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Preface 

Some years ago I came across the need for precise information 
concerning the basis properties of sets of special functions, and 
the methods available for testing for such properties. This 
material proved to be rather widely scattered, so I began a 
collection of notes on the subject which have formed the founda-
tions of the present little book. 

I hope that the book will prove useful to graduate students of 
mathematics, particularly those whose research interests are 
developing in the direction of bases in Hilbert and Banach 
spaces: it could bridge the gap that exists between the scant 
treatment this topic usually receives in standard texts on 
functional analysis on the one hand, and the rather formidable 
specialist books such as Marti (1969) and Singer (1970) on the 
other. There is no harm in having some experience on the practical 
side of the business before aiming to become managing director ! 

I hope the book will appeal to workers in other scientific fields 
as well. An appendix has been included which lists many of the 
standard results, and this may help to make the book useful as a 
source of reference. 

It is assumed that the reader's education will have included 
the usual first courses in real variable (including Lebesgue 
integration) and complex variable. Although a knowledge of 
functional analysis would be an advantage it is not strictly 
necessary, and all the principles of functional analysis which are 
used in the text are listed in an appendix, along with certain 
other facts which do not fit easily into the presentation. 

Introductory sections on metric and  LP spaces have been 
included, in note form since it is assumed that most readers will 
already be familiar with this material. These sections are intended 
to serve as a `run up' to the main part of the book. 

[ix] 



x 	 Preface 

The subject matter touches upon many important topics in 
both pure and applied mathematics; for example, bases in 
Banach space, orthogonal series, properties of special functions, 
interpolation and approximation, eigenfunctions and boundary 
value problems, probability, and information theory. These, 
together with a variety of methods of proof both ancient and 
modern, give the subject a certain charm. This is a source of 
satisfaction to me, and I hope it will prove equally satisfactory 
to the reader; if so, my work will have been well rewarded. 

I wish to express my gratitude for having been allowed some 
remission of teaching duties at the Cambridgeshire College of 
Arts and Technology for purposes of writing and research over a 
three-year period, during which parts of the book were written. 
I am particularly grateful to those of my colleagues who, as a 
consequence, had to shoulder an extra burden of work. 

I would also like to thank Dr F. Smithies, fellow of St John's 
College, Cambridge, for reading the manuscript and making 
many valuable suggestions; as a result of this the book has been 
improved in every respect. Appreciation is also due to the staff 
of Cambridge University Press for accepting the book as a ` tract', 
and for their courteous efficiency. 

Cambridge 	 J. R. HIGGINS 

March 1976 



1. Foundations 

The sets of functions which form the subject matter of this book 
are to be considered as sequences in metric spaces. Actually we 
shall be almost exclusively concerned with various LP spaces, 
particularly the case p = 2, and with subspaces of such spaces. 
Although the notes which follow in § 1.1 and § 1.2 contain suffi-
cient metric space theory for an understanding of the rest of the 
book, the reader who is new to metric spaces may wish to fill 
in from a good text such as Copson (1967). For general back-
ground reading Simmons (1963) is also highly recommended. 

Throughout the book an effort has been made to present 
theorems which are sufficiently general to be `useful', but in a 
small introductory book of this kind a great deal of detail has to 
be left out; adequate references are given for those who want to 
consult more advanced sources. 

1.1 Notes on metric spaces 

1.1.1 Vector space It is assumed that the reader is 
familiar with elementary set theory. The word `space' is used in 
mathematics to mean a set with some internal `structure'. Let 
V be a set whose elements are to be called vectors, and let F be a 
field (the field of scalars; we will usually take it to be the field of 
complex numbers). The basic structure that we shall require for 
V is that it be closed under an operation of addition of two 
vectors u and  y,  denoted by u + v, and an operation of multi-
plication of a vector u by a scalar f of F, denoted by fu. If V 
is to become a useful mathematical system we shall require more 
structure within it than the presence of these two operations. If 
in addition the two operations satisfy the following list of axioms, 
then V is called a vector space. 

[1] 
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(1) u + v e V for every u and v in V (V is closed under the 
operation of addition). 

(2) u + (v + w) = (u + v) + w for every u, v, win V (addition is 
associative) . 

(3) u + v = v + u for every u and v in V (addition is com-
mutative). 

(4) V contains a vector 0 such that u + 0 = u for every u in 
V (0 is the `null vector' of  V).  

(5) For every u e V there is a vector — u in V such that 
u + ( — u) - u — u = 0 (each vector has an additive inverse). 

(6)fu is in V for every/ in F and every u in V (V is closed under 
multiplication by scalars). 

(7) Let 1 denote the multiplicative unit of F. Then lu  = u for 
every u in V. 

(8) For every u and vin V and f and g in F we have 

f(u+v) = fu+fv 
and 	 (f + g) u = fu + gu (distributive laws) . 

(9) (fg) u = f (gu) for every f and g in F and u in V. 

The first five axioms express the Abelian group character of V. 
From now on, V will denote a vector space; the definitions to 

follow give further structure to V. 

1.1.2 Metric and norm A metric on V is a real valued 
` distance' function p, defined on pairs (u, v) of vectors in V, such 
that for every u, v, w in V we have 

(1) p(u, v) ?.- 0, and p(u,v) = 0 if and only if u = v; 

(2) p(u, v) + p(v, w) ? p(u, w) (triangle inequality); 

(3) p(u, v) = p(v, u). 

Note that a space need not be a vector space in order to define a 
metric on it. 

A norm on V is a real valued function defined on V and denoted 

by II II, such that 

( 1 ) lull % 0,  lull = 0 if and only if u = 0; 
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(2) Ilu+ v11 < Bull + livli (triangle inequality); 

(3)Il full = Ifl hull for every complex number f. 

The norm generalises the notion of absolute value of complex 
numbers. Evidently the choice p(u, v) = Il u — v il provides a 
metric on V, and this special metric is called the metric induced 
by the norm. A space possessing a metric is called a metric space 
and one possessing a norm is called a normed space. From now 
on unless otherwise stated V will denote a normed vector space 
with metric induced by the norm. 

1.1.3 Convergence Let (un ) be a sequence (see §1.1.10) of 
elements of V. Then (un) is said to be convergent if there exists u 
in V, called the limit of the sequence, such that Il un — ull 
as n --e- oo. A convergent sequence has a unique limit. The reader 
must notice carefully that convergence means convergence in the 
norm of V to an element of V. For example, one can construct a 
sequence of rationals which ` converges' to 4 j2, but here con-
vergence must be understood to take place within the normed 
vector space of real numbers, even though each member of the 
sequence is a rational number. If one were to speak only of the 
rationals, the sequence would not be convergent; it would be 
a ` Cauchy sequence', however, and these ideas lead to a most 
important and desirable property of metric spaces, that of 
`completeness' (see § 1.1.5). 

1.1.4 Closed sets Let S c V and u e V . Then u is called 
a point of closure of S if, given e > 0, there exists an s e S such 
that II u — 811 < e. The closure S of S is the collection of all points 
of closure of S. S is called closed if S = S. For every S we have 
Sc S=S. 

Let (un) be a sequence in V. Any expression formed from 
vectors of this sequence by use of the two basic operations of 
addition and of multiplication by a scalar is called a linear 
combination of those vectors. The collection U of all such finite 
linear combinations is called the linear span of (un) and U is 
called the closed linear span of (un) frequently denoted by [un]. 
One sometimes says that (un) spans U. 
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1.1.5 Cauchy sequences and completeness The se- 
quence (un ) in V is said to be a Cauchy sequence if, given e > 0, 
there exists N such that II u — u72II < e for every n and m greater 
than N. V is said to be complete if every Cauchy sequence in it 
converges. 

1.1.6 Dense subsets A subset S c V is said to be dense 
in V if for every u e V and e > 0, there exists a vector s e S such 
that II u — 811 < e. The reader may verify that if Sl  c 82 C V with 
S1  dense in  82  and  82 dense in V, then S1  is dense in V. We shall 
refer to this as the chain of dense subsets principle. If V contains 
a countable dense subset then it is called separable. 

1.1.7 Banach space In his well-known book, Théorie des 
opérations linéaires, Stefan Banach (1932) referred to certain 
spaces as ` les espaces du type (B)' and such spaces have carried 
his name ever since; we are now in a position to write down the 
definition: a normed vector space which is complete in the metric 
induced by the norm is called a Banach space. 

1.1.8 Hilbert space Let V be a vector space. A complex 
valued function defined on pairs of vectors of V is called an inner 
product, and written (u, y) for u and  y  in V, if it satisfies 

(1) (u1 + u2, v) = (u1, v) + (u2, y)  (u1,  u2, v e V); 
(2) (cu, v) = c(u, v) for every c e F; ((1) and (2) express 

` linearity' in the first argument) ; 

(3) (u, y)  = (v, u) (here a bar denotes complex conjugate; this 
is the ` Hermitian' symmetry property of the inner 
product); 

(4) (u, u) ? 0, and (u, u) = 0 if and only if u = O. 

A space V in which each pair of vectors has an inner product 
is called an inner product space. Note that by (3) (u, u) is real; 
in order to construct a norm for V we may put (u, u)i = II u II , and 
this choice does indeed provide a norm (see problem 1.4). 

THEOREM (Schwarz' inequality) Let V be an inner product 
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space with norm given by hu ll = (u,u)I. Then I(u,v)I < hull 114 
for every u and v in V . 

Proof Assume that neither u nor v is null, since in this case 
the theorem is obvious. For any scalar c we have Il u + cv 11 2  > O. 
As the proof proceeds we shall see how to choose an appropriate 
c. We have 

0 < (u+cv, u+cv) 

= Ilull 2 + Ic1 2 IIvII 2 +(cv, u)+(u,cv) 

= Ilull 2 + Ici211v112+2 Re c(u, v) by (1), (2) and (3) above. 

Choose arg c such that c(u, y)  is real and negative; i.e. choose 
arg c = n — arg (u, y). Then 

I14 2 + IcI 2 1IvII 2  >— — 2c(u, v) = 2 1c1 04. v)I 

Now choose Ici = Fall/114 ,  which yields the required result. 

Let V be an inner product space. If V is a Banach space with 
respect to the norm defined by hull = (u, u)I, then V is said to 
be a Hilbert space. Thus the Hilbert spaces form a subclass of the 
Banach spaces. 

The reader cannot fail to have noticed that metric spaces 
appear to have `geometrical' properties analogous to properties 
of ordinary finite dimensional Euclidean space. For example, the 
metric itself provides the notion of distance in V, the norm 
gives the distance from the `origin' and is thus some measure-
ment of the size of an element, and in Hilbert space the inner 
product generalises the dot product of ordinary vectors. Indeed, 
the bases which are the subject of this book are nothing but 
generalisations of the bases of unit vectors of finite dimensional 
vector spaces. The reader will find many more such geometrical 
facts in the following pages, and is enjoined to develop a geo-
metrical way of thinking about Hilbert and Banach space. 

Problems 
1.1 Show that in a metric space the triangle inequality 

Ilu+vll 	IIuII+IIvII 
is equivalent to II u — v II IIIull - IIvII I• 
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1.2 Show that one has equality in Schwarz' inequality if and 
only if u and  y  are linearly dependent. 

1.3 Formulate and prove a Pythagoras theorem in Hilbert space. 

1.4 Show that the choice lull = (u, u)i provides a norm for the 
inner product space V. 

1.5 Prove the `parallelogram identity' 

llu+vll 2 + llu—v112 = 2 114 2 + 2 011 2  
in Hilbert space, and justify the name ` parallelogram'. 

1.6 Show that if the norm of a Banach space satisfies the 
parallelogram identity then it is a Hilbert space. Hint: 
introduce an inner product by use of the `polarisation 
identity' 

(u, y) = 

1.7 Show that the norm is a continuous function on a Banach 
space to R. 

1.1.9 The projection theorem Let H be a Hilbert space. 
A linear manifold or subspace of H is a subset which is algebraic-
ally closed under the operation of taking linear combinations of 
its elements. The reader should check that this definition does 
lead to what he would expect from the word `subspace'. A 
linear manifold which is closed as a subset of H is called a closed 
linear manifold. 

Two vectors of H are said to be orthogonal if their inner 
product is zero; a vector is said to be orthogonal to a subspace 
if it is orthogonal to every vector of that subspace. The orthogonal 
complement S1  of a subset S of H is the collection of all vectors 
orthogonal to S. 

Let S and T be subspaces of H such that S n T = {O}; then the 
set of all vectors of the form u + y with u in S and y in T is called 
the direct sum of S and T and is written S () T . The following 
theorem is a most satisfying result, and appeals to our geo-
metrical way of thinking about Hilbert space. 

THEOREM (Projection theorem) Let S be a subspace of 
Hilbert space H. Then SC+ Sl = H. 

For the proof, see Yosida (1965) p. 82. 

Ellu+vll 2 — Ilu—vll 2 +zllu+2vll 2 -2llu- 2v11 2 ). 
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1.1.10 Mappings The words mapping, function, func-
tional, operator, transformation, etc. occur repeatedly in mathe-
matical writing and, whilst their meanings have become fairly  

standard, no completely satisfactory standardisation has so far  

evolved. We shall adopt the following definitions.  

A function on, mapping or transformation of, a set V into a  
set W is a rule f which assigns a unique w e W to each y e V.  
This association will be denoted by the usual functional notation  

w = f(v). V is called the domain of f and W1  = { f(v) : v e V} is  
called the range of f. The notation  f: V --} W is used to mean  
` f maps V into W'. Sometimes we call w the image of  y  by f, and  
this notation carries over to sets; thus the set  

{f(v):veA c V} = f(A)  

is called the image of A by f.  

If W1  = W then f is called a mapping onto W .  
A mappingf is called one-to-one if y1  + v2  implies f (v 1 ) + f(v 2) .  
If V is a vector space, a mapping f of V is called linear if it  

preserves the two basic operations of addition and multiplication  

by scalars, that is, if fie,. v l  + c2  v2) = cl  f(v1 ) + c2  f(v2) for every  
c1 , c2  in F and vl ,  v2  in V .  

A functional is a mapping of V to R. If V is a normed vector  
space a functional f on V is called bounded if there exists a real  
number c such that, for every v E V, If (V)  ^ COI;  the infimum  
of all such cs is called the norm off and written  

If f : V --} V then f is called an operator on V .  
A sequence in W is a mapping of a subset J of R into W.  

Usually, but not always (see, e.g. § 2.2), J, the indexing set, is  
such that J ri . If a sequence maps n E J to On  E W then it is  
denoted by (On )n e  j.  

A mapping f between two normed spaces is called an isometry  
if it is one-to-one and norm preserving, that is, whenever  

w= f(v) then  
A mapping which is one-to-one, linear and onto is called  

an isomorphism. A mapping which is both isometric and  
isomorphic is called an isometric isomorphism. An operator  
which is also an isometry on a Hilbert space is called a unitary  
operator.  

11f11.  

11w11 =  11v11 •  
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1.1.11 The dual of a Banach space, strong and weak 
convergence Let B be a Banach space. The class B* of all 
bounded linear functionals on B is also a Banach space whose 
norm is the linear functional norm defined in § 1.1.10. B* is 
called the dual space of B. One can define a linear functional on 
the dual space by the process of fixing v in B and forming 

Fv(f) = f(v) 

where f varies over B*. Then Fv  is obviously a bounded linear 
functional on B* for every v E B. It may turn out that B* admits 
no other bounded linear functionals, in which case there is a 
natural one-to-one association of points v e B with points Fv  in 
(B*)* = B**, the second dual space of B. Banach spaces with 
this property are called reflexive. The  LP spaces (see § 1.2) are 
reflexive Banach spaces for p > 1, but not for p = 1. 

Convergence in B is often called strong convergence, that is, 
the sequence (v a) converges strongly to v if II vim, — v 11 --} 0 as n ---> co. 
There is a companion mode of convergence in B called weak 
convergence, associated with the linear functionals on B. The 
sequence (va ) converges weakly to v if If (v7,) —f(v)1 --} 0 as n -- - o0 
for every f EB*. Strong convergence implies weak convergence to 
the same limit, for 

I f(vn) — f (v) I = I f (vn — v) I < III II II vn — v 11. 
The converse is not true (find an example to show this !). 

1.2 Notes on the  LP spaces 
In this section we present some of the basic facts about the  LP 

spaces, again in note form. 
Let X denote any measurable subset of R, of finite or infinite 

Lebesgue measure. For any real number p such that 1 < p < oo, 
we are going to consider the class LP(X) of complex valued 
functions whose pth powers are Lebesgue measurable and 
integrable over X. These classes can be generalised in various 
ways, e.g. by defining the functions on a a-finite measure 
space. 
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Let p be given, and f lie in the class described above. Put 

lip 

llfllp 	i f 1 p (fx  
We have deliberately chosen the notation of the norm here. 
We shall also need L°°(X) = { f : f bounded except possibly on a 
set of measure zero, measurable on a set X of finite measure, 
and ess sup l fl=lim 

p—o. ao 

H OLDER'S INEQUALITY 	Let fELP(X), gEL 4(X), 
1/p+ 1/q = 1,p ? 1. Then fg is integrable over X, that is, fg E Ll(X ), 
and 	

llfglll 	llfllpll911q• 
Equality holds if and only if f and g are linearly dependent 

MINKOWSKI'S INEQUALITY Let both f and g belong to 
LP(X), p 1. Then f +geLP(X), and 

llf+gllp , Ilf llp + llgllp 
Equality holds if and only if f and g are linearly dependent. 

There are various extensions of these inequalities, for example 
to the case of more than two functions, and to other values of p 
(when p < 1 the inequalities are reversed; see Hardy, Littlewood 
and Polya (1952)). 

For a given p, the class of functions and the formula for 

Of llp described above yield a Banach space LP(X) and its norm, 
provided that one more stipulation is made. This is that two 
functions f and g whose values differ only on a set of measure 
zero must be considered as the same Banach space element, 
since otherwise we should have more than one null element and 
this would contradict the definition of the norm. Thus LP(X) 
consists of equivalence classes, two functions being in the same 
equivalence class if they differ only on a set of measure zero. 

Minkowski's inequality is the triangle inequality for the norm. 
When p = 1 we frequently omit the ` 1' from notation. When 

1 < p < co LP(X) is a separable, reflexive Banach space whose 
dual space is isometrically isomorphic to LQ(X ), 1/p + 1 /q = 1; the 
completeness is a well-known theorem of Riesz and Fischer. 

Ilfllp< oo}. 



10 	 Foundations 

From Holder's inequality we have LP(X) c Lr(X) if r < p and X 
is of finite measure. 

In the special case p = 2 we have 

IIfIl2 — x 	Leff IfI 2  — 

We can define an inner product on L2(X) by putting 

(f, 9) = f f9 < oo; 
x 

then L 2(X) becomes a Hilbert space. Note that Schwarz' 
inequality for this Hilbert space is a special case of Holder's 
inequality. We shall also need the Hilbert space L 2(X, w) of 
(equivalence classes of) functions which are square integrable 
with respect to the `weight function' w, i.e. those f for which 

fx If I2w < co (see pp. 28-33).  

The weak convergence of the sequence (v a ) to v in L 2 (X) is 
equivalent to the condition 

(w,vim,)---(w,v) (weL2 (X)). 

The continuous functions are dense in LP(a, b), 1 < p < cc, for 
a finite interval (a, b) (so are they in LP(I1 7 )). The class C(a, b) 
of all continuous functions on a closed finite interval [a, b] is a 
Banach space with norm 11/ 11 = sup {I f(x)1:  x E [a, b]}. Then the 
Weierstrass approximation theorem (Appendix 1,3(a) )'says that 
the polynomials are dense in C. Now if f E C, then f E LP(a, b) and 
a simple calculation shows that the polynomials are also dense 
in C in the  LP norm. From the chain of dense subsets principle 
(§ 1.1.6) it follows that the polynomials are dense in LP(a, b), 
1 p < oo. Note that [a, b] must be a finite interval. We can now 
state an important result: The set { E an  xn} of all linear combina-
tions of powers {xn:n = 0, 1, 2, ...} is dense in LP(a, b), 1 < p < co. 
We shall return to this result and generalise it in § 2.1. 
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1.3 Orthogonal sequences in Hilbert space  

1.3.1 The theorems of Riesz—Fischer, Bessel and  
Parseval From now on H will always denote a Hilbert space, 
with inner product (. , . ). Let J be an indexing set, and let 

(On)n e d be a sequence with On  e H (n eJ). This indexing set may 
have the cardinality of the continuum but we shall see later, 
in the context of the `dimension' of H (p. 18), that it is usually 
sufficient that J be a countable set (usually a set of integers). 

DEFINITION The sequence (O n ), On  + 0, in H is called  
orthogonal if (On , Om) = 0 for n + m. It is called normal if every  
0. has unit norm. These two properties are conveniently 
expressed by using the Kronecker delta symbol, Sn„i, which  
equals 0 if n + m and equals 1 if n = m; then a sequence which  
is orthogonal and normal satisfies (On ,  Om) = Snm• Such sequences  
are called orthonormal (written ON for short).  

In this definition we have omitted mention of the indexing set  

and will continue to do so when this will not cause confusion.  

Also, it is not expected to cause confusion if we refer to the  

set {On},  meaning the range of the sequence (O n). Thus we speak 
of `the expansion in the set {çn}',  or again of a `set of special 
functions forming an ON sequence ...', etc. 

Let (On ) be any ON sequence in H, and (^n )1,n‹N  any finite  
subsequence relabelled with integer subscripts if necessary.  

LEMMA (Best approximation) For any feH  

N  
(i) f — E an On  is smallest when an  has the value an  = (f, On )  

n=1  
for every n,  

N  
(11) E Icnl 2  - I1f11 2 .  

n=1  

Where no confusion can arise the running index will be omitted  

from summation signs.  
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To prove (i) we have  

0 < Ilf—Eançn112  
= II/II 2 - 2 Rezdn(f,sbn)+Elan1 2  

= IIII1 2 - 2 Rezdncn+Elan1 2  

=11fll 2 +Elan—cnl 2 —EIcnl 2 .  

This is obviously smallest for a n  = cn , and with this choice (ii)  
follows.  

The quantities cn  = (f, On ) are called the Fourier coefficients of f  
with respect to (On); the terminology is obviously borrowed 
from the classical Fourier analysis in which (O n) is the well-
known ON sequence of trigonometrical functions. We show 
next that f can have at most countably many non-zero Fourier 
coefficients. For if we are given any f in H and any positive integer 
k, we can choose the positive integer N so large that II f II 2 <  N f k.  

Then by part (ii) of the previous lemma we have  

N  

E l(f, sbn) l2  < NJk  
n=1  

for all possible ways of selecting N members of the sequence  

(çn)n e d • Thus, the number of çns  for which I (f, On) 1 2  > 1/k is less  
than N. Since k is arbitrary the required result follows.  

We now return to conclusion (i) of the previous lemma and  

assume that f lies in [çn]ne J , i.e. given s > 0 there is some 
sequence of coefficients (a n) 1  <n‹N such that 

iT  If— 	an 07 < e.  
n=1  

Evidently an  = en  is an admissible choice regardless of the e  

chosen; since there are only countably many c ns associated with  
f we may let N --^ oa and obtain 

N 
lim f — E en ^n = 0. 

N^ ao 	n =1  

This expresses the fact that f has been expanded in a Fourier 
series in the sequence (O n ), convergence being in the strong sense.  
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We shall now show that f can have at most one such expansion,  

that is, that f determines its Fourier coefficients  uniquely by the 
formula cn  = (f, On ).  

For if (an ) be any sequence of coefficients for which  

llf EanOnll --> 0,  

then for each n we have  

I cn — an l = 1 W ,  On) — an l  
N  

f — 	am Ono 	for all N n, 
m=1  

M N 

f— 	am 0m 11 0n 11  m=1  
We may let N--} co and conclude that a n  = cn  for every n.  

This does not rule out the existence of an element g, distinct  
from f, for which cn  = (g,0,,,); actually we shall see that this  
cannot happen if there are `sufficiently many' ç ns (see the  
Riesz—Fischer theorem, § 1.3.2).  

We may now return to conclusion (ii) of the `best approxima-
tion' lemma, and there too let N --} co. We obtain  

BESSEL'S INEQUALITY Let feH, (O n)." be an ON  
sequence in H and (cn ) the (necessarily countable) sequence of 
Fourier coefficients off with respect to (O n ). Then 

CO  

EIcn1 2 = Ur.  
n=1  

A glance at the proof of conclusion (i) of the best approximation  
lemma yields  

PARSEVAL'S THEOREM With the notations of Bessel's  

inequality, we have  

n=1  

if and only if f lies in the closed linear span of (O n ).  
This equality is often called the Parseval relation; note that  

it implies en  --} 0 as n---> co.  

^  
^ 1 en1 2  = 11f 11 2  
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The following theorem is a sort of converse to the Bessel in-
equality and is sometimes called the  Riesz—Fischer  theorem. A 
stronger form is given in the next section. 

THEOREM Let (On) be an ON sequence in H and (an) a 
sequence of scalars such that E I  an  1 2  < oo. Then Ean  On  converges 
to some f in H. 

Proof Put 	 N  

SN = E an Olt . 
n=1 

Then 
2 	iii 

I I SN — Slur = 	an On = E I an 1 2  
n = N-h 1 	 n=N+1 

upon expanding the norm as an inner product and using ortho-
normality. But since E I a n  1 2  is convergent, its partial sums form 
a Cauchy sequence of reals, hence (SN ) is a Cauchy sequence and 
the result follows by completeness of H. 

L3.2 Complete and total sets From the results of the 
previous section an important aspect of ON sets is beginning to 
emerge: it is the possibility of expanding a member of a space 
into a Fourier series with convergence in the strong sense. In 
this context it will be an important property of a sequence, ON 
or not, if we can assert that its closed linear span is the whole 
space. This property is called `totality' (see definition below). 
A closely related property (in Hilbert space entirely equivalent) 
is that of `completeness'. Before proceeding to the definitions 
and the proof of equivalence we must point out that the word 
`completeness' has already been assigned a technical meaning; 
the present usage is fairly standard, however, and we shall not 
depart from it. Nevertheless, to add to the confusion some 
authors use `completeness' for the property we shall call `totality' ; 
others have used `closure', now mercifully outdated. Further-
more, the words `maximal', `minimal', `fundamental' and `basic' 
are also to be found in the literature associated with these or 
closely related properties. Forewarned is forearmed ! 

DEFINITION A sequence (çn )n€ J in V (we require this 
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definition only for V as described in § 1.1.2) is called total in V  
if the class of all finite linear combinations Ea. On  is dense in V.  
This is the same as saying that [On] = V.  

