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Preface

This proceedings volume entitled “Recent Advances in Robust Statistics: Theory
and Applications” outlines the ongoing research in some topics of robust statistics.
It can be considered as an outcome of the International Conference on Robust
Statistics (ICORS) 2015, which was held during January 12–16, 2015, at the Indian
Statistical Institute in Kolkata, India. ICORS 2015 was the 15th conference in this
series, which intends to bring together researchers and practitioners interested in
robust statistics, data analysis and related areas. The ICORS meetings create a
forum to discuss recent progress and emerging ideas in statistics and encourage
informal contacts and discussions among all the participants. They also play an
important role in maintaining a cohesive group of international researchers inter-
ested in robust statistics and related topics, whose interactions transcend the
meetings and endure year round. Previously the ICORS meetings were held at the
following places: Vorau, Austria (2001); Vancouver, Canada (2002); Antwerp,
Belgium (2003); Beijing, China (2004); Jyväskylä, Finland (2005); Lisbon,
Portugal (2006); Buenos Aires, Argentina (2007); Antalya, Turkey (2008); Parma,
Italy (2009); Prague, Czech Republic (2010); Valladolid, Spain (2011); Burlington,
USA (2012); St. Petersburg, Russia (2013); and Halle, Germany (2014).

More than 100 participants attended ICORS 2015. The scientific program
included 80 oral presentations. This program had been prepared by the scientific
committee composed of Claudio Agostinelli (Italy), Ayanendranath Basu (India),
Andreas Christmann (Germany), Luisa Fernholz (USA), Peter Filzmoser (Austria),
Ricardo Maronna (Argentina), Diganta Mukherjee (India), and Elvezio Ronchetti
(Switzerland). Aspects of Robust Statistics were covered in the following areas:
robust estimation for high-dimensional data, robust methods for complex data,
robustness based on data depth, robust mixture regression, robustness in functional
data and nonparametrics, statistical inference based on divergence measures, robust
dimension reduction, robust methods in statistical computing, non-standard models
in environmental studies and other miscellaneous topics in robustness.

Taking advantage of the presence of a large number of experts in robust statistics
at the conference, the authorities of the Indian Statistical Institute, Kolkata, and the
conference organizers arranged a one-day pre-conference tutorial on robust
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statistics for the students of the institute and other student members of the local
statistics community. Professor Elvezio Ronchetti, Prof. Peter Filzmoser, and
Dr. Valentin Todorov gave the lectures at this tutorial class. All the attendees highly
praised this effort.

All the papers submitted to these proceedings have been anonymously refereed.
We would like to express our sincere gratitude to all the referees. A complete list of
referees is given at the end of the book.

This book contains ten articles which we have organized alphabetically
according to the first author’s name. The paper of Adelchi Azzalini, keynote
speaker at the conference, discusses recent developments in distribution theory as
an approach to robustness. M. Baragilly and B. Chakraborty dedicate their work to
identifying the number of clusters in a data set, and they propose to use multivariate
ranks for this purpose. C. Croux and V. Öllerer use rank correlation measures, like
Spearman’s rank correlation, for robust and sparse estimation of the inverse
covariance matrix. Their approach is particularly useful for high-dimensional data.
The paper of F.Z. Doǧru and O. Arslan examines the mixture regression model,
where robustness is achieved by mixtures of different types of distributions.
A.-L. Kißlinger and W. Stummer propose scaled Bregman distances for the design
of new outlier- and inlier-robust statistical inference tools. A.K. Laha and Pravida
Raja A.C. examine the standardized bias robustness properties of estimators when
the underlying family of distributions has bounded support or bounded parameter
space with applications in circular data analysis and control charts. Large data with
high dimensionality are addressed in the contribution of E. Liski, K. Nordhausen,
H. Oja, and A. Ruiz-Gazen. They use weighted distances between subspaces
resulting from linear dimension reduction methods for combining subspaces of
different dimensions. In their paper, J. Miettinen, K. Nordhausen, S. Taskinen, and
D.E. Tyler focus on computational aspects of symmetrized M-estimators of scatter,
which are multivariate M-estimators of scatter computed on the pairwise differences
of the data. A robust multilevel functional data method is proposed by H.L. Shang
and applied in the context of mortality and life expectancy forecasting. Highly
robust and efficient tests are treated in the contribution of G. Shevlyakov, and the
test stability is introduced as a new indicator of robustness of tests.

We would like to thank all the authors for their work, as well as all referees for
sending their reviews in time.

Trento, Italy Claudio Agostinelli
Kolkata, India Ayanendranath Basu
Vienna, Austria Peter Filzmoser
Kolkata, India Diganta Mukherjee
April 2016
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Flexible Distributions as an Approach
to Robustness: The Skew-t Case

Adelchi Azzalini

1 Flexible Distributions and Adaptive Tails

1.1 Some Early Proposals

The study of parametric families of distributions with high degree of flexibility,
suitable to fit a wide range of shapes of empirical distributions, has a long-standing
tradition in statistics; for brevity, we shall refer to this contextwith the phrase ‘flexible
distributions’. An archetypal exemplification is provided by the Pearson system with
its 12 types of distributions, but many others could be mentioned.

Recall that, for non-transition families of the Pearson system as well as in various
other formulations, a specific distribution is identified by four parameters. This allows
us to regulate separately from each other four qualitative aspects of a distribution,
namely location, scale, slant and tail weight. In the context of robust methods, the
appealing aspect of flexibility is represented by the possibility of regulating the tail
weight of a continuous distribution to accommodate outlying observations.

When a continuous variable of interest spans the whole real line, an interesting
distribution is the one with density function

cν exp

(
−|x |ν

ν

)
, x ∈ R , (1)

where ν > 0 and the normalizing constant is cν = {2 ν1/ν Γ (1 + 1/ν)}−1. Here the
parameter ν manoeuvres the tail weight in the sense that ν = 2 corresponds to the
normal distribution, 0 < ν < 2 produces tails heavier than the normal ones, ν > 2
produces lighter tails. The original expression of the density put forward by Subbotin
(1923) was set in a different parameterization, but this does not affect our discussion.

A. Azzalini (B)
Department of Statistical Sciences, University of Padua, Padua, Italy
e-mail: adelchi.azzalini@unipd.it

© Springer India 2016
C. Agostinelli et al. (eds.), Recent Advances in Robust Statistics:
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2 A. Azzalini

This flexibility of tail weight provides the motivation for Box and Tiao (1962),
Box and Tiao (1973, Sect. 3.2.1), within a Bayesian framework, to adopt the Sub-
botin’s family of distributions, complemented with a location parameter μ and a
scale parameter σ , as the parametric reference family allows for departure from nor-
mality in the tail behaviour. This logic provides a form of robustness in inference on
the parameters of interest, namely μ and σ , since the tail weight parameter adjusts
itself to non-normality of the data. Strictly speaking, they consider only a subset of
the whole family (1), since the role of ν is played by the non-normality parame-
ter β ∈ (−1, 1] whose range corresponds to ν ∈ [1,∞) and β = 0 corresponds to
ν = 2.

Another formulation with a similar, and even more explicit, logic is the one of
Lange et al. (1989). They work in a multivariate context and the error probability
distribution is taken to be the Student’s t distribution, where the tail weight parameter
ν is constituted by the degrees of freedom. Again the basic distribution is comple-
mented by a location and a scale parameter, which are now represented by a vector
μ and a symmetric positive-definite matrix, possibly parametrized by some lower
dimensional parameter, sayω. Robustness of maximum likelihood estimates (MLEs)
of the parameters of interest, μ and ω, occurs “in the sense that outlying cases with
large Mahalanobis distances […] are downweighted”, as visible from consideration
of the likelihood equations.

The Student’s t family allows departures from normality in the form of heav-
ier tails, but does not allow lighter tails. However, in a robustness context, this is
commonly perceived as a minor limitation, while there is the important advantage
of closure of the family of distributions with respect to marginalization, a property
which does not hold for the multivariate version of Subbotin’s distribution (Kano
1994).

The present paper proceeds in a similar conceptual framework, with two main
aims: (a) to include into consideration also more recent and general proposals of
parametric families, (b) to discuss advantages and disadvantages of this approach
compared to canonical methods of robustness. For simplicity of presentation, we
shall confine our discussion almost entirely to the univariate context, but the same
logic carries on in the multivariate case.

1.2 Flexibility via Perturbation of Symmetry

In more recent years, much work has been devoted to the construction of highly
flexible families of distributions generated by applying a perturbation factor to a
‘base’ symmetric density. More specifically, in the univariate case, a density f0
symmetric about 0 can be modulated to generate a new density

f (x) = 2 f0(x) G0{w(x)}, x ∈ R, (2)
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for any odd functionw(x) and any continuous distribution functionG0 having density
symmetric about 0. By varying the ingredients w and G0, a base density f0 can
give rise to a multitude of new densities f , typically asymmetric but also of more
varied shapes. A recent comprehensive account of this formulation, inclusive of its
multivariate version, is provided by Azzalini and Capitanio (2014).

One use ofmechanism (2) is to introduce asymmetric versions of the Subbotin and
Student’s t distributions via the modulation factor G0{w(x)}. Consider specifically
the case when the base density is taken to be the Student’s t on ν degrees of freedom,
that is,

t (x; ν) = Γ ((ν + 1)/2)√
π ν Γ (ν/2)

(
1 + x2

ν

)−(ν+1)/2

, x ∈ R. (3)

In principle, the choice of the factor G0{w(x)} is bewildering wide, but there are
reasons for focusing on the density, denoted as skew-t (ST for short),

t (x;α, ν) = 2 t (x; ν) T

(
α x

√
ν + 1

ν + x2
; ν + 1

)
, (4)

where T (·; ρ) represents the distribution function of a t variate with ρ degrees of
freedomandα ∈ R is a parameterwhich regulates slant;α = 0 gives back the original
Student’s t . Density (4) is displayed in Fig. 1 for a few values of ν and α.

We indicate only one of the reasons leading to the apparently peculiar final factor
of (4). Start by a continuous random variable Z0 of skew-normal type, that is, with
density function

ϕ(x;α) = 2 ϕ(x) Φ(α x), x ∈ R (5)
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Fig. 1 Skew-t densities when ν = 1 in the left plot and ν = 5 in the right plot. For each plot,
various values of α are considered with α ≥ 0; the corresponding negative values of α mirror the
curves on the opposite side of the vertical axis



4 A. Azzalini

where ϕ and Φ denote the N(0, 1) density and distribution function. An overview
of this distribution is provided in Chap.2 of Azzalini and Capitanio (2014). Con-
sider further V ∼ χ2

ν /ν, independent of Z0, and the transformation Z = Z0/
√
V ,

traditionally applied with Z0 ∼ N(0, 1) to obtain the classical t distribution (3). On
assuming instead that Z0 is of type (5), it can be shown that Z has distribution (4).

For practical work, we introduce location and scale parameters via the transfor-
mation Y = ξ + ω Z , leading to a distribution with parameters (ξ, ω, α, ν); in this
case we write

Y ∼ ST(ξ, ω2, α, ν) . (6)

Because of asymmetry of Z , here ξ does not coincide with the mean value μ; sim-
ilarly, ω does not equal the standard deviation σ . Actually, a certain moment exists
only if ν exceeds the order of that moment, like for an ordinary t distribution. Pro-
vided ν > 4, there are known expressions connecting (ξ, ω, α, ν)with (μ, σ, γ1, γ2),
where the last two elements denote the third and fourth standardized cumulants,
commonly taken to be the measures of skewness and excess kurtosis. Inspection
of these measures indicates a wide flexibility of the distribution as the parameters
vary; notice however that the distribution can be employed also with ν ≤ 4, and actu-
ally low values of ν represent an interesting situation for applications. Mathematical
details omitted here and additional information on the ST distribution are provided
in Sects. 4.3 and 4.4 of Azzalini and Capitanio (2014).

Clearly, expression (2) can also be employed with other base distributions and
another such option is distribution (1), as expounded in Sect. 4.2 of Azzalini and
Capitanio (2014). We do not dwell in this direction because (i) conceptually the
underlying logical frame is the same of the ST distribution and (ii) there is a mild
preference for the ST proposal. One of the reasons for this preference is similar to
the one indicated near the end of Sect. 1.1 in favour of the symmetric t distribution,
which is closed under marginalization in the multivariate case and this fact carries
on for the ST distribution. Azzalini and Genton (2008) and Sect. 4.3.2 of Azzalini
and Capitanio (2014) provide a more extensive discussion of this issue, including
additional arguments.

To avoid confusion, the readermust be aware of the existence of other distributions
named skew-t in the literature. The one considered here was, presumably, the first
constructionwith this name.Theoriginal expressionof the density byBranco andDey
(2001) appeared different, since it was stated in an integral form, but subsequently
proved by Azzalini and Capitanio (2003) to be equivalent to (3).

The high flexibility of these distributions, specifically the possibility to regulate
their tail weight combined with asymmetry, supports their use in the same logic of
the papers recalled in Sect. 1.1. Azzalini (1986) has motivated the introduction of
asymmetric versions of Subbotin distribution precisely by robustness considerations,
although this idea has not been complemented by numerical exploration. Azzalini
and Genton (2008) have worked in a similar logic, but focusing mainly on the ST
distribution as the working reference distribution; more details are given in Sect. 3.4.

To give a first perception of the sort of outcome to be expected, let us consider
a very classical benchmark of robustness methodology, perhaps the most classical:
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Table 1 Total absolute deviation of various fitting methods applied to the stack loss data

Method LS Huber LTS MM MLE-ST

Q 49.7 46.1 49.4 45.3 43.4

the ‘stack loss’ data. We use the data following the same scheme of many existing
publications, by fitting a linear regression model with the three available explanatory
variables plus intercept to the response variable y, i. e. the stack loss, and examine
the discrepancy between observed and fitted values along the n = 21 data points. A
simple measure of the achieved goodness of fit is represented by the total absolute
deviation

Q =
n∑

i=1

|yi − ŷi |,

where yi denotes the i th observation of the response variable and ŷi is the corre-
sponding fitted value produced by any candidate method. The methods considered
are the following: least squares (LS, in short), Huber estimator with scale parame-
ter estimated by minimum absolute deviation, least trimmed sum of squares (LTS)
of Rousseeuw and Leroy (1987), MM estimation proposed by Yohai (1987), MLE
under assumption of ST distribution of the error term (MLE-ST). For the ST case,
an adjustment to the intercept must be made to account for the asymmetry of the
distribution; here we have added the median of the fitted ST error distribution to the
crude estimate of the intercept. The outcome is reported in Table1, whose entries
have appeared in Table5 of Azzalini and Genton (2008) except that MM estimation
was not considered there. The Q value of MLE-ST is the smallest.

2 Aspects of Robustness

2.1 Robustness and Real Data

The effectiveness of classical robust methods in work with real data has been ques-
tioned in a well-known paper by Stigler (1977). In the opening section, the author
lamented that ‘most simulation studies of the robustness of statistical procedures have
concentrated on a rather narrow range of alternatives to normality: independent, iden-
tically distributed samples from long-tailed symmetric continuous distributions’ and
proposed instead ‘why not evaluate the performance of statistical procedures with
real data?’ He then examined 24 data sets arising from classical experiments, all
targeted to measure some physical or astronomical quantity, for which the modern
measurement can be regarded as the true value. After studying these data sets, includ-
ing application of a battery of 11 estimators on each of them, the author concluded
in the final section that ‘the data sets examined do exhibit a slight tendency towards
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more extreme values that one would expect from normal samples, but a very small
amount of trimming seems to be the best way to deal with this. […] The more drastic
modern remedies for feared gross errors […] lead here to an unnecessary loss of
efficiently.’

Similarly, Hill and Dixon (1982) start by remarking that in the robustness litera-
ture ‘most estimators have been developed and evaluated for mathematically well-
behaved symmetric distributions with varying degrees of high tail’, while ‘limited
consideration has been given to asymmetric distributions’. Also in this paper the
programme is to examine the distribution of really observed data, in this case orig-
inating in an clinical laboratory context, and to evaluate the behaviour of proposed
methods on them. Specifically, the data represent four biomedical variables recorded
on ‘3000 apparently well visitors’ of which, to obtain a fairly homogeneous popu-
lation, only data from women 20–50years old were used, leading to sample sizes
in the range 1037–1110 for the four variables. Also for these data, the observed
distributions ‘differ from many of the generated situations currently in vogue: the
tails of the biomedical distributions are not so extreme, and the densities are often
asymmetric, lumpy and have relatively few unique values’. Other interesting aspects
arise by repeatedly extracting subsamples of size 10, 20 and 40 from the full set,
computing various estimators on these subsamples and examining the distributions
of the estimators. The indications that emerge include the fact that the population
values of the robust estimators do not estimate the population mean; moreover, as the
distributions becomemore asymmetric, the robust estimates approach the population
median, moving away from the mean.

A common indication from the two above-quoted papers is that the observed distri-
butions display some departure from normality, but tail heaviness is not as extreme as
in many simulation studies of the robustness literature. The data display instead other
forms of departures from ideal conditions for classical methods, especially asym-
metry and “lumpiness” or granularity. However, the problem of granularity will be
presumably of decreasing importance as technology evolves, since data collection
takes place more and more frequently in an automated manner, without involving
manual transcription and consequent tendency to number rounding, as it was com-
monly the case in the past.

Clearly, these indications must not be regarded as universal. Stigler (1977, Sect. 6)
himself recognizes that ‘some real data sets with symmetric heavy tails do exist, can-
not be denied’. In addition, it can be remarked that the data considered in the quoted
papers are all of experimental or laboratory origin, and possibly in a social sciences
context the picture may be somewhat different. However, at the least, the indication
remains that the distribution of real data sets is not systematically symmetric and
not so heavy tailed as one could perceive from the simulation studies employed in a
number of publications.
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2.2 Some Qualitative Considerations

The plan of this section is to discuss qualitatively the advantages and limitation of the
proposed approach, also in the light of the facts recalled in the preceding subsection.

For the sake of completeness, let us state again and even more explicitly the
proposed line of work. For the estimation of parameters of interest in a given infer-
ential problem, typically location and scale, we embed them in a parametric class
which includes some additional parameters capable of regulating the shape and tail
behaviour of the distribution, so to accommodate outlying observations as manifes-
tations of the departures from normality of these distributions, hence providing a
form of robustness. In a regression context, the location parameter is replaced by the
regression parameters as the focus of primary interest.

In this logic, an especially interesting family of distributions is the skew-t , which
allows to regulate both its asymmetry and tail weight, besides location and scale.
Such a usage of the distribution was not the original motivation of its design, which
was targeted to flexibility to adapt itself to a variety of situations, but this flexibility
leads naturally to this other role.

The formulation prompts a number of remarks, in different and even contrasting
directions, partly drawing from Azzalini and Genton (2008) and from Azzalini and
Capitanio (2014, Sect. 4.3.5).

1. Clearly the proposed route does not belong to the canonical formulation of robust
methods, as presented for instance by Huber and Ronchetti (2009), and one can-
not expect it to fulfil the criteria stemming from that theory. However, some
connections exist. Hill and Dixon (1982, Sect. 3.1) have noted that the Laszlo
robust estimator of location coincides with the MLE for the location parameter
of a Student’s t when its degrees of freedom are fixed. Lucas (1997), He et al.
(2000) examine this connection in more detail, confirming the good robustness
properties of MLE of the location parameter derived from an assumption of t
distribution with fixed degrees of freedom.

2. The keymotivation for adopting the flexible distributions approach is toworkwith
a fully specified parametric model. Among the implied advantages, an important
one is that it is logically clear what the estimands are: the parameters of the
model. The same question is less transparent with classical robust methods. For
the important family of M-estimators, the estimands are given implicitly as the
solution of a certain nonlinear equation; see for instance Theorem 6.4 of Huber
and Ronchetti (2009). In the simple case of a location parameter estimated using
an oddψ-function when the underlying distribution is symmetric around a certain
value, the estimand is that centre of symmetry, but in a more general setting we
are unable to make a similarly explicit statement.

