recent papers (see, e.g., Reimann and Filzmoser, 2000a; Reimann and Garrett,
2005b, Reimann et al., 2005c) and in several chapters of this book. In general, geochemical
data do not follow a normal or lognormal data distribution but are poly-populational. The
resulting distribution may mimic a lognormal distribution due to the superimposition of a
number of separate distributions related to different geochemical processes. These processes
are reflected in separate data populations, i.e. sets of data with unique statistical parameters,
such as means and standard deviations.

Usually, the most dominant distributions in regional geochemical surveys are data related
to the geochemically distinct bedrock lithologies present in the survey area. Superimposed on
these rock type-related distributions are effects of secondary processes, such as anthropogenic
contamination, sea spray, or enrichment or depletion of elements due to a wide variety of causes
(pH, grain size, Fe- and Mn-oxyhydroxides, presence and amount of organic material, to name
just a few). All these processes are location dependent. Sometimes non-bedrock factors can
become so dominant that the “original” geochemical signature of different bedrock lithologies
is lost.

Thus, geochemical data do not consist of independent samples as assumed in classical
statistics, but the samples related to certain processes are linked additionally by a spatial
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dependence. Therefore the task in geochemical mapping and interpretation cannot be to just
detect some few high values, which may be indicative of a large mineral occurrence or ex-
treme contamination in a survey area. The task is rather to display these different processes
determining the data structure in map form and to detect local deviations from the dominating
process in any one sub-area (Reimann, 2005). Due to the fact that multiple processes are
involved, this may appear close to impossible at first glance. However, by splitting the data
into groups on the basis of order statistics (see Sections 5.5.2 and 5.5.3) it is possible to display
the spatial aspects of the data structure in a map such that the symbols or isopleths reflect
at least a limited number of the main processes underlying the regional distribution of the
elements.

5.5.1 Choice of symbols for geochemical mapping

Almost as many different symbol sets as there are geochemists have been used for geochemical
mapping. The lack of standardisation for symbols used for geochemical mapping has resulted
in maps that are not directly comparable, and the preferred use of proportional dot maps. These
do, however, focus on very high values and do not facilitate detecting the data structure in a
map.

It is EDA approaches that have permitted the acceptance of a standard set of symbol class
boundaries. However, within this context different practitioners have used different symbol
sets for mapping (Figure 5.3). These aim to provide an even optical weight for each symbol
in a map in order to be able to focus on data structure and not on “high” or “low” values. The
original EDA symbol set is based on the boxplot, reflecting the data structure, and permits the
mapping of five classes. Limiting the number of classes results in a rather “quiet” and relatively
easy to grasp distribution on a map. Experience teaches that seven classes is the maximum
number that should be shown in a black and white map.

EDA symbol set EDA symbol set

with accentuated extreme values

GSC symbol set

Highest values +

+ +

+

Higher values

Inner values

Lower values

Lowest values

Figure 5.3 Three possible symbol sets of use for geochemical mapping: original EDA symbol set; EDA
symbol set with accentuated upper extreme values; an alternative symbol set as used by the Geological
Survey of Canada (GSC). If desired these symbol sets can be easily extended from five to seven classes
by using an additional size-class for the outer symbols



MAPPING GEOCHEMICAL DATA USING CLASSES 71

Although today colour is most widely used for mapping, black and white geochemical maps
still have the advantage of being inexpensively copied and printed. In addition, black and white
maps introduce less perceptual bias than colour maps. This may have substantial advantages
when trying to detect geochemical processes with such a map. As a further advantage, colour-
blind individuals are able to work with black and white maps. However, for a black and white
map the choice of symbols is crucial. A black and white map can also be drawn as a contour,
isopleth map, avoiding the use of discrete individual symbols altogether or as a smoothed
surface map (see Section 5.6).

Note that the choice of symbols and their size in relation to the size of the map are critical
to map appearance. It is not a trivial task to find the optimal symbol type and size for a
map. Too many different symbols will usually result in a cluttered and thus hard to read map.
Because the symbol size must have a relation to the scale of the map, it is a clear advantage
if plotting software permits scaling a whole group of symbols at once so that the relative
size proportions between the symbols stay constant once a good set of symbols has been
determined.

5.5.2 Percentile classes

Percentiles are based on order statistics and their use does not assume any underlying data
distribution. This is a major advantage when dealing with geochemical data. However, the
geochemist is left with the decision as to how to distribute the classes over the range of
percentiles from 0 to 100. If the task is to identify geochemical processes from regional patterns
in a map, this data structure must be revealed in the map. One possibility is to spread the symbols
or colours almost evenly across the range of values, e.g., via using the 20th, 40th, 60th, 80th

percentiles (Figure 5.4, lower left). However, geochemists are often more interested in the tails
of the data distribution. To highlight the tails the 5th, 25th, 75th, and 95th percentiles can be
used (Figure 5.4, upper left and upper right). Additional classes can easily be accommodated.
A logical choice may be to include further class boundaries at the 50th and 98th (and possibly
2nd) percentiles (Figure 5.4, lower right). An extended version of the EDA symbol set as
well as the Geological Survey of Canada symbol set as introduced above (see Figure 5.3) can
easily handle up to seven classes for mapping (Figure 5.4, lower right). Maps constructed with
percentile classes and one of these symbol sets will usually facilitate the direct recognition
of a number of major processes determining the distribution of the mapped variable in space.
A remaining problem is that when using percentiles, there is no satisfactory way to identify
extreme values or true outliers. The percentile-based map thus includes the assumption that
the uppermost, or lowermost, two, five, or ten percent of the data are outliers. This can be
justified as identifying an appropriate number of samples for further inspection (Reimann
et al., 2005c).

5.5.3 Boxplot classes

The boxplot is based on order statistics and is almost free of any assumption about data
distribution (see Section 3.5). More than 15 years ago Kürzl (1988) realised that it is also well
suited to define classes for geochemical mapping. O’Connor and Reimann (1993), O’Connor
et al. (1988) and Reimann et al. (1998a) subsequently used this technique with great success.
It should be recognised, however, that the normal distribution sneaks into the definition of the
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Figure 5.4 Geochemical maps of the variable As in the Kola C-horizon based on different percentile
classes and using EDA (upper left), GSC (upper right), extended EDA (lower left), and accentuated EDA
(lower right) symbol sets

boxplot when the whiskers, the borders for extreme values, are computed. It was demonstrated
above (see Section 3.5) that the boxplot will not recognise lower extreme values and will
seriously overestimate the number of upper extreme values when the data distribution is right
skewed (the most usual case in applied geochemistry). If identifying “too many” upper extreme
values is desirable, one can continue using the original Tukey boxplot with the “raw” data.
The boxplot then provides a simple and fast method to define class boundaries for mapping.
If the task is to really study the data structure in a map, it may be preferable to use percentiles,
a version of the boxplot based on percentiles, or a version of the boxplot that takes care of the
vulnerability of the original boxplot to skewed distributions (e.g., the log-boxplot).

Five main classes result from using the boxplot for class selection for mapping: lower
extreme values to lower whisker, lower whisker to lower hinge, the box, containing the inner
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50 per cent of data (the box can be divided into two classes if needed), upper hinge to upper
whisker, and upper extreme values. A set of black and white symbols (see Figure 5.3) based
on this EDA approach can be used to display these five classes on a map. These symbols are
based on the concept that to show the data structure on a map objectively, each class should
have an even optical (graphical) weight. This is achieved by using large symbols for the lower
and upper extreme values. These symbols will not dominate the map, because there are usually
not a large number of extreme values. At the same time, the symbols of circle (“©”) and cross
(“+”) or square (“�”) are almost intuitively interpreted as low and high. The next classes at
both ends of the distribution, consisting of ≤ 25 per cent of the data each, employ smaller
versions of the extreme symbols. The inner 50 per cent, and thus the majority, of the data have
the smallest symbol, a dot. However, in some instances the dots are hard to see, and in such
instances a small cross can be used to advantage (GSC symbol set, Figure 5.3).

Maps constructed using these symbol sets look unusually “calm” at first glance, maybe even
lacking in information content, to someone used to reading maps where the eye is automati-
cally drawn to the high values. Their real power lies in the fact that the spatial data structure
becomes visible (Reimann, 2005). The underlying geochemical processes usually determine
the spatial data structure. Such maps can thus be used to understand and interpret the main
processes governing the geochemical distribution in space. In addition, even locally unusual
data behaviour which is not marked as “extreme” can be easily recognised in such a map in
the form of the occurrence of different symbols in an otherwise uniform area. Furthermore,
via the boxplot an automated check for extreme values is performed (based on an assumption
of log-normality), which is the main advantage of the boxplot over percentiles. Note that for
this to be effective, a symmetrical boxplot that has been adjusted to handle right-skewed data
distributions should be used, for example by employing a log-transform, or a large number of
upper extreme values will be displayed. Instead of the EDA symbols, colour classes can also be
used. With the exception of the rare situations where no outliers exist, colour maps constructed
using boxplot classes will in general look similar to maps constructed with percentile classes
with a symmetrical distribution of symbols about the MEDIAN. Figure 5.5 shows the As dis-
tribution in the C-horizon of the Kola Project area based on boxplot classes. Figure 5.5 (right)
uses the original EDA symbols with an accentuated outlier symbol. To satisfy the geochemists
quest for the highest value, this symbol grows continuously in direct relation to the analytical
result.

Considering the major advantages of boxplot classes in combination with EDA symbols
for black and white mapping, it is surprising that the technique has found so little application
in applied geochemistry. One reason is probably that other maps, such as proportional dots,
look much simpler at first glance. Another may be the lack of available software to prepare
such maps. Many geochemists still think in terms of “high” (= interesting, may indicate a
mineral occurrence, or contamination in environmental sciences) and “low” (= useless, no
mineralisation in these areas, or background in contamination studies), and they seek a map
that simply displays the range of the data in a relative manner. However, EDA maps achieve
the task of spatially locating high and low extreme values even better, by displaying symbols
indicative of the extent of “extremeness” in terms of the data distribution itself. Other reasons
may be that EDA symbols need appropriate scaling in relation to the other features or symbols
displayed on the map (Kürzl, 1988) and that hardly any software is available that permits this
approach. An additional reason may be the overestimation of the number of upper extreme
values by the original Tukey boxplot when care is not taken to use a transform that brings the
data into symmetry.



74 MAPPING SPATIAL DATA

lo
g−

sc
al

e

●
●
●

●

●

●

●
●

0.05

0.3

1.2

9.6
31

●

●

As [mg/kg]

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●
● ● ●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Boxplot class selection
EDA symbolset

0 50 100 km

N

lo
g−

sc
al

e

●
●
●

●

●

●

●
●

0.05

0.3

1.2

9.6
31

●

●

As [mg/kg]

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●
● ● ●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Boxplot class selection
EDA symbolset
(accentuated)

0 50 100 km

N

Figure 5.5 Boxplot class-based maps showing the distribution of As in C-horizon soils of the Kola
Project area. Tukey boxplot (with log-scale) classes and original EDA symbol set (left), Tukey boxplot
classes (log-scale), and accentuated EDA symbol set (right)

5.5.4 Use of ECDF- and CP-plot to select classes for mapping

One of the best procedures to study geochemical distributions graphically is to plot the empir-
ical cumulative distribution function (ECDF-plot) and cumulative probability plot (CP-plot)
(Sections 3.4.2 and 3.4.4) and seek breaks or changes of slope in the plots that can be used
to identify useful classes for geochemical mapping. The procedure is discussed in detail in
Reimann et al. (2005c). Working with ECDF- and CP-plots requires experience and detailed
study of data distributions prior to mapping. It is thus a technique that an experienced applied
geochemist will use in a second step of data analysis, once the first set of maps using a standard
default technique (preferably percentile or boxplot classes with EDA symbols) as described
above has been prepared.

5.6 Surface maps constructed with smoothing techniques

To construct surface maps, different techniques can be used. Some form of moving average
(or median) and more general interpolation techniques or kriging (Section 5.7) are most often
applied. Surface maps are needed because most users (and regulators and policy makers)
want maps that look “pleasing”. For a trained geochemist, hoping to extract knowledge about
geochemical processes governing the distribution of any one element in space, surface maps
have, however, several disadvantages. Firstly, information on local variability is lost. Secondly,
depending on the algorithm (e.g., search radius, distance weighting), maps having different
appearances will result. Thirdly, the untrained user may gain from surface maps the impression
of a much greater “precision” than the few samples it is based on will support.

Most applied geochemical data are spatially discontinuous, exceptions being anthropogenic
contaminants that do not occur naturally and are dispersed from point sources, with levels con-
trolled by geological lithologies and other environmental factors. Very detailed mapping shows
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step discontinuities associated with these features, not smooth gradients as are expected from
geophysical maps where the properties of a “unit” are exerted beyond its physical extent.
Therefore it is usually best to prepare surface maps at scales four to five times smaller than
a survey’s working scale so that the generalisation is acceptable in the eyes of users knowl-
edgeable in the underlying discontinuities. This is particularly important in surveys employing
drainage basin sediments, where the recorded sample site location is not the location that data
conceptually represent. It must always be remembered that surface maps based on sparse data
can be misleading as their preparation requires extrapolation based on some mathematical
model that may not reflect the geochemical reality between the widely spaced data points.

The simplest method to construct a surface map is based on moving averages (for geochem-
ical data the moving median is the preferable choice). For constructing a moving median map
a window of a fixed size is defined. This is quite similar to smoothing lines (Section 6.4), but
the window is now defined by the x- and y-coordinates and is thus two-dimensional. The size
of the chosen window will have a major influence on the degree of smoothing. The window
is moved across the map, and all data points falling into the window are used to estimate a
value at the centre of the window. This value could simply be the MEDIAN of the points
within the window or some kind of weighted median, taking the distance of each point from
the centre of the window into consideration. The data points on the irregular sampling grid
are thus used to estimate new values on a regular grid. The resolution of the resulting map
will depend on the chosen raster size. The choice of the raster size, i.e. the intervals in the x

and y directions at which the estimator is computed, may be limited by the complexity of the
algorithm, i.e. computing time.

More complex smoothing methods use polynomial functions to interpolate irregularly
spaced data onto a regular grid (see, e.g., Akima, 1996). These methods will as a rule re-
sult in smoother surface maps than moving median techniques. The selection of classes for
smoothed surface maps is a crucial step in providing meaningful geochemical maps. Theoret-
ically, an endless grey (or colour) scale could be used for a surface map, with its own grey (or
colour) value for each data value, avoiding classes altogether and thus adopting the philosophy
of the “proportional dot maps” (Section 5.4). In practice, the same problems as discussed for
the proportional dots (Section 5.4) occur, and the appearance of such a map is highly dependent
on the data distribution. Thus some kind of scaling to avoid a too-strong influence of outliers
and extreme values is needed (just like the “dot size function” – Section 5.4). This can be
achieved by using, e.g., 100 percentile classes, each with its own grey value (Figure 5.6, left).
If percentiles are used for defining a preset number of classes, the chosen classes must have a
relationship to the data structure (Reimann, 2005).

This can be achieved in the majority of cases when the boxplot is used to define the class
boundaries (Kürzl, 1988), resulting in five (or seven) classes for the map (see above, Section
5.5.3). Of course, instead of using the boxplot for class selection, it is also possible to directly
use percentiles, e.g., the 5th, 25th, 50th, 75th, 90th and 95th, as class boundaries (Figure 5.6,
right). Surface maps will usually look better the more classes are applied (Figure 5.6, left);
using percentiles to define a more limited number of classes may sometimes facilitate the
detection of data structure and thus processes in the maps. It is of course also possible to
carefully select class boundaries on the basis of the inspection of CP- and ECDF-plots as done
for symbol maps. When a limited number of fixed percentiles are used, care must be taken
not to use only one class for the lowermost 50 per cent, or even 75 per cent, of the data, and
then to use all the remaining classes for the high end of the distribution. Such an approach will
make it impossible to discern the data structure, though such a map might be attractive to some
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Figure 5.6 Smoothed surface maps of the variable As in the Kola C-horizon; left: constructed using
a “continuous grey scale” (100 percentiles), right: the As element distribution map constructed using
seven selected percentile-related classes

mineral prospectors, or with data that have a very large proportion of “less than detection limit”
values.

5.7 Surface maps constructed with kriging

In general, kriging is a more informative approach for generating surface maps from point
source data than smoothing (Section 5.6) because it will deliver a statistically optimised esti-
mator for each point on the grid selected for the interpolation (see, e.g., Cressie, 1993). As an
additional advantage, kriging will provide an approximation of the prediction quality at each
point within the grid. It is possible to either estimate the values for the blocks defined by the
intersections of the grid lines (block kriging), or for any location in space (point kriging). The
basic idea behind spatial analysis and kriging is that because samples taken at neighbouring
sites have a closer relationship to each other than to samples collected at more distant sites the
closer samples should have greater influence on the interpolated estimate. The question then
becomes, how to set the weights proportional to distance.

5.7.1 Construction of the (semi)variogram

The basis of kriging is the (semi)variogram (see, e.g., Cressie, 1993), which visualises the
similarity (variance) between data points (y-axis) at defined distances (x-axis). The distance
plotted along the x-axis in the (semi)variogram is the Euclidean distance (distance of the direct
connection) between two points in the survey area. Usually about 30 to 50 per cent of the
maximum distance in a survey area is used as a maximum for the x-axis of the (semi)variogram.
One reason for this choice is that the variability of the difference in the element concentrations
of very distant samples can be expected to be high (approaching the total variability of the
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Figure 5.7 Visualisation of the basic information for the computation of the semivariogram for the
variable As in the Kola Project C-horizon

element in the survey area). For the Kola Project area the maximum distance is about 700 km.
For plotting the (semi)variograms, a maximum distance of 300 km was chosen (43 per cent)
when preparing the Kola Atlas (Reimann et al., 1998a) and is thus used here, although a shorter
distance, e.g., 200 km, would in many cases be more appropriate.

The basis for the calculation of the (semi)variogram is the semivariogram cloud shown in
Figure 5.7 (upper left). The semivariogram cloud displays the squared difference of the element
concentrations between all possible pairs of data points. The pairs are plotted according to
their separation distance along the x-axis. The y-axis records the semivariance, which is half
of the value of the squared differences between the values of the pairs. The semivariance is
used because it allows an easier visualisation of the total variance in the semivariogram. The
values along the x-axis can then be summarised in distance classes. Such a summary is shown
using boxplots in Figure 5.7 upper right. The MEDIANS displayed in the boxes increase
with distance. The plot shows many outliers, i.e. pairs of data points that have an unusual
large variability. Instead of summarising in boxplots, it is also possible to smooth the data
along the x-axis. Figure 5.7 lower left shows the smoothed line for the semivariogram cloud
in Figure 5.7 upper left. Again the increase of the semivariance with increasing distance is
visible. At a certain distance the smoothed line flattens out, i.e. the variance becomes constant.
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From this distance on, the concentrations will no longer show a spatial dependency. For small
distances the semivariance is small and thus the spatial dependency between the points is
high.

Progressing from the very noisy semivariogram cloud to the boxplot presentations, the trend
is becoming smoother and smoother. However, for finally constructing a semivariogram, an
even smoother appearance is desirable. For this it is necessary to leave the semivariogram
cloud and to no longer look at the pairs of all data points but to summarise more points using
distance intervals. The squared differences of the element concentrations for all points within
the distance interval (20 km) are averaged. This procedure results in the few points shown in
Figure 5.7 lower right, which are then the base for fitting the semivariogram model.

In the above example distance intervals in any direction were considered (omnidirectional).
In practice, it may also be interesting to study the semivariance in certain directions because the
spatial dependency could change with direction. Thus for a two-dimensional grid, the distances
are calculated in a certain direction from each data point, e.g., north–south or east–west. If the
grid is irregular, a tolerance angle for the defined direction is needed to find enough points in
the selected direction. If a small angle is chosen only a few points may fall into the segment at
small distances. This will cause a noisy semivariogram. If the angle is chosen to be very large,
directional differences will be averaged and thus no longer be visible in the semivariogram.
An often-used default angle to define a segment is π/8 radians (22.5 degrees). For calculating
the semivariogram function for a segment, the average squared differences of the element
concentrations for all sample pairs within that angular relationship from one another are used.

Figure 5.8 left shows the semivariances for the variable As in the Kola C-horizon data for
four different directions additional to the omnidirectional semivariogram. Although all curves
start at about the same point, they flatten out at different distances and show a different total
variance. For kriging a single model has to be fitted to the semivariances. In the example plot
(Figure 5.8, left) the omnidirectional semivariogram may be the best compromise for fitting
the data (Figure 5.8, right).
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Figure 5.8 Directional semivariograms (left) for the variable As in the Kola Project C-horizon samples
and spherical semivariogram model for the omnidirectional semivariogram (right)
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For fitting a model to the semivariogram there are different options. The curve can be
approximated by a spherical model (most common case) as shown in Figure 5.8 (right). Linear,
exponential, Gaussian, and several other models can also be used to fit the semivariogram
function. The final fitting should be based on a visual inspection of the semiovariogram.

5.7.2 Quality criteria for semivariograms

There are a number of central terms used in describing a semivariogram. The range (187 km)
defines the distance where the samples can be considered as independent from each other.
This is the distance to the point where the semivariogram model flattens out in x-direction
(Figure 5.8 right). This is also the point where the model reaches the total variance of 1.2
(in y-direction). The range relative to the maximum distance is an indication of the data
quality. A very short range is an indication that the area is undersampled or that the data
quality is very poor. The prediction quality improves with an increasing range because the
dependency between the samples increases, and thus a larger number of samples are used in the
interpolation.

The nugget variance (often named the nugget effect) is the variance at the distance zero.
In theory it should be zero. However, even for two samples taken at very close distance there
will always be several causes for a certain variation, e.g., the sampling error and the analytical
error, but also that no two absolutely identical samples can in practice be taken. The name
“nugget effect” originates from the assays in gold deposits, where a very high variation between
neighbouring samples can be caused by the existence of single gold nuggets. If the range is
zero, the semivariogram consists only of the nugget effect, indicating completely independent
samples, and no sensible spatial prediction for generating a surface map is possible. In applied
geochemistry it will be an indication that the sampling density was too low (sparse) or of very
poor analytical quality.

The sill (Figure 5.8 right) is the difference between total variance and nugget variance.
The proportion of the sill to the total variance should be large because this will indicate a
well-defined spatial dependency, leading to a high prediction quality.

5.7.3 Mapping based on the semivariogram (kriging)

The fitted semivariogram model can now be used for kriging, i.e. to either estimate the values
at the intersections of the grid lines, or any other point (point kriging) or for each block
defined by the grid (block kriging). Based on these estimated values, a smoothed surface map
is finally constructed. The variogram determines the weight of neighbouring samples used for
the prediction. More distant observations will in general obtain less and less weight out to the
range. For each element an individual function, the semivariogram, is estimated. All observed
values, weighted according to the semivariogram, are then used for the prediction. This is a
major advantage over other methods (e.g., moving medians), which consider only samples in
a defined search radius.

For constructing isoline maps point kriging is used, and the gridded point estimates are
passed to a contouring package. For the Kola Project data block kriging was used, permitting
the direct construction of a surface map. Figure 5.9 shows two kriged maps for As in the Kola
Project C-horizon samples. Depending on the block size chosen for kriging, the blocks will
be visible (20 × 20 km blocks, Figure 5.9, left), or the map display becomes smoother with
decreasing block size (e.g., 5 × 5 km blocks, Figure 5.9, right).
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Figure 5.9 Block kriging used to construct surface maps of the distribution of As in the Kola Project
C-horizon. Left map, 20 × 20 km blocks; right map, 5 × 5 km blocks. The semivariogram in Figure 5.8,
right, is used for kriging

The major advantage of this approach over all other available interpolation techniques
is that the semivariogram permits judgement of the data quality, or better, their suitability
for constructing a colour surface map. Via the estimated kriging variance, the reliabil-
ity of the obtained data estimate for each cell can be assessed. In terms of temporal
monitoring, it thus becomes possible to give a statistical estimate of how likely it is that
observed changes in element concentrations over time are significant. The kriging variance
can also be mapped. If regions within the survey area show an unusually high variance, they
would need to be sampled at a higher density if an improved map was required. However,
highly localised geochemical processes in an area could also be marked by an unusual local
variance. Although a combination of the geochemical map with a map of the kriging vari-
ance can clearly guide interpretation, many projects will not support such an intensive
activity.

Class selection and scaling are again important considerations when constructing kriged
maps. The data structure should become visible and thus the classes should have a direct
relation to the data structure. As discussed above (Sections 5.5.2 and 5.5.3), this is best
achieved via boxplot or percentile classes. The approach of “avoiding” classes via us-
ing a more or less continuous grey scale (see Section 5.6 and Figure 5.6, left) is also a
possibility.

5.7.4 Possible problems with semivariogram estimation and kriging

As mentioned above (Section 5.7.2), it is possible that the nugget effect is almost as large as the
total variance. Figure 5.10 shows this effect for Hg measured in the Kola O-horizon samples.
Only completely independent samples would allow for a pure (linear) nugget effect model.
In regional geochemistry it is very unlikely that the samples are completely independent. The
variogram thus suggests that the sample density was not high enough to detect the regional
data structure of Hg. It is of course also possible that such a result is caused by an insufficient
analytical quality (see Chapter 18) or that the sample material O-horizon is not suited to map
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Figure 5.10 Semivariogram (left) and resulting kriged map (right) for Hg in Kola Project O-horizon
soils

the regional distribution of Hg. To be able to map, a spherical model with a small range was
fitted to the semivariogram. The resulting map (Figure 5.10, right) is very noisy. A map for
a variable with a very high nugget effect may even become less informative than a properly
prepared point source map.

A common assumption for constructing a semivariogram is that the variance in the se-
lected direction depends only on the distance between two data points but is independent
of the location of the data points. The variance at a fixed distance is thus assumed to be
the same throughout the survey area. This is not the case if there is a systematic direc-
tional trend of increasing or decreasing values in the data (see Figure 6.7 for some exam-
ples). The Kola data show such trends for some selected elements in some materials (moss
and O-horizon) with distance from coast. This would theoretically call for the use of more
advanced kriging methods (e.g., universal kriging, see Cressie, 1993). However, the stan-
dard methods can often still be successfully applied to the data. To visualise the existence of
such trends, it can be advantageous to show the directional and not only the omnidirectional
semivariograms.

Figure 5.11 demonstrates this using the variable Pb measured in Kola O-horizon soils.
The Pb concentrations show a strong north–south trend, as demonstrated in the directional
semivariogram. In north–south direction independence of the samples is not reached within
the survey area (Figure 5.11, upper left). In contrast, in the east–west direction the spatial
dependency is rather low and the nugget effect dominates (Figure 5.11, upper left). However,
it is possible to construct a kriged map based on the omnidirectional “compromise” (Figure
5.11, upper right) or on the east–west-model alone (Figure 5.11, lower left). The common
choice would probably be the omnidirectional compromise. For comparison the smoothed
surface map (Section 5.6) is shown in Figure 5.11 lower right. The maps suggest that the
omnidirectional compromise results in excessive smoothing, hiding important details of the
spatial variation of Pb.
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Figure 5.11 Directional (east–west and north–south) and omnidirectional semiovariograms for the
variable Pb measured in Kola Project O-horizon soils (upper left). A model was fitted to the east–west
and to the omnidirectional semivariogram (upper left). Kriged maps based on the omnidirectional model
(upper right), based on the east–west model (lower left) and a smoothed surface map (lower right) are
shown

5.8 Colour maps

What is the difference between colour and black and white maps? At first thought, there is
no real difference other than that most people will be attracted by colour and thus feel that
the map is “easier” to read. As a first approach, different black and white symbols may be
replaced by just one symbol that is displayed in different colours (e.g., a filled circle or a filled
square). Point source colour maps will result. However, surface maps are the true realm of
colour mapping.
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Colour is usually employed to make a map visually attractive. Because there are many
different colours that can be easily distinguished, it is much less demanding to produce maps
with a lot of information in colour than in black and white. However, colour can both help and
hurt a map, and the most effective use of colour is not easy. Many colour maps look merely
pretty but are not particularly informative. In geochemistry black and white maps may be more
readily and reliably decoded than colour maps. It is often beneficial to investigate simple black
and white mapping as the first step of spatial investigation.

One of the first problems with using colour in geochemical maps is that the colours have
to be sorted somehow from low to high. There exists no logical, widely accepted colour scale.
If ten different people are given a stack of colour cards and asked to sort them from “low” to
“high” the chance is good that ten different scales will emerge. Some may order from green
to red, some from blue to red, again others may attempt to order according to the rainbow
sequence of colours, and some may use similar scales but in different directions.

In geochemistry a scale from deep blue for low to red and purple for high values is frequently
used (the “rainbow” scale), similar to a global topographic map spanning from ocean depths
to mountain peaks. Often variations arise in the “middle” with various choices for the use of
yellows and greens. When looking through a selection of geochemical atlases, it is obvious that
different colour scales have been employed, this is an unfortunate situation for the untrained
reader. Preparing maps for the same data using the full rainbow scale, firstly ordered from blue
to red, and then secondly, an inverse map, where the values are ordered from red (low) to blue
(high), a scale that is also sometimes used for pH measurements, demonstrates some of the
dangers that lie in colour mapping.

A simple, consistent grey scale, from light grey for low to black for high values may actually
be far better suited to displaying concentration differences in a contoured surface map than
a more pleasant colour scale (see Figure 5.6). Sometimes simple colour scales are used, e.g.,
from light yellow over light and dark brown to black which provides a consistent, logical
and readily comprehended ordering from light to dark or low to high. Such a map may be a
compromise between a “dull” black and white or grey-scale map and a “pretty” full colour
map. A further advantage of a grey-scale map is that it will have the same appearance to those
with colour blindness as to the rest of the population.

Dark red and dark blue on a colour map, a scheme often used in global topographic maps,
will look very similar when copied in black and white. The information in a colour map is
thus easily lost when copying or faxing a map. Colours are also bound to emotions, and colour
significance may vary culturally. Colours can thus be used to manipulate the reader and may
not be the optimal choice in an international world.

The colour red is a good case in point, in the western cultures it automatically gets more
attention than all other colours, being a signal for attention or danger. However, in eastern
cultures red signals happiness. Thus colour maps are not universally objective and attempts
to draw most attention to the high values (which are usually plotted in red) may not always
succeed with an international audience.

If a rainbow scale is used for mapping, it is also very important where, in relation to the
data set, the main colour changes occur, and class selection becomes even more important than
in black and white mapping. Colours may increase the visibility of data structure in a map –
or destroy it completely. Usually a colour map based on the rainbow scale and with the major
colour changes carefully spread over the full range of percentile classes will provide the most
informative impression. When studying such maps the reader should at least always check
where in relation to the data the break from yellow to red occurs.
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The “no classes” approach can also be transferred to colour mapping because so many
colours exist that virtually any single analytical value can have its own value in a map (see,
e.g., Lahermo et al., 1996). This has been demonstrated above using a continuous grey scale
(Figure 5.6, left) and is shown for the rainbow scale in Figure 5.12 (lower left).

In a GIS environment the use of colour on maps is especially tempting. In that case the
alert reader has to watch for inadvertent camouflage. In some cases poor contrast between
the background and geochemical colours can result in severe difficulties in extracting useful
information from a pretty coloured map.

5.9 Some common mistakes in geochemical mapping

5.9.1 Map scale

As discussed in Section 5.2, one of the most widespread mistakes is to scale a geochemi-
cal map according to some existing base map or to some nice looking scale (e.g., 1:1 000
000). A geochemical map needs to be scaled such that the inherent geochemical information
is optimally displayed. The geochemistry and not the base map information should govern
the map scale. Usually, the smallest possible map will be best suited for geochemical
interpretation.

5.9.2 Base map

A common mistake discussed in Section 5.3 is to use an existing topographical or geological
map that was already designed (and scaled) for purpose. This will lead to “cluttered” and hard
to read geochemical maps (see Figure 5.1). It may also lead to misinterpretations in instances
where the chosen background information is not the main factor determining the geochemical
distribution.

5.9.3 Symbol set

Two (three with proportional dots) “standard symbol sets” (EDA and GSC) have been intro-
duced above (Section 5.5.1, Figures 5.3 and 5.4). What can be read from a black and white
map depends crucially on the symbol set and unfortunately there are about as many different
symbols sets as there are geochemists. Figure 5.13 demonstrates how different maps can look
when the symbol set is changed and how information can actually be lost (or be manipulated)
by the choice of the symbol set (see also Figure 5.4 for different impressions gained from the
EDA and GSC symbol sets). A symbol set needs to include a certain easy to grasp inner order
as provided by both GSC and EDA symbol sets. Here readability of the map for different users
will in the end just be a question of personal taste and training. If there is no “inner order” in the
symbol set, it will be close to impossible to gain an impression of the regional data structure
in a map.

5.9.4 Scaling of symbol size

The size of the symbols in relation to the size of the map will have an important influence
on the appearance of the map (Figure 5.14). Even the relative proportions of the size of the
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Figure 5.12 Colour smoothed surface maps for As in Kola C-horizon soils. Different colour scales are
used. Upper left, percentile scale using rainbow colours; upper right, inverse rainbow colours; middle
left, terrain colours; middle right, topographic colours; lower left, continuous percentile scale with
rainbow colours; and lower right, truncated percentile scale. A colour reproduction of this figure can
be seen in the colour section, positioned towards the centre of the book
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Figure 5.13 Two maps showing the distribution of As in C-horizon soils of the Kola Project area.
EDA symbol set extended to seven classes to accommodate mapping with percentiles (left map) and
arbitrary, non-ordered symbol set (right map)

symbols will influence the appearance, and in turn the interpretability, of the map (Figure 5.14).
The EDA symbol set was carefully designed so that each symbol will have the same optical
weight in the resulting map. When using the EDA symbol set, great care must be taken that
the symbols do not get too small (Figure 5.14, upper right) or too large (Figure 5.14, lower
left) in relation to the map scale. It is also very important that the dot representing the inner 50
per cent of the data does not get too much weight in the map (Figure 5.14, lower right).

Because of the many problems with different symbol sets and because of the difficulties with
producing good-looking proportional dot maps when the dot size function (Section 5.4) is not
applied, many practitioners tend to combine proportional dots with percentile classes (Figure
5.15, right). When using the exponential dot size function (see Section 5.4), the high values
are accentuated, and a very clear map results (Figure 5.15, left) – as long as the main interest
is really the high values. It is in general a good idea to map using percentile classes. However,
when combining proportional dots with percentiles classes, the visual impression of the data
structure as well as the accentuation of the high values is lost, and a rather uninformative map
may result (Figure 5.15, right). The reason is that the eye is not able to distinguish between
dots of almost the same size if they do not occur right beside one another.

5.9.5 Class selection

Often geochemists use “tidy” but arbitrarily chosen class intervals, e.g., 0.5, 1, 1.5, . . . ; or 5,
10, 20, 30, . . . ; or 10, 20, 50, 100, 200, . . . mg/kg. This approach looks orderly in the legend,
but the legend itself is not the most important part of a geochemical map. Such arbitrarily
picked classes bear no relation to the spatial or statistical structure of the mapped data. Such
classes often result in uninformative, “dull” geochemical maps that fail to reveal the underlying
geochemical processes causing regional geochemical differences. Arbitrary classes should
therefore be avoided. As a historical note, arbitrary classes were extensively used when optical
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Figure 5.14 Four maps showing the distribution of As in C-horizon soils of the Kola Project area.
Percentile classes and the EDA symbol set are used for mapping. To get a clear visual impression of the
data distribution, the size of the symbols needs to be adjusted to the scale of the map

spectroscopy was employed as a geochemical analysis tool and the plates or filmstrips were
read by eye with a comparator. This tended to lead to clustering of the reported values around the
standards used for comparison. Thus the class boundaries were set at the mid-points between
the standards, often on a logarithmic scale, e.g., with standards at 1, 5 and 10 units, class
boundaries were set at 1.5, 3 and 7.

Another approach that often fails to reveal meaningful patterns is to base the classes in the
mean plus/minus multiples of the standard deviation. This approach is based on the assump-
tion that the data follow a (log)normal distribution. In this case – and only in this case – the
approach provides an easy method of identifying the uppermost 2.5 per cent of the data as
“extreme values”. However, as has long been recognised, most applied geochemical survey
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Figure 5.15 Maps showing the distribution of As in C-horizon soils of the Kola Project area. Propor-
tional dots according to the exponential dot size function (left) in direct comparison to growing dots
scaled according to percentile classes (right)

measurements do not follow a lognormal distribution. Some practitioners choose to assume
that geochemical data follow a lognormal distribution because this facilitates the use of classi-
cal statistics by taking the logarithms of the univariate values (Reimann and Filzmoser, 2000d).
Regrettably, modern (often “robust”) statistical procedures, that are better suited for geochem-
ical data, are often omitted from basic statistics courses, and this may explain why the “mean
plus standard deviation” approach is still so popular in geochemistry Reimann et al., 2005c).
The problem is that for data (or their logarithms) that are not normally distributed, but reflect
a whole range of different processes and thus are multimodal, the mean, and especially the
standard deviation, are not good measures of central tendency and spread (variability). For
example, all class boundaries defined by this approach are strongly influenced by the outliers.
Yet, to identify statistical outliers is often one of the reasons why the samples were collected
at the outset Reimann et al., 2005c). Geochemists should recognise the important distinction
between the extreme values of a normal (or lognormal) distribution (detected satisfactorily by
the mean ± standard deviation approach) and outliers due to multimodal distributions (e.g.,
several “overlapping” geochemical processes), where this approach is unfounded.

Even when using percentile-based classes, many geochemists accentuate differences among
the high numbers at the expense of variations at lower concentrations (Figure 5.12, lower right).
This results in a map focussing completely on the high values and neglecting the lower end
of the distribution. In some studies, e.g., for trace element deficiencies, this is completely
inappropriate. Focussing on the uppermost end of the distribution again neglects (as with
arbitrarily chosen classes) the fact that there exists something called the “data structure”.

5.10 Summary

Environmental data are characterised by their spatial nature. Mapping should thus be an integral
and early part of any data analysis. Once the statistical data distribution is documented (Chapters
3 and 4) the task is to provide a graphical impression of the “spatial data structure”. There
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are many different procedures for the production of maps, only a few provide a graphical
impression of the spatial data structure. As a first step the focus should not be on the high
values alone but rather on an objective map of the complete data distribution of all studied
variables. Classes need to be carefully spread over the whole data range, the log-boxplot or
percentiles are well suited for class selection. They need to be combined with a suitable symbol
set (e.g., EDA symbols).

If only “highs” and “lows” are of interest proportional dot maps provide nice, and apparently
“easy”, maps. Just as the statistical data distribution should be documented in a series of
summary plots the spatial data distribution needs to be documented in a series of maps of all
variables before more advanced data analysis techniques are applied. Black and white maps
are best suited for this purpose. Map scale and a north arrow should always accompany a map.
An easily legible legend is a further requirement.

More advanced mapping techniques will be used in a later stage, when surface, contour or
isopleth maps are designed for “presentation”. For this purpose point data need to be inter-
polated to surface data. Surface maps can be highly manipulative, the choice of parameters
and the choice of colour are important considerations. When kriging is used for constructing
surface maps a solid understanding of the method is required. Maps prepared by smoothing
are not based on statistical assumptions in the same way as kriged maps. If the additional
information from kriging (semivariogram, kriging variance) is not required, smoothing maps
may be the better choice.



6
Further Graphics for Exploratory
Data Analysis

6.1 Scatterplots (xy-plots)

Once there is more than one variable, it is important to study the relationships between the
variables. The most frequently used diagram for this purpose is a two-dimensional scatterplot,
the xy-plot, where two variables are selected and plotted against one another, one along the
x-axis, the other one along the y-axis. Scatterplots can be used in two different ways. Firstly,
in a truly “exploratory” data analysis approach, variables can be plotted against one another
to identify any unusual structures in the data and to then try to determine the process(es) that
cause(s) these features. Secondly, the more “scientific” (and probably more frequently used)
way of using scatterplots is to have a hypothesis that a certain variable will influence the
behaviour of another variable and to demonstrate this in a plot of variable x versus variable y.
When working with compositional data the problem of data closure needs to be considered. It
will often be a serious issue whether simple scatterplots show the true relationships between
the variables (consult Section 10.5).

Both methods have their merits, the exploratory approach facilitates the identification of
unexpected data behaviour. In pre-computer times this approach was not widely used as it
was time-consuming with the risk of time and resources expended with no reward. Even with
computers many data analysis procedures require considerable effort to draw such displays.
The process must be simple and fast so that it becomes possible “to play with the data” and to
follow up ideas and hypotheses immediately without any tedious editing of data files before
the next plots are displayed.

Figure 6.1 shows a scatterplot for Cu versus Ni in the moss samples from the Kola Project.
These two elements are of special interest because approximately 2000 tons of Ni and 1000
tons of Cu are emitted to the atmosphere annually by the Russian nickel industry, situated in
Nikel, Zapoljarnij, and Monchegorsk (see Figure 1.1 for locations).

Figure 6.1 reveals that a positive, sympathetic relationship exists between Cu and Ni.
However, there are a substantial number of samples with high analytical results for both Cu
and Ni that mask the behaviour of the main body of data. Plotting the same diagram with
logarithmic axes (Figure 6.1, right), decreases the influence of the high values and increases
the visibility of the main body of data. It can now also be seen that the spread (variance) of

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6
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Figure 6.1 Scatterplot of copper (Cu) versus nickel (Ni) in moss samples from the Kola Project. Left
plot: original data scale; right plot: log-scale. In the right plot two unusual samples were identified

the data is relatively homogeneous over the whole range of the data. It is also apparent that Cu
and Ni are strongly related over the whole range of data. In addition, attention is drawn to a
number of unusual samples in both diagrams that deviate from the general trend displayed by
the majority of samples. It should be possible to identify these individuals by just “clicking”
on them on the screen. Samples like numbers 36 and 37 (Figure 6.1, right) should undergo an
additional “quality check” to ensure that they are truly different and that the discordant data
are not due to a sample mix-up or poor analytical quality.

6.1.1 Scatterplots with user-defined lines or fields

It is often desirable to include a line or one or several fields in a scatterplot. The simplest
case is probably a line indicating a certain proportion between the data plotted along the two
axes. One example would be two variables where the same element was analysed with two
different analytical techniques. Here the results might be expected to follow a strict one to one
relationship. Plotting a 1:1 line onto the diagram allows for the easy detection of any deviations
from the expected relationship, and to see at a glance whether the results obtained with one of
the methods are higher than expected.

Figure 6.2 shows two such diagrams. In the left plot La was determined with two different
analytical techniques. It takes but a glance to notice that although the analyses are similar, by
and large, the analytical results obtained with instrumental neutron activation analysis (INAA)
are clearly higher than those from an acid extraction. Only INAA provides truly total La-
concentrations in the samples and thus this result is no surprise. In the right hand plot, results
for Ag in two different soil horizons are depicted (Figure 6.2). The analytical techniques are
comparable (both strong acid extractions), but the plot indicates that Ag is highly enriched in
the O-horizon and does not show any relation to the C-horizon results. This is surprising; many
applied geochemists or environmental scientists would argue that the C-horizon, the mineral
or parent soil material, will provide the “geochemical background values” (see Chapter 7) for



LINEAR REGRESSION LINES 93

La, C−horizon, aqua regia, ICP−MS [mg/kg]

La
, C

−
ho

riz
on

, I
N

A
A

 [m
g/

kg
]

5 10 20 50 100 200

10
20

50
10

0
20

0

Ag, C−horizon [mg/kg]

A
g,

 O
−

ho
riz

on
 [m

g/
kg

]

5e−04 0.002 0.01 0.05

0.
05

0.
2

0.
5

1
2

5

Figure 6.2 Scatterplots with 1:1 line added. Left plot: La determined with two different analytical
techniques; right plot: Ag determined with comparable techniques in two different sample materials.
Log-scales used for both graphics

the upper soil horizon. The diagram indicates that the relationship is not that simple. One could
be tempted to argue that then all the Ag in the O-horizon must be of anthropogenic origin.
There is, however, no likely major Ag-emission source in either the survey area or anywhere
near. Thus the conclusion must be that there exist one or more processes that can lead to a high
enrichment of Ag in the organic layer – independent of the observed concentrations in the soil
parent material.

Petrologists frequently use xy-plots where they mark predefined fields to discriminate
between different rock types. To include such “auxiliary” background information in a
scatterplot is desirable and feasible, but the actual definition of the field limits in the di-
agrams is a highly specialised task. One software package, based on R, that can plot
these lines and fields for many pre-defined plots used by petrologists is freely available at
http://www.gla.ac.uk/gcdkit/ (Janousek et al., 2006).

6.2 Linear regression lines

The discussion of Figure 6.2 demonstrated that it is informative to study dependencies between
two or more variables. In Figure 6.2 a 1:1 relation was a reasonable starting hypothesis and
thus the line could be drawn without any further considerations. However, many variables may
be closely related but do not follow a 1:1 relation (e.g., Cu and Ni as displayed in Figure 6.1).
In such cases it might aid interpretation if it were possible to visualise this relationship. In
most cases the first step will be to look for linear rather than non-linear relationships. To study
linear relationships between two or more variables, linear regression is a widely used statistical
method (see also Chapter 16). The best-known approach for fitting a line to two variables is the
least squares procedure. To fit a line, it is important to take a conscious decision which variable
is the y-variable, i.e. the variable to be predicted. The least squares procedure determines the
line where the sum of squared vertical distances from each y-value to this line is minimised.
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Figure 6.3 Two scatterplots with least squares linear regression lines. Left plot: Cu versus Ni, Kola
Project Moss data set with log-scale as used in Figures 6.1 and 6.2; right plot: Sr versus Ca (log-scale),
Kola Project C-horizon, Russian samples

This situation can be avoided by using less common procedures for estimating the linear trend,
e.g., total least squares or orthogonal least squares regression (Van Huffel and Vandewalle,
1991) which minimise a function of the orthogonal distances of each data point to the line.

Figure 6.3 (left) shows the relationship, regression line, between Cu and Ni in moss (Figure
6.1). When plotting a regression line onto the diagram using the log-scale it is visible that the
relation is not really linear but slightly curvilinear. However, a straight line is quite a good
approximation of the relationship between the two variables. The other diagram in Figure 6.3
shows the relation between Ca and Sr for the C-horizon samples collected in Russia (log-scale).
A number of samples with unusual high Sr-concentrations disturb the linear trend visible for
the main body of samples. These samples exert a strong influence (leverage) on the regression
line, such that it is drawn towards the relatively few high Sr values. This example demonstrates
that the least squares regression is sensitive to unusual data points – in the example the line
follows neither the main body of data nor the trend indicated for the outliers (Figure 6.3, right).

It is thus necessary to be able to fit a regression line that is robust against a certain number
of outliers to the data. This can be achieved by down-weighting data points that are far away
from the linear trend as indicated by the main body of data. The resulting line is called a robust
regression line.

Figure 6.4 shows the two plots from Figure 6.3 with both the least squares and a robust
regression line. For the left hand plot, Cu versus Ni in moss, both methods deliver almost
the same regression line, the difference in the right hand plot (Ca versus Sr in the C-horizon
of the Russian samples) is striking. The robust regression line follows the main body of data
and is practically undisturbed by the outlying values. For environmental (geochemical) data
it is advisable to always use a robust regression line, just like MEDIAN and MAD are better
measures of central value and spread than MEAN and SD.

Regression analysis can be used not only to visualise relationships between two variables but
also to predict one variable based on the values of one or more other variables (see Chapter 16).
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Figure 6.4 Two scatterplots with least squares (LS) and robust regression lines. Left plot: Cu versus Ni,
Kola Project Moss data set with log-scale as used in Figure 6.3 (left); right plot: Sr versus Ca (log-scale),
Kola Project C-horizon, Russian samples

Relationships between two variables do not need to follow a linear trend. In fact, any non-
linear function could be fitted to the data, or the data points could be simply connected by a line.
However, to be able to discern the trend, the function will often need to be smoothed. Many
different data-smoothing algorithms do exist. Usually a window of specified width is moved
along the x-axis. In the simplest case one central value for the points within the window is
calculated (e.g., the MEAN or MEDIAN). When connected, these averages provide a smoothed
line revealing the overall data behaviour. Depending on the window width, the resulting line
will be more or less smoothed. More refined methods use locally weighted regression within
the window.

In environmental sciences the most usual application of smoothed lines will be in studying
time or spatial trends as described below (Sections 6.3, 6.4).

6.3 Time trends

In environmental sciences “monitoring” is often an important task; it is necessary to determine
whether analytical results change with time. The large test data set used here comes from
the regional part of the Kola Project. It permits the study of the distribution of the measured
elements in space via mapping (Chapter 5) but not to study changes in element concentration
over time. It would become possible if the regional mapping exercise was repeated at certain
time intervals. This would be a very expensive undertaking, and it would be more effective to
collect the required data in a monitoring exercise at selected locations more frequently than to
repeatedly re-map the whole area.

For interpreting the regional Kola data set, more detailed information on local variability
versus regional variability and on changes of element concentrations with the season of the year
was needed. These data were obtained in a catchment study, which took place one year before
the regional mapping program (see, e.g., de Caritat et al., 1996a,b; Boyd et al.,1997; Räisänen
et al., 1997; Reimann et al., 1997c). For the catchment study eight small catchments were
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sampled at a density of one site per km2, and most sample materials were collected at different
times through all seasons of one year. Stream water was one of the most intensely studied
sample materials, and at some streams water samples were taken once a week throughout a
hydrological year (de Caritat et al., 1996a,b).

These data are used here to demonstrate the investigation of time trends in a special form
of the scatterplot where the x-axis is the time scale and the measured concentration of diverse
variables is plotted along the y-axis. This kind of work requires careful planning as to how the
time of sampling is recorded so that the computer software can process it. A simple trick to
overcome such problems could be to give all samples a consecutive number according to the
date of collection and select the number as the variable for plotting the time axis. If the field
sampling has not occurred at regular intervals, this procedure will lead to distortions along the
x-axis. Another procedure is to record the date as the “Julian day number”, which numbers days
consecutively from January 1, 4713 BC and is an internationally agreed-upon system employed
by astronomers. Fortunately, R is also able to handle “usual” dates in a variety of formats. To
easily discern the trends, a line should be used to link results for a particular variable. Often it is
advantageous to be able to estimate a smoothed line running through the results by a variety of
different algorithms (see Section 6.4). In the simple case of about 50 water measurements per
catchment, spread almost evenly over the year, a simple line directly connecting the results will
suffice. However, where multi-year data are acquired, some systematic periodicity, seasonal
effect, may be expected and smoothing may help identify such effects.

In Figure 6.5 it is demonstrated how pH and EC change in the course of one year in catchment
two, which is in close proximity to the Monchegorsk smelter. A drop in pH and conductivity
during May is obvious (Figure 6.5). This indicates the influence of the snow melt period on
the stream water samples.

If an abundance of data exists that exhibits high variability, it can also be informative to
summarise days, weeks, or months (maybe even years) in the form of boxplot comparisons (see
Section 8.4). It is then possible to study differences between the MEDIANS and differences in

Figure 6.5 Time trends of acidity (pH) and electrical conductivity (EC) in stream water collected on
a weekly base in catchment two, Monchegorsk
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Figure 6.6 Right plot: east–west transect through Monchegorsk, showing the decrease of the concen-
tration of Cu in moss (y-axis, log-scale) with distance from Monchegorsk (x-axis). The map (left plot)
shows the location of the samples used to plot the transect

variation (and skewness) at the same time, and trends may be easier to discern when looking
at such a graphical summary instead of looking at all the data points and a trend line.

6.4 Spatial trends

Instead of looking at a geochemical map (see Chapter 5), it may also be informative to study
geochemical transects, another special case of the xy-plot, where the x-variable is linked to
the coordinates of the sample site locations. With the Kola Project data it is, for example,
informative to look at an east–west-transect running through Monchegorsk from the eastern
project border to the western project border. This facilitates a study of the impact of contami-
nation and the decrease of element concentrations with distance from Monchegorsk. Another
interesting study would be a north–south-transect along the western project boundary, in the
“background” area, to investigate the impact of the input of marine aerosols at the coast and of
the influence of the change of vegetation zones from north to south on element concentrations
in moss or soils.

For constructing such a transect, it is necessary to have a tool to define the samples belonging
to the transect subset. It is of great advantage if this can be done interactively directly in
the map. Such samples could then, for example, be identified as belonging to the subset
“EW Monchegorsk” and “NS Background”. Once the subset is selected, it is easy to study
the distribution of all the measured variables along such a transect via selecting the x- (for
the east–west-transect) or y-coordinate (for the north–south-transect) for the x-axis of the plot
and any other variable for the y-axis and plotting these as xy-plots. In instances where the
coordinates of the coastline or of Monchegorsk are known, new variables for the x-axis can
be defined “distance from coast” and “distance from Monchegorsk” via a simple subtraction.
If the transects are not parallel to the coordinate system, distances can be estimated by plane
geometry.
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A trend line is then fitted to the data along the x-axis. Different smoothing techniques exist
for constructing such a line. The basic principle is to choose a window of a certain bandwidth,
which is moved along the x-axis and relevant statistics computed sequentially. Within the
window the points are either averaged or a weighted regression is performed to obtain an
average value. All average values are connected by a line. The smoothness of the line is mainly
controlled by the chosen bandwidth. A very simple method for smoothing is Tukey’s moving
median (Tukey, 1977). A more modern and prominent technique, which has been used here,
is based on local polynomial regression fitting and known as the “loess” method (Cleveland
et al., 1992).

In Figure 6.6 it can easily be seen that Cu values in moss increase by two orders of mag-
nitude when approaching the location of the Monchegorsk smelter. At the same time it is also
apparent that the values decrease rapidly with distance from the smelter. At about 200 km from
Monchegorsk the contamination signal “disappears” into the natural background variation. At
this distance anthropogenic contamination and natural background can no longer be separated
using direct chemical analysis. Although the example data display a clear trend even without
a smoothed line, the line provides a more informative picture of the overall trend without
distortion by local variation.

A north–south transect at the western project border in a pristine area without influence from
industry shows other processes (Figure 6.7). The steady input of marine aerosols from the coast
of the Barents Sea has an important influence on moss and O-horizon chemistry. Elements like
Na and Mg, which are enriched in sea water, show a steady decrease from the coast to a distance
of about 200 to 300 km inland (Figure 6.7). This indicates the important influence of a natural
process, the steady input of marine aerosols along the coast, on the element concentrations
observed in moss and O-horizon samples on a regional scale. An “exploratory” surprise was
the opposite trend as detected for Bi (and several other elements – see Reimann et al., 2000b)
(Figure 6.7). This trend follows the distribution of the major vegetation zones in the survey area
(tundra–subarctic birch forest–boreal forest) and is interpreted as a “bio-productivity” signal:
the higher the bio-productivity, the higher the enrichment of certain elements in the O-horizon.

In the examples shown so far, the trends were visible when studying the distribution of
the sample points in the figures (Figure 6.6 and 6.7) by eye. Trend lines will be even more
interesting when the data are far noisier and trends are not visible at first glance. The dis-
tribution of the pH values in the O-horizon samples along the transects provides such an
example (Figure 6.8). Along the north–south transect, pH is clearly influenced by distance
from the coast. The steady input of marine aerosols along the coast (see Figure 6.8) leads
to a replacement of protons in the O-horizon and results in a steadily increasing pH to-
wards the coast. The replaced protons end up in the lakes, resulting in lake water acidi-
fication along the coast (Reimann et al., 1999a, 2000a). Along the east–west transect one
would expect clear signs of acidification (lower pH) when approaching Monchegorsk with
its enormous SO2 emissions. Figure 6.8 (right) suggests the opposite: pH increases slightly
when approaching Monchegorsk, the anthropogenic effect of one of the largest SO2-emission
sources on Earth on the pH in the O-horizon is clearly lower than the natural effect of
input of marine aerosols along the coastline. The fact that pH actually increases towards
Monchegorsk is explained by co-emissions of alkaline elements like Ca and Mg which more
than counteract the acidic effects of the SO2 emissions. The diagram suggests that it would
be a severe mistake to reduce the dust emissions of the smelter before the SO2 emissions
are reduced because then the positive environmental effects of these co-emissions would be
lost.
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Figure 6.7 North-south transects along the western project border, the most pristine part of the Kola
Project survey area. The map (upper left) indicates the samples selected for plotting as transects. Upper
right: Na in moss; lower left: Bi in O-horizon soil; and lower right: Mg in O-horizon soil

6.5 Spatial distance plot

There may be cases where it is difficult to define a sensible transect. In such instances it could
still be interesting to study systematic changes of a variable with distance from a defined point.
This can be done in the spatial distance plot where a subarea (of course the whole survey area
can also be used) and a reference point are defined.

The calculated distance of each sample site from the reference point is plotted along the
x-axis. Along the y-axis the corresponding concentrations of the variable at the sample sites
are plotted. To better recognise a possible trend a smoothed line is fitted to the points.

Figure 6.9 shows an example of such a spatial distance plot using the variable Cu in moss
and the location of Nikel/Zapoljarnij as the reference point. The plot clearly demonstrates the
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Figure 6.8 pH in the O-horizon. Left plot: north–south transect. Right plot: east–west transect
through Monchegorsk

decreasing Cu concentrations with distance from the industrial centre, with background levels
being reached at a distance of about 200 km from Nikel/Zapoljarnij.

The spatial distance plot can accommodate any form and any direction of the chosen subarea.
It is, for example, easily possible to study the effects of Nikel/Zapoljarnij and Monchegorsk
at the same time. When choosing a north–west to south–east running subarea that includes
both sites, the reference point is set in the north-western part of the survey area; this results
in the plot shown in Figure 6.10. Figure 6.10 shows two peaks of Cu concentrations, the first
(left) peak is related to Nikel/Zapoljarnij, the second (right) peak to Monchegorsk. In this plot

Figure 6.9 Right plot: spatial distance plot for Cu in moss (log-scale). The location of Nikel/Zapoljarnij
(dot on left map) is chosen as reference point, the outline indicates the sample sites included in the
spatial distance plot (right)
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Figure 6.10 Right plot: spatial distance plot for Cu in moss (log-scale). The subarea (left map) includes
Nikel/Zapoljarnij and Monchegorsk, and the reference point (dot) is placed in the north-western part
of the survey area; the outline indicates the sample sites included in the spatial distance plot (right)

it is clearly visible that the Monchegorsk Cu emissions travel further than the emissions from
Nikel/Zapoljarnij, as indicated by the width of the peaks. One likely explanation could be that
the emissions at Nikel/Zapoljarnij have a higher proportion of particulates.

6.6 Spiderplots (normalised multi-element diagrams)

Spiderplots, where a selection of elements are plotted along the x-axis against the ratio of the
element to the concentration of the same element in some reference value (e.g., “chondrite”,
“mantle”, “shale”, “upper continental crust”) on the y-axis, are popular in petrology (see, e.g.,
Rollinson, 1993). The technique was originally developed to compare the distribution of the
Rare Earth Elements (REEs) between different rock types. REEs with an even atomic number
show in general higher concentrations in rocks than REEs with uneven atomic numbers (Taylor
and McClennan, 1985). Through normalising REEs to a reference value, the resulting saw-
blade-pattern can be brought to a more or less straight line by plotting the ratio against the
elements. Deviations from the line are then immediately visible. Usually the elements are sorted
according to atomic number, but other sorting criteria (e.g., ionic potential or bulk partition
coefficient) are also used.

Only a few samples can be plotted before the graphic becomes increasingly unreadable; it is
thus not really suited for large data sets. The appearance of the plot will strongly depend on the
sequence of elements along the x-axis and, of course, on the selection of the set of reference
values used for normalisation. Except for the REEs, there are no standardised display orders,
a fact that limits the usefulness of these diagrams.

To display the Kola Project results in such a spider plot, the MEDIAN concentration of
selected variables per layer (moss, O-, B-, or C-horizon) could be shown. It could be argued
at length as to what reference value the results should be compared against. “Upper crust” or
“world soil” might be the most appropriate candidates at first glance. However, the average
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Figure 6.11 Spiderplot showing element concentrations in the B-horizon, O-horizon and moss sample
materials relative to the element concentration in the C-horizon from the Kola Project plotted in chemical
abbreviation order (from Ag to Zn)

values quoted for “upper crust” or “world soil” are true total concentrations, which are not
really comparable to the aqua regia and concentrated HNO3-extraction data of the Kola Project.
Thus there are problems in selecting the most appropriate reference values for the display. The
upper soil horizons could be referenced to the C-horizon results from the Kola Project as the
best estimate of parent material geochemistry for the survey area (bearing the “cost” of being
“only” able to directly compare B-horizon with O-horizon and moss). It would also be possible
to use another large-scale data set where comparable analytical techniques were used (e.g.,
the Baltic Soil Survey data – Reimann et al., 2003). For the example plot the MEDIAN of
each variable in moss, O- and B-horizon was divided by the corresponding MEDIAN in the
C-horizon. The line at “1” in the plot is the reference line of the C-horizon against which the
other sample materials are compared. In the first example (Figure 6.11) the elements have been
ordered alphabetically (according to chemical abbreviation from Ag to Zn).

The second example (Figure 6.12) shows the same plot where the elements are ordered
according to a steadily decreasing ratio in moss. Although the same data are plotted, the
resulting diagram looks very different. Here it is easier to compare the differences of the other
two sample media (B- and O-horizon) from the two extremes, C-horizon and moss.

It is immediately apparent that the average composition of the B-horizon – with the exception
of very few elements – closely follows that of the C-horizon. Furthermore, it is clear that a
number of elements show unusually high concentrations in the moss, while others have much
lower values in the moss than in the C-horizon. It is also quite easy to identify those elements
that show a different behaviour in the O-horizon than they do for the moss or B-horizon.