DEFINITION A sequence (0n)fEJ  in a Hilbert space H is  
called complete if the only element of H which is orthogonal to  
every On  is the null element. That is,  

(f,çn)= 0  (neJ) 	f=O.  

Note that these definitions apply to any sequences in H, ortho-
gonal or not. The completeness property can also be formulated  

for  LP spaces (see problem 1.8). We also note that if (On) is an  
ON sequence, then it is total in H if and only if Parseval's relation  

is satisfied for every f in H.  

THEOREM If  (On ) is any sequence in H, orthogonal or not,  
then it is complete in H if and only if it is total in H.  

We give the proof of the case where (O n ) is an ON sequence; 
the reader will have no difficulty in extending the proof to the 
case of non-orthogonal sequences by appeal to the Gram—
Schmidt process (Appendix 1,7). 

Proof (i) Completeness implies totality. Let f e H. Now 
an  = (f, On ) are, by Bessel's inequality, such that El a n  I2  < co.  
Hence by the last theorem of the previous section there exists  

g in H such that  
N 

g —  Cn^n 
n=1  

--} 0 (N --} co).  

  

Since g determines its coefficients uniquely as Fourier coefficients,  

we find that the Fourier coefficients of f are equal to those of g  
and hence those of f — g are all zero. Then by completeness,  
f = g. Hence every f of H has a Fourier expansion in the set  

{çn} which shows that (O n) is total in H.  
As we have already remarked, the fact that every f of H has  

a Fourier expansion in the set {O n} is the key to the importance 
of complete orthogonal sequences in Hilbert space. It generalises 
the idea of representing a vector of a finite dimensional vector 
space in terms of its components with respect to a basis of unit 
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vectors. If the sequence (O n) is not orthogonal this Fourier 
expansion property may fail to hold, even if (O n) is complete, 
and it is this consideration which is behind the definition of a 
basis for Hilbert space (see definition, § 1.4, and problem 1.14). 

Proof (ii) Totality implies completeness. Let c n  = (f, O n ) = 0 
for every n E J and (On ) be total. Then f has a Fourier expansion 
in the set {On}  with zero coefficients, and Parseval's theorem 
yields f = 0. This completes the proof. 

Henceforth we use the equivalence asserted by this theorem 
without further mention. We use the letters CON to denote a 
complete/ total ON sequence in H. We are now in a position to 
strengthen the last theorem of § 1.3.1. See also problem 1.9. 

THEOREM (F. Riesz and E. Fischer) Let (O n) be an ON 
sequence in a Hilbert space H and (an) a sequence of scalars. Then 

(i) In order that there exist f EH such that Zan On  converges to f 
it is necessary and sufficient that Z I an 12 < oo. Under either 
condition, an  = (f, On). 

(ii) If (O n) is complete then there cannot exist g EH, distinct 
from f for which a n  = (g, On ) for every n. 

Proof. Part (i) summarises results already to hand from the 
previous section. For part (ii) we merely note that if an = (g, On) 
for every n, then 0 = (g,0,,)— (f, On ) = (g — f, On ) and by complete-
ness of (On ), f — g = 0, that is, f = g and the proof is complete. 

We have established the equivalence of completeness and 
totality in Hilbert space. For ON sequences there are five 
equivalent properties and a list of these follows; we have 
established all except the last whose proof is left as an exercise 
for the reader. 

Let (On) be an ON sequence in H. Then the following statements 
are equivalent. 

(1) (On ) is complete. 

(2) (On) is total. 

(3) The Parseval relation is satisfied for every/ e H. 
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(4) For every f E H, f = Ecn  On  with en = (f, On). 
(5) A more general Parseval relation is satisfied: for every f 

and g in H, 	
(f, 9) = E en  Rn, 

where en  and do  are the Fourier coefficients of f and g 
respectively (see problem 1.9). 

In view of the importance of complete orthonormal sets, the 
following theorem is one of the fundamental structure theorems 
for Hilbert space. 

THEOREM  Every Hilbert space contains a complete ortho-
normal sequence. 

Proof Let O denote the collection of all ON sequences in H. 
0 is not empty; a single normalised element is an example of an 
ON sequence, and if H contains linearly independent elements 
these can be orthogonalised by the  Gram—Schmidt  process. Then 
inclusion, in the set theoretic sense, is a partial order (see 
Appendix 1,6(a)) on O. Let L be a linearly ordered subset of 
O and M the union of all members of L. Then M e O and clearly 
M is an upper bound for L. Zorn's lemma (Appendix 1,6(b)) 
applies and we find that 0 has a maximal element; this is a 
maximal ON sequence (0n)n € J in the sense that it is not a proper 
subsequence of any other ON sequence. As such, it must be 
complete, for if f is orthogonal to every 0n  and f is not the null 
element then the maximality of (On ) is contradicted; this 
establishes the result. 

Problems 
1.8 Let (a, b) be a finite interval and (0n) a sequence in Lq(a, b), 

then (0n) is said to be complete on LP(a, b), p +q = pq, if, 
for f eLp(a, b) 

b 
f ç n  = 0 for every n 

a 

implies f null. Show that 

(i) If (Sb n) is total in LP(a, b), 1 < p < op, then it is complete 
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on L 4(a, b). (The converse is also true, see Kaczmarz and 
Steinhaus (1935) p. 200.) 

(ii) Let 1 < p < p' < co. Show that if (On) is total in 
LP'(a, b) then it is total in LP(a, b), whilst if (On) is complete 
on LP(a, b) then it is complete on LP'(a, b). Show that 
completeness on L(a, b) implies completeness on, and 
totality in LP(a, b), p ? 1. 

1.9 Let (On) be orthogonal but not complete in a Hilbert space 
H. Show that there exist f, g EH with (f, k) ) = (g,0.) for 
every n, f + g (cf. the Riesz—Fischer theorem). 

1.10 Show that item 5 does belong in the list of equivalent 
properties of ON sequences on p. 17. Show that the con-
vergence in this relation is absolute. 

1.11 Show that any two members of a CON sequence in H are 
distant V2 apart. Hence if H is separable, every CON 
sequence in H is countable. 

1.12 Show that any two CON sequences in separable Hilbert 
space have the same cardinality. 

1.13 Show that two Hilbert spaces are isomorphic if and only if 
they have the property that the cardinality common to all 
the CON sequences in one of them is equal to that of the 
other. 

D E F I N I T I O N The cardinality common to all CON sequences 
in separable Hilbert space (see problem 1.12) is called the 
dimension of the space (sometimes the Hilbert dimension). 

There are examples of Hilbert spaces whose dimension is 
uncountable, the non-separable Hilbert spaces; they occur, for 
example, in the theory of almost periodic functions. However 
we shall assume throughout that all our Hilbert spaces are 
separable, of countably infinite dimension and that their field 
of scalars is the complex number field. 
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1.4 Biorthogonal systems in Hilbert space  

In this section we introduce a class of sequences in Hilbert space  

which are not orthogonal but which have an associated `biortho-
gonal' sequence according to the following definition.  

D EFINITIO N Let (On) and (0n) be two sequences in a Hilbert  

space H. If (On, Om) = 0, n * m, then each sequence is said to  

have the other as a biorthagonal sequence, and if (O n , g) = 1, the 
collection {0„, çn}  is said to be normal. More compactly, if  

(On ,  Om) = 8nm, then {On, çn}  is called a biorthonormal system  
(BON system for short).  

An objection might be raised here. We have the Gram-
Schmidt orthogonalisation process, so why do we not just  

orthogonalise (On) and obviate the necessity of dealing with  
non-orthogonal sequences altogether? Actually there are various  

reasons for not orthogonalising. One of these is the intrinsically  
complicated nature of the Gram-Schmidt process; the ortho-
gonalised sequence may become quite unmanageable. (This is  

by no means always the case however; see § 2.1.) A more im-
portant consideration is that a non-orthogonal sequence may  

arise in some context where it has a particular property which  

would be destroyed by orthogonalisation; the upshot is that we  

must be able to deal directly with non-orthogonal sequences.  

Two points about the definition of a BON system must be  

carefully noted. One is that it does not follow from the definition  

that either (On ) or (0n ) is normalised in the sense that each  

member has unit norm; indeed, if they both are, then a BON  

system forming a basis (see below) degenerates to a CON  

sequence (see Marti (1969) p. 81). The second is that if (On ) is  
complete then (çn) is not necessarily complete; the following  
example illustrates the point.  

EXAMPLE (Kaczmarz and Steinhaus (1935) p. 262) Let  

(f n)n= 1 be a CON sequence in H. Put 

On = Ilf1+ 1frnf1  (n = 1, 2, ... )  

^

^ 
n = Vin-v1 (n = 1, 2, ..).  and  
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Then {o n, 03 is obviously a BON system, but as we shall see 
(On) is complete but (fin) is not. Now (O n) is a complete sequence, 
for, if  (f, IS.) = 0 for every n and somef e H, then 

(f ,1) _ — W ,n+1) 

for every n. But lim (f, n+ 1 )  = 0  (see the remark following 
n.-co 

Parseval's theorem), hence (f, zjc 1 ) = 0; it follows that (f, Y' n) = 0 
for every n. But (Vi n) is complete, therefore f = 0 and hence 
(On) is complete. On the other hand, (fin) is not complete for /ps i  is 
orthogonal to every 0:, and this completes the demonstration. 

We have seen that the expansion theory for CON sequences in 
Hilbert space is very satisfactory, whereas if a sequence is 
complete but not orthogonal the situation is far less satisfactory. 
Indeed, if (On) is total but not orthogonal the most we can say 
about an f in H is that, given e > 0, there is some finite sequence 
of coefficients (an), such that III— Ean  0n11 < e; if a new a is 
given, the whole set of coefficients may have to be changed. 
However, there are non-orthogonal sequences with a fruitful 
expansion theory and this leads us to the idea of a `basis'. The 
two theorems which follow the definition are fundamental 
structure theorems for Hilbert space. 

DEFINITION The sequence (On) in H is called a basis for H 
if for every f e H there exists a unique sequence of scalars (a n) 
such that 	f  = E an On,  in the strong sense. 

In particular, a CON sequence is a basis for Hilbert space. 

Again it will be convenient to be rather free with the terminology 
and speak for example of a `set of functions forming a basis...', 
it being understood that the set constitutes the range of the 
sequence under consideration. 

THEOREM The sequence (On) is a basis for H if and only if it 
has a unique biorthogonal sequence (fin) and E(f, fin*,) On  converges 
to f for every f in H. 
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Proof (i) `If' We show first that (O n) is a basis if it has a  
biorthogonal set for which E(f, On On  converges to f for every  
f e H. We may assume that {On, 0n1 is normal as well as biortho-
gonal. We need only prove that the coefficients c n  = (f,0;',) are  
unique. Indeed, if (bn) is any sequence of coefficients for which  

E bn On  converges to f, then  

N 

1 
1(f,  On  — bnl = .f—  mE bmSbn 	^ m^^ ^ N n 

= 

N  
f —  E bm Om IIsbn11  nt-1  

--›- 0 as N --^ co,  for every n,  

and this completes the first part.  

The converse is the deeper part of the theorem. For this we  

shall need the idea of a `coefficient functional'.  

D EFINITION Let (On) be a basis for H, and (an) the sequence  
of coefficients uniquely determined by feH. Then the nth  
coefficient functional with respect to (0n ) is defined by  

an(f) =an .  

L EMMA For every n, an  is a bounded linear functional.  

Proof The reader will easily verify the linearity. We also  

leave it to the reader to verify that the collection of all sequences  

of scalars (an ) = A for which E an On  converges is a vector space.  

We denote this space by S; then we have  

sup  
N  

N  
E an 0n  < 00 (A E S)  . 

n_l  

(i) The first part of the proof consists of showing that S is  
complete, and hence that it is a Banach space, in the norm  

defined by N  

II A IIS = sup 1  E an On  N n=1  



22 	 Foundations  

To show this let  (AP))) be a Cauchy sequence in S, i.e. given  
e > 0 there exists M such that  

N 
11Ac13)— 	lls = sup 11 E 	4) ) 0„ 

N n=1 

e (p,q> M).  

We are going to show, as an intermediate step, that for each  

integer i, (dim) is a Cauchy sequence of scalars; as such it will be  

convergent, to a limit to be denoted by a i . Now  

i 	-1 

- i 	(anp)  — 4)) On  
n=1 n=1  

2e for every i (p, q > M).  

Therefore 1a2' )  — a 4) 1 < e111 02.11, which gives the required Cauchy  

property. We have  

(a(,,p )  — 4 ) ) ^n  < e for every i (p, q > M).  
n=1 

Therefore letting q -- . co we have  

(a(nP) an) On < e for every i (p > M).  
n=1  

We want to show that the sequence (a s) = A that we have  
constructed lies in S. To do this we must show that the sequence  

N 
(EN) of partial sums 	an  0n  converges in H; by the corn- 

n-1  
pleteness of H it will be sufficient to show that (E N) is  
Cauchy. Consequently  

i +k  
E an  n  

n=i+1  

i +k 	 i 	 i+k  
E (an 0n — anp)  On) — E (an — anp)) On + E a( P)  0n 

n=1 	 n=1 	 n=i +1  

i+k 
< 2e+ E anr ) 0n  . 

n =i+1 

But E de On  is convergent, and so its partial sums form a  

11 (dip) — a24)) 	=  
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Cauchy sequence. This shows that (E N) is Cauchy. S is indeed a  
Banach space, for (A(P)) converges because  

Il Au))  - Ail s  =  sup N 
 (61(1) — 

 an) ^n 
N n=1  

< E.  

In the second part of the proof the required boundedness of  

an  will follow by applying the `bounded inverse' theorem  

(Appendix 1,5) to the transformation T: S-->.1-1  under which  
A_-f = Eançbn• 

 

We note first that, since each f has an expansion in the set  
{On} with unique coefficients, T is one-to-one and onto; thus T--1  
exists. Furthermore, T is bounded, for  

JJ T (A ) 11 =  lI E  an ^n11  
N 

sup E an çn 
N n= 1  

= I1AlIs.  

Thus T-1  is bounded, by the bounded inverse theorem. Hence  

i0I ail 11^i11—  	ii
1 
 n=1 n-1  

< 2 11 A 11s  
= 2 11 T-1f11s  
< 2 11 T-1 1111f11.  

(anon)il 
 

Therefore J ai(f) J = Iai  J  

Kill/II for every i  

by uniqueness of the a is. This completes the proof.  
We can now complete the proof of the theorem.  

Proof (ii) `Only if' Since the coefficient functionals are  

bounded, the Riesz-Fréchet representation theorem (Appendix  

1,4) shows that for each n there exists a uniquely defined 0: eH  
2 	 HCA  
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such that an(f) = (f, g). Hence E(f, g) On converges to f for 
every f in H. In particular, 

95k = E(Oks g) On 
and by uniqueness of the coefficients we must have 

(0k, On) = 8kn• 

This completes the proof. 

The final theorem of this chapter underlines how strong the 
property of being a basis really is, for as we have seen in the 
example of this section the corresponding result for sequences 
which are merely complete may fail to hold. 

THEOREM Let {O n, çn} be a BON system in H. Then if (On ) 
i8 a basis, so is (çn). 

Proof The proof is in three parts. 
(i) Let f and g lie in H, put b n  = (g, On)  and let (an) be a 

sequence of scalars such that E a n  On  converges weakly to f. 
Then E cin  b n  = (g, f), for 

	

N 	 N 	 N 

E an b n  = E an(g, On) = g, E an Sbn • 

	

n=1 	n=1 	 n=1 

If we now let N --> oo the required result follows. 
(ii) Put an  = (f, g). If E an  On  converges weakly to f for every 

f in H, then E bn çn  converges weakly to g for every g in H, since 
for every f in H we have 

	

N 	 N 
lim f, E bn  g) = lim E bn  an  

N.-0.c° 	n=1 	N-+ o n =1 

by part (i). 
(iii) With the notations of the previous part, we now show 

that, if E an On  converges weakly to f for every f in H, then 
E b n 0:  converges strongly to g for every g in H. 

m 
We observe that Sm(g) = E b n  0* is, for every m, a linear 

n =1 

operator on H; we shall apply the uniform boundedness principle 

= (f,g), 
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(Appendix 1,1) to the sequence (Sm (g)). Now, each Sm (g) is 
bounded, for 

11 sm(9)11 = 
n=1 

I bnI 110:11 n=1 

II9II Nn111141 
na1 

= I1911 Cm .  
Further, for every g there exists a constant Bg  such that 
11 Sm(g)11 < Bg, since g is the weak limit of Sm (g) (Appendix 1,2). 
Hence the uniform boundedness principle applies, so that there 
exists a constant A such that 

1lSm(9)11 	A11911 	(9EH). 

Also g lies in the closed linear span of {8 (g)}; this too follows 
from the fact that g is the weak limit of Sm(g) (Appendix 1, 2) 
Therefore, given s > 0, there exist coefficients a mn  and an integer 
Mg  such that 

Ent  9 - E amn sn(9) < E (n > Mg). 
n=1 

Now let °m  denote E amn  Sn(g); we leave it to the reader to 
n=1 

verify that Sm (Onz) = am. We now use the various results of this 
third part of the proof to obtain 

114(9)— Grin!! = Ilsm(9—crm)II 

AII9 —  o-mll 
< Ac (m > Mg). 

	

Finally,119 — Sm(9)11 =119 — 	Sm(g) + 0  m11 

	

11 9 — 	+ 11 sm(9) — crm11 
<c+AE (m>Mg). 

This completes the third part, and the result of the theorem now 
follows, for, if (On ) is a basis, then by the previous theorem 
Ea n On  converges strongly (hence weakly) to f for every f in H, 

II 

2-2 
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so that E bn  fi n*, converges strongly to g for every g in H, and again 
by the previous theorem (fin) is a basis. 

Some further remarks can be made following this theorem and 
its proof: 

(1) Let (On) be a basis for H and for f and g in H put an  = (f, g) 
and bn  = (g, On). Since strong convergence implies weak con-
vergence, part (i) of the above proof yields the more general 
Parseval relation 	

Ean bn  = (f ,g)• 

(2) With the notations as above, a sequence (On) is called a 
weak basis for H if E an On  converges weakly to f for every f in H. 
Then (On ) is a basis if and only if it is a weak basis. It is only 
necessary to show that a weak basis is a strong basis; but this 
follows immediately from part (iii) of the previous proof. 

(3) There is an obvious duality, as far as basis properties are 
concerned, between (O n) and (fin); thus if either is a basis there 
are two series expansions E a n On  and E a n*, g for every f in H, 
where an = (f, On). 

(4) The concept of basis can be extended to Banach space; here 
the coefficients in the series are linear functionals in the dual 
space B*. The reader will find it instructive to formulate the 
appropriate definition, and to extend the two previous theorems 
and their proofs to the case of Banach space (see Marti (1969) 
pp. 31-3). 

Problem 

1.14 Show that every Hilbert space contains a complete sequence 
which is not a basis. 

1.5 Postscript to chapter 1 

The reader may wonder if the series we have been discussing are 
independent of the order in which they are written. The following 
definitions and remarks will help to clarify the situation, but we 
must refer the reader elsewhere, e.g. Marti (1969), for further 
details. 
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D E F I NIT  I O NS An unconditional basis (On) for a Hilbert or,  
indeed, a Banach space is a basis such that, for every f in the  
space, E an(f) On  converges, regardless of the order in which the  

terms are written; here, a n  are the coefficient functionals  

associated with (O n). A conditional basis is one which is not  
unconditional. A basis (O n) is called an absolute basis if, for every 
f in the space, E f  an(f)  Sbnli  converges.  

An absolute basis is unconditional. Not all bases for a Hilbert  
space H are unconditional and hence not all are absolute;  

however, a normal basis for H is unconditional if and only if  
(with the notations of the previous theorem) both E a n  2  and  
E an 2  converge for every f in H; in particular every CON  

sequence in H is an unconditional basis.  
As we have seen, every Hilbert space possesses a CON  

sequence, that is, every Hilbert space has a basis; Banach (1932,  

p. 111) observed `on ne sait pas si tout espace du type (B) séparable  
admet une base'. This `basis problem', as it became known,  
remained one of the famous unsolved problems of mathematics  

until, four decades later, it was shown by Per Enflo (1973) that  

there exists a reflexive separable Banach space that fails to have  

the approximation property; this implies (see e.g. Singer (1970)  

p. 170) that it has no basis.  
Nevertheless, many well-known Banach spaces have long been  

known to possess a basis; for example, the Haar system (see § 2.5)  

is a basis for Lp(0,1), 1 < p < oo (unconditional if p > 1, con-
ditional if p = 1), and the Schauder system (Marti (1969) p. 49)  

is a conditional basis for C(0, 1). The trigonometrical system (see  

§ 2.1) is a basis for LP( — ^r ,  ir), 1 < p < oo, which is conditional  
for p + 2. The trigonometrical system is not a basis for L(— ir, ir),  
indeed it is known that there are functions whose Fourier series  

diverge in the L norm.  



2. Orthogonal Sequences 

We dealt with the theoretical aspects of bases in the first chapter, 
and now the reader will be anxious to see some concrete examples. 
Consequently this chapter and the next will be devoted to 
developing various methods for demonstrating completeness and 
basis properties, and to the application of these methods to 
particular examples. In the present chapter the methods are 
mostly designed to treat orthogonal sequences, and we leave a 
more detailed account of non-orthogonal sequences to Chapter 3. 

2.1 Complete sequences of polynomials 

Many of the standard L 2  spaces, for example those taken over 
finite or semi-infinite intervals of R, or over R itself, have bases 
consisting of sequences of polynomials (pa ) orthogonal with 
respect to a weight function w. This means that we have, for 
some measurable subset E of R, 

pnpm w  = 8nm ,  
E 

and that we can consider either (p n ) to be a CON sequence in 
L 2(E, w), or  (V(w)p„) to be a CON sequence in L 2(E). Such 
sequences arise by orthogonalising the set of powers 

{xn:n = 0, 1, ..} 

with respect to w by the Gram—Schmidt orthogonalisation 
process. The completeness of the resulting set is not at once 
evident; consequently, we shall give a theorem in this section 
which guarantees completeness for suitably chosen weight 
functions. The uniqueness of the resulting sequence is guaranteed 
by the Gram—Schmidt process (see p. 117). The foregoing facts 

[ 28 1 
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serve to characterise certain sets of polynomials, in that for 
certain L2  spaces they constitute the only possible orthogonal 
polynomial basis containing a polynomial of each degree. Some 
examples are : the orthogonal polynomials of Jacobi in L 2( ( — 1, 1), 
(1 — x)tt (1 + x)fi), a, f3 > —1, which include several important 
special cases (see Appendix 2,5), those of Laguerre in L 2(R+, a-x), 

and those of Hermite in L 2(R, a-x 2 ). 
In order to approach the completeness problem, let us restate 

the result derived at the end of § 1.2 in terms of completeness: 
the set of powers {xn:n = 0, 1, ...} forms a complete sequence in 
L 2(a, b) for any finite interval (a, b); indeed it is complete on 
LP(a,b), 1 p < co. 

The completeness theorem for polynomials is a consequence 
of the following. 

L EMMA Let w be integrable over R and such that w(x) > 0 a.e. 
let f lie in L(R, w) and suppose that 

f f(x) eitx w(x) dx = 0 (t  e R). 
R 

Then f is null. 

Proof For every trigonometrical polynomial 

tn(x) = E ck e2nikx'6) 

Ikl<n 

of period co we have, by hypothesis, 

L tn(x) f(x) w(x) dx = O. 

The proof consists of extending this formula, in four stages, 
from trigonometrical polynomials to bounded measurable 
functions on R. We can then apply it to the function sgn f 
and obtain 

sgn f (x) f (x) w(x) dx = R  , f  (x ) 1  w(x )  dx = 0, fR 
from which we conclude that f is null. 

In the first stage we extend the formula to continuous, 
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co-periodic functions using the second form of the Weierstrass 
theorem (Appendix 1,3(b)). For, given such a function c, and an 
c > 0, we can find a trigonometrical polynomial to  of period w 
such that I c — to i < e for each x in the period interval and thus 
each x in 01. Then a simple calculation yields 

SR I(xc(x)w(x)dx  = 0 

for every continuous co-periodic c on R. 
The second stage is to extend this formula to functions which 

are continuous on R and which vanish outside a finite interval 
(a, b), or, as we shall say, continuous functions with support on 
(a, b). Given such a function h, pick co so that (a, b) c (— 4w, w) 
and put h. = h on (— 4w, 4w) and extend hw  to R by periodicity. 
Then lim h. = h. Further, 1h.1 < max I hl , so that 

0.1-4. c0 

fR h(x) f(x) w(x) dx = lm ff  h0(x) f(x) w(x) dx 

by the Lebesgue dominated convergence theorem. We now have 
the extension 

R h(x) f(x) w(x) dx = 0 

for every continuous h with support on a finite interval. 
The third extension is to step functions s with support on a 

finite interval I. By an obvious construction there exists a 
sequence (hn) of continuous functions with support on I such 
that s = lim ht, everywhere on I except at the discontinuity 
points of  8, that is, a.e. on I. Further, Ihnl  IsI for every n a.e. 
on L Then by dominated convergence 

I sfw = lim f h n  fw = 0. 
z 

The final extension is to bounded measurable functions g on 
R. Define gN  to be equal to g on (— N, N) and to vanish outside 
(—N,N). 

It is known that one can find a sequence (s m.) of step functions 
with support on (— N, N) converging a.e. to gN  and such that 
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the bounds of each SNn  are equal to those of gN . Then (sNN ) is a 
sequence of step functions with g = lim sNN  a.e. and, by 
dominated convergence, N—+°°  

gfw = lim  
N—> m SR 5NNIw=0. 

This completes the proof of the lemma. 

DEFINITION A set of polynomials {p :n = 0, 1,2,...} is 
called simple if, for every n, pa  is of degree n. 

THEOREM (Completeness theorem for polynomials) Let 
(a, b) be a finite or infinite interval of R and w a non-negative 
measurable weight function on (a, b) such that there exists r > 0 for 
which b 

erlxl w (x ) dx < co. 
a 

Then any simple set of polynomials {pn : n = 0, 1, ...} is complete 
in L 2((a, b), w). 

Proof It is necessary to check that under the hypotheses 
each xn is indeed a member of L 2((a, b), w) : this follows at once, 
since for every n and for every r > 0 there exists a constant A 
for which 1x12n < A erIxI for all sufficiently large x. Obviously w 
is integrable over (a, b). 