3. Another advantage of a fully specified parametric model is that, at the end of the
inference process, we obtain precisely that, a fitted probability model. Hence, as
a simple example, one can assess the probability that a variable of interest lies
in a given interval (a, b), a question which cannot be tackled if one works with
estimating equations as with M-estimates.
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4. The critical point for a parametric model is of course the inclusion of the true
distribution underlying the data generation among those contemplated by the
model. Since models can only approximate reality, this ideal situation cannot be
met exactly in practice, except exceptional situations. If we denote by θ ∈ Θ ⊆
R

p the parameter of a certain family of distributions, f (x; θ), recall that, under
suitable regularity conditions, theMLE θ̂ of θ converges in probability to the value
θ0 ∈ Θ such that f (x; θ0) hasminimalKullback–Leibler divergence from the true
distribution. The approach via flexible distributions canwork satisfactorily insofar
it manages to keep this divergence limited in a wide range of cases.

5. Classical robust methods are instead designed to work under all possible situa-
tions, even the most extreme. On the other hand, empirical evidence recalled in
Sect. 2.1 indicates that protection against all possible alternatives may be more
than we need, as in the real world the most extreme situations do not arise that
often.

6. As for the issue discussed in item 4, we are not disarmed, because the adequacy
of a parametric model can be tested a posteriori using model diagnostic tools,
hence providing a safeguard against appreciable Kullback–Leibler divergence.

3 Some Quantitative Indications

The arguments presented in Sect. 2.2, especially in items 4 and 5 of the list there,
call for quantitative examination of how the flexible distribution approach works
in specific cases, especially when the data generating distributions does not belong
to the specified parametric distribution, and how it compares with classical robust
methods.

This is the task of the present section, adopting the ST parametric family (6) and
using MLE for estimation; for brevity we refer to this option as MLE-ST. Notice
that ν is not fixed in advance, but estimated along with the other parameters. When a
similar scheme is adopted for the classical Student’s t distribution, Lucas (1997) has
shown that the influence function becomes unbounded, hence violating the canonical
criteria for robustness. A similar fact can be shown to happenwith the ST distribution.

3.1 Limit Behaviour Under a Mixture Distribution

Recall the general result about the limit behaviour of the MLE when a certain para-
metric assumption is made on the distribution of an observed random variable Y ,
whose actual distribution p(·) may not be a member of the parametric class. Under
the assumption of independent sampling from Y with constant distribution p and
various regularity conditions, Theorem 2 of Huber (1967) states that the MLE of
parameter θ converges almost surely to the solution θ0, assumed to be unique, of the
equation
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‘proposal 2’ and of MLE-ST, the latter one in two variants, mean value and median

Ep{ψ(Y ; θ)} = 0, (7)

where the subscript p indicates that the expectation is taken with respect to that
distribution and ψ(·; θ) denotes the score function of the parametric model.

We examine numerically the case where the parametric assumption is of ST type
with θ = (ξ, ω, α, ν) and p(x) represents a contaminated normal distribution, that
is, a mixture density of the form

p(x) = (1 − π) ϕ(x) + π σ−1 ϕ{σ−1(x − Δ)} . (8)

In our numerical work, we have set π = 0.05, Δ = 10, σ = 3. The correspond-
ing p(x) is depicted as a grey-shaded area in Fig. 2 and its mean value, 0.5,
is marked by a small circle on the horizontal axis. The expression of the four-
dimensional score function for the ST assumption is given by DiCiccio and Monti
(2011), reproduced with inessential changes of notation in Sect. 4.3.3 of Azza-
lini and Capitanio (2014). The solution of (7) obtained via numerical methods is
θ0 = (−0.647, 1.023, 1.073, 2.138), whose corresponding ST density is represented
by the dashed curve in Fig. 2. From θ0, we can compute standard measures of loca-
tion, such as the mean and the median of the ST distribution with that parameter;
their values, 0.0031 and 0.3547, are marked by vertical bars on the plot. The first of
these values is almost equal to the centre of the main component of p(x), i. e. ϕ(x),
while the mean of the ST distribution is not far from the mean of p(x). Which of the
two quantities is more appropriate to consider depends, at least partly, on the specific
application under consideration.
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To obtain a comparison term from a classical robust technique, a similar numerical
evaluation has been carried out for ‘proposal 2’ of Huber (1964), where θ comprises a
location and a scale parameter. The corresponding estimands are computed solving an
equation formally identical to (7), except that now ψ represents the set of estimating
equations, not the score function; see Theorem 6.4 of Huber and Ronchetti (2009).
For the case under consideration, the location estimand is 0.0957, which is also
marked by a vertical bar in Fig. 2. This value is intermediate to the earlier values of
the ST distribution, somewhat closer to the median, but anyway they are all not far
away from each other.

For the ST distribution, alternative measures of location, scale and so on, which
are formally similar to the corresponding moment-based quantities but exist for all
ν > 0, have been proposed by Arellano-Valle and Azzalini (2013). In the present
case, the location measure of this type, denoted pseudomean, is equal to 0.1633
which is about halfway the ST mean and median; this value is not marked on Fig. 2
to avoid cluttering.

3.2 A Non-random Simulation

We examine the behaviour of ST-MLE and other estimators when an “ideal sample”
is perturbed by suitablymodifying one of its components. As an ideal sample we take
the vector z1, . . . , zn , where zi denotes the expected value of the i th order statistics
of a random sample of size n drawn from the N(0, 1) distribution, and its perturbed
version has i th component as follows:

yi =
{

zi if i = 1, . . . , n − 1,
zn + Δ if i = n.

For any given Δ > 0, we examine the corresponding estimates of location obtained
from various estimation methods and then repeat the process for an increasing
sequence of displacements Δ. Since the yi ’s are artificial data, the experiment rep-
resents a simulation, but no randomness is involved. Another way of looking at this
construction is as a variant form of the sensitivity curve.

In the subsequent numerical work, we have set n = 100, so that −2.5 < zi <

2.5, and Δ ranges from 0 to 15. Computation of the MLE for the ST distribution
has been accomplished using the R package sn (Azzalini 2015), while support for
classical robust procedures is provided by packages robust (Wang et al. 2014)
and robustbase (Rousseeuw et al. 2014); these packages have been used at their
default settings. The degrees of freedom of the MLE-ST fitted distributions decrease
from about 4 × 104 (which essentially is a numerical substitute of ∞) when Δ = 0,
down to ν̂ = 3.57 when Δ = 15.

For each MLE-ST fit, the corresponding median, mean value and pseudomean of
the distribution have been computed and these are the values plotted in Fig. 3 along
with the sample average and some representatives of the classical robust method-
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Fig. 3 Estimates of the location parameter applied to a perturbed version of the expected normal
order statistics plotted versus the displacement Δ

ology. The slight difference between the two curves of MM estimates is due to a
small difference in the tuning parameters of the R packages. Inevitably, the sample
average diverges linearly as Δ increases. The ST median and pseudomean behave
qualitatively much like the robust methods, while the mean increases steadily, but
far more gently than the sample average, following a logarithmic-like sort of curve.

3.3 A Random Simulation

Our last numerical exhibit refers to a regular stochastic simulation. We replicate an
experiment where n = 100 data points are sampled independently from the regres-
sion scheme

y = β0 + β1 x + ε,

where the values of x are equally spaced in (0, 10), β0 = 0, β1 = 2 and the error
term ε has contaminated normal distribution of type (8) with Δ ∈ {2.5, 5, 7.5, 10},
π ∈ {0.05, 0.10}, σ = 3.

For each generated sample, estimates of β0 and β1 have been computed using
least squares (LS), least trimmed sum of squared (LTS), MM estimation and MLE-
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Fig. 4 Root-mean-square error in estimation of β0 (top panels) and β1 (bottom) from a linear
regression setting where the error term has contaminated normal distribution with contamination
level 5% (left) and 10% (right), as estimated from50,000 replications [Reproducedwith permission
from Azzalini and Capitanio (2014)]

STwithmedian adjustment of the intercept; all of them have already been considered
and described in an earlier section. After 50,000 replications of this step, the root-
mean-square (RMS) error of the estimates has been computed and the final outcome
is presented in Fig. 4 in the form of plots of RMS error versus Δ, separately for each
parameter and each contamination level.

The main indication emerging from Fig. 4 is that the MLE-ST procedure behaves
very much like the classical robust methods over a wide span of Δ. There is a slight
increase of the RMS error of MLE-ST over MM and LTS when we move to the far
right of the plots; this is in line with the known non-robustness of MLE-ST with
respect to the classical criteria. However, this discrepancy is of modest entity and
presumably it would require very large values of Δ to become appreciable. Notice
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that on the right side of the plots we are already 10 standard deviations away from
the centre of ϕ(x), the main component of distribution (8).

3.4 Empirical and Applied Work

The MLE-ST methodology has been tested on a number of real datasets and appli-
cation areas. A fairly systematic empirical study has been presented by Azzalini
and Genton (2008), employing data originated from a range of situations: multiple
linear regression, linear regression on time series data, multivariate observations,
classification of high dimensional data. Work with multivariate data involves using
the multivariate skew-t distribution, of which an account is presented in Chap.6 of
Azzalini and Capitanio (2014). In all the above-mentioned cases, the outcome has
been satisfactory, sometimes very satisfactory, and has compared favourably with
techniques specifically developed for the different situations under consideration.

Applications of the ST distribution arise in a number of fields.We do not attempt a
complete review, but only indicate some directions. One point to bear in mind is that
often, in applied work, the distinction between long tails and outlying observations
is effectively blurred.

A crystalline exemplification of the last statement is provided by the returns gen-
erated in the industry of artistic productions, especially from films and music. Here
the so-called ‘superstar effect’ leads to values of a few isolated units which are far
higher than the main body of the production. These extremely large values are out-
lying but not spurious; they are genuine manifestations of the phenomenon under
study, whose probability distribution is strongly asymmetric and heavy tailed, even
after log transformation of the original data. See Walls (2005) and Pitt (2010) for a
complete discussion and for illustrations of successful use of the ST distribution.

The above-described data pattern and corresponding explorations of use of the
MLE-ST procedure exist also in other application areas. Among these, quantitative
finance represents a prominent example and this has prompted also significant the-
oretical contributions to the development of this area; see Adcock (2010, 2014).
Another important context is represented by natural phenomena, where occasionally
extreme values jump far away from the main body of the observations; applied work
in this direction includes multivariate modelling of coastal flooding (Thompson and
Shen 2004), monthly precipitations (Marchenko and Genton 2010), riverflow inten-
sity (Ghizzoni et al. 2010, 2012).

Another direction currently under vigorous investigation is model-based cluster
analysis. The traditional assumption that each component of the underlying mixture
distribution is multivariate normal is often too restrictive, leading to an inappropriate
increase of the number of component distributions. Amore flexible distribution, such
as the multivariate ST, can overcome this limitation, as shown in an early application
by Pyne et al. (2009), but various other papers along a similar line exist, including
of course adoption of other flexible distributions.
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At least amention is due ofmethods for longitudinal data andmixed effectmodels,
such as in Lachos et al. (2010), Ho and Lin (2010).

We stress once more that the above-quoted contributions have been picked up as
the representatives of a substantially broader collection, which includes additional
methodological themes and application areas. A more extensive summary of this
activity is provided in the monograph of Azzalini and Capitanio (2014).

In connection with applied work, it is appropriate to underline that care must be
exercised in numerical maximization of the likelihood function, at least with certain
datasets. It is known that fitting a classical Student’s t distributionwith unconstrained
degrees of freedom can be problematic, especially in the multivariate case; the inclu-
sion of a skewness parameter adds another level of complexity. It is then advisable
to start the maximization process from various starting points. In problematic cases,
computation of the profile likelihood functionwith respect to ν can be a useful device.
Advancements on the reliability and efficiency of optimization techniques for this
formulation would be valuable.

4 Concluding Remarks

The overall message which can be extracted from the preceding pages is that flexi-
ble distributions constitute a credible approach to the problem of robustness. Since
it does not descend from the canonical scheme of classical robust methods, this
approach cannot meet the classical robustness optimality criteria. However, these
criteria are targeted to offer protection against extreme situations which in real data
are not so commonly encountered, perhaps even seldom encountered. In less extreme
situations, but still allowing for appreciable departure from normality, flexible distri-
butions, specially in the representative case of the skew-t distribution, offer adequate
protection against problematic situations, while providing a fully specified probabil-
ity model, with the qualitative advantages discussed in Sect. 2.2.

We have adopted the ST family as our working parametric family, but the reasons
for this preference, explained briefly above and more extensively by Azzalini and
Genton (2008), are not definitive; in certain problems, it may well be appropriate to
work with some other distribution. For instance, if one envisages that the problem
under consideration contemplates departure from normality in the form of shorter
tails or possibly a combination of longer and shorter tails in different subcases, and
the setting is univariate, then the Subbotin distribution and its asymmetric variants
represent an interesting option.
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Determining the Number of Clusters Using
Multivariate Ranks

Mohammed Baragilly and Biman Chakraborty

1 Introduction

Most of the clustering algorithms available in the literature require the number of
clusters to be fixed a priori. That makes the determination of the number of clusters
a very important problem in cluster analysis for multivariate data. Over the last
40years, a wealth of publications have introduced and discussed many graphical
approaches and statistical algorithms to determine the cluster sizes and the number
of clusters. However, there is no universally acceptable solution to this problem due
to the complexity of the high-dimensional real data sets. It is also well known that
using different clustering methods may give different numbers of clusters.

As an example, a biologist would like to find out the clusters from the DNA
microarray data on gene expressions, and consequently detecting the classes or sub-
classes of diseases.Other common examples are in the research areas of the taxonomy
of animals and plants, in construction of phylogenetic trees, handwriting recognition
and measuring the similarities of the different languages. A good collection of the
cluster analysis examples are available in Hartigan (1975), Gan et al. (2007) and
Everitt et al. (2011).

In a model-based clustering approach, one may assume that the d-dimensional
data X1, . . . ,Xn are coming from a mixture probability density function

f (x) = p1 f1(x) + · · · + pk fk(x) (1)
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where f1, . . . , fk are d-dimensional unimodal density functions and p1, · · · , pk are
the mixing proportions with p1 + · · · + pk = 1. In most of the traditional clustering
algorithms like k-means, the number of densities k is assumed to be known and the
density functions f1, · · · , fk are estimated parametrically. Mixing proportions are
estimated differently in different algorithms (Hartigan 1975). However, an important
problem is to find the number of clusters k itself. The early works on cluster number
determination methods were from Thorndike (1953), Friedman and Rubin (1967),
Beale (1969), Marriott (1971), Duda and Hart (1973), Calinski and Harabasz (1974),
Hartigan (1975). Along the line of all the previous methods, there are many other
attempts and algorithms have been suggested in order to estimate the number of
clusters (e.g., Mojena (1977), Krzanowski and Lai (1985), Milligan and Cooper
(1985), Kaufman andRousseeuw (1990), Overall andMagee (1992), Gordon (1998),
Tibshirani et al. (2001), Sugar and James (2003)). The focus of these clustering
stopping-rules (indices) are on computing some criterion function for each cluster
solution and then one chooses the solution that indicates most distinct clustering.
Most of these standard approaches depend on within and between cluster variations.
In this work, we explore a proposal to determine the number of clusters, k, as well
as mixing proportions p1, · · · , pk visually using a forward search algorithm.

The main idea of a forward search algorithm is to grow the cluster size starting
from an initial subset of observations based on some kind of distancemeasure. It plots
a statistic against the size of the subset for easy detection of clusters. The traditional
forward search approach based on Mahalanobis distances have been introduced by
Hadi (1992), Hadi and Simonoff (1993), where they considered a forward search,
which terminates when the subset size m is the median of the number of observa-
tions, while a similar method used by Atkinson and Mulira (1993), Atkinson (1994)
continues untilm = n, the sample size. Atkinson et al. (2004) introducedmany appli-
cations of the forward search in the analysis of multivariate data. A good overview
of the forward search and its applications is available in Atkinson et al. (2010).

All the previous literature assumedMahalanobis distance as the distance measure
to be used in the forward search procedure. It iswell known thatMahalanobis distance
is invariant under all nonsingular transformations and it also performs well with
the Gaussian mixture models (GMM), however, it cannot be correctly applied to
asymmetric distributions and more generally to distributions, which depart from the
elliptical symmetry assumptions. In order to address this limitation, in this paper, we
propose a new forward search methodology based on spatial ranks and volume of
central rank regions (Chaudhuri 1996; Serfling 2002) to tackle the problem of heavy
tailedmixture distributionswith higher dimensional data. For last twodecades, spatial
ranks are being used in analyzing multivariate data nonparametrically. They are easy
to compute, but do not depend on parameter estimates of the underlying distributions,
which make them robust against distributional assumptions. Koltchinskii (1997) also
proved that the spatial ranks characterize a multivariate distribution.

The remainder of the paper is organized as follows. In Sect. 2, we introduce the
forward search method based on spatial ranks and volume of central rank regions. In
Sect. 3.1, we give some numerical examples based on simulated data sets to show the
performance of the proposed algorithmwhen some heavy tailedmixture distributions



Determining the Number of Clusters Using Multivariate Ranks 19

under the elliptic symmetry case are considered. Section3.2 demonstrates the results
of two real data sets compared to some standard methods. Finally, we present some
concluding remarks in Sect. 4.

2 Forward Search with Multivariate Ranks

For x ∈ R
d , the multivariate spatial sign function is defined as

sign(x) =
{ x

‖x‖ if x �= 0
0 if x = 0

(2)

where ‖x‖ is the Euclidean norm such that; ‖x‖ =
√
x21 + x22 + ... + x2d . Note that

this is nothing but the direction of the d-dimensional vector x.
Suppose that X ∈ R

d has a d-dimensional distribution F , which is assumed to
be absolutely continuous throughout this paper, then the multivariate spatial rank
function of the point x ∈ R

d with respect to F can be defined as

RankF (x) = EF

(
x − X

‖x − X‖
)

. (3)

Now suppose thatX1,X2, . . . ,Xn ∈ R
d is a random sample with distribution F , then

the sample version of the multivariate spatial rank function of x ∈ R
d with respect

to X1,X2, . . . ,Xn is given by

RankFn (x) = 1

n

n∑
i=1

Sign(x − Xi ) = 1

n

n∑
i=1

x − Xi

‖x − Xi‖ . (4)

It can be clearly noticed that, when RankF (x) = 0, x is the spatial median and
RankF (x) = u implies that x is the uth geometric quantile (Chaudhuri 1996) of F .

In the forward search algorithm, let S(m) be a subset of size m at a particular
stage. Then define the spatial ranks of individual observations corresponding to the
subset S(m) as

ri (m) = 1

m

∑
j∈S(m)

Xi − X j

‖Xi − X j‖ (5)

for i = 1, . . . , n. Let us now introduce the forward search procedure based on the
multivariate spatial ranks.
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Forward search algorithm with spatial ranks

1. In order to start the search, we need to choose an initial subset. Suppose that S(m)

is the initial subset withm = d + 1, then one search can be run from this starting
point.

2. Calculate the spatial ranks ri (m) depending on the observations in the subset
S(m).

3. Compute rmin(m), where rmin(m) = min ‖ri (m)‖; i /∈ S(m).
4. Grow the subset S(m) to S(m + 1) by taking m + 1 observations Xi ’s, which

correspond to smallest m + 1 ‖ri (m)‖’s. Set m = m + 1.
5. Iterate 2 − 4 until m = n − 1.
6. The forward plot of the spatial ranks can be obtained by plotting the rmin(m)

against the corresponding subset sizes m.