6.7 Scatterplot matrix

The scatterplot matrix is a collection of scatterplots of all selected variables against each other
(Figures 6.13 and 6.14). The scatterplot matrix is one of the most powerful tools in graphical
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Figure 6.12 The same spiderplot as Figure 6.11, but the elements are sorted according to the con-
tinuously decreasing ratio for the moss samples relative to the underlying C-horizon

data analysis, and is an entrance point to multivariate data analysis. It can, for example, be
used to identify those pairs of elements where a more detailed study in xy-plots appears to be
necessary.

When using the scatterplot matrix with a multi-element data set, one of the major problems
is screen and paper size. The individual plots become very small on the screen if more than
10 to 12 variables are displayed. If an A0 (or 36 inch) printer or plotter is available, up to
a 60 × 60 matrix may be plotted. An important consideration before plotting a scatterplot
matrix is the handling of outliers. Extreme outliers in several variables will greatly disturb
the plot (Figure 6.13). Thus transformations need to be considered prior to plotting in order to
down-weight the influence of outliers (Figure 6.14). Alternatively samples that exhibit extreme
outliers can be removed (trimmed) prior to plotting a scatterplot matrix. Although the scatterplot
matrix is a graphic and not a “formal” correlation analysis, the special problems of the closure
of geochemical data still remain (see Section 10.5), especially for major and minor elements.
The scatterplot matrix may help, however, to visualise some of these problems right away.
Furthermore, by additive or centred logratio transformation of the major and minor element
data (see Sections 10.5.1 and 10.5.2), the “opened” data may be displayed.

6.8 Ternary plots

Ternary plots show the relative proportions of three variables in one diagram (see, e.g., Cannings
and Edwards, 1968). They have been used in petrology since the early 1900s to study the
evolution of magmas or to differentiate between certain rock types. When three variables for
a single observation sum to 100 per cent, they can be plotted as a point in a ternary plot. To
construct an informative ternary plot, the three variables should have analytical results within
the same order of magnitude, or all points will plot into the corner of the variable with the
highest values. If there are large differences between the variables, it is necessary to multiply
one or two of the variables by a factor to bring the values into the same data range as that of
the other variables. The values for all three variables are then re-calculated to 100 per cent and
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Figure 6.13 Scatterplot matrix of some selected elements, Kola Project C-horizon data. Axes could
be labelled, but that will result in even smaller scatterplots, which contain the important information
of this graphic. Some extreme values dominate the plot

plotted into the ternary space. In a ternary plot only two variables are independent, the value
of the third variable is automatically known; the data are closed (Aitchison, 1986), and thus
these diagrams should not be used to infer “correlations”.

However, they can be used in environmental and other applied geochemical studies to aid
“pattern recognition” and comparison with other studies.

Figure 6.15 shows two ternary plots constructed with the Kola Moss data set. The scale of
the three axes varies between 0 and 100 per cent for each element (100 per cent in the corner
of the element). The grey dashed lines in Figure 6.15 show the percentages. Just as in the
scatterplot, it should be possible to identify interesting samples (usually outliers) via a simple
click of the mouse. The Cu-Ni-Pb plot demonstrates that Pb is not an important component
of the smelter emissions, which are dominated by Cu and Ni. Sample 907 was taken close to
the Monchegorsk smelter. The Mn-Al-Fe ternary plot was constructed because both Al and
Fe concentrations will be strongly influenced by the input of dust to the moss, while Mn is a
plant nutrient. It is apparent that there are samples where Al dominates the dust component
and others where Fe is more important. In addition, it appears that the majority of samples
tend to the Mn corner of the diagram.
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Figure 6.14 The same scatterplot matrix as above (Figure 6.13) but with log-transformed data to
decrease the influence of extreme values
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Figure 6.15 Two ternary plots for selected elements of the Kola Project Moss data set
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For petrological applications it should again be possible to display pre-defined fields
(or lines) in these diagrams that outline where rocks with particular names plot. Just
as for xy-plots, one software package, based on R, which can plot these fields and
lines for many pre-defined ternary plots (Janousek et al., 2006), is freely available at
http://www.gla.ac.uk/gcdkit/.

6.9 Summary

Once the statistical and spatial data structure is documented, the relationships between different
variables are an important avenue of study. While up to this point it was no major problem to
study and document variable by variable, now almost countless possibilities are encountered.
The number of possible plots showing bivariate data relationships increases quadratically with
the number of variables. It may thus be tempting to commence right away with multivariate
data analysis. However, all multivariate methods are built on many statistical assumptions
about the data. It is thus advisable to use scatterplots first as the basis for studying bivariate
data behaviour. Such bivariate plots used in an exploratory manner can be very informative,
especially when adding user-defined lines, regression lines and trend lines. Plotting spatial and
time trends are special cases of bivariate data analysis. The scatterplot matrix can be used to
gain a graphical impression of the relationships between all possible pairs of variables. Three
variables can be displayed in ternary plots. All of these simple plots can be used to great
advantage to gain an improved knowledge of the data and its structure, interrelationships,
before starting any formal statistical data analysis.

http://www.gla.ac.uk/gcdkit/


7
Defining Background and
Threshold, Identification of Data
Outliers and Element Sources

The reliable detection of data outliers and unusual data behaviour is one of the key tasks in
the statistical analysis of applied geochemical data, and has remained a core problem since the
early days of regional geochemistry (see, e.g., Hawkes and Webb, 1962; Matschullat et al.,
2000; Reimann and Garrett, 2005; Reimann et al., 2005).

In Chapters 3 and 4 several methods to visualise the data distribution and to calculate dis-
tribution measures have been introduced. Statistically, it should now be no problem to find the
univariate extreme values (for multivariate outlier detection see Chapter 13) for any determined
variable. To identify the extreme values in a normal distribution, statisticians usually calculate
boundaries via the formula MEAN ± 2 · SD. The calculation will result in about 4.6 percent of
the data belonging to a normal distribution being identified beyond the boundaries as extreme
values, 2.3 percent at the lower end and 2.3 percent at the upper end of the distribution. The
inner 95.4 percent of the data will represent the “background” variation in the data set. In the
early days of regional geochemistry, this formula was frequently used to identify a certain
proportion of “unusually high” values in a data set for further inspection (Hawkes and Webb,
1962). The upper border calculated by the “MEAN ± 2 · SD” rule was defined as the “thresh-
old”, the boundary between background variation and extreme values. The terms “background”
and “threshold” have often been intermingled as identifying the boundary between “normal”
and “extreme” values, but should be kept strictly separate because “background” identifies the
main range of variation in the data set while “threshold” is a single value.

However, are these extreme values of a normal distribution, as defined by a statistical rule,
really the “outliers” sought by applied geochemists and environmental scientists? Will this rule
provide reliable-enough limits for the background population to be of use in environmental
regulations? Can it be used to reliably separate geogenic, natural background variation from
anthropogenic element inputs?

Extreme values are of interest in investigations where data are gathered under controlled
conditions. A typical question would be “What is the ‘normal’ range of weight and length
among newborns?” In this case extreme values are defined as: values in the tails of a statistical

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6
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distribution, and can be calculated using the “MEAN ± 2 · SD” rule once enough data (usually
n > 30 is recommended for a first estimate) have been gathered. The estimates for ‘normal’
range and extreme become increasingly reliable as more data become available; the bound-
aries will no longer change dramatically when the size of the statistical sample is increased
(see Chapter 9).

In contrast, geochemists are typically interested in outliers as indicators of rare geochemical
processes. In such cases, these outliers are not part of one and the same distribution. For
example, in exploration geochemistry samples indicating mineralisation are the outliers
sought. In environmental geochemistry the recognition of contamination is of interest.
Outliers are statistically defined (Hampel et al., 1986; Barnett and Lewis, 1994; Maronna et
al., 2006) as: values belonging to a different population because they originate from another
process or source, i.e. they are derived from (a) contaminating distribution(s). In such a
case the “MEAN ± 2 · SD” rule cannot provide a relevant threshold estimate. Outliers could
occur anywhere within a given data distribution, not only at the extremes, and may be quite
difficult to identify – at least in the univariate case (see Chapter 13). The reason that the
“MEAN ± 2 · SD” rule appears to function in practice is that fortunately the data representing
the sought-after distributions are often very high (or low) when compared to the majority of
data. In practice, it is often quite difficult to differentiate between true data outliers and extreme
values and the term “outlier” is often used for any kind of value deviating from the majority of
the data.

Furthermore, because of the inherent spatial component of applied geochemical and en-
vironmental data and the difference between “extreme values” and “outliers”, the estimated
threshold values separating background from outliers will usually change when size and/or
location of the survey area are changed. This is an unacceptable situation for regulators needing
to define “action levels”, “maximum admissible concentrations (MAC-values)”, or simply to
decide whether a measured value is “natural” or due to “contamination”.

From the above discussion it is obvious that procedures that do not consider the spatial
component of applied geochemical data will not be able to provide a reliable estimate of
background and threshold. A combination of statistics and geochemical mapping is needed.
Defining action levels or MAC-values should probably be based more on ecotoxicology than
on statistics drawn from regional geochemical data. For toxicologically defined “action levels”,
the discussion of anthropogenic versus geogenic origin of the measured concentration becomes
irrelevant. The question is rather “too high”, “OK”, or even “too low” for a certain use. On
a continental scale natural element variations will play the dominating role, while on a local
scale contamination from anthropogenic sources may become increasingly important. It may
still be necessary to reliably identify the source of high values in cases where somebody is
required to carry the cost of a remediation effort. The best chance for identifying a source lies
in appropriate geochemical mapping at a suitable scale (see Chapter 5).

7.1 Statistical methods to identify extreme values and data outliers

7.1.1 Classical statistics

Statisticians use mean and standard deviation to identify extreme values of the normal distri-
bution (see Chapter 7). This is a well-established and very reliable method if independent data
are drawn from a normal distribution.
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Table 7.1 Lower and upper limits for extreme values estimated using the “MEAN ± 2 · SD” rule
for Cu in the Kola Project O-horizon data. Results are shown when using the non-transformed and
the log-transformed values for the calculation. The log-transformed values have been
back-transformed to the original data scale

[MEAN − 2 · SD] [MEAN + 2 · SD]
original log-based original log-based

Cu −451 1.8 540 98
Cu-Finland 2.3 3.9 12 13
Cu-Norway −31 2.6 56 32
Cu-Russia −626 2.5 790 213

The distribution of geochemical data has been repeatedly discussed in the literature (for a
recent paper see, for example, Reimann and Filzmoser, 2000). Many of the classical statistical
methods (not only “MEAN ± 2 · SD”) require that the data follow a normal distribution or, as a
minimum, approach symmetry. In the previous chapters it was demonstrated that geochemical
data are usually strongly right skewed and are characterised by the existence of outliers. Skew
and outliers will have a strong influence on location (central value) and spread of a data set.
Table 7.1 shows the estimated threshold values calculated for the variable Cu as measured in
the Kola Project O-horizon data set based on the classical statistical parameters. Because the
data distribution is strongly skewed, the resulting values are clearly biased. To overcome the
right skew, the data could be log-transformed. Values for MEAN and SD can then be calculated
for the log-transformed data; the boundaries can be calculated using these estimates, and back-
transformed to the original data scale. All the statistical parameters have changed dramatically,
and the estimate of threshold is now much lower. But is it correct? A statistical test for data
normality (see Chapter 9) will show that the variable Cu in the Kola Project O-horizon data set
follows neither a normal nor a lognormal distribution (see Table 9.1). This provides a strong
reason to be suspicious of calculated threshold values. Due to the strong right skew of the data,
the calculation of the limits for the lower outlier boundaries, “thresholds”, without the use of
a log-transformation results in negative estimates. But negative concentrations do not exist in
geochemistry, which further highlights the problem with this approach.

The problem of using the above statistical formula to identify extreme values and thus the
upper and lower boundaries of the background variation for spatial (applied geochemical and
environmental) data is obvious when treating the three countries as data subsets. Calculat-
ing MEAN, SD, and outlier boundaries for each of the countries using the above approach
(non-transformed versus log-transformed values) results in totally different estimates for each
country. What is the most reliable estimate of “background” for the survey area? Is it justified
to base regulatory action or guidance values on any of these estimates?

7.1.2 The boxplot

As demonstrated in Chapter 3 the boxplot as defined by Tukey (1977) will automatically
identify extreme values. However, it has also been discussed that the calculation of the
Tukey outlier boundaries requires data symmetry and is based on assumption of underlying
normality (Section 3.5.2). Thus, before using the boxplot to identify data outliers, the data
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Table 7.2 Lower and upper boundaries for extreme values for Cu in the Kola Project O-horizon
data as obtained with the Tukey boxplot (non-transformed data) and the log-boxplot (data
log-transformed to approach symmetry and resulting boundaries for extreme values
back-transformed into the original data scale)

Lower whisker Upper whisker
original log-based original log-based

Cu 2.7 2.7 35 76
Cu-Finland 2.7 3.9 11.9 13
Cu-Norway 4.5 4.5 17 24
Cu-Russia 3.1 3.1 72 185

distribution needs to be studied in some detail and the required data transformation to
approach distributional symmetry carried out. When this is done, the boxplot should be better
suited to identify data outliers in geochemical data. Table 7.2 compares outlier boundaries
as obtained when using the boxplot for the original and for log-transformed Cu data. Using
the log-transformed data and back-transforming the resulting boundaries to the original data
scale is equivalent to using the log-boxplot (Section 3.5.2) on the original data. Due to the
construction rules for the boxplot, negative lower boundaries for extreme values are now
impossible (the lower whisker is taken to the lowest original data value). The values for the
upper whisker are often considerably higher when using the log-boxplot (see Section 3.5.2).
Compared to the boundaries calculated above using the “MEAN ± 2 · SD” rule, only the upper
threshold for the country subset “Finland” remains the same when using log-transformed data
in both cases. Again the three country subsets all provide different results.

7.1.3 Robust statistics

To better accommodate the special properties of applied geochemical data it is possible to
replace MEAN and SD in the “MEAN ± 2 · SD” formula by robust estimators for the location
(central value) and spread (see Sections 4.1 and 4.2). When, for example, using MEDIAN
and MAD, the resulting formula for identifying extreme values is “MEDIAN ± 2 · MAD”.
However, the definition of the constant used in estimating the MAD is based on the assump-
tion of a normal data distribution of the core (inner 50 percent) of the data. Thus the data
distribution must first be checked for symmetry of the majority of the data before performing
any calculations of the boundaries for extreme values, even when using robust estimators.

The estimates obtained for the upper and lower outlier boundaries (Table 7.3) are very
different from the estimates obtained when using the classical parameters (Table 7.1) or the
boxplot (Table 7.2). Differences between estimates using the original and the log- and back-
transformed values are now much smaller. The reason is that the MAD is much less influenced
by skewed data than the SD and even less than the hinge width (IQR) used in the boxplot. The
“MEDIAN ± 2 · MAD” rule delivers the lowest threshold values of all techniques discussed
so far. Reimann et al. (2005) have shown that the percentage of extreme values is usually
overestimated when using this rule. Again, different estimates for the threshold will be obtained
when location or size of the survey area change.



STATISTICAL METHODS TO IDENTIFY EXTREME VALUES AND DATA OUTLIERS 111

Table 7.3 Lower and upper limits for extreme values calculated using the “MEDIAN ± 2 · MAD”
rule for Cu in the Kola Project O-horizon data. Results are shown when using the non-transformed
and the log-transformed values for the calculation. The log-transformed values have been
back-transformed to the original data scale

[MEDIAN − 2 · MAD] [MEDIAN + 2 · MAD]
original log-based original log-based

Cu −0.6 2.8 20 33
Cu-Finland 3.2 4.0 10 11
Cu-Norway 2.7 3.9 13 15
Cu-Russia −5.3 3.8 40 79

7.1.4 Percentiles

The uppermost 2 percent, 2.5 percent, or 5 percent of the data (the uppermost extreme values)
are sometimes arbitrarily defined as “outliers” for further inspection. This will result in the
same percentage of extreme values for all measurements. This approach is not necessarily valid,
because the real percentage of extreme values could be very different. In a data distribution
derived from natural processes, there may be no extreme values at all, or, in the case of multiple
natural background processes, there may appear to be outliers in the context of the main mass
of the data that are not in fact outliers in the context of the background process with the
highest levels. However, in practice the percentile approach delivers a number of samples
for further inspection that can easily be handled. In some cases environmental regulators have
used the 98th percentile of background data as a more sensible inspection level (threshold) than
values calculated by the “MEAN ± 2 · SD” rule (see, e.g., Ontario Ministry of Environment
and Energy, 1993). The remaining problem is that even percentiles will change with size or
location of the survey area.

Table 7.4 shows the 2nd and 98th percentiles for Cu in the Kola Project O-horizon data set
for all data and for the three countries. Note that percentiles are solely based on sorting of the
data, log- and back-transformation will not change the resulting percentiles (see Section 4.3).
The results for the lower boundary for extreme values are of course again within the data
range and are actually the highest estimates of all the techniques presented so far. Results for
the upper threshold are high when compared to the other techniques. The exception is for the

Table 7.4 2nd and 98th percentiles of Cu from the Kola Project O-horizon data set. To highlight
the inherent problem of working with spatial data the 2nd and 98th percentiles for the three
country subsets are also shown

2nd 98th

percentile percentile

Cu 4.7 248
Cu-Finland 4.4 13
Cu-Norway 4.7 62
Cu-Russia 6.9 478
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data from Finland. These provide a relatively stable upper threshold for all techniques. This
indicates that the distribution of Cu in the Finnish samples is quite symmetrical and does not
contain more than two percent upper extreme values.

7.1.5 Can the range of background be calculated?

As demonstrated above, several methods are available for calculating the range of geochemical
background. When applied, all result in quite different estimates for the same variable. When
changing size or location of the survey area, again all estimates will change. Reimann et al.
(2005) studied in detail the different methods and their statistical behaviour with simulated
and real data. The conclusion was reached that, given the special properties of geochemical
data and that in fact real data outliers and not “extreme values of the normal distribution” are
being sought, the “MEDIAN ± 2 · MAD” rule and the boxplot (if a suitable data transform is
used) will provide the most reliable calculated results.

It should be noted that in the literature on robust statistics many other approaches for outlier
detection have been proposed (see, e.g., Huber, 1981; Rousseeuw and Leroy, 1987; Barnett and
Lewis, 1994; Dutter et al., 2003; Maronna et al., 2006). There are also multivariate methods
for outlier detection (e.g., Chapter 13) and mixture decomposition methods have also been
proposed as a solution (see, e.g., Graf and Henning, 1952; Carral et al., 1995; Neykov et al.,
2007). However, none of these methods is able to solve the problem of working with spatial
data. Estimated values will always change depending on size and location of the survey area.
Applied geochemical data are not the well-behaved data from classical investigations, where
statistical parameters will improve with the number of samples; they may in fact change
dramatically when the survey boundaries are changed.

Percentiles based on the empirical data have the advantage that they will identify the up-
permost (lowermost) two percent (or five percent) of the data as “unusual” and without being
based on any distributional model. They will result in the identification of a reasonable number
of samples that will need further investigation. These samples may, or may not, be true outliers.
However, in a highly mineralised or contaminated survey area there may in fact be far more
than, for example, five percent outliers, e.g., Kola Project mosses or O-horizon soils.

Considering the above results, it is clearly inappropriate that the estimation of background
for applied geochemical data should be solely based on such calculations when the values
are to be used for regulatory purposes. However, the resulting values may still provide useful
estimates for data comparison purposes.

7.2 Detecting outliers and extreme values in the ECDF- or CP-plot

In Section 3.4 it has been shown that plots of the distribution function are powerful tools
to visualise deviations from expected data behaviour. Tennant and White (1959), Sinclair
(1974, 1976), and others originally introduced the cumulative probability plot (CP-plot)
to geochemists. Figure 7.1 shows an ECDF- and a CP-plot for Cu in the O-horizon
data, the example used above to calculate outlier boundaries. The borders obtained with
“MEAN ± 2 · SD” and “MEDIAN ± 2 · MAD” rules for the log-transformed and then
back-transformed results for the whole data set are also indicated.

One of the main advantages of plots of the distribution function is that each single data
value remains visible. The range covered by the data is clearly visible, and extreme values
are detectable as single points. It is possible to directly count the number of extreme values
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Figure 7.1 ECDF- (left) and CP-plot (right) for Cu from the Kola Project O-horizon data set. Boundaries
for extreme values as identified with “MEAN ± 2 · SD” and “MEDIAN ± 2 · MAD” rules using the log-
transformed and then back-transformed data are also shown; the 2nd and 98th percentile can be read
directly from the plot

and observe their distance from the core (main mass) of the data. Identifying the threshold
in ECDF- or CP-plots is, however, still not a trivial task. It is obvious that extreme values,
if present, can be detected without any problem. However, several flexures can be identified
in both plots. Which of the flexures is the “true” boundary between background and extreme
values? In Figure 7.1, for example, it can be clearly seen in both versions of the diagram that
the boundary dividing extreme values from the rest of the population is 1000 mg/kg. Experience
with other data sets teaches that 1000 mg/kg Cu in the O-horizon is a highly unlikely value
for an upper threshold; Cu values in such soils are usually much lower. When consulting a
reference source collecting such values together from different surveys (see, e.g., Reimann and
de Caritat, 1998), it can be clearly seen that median concentrations of Cu in natural soils are
usually below 10 mg/kg.

Searching for breaks and inflection points is largely a graphical task undertaken by the
investigator, and, as such, it is subjective and experience plays a major role. However,
algorithms are available to partition linear (univariate) data, e.g., Garrett (1975) and Miesch
(1981) who used linear clustering and gap test procedures, respectively. In cartography
a procedure known as “natural breaks” that identifies gaps in ordered data to aid iso-
pleth (contour interval) selection is available in some Geographical Information Systems
(Slocum, 1999).

However, frequently the features that need to be investigated are subtle, and in the spirit of
Exploratory Data Analysis (EDA) the trained eye is often the best tool. On closer inspection of
Figure 7.1, it is evident that a subtle inflection exists at 13 mg/kg Cu, the 66th percentile, best
seen in the ECDF-plot (left). About 34 percent of all samples are identified as extreme values
if we accept this value as the threshold. This may again appear unreasonable at first glance
and highlights the problem of working with plots of the distribution function – experience and
additional information are needed to make best use of these plots. The challenge of objectively
extracting a boundary for extreme values or the threshold from these plots is probably the
reason that they are not more widely used.
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7.3 Including the spatial distribution in the definition of background

The problems described above concerning finding a suitable method to identify the samples
that represent the background variation and those that represent extreme values indicate that
it is necessary to include the spatial component of applied geochemical (environmental) data
in the definition.

7.3.1 Using geochemical maps to identify a reasonable threshold

Figure 7.2 (left) shows a map for Cu from the Kola Project O-horizon data set. The major
influence of the Russian nickel industry on the regional distribution of Cu in the O-horizon is
at once visible. A sizeable part of the O-horizon in the 188 000 km2 survey area is obviously
contaminated by the Cu emissions originating in Nikel/Zapoljarnij and Monchegorsk.

Considering the size of the contaminated area, the flexure at the 66th percentile in the
ECDF-plot described above is in fact a likely candidate for an upper threshold value for
natural background variation, dividing the contaminated from the uncontaminated land. A
combination of ECDF- and CP-plots, a geochemical map, and some expert knowledge may
thus all be needed to derive a prudent estimate of the upper limit of background variation.
Relying on statistical calculations alone will most often result in inappropriate estimates.
Regulators may then be interested in a map showing all locations where the Cu concentration
in the O-horizon samples is larger than 13 mg/kg (Figure 7.2, right). The map demonstrates
that the majority of Cu values that are higher than 13 mg/kg are probably directly related
to emissions from the Russian nickel industry. However, there are in addition a number of
geogenic outliers in the data set, e.g., two high values near Cape North in Norway, where a
small intrusion of ultramafic, a relatively rare rock, occurs. It was thus possible to identify a
reasonable, if not perfect, threshold for the upper boundary of natural background variation.
This boundary, however, cannot be used to distinguish between man-made and natural high

Figure 7.2 Regional distribution of Cu of the Kola Project O-horizon data (left) and regional distri-
bution of samples with a Cu concentration >13 mg/kg in the O-horizon samples from the Kola Project
area (right)
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values of Cu in the O-horizon. For a decision about the likely cause of the high values the map
is indispensable.

However, in terms of setting a regulatory value for the maximum allowable concentration
of Cu in the O-horizon soils in the area, the derived threshold of 13 mg/kg may still not
be the most appropriate value. Some information is still missing, i.e. what Cu concentration
will be harmful to the environment? To make the issue even more complicated, the question
needs to be extended: to which part of the environment – soil bacteria, some earth worm
eating the soil, or human beings coming in contact with the soil – does this concentration
represent a danger (Chapman and Wang, 2000)? It is obvious that these questions can only be
answered via ecotoxicological investigations that should take the speciation (chemical form)
of the element into consideration. Regulatory action levels or MAC-concentrations should
rely on such ecotoxicologically-derived values rather than on statistically-derived values from
regional geochemical data. Finally, if a comparison of the ecotoxicologically-derived value
is to be made to regional geochemical data, for any conclusions to be valid the method of
analysis used should estimate the amount of the element present in the sample in the form that
the ecotoxicological study has shown to pose a risk.

7.3.2 The concentration-area plot

It has been demonstrated above that it is useful to consider the spatial scale of the distribu-
tion of the data in selecting break points or thresholds in plots of the distribution function. The
concentration-area (CA-) plot achieves this by looking at the fractal structure of the data (Cheng
et al., 1994; Cheng and Agterberg, 1995). Many patterns in nature are self-replicating, or self-
similar (Mandelbrot, 1982; Barnsley and Rising, 1993). Examples are the shape of fern leaves,
a snow flake, or the dendritic patterns of manganese hydroxide coatings on the parting faces
of rocks in desert environments. Geochemical patterns can also be investigated to determine
if they are “fractal”. Normally geochemical maps are thought of as two-dimensional, however,
if they are spatially non-random they will have a fractal dimension between two and three. It is
this partial dimension that contains spatial information on the structure of the data displayed in
the two normal map dimensions. To use a CA-plot the data need to be relatively evenly spaced
across the survey area. There should also be no major gaps, e.g., large areas where the sample
medium is absent, in the data set. The Kola data meet this requirement and Figures 7.3 and
7.4 demonstrate the CA-plot procedure for the O-horizon soil data. First the data are spatially
interpolated (see Section 5.6) to a fine (100 × 100) regular grid, increasing the number of data
points so they can be used as a surrogate for measuring areas. Then the interpolated values
outside the survey area boundary are trimmed away, so there is no interpolation to points out-
side the survey area. The original and interpolated data values together define the x-axis of
the CP-plots displayed in the upper two plots of Figure 7.3. The number of values plotted is
of course greatly increased by the spatial interpolation procedure. In the CA-plot (Figure 7.3,
lower right) the y-axis shows the percentage of the interpolated values, plotted on a logarithmic
scale, that are larger (or smaller) than each value plotted on a logarithmic scale on the x-axis.
As the interpolated points are on a fine regular grid the number of points is a surrogate for
the area of the interpolated map that is larger (or smaller) than the corresponding value on the
x-axis. Thus the CA-plot displays the relationship between the percentage of the survey area
that has a particular value and the actual value. Background levels will occur frequently and
will represent the majority of the survey area, and low or high extreme value-containing areas
will represent small percentages of the survey area. A single straight line indicates a single
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Figure 7.3 Concentration-area (CA-) plot (lower left) cumulated downwards, for Cu (mg/kg) in Kola
O-horizon soil samples. The upper left plot is the CP-plot of the original data and the upper right plot is
the CP-plot for the interpolated data. The lower left image is a grey-scale map of the interpolated data

fractal relationship controlling the data distribution; multiple straight lines indicate multiple
fractal processes controlling the data distribution. The choice of interpolation algorithm and
data transformation will influence the CA-plot. Firstly, the data distribution should be sym-
metrical so that extreme values do not over-influence the resulting interpolation. This is often
achieved in applied geochemical data with a logarithmic transform. Secondly, in interpolation
the data should not be excessively smoothed as that will “smeer out” the very features being
sought. To avoid this, simple triangulation is employed for the interpolation.

The CA-plot in Figure 7.3 (lower right) has been prepared by ordering the interpolated
values from the maximum value downwards. As the areas are plotted on a logarithmic scale,
this results in scale expansion and structural (fractal) detail being easily observable for high
values, in this case related to the smelter facilities in the survey area. It is apparent that most
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Figure 7.4 Concentration-area (CA-) plot, cumulated upwards (left) and downwards (right – see
Figure 7.3), for Cu (mg/kg) in Kola O-horizon soil samples

of the data follow a single fractal relationship, with another relationship present at low levels
and a more complex relationship above 500 mg/kg Cu near the smelters. Thus the distribution
of the O-horizon Cu-data appears to be dominated by smelter-related processes. This does not
help determine the lower limit of smelter influence; for this the CA-plot needs to focus on
the lower end of the fractal distribution. This is achieved by ordering the interpolated values
from lowest to highest, see Figure 7.4 (left). As distinct from the downwards cumulated display
(Figure 7.4, right), it is immediately apparent that there are two major fractal processes present,
one below about 10 mg/kg Cu, and one above.

The lower process is that controlling the regional background distribution of Cu in the
O-horizon soil, and the upper process is related to the atmospheric dispersion of Cu from the
smelter facilities. The fine detail present at the highest levels >500 mg/kg in Figure 7.4 (right)
relates to very local processes close to the point sources, possibly fugitive releases of coarser-
grained material incapable of long-range transport, or other local smelter-related activities.

It is interesting to note that the use of a simple triangulation interpolation procedure does not
materially change the shape of the data distribution (compare the two upper plots in Figure 7.3).
A comparison of the CA-plot (lower right) with the CP-plot (upper left) of the data is most
informative. In Figure 7.3 not a lot of new information is learnt: the gaps in both plots are
similar; however, Figure 7.4 (left) provides real new insight into the importance of the flexure
in the CP-plot at around 13 mg/kg Cu (see previous discussion in Section 7.3.1).

Previously in this chapter, threshold estimates for Cu (mg/kg) in Finnish O-horizon soils of
12 (“MEAN ± 2 · SD” original scale), 13 (“MEAN ± 2 · SD” log-scale), 12 (boxplot upper
fence original scale), 13 (boxplot upper fence log-scale), 10 (“MEDIAN ± 2 · MAD” original
scale), 11 (“MEDIAN ± 2 · MAD” log-scale), and 13 (98th percentile) have all been made (see
Tables 7.1 to 7.4). The upwards cumulated CA-plot confirms in a most convincing way that a
useful threshold for Cu in O-horizon soils is in the 10 to 13 mg/kg range. This information would
be most useful for developing a map of Cu in O-horizon soils where a symbol change or isoline
at somewhere between 10 and 13 mg/kg would indicate the limit of measurable influence (in the
O-horizon Cu data) of the smelter facilities (compare Figure 7.2, right). What is apparent is that
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in the context of the Kola Project the data from Finland provide a good estimate for the natural
background range of the whole survey area. This also demonstrates how far one might have to
go from a major point source of anthropogenic contamination to find a suitable area in which to
establish a natural background range. Fortunately, northern Finland is generally geologically
pedologically and ecologically similar to the Kola Peninsula; if this was not the case, as might
be in other studies, finding a suitable “background” area could pose real challenges.

7.3.3 Spatial trend analysis

An alternative approach to visualising “background” and “contamination/anomaly” around
a clearly defined anthropogenic source such as Monchegorsk is to draw transects across the
expected source and study the distribution of the elements with distance from the source (see,
e.g., Reimann et al., 1997b; McMartin et al., 1999; Bonham-Carter et al., 2006; see Section 6.4).
Figure 7.5 shows four such profiles for the O-horizon transecting Monchegorsk in an east–west
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Figure 7.5 East-west geochemical transect through Monchegorsk for Bi, Cu, Pb, and Zn as determined
in the Kola Project O-horizon samples
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direction. For most of the elements the influence of Monchegorsk is clearly visible – as well
as the distance to the point where this influence disappears into the background variation –
often at less than 50 km (e.g., Bi, Figure 7.5, upper left) and up to 150 km (e.g., Cu, Figure 7.5,
upper right) from source. The little anomaly at 300 km has a geogenic origin (Reimann and
Melezhik, 2001). The diagram for Cu shows at once that the background is reached at around
10 mg/kg and that all samples with a value above 25 mg/kg are most likely influenced by the
anthropogenic activities in the survey area.

For Pb the profile shows that the Pb emissions from Monchegorsk would not be easily dis-
cerned within the background variation were it not plotted as a profile (Figure 7.5, lower left).
Apatity, some 30 km east of Monchegorsk, appears as a second source of Pb. Near the western
project boundary (−300 km on the x-axis) the profile intersects a geogenic Pb anomaly related
to natural hydrothermal alteration (Reimann and Melezhik, 2001), reaching levels almost as
high as observed near Monchegorsk (Figure 7.5, lower left). The profile for Zn shows that no
recognisable Zn emissions can be detected from Monchegorsk, the highest levels occur near
Apatity (Figure 7.5, lower right). Such simple profiles, employing EDA principles and the user’s
optical processing capabilities, are a better indication of the influence of contamination than any
statistically derived background variation estimates, TOP/BOT-ratios or EFs (see Sections 7.4.1
and 7.4.2). The same effects will be visible in properly-constructed geochemical maps (see
Chapter 5), however the identification of the point where the input from contamination can
no longer be separated from natural variation is easier on a transect. Again we derive a value
of 10–12 mg/kg Cu.

7.3.4 Multiple background populations in one data set

The Cu distribution in Figure 7.2 is dominated by the massive input from the Russian nickel
industry. In many cases, however, the regional distribution of an element will not be determined
by one single process; several sources for unusually high (or low) element concentrations may
be present. Figure 7.6 shows two examples, a map of Na in the O-horizon and a map of La
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Figure 7.6 Regional distribution of Na (left) in the Kola Project O-horizon data set and of La (right)
in the Kola Project C-horizon data set
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in the C-horizon. Two major sources for high Na-concentrations in the O-horizon exist in the
survey area: the steady input of marine aerosols along the coast and the dust related to mining
and transport of the alkaline rocks near Apatity. Knowledge about these sources and their
localisation allows their differentiation on the map (Figure 7.6, left). In the C-horizon, bedrock
geology will usually dominate the observed elemental distribution patterns. The map of La
shows that different rock units display very different element concentrations, in the example
the Caledonian sediments along the Norwegian and parts of the Russian coast, the granulite belt
in Finland and Russia, and the alkaline intrusions near Apatity are all marked by exceptionally
high values of La (Figure 7.6, right, compare to Figure 1.2, the geological map of the survey
area). Thus the different lithologies as identified in the geological map (Figure 1.2) will all have
their own, and often quite different, background populations. In consequence, extreme values
in soils collected on top of one of these lithologies will not be extreme values in soils collected
on top of another lithology. For O-horizon samples something similar can be expected when
comparing samples from different vegetation zones (different ecosystems).

It is thus an intrinsic problem when working with spatial data that no univariate statistical
method will permit distinguishing between the different processes resulting in unusually high
(or low) values. The estimation of background range and threshold are probably not the most
important task, but rather the identification of the factors (or processes) causing “unusual” data
behaviour. This requires geochemical mapping (Chapter 5) using appropriate techniques to
visualise the data structure rather than to just highlight “extreme values” (see Chapter 5) and/or
multivariate statistics (see Chapters 11 and following, especially Chapter 13 on multivariate
outlier detection). Identifying these different processes in regional geochemical data should be
an interactive and iterative process using a variety of graphical and data subsetting techniques
rather than classical statistical calculations and tests.

7.4 Methods to distinguish geogenic from anthropogenic element sources

A typical task in environmental investigations is to distinguish data related to geogenic,
or better natural, element sources from data influenced by anthropogenic sources. It has
been demonstrated above that this may require geochemical mapping. However, in many
investigations too few samples are taken to permit geochemical mapping over a usefully large
area, or no clearly defined contamination sources (like industry in the Kola Project survey
area) are present. Thus techniques allowing the differentiation of natural from anthropogenic
element concentrations are required. For soils and sediments a comparison of the element
concentrations measured in an upper horizon, believed to be exposed to contamination,
against the concentrations of the same element measured at depth, the TOP/BOT-ratio, is
often used. If no such direct comparison is possible (for example for precipitation samples
or when using plants as “biomonitors” of contamination), the calculation of so-called
“enrichment factors” is often employed. The Kola data set allows testing the performance of
these techniques on a regional scale in an area with clearly defined major contamination point
sources.

7.4.1 The TOP/BOT-ratio

When investigating sediment cores or soil samples, a popular technique to identify anthro-
pogenic element additions is to calculate the ratio between a sample collected at depth (BOT),
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and thus most likely not influenced by anthropogenic activities, and a sample collected at
the surface (TOP), and thus very susceptible to the atmospheric input of anthropogenic
contamination.

This approach has serious shortcomings; it requires that the material collected at TOP be
directly comparable to the material collected at BOT level and that no other processes than
anthropogenic contamination can influence the observed element concentration in the TOP
sample. At first glance there may appear to be no problem when collecting soils. However, an
organic O-horizon soil (the TOP-layer for the Kola Project samples) has – other than the sample
location – very little in common with the minerogenic C-horizon soil as collected at depth. The
O-horizon reflects the biogeochemical cycles at the earth surface, while the C-horizon reflects
mineralogical changes during rock weathering and, in the Kola area, glaciogenic processes. It
is actually very uncommon that a TOP sample is 1:1 comparable to a bottom sample and the
consequences are rarely considered when TOP/BOT-ratios are calculated, especially in all the
cases where they appear to show an anticipated result (for example a massive anthropogenic
contamination of the TOP-layer). For the Kola Project it is possible to directly compare B- and
C-horizon soils, both are at least minerogenic soils, but even in this case soil-forming processes
that will change the chemical composition have to be considered before any anthropogenic
impact can be determined.

The results of the Kola Project permit the study of the effects of calculating such a TOP/BOT-
ratio on a regional scale – for elements that are massively emitted in the survey area as well as
for elements that are not part of the emissions spectrum of Kola industry (Figure 7.7).

At first glance the O-/C-horizon ratio maps appear to show pollution near industry quite
nicely. However, comparisons with the maps for the raw data shown below in Figure 7.7
demonstrate that nothing has been gained. Contamination from the Cu/Ni industry is actually
better depicted in the original distribution map of Cu in the O-horizon than in the ratio map,
where some low values appear in the clearly contaminated part of the Russian survey area. For
Pb, calculation of the O-/C-horizon-ratio results in the disappearance of the effect of emissions
from the coal fired power plant in Apatity, which are visible in the raw data map. The reason
is that there appear some rather high Pb-values in the C-horizon of that area due to the special
lithology (alkaline rocks) present at Apatity. Lead is enriched in the O-horizon throughout
the area without any spatial relation to the possible Pb-contamination sources within the area.
This is due to the difference in the sample materials, minerogenic (C-horizon) versus organic
(O-horizon). An uncritical interpretation of the O-/C-horizon-ratio without considering the
spatial distribution may easily lead to the wrong inference that Pb is highly enriched in the
upper soil layers due to anthropogenic activities.

7.4.2 Enrichment factors (EFs)

The formula to calculate EFs can be generalised from Chester and Stoner (1973) or Zoller
et al. (1974) to be:

EFcrust
i (X1, X2) =

X1i

crust X1
X2i

crust X2

=
X1i

X2i

crust X1
crust X2

= crust X2

crust X1
· X1i

X2i

for i = 1, . . . , n

where “X1” is the element under consideration, the index i indicates the i-th concentration
out of n samples (usually in mass/mass units, such as mg/kg), “X2” is the chosen reference
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Figure 7.7 Maps of the distribution of the TOP/BOT-ratio (O-/C-horizon) for the elements Cu and Pb
(upper row). The original distributions of the elements in the O- (middle row) and C-horizons (lower
row) are shown in the accompanying maps, Cu (left) and Pb (right)
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element (see below). “crust” indicates which medium the concentration (or enrichment) refers
to. Instead of “crust” a local average background is occasionally used, e.g., the C-horizon at
the sample point. In that case the above formula changes to:

EFlocal
i (X1, X2) =

X1i

X1 Chori

X2i

X2 Chori

=
X1i

X2i

X1 Chori

X2 Chori

= X2 Chori
X1 Chori

· X1i

X2i

for i = 1, . . . , n.

Instead of the constant crustal ratio of the two elements, a variable local ratio is then used for
the calculation of the EF.

Table 7.5 shows the average upper crustal concentrations for a number of elements used in
the examples below.

It is assumed that the X1/X2-ratio stays constant and similar to the crustal (or other ref-
erence material) value during natural processes, but will change if an element is added via
anthropogenic input, while the other element is not affected by the same process. If these
assumptions hold, this double ratio could be used to differentiate between geogenic and an-
thropogenic element sources, independent of the measured concentration. This would allow
detection of very low levels of contamination in a sample and even direct comparison between
different sample materials, independent of concentration. The idea, as such, is thus elegant,
and if it works would provide a very useful technique in environmental studies.

Reimann and de Caritat (2000, 2005) have recently shown that though EFs can be used as a
means of comparison, they will not provide the sought differentiation between anthropogenic
and geogenic element sources. One of the main reasons that these ratios do not work is that the
biogeochemical cycling of elements is ignored. The biosphere and organic sample materials
dominate at the earth surface and not “average crust” or any other minerogenic/geogenic
material. It is not justified to ratio “crust” or other “minerogenic” materials against material
belonging to another compartment in the biogeochemical cycle. Additional shortcomings of
the procedure are detailed in the above two publications.

Data from the Kola Project afford the opportunity to study how EFs change on a regional
scale in the presence of major metal contamination sources, the Russian nickel industry near
Nikel, Zapoljarnij, and Monchegorsk in the western half of the Kola Peninsula. Figure 7.8
(upper left) shows the regional distribution of Ni in the O-horizon of the 188 000 km2 survey
area. The location of the nickel industry is clearly marked by an extensive anomaly covering
the Russian part of the survey area and small areas in northern Finland and Norway.

Table 7.5 Average concentration of selected elements in the upper crust. Values from Wedepohl
(1995) and for S from Taylor and McLennan (1995)

upper crust
mg/kg mg/kg mg/kg mg/kg

Ag 0.055 Co 11.6 Ni 18.6 Se 0.083
Al 77440 Cr 35 Pb 17 Tl 0.75
As 2 Cu 14.3 S 300 V 53
Bi 0.123 Fe 30890 Sb 0.31 Zn 52
Cd 0.102 Mn 527 Sc 7
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Figure 7.8 Regional distribution of Ni (upper left) and Pb (upper right) in the O-horizon; regional
distribution of the EFs calculated relative to the Ni/Sc- (middle left) and Pb/Sc-ratio (middle right)
in the earth crust and regional distribution of the EFs calculated relative to the “local background” as
provided by the Ni/Sc- (lower left) and Pb/Sc-ratio in the C-horizon at each sample site
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Figures 7.8 (middle left) and 7.8 (lower left) show the distribution of the EFs calculated
for Ni using the crustal ratio and the local background (represented by the C-horizon at the
same sampling site, rather than a local average), respectively. The EFs for Ni relative to the
Sc in the Earth’s crust are very high (up to 985), indicating the major input of Ni but not
Sc from industry. However, the resulting map (Figure 7.8, middle left) demonstrates that by
using EFs instead of the raw data, the map resolution clearly deteriorates (e.g., loss of the
smooth radial decrease away from point-sources evident in Figure 7.8, upper left). The area
indicated as influenced by contamination actually decreases and several low EF values occur
proximal to the industrial centres at sites clearly within the contamination halo (Reimann
et al., 1998a).

The situation does not improve when using the local background (Ni/Sc-ratio in the C-
horizon) instead of the crustal Ni/Sc-ratio (Figure 7.8, lower left). Although industry is marked
by high EFs, there are also several sites within the contamination halo where the EFs exhibit
low values, and the map is “noisy”. Thus, EFs are not a sensitive indicator of anthropogenic
contamination and, in this example at least, result in information loss rather than gain.

As a further example from the Kola Project, data for Pb distribution in the O-horizon (Fig-
ure 7.8, upper right) and EFs calculated relative to crustal (Figure 7.8, middle right) and local
background (Figure 7.8, lower right) concentrations are shown. Cu-Ni smelters are generally
not likely to be a major source of Pb emissions due to the characteristics of the ores they are
processing. However, AMAP (1998) attributed 800 t/yr of Pb emissions to the Kola smelters.
Boyd et al. (1998) demonstrated that the maximum amount of Pb entering the smelters with the
ore feed is 13 t/yr. Some additional Pb may enter the Monchegorsk smelter with scrap metal
that is occasionally recycled there, however, in any case the smelter is not a major Pb emission
source and the AMAP estimate is far in excess of what actually enters the smelter. The map
of the regional distribution of Pb in the O-horizon (Figure 7.8, upper right) is dominated by:
(1) an anomaly near the northern coast of Norway (caused by the presence of small Pb-Zn
vein occurrences in this area; Reimann and Melezhik, 2001); and (2) a prominent southerly
increase in Pb concentrations. Monchegorsk and Apatity are situated at the border between
low Pb values in the north and higher Pb values in the south, and it would be very interesting
to be able to discriminate whether these sites are influenced more by natural phenomena or
have been subjected to some level of contamination.

When EFs are calculated relative to the Pb/Sc-ratio in crust and mapped (Figure 7.8, middle
right), the clear pattern displayed in the raw data map disappears. Monchegorsk is now marked
as a low, although minor Pb-emission does occur there. Several high values occur at sporadic
locations in the most pristine northernmost parts of the survey area. When using the local
background (Figure 7.8, lower right), the real anthropogenic Pb-sources almost disappear
from the map while a lot of spuriously high EFs appear scattered in the central part of the
survey area. These sites might actually be of interest to exploration geochemists and certainly
do not indicate anthropogenic Pb-contamination.

Terrestrial moss is considered a better sample medium than the O-horizon to indicate air-
borne Pb contamination. Figure 7.9 shows the regional distribution of Pb in moss in the Kola
area. The three main anomalies mark the three major industrial and population centres in
the survey area: Murmansk, Monchegorsk/Apatity, and Kandalaksha. Some additional high
Pb values with no obvious industrial source are observed in northern Norway and along the
southern project border in Finland.

When calculating EFs using the Pb/Al-ratio relative to the local C-horizon (Sc was not
analysed in the moss), these industrial and population centres are, with the exception of one
single point near Murmansk, marked by the lowest values on the map (Figure 7.9, upper right).
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Figure 7.9 Regional distribution of Pb in moss (upper left); regional distribution of the EFs
calculated relative to the Pb/Al-ratio in the local C-horizon (upper right); regional distribution of
the EFs calculated relative to the crustal Pb/Mn-ratio (lower left) and regional distribution of the EFs
calculated relative to the “local background” as provided by the Pb/Mn-ratio in the C-horizon at each
sample site (lower right)

Instead spuriously high Pb EF values occur throughout many of the most pristine parts of the
survey area.

Given that neither the average earth’s crust nor rocks occur at the surface in most parts
of the world, but in fact organic-containing soils and plants, one could question the general
validity of using lithogenic (or crustal) element levels as reference values. It might actually be
more realistic to use a biogenic element. One such element, which is also sometimes used as a
“conservative lithogenic” reference element, is Mn (Loska et al., 1997). The map in Figure 7.9
(lower left) was constructed using Mn instead of Al as the reference element for calculating
Pb EFs in moss. This map shows the highest EFs where they are supposed to be: near industry
(including Nikel and Zapoljarnij) and near population centres (Murmansk and Kandalaksha).
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However, many high values occur also along the northern coast of Norway, and thus these EFs
might again not differentiate between geo- (or bio-)genic element sources and contamination
but show some other effect(s).

In fact, the regional distribution displayed in this map (Figure 7.9, lower left) is strongly
influenced by vegetation zones. Low bio-productivity in the harsh northern coastal climate
results in low Mn concentrations, in turn causing the observed higher EF pattern. Vegetation
is also destroyed due to pollution near to contamination sources, and thus the clear anomaly
around the industrial centres is caused by a combination of low Mn and slightly enriched Pb
values. In general, it must be noted that the EFs calculated relative to Mn show rather low
values (<4). Figure 7.9 (lower right) shows the EFs when using the local Mn values in the
C-horizon. Here only two high EF values near the Monchegorsk refinery and one high value
near the Nikel smelter remain visible on the map. This map may actually provide a realistic
picture of sites with possible Pb contamination from industry in the area. In this case the EF
map may actually be an improvement over the original Pb-distribution map (Figure 7.9, upper
left).

When calculating EFs for all the typical contamination-related elements discussed in the
current environmental literature for the Kola data set, a very interesting pattern emerges
(Figure 7.10), given the known major emissions of Cu, Ni, Co, V and Cr in the survey area
(Reimann et al., 1998a). Many elements that are barely emitted at all by any source in the
survey area show by far the highest EFs: Ag, Cd, Bi, Pb, Zn, Sb and As! Of the known emitted
pollutants, both Cu and Ni show a median EF value well below ten (which is often arbitrarily
used as the cut-off value for clearly indicating pollution) and some rather high individual EF
values, which are clearly related to anthropogenic sources. Co, V and Cr show median EF val-
ues close to unity. Yet, the Kola smelters are among the largest Ni-Cu-Co emitters on a global
scale (AMAP, 1998). The presence of the smelters is actually indicated by a large number
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Figure 7.10 EFs for the Kola O-horizon samples calculated relative to the C-horizon using Sc as the
reference element. Several of the elements that are major components of the smelter emissions (Cu,
Ni, Co, V, Cr) show low EFs, while other elements that are hardly emitted at all within the survey area
(e.g., Ag, Cd, Bi and Pb) show high EFs. The strong EF for S is due to the fact that S is a major plant
nutrient
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of upper outliers with high EF values for Cu, Ni and Co. This diagram thus indicates that a
process other than contamination must cause the high EFs at the surface for elements like Se,
Ag, Cd, Bi, and Pb in the Kola area.

The results presented here demonstrate that EFs may reveal patterns and can be an elegant
method to directly compare elements measured in different sample materials independent
of unit and range. They are, however, certainly no “proof” of anthropogenic contamination
and should never be used in an attempt to differentiate between geogenic and anthropogenic
elemental sources.

7.4.3 Mineralogical versus chemical methods

Although not the topic of this book, it should be mentioned that there are methods that may ac-
tually allow a clear differentiation between anthropogenic and natural sources. Even in difficult
situations with several overlapping contamination sources, an apportionment of anthropogenic
emissions to the likely cause may be possible. Chemical elements as determined in the different
terrestrial sample materials are usually bound in certain minerals. Identification and analysis of
these minerals may often provide a characteristic fingerprint of a single contamination source
(Neinaweie and Pirkl, 1996). Gregurek et al. (1998a, 1999b) have, for example, used miner-
alogical investigations on the filter residues of snow samples to identify characteristic mineral
assemblages for each of the Kola smelters. It was even possible to determine where in the
metallurgical process the elements causing high concentrations in the snow samples were lost.
These methods require, however, much more work than a chemical analysis.

7.5 Summary

Calculations of background and threshold should not be based on statistics alone. A sound
knowledge of the regional distribution of the variables under study is required – and expertise
about geochemical processes. Graphical data analysis, a combination of the ECDF- and/or
CP-plot and suitable maps is the best approach towards identifying background and threshold.
Many ratios that have been suggested in literature, including the popular Enrichment Factors
(EFs) are problematic in their interpretation and may be misleading rather than providing useful
information.



8
Comparing Data in Tables
and Graphics

Data analysis often starts with some kind of comparison of data. It may be desired to compare
data collected in one area with data collected from another. It may be necessary to compare
project data for a certain sample material with “world average data” for that same material.
It may be important to compare the data obtained from a certain area five years ago with
data recently obtained from the same area. Typical questions include the following: “are there
differences”, “which factors can cause such differences”, and last but not least a “statistical”
question: “how significant are the differences”? This latter question is addressed in Chapter 9.

Often much can be learned about the processes that cause a certain data behaviour if it
is possible to create subsets that differ in a known property from the data. In the case of
the “complete” Kola data set there exist, for example, four different sample materials, each
carefully selected to represent a certain part of the ecosystem. Moss is primarily reflecting the
atmospheric input of elements in the survey area. The O-horizon reflects the interplay between
atmosphere, biosphere and the pedosphere (see Chapter 1). The B-horizon is influenced by
many soil-forming processes and is a representative of the pedosphere. The C-horizon is
weathered soil parent material and its composition gives a representation of the bedrock in the
survey area, the lithosphere (for a more complete discussion see Chapter 1). The project was
designed to be able to directly compare the chemical composition of these four materials in
tables and graphics. Such comparisons facilitate a better understanding of the cycling and fate
of elements in and between the different compartments of the ecosystem.

8.1 Comparing data in tables

Because it is not usually possible to compare large data sets data item by data item, it is
necessary to employ some kind of data summary. Most “classical” methods for comparing
data populations are built around the MEAN and the SD, and thus the “location” or “central
value” and “spread” of each variable. Most data tables summarising a data set report at least
these two parameters, hopefully together with the data set size. It can also be informative to
report the minimum (MIN) and maximum (MAX) values observed and certain percentiles of
the data set (see summary table in Section 4.6). It has been demonstrated that MEAN and

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6
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SD are usually not good descriptors for applied geochemical and environmental data. Thus
a better choice for reporting in a table should be MEDIAN and MAD; MEAN and SD can
be provided in addition because so many scientists still use these classical measures and they
might want to make data set comparisons. A large difference between the MEDIAN and MEAN
(environmental data will usually show a higher MEAN than MEDIAN indicating a right skew)
will show that the data are strongly skewed, and/or there are some extreme values, biasing the
estimates of the MEAN and SD. In the simplest case of a table comparing data averages for a
project, sample material is compared with averages of the same material collected elsewhere.

Table 8.1 shows an example of such a table using a selection of the elements from the Kola
Project C-horizon data (<2 mm fraction, aqua regia extraction). These Kola Project data are
compared to the MEDIAN of soil samples: collected in England & Wales (<2 mm fraction,
“sub-soil”, aqua regia extraction – McGrath and Loveland, 1992); from the Baltic Soil Survey
(BSS), covering ten northern European countries (<2 mm fraction, B-/C-horizon, aqua regia
extraction – Reimann et al., 2003); and to the world average for soils (as provided in Reimann
and de Caritat, 1998). The latter value is not based on measurements of soil collected all over
the world but is an “estimate” of the most likely average of total concentration of these elements
in soils based on limited data from soil surveys from different parts of the world. The table
allows the reader to judge whether the project data are within a likely range and to note some
major differences between the data sets.

Table 8.1 also demonstrates one of the problems with the approach; there are often elements
where information is missing in one or another data set. Looking at Table 8.1 it is apparent that
the world average values for soil are often much higher than the values found in any of the other
data sets. This is in part caused by the fact that the world soil values are provided for “total”
concentrations of the elements and not for an aqua regia extraction. The very high value for S in
the world soils indicates that they represent agricultural soils, taken at the earth surface, while
all other projects collected soils at a certain depth. The table also indicates that the As and
Pb concentrations in the C-horizon soils from the Kola Project area are unusually low. A first
reaction would be to check the quality control results for these two elements (see Section 18.2)
to be sure that the data are correct. Once this is established one could start to consider why
these elements might show such low concentrations in the survey area.

Table 8.1 MEDIAN (mg/kg) of some selected elements from the Kola C-horizon data set in
comparison to soil average values as cited in literature

Kola C-horizon England & Wales BSS World soil
Unit MEDIAN MEDIAN MEDIAN AVERAGE

Ag mg/kg 0.008 NA NA 0.07
As mg/kg 0.5 NA 2 5
Bi mg/kg 0.03 NA 0.05 0.3
Cd mg/kg 0.02 0.7 0.06 0.3
Co mg/kg 7 9.8 5 10
Cu mg/kg 16 18 7 25
Ni mg/kg 19 23 9 20
Pb mg/kg 1.6 40 5 17
S mg/kg 30 NA 62 800
Th mg/kg 6 NA 5.4 9.4

NA: not available.
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Table 8.2 Comparison of some selected elements in the Kola Project O- and C-horizon data sets

Number of MEAN MEDIAN SD MAD
samples mg/kg mg/kg mg/kg mg/kg

O-hor C-hor O-hor C-hor O-hor C-hor O-hor C-hor O-hor C-hor
Ag 617 606 0.283 0.011 0.2 0.008 0.325 0.011 0.160 0.0044
As 617 606 1.60 1.25 1.16 0.5 2.49 2.35 0.460 0.445
Bi 617 606 0.186 0.049 0.159 0.026 0.113 0.164 0.076 0.021
Cd 617 606 0.327 0.029 0.303 0.024 0.150 0.020 0.114 0.010
Co 617 606 3.1 8.2 1.6 7 7.1 5.03 1.11 3.71
Cu 617 606 44 22 9.7 16.2 246 18 5.15 10.8
Ni 617 606 51 23 9.2 18.7 199 21 7.74 11.6
Pb 617 606 24 2.75 18.8 1.6 49 3.3 7.41 0.741
S 617 606 1550 41 1530 30 334 43 297 17.8
Th 617 606 0.571 7.9 0.345 6.5 0.93 6.2 0.254 3.71

A serious shortcoming of just comparing MEDIAN values is that information about the
spread of the data and the number of samples that support the reported MEDIAN value is
missing. However, in the published literature this information is often not provided. For the
Kola data the original data sets are available. For comparing the element concentrations in
the collected sample materials it is thus possible to provide the information that is needed
for a statistically more appropriate first comparison. Table 8.2 compares MEAN, MEDIAN,
SD and MAD for the O- and C-horizon samples. Immediately such a small table covering
just 10 elements (out of 50 that could be compared) gets quite complex and requires careful
attention (and good editing and presentation of the table) in order to extract the required
information.

In Table 8.2 it is apparent that for some elements there are large differences between MEAN
and MEDIAN (even more so between SD and MAD). The elements Co, Cu and Ni in the O-
horizon are prominent examples. All three are emitted by the Russian nickel industry, and the
existence of a large number of upper outliers in the data sets causes extremely right-skewed
data distributions. MEAN and SD should thus not be used for these data. Table 8.2 also shows
that it is difficult to format such a table in a way that the inherent information can be retrieved
at one glance.

In Table 8.3 the values for MEAN and SD are removed and instead the robust coefficient of
variation (CVR) is added to get a measure of spread that is independent of the unit and range
of the data. To easier “see” the differences between the two sample materials and the elements,
the ratio between the MEDIANS for O- and C-horizon samples was calculated. It becomes
apparent that there are large differences in these ratios between the different elements. To further
improve the “readability” of such a table it is also possible to sort the variables according to
one of these ratios.

In Table 8.4 the elements are no longer sorted in alphabetical order but according to the
ratio of the MEDIANS for the O- and C-horizons. Here it is possible to immediately detect
which elements, sulphur and silver, are most enriched in the O-horizon when compared to the
C-horizon. This is because S is a major plant nutrient and thus it is found at high concentrations
in the organic layer. The next element that is highly enriched in the O-horizon is Ag – as already
observed in Figure 7.2. It is an interesting observation that all elements with a ratio >1 do not
belong to the most important metals emitted by industry – Cu and Ni, which both have still
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Table 8.3 Data from Table 8.2, MEAN and SD removed, CVR added, and the ratio of MEDIAN, MAD
and CVR O-/C-horizon provided

Number of MEDIAN MAD CVR
samples mg/kg mg/kg

O-hor C-hor O-hor C-hor O/C-rat O-hor C-hor O/C-rat O-hor C-hor O/C-rat
Ag 617 606 0.2 0.008 25 0.16 0.0044 36 0.80 0.56 1.44
As 617 606 1.16 0.5 2.32 0.46 0.445 1.03 0.40 0.89 0.45
Bi 617 606 0.159 0.026 6.12 0.076 0.021 3.64 0.48 0.80 0.60
Cd 617 606 0.303 0.024 12.6 0.114 0.010 11 0.38 0.43 0.87
Co 617 606 1.57 7 0.22 1.11 3.71 0.30 0.71 0.53 1.34
Cu 617 606 9.69 16.2 0.60 5.15 10.8 0.48 0.53 0.67 0.79
Ni 617 606 9.18 18.7 0.49 7.74 11.6 0.67 0.84 0.62 1.36
Pb 617 606 18.8 1.6 11.75 7.41 0.741 10 0.39 0.46 0.85
S 617 606 1530 30 51 297 18 17 0.19 0.59 0.33
Th 617 606 0.345 6.5 0.053 0.25 3.71 0.07 0.73 0.57 1.29

higher concentrations in the C-horizon. Thus there is every reason to suspect that a process
other than anthropogenic contamination causes the enrichment of elements like Ag, Cd, Pb,
Bi and As in the O-horizon (compare Goldschmidt, 1937; Reimann et al., 2001a, 2007).

When looking at the additional information provided by MAD or CVR (Table 8.4), it is
apparent that there are large differences in variation between the elements. For example S, with
the highest MEDIAN-ratio, shows the lowest ratio for the CVR (Table 8.4). This is probably
caused by the fact that S is a major plant nutrient and that plants keep uptake of this element
regulated and in an optimal concentration range. It is also interesting to note the difference
in the CVR between Cu and Ni, the major components in the emissions from the Russian
nickel industry (Table 8.4). One important difference between the two elements is that Cu is
a better-regulated micro-nutrient for the plants than Ni. Such tables, especially when sorted,
can be used to help develop ideas about processes.