Assume that there is an f e L 2((a, b), w) which is not null and 
which is orthogonal to every pa, or, equivalently, for which 

b 
xn  f(X) w(x) dx = 0, n = 0, 1, ... 

a 
b 

F(z) = f f(x) eizx w(x) dx, z = x + iy, 
a 

then Schwarz's inequality shows that 

b 	 b 

I F(z )1 2  < 	lf(x)12w(x) dx 	e--211x  w(x) dx < co, lyl < r12. 
a 	 a 

Similarly, 
b 	 b 

IF f(Z)I2  < 	1 f(x)1 2 w(x) dx 	1 x1 2  e--211x w(x) dx < CO  
a 	 a 

SR 

Put 
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for sufficiently small I yI , certainly for I  y  I < r/4. Thus F is a  
regular function for IyI < r/4. On the other hand we can expand 
F as a power series convergent for sufficiently small 1 z by  

writing  b k 

	

F(z) = 	(Zk')  f(x) w(x) dx fa,  
and integrating term by term. This is permissible by Beppo 
Levi's theorem, since 

b 	
k^lk  f(x)w(x)dx  

a k=0  

= 
 f

b 
e'zx' fix) w(x) dx  

a  
b 
/2(x)  w (x ) dx f

b 
 e2izxi w (x ) dx r  

	

a 	 a  

< co provided 2 I  z  I < r.  

That is, we have  

F(z) = 	
k ^ 	

b  xk f (x) w(x) dx , I zI < r/2. 

	

k - 0 	a  

Hence F(z) = 0 for Jzj < 712, therefore F(z) - 0 for IyI < r/4 by  
the identity theorem for analytic functions. In particular 

b 
F(t) = f eitx  f (x) w(x) dx = 0 for every t e R.  

a  

If (a, b) is not all of R, w and f can be extended to R as functions  

with support on (a, b). As such, w e L(R) and by Schwarz's  

inequality f EL(R, w), Then the previous Lemma applies and f 
is null; this contradiction completes the proof. 

Note that the simple property of the set {p„} was used at the 
beginning of the proof to assert that if f is orthogonal to every 
pn  then it is orthogonal to every xn. This may not be the case if 
{pn} is not simple, see for example problem 2.3 Many of the sets 
of polynomials arising in the special function theory are simple 
sets, and the completeness theorem applies to them whether or 
not they are orthogonal. Some examples are the polynomials of 
Bernoulli and of Euler, and many sets of hypergeometric type 
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including the very general polynomials of Sister Celine (see 
Rainville (1963) for the definitions and many more examples). 

Problems  

2.1 Show that the completeness theorem for polynomials applies 
to the polynomials of Jacobi, Laguerre and Hermite in their 
respective L2  spaces (see the first paragraph of § 2.1). If a 
and fi  are only required to be positive, prove the complete-
ness of the Jacobi polynomials by another method. Show 
also that it applies to the sequences obtained by ortho-
normalising the powers (xn) over R with respect to the 
weights (1 + x2k)a a—x2k , k a natural number, a ^ 0 (such  
sequences arise in approximation theory (Nevai (1973), and  

evidently generalise the Hermite polynomials).  

2.2 Show that the completeness theorem for polynomials holds,  

without further assumptions, for LP((a, b), w), 1 < p < co.  

2.3 Find an example of a set of polynomials {pn : n = 0,1, ...} on  
(a, b) with the property that every power xk, k = 0, 1, ...,  
occurs as a term in at least one of the pn , but that (pn) fails 
to be complete in L 2(a, b). 

2.4 Find an orthogonal polynomial basis for L2( —  1, 1) other 
than the Legendre polynomial basis. Hint: refer to the 
theorem of Müntz, p. 95. 

2.2 The Vitali completeness criterion  

Let us define a sequence of step functions (x,.(x)) on the finite 
interval (a, b) by the formula 

1, a-4x .r  

xr(x)= 0, r<x^b,  

where r may take any value between a and b. We show that  
(xr) is complete in L 2(a, b). To see this let f be any member of 
L 2(a, b) and suppose that 

b  
xr(x) f (x) dx = f (x) dx = 0 fa 	a  
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for every r e (a, b). That is,  

F(r) = f (x) dx - O.  
a  

Now f is integrable on (a, b) (since L2(a, b) c L 1 (a, b)), so that 
f = F' a.e. according to the well-known Lebesgue theory. But 
F' is null, thus the definition of completeness is satisfied. 

The following modifications to the sequence (x,.) are useful; 
the proofs of 2 and 3 are left as exercises for the reader. 

(1) The set of functions defined by 

1, a^x^r 
— 1, < 

where 	

x, ,  

b 	 r 	b 
Srf  2  f 	f, j'a =  a 	a  

r 	b 
F(r) = f — 	f, 

a 	a  

then F'(r) = f a.e. and the proof is completed as before. 
(2) Let (a, b) be a finite or infinite interval of R, and 

g e L 2((a, b), w),  

where w is a positive continuous weight function. Then both 
(g(x) x r(x)) and (g(x) r(x)) are complete in L 2((a, b), w).  

(3) Each of the sequences so far mentioned in this section  

remains complete if we select only those members for which r  
ranges over the rational numbers in (a, b) or, indeed, only those  
for which r ranges over any dense subset of (a, b).  

A modification like this last one is only to be expected, since  
the complete sets mentioned up to there had been considerably  

over-populated in view of the separability of L 2  space.  

Moving further towards a proof of the Vitali criterion, we now  

state and prove:  

Sr(x) = 
 b, 

where r may take any value between a and b forms a complete  
sequence in L 2(a, b). For  

hence, if 

LAURICELLA'S CRITERION Let (11rn) (the indexing set may  

be uncountable) be total in V (V as in § 1.1.2) and let (On) be total  
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with respect to (if/' n), that is, each 11 in is arbitrarily close to some  
linear combination E an  On.  Then (O n) is total in V.  

This is proved by taking 82  to be the closed linear span of  

{fn) and Si  to be the closed linear span of {On}  and applying the  
`chain of dense subsets principle' (§ 1.1.6).  

Where V is a Hilbert space H, it is not required that either  
(On) or (fin ) be orthogonal. If indeed (On) is orthonormal it  
follows from Lauricella's criterion and Parseval's relation that a  

necessary and sufficient condition for it to be complete in H is  
that 	

E I (On, k)1 2  = IIY'kIl 
 2  

n  

hold for every ilik. When H is L2(a, b), for example, this relation 
reads 

If we now take (ifrk ) to be the complete sequence of step functions  

(xr), we obtain  

VITALI'S COMPLETENESS CRITERION Let  

{On  : n = 1, 2, ... }  

form an ON sequence in L 2(a, b), a and b finite. Then (On ) is  
complete in L 2 (a, b) if and only if  

2  
= r—a  

for every r e (a, b).  

COROLLARY The Vitali criterion remains valid if r is only  
required to range over a dense subset of (a, b).  

Proof The `only if' part is obvious. The `if' part follows at  

once from modification (3) above.  

An application of this corollary will be found in the theory  
of Walsh and Haar functions (§ 2.4).  

The philosophy behind the Vitali criterion is basically this:  

The Parse val relation is a fundamental completeness criterion  

but cannot usually be used to demonstrate the completeness of  

^ 	 b l^kl2. 1.111)onTkr=fa  

E  

 

r  

15na  
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a set since it would have to be verified for every member of the 
space H. Where this is not practicable, the Lauricella criterion 
is used to reduce the problem to that of verifying the Parseval 
relation only for every member of a complete set in H. In the 
L2  case, the choice of a suitable class of step functions for this 
complete set yields the Vitali criterion. In turn, the Vitali 
criterion requires the summation of a series with parameter r 

 for at least countably many values of r. The Dalzell criterion, to 
be given in the next section, further reduces the problem to the 
summation of a series of constants. However, it involves extra 
integrals and, whilst it has its uses, may be no easier to use in 
practice than the Vitali criterion. 

Difficulties arising from the integrals in either of these criteria 
can sometimes be mitigated by introducing extra terms into the 
integrand; such modifications arise from the modifications to the 
step functions (x,.) already mentioned. These, and other extensions 
to the case of L 2  spaces on regions in two and three dimensional 
Euclidean spaces, will be found in the problem sets. For an 
extension to L 2(R, a) with discontinuous measure a, see § 2.3.1. 

E X A M P L E The trigonometrical set 

{ei /.J(27r):n = 0, ± 1, ± 2, ...}  

forms a complete sequence in L 2 ( — 7r, 7r).  
The orthonormality and the completeness of this very 

important sequence of functions are extremely well known. Here 
we shall show that the completeness can be easily demonstrated 
by Vitali's criterion, provided that two subsidiary formulae are 
known. These are Euler's formula 

{— 1) 	 x2 On-El 
cog nx = 

12 4 
(x e [ —7T, 7T] ),  

n=1  

and the special case  

According to Vitali's criterion we must show that  

Â 
 T einx  

dx = 7r 
— „ 

J(2

^ ) -^  r. 

03  

E n-2 = n2/6.  
n =1  



The Vitali completeness criterion 	 37  

Now the term corresponding to n = 0 in this sum is 
1 	j'br 

2^r 	
dx 

2 
= 

2
iT  (7r + r)2 ,  

and some elementary calculations yield 

1  

gn  
2 ( 1— (-1) n cosrn)  

for the general term. Vitali's criterion now reads 

— 277. 	n 

1 
	E n2 (1—(- 1)n  COS rn) =7r+r, 

— n1  

and this is easily verified by using the Euler formulae.  

Problems  
2.5 Show that the following form CON sequences in the L 2  

space given:  
(a) {ei " : n  = 0, ± 1, ...}: L 2(-1,1).  
(b) { e2in^rz:n = 0, ± 1, ...}:L 2 (0, 1).  
(c) {[2/(b —  a)]l sin [nn (x — a)I (b — a)] : n = 1, 2, ...}: L2(a, b).  
(d) {[1 f (b — a)]i, [2/(b — a)]i cos [nn.  (x — a)I(b — a)] : n = 1,2 . . .1 :  

L2(a,b).  

( 

	

) 	1 	cos nx sin (n—  U  x : . n = 1, 2, ... 	n.,  n) 

	

e 	„,/(271-)'„,/(271-)' 	V? 
	, 	

jn 
 

2.6 Use Vitali's criterion to demonstrate the completeness of  
the Legendre polynomials in L 2( — 1, 1).  

2.7 Prove the following modified form of Vitali's criterion: Let  

(a, b) be a finite or infinite interval of R, let g belong to  
L 2((a, b), w), g + 0, where w is a positive continuous weight  

function, and let (On) be an ON sequence in L2((a, b), w). Then  
(On) is complete in L2((a, b),w) (equivalently (On , jw) is  
complete in L2(a, b)) if and only if  

r 	 2 	r  
E f On(x) g(x)w(x) dx = 	Ig(x)I 2 w(x) dx  

n a 	 a  

for every r in (a, b).  
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2.8 Show that the orthonormal associated Legendre functions  

2n+1  (n—m)! 
2 (n+m)^ 

Pn (x),  

n = m, m + 1, ... (Appendix 2,6) are complete in L 2(— 1, 1),  
and hence obtain the formula  

v 
 2n+1 (n —m)! 1 	 2  

n=m 2  (n+m)! 
Pm(x) dx = 1— r 

r  
(Sansone ( 1959) p. 249).  

2.9 Let S denote the surface of the sphere of unit radius in  
3-space, and let (r, 0,61) denote the usual spherical polar  
coordinates (0 the `polar colatitude', B the `longitude'). Let  
un} be a set of functions which are orthonormal over S, i.e.  

fn fm = anm• Ss  
Obtain the following spherical form of the Vitali complete-
ness criterion: The ON sequence (fa) is complete in  L 2(S) if  
and only if  

I Sp 	 2  E [f dB fn(0, B) sin 0 d0 = 1(1 — cos p)  
n 	0 	0  

for every l e (0, 27r) and every p e (0,m) (Sansone (1959) p. 271).  

2.10 Use the criterion of the previous problem to show that the  
set of `spherical harmonics'  

(

2n,:-1 

1  Pn(cos 0)  

2n+ 1 (n —m)! ' 
)! 

Pn {cos 0) cos mû 
2 (n+m 

 

2n+ 1 (n—  m) !)1  
Pr"( 

 cos ¢) gin m0 (n = 1, 2, ... ), 
2 (n+m) !  

is complete in L 2(S). Hint: you will need the series of  

problem 2.7 (Sansone (1959) p. 271).  

2.11 Formulate and prove a Vitali criterion applicable to L 2(D),  
where D is the unit disc in the complex plane. Give an  

example of a CON sequence in  L2(D).  
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2.3 The Dalzell completeness criterion  

Let us return for a moment to the example at the end of the  

previous section and note that the required Vitali relation could  

have been verified using only the second of the Euler formulae.  
This is seen by formally integrating the relation to be verified  

with respect to r over (— 7r, nr), and obtaining  

477.2+ 4 
	

1 
= 27T2  

3 	n=1 n2 

a formula which is easily seen to be true from the second Euler 
formula only. The method of Dalzell is to get rid of the depen-
dence of the Vitali criterion on r by justifying such formal 
integrations. 

DALZELL'S COMPLETENESS CRITERION (Dalzell, 1945a) 
Let (a, b) be a finite interval and (O n) be an ON sequence in L 2(a, b).  
Then (On ) is complete in L 2 (a, b) if and only if  

2 	
E b r^n(t)dt 2 dr =1. 

(b — a)2  nJalJa  

Proof ` Only if' Vitali's criterion may be integrated between 
a and b and the order of integration and summation inter-
changed on the left-hand side, by the Levi theorem. 

`If' This process of integration can be `undone', as follows. Put 

r 	2 
F(r) = a — r —E  ^n 

n a  
then we have by hypothesis 

b 
F(r) dr = O. Sa  

Now Bessel's inequality shows that F is non-negative on (a, b), 
 hence F(r) = 0, a.a. r e (a, b). But such a set of rs is dense in 

(a, b), so the proof is completed by appeal to the corollary to 
Vitali's criterion. 

We have seen that the `if' part of the Dalzell criterion provides 
a quick way of showing completeness of the trigonometrical 
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functions, given the Euler formula En--2  = h2Î6. From the `only 
if' part it follows that this formula is actually equivalent to the 
completeness property of the trigonometrical functions. 

Problems 
2.12 Use Dalzell's method to demonstrate the completeness in 

L2( — 1, 1) of the Legendre polynomials. 

2.13 Obtain the following modified form of Dalzell's criterion: 
Let (a, b) be a finite or infinite interval of R, (O n) an ON 
sequence in L 2(a, b), g e L 2(a, b) (g + B) and w a positive 
continuous weight function which is integrable over (a, b). 
Then (On) is complete in L 2(a, b) if and only if 

b 	r 	 2 	 b 	r 
E 	çn(x) g(x) dx w(r) dr = 	g(x) 2  dx) w(r) dr. 
nfa fa 	 a a 

A more general form of this criterion was discovered 
independently by Graves (1952) . 

Orthogonal sequences tend to fall into certain obvious categories, 
and whilst we do not wish to attempt a complete scheme of 
classification it will be worth noting some of these categories. 
For example there are the various sets of trigonometrical 
functions, including the exponential functions {einx},  constituting 
a category of elementary functions. Another category consists 
of polynomials, possibly `weighted' . Again, there is a category 
containing higher transcendental functions typified by the 
example involving Bessel functions given below. Still other 
categories involve rational functions (§ 2.6.4), and discontinuous 
functions (§ 2.4). Non-orthogonal sequences fall into similar 
categories, particularly those formed by `perturbing' ON 
sequences of a given category (see §§ 3.1.1, 3.3, 3.4). 

E XAMPLE (completeness of the Fourier— Bessel functions) 
We shall use the modified Dalzell method (problem 2.13) to 
show that the set of ON Fourier— Bessel functions 

2i 
	xi Jv(,Înv x) : n = 1, 2, .. , 

i Jv+1(,inv) I 
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(see Appendix 2,9 for definitions) forms a complete sequence in  

L2(0, 1).  
The inner integral on the left-hand side of the criterion to be  

verified is, except for the normalising factor,  

x^ Jv ( jnY  x) f (x) dx.  

The choice f(x) = xv+1 yields the well-known integral (Magnus  

et al. (1966) p. 86)  

v+1 	 r"-1  
x `Jv{jnv x) dx  = J^+1{jnv r). Jior 

	

^ nv  

To continue we must square this and evaluate  

i  
jn2 	r2v+2 4+1

{jnvr) w(r) dr. 
0  

The choice w(r) = r-21' --1  yields the known integral (Magnus et al.  
(1966) p. 88)  

i 	 1 

r4+1 {.inv r) dr =— 	,,+1 (j )]2  —[1  

0 

Now from the recurrence relation  

z Jv(z) + 	= Jv_, (z)  

we have  —  (v+ 
1) 

 Jv+1(,7nv) = JŸ+1 (.!nv),  inp  

so that the left-hand side of the Dalzell criterion reduces to 
Ejn2 • The right-hand side, with our particular choices for f and 
w, reduces by elementary integrations to 1/(4v+ 1). The series  

can be summed by the method of residues, for the function  

]  J'(z) 	y  1 	1  
z2 

JJ(z) 	z3 z 2(v+ 1)  +0(z), 1z1-›.0  

has a pole at the origin with residue —1/2(y  + 1) and simple  

poles at ± jnv  with residues jn2. A sequence (Ck ) of contours can  

( v + 1 
 
	2  

Jv+1  (,inv) • 
jnv  
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be constructed so that 

lim 
2^ri 	z Jv(z 

) dz = 0 
k^ao 	cx 	v( )  

k  
= lim 2 E jnŸ — 1/2(v+ 1).  

k^ao n=1  

That is 03  

E inŸ = 1/4(v+ 1),  
n=1  

and this verifies the required criterion.  

It is of interest to point out that, if we had used the Vitali  

method and stopped short of the second integration process, we  

should have had to verify  

E •
1  Jv+l(^nvr)  2 = 1I4(v+ 1),  0: r < 1. 

n=1 )nv Jv+1 (.l nv )  

The fact that we have already proved completeness may be  

taken as a proof of this formula in the theory of the Bessel  

functions.  

Problem  

2.14 Let {an} be the positive zeros of  

xJ;,(x) + hJ„(x), h+> O.  

Show that the set {çn(x)} = {x-IJ,,(an  x)} is orthogonal over  
(0, 1). Calculate the normalising factors for {O n} and show 
that the resulting ON set is complete in L 2(0, 1) (Dalzell, 
1945b).  

2.3.1 The Poisson-Charlier polynomials Let a(x) be a  
step function which is zero on R -  and takes the jumps ak  at  

03  

x = k, k = 0, 1, ..., with ak > 0 and E a  = 1. Thus, we may  
n= 0  

regard a as a finite normalised measure on R. 
We shall consider the space L 2(R, a). Note that the inner 

product of two members f1  and f2  of this space is given by 

(f1 ,f2) = fR flf2da = EO okfl(k)f2 ( k )  

and that f is null if and only if f(k) = 0 (k = 0, 1, ...).  
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We can develop a Vitali criterion for L 2 (I1, a+) as follows: first,  
the step functions €xr}  (see p. 33) form a complete sequence in  

L 2(R, o-), for iff is any member of this space, and  

J' Xrf 1  = 0 for every r,  

then  

i.e.  

Ç fdo + = 0 for every r,  

Cr]  
E o-k  f(k) = 0 for every r.  

k=0  
That is, f is null.  

Suppose now that (On) is an ON sequence in L 2(ID, 0). As  
before, the Parseval relation and Lauricella criterion yield  

r 	2 	r  
E 1 f ^n da-  = 	do-  for every r 
n - 

 
co 	 - w  

as a necessary and sufficient condition for the completeness of  

(sbn ) in L2(IIB a+). But this condition is  

[r] 	2 	[r]  
E E o-k Sbn(k) = a-(r) = E a  for every r.  
n k=0 	 k=0  

Thus we have the  

VITALI CRITERION FOR L 2(I, D•) Let a+be the step function  
defined above and (On) an ON sequence in L 2(R ,o-). o-). Then in order  
that (On) be complete in L 2(R, o-) it is necessary and sufficient that  

d r 	 2 	r  

E okOn(k) = E o-k (r = 0,1, ...). 
n k=0 	 k=0  

EXAMPLE (The Poisson-Charlier polynomials) Let a be a  

step function as above, with the jumps a k  = e-aak jk ! at  
k = 0, 1, .... The measure a is associated with the Poisson dis-
tribution in the theory of statistics. Charlier introduced a set  

of polynomials defined on the non-negative integers and ortho-
gonal in L2(0/, a) by the formula  

anl2 n 	 n r 
pn(r) = (n 

 !)Ï  k
k o (- 1)n-k 

(k) (k) 
k! a-k (n = 0, 1, ...), 

 

(the sum actually terminates at the term for which k = min (n, r)).  

GI  
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Now (pa) is also complete in L 2(D, a), a result apparently due  
to Szegô but not stated in such terms (see Schmidt (1933) and  

the literature cited there). We prove the orthogonality of (pn),  
and as a consequence the completeness from the Vitali criterion  

just obtained, by the interesting and powerful method of  

generating functions.  
We prove first the generating function relation  

k 	
m a-n'2pn(k) wn G(k,w) = e-w(1+wIa) = E n0 	(n!) 	'  

Now from the definition of pn this sum is 

ao 	n ( — 1 ) )n—nt 
 ( fl )  k 

n^0 m^0 n! 	m m  
m ! a-m wn  

v 
 (

-1)n  n + m  ( k ' 

m !a—m wn+m  

n =0 mt 0 (n+m)! m  1 km  

i°i ao  {— 1)n k w m 
^  	wn  

n =0 m =0 n!  kml \a  

^

(k ) (wm  

=ew  

m = 0 m a  

= e-w(1 + w f a)k, as required.  

Thus we shall have 

	

co 	 CO e 	k 
E ak G(k,  u) G(k, v) = E k a e-u( 1 + a f u)k  e(1 + a'v)k 

	

k=0 	 lc= 0 	• 

= e—a—u--v ea(1+ula)  (1+rola)  

co 	pn(k) 	.Pm(k) _  8nm 
k 0  ak an12(n  !)i am12(m !) 	ann ! • 

 

Thus, the orthogonality relation for the Poisson-Charlier poly-
nomials is  

E akpn(k)pm(k) = 8nm•  
k=0  

1w1 < a.  

= euvla  

and by comparing powers of uv on left- and right-hand sides, we 
find that 

OD  
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But, notice that from the definition  

n (n  ! ) i` 	 k (k !) i` 

( - 1 ) an'2  pn(k ) = (- 1) akf2 Pk(n) ,  

so that an alternative orthogonality relation is  

03  

Pk(n)Pk(m) = e-an!a-n 8  nm•  
k=0 

This last relation is useful when it comes to verifying the  

completeness of (p n), for the Vitali criterion (above) requires  

us to verify  
«, 	r 	al 2 	r a7 
- E An(i)1    = ea E 1 m-o j=o 	, 	j=o,9 • 

the left-hand side of which can be written  

r 	m 	 aj 2 	r (m 	 ai+J 

j o 	
Q Pm(?) t̂  +^

o 	
.0 Prn(,?)Pm(i) 

(i+,7)i. 
 

i<j  

Now the alternative orthogonality relation shows that the  

second sum is zero, and that the first is  

r j f (ai) 2 	r co 
 

This verifies the Vitali criterion, and we have shown that The 
Poisson-Charlier polynomials form a CON sequence in L 2(R, a). 
This completes the example. 

For further polynomials orthogonal over similar L 2  spaces, 
see Szego (1939) and Carlitz (1960). Szego proves a closure 
theorem for  LP ((a, b), o•), (a, b) a finite interval. 

Problem  
2.15 Obtain a Dalzell criterion for L 2(R, o-), and apply it to 

the Poisson-Charlier polynomials. 

2.4 The functions of Rademacher, Walsh and Haar  
We have seen that the set { j2 sin narx: n = 1, 2, ...} forms a CON  

sequence in L 2(0, 1) (problem 2.5(c)). Let us put  

sn(x) = sgn (sin nirx),  

(r=0,1,...),  



1  

1  
o  

—1  

1  

o  

—1  
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1  

r1  r2  

Fig. 1. The first two Rademacher functions.  

n = 1, 2, ...: then (sa) is a sequence of discontinuous functions  

which is not orthogonal over (0, 1) but which is complete in  

L2(0, 1) (Harrington and Cell 1961). On the other hand that  

subset of {sn} consisting of the RADEMACHER .FUNCTIONS,  

defined by 
	
_ 

g (sin 	) (n 	 ...), rn(x) — gnsin n2^rx 	n=1 2...,  

forms a sequence which is orthogonal over (0, 1) (which the  
reader can easily verify) but is not complete in L 2(0, 1). The  
failure of completeness arises from the fact that there are many  

functions orthogonal to all the Rademacher functions; for  

example, cos 27rx has this property and so does any L 2  function  
with the same symmetries.  

The domain of the nth Rademacher function is divided into  

2n-1  `cycles' each of length 1/2n-1, over the first half of which r n  
takes the value + 1, and over the second, —1.  

In order to `complete' the Rademacher functions Walsh  

adjoined certain other combinations of Rademacher functions  

to them.  

D EFINITION Let rn  denote the nth Rademacher function;  

then we have the WALSH FUNCTIONS defined by  

w 1(x) - 1  

wk+1(x) = rn 1 +1(x) r na+1(x)...r,.ng+1(x), k = 1, 2, ...,  

where k is given its dyadic representation  

k= 2 n1 +2 +...+ 2nii, nl > ... > nN > O.  
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The cases k = 2n1 , n1  = 0, 1, ..., give the Rademacher functions 
themselves, so these are all contained in the Walsh system. An 
alternative definition in which the functions are `sequency 
ordered', that is, the kth function has k + 1 zero crossings on 
(0, 1), has been developed for use in communication theory, 
where Walsh functions are used extensively (see Harmuth (1969) 
and Lackey and Meltzer (1971)) . They are also important in the 
theory of probability. 

Our present concern is with completeness properties, and our 
next theorem embodies the fundamental property of the Walsh 
functions. 

THEOREM The Walsh system forms a CON sequence in 
L 2(0,1) 

Proof (i) Orthonormality A product of two Walsh func-
tions will be of the form (r ml )al (rm2 )a2 ... (rmp )aP, where the ms are 
integers such that m 1  > m2  > ... mp  ? 1, and the as are all either 
1 or 2. For the normality, all as will be 2, and since rn(x) = 1 a.e. 
for every n it follows that the integral of the square of a Walsh 
function is 1. For orthogonality, we may delete from the product 
of two Walsh functions any squared Rademacher function and 
relabel the remaining subscripts m 1, m2, ... mq. Now 

rm2 (x) ... r„,g(x) 

is constant on each of the 2m2 half-cycles of r m2 . A typical half- 
cycle 'm2  is divided into 2m1-m2 half-cycles of rml , in which rml  is 
alternately +1 and —1. Hence 

i 

rml . .. r„ = E 	(const.) rml  = 0, 
Q 	 /m s  Im= 

since 
rml= 0.  