This algorithm is computationally easy and straightforward.When the points in S(m)

belong to the same cluster, ‖ri (m)‖ for a point Xi belonging to the same cluster is
expected to be smaller than that of point from a different cluster. Even if our initial
subset contain points from different clusters, the algorithm will ensure that S(m)

will move to a single cluster as it grows in size and is constructed by taking points
with smallest ranks. So whenever S(m) grows bigger than the cluster it originally
belonged to, we expected to see a jump in the magnitude of the rank function as the
nearest point to S(m) is then from a different cluster. However, we can observe that
‖rankF (x)‖ < 1 for all x ∈ R

d . Thus, all ‖ri (m)‖’s are bounded by 1. Hence, even
if a particular point Xi , is far from the cluster S(m), the corresponding ‖ri (m)‖ may
not be very large compared to an observation X j , which is an extreme observation
in S(m). For this reason, the plot of rmin(m) against m may not show any sharp
increase even when we include a point from a different cluster, and it becomes
visually difficult to detect the clusters. To enhance the visual detection of clusters,
we modify the algorithm using central rank regions determined by rmin(m). Central
rank regions are defined as

CF (r) = {x : ‖rankF (x)‖ ≤ r} , 0 < r < 1. (6)

One can define the (real-valued) volume functional of the multivariate central
ranks region as

VF (r) = volume(CF (r)), 0 ≤ r < 1. (7)

Serfling (2002) pointed out that as an increasing function of r , VF (r) characterizes
the spread of F in terms of expansion of the central regionsCF (r). For each r , VF (r)
is invariant under shift and orthogonal transformations, and VF (r)1/d is equivariant
under homogeneous scale transformations.

We modify Step 6 of the above algorithm and produce a forward plot of the
volume functional, vol(m) against the subset size m, where vol(m) is the volume of
the central rank region determined by rmin(m), i.e., vol(m) = VS(m)(rmin(m)) based
on the subset S(m). Note that, as soon as we include a point from a different cluster
in the subset, the volume of the central rank region increases substantially and then it
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may remain around that large volume as it includes more and more points from that
cluster and wemay see a sharp decrease in volume after some time if the subset S(m)

moves to the new cluster completely. However that depends on the relative cluster
sizes and how far they are from each other. Eventually, points from all clusters will
be in S(m) and the volume of the central rank regions will grow with m.

In order to compute the volume of the central rank regions, we first compute
a discretized boundary of CF (r) by computing geometric quantiles corresponding
to index vector u with ‖u‖ = r following Chaudhuri (1996). Then the volume of
the discretized central rank region CF (r) is computed using the quickhull algorithm
of Barber et al. (1996), which was implemented in the R package geometry. The
computation of volumes may be computationally expensive in very high dimensions.
This computational simplification produces an estimate of the volume of CF (r),
however, the precision of the estimate increases with the increase in the number of
points chosen on the boundary. We may need to choose the level of discretization
sensibly to balance between the computational time and accuracy in estimation. As
this is a visualization tool, even if our estimate of volume is not too precise, we are
still able to see the distinct jumps for the clusters when they are well separated.

In principle, the initial subset size can be anything more than 1 as the rank of any
x ∈ R

d with respect to a single data point is always 1 and we cannot proceed in our
algorithm. Also, note that in the modified version of the algorithm, we are computing
volumes of central rank regions and as wementioned earlier that the volume provides
ameasure of scale, the computation of volumes aremeaningful onlywhen the number
of observations are at least d + 1. Thus, purely for more stability in the algorithm,
we choose an initial subset size of d + 1. If there are large number of clusters and
all are with sizes smaller than d + 1, then our algorithm will not be able to estimate
the number of clusters efficiently, but that is a rarity for large sample size n.

3 Numerical Examples

We present some systematic evaluations of the proposed forward search algorithms.
In the first example, we present the forward searches based on both of spatial ranks
and volume of central rank regions on simulated data from three different mixture
distributions, namely, multivariate normal, multivariate Laplace and multivariate t
with three degrees of freedom for dimensions 2 and 3. Finally, we compare the
performance of the forward search based on volume of central rank regions for two
different real data sets with two popular clustering methods: mclust approach (Fraley
and Raftery 2003) where the best number of groups is chosen according to BIC and
k-means where the best number of groups is chosen according to CH index.
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3.1 Simulated Data Examples

In the first example, we consider three bivariate mixture distributions with ellip-
tic symmetry. For mixture normal distribution, we take X1,X2, . . . ,Xn ∈ R

d as a
random sample from bivariate mixture normal distribution,

p.N2 (μ1,Σ) + (1 − p).N2 (μ2,Σ) , (8)

where μ1 = (0, 0)�, μ2 = (5, 5)�, Σ =
(

1 0.5
0.5 1

)
and p = 0.3. For the second

case, we consider multivariate Laplace distribution, Lapd(μ,Σ)with the probability
density function,

f (x) ∝ 1

|Σ | 1
2

e−
√

(x−μ)�Σ−1(x−μ), (9)

and consider a random sample from the bivariate mixture Laplace distribution,

p.Lap2 (μ1,Σ) + (1 − p).Lap2 (μ2,Σ) , (10)

with μ1, μ2, Σ and p as before. For the third case, we consider the multivariate
Student’s t-distribution with ν degrees of freedom, td(ν;μ,Σ) with the probability
density function,

f (x) = Γ [(ν + d)/2]

Γ (ν/2)νd/2πd/2 |Σ |1/2 [
1 + 1

ν
(x − μ)�Σ−1(x − μ)

](ν+d)/2
, (11)

and consider a random sample from bivariate mixture t-distribution with ν = 3
degrees of freedom,

p.t2 (3;μ1,Σ) + (1 − p).t2 (3;μ2,Σ) . (12)

In all three cases considered, we generate samples of n = 100 observations and
produce forward search plots with 100 randomly chosen initial subsets for each as
considered in Atkinson and Riani (2007). Our objective is to determine the subsets
for the trajectories where there is evidence of a cluster structure. Since our generated
data coming frommixturemodels,withmixture proportions (p = 0.3, 1 − p = 0.7),
we expect to get a clearly common structure around subsets with sizes 30 and 70
respectively. Figure1 is a forward plot of minimumMahalanobis distances from 100
random starts for samples size n = 100 from bivariate mixture normal, Laplace and
t distributions with correlated variables. As we can see, only for the normal distribu-
tion, there is a common structure around subsets with sizes 30 and 70, respectively.
However, the forward plot based on Mahalanobis distance failed to give us a reason-
able result for both Laplace and Student’s t distributions.
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Fig. 1 Forward plot of minimumMahalanobis distances from 100 randomly chosen initial subsets
for sample size n = 100 from bivariate mixture normal, Laplace and t distributions (clockwise from
upper left)

Figure2 is a forward plot of minimum spatial ranks from 100 random starts for
the same simulated data. It can be clearly noticed that there are many different
values of rmin(m) presented in many trajectories. Moreover, the three plots in Fig. 2
show that there is clearly common structure around subsets with sizes 30 and 70
respectively, where there are two clear maxima in these plots, one atm = 30 and the
other at m = 70, suggesting the existence of two clusters. So these plots lead to the
division of the data into two clusters, which means that the forward search based on
spatial ranks performs well with the three elliptically symmetric distributions, and it
outperforms the one based onMahalanobis distances for Laplace and t distributions.
However, as mentioned earlier, the spatial ranks are bounded by 1 and hence do not
produce a good visual effect to detect clusters in an easier way.
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Fig. 2 Forward plot of minimum spatial ranks from 100 randomly chosen initial subsets for sample
size n = 100 from bivariate mixture normal, Laplace and t distributions (clockwise from upper left)

Now, we consider the forward plot based on the volume of central rank regions.
Figure3 is a forward plot of minimum volume functional of central rank regions from
100 random starts for samples size n = 100 from bivariate mixture normal, Laplace
and t distributions with correlated variables. The three plots in Fig. 3 show that there
is clearly a common structure around subsets with sizes 30 and 70 respectively, where
there are two clear maxima in these plots, one at m = 30 and the other at m = 70,
suggesting the existence of two clusters. So these plots also lead to the division of
the data into two clusters. Compared to the forward search based on Mahalanobis
distances and spatial ranks, the forward plot based on volumes of central rank regions
gives better results, specially in Laplace and t distributions, where it gives plots with
a clearer structure around subsets with sizes 30 and 70. Moreover, it is more accurate
in the purpose of visualization since we can easily determine the number of clusters
from the plot based on volume of central rank regions. Thus, it should be concluded
that the forward search based on volume of central rank regions outperforms forward
search based on Mahalanobis distances and spatial ranks.
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Fig. 3 Forward plot of minimum volume functional of central rank regions from 100 randomly
chosen initial subsets for sample size n = 100 from bivariate mixture normal, Laplace and t distri-
butions (clockwise from upper left)

In the next example, we consider trivariate mixture distributions of normal,
Laplace and Student’s t with three degrees of freedom, as before with

μ1 =
⎛
⎝0
0
0

⎞
⎠ , μ2 =

⎛
⎝5
5
5

⎞
⎠ , Σ =

⎛
⎝1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

⎞
⎠ . (13)

The mixing proportion p is again taken to be 0.3. Figure4 is a forward plot of
minimumMahalanobis distances. Like Fig. 1, the forward plot based onMahalanobis
distances failed to give us a common structure around subsets with sizes 30 and 70 in
Laplace and Student’s t distributions. The only reasonable result was for the trivariate
mixture normal distribution.
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Fig. 4 Forward plot of minimumMahalanobis distances from 100 randomly chosen initial subsets
for sample size n = 100 from trivariate mixture normal, Laplace and t distributions (clockwise from
upper left)

Figure5 is a forward plot of minimum spatial ranks. There are two clear max-
ima one around m = 30 and the other around m = 70, which can be considered as
indicator of the existence of two clusters. Compared to Fig. 4, we can see that Fig. 5
gives better results, where it gives plots with a clearer structure around the subsets
with sizes 30 and 70, which means that the forward search based on spatial ranks
gives better result for the data with higher dimensions. Moreover, it outperforms the
one based on Mahalanobis distances for Laplace and t distributions.

On the other hand, for the forward search based on volume of central rank regions,
we can notice fromFig. 6 that the performance has been also improved, where it gives
two very clear maxima at m = 30 and at m = 70 and better than Fig. 5 as well.



Determining the Number of Clusters Using Multivariate Ranks 27

20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

Subset size m

S
pa

tia
l R

an
k

20 40 60 80 100

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Subset size m

S
pa

tia
l R

an
k

20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

Subset size m

S
pa

tia
l R

an
k

Fig. 5 Forward plot of minimum spatial ranks from 100 randomly chosen initial subsets for sample
size n = 100 from trivariate mixture normal, Laplace and t distributions (clockwise from upper left)

In Fig. 7, we present an example of a forward plot based on volumes of central rank
regions,where the data is simulated fromamixture of 3 bivariate normal distributions,

p1N2(μ1, I) + p2N2(μ2, I) + (1 − p1 − p2)N2(μ3, I),

whereμ1 = (0, 4)�,μ2 = (−4,−4)�,μ3 = (4,−4)� and p1 = 0.2, p2 = 0.3.With
trajectories from 100 randomly chosen initial subsets, we see a clear pattern of three
cluster sizes here.

3.2 Real Data Examples

The first dataset we consider is known as the Old Faithful Geyser Data, which are
taken from Azzalini and Bowman (1990) and the MASS library Venables and Rip-
ley (2002). This data gives the waiting time between eruptions and the duration of
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Fig. 6 Forward plot of minimum volume functional of central rank regions from 100 randomly
chosen initial subsets for sample size n = 100 from trivariate mixture normal, Laplace and t distri-
butions (clockwise from upper left)

the eruption in minutes for the Old Faithful geyser in Yellowstone National Park,
Wyoming, USA, with two apparent groups in the data. The analysis of this data
using the standard forward approach based on Mahalanobis distances had been done
in Atkinson and Riani (2012). It includes 272 observations with two variables, x1i :
the duration of the i th eruption and x2i : the waiting time to the start of that eruption
from the start of eruption i − 1. For the k-means, the selection criterion that we use
is the CH-index (Calinski and Harabasz 1974), where we use it to estimate the num-
ber of clusters that k-means algorithm should start with it, and for the BIC criterion
we use the mclust library (Fraley and Raftery 2003), where Fraley and Raftery
(2003) assumed 10 models of the parameterization of the Gaussian mixture models
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Fig. 7 Forward plot based on volumes of central rank regions with 100 randomly chosen initial
subsets for a mixture bivariate normal data set with 3 mixing densities

(parsimonious models) introduced earlier by Banfield and Raftery (1993). Figure8
shows the behavior of the CH-index, k-means, BIC, and forward search with volume
of central rank regions. The upper left and right panels of Fig. 8 are the CH-index plot
which indicates ten clusters and the clustering with k-means respectively. Clearly,
the k-means behaves so poorly in this real dataset, where it failed to give us the right
clustering. On the other hand, from the lower left panel we can see that the best
model according to BIC is an equal-covariance model with three clusters, where the
maximum value of the BIC criterion among the 10 parsimonious models was for
the EEE model (BIC = −2314.386) with similarly shaped covariance matrices, and
the next best model had four clusters (BIC = −2320.207) with the same covariance
structure. This indicates that the mclust approach based on BIC criterion failed to
give the right number of clusters as well as k-means method. For our methodology,
the lower right panel of Fig. 8 shows the forward plot of volume functional of central
rank regions among units not in the subset from 100 random starts for Old Faith-
ful data. There are two clear maxima in this plot, one at m = 105 and the other at
m = 179, suggesting the existence of two clusters. This in fact considers a better
result compared to k-means and mclust approach.

The second real dataset used in this article, is a financial data contains mea-
surements on three variables monitoring the performance of 103 investment funds
operating in Italy sinceApril 1996 [Table A.16 of Atkinson et al. (2004)]. These three
variables are, y1: short term (12month) performance, y2: medium term (36month)
performance, and y3: medium term (36month) volatility. Additionally, this data



30 M. Baragilly and B. Chakraborty

2 4 6 8 10

15
00

20
00

25
00

K

C
H

 in
de

x 
sc

or
e 

C
H

(K
)

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

eruptions

w
ai

tin
g

2 4 6 8

−
40

00
−

35
00

−
30

00
−

25
00

Number of components

B
IC

EII
VII
EEI
VEI
EVI

VVI
EEE
EEV
VEV
VVV

0 50 100 150 200 250

0
20

40
60

80
10

0
12

0
14

0

Subset size m

V
ol

um
e 

of
 C

en
tr

al
 R

an
k

Fig. 8 Old Faithful data: clockwise from upper left: CH index suggests k = 10, k-means with 10
clusters, BIC plot suggesting 3 clusters with best BIC values for EEE model, and forward plot of
volumes of central rank regions with 100 randomly chosen initial subsets; two clusters are evident
at m = 105 and 179

include two different kinds of fund, since the units 1–56 are all stock funds whereas
units 57–103 are balanced funds. Atkinson et al. (2004) and Atkinson et al. (2006)
applied their forward search method based onMahalanobis distances to cluster these
financial data and introduced detailed analysis of it. According to Fig. 9, like our
method, k-means indicated two clusters, while the mclust approach based on BIC
again failed to give the true number of clusters, where the maximum value of the BIC
criterion was for the EEEmodel (BIC = −1664.278). The lower right panel of Fig. 9
is a forward plot based on volume of central rank regions among units not in the sub-
set. There are two clear maxima again one at m = 44 and the other at m = 56 which
leads to the division of the data into two clusters showing the successful clustering
of our method.
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Fig. 9 Financial data: clockwise from upper left: CH index suggests k = 2, k-means with two
clusters, BIC plot suggesting six clusters with best BIC values for EEE model, and forward plot of
volumes of central rank regions with 100 randomly chosen initial subsets; two clusters are evident
at m = 44 and 56

4 Concluding Remarks

A forward search algorithm is considered in this article, which is based on nonpara-
metric multivariate spatial rank functions and it is robust in terms of determining the
number of clusters by the data itself. Using nonparametric approaches helps to get
techniques which are less sensitive to the statistical model assumptions, and solve
problems such as the heavy tailed distributed data with high level of correlation
among the variables. The forward search plots based on spatial ranks show that the
algorithm performs well under heavy tailed mixture distributions with elliptic sym-
metry and it outperforms the forward search based on Mahalanobis distances for
nonnormal mixture distributions. The modified forward search plots based on vol-
ume of central rank regions outperforms the forward search based on Mahalanobis
distances and spatial ranks as illustrated in the numerical examples. More visually
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clear results have been obtained using the volume of central rank regions, since it
gives forward plots with a clearer structure of clusters.

In all of numerical examples, the mixture densities f1, . . . , fk are from the same
family of distributions. We should mention that it is not necessary to assume them to
be coming from the same parametric family as we are not estimating any parameters
in our proposed visual tool. This is one of the greatest advantages of the proposed
method. However for large number of clusters, the proposed forward search plots
may produce too many peaks and makes it very difficult visually to determine the
number of clusters and the cluster sizes. At present, we do not have any formal
procedure to estimate the number of clusters from this plot, and we are looking into
that problem as a future research project. With a formal procedure, we should able
to validate the estimate against the model assumptions.

It is well known that spatial ranks are invariant under orthogonal transforma-
tions, but they are not invariant under general affine transformations of the data and
hence the proposed algorithms are not affine invariant. To make the algorithms affine
invariant, onemay look for affine invariant versions of spatial ranks (see for example,
Chakraborty 2001) and follow the same algorithm to construct the forward search
plot. To keep the simplicity of the algorithms and to save on computational time, we
refrained from using affine invariant versions of spatial ranks in this work. Using
affine invariant ranks may improve the results if the scales of different clusters are
not similar.
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Robust and Sparse Estimation of the Inverse
Covariance Matrix Using Rank Correlation
Measures

Christophe Croux and Viktoria Öllerer

1 Introduction

We have a sample of n multivariate observations, and for each of these observations
we measure p variables. The resulting data can be collected in a data matrixXwhere
the observations are the rows of the data matrix, and each variable corresponds to a
column of the data matrix. The data matrix X has np cells, where a cell contains a
univariate measurement xij

X =
⎛
⎜⎝
x11 . . . . . . x1p
...

...
...

...

xn1 . . . . . . xnp

⎞
⎟⎠ .

Typically, these data matrices are thin, with n much larger than p. But in this paper
focus is on fat data matrices with more columns than rows. Fat data matrices often
occur in practice. For instance in medicine where hundreds of variables are measured
for a limited set of patients. The transposed rows ofX are denoted as x1, . . . , xn, with
xi ∈ R

p. The columns of the data matrix are denoted as x1, . . . , xp ∈ R
n.

We assume that the observations are a random sample of a multivariate normal
distributionwithmeanμ and covariancematrixΣ . This covariancematrix is assumed
to be positive definite, hence, all its eigenvalues are strictly positive. The aim is to
estimate the unknown parameters μ and Σ from the data such that (i) the estimators
are resistant to outlying cells (ii) the estimate of Σ is positive definite.

In high dimensions, the occurrence of outliers is to be expected. Data are collected
less carefully, often in an automatic and inaccurate way. Gross-errors can occur.
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Moreover, the size of the data set and the large number of variables makes outlier
detection using visualization cumbersome. Therefore, estimators should be robust
to outlying values xij, hence outlying cells. In the traditional literature on robust
statistics (seeMaronna et al. 2006, for amore recent textbook), one considers outlying
observations, and anobservation is already anoutlier if only oneof its cells is outlying.
In high dimensions, the notion of outlying cells is more appropriate. Indeed, take
p = 200 > n = 100 and assume that every cell xii, for 1 ≤ i ≤ n is an outlier. Then
all observations are outliers, suggesting that robust estimation would be impossible.
But only 0.5% of the cells are outliers. This contamination model, as well as more
general settings appropriate for high-dimensional data, are introduced in Alqallaf
et al. (2009). They also discuss challenges in high-dimensional robust analysis and
take steps tomeasure robustness in these general contamination settings. In Sect. 4we
define the concept of breakdown point under cellwise contamination, as introduced
in Öllerer and Croux (2015). The estimators advocated in this paper have a high
breakdown point according to this definition, showing that robust estimators do exist
in high dimensions. One only needs to reconsider what appropriate measures for
robustness are in high dimensions.