As long as only a few populations are to be compared, a table of summary statistics can
be built in a word processor or a spreadsheet from the results displayed by the data analysis

Table 8.4 Data from Table 8.3 sorted according to the MEDIAN ratio O-/C-horizon

Number of MEDIAN MAD CVR
samples mg/kg mg/kg

O-hor C-hor O-hor C-hor O/C-rat O-hor C-hor O/C-rat O-hor C-hor O/C-rat
S 617 606 1530 30 51 297 18 17 0.19 0.59 0.33
Ag 617 606 0.2 0.008 25 0.160 0.0044 36 0.80 0.56 1.44
Cd 617 606 0.303 0.024 13 0.114 0.010 11 0.38 0.43 0.87
Pb 617 606 18.8 1.6 12 7.4 0.741 10 0.39 0.46 0.85
Bi 617 606 0.159 0.026 6.1 0.076 0.021 3.64 0.48 0.80 0.60
As 617 606 1.16 0.5 2.3 0.460 0.445 1.03 0.40 0.89 0.45
Cu 617 606 9.69 16 0.598 5.1 11 0.476 0.53 0.67 0.79
Ni 617 606 9.18 19 0.492 7.7 12 0.669 0.84 0.62 1.36
Co 617 606 1.57 7 0.224 1.1 3.7 0.300 0.71 0.53 1.34
Th 617 606 0.345 6.5 0.053 0.254 3.7 0.068 0.73 0.57 1.29
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software. It may even be possible to “cut and paste” the results (DAS+R is able to write these
results directly into a “.csv” file). Once in a tabular form, results from other investigations
that may be relevant can be added. However, the point is soon reached where such “summary
tables” contain too much data to really grasp their content. For example, when looking at the
complete Kola data set there is information for four materials and not only two as shown in
the above tables (Tables 8.2–8.4). In addition this information exists for many more elements
than just the selected ten shown in these tables. Thus the point where it becomes very tedious
to work with tables is soon reached. It is at this point that graphical methods come to the fore.

8.2 Graphical comparison of the data distributions of several data sets

Figure 8.1 displays density traces of four elements in all four Kola Project sample materials
(C-, B- and O-horizon, and moss) to compare the distribution of the elements in the different
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Figure 8.1 Density traces of the log-transformed data of Al, K, Pb and S used to compare the data
distribution of these elements in the four main sample materials collected for the Kola Project
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Figure 8.2 The same data as above (Figure 8.1) compared using CP-plots. These plots are more
impressive when different colours are added to the different symbols. A colour reproduction of this
figure can be seen in the colour section, positioned towards the centre of the book

sample materials. The data were log-transformed first in order that they would fit into one
graphic. In Figure 8.2 the CP-plot is used to display the data distribution in the four sample
materials. Again the same data comparison in the form of boxplots is shown in Figure 8.3.
Although the same data are used in all these diagrams, the graphical impressions from each
are quite different. The example demonstrates that time may be well spent in investigating the
best way to plot data in the context of the features the data analyst wishes to discuss.

In general these diagrams all demonstrate that different elements exhibit quite different data
distributions in the four sample materials (Figures 8.1–8.3). The boxplot has the advantage
that it provides a statistical data summary, unlike the CP-plots where all data are displayed,
and that it makes only minor use of a model in calculating the ends of the whiskers. In some
instances it can be advantageous to see all data points as in the CP-plot and not just the form
of the distribution as provided by the density trace.
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Figure 8.3 The same data as above (Figures 8.1 and 8.2) compared using Tukey boxplots with
logarithmic scaling

Aluminium shows much higher concentrations in the B- and C-horizons than in moss or
O-horizon samples. Each material has its own concentration range.

The existence of a large number of upper extreme values in moss is most visible in the
boxplot comparison (Figure 8.3) but is also indicated in the break in the CP-plot at about 90
per cent (Figure 8.2). These high values in moss are due to the input of minerogenic dust, rich
in Al, in the vicinity of the Russian industrial sites. Potassium exhibits a very different picture.
Here moss displays by far the highest values and at the same time the lowest variation. This
is obvious in all three plots (Figures 8.1–8.3). The reason being that K is one of the most
important plant nutrients and the plants ensure K levels are maintained within a narrow range
(spread) to support their existence. Sulphur is another important plant nutrient and again is
highly enriched in moss, and even more so in the O-horizon soils. In addition, the spread is
exceptionally low in these two materials due to their homeostatic control by plants. The density
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traces (Figure 8.1) may be the most impressive displays. Without the low variation and the
comparison with K one could be tempted to assign the high S values in moss and O-horizon
to the SO2 emissions from the Kola smelters. Pb exhibits a special behaviour with its strong
enrichment in the O-horizon, while its spread is low (with the exception of four outliers best
seen in the CP-plot (Figure 8.2). The low spread is a strong indication that a natural process is
causing this enrichment.

The boxplot, especially the notched boxplot (see Sections 3.5.4 and 9.4.1), is ideally suited
for comparing different data sets, variables or data subsets, because many boxes can be plotted
side by side and the graphic still remains readable (up to some number determined by the display
format, portrait or landscape, and size). Notches may be added to the boxplots graphically
displaying the 95 per cent confidence bounds on their MEDIANS, which permits a visual
informal test of the equality of the MEDIANS to be undertaken (see Section 9.4.1). However,
for this informal test to be valid the spreads for the data, as indicated by the span of the boxes,
should be roughly equal (see Section 9.4.1).

8.3 Comparing the spatial data structure

In addition to the data distribution, the spatial data structure (see Chapter 5) will also provide
important information about the factors or processes influencing the observed concentration of
the elements under study. Maps may seem to be a poor choice as they would be uncomparable
because of the very different concentration ranges of the elements. If, for example, maps are
constructed for the four sample materials using the same scale for all four maps, the resulting
maps will more or less show the same features as the graphics for their data distributions
(see above, Figures 8.1–8.3), namely in which material the element is enriched or depleted.
Figure 8.4 shows this for the element Bi. Almost all the high values appear in the O-horizon
map because Bi is generally enriched in the O-horizon. The good intention of choosing the
same scale for all four materials does not lead to the desired result: directly comparable maps
displaying the spatial data structure permitting the drawing of conclusions about important
processes within and between the four layers.

In Chapter 5 it was demonstrated that percentiles (or boxplot classes) used for class
selection for regional mapping will display the spatial data structure in the resulting
map. Such maps are directly comparable, independent of the concentration range, and
the factors causing the data distribution can be immediately recognised. Figure 8.5 shows
the four maps for Bi, where each map is constructed using the percentile values for the
material displayed, but the same percentile boundaries, i.e. 0–2, >2–25, >25–50, >50–75,
>75–98, >98–100 per cent. Although the class boundaries are now different from map
to map the resulting presentations of the spatial data structure in the maps are directly
comparable.

It can now be seen that the distribution of Bi in moss is dominated by emissions from
the Ni smelters, especially around Monchegorsk (Figure 8.5, upper left). The map for the
O-horizon looks surprisingly different. The impact of the emissions from industry is no
longer dominant. The main factor visible in the map is a strong north-east to south-west
gradient in the Bi concentrations (Figure 8.5). Two possible explanations for this pattern
exist. The gradient could be caused by long-range atmospheric transport of Bi from central
European sources that ceased to emit in the mid 1990s (otherwise the same gradient would
be visible in the moss map). This explanation is unlikely in the light of the limited impact
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Figure 8.4 Maps of the distribution of Bi in all four sample materials collected for the Kola Project.
The scale for all four maps is based on the 0, 5, 10, 25, 75, 98, 100-percentiles of all four data sets
combined

of Bi on the O-horizon around Monchegorsk as an existing long-time Bi emitter right in
the survey area. However, the gradient by and large follows the vegetation zones in the area
from subarctic tundra in the north to boreal forests in the south (note that Figure 6.7, lower
left, showed the same gradient in the form of a spatial trend diagram). It is thus very likely
that Bi concentrations as observed in the O-horizon in the survey area are directly related to
bio-productivity.

The maps of the B- and C-horizon show completely different regional distributions to
those depicted in moss and O-horizon (Figure 8.5). These maps reflect geology (e.g., the
Caledonian sediments along the Norwegian coast with some of the highest Bi concentrations).
It is immediately clear that the factors causing the distribution of Bi in the O-horizon on one
hand, and the B- and C-horizons on the other, in the survey area are unrelated.



138 COMPARING DATA IN TABLES AND GRAPHICS

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

Bi (moss) [mg/kg]

> 0.111 − 0.544
> 0.029 − 0.111
> 0.012 − 0.029
> 0.005 − 0.012
   0.002 − 0.005

0,5,25,75,98,100
Percentiles

0 50 100 km

N
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Bi (O−hor) [mg/kg]

> 0.515 −   1.12
> 0.222 − 0.515
> 0.115 − 0.222
> 0.073 − 0.115
   0.029 − 0.073

0,5,25,75,98,100
Percentiles

0 50 100 km

N

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Bi (B−hor) [mg/kg]

> 0.224 − 0.308
> 0.055 − 0.224
> 0.020 − 0.055
> 0.011 − 0.020
   0.002 − 0.011

0,5,25,75,98,100
Percentiles

0 50 100 km

N

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Bi (C−hor) [mg/kg]

> 0.212 −   3.89
> 0.048 − 0.212
> 0.014 − 0.048
> 0.007 − 0.014
   0.002 − 0.007

0,5,25,75,98,100
Percentiles

0 50 100 km

N

Figure 8.5 Maps of the distribution of Bi in the four sample materials collected for the Kola Project.
Individual classes, as identified in the map legends, but based on the same percentiles, have been used
for mapping each material

When choosing arbitrary (e.g., nice looking) class boundaries, the direct comparability
between the maps may well be lost and the different factors causing the regional distribution
of Bi in the survey area might be overlooked.

8.4 Subset creation – a mighty tool in graphical data analysis

The comparison of the four sample materials analysed in the Kola Project is an obvious choice.
What can be done, however, if there is only one data set? Is it still possible to learn some-
thing via subsetting/grouping the data? Each data set can usually be further subdivided into
subsets/groups. For example the Kola Project covered the territory of three different states
(Finland, Norway and Russia). Already for national reasons it could be important to compare
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element levels and variation in the sample materials from the different countries. In addition,
the Russian part of the survey area is heavily industrialised, while the Norwegian and Finnish
parts are almost pristine (Norway being more influenced by the Russian industry than Finland).
Thus, it could be informative to compare the behaviour of the elements in each of the materials
for the three country data subsets to learn something about the impact of contamination. Other
important factors in the survey area include the existence of three different vegetation zones,
distance to the coast with a steady input of several elements via marine aerosols, distance to
the different industries in the area and major differences in geology and topography. All these
could be used to construct useful data subsets/groups (if the data file includes such informa-
tion). It could also aid interpretation to use certain variables (e.g., pH) to construct data subsets
– sometimes trends become more recognisable when large groups of samples are compared
rather than single points in a scatterplot.

It is necessary to include information like “country of origin”, “vegetation zone” or
“geology” in the data file at the time of its construction to be able to define such subsets/groups
that may become important later on during data analysis. Thus, it is time well spent to think in
terms of “data analysis” already during the project design stages to ensure that data, especially
field data, required for subsetting/grouping are captured during the execution of the survey. In
effect, auxiliary data is being selected for inclusion on the supposition that it could influence the
geochemistry of the study area, and its inclusion in the data file will permit some preliminary
investigation and testing of the suppositions, i.e. hypotheses.

Figure 8.6 (left) shows that Cu concentrations and variation in C-horizon soils are quite
comparable between the three countries. The samples from Russia actually have the lowest
MEDIAN. For the O-horizon the picture is quite different (Figure 8.6, right). Here Cu data
for Finland exhibit the lowest MEDIAN and the lowest spread, while Russia is at the other
extreme. Both the MEDIAN and spread are much higher in Russia than in either of the other two
countries, and additionally a large number of upper outliers are visible in the plot (Figure 8.6,
right). This change is due to the effect of the Russian Cu-Ni industry on the O-horizon samples.
Norway falls in an intermediate position in this plot as expected from the fact that many of
the Norwegian sample sites are close to the Russian border and thus the Norwegian subset of
samples is more affected by the emissions than the samples from Finland.

When directly comparing O- and C-horizon results for the whole Kola data set, it appears
that these show little relation (e.g., Figure 8.5). Comparing the distribution of the variables
in a number of subsets may provide a different impression and facilitate data interpretation.
Figure 8.7 (lower half) is a boxplot comparison of Al2O3 and K2O in C-horizon soils as
collected in areas of several different bedrock lithologies (Caledonian sediments (lithologies
9 and 10), Palaeozoic basalts (lithologies 51 and 52), alkaline rocks (lithologies 81 and 82)
and granites (lithology 7) see Figure 1.2). The boxplots illuminate pronounced differences in
the chemical composition of the C-horizon soils collected in areas of these lithologies. The
samples influenced by the alkaline rocks have the highest concentrations of both elements
(Figure 8.7). In the O-horizon the Al distribution patterns are still similar to those exhibited in
the C-horizon (Figure 8.7, upper left). For K, however, which is an important plant nutrient,
the clear influence of the different bedrock types as seen in the C-horizon is greatly reduced
in the O-horizon (Figure 8.7, upper right).

Note that when using different units or expressing the element contents in different ways,
i.e. as oxides for major components, the direct comparability of data location and spread is lost
(Figure 8.7). Transforming all variables to the same unit has thus important advantages during
graphical data analysis.
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Figure 8.6 Tukey boxplot (logarithmic scale) comparison of Cu concentrations in the Kola O- and
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Comparing data behaviour in a number of carefully defined data subsets in a variety of
graphics (instead of boxplots, density traces or various CDF-plots could be used) is a very
powerful tool in exploratory data analysis. However, it must be kept in mind that more than one
factor or process may hide behind the selected subsets (for example, subsets for the vegetation
zones are clearly linked to “distance from coast” and vice versa), and obscure the true causation
or even provide graphical evidence for an erroneous conclusion. In this context the user needs
to be aware of the possibility for “lurking variables”, that is an apparent correlation with a
factor where no true correlation exists, but both the factor and data are responding similarly
to a third variable not directly present in the display. The graphics may thus not “prove” a
process but can, in a truly “exploratory” sense be used to investigate and test hypotheses in an
informal, but informative, way.

8.5 Data subsets in scatterplots

Scatterplots become more powerful if more information than just the analytical results of the
two variables can be encoded. For example, it is possible to identify certain data subsets via
different symbols and/or colours. In Figure 8.8 this is done using the country of origin of each
sample to define the plotting symbols. Compared to Figure 6.1, where no subsets are encoded,
the resulting diagram immediately reveals some additional interesting facts. The samples with
the highest values of Cu and Ni in moss are all from Russia. This provides evidence that these
high values are related to the Russian nickel industry as similar industrial activity does not
occur in the two other countries. Two different trends present at high data values are apparent
(Figure 8.8). In the “upper trend” (more Ni than Cu) there are not only samples from Russia but
also some from Norway, while all the Finnish samples remain hidden in the main body of data
(Figure 8.8). Knowing how close Nikel and Zapoljarnij are to the Russian–Norwegian border,
one can speculate that the upper trend indicates deposition of emissions from Nikel/Zapoljarnij,
while the lower trend likely represents the emissions from Monchegorsk.
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Figure 8.8 Scatterplot of Ni versus Cu in moss (compare Figure 6.1). The country of origin of the
samples is encoded into the symbols. A colour reproduction of this figure can be seen in the colour
section, positioned towards the centre of the book
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Figure 8.9 Map identifying the location of the subsets (left) and a scatterplot of Cu versus Ni (right),
using the same symbols for the subsets. A colour reproduction of this figure can be seen in the colour
section, positioned towards the centre of the book

This is an interesting finding and the hypothesis merits further investigation. The interactive
definition of data subsets on the screen permits the definition of new data subsets directly from
the map on the screen (Figure 8.9), one for “Nikel & Zapoljarnij”, one for “Monchegorsk”
and another one for “all other samples”. These then can be encoded in the scatterplot.
Another possibility is that if this “factor” had been thought of at the project planning and
database building stages, the required information would have been already encoded, e.g.,
“samples collected close to Monchegorsk”, “samples collected close to Nikel & Zapoljarnij”
and “background” samples. In that case it is only necessary to select these subsets and plot
them with different symbols in the scatterplot. Advanced software systems (e.g., GGOBI –
see http://www.ggobi.org/) may actually permit the opening of two windows on
the screen, one for the scatterplot and another one for the map. While samples are marked
(“brushed”) in the scatterplot, the location of the marked samples will be shown in the map in
a different colour or symbol. This functionality should also be available in reverse – marking
samples on the map and identifying their position in a scatterplot. The resulting figure shows
that, as suspected, the emissions from Nikel/Zapoljarnij have a slightly different Cu/Ni-ratio
than the emissions from Monchegorsk (Figure 8.9).

8.6 Data subsets in time and spatial trend diagrams

Subsetting can also aid the interpretation of trend diagrams if trends for several subsets can
be directly compared in one and the same plot. Figure 8.10 shows the time trend of stream
water composition in catchment two (C2) shown in Figure 6.5 in comparison with the time
trends from two other catchments, C5 and C8. Catchment two is situated in the direct vicinity of
Monchegorsk, C5 is about 30 km to the west of Nikel in Norway and C8 represents a background
catchment at the western project boundary in Finland, far removed from the influence of the
smelter emissions. Trends for electrical conductivity (EC) are the same in all three catchments,
the highest values for EC are observed in C2, possibly due to enhanced bedrock weathering as

http://www.ggobi.org/
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Figure 8.10 Time trends in groundwater pH and electrical conductivity (EC) as observed in three
different catchments (C2, C5 and C8) (compare with Figure 6.5)

a result of smelter emissions (Figure 8.10). In contrast the pH trends are quite different between
the catchments, surprisingly C8 shows the strongest “acid peak” at snow melt (Figure 8.10).
This is caused by lithology; basic rocks (i.e. those high in Ca and Mg) dominate in C2 and C5
and buffer the acid peak (there is actually no acid peak observed in C5, just lower pH values
in the first months of the year when compared to the second half); acid rocks (i.e. those low
in Ca and Mg) dominate in C8, which is thus very vulnerable to acidification (for a detailed
interpretation see de Caritat et al., 1996b).

In Figure 8.11 spatial trends for three different sample materials along the north–south (left)
and the east–west (right) transects presented in Chapter 6 are compared. Both plots show that
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Figure 8.11 Cu in moss and the O- and C-horizon soils along the east–west transect through
Monchegorsk (compare Figure 6.6) and along the north–south transect at the western project boundary
(compare Figure 6.7). A colour reproduction of this f igure can be seen in the colour section, positioned
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the Cu concentrations in the C-horizon have little influence on the Cu concentration in the
O-horizon and moss (Figure 8.11). The minor Cu peak in the C-horizon near Monchegorsk
(Figure 8.11, left) could be an indication that contamination due to the emissions has already
reached the C-horizon. It is, however, more likely that the peak indicates the presence of the
basic rocks that occur near Monchegorsk (including a Cu-Ni deposit). The high values of Cu
in the western half of the transect are due to a large greenstone belt containing rocks relatively
rich in Cu and Ni. The plot also shows that in the O-horizon “threshold”, the upper limit of the
background range and the point where input from the smelter can no longer be distinguished
from background variation is reached closer to the sources than in moss (Figure 8.11, left).
Along the north–south transect (Figure 8.11, right) the high Cu concentrations in the C-horizon
are the most interesting feature of the plot. Copper may show a slight dependency on distance
to coastline in the O-horizon (slightly decreasing concentrations from 0–300 km, despite a
peak in the C-horizon and no trend in moss). The strong Cu peak in the C-horizon towards the
southern end of the transect finds only a weak reflection in the other two materials (Figure 8.11,
right).

8.7 Data subsets in ternary plots

In environmental sciences these plots can be especially informative if different subsets of data
are encoded in different symbols and/or colours.

The example plot is taken from Figure 6.15 and shows the proportions of Ni, Cu and Pb,
and Al, Fe and Mn in moss from the Kola Project. However, the two industrial sites and “all
other samples” are now marked by different symbols. In the Ni-Cu-Pb plot (Figure 8.12, left)
the dominance of Ni and Cu in the smelter emissions is obvious – typically Cu-Ni ores do not
contain Pb. It is apparent also that the Monchegorsk emissions tend to be Cu-rich relative to
those from Nikel/Zapoljarnij, while the Nikel/Zapoljarnij emissions tend to be more Ni-rich
(compare with Figure 8.9).

The Al-Fe-Mn plot (Figure 8.12, right) shows that the moss samples near the industrial
sites contain less Mn. Manganese is an important nutrient element for plants, the poor Mn
status of the moss samples collected near the industrial sites indicates probable vegetation
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Figure 8.12 Two ternary diagrams plotted with data from the Kola moss data set. A colour reproduction
of this figure can be seen in the colour section, positioned towards the centre of the book
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stress through SO2 emissions. In addition, fugitive dust-rich samples will be drawn towards
the Al–Fe line of the plot. A further interesting difference between the Monchegorsk and
Nikel/Zapoljarnij samples is highlighted. The former are more Al-rich, while the samples
collected near Nikel/Zapoljarnij are more Fe-rich (Figure 8.12, right). Within this plot there is
another group of samples that show unusually high proportions of Al. Just as in the scatterplot,
it would be desirable to identify such samples and to define subsets within the plot to be able
to identify their origin and the process(es) influencing them.

Ideally it should be possible to open a second window with a map, brush the samples in
the ternary plot and see their location in the map. In the example plot (Figure 8.12, right) the
majority of the relatively Al-Mn enriched samples come from the surroundings of the huge
open pit apatite (calcium phosphate) mine near Apatity, and from the highlands of the Finnmark
plateau in Norway where vegetation is sparse. The relative increase in Al is an indication of
the input of terrigenous dust to the moss. Such a “brushing” feature is at present not available
in DAS+R, thus it is necessary to use the interactive subset creation tool to mark all unusual

Ca
●

●

● ●

●

●●● ●

●

●
●

●

●

● ●

●

●●●
●

●

●
●

●

●

●●

●

●● ●●

●

●
●

●

●

●●

●

● ●● ●

●

●
●

●

●

●●

●

●● ●●

●

●
●

●

●

● ●

●

●● ●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
Cu

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●
●●

●

●●●

●

●

●

●

●●
●●

●

●● ●

Mg

●

●

●

●

●●
● ●

●

● ● ●

●

●

●

●

●●
●●

●

●●●

●

●

●

●

●●
● ●

●

● ● ●

●

●

●

●

●●
● ●

●

●● ●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●

●●
●

● ●

●

●

●
●

●

●

●

●●
●

●●

●

●

● Na ●

●

●

●

●●
●

● ●

●

●

●
●

●

●

●

●●
●

●●

●

●

●
●

●

●

●

●●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

P

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●●

●

●

● ●

●

●
●●●

●

● ●

●

●

● ●

●

●
●●●

●

●●

●

●

● ●

●

●
● ●●

●

●●

●

●

● ●

●

●
● ●●
●

● ●

●

●

●

Sr
●

●

●
●●●

●

●●

●

●

●

●

●
●

●

●
●●

●

●
●●

●

●

●
●

●

●
●●

●

●
●●

●

●

●
●

●

●
●●

●

●
●●

●

●

●
●

●

●
●●

●

●
● ●

●

●

●
●

●

●
● ●

●

●
●●

●

●

●
●

●

●
●●

●

●
● ●

●

Zn

Caledonian sediments Basalts Alkaline rocks● Granites

Figure 8.13 The same scatterplot matrix for selected elements of the Kola Project C-horizon data
set as shown in Figure 6.14, but with additional information about the underlying lithology (compare
Figure 1.2) encoded in the plotting symbols
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groups of samples in the diagram and define sample subsets for each of these. The distribution
of these subsets can be subsequently studied in a map.

8.8 Data subsets in the scatterplot matrix

The real power of the scatterplot matrix (Section 6.7) becomes visible when more information is
encoded in the plot. The careful selection of subsets and plotting these subsets in a scatterplot
matrix via different symbols or colour will often provide an extremely informative display
(Figure 8.13).

To enhance the visibility of different data behaviour in different subsets, regression lines
for the different subsets can be added to the plot (Figure 8.14). In this plot the two halves of
the plot may reveal quite different features, because the resulting regression line depends on
the choice of the y-variable (see Section 6.2). The dependence of the line in the plot on the
choice of the y-variable could also be overcome by using orthogonal or total least squares
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Figure 8.14 The same scatterplot matrix as above (Figure 8.13); regression lines for each subset are
added to highlight the different elemental relationships in the different data subsets
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regression (Van Huffel and Vandewalle, 1991; see Chapter 16). However, these methods are
at present not implemented in R for the scatterplot matrix. Furthermore showing both lines
provides additional information about the relationships between a pair of variables.

8.9 Data subsets in maps

When preparing geochemical maps, the definition of percentile-based class boundaries and
thus the appearance of the resulting map will crucially depend on size and location of the
area mapped. Once a certain factor causing a special feature in a map is recognised, it may
be interesting to remove the data related to this feature and prepare a new map. The new map
will usually show far greater detail in the remaining data. The Cu map for the O-horizon data

Figure 8.15 Cu in the O-horizon soils of the Kola Project samples. Total data, upper left; Finland only,
upper right; Norway only, lower left; and Russia only, lower right
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of the Kola Project data set can be used as an example. When mapping the whole data set, the
resulting map is completely dominated by the input of the Cu emissions from the Russian Cu-
Ni industry (Figure 8.15). Data for samples from Finland and Norway plot almost exclusively
in the lowermost two classes. It is thus attractive to plot a map for each country data subset.
The resulting maps provide important information that was not visible when plotting the whole
data set. For example it appears that quite a number of sample sites along the eastern project
boundary in Finland are clearly influenced by the Russian emissions. In addition a number of Cu
anomalies become visible that were hidden when mapping the complete data set (Figure 8.15,
compare upper left and right). When mapping Norway separately, it is immediately visible how
far into Norway the influence of the Nikel emissions reach (Figure 8.15, lower left). When
mapping the Russian data separately (Figure 8.15 lower right), the resulting map provides a
much better impression of the fast decline of the Cu values with distance from the industrial
sites. This fast decline was also clearly visible in the spatial trend plots (Figures 6.6, 6.9
and 6.10).

Instead of using country subsets, it would be possible to use the complete data set and change
the class boundaries in order to display the above features. The problem with this approach is,
however, the optimal choice of class boundaries and the increasing number of symbols needed
for mapping. The latter will be especially problematic in black and white mapping, where
the use of too many symbols obscures the readability of a map (see Chapter 5). The above
approach has the advantage that one of the standard symbol sets can be used and the required
information becomes immediately visible in the subset maps.

Instead of using the countries to define subsets, any recognised feature in the maps could
be removed and excluded from mapping to provide more detail in the remaining data. It is also
possible to produce separate maps for the different bedrock types (or vegetation zones) if these
can be isolated as subsets. However, each of the subsets should contain a certain minimum
number of samples. Therefore the possibilities to subdivide the Kola data set into reasonable
subsets for mapping are limited by its low sample density.

8.10 Summary

Comparing data in tables has limitations due to the amount of information the tables can include
before becoming incomprehensible. With multi-element and multi-media data sets the limit
of what can be presented in tables is soon reached. Comparing data in graphics is a powerful
EDA tool. Different graphics can provide very different visualisations even using the same
data. Thus, it is often an advantage to try a combination of different graphics before finally
selecting the most convincing plot. The use of subsets/groups in graphical data analysis can
provide great insight into the geochemical processes active in a study area.

An interactive combination of maps with other diagrams (e.g., scatterplots) can be a powerful
tool for data mining and be used to reveal otherwise hidden processes and structures in the data.



9
Comparing Data Using
Statistical Tests

In Chapter 3 simple graphical methods for studying data distributions have been described.
Histograms, density traces, and diverse plots of the distribution function (ECDF-, QQ-, CP-,
and PP-plots – Section 3.4) can all give an indication as to whether data follow a normal
or a log-normal data distribution. It has been demonstrated that knowledge about the data
distribution is important when it is required to estimate the central tendency and spread of the
data (Chapter 4).

In the QQ- or CP-plot a straight line indicates a normal or a lognormal distribution depending
on the data transformation. Because the data are a random sample of an underlying distribution
(the hypothetical distribution used to scale the y-axis of the CP-plot) deviations from the straight
line are to be expected. These deviations should decrease the larger the data set becomes if the
data really follow the hypothetical distribution, and if these random deviations are sufficiently
small the data may really follow the hypothetical distribution. In the CP-plot for Co (Figure 9.1,
left) some deviations from a straight line can be observed, especially at the lower and upper ends
of the distribution. The comparison of the empirical and hypothetical density trace (Figure 9.1,
right) also shows slight deviations from the model. The question is, whether these deviations are
pure chance (lognormal distribution), or whether they are systematic (no underlying lognormal
distribution with the assumed parameters for mean (central value) and variance (spread)).

Confidence intervals around the straight line in the CP- (or QQ-) plot can be used to
help decide whether the empirical data distribution follows the hypothetical distribution (see
Figure 3.9). Often confidence intervals and a statistical test are equivalent, and some statisticians
consider the use of confidence intervals to be more informative. The more formal alternative
to check if data are drawn from a particular distribution is, however, a statistical test.

For statistical testing the values of the empirical, collected, data are always compared to
an underlying hypothetical data distribution, or to parameters of this distribution (see, e.g.,
Lehmann, 1959; Kanji, 1999). Typical parameters to test are central value and spread. Most
statistical tests assume that the data are a random sample drawn from a normal distribution. If a
test for the mean is carried out the hypothesis refers to the central value of the underlying data
distribution and not to the arithmetic mean of the data at hand. The question is not whether the
arithmetic mean of a data set is equal to a certain value. This value will always change when
another random sample is taken. Therefore it is only informative to test whether the value is
representative of the central value of the underlying data distribution of all possible samples.

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6
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Figure 9.1 CP-plot for Co in the Kola C-horizon soil data showing the empirical distribution and the
straight line of the underlying hypothetical normal distribution (left). Density trace of the original data
and the hypothetical normal distribution in log-scale (right)

A statistical test always follows a strict scheme (see, e.g., Lehmann, 1959):

(1) Formulation of a hypothesis, a statement about the behaviour of the underlying data
distribution. The hypothesis must contain two parts, a statement that is supposed
to be true (null hypothesis) and a statement formulating the contrary (alternative
hypothesis).

(2) Choice of the significance level α for the test. The significance level identifies the
probability that the null hypothesis, although correct, is wrongly rejected. Usually α = 0.05
(i.e. α = 5 per cent) is chosen.

(3) Choice of a suitable test statistic. Many tests require certain statistical assumptions about
the data, e.g., an underlying normal distribution.

(4) Calculation of the p-value corresponding to the chosen test. The p-value is a probability.
If the p-value is smaller than the chosen significance level α the null hypothesis of the test
is rejected.

(5) Stating the consequences of the test.

In addition to the significance level, α, characterising the probability of rejecting a correct null
hypothesis, there exists a second possible error probability β to accept a wrong null hypothesis.
A decrease in α automatically increases β. For this reason α cannot be chosen arbitrarily
small.

It is statistically not acceptable to perform multiple tests with slightly changed hypotheses
until the result fits the expectation because this will change the significance level.

9.1 Tests for distribution (Kolmogorov–Smirnov and Shapiro–Wilk tests)

As noted above, statistical testing requires that a null hypothesis be formulated. An example
of such a null hypothesis could be:
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Null hypothesis: the hypothetical distribution of the log-transformed Co data in the Kola
C-horizon soil data is a normal distribution.

In addition an alternative hypothesis has to be formulated, for example:

Alternative hypothesis: the hypothetical distribution is different from the above stated
distribution.

Of course “real” data will never follow exactly the distribution stated in the null hypothesis (see
Figure 9.1). Thus some random deviation from the hypothetical distribution and its parameters
must be tolerated in practice. If this deviation is larger than a boundary defined by the chosen
significance level of the test, the null hypothesis cannot be accepted. This means that the
alternative hypothesis is accepted.

There are different possibilities for testing for univariate normality. Two widely used and
popular tests are the Kolmogorov–Smirnov test (Smirnov, 1948; Afifi and Azen, 1979) and the
Shapiro–Wilk test (Shapiro and Wilk, 1965). In general, the Shapiro–Wilk test is statistically
preferable to the other available tests. All tests compare an independent identically distributed
sample from an unknown univariate distribution, the data, with a reference distribution (in
this case the lognormal distribution). The test result is a probability, the p-value, which can
support a decision as to whether the null hypothesis is to be rejected. If the p-value is smaller
than the pre-defined significance level, the null hypothesis has to be rejected. Usually the
chosen significance level is 5 per cent, i.e. the p-value has to be smaller than 0.05 to reject
the null hypothesis. A significance level of 5 per cent infers that in 95 per cent of all cases the
correct decision will be taken. In general it is not wise to further reduce the significance level
(e.g., to 1 per cent) because the probability of the error of accepting the wrong hypothesis will
increase.

As an example, the log-transformed Co data are subjected to the Shapiro–Wilk test, and the
test returns a p-value of 0.84. This p-value is much larger than the chosen significance level of
5 per cent (0.05), and thus it can be accepted that the Co data follow a lognormal distribution.

The Kolmogorov–Smirnov test compares the differences between the ECDF of the observed
distribution of the log-transformed data with the theoretical lognormal distribution with the
same mean and variance. For Co this test yields a p-value of 0.66. With the Shapiro–Wilk test
yielding a p-value of 0.84, both tests indicate that the hypothesis that the Co data follow a
lognormal distribution with mean and variance of the data can be accepted.

In contrast, for the log-transformed data for Au both tests deliver p-values close to zero
(both p = 10−16). This provides a quantitative confirmation of the impression obtained for the
QQ-plot for Au with confidence intervals (see Figure 3.9) where systematic deviations from
a straight line are visible. Thus both tests indicate that the Au data do not follow a lognormal
distribution, and the null hypothesis has to be rejected at the stated significance level of 5
per cent.

9.1.1 The Kola data set and the normal or lognormal distribution

In the scientific literature it is often stated that geochemical data follow a lognormal distribution.
This has been questioned by a number of scientists, e.g., more than 40 years ago (see, e.g.,
Aubrey, 1954, 1956; Chayes, 1954; Miller and Goldberg, 1955; Vistelius, 1960), or quite
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recently by Reimann and Filzmoser (2000). The Shapiro–Wilk test can be applied to the Kola
data sets to test for normal data distributions of the untransformed and the log-transformed
values. Table 9.1 provides the resulting p-values for the Shapiro–Wilk tests for the 24 variables
where more than 95 per cent of all data in all four materials returned analytical results above
the respective limits of detection.

Table 9.1 demonstrates that for the Kola data set the vast majority of variables in all four
layers do not follow a normal or lognormal distribution. This is not really surprising. Environ-
mental/geochemical data are spatially dependent, and spatially dependent data almost never
show a normal or lognormal distribution. Furthermore, environmental/geochemical data are
based on rather imprecise measurements (see Chapter 18). There are many sources of error
involved in sampling, sample preparation, and analysis. Trace element analyses are often
plagued by detection limit problems, i.e. a substantial number of samples are not charac-
terised by a real measured value. In addition, the precision of the measurements changes with
element concentration, i.e. values are less precise at very low and very high concentrations. The
existence of data outliers – in most cases the existence of some samples with unusually high
concentrations – is a very common characteristic of such data sets. They are thus strongly

Table 9.1 Resulting p-values of the Shapiro–Wilk (SW) test for normal (norm) and lognormal
(lognorm) distribution for 24 variables in the four sample materials collected for the Kola Project

Moss O-horizon B-horizon C-horizon
SW SW SW SW SW SW SW SW

norm lognorm norm lognorm norm lognorm norm lognorm
Ag 0 0 0 0.048 0 0.001 0 0
Al 0 0 0 0.001 0 0.228 0 0.003
As 0 0 0 0 0 0 0 0
Ba 0 0 0 0.025 0 0.022 0 0.002
Bi 0 0 0 0.062 0 0 0 0
Ca 0 0 0 0 0 0 0 0
Cd 0 0 0 0.002 0 0 0 0
Co 0 0 0 0 0 0 0 0.840
Cr 0 0 0 0 0 0 0 0
Cu 0 0 0 0 0 0.840 0 0.257
Fe 0 0 0 0 0 0.004 0 0.269
K 0 0.001 0 0 0 0 0 0.001
Mg 0 0.006 0 0 0 0.028 0 0
Mn 0 0 0 0.066 0 0 0 0
Mo 0 0 0 0 0 0 0 0
Na 0 0 0 0 0 0 0 0
Ni 0 0 0 0 0 0.239 0 0.001
P 0 0 0 0 0 0.130 0 0
Pb 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0
Sr 0 0 0 0 0 0 0 0
Th 0 0 0 0 0 0 0 0
V 0 0 0 0 0 0 0 0.841
Zn 0 0.587 0 0 0 0.446 0 0.012
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skewed. Even worse, these outliers originate from (a) different population(s) than the main
body of data. Not only do the outliers originate from another population, in the majority of
cases there exist several different primary and secondary factors that influence the chemical
composition of the samples at every sample site. Primary factors include geology, the existence
of mineralisation and/or contamination sources in an area, vegetation zones and plant commu-
nities, and distance to coast and topography. Examples of secondary factors having influence
on the chemical composition of a soil sample include pH, the amount of organic material, the
amount and exact composition of Fe-Mn-oxyhydroxides, and the grain size distribution. These
factors will change from site to site. The emerging empirical data distribution is thus a result of
a mixture of several unspecified populations, and it should not be surprising that the data fail
formal tests for normality. What is interesting is that data often best mimic a lognormal distri-
bution, and for those interested in this observation Vistelius (1960) is the classic publication.

Cobalt as measured in the C-horizon of the Kola data set was one of the few elements
where the tests indicate the data were drawn from a lognormal distribution (Section 9.1 and
Table 9.1). Figure 9.2 shows the density trace for a number of lithology-related data subsets
in C-horizon soil samples collected on top of the five main lithologies in the survey area (see
geological map, Figure 1.2). The density trace of the Co distribution for all the selected subsets
(Figure 9.2, left) clearly suggests a lognormal distribution. The Shapiro–Wilk test delivers a
p-value of 0.88 (note, not 0.84 as in Table 9.1, as this test is for the combined data from only five
lithologies). However, when the density traces of the different subsets are plotted separately
(Figure 9.2, right) several of the selected subsets clearly deviate from a lognormal distribution.
A highly significant lognormal distribution can thus still consist of groups with very different
data structures.

Testing a wide variety of different regional geochemical data sets, Reimann and Filzmoser
(2000) came to the conclusion that the data almost never follow a normal or lognormal dis-
tribution. In the majority of cases a data transformation (e.g., log, ln, logit, square root, range
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Figure 9.2 Density traces for a number of lithology related subsets of the Co C-horizon soil data, Kola
Project C-horizon. Left: one density trace plotted using all selected samples; right: density traces for
each of the selected subsets. Lithologies: 9, sedimentary rocks; 20, felsic gneisses; 32, mafic granulites;
51, andesites; 52, basalts (see Figure 1.2)
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or Box–Cox – see Chapter 10) did not result in a normal distribution. The vast majority of
classical statistical methods are based on the assumption that the data follow a normal distribu-
tion. When using them with non-normally distributed data, one should be very aware that this
could give biased, or even erroneous, results. Data outliers do not influence, or have minimal
influence, on robust methods, and non-parametric methods are not based on such strict model
assumptions. These are thus preferable to the classical methods. In any case, a thorough graph-
ical exploratory data analysis and documentation of geochemical and environmental data sets
is an absolute necessity before moving on to more advanced statistical methods.

9.2 The one-sample t-test (test for the central value)

The name of the t-test refers to the Student t distribution of the test statistic (see Figure 4.1,
middle left). The mean concentration of Cu in soils (<2 mm fraction, aqua regia extraction)
from England and Wales was reported to be 18 mg/kg (see Table 7.1 – McGrath and Loveland,
1992). This is one of few published data sets where a substantial number of soil samples were
analysed for Cu using the same extraction as employed for the Kola Project.

When calculating the mean concentration of the log-transformed Cu concentrations for
the Kola Project C-horizon soils and transforming it back to the original data scale, the value
obtained is 16.6 mg/kg. In Chapter 4 it was shown that there are several possibilities to estimate
the central value of a data distribution and that each of the resulting values is usually slightly
different. The estimate of 16.6 mg/kg for the project area also depends on the number of sample
sites (statistically speaking, the sample size) and their geographic locations. The actual suite
of survey samples was just one “realisation” of an infinite number of possibilities. Thus the
task is to determine the centre (statistical location) of the underlying data distribution from
which the statistical sample is drawn. To do this it is necessary to test whether the centre
of the underlying distribution is 18 (the mean of Cu in the England and Wales data set) or
significantly different from 18. This is a typical example of a problem where the classical
one-sample t-test can be used. The one-sample t-test uses the information obtained from the
empirical data values. Based on MEAN and SD of the log-transformed Kola C-horizon data
and the number of samples, a decision can be taken as to whether the centre of the underlying
distribution is 18.

The one-sample t-test (see, e.g., Lehmann, 1959) assumes that independent observations
are drawn from a single normal distribution, so the first task is to test whether the Kola Cu data
follow a normal or lognormal distribution. Fortunately Cu is one of the few variables where the
hypothesis that the data follow a lognormal distribution is accepted. The second assumption,
independent observations, cannot be tested. However, when working with applied geochemical
and environmental data, it is accepted that the data are spatially dependent, i.e. the likelihood
that the Cu values of two neighbouring samples are similar is higher than the likelihood that
two samples taken far apart return similar analytical results. The assumption of independent
observations is practically never fulfilled when working with environmental data, and thus the
application of a one-sample t-test to environmental data can be criticised. As demonstrated
above, the assumption of normality, or log-normality, also often will not be fulfilled when
working with environmental data. Nevertheless, the one-sample t-test is still one of the most
frequently used tests, and users should be aware that the spatial dependencies and any non-
normality introduce bias into the one-sample t-test and that other tests (e.g., the Wilcoxon
signed-rank test – see Section 9.3) are generally a better choice.
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To carry out the one-sample t-test we formulate the following hypotheses:

Null hypothesis: the central value of the underlying distribution of Cu in the C-horizon is
equal to 18 mg/kg, and

Alternative hypothesis (1): the central value of the underlying distribution of Cu in the
C-horizon is different from 18 mg/kg.

Here two further alternative hypotheses are possible:

Alternative hypothesis (2): the central value of the underlying distribution of Cu in the
C-horizon is less than 18 mg/kg, or

Alternative hypothesis (3): the central value of the underlying distribution of Cu in the
C-horizon is greater than 18 mg/kg.

It is important to decide against which of these alternatives the test should be made. It is not
permitted to carry out these tests one after the other, because the overall significance level of
the tests will change with each test carried out. Because of this fact the alternative hypothesis
should be chosen carefully. Alternative hypothesis (1) is the most general possibility and it is
decided to use it for the test.

The MEAN for the log-transformed Kola C-horizon soil data is 2.81, equal to 16.6 mg/kg
if back-transformed. The resulting p-value of the t-test is 0.008, which is clearly smaller than
the significance level of 0.05. Thus the test result is highly significant and the central value of
the Kola data is different from 18 mg/kg (2.89 in log-units). This depends largely on the high
number of samples that represent the Kola C-horizon data set (n = 606). For a distribution
with the same MEAN and SD the test would no longer be rejected if the sample size (n) were
332 or less.

Figure 9.3 (left) shows the density function of the assumed underlying normal distribution
with centre 18 (right line) and the same spread as the empirical data, overplotted with the density
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Figure 9.3 Comparison of the assumed hypothetical and the empirical distribution for Cu in the Kola
C-horizon soils (left plot) and comparison of the empirical distribution of Cu in the soils from Finland,
Norway and Russia (right plot). The vertical line indicates the test value 18 mg/kg (right plot)
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trace of the empirical data with MEAN 16.6 mg/kg (left line). Note that the MEAN plots to the
right of the maximum of the empirical distribution because even the log-transformed values
still show a certain right-skewness.

Another question might be: are the means for Cu concentrations in the C-horizon soils
from the three countries (Finland, Norway, and Russia) separately comparable to that for
England and Wales? Again, it is first necessary to test whether the Cu data in each country
subset follows a lognormal distribution. In Finland the results are surprising: the Shapiro–
Wilk test yields a p-value of 0.047, and the Kolmogorov–Smirnov test a p-value of 0.60.
This demonstrates nicely that with environmental data the limits of statistical testing are being
stretched. The results of the test for normal distribution of the log-transformed data indicates
that in the case of Cu in the C-horizon soils from Finland, both requirements for the one-sample
t-test (normal distribution of the log-transformed data and independence of the samples) may
be violated.

The p-value of the one-sample t-test for the values from Finland (back-transformed
MEAN = 17.0 mg/kg) is 0.31, for Norway (19.0 mg/kg) it is 0.38 and for Russia (15.4 mg/kg)
it is 0.0006. Thus the means of the underlying data distribution in Finland and Norway could
be 18 mg/kg, while the mean Cu concentration of the underlying distribution in Russia is
different from 18 mg/kg (compare Figure 9.3). Providing an explanation for the relatively low
Cu concentrations in the C-horizon soils from Russia would be desirable, and an inspection
of a geological map will show that different bedrock types than occur in Finland and Norway
dominate in Russia.

9.3 Wilcoxon signed-rank test

When working with environmental data, a different test is preferable because the one-sample
t-test can neither handle non-normally distributed nor dependent samples. The Wilcoxon
signed-rank test (Wilcoxon, 1945; Hollander and Wolfe, 1973) is a non-parametric test that
only assumes a continuous and symmetric distribution. It is thus only necessary to find a
suitable transformation to approach symmetry – in most cases a log-transformation will
suffice. However, geochemical data can be heavily censored, e.g., many less than detection
limit values. With censored data, the assumption of a continuous distribution is violated and
thus care still has to be taken when applying this test.

When using the Wilcoxon signed-rank test, the MEDIAN rather than the central value of
the underlying distribution is the location estimate being tested. However, when working with
environmental samples one problem remains. Even the Wilcoxon signed-rank test requires
independent samples, and environmental (geochemical) samples are usually spatially
dependent at some scale.

The following hypotheses is tested using the Wilcoxon signed-rank test:

Null hypothesis: the distribution of Cu in the Kola C-horizon is symmetric about 18 mg/kg.
Alternative hypothesis: the distribution of Cu in the Kola C-horizon is not symmetric about

18 mg/kg.

Carrying out the Wilcoxon signed-rank test, a p-value of 0.013 is obtained (compared to 0.008
from the one-sample t-test above). The test result thus does not change. Using the Wilcoxon
signed-rank test for the three countries separately, the following p-values are obtained



COMPARING TWO CENTRAL VALUES OF THE DISTRIBUTIONS OF INDEPENDENT DATA GROUPS 157

(in brackets: results of the one-sample t-test): Finland 0.56 (0.31), Norway 0.46 (0.38) and
Russia 0.0003 (0.0006). Thus the non-parametric test leads to the same conclusions as the
parametric test.

9.4 Comparing two central values of the distributions of independent
data groups

9.4.1 The two-sample t-test

In the above example the central value of Cu in the Kola data has been compared against a
single value, the mean of Cu in the England and Wales data set. It may also be of interest
to directly compare the central values of the “country” subsets. It has been observed above
that there are probably differences between the samples collected in Finland and Norway, and
Russia. So a test to determine whether the central value for the combined data for Finland
and Norway (group 1) is significantly different from the central value of the data for Russia
(group 2) is required. This would be a typical example where the two-sample t-test (see, e.g.,
Lehmann, 1959) could be applied. The test requires that the data in both groups follow a
normal distribution, are independent, and show equal variance (pooled two-sample t-test). If
the assumption of equal variance is not fulfilled, a different version of the two-sample t-test
called the separate t-test (see, e.g., Lehmann, 1959) can be applied.

The following hypotheses will be tested:

Null hypothesis: the central value of Cu of the underlying distribution of group 1 (Finland
and Norway) is equal to the central value of the underlying distribution of group 2 (Russia).

Alternative hypothesis: the central value of Cu of the underlying distribution of group 1 (Finland
and Norway) is unequal to the central value of the underlying distribution of group
2 (Russia).

The pooled two-sample t-test yields a p-value of 0.023. The separate two-sample t-test yields
the same p-value. This test result implies that the null hypothesis of equal central values is
rejected at the significance level of 5 per cent. Thus the mean Cu concentration of the underlying
distribution of group 1 (Finland and Norway) is with 95 per cent confidence different from the
central value of group 2 (Russia).

The notched boxplot (mentioned in Section 3.5.4) can be used as an alternative to check for

equality of the MEDIANS of two (or more) data groups. The notches are placed at 1.58 · HS√
n

on either side of the MEDIAN. These notch positions, representing the 95 per cent confi-
dence bounds on the MEDIAN, are based on a normal approximation. If the data spread, as
indicated by the width of the boxes, is comparable between the data sets, non-overlapping
notches provide strong evidence that the MEDIANS are significantly different at the 5 per cent
significance level. Instead of using a normal approximation for computing the notches, it
would be possible to use a non-parametric binomial approximation. However, when working
with very small numbers of observations, the resulting confidence bounds can become very
imprecise.

Figure 9.4 shows the Tukey boxplot of the log-transformed data of the two data groups
Finland and Norway, and Russia. The notches of the two Tukey boxplots do not overlap. This
provides clear evidence that the two location measures, MEDIANS, are different. As for the
pooled t-test, equality of variances is important when using the notched boxplot for testing.
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Figure 9.4 Notched Tukey boxplot comparison for Cu in the C-horizon soils from Finland and Norway
versus Russia

Figure 9.4 graphically confirms that the variances in both groups are comparable: the lengths
of the two boxes are almost the same.

9.4.2 The Wilcoxon rank sum test

The Wilcoxon rank sum test (equivalent to the Mann–Whitney U-test) is a non-parametric
test for equal distribution (Mann and Whitney, 1947; Wilcoxon, 1945). Requirements are
independent samples and a continuous data distribution. The Wilcoxon rank sum test tests
whether the MEDIANS of two samples drawn from the same distribution are equal.

The two hypotheses are:

Null hypothesis: the underlying distributions of variable Cu in group 1 (Finland and Norway)
and group 2 (Russia) are equal.

Alternative hypothesis: the underlying distributions of the variable Cu of group 1 and group
2 are shifted (i.e. they have different MEDIANS).

The resulting p-value for the Mann–Whitney test is 0.006. The conclusion is that the central
location of Cu in group 1 (Finland and Norway) is different from the central location of Cu in
group 2 (Russia). The Wilcoxon rank sum test should always be used instead of the two sample
t-test when the hypothesis of normality is not justified (see, e.g., Hollander and Wolfe, 1973).

9.5 Comparing two central values of matched pairs of data

9.5.1 The paired t-test

Another comparison that may be tested is whether the measurements for a variable, e.g., Cu
in the soil samples from the C- and B-horizons, are sufficiently similar to be considered equal.
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In this instance the test involves dependent pairs of samples because the samples were taken
at the same location. Another application of this test would be to investigate if analyses for
the same samples by two different methods yield similar results. In the temporal domain, the
question is whether the results of two sampling campaigns are equal, if the same area had been
sampled at the same locations twice, e.g., in a monitoring program in 1995 and 2005. In all
these instances the paired t-test (see, e.g., Lehmann, 1959) is required.

Requirements for the paired t-test are again that the data follow a normal distribution and that
the samples are independent. The Cu values in the B-horizon follow a lognormal distribution.

The following hypotheses will be tested:

Null hypothesis: the distribution of differences between the pairs of C- and B-horizon samples
has central value zero.

Alternative hypothesis: the distribution of differences between the pairs of C- and B-horizon
samples has a central value different from zero.

The resulting p-value of the test is practically zero (10−16). Figure 9.5, left, shows a
notched Tukey boxplot of the differences of the sample pairs. To accept the hypothesis
that the MEDIAN of the differences between the sample pairs is zero, the notch would
have to straddle zero. This is clearly not the case, supporting the result of the paired t-test.
One might be tempted to use the notched Tukey boxplot to directly compare the results of the
B- and C-horizon samples (Figure 9.5, right). However, for this to be valid the independence
assumption for the two groups of samples has to be fulfilled. This is not the case as the soil
horizon samples are collected at the same sites. Thus the graphic relevant to the two-sample
t-test can easily be misleading, and a visualisation of the test must be carried out as shown in
Figure 9.5, left.

−0.5 0.0 0.5 1.0

Difference of Cu in B− and C−horizon

C
−

ho
riz

on
B

−
ho

riz
on

Cu [mg/kg]

1 2 5 10 20 50 100

Figure 9.5 Notched Tukey boxplot of the differences of all sample pairs for Cu in the B- and C-horizon
of the Kola Project data (left plot). Note that the notched boxplots (right) for independent samples
should not be confused with the test for equality of the MEDIANS between dependent samples (left)
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9.5.2 The Wilcoxon test

A non-parametric version of the paired t-test is the Wilcoxon test, also called Wilcoxon signed
rank test for data pairs (Wilcoxon, 1945). Requirements are that the differences of the data
pairs are independent samples and follow a continuous and symmetric distribution around the
MEDIAN.

Null hypothesis: the MEDIAN of the differences of the pairs of samples is zero.
Alternative hypothesis: the MEDIAN of the differences of the pairs of samples is different

from zero.

The resulting p-value of the Wilcoxon signed rank test for Cu in the B- and C-horizon of the
Kola data set is again close to zero (10−16). Thus the hypothesis of equal MEDIANS in both
soil horizons has to be rejected. This test should be preferred if the data do not follow a normal
or lognormal distribution.

9.6 Comparing the variance of two data sets

9.6.1 The F-test

In the above example the separate two-sample t-test had the additional requirement of equal
variance. To test for equal variance, an F-test would be applied (see, e.g., Lehmann, 1959).
Requirements for an F-test are again normal distribution and independent samples in both
groups.

Null hypothesis: the variances of the distributions of the variable Cu for group 1 (Finland
and Norway) and group 2 (Russia) are equal.

Alternative hypothesis: the variances of the distributions of the variable Cu for group 1 and
group 2 differ.

The resulting p-value for the F-test is 0.94, the null hypothesis that the variances are equal is
accepted. This confirms the graphical impression obtained from the boxplot (Figure 9.4).

The Kola data demonstrate that unusual factors or geochemical processes express
themselves more often in an increase in spread than in a difference in the central location.
Thus tests for variance are of a more general interest than the above example might imply.
Changes in spread can also be easily detected graphically, e.g., in boxplots. However, the
F-test is more rigorous because it accounts for the number of samples whereas boxplots
always give, more or less, the same graphical impression independent of the number of
samples (some programs allow one to scale the box widths proportional to the sample
size).

9.6.2 The Ansari–Bradley test

A non-parametric version of the F-test is the Ansari–Bradley test (Ansari and Bradley, 1960)
that requires independent samples (note that the alternative Mood test (Conover, 1998) in
addition requires equal MEDIANS, which limits its use in applied geochemistry and the
environmental sciences considerably). The p-value of the Ansari–Bradley test for the above
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example is 0.70, again leading to the conclusion that the spread for Cu in the two data subsets
can be considered equal.

9.7 Comparing several central values

9.7.1 One-way analysis of variance (ANOVA)

It is often required to simultaneously compare the central values of several data groups, i.e. more
than the two the t-test is appropriate for, and for this one-way analysis of variance (ANOVA)
(see, e.g., Scheffé, 1959, 1999) is appropriate. Again the requirements are for independent
observations, normally distributed data in each group, and equal variances for all groups. It
should be noted that the requirements have increased and that these will be rarely met when
working with applied geochemical and environmental data. It is a question as to whether
classical, parametric ANOVA tests should be employed, or rather the non-parametric version
of the test(s) should be used.

The comparison of the central values for Cu in the data for Finland, Norway and Russia
provide an illustration. As has been noted in Section 9.2, the requirement for a normal dis-
tribution may not be met by the data for Finland. The test for equality of the variances (see
below) indicates that the variances are comparable. When Finland, Norway and Russia are
treated as three separate groups, ANOVA can be used to test for equality of the central values
of the Cu concentrations in the three groups simultaneously.

Null hypothesis: the central values of the groups are equal.
Alternative hypothesis: at least two groups have different central values.

The p-value returned from the test is 0.12 and thus the null hypothesis cannot be rejected. Thus
ANOVA suggests that the central values of the underlying distributions of the three groups are
equal. This is certainly a surprise considering the results previously presented!

9.7.2 Kruskal–Wallis test

A non-parametric version of the above test is the Kruskal–Wallis test (Kruskal and Wallis, 1952;
Hollander and Wolfe, 1973). It does not require that the data be normally distributed, but just
that they follow a continuous distribution in each of the groups and, of course, that the samples
are independent. The same hypotheses as above are tested, and this time the p-value is 0.013.
Thus the null hypothesis is now rejected and one can assume that there is a difference between
at least one pair of the three groups, which would confirm the previous results. This example
highlights the problems of hypothesis testing for applied geochemical and environmental data
that time and again violate at least one, and often several, of the statistical assumptions of
the tests. Again, the non-parametric test is more reliable because it is dependent on fewer
assumptions, and thus more trust should be placed on this result.

9.8 Comparing the variance of several data groups

9.8.1 Bartlett test

The Bartlett test (Bartlett, 1937) is for the equality of the variance of several data groups against
the difference of variability in one of the possible group-pairs. The assumptions require that
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the data for each group be normally distributed and the samples independent.

Null hypothesis: the group variances are equal.
Alternative hypothesis: at least two groups have different variances.

For the example of Cu in the C-horizon soils from Finland, Norway, and Russia the resulting
p-value is 0.08. Thus equality of the variances in the three data groups, which was one of the
requirements for carrying out the above ANOVA, is actually just fulfilled. However, as noted
above, the requirement for a normal distribution may be violated in the case of the Finnish data.

9.8.2 Levene test

Like the Bartlett test, the Levene test (Levene, 1960; Brown and Forsythe, 1974) also tests for
equality of the variances of several data groups. It allows for certain deviations from normal
distribution by replacing the MEAN with the MEDIAN in the formula for the test statistic.

Carrying out the Levene test for the above example delivers a p-value of 0.49. This result is
far less marginal than the result of the Bartlett test. The null hypothesis that the group variances
are equal cannot be rejected.

9.8.3 Fligner test

The non-parametric version of the Bartlett test is the Fligner test (Conover et al., 1981). This
test is most robust against departures from normality, and tests, as above, the null hypothesis of
homogeneity (equality) of variances. The resulting p-value is 0.15 and we would again accept
the null hypothesis.

It is noteworthy that this result would not necessarily be expected when studying the boxplots
of the three national subsets (Figure 9.6). When studying these, the graphical impression is that
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Figure 9.6 Notched Tukey boxplot comparison of the distribution of the log-transformed values of
the variable Cu in the Kola C-horizon samples in the three country subsets
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the spread of the Finnish and Russian samples may be comparable while the Norwegian samples
exhibit less variability. This shows that the graphical impression alone can be misleading.

9.9 Comparing several central values of dependent groups

9.9.1 ANOVA with blocking (two-way)

It may be necessary to compare results from several data sets. For instance, in the Kola Project,
data were collected from four layers at the same location. As another example, monitoring
results for samples collected at different times, e.g., 1995, 2000, and 2005 at the same locations
might be available. It is desired to determine whether the results for the different layers (surveys)
are comparable. Here the results of the groups are clearly dependent because the samples
originate from the same locations, thus one-way ANOVA cannot be used. The paired t-test for
dependent data can only be used to compare two groups of data, but not simultaneously three,
four, or even more groups. Thus an extension of ANOVA that accounts for a blocking effect
(several different sample materials taken at one site or one material sampled several times at
the same location) has to be employed. This type of ANOVA, often referred to as two-way (see,
e.g., Scheffé, 1959, 1999), simultaneously tests two null hypotheses against two alternative
hypotheses. ANOVA with blocking requires that the data in each group are normally distributed
with equal variances. The tests for normality for the log-transformed Cu data show that the
data from O-horizon and moss do not follow a normal distribution. There is in fact no variable
in the Kola data that follows a normal or lognormal distribution in all four layers. However, the
test will be continued in order to carry out a comparison with the non-parametric equivalent.

Null hypothesis (1): the central values of the Cu concentrations of the four sample materials
are equal.

Alternative hypothesis (1): there is a difference in the central values between at least two
layers.

Null hypothesis (2): the average concentration of Cu in the four layers is the same at all sample
sites.

Alternative hypothesis (2): the average Cu results differ in at least two locations.

In both cases the p-values are approximately 0, and both null hypotheses have to be rejected.
This implies that there are significant differences in the Cu concentrations observed between
the layers, and that there are significant differences between the average Cu concentrations
(averaged over all layers) at sites across the whole region.

Figure 9.7 shows a Tukey boxplot comparison of Cu in the four collected layers. It is clearly
visible that the MEDIANS in the four layers differ substantially. The notches, however, may be
misleading because of the lack of spatial independence (see Figure 9.5). In moss and O-horizon
an unusual number of outliers are visible. This is caused by the additional input of Cu from
the Russian nickel industry disturbing the natural distributions.

9.9.2 Friedman test

The Friedman test (Friedman, 1937; Hollander and Wolfe, 1973) is the non-parametric equiv-
alent of (two-way) ANOVA with blocking. Here the only assumption is that the samples are
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Figure 9.7 Notched Tukey boxplots for log-transformed Cu concentrations in C-, B-, and O-horizon
soils and terrestrial moss samples from the Kola Project area

drawn from continuous distributions. In contrast to the above ANOVA with blocking only one
null hypothesis is now tested:

Null hypothesis: the MEDIAN values of the underlying distributions of the Cu concentrations
in the four layers are equal.

Alternative hypothesis: the MEDIAN values of the underlying distributions of the
Cu concentrations in the four layers are different.

Again the p-value is almost zero (p = 10−16), and the Friedman test thus confirms the results of
the classical parametric ANOVA with blocking. Given the distribution of Cu in the O-horizon
and moss, the Friedman test is the best choice for testing this hypothesis.