Im: 

This proves the orthogonality. 

(ii) Completeness To satisfy the definition of completeness, 
let f E L 2(0, 1) and set 

F(x) = 	fit) dt . 

0 



(1-1)/2k 1/21, 	1 
	F 	1 

48 	 Orthogonal sequences 

2k/ 2  

— 2h/2 

Fig. 2. A typical Haar function. 

f(x) wk+1(x)  dx = 0 (k = 0,1, ...), 

f (x) w 1(x) dx = 0 = F(1), 

f (x) w2(x) dx = 0 = 2[F(1) + Fa)] = 0, 

f(x) w3(x)dx = 0 = 2[F(1)—F(1)] = 0, 

Then F(0) = O. 
I  

Suppose 
0  

then 

whence F(f) = F(I) = O. Continuing in this way, use of w4  yields 

2[F(1) + F(I) +F(1)  +F( )] = 0 ; 

use of w5, w6, and w7  yields the three similar equations in which 
two of the pluses are replaced with minuses, hence 

F(i) = F(1) = F(1) = F(-) = O. 

In general we see that F = 0 on a dense subset of (0, 1). By 
continuity F - 0, f (x) = 0 a.e. and the proof is complete. 

A more general completeness theorem of Rényi (Alexits (1961) 
p. 21) asserts that if  45 .(x)} be any uniformly bounded set of 
measurable functions on [a, b] which separates points of [a, b] 
(i.e. given x 1, x2  in [a, b] then x1  + x2  implies On(xi) # çn(x2) for 
some n), then {Or' 022112 ... çmn}  forms a complete sequence in 
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L2((a, b),/L), where mk  = 0, 1, ...; k = 1, 2, ..., n; n = 1, 2, ... and,u  
is a bounded, positive, monotone increasing measure with a  

non-negative derivative vanishing at most on a set of measure  

zero (see problem 2.16).  
As well as the  LP theory there is a substantial literature on the  

pointwise convergence of series in Rademacher and Walsh  

functions. A similar system of discontinuous functions with an  

even more favourable convergence theory is that of Haar. The  

HAAR FUNCTIONS are defined by  

hi(x) - 1  

 

l-1 l  — i  2kf2, xE 2k  , 2k  

—2kf2, x E l—^ 1  
2k , 2k  

0 otherwise,  

h2k+t(x )  

 

1 = 1 ,  2 , •..,  2k ; k = 0, 1, ...  
The domain of a typical Haar function is divided into 2k cycles  

of length 1/2k. For each cycle there is a Haar function with a  

Rademacher-type `plus/minus' alternation of amplitude 2kf 2  on  
that cycle, the function being 0 on all other cycles.  

THEOREM The Haar system forms a CON sequence in  
L2 (0, 1)  

Proof (a) Orthonormality The normality is obvious; the 
orthogonality follows from 

(i) h1  is orthogonal to all other Haar functions; 

(ii) If i * j, h2k+i  h2k+1  = 0 a.e.; 

(iii) If n > m, either h2n+i h 2m+i  = 0 a.e., or 
i i 

m/2 2n+i 2m+i = ± 2 	h2n+i  = 0. 
0 	 0  

(b) Completeness This can be proved by the direct method  
used to prove the completeness of the Walsh system; however,  

as an interesting contrast to this direct method we shall give a  

proof using the Vitali criterion.  
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The set of points €p/2q}, where p is any odd positive integer and 
q any positive integer such that p < 2q is dense in (0, 1). Then 
if we can verify that 

03 	p /24 	2 

E 	hr(t) dt = p/2g, 
r=1 0 

Vitali's criterion (p. 35) will be satisfied. Put r = 2m  A- k and 
p/24 

hr (t) dt = I(p, q, m, k). Now the non-zero values of hr  occur 
0 

on a cycle of length 2 -m; hence I (p, q, m, k) = 0 if 2 -a ? 2-m, i.e. 
I(p, q, m, k) = 0 unless m < q —1 (and hence r < 2e). The equality 
to be verified now reads 

24 
E {I(p, q, m, k)} 2  = p2-q  — (p 2--q) 2, 

r-.--2 

the term corresponding to r = 1 having been transposed to the 
right-hand side. 

Now p/2q lies in exactly one cycle of hr, so that given m there 
is exactly one k for which I(p, q, m, k) $ 0. This k depends on 
p, q and m, and we shall denote the non-zero value of the integral 
by I(p, q, m). Thus we must verify that* 

q- 1 
E {I(p, q, m)} 2  = p2-q(1—p2 -q). 

m=0 

Our first task is to find an expression for I(p, q, m). We give to 
p its dyadic representation: 

q-1 
p= E an  2 n, an =0 or1. 

n=0 

q -m-1 
Put q--m--1 = E an , 

n=0 

so that p = 8q_l, and define 8_ 1  = 0. Now we may write p as 
8q-m-- 2  plus terms with a common factor 2q -m-1 , thus 

p = j2q-m-1 + Sq-m- 2 

* The author would like to thank Mr R. E. Abraham for supplying the 
elegant demonstration of this equality. 
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for some j. It is obviously convenient to have the range of 
integration written as a multiple of 1/2m+ 1, so that 

P = p 	1  
2q  2q-m-1 2m+1 —  (9 + Sq-m-2' 2g-m-1

)12m+1.  

Now if aq_m_1  = 0, j is even and the integral over the range  

0 to j/2m+1  is zero. The integral over the remaining range is,  

taking account of the normalising factor, 2m/2Sq_m_2Î2q.  If  
ag^,z_l  = 1, j is odd and the integral over the range 0 to jA2m+ 1  
is  2m12/2m+1 ,  the remainder giving — 2mJ 2 Sq_m_2/2q. 

Since aq-m_1  is either 0 or 1, these results may be combined 
to give 

I (p, q, m) = 2m12aq_m-1/2m+1 +, (-1)aq-m -1 2m12 Sq-m-2Î2q  

= 217112[a 	+, ( —1)ag-m-1 Sq-m-2]/2g, 
 

and this completes the first part of the proof.  

For the second part we shall denote I(p, q, m) by Im  for brevity, 
and note two properties of the coefficients a n  in the dyadic 
representation of p: (i) an = an, and (ii) (-1)an a n  = — an. Now 
since 

,S 	=a - 2q-m-1 S +  

Sq^►t-1 =  aq_m_J 
22q-2m-2 + 

 aq_n-] 2g-m
2

Sq-m-2 + Sq-m-2'  

Furthermore,  

2q-m Î2m  = aq_m_] 22q-2m-2  — aq_m-] 2g-m  Sq-m-2 + Sq-m-2 •  

On adding these last two equations and rearranging, we get 

5q-m-1 — 25q-m-2  + 224-m  nn =  aq-m-1 22q-2m-1 .  

On multiplying this by 2m and summing on m from 0 to q —1, we  
get  

q-1 	 q-1 	 q-1 	q-1  

E 2m Sg -m-1 —  E  2m+1 S2 -m-2 + E 22gIm  = E ag-m-1
22g-m-1• 

m =0 	 m=0 	 m=0 	m=0  

Thus  
q-1 	q-1 

q-1  2gS2 + 
 22g  E Im =  2 g  E aq-m-1 2g

-m-1= 
2g g-1  

m = 0 	 m=0  
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or  

Finally,  

q-1  
p222

q E lem -- 2qp.  
m=0  

q^l 
 I2(p, q, m) = p2-g( 1— p2-q)  

m= 0  

as required.  
Not only is this equation sufficient for the completeness of the  

Haar system, it is also necessary, as the Vitali criterion shows.  

Problems  
2.16 Use Rényi's theorem (p. 48) to show that the set  

{cosh x, sin nx.cosh x: n = 1, 2, ...}  

forms a complete sequence in L 2((0, 27r),µ). Deduce the 
completeness of the trigonometrical functions. 

2.17 Show that 
2k -1  

rk (x ) = 2-i{k-1) E h2k- i+j(x) (k = 1, 2, ...)  
J - 1  

( 1i) w2k-Fl(x) = rk+1(x) wl(x) (1 = 1, 2, ..., 2k; k = 0, 1, ...)  
27,  

(iii) w2k+l(x) = 2-1 j2 
 E wl(x) h2k+j(x)  

j=1  
(1 = 1,2,...,2k; k = 0, 1, ... ).  

2.18 Show that both the Walsh system and the Haar system are 
total in LP(0, 1,), 1 < p < oo. (Actually both are bases for 
LP(0, 1), see Singer (1970) p. 13 and p. 405.) 

2.19 Show that for the Walsh system to be complete it is 
necessary and sufficient that 

q  
± 214-1  { J(p, q, m)} 2  = p2-q (1 — p2 -q),  

m=1  

where 	 X0/24  

J(p, q, m) =f 0 
 r

m (t) dt, 

rn, being the mth Rademacher function (Higgins et al. 
1975).  

2.20 Let g(x) E L 2(0, 1), g + 0 and be defined everywhere on (0, 1)  
except possibly on a set of measure zero. Let (gxr) be the  

(1)  
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complete sequence obtained by letting r take the values 
1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, ... (see p. 48). Find the 
first few members of the CON sequence for L 2(0, 1) obtained 
by orthogonalising this set over (0, 1). What happens if g 
itself is expanded in the resulting CON sequence? If g - 1, 
show that the CON sequence is neither the Walsh nor the 
Haar system, but that its members do have similar intervals 
of constancy. 

2.5 CON sequences and the reproducing kernel 
Certain Hilbert spaces possess a `reproducing kernel', which 
gives them an even stronger structure than they would other-
wise have. This kernel can be calculated from a CON sequence 
for the space. L 2  spaces do not normally possess a reproducing 
kernel, but we shall shortly meet certain subspaces of L 2  which 
do; consequently, we shall give the definition and a few important 
facts in this section. 

DEFINITION A Hilbert space H of functions defined every-
where on a set X is called a `reproducing kernel Hilbert space' 
(`r.k. space' for short) if there exists a kernel k(t, x) defined on 
X x X, such that 

(i) k(t ,x) E H (x e X), 

(ii) f(x) = (f, k(., x)) (f e H), the reproducing equation. 

Note the necessity of using a dot in the notation; in the L 2  case, 
this can be thought of as the dummy of integration. Before 
pointing out some of the properties of r.k. spaces we give a 
theorem and corollary which tell us when a Hilbert space will 
have a reproducing kernel. 

THEOREM A Hilbert function space is an r.k. space if and 
only if the evaluation functional is bounded on H, i.e. 

If(x)I 	MxIif II (feH). 

Proof (i) Let H be an r.k. space. Then 

If(x)I = I(f,k(.,x))I < 11fIIIIk(•,x)II 
so the evaluation functional is bounded. 
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(ii) Let the evaluation functional be bounded. Then by the 
Riesz—Fréchet representation theorem (Appendix 1,4), for each 
x e X there is a gx eH such that f(x) = (f,gx (.)). Then gx (t) has 
the required reproducing property. 

COROLLARY *  If each feH is continuous, then H is an r.k. 
space. 

Proof Define a set of linear functionals {Tel on H by TE 
 f = (f, h6 ) where f  he  = 1 and he (t) has support on {t: ix — t l < e}. 

Since I (f, h6) I < 11f II 11h611 we find that {TE} is a set of bounded 
linear functionals on H. Furthermore, lim TE  f = fix), since f is 

e-0.0 

continuous, hence there exists a constant Mf  such that 

sup I TEfI < Mf (feH). 
E 

The uniform boundedness principle applies and there exists M 
such that II Tell < M for every e, hence 

I TEfI < 11f1I iv. 
We let e --• 0, then 	

If(x)1 	IIfII M, 
and by the previous theorem H is an r.k. space. 

The converse of this corollary is not true; indeed, Lehto (1952) 
has given an example of an r.k. space which contains dis-
continuous functions. 

Some useful properties of r.k. Hilbert spaces are listed; the 
reader will find that they follow readily from the definitions. For 
these and other properties, see Meschkowski (1962). 

(a) The kernel k(t, x) is unique. 

(b) k(t, x) = k(x, t). 

(c) k(t, x) = (k(., t), k(., x)); in particular k(x, x) = 

(d) The weak and, hence, the strong convergence of a sequence 
(fn) to f in an r.k. Hilbert space H implies the pointwise 

Ilk(., x)11 2 . 

* This result is due to Professor J. I. Richards, who communicated it to 
the author whilst supervising his doctoral research. 
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convergence of fn(x) to f(x) (x E X). The convergence is 
uniform over any subset of X for which k(x, x) is bounded. 

(e) Let (On ) be a CON sequence in H. Then 

k(t, x) = Eç n(t) 0n(x) (x, t E X). 

It is usually difficult to relate two different modes of con-
vergence, therefore (d) is a remarkable feature of r.k. Hilbert 
spaces. 

2.6 The method of isometric transformation 

2.6.1 Description of the method Let H and K be two 
Hilbert spaces and u: H --›- K be an isometric isomorphism of H 
onto K; thus u preserves norms and hence inner products (see 
problem 2.21). It is evident then that u preserves orthonormality: 
the image of an ON sequence in H is an ON sequence in K. The 
mapping u also preserves completeness, whether the sequence is 
orthogonal or not, since every k e K is of the form u(h) for some 
h e H and so if (On) is complete in H, given e > 0, there exists a 
finite sequence of scalars (a n) such that (using totality) 

II h — Eançn11 = II k — Eanu(Sbn)II < e. 

We could have started the argument with K and used u-1, thus 
we have the important result that, if u is an isometric iso-
morphism between two Hilbert spaces H and K, then a sequence in 
H and its image by u in K both possess or both fail to possess any 
or all of the properties: completeness, orthogonality, normality (see 
also problem 2.21) . 

This is the essence of the isometric transform method, for, 
although H and K are, from the abstract point of view, entirely 
equivalent under u, this equivalence can be turned to good 
advantage in practice. For example, it may be easier to demon-
strate completeness in H of the image sequence by a judiciously 
chosen u which maps H onto itself, rather than that of the original 
sequence. One can often (but not always—see problem 2.25) 
generate a new CON sequence for H in this way. A powerful 
application of the method is to the case where u maps L 2 (07E) to 
itself, carrying a subspace of functions which vanish over some 

3 	 HCA 
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subset of R into a subspace which has some special property. In 
§ 2.6.3 a class of interpolating functions will be generated in this 
way, and in § 2.6.4 a class of rational functions. 

Problem 

2.21 Show that an isometric isomorphism preserves (a) inner 
products, and (b) bases of Hilbert space. 

An isometric isomorphism is not the most general type of 
mapping which preserves bases, see the Lemma on p. 75. 

2.6.2 Examples of isometric transformations Before 
proceeding to illustrate the method, we shall give a few examples, 
some of which will be found useful later. 

(i) The Fourier transform on L 2(R). Plancherel's theory 
shows that if f E L2(R) then the Fourier transform 

	

A 
(Ff) (x) = l.i.m. 	1 	e-ixt f (t) dt, 

	

A,,,, 	27r) 

where l.i.m. stands for `limit in the mean', and indicates a limit 
in the sense of L 2  norm, is in L2(R). The Parseval relation 
(f, g) = (Ff, Fg) holds for every f, g E L2(R) and F is a unitary 
operator on L 2(R). Under mild restrictions on f the integral 
defining Ff exists both in the sense of l.i.m. and in the sense of 
the ordinary limit, the two values being equal (see e.g. Titch-
marsh (1937) p. 83). 

(ii) The Fourier sine transform f A  

	

(Fs  f) (x) = l.1.m. 	1 	sin xt f (t) dt, 
A—œ V(27r) 0  

the Fourier cosine transform 

	

(111, f) (x) = l.i.m. 	1 cos xt f(t) dt, 
J( ar) o   

and the Hankel transform 

(H„ f) (x) = l.i.m.(xt)iJ„(xt) f(t)dt, y  > —1, 
A-0. 	0 

are all examples of unitary operators on L2(I+). 
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The examples (i) and (ii) are treated in detail by Titchmarsh 
(1937) together with more general classes of unitary integral 
operators. 

(iii) Let the function ¢(t) have a positive derivative every-
where on an interval (c, d), with ç  (c) = a, and 0(d) = b, and  
iii(t) be real and measurable. The mapping which takes f(t) to  
f(ç(t)) [ç'(t)]ieir/r(t) provides an isometry of L 2(a, b) into 1,2(c, d),  
as may easily be verified. When 0 '(t) is everywhere negative, the  

mapping f(t)_* f(ç (t)) ç'(t) iei ct) takes 1,2(a, b) to L 2(d, c); for  
example with ¢(t) = et the first maps L 2(IR+) to L 2(II1), and with 
OM = — log t the second maps L 2(IIP+) to L2(0, 1). 

O. Szâsz used several such transformations to study complete-
ness properties of sequences (xAn) (see p. 97).  

2.6.3 The functions of the cardinal series We shall use  
the isometric transform method to discuss the functions appear- 
ing in the series  

sin 7r(x  — n)  

- 

an 	  
03 ii(x — n) '  

which is called a cardinal series; we shall also point out some  
properties of this series. The method is due to Hardy (1941).  

We have seen that {(27r)-i  einx:  n = 0, 1, ...}, forms a CON  
sequence in L 2(- 7r, 7r). Consider the set {O n :n = 0,1, ...} c L2(01)  
given by  

This forms an ON sequence over I, which is 
complete in L2(R). Now 

1 f R.  0'n(x) = FO.n(x) = 	$ emntt dt 
27r  

_ 

 

sin 7r(x—n)  
7r(x — n) '  

and {ç : n = 0, 1, ... }, is ON over 01 by the isometric property of  

F. It does not form a complete sequence in L 2(D) since (çn) does  
not. Can we, then, identify that subspace FT of L2(R) which is  
spanned by (h) ? To do this, we attempt to verify the definition  

of totality by taking g e L2(R) and assuming that (g, F04) = 0  

15^ç 
	{27r) —i einx, 	lxf < 7r, 
'(x) =  0, 	1x1 > 7r.  

not  of course 

3-2  
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(n = 0, ± 1, ...). But this is equivalent to (F-ig, On) = 0 
(n = 0, ± 1, ... ), where the definition of On  shows that the inner 
product is taken over [ -7r, n.]. Thus the completeness of (On ) 
when restricted to L 2( - n, 7r) shows that F-lg is null on [ - n, n]. 
It will be null on the whole of R if, and only if, g belongs to that 
subclass of L 2(R) whose inverse Fourier transform is null on the 
complement of [ -7r, n] . This provides us with the subspace F' 
that we are seeking. The functions g of F" may thus be written 

g(x) - v(270  f ir  f(t) et  dt. 	 (1) 

Hardy called these the Paley-Wiener functions, in view of the 
well-known characterisation of such functions as entire functions 
of exponential type whose restriction to the real axis is in 
L2(R) (Paley and Wiener, 1934). Fff is an r.k. Hilbert space (each 
g e F" is continuous) in which 

sin nr(x -n) 
: n = 0, ± 1, ... } , 

forms a CON sequence (see problem 2.22 for the reproducing 
kernel). The Fourier series in this CON sequence for any g e F" 
is a cardinal series; from the reproducing kernel theory we find 
that the series converges pointwise and uniformly over R, and 
therefore reduces to a n  when x is an integer n. That is, a n  = g(n) 
so that the formula 

00 	sin g(x - n) 
g(x) = E g(n) 	

77.(x - n) 	 (2)  

holds uniformly on R for each g c F". 
The above remarks have recently seen important application 

in the theory of communication of information: here g is a signal 
(one writes t instead of x to denote time) and provided that the 
signal is `band-limited', or `slowly oscillating', i.e. contains no 
frequency outside the ` band' [ -7r, 7r] as in the representation 
(1) then it can be completely constructed (theoretically at least) 
by the formula (2) using only its values at a set of equally 
spaced instants of time. 

The cardinal series and its interpolating property were intro- 
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duced by E. T. Whittaker (1915) who also studied the slowly 
oscillating property of its sum.  

Problems  

2.22 Show that the reproducing kernel for F" is  

sin n(x—y) 
 ^r(x — y) • 

2.23 Show that there is an interpolation series involving Bessel  

functions analogous to the cardinal series by using the fact  

that the Hankel transform (p. 56) is a unitary operator on  

L2(0, co), and by using the completeness of the Fourier-
Bessel functions in L 2(0, 1). Show also that the Hilbert  

space B,, spanned by the functions of this series is that  
subspace of L2(0, co) consisting of functions whose Hankel  

transform of order v is null outside (0, 1) (Higgins, 1972).  

2.24 Show that of the two ON sets of functions associated with  

the Bessel-Neumann series, namely,  

{2-1(2n+ 1)i(-1)nx-iJn+I  (x):n = 0, 1, ... , x eR}  
and  

{[2(v+2n+ 1 )]ixf4J„+2n+1 	 +} (x):n = 0,1, ...,xel^,  

the first forms a CON sequence in F", the second in By .  
Hint: use the Hankel and the Fourier transform (Higgins,  

1972).  

2.6.4 The Laguerre polynomials and their Fourier  

Transforms Here we shall discuss the completeness of the  

generalised Laguerre polynomials, and use the isometric trans-
form method to generate a class of rational functions which  

forms a CON sequence in L 2(I).  
We have already observed that the completeness theorem for  

polynomials applies to the Laguerre polynomials in L 2(R+, e--2) .  

It can be easily verified that the theorem also applies to the  

polynomials obtained by orthonormalising the set of powers  

{xn: n = 0, 1, ...} with respect to L 2(01+, xŒ a-x), so that a CON 
sequence in L 2(D+) is formed from the set {l n(x, a) :n = 0,1, ...}, 
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where  

	

In{x a} = 	n  ? 	
i 

xa12 e—xi2 Lns)(x). 
' 	P(1+n+a}  

Here, Lin ) {x} is the nth generalised Laguerre polynomial  
(Appendix 2,7). The completeness can be made to depend 
(Tricomi, 1955) on the formula 

	

r2(a+1)
n
E

i P(2+n+a).(14-n+a) Lin+1)(r)}2= 	xaexdx,  

co 

0  
(3)  

known from the theory of the `incomplete gamma function'. 
This connection emerges from using the modified Vitali criterion 
(p. 37) with w(x) = e-xxa and the choice g(x) = ex. Then the  
equality to be verified is  

co 	n  1 	r 	 2 	Sr 

E1 P{1^-n^-a} (fo
xŒL(n)(x) dx = o exxadx.  

Now if we substitute  
r 

r xŒ Lna ) (x)dx = 	
Œ+1 L n

a+i)(r) 
0 	 1+n+a  

(Magnus et al. (1966) p. 241), the equality to be verified is just  
the formula (3). Thus the completeness of the Laguerre poly-
nomials and the formula (3) are consequences of each other. A  

modified Dalzell method can also be used, but it too involves  
difficult integrals (Dalzell, 1945a).  

At this point we shall introduce a further parameter into the  

definition of the Laguerre polynomials. By a simple change of  

variable in the integral expressing orthonormality of (Lna ) ) we 
can show that a more general CON sequence in L 2(D +) is formed 
from the set {l n(x, a, a) : n = 0, 1, ...}, where 

1 n(x, a 	
ai+a n ?

, a) = 	 e_I2 xa12  Lin )  (ax).  P(1+n+a)  
Next we calculate the Fourier transforms (see p. 56, (i) for  

the definition) of those functions which are equal to zero for  

negative arguments and equal to i n  (x, a, a) for positive arguments.  
We shall need  

I =  
1 	f co 

 

V(27r) i 0  
(ax)m X42e^xf2  e-ixg dx,  ,  
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since the polynomial representation (Appendix 2,7) for Lna )  is to  
be used. Put x(iy + a/2) = t, then  

m+aJ2 t( y 	' ) l m aJ2 I= V(
m  

27T) c t 	e-  i +a2__ _ dt,  

where C is a contour in the complex t-plane consisting of the 
whole ray arg t = 2y fa. By considerations of regularity we may  

take C to be the ray arg t = 0, and using the definition of the  
gamma function (Appendix 2,1) we find that  

am11 (1 +m+af2)  
I — 

 V(2n.) (iy + ap )1+7n+aJ2  •  
Hence  

Fln (•, a, a)  (y) 
 

_ 	a1+a n ! 	i n 	n+a am I'(1+m+af2) 
[ irF(1+ n+Œ)j^o ( 1)m (n_ m)

- 	m! (iy^- af2)1+m+aJ 2 '  

(4)  
First consider the special case a = 0, a = 2. We have 

!_/. ( 
Fln(., 0, 2 ) (y) = (n) -

1m 1 	{+iy +m  
m o 	{ 	y)  

= 	(ir)
-i 	2  1  i n  

( 1 +iy) 1  ( 1 + iy)  
= (7)_4  (iy — 1)n  

(1 + iy)n+1  

= Pn(Y), say.  

By an argument similar to that of the previous section, the set  

{p„} forms a CON sequence in that subspace F+ of L2(01) whose  
inverse Fourier transforms vanish on the negative real axis;  

such functions are important in time series analysis (Wiener,  

1949).  
For general a and a the formulae in Appendix 2 for the bi-

nomial coefficient, the Pochhammer symbol and the hyper-
geometric function 2F1  may be used, together with  

(n — m) ! = ( - 1)mn !/(—n)n,  
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to put (4) into the form  

al+an!F(1 +n+a)  i 	1  
n!27r 	j n ! (iy + a/2) 1+.  

[

nil 
 (

— n)m am I'(1+ccf2)(1+aj2) m+  (— 1)nan(1 +n+a/2)  
m-0 m  !F(1  +a) (1 +a)m (iy+'al2 )m  I'( 1  +n+a)  (iy+a/2)n  

a1+al`(1 + n + ao  F(1 +af2)  1  

n!27r 	j F(1+a) (iy+af2)1+ce  

2a  
x 2F1 —n, 1+ a/2, 1 +a, 	a) . 

 

This formula provides a class of CON sequences in F+.  
We now turn to the completeness of the rational functions 

{ pn  : n = 0, 1, ... } defined above. We have 

(ix— 1)n-1  
P-n(x) _ —  17T 	(ix +  1)n 	Pn-7 (x))  

and since pn(x) = Fln (., 0, 2) (x) we have  

P-n(x) = — Pn-1(x) = — Fln-1(•,  0 , 2 ) (x)  

=  ^( 7r ^ e-t  Ln-1(  2t ) ei^  dt = fo  et Ln-1( — 2t)  e-2æt  dt. 
) o 

v  03 

This is the Fourier transform of the function equal to V2 et L n(— 2t)  
for negative arguments and equal to zero for positive arguments. 