The sample covariance matrix estimator

Σ̂ = 1

n − 1

n∑
i=1

(xi − x̄)(xi − x̄)� (1)

with x̄ the sample average is not only nonrobust, it also has the problem that it is
only positive semidefinite. Some of its eigenvalues will be zero if p ≥ n. Hence,
its inverse is not existing. In multivariate statistics one often needs the inverse: to
compute Mahalanobis distances, for Fisher discriminant analysis, . . . Therefore, we
want to have an estimator of Σ that is always positive definite. We can achieve this
in many ways, but a popular choice is the Graphical Lasso, or Glasso, of Friedman
et al. (2008). Glasso takes a positive semidefinite covariance matrix estimator as an
input, and returns a positive definite one. A particular feature of Glasso is that the
resulting estimator of the inverse covariancematrix is also sparse, meaning that many
of its element are exactly equal to zero. We denote the inverse covariance matrix, or
precision matrix, as Θ = Σ−1. The classical Glasso estimator takes the nonrobust
sample covariance matrix as an input, thus, it is only suitable for clean data that do
not contain any outliers. Therefore, we will replace the sample covariance matrix
with a robust covariance estimate and show that this indeed leads to a robust precision
matrix estimate.

In Sect. 2, we define the estimators of the precision matrix to be studied. They
are robust to cellwise outliers, and give sparse and positive definite estimates of Θ .
In Sect. 3, we give some R code to show how easily the estimates can be computed.
Theoretical results are presented in Sect. 4. The different estimators are compared
in Sect. 5 by means of a simulation experiment. Section6 shows how the estimators
have been used for graphical modeling. Section7 contains some final discussion.
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2 Estimators

We follow the approach of Tarr et al. (2016) for constructing sparse and robust
precision matrices. In a first step, we construct a robust estimator S of the covariance
matrix. In a last step, S serves as an input of Glasso, resulting in a sparse and robust
estimator Θ̂S of the precision matrix

Θ̂S = argmax Θ=(θjk)∈Rp×p

Θ�0
log det(Θ) − tr(SΘ) − λ

p∑
j,k=1

|θjk|, (2)

where the maximization is over all positive definite matrices Θ � 0. The algorithm
for solving (2) requires the input matrix S to be symmetric and positive semidefinite.
A stable implementation of Glasso is given in the R-package huge (Zhao et al.
2014a). The parameter λ in (2) controls for the sparsity of the solution: the larger λ,
the sparser the precision matrix estimate. We compute Θ̂S over a logarithmic spaced
grid of ten values, as is done by default in the huge-package. The final solution is
then the one with lowest value of the following Bayesian Information Criterion (see
Yuan and Lin 2007)

BIC(λ) = − log det Θ̂S + tr(Θ̂SS) + log n

n

∑
i≤j

êij(λ). (3)

with êij = 1 if (Θ̂S)ij �= 0 and êij = 0 otherwise. Note that Θ̂S depends on λ.

2.1 Two-Step Estimators

So how do we choose S? Tarr et al. (2016) propose to use the robust covariance of
Gnanadesikan and Kettenring (1972) between xj and xk for sjk , with sjk an element of
S. Öllerer and Croux (2015) showed that this choice leads to some loss of robustness
and a too high computational cost. Instead they propose to use

sjk = scale(xj) scale(xk)r(xj, xk) j, k = 1, . . . , p. (4)

As scale estimator scale() the robust Qn-estimator (Rousseeuw and Croux 1993) is
taken, which has the highest possible breakdown point of all scale estimator and is
quite efficient at the normal model. For the correlation r(xj, xk) Öllerer and Croux
(2015) considered the following three choices:

• The Quadrant correlation, defined as

rQuadrant(xj, xk) = 1

n

n∑
i=1

sign((xij − med�=1,...,n x�j)(xik − med�=1,...,n x�k)), (5)
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where sign(·) denotes the sign-function. The use of Quadrant correlation was
advocated in Alqallaf et al. (2002).

• The Spearman correlation defined as the sample correlation of the ranks of the
observations

rSpearman(xj, xk) =
n∑

i=1

(R(xij) − n+1
2 )(R(xik) − n+1

2 )√∑n
i=1(R(xij) − n+1

2 )2
∑n

i=1(R(xik) − n+1
2 )2

, (6)

withR(xij) the rank of xij among all elements of xj, for any 1 ≤ j ≤ p and 1 ≤ i ≤ n.
• The Gaussian rank correlation defined as the sample correlation estimated from
the normal scores of the data

rGauss(xj, xk) =
∑n

i=1 Φ−1(
R(xij)
n+1 )Φ−1(R(xik)

n+1 )∑n
i=1(Φ

−1( i
n+1 ))

2
, (7)

where Φ(·) is the cumulative distribution function of a standard normal.

In this paper, we also consider a fourth correlation measure.

• Kendall correlation (Kendall 1938) is based on signs

rKendall(xj, xk) = 2

n(n − 1)

∑
1<i≤i′<n

sign((xij − xi′j)(xik − xi′k)). (8)

Its drawback is the slow computation. Even though there exists a O(n log n) algo-
rithm (implemented as cor.fk() in the R-package pcaPP (Todorov et al.
2014)), it is somewhat slower than the computation of Spearman correlation.

The robustness and efficiency properties of the Quadrant, Kendall, and Spearman
correlation are studied in Croux and Dehon (2010), and of the Gaussian rank corre-
lation in Boudt et al. (2012). Using these correlation measures, combined with (4),
yields positive semidefinite covariance matrices.

2.2 Three-Step Estimators

The Quadrant, Kendall, and Spearman correlation are not consistent at the bivariate
normal distribution. This means that Quadrant, Kendall, and Spearman correlation
between two variables having a joint normal distribution with correlation ρ do not
estimate ρ, not even if the sample size is infinite. The corresponding S is not a
consistent estimator of Σ and has an asymptotic bias. To resolve this inconsistency,
the following transformations need to be applied:

r̃Quadrant = sin(
π

2
rQuadrant), (9)
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Fig. 1 Plot of the transformations ρ → sin(πρ/2) and ρ → 2 sin(πρ/6) needed for making Quad-
rant/Kendall and Spearman correlation consistent, together with the 45◦ line

r̃Kendall = sin(
π

2
rKendall), (10)

r̃Spearman = 2 sin(
π

6
rSpearman). (11)

Hence, to get consistency, the transformed Spearman, Kendall, and Quadrant cor-
relation need to be plugged into (4). It is instructive to plot the transformations (9),
(10) and (11). We see from Fig. 1 that the asymptotic bias of the Spearman correla-
tion is very small; the transformation pushes the Spearman correlation only slightly
upwards. On the other hand, the Quadrant and Kendall correlations are more severely
underestimating the population correlation ρ.

Unfortunately, the resulting S will not be positive semidefinite anymore, and
cannot be used safely as input for Glasso. Therefore, an additional step to make S
positive semidefinite is needed before Glasso can be applied.We implement two easy
ways to do this, but other possibilities do exist (see Zhao et al. 2014b). Denote λj

and vj the eigenvalues and eigenvectors of the matrix S, respectively, for 1 ≤ j ≤ p.
Since S is symmetric, these eigenvalues exist as real numbers, but may be negative.

1. The perturbation method is an heuristic approach often used in regularization.
One simply adds a nonnegative value to all diagonal elements of S

Sperturb = S + |min(0,min
j

λj)| I. (12)

It is immediate to see that the resulting covariance matrix has no negative eigen-
values any more.
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2. Rousseeuw and Molenberghs (1993) proposed to use

Snpd =
p∑

j=1

max(0, λj)vjvtj . (13)

It has been shown (e.g., Zhao et al. 2014b) that Snpd is the positive semidefinite
matrix nearest to S, where nearness is measured with the Frobenius matrix norm.
Hence the abbreviation npd, nearest positive (semi)definite matrix.

So three steps are needed: (i) compute S (ii) make it a positive semidefinite matrix
using (12) or (13) (iii) compute Glasso using the step twomatrix as input. These three
steps have been used in Tarr et al. (2016) as well, using the npd algorithm of Higham
(2002) and a different choice of S. An advantage of the Gaussian rank correlation
(7) is that it is already consistent at the normal distribution, without any additional
transformation needed. Then a two-step approach is sufficient.

3 Computation

In this section, we show how easily the sparse and robust precision matrix estimators
can be computed in the software package R. In case an estimate of Σ is needed, one
simply needs to invert the estimated precisionmatrix. The function below implements
the Eqs. (12) and (13); the input is a symmetric matrix sigma the output a positive
semidefinite matrix sigma.psd.

easy.psd <- function(sigma,method="perturb") {

if (method=="perturb") {

p <- ncol(sigma)

eig <- eigen(sigma, symmetric=TRUE, only.values=TRUE)

const <- abs(min(eig$values,0))

sigma.psd <- sigma+diag(p)*const

}

if (method=="npd") {

eig <- eigen(sigma, symmetric=TRUE)

d <- pmax(eig$values,0)

sigma.psd <- eig$vectors%*%diag(d)%*%t(eig$vectors)

}

return(sigma.psd)

}
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Assume that the data matrix is in the matrix object x. The positive semidefinite
matrix S based on the transformed Quadrant correlation is computed by the function
below

quadrant.transformed <- function(x,method="perturb") {

x.m <- apply(x,2,median)

x <- sweep(x,2,x.m)

x.s <- sign(x)

x.q <- apply(x,2,Qn)

cor.quadrant <- sin(pi*cor(x.s)/2)

sigma.quadrant <- diag(x.q)%*%cor.quadrant%*%diag(x.q)

return(easy.psd(sigma.quadrant,method))

}

To compute the Qn scale estimator, the R-package robustbase (Rousseeuw
et al. 2015) is needed. For the transformed Spearman correlation we get the corre-
sponding S as

spearman.transformed <- function(x,method="perturb") {

x.r <- apply(x,2,rank)

x.q <- apply(x,2,Qn)

cor.sp <- 2*sin(pi*cor(x.r)/6)

sigma.sp <- diag(x.q)%*%cor.sp%*%diag(x.q)

return(easy.psd(sigma.sp,method))

}

The following function computes the positive semidefinite matrix S based on the
transformed Kendall correlation:

kendall.transformed <- function(x,method="perturb") {

x.q <- apply(x,2,Qn)

cor.kendall <- sin(pi*cor.fk(x)/2) # cor.fk(), package pcaPP

sigma.kendall <- diag(x.q)%*%cor.kendall%*%diag(x.q)

return(easy.psd(sigma.kendall,method))

}

The covariance matrix from the Gaussian rank correlations (7) is computed by the
function

Grank <- function(x) {

n <- nrow(x)

x.q <- apply(x,2,Qn)

x.r <- apply(x,2,rank)

cor.Grank <- cor(qnorm(x.r/(n+1)))

sigma.Grank <- diag(x.q)%*%cor.Grank%*%diag(x.q)

return(sigma.Grank)

}

where we recall that no transformation is needed.
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The final step is to compute Glasso, with sparsity parameter λ selected by mini-
mizing the BIC criterion (3). The huge package of Zhao et al. (2012) allows to do
this conveniently. The input of the function below is a positive semidefinite matrix
sigma.psd, and the output a sparse precision matrix estimate.

theta.sparse <- function(sigma.psd,n) {

huge.out <- huge(sigma.psd,method="glasso",verbose=FALSE)

my.bic <- -huge.out$loglik+huge.out$df*log(n)/n

opt.i <- which.min(my.bic)

return(huge.out$icov[[opt.i]])

}

For the approach based on the Spearman correlations, for instance, and given a data
matrixx, the next lines compute the positive semidefinite covariancematrix estimator
Snpd and the corresponding precision matrix ΘSnpd .

S.hat <- spearman.transformed(x,method="npd")

Theta <- theta.sparse(S.hat,n=nrow(x))

Table1 presents computation times for samples of size n = 50, averaged over
M = 10 simulation runs and over the different sampling distributions used in the
Simulation Sect. 5. Comparing the two-step and three-step estimators, one sees that
there is only a marginal increase in computation time. Comparing the perturbation
method (12) and the nearest positive definite approach (13) one sees that the pertur-
bation method is faster, but the relative difference is marginal. Kendall is as expected

Table 1 Computation time (in seconds) with n = 50 averaged overM = 10 and over all simulation
schemes

p = 3 p = 30 p = 100

2-step Quadrant 1.24 1.22 1.29

3-step Quadrant (npd) 1.24 1.23 1.28

3-step Quadrant (perturb) 1.25 1.22 1.27

2-step Spearman 1.23 1.23 1.27

3-step Spearman (npd) 1.24 1.22 1.28

3-step Spearman (perturb) 1.23 1.22 1.25

2-step Kendall 1.22 1.23 1.35

3-step Kendall (npd) 1.24 1.23 1.40

3-step Kendall (perturb) 1.23 1.20 1.29

3-step Spatial Sign (npd) 1.24 1.31 2.67

3-step Spatial Sign
(perturb)

1.21 1.32 2.67

2-step Gaussian Rank 1.24 1.23 1.29

Glasso 1.28 1.27 1.30
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a bit slower than Spearman and Quadrant. But all computation times in Table1 are
relatively close to each other, showing that almost all computation time is taken by
computing the Glasso in (2). Only the spatial sign correlation, to be explained in
Sect. 5, is considerably slower than the other approaches.

4 Breakdown Point

A definition of breakdown point appropriate for measuring robustness of high-
dimensional precision matrices is given in Öllerer and Croux (2015). Define for
any symmetric p × p matrices A and B

D(A,B) = max{|λ1(A) − λ1(B)|, |λp(A)−1 − λp(B)−1|},

where the ordered eigenvalues of a matrix A are denoted by 0 ≤ λp(A) ≤ . . . ≤
λ1(A). Then the finite-sample breakdown point under cellwise contamination of a
precision matrix estimator Θ̂ is defined as

εn(Θ̂,X) = min
m=1,...,n

{m
n

: sup
Xm

D(Θ̂(X), Θ̂(Xm)) = ∞}, (14)

where Xm denotes a corrupted sample obtained from X ∈ R
n×p by replacing in each

column at most m cells by arbitrary values. The following theorem was proven in
Öllerer and Croux (2015).

Theorem 1 The finite-sample breakdown point under cellwise contamination of the
robust precision matrix estimator Θ̂S(X) fulfills

εn(Θ̂S,X) ≥ ε+
n (S,X) (15)

with S a positive semidefinite covariance estimator.

Here we used the explosion finite-sample breakdown point under cellwise contami-
nation of a covariance matrix estimate S, defined as

ε+
n (S,X) = min

m=1,...,n
{m
n

: sup
Xm

|λ1(S(X)) − λ1(S(Xm))| = ∞}, (16)

where Xm denotes a corrupted sample obtained from X by replacing in each col-
umn at most m cells by arbitrary values. Theorem 1 shows that Glasso preserves the
robustness of the initial estimator. Moreover, Glasso prevents by construction explo-
sion of the precision matrix estimator, and one only needs explosion robustness of
the input covariance matrix S.

Consider now our proposal for S, where

sjk = scale(xj) scale(xk)r(xj, xk) j, k = 1, . . . , p.
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It was shown in Öllerer and Croux (2015) that the explosion breakdown point under
cellwise contamination of S is always larger than the explosion breakdown point
of the scale estimator used. The Qn-estimator has an explosion breakdown point of
50%, resulting in a breakdown point of 50% under cellwise contamination for the
two-step estimators of Sect. 2. But the correlation measure r in the above definition
may be the transformed Quadrant, Kendall, or Spearman correlation given in (9),
(10) and (11). In these cases, the three-step estimator discussed in Sect. 2.2 needs to
be used. The following result generalizes Proposition 1 in Öllerer and Croux (2015).

Proposition 1 Let S be the covariance estimator based on pairwise correlations as
defined in (4). Then

ε+
n (Sperturb,X) ≥ max

j=1,...,p
ε+
n (scale, xj) and ε+

n (Snpd ,X) ≥ max
j=1,...,p

ε+
n (scale, xj),

(17)

with ε+
n (scale, xj) the explosion breakdown point of the scale estimator used.

Proof We first proof the result for the perturbation method. Using the triangular
inequality, we obtain

|λ1(Sperturb(X)) − λ1(Sperturb(Xm))| ≤ |λ1(Sperturb(X))| + |λ1(Sperturb(Xm))|. (18)

From Definition (12) we get

λ1(Sperturb(Xm)) = λ1(S(Xm)) − min(0, λp(S(Xm))). (19)

Using a result from Algebra (see Seber 2008, Eq.6.26a), we have

|λr(S(Xm))| ≤ p max
i,j=1,...,p

|S(Xm)ij| ≤ p max
j,k=1,...,p

scale((Xm)j) scale((Xm)k) (20)

for all r = 1, . . . , p and any m ∈ {1, . . . , n}, where (Xm)j denotes the jth column
of matrix Xm. For the second inequality in (20) we use the fact that the correlation
measures (also the transformed ones) have an absolute value smaller than 1.

Equations (18), (19) and (20), together with the definition of the explosion break-
down point (16) show that (17) holds. The proof for the npd method is analogous,
and even more simple. Indeed, it follows immediately from (13) that

λ1(Snpd(Xm)) = λ1(S(Xm)),

where we note that a matrix with nonnegative values on the diagonal must have a
nonnegative largest eigenvalue.

The proposition above combined with Theorem 1 shows that also the three-stage
estimators have an explosion breakdown point under cellwise contamination of at
least 50%.
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5 Simulations

In this section, we perform a simulation study to compare the performance of the dif-
ferent precision matrix estimators introduced in Sect. 2. We compare the consistent
three-step estimators of Sect. 2.2 to the inconsistent two-step estimator of Sect. 2.1.
For the former, we use both methods for making the symmetric covariance matrix
positive semidefinite: the nearest positive definite matrix (npd) method and the per-
turbation method. We also include the consistent two-step estimator based on the
Gaussian rank correlation (7), for which no third step is needed. As a benchmark, we
compare with the nonrobust estimators Glasso, where the sample covariance matrix
is taken as an input in (2), and with the inverse of the sample covariance matrix (that
can only be computed if n > p).

For the sake of comparison,we also add the spatial sign correlationmatrix ofDürre
et al. (2015). It is based on pairwise spatial correlations, which are then transformed
such that the final estimator is consistent at the normal distribution. As a result, the
spatial sign correlation matrix is not necessarily positive semidefinite, and either the
npd method or the perturbation method need to be applied prior to using the matrix
in Glasso, thus, it is a three-step procedure. The spatial sign correlation matrix can be
computed with the function sscor of the R-package sscor. One could also look
at the two-step procedure, the spatial sign correlations without the transformation,
but since this is not implemented in R directly, we limit ourselves to the three-step
approach.

The setup of the simulation study is taken over from Öllerer and Croux (2015).
We use four sampling schemes to cover different patterns of the precision matrix
Θ0 ∈ R

p×p

• ‘banded’: (Θ0)ij = 0.6|i−j|
• ‘sparse’: Θ0 = B + δIp with P[bij = 0.5] = 0.1 and P[bij = 0] = 0.9 for i �= j.
The parameter δ is chosen such that the condition number of Θ0 equals p. Then
the matrix is standardized to have unit diagonals. The same matrix is used for all
simulation runs.
To find the specific value of δ, we numerically solve the equation κ(Θ0) = p,
where κ denotes the condition number. Using a smaller condition number would
create a matrix more similar to the identity matrix, using a larger condition number
would run the risk of not having a positive definitematrix. Specifically, the nonzero
elements of Θ0 are 0.246 for p = 30 and 0.150 for p = 100.