9.10 Summary

Statistical tests require the careful formulation of a null hypothesis and an alternative
hypothesis. Many of the classical statistical tests build on quite strong statistical assumptions
concerning the data and are as such not very well suited for environmental data. Despite the
fact that the assumptions of normality and independence, and for some tests equality of vari-
ance, required for formal parametric hypothesis testing are not met, surprisingly the inferences
drawn from the non-robust and robust procedures are often similar. This does not justify the
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continued use of the classical parametric procedures, though perhaps it helps to explain it along
with a lack of availability of suitable software to undertake the more preferable non-parametric
procedures. Results of statistical tests should thus be interpreted with great care.

Finally, EDA graphical procedures and formal statistical analyses complement each other.
In many cases the inferences drawn by the practitioner may be similar, but in others illuminating
differences are present that may stimulate further questions and analyses. Therefore, hypotheses
should be investigated both graphically and formally, and each used to avoid misinterpretation
of the other.



10
Improving Data Behaviour
for Statistical Analysis: Ranking
and Transformations

Sorting the data will often provide a better appreciation of the values of a variable. It is also
possible to replace the data by the ranks of the sorted values and continue statistical analysis
with these ranks.

Data transformations, which usually consist of relatively simple mathematical operations,
are frequently required. There are several reasons for carrying out transformations. One reason
may be that it is required that the data approach a normal distribution. Another reason could be
that some statistical methods require comparability (equality) of the variance, or comparability
of both mean and variance. For graphical representations it can also be useful to transform
variables so that they span the same range of data. Transformations can condition the data so
that they more closely meet these requirements.

Sometimes the deviations from the average concentration of an element may be of interest.
In that case it can be advantageous to move the origin (0) to the centre of the data. This can
be achieved by subtracting the location (MEAN, MEDIAN, etc.) from each single data value.
Because applied geochemical and environmental data often contain outliers, preferably one
should use the MEDIAN as the estimate of central location as it is unchanged by extreme
values.

When working with at least two variables in a statistical analysis, it will often be advan-
tageous for all variables to have the same weight (have the same scale). A typical example
in applied geochemistry is the enormous difference in concentration between major and trace
elements (often five orders of magnitude). For example, when plotting a ternary diagram it
may be necessary to multiply (or divide) one (or two) of the variables by a certain factor so
that the three variables come within the same data range.

Because of the frequent use of transformations, it should be easy to execute the most common
data transformations within a data analysis system. Variables or files that contain transformed
data need to be clearly marked as such. In some data analysis systems there may be a real danger
that the original data file can be destroyed in saving a data file with transformed variables.

Commonly, the data are first transformed (e.g., to approach a normal distribution), then, if
required, centred and then scaled.

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6
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10.1 Ranking/sorting

Ranking assigns each data value a number according to its rank in the data set, starting from
the minimum to the maximum value. The rank equals the position of the value if the data set
were sorted in increasing order. When values are identical, they are all given a rank equal to
the average of the ranks of the equal values. A disadvantage of ranking is that the detailed
information of the original data is lost. However, ranking will remove skewness and the in-
fluence of outliers from the data. In some classical statistical analyses, such as analysis of
variance (ANOVA), data that do not fulfil the assumptions of normality and homogeneity of
variance may be replaced by their ranks and the analysis successfully undertaken (Conover and
Iman, 1982; Conover, 1998). Ranking the data often allows better insight into the dependencies
between the variables (e.g., correlation – see Chapter 11).

Sorting of single variables can also be helpful to detect unexpected structures within a
variable. A typical example would be a sorted data table, prepared in a spreadsheet program
(NOTE, with some software, sorting involves the serious danger of destroying a data file
because the relation to the identifier (and other data/information) can be lost; the “original”
data file must always be securely stored, backed up, before starting to sort). Extensive editing
of a spreadsheet may be required to prepare a sorted data table for all variables, where the
relation to the ID (and/or further required information) is retained (see Figure 10.1).

Figure 10.1 Screenshot of the Kola Project C-horizon soil data resorted variable by variable according
to decreasing analytical results. Samples with “special signs” like “NA” or “<” are sorted to the top or
bottom of the array when using ExcelTM
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In a sorted table it is possible to observe at once how many samples (if any) are below the
detection limit, e.g., no samples for Al, 13 samples for As, and 686 samples for B (Figure 10.1).
It is also visible whether there are unusual numbers of samples returning the same result,
whether rounding of results by the laboratory (e.g., to integer numbers like 1, 2, 3, . . . or even
10, 20, 30, . . . ) has caused artificial structures in the data. For an example, see variable Al
where all values above 10 000 are rounded to the nearest “100”, and the data above 1000 to
the nearest “10”. Any unusual “gaps” with no analytical results (e.g., two samples marked NA
for the variable Ag) are visible. It can be detected how far removed from the main set of data
the high (or low) values are. The number of unusually high (or low) values is visible at one
glance (see for example the maximum value for Ca) (Figure 10.1). Some “unlikely” values,
such as the very high results for Cd, will also become far more obvious than in an unsorted
table (Figure 10.1). Checking with the original data file as received from the laboratory will, in
this case, reveal that Cd was reported in “�g/kg” and that it was forgotten to recalculate these
values to “mg/kg”, so those Cd values still need to be divided by 1000.

10.2 Non-linear transformations

10.2.1 Square root transformation

For count data, e.g., numbers of mineral grains or geochemical data where the concentration
of an element is a direct function of the number of rare mineral grains present, it is often
possible to approach normal distribution via a simple square root transformation. Instead of
the original data, the distribution of the square root of the result for each sample is studied
and used for further data analysis. This reflects the fact that count data follow a Poisson
distribution (Bartlett, 1947; Krumbein and Graybill, 1965; Weissberg, 1980) and that the
square root transform is the generally accepted procedure for normalising such data.

10.2.2 Power transformation

Instead of applying the square root transformation, which is a special case of the power trans-
formation (x1/2), a transformation to any other power can sometimes be useful to approach
a normal distribution. Even negative powers can be used, e.g., the inverse of the square root
transformation (x−1/2). In the special case of a power of zero the power transformation is
defined as log(x). Power transformations require that the data are positive, which is the usual
case in environmental sciences and applied geochemistry. If negative data are present, these
must first be brought into a positive range via addition of a suitable constant. The choice of
an appropriate power for the transformation is the objective of the Box–Cox procedure (see
Section 10.2.4).

Figure 10.2 shows as an example the original, strongly right-skewed distribution for Cr
from the Kola C-horizon data set, and the effect of power transformation with powers of + 1

4
and − 1

4 on the distribution. Both transformations result in more symmetrical distributions,
however, some skewness still exists.

10.2.3 Log(arithmic)-transformation

In geochemistry a log-transformation is often used to approach a normal distribution. A
log-transformation will reduce the very high values and spread out the small data values and
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Figure 10.2 Density trace for Cr of the Kola C-horizon soil data set. Upper diagram: original data;
middle diagram: power transformed data with power + 1

4 ; lower diagram, power transformed data with
power − 1

4

is thus well suited for right-skewed distributions. In practice there are two commonly used
log-transformations, the transformation to the natural logarithm (ln) and the transformation
to base 10 logarithms (log10). Some statistical data inspection techniques (e.g., the CP-plot)
benefit from a logarithmic transformation. If the objective is to check whether data points
follow a straight line, either a ln or a log10 transformation will suffice for a CP-plot. Otherwise,
when working with environmental data, a transformation to the base 10 logarithms may
be the better choice, because it is considerably easier to relate to the original data, as it is
common knowledge that 0-1-2-3 on the log10-scale corresponds to 1-10-100-1000 in the
original scale.

Data transformations are also often carried out to make different variables more com-
parable. For example, when plotting Cr versus Cu for the Kola C-horizon soil data, the
majority of points fall in the lower left corner of a plotting area that is dominated by a few
extreme values. Plotting the log-transformed values, the data points are spread over the whole
plotting area, and the structure of the two-dimensional data can be studied in far greater detail
(see Figure 10.3).
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Figure 10.3 Scatterplot for Cu and Cr from the Kola Project C-horizon soil data set. Left diagram:
original data scale; right diagram: log-scaled data

10.2.4 Box–Cox transformation

The algorithm for the Box–Cox transformation (Box and Cox, 1964) estimates the power that
is most likely to result in a normal distribution when applied to the given data set. This is an
extremely flexible transformation, and as noted above, includes a logarithmic transformation
for the special case of the estimated power being zero. In reality the power may not transform
the data to perfect normality, however, the estimate is the power that brings the data closest
to normality. If the parameter is close to some specific value, for example −1, 0, 1

3 , 0.5, it is
often sufficient to use a reciprocal (−1), logarithmic (0), cube root ( 1

3 ), or square root (0.5)
transform, respectively. This is most appropriate when there is evidence that the underlying
physical or chemical processes controlling the data are best modelled by a specific distribution
normalised by that power.

As an example, the variable Fe XRF from the Kola C-horizon soil data set can be used. The
Box–Cox transformation estimates a power of 0.31. There is the choice of using a log-transform
or a power transformation. Using a log-transformation, a Shapiro–Wilk test for normality
(see Chapter 9) returns a p-value of 4 · 10−6, and thus the hypothesis that the data follow a
normal distribution is rejected. Applying a power transformation with the value of 1

3 to the
data, the Shapiro–Wilk test delivers a p-value of 0.057 and the hypothesis that the data follow
a normal distribution cannot be rejected. Figure 10.4 shows this example in the form of density
traces. The direct relation to the unit of the measurements is lost under power transformation.
This can be overcome by an appropriate transformation of the scale of the x-axis (not routinely
provided in DAS+R, but possible in R).

10.2.5 Logit transformation

To approach a normal distribution for proportional data, the logit transformation (Berkson,
1944) performs better than the log-transformation in many instances. It is particularly
appropriate for proportions or probabilities as it opens up the data to an unbounded scale,
though zero is not permitted. To carry out a logit transformation, if the data are not already
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Figure 10.4 Density trace for Fe XRF from the Kola C-horizon data set. Upper diagram: original data;
middle diagram: log-transformed data; lower diagram: power transformed data with power 0.31

on a 0–1 scale, the data need to be transformed such that they fall into the range between 0
and 1. For data given in wt% they thus need to be divided by 100; data given in mg/kg need
to be divided by 1 000 000 and data given in �g/kg need to be divided by 109. The data are
then divided by the inverse proportion of the data and log-transformed (i.e. if the value is
0.1 the transform is ln(0.1/(1 − 0.1)); if the value is 0.3 the transform is ln(0.3/(1 − 0.3)).
Because the relation to the original data is lost, this transformation is not favoured for applied
geochemical and environmental data. In addition, when working with skewed data (as is often
the case in environmental sciences), the calculation of the inverse proportion will increase
the skewness of the distribution, which is not a desirable result. The logit transformation will
perform much better than the log-transformation when dealing with uniformly distributed
data, or data that are expressed as proportions or probabilities.

10.3 Linear transformations

10.3.1 Addition/subtraction

For centring the data, or more generally moving the origin for the data, it can be useful to
add or subtract a constant to/from all values. Figure 10.5 shows the original right-skewed
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Figure 10.5 Density trace for Fe XRF from the Kola C-horizon soil data. Upper diagram: original
data; middle diagram: the MEDIAN is subtracted from all samples to move the centre of the
data to zero; lower diagram: all values are multiplied by 10 000 to change the unit from wt%
to mg/kg

distribution of the variable Fe XRF from the Kola C-horizon soil data. When subtracting the
MEDIAN (3.43) from all samples, the centre of the distribution is shifted to zero but the shape
of the distribution does not change (Figure 10.5, middle). Centring of data is required for many
multivariate methods.

10.3.2 Multiplication/division

To change the data range, e.g., for scaling, it can be useful to multiply/divide all values by a
constant. This transformation needs to be applied quite often to one, or two, of the selected
variables when plotting ternary diagrams. Figure 10.5, lower diagram, shows that when
multiplying the values with 10 000 (to shift the unit from wt% to mg/kg), the scaling of the
diagram changes, but the distribution remains the same.

In another instance of scaling, the constant could be a measure of data spread
(dispersion), e.g., standard deviation (SD) or median absolute deviation (MAD)
(see Section 10.4.2).
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10.3.3 Range transformation

A range transformation can be helpful prior to plotting multivariate graphics. A typical example
would be the parallel coordinate plot (see Chapter 13). For this transformation a range via a
maximum and a minimum value (e.g., 0 and 1) is defined, and the data are all forced into
this range. This is achieved via subtraction of the minimum data value from each value and
division by the data range and it is thus a combination of the linear transformations mentioned
above. This transformation will only change the range, not the distribution of the values within
their natural range. In the range transformation the minimum and maximum values of the
data determine the result (the transformed data have minimum = 0 and maximum = 1). It is
thus very vulnerable to outliers and is, for this reason, only of limited use when working with
applied geochemical and environmental data.

10.4 Preparing a data set for multivariate data analysis

Multivariate data analysis investigates several variables simultaneously. To ensure comparabil-
ity between all variables, each variable needs to be considered separately for transformation to
fulfil the requirements of the intended statistical method. For example for multivariate graphics
like parallel coordinate plots, all variables are transformed to the same range (usually zero to
one). In the instance of skewed variables, the data are often logarithmically transformed prior to
range transformation. Some statistical methods may require a multivariate normal distribution.
In this case it is possible to use any combination of non-transformed, log-transformed, power
transformed, or more generally, Box–Cox transformed values for the different variables. Each
variable needs to be checked for normality, and the most appropriate power constant should
be chosen.

Many multivariate methods require that the data have a common origin and that the spread
of each variable is the same. This is achieved via centring and scaling the data.

10.4.1 Centring

For some multivariate data analysis techniques (e.g., Principal Components Analysis – PCA,
Factor Analysis – FA, see Chapter 14), it is helpful if the origin of the coordinate system of the
data (not the spatial coordinates) is moved to the centre of the multivariate data cloud. This is
done via calculating the average (MEAN, MEDIAN or whatever is appropriate for the data at
hand) of each transformed variable and subtracting it from each single value. Centring is thus
a simple linear transformation (subtraction).

10.4.2 Scaling

Even after transformation and centring the data may still not be directly comparable because the
spread of the variables selected for analysis is different. For example, the Kola data set consists
of a combination of major elements (e.g., Al, Ca, Fe, K, Na, Mg, Si) and trace elements (e.g.,
Ag, As, Co, Cr, Cu) that have very different concentration ranges. Major elements occur in
concentrations of 10 000 to several 100 000 mg/kg. Trace elements occur at concentrations far
below 1000 mg/kg. Major elements would completely dominate the results of some multivariate
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techniques (e.g., PCA, FA, cluster analysis) if no allowance was made. The variables thus need
to be brought to a comparable scale.

This could be done via a range transformation, however, as mentioned in Section 10.3.3, the
result of a range transformation depends critically on the minimum and maximum concentration
of each variable, and is thus extremely vulnerable to data outliers. The SD of a variable is a
measure of its scale (spread or dispersion). Thus a better way to scale the data will be to divide
all values of each variable following its centring by its SD (or, preferably, the robust measure
MAD, as outliers are common in environmental data). Therefore, scaling most frequently
involves applying a simple linear transformation (multiplication or division). Centring and
scaling data is often referred to as data standardisation.

This can be easily demonstrated through plotting the density traces of two variables that
have different concentration ranges, e.g., Fe XRF and Cr from the Kola C-horizon soil data
(Figure 10.6). If the samples are only log-transformed a symmetrical distribution is achieved,
but the centres differ by orders of magnitude (Figure 10.6, upper plot). Centring the data
still leaves the width and height of the two distributions uncomparable, the scaling is clearly
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Figure 10.6 Density traces of the log-transformed data for Cr and Fe XRF from the Kola C-horizon soil
data (top), the log-transformed and centred data (middle) and the log-transformed, centred and scaled
data (bottom)
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different (Figure 10.6, middle plot). After scaling both variables, the density traces are far more
comparable (Figure 10.6, lower plot).

10.5 Transformations for closed number systems

A closed array or closed number system is a data set where the individual variables are not
independent of each other but are related by, for example, being expressed as a percentage
(or parts per million – ppm (mg/kg)). They sum up to a constant, e.g., 100 per cent or 1. To
understand the problem of closed data, it just has to be remembered how percentages are
calculated. They are ratios that contain all variables that are investigated in their denominator.
Thus, variables expressed as percentage data are not free to vary independently.

This can be easily seen in Figure 10.7 by plotting SiO2, which is often the major
component in a rock or soil analysis, against other major or minor components – the apparent
strong negative relationships are most likely caused by the simple fact that as the major
component (SiO2) increases, all other components will decrease because the sum is fixed
(100 per cent). Such negative relationships will result in a forced negative correlation (see,
e.g., Rock, 1988). Because SiO2 is usually greater than 50 per cent of the total, it will show
the strongest effect, however in a closed array all variables will influence all other variables
and the true correlations even of elements with much lower concentrations, e.g., Na2O and
K2O (Figure 10.7 right) are unpredictable. The relationships visible in Figure 10.7 are thus
probably not the “true” relationships between these variables, but relationships “forced” due to
closure.

The problem of undertaking statistical analyses with “closed number systems” has been
much discussed in the literature (see, e.g., Butler, 1976; Le Maitre, 1982; Woronow and Butler,
1986; Aitchison, 1986, 2003). In correlation and multivariate statistical analyses, it has quite
serious consequences that are often neglected. For example, a negative correlation is more
often artificial in a closed array than in an open array (Rock, 1988). High “artificial” internal
correlations between variables can give unstable and even erroneous results (Rock, 1988).
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Figure 10.7 Scatterplots of SiO2 versus Al2O3, and Na2O versus K2O for Kola Project C-horizon soils
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To open the data and destroy the effects of closure, various forms of data transformation are
available. The pioneer work on addressing the closure issue was undertaken by Aitchison in
the 1980s (Aitchison, 1986, 2003), and additive logratio and centred logratio transformations
derive from that work. Egozcue et al. (2003) introduced the isometric logratio transformation
which has good mathematical and geometric properties.

10.5.1 Additive logratio transformation

The additive logratio transformation is a simple and straight-forward procedure. One of the
variables in the data set is “sacrificed” to open the data array. The transformation itself consists
simply in dividing each analytical result of each sample by the analytical result of the variable
that is to be “sacrificed” (e.g., TiO2). The logarithm of all results is then used for further
work. Common choices in geochemistry for selection of this variable have been the minor and
trace elements Ti (TiO2) or Zr, based on the fact that in some circumstances during various
geochemical processes these elements are believed (careful, in many cases in environmental
applications this is not a scientific fact but wishful thinking) to be conserved; it is hoped that
they are neither lost nor accumulated. However, often the minor and trace elements are being
measured closer to their analytical detection limits, and thus include relatively large analytical
variability, i.e. imprecision. Furthermore, at those lower levels the data are often influenced by
discretisation, i.e. rounding to a relatively few actual values (see sorted table in Figure 10.1).
So the petrologically best choice may not be the best computationally. It can be advantageous
to experiment with a number of possibilities for this variable.

Igneous petrologists have long recognised the closure problem in bivariate data plotting.
Simple element or oxide versus element or oxide plots for major and minor element data are
known as Harker diagrams. Pearce (1968) introduced the element-ratio plot, where the oxides
or elements to be plotted were first divided by a common third element or oxide. The parallel
to additive logratioing is immediately apparent. Figure 10.8 displays the Pearce-element-ratios
for SiO2 vs. Al2O3 and Na2O vs. K2O for Kola Project C-horizon soils using TiO2 as the divisor
with logarithmic scaling; these are the same data as displayed in the traditional scatterplots
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transformation using TiO2 as divisor
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(Harker diagrams) in Figure 10.7. The difference between the relationships displayed in Figure
10.7 and 10.8 should convince any reader that the closure effect can be a serious problem when
working with geochemical (compositional) data. A serious problem with the additive logratio
transformation is that a different choice of the ratioing variable can result in quite different
diagrams.

It is now clear that there is in fact a positive relationship between SiO2 and Al2O3
(Figure 10.8, left plot) and not the negative relationship indicated in Figure 10.7. This is
not surprising to a mineralogist. Most common rock-forming minerals and their weathering
products contain both Si and Al. Quartz is the only abundant common rock-forming mineral
that contains only SiO2.

The Pearce plot for Na2O vs. K2O (Figure 10.8, right) reveals that two relationships are
present: a dominant one where K2O increases with Na2O and a minor one where increasing
K2O occurs with decreasing Na2O. The first is typical of the major relationship present for most
rocks where Na and K increase as Ca and Mg decrease. The latter minor relationship is related
to the rare alkaline intrusive rocks present in the Kola area where K increases relative to Na.

A disadvantage of the method is that the direct relation to the original data and the unit is lost
under this transformation. However, as the objective is to correctly visualise and quantify the
bivariate and multivariate relationships this is not a great hindrance. Furthermore, the ratioing
variable is lost for further data analysis.

10.5.2 Centred logratio transformation

An alternative way of opening the data is by dividing each value of a variable for an individual
by the geometric mean G of all the variables for that individual and then taking logarithms. It is
critical in this transformation that all the variables should be expressed in the same measurement
unit. In practice it is easiest to log-transform the data first and then subtract the mean of the
logarithms of the data for each individual (row of the data matrix). This procedure has the
advantage that a divisor does not have to be selected. However, it has the disadvantage that the
resulting covariance matrix (see Chapter 11) cannot be inverted as it is numerically singular,
which thus makes it impossible to undertake some multivariate statistical analyses with centred
logratio transformed data.

Figure 10.9 is the centred logratio transformed equivalent of the additive logratio
transformed data presented in Figure 10.8. As can be seen the patterns for the Kola Project
C-horizon soils are generally similar, graphically demonstrating the equivalence of the two
procedures. The dispersion in the SiO2 vs. Al2O3 relationship is greater, and the Na2O vs. K2O
relationship due to underlying common rock forming mineral and feldspar relationships is even
clearer.

Just as for the additive logratio transformation, the centred logratio transformation will also
result in the loss of the relation to the original data and unit, however, no variable is lost, the
correlations for TiO2 can thus be studied as well. Because the centred logratio transformation
is not dependent on the results of a single selected variable, but uses the average of all variables,
it can be considered the preferable method for opening a data set whenever a direct relation to
the variables is needed.

10.5.3 Isometric logratio transformation

The isometric logratio transformation (Egozcue et al., 2003) overcomes the singularity problem
of the centred logratio transformation. Thus it is now possible to calculate the covariance
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Figure 10.9 Scatterplots of SiO2 versus Al2O3, and Na2O versus K2O after a centred logratio
transformation. G all is the geometric mean of all variables for each sample

matrix and its inverse. Moreover it has preferable geometric properties (Egozcue et al., 2003).
However, during this transformation the dimension of the data set is reduced by one and the
direct relation to the original variables is completely lost, although it is possible to back-
transform the data. Due to this fact the above examples can no longer be plotted and used.
Advanced multivariate techniques can be applied to the transformed data and the results can
be back-transformed to the original data space, allowing interpretation.

10.6 Summary

Data transformations are frequently used in graphical and more formal statistical data analyses.
They will reduce the influence of some unusual observations and draw attention to the main
body of data or result in improved comparability between the variables. For environmental
data, which are characterised by the existence of data outliers and most often right-skewed
data distributions, experience shows that a log-transformation is in the majority of cases ad-
vantageous for data analysis. It is always prudent to check the results of a data transformation
graphically. Furthermore, care should be taken in subsequent data analyses to ensure that a
transformed variable is clearly indicated as such.

The majority of advanced statistical methods will not function well with compositional,
i.e. closed, data. Note that closure effects can seriously affect even simple scatterplots.
Notwithstanding this, experience has shown that if the data have generally similar levels,
i.e. no one or few variables have wide data ranges across the composition, the traditional
statistical approaches will usually provide reasonable results. Whenever needed, additive
logratio, centred logratio or isometric logratio transformations can be used to open such
closed data sets, and it is informative to investigate the difference that such transformations
can make. These transformations also have some serious shortcomings: the relation to the
data unit or the original data is lost, results may depend on the variable chosen to calculate the
ratios (additive logratio transformation), or the resulting covariance matrix (see Chapter 11)
cannot be inverted as it is numerically singular (centred logratio transformation).



11
Correlation

Correlation analysis estimates the extent of the relationship between any pair of variables. The
covariance is a measure of this relationship and depends on the variability of each of the two
variables. Because covariances can take any number, only the sign (+ or −) is informative; the
strength of the relation between the two variables, however, cannot be interpreted. To obtain
standardised numbers, the correlation coefficients, it is necessary to eliminate the dependency
on the variability of each variable.

Three widely-used methods to calculate a correlation coefficient are the Pearson, Spearman
and Kendall correlation (Galton, 1890; Spearman, 1904; Kendal, 1938). These methods result
in a number between −1 and +1 that expresses how closely the two variables are related, ±1
shows a perfect 1:1 relationship (positive or negative) and 0 indicates that no systematic rela-
tionship exists between the two variables. A correlation of ±0.5 usually indicates a significant
relationship, but this depends on the number of samples. With increasing sample numbers,
decreasing absolute values of the correlation coefficients become significant. Relationships
between two variables are best visualised in a scatterplot (Section 6.1). However, when work-
ing with many variables, scatterplots occupy a lot of physical space. Reducing the information
of multiple scatterplots to one number per plot may simplify studying the relationships (simi-
larly to using location and spread measures to characterise the data distribution). If correlation
analysis results are presented without a name for the method, usually the Pearson correlation
coefficient has been computed.

Some other methods will be presented below because applied geochemical and environ-
mental data are often plagued with outliers. The Pearson method is very sensitive to data
outliers as it is dependent on estimates of the variance and covariance, and the sensitivity of
variance to outliers has been discussed in Chapter 4. Correlation coefficients are one starting
point for multivariate data analysis. A reliable set of correlation coefficients or covariances
are of utmost importance for all correlation-based multivariate data analysis methods, such
as Principal Component Analysis and Factor Analysis (Chapter 14) or Discriminant Analysis
(Chapter 17).

Correlation analysis and correlation based multivariate methods are very popular in envi-
ronmental sciences and geochemistry. Great care is, however, necessary when attempting any
correlation analysis with compositional data (Aitchison, 1986, pp. 48–50). The interpretation
of correlation coefficients may be misleading, even when appearing quite convincing. While
opening the data provides a solution, the resulting coefficients do not reflect the correlations

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
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of the original variables. Careful attention needs to be paid to these issues when correlation
analysis is used with compositional data.

11.1 Pearson correlation

The “classical” Pearson method (Galton, 1889, 1890) is ideal if the data follow a bivariate
normal distribution (the resulting density function has the form of a three-dimensional bell),
an unlikely reality with environmental or geochemical data. A correlation coefficient of ±1
indicates a perfect linear relationship between the two variables, when +1 the variables vary
sympathetically, when −1 the relationship is antipathetic, i.e. as one variable increases the other
decreases. The Pearson method is very vulnerable to data outliers of any kind, not only very
high (or low) values but also deviations from the main structure of the data (see Figure 11.1).
Thus, when using the Pearson method, geochemical data will usually need to be transformed
to approach the required bivariate normal distribution. Using the Pearson method therefore
requires a careful study of the univariate distribution of each of the variables prior to estimating
the correlation coefficient. When working with geochemical data, it may be wise to routinely
investigate a log-transformation of the data prior to calculating Pearson correlation coefficients.

The scatterplot in Figure 11.1 shows the relationship between Be and Sr in Kola Project
C-horizon soils. Because some outliers dominate the plot, the main body of data is almost
invisible in the lower left corner. The outliers are caused by the existence of a particular
bedrock (alkaline intrusives) in the survey area, which exhibit high concentrations of both Be
and Sr. It is impossible to see any relationships in the main body of data. The Pearson correlation
coefficient responds to the strong linear relationship imposed by the few outliers, resulting in
a very high coefficient of 0.9. After log-transformation, a considerable number of outliers still
exist resulting in a linear relationship (Figure 11.1 right), while the main body of data, whose
structure is now visible, shows at best a weak relation between the two variables. It is possible
to see in Figure 11.1 (right) that there may be two relationships present. The dominant one
running diagonally across the plot, and a second one with a lower slope at levels below 1 mg/kg
Be. The Pearson correlation coefficient is now 0.66 and still strongly influenced by the outliers.
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Figure 11.1 Scatterplot and Pearson correlation coefficient between Be and Sr, Kola Project C-horizon
soil data. Left plot: untransformed data; right plot: log-transformed data
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11.2 Spearman rank correlation

The Spearman rank method (Spearman, 1904) provides a non-parametric (distribution free)
measure of correlation between two variables. It does not call for a linear relation, but requires
that the association is monotonically (steadly) either increasing or decreasing. Searching for a
monotonic relationship is far more general, and less restrictive, than searching for a linear one.
However, in the (rare) case of a bivariate or multivariate normal distribution the Pearson method
performs better because it is more precise. Again a correlation coefficient of ±1 indicates a
perfect monotonic relationship. In the Spearman coefficient it is the ranks of the sorted values
that determine the result, not the actual data values. Thus the data are first ranked (sorted), and
the Pearson correlation of the ranks of the data is then computed. This is the reason that the
Spearman rank correlation coefficient is relatively robust against data outliers (see discussion
in Section 10.1). One of the important advantages of the Spearman rank correlation is that
results will be the same for the original data or any linear transformation, as the transformation
does not disrupt the order of the data-values from lowest to highest. Thus, log-transformation
is unnecessary when estimating the Spearman rank correlation.

Using the example of the correlation of Be with Sr (Figure 11.1) the Spearman rank cor-
relation coefficient is 0.37, a much lower value than the Pearson correlation coefficient for
the log-transformed data of 0.66. Figure 11.2, where the ranks of Be are plotted against the
ranks of Sr, demonstrates why the resulting correlation coefficient is lower than the Pearson
correlation of the original data. The Spearman rank correlation coefficient is far less influenced
by the outliers and thus probably provides a more realistic estimate of the correlation in the
main body of data. The outliers are, however, still visible in the upper right corner of the plot
(Figure 11.2, left) because they have the highest rank in both variables. The Spearman rank
correlation is thus to a certain extent still influenced by outliers, however, their “leverage” is
reduced by using ranks rather than absolute values. The plot of the ranks of La versus Ce in the
C-horizon provides a graphical impression of a high Spearman rank correlation. Note again
that one of the main advantages of the Spearman rank method is that the data do not need to
be transformed.

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

Spearman correlation = 0.37

Rank of Be in C−horizon

R
an

k 
of

 S
r 

in
 C

−
ho

riz
on

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

Spearman correlation = 0.97

Rank of La in C−horizon

R
an

k 
of

 C
e 

in
 C

−
ho

riz
on

Figure 11.2 Visualisation of the Spearman rank correlations for Be and Sr (left) and La and Ce (right)
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11.3 Kendall-tau correlation

The Kendall-tau method (Kendal, 1938) is quite similar to the Spearman rank method. It also
measures the extent of monotonically increasing or decreasing relationships between the pairs
of variables. However, it uses a different method of calculation (looking at the sign of the
slope of the line connecting each existing pair of points, summing the signs, and dividing
the result by the number of pairs). The method is relatively robust against data outliers – as
long as the sign of the slope does not change the result will stay the same. Thus Kendall-tau
is widely independent of the actual values of the data, and a linear transformation will not
alter the estimated correlation coefficient. For the example of the correlation of Be and Sr
the Kendall-tau correlation coefficient is 0.27, an even lower value than the Spearman rank
correlation of 0.37. The Kendall-tau correlation cannot be visualised in an easy graphic. To
plot the Kendall-tau correlation would require connecting all possible pairs of data points by
lines and to study their slopes. For the complete C-horizon data set this would require plotting
183 315 lines.

11.4 Robust correlation coefficients

Although Spearman rank and Kendall-tau methods are relatively insensitive to data outliers,
they are still not robust and can be easily influenced by unusual data. In contrast, robust
methods focus on the main body of data and are not influenced by deviating data points. A
robust correlation can be constructed via a robust covariance estimator. One possibility is to
take the Minimum Covariance Determinant (MCD) estimator (Rousseeuw and Van Driessen,
1999) which searches for the most compact ellipse containing, e.g., 50 per cent of the data
points. The percentage can be selected between 50 and 100 per cent – at 100 per cent the
robustness of the estimator is, of course, lost. The points outside of the ellipse can be located
anywhere in the data space without influencing the robust correlation coefficient for the data
points included in the most compact, e.g., 50 per cent, ellipse. Both direction and shape of the
ellipse are an indication of the correlation.

Figure 11.3 demonstrates the idea using the Kola Project C-horizon soil data used
above. Two ellipses are shown, one represents the Pearson correlation, the other the robust
correlation. In the case of a bivariate normal distribution, each of the drawn ellipses would
contain 97.5 per cent of the data. The ellipse for the robust correlation is first constructed for
the most compact 50 per cent of the data points (the core of the data) and is then expanded
to cover an area of 97.5 per cent as if the underlying distribution was bivariate normal. In
the case of the correlation between Be and Sr (Figure 11.3, left), it is immediately visible
that the outliers determine the direction of the Pearson ellipse. The direction of the robust
correlation ellipse is not as steep because it is not attracted by the outliers. This results in a
much lower robust correlation coefficient. For the correlation between La and Ce (Figure 11.3,
right plot) the two ellipses plot almost on top of one another. The width of the Pearson
ellipse is larger than that of the robust ellipse. Some outliers that are clearly visible in the
plot are the reason. They cause the lower correlation coefficient obtained with the Pearson
method.

When using this method the main body of the data needs to approach a bivariate normal dis-
tribution. Thus when working with geochemical data, a log- or other appropriate transformation
will be required in many cases.
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Figure 11.3 Visualisation of the Pearson correlation and the robust correlation of Be versus Sr and
La versus Ce

11.5 When is a correlation coefficient significant?

Correlation coefficients vary in the range −1 to 0 to +1. When studying a correlation table,
one of the first questions is “which of these coefficients indicates a clear relation between two
variables?” Statisticians tend to formulate such a question differently. They will formulate a
null hypothesis and an alternative hypothesis (see Chapter 9):

Null hypothesis: the correlation coefficient is zero.
Alternative hypothesis: the correlation coefficient is different from zero.

Different tests have to be used for the different methods (see, e.g., Hollander and Wolfe, 1973).
The number of observations and the correlation coefficient both play an important role in
the tests. The larger the sample size, n, the lower the correlation coefficient needs to be to
accept the hypothesis that a pair of variables are uncorrelated at a certain significance level
(e.g., 0.05 or 0.01). For the above examples (Be versus Sr, and La versus Ce) all tests result
in very small p-values (10−16), i.e. all the estimated correlation coefficients are significantly
different from zero. When working with correlations, it is usually of more interest to look
for strong relationships (e.g., correlation > 0.7 or < −0.7) than to test against zero corre-
lation and to estimate the significance of the relationship. The scatterplot matrix as shown
in Figure 6.14 is a far better tool to visualise close relationships between any two pairs of
variables.

11.6 Working with many variables

When working with a multivariate data set, it is necessary to study the relationship between
all pairs of variables simultaneously. The results are usually displayed in tabular form, the
correlation matrix.
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Table 11.1 Pearson (left) and Spearman rank (right) correlation matrix for selected
log-transformed elements from the Kola C-horizon soil data set

Pearson Spearman
Ca Cu Mg Na P Sr Zn Ca Cu Mg Na P Sr Zn

Ca 1 0.26 0.31 0.65 0.61 0.52 0.07 Ca 1 0.29 0.26 0.79 0.62 0.7 0.08
Cu 0.26 1 0.75 0.2 0.19 0.23 0.63 Cu 0.29 1 0.77 0.26 0.18 0.35 0.66
Mg 0.31 0.75 1 0.09 0.22 0.22 0.66 Mg 0.26 0.77 1 0.16 0.21 0.39 0.71
Na 0.65 0.2 0.09 1 0.25 0.77 0.19 Na 0.79 0.26 0.16 1 0.38 0.63 0.05
P 0.61 0.19 0.22 0.25 1 0.27 0.16 P 0.62 0.18 0.21 0.38 1 0.47 0.2
Sr 0.52 0.23 0.22 0.77 0.27 1 0.48 Sr 0.7 0.35 0.39 0.63 0.47 1 0.41
Zn 0.07 0.63 0.66 0.19 0.16 0.48 1 Zn 0.08 0.66 0.71 0.05 0.2 0.41 1

Table 11.1 shows the Pearson and Spearman rank correlation matrices for a selection of
elements from the Kola C-horizon soil data set. Results obtained from the two methods are
sometimes quite different. Because the correlation between variable A and variable B is the
same as the correlation of variable B and variable A, only one half of the complete matrix
needs to be shown. As an option, the correlation matrix can be plotted with additional symbols
indicating the degree of significance (the p-value) of the correlation for each pair of variables,
e.g., *** for very high significance (p < 0.001), ** for high significance (0.001 ≤ p < 0.1),
* for significance (0.1 ≤ p < 0.05), · for weak significance (0.05 ≤ p < 0.10), and no symbol
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Figure 11.4 Correlation coefficients and correlation ellipses. Upper number: robust (MCD-based) cor-
relation; lower number: Pearson correlation
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Table 11.2 Pearson (left) and Spearman rank (right) correlation matrices for selected
log-transformed elements from the Kola C-horizon soil data set. The degree of significance of the
correlation of each pair of elements is indicated by stars, *** for very high significance
(p < 0.001), ** for high significance (0.001 ≤ p < 0.1), * for significance (0.1 ≤ p < 0.05), · for
weak significance (0.05 ≤ p < 0.10), and no symbol for no significance (p ≥ 0.10)

Pearson Spearman
Ca Cu Mg Na P Sr Zn Ca Cu Mg Na P Sr Zn

Ca 1 *** *** *** *** *** · Ca 1 *** *** *** *** *** *
Cu 0.26 1 *** *** *** *** *** Cu 0.29 1 *** *** *** *** ***
Mg 0.31 0.75 1 * *** *** *** Mg 0.26 0.77 1 *** *** *** ***
Na 0.65 0.2 0.09 1 *** *** *** Na 0.79 0.26 0.16 1 *** ***
P 0.61 0.19 0.22 0.25 1 *** *** P 0.62 0.18 0.21 0.38 1 *** ***
Sr 0.52 0.23 0.22 0.77 0.27 1 *** Sr 0.7 0.35 0.39 0.63 0.47 1 ***
Zn 0.07 0.63 0.66 0.19 0.16 0.48 1 Zn 0.08 0.66 0.71 0.05 0.2 0.41 1

for no significance (p ≥ 0.10). Table 11.2 shows this version of the Pearson and Spearman
rank correlation matrix for the elements in Table 11.1. Many of the pairs in Table 11.2 show a
highly significant correlation.

When calculating the robust MCD-based correlation coefficients, the method considers all
selected variables at the same time – thus the correlation coefficients are computed in the
multivariate space. The MCD-based method provides true multivariate correlation coefficients
and is robust against multivariate data outliers that do not need to be extreme values in any
of the variables. Table 11.3 shows the robust correlation matrix. At present there exists no
significance test for this kind of robust correlation measure.

Figure 11.4 compares the Pearson and the robust MCD-based correlation matrices. The
lower half provides a comparison of the coefficients derived by both methods. The upper half
shows the ellipses corresponding to the two methods (see Figure 11.3). The ellipses highlight
at one glance for which pairs of elements differences can be expected (e.g., P versus Sr).

11.7 Correlation analysis and inhomogeneous data

It has been discussed (e.g., Chapter 1) that for applied geochemical and environmental data,
a variety of different factors and processes will influence the analytical result of each variable
at each sample site. In Figure 11.1 the samples collected in proximity to the alkaline rocks

Table 11.3 Robust (MCD-based) correlation matrix for selected elements from the Kola C-horizon
soil data set

Ca Cu Mg Na P Sr Zn
Ca 1 0.38 0.35 0.83 0.75 0.74 0.16
Cu 0.38 1 0.8 0.45 0.22 0.45 0.69
Mg 0.35 0.8 1 0.41 0.27 0.56 0.79
Na 0.83 0.45 0.41 1 0.54 0.72 0.21
P 0.75 0.22 0.27 0.54 1 0.64 0.25
Sr 0.74 0.45 0.56 0.72 0.64 1 0.47
Zn 0.16 0.69 0.79 0.21 0.25 0.47 1
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show both high Be and Sr concentrations. These few samples are outliers when looking at
the complete data set and dominate the resulting correlation coefficients when using Pearson,
Spearman rank, and even Kendall-tau methods. Before using correlation-based methods for
multivariate data analysis it can be informative to compare the correlation structure for data
subsets within a data set (e.g., the parent material lithologies encoded in the C-horizon data
set) using correlation analysis.

In Figure 11.5 it is apparent that different subsets in the C-horizon soil data defined ac-
cording to parent material lithology can yield very different correlation coefficients. Regional
geochemical data sets are often extremely inhomogeneous. Usually they consist of a mixture of
data from different populations representing different geological and geochemical processes.
In different subsets antagonistic data structures may exist. In the case of the Kola C-horizon
soil data there is some knowledge concerning the processes governing the data structure. For
example, the geological map could be used to construct more homogeneous subsets according
to the underlying soil parent material lithology. When this is done and the correlation matrix for
each of these subsets is estimated, it becomes clear that almost all of these lithologically-based
data subsets have quite different correlation structures (Figure 11.5).

This was demonstrated in Figure 8.14, showing a scatterplot matrix with regression lines
for the subsets. It is always informative to look at a scatterplot matrix, plotting all variables
against all variables before proceeding to the estimation of a matrix of coefficients. Undertaking
correlation analysis with inhomogeneous data will almost invariably lead to unstable results.
At an initial univariate data inspection, breaks in ECDF- or CP-plots present evidence for the
presence of multiple data populations, and should be a warning that the data may confound
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a satisfactory correlation analysis. Such data behaviour can be expected in the vast majority
of cases when working with regional geochemical or environmental data. It is doubtful that
correlation analysis is the correct method with which to start the multivariate analysis of such
data. A better procedure would be to first disaggregate the total data set into more structurally
homogenous subsets, e.g., via a clustering procedure (see Chapter 15) or by the use of already
existing knowledge (e.g., the geological map) and then to carry out a correlation analysis for
each subset separately.

Correlation analysis is a very data-sensitive method, a fact that is often neglected. A careful
univariate analysis of each variable entered into correlation analysis is a necessity.

11.8 Correlation results following additive logratio or centred logratio
transformations

As discussed in Chapter 10, when working with geochemical data, one should be aware of
the “closed array” problem (see, e.g., Aitchison, 1986, 2003). Major elements determined
by XRF are an obvious example of closed array data, they sum up to 100 wt%. However,
closure is an inherent problem for all compositional data; it does not matter whether the major
components were determined or not, even if only trace elements are used it will in most cases
be advantageous to “open” the data array. To carry out correlation analysis with such data
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requires that the data are “opened” first, using either an additive logratio (Section 10.5.1), or
a centred logratio transformation (Section 10.5.2). With the isometric logratio transformation
the relation to the original variables would be lost, this transformation is thus not suitable for
studying bivariate correlations.

Figure 11.6 displays the correlation matrix and ellipses for the major element data for the
Kola Project C-horizon soils. Note that as TiO2 has been used as the divisor for the additive
logratio transformation, it is no longer in the standard major and minor element geochemical
matrix. Moreover the correlation coefficients for the opened data are now related to the ratios
to TiO2 and no longer to the original variables.

The changes in the correlation coefficients when using the additive logratio transformation
and the effects of removal of the closure effect are immediately apparent, especially in the
correlation ellipses. These new correlation coefficients are far more interpretable in terms of
soil and bedrock mineralogy. Of particular note are the complete changes in structure for CaO
and K2O, reflecting the relationship between increasing Ca-rich plagioclase at the expense
of K-rich orthoclase; the Na2O-K2O relationship discussed earlier; and the many complete
changes of relationships with SiO2, the major compositional component in the soil samples.

A centred logratio transformation (Section 10.5.2) is an alternative method of opening the
data. Here the correlations for TiO2 can also be studied (Figure 11.7). However, again the
correlation coefficients no longer relate to the original variables but to the ratios.
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Because a centred logratio transformation is not dependent on the results of just one other
variable as the divisor but uses the geometric mean of all variables it should be the preferable
method in many applications (Section 10.5.2). Ratios to one selected component can depend
as much, or more, on the selection of that variable and the characteristics of the data for it,
as on the remaining data. This could become an important issue when working with spatial
data influenced by multiple factors and processes, and result in misinterpretations. The differ-
ences between Figures 11.6 and 11.7 are related to such features. The important relationship
between the two major components of the C-horizon soils, SiO2 and Al2O3, is that which
shows the greatest change after opening the data. Relative to other elements the changes in
their relationships with Al2O3 are the most apparent. This infers that Si dominantly dilutes the
samples due to the abundance of free SiO2, quartz, in the C-horizon soils and the important
role of alumino-silicate weathering products in the soils as hosts for a wide range of elements.

11.9 Summary

The problems with correlation analysis of inhomogenous data were discussed in Section 11.7.
An overall correlation coefficient for two variables may not be very informative if several pop-
ulations are hidden in a data set (e.g., different underlying bedrock types, different vegetation
zones, men and women, apples and pears).

When carrying out correlation analysis it must be kept in mind that a high correlation is by
no means a proof of a relation between the two variables. There may exist a third, “lurking”,
variable that the other two variables are independently related to and that causes the high
correlation between two otherwise unrelated variables.

Statistical tests for correlation usually test for zero correlation and not for “high” correlation
thus even a “highly significant” correlation must by no means indicate a strong relation between
the variables. It is also important to note that the significance depends on the number of samples;
the more samples, the lower absolute correlation coefficients will be shown as “significant”.
Before any far-reaching conclusions are drawn from correlation coefficients it is thus advisable
to check the correlations in a scatterplot.

Correlation should not be confused with regression (see Section 6.2 and Chapter 16). For
correlation the sequence of the two variables plays no role for computing the correlation coef-
ficient. In regression analysis completely different results can be expected when exchanging
the two variables (see Figure 16.1), i.e. x for y, and y for x.

Correlation analysis and all correlation-based statistical methods will be seriously affected
by the closure effect, always inherent in compositional data, and independent of whether the
major components of a sample have been analysed or not.
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Multivariate Graphics

Most of the graphics presented so far permit the display of up to two variables simultane-
ously. In a classical map (Chapter 5) it is only possible to visualise one variable at a time. In
many instances it may, however, be desirable to study the behaviour of several variables at the
same time. For this purpose multivariate graphics have been developed (see, e.g., Chambers
et al., 1983; Cleveland, 1994; Everitt and Dunn, 2001), and in this chapter a small selection
of procedures that have been proven to be informative in geochemical applications are illus-
trated (for worked examples see also Garrett, 1983a; Howarth and Garrett, 1986). As with
so many displays, if necessary, the original data should be first transformed in order to re-
move the influence of data outliers and achieve more symmetrical data distributions. The data
should then be range transformed (0, 1) so that each variable has equal weight in the plot.
In the examples following in this chapter the data have been both logarithmically and range
transformed.

Multivariate graphics can be presented in a tabular display, where each observation is identi-
fied via its sample number. The resulting table can be used to visually classify the observations
according to the appearance of the graphics. The graphics can also be placed at the spatially
correct position on a map, the multivariate graphic simply replaces the symbols otherwise used
for mapping. One disadvantage of most multivariate graphics is that they take more space than
other (e.g., EDA) symbols. This reduces the number of them that can be shown in a map without
increasing the map-size dramatically or bringing clutter to an unacceptable level. Small data
sets with few variables and few samples are thus the main realm of multivariate graphics. An
exception is the parallel coordinates plot (Section 12.6), where a large number of observations
can be displayed. Chernoff’s faces (Chernoff, 1973) can also accommodate a high number of
variables but have not been presented here due to the perceptual biases that can be achieved
by manipulating the association of the variables with specific features of the faces (Howarth
and Garrett, 1986).

12.1 Profiles

For constructing profiles the selected variables are plotted along the x-axis. For one observation,
sample, the log- and range transformed value of each variable is then shown along the y-axis,
and a line is used to connect the values. The order of the variables is arbitrary, though the

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6
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Figure 12.1 Profile plot for 49 selected samples from the Kola O-horizon soil data set. The variables
Cu, Ni, Na and Sr were used to construct the profiles

user may wish to plot associated or contrasting variables adjacently for graphical effect. Thus
connected lines, giving the impression of a profile, represent each sample.

Figure 12.1 shows profiles for 49 selected observations from the Kola O-horizon soil data
set. The elements Cu, Ni, Na and Sr were chosen to construct the profiles. Co and Ni reflect
contamination from the Russian nickel smelters, while Na and Sr reflect the input of marine
aerosols along the coast of the Barents Sea, but also dust emissions from mining and processing
the alkaline rocks near Apatity. The map in Figure 12.1 (left) shows clearly that the profiles take
on characteristic forms at the coast, near the smelters, and near Apatity. The table (Figure 12.1,
right) permits easy comparison of the profiles of all observations and the identification of
unusual profiles at a glance (e.g., observations 39 and 708). The figure also demonstrates one
of the key problems when using multivariate graphics. The symbols need a lot of plotting space
and the point where the map becomes unreadable due to serious over-plotting is soon reached.

12.2 Stars

Instead of plotting the variables along the x-axis, it is also possible to plot the variables radially
with equi-angular spacing, with each variable plotted as a line whose length is proportional
to its value. The resulting graphic may be plotted in three styles: (1) as radii, (2) as polygons
drawn around the ends of the radii, and (3) as polygons alone.

In Figure 12.2 the stars clearly show the location of the Monchegorsk smelter (Figure 12.2,
left), where a large star is developed because the emissions from nickel smelting and mining
and the nearby processing of the alkaline rocks at Apatity overlap (see observation 39 in the
table, Figure 12.2, right). The special Na-Sr signature along the coast is visible (see observation
8 or 522 in the table), however, the profiles showed this feature considerably better. There are
also some unusual stars at the south-western project boundary, which are dominated by high
Bi and Rb (e.g., observations 128, 249).
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Figure 12.2 Stars in Style (1) constructed for 49 selected samples from the Kola O-horizon soil data
set. The variables Bi, Co, Cu, Ni, Na, Rb and Sr were used to construct the symbols. For sample locations
see Figure 12.1 (left)

Figure 12.3 shows the same selection of elements displayed as Style (2) stars. The visual
impression changes quite dramatically because now it is not only the radii that indicate the
importance of a certain element but an area (compare Figures 12.2 and 12.3). The information
that can be extracted from the plot is of course the same.
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Figure 12.3 Stars in Style (2) constructed for 49 selected samples from the Kola O-horizon soil data
set. The variables Bi, Co, Cu, Ni, Na, Rb and Sr were used to construct the symbols. For sample locations
see Figure 12.1 (left)
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Figure 12.4 Stars in Style (3) constructed for 49 selected samples from the Kola O-horizon soil data
set. The variables Bi, Co, Cu, Ni, Na, Rb and Sr were used to construct the polygons. For sample locations
see Figure 12.1 (left)

If the radii are deleted from the symbol (Style (3)) it takes the appearance of a polygon
(Figure 12.4).

Figure 12.4 again shows the same selection of elements as used for constructing the other two
styles. The visual impression changes substantially once more. When Style (3) is compared
to Style (1), Style (1) may be preferable because the origin of the star, the location of the
observation, is more easily identified. Another issue with Style (3) is that it is difficult to
appreciate the relative magnitudes of the elements due to the lack of an obvious origin (compare
Figures 12.2, 12.3, and 12.4).

In these three styles of stars, the plotting order needs to be defined by the user. In the
above examples the order was chosen on the basis of prior geochemical knowledge and an
appreciation of the structure of the data in order to obtain a particular graphical effect. An
alternative procedure where no a priori knowledge is available, or where it is wished to avoid
human bias, would be to carry out a cluster analysis (see Chapter 15) of the variables and plot
the elements in their order of association. Thus closely-associated elements would be plotted
adjacently.

12.3 Segments

The construction of segments is closely related to stars. Again the variables are arranged in
regular arcs of a circle. Each variable is then represented by a segment and not by radii (see
Figure 12.5). The area of each segment, proportional to its radius, is determined by the value
of the sample.

Figure 12.5 again shows the same selection of elements as used for constructing stars.
Once more a different visual impression is obtained. When compared to the other graphics
(Figures 12.2, 12.3, 12.4, and 12.5) the segments provide one of the easier to appreciate
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Figure 12.5 Segments constructed for 49 selected samples from the Kola O-horizon soil data set. The
variables Bi, Co, Cu, Ni, Na, Rb and Sr were used to construct the segments. For sample locations see
Figure 12.1 (left)

graphics. The inherent information content of the segment plot is, of course, the same as for
all the other graphics (the various styles of stars) building on the same principle.

12.4 Boxes

Boxes are a powerful multivariate graphic for environmental applications. Here the variables
first undergo a hierarchical cluster analysis (see Section 15.4). They are then assigned to one of
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Figure 12.6 Boxes constructed for 49 selected samples from the Kola O-horizon soil data set. The
variables Bi, Co, Cu, Ni, Na, Rb and Sr were used to construct the boxes. For sample locations see
Figure 12.1 (left)
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Figure 12.7 Trees constructed for 49 selected samples from the Kola O-horizon soil data set. The
variables Bi, Co, Cu, Ni, Na, Rb and Sr were used to construct the trees. For sample locations see
Figure 12.1 (left)

three clusters, corresponding to the three sides of a box (Figure 12.6). Therefore, this graphical
approach is only applicable where the variables can be grouped into three clusters that reflect
specific phenomena. The dimension of each axis of the box, representing one of the three
clusters, is proportional to the sum of the values of the variables comprising the specific cluster.

12.5 Castles and trees

Just as for the boxes, a variable-based hierarchical cluster analysis (see Section 15.4) is used
to group the variables for plotting castles and trees (Kleiner and Hartigan, 1981). Here the
variables are not forced into just three groups. The resulting castle or tree corresponds to the
dendrogram (see Chapter 15) resulting from the hierarchical cluster analysis (Figures 12.7 and
12.8). The general structure of the castle and tree is thus the same for all observations, however,
the values of the different variables of each observation will determine the size of the castle or
tree through the height of the battlements or length of the branches. The number of variables
within the clusters determines the widths of the castle or trunk and battlements or branches. The
castles are constructed vertically (Figure 12.8). For the trees different appropriate angles are
used to separate the clusters and to draw branches in a way that they do not overlap (Figure 12.7).

12.6 Parallel coordinates plot

Instead of constructing one multivariate graphic for each observation, it is also possible to plot
all observations onto one graphic. For constructing the parallel coordinates plot the variables
are plotted along the x-axis just as for the profiles. The value of each observation for each
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Figure 12.8 Castles constructed for 49 selected samples from the Kola O-horizon soil data set. The
variables Bi, Co, Cu, Ni, Na, Rb and Sr were used to construct the castles. For sample locations see
Figure 12.1 (left)

variable is plotted along the y-axis. A line is used to connect the values for each observation
(Figure 12.9). The parallel coordinates plot is thus a graphical representation of all profiles
of all observations in just one plot (Inselberg, 1985). The graphical impression of the parallel
coordinates plot depends crucially on the sequence of the variables plotted along the x-axis – it
can be advantageous to experiment with the sequence until an optimal visualisation, showing

Ba Ca Cu K La Na Pb Sr Th Ti Y Zn

Caledonian sediments Alkaline rocks Granites

Figure 12.9 Parallel coordinates plot using three lithology-related data subsets (lithology 9, Caledo-
nian sediments; lithology 82, alkaline rocks; and lithology 7, granites – see geological map Figure 1.2)
from the Kola C-horizon soil data set. A colour reproduction of this f igure can be seen in the colour
section, positioned towards the centre of the book
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clear structures, is achieved. The main advantage of this graphic is that very many observations
can be displayed. If a clear cluster structure exists, it will become visible even when plotting
a multitude of observations.

12.7 Summary

There are a variety of multivariate graphics that can be used to plot and study the behaviour
of several variables simultaneously. Most of these graphics are quite limited in the number of
variables that can be accommodated. In addition they require much more space than the usual
symbols, which limits their use for mapping. With a careful selection of variables multivariate
graphics can be used with advantage to highlight certain relationships between the variables
or processes in a survey area.



13
Multivariate Outlier Detection

The detection of data outliers and unusual data structures is one of the main tasks in the statistical
analysis of applied environmental data. Traditionally, despite the fact that environmental data
sets are almost always multivariate, outliers are most frequently sought for each single variable
in a given data set one at a time (Reimann et al., 2005). The search for outliers is usually based
on the location and spread of the data (see Chapter 7). The higher (lower) the analytical
result of a sample, the greater is the distance of the observation from the central location
of all observations; outliers thus, typically, have large distances. The definition of an outlier
limit or threshold, dividing background data from outliers, has received much attention in the
geochemical literature, and to date no universally applicable method of identifying outliers
has been proposed (see discussion in Reimann and Garrett, 2005; Reimann et al., 2005c). In
this context, background is defined by the distributional properties, location and spread, of
geochemical samples that represent the natural variation of the material being studied in a
specific area, that are uninfluenced by extraneous and exotic processes such as those related
to rare rock types, mineral deposit forming processes, or anthropogenic contamination. In
geochemistry outliers are generally observations resulting from a secondary process and not
extreme values of the background distribution(s). Samples where the analytical values are
related to a secondary process – be it mineralisation or contamination – do not need to be
especially high (or low) in relation to all values of a variable in a data set, and thus attempts to
identify these samples with classical univariate methods commonly fail. However, this problem
often may be overcome by utilising the multivariate nature of most geochemical data.

13.1 Univariate versus multivariate outlier detection

In the absence of a prior threshold (Rose et al., 1979), a common practice of geochemists is
to identify some fraction, often two per cent, of the data at the upper and lower extremes for
further investigation (see Chapter 7 for discussions of methods to determine background and
threshold). Dashed lines on Figure 13.1 indicate the two per cent limits. The points inside the
rectangular area defined by the dashed lines identify the background population for the two
variables, all data plotting outside the inner rectangle are “anomalies”. However, this procedure
ignores the bivariate structure of the data, in the example an elliptical shape, which is clearly
visible in Figure 13.1.

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6
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Figure 13.1 Scatterplot of Ba versus Ca in the Kola Project moss data. Lower and upper boundaries
(2nd and 98th percentiles) for extreme values are indicated by stippled (Ba) and dashed (Ca) lines in the
left plot. The right plot shows the resulting rectangle dividing bivariate anomalies from the bivariate
background

To search for multivariate outliers, it would be sensible to use a method that takes into
account the multivariate structure (relationships between all variables) of the data, and detects
deviations from the overall shape. In Chapter 11 it was demonstrated that one method to
describe the relationships between all variables is to calculate the correlation matrix. The
Pearson correlation matrix is a standardised to unit variance form of the covariance matrix so
that the coefficients are limited to the interval −1 to +1 and direct comparisons can be made
between all possible pairs of variables.

The un-standardised underlying covariance between two variables is a measure of their linear
relationship. Values obtained for different pairs of variables are no longer directly comparable,
however, a positive value of the covariance indicates a positive linear relationship between
the variables, a negative value a negative linear relationship, and the value of zero indicates
no linear relationship. The covariance matrix has the advantage that information about the
variance of each element is not lost via the standardisation. Based on a covariance matrix,
it is possible to obtain the correlation matrix, however, it is not possible to back-calculate
the covariance matrix from the correlation matrix without knowledge of the variances. Thus,
when studying the multivariate structure of a data set it is advantageous to use the covariance
matrix.

Figure 13.1 demonstrates that quantiles of the values of the single variables will not pro-
vide a good estimate of the shape of their distribution. Another possibility is to look at the
distance of each data point from the data centre, resulting in a circle instead of the rectangle
shown in Figure 13.1. Even when using a circle the shape of the bivariate data distribution is
neglected: the data obviously have an elliptical structure. The reason for the elliptical structure
is that the data approximate a bivariate normal distribution with a certain covariance structure
resulting in an elliptical form. The covariance matrix, which includes this information, permits
the estimation of distances from the centre of the data in the context of the data structure.
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This results in an elliptical distance measure, called the Mahalanobis, or multivariate, distance
(Mahalanobis, 1936). The advantage of this distance measure over the usual Euclidean dis-
tance is that all points lying on a certain ellipse have the same Mahalanobis distance from the
centre. In terms of the bivariate normal distribution, points with the same distance have the
same probability of occurrence. In the multivariate case the ellipse is replaced by a multi-
dimensional ellipsoid. Points plotting on the surface of a certain ellipsoid define a certain
distance from the centre, which corresponds to a certain probability of the multivariate normal
distribution.

In Figure 13.1 quantiles of each single variable were used to identify the rectangular
boundaries dividing outliers from non-outliers. When applying the covariance matrix to better
approximate the data structure, again quantiles can be used to identify multivariate outliers.
Now the ellipse is sought where, in the case of a multivariate normal distribution, 2 per cent
of all data would fall outside of the ellipsoid and 98 per cent inside.

Figure 13.2 shows ellipses for defined quantiles (50, 75, 90 and 98 per cent) of the bivariate
data distribution of the variables Ca and Ba of the Kola moss data (left plot). The ellipses
illustrate the bivariate structure, in the case of a true bivariate normal distribution the ellipses
include exactly 50, 75, 90 and 98 per cent of the data. The 98 per cent ellipse encircles all
non-outliers, points plotting outside this ellipse are potential multivariate outliers. Several new
points are now identified as multivariate outliers, while other points that are univariate outliers
for one of the variables are no longer outliers because they fall within the dominant data
structure. The new outliers are illustrated by a different symbol in Figure 13.2 (right), they do
not show unusually high or low concentrations in terms of one or the other variable, or even
both variables, they are, however, far removed from the centre of the data ellipsoid. Results of
univariate and multivariate outlier detection methods can thus differ considerably; multivariate
outliers are not necessarily univariate outliers, and vice versa.