LEMMA The set {. j2 etL n(— 2t): n = 0, 1, ...} forms a CON  
sequence in L 2(01f).  

Proof (i) Orthonormality This is obtained from that of  

(Ln(2t)) over R :  

2 
 f 

 e-2tLm(2t) Ln(2t) dt = 8 n = — 2 f e2tLm( -- 2t) Ln ( — 2t) dt.  

0 	 0  
(ii) Completeness Now the set {e_tL n(2t)} forms a complete  

sequence in L 2(R+), therefore iff is even and f EL2(R),  

x  

— f f(t) etLn ( — 2t) dt = f f(t) e—tLn(2t) dt = 0  
—co 	 co 

0 	 0  

implies that f is null on I1+, and hence null on B. But every 

(n= 0,1,...)  
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member of L 2(R-) is the restriction to D of an even member of 
L2(R).  

By Fourier transformation we now see that {p_n(x) : n = 1, 2,...}  
forms a CON sequence in F-, the class of L 2  functions whose  
Fourier transforms vanish on R+. But it is clear that  

L 2(R) = F+ p F- ,  

so that {p n(x):n = 0, ± 1, ...I forms a CON sequence in L 2(R).  
We have shown that the set  

1 (ix —  1)n  
,jiT 

(ix 
 +, 

owl.  : n=0, ±1,...  

forms a CON sequence in L 2 (II1). 

Problems  

2.25 Show that, apart from a factor in, the weighted Hermite 
polynomials 

(?Tin  ! 2n)-4 a-x212  Hn(x), n = 0, 1, ...,  

(see Appendix 2,8 for the definition of Ha), which form a  
CON sequence in L2(R) (problem 2.1), are their own Fourier  

transforms.  

2.26 Show that (pn(x)) is complete by the Dalzell criterion.  

2.27 Let {On} denote the weighted Laguerre polynomials on D.  

Use the generating function relation  

1 1 ^- t 	00  
(1 — t)-i exp 	

2 1 — t x 
 = E tn On(x)  

n=0  

to demonstrate the orthogonality of (On). Use it also to 
show completeness in L2(R +), by the following steps: 

(i) The series converges to the generating function in 
L2(R+) norm, for It I < 1.  

(ii) The set {fin} is total in the class of functions of the 
form e-°x, x e R+, for any a e R.  

(iii) Consider the isometric transformation L 2(R+) -- ›- L 2(0, 1)  
induced by f(x) --i- i  f(— log x)/Vx  (see (iii) of p. 57); use the 
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completeness of the powers in L 2(0, 1), then reverse the  
transformation.  

This method was suggested by J. von Neumann.  

2.28 Show, by calculating the inner products directly, that  

(ix — 1)n+P  
{ix 1)/1+1+P ' n =  0, ± 1, ... , p real ,  

forms an orthogonal sequence over R. Show that this  

sequence is also complete in L 2(D).  
Show also that  

a—ix n  

: n =0, 	
...) 

 

a+ix  
a  

forms a CON sequence in L 2  (R, 
77(x2 

+ x2)  

2.7 CON sequences of complex functions  

In this section we shall investigate some CON sequences for L 2 
 spaces of functions regular in regions of the complex plane. 

Accordingly, let R denote a region (an open connected set) of the 
complex plane and let L^(R) denote the Hubert space of all 
functions which are regular in R and such that 

IIfII = 	If(z)I 2 dxdy  
R 

Note carefully that L.(R) is not the same as L 2(R), the full L2 
 space over R (see problem 2.30). 

We are going to show that a conformal mapping of the under-
lying region R onto another region R' induces an isometric 
isomorphism of  L,.2(R) onto L2(R'). Readers wishing to strengthen 
their knowledge of conformal mapping should consult a good 
text, such as Nehari (1952).  

Given a region R of the complex plane it is natural to seek a 
CON sequence of polynomials for L2(R). To this end, we can 
orthonormalise the sequence of powers (zn) over R to obtain an 
ON set of polynomials. A pleasant feature of (zn) is that it is  

already orthogonal over D, the unit disc. It is also complete in 
L 2r(D) (see the theorem to follow) these facts being particularly 
convenient since D is the canonical region for the Riemann 
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mapping theorem. For general R the ON sequence of poly-
nomials will only be complete if R is reasonably shaped (see  
theorem p. 68).  

THEOREM €, /(n jnr) zn-1 : n = 1, 2, ...} forms a CON sequence 
in L4(D). 

Proof (i) Orthonormality Now if n + m,  

(zn, zn) = 	zn zm dx dy.  
D  

We can put z = r eie and pass to polar coordinates to obtain the  

value zero for this integral. Alternatively, the very useful  

complex form of Green's theorem can be used, namely  

f(z) g'(z) dx dy = 
2ifo

f f(z) dz  , 
 

where C is the boundary of R (not necessarily simply connected),  

and f and g are regular within and on C. Consequently,  

	

(zn, en) = 2i( / 	
1

m+ 1) 	zn Zm+1  dz . 
Izl  

= 0.  
A similar calculation with m = n yields the normalising factor.  

(ii) Completeness We shall verify Parseval's theorem  

directly. Green's theorem is used again, this time to find an  

expression for the Fourier coefficients (c a) for f E L.(D) :  
lim 
	

f(z) zn -1  dx dy  
r—+1 	7T 	Izl <r  

n 
= lim — 	

n 
	f(z) 

z 
 dx 

r^l 2i 	7r 	Izl -r 	n  

	

1 	r2n 	(z} 
= lim 	— 	 dz . 

r^l ^ (7rn) 2i jIzl^r zn 
Now the coefficients (bn ) in the power series expansion for f are  
given by the formula  

Cn  =  

bn-1 = 27ri 	f z ) 	d z, r < 1,  
Izl =r 

C= jObn-1 (n = 1 ,  2 ,  •••). hence  (5)  
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Next, by formal calculations, we have  

IIf11 2  =  fID I f(z)I2 dxdy 

1 2a m 	 ao 
= E  bn et one}  E bn rn  e-2n0  r dr dû 

0 0 n=0 	n=0  
1  11 2n co 	co  

= 	E E bn  bm  rn+m ei(n-m0  r drdB 
0  i 0 n=0 m=0  

fi ao 	ao 	2n 
= 	E E b bm 	ei(n-m)  B  dB  rn+m+1  dr n  

0 n=1 m=0 	0  
1 ao  

= 27r 	̂ I bn  12  r2n+1  dr 
o n= o  

_g E lb 
n_0 

n+ 1  .  

These formalities can be justified by considerations of uniform  

and of absolute convergence; then because of (5) we have  

11f11 2 = 71. 	Ibn112= Z I kn1 2  
n=1 n n=1  

and the Parseval relation is verified.  

For any region R of the complex plane the Hilbert space  

4(R) is an r.k. space, since all its members are continuous  

(corollary, p. 54). It was in the context of conformal mapping  

of the underlying region R that the reproducing kernel was first  

introduced by Stefan Bergman. Indeed, kernels of this type are  

often called Bergman kernels; they have important connections  

with conformal mapping functions of the region R and with  
Green's kernel for R.  

Since we now have a CON sequence for L.(D), we can calculate  
the reproducing kernel k D(z, ), using the formula of property (e)  
of § 2.5: oe 

(n 
 + 1  

kD(z, C) = E 	
)  zn Ÿn n=0 I 	b  

1  d 	co 	_  

IT d(4)
^0 {z^}n+1  

_ 1 d 4  

n•d(4) 1 - g '  
so that kD(z, ) = 1/(1 —  z )2.  
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We now investigate the behaviour of CON sequences for 
L2(R) under conformal mapping of the region R. 

Let wg) be regular in a simply connected domain R of the 
C = 6 + il plane, w'(C) + 0 in R, and let w map R conformally 
onto R', a region in the z-plane. Then C = p(z) = w -1  is a con-
formal map of R' onto R and 

dwdp 1 
 d dz 	• 

If g E J4(R), 

IL. 	IL 
 g(z) 2 dxdy = 	IIw'g)I 2 d4,  

I w' 1 2  being the Jacobian of the mapping. In terms of norms, 
this is 	

II gII R' = II (g o w) w' II R . 

DEFINITION The association 

g*(gow)w' 

is a mapping between L.(R) and LAR'), which we shall call the 
mapping induced by w, or just the induced mapping. 

As we have just seen the induced mapping is norm preserving, 
and we wish to apply the ideas of § 2.6.1 to it. In fact, the induced 
mapping is an isometric isomorphism between L.(R) and L4R'). 
To complete the proof of this statement, we note that since the 
induced mapping is linear and norm preserving, and hence 
one-to-one from L4(R') into g(R), we have only to show that it is 
also `onto'. Consequently, let F E L,(R) and set g(z) = F(p(z)) p'(z) 
(recall that p = w-1). Then 

IL F(012  44 = LfR IF(p(wg)))p'(wg))w'g)I 2 dgdv 

ff= 
= f

f I9(w(C))w'g)I 2 d6di/ R 

  
g(z)I 2 dxdy < CC. 

R ' 

That is, g EL.(R') as required. 
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As an example of the foregoing remarks, we can generate a 
CON sequence for L2(R) where R is any simply connected 
domain by mapping it onto the unit disc. If w is the mapping 
function, the induced mapping associates 

J(!) 	: n = 1, 2, .. , 

forming a CON sequence in MD) with 

tiGn) [w(z)in-4 w'(z) 
: n = 1, 2, ... 

forming a CON sequence in L2 (R). 
In particular, we can generate another CON sequence for 

g(D) by mapping D onto itself by the linear fractional trans-
formation 

Now 

z—a w= 	, lal<1. 1 — dz 

dw _ 1-16112 
 

dz 	(1 — âz)2  

so that another CON sequence is formed by the set 

n z — a  )n-1 
 1 — 

 lal2 
•n = 	 ...  

) 1_äz) 	(1 —ciz) 2  • 

Next we state a completeness theorem for complex polynomials. 

THE O REM  I f R is a finite region of the complex plane, whose 
complement is a closed region, then the set of powers {zn: n = 0, 1, ...} 
forms a complete sequence in L.(R). 

The proof is beyond our present scope; it may be found in 
Nehari (1952). As with the completeness theorem for real poly-
nomials (p. 31), this theorem applies to any simple set of poly-
nomials defined on R; in particular, to the ON sequence formed 
by orthonormalising (zn) over R. 

We follow this with a remarkable 

EX AMPLE The Chebyshev polynomials of the second kind, 
{Un(z)} (Appendix 2), form a CON sequence for LT(E), where E is 
the interior of the ellipse b2x2 + a2y2 = ab. 
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Proof The previous theorem gives the completeness, since 
{Un} is a simple set. As for the orthogonality, we can avoid the 
necessity of orthonormalising (zf) over E by using a conformal 
mapping technique. The function w = cos -1 z maps the region E 
which has been cut from its foci to the boundary along the real 
axis conformally on the rectangular region R = {w: 0 < u < m, 
Iv' < c} in the w = u + iv plane, where a = cosh c and b = sinh c. 

We use the representation (Magnus et al. (1966) p. 257) 

Un(z) = (1 — z2 ) -i sin [(n + 1 ) cos -1  z] 

and the fact that the cuts do not affect the value of the inner 
product 	

(Un, Um) = 55 Un(z) Um (z) dxdy. 
E 

Thus from the mapping of L4(E) -- ›- g(R) induced by w, we have 

(Un , Um) = ff sin (n + 1) w sin (m + 1) w du dv 
R 

which, by the addition theorem for sine and by symmetry 
considerations, is readily found to be zero. Similarly, the 
normalising factor is found, and the result is that 

2  {A 	f n+1 i A-  n 1} Un(z): n= 0,1.... 

where A = (a + b)2, forms a CON sequence in L 2(E). 

Problems 

2.29 By using suitable mapping functions, find CON sequences 
for L2(R), where R is (a) the interior of the circle I z — ai = r; 
(b) the upper half-plane; (c) the interior of a square. Find 
CON sequences for L2(D) and g(E) which have not already 
been derived in the text. 

2.30 Let L2 (D) denote the full L 2  space over the unit disc. Find 
a CON sequence for L2{D) and use the circular form of 
Vitali's criterion (p. 38) to prove the completeness. Find 
a CON sequence for LT(D), the class of L2  functions whose 
complex conjugates are regular in D, and show that an 

, 
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element of L2(D) can only have a constant component in 
common with an element of LT(D). Find an element of 
L 2(D) which is orthogonal to L4.(D) u L 2,(D). 

2.31 Show that z n 

,J(lrn(1— r2n)) 

forms a CON sequence for AA), where A is the annular 
region {z : 0 < r < Izi < 11. The reader must take careful 
note that this is the first non-simply connected region that 
has been introduced. 

:n=±1,± 2,.. , 



3. Non-orthogonal sequences  

In this chapter we shall give some methods for demonstrating  

completeness and basis properties of sequences which do not have  

the property of orthogonality. Thus we are forced to give up the  

very useful Parseval relation, and other types of criteria must  

be sought. The most useful of these involves the idea of `stability',  

and we shall give a brief introduction to this topic in § 3.1.  

3.1 The stability of bases  

We shall find that basis properties of sequences can sometimes  

be deduced from the fact that they are `near' in some sense to a  

sequence already known to possess the required property. We  

list some types of nearness:  

(i) (Vf n ) is strictly near (On ) if EIOn - `l'  nII =
1
A  < cc.  

(ii) (ifi^ n ) is quadratically near (On ) if E II On — ,y/'n II 2  = A  < cc.  

(iii) Wi n) is KL (Krein-Lyusternik) near the biorthogonal  
system {On, ç.*,^} if  

EIISbn - * II II0:II = A < cc.  

(iv) (tif'n ) is Paley-Wiener near (On ) if  

IlEan(On - y'n)II < AIIEanOn'' ,  
for all finite sequences of scalars (a s), and for some A < 1.  

DEFINITION A property of a sequence (On) in Banach space  
is said to be stable if it conserved by all sequences sufficiently  

near to it in some sense.  
Our main goal in this section is the Paley-Wiener stability  

theorem; from it we will be able to deduce, in § 3.1.1, some  

[71]  
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properties of the non-harmonic Fourier functions. Before this, 
however, we shall give some other typical stability theorems 
(A, B, C and D below); theorem A will be found useful later in 
the context of differential operators (see § 4.1). 

THEOREM A Let (O n) be a CON sequence in a Hilbert space 
H, and let Olin)  be quadratically near to (O n). Then (b-,) is complete 
in H. 

Proof Choose N so large that 

E 	IIOn — VnII 2  < 1. 
n=N+1 

Now let us subtract from On  its component along the fns for

co n> N, i.e.set 	
1, 

In = On —  E (0k, ,y' k) Ilf  k• k=N+1 

In the first part of the proof we show that the set 

{7fn :n= 1,...,/V)U{ifrn :n= N+1,...,00} 

forms a complete sequence in H. Suppose then that for  he H, 
h ; 0, we have 

(h, v.) = 0, n = 1,2,..., N 

and 	 (h,Vr.)=0, n=N+1,... 

Then h is also orthogonal to On  (n = 1, 2, ..., N) since 
03 

0 = (h, În) = (h, On) — E 	(On ,  Y' k) (h, Y' k)  = (h, On ).  
k =N+1 

Using the Parseval relation, we have 
co  

 I1h112  = E I (h, Ok)I 2  = 	Em 	I (h, Ok)I 2  
k=1 	 k =N+1 

co  
= 	E 	1(h )  95k — ?if  k) I 2  

k =N+1 
m 
E 	IIhII 2 IIck — kII 2  

k=N+1 

< 11h112 by the choice of N. 

This contradiction shows that the assumption h # 0 is false, and 
completes the first part. 
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Secondly, set S = [Y' N+1, ... 11 . Then Î n e S (n = 1, ... , N) by 
construction; in fact by the first part S is the closed linear span 
of €vn : n = 1, ..., N} and so is of dimension N. But the mutually 
orthogonal elements //f i  , r f - 2 , ... , iff N  also lie in S, and therefore 
span S. Then Î1,  ...,/N  must be linear combinations of zfr1, ... , VN, 
and 

=[69 

by the first part. In other words, (//f n) is complete in H. 

Next we give without proof some stability theorems which are 
similar to the last one, but more powerful. For these we need the 

DEFINITION A sequence (On) in Banach space is called 
co-linearly independent if 

co 
E 15k ak  = B ak  = 0 for every k. 

k=1 

This evidently generalises the notion of linear independence in 
finite dimensional vector space. 

THEOREM B (Kato (1966) p. 265) Let (On ) be a CON 
sequence in a Hilbert space H, and (rfrn) an co-linearly independent 
sequence in H that is quadratically near (On). Then (zfr n) is a 
basis for H. 

If E Ilsbn — Y'nll 2  < 1 , 
n 

independent. 

then Olin) is already co-linearly 

THEOREM C (Kato (1966) p. 266) If Win)  is strictly near a 
CON sequence in Hilbert space, with A < 1, then it is a basis. 

THEOREM D (Singer (1970) p. 94) Let (Vr n) be a sequence in a 
Banach space B which is KL near a basis {On , g} for B. Then 
(i) (Vin ) is a basis if and only if it is co-linearly independent ; 
(ii) (Vi n) is a basis if and only if it is total in B. 

[ l̀'  19  ..., y' NY  *N+1'  .. d 1  = [Î1,  ..., VAT Y y' N+1) ...P.  

In preparation for our study of the Paley—Wiener stability 
theorem we introduce certain special types of basis for Banach 
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space, described in the following definition; note that a CON 
sequence in Hilbert space is a basis of each of the three types 
listed, and the situation can be viewed as another illustration of 
the favourable properties enjoyed by CON sequences which may 
be lost along with orthogonality. 

DEFINITION Let (On) be a basis for a Banach space B. Then 

(i) (On ) is called a Bessel basis if 

E ak 5k  convergent E I a k  1 2  < co, 

or equivalently, if for some constant C > 0, 

N 	 N 

Elakl 2 <cllEakçkll 2  

for all finite sequences (a n) of scalars. 
(ii) On) is called a Hilbert basis if 

EIak I 2  

or equivalently, if for some constant C' > 0, 

N 	 N 

I I ak çk 11 2 < C' E l ak l 2  

for all finite sequences (a n) of scalars. 

(iii) (çn) is called a Riesz basis or Riesz -Fischer basis if it is 
both a Bessel and a Hilbert basis, or equivalently if there exist 
constants A and B, 0 < A < B < co such that 

N 	 N 	 N 

A{El akl2}i < llEakOkll < B{Elakl2}i 

for all finite sequences (a n) of scalars. 
Proofs of the equivalences can be found in Singer (1970) p. 338. 

DEFINITION We call two sequences (On ) and  (0-,,) in Banach 
space B equivalent if there exists a bounded invertible operator 
T on B such that fi n   = T(On) for every n. 

Note that by `invertible' we mean that T-1  exists and is 
bounded on all of B. As well as nearness in the various senses 
just described, equivalence is another way of linking two sets in 
B. The main reason for introducing equivalence is to be found 
in the following 

< co E ak  çbk  convergent, 
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L EMMA If  a sequence (1 fi n) in a Banach space is equivalent to  
a basis (On), it too is a basis.  

Proof Let T : B --^B, T(ç) = i fi n  for every n and  T-1  exist  
and be bounded on all of B. Let f E B.  

( 1 ) IV — 
N 

 ^an ?h ll = IIf— 
N 
^an(TOn)II  

N 
= II TF —^ a n(T On) II for some F E B,  

N 

= IIT(F— an On) II  

IITIIIIF —  ii  

This last expression tends to 0 as N tends to co if the a n  are  
chosen to be the Fourier coefficients of F with respect to (O n).  
Thus eachf eB has an expansion in the set {lc }.  

(ii) The coefficients are unique, since if (an) is any sequence of  

coefficients such that IIf — E ar' 	-- . 0  and (an) is as in (i), then  

IIE(an —  an)knII < IIf — Ean Vitt II — IIf — Ean VfnII -} 0 .  
Thus  

N 	 N  

II Dan — an) On II = II T^1  nan — an) Vin  II  
N  

11T-1 1111E(a in — an ) . n II -} 0  as N-}op,  

and since (On ) is a basis we must have a n  = an  for every n, and the  

proof is complete.  
Gelfand showed, for example, that a basis of Hilbert space is  

absolute if and only if it is equivalent to a CON sequence.  

Problems  
3.1 Give the finite dimensional vector space analogues of the  

previous lemma and of the result (p. 55) asserting the  
preservation of the CON property under unitary trans-
formation of Hilbert space.  

3.2 Show that the properties of being a Bessel, Hilbert or Riesz  

basis are preserved under equivalence.  



( 1 + 2 )IIEan sbnll•  (2)  
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THEOREM (Paley—Wiener stability theorem) Let (15 n) be a  
basis for a Banach space B and (ifi-n) a sequence in B. Suppose that  

Ilan(Sbn — `l'n)II 	AII 	an On° 	 ( 1 )  
n 	 n 

where 0 < A < 1 and (an) is any finite sequence of scalars; that is,  
(Vî„) is Paley--Wiener near (çn). Then (Vf ) is also a basis for B.  

Note that, because of  

II an(On — n) II % 	an Sbn I I —  II ^ an n lL I  
the hypothesis (1) implies  

( 1— A)IIEanSbnll 	II^annll 
We note also that since 

Il an ^nll = {Ilan 1 2}4  

if B is a Hilbert space and (On) a CON sequence, we can, using  

the definition of a Riesz basis, state the following useful form  

of the Paley—Wiener stability theorem:  

COROLLARY Let H be a Hilbert space with CON sequence  
(On) and let (1„) be a sequence in H. If  

Il ^ an(çn — Y' n) II 	A{1 I an 1 211  

with A < 1, for all finite sequences of scalars (an), then Oh) ) is a 
Riesz basis for H. There are many other similar theorems; see 
e.g. Singer (1970).  

Proof of the Paley-Wiener stability theorem. The method of 
proof is to show that, under the hypotheses, (//f n) is equivalent  
to (On) in the sense of the previous lemma. To do this we intro-
duce the operator 

where (an) is any finite sequence of scalars. We can extend T  
M 

to all of B `by continuity' (Appendix 1,8), since if (FM) = (E an On)  
converges in B as M--} oo, then (Gm) = (T (Fm )) converges, since  

M  
by (2) (E an  n)  is a Cauchy sequence.  

T:Eakçbk ---> an *iv  
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Also from (2) we find that 

M 	M 	 M 
II TOE ançn)II = II a  V' nII < (1+A)IIE anSbnil 

from which it follows that T as extended is bounded. 
Obviously we have T(O n) = lfrn  for every n, so to establish 

equivalence it remains to be shown that T is invertible. If I 
denotes the identity operator on B we have 

II(I — T)EanOnll = IIEan(g5n—Y'n)II < A IlEanSbnll 

therefore III —T II < A < 1, i.e. T is `sufficiently close to I' to be 
invertible (see Appendix 1,9). This completes the proof. 

We may remark that the key to this proof was the fact that 
the closeness of (bn) to (On ) in the Paley—Wiener sense led to the 
fact that T was sufficiently close to the identity to be invertible, 
leading in turn to the equivalence of ( Tif n) and (On). This proof, 
using as it does the theory of operators, makes an interesting 
contrast to the proof of the `quadratic' stability theorem (A) 
which used only the geometry of Hilbert space in its arguments; 
so also did Paley's and Wiener's original proof of their stability 
theorem (which had the more modest aim of showing among 
other things, that if the ON sequence (On ) is complete in L 2  then 
so is (//fn)); this proof is to be found in Paley and Wiener (1934) 
p. 100. 

In order to make practical use of the theorem we must be 
able to verify the hypothesis (1) for particular sequences (On) 
and (Vfn ). Duffin and Eachus (1942) have given a method of 
`separation of variables' suitable for application to Hilbert space, 
and the lemma which follows is a slightly modified version of 
their method; it is well suited to the study of the non-harmonic 
Fourier functions, as we shall see in the next section. 

LEMMA Let (On) be a CON sequence in a Hilbert space H, and 
(Tif n ) a sequence in H. Suppose that 

CO  
o

n — y'n = E cn , k(Tk On) 	 (3 ) 
k=1 

strongly, where (Cn, k ) is a matrix of scalars with I Cn, k I < ck , and 
(Tk ) is a sequence of bounded linear operators on H with 11 1111 < tk• 
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Then (filin) is Paley-Wiener near (On) if E  ck  tk  < 1, and con-
sequently (11' n) is a Riesz basis for H. 	k=1  

Proof Since the norm is continuous on H to R, we have  
from (3)  

N 
11m F, an 	Cn, k Ilk^n 

N--co n 	k =1  
Now  

Il 	 N  

Ean E Cn,kTkOn  

n 	k=1  

=0 
 N  

E Tk  E  an Cn,  k çbn  
k=1 	n  

N  

• E ii Tk^ an Cnk On ii  
k=1 	n  

N  

• E tkII E Cn,k anOnll  
k=1 	n  
N 	f 	1 • E tk Ckt E I  an  l 2} 4-,  

k=1 	n  

the last inequality being true because, if the orthogonality of  

(0n) be used twice, we get 

II ECn,kanÇnll 2  = EIICn,kançn11 2  
n 	 n  

I Ckl 2El  anl 2 .  
n  

We now have  
N  

II E an(On — fn) II 	lim E tk Ck {E I an 12}i 
n 	 N-00 k-1 	n 

and the hypotheses of the corollary to the Paley-Wiener 
stability theorem are satisfied with A = E tk  ck . This completes the 

k  
proof.  

3.1.1 The non-harmonic Fourier functions The func-
tions Feanx: n = 0, ± 1, ± 2, ...} are called the non-harmonic 
Fourier  functions, or sometimes just complex exponentials; (An)  
is a given sequence of complex numbers. The study of these  

II,, 	
y'+an(^n—n)II = 
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functions was initiated by N. Wiener, and it was to them that 
Paley and Wiener applied their original stability theorem. They 
obtained the result that if the A n  are real and such that 

I An - n I < D < 7r-2  

then {ei z:n = 0, ± 1,...}forms'a complete sequence inL 2 (-7r,7r). 
Later Levinson (1936 a) improved the result by enlarging the 
constant 7r-2  to 1. He treated the case of LP( - 7r, 7r), 1 < p < 2, 
and showed that the best possible value for D is (p- 1)/2p, in 
the sense that completeness holds on  LP( -7r, 7r) if 

IAn -nI < D < (p -1 )Î2p 
but may fail to hold if 14, - 

The case of complex A n  was investigated by Duffin and 
Eachus (1942) using the separation of variables method. This is 
the content of our next 

EX AMPLE Let (An ) be a sequence of complex numbers such 
D < (log 2)/7r. Then 

= 0, ± 1, ... } forms a Riesz basis for L 2(- 7r, 7T). 

gins — eiAnx = (1 — eian—n) z) gin 

= — 	[i(A n  - n) x]k  einz  
k=1 	k! 

strongly in L2( - 7r, 7r). With the notations of the previous lemma 
we find that Tk is the operation of multiplication by xk, and 
the norm of this operator is easily calculated to be Irk . Further-
more, Cn  ik  = - [i(An  - n)]klk !, and if we assume that I An  - n I < D 
then c k  = Dk jk !. Thus 

co 
E ck  t k  = eiD -1. 

k=1 

If this is to be less than 1 we shall have enD < 2, or D < (log 2)/7r. 