• ‘dense’: (Θ0)ii = 1 and (Θ0)ij = 0.5 for i �= j
• ‘diagonal’: (Θ0)ii = 1 and (Θ0)ij = 0 for i �= j

For each sampling scheme, we generate M = 1000 samples of size n = 50 from a
multivariate normalN (0,Θ−1

0 ).We take as dimensions p = 3, p = 30 and p = 100.
To each data set, we then add 0, 5 and 10% of cellwise contamination. This means
that we randomly select 0, 5 and 10% of the cells and replace their value with a draw
from a normal distribution N (10, 0.2).
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Table 2 Simulation results: Kullback–Leibler criterion (KL) for the banded simulation setup with
n = 50 averaged over M = 1000 simulations using the BIC criterion to select λ

p = 3 p = 30 p = 100

% outliers 0 5 10 0 5 10 0 5 10

2-step Quadrant 0.59 0.82 1.07 11.08 13.29 15.78 38.71 46.83 55.49

3-step Quadrant
(npd)

0.34 0.55 0.81 12.42 15.11 17.97 49.50 60.62 70.92

3-step Quadrant
(perturb)

0.34 0.55 0.81 16.01 19.37 22.69 63.56 77.41 90.12

2-step Spearman 0.30 0.63 0.98 10.71 13.38 15.87 38.58 47.11 55.64

3-step Spearman
(npd)

0.28 0.60 0.95 10.66 13.47 15.99 39.44 48.27 56.98

3-step Spearman
(perturb)

0.28 0.60 0.95 10.78 13.50 16.00 40.67 49.78 58.77

2-step Kendall 0.56 0.91 1.19 10.80 12.70 14.80 36.73 43.65 51.12

3-step Kendall (npd) 0.27 0.58 0.93 10.71 13.52 16.08 40.09 49.00 57.84

3-step Kendall
(perturb)

0.27 0.58 0.93 11.25 13.92 16.39 46.34 56.46 66.31

3-step Spatial Sign
(npd)

0.31 0.54 0.85 11.99 14.41 16.97 47.10 55.96 65.26

3-step Spatial Sign
(perturb)

0.31 0.54 0.85 15.76 18.37 21.05 70.69 82.77 95.00

2-step Gaussian
Rank

0.27 0.68 1.04 10.63 13.40 15.78 38.59 47.09 55.42

Glasso 0.23 2.98 4.11 10.32 30.55 42.48 38.01 106.53 145.67

Sample Covariance 0.14 2.40 3.54 39.39 27.06 31.11

We compare the performance of the different estimators Θ̂ by the Kullback–
Leibler (KL) divergence (see e.g., Bühlmann and van de Geer 2011)

KL(Θ̂,Θ0) = tr(Θ−1
0 Θ̂) − log det(Θ−1

0 Θ̂) − p.

The lower the value of KL, the better for the estimate. The results for the banded
simulation setup are given in Table2. The standard errors around all reported results
are smaller than 3% of the reported numbers. Let us focus on what is new in this
simulation study compared to Öllerer and Croux (2015).

(i) Forp = 3, the inconsistent two-stepQuadrant estimator results in a substantially
higher KL-value than the consistent three-step Quadrant estimators. Here, the
additional step leads to a considerable improvement of the estimate. However,
for higher values of p, the inconsistent two-stepQuadrant estimator yields lower
values of KL. This is a surprising outcome: rendering the Quadrant correlation-
based estimator consistent comes at the price of increased Kullback–Leibler
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distance, at least for the configurations of interest in this paper (n close to or
smaller than p). The same can be observed for the Kendall correlation.
For the Spearman estimator, there is not much difference between the two-step
and three-step method (at least not when using npd). This was to be expected
(see Fig. 1).

(ii) Looking at the Kendall-based estimators we observe the following: The consis-
tent three-step Kendall estimators perform similarly to the consistent three-step
Spearman estimators in terms of KL. The inconsistent two-step Kendall esti-
mator leads in low dimensions (p = 3) to high values of KL compared to the
other robust estimators. In high dimensions, however, the situation is different
with slightly lower values of KL than the other estimators.

(iii) Comparing the perturbation method and the nearest positive definite (npd)
approach, the npd has a clear advantage. Particularly for high dimensions the
difference is pronounced (for the estimators based on Quadrant, Kendall, and
spatial sign).

(iv) The spatial sign correlation matrix leads to higher values of KL than the other
estimators, especially when p is large compared to n.

Comparing the different estimators in Table2 results in the following findings:

(i) If no outliers are present, and if n is close to p, then Glasso based on the sample
covariance matrix is best. But the difference to the two-step Kendall, Gaussian
rank, and Spearman-based estimators is small. The quadrant correlation ismuch
less efficient for clean normally distributed data.

(ii) Under contamination, the nonrobust Glasso and the sample covariance matrix
are not reliable anymore, and have much higher values of KL. For p = 30 and
p = 100, best results are achieved by the two-step Kendall estimator, closely
followed by the two-step estimators based on Gaussian rank, Quadrant, and
Spearman correlations. There do not seem to be major differences in perfor-
mance between the latter methods in these configurations. This may partly be
explained by the fact that the pairwise covariances computed in (4) use the same
robust scale estimator.
In the low-dimensional setting (p = 3) under contamination, we have the fol-
lowing relations for the consistent estimators: Quadrant is better than Kendall,
which is on its turn better than Spearman, which is better than Gaussian Rank.

Result of KL for the other three simulation setups are given in Table3. Again,
the standard errors around the reported results are smaller than 3% of the reported
numbers. For the “dense” setting exactly the same conclusions can be drawn as for
the “banded” setting of Table2. For the other two settings, which are characterized by
a sparse true precision matrix, we see that Glasso outperforms the sample covariance
matrix even for p = 3. The overall conclusion of these simulation results is that
the two-step Gaussian rank, the two-step Kendall, the two-step Spearman, the two-
step Quadrant, and the three-step Spearman (npd) are comparable and yield the best
results.
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6 Graphical Models

Sparse estimation of the precision matrix has a direct application in graphical model-
ing. If element (i, j) of Θ̂ equals zero, then the estimated partial correlation between
variables i and j equals zero. Since we are assuming normality, this means that vari-
ables i and j are independent, conditional on the other variables. The variables are
represented by the nodes of the graph, and if two variables are estimated as condition-
ally dependent, an undirected arrow is drawn between the corresponding nodes. The
rank-based correlation coefficient matrices, Spearman, Kendall, or Gaussian rank,
can then be used as an input for the Glasso method. Several papers discussed this
approach in depth, see Liu et al. (2009), Liu et al. (2012a), Xue and Zou (2012),
Zhao et al. (2014b). They point out an important advantage of using rank-based
correlation. If the distribution is only multivariate normal after monotone transfor-
mation of the variables (then the distribution is said to be “nonparanormal," and it
has a multivariate Gaussian copula), zero partial correlation still implies conditional
independence.

Other robust approaches to graphical modeling have been considered: Kalisch and
Bühlmann (2008) robustly estimate the partial correlation of different subsets of vari-
ables and then test if they are zero. Finegold andDrton (2011) showhow a conditional
independency graph can be estimated for the more robust family of t-distributions.
Vogel and Fried (2011) formulate a suitable graphical model for the whole ellipti-
cal family, where graphs model partial correlations (and not anymore conditional
independencies). Another approach for complex elliptical symmetric distributions
has been developed by Ollila and Tyler (2014). They introduce a regularized M-
estimator of scatter that is unique and consistent. Elliptical graphical modeling has
been extended to the so called transelliptical or meta-elliptical family by Liu et al.
(2012b) and Bilodeau (2014). A major difference with all of these papers is that we
study robust and sparse inverse covariance matrices, and do not confine ourselves to
correlation matrices. Obviously, in the context of graphical modeling, the retrieved
graph will be exactly the same.

To measure how well the graph structure is recovered, we compute false positive
(FP) and false negative (FN) rates

FP = |{(i, j) : i = 1, . . . , n; j = 1, . . . , p : (Θ̂)ij �= 0 ∧ (Θ0)ij = 0}|
|{(i, j) : i = 1, . . . , n; j = 1, . . . , p : (Θ0)ij = 0}|

FN = |{(i, j) : i = 1, . . . , n; j = 1, . . . , p : (Θ̂)ij = 0 ∧ (Θ0)ij �= 0}|
|{(i, j) : i = 1, . . . , n; j = 1, . . . , p : (Θ0)ij �= 0}|

They give the percentage of zero-elements of the precision matrix wrongly estimated
as nonzero and the percentage of nonzero elements that are wrongly estimated as
zero. In other words, FN gives the percentage of undetected edges of the graph, and
FP the percentage of falsely detected edges. The lower these values are, the better.
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To investigate how well the different estimators are able to recover the graph
structure, Table4 gives FP and FN for the setups p = 30 and p = 100 in the “sparse”
setting. The inverse sample covariance matrix is a nonsparse estimator, and therefore
always leads to an FP equal to one and an FN equal to zero. The other estimators
lead to pretty similar values of FP and FN. The nonrobust Glasso for p = 30 has an
increased FN rate under contamination. The three-step Spearman and Kendall yield
the lowest FP and FN rates, but differences to the other procedures are small.

Note that Table4 presents a relative comparison of the different methods and not
a qualitative evaluation of the false negative rate. The reason is that BIC, even though
it is fast, usually selects too sparse graphs. Using other selection procedures such as
cross validation (see Öllerer and Croux 2015) can improve results, but is computa-
tionally more expensive. Research on good high-dimensional selection procedures
for λ is still ongoing (see e.g. Abbruzzo et al. 2014; Liu et al. 2010; Foygel and Drton
2010). Therefore, we stick for simplicity to the well established BIC criterion.

7 Discussion

We discuss robust and sparse estimators of the precision matrix, computable in high
dimensions with p > n. This proceedings paper complements Öllerer and Croux
(2015), but we provide further discussion and study additionally the consistent
versions of estimators based on Quadrant correlation, Spearman’s rank correlation,
and Kendall correlation. For computing the latter estimators, an additional step is
needed to guarantee positive definiteness of the matrices. We prove that this extra
step is not distorting the high breakdown point of the estimators.

The estimators discussed in this paper are using sign and rank correlation mea-
sures. Spearman andKendall correlation provide a good trade-off between robustness
and efficiency. In Croux and Dehon (2010) it was shown that Spearman and Kendall
correlation behave rather similarly in the bivariate setting.

As shown in Liu et al. (2009), the estimators proposed in this paper consistently
recover the underlying graph in a nonparanormal model, which includes the normal
model. Since the consistency transformation of theKendall andQuadrant correlations
still hold in the broader classes of transelliptical or metaellipitcal distributions (Liu
et al. 2012b; Bilodeau 2014), the methods based on the transformed Kendall and
Quadrant correlations consistently recover the underlying graph structure also in
thesemodels. Furthermore, also the correlationmatrix will be estimated consistently.
However, when transforming the correlation matrix to a covariance matrix in Eq. (4),
the consistency of the scale estimator also needs to be taken into account. Since
the scale estimator Qn is consistent only at the normal model, consistency for the
covariance matrix and its inverse requires multivariate normality.

While we focused our attention on the estimation of the precision matrix and the
covariance matrix, we did not consider the estimation of the location parameter μ

yet. Note that estimation based on Spearman correlation does not require an auxil-
iary location estimate. A simple robust estimator forμ is the coordinatewise median,
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which simply computes the median for every variable separately. Obviously, this
estimator is highly robust and computable in high dimensions. However, this esti-
mator is not affine equivariant, and neither are the covariance matrix estimators S
considered in this paper. If we transform the observation xi into Axi + b, with A a
non-singular matrix and b a constant vector, then the estimators μ̂ and Σ̂ are said
to be affine equivariant if they change accordingly to Aμ̂ + b and AΣ̂A�. We only
have this property for diagonal matrices A.

A popular robust estimator of location and covariance is theMinimumCovariance
Determinant (MCD) estimator (Rousseeuw and Van Driessen 1999) which is affine
equivariant, but ill defined if p > n. Indeed, the MCD is looking for a subsample
of half the sample size having smallest value of the determinant of the covariance
matrix computed from this subsample. But if p > n, or even if p > n/2 all the deter-
minants of covariance matrices computed from halfsamples are zero, and it is not
clear what to do then. Moreover, the MCD estimator is not robust to cellwise outliers
if you have many of them, as is common in high dimension. There is recent work of
Agostinelli et al. (2015) proposing an almost affine equivariant, location/covariance
matrix estimator robust to cellwise contamination. Unfortunately, the latter estimator
is not computable if p > n, as is the proposal of Van Aelst et al. (2011). To sum up,
one needs to give up affine equivariance when constructing robust estimators for
p > n. We refer to Alqallaf et al. (2009) and Tyler (2010) for further discussion on
equivariance properties and contamination models appropriate in high dimensions.

Robust correlation matrices based on pairwise rank correlation estimators have
been studied before in the literature. In Sect. 6 we reviewed their use in graphical
modeling. In principal component analysis they have been used by Van Aelst et al.
(2010), who used Spearman correlation. Alqallaf et al. (2002) use Quadrant correla-
tion for non-sparse covariance matrix estimation. We believe that the cellwise robust
covariancematrix estimators based on ranks and signs and discussed in this and other
papers have a lot of potential for high-dimensional data analysis.
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Robust Mixture Regression Using Mixture
of Different Distributions

Fatma Zehra Doğru and Olcay Arslan

1 Introduction

Mixture regressionmodels were first introduced byQuandt (1972), Quandt andRam-
sey (1978) as switching regressionmodels, which are used to explore the relationship
between variables that come from some unknown latent groups. These models are
widely applied in areas such as engineering, genetics, biology, econometrics and
marketing. These mixture regression models are used to model data sets which con-
tain heterogeneous groups. Figure1 shows the scatter plots of this type of real data
sets used in literature. A pure fundamental tone electronically obtained overtones
added was played to a trained musician in the tone perception data which given by
Cohen (1984) in Fig. 1a. The overtones were determined by a stretching ratio which
is between the adjusted tone and the fundamental tone. 150 trials were performed
by the same musicians in this experiment. This experiment was to reveal how the
tuning ratio affects the perception of the tone and to choose if either of two musical
perception theories was reasonable (see Cohen 1984 for more detail). The other data
contains a number of green peach aphids which were released at various times over
51 small tobacco plants (used as surrogates for potato plants) and the number of
infected plants was recorded after each release given in Fig. 1b (see Turner 2000 for
more detailed explanations). From these figures, we can observe that there are two
groups in both examples. Therefore, these data sets should be modeled by using the
mixture regression models.

In general, the parameters of a mixture regression model are estimated under nor-
mality assumption. Since the estimators based on normal distribution are sensitive
to the outliers, robust mixture regression models have been proposed by Bai (2010)
and Bai et al. (2012) to estimate the parameters of mixture regression using the M-
estimation method. Wei (2012), Yao et al. (2014) proposed the mixture regression
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Fig. 1 a The scatter plot of the tone perception data. b The scatter plot of the aphids data

model based on the mixture of t distribution. Liu and Lin (2014) studied the mix-
ture regression model based on the skew normal (Azzalini 1985, 1986) distribution.
Doğru (2015), Doğru and Arslan (2016) propose a robust mixture regression proce-
dure using the mixture of skew t distribution (Azzalini and Capitaino 2003) to model
skewness and heavy-tailedness in the data with the groups.

Up to nowmixture regressionmodels are considered using the finitemixture of the
same type of distributions such as mixture of normal or mixture of t distributions.
The purpose of this work is to deal with the mixture regression model using the
mixture of different type of distributions. This is due to the fact that the subclasses
of data may not have same type of behavior. For example some of them may be
heavy-tailed, skew or heavy-tailed skew. Using the same type of distributions to
model such heterogeneous data may not produce efficient estimators. To accurately
model this type of data we may need a mixture of distributions with different type
of components. For example, it is clear that in the tone perception data (Fig. 1) two
groups should have different type of error distributions. This is due to the fact that
the observations around each line has differently scattered.

The rest of the paper is organized as follows. In Sect. 2, we give the mixture
regression estimation based on mixture of different distributions. We consider two
different mixtures. First, we consider the mixture of symmetric distributions. In
particular, we take the mixture of normal and t distribution to estimate the regression
parameters in a mixture regression model. Second model will be the mixture of
skew distributions. In this context, we study the mixture of skew t and skew normal
distribution to estimate the parameters of the mixture regression model. In both cases
we give the EM algorithms in details. In Sect. 3, we provide a simulation study to
demonstrate the performances of the proposed mixture regression estimators over
the counterparts. In Sect. 4, we explore two real data examples to see the capability
of the proposed estimators for real data sets. The paper is finalized with a conclusion
section.
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2 Mixture Regression Model Using the Mixture
of Different Type of Distributions

In this section, we will carry out the mixture regression procedure based on the mix-
ture of different distributions. We will only consider the mixture of two distributions,
but mixture of more than two different types of distributions can be easily done using
the methodology given in this paper.

2.1 Mixture Regression Estimation Based on the Mixture
of Normal and t Distributions

A two-component mixture regression model can be defined as follows. Let Z be
a latent class variable which is independent of explanatory variable x. Then given
Z = i , the response variable y and the p-dimensional explanatory variable x have
the following linear model

y j = x′
jβ i + εi , i = 1, 2, (1)

where x j contains both the predictors and constant 1. Letwi = P(Z = i |x), i = 1, 2,
be the mixing probability with

∑2
i=1wi = 1. The conditional density of y given x

has the following form

f (y j ; x j ,Θ) = wφ
(
y j ; x′

jβ1, σ
2
1

)
+ (1 − w) ft

(
y j ; x′

jβ2, σ
2
2 , ν

)
, (2)

where Z is not observed. This implies that the distribution of the first error term
is a normal distribution with 0 mean and the variance σ 2

1 and the distribution of
the second error term is a t distribution with 0 mean, the scale parameter σ 2

2 and
the degrees of freedom ν. Let Θ = (w,β1, σ

2
1 , β2, σ

2
2 , ν)′ be the vector of all the

unknown parameters in the model (2).
The ML estimator of the unknown parameter Θ is obtained by maximizing the

following log-likelihood function

�(Θ) =
n∑
j=1

log(wφ(y j ; x′
jβ1, σ

2
1 ) + (1 − w) ft (y j ; x′

jβ2, σ
2
2 , ν)). (3)

However, the maximizer of the log-likelihood function does not have an explicit
solution. Therefore, the numerical methods should be used to obtain the estimators
for the parameters of interest. Because of the mixture structure of the model the EM
algorithm (Dempster et al. 1977) will be the convenient numerical method to obtain
the estimators for the parameters.

Let z j be the latent variable with
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z j =
{
1, i f j th observation is f rom 1th component
0, otherwise,

(4)

for j = 1, . . . , n. The joint density function of two-component mixture regression
model is

f (y j , z j ) = (
wφ(y j ; x′

jβ1, σ
2
1 )

)z j (
(1 − w) ft (y j ; x′

jβ2, σ
2
2 , ν)

)(1−z j )
. (5)

To further simplify the steps of the EM algorithm, we will use the scale mixture rep-
resentation of the t distribution. Let the random variable u has a gamma distribution
with the parameters (ν/2, ν/2). Then, the conditional distribution of ε2 given u will
be N (0, σ 2/u). With the scale mixture representation of the t distribution this joint
density can be further simplified as

f
(
y j , u j , z j

) =
⎛
⎜⎝w

1√
2πσ 2

1

e
−

(
y j−x′j β1

)2
2σ21

⎞
⎟⎠

z j ⎛
⎜⎝(1 − w)

(ν/2)ν/2 u
ν
2 −1
j e− ν

2 u j

Γ
(

ν
2

)√
2πσ 2

2 /u j

e
−

(
y j −x′j β2

)2
2σ22 /u j

⎞
⎟⎠

1−z j

. (6)

In this model, (z,u) are regarded as missing data and y is taken as observed data,
where y = (y1, . . . , yn),u = (u1, . . . , un) and z = (z1, . . . , zn). Equation (6) is the
joint density function of the complete data (y,u, z). Using this joint density function
the complete data log-likelihood function for Θ can be written as follows

�(Θ; y, u, z) =
n∑
j=1

z j

⎛
⎜⎝logw − log 2π

2
− log σ 2

1
2

−
(
y j − x′

jβ1

)2
2σ 2

1

⎞
⎟⎠

+ (
1 − z j

) (
log (1 − w) − log 2π

2
− log σ 2

2
2

+ log u j

2
− ν

2
u j

−
(
y j − x′

jβ2

)2
2σ 2

2 /u j
− logΓ

(ν

2

)
+ ν

2
log

(ν

2

)
+

(ν

2
− 1

)
log u j

)
. (7)

Since u j and z j for j = 1, . . . , n, are taken as missing observations this log-
likelihood function cannot be directly used to obtain the estimator forΘ . To overcome
this latency problemwe have to take the conditional expectation of the complete data
log-likelihood function given y j . This will be the E-step of the EM algorithm:
E-step:

E
(
�(Θ; y, u, z)|y j

) =
n∑
j=1

E
(
z j |y j

)
⎛
⎜⎝logw − log 2π

2
− log σ 2

1
2

−
(
y j − x′

jβ1

)2
2σ 2

1

⎞
⎟⎠

+ (
1 − E

(
z j |y j

)) (
log (1 − w) − log 2π

2
− log σ 2

2
2



Robust Mixture Regression Using Mixture of Different Distributions 61

+ 1

2
E

(
log u j |y j

) −
(
y j − x′

jβ2

)2
E

(
u j |y j

)
2σ 2

2

− ν

2
E

(
u j |y j

)

− logΓ
(ν

2

)
+ ν

2
log

(ν

2

)
+

(ν

2
− 1

)
E

(
log u j |y j

))
. (8)

To obtain this conditional expectation of the complete data log-likelihood function
we have to find ẑ j = E(z j |y j , Θ̂), û1 j = E(u j |y j , Θ̂) and û2 j = E(log u j |y j , Θ̂)

given in (36), (37) and (38), where Θ̂ is the current estimate for Θ .
The M-step of the EM algorithm will be as follows.