Ba in Moss [mg/kg]

C
a 

in
 M

os
s 

[m
g/

kg
]

10 20 50 100

20
00

50
00

10
00

0

Ba in Moss [mg/kg]

C
a 

in
 M

os
s 

[m
g/

kg
]

10 20 50 100

20
00

50
00

10
00

0

Figure 13.2 Scatterplot of Ba versus Ca for the Kola Project moss data with ellipses corresponding
to the 50th, 75th, 90th, and 98th percentiles of the bivariate data distribution (left) and comparison
of outliers as determined by the univariate 2nd and 98th percentiles (square) and the bivariate 98th

percentile (ellipse – right plot). Newly identified outliers shown as circles (right)
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13.2 Robust versus non-robust outlier detection

To compute the multivariate distance and the 98 per cent ellipsoid it is necessary to estimate the
central location and covariance (spread) of the multivariate data set. It has been demonstrated
(Chapter 4) that classical methods of estimating location and spread are very sensitive with
respect to data outliers. Thus for the reliable detection of multivariate outliers, robust estima-
tors for location and covariance need to be used. Several methods for the robust estimation
of central location and covariance are available; most check for the majority of data points
showing a common structure. These points, usually 50–75 per cent of all values, are used to
estimate the data means and covariance. This permits the existence of 25–50 per cent of all data
deviating from the main data structure. The examples in this and the following chapters use the
Minimum Covariance Determinant (MCD) procedure of Rousseeuw and Van Driessen (1999)
unless otherwise noted. Figure 13.3 (left) shows a scatterplot of Mg versus Sr in moss with two
98 per cent ellipses corresponding to robust and non-robust estimation of mean and covariance.
It is clearly visible that the shape of the non-robust ellipse is influenced by data outliers and
that quite a number of outliers would be masked when using non-robust estimators for the
mean and covariance. The location of the bivariate data outliers can be directly plotted in a
map (Figure 13.3, right). Most outliers mark the locations of alkaline intrusions, while some
reflect the input of marine aerosols (high in both Mg and Sr) along the coast of the Barents
Sea.

In the multivariate case it is impossible to plot the ellipsoids. However, the information
as to which data points fall outside the 98 per cent ellipsoid can be extracted, i.e. those with
a probability of membership of <2 per cent. Because each data point has associated spatial
coordinates a map can be used to study the regional distribution of the resulting multivariate
outliers.

Figure 13.3 Scatterplot of Mg versus Sr in the Kola Project moss data set (left) with robust (solid
line) and non-robust (dashed line) 98th percentile ellipse used for outlier detection. The location of the
robust model outliers is shown in the accompanying map (right)
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13.3 The chi-square plot

In Chapter 7 a variety of frequently used methods to define background and threshold were
introduced. The 98th percentile was one of these methods. It has been shown that the 98th

percentile has no inherent significance (Section 7.1.4), but simply defines an acceptable number
of samples for further follow-up study (1 in 50). It has been demonstrated that visual inspection
of the CP-plot for obvious breaks in the data structure is a more powerful though somewhat
subjective method of finding “unusual data”. For an improved identification of the threshold
(better than the 98th percentile), it would thus be advantageous to have a multivariate equivalent
of the CP-plot.

Garrett (1989) has used the so-called chi-square plot for this purpose. The underlying idea is
that the non-outlying multivariate data follow approximately a multivariate normal distribution.
In that case the robust distances (robust Mahalanobis distances) are approximately chi-square
distributed (see Figure 4.1 middle right and Section 4.1.6) with degrees of freedom equal
to the number of variables, two in the case of the bivariate example. It is thus possible to
compare these distances with the chi-square distribution just like comparing data quantiles
with the normal distribution in the CP-plot. Similarly as with the CP-plot, it is now possible
to check for obvious breaks at the upper end of the plot. Points plotting above the percentile
identifying such a break in the straight line are identified as multivariate outliers (Figure 13.4,
upper left). Fewer outliers than in Figure 13.3 are identified and direct comparison of the map
in Figure 13.4 (lower right) with the map from Figure 13.3 (right) shows that when using the
chi-square plot only those samples that clearly deviate from the bivariate data structure (the
samples identifying the alkaline intrusions near Apatity) are identified as outliers. However,
in instances where there are many variables, it is necessary to ensure that there are a sufficient
number of cases so that the estimation of the covariance matrix is stable. If it is unstable,
the Mahalanobis distances will not be reliably estimated. Various empirical rules have been
proposed for the minimum number of cases relative to the number of variables, e.g., n > p2,
n > 8p, n > 5p, or at a bare minimum n > 3p (n = number of samples, p = number of
variables); for a discussion see Le Maitre (1982) and Garrett (1993).

13.4 Automated multivariate outlier detection and visualisation

To avoid the subjectivity of the individual scientist looking at the data, the search for the break,
the multivariate outlier boundary, can be automated (Filzmoser et al., 2005). To demonstrate
this multivariate outlier detection method a selection of seven elements, Ag, As, Bi, Cd, Co,
Cu and Ni, that are all emitted by the Russian nickel industry, are selected from the Kola moss
data and used to search for multivariate outliers.

Figure 13.5 shows the resulting outlier maps. When the outliers are simply displayed
(Figure 13.5, left), those caused by high average element concentrations cannot be distinguished
from those identifying low element concentrations. The disadvantage of this map is that while
it identifies many sample sites near the Russian nickel industry as outliers, it also identifies sites
in north-west Norway and Finland as outliers, some of the most pristine parts of the survey
area. Thus it is necessary to introduce a different symbol set for plotting these multivariate
outlier maps so that the different types of outliers can be identified. One possibility would be to
use different quantiles of the robust Mahalanobis distance (e.g., 25–50–75 per cent in addition
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Figure 13.4 Multivariate outlier detection for the variables Mg and Sr for the Kola Project moss data.
Chi-square plot with dashed line indicating selected break for removing outliers (upper left), and the
resulting straight line in the chi-square plot when outliers are removed (lower left). Upper right: Mg-Sr
scatterplot showing the identified outliers; lower right: map showing the geographical location of the
outliers (alkaline intrusions near Apatity)

to the multivariate outlier break). In that case five symbols provide a better visualisation of the
spatial structure of the multivariate distance from the data centre.

However, overall high element concentrations in the samples can still not be differentiated
from overall low concentrations. This can be achieved by introducing colours (or grey scales),
related to the average element concentration of each sample into the map (Filzmoser et al.,
2005). The resulting map (Figure 13.5, right) is now more informative. The outliers near the
Russian nickel industry are identified as “high” (black), showing the extent of contamination
around industry, while the outliers in north-west Norway and Finland mark unusually low
average element concentrations (light grey), reflecting the extent of the pristine nature of these
sample sites.
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Figure 13.5 Maps identifying multivariate (p = 7) outliers in the Kola Project moss data. The left map
shows the location of all samples identified as multivariate outliers, the right map includes information
on the relative distance to the multivariate data centre (different symbols) and the average element
concentration at the sample site (colour, here grey-scale, intensity). A colour reproduction of this figure
can be seen in the colour section, positioned towards the centre of the book

As visible in Figure 13.2 (right) multivariate outliers are not necessarily univariate outliers.
It may thus be interesting to investigate where the multivariate outliers occur in relation to each
of the variables in the univariate space. This can be achieved by plotting a one-dimensional
scatterplot for each variable with outliers encoded in a different symbol (Figure 13.6), using the
same symbols as in Figure 13.5 (left). It would also be possible to prepare these plots with
the symbol set used in Figure 13.5 (right). This, however, requires colour to be able to discern

Figure 13.6 Univariate display of the identified multivariate outliers using univariate scatterplots
(random horizontal position)
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the resulting structure (Filzmoser et al., 2005). Figure 13.6 demonstrates that most but not all
extreme values of each variable are identified as multivariate outliers; additionally, multivariate
outliers occur throughout the whole data range of each variable that could not be detected using
univariate outlier detection methods. The elements Co, Cu and Ni show a comparable structure
in these plots. These are the three elements that are emitted in large quantities by the Russian
nickel industry. The other elements are co-emitted in minor amounts and many other processes
can determine their distribution in the survey area.

Due to the general problems with compositional data (see Section 10.5) it could be an ad-
vantage to do the calculations with opened data. This is a necessity if dominant variables (e.g.,
SiO2) are included in the outlier detection procedure because the correlations can completely
change (see Figures 11.6 and 11.7). For the chosen example the isometric logratio transforma-
tion was tested. Throughout the map almost the same samples were identified as outliers, only
in the Monchegorsk area substantially fewer outliers were found.

13.5 Other graphical approaches for identifying outliers and groups

While the computation of Mahalanobis distances reduces multivariate measures to a single
dimension, the distance of an observation from the centroid of the data, it is also possible to
project points in multivariate space onto a plane, i.e. into two dimensions for easy visualisation.
A variety of procedures exist for this, examples are Principal Component Analysis (discussed in
Chapter 14), Multidimensional Scaling (Kruskal, 1964), Minimum Spanning Trees (Friedman
and Rafsky, 1981), and Sammon’s Non-linear Mapping (Sammon Jr., 1969).

The algorithms for these procedures work in a generally similar way; they find a plane
through the multidimensional data such that when the observations are projected onto it
distances between the projected points are as similar as possible to the distances between
the points in multivariate space. In general, Euclidean distances, i.e. the direct distances in
the data space, are used as the distance measures. The differences between the visualisations
generated by the procedures are a result of the use of different functions of the distances for
minimisation.

Figure 13.7 (right) displays the non-linear map for the same Kola Project moss data: Ag, As,
Bi, Cd, Co, Cu, and Ni (log-transformed and scaled), as used in Figure 13.5. The observations
are coded similarly as in Figure 13.5 (left), where pluses are plotted for the detected outliers
and points for the core background data. Figure 13.7 (left) is the chi-square plot corresponding
to Figure 13.5 (left). It is immediately apparent that the outliers recognised by the automated
multivariate outlier procedure fall as a halo around the background core as projected onto the
two-dimensional plane (Figure 13.7, right).

Figure 13.8 (right) displays the minimum spanning tree (Friedman and Rafsky, 1981),
which maps multivariate data in the two-dimensional space, for a subset of the Ca, Cu,
Mg, Na, Sr and Zn data (log-transformed and scaled) for Kola Project C-horizon soils (this
data set is later discussed in Chapter 15). The subset comprises the soil samples collected
from sites where the underlying geology is either: alkaline rocks, unit 82; granites, unit 7;
or sedimentary rocks, unit 9 (see geological map Figure 1.2). Figure 13.8 (left) displays,
uniquely coded, the spatial distribution of the samples corresponding to each lithological
unit. This same coding is used in Figure 13.8, right. Again, it is immediately apparent that
most of the soils derived from alkaline rocks (82) plot as outliers in a cluster that is sepa-
rated from the main mass of the data. A further alkaline rock derived soil plots as a discrete
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Figure 13.7 The Sammon non-linear map (right) for the Ag, As, Bi, Cd, Co, Cu and Ni (log-transformed
and scaled) Kola Project moss data. Points are coded as outliers (pluses) detected by the automated
outlier detection procedure, or core background observation (dots) (see Figure 13.5, left); the corre-
sponding chi-square plot is displayed to the left

outlier. The remaining samples from areas underlain by granites (7) and Caledonian sedi-
ments (9) plot within the main mass of points, with a number of outliers, one being quite
extreme (bottom centre of Figure 13.8, right), interestingly the samples for granitic (7) ar-
eas and sedimentary (9) areas plot in different parts of the main data mass with a “zone” of
overlap.
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Figure 13.8 The minimum spanning tree (right) for a subset of the Ca, Cu, Mg, Na, Sr and Zn data (log-
transformed and scaled) for Kola Project C-horizon soils representing three lithogical units: lithology
7, granites (+); lithology 9, sedimentary rocks (×); and lithology 82, alkaline rocks (�). The spatial
distribution of the members of the subset, coded by lithological unit, is displayed to the left
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Such two-dimensional projection procedures are simple and useful tools to rapidly gain
a visual impression of the structure of multidimensional data sets. The procedures are based
on Euclidean distances, there are no assumptions as to data normality. However, it is prudent
to ensure that each variable entered has an approximately similar range so that each variable
exerts a similar influence on the outcome. As demonstrated above, the techniques can assist in
identifying extreme outliers and determining if the data might usefully be partitioned, clustered,
at some later stage of data analysis.

13.6 Summary

It is important to understand the difference between the extreme values of a data distribution
and data outliers. Outliers originate from a different process and are not the extreme values of
a normal distribution. Outliers can occur anywhere in a given data distribution. Multivariate
techniques can be used to advantage to find data outliers in a given multidimensional data
set. The interpretation of multivariate outliers can be a challenge. Maps and graphics help to
understand the patterns of multivariate outliers.



14
Principal Component Analysis
(PCA) and Factor Analysis (FA)

The principal aim of principal component analysis (PCA) is dimension reduction (Hotelling,
1933; Jolliffe, 2002; Johnson and Wichern, 2002; Jackson, 2003). In applied geochemistry and
the environmental sciences most data sets consist of many variables (e.g., analysed chemical
elements). For example, the Kola Project C-horizon soil data contains more than 100 variables.
Graphical inspection of data is most easily accomplished with a scatterplot of two variables.
To graphically inspect the main data structure of a multivariate data set it is thus desirable
to find two components expressing as much of the inherent variability of the complete data
set as possible. These are the first two principal components. PCA will generate as many
components as there are variables; however, the majority of the inherent information in the
data set is generally included in the first few components, resulting in a considerable reduction
of the dimension of the data set.

PCA is often used as a first step for further multivariate data analysis procedures like cluster
analysis, multiple regression, and discriminant analysis (see Chapters 15 to 17). By reducing
the data dimensionality via PCA, it is often possible to remove “noise” in the multivariate data,
thus allowing an improved prediction of another variable, or discrimination or classification
of the multivariate data.

The principal aim of FA, which was developed by psychologists, is to explain the variation
in a multivariate data set by as few “factors” as possible and to detect hidden multivariate data
structures (Harman, 1976; Basilevsky, 1994; Johnson and Wichern, 2002). The term “factor”
used by psychologists is equivalent to “controlling processes” in applied geochemistry. Thus,
theoretically, FA should be ideally suited for the presentation of the “essential” information in-
herent in an applied geochemical data set with many analysed elements. One of the main differ-
ences of FA compared with PCA is that the number of axes no longer equals the number of vari-
ables, but is limited to a small number explaining a high proportion of the total data variability.

In geochemical mapping it would be advantageous if instead of presenting maps for 40 to 50
(or more) elements only maps of 4–6 factors containing a high percentage of the information
of all the single element maps needed to be presented. It is even more informative if FA can be
used to reveal unrecognised multivariate structures in the data that may be indicative of certain
geochemical processes, or, in exploration geochemistry, of hidden mineral deposits. FA has
been successfully used for this purpose (see, e.g., Garrett and Nichol, 1969; Chork and Govett,

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6
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1985; Chork, 1990; Chork and Salminen, 1993), but is still a controversial method. A focal
point of critique is that too many different techniques are available, all giving slightly different
results (Rock, 1988). It is argued that statistically-untrained users will thus always be tempted
to experiment until finding a solution that fits their preconceptions. Another problem is that
users are not always aware of some of the basic requirements for carrying out a successful FA.
As a result, FA is often merely applied as an exploratory tool, and the results could frequently
have been predicted using much simpler methods.

Both PCA and FA are based on the correlation or covariance matrix (see Chapters 11 and
13) and for compositional data appropriate transformations to open the data (Section 10.5)
need to be considered. Both provide a summary of the inherent multivariate structure of the
data sets. For FA two different approaches are the most frequently applied, the Maximum
Likelihood (ML) method and Principal Factor Analysis (PFA). These two have different data
requirements that are discussed below.

In geochemical textbooks and publications there is much confusion as to what comprises
“factor analysis” (FA) and what is “principal component analysis” (PCA). Succinctly, PCA
accounts for maximum variance of all the variables, while FA accounts for maximum intercor-
relations. The model for FA allows that the common factors do not explain the total variability
of the data. This implies that FA allows for the existence of some unique factors that have a
completely different behaviour than the majority of all other factors. Thus unusual variables
will not enter the common factors. In contrast PCA will always accommodate the total struc-
ture in the data (i.e. all variables are “forced” into the result). Thus, FA is better suited to
detect common structures in the data. However, in practice, there are additional assumptions
concerning the data that have to be made in using FA; these are discussed in Section 14.3. Thus,
despite the advantages of FA, PCA is used more frequently than FA in environmental sciences.

14.1 Conditioning the data for PCA and FA

14.1.1 Different data ranges and variability, skewness

In the multi-element chemical analysis of geological and biological materials, the elements
(variables) occur in very different concentrations. When dealing with biological materials,
e.g., plants, these differences will be somewhat smaller, but usually essential nutrients occur
in concentrations that are orders of magnitude larger than those of micronutrients and trace
elements. This may become a problem in multivariate techniques simultaneously considering
all variables because the variable with the greatest variance will have the greatest influence on
the outcome. Variance is obviously related to absolute magnitude. As a consequence, data for
variables quoted in different units should not be mixed in the same multivariate analysis (Rock,
1988). To directly enter raw geochemical data, including major, minor, and trace elements into
PCA or FA is unproductive because it can be predicted that the minor and trace elements
would have almost no influence on the result. The conclusion is that the data need to be
standardised to comparable mean and variance (see Chapter 10). However, standardisation does
not make much sense if the data distributions are very skewed – as is often the case with applied
geochemical data (see Chapter 3). The effects of skew on covariance and correlation have been
demonstrated in Chapter 11 (see, for example, Figure 11.1). Since correlation or covariance
is the basis of FA and PCA, the results will be strongly influenced if highly skewed data are
not conditioned (transformed) towards symmetry (see Chapter 10). Because in environmental
sciences data frequently exhibit a strong right skew, log-transformation is often used to achieve
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symmetry (see Chapter 10). For an optimal result the distribution of each single variable should
be checked for the optimal transformation. However, and very importantly, if compositional
data are to be analysed, the use of a “data opening” transformation, e.g., additive, centred
or isometric logratio transformation, must be considered and is strongly recommended (see
Section 10.5).

Different trace and minor elements, i.e. those with concentrations of <1 per cent, exhibit
widely different variabilities. Some cover only one order of magnitude while others may
cover three or more. After a log-transformation, which has been suggested as advisable due
to the large differences in magnitude observed for geochemical data, the elements with larger
variation ranges will have greater weight in the PCA or FA. For example, in the Kola C-horizon
soil data, Ag has a range (defined as maximum − minimum) of 0.119 in the raw data, while
Mn has a range of more than 2000. After a log-transform Ag has a range of 7.1 while that
for Mn is 1.8. If this effect of emphasising the influence of variables with a large variation is
wanted, a log-transform of the data will suffice. If this effect is not wanted, the data should be
standardised to zero mean and unit variance after the log-transformation.

14.1.2 Normal distribution

Before carrying out a classical FA, it should be determined whether or not all the variables
follow a normal distribution, although this, even after log-transformation, is not a necessity
(see Table 9.1). Just as for many other statistical techniques, FA is very sensitive to data non-
normality (Pison et al., 2003). It is now well known amongst applied geochemists that regional
geochemical data practically never show a normal distribution (Reimann and Filzmoser, 2000).
When using PCA or principal factor analysis (PFA) data normality is not essential. However,
these methods are based on the correlation or covariance matrix, which is strongly affected
by non-normally distributed data and the presence of outliers. The maximum likelihood (ML)
method used in FA requires not only a normal distribution for all the variables, but also a
multivariate normal distribution (Lawley and Maxwell, 1963). This is completely neglected
in many published examples of the use of FA. Continuing with FA when this assumption is
not met will lead to biased results. The question of whether to enter FA with the original or
somehow transformed data is easily answered. All the variables should come as close to a
normal distribution as possible (Reimann and Filzmoser, 2000).

14.1.3 Data outliers

Regional geochemical data sets practically always contain extreme values and outliers. These
should not simply be ignored, but they have to be analysed because they contain important
information about unexpected behaviour in the study area. In fact, finding anomalies that
may be indicative of mineralisation (in exploration geochemistry) or of contamination (in
environmental geochemistry) is one of the major aims of any regional geochemical survey
(Chapter 6). Extreme values as well as outliers can have a severe influence on PCA and FA,
since they are based on the correlation or covariance matrix (Pison et al., 2003). Outliers
should thus be removed prior to the statistical analysis, or statistical methods able to handle
outliers should be employed, and the influence of extreme values needs to be reduced (e.g., via
a suitable transformation). This has been rarely done. One reason may be lack of knowledge
of the consequences, another that with the outliers removed and the extreme values down-
weighted the anticipated “obvious” results will not be revealed in the factors, and thirdly,
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that software is not generally available to easily deal with outliers. Results of PCA and FA
presented in environmental sciences are often mostly driven by outliers and do not focus on
the main body of data. The real purpose of these methods, however, is to identify hidden data
structures. As shown in Chapter 13, finding data outliers is not a trivial task, especially in high
dimensions. A more elegant way to reduce the impact of outliers is to apply robust versions of
PCA or FA (Filzmoser, 1999; Pison et al., 2003). The aim is to fit the majority of data points,
contrary to classical (least squares) estimation where all data values, including the outliers and
extreme values, are fitted. When using a robust PCA or FA, the outliers can be identified and
interpreted by studying the scores on the robust principal components or factors.

14.1.4 Closed data

The problem of data closure has already been discussed in Sections 10.5, 11.8, and above. This
occurs when working with compositional, i.e. geochemical (environmental) data that sum up
to a constant value (e.g., 100 wt%, or 1 000 000 mg/kg). Closure has a major influence on the
covariance and correlation matrices (see Section 11.8), the very bases of PCA and FA. Three
possible data transformations to solve this problem have been demonstrated in Section 10.5.

For example even the Kola moss data are from a closed number system, although the sums
over all variables for all the individual cases (samples) range only from 0.7 to 3.2 per cent, with
most falling between 1 and 1.5 per cent, see Figure 14.1 (left). The fact that the data are closed
may thus not be immediately apparent. But if elements such as C and N had been analysed
the sums would be close to 1 000 000 (100 per cent). It is thus advisable to open the data. The
critical issue is that the sums of the measured variables are constrained. Applying a centred
logratio transformation (see Section 10.5.2) opens the data, permitting the true variability to
be expressed. Figure 14.1 (right) displays the anti-logs of the sums of each sample over all new
centred logratio-transformed variables. The points in the plot are more scattered, as indicated
by the span of the inner 50 per cent of the points (indicated by horizontal lines); compare with
Figure 14.1 (left).
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Figure 14.1 Plots of sums over all variables for each sample of the Kola Project moss data versus
sample order. Closed data on the left and opened data on the right. Upper and lower quartiles are
indicated by horizontal lines
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14.1.5 Censored data

There is a further problem that often occurs when working with geochemical data, the detection
limit issue (see Section 2.2). For some determinations a proportion of all results are below
(or, rarely, above) the lower (upper) limit of detection of the analytical method. For statistical
analysis these are often set to a value of half the detection limit. However, a sizeable proportion
of all data with an identical value can seriously influence an estimate of correlation. It is
very questionable whether or not such elements should be included at all in a PCA or FA.
Unfortunately, it is often the elements of greatest interest that contain the highest number of
censored data – the temptation to include these in PCA or FA is thus very high. Again the
choice is to use robust methods that will be able to withstand a substantial amount of censored
data.

14.1.6 Inhomogeneous data sets

Data sets in environmental sciences are often extremely inhomogeneous. Usually they consist
of data drawn from a mixture of different populations. In different subsets antagonistic data
structures may exist. In the case of the Kola Project data, there is some knowledge concerning
the processes governing the data structure. For example, for the C-horizon soils the geological
map could be used to construct more homogenous subsets of the samples that were collected. If
this is done and the correlation matrix for each of these subsets is estimated, it becomes apparent
that each of these lithologically-based data subsets has a quite different correlation structure
(see Figures 8.14, 11.5). Entering PCA or FA with such inhomogeneous data will almost
invariably lead to unstable results. Because FA aims at identifying some major processes in the
multivariate data set, factors will be governed by the elements that show high (or low) values
in one of the sub-populations. With PCA, often the first axis will simply help discriminate
between the data subsets, and as a result the remaining axes, which are constrained to be
orthogonal (perpendicular to each other), may not yield useful information concerning the
internal structures of the subsets. In these instances it is predictable that FA and PCA will have as
one of their main outcomes an elucidation of some of the more obvious geochemical differences
related to the lithological units in the survey area. Such data behaviour can be expected in the
vast majority of cases when working with regional geochemical or environmental data, and
may be a useful as a first-order mapping tool. However, in such cases it is doubtful that FA
or PCA are informative methods for discovering the more subtle internal relationships in the
data.

The correct data analysis procedure would be to first disaggregate the total data set into
more structurally homogenous subsets, e.g., via a clustering procedure or by the use of prior
knowledge (e.g., the geological map). However, in most cases, and definitely in the case of
the Kola Project data, insufficient samples would remain in any of these subsets to carry out a
meaningful FA.

14.1.7 Spatial dependence

PCA and FA assume that the data represent random, independent samples from a multivari-
ate distribution. However, the measured variables in applied geochemical and environmental
surveys usually have a spatial dependence, i.e. the observations are spatially correlated. PCA
and FA of correlated observations will reflect such correlations, which cannot be removed by a
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random shuffling of the data points. PCA and FA carried out with spatially dependent samples
will most often result in identifying spatial correlations. Users should be very aware of this
fact. Strong spatial correlations may completely mask geochemical correlations. This clearly
needs to be considered when interpreting the results of PCA or FA.

14.1.8 Dimensionality

One of the first requirements for stable results from a PCA or FA is that there are a sufficient
number of samples for the number of variables, determining the dimensionality of the data.
Different rules have been suggested (Le Maitre, 1982), e.g., n > p2 + 3p + 1 (where n is the
number of samples and p the number of variables). The Kola moss data contains 31 variables
and the rule requires 1055 samples – but the data set consists of “only” 594 samples. If more
tolerant rules are used, e.g., n > p2, or n > 9p, or just n > 8p, the number of samples is
still rather low in relation to the number of variables. Note that these rules are stricter than
those proposed for multivariate outlier detection (see Section 13.3). The reason for this is that
additional parameters are estimated in PCA and FA. Therefore, for many data sets, PCA or FA
should preferably not be entered with the full set of elements.

The above cited rules suggest that for a data set consisting of 594 samples PCA or FA
should not be entered with many more than about 23 variables. To overcome the situation of
too many variables in relation to the number of samples some authors (see e.g., Böhm et al.,
1998) suggest the use of Monte Carlo techniques to reduce the number of variables entered
into FA. Variable selection can of course also be based on geochemical reasoning (for example,
why enter all the highly correlated Rare Earth Elements when one or two will do?), existing
knowledge about the survey area, possible element sources, exploration models or collinearity
studies. In these cases FA may be used to test various hypotheses.

When all variables are highly correlated (e.g., when analysing infra-red spectra) it is possible
to use PCA even when the number of samples is much smaller than the number of variables.

14.2 Principal component analysis (PCA)

For illustrating the application of PCA, the most homogenous Kola Project data set with the
smallest number of variables has been chosen, the moss data set. The complete data set has 31
variables and 594 samples (see above). Initially the data were log-transformed and standardised
(centred and scaled, see Section 10.4) to yield a more symmetric data distribution and directly
comparable data for all variables.

The goal of PCA is to explain as much information contained in the data as possible in as
few components as possible. In statistics information content is expressed by variability. PCA
searches for the direction in the multivariate space that contains the maximum variability. This
is the direction of the first principal component (PC1). The second principal component (PC2)
has to be orthogonal (perpendicular) to PC1 and will contain the maximum amount of the
remaining data variability. Subsequent principal components are found by the same principle.
They must be orthogonal to the previous principal components and contain the maximum of
the remaining variability.

For the bivariate case this can be visualised in Figure 14.2, a scatterplot of Mg versus Na
(log-transformed and standardised) for the Kola Project moss data. Figure 14.2 (left) shows
the direction of the first principal component (PC1) following the direction of the main data
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Figure 14.2 Scatterplot of Mg versus Na (both log-transformed and standardised) for the Kola Project
moss data. The direction of the principal components and the construction of the scores are indicated

variability. All data points are orthogonally projected onto PC1, resulting in new data points,
that are called the scores of the first principal component. The scores represent each data point
by a single number along the new coordinate PC1.

PC2 is in the direction orthogonal to PC1, again all data points are orthogonally projected
onto PC2, resulting in the scores of PC2. The direction of each principal component is expressed
by its loadings which convey the relation to the original variables. In the two-dimensional
example shown in Figure 14.2 (left) both variables show a positive relation to PC1. The
direction of PC1 can now be characterised by two numbers, because the data are in a two-
dimensional coordinate system determined by the variables Mg and Na. Because of the positive
relation of PC1 with Mg and Na both loadings will be positive. For PC2 the loading for Mg is
positive and the loading for Na is negative. In the multivariate case each principal component
has as many loadings as there are variables.

Mathematically, PCA can be seen as a decomposition of the covariance matrix or correlation
matrix (if the data are standardised) into its “eigenvectors” and “eigenvalues”. The eigenvectors
are the loadings of the principal components spanning the new PCA coordinate system. The
amount of variability contained in each principal component is expressed by the eigenvalues
which are simply the variances of the scores.

14.2.1 The scree plot

Since the principal aim of PCA is dimension reduction, i.e. to explain as much variability as
possible with as few principal components as possible, it is interesting to study how much vari-
ability is explained by each single component. In the scree plot (Cattell, 1966) the component
number is plotted against the explained variance.

If PCA is primarily used to reduce the dimensionality of the data for other multivariate
techniques (multiple regression, discriminant analysis, cluster analysis) it is important to de-
termine the optimum number of components for this purpose. In this case the cut-off is chosen
at the point where the function displayed by the scree plot shows an elbow or the last clear
break.
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Figure 14.3 Scree plots for the log-transformed data (left) and the centred logratio (clr) transformed
data (right) of the Kola Project moss data. Left axes display the eigenvalues and right axes display the
cumulative percentages of explained variability

Scree plots were prepared for the log-transformed and the centred logratio transformed
Kola moss data. In both cases the data were centred and scaled after the transformation, which
corresponds to a PCA based on the correlation matrix. Figure 14.3 (left) shows the scree
plot for the log-transformed data, and Figure 14.3 (right) the same plot for the centred logratio
transformed data. The plots display both the eigenvalues from which the proportion of explained
variability is derived (left y-axis) and the cumulative percentage of explained variability (right
y-axis). For the log-transformed data the first component explains almost 40 per cent of the total
data variability, and the second component explains a further 15 per cent. Both components
together thus explain more than 50 per cent of the total variability. In contrast, for the centred
logratio transformed data the first component only explains 33 per cent of the total variability,
and the second component a further 14 per cent, for a total of 47 per cent. The reason that the
first two components of the centred logratio transformed data explain a smaller percentage of
the total variability is due to the fact that the variability in the data is no longer constrained
and requires additional components for its explanation. After five components for the log-
transformed data and six components for the centred logratio transformed data, the scree plots
show an almost identical behaviour. Both scree plots flatten out after about ten components
explaining about 85 per cent of the variability. One might then select the first ten components
to use in other multivariate data analysis techniques if noise reduction is required. The plots
both show clear breaks after four or five components, respectively, for the log-transformed and
centred logratio transformed data, both explaining almost 70 per cent of the total variability.
For visual inspection of the data set the first four or five components will probably be sufficient
to reveal the main data structure.

Other criteria for the choice of the number of relevant principal components have been
proposed, e.g.:

� The explained variability should be at least 80 per cent (see, e.g., Jackson, 2003);
� Only principal components with eigenvalues >1 should be considered (Kaiser, 1958);
� A formal statistical test to determine the number of principal components could be used

(Barlett, 1950);
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� Monte Carlo techniques like bootstrap or cross-validation can be used (Efron, 1979; Eastment
and Krzanowski, 1982).

Unfortunately, the different criteria usually will not result in a unique solution.

14.2.2 The biplot

It is often desirable to simultaneously visualise scores and loadings of the principal components.
This can be accomplished with a biplot (Gabriel, 1971). The plot is called a biplot because it
contains information on loadings (arrows) and scores (data points or sample identifiers) and not
because it plots two principal components against one another. Thus the relationships between
variables (via the loadings) and observations (via the scores) become visible. The loadings
(arrows) represent the elements (Figure 14.4). The lengths of the arrows in the plot are directly
proportional to the variability included in the two components (PC1 and PC2) displayed, and
the angle between any two arrows is a measure of the correlation between those variables.
For example, a very short arrow in Figure 14.4 (left) represents Hg, indicating that the first
two components contain almost no information about this element. Because a scatterplot is
limited to two dimensions, only two components can be plotted against one another. In the
biplot the scales for the scores are shown on top (PC1) and right (PC2) axes, and the scales
for the loadings are shown at the bottom (PC1) and left (PC2) axes. Each arrow in the biplot
represents the loadings of one of the elements on PC1 and PC2 and can be identified by the
element (variable) name.

Figure 14.4 (left) displays the biplot for PC1 versus PC2 of the log-transformed data, while
Figure 14.4 (right) displays the similar plot for the centred logratio transformed data, both
containing roughly 50 per cent of their respective total data variabilities. The effect of opening
the data is immediately clear, the variables in the centred logratio transformed analysis are more
evenly spread across the component space, facilitating the recognition of element associations
characteristic of different biogeochemical processes.

Figure 14.4 Biplot of PC1 versus PC2 for the log-transformed (left) and centred logratio (clr) trans-
formed (right) Kola Project moss data set
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Figure 14.4 (right) shows an association of smelter-related elements, Co, Ni, Cu, Bi, As, Ag
(lower right quadrant); an association of Al, Th, U, Si, Fe and V (upper right quadrant) which
reflects the deposition of terrigenous dust on the mosses; and a K, S, P, Zn, Mn, Ca and Mg
association characteristic of biological processes in the mosses. The first principal component
is mainly influenced by biological processes (negative loadings) and to a lesser extent by
anthropogenic smelter processes (positive loadings), while the second principal component is
dominated by terrigenous dust (positive loadings). Thus, major spatial and biological processes
in the survey area determine the first two principal components, for instance the smelter-related
elements contribute to both positive PC1 loadings and negative PC2 loadings.

The representation of the scores by a biplot is incomplete because the geographical
information about the location of each sample is missing. A combination of the biplot with
geographical mapping is an exceptionally powerful data analysis tool, especially if Spin
and Brush (as provided by programs like GGOBI: – see http://www.ggobi.org/)
techniques are applied (see also discussion in Section 8.5).

14.2.3 Mapping the principal components

Figure 14.5 shows maps of the scores of the two first principal components of the centred
logratio transformed data. The first component clearly indicates contamination from the Kola
smelters (high scores) as already indicated in the biplot by the Cu, Ni, Co association (Fig-
ure 14.4, right). The lowest scores on PC1 are present north of the tree-line in Norway and
Finland where the deposition of terrigenous dust is greater than in forested areas to the south
where PC1 scores are not as low. Near-zero PC1 scores occur near the coast, in forested areas,
and peripherally to the smelters. The marine influence, characterised by a Na, B, Sr association
is not revealed in the first two components, but is the dominant driver of the third principal
component and its scores (see below). The highest scores on PC2 occur north of the tree-line
and close to the alkaline intrusions mined near Apatity where there is extensive deposition of
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Figure 14.5 Maps of the scores of the first two principal components for the centred logratio trans-
formed Kola Project moss data

http://www.ggobi.org/
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Figure 14.6 Biplot of PC1 versus PC3 of the centred logratio (clr) transformed Kola moss data (left),
and a map of PC3 (right)

terrigenous dust relative to the rest of the project area. The lowest scores are present in the
vicinity of the smelters, indicating the dominance of particulate deposition from them relative
to naturally sourced dust.

Figure 14.6 (left) presents the biplot of PC1 versus PC3 of the centred logratio transformed
data set. High scores on PC3 are driven by Na, Mg, Sr and B (and to some extent by Ni and
Co). The former elements are characteristic of marine sea spray. Figure 14.6 (right) displays
the scores on PC3 as a map. It is immediately apparent that the highest scores occur in a belt
across the northern part of the project area adjacent to the Barents Sea, and the lowest scores
deep in the forested south and western parts of the project area.

14.2.4 Robust versus classical PCA

As has been discussed previously there are often advantages to employing robust procedures.
The computation of robust estimates for centred logratio transformed data will usually en-
counter numerical problems, leading to a failure to complete the calculations. Thus, a useful
alternative is the isometric logratio transformation (see Section 10.5.3) which avoids these
numerical problems. Figure 14.7 displays the biplots for classical (left) and robust (right) es-
timation of the principal components for the isometric logratio transformed data. The robust
analysis is based on covariance estimation using the MCD estimator (see Section 13.2). When
performing an isometric logratio transformation, “artificial variables” are constructed and thus
the direct relation to the original variables is lost. Plotting the resulting loadings and scores
in a biplot results in a plot that cannot be interpreted. Thus the results of PCA need to be
back-transformed to obtain the original variables and then plotted. The back-transformation
is made to the space of the centred logratio transformed data (for details see Egozcue et al.,
2003).

The resulting Figure 14.7 (left) can now be directly compared to Figure 14.4 (right). It
appears that the isometric logratio transformation results in an even better “opening” of the
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Figure 14.7 Biplots of the classical (left) and robust (right) PCAs based on isometric logratio trans-
formed Kola Project moss data

data than the centred logratio transformation used for the results displayed in Figure 14.4 (right).
Figure 14.7 (right) shows the results for robust PCA of the isometric logratio transformed data.
The robust PCA is less influenced by the outliers visible in Figure 14.7 (left) and the loadings
are almost symmetrically spread around the plot. Several groups emerge, e.g. a “contamination
group” (As, Co, Cu, Ni), a “sea spray group” (Sr, B, Na) which plots close to the “contamination
group” (because Nikel is close to the coast of the Barents Sea and the alkaline rocks mined and
processed near Monchegorsk have very high concentrations of Na and Sr), a “plant nutrient
group” (Mg, K, S, P, Ca, Zn), and two different “dust groups” (Fe, Bi, Cr and V – probably
“industrial dust” and a “geogenic dust group” (U, Mo, Al, Th Si, Tl, etc.)). This is clearly the
best result obtained with PCA so far and demonstrates the need for opening the data and for
using robust techniques with geochemical data.

14.3 Factor analysis

Factor analysis (FA) and PCA both have the same objective: reduction of dimensionality.
Factor analysis works in principle like PCA; the multivariate data are decomposed into scores
and loadings. However, the more strict definition of factor analysis implies that the number
of factors to be extracted is defined at the beginning of the procedure. In addition an estimate
of the proportion of variability for each element that is not to be included in the factors but is
considered unique to that element has to be provided (see, e.g., Harman, 1976). This unique
variance is also called uniqueness.

The interpretability of the components of PCA is often difficult because the components
are determined by a maximum variance criterion. One solution to improve interpretability is
to rotate the principal components (Figure 14.8) such that the variables load predominantly
onto one component. Many practitioners refer to the rotated PCA solution as a factor analysis
as they have specified the number of components to be rotated. In effect they have chosen a
model by specifying the number of components.
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Figure 14.8 Biplots of results of a robust PCA of log-transformed and standardised Mn, Rb, Ni, Cu and
Mg from the Kola Project moss data. The left diagram shows the “original” biplot, the right diagram
shows the biplot for the Varimax rotated principal components. To better visualise the effect of rotation
the old axes (dashed lines) before rotation are displayed in the right plot

For an example of the rotation procedure to improve interpretability see Figure 14.8, where a
robust PCA was undertaken with five log-transformed and standardised variables from the moss
data. In the unrotated example both components are influenced by all elements (Figure 14.8
left). Using the Varimax criterion of Kaiser (1958), the first rotated component is, however,
exclusively determined by Cu and Ni, and the second rotated component by Mn, Rb and Mg
(Figure 14.8, right). Rotation thus results in the separation of the two main processes.

In contrast to PCA, FA permits excluding parts of the variability of some variables because
their variability is unique and may disturb the interpretability of the results. FA uses a different
terminology from PCA: components are now named factors. Figure 14.9 shows biplots for
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Figure 14.9 Biplots for robust PCA and robust FA for log-transformed and standardised Mn, Rb, Th,
Cu, Ni and Mg from the Kola Project moss data
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the results of robust PCA and robust FA for the example used in Figure 14.8, but with the
element Th added. For the PCA solution Th influences both components (Figure 14.9, left) as
its variability, indicated by the length and position of the arrow, contributes to both PC1 and
PC2. Thus the two groups of variables are no longer as well separated as before.

In the FA solution the arrow representing the variability of Th is much shorter, therefore
far less of its variability is projected onto and contributes to F1 and F2. The main part of the
variability of Th was excluded by the method before the factors were calculated. The two
factors have the same interpretation as in the first example (Figure 14.8, right) without Th;
the disturbing effect of Th is almost excluded. Thus, in theory FA should be better suited to
determine the main processes in a complex data set. FA accomplishes this by first determining
if the variability of each single variable (element) can be well expressed by the resulting
factors by computing the relation of each variable to all other variables. If the relationship of
a variable with all others is weak, it is assigned a high uniqueness so that only a small part of
its variability contributes to any of the factors to be extracted. In the FA literature this measure
is referred to as the variable’s communality. There are a variety of procedures for estimating
this communality. Frequently the squared multiple correlation coefficient, also called multiple
R-squared measure (see Section 16.3.2), is employed (see, e.g., Johnson and Wichern, 2002).

14.3.1 Choice of factor analysis method

A variety of methods exist for carrying out a FA. The two most frequently used methods
are principal factor analysis (PFA) and the maximum likelihood (ML) method. A reasonable
question is whether the choice of method will have any fundamental influence on the results of
the procedure. The mathematical background is well documented in a number of specialised
textbooks (see, e.g., Harman, 1976; Seber, 1984; Basilevsky, 1994; Mardia et al., 1997; Johnson
and Wichern, 2002). In contrast to PCA, FA uses a statistical model with quite restrictive
assumptions. In addition, the ML method requires multivariate normally distributed data, a
state that is rarely achieved with applied geochemical (environmental) data. Thus PFA may
be the “safer” method for many applications. Both methods have been applied to the Kola
C-horizon data, and PFA resulted in clearly superior results (Reimann et al., 2002). Thus only
PFA will be demonstrated here. Again, it may be beneficial to apply a robust version of PFA
in order to minimise the effect of outliers.

14.3.2 Choice of rotation method

In addition to the selection of the FA method, the method of factor or component rotation
must be chosen: Varimax (Kaiser, 1958), Promax (Hendrickson and White, 1964), Oblimin
(Harman, 1976) or Quartimin (Carroll, 1953) are just some examples that can be employed
to yield more interpretable results. Varimax is an orthogonal rotation, resulting in orthogonal
rotated factors, while Promax, Oblimin, and Quartimin are oblique rotation methods, i.e. the
rotated factors are no longer orthogonal. These methods were applied to the Kola C-horizon
data (Reimann et al., 2002), and the most stable results were obtained using an orthogonal
rotation method like Varimax.

14.3.3 Number of factors extracted

In contrast to PCA, FA requires that the number of factors to be extracted be determined
in advance. There are different procedures to determine the “optimum” number of factors
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to be extracted, including a number of statistical tests (see Basilevsky, 1994). However the
procedures most often used are more of the “rule of thumb” type. One such possibility is
to select the number of factors such that they explain a certain amount of variance (e.g., >70
per cent). The scree plot, based on a PCA, is probably the most widely used tool to determine an
optimum number of factors (see Section 14.2.1 and Figure 14.3). The scree plot (Figure 14.3)
suggests that at least four factors should be extracted.

The results of FAs can drastically change with the number of factors extracted. This effect
is especially pronounced when FA is undertaken with only a few variables. Experience from
studying many factor maps suggests that it might in general be better to extract a low number
of factors (see, e.g., Reimann et al., 2002).

14.3.4 Selection of elements for factor analysis

One of the main critiques of FA is that the selection of variables will exert considerable influence
on the results. Because of the many statistical parameters required for the FA model, the results
are extremely data sensitive, and an FA may result in completely different factors when only
a few variables are added or deleted (see examples in Reimann et al., 2002).

Because PCA and FA are dimension reduction techniques it is logical to undertake them
with all available variables, after taking censoring into consideration, as long as the number of
samples is considerably larger than the number of variables (see Section 14.1.8). When some
factors clearly explain specific processes in the data, the explanatory variables for those factors
could be removed. A further FA could then be carried out with the remaining variables to see if
additional structure could be identified. Selection of variables may thus be an iterative process
(van Helvoort et al., 2005).

As mentioned above, some authors (e.g., Bohm et al., 1998) suggest the use of Monte Carlo
methods to extract those elements that have a major influence on the total variance of the data
set. However, the result of this approach can be that the regional distribution patterns of some
of the most, a priori, interesting elements are never studied. Another approach could be to
remove all elements that have loadings within the range −0.5 to +0.5 on all factors, or that
have a uniqueness of >0.5 (or <0.5 for the communality). Again this approach may result in
removing some interesting elements. A third approach could be to prepare a combination of
some of the elements that have high absolute loadings on the same factor and carry out a further
FA. A sub-selection of variables could also be motivated by geochemical reasons/models. The
possibilities are limitless.

14.3.5 Graphical representation of the results of factor analysis

Results of FAs are usually presented in biplots and factor maps exactly as demonstrated above
for PCA (Sections 14.2.2 and 14.2.3). The loadings, on which the interpretation of the factors
is based, are often presented in tabulations. It is, however, possible to plot the factor loadings
as a simple graph, where the x-axis is scaled according to the relative amount of variability
explained by each single factor in the FA model, excluding the unexplained part of the variability
(uniqueness) of each variable. In addition, the percentages at the top (see Figure 14.10) display
the cumulative explained variance for the total data variability. It is thus possible to easily
appreciate how much of the total variance is explained and how important the single factors
are for this explanation. The y-axis is scaled from +1 through 0 to −1 and shows the factor
loadings of the different variables entering each factor. Dashed lines at values of +0.5 and −0.5
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Figure 14.10 Factor loading plots for the log-transformed robust (upper) and centred logratio (clr)
transformed (lower) five-factor models (PFA and Varimax rotation) for the Kola Project moss data

help distinguish the important (>+0.5, <−0.5) from the less important variables. Names
of variables with absolute loadings of < 0.3 are not plotted because their contributions to
the factors are negligible (Reimann et al., 2002). The plot facilitates an appreciation of the
differences between FAs with different selections of elements, different data transformations
(see Figure 14.10), different methods of FA (e.g., ML versus PFA), different numbers of factors
extracted, or different rotation methods.

Figure 14.10 presents the factor loading plots from PFAs with Varimax rotation for log-
transformed robust and centred logratio transformed five-factor models of the Kola Project
moss data. Both five-factor models explain some 70 per cent of the total data variability, with
five factors being chosen on the basis of the scree plot (see Figure 14.3). Comparing the two
solutions, and that for a similar PCA (see Section 14.2), the centred logratio transformation
leads to factors that are both positively and negatively influenced by the variables. Factors 1,
2, 4, and 5 of the log-transformed data are good examples where all significant loadings are
only positive, whilst with centred logratio transformed data the loadings are broadly distributed
between positive and negative. This should improve interpretability. The two different factor
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solutions are generally similar in the processes they identify, but are different in detail and can
be explained in terms of several important processes determining the chemistry of the moss
samples in the survey area.

For the robust FA of the log-transformed data, Factor 1 is a dust factor, as indicated by
the presence of elements like Al, Fe, Th and U. Particulate input will be the main process
determining the concentration of all these elements in the moss. Factor 2 is dominated by
Cu, Co and Ni, the three main elements emitted by the Russian nickel industry, and is thus a
contamination factor. Elements like Na and Sr have entered this factor because they are emitted
by the mining and transport of alkaline rocks at Apatity, which is close to Monchegorsk. Factor
3 shows positive loadings of Mg, Na and Sr and negative loadings of Mn, Rb, and Tl. This
factor shows a strong north-east to south-west gradient in the survey area due to the input of
marine aerosols near the coast of the Barents Sea. There is an opposite trend of increasing
element concentrations from the coast inland due to the three vegetation zones that are crossed
(Mn, Rb, Tl – but also Ag, Bi, Pb and Sb, which did not enter the factor – compare Section 6.4).
Ni and Co enter this factor because, by chance, the Russian nickel industry is predominantly
located in the northern part of the survey area. They do not enter the factor for geochemical
reasons but because of the spatial dependencies in the survey area. Factors 4 and 5 both
collect together a number of important plant nutrients (Ca, P, S, Mg and K, P, Mg) and are
probably an indication of the nutrient status of the mosses from the survey area. It could also
be interesting to compare their distribution against the distribution of the two moss species
(Hylocomium spendens and Pleurozium schreberi) that were collected. However, Ca, S, and
Mg are also major ingredients of marine aerosols and thus this factor may represent a mixture
of two different processes.

For the FA of the centred logratio transformed data (Figure 14.10, lower plot) Factor 1 is
dominated by a biological association (Ca, P, S, Mg, K and Zn). In contrast the smelter releases
from Monchegorsk are characterised by negative loadings (Cu, Ni, Co, Ag, Bi, Mo and V).
Factor 2 is dominated by smelter releases from both Monchegorsk and Nikel/Zapoljarnij due to
negative loadings of only Cu, Ni, and Co (apparently Nikel/Zapoljarnij are not associated with
major Ag, Bi, Mo and V releases). The elements Mg, Rb, Th and Pb indicative of vegetation
changes in robust Factor 2 are present here as positive loadings. Factor 3 appears to reflect the
source of particulates to the mosses. Positive loadings for Cd, Cu, Sb, Ag and As reflect releases
from sulphide processing facilities, while negative loadings of Al, Th, U, Fe, and Sr reflect
releases of oxide and silicate minerals that could be derived naturally or from mining activities
such as those at Apatity. Factor 4 further reflects the presence of anthropogenic smelter sources.
Finally, Factor 5 reflecting marine influence is dominated by negative loadings of B, Na, Sr and
U, and positive loadings of Rb, Mn, Cd and Zn associated with increasing terrestrial biological
influence.

As can be seen the dominant anthropological and biogeochemical processes in the region
are reflected in both factor models. Interestingly, the model for the centred logratio transformed
data appears to be better at differentiating between the different anthropogenic sources, but
possibly less effective at reflecting the biological changes across the region.

Figure 14.11 illustrates the regional distribution of the factor loadings of the first four factors
the robust PFA with Varimax rotation for the log-transformed Kola Project moss data. The maps
support the above interpretation based on the factor loadings. They even show some interesting
additional details. For example, the plot for F1 (Figure 14.11, upper left) shows that it is even
possible to detect the roads/railroads from Apatity/Monchegorsk to Murmansk and Kovdor as
important sources of dust input. In northern Norway along the coast of the Barents Sea dust plays
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Figure 14.11 Results of robust PFA with Varimax rotation for the log-transformed Kola Project moss
data presented as factor score maps for the first four factors

an important role due to harsh climate and the resulting poor vegetation cover. Surprisingly
Nikel/Zapoljarnij does not show up in this map. Factor 2 (Figure 14.11, upper right) provides
an informative differentiation between contaminated, including Nikel/Zapoljarnij, and non-
contaminated parts of the survey area. Factor 3 (Figure 14.11, lower left) shows, as expected,
the strong north-east to south-west gradient in the survey area, that is only locally disturbed
(Apatity and Kovdor). The map for Factor 4 (Figure 14.11, lower right) is much noisier (high
local variability) than any of the other maps and probably presents a mixture of different
processes.

Figure 14.12 displays maps for Factors 1, 2, 3 and 5 for the centred logratio transformed
data. Again, the maps support the interpretation based on the factor loadings. In the map of
Factor 1 (Figure 14.12, upper left), Monchegorsk and the pattern of dispersed particulates, dom-
inantly to the north, is clearly visible and characterised by low scores, while to the north-west
high scores indicate areas of relatively pristine tundra. In contrast, in the map for Factor 2
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Figure 14.12 Results of PFA with Varimax rotation for the centred logratio transformed Kola Project
moss data presented as factor score maps for Factors 1, 2, 3 and 5

(Figure 14.12, upper right) both smelter complexes are clearly identified by negative scores,
and the pristine forested area in the south-west of the project area is emphasised by positive
scores. In the map for Factor 3 (Figure 14.12, lower left) areas influenced by the smelter
complexes are characterised by high scores, while areas in the tundra and close to Apatity
and Kovdor appear to be dominated by the deposition of silicate and other non-sulphide dust.
Finally, the influence of the Barents Sea is clearly visible in the map for Factor 5 (Figure 14.12,
lower right) where low scores occur proximal to the coastline.

14.3.6 Robust versus classical factor analysis

In the above comparison of factor models for log-transformed and centred logratio transformed
data the robust model for log-transformed data was selected in preference over the non-robust
classical approach.

Figure 14.13 shows the five-factor model loading plots for the robust and a classical PFA
(Varimax rotation) for the log-transformed Kola Project moss data set. The main differences
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Figure 14.13 Factor loading plots for robust and classical PFA with Varimax rotation and five factors
for the log-transformed and scaled Kola Project moss data. Note that the x-axis is scaled according
to the relative amount of variability (excluding the uniqueness) explained by each factor, while the
percentages at the top dispay the cumulative variance for the total data variability

include:

� The position, i.e. order and therefore importance, of several factors has been reversed (F1
and F2, and F4 and F5);

� F1 has a larger explained variability in the classical FA;
� For the five-factor model the classical FA results in a higher total explained variability;
� Cu and Ni are more dominant in F1 of the classical FA than in F2 of the robust FA; and
� F2 of the classical FA contains fewer elements than the corresponding F1 of the robust FA.

All in all the results are not that different, and the decision as to which result is the best or
more reliable is difficult on the basis of the plots. However, there are some indications. The
exchange of position of F1 and F2 and the increased loadings of Cu and Ni indicate that the
outliers caused by the emissions from the Russian nickel industry have attracted the classical
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F1. Hidden processes in the main body of the data may stay invisible if outliers are allowed to
overly influence (lever) the result. There are considerably easier techniques to identify outliers
than FA, and in that sense the robust FA is strongly preferable.

This discussion may appear academic at first glance. However, in the scientific literature
FA is often misused as a “proof” for certain element associations and to draw far-reaching
conclusions from the factor loadings. FA cannot be used as a “proof” for the existence of
processes – it can help identify relationships in the data and stimulate ideas; they have to be
proven in a different way. Many justifiable critiques of FA as applied to geochemical data
are due to the misuse of the technique. Factor analysis can be used to explore the data for
hidden multivariate structures, which then have to be explained by different means. If used
correctly it may not result in a reduction of geochemical maps but rather in additional maps,
but those maps should be more informative and relatable to known physical and geochemical
processes. To objectively judge the quality of these maps is very difficult. In regional geochem-
ical mapping good results are probably best indicated by stable geochemical maps displaying
broad and homogeneous patterns. Real success is achieved if new patterns are revealed that
do not necessarily fit the established geological maps and concepts, and that may be difficult
to see in single element maps. However, even such wide-scale patterns may often be diffi-
cult to interpret based on current knowledge. They can be used to develop new ideas about
processes influencing element distribution on a regional scale or to re-interpret the geological
map. To interpret the results beyond pure speculation may require considerable new fieldwork;
the original geological mapping at a regional scale may have missed features picked up by
more detailed geochemical mapping. Thus FA may be useful in guiding field activities into
especially interesting areas.

The example presented here is based on the moss data set that has the lowest number of
variables of all the data sets and the fewest processes influencing the samples. Results become
far more varied and difficult to interpret when applying FA to any of the other layers (see
results for the C-horizon presented in Reimann et al. (2002).

14.4 Summary

When carrying out PCA and FA with applied geochemical (environmental) data, which may,
for many reasons, not be ideally suited for this method, the following points should be
considered:

1. Before entering PCA or FA the distribution of each of the variables must be carefully
studied. A transformation may be required to remove skewness (improve symmetry) or to
approach normality.

2. When working with compositional data, a transformation should be undertaken to “open”
the closed array (Section 10.5). Even when the measured variables only sum to a few
per cent, it will be advantageous to open the data. For an example see Section 14.2.

3. If minor and trace elements are mixed in one and the same factor, log-transformation may
not reduce the data to comparable scales and ensure that each variable has equivalent weight
in the analysis. In this case standardisation to zero mean and unit variance guarantees an
equal influence of all variables. Note that many software packages automatically carry
out this standardisation, which does not allow carrying out a factor analysis based on the
covariance matrix but only based on the correlation matrix.
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4. Furthermore, it may be advisable to subdivide a large regional geochemical data set into
the most obvious data subsets showing different geochemical behaviour, either based on
pre-existing knowledge of the regional geology or following a cluster analysis, prior to
undertaking a PCA or FA. If this is not done, the analysis may simply highlight differences
between the subsets rather than their internal structures, though this can be a valid objective.

5. The safest method for undertaking FA with applied geochemical data is principal fac-
tor analysis (PFA). Advanced techniques like the maximum likelihood (ML) method are
more dependent on the data being normally distributed, and given the nature of regional
geochemical data this is rarely achieved. Failing to meet this assumption can produce mis-
leading results. Robust methods of FA will very likely perform better, but still they cannot
overcome problems related to multimodality (i.e. clear evidence of multiple processes
influencing the data).

6. With a centred logratio transformation, in some instances the computation of FA (classical
or robust) can fail due to a lack of full rank of the covariance matrix. In contrast, this usually
does not occur with classical PCA.

7. Note that data outliers are a characteristic of many regional geochemical data sets – when
using non-robust methods of factor analysis outliers should be identified and removed
prior to undertaking the PCA or FA.

8. For factor rotation an orthogonal method should be considered first, e.g., Varimax.
9. The number of factors to extract is difficult to determine. The most practical approach is

to use a scree plot for guidance, and then experiment with different numbers of factors
and study the results (loadings and maps) in detail, even though this introduces a lot of
subjectivity. In most cases a low number of extracted factors will give the best results in
terms of interpretability.

10. The selection of the elements entered will influence the results of a PCA or FA. Firstly,
it should always be remembered that there must be sufficient samples for the number of
elements being entered. If the data set is large enough, it may be informative to first enter
all elements, and afterwards test different combinations of elements. Obviously redundant
or poorly conditioned (too many censored values) measurements should be considered for
immediate or early exclusion. Just one element more or less may substantially alter the
results of an analysis. It is a fact that in applied geochemistry the elements available for
study will very often arbitrarily depend on what data were available from the analytical
laboratory. This is often governed by price, methods available, and/or detection limits, and
not by science.

Finally, PCA and FA are widely applied data analysis procedures, they can reduce dimension-
ality, and in doing so this may generate new variables more closely related to the underlying
processes controlling the data distribution. However, both procedures need to be undertaken
with care ensuring that their assumptions are met as closely as possible, that the data are ap-
propriately conditioned, that outliers are handled judiciously, and that the problems posed by
data closure were considered.
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Cluster Analysis

The principal aim of cluster analysis is to split a number of observations or measured variables
into groups that are similar in their characteristics or behaviour (see, e.g., Hartigan, 1975;
Everitt and Dunn, 2001; Kaufman and Rousseeuw, 1990, 2005). A favourable cluster analysis
outcome will result in a number of clusters where the samples or variables within a cluster are
as similar as possible to each other while the differences between the clusters are as large as
possible. Cluster analysis must thus determine the number of groups as well as the memberships
of the observations or variables in those groups. To determine the group memberships, most
clustering methods use a measure of similarity between the measurements. The similarity is
usually expressed by distances between the observations in the multivariate data space.

Cluster analysis was developed in taxonomy. The aim was originally to get away from the
high degree of subjectivity when different taxonomists performed a grouping of individuals.
Since the introduction of cluster analysis techniques, there has been controversy over its merits
(see Davis, 1973; Rock, 1988, and references therein). It was soon discovered that diverse
techniques lead to different groupings even when using exactly the same data. Furthermore,
the addition (or deletion) of just one variable in a cluster analysis can lead to completely
different results. Workers may thus be tempted to just experiment with different techniques of
cluster analysis and the selection of variables entered until the results fit their preconceived
ideas. Practitioners employing cluster analysis should be aware of these problems. Cluster
analysis should be applied as an “exploratory data analysis tool” to elucidate the multivariate
behaviour of a data set. Comparing results of different techniques can be useful for obtaining a
deeper insight into the multivariate data structure. However, like PCA and FA (see Chapter 14)
it cannot itself provide a “statistical proof” of a certain relationship between the variables or
samples and their groupings.

While PCA and FA (see Chapter 14) use the correlation matrix for reducing dimensionality
or extracting common “factors” from a given data set, most cluster analysis techniques use
distance measures to assign observations to a number of groups. Correlation coefficients lie
between −1 and +1, with 0 indicating linear independence. Distance coefficients lie between
0 and ∞, with 0 indicating complete identicality (Rock, 1988). Some distance measures do
not make, a priori, any statistical assumptions about the data, an ideal practical situation when
working with geochemical data. Distance measures will also be essential for cluster validation,
i.e. measuring the quality of a clustering. In theory, it should be advantageous to first use cluster
analysis on a large geochemical data set to extract more homogeneous data subsets (groups) and

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6



234 CLUSTER ANALYSIS

to then perform other data analysis procedures, e.g., univariate or multivariate investigations,
on these homogeneous data subsets to study their data structure. In particular, for data sets with
many variables it has been suggested (see, e.g., Everitt, 1974) to first use principal component
analysis to reduce the dimensionality of the data and to then perform cluster analysis on the
first few principal components. This approach has been criticised because clusters embedded
in a high-dimensional variable space will not be properly represented by a smaller number of
orthogonal components (see, e.g., Yeung and Ruzzo, 2001).

There are clustering methods that are not based on distance measures, like model-based
clustering (Fraley and Raftery, 1998). These techniques usually find the clusters by optimising
a maximum likelihood function. The implicit assumption is that the data points forming the
single clusters are multivariate normally distributed, and the algorithm tries to estimate the
parameters of the normal distributions as well as the membership of each observation to each
cluster.