Problem 

3.3 Show that {eiAnx : n = 0, ± 1, ... } is orthogonal over (- 7r, 7r) if 
and only if An  = n + a, a real. Show that this orthogonal set 
forms a complete sequence in L2( - 7r, 7r). Now let An  be 
complex; show that {eiAnx} forms a Riesz basis for L 2 ( -7r, 7r) 

n I < (p- 1)12P- 

that I A n  — n I 
{eiAnz: n 

We have 
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if An  — n lies in the closure of any region interior to a circle in 
the x + iy plane with real centre and radius (log 2)/nr. In 
particular, if An  is real, An  — n is of the same sign for every n,  

and 1An  — n1 < D < (2 log  2) f 7r then {ei4x} forms a Riesz basis  
for L2 (—  

If lAn 	D and each An  is real we have seen that D < j is  
sufficient for {eiAnx} to form a complete sequence in L 2( — 7r, 7r),  
and that D < (log 2)/g is sufficient for {eiÀnx} to form a Riesz basis 
for L2( — 7r , 7r), even for complex An . It is natural to ask whether  
(log 2)/n. (which equals 0.22 approximately) can be improved. It  

turns out that for real An  this constant can indeed be enlarged 
to j, the best possible value, with no consequent loss of the 
Riesz basis property. This remarkable fact was discovered by 
M. I. Kadec (1964) again using the separation of variables 
method as follows: 

E XAMPLE For real An , {eiAnx : n = 0, ± 1, ... } forms a Riesz 
basis for L 2 (— 7r , 7r) if lAn  —n1 < D < j.  

We proceed as in the previous example but, instead of expand-
ing 1— eiun-n)x  into power series, we expand in the set  

1 	cos kx sin (k —  .) x  

	

J(27r)' V7r ' 	,J7r  

(see p. 37) over (— 77, 7r). With An  — n = ,ccn  we obtain  

1 — eiµnx = 1 — 
sin 7r̂ lGn  + 	(— )) ,ccn  sin 7r,Cn 

cos kx 
ILn 	k=1 	702 fin)  

(— 1)k2,rcn2  cos 
2,tin.  sin (k— 2)x. 

k=1 	[( 	1) 	,Ln]  

Now let To,  
sin (k — I) x respectively.  

Also let  
sin 7r7C,,  

Cn,o =  1 	 ^ 

?Tian  

{ — 1)  k  2 ,un  s l n 7rrf,G  n  
en, 2k+1 = 	7r(k2 

 —i/4) 
 

i ( —  1)k  2ilGn  COS  7112n
Cn,2k, 	

nLl
r/

k —  1) 2— l4] •  

Tek.+1, Tek, represent multiplication by 1, cos kx and  
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With the notations as in the previous lemma we have 

t0= t 2k+1 =t 2k =  1 ,  

sin 7W 
c0 = 1 	

7rD 
	,  

2D sin 7rD 
02k+1= 702  — D 2)' 

2D cos irD 
= 02k 7r[(k-1)2—D2] '  

provided that D is suitably restricted, certainly for 0 < D <  
Thus  

1.  

co  
E Cktk =  

k=0  

1  sin nD + 
sin ̂ rD E 
 co 	2D  

?ID 	k = 1702 -D2 )  

co 
+ cos 7rD 

2D  
[k-1 7r[(k —  2)2- D2] '  

The two series on the right-hand side are the well-known 
expansions for (7rD)-1 — cot 7rD and for tan 7rD respectively, so 
that  

03  
E Ck tk = 1 -  cos 7rD + sin 7rD  

k=0  

< i  

if D < 4, as required. 
An extension to the case of complex A n  was also given by 

Kadec, but Young (1975) has pointed out an error in the proof; 
Young gives the following result: 

Let A n  = An + iA",,, and C and D be constants such that 

IA.,,,—nI <D< f,  

An < C < co.  

Then {eti x: n = 0, ± 1, ...} forms a basis for L 2(— 7r, 7r). Young's  
proof shows that this basis is in fact Riesz.  

There follow some examples of the stability theorems on  

pp. 72-3 applied to the non-harmonic Fourier functions with  

real An. To apply these theorems we shall need  
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( 2704 IIe2ns _ezanx ll La = (2n)-4 
	I einx _ eiAnx 1 2  dx i 

 

—n 

— 24
{1  —  sin n(A n  — n) i 

7r(An —n) 
= (28n)4, say. 

We can now make the following deductions: 
03 

(1) From theorem A, if E S < co, then (eiAnx) is complete in 
L 2( —7r, 7r). — m 

co 
(2) (eiAnx) is a basis for L2 ( — 7r , n. ) if either E Sn  < . , from 

theorem B, or E S < 2-i, from theorem C. 
- co 

(3) From theorem D, if E  S < co, then (eiAnx) is a basis for 

L2 ( — n., n.) if it is complete. 
Sequences (A n ) which validate the criteria in (1) or (3) above 

can easily be found, by taking account of 1 + X -1  sin X = 0(X 2 ) 
as  X-->- O. Thus, with An  — n = /in  we may take it n  = 0(n-cc), 
n --3 op, a > I, as a sufficient condition for the convergence in 
(1), and ,un  = 0(n-OE), n--- oo, a > 1, for the convergence in (3). 
Further to the result for (3), we note that if /I n  = 0(n-a), n--goo, 
a > 1, then (eiAnx) is complete in L 2 ( — n. , n). This can be deduced 
from two results of Levinson, one of which asserts that (eiAnx) is 
complete in L 2( — n. , 7r) if IlUn I < D < 4, as we have already 
observed, the other (Levinson (1936 b)) asserting that a sequence 
(eiAnx) which is total in LP( — 7r , n. ) remains total if any one A n  is 
replaced with some other number. (By using problem 1.8(i), we 
can replace ` total' in this last assertion with `complete' . ) 

To see this we observe that given any D such that 0 < D < f, 
there exists N such that {A n} satisfies La n ' < D for all n such that 
I n1 > N. Consider the set 

{An: 171.1 > N} U {n: Ind 
This set satisfies Lan  I < D for every n, therefore 

{eiAnx : I n I > N} U {ei: I nI < N} 
forms a complete sequence in L 2( — n., n.). We now replace each 
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n in the second member with A n, obtaining the complete sequence 
e  (ianx l 	)-ao<n<a0• 

These remarks can now be combined with the result (3) above 
to obtain: (eiAnx) is a basis for L2 (- 7r, 7r) if A n  - n = 10(n-OE), 
n--- oo,a> 1. 

Problems 
3.4 Use similar arguments, involving the more general Levinson 

LP-completeness criterion (p. 79) and Holder's inequality to 
show that if ,un  = 0(n-Œ), n--->- co, a > lip, then (eiAnx) is a 
basis for LP(-7r, 7r). 

3.5 Show that the first criterion of deduction (2) above is 
weaker than the second, but stronger than the criterion 

An - n1 D < 4 of the previous example. 

It is interesting to note the difference between the type of 
criterion of this last result and that of the Kadec result (p. 80) 
deduced from the Paley-Wiener stability theory. Instead of 
requiring all the An  to be reasonably close to n, in the present 
discussion the first finitely many An  can be any numbers what-
ever, but this must be compensated for by requiring that 
An  ---} n in a prescribed manner as n -› co. 

As a postscript to this section, let us observe that the quantity 
Sn  occurring in the stability criteria has a familiar look, being 
the reproducing kernel k(x, t) for  Fir (p. 59) with one of its 
arguments evaluated at An . Indeed the stability theory for non-
harmonic Fourier functions brings out an interesting connection 
with the reproducing kernel theory for Fa. The kernel k(x, t) can 
be obtained from the calculation of 

eixwe-itw dw,  
_,r  

that is, the L2( - ir, 7r) inner product of the Fourier kernel with 
itself; this calculation was necessarily involved in calculating the 
norm of the difference e 'i - eiÂnx. We have observed that 
(k(x, n)) is a CON sequence in Fn , generated by taking Fourier 
transforms of members of the CON sequence ((277.) -I einx) in 
L2( - 7r, 7r), and similarly we may observe that by the isometric 
character of the Fourier transform, any criterion guaranteeing 
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that (e 2Anx) is a basis for L 2( - 7r, 7r) is also a criterion guaranteeing 
that 

sin 7r(x -  An) 
n(x - An) 

is a basis for Fn . These remarks generalise the remarks of § 2.6.3 
to some extent; for an application to a problem in electrical 
engineering, see Higgins (1976). 

A more general situation, of which we have just described a 
special case, is that of a subspace M of L2(111) generated by an 
isometric integral transform with kernel K(x, t) operating on 
those functions of L 2 (R) with the finite interval [a, b] as compact 
support. If the kernel has the property that, for some sequence 
(ta), (K(x, t n )) is a CON sequence in L 2(a, b), then M necessarily 
has a reproducing kernel given by the inner product of K with 
itself over (a, b), and there is an interpolation theory in M 
analogous to the cardinal interpolation series in F'. A further 
example of this is obtained by taking the Hankel transform and 
the associated Fourier-Bessel functions on (0, 1) (see Higgins, 
1972). 

The literature on sets of non-harmonic Fourier functions is 
large and still growing; here we can only offer a small selection. 
A further example will be found in the next section. 

3.2 A complex variable method 
We have already met an application of complex function theory; 
this was when the identity theorem was used in the proof of the 
completeness theorem for polynomials (p. 31). In this section 
we shall use further powerful results from the theory of entire 
(integral) functions of exponential type, i.e. functions f (z) regular 
in the whole plane, or in a sector of the plane, and for which 
there exist positive constants c and T such that If (z) I < c erizi as 
z --. co. In outline the method runs as follows. 

Let a sequence (0n(x)) to be tested for completeness, on  LP 

say, be such that for every n, 0n(x) = f (A n  x) for some real 
number An. Then for g e LP we shall want the assumption f b 

f(A nx) g(x) dx = 0 for every n 
a 
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to imply that g is null. Suppose f(z) is of exponential type, then  

by Holder's inequality so also is  

b 
1(z) = 	f (zx) g(x) dx,  

a  

and F(An) = 0 for every n. Now there are theorems which assert  

that an entire function F(z) of exponential type is identically  

zero if F(A n) = 0 for certain sequences of points (A n), and if one  
of these theorems can be applied, the completeness of (f(A n  x))  
will have been demonstrated if we can show that F(z) - 0  

implies that g is null.  
Typical of the required type is the following  

THEOREM Let  f(z) be regular and of exponential type for  
Re z p > 0, with zeros at the real points A l , A2, .... Let n(x)  

denote the number of zeros off not exceeding x and r and s be two  

real valued functions such that  

(i) n(x) > x +r(x).  

(ii) log I.f(iy)f( — iy)I < 27r{I Y  + s(IyI)} . 

R 
(iii) lim 	fr(y) — s(y)} y-2   dy = +oo. 

R—>0 p  

Then f (z) - O.  

Proof The proof proceeds from Carleman's theorem, well  
known from elementary complex variable theory (see e.g.  

Titchmarsh (1939) p. 130) which we shall apply to f(z) in the form  

1 An 	1 	r12 

A,R An  R2f 7TRJ  

+2 R  
^ 	 y2 

- R2 log If(iy) f(— iy)Idy^-0(1) (R co). 
 

Since f is of exponential type, the first integral on the right- 
hand side is 0(1) as R---g oo; using hypothesis (ii) the second  
integral does not exceed  

log R+f R s(y)  { _ ,4 d+o(1) 
P 	y  

log If (Rei°) I cos 0 dB  
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so that the right-hand side does not exceed  

logR+ R s(y) 2 — l̂  dy + 0 (1 ).  P 	Y  
Let us write the left-hand side as a Stieltjes integral, integrate  

by parts and then use hypothesis (i); these calculations yield  

LHS = SR  {-I-.  — R2 dn(x) 
P  
R 	1 	1 

n(x) x2 + R2  dx  P  
fR  (x+r(x)) æ2 + Te2  dx  

	

= 	r(x) 
x2+2 

 dx+ log R+ O(1).  

We may now write the original inequality as  

1 	1 

 

	

f r(x) x2+ 	dx < 
	
s(y) y2 — T dy+ 0( 1 ),  

or  

{r (y) —s(y)} 2  dy  

fp 	 y 
This contradicts hypothesis (iii) unless f - 0, so the proof is  
complete.  

EXAMPLE The non-harmonic Fourier functions  

{eiAnx:0<A l < A2< . ..} 
 

form a complete sequence on L( —  a, a), and so on LP( — a, a),  
p 1, iflimn/An > a/n,a« .  

a  
Proof Set 	F(z) = 	ei g(t) dt, g e L( —  a, a).  

—a  

a 
Then 	I'( ± iy) = 	e± g(t) dt 

—a  

a  
elyla 	I g(t) I dt.  

—a  
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Let F(À) = 0 (n = 1, 2, ...). We apply the previous theorem to  

ç (z) = F(=rz fa), which has zeros at z = A n  a/ir. Then  

kb( 	
a

(± iy) ^ < enlYi 	I9(t) l dt  
—a  

therefore log l  çb(iy) ç( - iy) I < 2nr(I y I + constant). Now if  

A n a Ig < x < •1n+1 ain  

then 	 n(x)/x > nir An+1  a ,  

therefore  

hm 
 n(x) 

^ 
â lim ^+  1 ^ 1  > â^= 1, 

n-^ 1 	n+1  

therefore lim n(x)lx > 1 +a, for some a > O. Also, for every  
e > 0, we have  n(x)lx > 1 + a - e, for sufficiently large x. We  
may choose e < a, then n(x) > x + (a - e) x for all sufficiently  
large x. This condition is sufficient for the application of the  
previous theorem with r(x) = (a - e) x; we also take s = constant.  
Hence  

lim 	{r(y) - s(y)} y -2  dy  
R--0.ao 	1  

R 
= lim (a - e)  y-1   dy + constant 

R-^ao 1  

=  

Therefore çb, and hence F, is identically zero. From the L 1  theory  
of Fourier transforms (e.g. Titchmarsh (1937) p. 164), g is null  
and the proof is complete.  

Let us remark that if in the above example we take An = n,  
then {einx: n > 0} forms a complete sequence on LP( - a, a) if  
a < 7r. It is interesting to compare this with the standard result  
that {e 2  : n = 0, ± 1, ± 2, ...} forms a complete sequence on  
LP( -ir, ir), where of course we cannot remove any member of  

the set without destroying the completeness; but if the interval  

(- g, g) is shrunk by however small an amount to (- a, a) we  

4 	 HCA  
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can have a complete sequence with only `half as many' members 
as in the standard case ! On the other hand, the theorem from 
which we deduced the above example is not powerful enough 
to yield the standard result itself. Consequently we give below a 
stronger theorem from which deeper completeness results can be 
obtained, as in the next section. 

THEOREM (Boas and Pollard, 1947) Let 

(i) (A n) be a sequence of reals satisfying 

0<An < n+la-1,n=1,2,...; 

(ii) H(z) be an entire function such that H( ± A n) = 0 for 
every n; 

ff  

(iii) JH(x + iy) J < I yI -Y 

	

	h(t) s(t) eti"i  dt, where he LP(0, 7r), 
0 

1 < p < co, and either 

(a) s(t) - 1, in which case we must have  cc < y + 1-lip, or 

(b) 8(t) = (sin t) 1-hIP, in which case we must have cc < y + 2 - 2/p. 

Then H(z) - 0. 
As with the previous theorem the proof, which will be omitted, 

depends on one of the theorems of elementary complex variable 
theory, this time on that of Jensen. 

3.3 The non-orthogonal Fourier- Bessel and Legendre 
functions 

The sequence of trigonometrical functions (erns) is not the only 
orthogonal sequence for which the indexing parameter n can be 
perturbed to yield non-orthogonal sequences which retain basis 
and completeness properties. In this section we shall consider 
sequences of perturbed Fourier-Bessel functions xi,/,,(A n  x) for 
sequences (An) other than the zeros of Jv , and perturbed Legendre 
functions Pan(x) for points (A n) other than the integers. We 
rely heavily on the complex variable method of the previous 
section. 
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Ex AMPLE (Boas and Pollard, 1947) If v > - 2, the set  
{xiJ,,(A n x)} forms a complete (hence total) sequence in LP(0, 1),  

1 < p < oo, if for all sufficiently large n we have  

0 < An  
_v i <^ n+4+
2 2p  

1  - 
 fin

+2q 

where f n  = 7f (n + v f 2 -1).  
Before proving this result, let us observe that we can recover 

from it a completeness result for the ordinary Fourier-Bessel 
functions if v I. To see this we use the asymptotic formula 
(Watson (1922) p. 506)  

_ 	4v2 -1 f 
in, - 13n 	glare 	

 1 r11 Q
r IQn_ 2r  

where Q,. are constants depending only on v. Thus for sufficiently  

large n we shall have  

0<jrev< fin if v2 > 1,  

,I rev> fin if v2<  

Thus the statement of the example applies to the ordinary 
orthogonal Fourier-Bessel functions if v 2  and does not apply 
if  1,2  < /.  

Proof of the example By an obvious change of variable, the 
integral representation of Appendix 2,9, becomes 

x4Jv (Ax) ^ CA-- P (x2  -  u2 )v-1 cos Au du, v > - I, 	(4)  
0 

where C is a constant depending on v and A. For completeness we  

must show that, for f E LP(0, 1,),  
i 
f(x) x Jp(A n  x) dx = 0 for every n 	 (5)  

0 

implies f null. By substitution from (4) and a formal interchange 
of the order of integration, (5) becomes 

C  f g(u) cos A n  a du - 0 for every n, 
0 

where 	 1  xi-vf(x) dx  

g(u)  _ 
u (x 2  - 

 

4- 2  
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We leave it to the reader to show that there is no loss of generality  

if we assume that this integral always exists and defines a func-
tion g(u). The reader is also asked to justify the various inter-
changes in the order of integration used throughout the proof.  

That g is in fact null follows from the previous theorem, for if  

we set  
1  

H(z) = f J g(u)coszudu  

u  

then H(zn) is an even entire function of exponential type with  

zeros at An  f7r, n = 0, 1, ... Furthermore, because 

cos zuirl < e !UIuir (z = x + iy),  

and 	It/(t2-  u2 ) I F-v < [2(t - u)]v -i (u < t < 1),  
we have  

2i-P I H((x+Zy)g) I < 1  elulug 	1 I f(t)I {t -u)v-4 dt  du  
o 	u  

= 
 f

1  I f{t)  I If '  elulun(t -  u )v-i-  du dt 
0 	0  

- 	1 e lv)t^If(t)  I 	te -lmuiruv-i du dt 
0 	 0  

n  

< PO)  +i) „-v-ly-v-i f Oil  f(tfr) l dt,  0  

using the gamma function integral (Appendix 2,1). In the  

theorem (p. 88), case (a), take 8(t) = 1, y = v + -I,  

h(t) = 2v-in.v+!P(y+ )f(t/n.) E DO, 7r).  

Now since An fg < n +114  + y/2  - 1/2p  we can take  

a = v+ 3/2 -1/p,  

in which case a = y + 1-1/p  and the theorem shows that  

H(z,n ), and hence H(z), is identically zero. By the uniqueness of  
Fourier cosine transforms g is null.  

We now show that this implies that f too is null, which will  
complete the proof.  
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We treat first the case -1 < v < 1; in this case  

0=  
1  ug(u) du  

u  (u2  -  

1  
	

1  xi-vf  (x)   dx du 
ü (u2  y2 )^+° 

Su 
 (x2  — u2 ) ^-v  

1 	 ^ 	 udu  
= ^ xi-1(x) 	y (u2  - y2),^-F-v (x2 - u2).2--v  dx  

	

1 	 æa  
= 1 

xi-1(x) 	
dt  

	

2 y 	
u
,  ( t  -  y2) i+v (x 2  - t)i- v  

7T 	 1  

2 sin (y +1)  n.  fy 
xi-vf( x) dx,  

dx  

using the beta function integral (Appendix 2,4), and the required  

conclusion follows.  
When y 2 1, we can employ differentiation under the integral  

to reduce the case to one similar to that just treated; in fact the  

required conclusion follows from consideration of gtk)(u), where  
k = [ v - f] + 1, if y + 1 is not an integer, and k = v - 1, if v + 1 is  
an integer.  

Problem  

3.6 Formulate and prove a similar result to the previous  

example in which J1, is replaced by the Struve function Hv  
(Appendix 2,10) .  

EX AMPLE {PA n(x): n = 1, 2, ...I forms a complete sequence  

on LP( - 1, 1), 1 < p < 2, if - 2 < An  < n- 11r, 1 < r < p (cf.  
Boas and Pollard (1947) p. 375). 

This example includes the completeness of the sequence of 
Legendre polynomials (P,z (x)) for the given range of p, by 
taking An  = n - 1; this is allowable since r 1. Certain other 
sequences (A n) also yield orthogonal sequences (PPn(x)) (see  
fille, 1918) and the example also includes the completeness 
of these. 
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Proof of the example Set 
1  

H*(z) = 	Pz (t)f(t)dt, f E LP( —1,1),z = x+ iy.  
-1  

We must show that H*(A n ) = 0 (n = 1, 2, ...) implies that f is  
null. Using the integral representation (Appendix 2,6) for P we  

have  1 	cos-it cos  (z + .} e de  7r2-iH*{z} = _ 1 f(t) So 
	(cose — t)i 

dt  

S '  cos ° f(t)  dt  

o  (f_i (cos e— t}?^ cos (z +^} BdB.  

ff  

Set 	H(z) = f  fG(o) cos zode,  

core f(t) dt 
where 	G(e) =  

-1  (cos 0— t}  

In the first part of the proof we invoke the previous theorem to  

show that H(z) - 0; in the second part we find that this implies  

that G is null, and in the third part that G null implies f null.  
Thus the proof will be completed.  

1st part H(z) is an even entire function of exponential type  

with zeros at An + I  by assumption. Further,  

I H(x + iy)I < ff  e°lul  (Sec's°  I  f{t)Idt 	
dB 

o 	_1  (cose — t)i  
1 	 cos--1 t e°iui  de  

= -1  I f (t) I  (f 0 	(cos e— t }^ 

dt  

1 	( f1 Elul cos-1  udu 
= _1  If(t)I 	E (1-u20.(u-t)i dt  

11 	du  polo'' cos-1 t (j.  
_ 1 	 {1—u2}I{u—t} dt

. 

Denote the inner integral by I. There are two cases. When  

t 0 we have 	1 	du  
I < 

a (1-u)I (u-t)I  

taking into account the special integral  

	

du 	 1 	 (6) a+u ^ 1—u i = 2 tan- 
1+û 	

6 
( 	} ( 	)  



o 	du 	 1 

t (u+ ItIm1 +2L)I +  o 

= I1  + 4, say. 

I<  du  

+ ItI)i(1— u)I 
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When —1 < t < 0 we have  

Using ( 6) again we find that I2  < 7r, whilst use of the special  
integral  

du 	2 log [(a+u)i+(1+u)1]  
(a+u) i ( 1 +u)i  = 

yields Iy  = 2 log (1 + It'  — log (1 +t).  In either case there is a  

constant A such that I < A + I log (1 + t) I. We may therefore  
write  

IH(x +iy)I < f f If(cosu)I& (I1og(1+cosu)I +A) sinudu.   

For purposes of applying the previous theorem we write this  

integral as  

s ffo lf(cos,01  em u (I  log (1 + cos u)I + A) (sin u) 1lT (sin u ) 1-vr du,  

where r is to be chosen. In fact we shall have  

If (cos u)i 000  +cosu) +A) (sinu) 1fr ELr(0, n)  

because, in the first place,  

^ 

If(cosu)IT Ilog (1 +cosu)ITsinudu  

0 

1  

=-1 
If(t)Irllog(1+ t)Irdt 

1 	 r/p 	1 	 1-rip 

f (t) I p dt 'log { 1 + t) I rPo--r) dt 
 

-1 	 -1 

for pf r > 1, i.e. r < p, and the last integral exists (by, for example, 
comparison with the gamma function integral). In the second 
place, that part of the integrand containing A also lies in 
Lr(0, 7r), and the required conclusion follows with r chosen so 
that 1 < r < p.  



< 	1 	u  f (x) dx 
_ i - i  (u — x)^  

(x—s))a  a 
 du ria 

1 	du 
- 1 (1 — u2)aJ2(a-8)  
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We now apply the previous theorem (case (b), y = 0) to show  
that H(z), and hence H*(z), is identically zero, provided that  

a <2-2fr,i.e. 0 < An +1 < n+1-1/r—i,  

or 	 — I< An < n-1fr,1 <r<p.  

This completes the first part.  
2nd part From the first part, that function equal to 0 for  

B > 77-  and equal to G(6) for 0 < 0 < 7r has a vanishing Fourier  
cosine transform. Prom the Fourier transform theory (see  

Titchmarsh (1937) p. 96) 61(0) will be null if it lies in L8 for  
some s such that 1 < s < 2. Indeed we show that 61(0) e L9(0, 71)  

for every s < p/(2 — p):  

fo ^ 
 G{B)  ^8d8 

=J'i 
	1 

 ( 1 —u2}i  

u f(x) dx 18
du  

_ i  (u—x )i  

 

for any a such that Œ/8> 1. Now in the first term  

u  f (x) dx e La( —  1, 1), a < 2/4(2 — p), 1 < p < 2,  
- i (u — x)I  

by a special result in the theory of the fractional derivative  

operator (Hardy et al. 1952), whilst in the second term the  

integral is finite if a/2(a — s) < 1; with a = 2p/(2 — p) this is  
s < p1(2— p). Thus we may always take an s for which 1 < s < 2,  
if p < 2.  