M-step: Maximize the following function with respect to Θ

Q
(
Θ; Θ̂

)
=

n∑
j=1

ẑ j

⎛
⎜⎝logw − log 2π

2
− log σ 2

1
2

−
(
y j − x′

jβ1

)2
2σ 2

1

⎞
⎟⎠

+ (
1 − ẑ j

) (
log (1 − w) − log 2π

2
− log σ 2

2
2

+ û2 j
2

− ν

2
û1 j

−
(
y j − x′

jβ2

)2
û1 j

2σ 2
2

− logΓ
(ν

2

)
+ ν

2
log

(ν

2

)
+

(ν

2
− 1

)
û2 j

⎞
⎟⎠ . (9)

Then, E- and M-steps of the EM algorithm will form the following iteratively
reweighting algorithm.

Iteratively reweighting algorithm (EM algorithm)

1. Set initial parameter estimate Θ (0) and a stopping rule Δ.

2. Calculate the conditional expectations ẑ(k)
j , û(k)

1 j and û(k)
2 j for the (k + 1)th for

k = 0, 1, 2, . . . iteration using the Eqs. (36), (37) and (38) given in appendix.

3. Insert the current values ẑ(k)
j , û(k)

1 j , û
(k)
2 j and Θ̂

(k)
in Q(Θ; Θ̂) to form Q(Θ; Θ̂

(k)
)

and maximize Q(Θ; Θ̂
(k)

) with respect to the parameters (w,β1, σ
2
1 ,β2, σ

2
2 , ν)

to get new estimates for the parameters. Thismaximizationwill give the following
updating equations:

ŵ(k+1) =

n∑
j=1

ẑ(k)
j

n
, (10)

β̂
(k+1)

1 =
⎛
⎝ n∑

j=1

ẑ(k)
j x jx′

j

⎞
⎠

−1 ⎛
⎝ n∑

j=1

ẑ(k)
j x j y j

⎞
⎠ , (11)
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σ̂
2(k+1)
1 =

n∑
j=1

ẑ(k)
j

(
y j − x′

j β̂
(k)

1

)2

n∑
j=1

ẑ(k)
j

, (12)

β̂
(k+1)

2 =
⎛
⎝ n∑

j=1

(
1 − ẑ(k)

j

)
û(k)
1 j x jx′

j

⎞
⎠

−1 ⎛
⎝ n∑

j=1

(
1 − ẑ(k)

j

)
û(k)
1 j x j y j

⎞
⎠ , (13)

σ̂
2(k+1)
2 =

n∑
j=1

(
1 − ẑ(k)

j

)
û(k)
1 j

(
y j − x′

j β̂
(k)

2

)2

n∑
j=1

(
1 − ẑ(k)

j

) . (14)

4. To obtain the ν̂(k+1) solve the following equation

n∑
j=1

(
1 − ẑ(k)

j

) (
DG

(ν

2

)
− log

(ν

2

)
− 1 − û(k)

2 j + û(k)
1 j

)
= 0, (15)

where DG( ν
2 ) = Γ ′( ν

2 )

Γ ( ν
2 )

is the digamma function.

5. Repeat E and M steps until the convergence rule ‖Θ̂ (k+1) − Θ̂
(k)‖ < Δ is satis-

fied.

Note that the Eq. (15) can be solved by using some numerical methods.

2.2 Mixture Regression Estimation Based on the Mixture
of Skew t (ST) and Skew Normal (SN) Distributions

Next we will consider the parameter estimation for the mixture regression model
assuming that the error terms have mixture of skew t and skew normal distributions.
By taking this mixture of two different skew distributions we attempt to model
skewness, as well as, the heavy-tailedness in the sub groups of the data.

For two-component mixture regressionmodel given in (1), the conditional density
of y given x is

f (y j ; x j ,Θ) = w fST
(
y j ; x′

jβ1, σ
2
1 , λ1, ν

) + (1 − w) fSN
(
y j ; x′

jβ2, σ
2
2 , λ2

)
,

(16)
where fST (·) is the density function of the skew t distribution proposed by Azza-
lini and Capitaino (2003) with the parameters (σ 2

1 , λ1, ν) and fSN (·) is the density
function of the skew normal distribution proposed by Azzalini (1985, 1986) with the
parameters (σ 2

2 , λ2). Note that the skew t is the distribution of ε1 and the skew nor-
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mal is the distribution of ε2. Let Θ = (w,β1, σ
2
1 , λ1, ν,β2, σ

2
2 , λ2)

′
be the unknown

parameter vector for this model. Notice that we have extra two skewness parameters
to be estimated compare to the model given in Sect. 2.1. In this mixture regression
model we note that different from the symmetric case E(ε) �= 0. Therefore, when
we estimate the intercept we take into consideration ̂E(ε).

To find the ML estimator of the unknown parameter Θ we should maximize the
following log-likelihood function

�(Θ) =
n∑
j=1

log
(
w fST (y j ; x′

jβ1, σ
2
1 , λ1, ν) + (1 − w) fSN (y j ; x′

jβ2, σ
2
2 , λ2)

)
.

(17)
Since the log-likelihood function does not have an explicit maximizer, the estimates
for the unknown parameter vector Θ can be again obtained by using the EM algo-
rithm.

Let z j define as in Eq. (4), for j = 1, . . . , n. The joint density function of two-
component mixture regression model is

f (y j , z j ) = (
w fST (y j ; x′

jβ1, σ
2
1 , λ1, ν)

)z j (
(1 − w) fSN (y j ; x′

jβ2, σ
2
2 , λ2)

)1−z j
.

(18)
To represent this joint density function in terms of the normal distribution, we will
use the stochastic representation of the skew t and the skew normal distributions. By
doing this we will simplify the steps of the EM algorithm. One can see the papers
proposed by Azzalini and Capitaino (2003), Azzalini (1986, p. 201), Henze (1986,
Theorem 1) to get more details for the stochastic representation of the skew t and
the skew normal distributions. Using the scale mixture representation of the skew
t distribution and the stochastic representation of the skew t and the skew normal
distribution following conditional distributions can be given (Lin et al. 2007; Liu and
Lin 2014). Let γ and τ be the latent variables. Then, we have

y j
∣∣ γ j , τ j ∼ N

(
x′
jβ1 + α1γ j ,

κ2
1

τ j

)
,

y j
∣∣ τ j ∼ T N

(
0,

1

τ j
; (0,∞)

)
, τ j ∼ Gamma

(ν

2
,
ν

2

)
,

y j
∣∣ γ j ∼ N

(
x′
jβ2 + α2γ j , κ

2
2

)
, γ j ∼ T N (0, 1; (0,∞)) ,

where δλ1 = λ1/

√
1 + λ2

1, δλ2 = λ2/

√
1 + λ2

2, α1 = σ1δλ1 , α2 = σ2δλ2 , κ
2
1 = σ 2

1 (1 −
δ2λ1

), κ2
2 = σ 2

2 (1 − δ2λ2
) and T N (·) shows the truncated normal distribution.

Using the conditional distributions given above the joint density function given
in (18) can be rewritten as
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f (y j , γ j , τ j , z j ) =
⎛
⎝w

(ν/2)ν/2τ
ν/2
j

πΓ
(

ν
2

) √
κ2
1

e
− ντ j

2 − τ j (y j−x
′
j β1−α1γ j )

2

2κ21
− τ j γ

2
j

2

⎞
⎠

z j

⎛
⎜⎝ (1 − w)

π

√
κ2
2

e
−

(
y j−x

′
j β2−αγ j

)2

2κ22
− γ 2j

2

⎞
⎟⎠

1−z j

. (19)

Note that in this model (γ , τ , z) will be regarded as the missing and y will be
the observed data, where y = (y1, . . . , yn), γ = (γ1, . . . , γn), τ = (τ1, . . . , τn) and
z = (z1, . . . , zn). Let (y, γ , τ , z) be the complete data. Then, using the complete
data joint density function given in (19), the complete data log-likelihood function
can be obtained as follows

�c(Θ; y, γ , τ , z) =
n∑
j=1

z j

(
logw − logπ − log κ2

1
2 + ν

2 log
(

ν
2

) − log
(
Γ

(
ν
2

))

+ ν
2 log τ j − ντ j

2 − (y j−x
′
jβ1−α1γ j )

2

2κ2
1 /τ j

− τ jγ
2
j

2

)
+ (1 − z j )

(
log (1 − w) − logπ − log κ2

2
2 − (y j−x

′
jβ2−α2γ j )

2

2κ2
2

− γ 2
j

2

)
. (20)

Since we cannot be able to observe the missing data (γ , τ , z) this complete data
log-likelihood function cannot be used to obtain the estimator for Θ . To overcome
this problem we have to take the conditional expectation of the complete data log-
likelihood function given the observed data y. This will be the E-step of the EM
algorithm

E-step

E
(
�c(Θ; y, γ , τ , z)|y j

) =
n∑
j=1

E(z j |y j )
(
logw − log κ21

2
+ ν

2
log

( ν

2

)
− logΓ

( ν

2

))

+ νE(z j log τ j |y j )
2

− νE(Z j τ j |y j )
2

−
E(Z j τ j |y j )

(
y j − x

′
jβ1

)2
2κ21

−
α21E(z j τ jγ

2
j |y j )

2κ21
+

α1E(Z j τ jγ j |y j )(y j − x
′
jβ1)

κ21

+ (1 − E(z j |y j ))
(
log(1 − w) − log κ22

2
−

(
y j − x

′
jβ2

)2
2κ22

+
α2E(γ j |y j )(y j − x

′
jβ2)

κ22

−
α22E(γ 2

j |y j )
2κ22

)
. (21)

To obtain the conditional expectation of the complete data log-likelihood function
we have to find ẑ j = E(z j |y j , Θ̂), ŝ1 j = E(z jτ j |y j , Θ̂), ŝ2 j = E(z jγ jτ j |y j , Θ̂),
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ŝ3 j = E(z jγ 2
j τ j |y j , Θ̂), ŝ4 j = E(z j log(τ j )|y j , Θ̂), t̂1 j = E(γ j |y j , Θ̂) and t̂2 j =

E(γ 2
j |y j , Θ̂) given in (39)–(45).

M-step: For the M step of the EM algorithm, the expected complete data log-
likelihood function will be maximized with respect to the parameter Θ

Q
(
Θ; Θ̂

)
=

n∑
j=1

ẑ j

(
logw − 1

2
log(κ2

1 ) + ν

2
log

(ν

2

)
− log

(
Γ

(ν

2

)))
− ν ŝ1 j

2

+ ν ŝ4 j
2

− ŝ1 j (y j − x
′
jβ1)

2

2κ2
1

+ α1ŝ2 j (y j − x
′
jβ1)

κ2
1

− α2
1 ŝ3 j
2κ2

1

+ (1 − ẑ j )

(
log(1 − w) − log κ2

2

2
− (y j − x

′
jβ2)

2 − 2α2 t̂1 j (y j − x
′
jβ2) + α2

2 t̂2 j

2κ2
2

)
.

(22)

Similar to the iteratively reweighting algorithm given in Sect. 2.1, we can give the
following algorithm based on the steps of the EM algorithm for the two-component
mixture regression model obtained from the skew t and skew normal distributions.

Iteratively reweighting algorithm (EM algorithm)

1. Set an initial parameter estimates Θ (0) and stopping rule Δ.

2. Use Θ̂
(k)

to compute the conditional expectations ẑ(k)
j , ŝ(k)

1 j , ŝ(k)
2 j , ŝ(k)

3 j , ŝ(k)
4 j , t̂ (k)1 j , t̂ (k)2 j

for k = 0, 1, 2, . . . from the Eqs. (39)–(45) given in appendix.

3. Insert ẑ(k)
j , ŝ(k)

1 j , ŝ(k)
2 j , ŝ(k)

3 j , ŝ(k)
4 j , t̂ (k)1 j , t̂ (k)2 j and Θ̂

(k)
in Q(Θ; Θ̂) to form Q(Θ; Θ̂

(k)
).

Maximize the function Q(Θ; Θ̂
(k)

) given in (22) with respect to the parameters
(w,β1, σ

2
1 , λ1,β2, σ

2
2 , λ2) to get (k + 1) iterated values

ŵ(k+1) =

n∑
j=1

ẑ(k)
j

n
, (23)

β̂
(k+1)

1 =
⎛
⎝ n∑

j=1

ŝ(k)
1 j x jx

′
j

⎞
⎠

−1 ⎛
⎝ n∑

j=1

(
y j ŝ

(k)
1 j − δ̂

(k)
λ1
ŝ(k)
2 j

)
x j

⎞
⎠ , (24)

α̂
(k+1)
1 =

n∑
j=1

ŝ(k)
2 j (y j − x

′
j β̂

(k)

1 )

n∑
j=1

ŝ(k)
3 j

, (25)

κ̂
2(k+1)
1 =

n∑
j=1

ŝ(k)
1 j (y j − x

′
j β̂

(k)

1 )2 − 2α̂(k)
1 ŝ(k)

2 j (y j − x
′
j β̂

(k)

1 ) + α̂
2(k)
1 ŝ(k)

2 j

n∑
j=1

ẑ(k)
j

, (26)
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β̂
(k+1)

2 =
⎛
⎝ n∑

j=1

(
1 − ẑ(k)

j

)
x jx

′
j

⎞
⎠

−1 ⎛
⎝ n∑

j=1

(
1 − ẑ(k)

j

) (
y j − α̂

(k)
2 t̂ (k)1 j

)
x j

⎞
⎠ ,(27)

α̂
(k+1)
2 =

n∑
j=1

(
1 − ẑ(k)

j

)
t̂ (k)1 j (y j − x

′
j β̂

(k)

2 )

n∑
j=1

(
1 − ẑ(k)

j

)
t̂ (k)2 j

, (28)

κ̂
2(k+1)
2 = 1

n∑
j=1

(
1 − ẑ(k)

j

)
n∑
j=1

(
1 − ẑ(k)

j

) (
(y j − x

′
j β̂

(k)

2 )2

− 2α̂(k)
2 t̂ (k)1 j (y j − x

′
j β̂

(k)

2 ) + α̂
2(k)
2 t̂ (k)2 j

)
. (29)

Then, we obtain the σ̂
2(k+1)
1 , λ̂

(k+1)
1 , σ̂

2(k+1)
2 and λ̂

(k+1)
2 parameter estimates

σ̂
2(k+1)
1 = κ̂

2(k+1)
1 + α̂

2(k+1)
1 , (30)

λ̂
(k+1)
1 = δ̂

(k+1)
λ1

(
1 − δ̂

2(k+1)
λ1

)−1/2
, (31)

σ̂
2(k+1)
2 = κ̂2

2(k+1) + α̂2
2(k+1)

, (32)

λ̂
(k+1)
2 = δ̂

(k+1)
λ2

(
1 − δ̂

2(k+1)
λ2

)−1/2
, (33)

where δ̂
(k+1)
λ1

= α̂1
(k+1)

/σ̂
(k+1)
1 and δ̂

(k+1)
λ2

= α̂2
(k+1)

/σ̂
(k+1)
2 .

4. Also (k + 1)th value of λ1 can be found by solving following equation

δλ1(1 − δ2λ1
)

n∑
j=1

ẑ(k)
j − δλ1

⎛
⎝ n∑

j=1

ŝ(k)
1 j

(y j − x′
j β̂

(k)

1 )2

σ̂
2(k)
1

+
n∑
j=1

ŝ(k)
3 j

⎞
⎠

+(1 + δ2λ1
)

n∑
j=1

ŝ(k)
2 j

(y j − x′
j β̂

(k)

1 )

σ̂
(k)
1

= 0. (34)

The (k + 1)th values of ν can be calculated solving the following equation

log
(ν

2

)
+ 1 − DG

(ν

2

)
+

∑n
j=1

(
ŝ(k)
4 j − ŝ(k)

1 j

)
∑n

j=1 ẑ
(k)
j

= 0. (35)
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5. Repeat E and M steps until the convergence rule ‖Θ̂ (k+1) − Θ̂
(k)‖ < Δ is satis-

fied.

Note that we can solve the Eqs. (34) and (35) using some numerical algorithms.

3 Simulation Study

In this section we will give a simulation study to assess and compare the perfor-
mances of the mixture regression estimators proposed in this paper with the existing
mixture regression estimators in the literature. We specifically compare the mixture
regression estimators obtained from normal and t (MixregNt) distributions with the
estimators obtained fromnormal (MixregN) and t (Mixregt) distributions for the two-
component mixture regression models for the symmetric case. For the skew case, we
compare the mixture regression estimators obtained from the skew t and the skew
normal (MixregSTSN) distributions with the estimators obtained from skew normal
(MixregSN) and skew t (MixregST) distributions for the two-component mixture
regression models. The compression will be done in terms of bias and mean square
error (MSE) which are given the following formulas

̂bias(θ̂) = θ̄ − θ, ̂MSE(θ̂) = 1

N

N∑
i=1

(θ̂i − θ)2,

where θ is the true parameter value, θ̂i is the ith simulated parameter estimate,
θ̄ = 1

N

∑N
i=1 θ̂i and N = 500 is the replication number. For the sample sizes, we

take n = 200 and n = 400. The simulation is conducted using MAT LAB R2013a.
The MAT LAB codes can be obtained upon request.

Alternatively, the MSE for the Θ̂ which can be defined as ‖Θ̂ − Θ0‖2, whereΘ0

is the true parameter, can be also used to illustrate the performance of the parameter
vector as is suggested by one of the referee. However, to see the performance of each
parameter we prefer computing the MSE for each parameter separately. We compare
the both the MSE values and observe the similar behavior.

The data {(x1 j , x2 j , y j ), j = 1, . . . , n} are generated from the following two-
component mixture regression model (Bai et al. 2012)

Y =
{
0 + X1 + X2 + ε1, Z = 1,
0 − X1 − X2 + ε2, Z = 2,

where P(Z = 1) = 0.25 = w1, X1 ∼ N (0, 1) and X2 ∼ N (0, 1). The values of the
regression coefficients areβ1= (β10, β11, β12)

′= (0, 1, 1)
′
andβ2=(β20, β21, β22)

′ =
(0,−1,−1)

′
, respectively.

We consider the following error distributions for the symmetric (i) and skew (ii)
cases.



68 F.Z. Doğru and O. Arslan

(i) Case I: ε1, ε2 ∼ N (0, 1), the standard normal distribution.
Case II: ε1, ε2 ∼ t3(0, 1), the t distribution with 3 degrees of freedom.
Case III: ε1 ∼ N (0, 1) and ε2 ∼ t3(0, 1).
Case IV: ε1, ε2 ∼ N (0, 1) and we also added %5 outliers at X1 = 20, X2 = 20 and
Y = 100.
(ii) Case I: ε1, ε2 ∼ SN (0, 1, 0.5), the skew normal distribution.
Case II: ε1, ε2 ∼ ST (0, 1, 0.5, 3), the skew t distribution with 3 degrees of freedom.
Case III: ε1 ∼ ST (0, 1, 0.5, 3) and ε2 ∼ SN (0, 1, 0.5).
Case IV: ε1, ε2 ∼ N (0, 1) and we also added %5 outliers at X1 = 20, X2 = 20 and
Y = 100.