With applied geochemical and environmental data, cluster analysis can be used in two
different ways: it can be used to cluster the variables (e.g., to detect relationships between
them), and it can be used to cluster the samples into more homogeneous data subsets for further
data analysis. Historically these have been referred to as R-mode and Q-mode, respectively.

15.1 Possible data problems in the context of cluster analysis

15.1.1 Mixing major, minor and trace elements

In multi-element analysis of geological materials one usually deals with elements occurring
in very different concentrations. In rock geochemistry, the chemical elements are divided into
“major”, “minor” and “trace” elements. Major elements are measured in per cent or tens of
per cent, minor elements are measured in about one per cent amounts, and trace elements are
measured in ppm (mg/kg) or even ppb (�g/kg). This may become a problem in multivariate
techniques considering all variables simultaneously because the variable with the greatest
variance will have the greatest influence on the outcome. Furthermore, when variables are
being clustered, special attention needs to be taken when working with closed compositional
data (see Section 10.5). Variance is obviously related to absolute magnitude. As a consequence,
one should not mix variables quoted in different units in one and the same multivariate analysis
(Rock, 1988). Transferring all elements to just one unit (e.g., mg/kg) is not a complete solution
to this problem, as the major elements occur in so much larger amounts than the trace elements.
The data matrix will thus need to be “prepared” for cluster analysis using appropriate data
transformation and standardisation techniques (see Chapter 10).

15.1.2 Data outliers

Regional geochemical data sets practically always contain outliers. The outliers should not
simply be ignored, they have to be accommodated because they contain important information
about the data and unexpected behaviour in the region of interest. In fact, identifying data
outliers that may be indicative of mineralisation (in exploration geochemistry) or of contam-
ination (in environmental geochemistry) is a major objective of any geochemical survey and
many environmental surveys. Outliers can have a severe influence on cluster analysis, because
they can affect distance measures and distort the true underlying data structure. Outliers should
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thus be removed prior to undertaking a cluster analysis, or statistical clustering methods able
to handle outliers should be used (Kaufman and Rousseeuw, 1990, 2005). This is rarely done.
Removing outliers that occur as single points or groups of several points does not infer that
the reason for their being outliers does not have to be explained. In effect a manual clustering
process is being undertaken to create an “external” cluster whose reason for existence has to
be explained. However, their removal facilitates the subsequent formation of clusters by the
chosen criteria. Finding data outliers is not a trivial task, especially in high dimensions (see
Chapter 13).

15.1.3 Censored data

A further problem that often occurs when working with applied geochemical and environ-
mental data is the presence of censored values, i.e. values below the detection limit. For some
determinations a proportion of all results are below the lower limit of detection of the analyt-
ical method. For statistical analysis these are often set to a value of half the detection limit,
resulting in (left) censored data (see Section 2.2). However, a sizeable proportion of all data
with an identical value can seriously influence any cluster analysis procedure. For the Kola
study data sets several variables have more than 25 per cent of the data below detection. It
is very questionable whether such elements should be included at all in a cluster analysis.
Unfortunately it is often the elements of greatest interest that contain the highest number of
censored values (e.g., Au) – the temptation to include these in a cluster analysis is thus high.
In the following examples all elements with more than 3 per cent censored values have been
omitted from the cluster analyses.

15.1.4 Data transformation and standardisation

Some cluster analysis procedures do not require the data to be normally distributed. However,
it is advisable that heavily-skewed data are first transformed to a more symmetric distribution.
If a good cluster structure exists for a variable, a distribution which has two or more modes
can be expected. A transformation to a more symmetrical form will preserve the modes but
remove excessive skewness.

Most geochemical textbooks, including this one, claim that for applied geochemical and in
general environmental data, a log-transformation is generally appropriate. Each single variable
needs to be considered for transformation (see Section 10.2.4), with the Box–Cox transforma-
tion being the most flexible for minimising skewness.

An additional standardisation is needed if the variables show a striking difference in the
amount of variability, i.e. when mixing data for major, minor, and trace elements. Thus centring
and scaling the data (see Section 10.4) is usually a necessity for cluster analysis. When working
with applied geochemical or environmental data, a robust version, using MEDIAN and MAD,
should be preferred over the traditional MEAN and SD.

15.1.5 Closed data

Closed data (see Sections 10.5, 11.8, 14.1.4) can also be a problem when carrying out cluster
analysis. The distance between the observations changes if a transformation to open the data is
applied. Consequently results of cluster analyses will change. It may thus be a good idea to try
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cluster analysis with opened data in addition to cluster analysis on the simply log-transformed
and standardised data. A general problem of the additive logratio transformation is the choice
of the ratio-variable; results will change substantially when different variables are used.

15.2 Distance measures

A key issue in most cluster analysis techniques is how to measure distance between the sam-
ples (or variables). Note that “distance” in cluster analysis has nothing to do with geographical
distance between two sample sites but is rather a measure of similarity between samples in
the multivariate space defined by the variables, or a measure of similarity between variables.
Many different distance measures exist (Bandemer and Näther, 1992). Modern software im-
plementations of cluster algorithms can accommodate a variety of different distance measures
because the distances rather than the data matrix are taken as input, and the algorithm is applied
to the given input.

For clustering samples the Euclidean or Manhattan distances between the samples are often
used. The latter measures the distance parallel to the variable axes, whilst the former measures
the direct distance; usually both measures lead to comparable results. Other distance measures
like the Canberra distance (Lance and Williams, 1966) or a distance based on the random forest
proximity measure (Breiman, 2001) can give completely different cluster results or produce
highly unstable clusters. For studying the clustering of variables, additionally, correlation
measures may be used.

15.3 Clustering samples

An important and confusing task for the practitioner in using cluster analysis is choosing
between the various different clustering methods. The samples need to be grouped into classes
(clusters). If each sample is allocated into only one (of several possible) cluster(s), this is called
“partitioning”. Partitioning will result in a pre-defined (user-defined) number of clusters. It is
also possible to construct a hierarchy of partitions, i.e. group the samples into 1 ton clusters (n =
number of samples). This is called hierarchical clustering (see, e.g., Kaufman and Rousseeuw,
1990, 2005). Hierarchical clustering always yields n cluster solutions and based on these
solutions the user has to decide which result is most appropriate.

Principally, there are two different procedures. A sample can be allocated to just one cluster
(hard clustering) or be distributed among several clusters (fuzzy clustering). Fuzzy clustering
allows that one sample belongs, to a certain degree, to several groups (see, e.g., Dumitrescu
et al., 2000). In terms of applied geochemistry and environmental studies this procedure will
often yield the more interesting results because it reveals if several processes, as characterised
by the clusters, have influenced one sample. The cluster solution will then indicate to what
degree the different processes influence the samples.

15.3.1 Hierarchical methods

The input to most of the hierarchical clustering algorithms is a distance matrix (distances
between the observations). The widely used agglomerative techniques start with single sample
clusters (each sample forms its own cluster) and then they enlarge the clusters stepwise. The
computationally more intensive reverse procedure starts with one cluster containing all samples
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and then successively splits this into groups step by step. This procedure is called divisive
clustering.

In the agglomerative algorithm, where initially each sample forms its own group, the number
of clusters is reduced one by one by combining (linking) the most similar groups at each step of
the algorithm. At the end of the process there is one single cluster left containing all the samples.
A number of different methods exist to link two clusters, the best known are average linkage,
complete linkage, and single linkage (see, e.g., Kaufman and Rousseeuw, 1990, 2005). The
average linkage method considers the averages of all pairs of distances between the samples of
two clusters. The two clusters with the minimum average distance are combined into one new
cluster. Complete linkage looks for the maximum distance between the samples of two clusters.
The clusters with the smallest maximum distance are combined. Single linkage considers the
minimum distance between all samples of two clusters. The clusters with the smallest minimum
distance are linked. Single linkage will result in cluster chains because for linkage it is sufficient
that only two samples from different clusters are close together. Complete linkage will result in
very homogeneous clusters in the early stages of agglomeration, however, the resulting clusters
will be small. Average linkage is a compromise between the two other methods and usually
performs best in typical applied geoscience and environmental applications.

Because the cluster solutions grow tree-like (starting with the branches and ending with
the trunk) results are often displayed in a graphic called the dendrogram (Figure 15.1) (see,
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Figure 15.1 Dendrograms obtained from hierarchical cluster analyses of the log-transformed and
standardised Al, Ca, K and Na data for Kola C-horizon soils overlying two discrete lithological units
(lithology 82, alkaline rocks; and lithology 9, sedimentary rocks)
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e.g., Kaufman and Rousseeuw, 1990, 2005). Horizontal lines indicate linking of two samples
or clusters, and thus the vertical axis presents the associated height or similarity as a measure
of distance. The samples are arranged in such a way that the branches of the tree do not
overlap. Linking of two groups at a large height indicates strong dissimilarity (and vice versa).
Therefore, a clear cluster structure would be indicated if observations are linked at a very low
height, and the distinct clusters are linked at a greater height (long branches of the tree). Cutting
the dendrogram at such a greater height permits assigning the samples to the resulting distinct
clusters. Visual inspection of a dendrogram is often helpful in obtaining an initial estimate of
the number of clusters for partitioning methods.

To demonstrate the procedure, a subset of samples of the Kola C-horizon soils from two
lithological groups, one developed on alkaline rocks (lithology 82 – see Figure 1.2, the geolog-
ical map) and the other on late Proterozoic sedimentary rocks which occur on the Norwegian
and parts of the Russian coast (lithology 10) was created. Dendrograms based on the Al, Ca,
K, and Na analyses of these samples are shown in Figure 15.1. There are clearly two groups
that correspond well, but not perfectly, to the soils from each lithology. Hierarchical cluster-
ing based on Euclidean distances for the log-transformed and standardised data was used in
these analyses. The resulting dendrograms for average, complete and single linkage are shown
(Figure 15.1). A dashed line indicates the cut-off for the solutions resulting in two clusters.

The performance of the three procedures can be directly judged and compared. Average
linkage results in two clear clusters, and only one of the samples collected from over the
sedimentary rocks is misclassified. The result for complete linkage is very similar. Single
linkage also results in two strong clusters, however, two outliers occur in two additional
single clusters. In a further step one could identify the location of the misclassified samples
or the outliers on a map. The two maps in Figure 15.2 show the actual distribution of the
two lithologies in the survey area and the result of average linkage clustering. The one
misclassified sample occurs on the Varanger Peninsula in Norway.

Figure 15.2 Results obtained from hierarchical cluster analysis (average linkage) with the log-
transformed and standardised Al, Ca, K and Na data for a subset of the Kola C-horizon soils (right
map). The location of the samples comprising the data from two lithological units is shown in the left
map: lithology 82, alkaline rocks (circles); and lithology 9, Caledonian sediments (crosses)
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The problem with dendrograms is that the number of samples needs to be small (e.g.,
n < 100) to obtain “readable” dendrograms. With hundreds of samples, as is the case for the
complete Kola data set, dendrograms can be hard to read and appreciated as they become overly
cluttered. Maps showing the cluster memberships can profitably be used to display the results
of the analyses, and when the multivariate clusters form coherent spatial patterns, confidence
in the procedure and the validity of the results is increased.

15.3.2 Partitioning methods

In contrast to hierarchical clustering methods, partitioning methods require that the number of
clusters be pre-determined (see, e.g., Kaufman and Rousseeuw, 1990, 2005). In the case of the
above example, it is known a priori that two groups should result. In the case where nothing
is known about the samples, it is good practice to investigate the multivariate structure of the
data using projection methods (see Section 13.5) and/or undertake a hierarchical clustering
to obtain an idea of the likely number of groups. The other possibility is to partition the data
into different numbers of clusters and evaluate the results (see Section 15.5). For regional-
scale survey data a more subjective evaluation, but still useful approach, is to visually inspect
the location of the resulting clusters in a map. This exploratory approach can often reveal
interesting data structures.

A very popular partitioning algorithm is the k-means algorithm (MacQueen, 1967). It
attempts to minimise the average of the squared distances between the observations and their
cluster centres or centroids. This can usually only be approximated via an iterative algorithm
leading to a local rather than the global optimum. Starting from k given initial cluster cen-
troids (e.g., random initialisation by k observations), the algorithm assigns the observations
to their closest centroids (using, e.g., Euclidean distances), recomputes the cluster centroids,
and iteratively reallocates the data points to the closest centroid. Several algorithms exist for
this purpose, those of Hartigan (1975), Hartigan and Wong (1979) and MacQueen (1967) are
the most popular. There are also some modifications of the k-means algorithm. Manhattan dis-
tances are used for k-medians where the centroids are defined by the medians of each cluster
rather than their means. Variations on the k-means procedure are discussed by Templ et al.
(2006). A new highly extensible toolbox for centroid clustering was recently implemented
in R (Leisch, 2006) where the user can easily experiment with almost any arbitrary distance
measures and centroid computations for data partitioning.

Kaufman and Rousseeuw (1990, 2005) proposed several clustering methods which became
popular because they are implemented in a number of software packages. The partitioning
method PAM (Partitioning Around Medoids) minimises the average distances to the cluster
medians. It is thus similar to the k-medians method but allows the use of different distance
measures. A similar method called CLARA (Clustering Large Applications) is based on random
sampling. It saves computation time and can therefore be applied to larger data sets.

Figure 15.3 (left) shows a map of the results of k-means clustering for two clusters based
on Euclidean distances for the same log-transformed and standardised data used previously
(Section 15.3.1). Note that a dendrogram cannot be constructed for partitioning-based cluster
methods because there is no hierarchy. The right map shows the results of PAM clustering with
two clusters (Figure 15.3, right) based on Manhattan distances. The k-means method results
in the same sample being misclassified as by hierarchical clustering (compare Figure 15.2,
right, and 15.3, left). The PAM method is successful in classifying the samples into the known
lithological units.
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Figure 15.3 Results obtained from k-means (left) and PAM (right) cluster analyses of the log-
transformed and standardised Al, Ca, K and Na data for a subset of the Kola C-horizon soil samples.
Compare to Figure 15.2

The results of all these algorithms depend on randomly selected initial cluster centres. If
bad initial cluster centres are selected, the iterative partitioning algorithms can lead to a local
optimum that can be far away from the global optimum. This can be avoided by applying
the algorithms with different random initialisations and by taking the best (according to a
validity measure, see below) or most stable result. Additional procedures for finding the global
optimum have been described by Breiman (1996) and Leisch (1998, 1999).

15.3.3 Model-based methods

Model-based (Mclust) clustering (Fraley and Raftery, 2002) is not based on distances between
the samples but on models describing the shape of possible clusters. The Mclust algorithm
selects the cluster models (e.g., spherical or elliptical cluster shape) and determines the cluster
memberships of all samples for solutions over a range of different numbers of clusters. The
estimation is done using the Expectation Maximisation (EM) algorithm (Dempster et al., 1977).
The EM algorithm is performed on the specified numbers of clusters and with several sets of
constraints on the covariance matrices (shapes) of the clusters. Finally, the combination of
model and number of groups that leads to the highest BIC (Bayesian Information Criterion)
value can be chosen as the optimum model (Fraley and Raftery, 1998).

Figure 15.4 shows the results of model-based clustering for a subset of the Kola C-horizon
soil data overlying “alkaline” rocks (lithology 82), “sediments” (lithology 9), and “granites”
(lithology 7) using the elements Ca, Cu, Mg, Na, Sr and Zn (log-transformed and standardised).
To display the results, a PCA (Section 14.2) was used to reduce the six-dimensional space (six
variables) to two dimensions. These two first principal components reflect the main variability
of the data set (80 per cent explained variance). The main structure in the six dimensions
can thus be projected into two dimensions. Figure 15.4, left, shows the location of the three
different lithologies (three different symbols) in the reduced two-dimensional PCA space (for
comparison, see Section 13.5 for a display of these data as a minimum spanning tree). The
cluster memberships of the samples are displayed by different symbols in Figure 15.4, right.
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Figure 15.4 Results obtained from model-based cluster analysis with the log-transformed and stan-
dardised variables Ca, Cu, Mg, Na, Sr and Zn for a subset of the Kola C-horizon soil samples derived
from three lithologies: lithology 7, granites (+); lithology 9, sediments (×); and lithology 82, alkaline
rocks (•). Left plot: projection of the data on the first two principal components. Right plot: the same
projection as used for the left plot, but symbols according to the cluster result

The model-based method suggests two additional clusters beyond the expected three, and
that five clusters are the optimal solution (resulting in five symbols in the plot). Two of the
lithologies are split into two groups each. A few samples are obviously misclassified. As the
next step of data analysis, it is necessary to investigate where in the map these five clusters plot.

Figure 15.5, left, shows the location of the three selected lithologies in the survey area,
Figure 15.5, right, shows the spatial location of the five clusters. Note that the coordinates of
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Figure 15.5 Results obtained from model-based cluster analysis with the log-transformed and stan-
dardised variables Ca, Cu, Mg, Na, Sr and Zn for a subset of the Kola C-horizon soils derived from three
lithologies: lithology 7, granites (+); lithology 9, sediments (×); and lithology 82, alkaline rocks (•).
Left plot: location of the three lithologies. Right plot: distribution of the five clusters using the same
symbols as in Figure 15.4, right
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the samples were not a part of the cluster analysis. Cluster analysis still results in geographically
clearly separated groups. Both granites (lithology 7) and sediments (lithology 9) are split into
regional subgroups. The alkaline intrusions (lithology 82) are clearly separated from the other
two lithologies. Model-based clustering has thus provided a rather interesting and unexpected
result with very few (two) misclassifications; none of the granites are misclassified. Here a
map is clearly required in order to obtain an interpretation of the results of the cluster analysis.

15.3.4 Fuzzy methods

In fuzzy clustering, each observation is not uniquely allocated to one of the clusters, but they
are “distributed” in different proportions among all clusters. Thus, for each observation a mem-
bership coefficient is determined for all clusters, providing information as to how strongly the
observation is associated with each cluster. The membership coefficients are usually trans-
formed to the interval [0, 1], and they can be visualised by using a grey scale. A popular
fuzzy clustering algorithm is the fuzzy c-means (FCM) algorithm, developed by Dunn (1973)
and improved by Bezdek (1981). The number of clusters has to be determined by the user.
The algorithm calculates the cluster centroids and the membership coefficients for each obser-
vation. Alternative fuzzy clustering algorithms have been developed, e.g., Gustafson–Kessel
(Gustafson and Kessel, 1979) and Gath–Geva (Gath and Geva, 1989), which are more flexible
in detecting different cluster sizes and shapes.

Figure 15.6 displays the results of fuzzy clustering with the FCM algorithm into four
clusters using the Kola moss data set and the elements Cu, Mg, Ni and Sr (log-transformed
and standardised). Each cluster is represented on its own map. A dark symbol indicates a
high likelihood of group membership, a light symbol a low likelihood of membership of the
observation to the cluster displayed on the map. The maps show the distribution of two main
processes determining the regional distribution of elements in this data set: contamination from
the Russian nickel industry (Cu, Ni) and the steady input of sea spray (Mg, Sr) along the coast
of the Barents Sea. The upper left map shows the input of sea spray. The upper right map
shows the contamination haloes surrounding industry. The lower left map shows an interesting
outer halo surrounding the core of contamination around Nikel and Zapoljarnij. The remaining
samples fall into a cluster that is neither affected by contamination nor by the input of marine
aerosols along the coast, and probably reflects regional background in the forested parts of the
project area (Figure 15.6, lower right).

15.4 Clustering variables

Instead of clustering the samples (observations), it is also possible to cluster the variables.
When clustering variables, it may be possible to find groups of them that behave similarly. All
of the above methods can be used for clustering variables. One of the best methods to display
these results is the dendrogram arising from hierarchical clustering.

Figure 15.7 (top) shows the result of variable clustering using average linkage for the Kola
O-horizon data for all variables (log-transformed and standardised). Several clear variable
associations emerge that can be explained from their geochemical behaviour or on the basis
of knowledge concerning important processes in the survey area. For example, Cu, Ni and Co
are the three elements with very high emissions from the Kola smelters. Arsenic (As), Mo
and Cd are inferred to be comparatively minor components of the emissions by their greater



CLUSTERING VARIABLES 243

Cluster 1

0 50 100 km

N
Cluster 2

0 50 100 km

N

Cluster 3

0 50 100 km

N
Cluster 4

0 50 100 km

N

Figure 15.6 Results obtained from FCM clustering into four clusters based on the log-transformed
and standardised variables Cu, Mg, Ni and Sr for the Kola C-horizon moss data. A dark symbol colour
indicates a strong group membership of the sample in the respective cluster

distances from Cu, Ni and Co in the dendrogram. The branch linking LOI, S, Sb and Hg
indicates the major role of organic material in sequestering these elements. Na, Mg, Ca and Sr
are all important ingredients of marine aerosols, playing a determining role for the chemical
composition of the soils collected near the Arctic coast.

Figure 15.7 (bottom) displays the similarly computed dendrogram but using centred
logratio transformed and standardised data in order to remove the effects of closure. The
two dendrograms are almost identical, however, there are a few interesting differences. The
elements associated with emissions from the Kola smelters, Cu, Ni, Co, Mo and As still form
a unique group. However, Cd has now moved to be associated with Sb, Bi and Pb, which
is a more geochemically explainable association. The cluster including Ca, Mg, K, P, Hg,
LOI and S reflects the abundance of organically derived material. The marine aerosol Na–Sr
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Figure 15.7 Dendrogram obtained from hierarchical variable clustering (average linkage) of the Kola
O-horizon data set, using all log-transformed and standardised variables (top) and using all centred
logratio transformed and standardised variables (bottom)

association is more clearly differentiated from the organic matter association with centred
logratio transformed data. In several respects the centred logratio transformed data yield a
clearer set of elemental associations with larger geochemically coherent clusters being linked
at a higher level.

15.5 Evaluation of cluster validity

Because there is no universal definition of clustering, there is no universal measure with
which to compare clustering results. However, evaluating cluster quality is essential since any
clustering algorithm will produce some clustering for every data set. Validity measures should
support the decision made on the number of clusters, and they should also be helpful for
evaluating the quality of the single clusters.

As mentioned in Section 15.3.2, a rather simple method of evaluating quality of clustering for
regionalised data is to check the distribution of the resulting clusters on a map. The distribution
of the clusters can then be evaluated against knowledge concerning the survey area. It is also
likely that clusters resulting in spatially well-defined subgroups are more likely to have a
meaning than clusters resulting in “spatial noise”.

There are many different statistical cluster validity measures. Two different concepts of
validity criteria – external and internal criteria – need to be considered.

External criteria compare the partition found with clustering, with a partition that is known
a priori. The most popular external cluster validity indices are Rand, Jaccard, Folkes and
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Mallows, and the Hubert Indices (see, e.g., Hubert and Arabie, 1985; Gordon, 1999; Haldiki
et al., 2002; Milligan and Cooper, 1985).

Internal criteria are cluster validity measures that evaluate the clustering result of an al-
gorithm by using only quantities and features inherent in the data set. Most of the internal
validity criteria are based on within and between cluster sums of squares, i.e. Multivariate
Analysis of Variance (MANOVA) procedures. Well-known indices are the Calinski–Harabasz
index (Calinski and Harabasz, 1974) and Hartigan’s indices (Hartigan, 1975), or the Average
Silhouette Width of Kaufman and Rousseeuw (1990, 2005).

Figure 15.8 shows the “average silhouette width” plot for the results of the PAM algorithm
(Figure 15.3, right), one plot (Figure 15.8, left) for two PAM clusters, and the other (Figure 15.3,
right) for three PAM clusters. The sample numbers are shown along the y-axis. A grey stripe,
indicating how well the sample is represented in the cluster, is displayed for each sample. An
optimal classification of the sample will be represented by the stripe reaching 1. If a sample
does not really belong to the cluster, the stripe will be rather short, and if the sample should
in fact belong to another cluster, a stripe in the negative direction may result. Figure 15.8, left,
shows that two good clusters were obtained. Sample 406 shows a poor group membership in
the first cluster, and sample 262 does not really fit into either of the two clusters but is placed
into cluster 2. The quoted average silhouette width of 0.59 indicates the overall quality of the
clustering. It can aid the decision as to how many clusters should be selected. If PAM is run for
3 clusters the diagram shown in Figure 15.8, right, is generated. It is obvious that the overall
cluster quality is much worse than in the two-cluster case; the average silhouette width has
declined to 0.32.
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Figure 15.8 Average silhouette width plot (Kaufman and Rousseeuw, 1990, 2005) of the results of
PAM clustering. The left plot relates to Figure 15.3, right, for two clusters, the right plot presents the
result if three clusters are selected
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From a practical point of view, an optimal value of the validity measure does not imply that
the resulting clusters are meaningful in geochemical or environmental contexts. Some of these
criteria evaluate only the allocation of the data to the clusters. Other criteria evaluate the form
of the clusters or how well the clusters are separated. The resulting clusters are the best for the
partitioning algorithm and parameters employed and are evaluated according to the validity
measure selected. The measures provide good results when a very clear cluster structure exists
in the data. Unfortunately, when working with applied earth science and environmental data,
such good clusters are rare. Thus cluster quality measures often fail to be usefully informative
when working with such data, and the best approach to evaluating cluster quality is often the
most simple one: look at the results on a map.

15.6 Selection of variables for cluster analysis

Multivariate techniques may be used in order to reduce the dimensionality of a data set or to
learn something about the internal structure within the variables and/or samples. It may thus
appear desirable to perform cluster analyses with all available samples and variables. However,
as already observed when performing principal component or factor analysis (Chapter 14), the
addition of only one or two irrelevant variables can have drastic consequences on defining the
clusters. The inclusion of only one irrelevant variable may be enough to hide the real clustering
in the data (Gordon, 1999). The selection of the variables to enter into a cluster analysis is thus
of considerable importance when working with applied earth science and environmental data
sets containing a multitude of variables.

Figure 15.9 left shows the results of cluster analysis (Mclust with six clusters) performed
with all variables (log-transformed and standardised) and all samples from the Kola O-horizon
data. The analysis indicates the presence of an important process along the coast and the
presence of the industrial complexes at Monchegorsk and Nikel/Zapoljarnij. It also indicates

Figure 15.9 Left: results of cluster analysis (Mclust with six clusters) performed with all variables
(log-transformed and standardised) and all samples from the Kola O-horizon data set. Right: cluster
analysis (Mclust with three clusters) performed with three key variables (Co, Cu and Ni – log-transformed
and standardised) indicative of industrial contamination only
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the existence of an important north–south and east–west change in cluster membership related
to biological processes.

Another reason for variable selection may be a desire to focus the analysis on a specific
geochemical process. Such a process is usually expressed by a combination of variables, and
using these variables for clustering facilitates the identification of those samples or areas where
the process is present or non-existent. The variables could simply be chosen based on expert
knowledge. It is also possible to apply variable clustering (see above) and select variables which
are in close association (i.e. on one branch of the cluster tree) to highlight a certain process
or to study in more detail. Figure 15.9 right shows the results of cluster analysis when only
the key elements for contamination from the nickel industry, Co, Cu and Ni (see Figure 15.7),
are included. Here the clusters identify a contaminated core area in the near vicinity of the
smelters at Nikel/ Zapoljarnij and Monchegorsk, and a halo of lesser contamination covering
most of the Russian survey area. The non-contaminated areas in Finland and northern Norway
emerge as the third cluster.

Variable clustering can of course also be used to select single key variables from each
important cluster to simply reduce dimensionality for clustering samples. This approach may
be particularly useful with data sets that have an insufficient numbers of samples, n, to support
the number of variables, p (see discussions in Sections 13.3 and 14.1.8).

15.7 Summary

Cluster analysis can be used to structure the variables or to group the observations. Variable
selection is crucial to the outcome of cluster analysis. Just one variable more or less entered into
cluster analysis can drastically change the results. As such cluster analyses are an exploratory
method to better understand the inner structure of the data; they should not be misused as a
“statistical proof” for any identified associations. As a general rule, ensuring symmetry of the
variable distributions (e.g., via using a log-transformation for each variable) and standardisation
is a necessary part of data preparation before applying cluster analysis. Depending on the
clustering method, outliers can heavily affect the results. It may thus be necessary to remove
outliers, to form “special” clusters requiring explanation, prior to carrying out a cluster analysis.
Closure is usually not as serious a problem for cluster analysis as for correlation-based methods.
It is still advisable to also try cluster analysis with opened data.

It is difficult to provide a general recommendation concerning the “best” cluster method.
With the Kola Project data the most interesting results were obtained with model-based clus-
tering (algorithm Mclust), but also other simpler algorithms led to useful interpretations and
maps. If observations are clustered (and not variables) the visualisation of the clusters in maps
is useful. Such maps are often far more helpful than plots of validity measures or dendrograms,
the latter being particularly difficult to read for applications with many observations.



16
Regression Analysis (RA)

Regression analysis is used to predict values of a dependent or response variable from the values
of one or more independent or explanatory variables (see, e.g., Fox, 1997; Draper and Smith,
1998). The dependent variable y is the variable that will be predicted using the information of
the independent, explanatory, variable(s) x1, . . . , xp with p ≥ 1. When dealing with only one
x and one y variable for correlation analysis, which is somewhat related to regression analysis,
the choice of the x and y variable has no influence on the resulting correlation coefficient. For
regression analysis, however, this choice is of paramount importance. Figure 16.1 shows this for
the example of Ca and Sr used in Figure 6.3, right. In general, the higher the Pearson correlation
coefficient between the x and y variable, the more similar regression lines will result. When
plotting the scatterplot matrix with additional regression lines, it is thus important to look at
the mirrored matrix as well or to plot the regression lines for x versus y and for y versus x (for
an example see Figure 8.14).

Regression analysis could, for example, be interesting if one variable is very difficult or very
expensive to analyse or the determinations were of poor quality (see Chapter 18). It could thus
be tempting to predict values of this variable using analytical results of (an)other variable(s).
In practice a number of measurements for the x and y variable are needed to build a model for
prediction. Such a relation could take the simple form of a linear model, or more generally of
a non-linear model (see, e.g., Seber and Wild, 2003).

The close relation between Cu and Ni was highlighted in Figure 6.3 by adding a least squares
regression line (Gauss, 1809; Draper and Smith, 1998). Fitting the line also accentuated that
the relation is not really linear but rather curvilinear. Figure 16.2 shows both cases, however,
for selected data points only, to be able to better demonstrate the parameter estimation for the
model. A linear model was fitted in the left hand plot and a quadratic model was used in the
right hand plot. The regression equations take the following form:

Linear: log Ni = b0 + b1 log Cu + ε,

Quadratic: log Ni = b0 + b1 log Cu + b2(log Cu)2 + ε,

where ε represents the error, which is mathematically minimised using some criterion,
frequently least squares.

These equations are then used to estimate the unknown regression parameters b0 and b1
in the linear model and b0, b1, and b2 in the quadratic model, from the measured values of

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6
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Figure 16.1 Sr versus Ca and Ca versus Sr from the Kola C-horizon soil data (only samples from Russia
used) with fitted linear (least squares) regression lines

Cu and Ni. To get a good fit of the model, the error for each single point has to be as small
as possible. There are many different methods to estimate the regression parameters such that
the error is minimised, the most frequently chosen approach is the least squares method. It
minimises the sum of the squared errors. The resulting least square regression parameters lead
to the line and curve shown in Figure 16.2. The vertical lines shown in the figure indicate the
magnitude of the errors. The errors are the differences between the observed y-values and the
predicted values and they are usually called the residuals. Another minimisation procedure
is, for example, the trimmed sum of squared residuals (Rousseeuw, 1984), where the largest
squared residuals are trimmed (down-weighted). This leads to the well-known least trimmed
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Figure 16.2 Cu versus Ni, Kola moss data set, with linear (left) and quadratic (right) regression models.
Although the model was built using all measurements, only 50 points are shown in the diagrams to
be able to plot the residuals (errors that have been minimised) with vertical lines from data points to
regression lines
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Figure 16.3 Cu used to predict Ni, Kola moss data. Left plot: linear regression model with all data
points; right plot: map showing the regional distribution of the residuals

sum of squares (LTS) regression method, which is highly robust (see Figure 6.4). Other alter-
natives are not discussed here; the interested reader is referred to, for example, Rousseeuw and
Leroy (1987), Maronna et al. (2006), and Section 16.6.

Once the model is established the regression parameters are known and new measured x-
values can then be used to predict corresponding y-values. For the above example we obtain
the following formula:

Linear: predicted log Ni = −0.52 + 1.39 log Cu,

Quadratic: predicted log Ni = −0.90 + 2.12 log Cu − 0.30(log Cu)2.

Another application of regression analysis would be to compare the measured y-values with
the predicted y-values, i.e. to study the residuals (and their location in space).

In the above examples one x variable was used to predict the values for the y variable.
For building a better model, several variables could be used to predict the y variable. Thus
multiple regression uses two or more explanatory variables. Furthermore, there are different
computational procedures that can be applied to multiple regression. The term “regression
model” is frequently used to describe the result of an RA, and the computational process is
referred to as fitting a model to the data. In this sense a data-based model has been constructed
to predict the unknown value of a variable from measurements of other known variables. This
chapter focuses on multiple regression and describes several of the available procedures.

16.1 Data requirements for regression analysis

16.1.1 Homogeneity of variance and normality

The most important requirement for undertaking practical regression analyses is that the vari-
ances of the response variable across the range of the data are similar. This property of
homogeneity of variance is also referred to as homoscedasticity, and lack of homogeneity
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Figure 16.4 Scatterplot of copper (Cu) versus nickel (Ni) in moss samples from the Kola Project.
Left side: original data scale; right side: log-scale. Ni is the dependent and Cu is the independent
(or explanatory) variable

as heteroscedasticity. Figure 16.4 demonstrates the visual impact of heteroscedasticity for Cu
and Ni determined in Kola Project mosses. In Figure 16.4, left, the scatterplot is for the un-
transformed data; the visual expression of heteroscedasticity is the “fanning out” out of the
points as they become more distant from the origin. Thus for higher values of Cu the variance
of Ni is higher than for low values, i.e. in a linear regression model the residuals will increase
with increasing values of Cu.

Figure 16.4, right, displays the same data plotted with logarithmic scaling, the same as
plotting the logarithms of the values. Applying a logarithmic transformation has removed the
“fanning” so that the data largely fall within a parallel band, which in the case of the moss data
is slightly curved.

In many statistical texts a normal distribution of the residuals is stated as the most
important consideration. However, as the main objective of RA is prediction, homogeneity
of variance is the more important for these analyses to ensure that predictions across the
range of the explanatory variables are made with similar precision. Normality of the residuals
becomes important if inference tests or confidence intervals based on normal theory are to be
computed.

Transformations are thus an important consideration in RA; the paper by Bartlett (1947)
is still an important contribution, more modern treatments are available in text books such as
Cook and Weissberg (1982) or Johnson and Wichern (2002). However, in contrast to other
multivariate techniques, many practitioners do not routinely apply transformations to the vari-
ables prior to commencing an RA, and then only consider transformations depending on the
results of regression diagnostics (see below). It is also possible to visually inspect scatterplots
of the dependent variable against all response variables for homogeneity of variance and decide
on required transformations before commencing the RA. Note that the x-variable(s) as such
do(es) not need to follow any statistical distribution. Transformations are used to reach a linear
relation to the y-variable and ensure homogeneity of variance rather than to approach normal
distributions.
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16.1.2 Data outliers, extreme values

Data outliers and extreme values take on a special importance in regression analysis. Their
presence at large distances and away from the apparent trend in the data can “lever” the
regression line (simple regression) or (hyper)plane (multiple regression) away from its “true”
position (see, e.g., Rousseeuw and Leroy, 1987; Maronna et al., 2006). In simple regression
outliers and extreme values can easily be detected by inspecting a scatterplot (xy-plot, see
Figure 16.4, right) of the two variables. Outliers and extreme values acting as possible leverage
points will immediately be visible. In the example (Figure 16.4) it is questionable whether the
two observations deviating from the linear trend are in fact influential on the estimation of the
regression line as they lie relatively close to the apparent trend in the data. In multiple regression
it is more difficult to graphically identify outliers due to the number of variables that need to be
inspected simultaneously; the scatterplot matrix (see Section 6.7, Figure 6.14) can help in this
respect. Additionally, the statistical distributions of the response and explanatory variables can
be visually inspected to detect any obvious outliers or extreme values. Alternatively, outliers
and extreme values can be left in the data and regression diagnostics computed to identify them.
These values may be removed at a later stage, or robust procedures employed that down-weight
outliers and extreme values, so minimising their influence (see, e.g., Rousseeuw and Leroy,
1987; Maronna et al., 2006).

Simple regression and its visualisation were introduced in Section 6.2 where adding linear
regression lines to scatterplots was discussed. Figure 6.4 (right) clearly illustrates the impact
of using a robust fitting procedure; the position of the robust regression line is dominantly
controlled by the main mass of the data, and the impact of unusual values at higher levels of
Sr but lower levels of Ca has been significantly reduced.

16.1.3 Other considerations

RA is based on an underlying correlation between the response and explanatory variables.
If no such correlation exists, an effective regression model for prediction cannot be derived.
Conversely, if the data are spatially correlated (see Section 14.1.7), certain relationships may
be over-represented as the attributes of proximal samples are more similar to each other than to
the attributes of samples located more distantly. This can lead to biased estimates. This problem
is fundamental to spatial data as used in applied geochemical and environmental studies, and is
dependent on sample density (see discussion in Section 5.7.2 concerning spatial dependency).

Censored data (Section 2.2) should be avoided, as in PCA, FA, and Discriminant Analysis
(DA, see Chapter 17); a large number of observations with similar low values set to half (or
some similar proportion) of the detection limit can become highly influential and distort the
prediction model being estimated.

RA should not be applied to inhomogeneous data. Examples are data sets that are separated
in the data space and have different internal (covariance) structures. The resulting regression
model will be attracted to the line joining the two centroids if there are two groups or clusters
of data. If there are more groups, the position of the regression line in the multivariate space
is probably meaningless in the context of the subject matter.

Dimensionality is an important consideration as in other multivariate data analysis tech-
niques. The number of observations must be larger than the number of explanatory variables. If
they are not, computational problems arise and a regression model cannot be computed using
standard procedures. In most instances these problems can be avoided by having the number of
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observations exceed the number of explanatory variables by at least a factor or three, and five
is better. In addition, when some of the explanatory variables are highly correlated, a property
named collinearity, computational problems may also be encountered and subsequent tests on
the regression coefficients will be unreliable (see, e.g., Draper and Smith, 1998). Approaches
to this problem will be discussed in the final section of this chapter.

Closure can be an issue in regression analysis. It can be advisable to try an additional
regression analysis with the opened data (see Section 10.5). The final decision on whether the
closed array or the opened data should be used can then be based on the quality of the results
of the RA (see below).

16.2 Multiple regression

As an example, using the Kola Project C-horizon soil data, Co determined by ICP-AES after
an aqua-regia digestion is predicted from the Cr data determined by both ICP-AES after the
same aqua-regia digestion and by INAA. The INAA determination is total and measures the Cr
in all mineralogical forms, whereas the ICP-AES data only measures the Co and Cr liberated
from minerals that can be decomposed by aqua-regia. When dealing with three variables it is
no longer possible to fit a single line or curve to the data, but rather a plane or a surface.

Figure 16.5 (left) displays the plane through the data based on the logarithms of the two
Cr-determinations in an attempt to predict the logarithm of the Co values of the soil samples.
There are a number of observed Co values that are distant from the plane, i.e. they have large
residuals. The regression procedure has found the plane for which the sum of the squares of
the distances from the points to the plane parallel to the Co axis is a minimum. This is also
known as a Least Squares (LS) fit. The distances between the observations and the plane, the
residuals, are visualised by lines in Figure 16.5. An inspection of the plane reveals that it is

Figure 16.5 Cobalt (Co) (response, or dependent, variable) determined after an aqua-regia digestion
versus Cr determined both after an aqua-regia digestion and by INAA (all variables log-transformed),
Kola C-horizon, shown in 3-D plots. Left diagram, linear model; right diagram, second-order polynomial
surface
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intersecting a curved surface of points. At low levels of Co there appear to be more points
below the plane than above, and at higher (medium) levels of Co perhaps more points are
above the plane than below. To accommodate this apparent curvature a more complex model
can be estimated that includes a quadratic term. This is achieved by using a second order
polynomial, which not only includes squared terms for the two Cr determinations but also
their cross-product. The result of fitting this polynomial surface is illustrated in Figure 16.5
(right). The main curvature introduced accommodates the variability of Cr determined by
ICP-AES on the same solution in which Co was determined. The other curvature related to
the total (INAA) Cr and the cross-product is minimal. A question arises as to whether this
increase in fit is meaningful, and the polynomial terms that lead to a significant improvement,
reduction in the residual sums of squares, of the fit can be identified by an ANOVA (see, e.g.,
Scheffé, 1999). If some polynomial terms do not contribute significantly to the model they can
be dropped and the model recomputed. Any “overfitting” just for the sake of improving the fit
should be avoided. The question in the context of the problem is always whether any additional
terms lead to a better understanding? Can a meaningful interpretation be provided for model
coefficients including powers and cross-products? If the answer is “no”, then it is better to stay
with a simple model that can be explained in terms of simple physical and chemical processes,
and try to understand any other processes that lead to the large residuals, situations where the
model does not fit the data well.

In regression modelling when there are more than two explanatory variables, the plane
becomes a hyperplane that cannot be graphically visualised. The next step in regression mod-
elling is to determine the quality of the fit. Can it be improved by some simple means, are
some of the residuals significantly large in the context of the study being undertaken to warrant
further attention, and are any of them influential on the orientation of the hyperplane in the
data space; do they “lever” it?

16.3 Classical least squares (LS) regression

In previous chapters (e.g., Chapter 7) it has been stressed that (1) geochemical background is
a range; and (2) different geochemical or environmental entities are characterised by different
ranges and central tendencies (MEANS or MEDIANS, etc.). In some instances such a simple
discrete, “pigeon hole”, approach is not the most appropriate. In reality changes may be grada-
tional, and some sort of sliding scale might be advantageous. The use of RA is one approach
to accommodating this reality.

The fundamental rules of crystal chemistry control the levels of trace elements that occur
in minerals and rocks. In general, an “expected amount” can be determined based on the
major element geochemistry that controls the presence and absence of the minerals that might
compose a rock, soil, or sediment. Observations that contain significantly more or less of a
trace element than might be expected are particularly interesting. These must have come under
the influence of processes other than the main one(s) explained by the model.

16.3.1 Fitting a regression model

As an example, the geochemistry of Be can be studied in the context of the major elements that
reflect the mineral composition of the C-horizon soil. A regression model was developed for
logarithmically transformed Be, and the major and minor elements in the soil as determined
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Figure 16.6 Map of Be in Kola Project C-horizon soil with Tukey boxplot-based divisions for log-
transformed data (left). Similar Tukey boxplot-based plot for back-transformed estimates of log10(Be)
using a least squares (LS) regression model employing the major elements (right)

by XRF, i.e. Si, Al, Fe, Mg, Ca, Na, K, Ti, Mn and P. The major and minor elements
were not transformed as most of the major elements were not positively skewed, in fact
many were negatively skewed, and the central parts of the distributions for the minor
elements were unskewed. The original Be data and the predicted values from the least
squares (LS) regression model are presented as maps in Figure 16.6 (left and right panels,
respectively). A visual inspection indicates the similarity between the observed and predicted
data.

The quality of the fit of the model for Be may be quantified by determining the proportion
of the variance of the original data that is explained by the variance of the predicted values.
For the model in Figure 16.2 (right) this is 69.5 per cent (see Table 16.1); the higher the value
of the fit the closer the predicted values come to the original observed values.

It can be argued that the above model should have been developed using “opened” major
and minor element data. The application of that approach is demonstrated in the context of
robust regression modelling (see Section 16.4).

16.3.2 Inferences from the regression model

A typical output of RA is shown in Table 16.1. The estimated LS regression coefficients of
the explanatory variables in the model and the inference statistics of the model, indicating
the influence of each variable on the model, are displayed (see, e.g., Fox, 1997; Draper and
Smith, 1998). The intercept, which is an estimated additive parameter of the regression model,
ensures that the hyperplane passes through the average of both the response and explanatory
variables. The remaining regression coefficients determine the tilt of the hyperplane. Due to
the fact that the explanatory data have not been scaled, the absolute values of the regression
coefficients cannot be compared. However, the signs indicate whether increasing or decreasing
levels of the explanatory variables lead to increasing or decreasing levels of the response
variable.
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Table 16.1 Table of Least Squares (LS) regression coefficients and inference statistics for the
log10(Be) versus major element model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.435839 0.504842 8.787 < 2e-16 ***
Al_XRF -0.099572 0.015680 -6.350 4.27e-10 ***
Ca_XRF -0.149608 0.020062 -7.457 3.14e-13 ***
Fe_XRF -0.080976 0.015005 -5.397 9.81e-08 ***
K_XRF 0.139508 0.022843 6.107 1.83e-09 ***
Mg_XRF -0.052704 0.024974 -2.110 0.03524 *
Mn_XRF 1.934213 0.401166 4.821 1.81e-06 ***
Na_XRF -0.005727 0.021113 -0.271 0.78627
P_XRF -0.731348 0.325637 -2.246 0.02508 *
Si_XRF -0.127679 0.010734 -11.895 < 2e-16 ***
Ti_XRF 0.345275 0.111709 3.091 0.00209 **
---
Signif.codes:0’***’0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.19 on 595 degrees of freedom
Multiple R-Squared: 0.695, Adjusted R-squared: 0.6899
F-statistic: 135.6 on 10 and 595 DF, p-value: < 2.2e-16

The positive coefficient for K reflects the elevation of Be in potassic rocks and their deriva-
tives, whereas the negative coefficients for Fe, Mg and Ca reflect the tendency of Be levels
to be lower in mafic rocks. The negative coefficients for Al and Si, and positive coefficients
for Ti and Mn may be related to soil-forming processes rather than the relationship of Be
to these elements in source rocks. The standard errors and t-values are intermediate steps to
determining the significance, p-values, of the regression coefficients (see penultimate column
of Table 16.1). For these significance determinations to be correct, the regression residuals
should be normally distributed.

This will be checked at a later stage of graphical inspection of the model fit (see Figure 16.7,
lower left). The p-values indicate the probability that the value of the regression coefficient
could have arisen purely by chance. Commonly, a cutoff of 0.05 (5 per cent) is used to determine
if the variable concerned contributes significantly to the regression model. To aid appreciation
of the table, the significances are coded with asterisks; the more asterisks the greater the
significance of the coefficient. Table 16.1 indicates that the intercept and all the major and
minor elements except Na contribute significantly to the regression model. The conclusion is
that Na could be dropped from the model as its variability does not contribute significantly to
the estimation of Be.

Additional information in Table 16.1 concerns the quality of the fit and the overall validity
of the regression model. The quality is expressed by the measures, multiple R-squared
and adjusted R-squared. Values close to 1 indicate excellent fit. The fit expressed by the
multiple R-squared measure of 69.5 per cent is dependent on the number of explanatory
variables. The adjusted R-squared measure penalises for the number of explanatory variables.
The adjusted R-squared measure is displayed so that it is possible to be able to compare
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Figure 16.7 Map of LS residuals for the Be regression model (upper left) plotted with Tukey boxplot-
based divisions. Plot of residuals versus fitted (predicted) values (upper right); QQ-plot of standardised
residuals (lower left); and plot of Cook's distances versus observation number (lower right)

between models based on different numbers of explanatory variables, should that be required.
Finally, an F-statistic is computed to indicate whether the model has satisfactorily explained
the data variability. If the associated p-value exceeds 0.05, it is an indication that the
model has failed to adequately explain the data variability. However, in the example the
p-value is extremely small, as could be expected based on the high multiple R-squared
measure.
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16.3.3 Regression diagnostics

As has been pointed out, the magnitude of the residuals is of importance in determining the
validity of the model, and their location is of interest in the subject matter context. Figure 16.7
(upper left) displays a map of the LS residuals using a Tukey-based EDA symbology. The
adjacent plot (upper right) is of the residuals (y-axis) versus the predicted (fitted) values (x-
axis); the dotted lines correspond to the upper and lower inner fences of the Tukey boxplot. As
such, points falling outside these limits may be considered outliers, and be of particular interest.
The negative outlying residuals display little spatial structure, though there tends to be some
clustering north-west of Monchegorsk. In contrast, the positive outlying residuals are clustered
around Apatity, south-west of Lake Inari in northern Finland and in northern Norway. These
indicate areas with abnormally high Be levels (compare Figure 16.7, left). It is known that the
alkaline intrusive rocks at Apatity and the soils derived from them are elevated in Be. The areas
of high Be residuals in northern Finland and Norway may represent the presence of similar rocks
or sedimentary units containing detritus derived from the weathering of such rocks. The absence
of observations with larger absolute residuals at higher predicted levels may indicate that the LS
regression has been levered too close to those points, with the result that the residuals are small.

Figure 16.7 (lower right) displays a QQ-plot of the standardised residuals, i.e. residuals
divided by their standard error (see Table 16.1). The central part of the distribution of the
standardised residuals follows a normal distribution quite closely. However, there are clearly
outliers occurring at both ends of the distribution. The distribution lacks observations with low
residuals, and there appears to be an excess of residuals with high values, indicating that the
residuals are positively skewed. This finding indicates that the statistical inferences drawn from
Table 16.1 should be treated with caution. Finally, Figure 16.7 (lower right) presents the Cook’s
distances (Cook and Weissberg, 1982) for the observations. The value of the Cook’s distance
is high (e.g., >1) when the individual observation for which the Cook’s distance is computed
exerts a high influence on the estimation of the regression coefficients. The conclusion from this
is that individuals with Cook’s distances >1 have high leverage and are capable of inducing
large changes in the regression coefficients. Therefore, an improved model may be derived
by deleting observations with large Cook’s distances from subsequent regression analyses. In
practice, when outliers are clustered in the data space, measures such as Cook’s distance may not
always be effective in the detection of the most influential observations in the data. Figure 16.7
(lower right) indicates that the 527th observation in the data set is the most influential; and the
QQ-plot (Figure 16.7, lower left) indicates that the particular Be value is abnormally low.

16.3.4 Regression with opened data

The above example is a typical case of using closed data in multivariate data analysis. The
major elements from total analysis (XRF results, recalculated to element percentage) were
used in the regression model. Recalculated to the oxides (Al2O3, CaO, Fe2O3, K2O, . . . )
these variables sum up to 100 per cent (with LOI which was not included here). According
to Aitchison (1986) this is a classical case where the data have to be opened. In this example
only the additive logratio transformation can be used. The centred logratio transformation
cannot be used in regression analysis due to singularity problems (Section 10.5.2). When
using the isometric logratio transformation the relation to the original variables is lost and
the inference statistics cannot be interpreted. Ti is chosen as ratioing variable for the additive
logratio transformation.
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Table 16.2 Table of least squares (LS) regression coefficients and inference statistics for the
log10(Be) versus additive logratio transformed major element data model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.40045 0.18098 18.789 < 2e-16 ***
Al_XRF -0.04559 0.16833 -0.271 0.786586
Ca_XRF -0.32076 0.06853 -4.680 3.55e-06 ***
Fe_XRF -0.68390 0.16367 -4.179 3.37e-05 ***
K_XRF 1.14638 0.08416 13.622 < 2e-16 ***
Mg_XRF 0.30751 0.08036 3.827 0.000144 ***
Mn_XRF 0.63046 0.07903 7.977 7.68e-15 ***
Na_XRF 0.27470 0.08527 3.222 0.001344 **
P_XRF -0.06331 0.05100 -1.241 0.214987
Si_XRF -1.85900 0.10342 -17.974 < 2e-16 ***
---
Signif.codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.2 on 596 degrees of freedom
Multiple R-Squared: 0.6618, Adjusted R-squared: 0.6567
F-statistic: 129.6 on 9 and 596 DF, p-value: < 2.2e-16

Table 16.2 shows the regression coefficients and the inference statistics for regression of
log-transformed Be versus the additive logratio transformed major element data. Figure 16.8
shows the corresponding plots with the regression diagnostics. Although some changes are
obvious (Al XRF and P XRF leave the model, Na XRF enters the model) the adjusted R-
squared is almost the same (0.69 vs. 0.66) and the prediction map (Figure 16.8 upper left) is
fairly comparable. A problem with the interpretation is of course that it is no longer possible to
discuss the variables as such but only their ratios to Ti. It can be discussed whether the minor
changes are worth losing one variable; the direct interpretability and the risk that results will
change with the choice of another ratioing variable.

16.4 Robust regression

The analysis above indicates the presence of one or more outliers that could have levered the
regression hyperplane. To limit the effect of these outliers, a robust regression procedure was
applied to the data (compare Section 6.2). Of the various procedures available, least trimmed
squares (LTS) was selected because it is highly robust, and a fast algorithm for its computation
is available (Rousseeuw and Van Driessen, 2002). In contrast to LS regression, where the sum
of all squared residuals is minimised, in LTS regression the sum of some proportion of the
smallest squared residuals is minimised. This proportion may be varied from 50 to 100 per cent,
with a default of 50 per cent that provides the maximum protection against outliers.

In the following, LTS is used for the opened data based on the additive logratio transforma-
tion with Ti as divisor.
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Figure 16.8 Map of LS residuals for the Be regression model with opened major element data (upper
left) plotted with Tukey boxplot-based divisions. Plot of residuals versus fitted (predicted) values (upper
right); QQ-plot of standardised residuals (lower left); and plot of Cook's distances versus observation
number (lower right). Compare with Figure 16.7

16.4.1 Fitting a robust regression model

The estimated LTS regression coefficients of the additive logratio transformed elements in the
model are displayed in Table 16.3. Al and P now enter the model, the only coefficient that is not
statistically significant (five per cent) is Fe. In comparison with the LS model for the opened
data (see Table 16.2) one of the coefficients has changed sign (Al, from negative to positive).
Positive coefficients indicate that as the element forming the numerator of the additive logratio
transformation increases relative to Ti (indicating increasing amounts of minerals associated
with the weathering of felsic rocks), the predicted Be levels increase. This is mineralogically
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Table 16.3 Table of least trimmed squares (LTS) regression coefficients and inference statistics
for the log10(Be) versus the additive logratio transformed (Ti) major element data model

Estimate Std. Error t value Pr(>|t|)
Intercept 2.13331 0.16903 12.621 < 2e-16
Al_XRF 1.52971 0.14478 10.566 < 2e-16
Ca_XRF -0.99380 0.06826 -14.560 < 2e-16
Fe_XRF -0.25991 0.13805 -1.883 0.06028
K_XRF 0.73345 0.06869 10.678 < 2e-16
Mg_XRF 0.39079 0.06702 5.831 9.51e-09
Mn_XRF 0.17227 0.06806 2.531 0.01165
Na_XRF 0.35567 0.08380 4.244 2.58e-05
P_XRF -0.12674 0.04183 -3.030 0.00256
Si_XRF -2.37134 0.09423 -25.165 < 2e-16

Residual standard error: 0.1484 on 538 degrees of freedom
Multiple R-Squared: 0.7851, Adjusted R-squared: 0.7815
F-statistic: 218.4 on 9 and 538 DF, p-value: < 2.2e-16

reasonable for all elements with positive coefficients except possibly Mg and Mn. However,
as the sample material is soil from a region of widely diverse geology, a large variety of
geochemical processes have acted on the soils, leading to this relationship. Additive logratio
transformed Si has a negative coefficient, as it did in the LS model, again likely to the complex
history of soil development. As Ti was used to create the logratios, it is no longer present as
coefficient in Table 16.2 and 16.3, reducing the number of variables by one (compared to the
LS model with “closed” data shown in Table 16.1).

The fit of this new model as measured by the adjusted R-squared value, which takes into
account the reduction in the number of explanatory variables, is 78 per cent. This compares
favourably with the 66 per cent fit for the LS model.

16.4.2 Robust regression diagnostics

Regression diagnostics for the new LTS model for the variable Be are presented in Figure 16.9.
The QQ-plot includes the residuals for both the observations included in the final LTS model
(circles) and those excluded (pluses). In comparison with the LS model (see Figure 16.8, lower
left), the included observations come much closer to a normal distribution. The adjacent plot
(Figure 16.9, upper right) uses the same symbology and plots the standardised LTS residuals
versus the predicted (fitted) values. The distribution of the observations included in the final LTS
model (i.e. those plotted as circles) shows no systematic relationship or structure, indicating
the appropriateness of the model. However, negative outlying residuals are clustered at higher
predicted values for Be, while positive outlying residuals are spread across the range of the pre-
dicted values. The fact that the negative residuals are clustered at high fitted values may indicate
the final model does not completely accommodate all the variation due to natural variability.
The robust LTS regression model provides a fit that accommodates the dominant geochemical
processes, and this may lead to exclusion of variability due to rarely occurring rock types.
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Figure 16.9 Robust regression diagnostics for the Be regression model (compare Figure 16.8). QQ-plot
of the standardised LTS residuals (upper left); plot of the LTS residuals versus fitted (predicted) values
(upper right); plot of standardised LTS residuals versus robust Mahalanobis distances (lower left); and
map (lower right) indicating the location of residuals with different characteristics using the symbology
of the residuals versus distances plot (lower left)

The diagnostic plot of standardised LTS residuals versus robust Mahalanobis distances
(Figure 16.9, lower left) provides insight into the data structure (see also Sections 13.3 and
13.4). The leverage any observation can exert on a regression model is related to both its posi-
tion in the data structure of the explanatory variables, as measured by the Mahalanobis distance,
and the magnitude of the residual (Rousseeuw and Van Driessen, 2002; Maronna et al., 2006).
Thus, observations may be divided into six groups. The majority of observations have both
low absolute residuals, and low Mahalanobis distance (small black dots). These observations
have low leverage. Similarly, observations with larger absolute residuals but low Mahalanobis
distances (vertical outliers) exert little leverage on the model (open squares for positive resid-
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uals, open circles for negative residuals (in the example no observations occur in this class)).
The remaining observations are all capable of exerting leverage on the model. Those with small
absolute residuals (pluses) are good leverage points and anchor the regression hyperplane in
the data space, improving the precision of the estimates of the regression coefficients. In con-
trast, observations that have a large Mahalanobis distance and large absolute residuals are bad
leverage points (black squares for positive residuals, black bullets for negative residuals). The
LTS procedure excludes these observations from the estimation of the regression coefficients,
making the procedure robust to their presence. Without such a procedure the inclusion of these
bad leverage points in a classical LS model will lead to the model failing to represent the
dominant underlying data relationships (compare Figure 6.4, right).

Figure 16.9 (lower right) presents a map where the observations have been divided into the
six groups according to the magnitude of their residuals and their ability to lever the classical LS
model. Of particular interest to applied geochemists and environmental scientists are observa-
tions associated with large absolute residuals. Those with low Mahalanobis distances are out-
liers for the response variable, while those with high Mahalanobis distances are outliers in both
the response and explanatory variable space. Presentation of this information in a map permits
their spatial distribution to be displayed and the presence of any spatial clustering determined.

The map draws attention to the two alkaline intrusions near Apatity, an almost circular
feature along the Finnish–Russian border within the granulite belt (compare Figure 1.2, the
geological map) and to the sediments along the Norwegian coast. These are the areas where
the original data show strong deviations from the regression model. It is thus informative to
compare the map in Figure 16.9 with the map of the raw Be data (see Figure 16.6, left). Many
of the observations identified as high bad leverage points are characterised by background or
high background Be levels. Only those samples from around Apatity and one site in Finland
were classed as high outliers in the original data. The low bad leverage points occurring in
northern Norway are all classed as background or high background samples together with one
positive outlier. The leverage map provides a completely different story indicating that relative
to their major element composition, these soil samples are depleted in Be. The second group of
low bad leverage points that occur along the Russian–Finnish border is also interesting. These
form a coherent pattern of 17 observations with a wide range of Be levels from low to high
background. Clearly, the soils of this area have been identified as being Be depleted. Whether
this is due to the properties of the soil parent material, or due to weathering and soil-formation
processes is not known. Possibly, the most significant finding from this regression analysis are
the soil samples from northern Norway exhibiting large positive residuals that may indicate
the presence of either unmapped higher Be rocks (e.g., hidden alkaline intrusions?) or identify
an area of unusual Be accumulation in the soils.

16.5 Model selection in regression analysis

If one variable is for some reason of special interest the arising question is which combination
of the other variables can best explain its behaviour? The task then is to develop the best model
of the available explanatory variables for the variable under study. For example it could be
interesting to study which combination of other parameters (e.g., temperature, solar radiation,
wind speed, precipitation, SO2 concentration, CO2 concentration) have the highest influence
on the measured ozone concentration in the atmosphere.
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The variable Bi in the Kola O-horizon data displays an unusual spatial distribution with a
strong north–south gradient (see Figure 8.5). Are there variables in the data set that explain
this phenomenon? In a first step the variable Bi is regressed against all other available variables
(see Section 16.3.1). The adjusted R-squared measure is 88.6 per cent. This indicates a very
good explanation of the variability of the log-transformed values of Bi. Of the 38 entered vari-
ables (log(Ag), log(Al), log(As), log(B), log(Ba), log(Be), log(Ca), log(Cd), log(Co), log(Cr),
log(Cu), log(Fe), log(Hg), log(K), log(La), log(Mg), log(Mn), log(Mo), log(Na), log(Ni),
log(P), log(Pb), log(Rb), log(S), log(Sb), log(Sc), log(Si), log(Sr), log(Th), log(Tl), log(U),
log(V), log(Y), log(Zn), C, H, N, and pH), 19 explanatory variables (log(Ag), log(Al), log(As),
log(B), log(Ba), log(Ca), log(Cd), log(Fe), log(Hg), log(La), log(Mn), log(P), log(Pb), log(Sb),
log(Tl), log(U), log(V), log(Y), and N) and the intercept were significant. This is not a very
useful model, because it still contains 19 variables and it is still impossible to obtain a better
interpretation of the north–south gradient.