If p = 2 then f e LP(-1, 1) for p < 2, and the argument goes  

through as before.  
3rd part 

have 
7r 

Since f e LP( — 1,1) 

x f () 	
x 	f{) 

-1 	t dt = 	-1 	t 

(1 < p < 2), f e L(-1, 1). We  

^ 	
du 

dt  
{x —  u) {u  —  t)I 

upon using (6) again. Then for every x e ( — 1,1),  

: i
f(t)dt  =f 	

1 	u 

 (u t) }
(t)dt

7r f 
	i x—u 	-1 	

du  

	

r 	G(0) sin 0d¢ 0.  
cos-,z (x — cos ^)I  

This shows that f is null and our proof is complete.  
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3.4 Some theorems of Müntz and Szasz  
The idea of perturbing the indexing parameter of a known 
complete set was first applied to the set of powers {xn} over  

(0, 1).We shall prove the classical Müntz' theorem, the proof of  

which provides a further example of geometrical arguments  

in Hilbert space, and quote some more general results of  

Szâsz (whose proofs are to be found in Paley and Wiener  

(1934)).  

THEOREM (Müntz) The set {xxi, xx2, ...: 1 < A l  < A 2  <  ...} 

forms a complete sequence in L 2(0,1) if and only if EAn 1  = oo.  

Proof Consider the closed linear ;manifold Mk = [x 111, ... ,  xAk].  
Let dk, m  denote the minimum distance of xm to Mk; then because  
of the totality of (xm) in L 2 (0, 1) we obtain the totality of (vim) if  

and only if the condition lim dk  m  = 0 holds for every m = 1, 2, ...  
k—+ co  

Let Pk  denote orthogonal projection onto Mk, and suppose that  

k 
Pk xm = E ai ;  

i =1  

taking account of xm — Pk  xm 1Mk  we shall have  

k 	
/ 	 / (xm   xAj ) —  E ai(x^i, x^j) = 0, 	 (7)  

i =1  

and  d k, ne — Il  xm Pk  xm 112 

= (xm  — Pk  xm , en)  

=  Il xm 112 	ai(xAi, xm) .  
i = 1 

We shall write this expression in a different form by introducing  

G, the Gram determinant of {xÀi, ... xilk} (see Appendix 1,7) and  
G*, the Gram determinant of {xm, xAi, ... xAk}. Then 

G*  

G 
= 1 ^ (xm, xm) G - (xm, xAl)  Ml  + . .. + ( - 1)k (xm, xAk) Mk},  



0 — i =1 
n 	 n-1 	 An-1 
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where Mi  is the minor of (xm, xXi) in G*. In fact 1111  = (— 1)i -1  GO), 
where G(i) is obtained from G by replacing its ith column with 
(xm, xai) ; therefore 

M  
G  — Ilxm il 2— ai) G  , 

2-1  
=  d 2 

k,nz' 

G( ') since a i = G from (7) and Cramer's rule. 

Now G* and G can be evaluated; for 

1 
(xp, xq) = f xp+q dx  = (p + q + 1)-1 , 

0 

and an n x n determinant such as O, z  = det a 1 	c an be 
i Î3, 

evaluated by subtracting the last row from each of the others 
and removing common factors, then again subtracting the last 
column and removing common factors, to obtain the recurrence 
relation 

n-1 

11 (an — ai) (Nn — Ni) 

II (an + Pi)  H (ai + Î3n) 

from which A k  is evaluated. Such calculations yield 

H (Ai — m) 2 

i=i 
k 

(2m+1)2  II (m+Ai+ 1 ) 2  
i =1 

Then our condition becomes 

k 
11m 	log 1— L 

 —log 1 + A 1 = — oo for every M. 
k-+co i =1 	 t 	 t 

4,„,  = 

Now E log (1 + u i) and Eni  converge or diverge together, and 
the result follows from this. 
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THEOREM (Szâsz) Let (A n) be a sequence of complex numbers 
such that Re An  > — 2 (n = 1, 2, ...). Then (xAn) is complete in 
L 2(0,1) if and only if 

1 +2ReAn  
— 00. 

n=1  1 + I AnI 2  

THEOREM (Szâsz) Let (A n) be a sequence of complex numbers 

such that Re A„ > 0 (n = 1, 2, ...). Then 	1 	forms a com- 
1+Anx 

plete sequence in L 2 (0, oo) if and only if 

Re  A n  

nL-1 1 + IAnI2 00. 
(8) 

THEOREM (Szâsz' form of Mintz' theorem) Let (A n ) be a 
sequence of complex numbers such that Re An  > 0 (n = 1, 2, ...). 
Then (xAn) is total in C(0,1) if (8) holds, and fails to be total if the 
series converges. 

Whilst it is our declared purpose to concentrate on the L 2  and 
LP aspects of completeness and basis properties, the presence of 
the Banach space C(0, 1) in the above theorems may serve as a 
reminder that there is a substantial body of results concerning 
the pointwise convergence of expansions in the sets we have been 
studying. A large amount of information can be traced through 
the references in the bibliography; e.g. see Sz.-Nagy (1965), 
Alexits (1961), Titchmarsh (1946) and the more recent Olevskii 
(1975). 



4. Differential and integral operators 

This chapter is intended to provide the reader with an appreci-
ation of at least one area of applied mathematics in which com-
plete sets have a natural place. To this end we shall give several 
examples of boundary value problems involving differential 
operators in which complete orthogonal sequences appear as 
eigenfunctions of the system ; we shall also look very briefly at 
the analogous situation for integral operators. The presentation 
is intended to be rather more a collection of useful facts than a 
detailed introduction to the subject; much will be quoted but 
little proved. Adequate references to more detailed sources are 
given; for example, Sagan (1961) is a good introductory text. 

If T is an operator mapping a Hilbert space H to itself, it 
may happen that there is an  fe H with the particularly simple 
property of being mapped by T onto a scalar multiple of itself, i.e. 

Tf = Af. 	 (1) 

The structure of T is very closely tied up with sets of fs and As 
for which (1) holds, as revealed by the so-called spectral theory 
of operators. Here we shall be concerned with a fairly simple 
situation, that in which there is a collection {A n} of isolated 
points on the real axis such that for every n 

Tfn = Anfn 
	 (2) 

for a certain non-null f, z , or collection of fn , corresponding to 
An. Then {An} is called the point spectrum of T and the individual 
Ans the eigenvalues of T. An fn  for which (2) is true is called an 
eigenvector of T, or eigenfunction if H is a function space. 
There may be several fn  corresponding to the same A n; the 
collection of all such fn  is called the eigenspace En  corresponding 
to An. 

[ 98 1 
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The examples of this chapter will chiefly be of the type where 
T of (1) is a differential operator so that (1) is a differential 
equation, and this will be accompanied by a suitable set of 
boundary conditions. These so-called boundary value problems 
arise typically in problems where one of the standard partial 
differential equations of Physics, e.g. Laplace's equation (in three 

imensions)  
v2 = o v2  a2  + a2  + a2 

axe aye az2 

1.920 v20 c2 at2  e 

or the equation of heat conduction 

v215_ 1 ao v2  d2 at' 

is cast into an appropriate coordinate system and then solved 
by the very well-known method of separation of variables (not 
to be confused with the method of the same name in § 3.2). 
Ordinary differential equations in each of the separate variables 
result, the solutions of which represent certain fundamental 
`modes', e.g. of vibrations of a mechanical system. This is why 
the word `spectrum' (from the Latin spectare, to look) has been 
borrowed from Physics, where it is used to mean an image of 
those fundamental parts into which a source of radiation can be 
decomposed by a certain physical process, and arranged in 
sequence according to wavelength. 

It is the `finite energy' condition, familiar from the theory of 
vibrations and wave motion in general, which provides the main 
reason for taking an L 2  space as the natural Hilbert space upon 
which the operators of this chapter should be considered to act. 
The finite energy condition is readily illustrated by an example 
taken from signal theory. Suppose that a signal is to be passed 
through a transmitting device; a standard engineering procedure 
is to take the signal f(t) as being proportional to a voltage 
amplitude. If E (volts) denotes e.m.f. and R (ohms) denotes 
resistance then a well-known formula shows that power 
(watts) = E2/R. That is, the power (the rate of expenditure of 

the wave equation 
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energy) is proportional to I f(t)1  2 . The total energy of the signal 
must be finite, so that 

JT m I f( t )1 2dt < co.  

Thus a finite energy signal is just an element of L 2( R). 
It need not concern us that differential operators are not 

everywhere defined on L 2  spaces; their domains are dense in 
such spaces and this is usually all that is required from the point 
of view of the theory of operators. 

We shall introduce certain theorems guaranteeing the com-
pleteness of sequences of eigenfunctions, and these can some-
times be used to demonstrate completeness of a sequence 
already known to consist of the eigenfunctions of a suitable 
system. This method is of rather limited practical use, owing in 
large measure to the difficulties associated with singular systems 
(see the remarks beginning § 4.2.) However, it does provide a 
convenient method for treating the Mathieu functions (p. 104); 
see also Dahlberg (1973) where the ` flat-clamped-plate modes' 
(Appendix 3,24) are treated. 

4.1 Sturm-Liouv ille systems 

If T is taken to be a differential operator, given by 

(Ty) (x) = (p0(x) Dn+ ... +pn-1(x) D +pn(x)) y(x) 
then Ty = Ay, accompanied by a suitable set of boundary con-
ditions, is called an eigenvalue problem. The situation is illustrated 
by the following example, which we shall discuss in some detail 
in order to exhibit some of the favourable properties that such 
boundary value problems possess. 

E XAMPLE 
	

yel = Ay 

y'(0 ) = y' (77.) = 0. 

First, let us assume that, for two different values Am  and An  of 
there are corresponding solutions y m  and yn  of the differential 

equation (eigenfunctions of the problem), i.e. we have 

ym = Ani  y. and - yin = An yn• 
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If we multiply the first equation by y n  and the second by y ()  
and then subtract we obtain 

{A n  - Am) yn ym = yn ym - ym  yn 
The right-hand side of this equation is (y n  y,'„)' --- (ym  yn)' so that  
integration from 0 to 7T yields  

(An  - Am) 	yn(t) y  n  (t) dt = [.yn(t) ym(t) - ym(t) y",,(t)]ô = 0  

by the boundary conditions. Since A n  * Am  we have shown that  
yn  is orthogonal to ym  in the L2(0, 7r) sense. The reader will 
appreciate that we have obtained this important orthogonality 
property of the eigenfunctions without actually solving the 
differential equation for them ! 

It is easy to see that all eigenvalues must be real, for if A n  is a  
complex eigenvalue with yn  as eigenfunction, then Xn  is an  
eigenvalue with ÿn  as eigenfunction; but no non-null function  

can be orthogonal to its complex conjugate.  
We now show that such eigenfunctions do indeed exist, by  

solving for them. There are three separate possibilities:  

(i) A < 0. The solution of the equation is  

y = A ev( -A) x + B  

The boundary conditions give  

A-B= 0  

and 	 A e”) n- B e-  -v(-A) ff= 0.  

For a non-trivial solution for A and B we must have  

1 	—1  

e ,^(-^)  n - e— ,/(—A) n  

or 	 cosh V(- A)71 = O. 

But this equation has no solution, hence A = B = 0, and the 
problem has only the trivial solution y - 0. 

(ii) A = 0. The solution of the equation is y = Ax + B. The 
boundary conditions yield A = 0 and the problem has solution 
y = constant.  

= 0  
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(iii) A > O. The solution is 

y = A sin .J(A) x + B cos V(A)x. 

The boundary conditions yield A = 0, and 

BsinV(A)ir = O. 

To obtain a non-trivial solution we must have B # 0; then 
VA = n, n = ± 1, ± 2, ..., i.e. A = n2, n = 1, 2, ... The corre-
sponding solutions are yn  = Bn  cos nx, n = 1, 2, ... 

To summarise, we find that the original eigenvalue problem 
has eigenvalues n2  with corresponding eigenfunctions B n  cos nx, 
n = 0, 1, ..., which form an orthogonal sequence in L2(0,7r). 

These eigenfunctions are of course also complete in L 2(0, n. ) as 
we already know, and although the orthogonality could have 
been verified independently as well, it is of interest to ask 
whether there is a class of eigenvalue problems having both 
orthogonality and completeness of the eigenfunctions as an 
intrinsic property. There do indeed exist such classes, the most 
important of which is the class defined as follows: 

DEFINITION A second order Sturm-Liouville problem is a 
boundary value problem of the form 

{(p(x)y')' + q(x) y + Aw(x) y = 0 

c1y(a) +c2y'(a) = 0 
c3y(b)+c4y'(b) = 0 

on the finite interval [a, b], in which p, p', q and w are continuous 
on [a, b], p and w are strictly positive on [a, b], c1  and c2  are 

 scalars, not both zero, and similarly c3  and c4 . 
The differential equation is evidently an eigenvalue equation 

of the form (1). It is often convenient to transform this equation 
into Lionville normal form 

d2u  

dt2 
 + [A - q*(t)] u = 0 on [0, c] 

by the substitutions y(x) (p(x) w(x))1 = u(t) and 
x t 

 = j
(w(T)11)(T))i dT, 

a  

where
q* - qzv-1  + (pw)_1 

dt2  (
( pw)+) , and c = 

b 

(w/p)i. 
a 
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The facts contained in the following theorem are to be found  

in the literature on Sturm- Liouville systems (e.g. Birkhoff and  
Rota, 1969) and their proofs will be omitted except for the  

interesting proof of the completeness of the eigenfunctions.  

THEOREM (i) The eigenvalues of a second order Sturm-
Liouville problem are real, countably infinite and have no finite  
point of accumulation. To each eigenvalue there corresponds one  

and only one (up to a constant factor) eigenfunction; the collection  
of normalised eigenfunctions constitutes a CON sequence in  

L2 ((a, b), w).  
(ii) The eigenvalues (A n) and eigenfunctions (Sb n ) of a second  

order Sturm-Liouville problem on [a, b] in which the differential  
equation is in Liouville normal form satisfy, respectively, the  

asymptotic formulae  

A n  = n1(b-a)+0(1)fn  

and 	çn(x) = [2/(b - a)]i cos [nir(x - a) f (b - a)] + 0(1)/n  

as n-}co.  
These properties bring out the essential character of the  

Sturm-Liouville problem; it is seen that all the properties we  

found for our previous example carry over to the more general  

case, either directly or in asymptotic form. It is from the asymp-
totic form for the eigenfunctions that we can deduce their  

completeness:  

Proof of the completeness of the eigenfunctions First we  

transform to Liouville normal form. The substitutions involved  

induce a mapping of L 2((a, b), w) onto L2(0, c) which is an  
isometric isomorphism: for example norms are preserved since,  

if y of L2((a, b), w) is transformed into u, we have  

	

b 	 b 
^ y(x) ^ 2  w(x) dx = 	̂ y(x)  E  2  [p(x)  w (x)]^ [w(x)  f p(x)]  I dx 

	

fa 	 a  

f : 1ut 12dt.  ()  

 

We have seen that CON sequences correspond under an  

isometric isomorphism, so to complete the proof we must show  
that the eigenfunctions (O n) of the problem in Liouville normal  

5 	 HCA  
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form are complete in L2 (0, c). The asymptotic formula of the 
previous theorem together with the stability theorem A (p. 72) 
contain all the hard work and it merely remains to note that 

{6n(t)} = {c-4, (2/c)i cos (nurx fc): n = 1, 2, ...} 

forms a CON sequence in L 2(0, c) (p. 37), and 

CO 	 m 

E iiSbn—gnII2 < const + (const) E n--2 < CO.  
n=1 	 n=1 

E X A M P L E Completeness of the periodic Mathieu functions. 
The differential equation 

d  
dx2 

+ (A — 20 cos 2x) y = 0 

is called Mathieu's equation. It arises when the two-dimensional 
wave equation (p. 99) is separated in elliptic coordinates; thus 
it arose in Mathieu's researches into the vibrations of an elliptic 
membrane. In such problems of mechanical vibrations it turns 
out that, for fixed 0, there are certain special values of A for 
which the equation has periodic solutions; it is with these 
special solutions that we are concerned in this example. The 
equation occurs in many other physical problems as well, such 
as orbit problems in astronomy, electrical circuits with varying 
resistance, and vibrations of a string with varying tension. 
Solutions of the equation for various values of the parameters 
A and 0 are called Mathieu functions (see McLachlan (1947) for 
a comprehensive account of both theory and applications). 

For a fixed value of 0 the equation is evidently of the Sturm—
Liouville type. In fact if 0 = 0, it is just the familiar oscillation 
equation y" + Ay = 0, the sine and cosine solutions of which can be 
thought of as special cases of the periodic Mathieu functions, 
with which they have several points of analogy which we now 
quote: 

For certain values {An} of A (these values depend on 0 of 
course; when 0 = 0, An  = n2), Mathieu's equation has solutions 
denoted by 

ceo(x, 0), cen(x, 0), sen(x, 0), n = 1, 2, ..., 
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such that 

(i) they reduce to 	
1, cos nx, sin nx 

respectively, when 0 = 0; 

(ii) they are periodic with period 27r; 

(iii) the set {ceo, cen, sen} forms an orthogonal sequence in 
L2(- 7r,7r). 

One naturally conjectures that this sequence is also complete 
in L2( -7r, 7r); this is indeed the case and will follow readily from 
the Sturm-Liouville theory. We need to quote one further fact 
from the theory of Mathieu's equation (see e.g. Erdélyi et al. 
(1953) p. 112), namely that the functions {sen(x, B): n = 1, 2, ...} 
are determined up to a constant factor as solutions of the 
boundary value problem 

y" + (A - 20 cos 2x) y = 0 

y(0) = y( 7r) = 0, 

and likewise {cen : n = 0, 1, ...} from 

Ty' + (A -20 cos 2x)y = 0 

y'(0) = y'(7r) = 0. 

Note that cen  and sen  could have been generated by imposing 
periodic boundary conditions on (- 7r, 7r), i.e. y( - n.) = y(n) and 
y'( - 7r) = y'(7r), but these are not of the Sturm- Liouville type 
and the theory would not have been applicable. The complete 
orthogonal character of  Sturm-Liouville eigenfunctions now 
shows that both {se n : n = 1, 2, ... } and {cen : n = 0, 1, ... } form 
complete orthogonal sequences in L 2(0, 7r). Then by obvious 
extensions to (- 7r, 7r) we have (sen) complete orthogonal in 
Lo( - n, 7r) (the odd functions of L 2( -7r, 7r)) , and (cen) complete 
orthogonal in Le( - n, 7r) (the even functions of L 2( - n, 7r)). Now 
from L2  = Lo $ Lé we obtain the required result: The periodic 
Mathieu functions {ceo, cen, sen} form a complete orthogonal 
sequence in L 2( - n, n.). 

5-2 
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Problems 

4.1 Show that the following are Sturm- Liouville systems with the 
eigenvalues An  and eigenfunctions On  as shown. Also deduce 
the series expansionsgiven for each by use of Vitali's criterion : 

(1) 
y" +Ay=O 1 An=(n-1)2,n=1,2,... 

 y(0) = y'(ir) = Oi On = An  sin (n - 1) x. 

1-cos(n -1)x  2  
	  = i7x12,x e(0, Mr}. 

	

n=1 	n-1 

y" + Ay = 0 	1 An  = (n -1)2,  n = 1, 2, ... 
(ii) y'{0} = y {Ir} = Of 0 = An  cos (n -1) x. 

°° (sin2  (n - 1)x  2  

	

E 	 = lrxI2,x E(0,IT). 
n= 1 	n -  1 

y"+Ay = 0 	A0  = -1, and An  = n2, n = 1,2, ... 

(iii) y(0) + y'{0} = 00 0  = e-x, and On = sin nx - n cos nx. 

Y(n) +y'(n) = 0 

(1- e—x) 2  1 °° 	cos  nx 1 2 	x 
2n 	+ E 	+ sin nx - - /(n2  + 1) _ 

1 - e— 	77.
n=1 	n 	 n 	 2' 

û 	1 	 - m2 7T 1— e-n 

n=1 (2n2 -2n+1)(2n-1) 2 	4 2 1+ e—n'  

4.2 Show that the following are Sturm- Liouville problems, and 
find their eigenvalues and eigenfunctions: 

(i)
y"+2y'+(1+A)y = 0 

y(0) = y'(a) = O. 

x2 y"+ xy' - Ay = 0 
(ii) 

y(1) = y(e)-ey'(e) = O. 

(x2 y')' + .y = 0 
(iii) x 

y(1) = y(2) = O. 

x2 y"+Ay=0 
(iv) 

y(1) = y(en) = O. 
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4.1.1 Generalisation of the Sturm- Liouville problem 
We mention briefly that the scope of the Sturm- Liouville 
problem can be considerably widened in both the order of the 
equation and the nature of the boundary conditions, whilst still 
retaining the `regular' character of the original problem, provided 
that certain conditions of 'self-adjointness' are satisfied. 

Together with the differential operator 

T =po Dn+... +pn  

we have its formal adjoint, given by 

T *y = ( - 1 ) n  (25o On)  + ( - 1 ) n^1 (Pi y)(-1) +.... + 15n y. 

If T coincides with its formal adjoint it is called self- adjoint. 
Let there be associated with T the n homogeneous boundary 

conditions 
n 

Ay = kEl Mik y(k-1) (a) + Nky (k-1) (b) = 0 (j = 1,2,..., n) 

with matrices of coefficients M = (Mfk ) and N = (Na).  
We define B(t) as being the matrix of coefficients (BIk (t)) 

obtained when the formal expression 

	

n 	 _ 

	

[uv](t) = E 	E 	( -1 )'u(k) (t)(pn-mv)`' ) (t) m=1 5+k=m-1 

is written n 
E B  (t) u(k -1) (t) v(1-1)(t) ; 

j,k =1 
	(t) 	1 

then B is such that 

0, j +k > n+1 
B  (t)  = ( -1 )j-l po(t), j + k = n + 1 , 

and det B(t) = [po(t)]n so that B is non-singular. 

DEFINITION The system 

Ty = Ay (p5 eCn-j; j = 0 1, ... n; po * 0 in [a, b]) 

ta =0 = 1 fy 	(,p .1,...,n) 
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is called a regular self-adjoint boundary value problem if T is 
self-adjoint, and the .4 satisfy the self-adjointness condition 

MB -1  (a) M' = NB-1 (b) N', 

where ' denotes the conjugate transpose. 
Whilst not all of the Sturm- Liouville features carry over to 

this more general case, two of the most important ones for our 
purposes do so, namely the orthogonality of eigenfunctions 
corresponding to distinct eigenvalues and the completeness of 
the sequence of eigenfunctions. The eigenspaces may not all be 
one-dimensional, however, but we can always orthogonalise a 
set of linearly independent eigenfunctions spanning a multi-
dimensional eigenspace, and indeed we may state: a regular 
self - adjoint boundary value problem possesses a set of eigenfunctions 
forming a CON sequence in L 2(a, b). There are generalisations of 
this result, for example, to the case of L 2((a, b), w), and even to 
non-self-adjoint problems in which the eigenfunctions form a 
Riesz basis for L 2(a, b), with the eigenfunctions of the adjoint 
problem as biorthogonal set. For further information see 
Coddington and Levinson (1955) and Naimark (1968); the latter 
reference contains a synthesis of the pioneering work of G. D. 
Birkhoff, Tamarkin, Stone et al. dating from the early years of 
this century. 

EXAMPLE We generate the familiar trigonometrical set 
{1, cos nx, sin nx} on (- 7r, 7r) from the boundary value problem 

y"+Ay=O 

y(-7r) = y(n) 
y'(-7r) = y'(70. 

Here we have imposed periodic boundary conditions which, as 
we have already noted are not of the Sturm-Liouville type; the 
consequence is that we do not retain the Sturm- Liouville one-
dimensional eigenspace feature. The calculations are very 
similar to those of the first example of § 4.1, and we merely 
quote the results: 

(i) A < 0: trivial solution y m 0 only. 

(ii) A = 0: solution y = constant. 
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(iii) A > 0: general solution y = A sin j(A)x + B cos J(A) x, 
subject to the condition sin V(A) 7T = O. Therefore when A = n 2, 
n = 1, 2, ..., there are two linearly independent eigenfunctions, 
so that in this case each eigenspace is of dimension 2. 

This problem, although not Sturm— Liouville, is self-adjoint 
according to the above definition. For the equation is obviously 
self-adjoint, and as for the boundary conditions we have 

M= 
1 
0 

0 
1 N 

 = 
—1 

0 
0 

— 1 B 
 = 

0 
1 

— i 
0 

and the self-adjointness condition is readily verified from these. 
We have another proof of the completeness in L 2( — lr, 7r) of the 
trigonometrical functions. 

4.2 Singular boundary value problems 
Our examples of boundary value problems up to this point have 
been `regular', that is they have involved a differential equation 
on a finite interval with no singularities, and with the exception 
of the Mathieu functions, there has been a marked lack of 
interesting sets of eigenfunctions. It frequently happens that 
boundary value problems arising in practice involve a differential 
equation with singularities, or on a basic interval which is 
infinite in extent; with suitable boundary conditions (which 
may not be expressible in convenient formulae as in the regular 
case) such problems are called singular boundary value problems. 
Needless to say the convenient properties of the regular problem 
cannot always be expected to carry over to these singular cases, 
or not without a struggle if they do, and this is a pity because 
the singular cases constitute a class `which seems to include all 
the most interesting examples', as E. C. Titchmarsh (1946) 
points out in his introduction. For example the spectrum of a 
singular problem may consist of a continuum rather than a set 
of discrete points; in such cases the eigenfunction expansion may 
be replaced with an integral representation. 

If a countable set of eigenfunctions does exist, its orthogonality 
may often be established directly from the equation as in our 
previous examples, provided that the boundary conditions make 
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the integrated term vanish. Completeness of the eigenfunctions 
is not so readily obtained however; it may sometimes be estab-
lished by regarding the singular problem as a limit of a sequence 
of regular problems (see Coddington and Levinson (1955) p. 224). 
If it is required to demonstrate completeness of a sequence of 
eigenfunctions arising from a singular boundary value problem 
it may be just as easy to proceed independently of the theory 
of differential equations altogether, especially if the set is 
orthogonal, possibly by using one of the methods of the previous 
chapters. 

Ex AMPLE  s of singular boundary value problems with com-
plete sets of eigenfunctions: 

(1) Three standard cases arise from separating Laplace's 
equation V20 = 0 in (i) cartesian, (ii) cylindrical polar, and (iii) 
spherical polar coordinates. The standard oscillation equation 

y" + Ay = 0 arises in all three cases. 

In case (i) no other equation arises. 

In case (ii) there arises the Bessel equation 

2 
y"+xy'+ A-x2  y=0 

with a singularity at x = O. If we put this into Liouville normal 
form and attach a natural boundary condition we get the 
singular boundary value problem 

r 	(A  4v2 -1 
y" + 	4x2 )YO 

 

Ty bounded at x = 0 

on [0, 1], with eigenvalues A n  = jn, n = 1, 2, ... (where J„(jn) = 0, 
in  + 0) and the complete orthogonal Fourier-Bessel functions 
{xi J„(jn  x)} as corresponding eigenfunctions. 