The simulation results are summarized in Tables1, 2, 3 and 4. Tables 1 and 2
show the simulation results for the estimators based on MixregNt with the error
distributions given in case (i). For the Case I the best result is obtained from the
estimators based on MixregN. For this case, the estimators based on Mixregt and
the estimators based on MixregNt have similar behavior. For the error distribution
given in Case II the best behavior is obtained, as expected, fromMixregt. In this case,
the estimators based on MixregN are drastically affected. The proposed estimators
(MixregNt) again have similar behavior with the estimators obtained from Mixregt
which shows that it tolerates the heavy-tailedness. The estimators obtained from
MixregNt perform the best for the error distribution given in Case III. In this case
the estimator obtained fromMixregN again has the worst performance. On the other
hand, the performance of the estimators based on Mixregt is comparable with the
estimators based on MixregNt. Finally, for the outlier case (Case IV) the behavior of
the estimators based onMixregN andMixregt is very similar. In both cases the worst
performance is obtained for small groups. That is, they fail to find the regression
line for the smaller group. In contrast, the estimators based on MixregNt can be
able to accommodate the regression lines for both groups. This can be seen from the
smaller bias and the MSE values. In summary, for all the cases considered in this
part of the simulation the behavior of the proposed estimators is comparable with
the counterparts.

In Tables3 and 4 we summarize the simulation results obtained from the skew
distributions with the error distributions given in case (ii). From this table we can
observe that when the error distribution is the mixture of skew normal distribution,
the estimators obtained from MixregSN behave better than the other cases. The
same behavior can be noticed for the skew t distribution as well. When the error
distribution is the mixture of the skew t and the skew normal the estimators obtained
from MixregSTSN outperform the counterparts in terms of the MSE values. In this
case, the estimators based on MixregSN have the worst performance. When we add
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Table 1 MSE (bias) values of estimates for n = 200

MixregN Mixregt MixregNt

Case I: ε1, ε2 ∼ N (0, 1)

β10:0 0.0468 (−0.0039) 0.0547 (−0.0038) 0.0468 (−0.0036)

β20:0 0.0099 (0.0028) 0.0112 (0.0056) 0.0111 (0.0048)

β11:1 0.0457 (−0.0273) 0.0483 (−0.0364) 0.0529 (−0.0573)

β21:−1 0.0147 (0.0055) 0.0101 (0.0090) 0.0096 (−0.0025)

β12:1 0.0414 (−0.0015) 0.0463 (−0.0046) 0.0545 (−0.0353)

β22:−1 0.0216 (0.0026) 0.0108 (0.0013) 0.0109 (−0.0090)

w:0.25 0.0029 (0.0071) 0.0022 (0.0048) 0.0036 (0.0335)

Case II: ε1, ε2 ∼ t3(0, 1)

β10:0 12.7323 (0.2016) 0.0846 (0.0245) 0.1378 (0.0265)

β20:0 1.9712 (−0.0228) 0.0146 (−0.0048) 0.0140 (−0.0047)

β11:1 10.6545 (0.3274) 0.1037 (−0.0479) 0.1417 (0.0332)

β21:−1 1.5718 (−0.0867) 0.0128 (−0.0110) 0.0136 (0.0148)

β12:1 8.2033 (0.0267) 0.0806 (0.0024) 0.1288 (0.0403)

β22:−1 2.8037 (0.2205) 0.0143 (−0.0149) 0.0156 (0.0126)

w:0.25 0.0250 (−0.0347) 0.0030 (0.0062) 0.0045 (−0.0374)

Case III: ε1 ∼ N (0, 1) and ε2 ∼ t3(0, 1)

β10:0 6.5822 (0.0716) 0.0608 (−0.0015) 0.0564 (0.0039)

β20:0 0.3372 (−0.0249) 0.0144 (0.0036) 0.0139 (0.0030)

β11:1 5.0332 (0.0836) 0.0494 (−0.0387) 0.0459 (−0.0170)

β21:−1 0.2761 (0.0073) 0.0138 (−0.0185) 0.0133 (−0.0105)

β12:1 5.1167 (0.1571) 0.0673 (−0.0496) 0.0647 (−0.0287)

β22:−1 0.5948 (0.0062) 0.0136 (−0.0213) 0.0134 (−0.0145)

w:0.25 0.0120 (0.002) 0.0039 (0.0352) 0.0029 (0.0174)

Case IV: ε1, ε2 ∼ N (0, 1) (% 5 outliers)

β10:0 2.3909 (0.1047) 1.4186 (0.0618) 0.0506 (0.0003)

β20:0 0.0149 (0.0029) 0.0110 (0.0022) 0.0173 (0.0036)

β11:1 3.1304 (1.4785) 2.7396 (1.4819) 0.1498 (−0.0521)

β21:−1 0.0799 (0.2483) 0.0241 (0.1065) 0.2815 (0.1407)

β12:1 3.2398 (1.5125) 2.8212 (1.5088) 0.1734 (−0.0633)

β22:−1 0.0834 (0.2492) 0.0246 (0.1078) 0.1636 (0.1285)

w:0.25 0.0095 (−0.0943) 0.0062 (−0.0753) 0.0081 (−0.0208)

Note Value in parentheses indicates the bias

the leverage point (the error distribution given in Case IV) the behavior of all the
estimators are similarly worse. However, the estimators obtained from MixregST
and MixregSTSN give comparable results which have smaller bias and MSE than
MixregSN.
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Table 2 MSE (bias) values of estimates for n = 400

MixregN Mixregt MixregNt

Case I: ε1, ε2 ∼ N (0, 1)

β10:0 0.0202 (−0.0021) 0.0260 (−0.0004) 0.0217 (−0.0003)

β20:0 0.0041 (0.0018) 0.0052 (0.0036) 0.0050 (0.0031)

β11:1 0.0160 (0.0033) 0.0206 (−0.0062) 0.0188 (−0.0199)

β21:−1 0.0045 (−0.0035) 0.0053 (0.0018) 0.0051 (−0.0069)

β12:1 0.0177 (−0.0019) 0.0254 (−0.0099) 0.0210 (−0.0213)

β22:−1 0.0038 (−0.0038) 0.0049 (0.0035) 0.0046 (−0.0055)

w:0.25 0.0010 (0.0037) 0.0011 (0.0007) 0.0018 (0.0241)

Case II: ε1, ε2 ∼ t3(0, 1)

β10:0 13.4210 (−0.1318) 0.0376 (−0.0066) 0.0473 (−0.0154)

β20:0 1.4586 (0.0306) 0.0068 (−0.0021) 0.0066 (−0.0026)

β11:1 9.2787 (0.5967) 0.0335 (0.0019) 0.0449 (0.0632)

β21:−1 1.8295 (0.0194) 0.0063 (0.0015) 0.0079 (0.0314)

β12:1 11.8714 (0.4395) 0.0388 (−0.0008) 0.0533 (0.0722)

β22:−1 0.7543 (0.01106) 0.0064 (0.0024) 0.0082 (0.0308)

w:0.25 0.0171 (−0.0596) 0.0014 (0.0040) 0.0037 (−0.0454)

Case III: ε1 ∼ N (0, 1) and ε2 ∼ t3(0, 1)

β10:0 7.7436 (0.0036) 0.0247 (0.0066) 0.0240 (0.0060)

β20:0 0.3984 (0.0218) 0.0070 (0.0050) 0.0068 (0.0050)

β11:1 5.8227 (0.1401) 0.0251 (−0.0372) 0.0206 (−0.0124)

β21:−1 0.4005 (−0.0086) 0.0062 (−0.0126) 0.0060 (−0.0039)

β12:1 6.6747 (0.2501) 0.0244 (−0.0365) 0.0213 (−0.0125)

β22:−1 0.3341 (−0.0023) 0.0064 (−0.0143) 0.0063 (−0.0060)

w:0.25 0.0090 (−0.0070) 0.0021 (0.0289) 0.0015 (0.0077)

Case IV: ε1, ε2 ∼ N (0, 1) (% 10 outliers)

β10:0 1.4233 (0.1705) 1.0180 (0.2007) 0.0236 (0.0089)

β20:0 0.0079 (0.0102) 0.0048 (0.0045) 0.0045 (0.0042)

β11:1 2.9197 (1.5268) 2.5645 (1.4732) 0.0280 (−0.0003)

β21:−1 0.0774 (0.2583) 0.0162 (0.1023) 0.0450 (0.0842)

β12:1 2.7131 (1.4602) 2.6908 (1.5157) 0.0277 (0.0093)

β22:−1 0.0759 (0.2536) 0.0150 (0.0961) 0.0264 (0.0733)

w:0.25 0.0099 (−0.0981) 0.0069 (−0.0817) 0.0036 (−0.0412)

Note Value in parentheses indicates the bias

Note that from the computational point of view, computing the estimators based
onMixregSTSN is less intensive than the estimators obtained fromMixregST. There-
fore, even they show similar behavior MixregSTSN should be preferred.
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Table 3 MSE (bias) values of estimates for n = 200

MixregSN MixregST MixregSTSN

Case I: ε1, ε2 ∼ SN (0, 1, 0.5)

β10:0 0.0396 (0.0145) 0.3796 (0.5558) 0.2090 (0.3916)

β20:0 0.0083 (0.0124) 0.0388 (0.1602) 0.0095 (0.0228)

β11:1 0.0322 (−0.0016) 0.0481 (−0.0041) 0.0445 (−0.0325)

β21:−1 0.0080 (−0.0025) 0.0107 (0.0166) 0.0083 (−0.0082)

β12:1 0.0366 (−0.0051) 0.0509 (−0.0150) 0.0491 (−0.0357)

β22:−1 0.0080 (0.0019) 0.0104 (0.0212) 0.0083 (−0.0039)

w:0.25 0.0021 (0.0044) 0.0029 (−0.0087) 0.0028 (0.0162)

Case II: ε1, ε2 ∼ ST (0, 1, 0.5, 3)

β10:0 5.5600 (0.3072) 0.8540 (0.7143) 0.4782 (0.2833)

β20:0 1.7060 (−0.0335) 0.0239 (0.0805) 0.0421 (−0.0715)

β11:1 5.1535 (0.2173) 0.1600 (0.0246) 0.2281 (−0.1303)

β21:−1 0.9447 (0.0240) 0.0154 (0.0272) 0.0198 (−0.0147)

β12:1 2.9528 (0.0176) 0.1445 (0.0178) 0.2302 (−0.1455)

β22:−1 3.6893 (−0.0872) 0.0159 (0.0190) 0.0206 (−0.0084)

w:0.25 0.0175 (−0.0268) 0.0041 (−0.0128) 0.0084 (0.0444)

Case III ε1 ∼ ST (0, 1, 0.5, 3) and ε2 ∼ SN (0, 1, 0.5)

β10:0 2.7217 (0.2228) 0.6258 (0.6722) 0.2932 (0.4207)

β20:0 0.0555 (−0.0775) 0.0250 (0.1057) 0.0102 (−0.0123)

β11:1 2.3168 (0.2017) 0.1033 (0.0327) 0.0921 (−0.0165)

β21:−1 0.1975 (0.0372) 0.0108 (0.0305) 0.0088 (0.0059)

β12:1 2.2086 (0.0959) 0.1158 (0.0228) 0.0958 (−0.0324)

β22:−1 0.0244 (0.0598) 0.0111 (0.0314) 0.0090 (0.0079)

w:0.25 0.0079 (−0.0450) 0.0049 (−0.0369) 0.0031 (−0.0026)

Case IV: ε1, ε2 ∼ N (0, 1) (% 5 outliers)

β10:0 2.8415 (−0.5539) 5.7397 (2.1180) 1.7247 (0.5967)

β20:0 0.2470 (−0.4804) 0.0437 (−0.1774) 0.1687 (−0.3970)

β11:1 3.4886 (1.5398) 2.9568 (1.5342) 3.0075 (1.5224)

β21:−1 0.0703 (0.2303) 0.0263 (0.1172) 0.0310 (0.1347)

β12:1 3.2631 (1.4610) 2.4560 (1.3592) 2.7780 (1.4447)

β22:−1 0.0784 (0.2423) 0.0278 (0.1211) 0.0347 (0.1435)

w:0.25 0.0093 (−0.0928) 0.0113 (−0.1031) 0.0049 (−0.0632)

Note Value in parentheses indicates the bias
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Table 4 MSE (bias) values of estimates for n = 400

MixregSN MixregST MixregSTSN

Case I: ε1, ε2 ∼ SN (0, 1, 0.5)

β10:0 0.0172 (0.0055) 0.3194 (0.5421) 0.1741 (0.3920)

β20:0 0.0035 (0.0040) 0.0258 (0.1422) 0.0038 (0.0147)

β11:1 0.0145 (−0.0061) 0.0229 (−0.0045) 0.0197 (−0.0334)

β21:−1 0.0035 (−0.0066) 0.0045 (0.0165) 0.0039 (−0.0122)

β12:1 0.0145 (0.0012) 0.0220 (−0.0019) 0.0181 (−0.0235)

β22:−1 0.0035 (−0.0004) 0.0048 (0.0194) 0.0036 (−0.0065)

w:0.25 0.0010 (0.0010) 0.0015 (−0.0147) 0.0013 (0.0126)

Case II: ε1, ε2 ∼ ST (0, 1, 0.5, 3)

β10:0 9.1023 (0.5460) 0.6374 (0.6651) 0.2101 (0.3311)

β20:0 0.7382 (−0.1361) 0.0105 (0.0402) 0.0141 (−0.0717)

β11:1 7.2165 (0.2491) 0.0540 (0.0211) 0.0783 (−0.0925)

β21:−1 0.7558 (0.0446) 0.0078 (0.0307) 0.0091 (−0.0188)

β12:1 7.3711 (0.2215) 0.1714 (0.0671) 0.0785 (−0.0720)

β22:−1 1.9910 (−0.0097) 0.0078 (0.0331) 0.0098 (−0.0157)

w:0.25 0.0144 (−0.0534) 0.0025 (−0.0217) 0.0044 (0.0441)

Case III: ε1 ∼ ST (0, 1, 0.5, 3) and ε2 ∼ SN (0, 1, 0.5)

β10:0 1.7316 (0.1760) 0.4115 (0.6026) 0.2035 (0.4153)

β20:0 0.0162 (−0.0883) 0.0142 (0.0890) 0.0042 (−0.0102)

β11:1 1.9504 (0.1686) 0.0400 (0.0425) 0.0272 (0.0063)

β21:−1 0.0140 (0.0589) 0.0057 (0.0318) 0.0038 (0.0055)

β12:1 1.1483 (0.1871) 0.0426 (0.0430) 0.0303 (0.0114)

β22:−1 0.0157 (0.0639) 0.0062 (0.0364) 0.0039 (0.0076)

w:0.25 0.0053 (−0.0483) 0.0032 (−0.0405) 0.0012 (−0.0037)

Case IV: ε1, ε2 ∼ N (0, 1) (% 5 outliers)

β10:0 1.4831 (−0.4157) 7.0063 (2.5017) 1.2509 (0.6932)

β20:0 0.2537 (−0.4938) 0.0412 (−0.1874) 0.1635 (−0.3971)

β11:1 2.9504 (1.4961) 2.4430 (1.4533) 2.5928 (1.4990)

β21:−1 0.0792 (0.2631) 0.0245 (0.1325) 0.0311 (0.1548)

β12:1 2.9498 (1.4958) 2.3507 (1.4210) 2.4870 (1.4631)

β22:−1 0.0760 (0.2565) 0.0222 (0.1247) 0.0286 (0.1467)

w:0.25 0.0099 (−0.0978) 0.0139 (−0.1165) 0.0051 (−0.0681)

Note Value in parentheses indicates the bias

4 Real Data Examples

In this section, we will analyze two real data examples to show the performances of
the proposed estimators over the estimators given in literature for the cases with and
without outliers.
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Fig. 2 a Fitted mixture regression lines without outlier. b Fitted mixture regression lines with
outliers at (50, 50)

Table 5 ML estimates and some information criteria for fitting mixture regression models to the
aphids data

MixregN Mixregt MixregNt

β̂10 0.8586 0.8522 0.8648

β̂20 0.0024 0.0011 0.0022

β̂11 3.4745 5.2578 4.3813

β̂21 0.0553 0.0398 0.0448

σ̂1 1.1249 0.9127 1.0892

σ̂2 3.1153 1.0946 2.2073

ŵ1 0.4984 0.5821 0.5128

�(Θ̂) −132.0651 −137.4716 −133.7615

AIC 278.1302 288.9432 281.5230

CAIC 298.6530 309.4660 302.0458

BIC 291.6530 302.4660 295.0458

Note Bold value indicates the smallest values of AIC, CAIC and BIC

Example 1 In this example, we use the aphids data introduced in Sect. 1 which can
be accessed by using mixreg package (Turner 2000) in R. We first fit the lines using
the estimates based on MixregN, Mixregt and MixregNt. These fitted lines along
with the scatter plot of the data are shown in Fig. 2a. We can see that all methods
successfully find the groups and give the correct fitted lines. Also, we summarize the
ML estimates and the values of some information criteria in Table5. Note that for
the t distribution we assume that ν = 2. We observe that MixregN has the best fit
than the other mixture regressionmodels in terms of the Akaike information criterion
(AIC) (Akaike 1973), consistent AIC (CAIC) (Bozdogan 1993) and the Bayesian
information criterion (BIC) (Schwarz 1978) values.

To see the performances of our estimators when there are outliers in the data, we
add five pairs of high leverage outliers at point (50, 50). These points are shown in
Fig. 2b by asterisk. Also, the fitted lines and the scatter plot of the data are displayed
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Table 6 ML estimates and some information criteria for fitting mixture regression models to the
aphids data with five outliers at (50, 50)

MixregN Mixregt MixregNt

β̂10 1.7334 0.8694 0.7843

β̂20 −0.0010 0.0013 0.0014

β̂11 21.5569 5.2484 3.8322

β̂21 −0.0199 0.0400 0.0484

σ̂1 1.6859 1.0449 0.9362

σ̂2 16.3307 1.3244 4.0712

ŵ1 0.5539 0.5547 0.41212

�(Θ̂) −194.0987 −192.1452 −182.4878

AIC 402.1974 398.2904 378.9756

CAIC 416.3749 412.4678 393.1531

BIC 423.3749 419.4678 400.1531

Note Bold value indicates the smallest values of AIC, CAIC and BIC
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Fig. 3 a Fitted mixture regression lines without outlier. b Fitted mixture regression lines with
outliers at (0, 5)

in Fig. 2b. We give the ML estimates in Table6. We can see that the fitted lines
obtained fromMixregN are drastically affected by the outliers. On the other hand, the
estimators obtained from Mixregt and MixregNt correctly identifies the groups and
fit the regression lines. However, when we compare all methods MixregNt provides
the best model in terms of the values of the information criteria.
Example 2. In this example,we use the tone perception data described in Sect. 1which
is given in fpc package (Hennig 2013) in R. This data analyzed by Bai et al. (2012) to
model robust mixture regressionmodel. Also, Yao et al. (2014) and Song et al. (2014)
used the same data to test performances of the mixture regression estimators based
on t and Laplace distributions. The results of these papers show that there should
be two groups in the data. We fit mixture of skew normal, mixture of skew t and
mixture of skew t and skew normal to check the performances of estimators based on
these finite mixture models. We first consider this data without outlier and obtain the



Robust Mixture Regression Using Mixture of Different Distributions 75

Table 7 ML estimates and some information criteria for fitting mixture regression models to the
tone perception data

MixregSN MixregST MixregSTSN

β̂10 1.9171 1.9491 1.9430

β̂20 0.0424 0.0318 0.0339

β̂11 −0.0717 0.0054 0.0030

β̂21 0.9604 0.9982 0.9988

σ̂1 0.0463 0.0393 0.0419

σ̂2 0.1883 0.0033 0.0043

λ̂1 −0.0100 −0.1666 −0.1692

λ̂2 1.7534 0.4465 0.1297

ŵ1 0.7006 0.6410 0.6534

�(Θ̂) 140.5585 211.7766 215.4246

AIC −263.1171 −405.5532 −412.8491

CAIC −227.0213 −369.4574 −376.7534

BIC −236.0213 −378.4574 −385.7534

Note Bold value indicates the smallest values of AIC, CAIC and BIC

Table 8 ML estimates and some information criteria for fitting mixture regression models to the
tone perception data with ten outliers at (0, 5)

MixregSN MixregST MixregSTSN

β̂10 1.8948 1.9553 1.9450

β̂20 0.0478 0.0313 0.0339

β̂11 3.4734 0.0057 0.0031

β̂21 −0.7579 0.9981 0.9987

σ̂1 0.0612 0.0542 0.0562

σ̂2 1.2593 0.0031 0.0043

λ̂1 −0.2667 −0.2030 −0.1971

λ̂2 1.6770 0.4493 0.1297

ŵ1 0.7382 0.6759 0.6752

�(Θ̂) 40.7933 109.3612 115.0275

AIC −63.5867 −200.7225 −212.0549

CAIC −26.9101 −164.0459 −175.3783

BIC −35.9101 −173.0459 −184.3783

Note Bold value indicates the smallest values of AIC, CAIC and BIC

fitted lines from the mixture models mentioned above. The fitted lines along with the
scatter plot are displayed in Fig. 3a. This figure shows that all the models give similar
fits. Also, we give the ML estimates and some values of the information criteria in
Table7. The value of the degrees of freedom of the skew t distribution is taken as 2.
We see that MixregSTSN gives the best fit than the other mixture regression models
in terms of the AIC, CAIC and the BIC values.
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To see the performances of the estimators when there are outliers in the data we
added ten identical outliers at point (0, 5). The results for the data with outliers are
shown in Fig. 3b. Note that the asterisk in this figure shows the location of outliers.
It is clear from this figure that the outliers badly affect the estimators obtained from
MixregSN. On the other hand, the estimators based on MixregST and MixregSTSN
are not affected from the outliers. From the results of information criteria given in
Table8, MixregSTSN has the best fit to model to the tone perception data.