Stepwise regression (Hocking, 1976; Draper and Smith, 1998) can provide a solution to
this problem. The basic idea of stepwise regression is to first include only the most important
variable in the model and to add step by step further important variables until a certain statistical
criterion is met (see, e.g., Draper and Smith, 1998). The criterion indicates that no further
essential improvement of the model fit can be reached by adding additional variables. This
procedure is called forward selection. Alternatively it is possible to start with all variables in the
model and to exclude variables with the least contribution step by step. This procedure is called
backward selection. The two procedures can result in completely different models, which is an
unfortunate situation. The reason is that different combinations of variables are tested. Forward
and backward selection can be combined to reach an optimal model. In the above example
25 explanatory variables remain in the regression model, 20 of them are significant. Thus the
situation has not improved.

The problem is that not all possible combinations of variables are tested by these procedures.
With 38 variables there exist 238 (= 274877906944) possible combinations of variables. It is
impossible to test all these combinations. However, there exists an algorithm, called the “leaps-
and-bounds algorithm” (Furnival and Wilson, 1974), which performs an intelligent search
over all possible models. The quality of the resulting models can be displayed in a simple
graphic (Figure 16.10). The variables are plotted on the x-axis and the adjusted R-squared, as
a measure of the quality of the fit, is plotted on the y-axis. The graphic is read from bottom
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Figure 16.10 Results of regression using the leaps-and-bounds algorithm. Grey scale indicates the
R-squared measure of quality of fit. adjr2 = adjusted R-squared measure
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Table 16.4 Table of least trimmed squares (LTS) regression coefficients and inference statistics
for the best model explaining log10(Bi)

Estimate Std. Error t value Pr(>|t|)
Intercept -3.71107 0.10817 -34.309 < 2e-16
log(Pb) 0.77031 0.02470 31.192 < 2e-16
log(As) 0.26071 0.01419 18.370 < 2e-16
log(Tl) 0.14793 0.01720 8.599 < 2e-16
log(B) -0.11755 0.01615 -7.277 1.10e-12

Residual standard error: 0.1504 on 585 degrees of freedom
Multiple R-Squared: 0.9089, Adjusted R-squared: 0.9083
F-statistic: 1460 on 4 and 585 DF, p-value: < 2.2e-16

to top with indications of the variables entering the regression model. The grey scale provides
an indication of the adjusted R-squared measure. Dark values show a high adjusted R-square.
The best model with only one variable is a model with log(Pb) plus intercept and results in an
adjusted R-square of 0.59. In the example the first satisfying model is reached with 4 variables
(log(Pb), log(As), log(Tl), log(B)) plus intercept resulting in an adjusted R-square of 0.83 (see
Figure 16.10).

At present the leaps-and-bounds algorithm is based on performing least squares regres-
sions. Data outliers could thus influence the fit. Therefore it is a good idea to check the
model by performing a robust regression. Table 16.4 shows the usual output for the result-
ing robust regression model (compare Table 16.3). Surprisingly the adjusted R-square in-
creases to 0.91. The reason is that four outliers exist in the variable Pb, strongly influenc-
ing the least squares fit. In this special case the outliers resulted in a deterioration of the
LS fit.

With just four explanatory variables left it is much easier to consider the process causing
the regional distribution of Bi. When studying maps of the explanatory variables, Pb, As,
and Tl, all three show a north–south gradient, while B has the opposite behaviour with the
highest concentrations along the coast in the north. This combination of elements and ob-
served spatial pattern appears likely to be related to a climatic and bio-productivity gradient
(Reimann et al., 2001a). The model thus identifies four variables that follow the same gradient
as Bi, but does not provide any explanation of the observed phenomenon. The likely explana-
tory processes, expressed in some form as variables, are “lurking” and not contained in the
data set (see discussion in Section 11.9). It is a common problem that the “real” explanatory
variables may be missing in a data set. Even with a very good model fit, as in the above ex-
ample, it is necessary to be quite careful with the interpretation of statistical results (see also
Section 11.9).

16.6 Other regression methods

In the investigation of the Kola data, LTS regression was selected as the method of choice due
to its ability to attain maximum resistance to outliers. Other methods include Least Median
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Squares (LMS) (Rousseeuw, 1984), regression methods using M- and S-estimators and com-
binations thereof (Maronna et al., 2006). However, as LTS is relatively widely available, it was
selected over other methods.

The problems of collinearity arise when the explanatory variables are highly correlated.
Several different approaches exist to undertake regression analysis in these circumstances.
Ridge Regression (Hoerl and Kennard, 1970) minimises the sum of squared residuals,
similarly to LS regression, but an additional constraint is introduced which limits the sum
of the squared regression coefficients. This shrinkage method prevents the inflation of
the regression coefficients during the computational procedure. Lasso Regression (Hastie
et al., 2001) works in a similar way, but it is the sum of the absolute regression coefficients
that is limited. As a consequence of this, some of the coefficients may be reduced to
zero, indicating that the explanatory variable in question contributes no useful informa-
tion to model. As such, lasso regression can also be used as part of a model selection
procedure.

An alternative approach is to reduce the dimensionality of the explanatory variables by
undertaking a PCA (see Chapter 14). The result of this provides a set of new explanatory
variables, the scores of the principal components that are uncorrelated. A subset of these
is then selected for inclusion in the regression model, leading to a Principal Components
Regression (PCR), see for example Garrett (1972) or Jolliffe (2002). In addition to removing
the collinearity, this procedure has the advantage that it reduces the dimensionality of the
explanatory variables. Also, when “noise”, random variability, partitions into the last few
principal components, their removal could lead to an improved model with reduced prediction
errors.

Partial Least Squares (PLS) Regression (Tenenhaus, 1998), a very prominent tool in chemo-
metrics (Wold, 1975), achieves a similar objective to PCR by deriving a set of components that
capture the variability in the explanatory variables that is most related to the response variable.
This is in contrast to PCR where the components reflect only the variability in the explanatory
variables. A subset of these new variables is then used in the PLS regression with the response
variable. Cross-validation or bootstrapping is then used to determine the optimum number of
components leading to a minimum prediction error.

All of the above regression methods are considered linear. Some physical or chemical
relationships are inherently non-linear. Fitting models (often exponential) to these relation-
ships requires special numerical procedures. Examples are the exponential decay in the
deposition of atmospheric particulates from a contamination source (de Caritat et al., 1997b;
Bonham-Carter et al., 2006), and the modelling of the uptake of Cd by wheat (Garrett et al.,
1998). Details of methods for undertaking non-linear regressions are discussed in Hastie
et al. (2001).

Other methods have been developed for a wide range of regression problems. A few exam-
ples are Regression Trees, Generalised Additive Models and Neural Networks. These are not
discussed further here, interested readers are referred to Hastie et al. (2001).

For the special case where the response variable is a binary variable indicating membership
(1) or non-membership (0) in a group, Logistic Regression (LR) is the recommended
procedure (see, e.g., Kleinbaum and Klein, 2002). As a regression method, LR provides
inference statistics that can be used to evaluate the model and to determine the relative
importance of the explanatory variables for estimating group membership. Having developed
a reliable model, the probability that a new observation is associated with membership or
non-membership can be directly estimated.
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16.7 Summary

In regression analysis the relationships between a variable of interest and other measured
variables are modelled. Once a mathematical model has been established, it can be used to
predict values for the variable of interest, using the information of the other variables. For
the sake of simplicity and interpretability of the model, usually only linear relationships are
considered.

A good and reliable model leading to a good prediction quality requires certain statistical
assumptions. The most important requirement is that the residuals (deviations between the
measured and the predicted values of the variable of interest) have about the same spread across
the whole range of the predictor variables. Classical least squares based methods also require
that the residuals be normally distributed. Outlying observations typically lead to deviations
from these assumptions, and robust regression methods should then be preferred.

Even if many predictor variables are available, it is usually still desired to find a prediction
model that is as simple and as efficient as possible. Fast search procedures, such as the leaps-
and-bounds algorithm, have been developed to identify the best-suited variable combinations.
When working with compositional data the opened data can be added to the predicting variables.
The algorithm for model selection will then automatically select the explanatory variables that
are best suited for prediction.

If it is not necessary to keep the original variables as predictor variables one can use
regression methods like PCR (principal component regression) and PLS (partial least squares)
regression. The “predictors” are linear combinations of the original variables, and sometimes
it is impossible to find a clear interpretation of the resulting regression model if there has
not been a successful interpretation at the earlier PCA stage of the analysis. However, for the
purpose of prediction such models can still be very useful.



17
Discriminant Analysis (DA)
and Other Knowledge-Based
Classification Methods

Cluster analysis may be used to identify groups in a multivariate data set (Chapter 15). The
groups describe certain processes or phenomena in the data set. They can also be used to create
data subsets for further statistical investigation.

In contrast, discriminant analysis (DA) (Fisher, 1936) uses a priori knowledge about existing
group memberships. This knowledge is used to develop a function that will result in an optimal
discrimination of the groups. Once the function is estimated, the group membership of new
observations can be predicted. For example, samples from different vegetation zones, boreal-
forests, forest-tundra, and different gradations of shrub tundra to tundra (shrub tundra, dwarf
shrub tundra, and tundra) were collected for the Kola Project. These can be used to define three
main “vegetation zone” groups for DA: boreal-forest, forest-tundra, and tundra. Development
of a discriminant function will then make it possible to classify any new observation collected
as belonging to one of the vegetation zones based on its chemical composition alone. However,
misclassifications are also possible, but it is the general objective of DA to keep the number
of misclassifications as low as possible.

17.1 Methods for discriminant analysis

There are different methods for undertaking DA. The most often applied methods are linear
(LDA) and quadratic (QDA) discriminant analysis (see, e.g., Huberty, 1994; Johnson and
Wichern, 2002). LDA separates the groups using linear functions, while QDA uses quadratic
(curvilinear) functions to achieve separation. For construction of both the linear or quadratic
discriminant functions, it is necessary to estimate the central location, and multivariate spread –
covariance – for each group. LDA uses a simplification by assuming that the group covariances
are equal. Classically, the group centres are estimated using the mean of each variable for each
group. The group covariances are estimated using the empirical (classical) covariance matrix
of the data for each group (the difference between correlation and covariance is discussed in

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6
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Section 13.1). It is also possible to estimate centre and covariance for each group using robust
methods (see Section 13.2) resulting in robust LDA and robust QDA. Due to the presence
of outliers in applied geochemistry and environmental data, the use of robust procedures
beneficially reduces their impact on the results of the DA. Finally, the probabilities of group
membership for each observation, or new observations, can be estimated from the discriminant
functions.

17.2 Data requirements for discriminant analysis

Discriminant analysis, like all statistical procedures, is underlain by certain assumptions con-
cerning the distribution of the data in the different groups. For optimal discrimination, the data
of the different groups should be distributed as multivariate normal. To approximate multivari-
ate normality the distribution of all variables has to be checked (graphically, see Section 3.4,
or using statistical tests, Section 9.1) and transformed if necessary (Section 10.2). Note that
a univariate normal distribution for each variable does not guarantee a multivariate normal
distribution (see, e.g., Gnanadesikan, 1977), which was also demonstrated by Reimann and
Filzmoser (2000). Furthermore, DA is built on the further assumption of the independence of
the observations. However, geochemical data are usually spatially dependent, and thus when
carrying out DA, it is necessary to be aware that spatial correlations may drive the results of
the analysis.

It is not necessary to standardise the data because DA can account for different data ranges.
However, DA is a covariance-based method, and thus most of the points discussed in Sec-
tion 14.1 for PCA and FA need to be considered.

Data outliers influence the estimation of the group centres and covariances. Because geo-
chemical and environmental data frequently contain outliers, robust methods of DA are prefer-
able (He and Fung, 2000; Croux and Dehon, 2001; Hubert and Van Driessen, 2004). For all
covariance-based methods, compositional data (closed data) will cause artificial correlations
that do not reflect the underlying real correlations due to geochemical processes (Section 10.5).
Although discrimination of different groups can be undertaken with closed data, an improved
result will generally be obtained when the data array is opened using an appropriate transfor-
mation (Section 10.5).

Censored data are a general problem for covariance-based methods. Again the best choice
is to use robust methods that will be able to withstand a substantial amount of censored
data (Section 15.1.5). Whenever possible, variables with censored data should be excluded
from DA.

DA is based on the presence of dissimilarities between the groups. However, within each
group the data should be homogeneous, otherwise the estimation of the group covariance
matrix may not be representative. Again robust methods, concentrating on the (homogeneous)
majority of the data, are recommended.

Dimensionality is an even greater problem than described for PCA and FA (see Sec-
tion 14.1.8) because the rules discussed there should be fulfilled for each of the data groups
in order to derive reliable discriminant functions. If the number of observations for one group
is fewer than the number of variables in the entered data set, most software implementations
of DA will break down due to numerical problems. A method to overcome this problem is to
first carry out a PCA for dimension reduction and establish the discriminant functions on the
first few principal components (see Chapter 15).
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17.3 Visualisation of the discriminant function

To visualise the discriminant function for classical and robust LDA and QDA, a two-
dimensional example from the Kola C-horizon data set is used. Figure 17.1 shows two scatter-
plots of the log-transformed elements Cr and K. The task is to discriminate the C-horizon soil
samples collected on top of Caledonian sediments, occurring along the Norwegian coast (see
geological map – Figure 1.2) and identified as subset 10 in the variable “LITHO” of the data
set, against all other observations. The samples collected on top of the Caledonian sediments
are identified with “×” in the plot, all others are shown as points (Figure 17.1).

The plot of the results of classical LDA (Figure 17.1, left) shows that a considerable over-
lap exists between the two groups. A complete discrimination based on a linear or quadratic
function will therefore be impossible. The task then is to minimise the number of misclas-
sifications rather than to completely separate the two groups. The basis of DA is the group
centres and covariances. The latter can be visualised as ellipses (see Section 13.2). In the plots
the 90 per cent ellipses of each group are displayed. In the left plot the classical means and
covariances are used for constructing the ellipse, while in the right plot their robust counter-
parts are employed. It is noticeable that outliers determine the form of the ellipses in the left
plot. The robust counterparts provide the better basis for building the discriminant function.
The resulting LDA functions are shown as solid lines in both plots. In both cases LDA is not
an optimal solution; the covariances of the two groups as displayed by the ellipses are quite
different. LDA cannot account for this difference, and the number of misclassified samples is
much higher for non-robust LDA.

Figure 17.2 shows the same comparison for classical and robust QDA. The separating line
now follows a quadratic function. The ellipses remain the same as displayed in Figure 17.1,
the difference between LDA and QDA is that now the different covariances are accounted
for. Again the robust procedure performs better than the non-robust procedure because in the
non-robust case the outliers have inflated the covariance estimates. Overall, in terms of the
percentage of misclassified samples, robust QDA performs best (LDA, 7.8 per cent; robust
LDA, 6.8 per cent; QDA, 7.4 per cent; robust QDA, 6.1 per cent).

Figure 17.1 Results of non-robust (left) and robust (right) LDA with Cr and K from the Kola Project
C-horizon data set
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Figure 17.2 Results of non-robust (left) and robust (right) QDA with Cr and K from the Kola Project
C-horizon data

For the location of the separating lines, DA takes the size of the groups into account. This
is the reason that the lines are moved towards the smaller group, i.e. in Figures 17.1 and 17.2
towards the upper left of the diagrams.

17.4 Prediction with discriminant analysis

In the above example DA was used for classification. When new observations are available,
their data can be entered into the resulting discriminant functions. DA will then be used to
determine to which of the two groups the new observations most likely belong.

In some instances no new observations are available, only the existing data. In these cases
the task is to obtain discriminant functions that can reliably make predictions of group mem-
berships with the data in hand. As an example, the three main vegetation zones occurring in the
project area (from south to north: boreal-forest, forest-tundra, and tundra) are known from field
mapping, and this information is encoded in the data set. The information on vegetation zones
can be used to estimate discriminant functions. The quality of the predictions can be improved
by approaches like cross-validation or bootstrapping that increase the stability of DA (Efron,
1979). The idea behind these techniques is to repeatedly split the data set into training and test
subsets and repeat the DA many times. The outcome of each of these is a “truth table”, and as
the actual membership of training set members is known a table can be prepared showing the
number of times observations are correctly classified or misclassified.

Figure 17.3 displays four maps; the map on the upper left shows the regional distribution
of the three vegetation zones, as mapped during field work, with different symbols. The vari-
ables Ag, Al, As, B, Ba, Bi, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Rb, S, Sb, Sr,
Th, Tl, V, Y and Zn of the Kola Project O-horizon data were then used for DA following a
log-transformation of all variables. LDA with cross-validation was applied to estimate the dis-
criminant functions and to predict the group membership (vegetation zone) of the observations
based on their chemical composition. The remaining three maps (upper right and lower row)
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Figure 17.3 Map showing the distribution of the vegetation zones in the Kola Project survey area
(upper left) and maps of the predicted distribution of the three vegetation zones in the survey area
using LDA with cross-validation. The grey scale corresponds to the probability of assigning a sample
to a specific group (boreal-forest, upper right; forest-tundra, lower left; tundra, lower right). A colour
reproduction of this figure can be seen in the colour section, positioned towards the centre of the book

show the resulting predictions for each of the groups. The symbols are the same as in the
map of the vegetation zones. The additional grey scale is used to display the probability of
the sample falling into this group (boreal-forest: upper right, forest-tundra: lower left, and
tundra: lower right). Black indicates high probabilities and decreasing shades of grey lower
probabilities of group membership. Black circles and triangles in the upper right map are thus
misclassified samples assigned to the group “boreal-forest”. The grey scale permits visualisa-
tion of the quality of discrimination in the border zones between the groups where the majority
of misclassifications occur. The overall misclassification rate is 20 per cent. Thus the chemical
composition of the O-horizon soils at each sample site can be used to predict membership
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Figure 17.4 Element plot showing the group centres of each variable following completion of the DA

in the vegetation zones; however, one in every five observations will be assigned to a wrong
group.

The relative importance of each variable in the computed discriminant functions can be
visualised in a scatterplot where the variables are plotted in an arbitrary sequence, here
alphabetical, along the x-axis, and the group average for each respective variable on the y-axis.
To make the plot comparable, the variables have to be centred and scaled (see Section 10.4);
this standardisation has no influence on the discrimination. Variables with a high or low group
mean are relevant for characterising the groups.

Figure 17.4 shows this plot for the above example of discriminating between the three
vegetation zones using the O-horizon data. Group 1 (boreal-forest) is characterised by high
means of Ag, Bi, Mn, Pb, Rb and Tl and relatively low means of B, Mg, Na and S. Group 2,
forest-tundra, is characterised by high means of Mg and S and low means of Ag, Bi and Tl.
Group 3 (tundra) is characterised by high values of B, Mg and Na and low values of Ag, Bi,
Mn, Pb, Rb, Sb and Tl. Group 1 is very different from the other two groups and shows almost
the exact opposite behaviour of Group 2 and 3. This behaviour was observed in Section 6.4
when studying the spatial trends in a north–south direction along the western project boundary.
The elements B, Mg, Na and S are characteristic of the input of marine aerosols near the coast.
The elements Ag, Bi, Mn, Pb, Rb, Sb and Tl in contrast show a characteristic increase from
north to south, following the vegetation zones and the increasing bio-productivity. One could
assume that the coastal position rather than the vegetation zones is the driving factor behind
the discrimination of the vegetation zones. However, when all sea spray related elements are
omitted from the DA, the resulting discrimination rates do not deteriorate, an indication that
the vegetation zones are the real driving force behind the discrimination.



EXPLORING FOR SIMILAR DATA STRUCTURES 275

A further application of the element plots would be to determine if any of the elements
could be dropped from the DA. Elements with means close to zero for all groups are likely
not contributing useful information to the discrimination, in fact they may be contributing
multivariate noise degrading its quality. Inspecting Figure 17.4 leads to the identification of Ca
and K as candidates. Interestingly, these are two elements that are bio-essential to plants, which
control the uptake of these and other bio-essential elements. Thus, irrespective of vegetation
zone, the plants contain similar levels of these elements over the whole project area, making
them poor contributors to discrimination. Other variables like Al, Fe and V may be worthy of
further investigation for their utility, or rather lack of it, in the DA.

Prior to undertaking DA, Tukey boxplots (Section 3.5.1) for each variable can be prepared
for the data divided by the a priori groupings. In instances where the MEDIANS and the
spread of the central 50 per cent of the data are very similar, these variables may not be useful
discriminators and could be candidates for elimination. In instances where variables display
contrary behaviour between different groups, the calculation of ratios and their inclusion in
the DA may be advantageous. For example, the Mg/Mn ratio will be uniquely low in Group 1
data (see Figure 17.4).

17.5 Exploring for similar data structures

The Kola Project area is characterised by the occurrence of several world-class mineral deposits
(e.g., Cu-Ni, Fe, apatite). Samples collected in the surroundings of these deposits could be used
to construct discriminant functions that allow exploring the remaining project area for similar
features. As an example, the alkaline intrusions near Apatity that host the largest known apatite
deposit on Earth (lithologies 82 and 83 in the geological map – Figure 2.1) have been used to
search for similar geochemical signatures in the whole data set. Only 11 samples in the data
set were collected from the C-horizon soils developed on top of these two lithologies. Thus
only very few variables could be employed for DA because the number of observations should
be considerably greater than the number of variables (see also discussions in Sections 13.3
and 14.1.8). For demonstrating the procedure, the ten major elements determined by X-ray
Fluorescence (XRF) were used for the DA. When using the major elements, closure is a serious
problem, thus the additive logratio transformation using Ti as the divisor (see Section 10.5.1)
was applied to the data prior to carrying out the DA. This also has the beneficial effect of
reducing the number of variables to 9. Following an LDA with cross-validation for all available
data, a prediction of the occurrence of the group “alkaline intrusions” in the survey area can
be made. It should be noted that while n = 11 and p = 9 for the observations overlying
lithological units 82 and 83, the use of cross-validation provides a more reliable estimation of
the discriminant function. Additionally, the use of LDA rather than QDA requires that fewer
parameters be estimated, and in general additional parameters require additional data to ensure
reliable estimation. Figure 17.5 shows the result.

The surroundings of Apatity are clearly indicated, and 10 out of the 11 observations are
correctly identified. Some additional sites in the surroundings of the intrusions, as well as
three points with high probabilities of an “alkaline intrusions” affinity and four points with
lower probabilities in northern Norway, are also identified. Reimann and Melezhik (2001) have
already reported geochemical similarities between the alkaline intrusions and areas within the
Caledonian sediments occurring along the Norwegian coast. These authors had speculated
whether a deep seated alkaline intrusion or alkaline clasts in the sediments could be the reason
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Figure 17.5 Location of the alkaline intrusions near Apatity (lithologies 82 and 83 – left map) and
the locations for the samples predicted as members of the group “alkaline intrusions” (right map) based
on LDA with cross-validation

for the unusual geochemical signature. The three high-probability points identified in northern
Norway may thus be worthy of further investigation.

Due to the low sample density used in the Kola Project, the problem of dimensionality is
serious for such interesting applications of DA. Mineral deposits are usually characterised by
an insufficient number of samples to carry out DA.

17.6 Other knowledge-based classification methods

17.6.1 Allocation

The task of classifying individuals into one or more groups can be undertaken directly without
the use of discriminant functions through the use of allocation procedures, see Campbell (1984)
and Garrett (1990) for a regional geochemical application. As with DA, the key to this approach
is quantifying the central location and multivariate spread of the a priori data groups. Thus
everything discussed concerning outliers and transformations earlier in this chapter also applies
here, and it is desirable to use robust estimates of the group means and covariance matrices.
Allocation can be carried out with a single group or with multiple groups.

As has been demonstrated, the probability of the membership of any individual in a group,
assuming a consistent suite of measured variables, can be estimated from the Mahalanobis
distance of the individual from the group centroid by taking into account the shape of the group
through its covariance matrix. In DA the problems with inhomogeneity of covariance, i.e. the
representative group ellipses being of different sizes, shape, and orientation, are addressed
through the application of QDA. In allocation this is handled through a modification to the
Mahalanobis distances used in Generalised Discriminant Analysis (GDA) (Gnanadesikan,
1977), and the probabilities of group membership are then estimated (Kshirsagar, 1972). The
observations are allocated to the group for which they have the smallest modified Mahalanobis
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distance. A further step, if some critical level of group membership is chosen, is to determine if
any observation has a lower probability than this critical level in all of the groups. If that is the
case, the observation can be allocated as “undefined”, a member of no group. These individuals
are multivariate outliers with respect to the defined groups. The multivariate outlier detection
methods described in Sections 13.3 and 13.4 are the graphical and automated, respectively,
one group-approaches to this task.

For the maps in Figure 17.6, the same Kola Project O-horizon data as used for the LDA with
cross-validation (see Figure 17.3) were employed. They are: Ag, Al, As, B, Ba, Bi, Ca, Cd,
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Figure 17.6 Map showing the distribution of the vegetation zones in the Kola Project survey area
(upper left) and maps of the predicted distribution of the three vegetation zones in the survey area
using allocation. Classical non-robust estimates were used in the upper right map, robust estimates
(MCD) were used for the map below (lower right), and in the lower left map the allocation was based
on a subset of 11 elements using robust estimates. A colour reproduction of this figure can be seen in
the colour section, positioned towards the centre of the book
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Co, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Rb, S, Sb, Sr, Th, Tl, V, Y and Zn. Three data subsets
corresponding to the field classification of the three main vegetation zones in the project
area (n = 568) were created. For each of these, robust MCD estimates of the locations and
covariances (see Section 13.2) were made following a logarithmic transform. These parameter
estimates were then used to allocate the survey samples into the three groups, with those
observations that had a probability of less than one per cent in any of the groups classified as
“undefined”.

The results of this operation are displayed in Figure 17.6, lower right. Comparing this with
the field classification (Figure 17.6, upper left), it can be seen that there is general agreement
except around the industrial sites and in the boundary areas between the zones. The “undefined”
observations arise due to the robust estimates being based on only core groups of observations
that are most typical of the vegetation zones they represent. The surroundings of the smelters
do not really “belong” to their respective vegetation zone. Vegetation near the smelters is so
seriously damaged that these areas are characterised by Russian colleagues as an “industrial
desert”. Furthermore, vegetation zones do not only change with distance to coast but also with
topography; this can result in undefined points in mountainous areas within the large groups.

When classical estimation procedures are used, the geochemical characterisation of the
vegetation zones is contaminated by observations from around industrial facilities and due to
other rare processes (Figure 17.6, upper right). The results of this are that only the most extreme
outliers associated with the vegetation zones are “undefined”, but less extreme outliers are now
allocated into the vegetation zones. Although this allocation is correct with respect to the field
classification, the newly included observations are not representative of the core geochemical
features of the vegetation zones.

Finally, a subset of variables that showed clear differences between the vegetation zones was
selected following an inspection of Tukey boxplots. Figure 17.6 (lower left) is based on a robust
MCD estimation using logarithmically transformed data for Ag, B, Bi, Mg, Mn, Na, Pb, Rb,
S, Sb and Tl. This was undertaken in order to eliminate variables that had little discriminating
power and to improve the n/p ratio.

This approach leads to a clearer definition in the boundary areas of the vegetation zones.
The reason for this is that the Tukey boxplots focus attention on the core features of the data
distribution and not the tails where data from contaminated sites and due to other rare processes
occur.

17.6.2 Weighted sums

Weighted sums are not a true multivariate approach, they treat measurements (elements) one
at a time, not simultaneously (Garrett and Grunsky, 2001). Techniques like PCA and FA are
data based, if a rare but important process, e.g., a mineral deposit or contamination source,
is poorly represented in the data, it will only be reflected in one of the minor components or
factors often not inspected or visualised as it falls at the tail end of the scree plot. Thus any
indication of the process could be lost in the “noise” due to sampling and analytical variability
in one of the minor components or factors.

However, knowledge may exist from other investigations that a particular process is reflected
by abnormally high or low values of some measured variables, i.e. it has a characteristic
“fingerprint”. For example, it may be known that a mineral deposit and its weathering products
dispersed into the environment are characterised by a particular suite of “pathfinder” elements.
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Similarly, it may be known that emissions from an industrial source are characterised by
a particular suite of contaminants. The relative importance of the variables comprising the
suite are defined simply as numbers like one, two, or three, where three would indicate that a
particular variable is three times as important as the least important in the suite. The assignment
of the relative importances is based on expert knowledge. In instances where a low value of
a variable is considered favourable, the relative importance is defined as a negative number.
These relative importances are then normalised into coefficients so that the final values to be
computed, weighted sums, are approximately centred on zero.

The coefficients for the variables are applied to the robustly centred and scaled data, where
this standardisation is in terms of “average background” for the variables in the survey area.
In this context, “average background” refers to an amalgamation of the several background
populations that may exist and reflects the sum of natural processes independent of the process
being sought.

Figure 17.7 (right) displays the weighted sums computed for the elements Si, Al, K, Ti, Mn
and P. These elements were selected following the inspection of Tukey boxplots of the same
ten major and minor element determinations of C-horizon soils that were used in the LDA
prediction example (Figure 17.5, right). The selection was based on how well the elements
could be visually differentiated between the alkaline intrusions (lithological units 82 and 83)
and the remaining eight rock types. Soils developed over the alkaline intrusions were recognised
in this process as having elevated levels of Al, K, Ti, Mn and P, while levels of Si were lower.
This led to a set of relative importances of 1.5, 2, 2, 3, 2 and −2, respectively. The resulting
coefficients were applied to the robustly centred and scaled, but not log-transformed, data. A
logarithmic transformation was not employed as the Tukey boxplot inspection did not indicate
any major skew in the central parts of the soil data distributions associated with the different rock
types. Figure 17.7 (left) displays as triangles the location of sample sites underlain by alkaline
intrusions. The symbols for the weighted sums (Figure 17.7, left) are coded both according to
underlying bedrock and value. Darker symbols indicate higher values of the weighted sums.

Original groups

Alkal. intr.
Others

0 50 100 km

N
Weighted sums

Alkal. intr.
Others

0 50 100 km

N

Figure 17.7 Location of the alkaline intrusions near Apatity (lithologies 82 and 83 – left map) and
the weighted sums represented as a grey scale (right)
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While most of the soils overlying the alkaline intrusions have high weighted sums and are
dark, a considerable number of soils from non-alkaline intrusive areas are recognisably dark.
Several sample sites in northern Norway within the Caledonian sediments have been reported
with geochemical similarities to the alkaline intrusions (see discussion in Section 17.5), and
observations with high weighted sums in that area may be similarly indicative.

Although this application of weighted sums does not yield an as-conclusive outcome as
LDA described in Section 17.5, this procedure is simple, fast, is relatively assumption free,
and is not accompanied by the computational difficulties encountered with the LDA.

17.7 Summary

The methods described in this chapter assume that subsets of “training data”, whose true
memberships are known, are available. This information is then used to estimate discriminating
functions that permit the classification of “test data”.

The most commonly used methods, linear and quadratic discriminant analysis (LDA, QDA)
are based on estimates of the group centres and covariances. Thus, like other multivariate statis-
tical methods, they are sensitive with respect to severe deviations from multivariate normality.
Such deviations can be caused by skewed data distributions, by outliers, or by the closure ef-
fect. Appropriate data transformations and/or robust methods will be helpful in such cases for
improving the analyses. This also holds for more advanced methods like allocation. Weighted
sums have less strict data requirements and can be used to advantage where a process is being
sought that is only represented by a few observations in the full data set, or the elemental
patterns being sought are known though “external” a priori knowledge.



18
Quality Control (QC)

The quality of chemical analyses is of utmost importance in environmental sciences. Chemical
analyses are – as are any physical measurement(s) – confounded by uncertainty. Should the
users of the analyses have to concern themselves with the quality of the data returned from the
laboratory, or is that the laboratory’s task? Today most laboratories are nationally accredited,
i.e. they follow strict quality control procedures and frequently take part in “round-robin tests”
(an analysis of the same samples is performed independently by several laboratories several
times). Why should there still be any problems with analytical quality that applied geochemists
and environmental scientists, the users of the chemical analyses, should be concerned with?
In these times of accredited laboratories and certified analytical methods it is a temptation to
take the analytical results and use them without any further concern. However, experience with
large geochemical mapping projects during the last two decades has proven that external quality
control of the results received from laboratories should, as ever, be an important concern.

For data analysis a good measure of the quality of the data is required; how reliable are they?
Would the same results be obtained if the fieldwork was repeated and a second set of samples
collected in the same general area as the first survey? Would the same analytical results be
obtained if the same sample was re-analysed some weeks later in the same laboratory – or
in a different laboratory? Can results of samples collected today be reliably compared with
samples to be collected from the same area in ten years time?

To answer such questions, any project in applied geochemistry or environmental sciences
should be carried out with its own built-in quality control procedures. It is not sufficient to
rely on the accreditation of the laboratory and automatically accept the quality of the values
received from a certified laboratory. A project’s quality control procedure should include the
following steps:

� collection and analysis of field duplicates (frequently, 5–10 per cent);
� randomisation of samples prior to analysis;
� insertion of international reference materials (sparsely, 1 per cent);
� insertion of project standard(s) (frequently, 10–20 per cent); and
� insertion of analytical duplicates of project samples (frequently, 10–20 per cent).

If it is desired to simultaneously quantitatively estimate both the field sampling and the
analytical variability it is preferable to prepare the analytical duplicate from the field duplicate.

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6
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Although this chapter focuses predominantly on statistical methods for analytical quality
control it must be mentioned that quality control of sampling and an adequate sampling protocol
for the whole project is at least as important (e.g., Garrett, 1983b; Argyraki et al., 1995; Ramsey,
1997, 2002, 2004a,b).

18.1 Randomised samples

Why should the samples be submitted in a random order to the laboratory? The reason is to
spread any temporally systematic bias related to the measurement system(s) randomly over
all the samples when they are returned to project order. Thus any time-dependent errors that
may occur in the laboratory, such as a slow drift from lower to higher reporting levels, does
not appear as a feature in the map.

When submitting randomised samples, the laboratory must be instructed to analyse the
samples in the sequence of the submitted sample numbers – otherwise the laboratory may
randomise the samples once more. Whether either randomised sample numbers are used during
field sampling, or new randomised sample numbers are assigned to samples during sample
preparation (easiest because standards and duplicates also need to be inserted so that it is not
easy for a laboratory to detect the QC samples), is not important as long as the samples are
randomised. For a large project it can be advantageous to wait until all samples are ready to
be submitted as a single large batch. Submitting the samples as several batches can create
serious problems when QC indicates that clear differences exist between the batches in terms
of accuracy and/or precision (see below).

18.2 Trueness

Trueness is the closeness of agreement between the average value obtained from a large series
of test results and an accepted reference value for a reference material. In this connection
the term “bias” is important. Bias is the difference between the expectation of the test results
and an accepted reference value. Bias is the total systematic error. Systematic error is that
component of error which, in the course of a number of test results for the same characteristic,
remains constant or varies in a predictable way. Systematic error must be contrasted to random
error. Random error is the error, which in the course of a number of test results for the same
characteristic, varies in an unpredictable way and thus cannot be corrected for. Bias may consist
of one or more systematic error components.

It is impossible to absolutely determine the “true” composition of a reference material; it
can be approached, but there will always be some uncertainty. The objective is to minimise
this uncertainty. The data for international reference materials, analysed by many different
laboratories, preferably employing a variety of different methods, are compiled and estimates
made of the most likely “true” value. The standard deviation of the repeated analyses provides
an estimate of the uncertainty associated with the most likely “true” value.

An issue in selecting reference materials is that they should be as similar as possible to
the samples collected from the field and under study. The requirement is to match the matrix,
the chemistry and mineralogy, of the reference materials as closely as possible to the matrix
of the field study samples. Soil standards should be used in soil studies, vegetable materials
should be used for moss or other plant materials, rocks for rock analyses, etc. A soil reference
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sample prepared from a calcareous soil should not be used for the analyses of soils with a
low-carbonate siliceous matrix. Documentation of analytical “quality” for the project samples
should involve results obtained from analysing one or more standard reference materials similar
to the sample material, be it rock, soil, stream sediment, vegetation or water, analysed a number
of times throughout the duration of the analytical project so that values for the MEAN and SD
can be computed.

Results obtained when analysing an international reference material together with the project
samples are usually summarised in a table showing the most important statistical measures,
i.e. MEAN, SD, and Coefficient of Variation (CV, that is the same as Relative Standard Devia-
tion, RSD) of the results and of the agreed certified value of the reference material. Table 18.1

Table 18.1 Results for the nine replicate analyses of international reference material CRM NIST
1547, Peach leaves, carried out while analysing the Kola moss samples; together with the MEAN
and SD for the certified values. Results of CRM values in square brackets are not certified. All units
mg/kg

Element Certified value Kola Project
MEAN ± SD MEAN SD CV %

Al 249 ± 8 213 8 3.9
As 0.06 ± 0.018 0.098 0.007 6.7
B 29 ± 2 27.4 1.9 7.1
Ba 124 ± 4 126 3.2 2.6
Ca 15600 ± 200 16210 20 1.3
Cd 0.026 ± 0.003 0.021 0.003 13.2
Co [0.07] 0.068 0.004 6.5
Cr [1.0] 0.88 0.11 12.4
Cu 3.7 ± 0,4 3.50 0.20 5.7
Fe 218 ± 14 209 3.4 1.6
Hg 0.031 ± 0.007 0.035 0.012 33.2
K 24300 ± 300 24967 524 2.1
La [9] 9.6 0.35 3.6
Mg 4320 ± 8 4318 100 2.3
Mn 98 ± 3 97.9 1.6 1.7
Mo 0.06 ± 0.008 0.050 0.008 16.5
Na 24 ± 2 21.8 4.9 22.4
Ni 0.69 ± 0.09 0.602 0.085 14.1
P 1370 ± 7 1451 23 1.6
Pb 0.87 ± 0.03 0.86 0.04 4.6
Rb 19.7 ± 1.2 19.1 0.5 2.6
S [2000] 1630 23 1.4
Sb [0.02] 0.023 0.008 34.7
Si — 263 19 7.1
Sr 53 ± 4 57.9 1.7 2.9
Th [0.05] 0.050 0.008 15.7
TI — 0.020 0.0022 11.0
U [0.015] 0.011 0.0026 24.7
V 0.37 ± 0.03 0.35 0.02 6.0
Y [0.2] 3.00 0.09 2.9
Zn 17.9 ± 0.4 18.1 0.5 2.7
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contains the results for the control reference material (CRM) NIST 1547, Peach leaves, analysed
nine times together with the Kola moss samples. Such a table can be used to convey information
on the trueness of the received analytical results of a project. Other scientists, using the same
reference material can now directly judge the comparability of the project data to their data.
Furthermore, it will give a first impression as to the overall analytical quality achieved.

Due to the high price of international reference materials, they will usually not be used to
monitor for accuracy (see below).

18.3 Accuracy

Accuracy is essentially the absence of bias. Note that analytical results can be highly accurate
without being “true”. International reference materials are expensive. In addition they are
usually easy for a laboratory to identify when inserted among the project samples. Thus to
detect any drift or other changes in analytical results over time, one or more project standards,
control reference materials (CRMs), are required that are quite frequently inserted among the
field survey samples – probably at least at an overall rate of 1 in 20. These samples should not
be different from all other project samples, either in looks or in specific gravity (density), or in
the amount submitted for analysis. A common procedure is to collect one or more large samples
from the project area, prepare them as for all the field samples of that material, and split them
down into the appropriate number of aliquots that can be inserted among the samples prior to
submission for laboratory analysis. These samples are then used to monitor for consistency,
lack of drift across the duration of the project. The number of CRMs used depends upon the
geochemical complexity of the survey area. On one hand the CRMs should reflect the different
mineralogical matrices, but there should not be so many CRMs that insufficient analyses are
made to be able to monitor the analytical results adequately. Rarely should more than three
CRMs be used for a sample material, and in some cases, e.g., mosses with a consistent matrix,
only one would be needed.

Immediately after the analytical results are received from the laboratory, the control refer-
ence material results should be retrieved from the file. A table for these results can be prepared
providing estimates of the repeatability of the measurements (see Section 18.4) at the con-
centration of the standard sample for each element (Table 18.2). Such a table can be sorted
alphabetically for the elements (Table 18.2, left) or in increasing order of the CV to get a rapid
overview of the overall quality (Table 18.2, right). The sorted table (Table 18.2, right) shows at
one glance that the elements analysed by XRF (recorded as oxides) show an exceptional high
repeatability and highlights the elements with possible analytical quality problems at the level
of the CRM (poor repeatability could be due to proximity to the DL).

In addition, the data for each variable are plotted against the sample number. The sample
number provides an estimate of “time of analysis” (again, the laboratory must be instructed to
analyse the samples in the exact sequence of the submitted sample numbers). In such diagrams,
also called “x-Charts”, any trends (e.g., due to instrumental drift) or gross deviations (e.g., due
to sample mix-ups) from the average analytical result for the project CRM become immediately
visible. It is common practice for laboratories to insert their own control materials, as a result
errors due to an instrument malfunction are usually “caught” prior to the data being returned
to the project. However, if a problem has remained undetected by the laboratory, x-Charts will
likely detect them.
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Table 18.2 Average repeatability for selected elements calculated from analyses of the CRM used
for the Kola Project C-horizon data (n = 52)

Element Unit DL MEAN SD CV % Element Unit DL MEAN SD CV %

Ag mg/kg 0.001 0.0075 0.0014 18 Al2O3 wt% 0.05 10 0.200 2.0
Al mg/kg 10 4015 254 6.3 CaO wt% 0.007 2.2 0.057 2.6
Al2O3 wt% 0.05 10 0.200 2.0 Fe2O3 wt% 0.02 3.3 0.098 3.0
As mg/kg 0.1 0.22 0.078 35 Ni mg/kg 1 16 0.775 4.9
Ba mg/kg 0.5 35 2.42 7.0 Fe INAA mg/kg 100 24898 1278 5.1
Bi mg/kg 0.005 0.013 0.0031 24 La mg/kg 0.5 8.0 0.478 6.0
CaO wt% 0.007 2.2 0.057 2.6 La INAA mg/kg 1 15 0.908 6.1
Cd mg/kg 0.001 0.010 0.0016 15 Al mg/kg 10 4015 254 6.3
Co mg/kg 0.2 5.5 0.666 12 Fe mg/kg 10 9528 628 6.6
Cr mg/kg 0.5 42 3.51 8.3 Cu mg/kg 0.5 12.6 0.84 6.7
Cu mg/kg 0.5 12.6 0.84 6.7 Ba mg/kg 0.5 35 2.42 7.0
Fe mg/kg 10 9528 628 6.6 V mg/kg 0.5 21 1.54 7.5
Fe INAA mg/kg 100 24898 1278 5.1 Zn mg/kg 0.5 9.1 0.689 7.5
Fe2O3 wt% 0.02 3.3 0.098 3.0 Cr mg/kg 0.5 42 3.51 8.3
La mg/kg 0.5 8.0 0.478 6.0 Th INAA mg/kg 0.2 3.0 0.305 10
La INAA mg/kg 1 15 0.908 6.1 Sc INAA mg/kg 0.1 9.5 0.972 10
Ni mg/kg 1 16 0.775 4.9 Co mg/kg 0.2 5.5 0.666 12
Pb mg/kg 0.2 0.78 0.096 12 Pb mg/kg 0.2 0.78 0.096 12
S mg/kg 5 13 8.07 63 Cd mg/kg 0.001 0.010 0.0016 15
Sc INAA mg/kg 0.1 9.5 0.972 10 Ag mg/kg 0.001 0.0075 0.0014 18
Se mg/kg 0.01 0.034 0.030 89 Bi mg/kg 0.005 0.013 0.0031 24
Te mg/kg 0.003 0.0048 0.0034 72 As mg/kg 0.1 0.22 0.078 35
Th INAA mg/kg 0.2 3.0 0.305 10 S mg/kg 5 13 8.07 63
V mg/kg 0.5 21 1.54 7.5 Te mg/kg 0.003 0.0048 0.0034 72
Zn mg/kg 0.5 9.1 0.689 7.5 Se mg/kg 0.01 0.034 0.030 89

Figure 18.1 shows two such x-Charts constructed with the data obtained from the Kola
Project soil CRM, a large soil sample collected within the project area in northern Norway. In
such a plot it is desirable to have an indication of whether a sample falls within the range of “nor-
mal” variation around a central value, or is an outlier. This can be done by plotting lines for the
MEAN, and multiples of the standard deviation (Figure 18.1). This graphical inspection can be
used, for example, to decide whether the block of samples containing the CRM result is accepted
from the laboratory or rejected and the block needs to be re-analysed. x-Charts will often show
time trends or unusual breaks in the data, related to changes in the laboratory – examples dis-
playing pure random variation (the ideal case) are rare. In the examples used in Figure 18.1 the
x-Chart for Al2O3 indicates the existence of one outlier (ID 510) – this is possibly an indication
that while loading the automatic sample changer of the XRF-machine, samples were inadver-
tently exchanged. Note also the tendency for higher results at IDs > 600. The plot for Sm shows
a clear trend towards lower values over time (Figure 18.1). It appears that only for the very last
analytical batches (indicated by the last two CRM results) the laboratory became aware of this
trend and corrected the calibration. This plot illustrates why samples should be randomised: a
time trend like this might otherwise lead to unusual patterns on a geochemical map. Randomi-
sation ensures this drift is distributed as a random component across the map. The plot also
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Figure 18.1 x-Chart showing the analytical results of the Kola Project CRM for Al2O3 as determined
by XRF and for Sm determined by INAA. Dotted lines shown in the plot are MEAN ± 2 · SD, dashed lines
are drawn at MEAN ± 1 · SD, and the solid line at the MEAN

indicates a too-severe rounding, discretisation, of the Sm results (discrete “lines” of results)
by the laboratory.

18.4 Precision

Precision is the closeness of agreement between independent test results obtained under
stipulated conditions. It depends only on the distribution of random errors and does not relate
to the true value. Precision is usually quantitatively expressed in terms of imprecision and
estimated through the standard deviation of the test results: a low standard deviation will
indicate a high precision. The precision is usually adjusted for the mean and expressed as the
CV, or equivalent RSD, both quoted as a percentage (e.g., Massart et al., 1988). When referring
to precision, the conditions of measurement must be specified. There is an important difference
between repeatability conditions and reproducibility conditions. Repeatability conditions refer
to situations where independent test results are obtained using the same method on identical
test items (samples) in the same laboratory by the same operator using the same equipment
within short intervals of time. Most references to precision found in literature will refer to
repeatability conditions. Reproducibility conditions refer to situations where test results are
obtained with the same method on identical test items (samples) in different laboratories with
different operators using different equipment. It is also important to note that repeatability
conditions involve repeated execution of the entire method from the point at which the
material for analysis reaches the laboratory, and not just repeat instrumental determinations
on prepared extracts. The latter give impressive estimates of precision – but have no relevance
to the precision achieved when field samples are analysed in the laboratory as it does not
take the natural inhomogeneity of the sample material, an important source of variability,
into account.
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18.4.1 Analytical duplicates

Precision is routinely estimated via the insertion of duplicates of real project samples, usually
at a rate of 1 in 20 (or 1 in 10). It is, for example, straightforward to always reserve position
“20” (20, 40, 60, . . . ) for a duplicate of one of the preceding 18 real samples (plus one project
standard). Again the results for all duplicate pairs are retrieved once the laboratory delivers the
results. For each pair the squared difference is calculated. The sum of these values divided by
the number of samples is a measure of variability. To obtain the standard deviation the square
root of this variability measure is taken. The resulting measure of precision as shown in Table
18.3 corresponds to a CV value, because the standard deviation is divided by the overall mean
of the samples.

Table 18.3 shows the results of the analytical duplicates as received for the Kola Project
C-horizon samples. Again it can be advantageous to show both a table sorted according to the
alphabetical sequence of the elements (Table 18.3, left) and the same table sorted according
to precision (Table 18.3, right). On average, precision is quite acceptable for most elements.
Even the problematic elements in the CRM table (Table 18.2), Se and Te, show a better than
expected precision in Table 18.3.

Table 18.3 Precision as calculated for selected elements from the 52 analytical duplicates from
the analyses of Kola Project C-horizon soils

Element Unit DL Precision % Element Unit DL Precision %

Ag mg/kg 0.001 20 Al2O3 wt% 0.05 4
Al mg/kg 10 5.5 Ni mg/kg 1 5.2
Al2O3 wt% 0.05 4.0 Ba mg/kg 0.5 5.3
As mg/kg 0.1 28 Al mg/kg 10 5.5
Ba mg/kg 0.5 5.3 Zn mg/kg 0.5 5.6
Bi mg/kg 0.005 18 Cu mg/kg 0.5 6.1
CaO wt% 0.007 16 Co mg/kg 0.2 6.7
Cd mg/kg 0.001 11 Cr mg/kg 0.5 7.2
Co mg/kg 0.2 6.7 Fe INAA mg/kg 100 7.3
Cr mg/kg 0.5 7.2 Sc INAA mg/kg 0.1 7.5
Cu mg/kg 0.5 6.1 La INAA mg/kg 1 8.3
Fe mg/kg 10 11 S mg/kg 5 9.3
Fe INAA mg/kg 100 7.3 V mg/kg 0.5 10
Fe2O3 wt% 0.02 15 Cd mg/kg 0.001 11
La mg/kg 0.5 18 Fe mg/kg 10 11
La INAA mg/kg 1 8.3 Fe2O3 wt% 0.02 15
Ni mg/kg 1 5.2 CaO wt% 0.007 16
Pb mg/kg 0.2 25 Bi mg/kg 0.005 18
S mg/kg 5 9.3 La mg/kg 0.5 18
Sc INAA mg/kg 0.1 7.5 Se mg/kg 0.01 18
Se mg/kg 0.01 18 Th INAA mg/kg 0.2 18
Te mg/kg 0.003 33 Ag mg/kg 0.001 20
Th INAA mg/kg 0.2 18 Pb mg/kg 0.2 25
V mg/kg 0.5 10 As mg/kg 0.1 28
Zn mg/kg 0.5 5.6 Te mg/kg 0.003 33
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Again it is advantageous to represent these results in a graphical form. “Thompson and
Howarth” plots (Thompson and Howarth, 1978) are a frequently used graphic for this purpose
(Figure 18.2). Here the absolute difference between the two analyses, |D1 − D2|, is plotted
against the mean of the duplicate results (D1 + D2)/2, and the overall analytical performance
can be grasped at once. These graphs can also be used to estimate the practical detection
limit (PDL – see discussion below) for an analytical procedure (the point where precision
becomes worse than ±100 per cent) via regression analysis. It is possible to draw lines for
any certain predefined precision (e.g., ±10 per cent) into these diagrams (in Figure 18.2 at ±
10 per cent and ±20 per cent). It is then directly recognisable if any, and if so how many, of the
samples plot above the line(s). This can support the decision as to whether an analytical batch
from the laboratory is accepted or rejected. Figure 18.2 shows that precision is excellent for
potassium (K2O) as analysed by XRF. Four samples that fall above the 20 per cent line are an
exception. This is again a strong indication that a number of samples were exchanged during
the analytical process. For Zn as analysed by INAA, precision is not so good. The fact that a
number of duplicate pairs plot along a straight line to the left in the diagram is caused by a
high detection limit of 50 mg/kg. When one of the duplicate samples returns a value above the
detection limit and the other a result below the detection limit (set to 25 mg/kg) points on a
line result.

In reality precision depends on concentration and follows a curve from poor precision
near the detection limit to high precision in the optimal working range of the analytical
technique back to poorer precision at the upper limit of concentrations that can be measured
with this technique (for an example, see Fauth et al., 1985). Thus there exists both a “lower”
limit and an “upper” limit of detection, and fitting just one regression line into these plots
is a simplification that has its limits when the duplicates cover a very wide concentration
range.

Figure 18.2 Thompson and Howarth plots for analytical duplicate results of K2O (XRF) and Zn (INAA)
determined in Kola Project C-horizon soils. Number pairs annotating samples in the left plot identify
analytical duplicates with unusually poor precision for follow-up
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18.4.2 Field duplicates

In a comprehensive quality control program field duplicates will have been collected at a
number of randomly selected sites (usually 5–10 per cent). These samples are used to estimate
the variation introduced by sampling and to answer the question of whether more or less
the same analytical results would be obtained if undertaking the survey a second time at
approximately the same sample sites. An estimate of the field variability is especially important
in monitoring programs, i.e. when the sampling exercise is to be repeated after a number of
years to detect any changes over time.

The precision of field duplicates can be estimated in the same way as was the precision
of analytical duplicates (Table 18.4), and even Thompson and Howarth plots could be drawn
for field duplicates (Figure 18.3). The precision determined from field duplicates includes
variability due to both sampling and analysis. Table 18.4 and the Thompson and Howarth
plots for the field duplicates (Figure 18.3) can be directly compared to the same results
from the analytical duplicates to get an initial impression of the relative magnitude of the
sampling error in relation to the analytical error. Again, sorting Table 18.4 according to
decreasing precision (right half) can aid interpretation and help to detect any problematic
elements.

Table 18.4 Combined sampling and analytical precision calculated for selected elements from
the 49 field duplicates of Kola Project C-horizon soils

Element Unit DL Precision % Element Unit DL Precision %

Ag mg/kg 0.001 57 Al2O3 wt% 0.05 4.2
Al mg/kg 10 16 Fe INAA mg/kg 100 8.1
Al2O3 wt% 0.05 4.2 Fe mg/kg 10 9.3
As mg/kg 0.1 37 V mg/kg 0.5 11
Ba mg/kg 0.5 21 CaO wt% 0.007 12
Bi mg/kg 0.005 26 Fe2O3 wt% 0.02 13
CaO wt% 0.007 12 Co mg/kg 0.2 14
Cd mg/kg 0.001 71 La INAA mg/kg 1 14
Co mg/kg 0.2 14 Sc INAA mg/kg 0.1 14
Cr mg/kg 0.5 23 Zn mg/kg 0.5 14
Cu mg/kg 0.5 30 Al mg/kg 10 16
Fe mg/kg 10 9.3 La mg/kg 0.5 16
Fe INAA mg/kg 100 8.1 Th INAA mg/kg 0.2 17
Fe2O3 wt% 0.02 13 Ba mg/kg 0.5 21
La mg/kg 0.5 16 Cr mg/kg 0.5 23
La INAA mg/kg 1 14 Bi mg/kg 0.005 26
Ni mg/kg 1 33 S mg/kg 5 27
Pb mg/kg 0.2 44 Cu mg/kg 0.5 30
S mg/kg 5 27 Ni mg/kg 1 33
Sc INAA mg/kg 0.1 14 As mg/kg 0.1 37
Se mg/kg 0.01 39 Se mg/kg 0.01 39
Te mg/kg 0.003 170 Pb mg/kg 0.2 44
Th INAA mg/kg 0.2 17 Ag mg/kg 0.001 57
V mg/kg 0.5 11 Cd mg/kg 0.001 71
Zn mg/kg 0.5 14 Te mg/kg 0.003 170
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Figure 18.3 “Thompson and Howarth” plots for field duplicate results of K2O (XRF) and Zn (INAA)
determined in Kola Project C-horizon soils. Number pairs annotating samples in the left plot identify
analytical duplicates with unusually poor precision for follow-up

18.5 Analysis of variance (ANOVA)

In a more formalised approach, results of all samples, field and analytical duplicates can be
used to carry out an unbalanced Analysis of Variance (ANOVA) (see, e.g., Scheffé, 1999). By
“unbalanced” is meant that unequal numbers of analyses occur at each level of the design. A
“balanced” design for studying field and analytical variability would require that each sample
collected at a field duplicate site would be split and analysed twice. In an unbalanced design
only one of the field duplicate pairs is split and analysed twice. The same information can be
extracted from both designs, however, the unbalanced design makes a more efficient use of
resources. The results of the ANOVA include estimates of the proportion of the total variability
due to each of sampling and analysis. Whether or not the analytical variability is significantly
smaller than the sampling variability can be determined by a formal statistical test. However,
this formal analysis can only be undertaken when the analytical duplicate is prepared from the
field duplicate. This was not done for the Kola Project. In its place two independent sets of
duplicates were obtained: one to estimate the combined sampling and analytical variability from
field duplicates; and the second to estimate the analytical variability from a set of duplicates
prepared from the field samples. The “at-site” sampling variability should be considerably
larger than the analytical variability. However, this depends on how the field duplicates were
collected. Were they just a split of the field sample (not a “true” field duplicate!); were they,
for example, taken from opposite walls of the same soil pit; or do they represent a “true”
duplicate, i.e. collected at a second site in the vicinity of the first site? For the Kola Project all
field duplicates were taken at a second site about 100 m removed from the first site. This is a
“worst case” scenario that will provide a very realistic picture of at-site variability.

An ANOVA of the field duplicate pairs decomposes the variability into two components: (1)
the variability between the sites where duplicates were collected; and (2) the variability at the
field duplicate site. In addition, a formal F-test can be undertaken to determine if the variability
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Table 18.5 ANOVA table for the 49 field duplicate pairs for Cu in Kola Project C-horizon soils

Source DF MSS F p-value Variance Percentage of variation
Between sites 48 0.16536 16.5 <0.0001 0.077673 88.6

Within sites 49 0.01001 0.010009 11.4

at the sites is significantly different from the variability between the sites. This test uses what
is called a “random effects model” which is somewhat different from the “fixed effects” one-
way ANOVA model discussed in Section 9.7.1. When only two sources of variability are being
considered the two methods, “fixed effects” and “random effects”, are computationally identical
except for the calculation of the proportions of the variability related to the two sources. If
the variability between the sites is not significantly greater than the variability within the sites,
preparing maps of the data may be misleading. Using the logarithmically transformed Cu data
for C-horizon soils, the ANOVA table presented in Table 18.5 may be generated. A logarithmic
transformation was used in order to meet the requirement of homogeneity of variance and to
approach a normal distribution (see discussion in Section 16.1.1). Additionally an inspection
of the data shows that the Cu data span more than one order of magnitude, a useful guide to
whether a transformation is necessary.

The ANOVA (Table 18.5) indicates that some 89 per cent of the total variability is due
to variations between the regional sites where field duplicates were collected, and only
11 per cent was due to variability at the field duplicates sites. The F-test and the associated
p-value confirm that this partition is highly significant and that maps can be prepared with
confidence.

The same approach can be applied to analytical duplicate pairs, see Table 18.6.
The between sites variability now comprises the variability between the sites chosen for

analytical replication across the survey area, and the only remaining variability is due to
analysis, i.e. weighing out and analysing a second aliquot of the prepared sample. As might
be expected, virtually all the variability now lies between the regional sampling sites and only
0.4 per cent is due to analysis. The F-test and p-value demonstrate that this partition is highly
significant.

As a formal staggered unbalanced design (Garrett, 1983b) was not employed in the Kola
Project, an approximation has to be used in order to partition the variability between the three
sources, regional, at sites, and analytical. This can be done because variances are additive. The
first task is to determine if the regional variability estimates, between sites, as determined from
the data used in both ANOVAs, are sufficiently similar to proceed. The ratio of the “between”
variances, both measures of the variability across the survey area, from the two ANOVAs is
calculated; it is 1.45, which corresponds to a p-value of 0.1. This is above the five per cent
significance level, and it cannot be accepted that the two variances are equal.

Table 18.6 ANOVA table for the 52 analytical duplicate pairs for Cu in Kola Project C-horizon soils

Source DF MSS F p-value Variance Percentage of variation
Between sites 51 0.22600 454 <0.0001 0.11274 99.6

Between analyses 52 0.00051 0.00050838 0.4
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However, some estimate of the relative variability between the sources is still desirable.
Therefore, the field duplicate “between sites” variance was selected, as sites selected for du-
plicate sampling are likely more evenly distributed across the project area than those selected
to monitor analytical variability. As variances are additive, the analytical, “between analyses”,
variance determined from the analytical duplicate pairs can be subtracted from the “within
sites” variance to estimate that part of the “within sites” variance that is due to the “at sample
sites” variance alone. These three variances may now be expressed in percentage form. Thus,
for Cu the variability is partitioned: 88.6 per cent to regional, 10.8 per cent to variability at
sampling sites, and 0.6 per cent to analytical variability. This is a satisfactory outcome for a
regional survey.

The above approximation will sometimes lead to negative estimates for the “at sampling
sites” variances; these are impossible. However, they are the outcome of not employing a
proper unbalanced sampling design for estimating the variance components. By convention,
negative estimates are set to zero, and the computation completed.

Table 18.7 presents the results of the above partitioning of the variability into variance
components (expressed as percentages) for the major element oxides determined by XRF
(left) and selected trace elements (right), and the p-value is for the F-test with the ratio of the
two “between” variances determined from the field duplicates and analytical duplicates.