In case (iii) there arises the associated Legendre equation 
with singularities at 1 and -1. This yields the singular problem 

{ (1 -x9y"-2xy' + (A - m2(1 - x2)-1 ) y = 0 

y bounded at x = ± 1 
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on [ + 1, 1], with eigenvalues A n  = n(n + 1), n = 0, 1, ..., and the 
complete orthogonal associated Legendre functions {P;',', (x)} as 
corresponding eigenfunctions. 

(2) The differential equation 

y"+(A - 0(x))y = 0, 

in which 0  is called a potential function, is the one-dimensional 
Schrödinger equation which occurs in quantum theory. The 
equation is already in Liouville normal form, and it will give 
rise to a singular problem if the basic interval is taken to be 
infinite in extent, for example the whole real axis. Such problems 
may or may not possess a countable set of eigenfunctions, owing 
to the peculiar nature of the spectrum. We illustrate with two 
examples: 

(I) zero potential: 
y"+Ay= 0 onR 
y bounded on R. 

As in previous examples involving this equation there are three 
cases: 

(i) A < 0. Solutions of the equation are Binh, j(A) x and 
cosh ,/(A) x neither of which are bounded on R. 

(ii) A = 0. The only bounded solution is y = constant. 

(iii) A > 0. Bounded solutions are sin 1J(A) x and cos  (A) x for 
any positive real A (these are not in L 2(R) of course). 

Thus the spectrum consists of the continuum A > 0. The usual 
eigenfunction expansion is replaced by the Fourier integral 
representation. 

(II) potential proportional to x 2 : the singular problem 

y"+(A+x2)y = 0 
y --> 0 as x-->+  oo 

is that of the so-called ` harmonic oscillator' on R. The eigen-
values are An  = 2n + 1, n = 0, 1, ..., with corresponding eigen-
functions {exp ( — x2/2) Hn(x)}, the complete orthogonal Hermite 
functions. 
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In this last example the spectrum was again discrete; however 
Schriidinger's equation can lead to spectra with an even more 
peculiar character than that of example (1) above. For example 
there are cases of spectra consisting of a discrete part with a 
finite point of accumulation, and a continuous part. 

Many other similar examples are to be found treated in some 
detail by Vogel (1953). 

Problems 

Show that the following differential equations are self- adjoint, 
and find boundary conditions yielding the singular boundary 
value problems with the eigenvalues and corresponding eigen-
functions indicated (see Meux, 1966). 
4.3 ((1-x) 2 (1 +x) 2 y")" + (2(x2 - 1)y')'+Ay = 0 on [-1, 1]; 

An  = - n2(n + 1) 2 ; {P„(x)}, n = 0, 1, .. . 

4.4 (x2 e -x y")" - (x e -x y' )' - A e -x y = 0 on R+; An = - n2 ; 
{e -xL n(x)}, n = 0, 1, ... 

4.5 (exp (- x2/2)y")" - (exp (- x 2/2 ) y')' - A exp ( - x2/2 ) y = 0 
on R; An  = - n2 ; {exp (- x2/2) Hn(x)}, n = 0, 1, ... 

4.3 Integral operators 

The purpose of this section is to quote some facts from the 
Hilbert-Schmidt theory of Fredholm integral equations in order 
to illustrate how complete sets can arise as eigenfunctions of 
certain integral operators. This material is available in many 
standard texts on integral equations, see e.g. Kanwal (1971) and 
Lovitt (1950). 

If the operator T of our general eigenvalue equation Tf = Af 
is taken to be the integral operator 

b 

If = (If)(x) = f K(x,t)f(t)dt 
a 

then the equation becomes If  = Af. From the point of view of 
the theory of integral equations it is usually more convenient to 
replace A with its reciprocal and write 

Alf = f. 	 (3) 
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The definition of I is purely formal; if it is to define an operator  

on, say, L 2(a, b) then K must be such that If EL 2(a, b) for  
f E L 2(a, b). This will certainly be the case if K is continuous in  
the finite square S = to < x < b, a < t < b1. Actually it is  
sufficient that K be an22  kernel, viz.  

ffs, IK12 < oo.  

K(x, t) is called the kernel of the operator, and (3) is called a  

homogeneous Fredholm integral equation. There is a theory of  
eigenvalues and eigenfunctions (which are usually said to ` belong  

to K') of such equations analogous to that of the differential  

equations of the previous sections. For simplicity we restrict  

attention to real L 2  space in this section.  
Perhaps the most obvious consequence of (3) is that if K is  

symmetric, that is K(x, t) = K(t, x), then eigenfunctions corre-
sponding to distinct eigenvalues are orthogonal. For if f n  = An Ifn  
and fm = Am If. then  

b

fa Kt ( t )fm dt
b  

fn(x) f,^(x) dx =^n 
a 	 a  

bb 

= A.  fa K tm(ttIt 

By interchange of x and t and use of the symmetry of K, we find  
that these two double integrals are equal, and by subtraction  

must be zero if An  + A.. This gives the required result.  

We now quote three important theorems concerning the  

integral operator I. We shall need the following  

DEFINITION  The ^2  symmetric kernel K is called  non-
negative definite if  

bb 

K(x, t)f(x)f(y) dxdy> 0 
fa a  

for all f E L 2(a, b) (f + 0). If K satisfies the above relationship  

with > replaced by > then it is called positive definite. 
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THEOREM Let the kernel K be 22  and symmetric over the 
finite square S. Then it possesses at least one eigenvalue, all eigen-
values are real, constitute a countable set, and have no finite point 
of accumulation. The eigenfunctions corresponding to distinct 
eignevalues are orthogonal, and each eigenspace is of finite 
dimension. 

THEOREM (Hilbert--Schmidt) Let K(x, t) be a symmetric 
kernel, continuous on the finite square S, let g be piecewise con-
tinuous and 

Then f can be expanded in the absolutely and uniformly convergent 
eigenfunction expansion 

f(x) = i (fn,f)fn(x) 
n=1 

THEOREM (i) A non-null symmetric .,2 92  kernel is non-
negative definite if and only if all its eigenvalues are positive. 

(ii) A non-null symmetric 2 2  kernel is positive definite if and 
only if all its eigenvalues are positive and in addition the totality 
of eigenfunctions is complete in L 2(a,b). 

Note that the eigenfunctions may not be complete without the 
added criterion of positive definiteness which is equivalent to 
assuming (If, f) = 0 = f null. Bearing as it does a formal simil-
arity to the assumption of completeness, this criterion will 
probably be no easier to verify in practice than completeness 
itself. 

Problem 

4.6 Show that there is a `duality' between the two eigenvalue 
problems 

y" + Ay = 0 

 y(0 ) = y(1) = 0 
and 1 
(ii) 	 A f T (x, t) f (t) dt = fix),  

0 

b 
f(x) = f K(x, t) g(t) dt. 

a 

(i) 
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where T is the `triangular' kernel  

f(1—x)t (0< t < x ... 1)  

lx(1—t) (0 .... x ^ t <1),  

in the sense that they have the same spectrum and the same  

eigenfunctions.  

For more on such duality properties see Lovitt (1950).  

T(x,t) =  
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Supplementary theorems  

This appendix contains a list of various facts and principles  

which are needed in the text but which do not fit naturally into  

the presentation. Most of the details can be found in Yosida  

(1965).  

1 The uniform boundedness principle Let (Ta) be a  
sequence of bounded linear transformations of one Banach space B  

to another. For each f E B, suppose there exists Mf  such that  

II Tn f II Mf  for every n. Then there exists M such that II Tn II . M.  

2 Properties of weakly convergent sequences If (fa)  
converges weakly to f in a Banach space, then  

(i) there exists M such that II fn II < M for every n,  

and  

(ii) f E Wn ].  

3 The Weierstrass approximation theorems  

(a) Let f be a continuous complex valued function on the finite 
interval [a, b]. Then there exists a sequence of polynomials con-
verging to f uniformly on [a, b].  

(b) Let f be a continuous complex valued function of period 277 .  
defined on R. Then there exists a sequence (p a) of trigonometrical  
polynomials, i.e. p a(x) = E C  eikx,  converging uniformly to f.  

IkI^n  

4 The Riesz—Fréchet representation theorem Let F be a 
bounded linear functional on a Hilbert space H. Then there exists 
gF  E H such that Ff = (f, gF) for every f E H. 

Conversely, for fixed g E H, (f, g) defines a bounded linear 
functional on H. 

[ 116 ]  
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5 The `bounded inverse' theorem Let T be a bounded 
linear transformation, mapping a Banach space B onto another 
Banach space C in a one-to-one manner. Then T-1  exists as a 
bounded linear transformation of C onto B.  

6 Zorn's lemma  

(a) Let r be a relation on a set S (i.e. a collection of ordered  
pairs of members of S; we write xry to mean (x, y)  e r) such that,  
for all x and y in S:  

(i) xrx;  

(ii) xry and yrx = x = y;  

(iii) xry and yrz xrz.  

Then S is said to be partially ordered by r.  
If S is partially ordered by r and either xry or yrx for every  

x, y e S, then S is said to be linearly ordered.  
Let S be partially ordered by r. If S' S, and there exists  

z e S such that xrz for every x e S', then z is called an upper  
bound for S'. If there exists z e S such that zrx x = z, then z  
is called a maximal element of S.  

(b) Zorn's lemma. Let a non-empty set S be partially ordered  

by r. If every linearly ordered subset of S has an upper bound in  

S, then S has at least one maximal element.  

7 The Gram-Schmidt orthonormalisation process Let  
(un) be a sequence of linearly independent elements in a  

Hilbert space H. One forms an orthonormal sequence (v n )  
by taking certain linear combinations of u ns; there are two  
approaches:  

(i) The `geometrical' approach. We take v l  = 11u1 /u1  II and  
define vn+1  inductively by subtracting from un+1  its components  
along the previous (normalised) vs, viz.  

vn+l = un+i  — E (un+1  , vk ) vk  
k=1  

n 

(un^i — E  (un+1s vk) vk  
k=1  

 

   

(ii) The `linear algebra' approach. One expresses vn+1  as a  
linear combination of us, imposes the orthogonality condi- 



vn+1 = 
 

where  
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tions, and calculates the coefficients by Cramer's rule. The  

result is  
(u1 , u1 ) ... (ui ,  un) u1  

(un+1,  u1) • • • (un+1, un)  un+1  
u1) ... (u1^  un)  

an =  
(un,u1) ... (un,  un)  

and is called the  Gram  determinant of (un ).  
The same result is obtained from either approach, indeed the  

ON sequence (v n ) is unique subject to certain restrictions such  

as a fixed ordering of (un), etc.  

8. The extension of an operator `by continuity' Let H 
be a Hilbert space and let T be an operator defined on the dense set 
D c H. Syppose that (f a) c D, and fn  --> f + D. Suppose also that 
Tfn  -} g. Then we may extend T by the formula Tf = g. 

9 The invertibility theorem of C. Neumann Let T be a  
linear operator on a Hilbert space, and let I be the identity operator. 
Then if III— T II < 1, T-1  exists, is bounded, and is unique.  

10 Useful theorems for the Lo theory of convergence and  

completeness We have made no use of these in the text but  
they are sometimes useful and are included for reference.  

Theorem A is a theorem of F. Riesz; the two parts generalise  
the theorems of Parseval and Riesz-Fischer (q.v.) respectively.  

Theorem B is due to O. Szisz (1947). In both theorems (a, b) is a  
finite interval of R, and p + q = pq.  

A Let (O n ) be an orthogonal sequence in L2(a, b) such that l en I < 31  
for every n. Let (an) be the sequence of Fourier coefficients off with  

respect to (On ), and set ^Elal 4]if4  = llallq-  Lett<p 2. Then  

(i) if f ELP(a, b), then  

Ilall q 	3/(2-13)/P Ilf 1110;  
(ii) if Hall',  < co, then there exists f E Lq(a, b ) such that  

Ilf 	M(2-PuP  Ila  ll n-  

/VAL  on+1)  
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See Zygmund (1959) p. 102 for necessary and sufficient con-
ditions for equality to occur. Note that the results may fail 
if p > 2. 

B Let 0(x) be bounded on [a, b], and let ç(nx) (n = 1, 2, ...) be 
orthogonal over (a, b) and complete on LP(a, b), 1 < p < 2. Let 
3/r-   e La(a, b) and have Fourier coefficients  (an) with respect to (ç(nx)) 
such that (i) am  an  = amn  and (ii) E l an  l p < co. Then (fr(nx)) is 
complete on LP(a, b). 
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Definitions of special functions  

This list contains the definitions of most of the special functions 
used in the text; where there is a choice between several equi-
valent definitions that one which is most appropriate to the 
context has been preferred. For further information see, for 
example, Magnus et al. (1966). 

1 

2 

3 

4 

5 

Gamma function  

1(z) I'(1

Pochhammer's 

(a)n = a(a + 

(a)0 = 1.  

Binomial coefficient  
a 
n 

Beta function  

B(x ,  y) 

Jacobi polynomials  

I'(z) 
m 

= 	e-t tz-1  dt, 	Re z > 0. 
0 

-z) = 7r/sin 7rz (functional equation).  

symbol  
1,(a +n)  1) 	1) 	 1, 2, ... (a+n- 	= 	(n = ...);  

P (a)  

_ 	I1 (1 +a)  
1, 2,  (n = 	.)  

n!ll(1+a—n)  

a  

= (a - b)-x-v+i 	(t - b)x-i (a  - t )v-1  dt  

I 	r  (x) 	(y) __ 
P (x + y)  

pca.ft)( x) = 2-11 ^ 
 (n +1 n 

k = o k 	n - k  

x (x+  1)k (x -1 )n—k  

j 120 ]  

(n=0,1,  
).  
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Special cases are: 

(i) a = f, the Gegenbauer polynomials; 

(ii) a = /B = —1, the Chebyshev polynomials of the 1st kind,  
Tn(x);  

(iii) a = 18 = i, the Chebyshev polynomials of the 2nd kind, Un(x);  

(iv) a = f = 0, the Legendre polynomials Pn (x).  

6 Legendre functions  
COS-'x 

Legendre function: Pz  (x) = 	
cos (z +} t 

 dt. 
7T 0 	(cos t — x)i  

The special cases z = 0, 1, ..., yield the Legendre polynomials  
Pn(x). Associated Legendre function:  

Pn (x) = (1- x 2)i —Pn  (x} ,  
den 

m a positive integer.  

7 Generalised Laguerre polynomials  

Ln°C^ (x) = j (— 1 )k n 
 + a xk 

k - 0 	n — k k!  

The special cases Ln°) (x) - Ln(x) are called the Laguerre poly-
nomials.  

8 Hermite polynomials  
rn121 ( — 1)k  (2x)n-2k  

H x — n I 

	

n ( ) — 	k^0 k !(n -2k} ! .  
9 Bessel function  

	

v 	1 Jv (x } = r /v+^2 ^, //^ 	(1— t2)v^i cos xtdt, y  > — 2. 
l 	2) l2) 0  

10 Struve function  

	

v 	1 

	

Hv  (x) 
P v+x 

2 P 
	

0 
 (1— t2 }^—$ sin xt di, v >—^. 

( 	̂) (i)  

11  Hypergeometric 2F1  

2P1(d, b, c;  x) _ E (a)k (b)k 
 xk  

k=0 	(C )k 	k ! . 
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Some complete sequences of special functions 

Most of the better known sets of special functions which form 
CON sequences in an L 2  space (or a subspace) are listed. LP 
information can sometimes be obtained by using problem 2.2 or 
problem 1.8. It can also be found through the references to 
external sources; so can the definitions of the functions involved 
if they are not found in Appendix 2. Normalising factors are 
usually omitted; again, these can be traced through the references. 
The list is not intended to be exhaustive. 

Properties of non-orthogonal sequences do not lend them-
selves easily to tabulation; references to more detailed informa-
tion are given with each listing. 

[122] 
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Complete in Reference 

ei"; n = 0, + 1, .... 
eminx ; n ,... 0 ,  +1 ,  .... 

sin [niy(x - a)1(b - a)]; n = 1, 2, .... 

1, oos [nn(x- a)1(b - a)]; n = 1, 2, .... 

cost' x, sin nx oosn x ; n = 1,2 .... 

sin (n-i) x; n = 1, 2, .... 

cos (n -I) x; n = 1, 2, .... 

L2( - 71, 71) 

L2(0, 1) 

L 2(a, b) 

L2(a, b) 

L2((0, 2n), ic) 

L2(0, n) 

L2(0, n) 

p. 36 and Marti (1969) p.51 

p. 37 

p. 37  

p.37 

p.52 

p. 106 

p. 106 

e-x, sin nx - n cos nx; n =-- 1, 2, 	.... L2(0, 71) p. 106 

P(:,fl)(x); n = 0,1 	.... L2(( -1, 1), (1 - x)c (1 +x)fl) p. 33 

P:(x); n = m, m + 1, .... L 2( - 1, 1) p.38 

L(x); n = 0, 1, .... L 2(01+, x e- ) p. 33 

H (x); n = 0, 1, .... La(R, e-22 ) p. 33 

zn; n = 0, 1, ..., z = x-Fiy. L;(13) p.65 

Un(z); n = 0,1 	.... L(E) p.08 

pn(r); n = 0, 1, .... 

(ix- 1) 4 +P 

L2(R, a) 

L2(R) 

p. 43 

p. 64 
= °' + l ' •- • (ix +1)" 1-FP' n  

Orthogonal sequences 

Elementary functions 1 
2 

3 

4 
5 

6 

7 

8 

Polynomials 
	

9 

10 

11 

12 

13 

14 

15 

Rational functions 
	

16 

17 ---:-
(a - 1 

; n = 0, +1, .... 
ix 

a+ ix 	
L 2(R, ajn(a 2  +x2)) 	 p. 64 

[continued overleaf 
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Sequences of special functions 

Orthogonal sequences Complete in 	 Reference 

Higher transcendental 18 	y(j ny x); n = 1, 2, .... 	 L2(0, 1) 	 P. 40 

functions 
19 xi. y (an  x); n = 1, 2, ... , where 	L2(0, 1) 	 p. 42 

an  fy (an)-FhJ y(an) = 0, 

h - F v > 0. 

20 x-iJni.i(x); n = 0, 1, .... 	 Fir 	 p. 59 

x-i- p+2n+1, , 21 	.1 	(x): n = 0, 1, .... 	 B y 	 p. 59 

22 se(x); n = 1, 2, .... 	 L2 (0, 77) 	 p. 104 

23 cen (x); n = 0, 1, .... 	 L2(0, IT) 	 p. 104 

24 {I (A n  x) y (A n ) — 	n  x)I Jy (A n )). 	L2(0, 1) 	 Dahlberg (1973) 

Discontinuous 	25 wn(x); n = 1, 2, .... 	 L2 (0, 1) 	 p. 47 

functions 	 (Walsh functions) 
p. 49 and Singer (1970) 26 hn(x); n = 1,2 .... 	 L2(0, 1) 

(Haar functions) 

27 'Square wave' functions. 	 L2(0, 2) 	 Harrington and Cell (1981) 

— n) 
Interpolating functions 28 sin 

77(x 
	 ; n = 0, + 1, .... 	Fir 	 p. 58 

n(x— n) 

Higher dimensions 	29 spherical harmonics 	 La (sphere) 	 p. 38 
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Non-orthogonal sequences Information 

Elementary functions 30 feat, ci. § 3.1.1. 
31 ein°  ; n = 1, 2, .... p. 87 
32 1, log 12 sin navel; n = 1, 2, .... Complete on 11(0, i), p > 1; Szasz (1947) 

Polynomials and powers 33 simple sets p. 31 
34 z"; z = x+iy, n = 0, 1, .... p.68 
35 xn; n = 0, 1, .... p.29 
36 {ccAn} § 3.4. 

Higher transcendental functions 37 {xi. I v (A n  x)} P. 89 
38 (I' A„(x)) p. 91 
39 1, cn(mx, k); m = 1, 2, .... 1. Complete in L2(0, 2K) 
40 sn(mx, k); m = 1, 2, .... 

sn and on are the Jacobian 
elliptic functions. 

1 Craven (1971) 

Piecewise linear functions 41 {xr (x)} p. 33 
42 nx —[nx]— i; n = 1, 2, .... Complete on 11(0, i), p > 1; Svisz (1947) 

(Sawtooth functions) 
43 sgn (sin mix); n = 1, 2, .... Complete on 11(0, 1), p > 1; Szasz (1947) 

('square sine' waves) 
44 Schauder system Basis for C[0, 1]; Singer (1970), p. 11 
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of, 103 
eigenspace, 98 
eigenvalue, 98 

asymptotic form of, 103 
problem, 100 

eigenveetor, 98 
equivalent sequences, 74 
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finite energy condition, 99 
flat clamped plate modes, 100, 124 
Fourier coefficient, 12 
Fourier series, 12 
Fourier transform, 56 
Fourier-Bessel functions, 40, 110, 124 

completeness of, 40, 89 
non-orthogonal, 89, 125 

Fredholm equation, 113 
functional, 7 

bounded, 7 
coefficient, 21 
norm of, 7 

gamma function, 90, 93 
definition of, 120 
incomplete, 60 

Gegenbauer polynomials, definition 
of, 121 

Gram determinant, 95 
Gram-Schmidt orthonormalisation 

process, 17, 19, 28 
statement of, 117 

Green's theorem, 65 

Haar system, 27, 124 
completeness of, 49 

Hankel transform, 56 
harmonic oscillator, 111 
heat conduction equation, 99 
Hermite polynomials, 29, 33, 121, 123 

completeness of, 29 
Hilbert space, 4 

reproducing kernel, 53 
Hilbert-Schmidt theorem, 114 
Holder's inequality, 9 
hypergeometric function, 61 

definition of, 121 

inequality 
Bessel's, 13 
Holder's, 9 
Minkowski's, 9 
Schwarz', 4 
triangle, 3, 5, 9 

inner product, 4 
interpolating functions, 58-9, 124 

completeness of, 58 
isometric transformation, 7 

examples of, 56 
method of, 55 

isomorphism, 7 

Jacobi polynomials, 29 
completeness of, 29, 33 
definition of, 120 

Jacobian elliptic functions, 125 

kernel 
eigenvalues of, 113-14 
non-negative definite, 113 
positive definite, 113 
reproducing, 53, 83 
triangular, 115 

LP space, 8-9 
complete sequence on, 17 
total sequence in, 17 

Laplace's equation, 99, 110 
Laguerre polynomials, 29, 33 

completeness of, 29, 33 
definition of, 121 
generalised, 60, 63: completeness 

of, 60, 63; definition of, 121 
Lauricella's criterion, 34 
Legendre function, definition of, 121 
Legendre functions 

associated, 111: completeness of, 
38; definition of, 121 

non-orthogonal, 91 
orthogonal, 91 

Legendre polynomials, 33, 91, 123 
completeness of, 37 
definition of, 121 

linear manifold, 6 
closed, 6 

Liouville normal form, 102 

mappings, 7 
Mathieu functions, 104, 124 

completeness of, 104 
Mathieu's equation, 104 
metric, 2 
Minkowski's inequality, 9 
Mintz' theorem, 95 

Szlisz' form of, 97 

nearness (Krein-Lyusternik, Paley-
Wiener, quadratic, and strict), 
71 

non-harmonic Fourier functions, 78-
84, 86, 125 

norm, 2 
on a vector space, 2 
on an  LP space, 9 
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operator, 7 
densely defined, 100 
differential, 100: formal adjoint of, 

107 
extension by continuity of, 118 
integral, 112 
invertibility of, 118 
kernel of, 113 
self-adjoint, 107 
unitary, 7 

orthogonal complement, 6 
orthogonal sequence, 11 
orthogonal vectors, 6 

Paley-Wiener functions, 58 
Paley Wiener stability theorem, 76 
parallelogram identity, 6 
Parseval's theorem or relation, 13 

LP form of, 118 
more general form of, 17 

piecewise linear functions, 125 
Pochhammer's symbol, definition of, 

120 
Poisson- Charlier polynomials, 43 

completeness of, 45 
definition of, 43 

polarisation identity, 6 
polynomials 

Chebyshev, 68, 121, 123 
completeness theorem for, 31 
complex, completeness theorem 

for, 68 
Gegenbauer, 121 
Hermite, 29, 33, 121, 123 
Jacobi, 29, 33, 120, 123 
Laguerre, 29, 33, 60, 63, 121: 

generalised, 121, 123 
Legendre, 33, 37, 91, 121, 123 
Poisson-Cbarlier, 43, 45 
simple sets of, 31, 125 

powers 
non-integral, 57, 95-7, 125 
of a complex variable, 65, 68, 70, 

123, 125 
sequence of, 10, 29, 125 

projection theorem, 6 

Rademacher functions, 46 
rational functions, 123 

completeness of, 62, 64 
of a complex variable, complete-

ness of, 68 

Rényi's completeness theorem, 48 
reproducing kernel, 53, 83 

Hilbert space, 53 
Riesz basis, 74, 78, 80 
Riesz-Fischer theorem, 14 

LP form of, 118 
strong form of, 16 

Riesz-Fréchet representation 
theorem, 23 

statement of, 116 

sawtooth functions, 125 
Schauder system, 27, 125 
Schrédinger's equation, 111 
Schwarz' inequality, 4 
separable vector space, 4 
separation of variables, 77 
sequences, 7 

biorthogonal, 19 
complete, 15 
complete on  LP, 17 
complete orthonormal (CON), 16 
equivalent, 74 
normal, 11 
ortbogonal, 11 
orthonormal (ON), 11 
total, 14 
total in  LP, 17 

simple sets of polynomials, 31, 125 
spectrum, 99 

continuous, 111 
point, 98 

spherical harmonics, 38, 124 
`square wave' functions, 124 
stability, 71 

theorems, 72-3, 76 
Struve function, 91 

definition of, 121 
Sturm-Liouville problem, 102, 106 
subspace, 6 
Szasz' form of Mintz' theorem, 97 
Szasz theorem, on L" completeness, 

119 
on non-integral powers, 97 

total sequence, 14 
triangle inequality, 3, 5, 9 
trigonometrical system, 27, 108, 123, 

125 
completeness of, 36, 109 

uniform boundedness principle, 116 
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vector space, 1 
Vitali completeness criterion, 35 

circular form of, 38, 69 
for L2  (IR, (T), 43 
modified form of, 37 
spherical form of, 38 

Walsh system, 46, 124 
completeness of, 47 

wave equation, 99 
Weierstrass approximation theorems, 

116 
weight function, 10 

Zorn's lemma, 17 
statement of, 117 
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