In most cases the p-values in Table 18.7 are greater than 0.05, indicating an inequality of
the “between” variances for the field and analytical duplicates, raising some doubt over the

Table 18.7 Distributed percentage variabilities for the major element oxides (determined by XRF)
and selected trace elements for Kola Project C-horizon soils. The p-value is for the F-test to
determine if the variances at the “between” level are equal for the field and analytical duplicates.
With the exception of pH all variables were log-transformed prior to the calculation

Element Regional Site Analytical p-value Element Regional Site Analytical p-value
Al2O3 88.65 1.05 10.30 0.88 Ag 63.14 17.29 19.57 0.08
CaO 86.17 0 13.83 1 As 90.50 3.52 5.98 0.03
Fe2O3 80.11 0 19.89 0.05 Be 95.30 3.51 1.19 0.45
K2O 80.32 0 19.68 0.8 Bi 79.65 7.56 12.80 0.11
MgO 86.86 2.40 10.75 0.54 Cd 80.25 17.47 2.28 0.48
MnO 66.73 0 33.27 0.15 Co 92.76 5.47 1.77 0.15
Na2O 87.62 0 12.38 0.11 Cr 94.68 4.15 1.18 0.42
P2O5 91.37 4.20 4.43 0.94 Cr INAA 90.44 8.12 1.44 0.82
SiO2 82.56 0 17.44 0.88 Cu 88.59 10.83 0.58 0.10
TiO2 82.53 0 17.47 0.04 Hg 49.99 10.20 39.81 0.10

Mo 72.32 13.88 13.80 0.25
Ni 92.02 7.08 0.90 0.25
Pb 80.01 11.50 8.48 0.87
pH 28.19 11.23 60.57 0.01
S 72.73 23.96 3.31 0.07
Sb 65.32 25.09 9.59 0.09
Se 67.40 19.11 13.48 0.06
Sr 95.91 1.52 2.57 0.86
Th 82.05 9.92 8.03 0.30
V 95.34 0.68 3.98 0.40
Zn 93.26 5.59 1.15 0.26
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validity of this ad hoc decomposition of the variances. The critical fact is that all the field
duplicate ANOVAs, except Hg and pH, indicated that the combined sampling and analytical
variability is significantly smaller than the “between sites” regional variability. That is the most
important conclusion and supports the validity of the maps. As this critical test was passed, it
was considered informative to proceed with the ad hoc estimation of variance components so
as to be able to place the relative levels of “at site” and “analytical” variability in context with
the “overall regional” variability.

The table (Table 18.7, left) indicates that the “at sampling sites” variability for the major
elements is very small or zero relative to the analytical variability. This indicates that the soils
at the 100 m scale are very homogeneous with respect to major elements. For all oxides, except
Mn, in excess of 80 per cent of the variability is at a regional scale. The partitioning for the
trace elements (Table 18.7, right) presents a more diverse story. Elements such as Ag, Hg,
Sb and the pH all have high local variabilities, i.e. the “between sites” regional variability is
less than 67 per cent. This reflects the difficulties in determining these elements at low levels
and the problems of measuring pH in soil samples. Bi, Mo, S and Se all have “between sites”
variabilities in the range of 67–80 per cent, indicating that maps of these elements are likely
reliable. For all of the remaining elements in excess of 80 per cent of their variability is at the
regional scale indicating that they may be mapped with confidence.

18.6 Using maps to assess data quality

One additional quality criterion will be the appearance of the map when the analytical results
are mapped (see Chapter 5). Figure 18.4 shows two kriged surface maps for Ca: left map,
Ca in the O-horizon; and right map, Ca in the C-horizon. The question to be asked is, do the
maps contain any clear regional features or could they as easily represent random variability

Figure 18.4 Kriged surface maps for Ca in the O-horizon (left) and Ca in the C-horizon (right) of Kola
Project soils
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Figure 18.5 Semivariograms for Ca in the O-horizon (left) and C-horizon (right) Kola Project soils

due to analysis, sampling variability, and a lack of any significant regional trends? The map
of Ca in the O-horizon is very noisy without any clear spatial structure, while the map of Ca
in the C-horizon shows clear spatial structures (Figure 18.4, right). In the first case it could be
assumed that the sample density was too low or (and) the sampling and analytical variability
was too high relative to the regional variability to obtain a useful map. It is also possible that
no clear regional structure for Ca in the O-horizon exists because its regional distribution is
dominated by local small-scale effects.

Information about data quality, or better suitability for mapping, can also be directly derived
from the semivariogram (see Section 5.7.2), if kriging was used as the interpolation method.
Figure 18.5 shows the semivariograms used to construct the above maps. The semivariogram
for Ca in the O-horizon (Figure 18.5, left) is a typical example of the nugget effect, i.e. spatial
independence of the samples; the nugget effect is almost 100 per cent of the total variance. The
semivariogram for the C-horizon data (Figure 18.5, right) shows a clear spatial dependency
for a range of about 200 km, here the nugget effect is approximately 30 per cent of the total
variance.

18.7 Variables analysed by two different analytical techniques

Due to the use of multi-element analytical packages, data for several elements may be de-
termined by more than one technique. This provides an additional means for quality control
if the analytical techniques are measuring the elements in the same mineralogical fractions.
For example, in the Kola data set (C-horizon) several elements were analysed by both X-Ray
Fluorescence (XRF) and Instrumental Neutron Activation Analysis (INAA). Both techniques
should yield “total” element concentrations and the results should be directly comparable. At
the same time the techniques require different sample preparation procedures and are based
on completely different physical principles. Thus they provide an ideal opportunity for quality
control investigations, covering the whole range of the data. Some elements may have been
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analysed by different techniques, giving some combination of “partial” and/or “total” results.
In these instances a comparison can usually not be made (other than in a gross sense) for qual-
ity control purposes. However, the data can be used to gain a better understanding of modes
of transport for trace elements and the forms in which they are sequestered in the sample
materials.

Iron (Fe) is an example of an element that was determined by three different techniques: XRF,
INAA and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) following
a partial aqua-regia extraction. In the environmental literature an aqua-regia extraction is often
referred to as providing “total” element concentrations because it is a strong acid attack.
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Figure 18.6 Fe in the Kola Project C-horizon soils as determined by three different techniques: XRF
expressed as wt% Fe2O3 (upper left) and mg/kg Fe (upper right), INAA and in an aqua-regia extraction
with ICP-AES finish (lower left); and Na as determined by XRF and INAA in Kola Project C-horizon soils
(lower right)
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However, elements bound in the lattices of many silicate and oxide minerals are not freed by
an aqua-regia extraction and the results obtained are thus often far from “total”.

When plotting the results received from the laboratory (XRF results of major elements
are routinely reported in wt% of the oxide – for Fe this is usually Fe2O3) a generally close
relationship between the XRF and the INAA results is visible (Figure 18.6) – with some samples
deviating from this general trend. To obtain a better direct comparison, the XRF results should
be re-expressed in mg/kg Fe. The conversion factor from wt% Fe2O3 to mg/kg Fe is 6994
(conversion factors for all elements are, for example, given in Reimann and de Caritat, 1998b).
Following the conversion XRF and INAA results can be directly compared and a 1:1 line can be
drawn in the diagram (Figure 18.6, upper right). Pairs of samples that deviate from the general
trend (like samples 456 and 457 or 652 and 293) point to the possibility that in the batches
containing these samples, there was a sample mix-up, exchange, that should be followed up
(i.e. inspect the duplicate and project CRM data). For Na it appears that the INAA results are
always higher than the XRF results. The fanning out of the samples towards high concentrations
indicates a decreasing precision at higher concentrations. Again samples deviating from the
overall trend need to be identified and followed up.

These graphical appreciations of the interrelationships between the determination methods
may be formalised through statistical tests. Both the paired t-test and the Wilcoxon test (see
Sections 9.5.1 and 9.5.2) may be used to test if the differences between the two different
methods of measurement on a suite of individuals are significant.

18.8 Working with censored data – a practical example

Problems related to an inappropriately chosen detection limit for some of the analysed variables
have been described in Chapter 2. Here a practical example is chosen to demonstrate the
importance of carefully selecting the detection limits for a project’s success or failure.

Gold (Au) results from the Kola Project are a typical example where more than 50 per cent of
all data as originally received from the laboratory were “<DL” (Figure 18.7, upper left). When
the project was originally planned, Au in the C-horizon soils was only determined by INAA.
This technique provides a detection limit of 0.002 mg/kg (2 ppb) that was considered quite
acceptable at the time (1995). It had to be expected that a substantial number of the samples
would return “<DL” values. When the data were compiled, the CP-plot showed that almost
75 per cent of the data were below the detection limit (Figure 18.7, lower left). A variable with
such a substantial number of values “<DL” has to be treated with care during data analysis.
In the Kola Project the authors later became interested in studying the regional distribution
of Au and the Platinum Group Elements (PGE) palladium (Pd) and platinum (Pt). Thus a
special technique to determine these elements with very low detection limits was developed
(Niskavaara et al., 2004). Results for the C-horizon soils are shown in Figure 18.7 (upper
right). The detection limit achieved was 0.0001 mg/kg (0.1 ppb), a factor of 20 improvement,
with only two samples below the detection limit. Thus the complete data distribution can be
observed (Figure 18.7, upper right).

When the original data are plotted versus the new Au data set (Figure 18.7, lower right) the
major problem caused by the censored data in the original data set can be observed. Even for
that part of the data where real values are available the expected 1:1 relationship is not present.
This is in part due to poor analytical data quality close to the detection limit (original Au data),
and in part caused by high natural sample variability due to the presence or absence of high
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Figure 18.7 Combination plots of histogram, density trace, one-dimensional scatterplot and Tukey
boxplot for Au old (upper left) and Au new (upper right) in the Kola Project C-horizon soils. Combined
CP-plot for Au old and Au new (lower left), and scatterplot for Au new versus Au old (lower right)

specific gravity micro-nuggets in the aliquots weighed out for analysis (Clifton et al., 1969;
Stanley, 1998).

The problems caused by censored data become even more obvious in a scatterplot. When
plotting Cu versus Au almost all the structure visible in the diagram will be hidden in that part
of the data that is below the detection limit of the original analyses (Figure 18.8, left). The
original data do not reflect the relation between Au and Cu that is so apparent in the new Au
data (Figure 18.8, right). A clear message from this plot is that variables with a high proportion
of censored data should not be used for multivariate data analysis. A typical example would
be correlation-based methods, where the results will be distorted and interpretation severely
hindered if variables with a high proportion of censored data are included. Such variables
can be used to document the data distribution and for mapping (though with care due to
possible data quality problems). When highly censored data exist for elements that are
characteristically high for some particular process, such as the formation of a mineral deposit
type or industrial contamination, their presence in measurable amounts can be used to confirm
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Figure 18.8 Scatterplot for Cu versus Au old (left) and Cu versus Au new (right) in Kola Project
C-horizon soils

an interpretation, based on the remaining elements present in reliably measurable amounts.
The two maps constructed with the old and the new Au data (Figure 18.9) show the major
difference – the regional data structure only becomes visible with the complete data set.
In the map constructed with the new Au data (Figure 18.9, right), the granulite belt (see
geological map, Figure 1.2) is generally enriched in Au,and a linear Au anomaly marks
the Pasvik valley, which follows an important fault zone. An interesting anomaly occurs in
the centre of the Finnish survey area, marking a region with many known Au showings. With

Figure 18.9 Distribution maps of Au determined with the old (left) and new (right) method. For
Au determined with the old method about 75 per cent of all values were below the detection limit
(Figure 18.7)
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knowledge of these features it may be possible to detect them in the map for the original Au
determinations. However, the original map by itself is so noisy that no clear conclusions about
the processes determining the regional distribution of Au can be deduced.

18.9 Summary

Quality control should be an integral part of any project in applied geochemistry and environ-
mental sciences. The design of a QC protocol needs to be an integral part of project planning.
International reference materials, at least one project standard, field and analytical duplicates
all need to be inserted in any batch of samples to be analysed. A contract with the analytical
laboratory should clearly spell out the consequences if quality problems are detected. It is
neither sufficient nor prudent to rely on the quality certification of any laboratory. Ultimately
the survey activity is the responsibility of the persons organising it, and it is their responsibility
to independently check the quality of all aspects of the work from planning, through field and
laboratory activities to final report preparation.



19
Introduction to R and Structure
of the DAS+R Graphical
User Interface

19.1 R

R is freely available in source code form under the terms of the Free Software Foundation’s
GNU General Public License. It is a different implementation of the S language developed
at Bell Laboratories (Becker et al., 1988). R was initially written by Ross Ihaka and Robert
Gentleman (University of Auckland) around 1996 (Ihaka and Gentleman, 1996). It is mainly
used for statistical data analysis. It functions on various platforms like Linux, Windows and
MacOS.

R consists of the R base system and contributed packages. At present there exist about 1000
contributed packages. Anybody can contribute a new package to the R core team via the R
homepage (http://www.r-project.org). This is also the site to search for R docu-
mentation.

R can be freely downloaded from the CRAN-server at http://cran.r-
project.org (or just search on the web for “R”). A download will install the base system.
For the functionality needed to produce the graphics and tables in this book additional packages
are needed. These additional packages are best installed in a session within the R base system.

Becker et al. (1988), Chambers and Hastie (1992), Chambers (1998), Dalgaard (2002), Fox
(2002), Venables and Ripley (2002), Everitt (2005), and Crawley (2007) provide introductory
texts to R (or S) and statistical analysis based on R (S). The R homepage (http://www.r-
project.org) provides online manuals and Wiki pages for an introduction to R.

19.1.1 Installing R

R is installed via web-download from http://cran.r-project.org. Just follow the
instructions on the screen. There are slight differences depending on the chosen operating
system. However, in any case the R base system needs to be installed first. Under Windows
the base system is installed on your computer via downloading and executing the “.exe” file.

Statistical Data Analysis Explained: Applied Environmental Statistics with R.  C. Reimann, P. Filzmoser, R. G. Garrett,
R. Dutter © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6

http://www.r-project.org
http://cran.r-project.org
http://www.r-project.org
http://cran.r-project.org
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19.1.2 Getting started

After installing R the program can be executed by double-clicking on the appropriate icon
(Windows) or typing R into the console (Linux, etc.). Windows will open a window called RGui,
containing a window called “R Console”, a simple graphical user interface. Other platforms
will only show a prompt sign (e.g., “>”) and wait for R commands (the prompt also appears
under Windows in the “R Console” window).

For working under Windows it is an advantage to change the standard setup. Click “edit”
“Gui preferences” and then “SDI” and “multiple windows” in the mask and
“save”. R needs to be shut down and started again for these settings to become active. When
re-starting R, only the “R Console” window will appear on the screen.

Under Windows the working directory can either be defined in the “R Console” window
(“File”, “Change dir...” and entering a directory, e.g., C:/StatDA) or via directly entering the
command setwd(“C:/StatDa”). R will then save all output to the directory “C:\StatDA”.
This directory should then also be the default directory for providing all data and background
information (e.g. maps) files.

19.1.3 Loading data

Any data set that has the required format for R (see Chapter 2, Figure 2.1) can now be loaded.
Generally the data set should be available as a simple “.txt” or “.csv” file. The command to
load a “.txt” file, where the first row contains the variable names is

> dat = read.table("filename.txt",header=TRUE)

The equivalent command for reading a “.csv” file is

> dat = read.csv("filename.csv")

for files where the field (column) separator is a comma, “,” and the decimal point is a “.”, and

> dat = read.csv2("filename.csv")

for files where the field (column) separator is a semicolon “;” and the decimal point is a “,”.
“dat” is the object in R which contains the data. It is possible to use any name for “dat”,

e.g., “chorizon” (i.e. the filename can be used as the object name as well). The first character
of the name must be a letter and special signs should generally be avoided for object names
(see Chapter 2).

For demonstrating the basic functionality of R, and the R command structure, the example
data that have been used throughout the book will be loaded. The Kola data sets are included
in the contributed R package “StatDA” and can be downloaded from the CRAN-server. This
is done during an active R session via entering:

> install.packages("StatDA")

The package StatDA is activated via entering

> library(StatDA)

and the Kola C-horizon data are loaded via entering

> data(chorizon)

This command creates an R object called “chorizon” containing 605 rows (observations) and
111 columns (variables).
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19.1.4 Generating and saving plots in R

It is now possible to directly “look” at the data via entering the necessary R commands. If the
task is to study the variable Ba of the Kola C-horizon data set this variable can be extracted
separately:

> Ba=chorizon[1:605,"Ba"]

Ba is now a new object, containing the 605 measured concentrations of the variable Ba in the
Kola C-horizon data set. The object chorizon is a data matrix with 605 rows and 111 columns.
R needs to be told which rows and which columns define the object Ba. The square brackets
are needed to select rows and columns of the matrix, separated by a comma. In the above
example all 605 rows are needed (1:605) and it is planned to use the variable with the name
“Ba”. Because all rows of the matrix are used it would be possible to avoid the “1:605” in front
of the comma, giving the abbreviated form of above command:

> Ba=chorizon[,"Ba"]

For plotting the histogram of the variable Ba the following simple command is now needed:

> hist(Ba)

Figure 19.1 left shows the resulting histogram (compare Figure 3.3 upper left). The histogram
does not really show the data structure due to the strongly skewed data. Thus a histogram of
the log-transformed data will probably give a better impression of the data distribution. The
command

> hist(log10(Ba))

first performs a log-transformation to the base 10 of the Ba data and then plots the histogram
(Figure 19.1 right – compare Figure 3.1 lower right). Thus the x-axis is now scaled according
to the log-transformed data and not according to the original data scale. To construct a scale
that relates back to the original data is possible (see, e.g., R-script for Figure 3.1 lower right)
but requires advanced knowledge of the R graphics parameters.
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Figure 19.1 Histogram of the variable Ba in the Kola C-horizon data set, original data (left) and
log-transformed data (right)
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The plots are presented in the R Graphics Device providing the space for one plot only. Thus
the histogram for the log-transformed values overplots the histogram for the untransformed
values.

Each graphic output of R can be saved to a file (see Section 19.3). To save the histogram of
Ba the required commands are

> pdf("histBa.pdf",width=6,height=6)
> hist(Ba)
> dev.off()

telling R that a .pdf file with the name “histBa.pdf” will be generated, using the R standard
width and height of 6 inches (15.2 cm) to plot the histogram and then to close the graphics file
(dev.off = device off).

It is often interesting to directly compare two (or more) graphics side by side. For the this
purpose the R graphics device is split into rows and columns, just like a table. For the above
example (Figure 19.1) two plots will be arranged side by side. Thus the “table” will contain 1
row and 2 columns. The simple R command then is:

> par(mfrow=c(1,2))

The command “par” handles many graphical parameters in R. “mfrow” is one of these
parameters, determining the number of rows (first number) and the number of columns (second
number) of the graphic device.

The complete sequence of commands for producing Figure 19.1 is thus:

> library(StatDA)
> data(chorizon)
> Ba=chorizon[,"Ba"]
> pdf("fig-19-1.pdf",width=9,height=4.5)
> par(mfrow=c(1,2))
> hist(Ba)
> hist(log10(Ba))
> dev.off()

The first graphic is automatically plotted into the left frame, the second into the right frame.
Such a sequence of commands is called an R-script. Because it is tedious to write the same
commands time and again such scripts are best saved in a script library and the same histograms
for other variables can simply be plotted via editing the variable name (e.g., replace “Ba” with
“Al XRF”). More details on the use of R-script files will be provided in Section 19.3.

There exist many possibilities to change the basic plot. These can be found in the R help
pages, e.g., by typing:

> ?hist

A detailed description of the function hist with all possibilities to change the plot will appear.
The core of the function is:

hist(x,breaks="Sturges",freq=NULL,probability=!freq,
include.lowest=TRUE,right=TRUE,
density=NULL,angle=45,col=NULL,border=NULL,
main=paste("Histogram of",xname),
xlim=range(breaks),ylim=NULL,
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xlab=xname,ylab,
axes=TRUE,plot=TRUE,labels=FALSE,
nclass=NULL,...)

In the above example only the first argument x of the function hist was used for providing
the data (x=Ba) and for all other arguments the R default was used. Each argument can now
be used to change the plot.

For example, the plot title can be deleted using the argument main:

> hist(Ba,main="")

main expects a character string, which is defined using quotation marks. If there is nothing
between the quotation marks, an empty title will be plotted. Of course it would also be possible
to include any desired title between the quotation marks.

To additionally change the x-axis text (the label of the x-axis) the command is:

> hist(Ba,main="",xlab="Ba in C-horizon [mg/kg]")

To change the y-scale from absolute frequencies to relative frequencies the command is:

> hist(Ba,main="",xlab="Ba in C-horizon [mg/kg]",freq=FALSE)

The freq=FALSE command will automatically change the y-axis label from “Frequency”
to “Density”. This example demonstrates that it is necessary to read the complete help file to
understand which parameters will cause which changes. In many cases the examples at the end
of the help page will be very useful to understand the command structure. These examples can
be executed in R using the command:

> example(hist)

When entering the command, here several graphics will flash up on the screen until the last
one is displayed in the graphics window. In cases where there are several examples provided
it is thus needed to first enter the command:

> par(ask=TRUE)
> example(hist)

The command par(ask=TRUE) requires that the user enters a <return> before an example
graphic is replaced.

19.1.5 Scatterplots

For producing a scatterplot two variables have to be selected (if only one variable is selected, R
will automatically plot the selected variable against the number of the row in the data matrix,
the index).

> library(StatDA)
> data(moss)
> Cu=moss[,"Cu"]
> Ni=moss[,"Ni"]

These commands select the variables Cu and Ni from the Kola moss data set.
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To plot a scatterplot the command is:

> plot(Cu,Ni)

The first variable is used for plotting the x-axis, the second is used for the y-axis. The resulting
plot is already quite close to the plot shown in Figure 6.1, left. To change the plot symbols and
the axis labels, the following commands are entered:

> plot(Cu,Ni,xlab="Cu in Moss [mg/kg]",
ylab="Ni in Moss [mg/kg]", pch=3,cex=0.7,cex.lab=1.2)

This command delivers exactly the graphic shown in Figure 6.1, left. The axis titles are changed
using the arguments xlab and ylab (see above, histogram). The plot symbol is changed using
the argument pch (plot character). To see the standard R symbol table the command

> example(points)

can be entered. Here we have replaced the standard circle (1) by a plus (3).
To change the size of the symbols, the argument cex (character expansion factor) is used.

The R default size is cex=1, here the size of the symbol was now reduced to 0.7. To change
the size of the two axis titles the argument cex.lab (character expansion for x- and y-axis
label) was used and the text size is increased by 20 per cent.

The above two examples are shown in Figure 19.2. The complete R-script for Figure 19.2
is:

> library(StatDA)
> data(moss)
> Cu=moss[,"Cu"]
> Ni=moss[,"Ni"]
> pdf("fig-19-2.pdf",width=9,height=4.5)
> par(mfrow=c(1,2))
> plot(Cu,Ni)
> plot(Cu,Ni,xlab="Cu in Moss [mg/kg]",
ylab="Ni in Moss [mg/kg]", pch=3,cex=0.7,cex.lab=1.2)
> dev.off()
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Figure 19.2 Scatterplot of Cu versus Ni, Kola Moss data set (left). The same plot with different axes
labels and symbols (right)
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The structure is thus very similar to the above example for plotting the histogram and it was
possible to simply copy and paste substantial parts of the R-script.

19.2 R-scripts

The R-scripts used to produce all graphics, tables, and statistical tests shown in this book are
provided at the following website:

http://www.statistik.tuwien.ac.at/StatDA/R-scripts/

The R-scripts used throughout the book contain our own functions that are not included in the
R base system. To be able to use the full functionality of these scripts it is necessary to install
the following contributed package from the CRAN-server:

> install.packages("StatDA")

When this package is installed, each script file will automatically work with the provided Kola
example data sets. With some basic knowledge of R it is possible to edit these files to fit the
reader’s own data.

For working with the examples provided in the book it is also necessary to create a personal
directory called, e.g., C:\StatDA\data and to download the provided files containing all
additional files needed to create some of the figures, maps or tables in the book from:

http://www.statistik.tuwien.ac.at/StatDA/R-scripts/data/

For example, for plotting the maps shown in Figure 5.1, the R-script looks like the following:

library(StatDA)
data(ohorizon)
X=ohorizon[,"XCOO"]
Y=ohorizon[,"YCOO"]
pdf("fig-5-1.pdf",width=8.2,height=8.6)

The width and height of the resulting plot need to be defined. In the example the plot (the
pdf file) is scaled to 8.2 inches × 8.6 inches (20.8 cm × 21.8 cm). In principle the size of the
graphic does not really matter because it can be resized in a word processing environment.
However, proportions and text size must be chosen to fit the final size.

par(mfrow=c(2,2),mar=c(1.5,1.5,1.5,1.5))

The parameter mfrow divides the plot into a table of two rows and two columns (for plotting
four graphics). The parameter mar determines the width of the figure margins on the four sides
of each graph. This parameter is automatically valid for all four graphs if not changed again
during the session.

# library(pixmap)

# denotes that the rest of the command line is not executed. Here the library(pixmap)
was automatically loaded when loading the library(StatDA). If working without the
library StatDA this command would need to be executed in R (delete the “#”).

m=read.pnm("C:/StatDA/data/kolageology.pnm")

http://www.statistik.tuwien.ac.at/StatDA/R-scripts/.
http://www.statistik.tuwien.ac.at/StatDA/R-scripts/data/.
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plot(m[1:500,1:494])

For plotting the geological background map a bitmap file is needed. The read.pnm command
requires a file with the extension “.pnm”. Under Linux it is very easy to convert a “.jpg”
file to a “.pnm” file, e.g., via executing the command “convert kolageology.jpg ko-
lageology.pnm”. Under Windows it is necessary to find a graphics program that can
export bitmaps in “.pnm” format. The R object m now contains the information of the bitmap
file in the form of a data matrix. This information can be directly plotted using the plot
command. The original bitmap file contains not only the map but also the legend for the map
(see “kolageology.jpg”). For plotting the geology in Figure 5.1, upper left, the legend is not
needed and cut from the plot via specifying the required rows and columns of the matrix – to
find the exact rows and columns of the matrix m will need several trials. The result is the plot
in Figure 5.1, upper left.

plot(X,Y,frame.plot=FALSE,xaxt="n",yaxt="n",xlab="",ylab="",
type="n",asp=TRUE)

This command is supposed to open an empty plot that is scaled according to the x- and
y-coordinates of the data file. frame.plot=FALSE results in no frame for the plot,
xaxt="n", yaxt="n", xlab="", ylab="" avoids plotting axes and labels for the axes,
and type="n" ("n" for “no/none”) avoids plotting symbols for each x, y-coordinate. The
final argument asp=TRUE guarantees the correct aspect ratio of the x- and y-coordinates,
independent of width and height of the plot.

data(kola.background)

This command loads the data set kola.background, containing the x- and y-coordinates
of the Kola background map shown in Figure 5.1, upper right. A background map file consists
of a matrix with two columns (x- and y-coordinates) of the polygons shown in the map. When
one of the polygons is finished the matrix must contain a row with two “NA” values (not
available). For finishing a background file, two rows with “NA” are needed. In case of the
Kola background map there exist four different layers: the project boundary, the coastline, the
international country borders and shorelines of some major lakes. Each of these layers exists
originally in its own .csv file. These four separate .csv files need to be read into R, e.g.,

> data.boundary=
read.csv("C:/StatDA/data/kola-background-boundary.csv")
> data.coast=
read.csv("C:/StatDA/data/kola-background-coast.csv")
> data.borders=
read.csv("C:/StatDA/data/kola-background-borders.csv")
> data.lakes=
read.csv("C:/StatDA/data/kola-background-lakes.csv")
> kola.background=list(boundary=data.boundary,
coast=data.coast,borders=data.borders,lakes=data.lakes)

to produce the “kola.background” file that is used in the R-scripts for all Kola maps. Such a
background file needs then to be saved:
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> save(file="C:/StatDA/data/kola-background.Rdata",
"kola.background")

In a new R session the file can then be loaded with:

> load(file="C:/StatDA/data/kola-background.Rdata")

In the special case of the Kola background data the file is included in the package StatDA and
could thus be loaded with the above short command data(kola.background). Such a
map for a background file is usually digitalised using a geographical information system like
ArcInfoTM. It is easiest to use the same coordinates for the map as are used in the data file.

plotbg(map="kola.background",map.col=c("gray","gray",
"gray","gray"),map.lwd=c(2,1,2,1),add.plot=TRUE)

The command plotbg plots the background map into the empty plot generated above. The
arguments map.col and map.lwd allow specifying the colour and line width for each of
the four layers in the background map.

> scalebar(761309,7373050,761309+100000,7363050,
shifttext=-0.5,shiftkm=4e4,sizetext=0.8)

The command scalebar plots the map scale. To place the map scale in the map the coordi-
nates for the map scale need to be specified (x lower left, y lower left, x upper right, y upper
right). shifttext and shiftkm allow to move the text in relation to the bar. At present the
function scalebar will always plot a 100 km bar as used for the Kola map. To change the
bar one can either change the function or execute the commands defined in the function with
edited parameters. To see the definition of the function enter:

> scalebar

> Northarrow(362602,7818750,362602,7878750,362602,7838750,
Alength=0.15, Aangle=15,Alwd=1.3,Tcex=1.6)

Accordingly the function Northarrow plots the north arrow onto the map. All parameters
starting with capital A refer to the arrow (length, angle and width). The parameter Tcex
determines the size of the “N” in the arrow.

This command finishes Figure 5.1 upper right. To plot the map in Figure 5.1, lower left, the
following commands are needed:

plot(m[1:500,1:494])
Mg=ohorizon[,"Mg"]
bubbleFIN(X/1100-300,Y/1100-6690,Mg,radi=8,S=9,s=2,
plottitle="",leg=FALSE)

The command bubbleFIN plots a growing dot map of the selected variable (Mg). Because
in this case a general imported .jpg (.pnm) file was used as the background, the x- and
y-coordinates need to be transformed to fit the background map. This is done via the first
two arguments and needs to be tried out until both maps fit on top of one another. Then the size
of the growing dots needs to be specified; S and s determine maximum and minimum size of
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the dots and radi is a multiplication factor that determines the size of the dots in relation to
the map scale. In this specific example no legend will be plotted (leg=FALSE).

Finally, to plot the map in Figure 5.1, lower right, the following commands are needed:

plot(X,Y,frame.plot=FALSE,xaxt="n",yaxt="n",xlab="",ylab="",
type="n",asp=TRUE)
plot.bg(map="kola.background",map.col=c("gray","gray",
"gray","gray"), map.lwd=c(2,1,2,1),add.plot=TRUE)
bubbleFIN(X,Y,Mg,radi=10000,S=9,s=2,plottitle="",
legendtitle="Mg [mg/kg]", text.cex=0.63,legtitle.cex=0.80)

The text.cex argument determines the size of the numbers in the legend, legtitle.cex
determines the size of the legend title.

scalebar(761309,7373050,761309+100000,7363050,
shifttext=-0.5, shiftkm=4e4,sizetext=0.8)
Northarrow(362602,7818750,362602,7878750,362602,7838750,
Alength=0.15, Aangle=15,Alwd=1.3,Tcex=1.6)
dev.off()

This command finishes plotting Figure 5.1, the file is saved as fig-5-1.pdf in the folder where
R is running. It is possible to specify the folder where the plot should be stored before starting
the whole R-script via entering the command:

> setwd("C:/StatDA/plots")

It is of course required that the directory “C:\StatDA\plots” exists on your system.
The R-script can be copied and pasted into the R Console and will then be executed, resulting

in the figure. Alternatively the following command can be entered:

> source("fig-5-1.R")

This command requires that the R file is in the same directory where the working directory
actually is, otherwise the full path name must be provided. These “.R” files can be opened and
edited in the notepad or in any text editor.

However, the best choice for Windows users is probably to open the script in a running R
session:

click “File” – “Open script ...”

and select the appropriate “.R” file. This file can then be edited, saved and executed within the
running R session.

Any other figure, table or statistical result presented in the book can be generated using the
above procedure. An overview of all scripts is provided at the following web site:

http://www.statistik.tuwien.ac.at/StatDA/R-scripts/
overview/

Here the scripts are sorted according to the table of contents of the book. Via clicking at the
subsection in the table of contents all outputs and the required R-scripts are shown.

http://www.statistik.tuwien.ac.at/StatDA/R-scripts/overview/.
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19.3 A brief overview of relevant R commands

Help

start.help() starts the help system.
help(function) or ?function provides help to a specific function (e.g., help(hist)
or ?hist).
help.search("topic") (fuzzy) search for the desired topic (e.g.,

help.search("map")) in all installed packages.

Reading and loading data, functions and tables

read.table("MyFile.txt", header=TRUE) reads data saved as text file.
read.csv("MyFile.csv") or read.csv2("MyFile.csv") reads data saved as

.csv file.
load("MyFile.RData") loads an R binary file, see save.
source("text") loads a text file (e.g., R-script), see dump.
library(StatDA); data(chorizon) loads data that are available in a package, here

the Kola C-horizon data from library StatDA.

Saving data

write.table(dataset,"MyFile.txt") save R object data set into a text file.
write.csv, write.csv2 like above, but save in .csv format.
save(x,"MyFile.RData") saves a more general R object x into a binary file.
dump("Robject","text") saves an R object (e.g., a function) as text file.

Mathematical and logical operators, comparisons

+ addition
- subtraction
* multiplication
/ division
ˆ power
%*% matrix multiplication
== equal
!= unequal
> < larger, less
>= <= larger (less) or equal
! negation
&& logical AND
|| logical OR
& | elementwise logical AND (OR).
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Mathematical functions (here applied to an object x)

sqrt(x) square root
min(x), max(x) minimum, maximum
abs(x) absolute value
sum(x) sum of all values
log(x), log10(x) natural logarithm, base 10 logarithm
exp(x) exponential function
sin(x), cos(x), tan(x) trigonometric functions
eigen(x) eigenvectors and eigenvalues of x.

Statistical functions

mean(x), median(x) mean, median
sd(x), mad(x) standard deviation, median absolute deviation
var(x), cov(x) variance and covariance of the elements of x
var(x,y), cov(x,y) covariance between x and y
cor(x) correlation matrix of x
cor(x,y) correlation between x and y
scale(x) scaling and centring of a matrix
quantile(x,probs) quantile of x to probabilities probs
dnorm, pnorm, qnorm, rnorm density, distribution function, quantile function, random gener-

ation for the normal distribution.

Density, distribution function, quantile function and random generation is also available for
various other distributions. Instead of dnorm the functions are named dt, dunif, dchisq,
dexp, dbinom, dpois, dlnorm, etc.

Data types

logical logical value, either TRUE (T) or FALSE (F)
integer integer (number without decimals) value (e.g., 37)
double a real numeric value (e.g., 3.58)
character character expression, e.g., "abc"

with the following special substitutes:

Inf infinity
-Inf minus infinity
NULL null (empty) object
NA not available (missing value)
NaN not a number (not defined).

Conversion of x to a different data type (if appropriate)

as.logical(x), as.numeric(x), as.integer(x), as.double(x),
as.character(x)

Checking for the data type

is.logical(x), is.numeric(x), is.integer(x), is.double(x),
is.character(x) will check whether x is of the specified data type.

is.na(x) will check whether x contains missing values.
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Data structures
vector consists of a desired number of elements which are all of the same data

type, e.g., logical, numeric, or character.
c(,,,) generates a vector (a combination of single elements separated by a

comma).
seq(from,to,by) creates a sequence of numbers.
rep(x,n) replicates the value x, n times.
factor contains information about categorical data; it contains only a few differ-

ent levels (which can be characters, numbers, or combinations thereof).
matrix matrix of any dimension; all elements must consist of the same data type.
data.frame a data frame can combine different data types, e.g., a matrix where

factors, numeric, and character variables can occur in different columns.
list is a general data object combining vectors, factors, matrices, data frames

and lists.

Extracting data

Extracting data from a vector x or factor x:

x[k] select k-th element of x
x[-k] select all except the k-th element of x
x[1:k] select the first k elements of x
x[-(1:k)] select all except the first k elements of x
x[c(3,5,7)] select specific elements from x
x[x>5] select those elements from x where x is larger than 5 (only if x is numeric)
x[x=="abc"] select the group abc from x (only if x is a factor).

Extracting data from a matrix x or data frame x:

x[i,j] select element in i-th row and j-th column of x
x[i,] select row i of x
x[,j] select column j of x
x[,(1:k)] select the first k columns of x
x[,"col"] select column with name col from x
x$col select column with name col from x (only if x is a data frame)
x[x=="abc"] select the group abc from x (here x is a factor).

Extracting data from a list x:

x$listk select list element with name listk from x
x[[k]] select k-th list element from x.

Working with matrices or data frames

rbind, cbind combine rows (columns)
t(x) matrix transpose of x
solve(x) matrix inverse of x
apply(x,1,function) apply a function (e.g., mean) to all rows of x
apply(x,2,function) apply a function (e.g., mean) to all columns of x
dim(x) provides number of rows and columns of x.
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Graphics

Functions relevant for graphics:

plot(x) plot the values of a column (vector) x versus the index
plot(x,y) plot the elements in the column (vector) x against those in y
points(x,y) add points to a plot
lines(x,y) add lines to a plot
text(x,y,"text") place the text text at the location specified by x and y
legend(x,y,leg) place legend given by vector leg at location x and y.

Relevant plot parameters:

main="title" add title title to the plot
xlab, ylab character for x- (or y-) axis label
xlim, ylim vector with minimum and maximum for x- (or y-) axis
pch number (e.g., pch=3) of the plot symbol (plot character)
col name (e.g., col="red") or number (e.g., col=2) of the symbol colour
cex scaling for text size and symbol size.

Statistical graphics:

hist(x) plot a histogram of the frequencies of x
plot(density(x)) plot a density function of x
boxplot(x) boxplot of x
qqnorm(x) QQ-plot of x.

Saving graphic output

First the graphics device has to be opened. Depending on the desired file format, this is done by
the commands postscript, pdf, png, jpeg. In the arguments of these functions the file
name has to be provided, and optionally the size of the graphic (width and height). Then the plot
is generated. Finally, the graphics device needs to be closed with the command dev.off().
The command sequence

pdf(file="figx.pdf",width=6,height=6)
hist(x)
dev.off()

generates the file figx.pdf with the size 6 inches × 6 inches (15.2 cm × 15.2 cm) containing a
histogram of x. Under Windows it is possible to directly save the graphics displayed in the R
Graphics Device in the desired format via clicking at “File” and “Save as”.

Terminating an R session

q() quits (ends) the R session. The user is asked whether data objects should be saved. If this
is desired, all newly created objects (data objects, functions, etc.) will be saved in a special
binary format in the current working directory, and will be available in the next R session.
If terminating without saving, all newly generated objects are lost, and only objects saved in
previous R sessions will be available.
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Figure 19.3 Screen shot of the DAS+R main menu window

19.4 DAS+R

DAS+R provides a graphical user interface (GUI) to R, based on the R Commander of Fox
(2005). Much of the system analysis for the functionality of the GUI was copied from the old
DAS system (Dutter et al., 1990). DAS+R allows storing and using more information about
the data than R alone (see Chapter 2) during data analysis. It runs in its own window while the
R Console is active. It can also be used to build or edit R-scripts.

DAS+R is presently available at the following website:

http://www.statistik.tuwien.ac.at/StatDA/DASplusR/

It needs to be downloaded and then installed as a package in a running R session (in Windows:
click at “packages” – “install packages from local .zip files ...” and
select the .zip file). The general command is:

> install.packages(repos=NULL,"DASplusR.zip")

Because DAS+R is still under development it is advisable to check the web site regularly for
updates. Manuals and help files are available at the same web site.

The program is started in a running R session via loading the already installed package
DASplusR:

> library(DASplusR)

(note that a “+” is not allowed in object names in R). Two windows will open:

� the R Console window and
� the DAS+R window.

http://www.statistik.tuwien.ac.at/StatDA/DASplusR/
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The DAS+R window consists of a menu bar and a tool bar on top of the window and the
window which is subdivided into three sub-windows (the script window, the output window
and the messages window). Any run time errors and other messages will be displayed in the
messages window. The script window will show the R commands that result from the clicked
selections. It is also possible to use the script window for directly entering R commands. The
output window shows the complete submitted command and any text output that is created from
this command. Graphical output appears in the R Graphics Device. Due to the many stacked
windows that will occur when working with the system a large screen (or a combination of
two screens) clearly has advantages.

19.4.1 Loading data into DAS+R

A session always starts with either entering a new data set, loading a .txt or .csv file containing a
new data set or activating an existing data set. For activating an existing data set such as the Kola
C-horizon example data, which are included in the package DAS+R, it is necessary to click at
“File” – “Open” – “from Packages” – “Data Set from an Attached Pack-
age”, select “DASplusR” (double-click), “Kola95_Chor” (double click) and “OK”. The
now active data set Kola95_Chor will show up in blue in the tool bar. It is now possible to start
a DAS+R session analysing this data set.

To load a new data set that exists as a .txt or .csv file (for file requirements see Chapter 2) it is
necessary to click the “File” – “Open” – “Text File” buttons and follow the instructions
on the screen. For directly typing a data set into the system the “New” button is clicked and an
empty table for entering data will appear on the screen.

19.4.2 Plotting diagrams

Once a data set is indicated in blue print on the “Data set” button as active, DAS+R can
be used to analyse the data set. Maps can of course only be plotted if coordinates exist in the
data set.

For example, to plot a histogram of any of the variables in the data set use the pull down
menu:

� Diagrams
� Histogram
� select the variable from the provided list (e.g., Al_XRF) and click
� OK

and a combination plot of histogram, density trace, one-dimensional scatterplot and boxplot
(see Chapter 3) will be produced in the R Graphics window. The graph can be saved to a bitmap
(e.g., .jpg format), a pdf file or in ps- or eps-format using the “Save Graph to File”
button under “Diagrams” (note that the save buttons under “File” will save data and/or
command files but not the graphical output!). Density trace, one-dimensional scatterplot and
boxplot can be switched off. It is also possible to change the number of bins used for plotting
the histogram and other features as outlined in the screen menu.

All other plots function accordingly. Some (e.g., the Xyplot) have numerous additional
functions. Changes to the axes are made under “Details” (separately for each axis) and
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additional functions for a plot (e.g., the correlation coefficient, a regression line, or the identi-
fication of samples) can be found under “Additionals”.

19.4.3 Tables

It will also be interesting to look at a number of summary tables. These tables will also provide
a fast routine for checking that everything went OK when importing the data. DAS+R provides
a number of easy functions to produce a variety of data tables.

“Status short” and “Status long” provide an overview of the current data set.

An overview of many statistical parameters can be produced under:

“Statistics” – “Summaries” – “DAS+R (standard)”

where a mask for a selection of statistical parameters appears. It is possible to choose a se-
lection of parameters (or all) to produce a statistical summary table of the data set (e.g.,
minimum – MEDIAN – maximum value of each variable). The resulting file can then be saved
in .csv format and edited in ExcelTM.

19.4.4 Working with “worksheets”

The standard R Graphics Device allows only the plotting of one graphic at a time. It is,
however, often desirable to combine several graphics in one plot (e.g., two or four as often
used throughout the book). Such a worksheet can be constructed in the Worksheet menu.

When clicking “Worksheet” – “New” the interactive worksheet menu asks for the size
of the output file in cm. For example, a worksheet of the size 25 × 18 cm can be constructed.
It is then possible to divide this sheet interactively into several plotting frames of the same or
different size. Frames can even be stacked. Small frames can also be inserted into larger frames
(e.g., for a legend) or to construct overlapping frames. Before a graphic (or text) is generated it
is necessary to activate the desired frame via a mouse click (colour red). Each worksheet design
can be saved (without any graphics) under “Worksheet” – “Save Layout”, using a unique
file name (e.g., A44lands.Rws) and loaded again for use in later sessions (“Worksheet” –
“Open”). The graphics are not in the Worksheet menu window but plotted in the corresponding
positions in the R Graphics Device. The worksheet design allows overplotting of any activated
frame without destroying the graphics in other frames.

The final design with graphics is stored the usual way (e.g., “Diagrams” –
“Save Graph to File” or “Worksheet” – “Snapshot”).

19.4.5 Groups and subsets

Factor variables (see Section 2.1) can directly define groups. Each sample belongs to a certain
group. Groups can be used for creating data subsets for graphics, tabulations or statistical
computations. For example the variables “COUN” (country of origin of the samples) and
“ASP” in the Kola C-horizon data set contain information about the country of origin of the
samples (Finland or Norway or Russia) and the aspect of the sample site. This information
can be directly used to assign specific plot symbols and/or colours to these “groups”. It is
also possible to directly compare groups in boxplots. Groups can be used for density traces,
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ECDF-plots, boxplots, in scatterplots, ternary diagrams, for mapping and multivariate data
analysis. New groups can also be defined during an interactive session in DAS+R.

Subsets can be defined using a multitude of mathematical operators, via editing indicator
vectors or graphically in various diagrams (e.g., scatterplots, ternary diagrams, maps, the
biplot).

19.4.6 Mapping

Mapping requires that the samples have x− and y−coordinates. On first use the variables
that identify the coordinates have to be specified. Maps can be produced with or without
geographical (topographical) background. All maps are produced through the pull down menu
button “Maps”. The “Maps” menus allow the variables containing the x− and y−coordinates to
be selected, the variable to be mapped, mapping method and levels for classes and the symbol
set for mapping (where appropriate). When clicking “OK” in the map menu the R Graphics
Device will open. In addition an “Add Annotations” window will appear allowing the
placement of a legend, north arrow and a scale bar interactively in the map. Following these
steps it is necessary to click “OK” and the final map will appear on the R Graphics Device.
Just as any other graphic it can be saved to a bitmap (e.g., .jpg format), a pdf file or in ps- or
eps-format using the “Save graph to file” button under “Maps”.

For mapping it is often desired to include background information files in a map. DAS+R is
able to load such a background file and plot a geochemical map on top of it. It is possible to either
use postscript files containing polygon information or .pnm files (bitmaps) as background. This
permits the use of scanned maps as background, that were transformed (initially saved) into
postscript (.ps or .eps) or .pnm format. In the majority of cases the coordinates of the data and the
coordinates of the background map will not be the same. Thus it is required to fit the coordinate
system of the background map such that the sample points plot at the right locations. This can
be done in DAS+R in the “Maps” menu using the “Background” – “Convert” buttons.
A menu will appear where the file containing the background information can be selected. R
transfers such background files into an R object. This is a time and memory intensive procedure.
The background files should thus not be too large (several Mb). For a screen presentation a file
size of 1 Mb will usually be sufficient.

When the background file is converted it will appear in the R Graphics Device window.
By selecting several sample sites from the geochemical map as reference points and their
geographic locations on the background map the coordinates of the background map may be
iteratively transformed to be conformable with those of the geochemical map. A number of
transformation methods for the background map are available. This step requires experience
and is best learned via trial and error. Once background map and sample locations fit together
the transformed background map can be saved as a “.Rmap” file. For future application the
transformed background map can then be loaded under “Maps” – “Background” – “Load”.

19.5 Summary

R is a free open source software tool for statistical data analysis, which can be downloaded
from http://www.r-project.org. Due to many contributed packages it follows
the latest developments in statistics very closely. R is basically a command language.
To master the command language needs frequent use of R. Commands to construct a

http://www.r-project.org
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figure, map or table can, however, be summarised in “R-scripts”. Such scripts can be
easily adopted to other data sets. Scripts for all graphics and tables in this book are
provided at http://www.statistik.tuwien.ac.at/StatDA/R-scripts/.
However, many users may prefer a graphical user interface to editing R-scripts. DAS+R
(http://www.statistik.tuwien.ac.at/StatDA/DASplusR/) provides such
a user interface. DAS+R is being developed for this book and is able to cover many of the
applications described.

http://www.statistik.tuwien.ac.at/StatDA/R-scripts/
http://www.statistik.tuwien.ac.at/StatDA/DASplusR/
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alr-transformation, 177
analytical duplicate, see duplicate, 281
ANOVA, see statistical test, 161
Ansari-Bradley test, see statistical test,
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append data, 25
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average linkage, 237
average silhouette width, 245

background, 97, 107, 201
geological, 66
information, 65
local, 125
populations, 119
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Bartlett test, see statistical test, 161
Bayesian Information Criterion (BIC), 240
bio-productivity, 98
biplot, 219
bootstrap, 218, 267, 272
BOT, see TOP/BOT-ratio, 120
box-and-whisker plot, see boxplot, 46
boxes, see multivariate graphics, 197
boxplot, 41, 71

box-and-whisker, 46
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outlier identification, 109
percentile based, 46
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castles, see multivariate graphics, 198
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censored data, see detection limit (DL), 18
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robust estimator, 53
centred logratio transformation, 178
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chi-square distribution, see distribution, 55
chi-square plot, 205
class selection for maps, 80
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ECDF- and CP-plot, 73
percentile, 71

closed data, see compositional data, 2
closed number system, see compositional data,
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closure, see compositional data, 176
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cluster membership, 240
cluster validity, 244
clustering

agglomerative, 236
average linkage, 237
complete linkage, 237
divisive, 236
fuzzy, 242
fuzzy c-means, 242
hierarchical, 236
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common factor, 212
communality, 224, 225
complete linkage, 237
compositional data, 2, 176, 214, 235
concentration-area (CA-) plot, 115
confidence bound, 157
confidence interval, 38, 149, 252
coordinate system, 64
coordinates

spatial, 63
UTM-system, 64

correlation
analysis, 181
coefficient, 181
matrix, 188, 202
robust, 184
significant, 184

covariance, 181
matrix, 202
robust estimation, 204

CP-plot, 39
cross-validation, 218, 267, 272
crust (upper), 101
csv file format, 14
cumulative probability plot, 39

DAS (Data Analysis System), 314
DAS+R, 3, 314–318

data file format, 14–17
summary table, 132

data
comparison

statistical tests, 149
tables and graphics, 129

dimension, 178
distribution, see distribution, 29
format, 14
outlier, see outlier, 107
spatial, see spatial, 63
standardisation, 175
subset, see subset, 138
test, 272
training, 272
transformation, see transformation, 167

data mining, 148
degrees of freedom (df), 55
dendrogram, 198, 237, 242
density function, 33
density trace

bandwidth, 33
weight-function, 33

dependent variable, 249
detection limit (DL), 17–19, 23, 215, 235, 296

practical (PDL), 287
df (degrees of freedom), 55
diagnostic plot, 262
dimension reduction, 211, 217, 222, 246
dimensionality, 216, 253
Discriminant Analysis (DA), 269

Generalised (GDA), 276
Linear (LDA), 269
Quadratic (QDA), 269
robust, 269

discriminant function, 269, 270, 272
dissimilarity measure, 237
distance, 236

Canberra, 236
Euclidean, 76, 202, 236
Mahalanobis (multivariate), 202
Manhattan, 236
matrix, 236
orthogonal, 93
random forest, 236
robust, 205, 262

distribution
bivariate, 182
chi-square, 55, 205
exponential, 55
Gamma, 38
lognormal, 54, 151
multimodal, 31, 55
multivariate normal, 205, 213, 270
normal, 36, 54, 151
Poisson, 38, 169
shape, 53
skewed, 31
spatial, 66, 264
statistical data, 29
Student t, 55
symmetric, 31, 44
uniform, 171
unimodal, 31
univariate, 182

distribution function, 34
cumulative (CDF), 35
empirical cumulative (ECDF), 36

divisive clustering, 236
DL, see detection limit (DL), 17
dot size function, 68
duplicate

analytical, 281, 286, 289
field, 281, 288, 289
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ECDF-plot, 36
EDA (Exploratory Data Analysis), 1, 233
EDA symbol set, 70
EF (Enrichment Factor), 121
eigenvalue, 217
eigenvector, 217
elliptical structure, 202
enrichment factors (EFs), 121
error

analytical, 289
random, 282
sampling, 289
systematic, 282

error term, 249
Euclidean distance, see distance, 76
ExcelTM (Microsoft), 4, 13, 25
Expectation Maximisation (EM), 240
explanatory variable, 249
exponential distribution, see distribution, 55
extreme value, see also outlier, 43, 107, 108

F-test, see statistical test, 160
Factor Analysis (FA), 212, 222–231
fence (inner), 43
field duplicate, see duplicate, 281
Fligner test, see statistical test, 162
fractal, 115
Friedman test, see statistical test, 163
fuzzy c-means, 242
fuzzy clustering, 242

G, see geometric mean, 52
generalised additive model, 267
Generalised Discriminant Analysis (GDA),

276
geogenic sources, 120, 128
geometric mean (G), 52, 178
GIS (Geographical Information System), 64, 66,

84
graphical data analysis, 1, 102
GSC symbol set, 70

heteroscedasticity, 251
hierarchical clustering, 236
hinge (lower LH, upper UH), 43
histogram, 31

interval length, 31
number of classes, 31

homogeneity of variance, 162, 290
homoscedasticity, 251
hypothesis, see statistical test, 150

IDEAS, 3
INAA, 19
independence, 80
independent variable, 249
inference, 164, 252, 256
inhomogeneous data, 188, 215, 286
interpolation, 74, 79

spatial, 115
interquartile range (IQR), 44, 56
isoline map, 79

k-means algorithm, 239
Kola

atlas, 5
data, 6
geological map, 7, 66
Project, 4, 5–11
sample preparation, 11
sample sites, 9
survey area, 6

kriging, 76, 79, 293
block, 79
point, 79
semivariogram, see semivariogram, 76
universal, 81
variance, 79

Kruskal–Wallis test, see statistical test, 161
kurtosis, 43, 59

Lasso regression, 267
LDA (Linear Discriminant Analysis), 269
leaps-and-bounds algorithm, 265
least squares

regression, 93, 254
orthogonal, 93, 146
total, 146

Levene test, see statistical test, 162
leverage, 94, 183, 252
leverage point, 262
linear model, 249
link data, 25
loadings, 217, 219, 222
location

robust estimation, 204
loess method, 97, see also regression, smoothing,

97
log-boxplot, see boxplot, 44
logarithm

base 10, 52
natural, 52

logistic regression, 267
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lognormal distribution, see distribution, 54
LTS regression, 250

M-estimator, 53
MAD, see median absolute deviation, 110
Mahalanobis distance, see distance, 202
Mann–Whitney U-test, see statistical test, 158
MANOVA, 245
map

base, 65, 84
black and white, 70
classes, see class selection, 73
colour, 70, 79, 81
contour (isopleth), 70
geochemical, 63, 65
geological, 66, 84
isoline, 79
projection, 64
proportional dot, 68
scale, 65, 84

grey, 83
rainbow, 83

subsets, 147
surface, 74
symbol, see symbol, 68

matrix inverse, 178
maximum (MAX), 56
Maximum Likelihood (ML) method, 212, 213,

224
MCD (Minimum Covariance Determinant), 204
MEAN, see arithmetic mean, 51
median (MEDIAN), 42, 52
median absolute deviation (MAD), 57, 110
minimum (MIN), 56
minimum spanning tree, 208
missing value, 20, 24
mixture decomposition, 112
mixture of populations, 188, 215
mode (MODE), 52
model-based cluster, 240
monitoring, 95
monotonic relationship, 182
Monte Carlo, 216, 218
moving average, 75
moving median, 75, 97
multidimensional scaling, 208
multimodal distribution, see distribution, 55
multiple R-squared, 224, 257
multiple regression, 251
multivariate

data analysis, 102, 174

data set, 185
normal distribution, 205
outlier identification, 201

multivariate graphics, 193
boxes, 197
castles, 198
parallel coordinates plot, 198
profiles, 193
segments, 196
stars, 194
trees, 198

NA (not available), see missing value, 17
neural network, 267
non-linear model, 249
non-parametric method, 182
non-parametric test, 156, 158, 160–163
normal distribution, see distribution, 36
north arrow, 67
nugget variance, see semivariogram, 79

observed values, 249
open array (data), see compositional data, 176
OracleTM, 27
order statistics, 44, 71
orthogonal projection, 216
orthogonality, 215
outlier, 43, 108

cluster analysis, 234
detection, 107, 201
regression, 94, 252
vertical, 262

outlier identification
boxplot, 109
classical, 108
ECDF- or CP-plot, 112
multivariate, 201
percentile, 110
robust, 110
univariate, 203

overfitting, 254

p-value, see statistical test, 150
PAM algorithm, 245
parallel coordinates, see multivariate graphics,

198
Partial Least Squares (PLS), 267
partitioning method, 239
PCA, see Principal Component Analysis, 212
PCR, see Principal Components Regression, 267
Pearce plot, 178
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percentile, 46, 59, 110
PFA, see Principal Factor Analysis, 212
PLS, see Partial Least Squares, 267
PP-plot, 39
precision, 286
predicted values, 249
prediction error, 267
Principal Component Analysis (PCA), 212,

216–222
Principal Components Regression (PCR), 267
Principal Factor Analysis (PFA), 212
principal factor analysis (PFA), 224
probability, 35

cumulative, 39
paper, 39

profiles, see multivariate graphics, 193
project standard, 281
projection method, 209, 239
proportional dot map, 68

QDA (Quadratic Discriminant Analysis), 269
QQ-plot, 36
Quality Control (QC), 25, 281
quantile, 36, 59
quartile, 43, 59
Quattro ProTM, 4, 13

R, 3, 301–314
base system, 301
command overview, 310
Console, 301
contributed packages, 301, 307
Graphics Device, 303
help pages, 304
homepage, 301
installation, 301
R-scripts, 307–310

random sampling, 239
randomised sample, 282, 284
range (RANGE), 56

semivariogram, 79
ranking, 168
Rare Earth Elements (REEs), 101
reference material, 281, 283
regression

analysis, 249
coefficient, 256
diagnostic plot, 262
diagnostics, 252, 259
inference, 256
Lasso, 267

leaps-and-bounds, 265
least squares, 254
line, 93
LMS, 266
loess, 97
logistic, 267
LTS, 250, 260
M-estimators, 266
model selection, 264
multiple, 251
non-linear, 94
Ridge, 267
robust, 94, 250, 260
S-estimators, 266
smoothing, 94
stepwise, 265

backward selection, 265
forward selection, 265

trees, 267
weighted, 97

repeatability, 286
residuals, 254

standardised, 262
response variable, 249
Ridge regression, 267
robust

correlation, 184
covariance, 204
distance, 205
LDA, QDA, 269
location, 204
PCA, FA, 213, 221, 223
regression, 94, 260

rotation, 222
Oblimin, 224
oblique, 224
orthogonal, 224
Promax, 224
Quartimin, 224
Varimax, 223, 224

round-robin test, 281
RSD, see Relative Standard Deviation, 283

S – computer language, 5
S-Plus, 5
Sammon’s non-linear mapping, 208
sample

coordinates, 25
dependent pairs, 158
grid, 75
identification, 22
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sample (continued)
location, 66
material, 67
medium, 67
preparation, 67

scaling, 173
scatterplot

matrix, 102
subsets, 146

one-dimensional, 29
subset, 141
two-dimensional, 91

scores, 216, 219, 222
scree plot, 217, 224
SD, see standard deviation, 44
segments, see multivariate graphics, 196
semivariogram, 76, 294

cloud, 77
directional, 81
kriging, see kriging, 76
model, 78
model fitting, 78
nugget variance, 79
omnidirectional, 78
quality criteria, 79
range, 79
sill, 79
spherical model, 80
total variance, 79

significance level, 150
sill, see semivariogram, 79
similarity measure, 237
single linkage, 237
singularity, 178
skewness, 43, 59

robust, 45
smoothing

kriging, see kriging, 76
line, 94
loess, 97
moving average, 75
moving median, 75
polynomial, 75

sorting, 168
spatial

coordinate, 204
dependence, 2, 77, 215, 294
distance plot, 98
distribution, 66
interpolation, 115
structure, 136, 293

subsets, 142
trend, see trend, 97

spiderplot, 101
spin, 220
spread, 43, 55–59
spreadsheet, 13, 132, 168
standard deviation (SD), 44, 56, 282

relative (RSD), 283
standard error, 257
standardisation, 175, 202
stars, see multivariate graphics, 194
statistical test

alternative hypothesis, 150
ANOVA, 254, 289

one-way, 161
random, fixed effects, 290
two-way, 163
unbalanced, balanced, 289

Ansari-Bradley, 160
Bartlett, 161
correlation, 184
F-test, 160, 290
Fligner, 162
Friedman, 163
hypothesis, 150
Kolmogorov–Smirnov, 151
Kruskal–Wallis, 161
Levene, 162
Mann–Whitney U-test, 158
null hypothesis, 150
p-value, 150, 185, 257
significance level, 150
t-test, 154

one-sample, 154
Wilcoxon, 159

rank sum, 158
statistics

classical (Gaussian), 3
descriptive, 1
environmental, 5
robust, 110

Student t distribution, see distribution, 55
subset

creation, 138
in maps, 147
in scatterplots, 141
scatterplot matrix, 146
spatial trend, 142
ternary plot, 144
time trend, 142

summary statistics table, 59, 132
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surface map
kriging, 76
smoothing, 74

survey design, 63
symbol

boxplot, 71
choice, 70
sets, 70, 84
size, 68, 84

symmetry, see distribution, 44

t-test, see statistical test, 154
tail, 31, 59, 107

heavy, 55
ternary plot, 103

subsets, 144
test, see statistical test, 149
Thompson and Howarth plot,

287
threshold, 107, 201
time trend, see trend, 96
TOP, see TOP/BOT-ratio, 120
TOP/BOT-ratio, 121
transect, 97
transformation, 167

addition, subtraction, 172
additive logratio, 177
Box–Cox, 170, 235
centred logratio, 178
linear, 172
logarithmic (log-), 169
logit, 171
multiplication, division, 173
non-linear, 169
power, 169
range, 173
ranking,sorting, 168

square root, 169
standardisation, 175

trees, see multivariate graphics, 198
trend, see also smoothing, 96

spatial, 97, 118
subsets, 142
time, 96

trimmed mean, 53
trueness, 282
Tukey boxplot, see boxplot, 41

uncertainty, 2, 282
unique factor, 212
unique variance (uniqueness), 222, 223
unit, 22, 212, 234
UTM-system, see coordinates, 64

variability, 181, 286
analytical, 289, 293
sampling, 289, 293
total, 212, 225, 289

variable name, 22
variable selection, 225, 246
variance, 56, 58

components, 292
homogeneity, 162, 290
testing, see statistical test, 160

variogram, see semivariogram, 76

weighted sums, 278
whisker, 46
whiskers (lower, upper), 43
Wilcoxon test, see statistical test, 156
world soil, 101, 129

x-Chart, 284
xy-plot, see scatterplot, 91
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