5 Conclusions

In this paper, we have proposed an alternative robust mixture regression model based
on themixture of different type of distributions.We have specifically considered two-
component mixture regression based on mixture of t and normal distributions for
the symmetric case, and the mixture of skew t and skew normal distributions for the
skewcase.Wehave given theEMalgorithms for themixture of different distributions.
We have provided a simulation study and two real data examples. The simulation
results and the real data examples have shown that the proposed method based on
the mixture of different distributions is superior to or comparable with the method
based on mixture of the same type of distributions such as mixture of (skew) normal
and mixture of (skew) t distribution. If the groups in the data set have different tail
behavior using the mixture of different type of distributions should be preferred. For
example, in two group case if one of the groups has heavier tails but the other one
is not then instead of using mixture of (skew) t distribution one can use mixture of
(skew) t and (skew) normal and get the similar result. Using the mixture of t and
normal will be computationally less intensive.
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Appendix

To get the conditional expectation of the complete data log-likelihood function given
in (8), the following conditional expectations should be calculated given y j and the

current parameter estimate Θ̂ = (β̂1, σ̂
2
1 , β̂2, σ̂

2
2 , ν̂)

ẑ j = E(z j |y j , Θ̂) = ŵφ(y j ; x′
j β̂1, σ̂

2
1 )

ŵφ(y j ; x′
j β̂1, σ̂

2
1 ) + (1 − ŵ) ft (y j ; x′

j β̂2, σ̂2, ν̂)
, (36)



Robust Mixture Regression Using Mixture of Different Distributions 77

û1 j = E(u j |y j , Θ̂) = ν̂ + 1

ν̂ +
((

y j − x′
j β̂2

)
/σ̂2

)2 , (37)

û2 j = E(log u j |y j , Θ̂) = DG

(
ν̂ + 1

2

)
− log

⎛
⎜⎝ ν̂

2
+

(
y j − x′

j β̂2

)2

2σ̂ 2
2

⎞
⎟⎠ . (38)

These conditional expectations will be used in EM algorithm given in Sect. 2.1.
Similarly, to obtain the conditional expectation of the complete data log-likelihood
function given in (21) the following expectations should be computed given y j and

the current parameter estimate Θ̂ = (β̂1, σ̂
2
1 , λ̂1, ν̂, β̂2, σ̂

2
2 , λ̂2)

ẑ j = E(z j |y j , Θ̂) = ŵ fST (y j ; x′
j β̂1, σ̂

2
1 , λ̂1, ν̂)

ŵ fST (y j ; x′
j β̂1, σ̂

2
1 , λ̂1, ν̂) + (1 − ŵ) fSN (y j ; x′

j β̂1, σ̂
2
2 , λ̂2)

, (39)

ŝ1 j = E(z j τ j |y j , Θ̂) = ẑ j

(
ν̂ + 1

η̂21 j + ν̂

) Tν̂+3

(
M̂ j

√
ν̂+3
ν̂+1

)

Tν̂+1(M̂ j )
, (40)

ŝ2 j = E(z jγ j τ j |y j , Θ̂) = δ̂λ1 (y j − x
′
j β̂1)ŝ1 j

σ̂1
+

ẑ j
√
1 − δ̂2λ1

πσ̂1 f̂ (y j )

(
η̂21 j

ν̂(1 − δ̂2λ1 )
+ 1

)−( ν̂
2 +1)

, (41)

ŝ3 j = E(z jγ
2
j τ j |y j , Θ̂) = δ̂2λ1

( y j − x
′
j β̂1

σ̂1

)2

ŝ1 j + ẑ j

{
(1 − δ̂2λ1 )

+
δ̂λ1 (y j − x

′
j β̂1)

√
1 − δ̂2λ1

πσ̂ 2
1 f̂ (y j )

(
η̂21 j

ν̂(1 − δ̂2λ1 )
+ 1

)−( ν̂
2 +1)}

, (42)

ŝ4 j = E(z j log(τ j )|y j , Θ̂) = ẑ j

{
DG

(
ν̂ + 1

2
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− log

( η̂21 j + ν̂
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gν̂ (x)tν̂+1(x)dx

}
, (43)

t̂1 j = E(γ j |y j , Θ̂) = δ̂λ2 η̂2 j +
√
1 − δ̂2λ2

φ
(
λ̂2η̂2 j

)

�
(
λ̂2η̂2 j

) , (44)
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t̂2 j = E(γ 2
j |y j , Θ̂) = 1 − δ̂2λ2 + δ̂λ2 η̂2 j t̂1 j , (45)

where

η̂1 j =
(y j − x′

j β̂1)

σ̂1
, δ̂λ1 = λ̂1√

1 + λ̂21

,

η̂2 j =
(y j − x′

j β̂2)

σ̂2
, δ̂λ2 = λ̂2√

1 + λ̂22

, M̂ j = λ̂1η̂1 j

√√√√ ν̂

ν̂ + η̂21 j

,

gν̂ (x) = DG

(
ν̂ + 2

2

)
− DG

(
ν̂ + 1

2

)
− log

(
1 + x2

ν̂ + 1

)
+ x2(ν̂ + 1) − ν̂ − 1

(ν̂ + 1)(ν̂ + 1 + x2)
,

f̂ (y j ) = ŵ1
2

σ̂1
tν̂ (η̂1 j )Tν̂+1(M̂ j ) + (1 − ŵ1)

2

σ̂2
φ(η̂2 j )�(λ̂2η̂2 j ).

These conditional expectations will be used in EM algorithm given in Sect. 2.2.
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Robust Statistical Engineering by Means
of Scaled Bregman Distances

Anna-Lena Kißlinger and Wolfgang Stummer

1 Introduction

It is well-known that density-based distances—also known as divergences, dispar-
ities, (dis)similarity measures, proximity measures—between two probability dis-
tributions serve as useful tools for parameter estimation, testing for goodness-of-fit
respectively homogeneity respectively independence, clustering, change point detec-
tion, Bayesian decision procedures, as well as for other research fields such as infor-
mation theory, signal processing including image and speech processing, pattern

recognition, feature extraction, machine learning, econometrics, and statistical
physics. For some comprehensive surveys on the distance approach to statistics and
probability, the reader is referred to the insightful books of, e.g. Liese and Vajda
(1987), Read and Cressie (1988), Vajda (1989), Csiszar and Shields (2004), Stum-
mer (2004), Pardo (2006), Liese and Miescke (2008), Basu et al. (2011), Voinov
et al. (2013), and the references therein; see also the survey papers of, e.g. Maa-
soumi (1993), Golan (2003), Liese and Vajda (2006), Vajda and van der Meulen
(2010). Distance-based bounds of Bayes risks (e.g. in finance) can be found, e.g. in
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Stummer andVajda (2007), see also Stummer and Lao (2012). Amongst others, some
important density-based distribution-distance classes are:

• the Csiszar-Ali-Silvey divergences CASD (C. 1963, A.-S. 1966): this includes,
e.g. the total variation distance, exponentials of Renyi cross-entropies (Hellinger
integrals), and the power divergences (also known as α−entropies, Cressie-Read
measures, Tsallis cross-entropies); the latter cover, e.g. theKullback–Leibler infor-
mation divergence (relative entropy), the (squared) Hellinger distance, the Pearson
chi-square divergence;

• the “classical” Bregman distances CBD (see, e.g. Bregman (1967), Csiszar (1991),
Csiszar (1994), Csiszar (1995), Pardo and Vajda (1997), Pardo and Vajda (2003)):
this includes, e.g. the density power divergences DPD (also known as Basu-Harris-
Hjort-Jones BHHJ distances, cf. Basu et al. (1998)) with the squared L2−norm as
special case.

Themodern use of density-based distances between distributionswith a view towards
robustness investigations started with the seminal paper of Beran (1977), which
was considerably extended by Lindsay (1994), Basu and Lindsay (1994); the latter
two articles develop insightful comparisons between the robustness performance of
some (in effect) CASD distances, in terms of the important concept of the resid-
ual adjustment function RAF (having the Pearson residual between the data and the
candidate model as its argument). In contrast, the robustness properties of the above-
mentioned DPDs were studied by Basu et al. (1998). The growing literature of these
two research lines is comprehensively summarized in the book of Basu et al. (2011);
more recently, Basu et al. (2013, 2015a) develop the asymptotic distribution of DPD
test statistics, Ghosh andBasu (2013, 2014) apply theDPD family for robust and effi-
cient parameter estimation for linear regressions and for censored data, whereas Basu
et al. (2015b) use the DPD for the development of robust tests for the equality of two
normal means. Concerning some recent progress of divergences, Stummer (2007)
as well as Stummer and Vajda (2012) introduced the concept of scaled Bregman
divergences/distances SBD,which enlarges all the above-mentioned (nearly disjoint)
CASD andCBDdivergence classes at once. Hence, the SBD class constitutes a broad
framework for dealing with a wide range of data analyses in a well-structured way;
for each concrete data analysis, the free choice of the twomajor SBD building blocks
(generator, scaling measure) implies much flexibility for interdisciplinary situation-
based inference, see e.g. Kißlinger and Stummer (2013, 2015a, b) for corresponding
exemplary contexts of applicability for parameter estimation, goodness-of-fit testing,
model search, change detection, etc. Combining the insights of the preceding expla-
nations suggests that all the above-mentioned robustness and efficiency investigations
can be covered at once and further extended bymeans of SBDs.Accordingly, themain
goals of this paper are (i) to build up a SBD-based bivariate statistical-engineering
paradigm for the goal-oriented design of new outlier- and inlier-robust statistical
inference tools, and (ii) to derive asymptotic distributions of the corresponding SBD
test statistics. To achieve this, we first develop in Sect. 2 some new classes of scale
connectors. Subsequently, in order to obtain a comfortable interpretability of the
underlying robustness structure—through 3D visualization—we introduce in Sect. 3
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the concept of density-pair adjustment functions DAF(0) and DAF(1) of zeroth and
first order; the latter is a flexible bivariate extension of the above-mentioned (uni-
variate) RAF. Finally, for the finite discrete case the asymptoticity (ii) is investigated
in Sect. 4. Throughout this paper, we present numerous 3D plots in order to illustrate
the immediate applicability of our methods.

2 Scaled Bregman Divergences

Suppose that we want to measure the divergence (distance, dissimilarity, proximity)
D(P, Q) between two probability distributions P , Q on a spaceX (with |X | ≥ 2)
equipped with a σ−algebra A . Typically, one has the following constellations:

• P and Q are both “theoretical distributions”, e.g. P = Poisson(a1) and Q =
Poisson(a2);

• P and Q are both (random sample versions of) “data-derived distributions”, which
appear, e.g. in the context of change detection, two-sample testing; for instance,
P := Pemp

N := 1
N ·∑N

i=1 δXi [·] is the histogram-conform empirical distribution1

of an iid sample X1, . . . , XN of size N from Pθ1 and Q := Pemp
M is the empirical

distribution of an iid sample Ỹ1, . . . , ỸM from Pθ2 ;
• P is a data-derived distribution and Q is a theoretical distribution; e.g. in the context
ofminimumdistance estimation or goodness-of-fit testing, P = Pemp

N and Q = Pθ

is a hypothetical candidate for the unknown underlying true sampling distribution
Pθ1 . Thus, D(Pemp

N , Pθ ) measures the discrepancy between the “pattern” of the
observed data and the “pattern” predicted by the candidate model.

Since the ultimate purposes of a (divergence-based) statistical inference may vary
from case to case, some goal-oriented situation-based well-structured flexibility can
be obtained by using a toolbox D := {Dφ,M(P, Q) : φ ∈ Φ, M ∈ M } of diver-
gences which is far-reaching due to various different choices of a “generator” φ ∈ Φ

and a “scaling measure” M ∈ M . In particular, this should also cover robustness
issues (in awide sense). Tofind good choices ofD is one of the purposes of “statistical
engineering”. One possible candidate for a (density-based) wide divergence family
D is the concept of scaled Bregman divergences SBD of Stummer (2007), Stummer
and Vajda (2012). To describe this, for the sake of brevity we deal with the generator
class Φ = ΦC1 of functions φ : (0,∞) �→ R which are continuously differentiable
with derivative φ′, strictly convex and continuously extended to t = 0, and (w.l.o.g.)
satisfy φ(1) = 0, φ′(1) = 0. Furthermore, for a fixed σ -finite (“reference”) measure
λ on X we denote by Mλ resp. Pλ the family of all σ−finite measures M on X
resp. all probability measures (distributions) P onX having densities m = dM

dλ ≥ 0
resp. p = dP

dλ ≥ 0with respect to λ. For Q ∈ Pλ, wewrite q = dQ
dλ ≥ 0.Within such

a context (and even for non-differentiable generators φ), Stummer (2007), Stummer
and Vajda (2012) introduced the following framework of statistical distances:

1Notice that δy is Dirac’s one-point distribution at y (i.e. δy[A] = 1 iff y ∈ A and δy[A] = 0 else).
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Definition 1 Let φ ∈ ΦC1 and λ be σ -finite measure on X . Then the Bregman
divergence of P, Q ∈ Pλ scaled by M ∈ Mλ is defined by

0 ≤ Dφ,M (P, Q) := Bφ (P, Q | M)

:=
∫
X

[
φ

(
p(x)

m(x)

)
− φ

(
q(x)

m(x)

)
− φ′

(
q(x)

m(x)

)
·
(
p(x)

m(x)
− q(x)

m(x)

)]
dM(x) (1)

=
∫

X

[
m(x) ·

{
φ

(
p(x)

m(x)

)
− φ

(
q(x)

m(x)

)}
− φ′

(
q(x)

m(x)

)
· (p(x) − q(x))

]
dλ(x). (2)

To guarantee the existence of the integrals in (1), (2) (with possibly infinite values),
the zeros of p, q,m have to be combined by proper conventions (see, e.g. Kißlinger
and Stummer (2013) for some discussions; the full details will appear elsewhere).

Notice that—for fixedM—one gets Bφ (P, Q | M) = Bφ̃ (P, Q | M) for any φ̃(t) :=
φ(t) + c1 + c2 · t (t ∈]0,∞[) with constants c1, c2 ∈ R. Moreover, there exist
“essentially different” pairs (φ, M) and (φ̆, M̆) (where φ(t) − φ̆(t) is nonlinear

in t) for which Bφ (P, Q | M) = Bφ̆

(
P, Q | M̆

)
, c.f. Remark 1a below. For power

functions

φ(t) := φα(t) := tα − 1

α(α − 1)
− t − 1

α − 1
≥ 0 , t ∈]0, 1[, α ∈ R\{0, 1} , (3)

one obtains from (2) the scaled Bregman power distances

Bφα
(P, Q | M) =

∫
X

m(x)1−α

α − 1
·
(
p(x)α

α
+ (α − 1) · q(x)α

α
− p(x) · q(x)α−1

)
dλ(x)

(4)
(cf. Stummer and Vajda (2012), Kißlinger and Stummer (2013)), especially

Bφ2 (P, Q | M) = 1

2

∫
X

(p(x) − q(x))2

m(x)
dλ(x) .

In the discrete case whereX = {x1, x2, . . .} is finite or countable and λ := λcount is
the counting measure (i.e., λcount [{xk}] = 1 for all k), then p, q, m are (probability)
mass functions and (2) becomes

0 ≤ Bφ (P, Q | M) (5)

=
∑
x∈X

[
m(x) ·

{
φ

(
p(x)

m(x)

)
− φ

(
q(x)

m(x)

)}
− φ′

(
q(x)

m(x)

)
· (p(x) − q(x))

]
.

For instance, if P := Pemp
N := 1

N ·∑N
i=1 δXi [·] is the above-mentioned data-derived

empirical distribution of an iid sample X1, . . . , XN of size N , the corresponding
probability mass functions are the relative frequencies p(x) = pemp

N (x) = 1
N · #{i ∈

{1, . . . , N } : Xi = x}; if Q = Pθ is a hypothetical candidate model, then q(x) =
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pθ (x). In contrast, forX = R and Lebesgue measure λ := λLeb, one gets p, q,m as
“classical” (probability) densities and (2) reads as “classical” Lebesgue (Riemann)
integral. As an example, take the standard Gaussian p(x) = 1

2π exp{−x2/2}.
Returning back to the general context, for applicability purposes we aim here for

a wide classM of scalingmeasures M such that the outcoming SBDs Bφ (P, Q | M)

• cover much more than the frequently used concepts of Csiszar-Ali-Silvey diver-
gences CASD and classical Bregman distances CBD,

• can be used to tackle robustness (andmany other) issues in awell-structured, finely
nuanced way,

• lead (despite of the involved generality) to concrete explicit asymptotic results for
data analyses where the sample size grows to infinity.

Correspondingly, in the following we confine ourselves to the special subframe-
work Bφ (P, Q |W (P, Q)) with scaling measures of the form M = W (P, Q) in
the sense that m(x) = w(p(x), q(x)) ≥ 0 (λ−a.a. x ∈ X ) for some (measurable)
“scale-connector”w : [0,∞[×[0,∞[�→ [0,∞]between the densities p(x) andq(x)
(where w is strictly positive on ]0,∞[×]0,∞[). In the discrete case we shall
restrict w to [0, 1] × [0, 1] (take, e.g. P := Pemp

N and Q = Pθ as a running exam-
ple); accordingly, the underlying construction principle and 3D plotting technique
of Bφα

(
P, Q |Wβ(P, Q)

)
is illustrated in Fig. 1, where we allow w to depend on a

parameter β. Within such a context, the following special choices of scale connectors
w(·, ·) are of particular interest:
1. no scaling: M = 1, i.e. w(u, v) := wno(u, v) = 1 for all u, v ∈ [0,∞[. Then,

Bφ (P, Q | 1) =
∫
X

[
φ(p(x)) − φ(q(x)) − φ′(q(x)) · (p(x) − q(x))

]
dλ(x) (6)

Fig. 1 Construction of scaled Bregman distance family
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is the classical Bregman distance CBD between P and Q, generated by φ. For the
particular choice φ = φα (cf. (3)), Bφα

(P, Q | 1) (cf. (4)) is amultiple of the α−order
density power divergence DPDα (also known as BHHJ divergence) of Basu et al.
(1998); see alsoBasu et al. (2011, 2013, 2015a, b), Ghosh andBasu (2013, 2014), for
recent applications. Notice that, e.g. for finite space X , Bφ2 (P, Q | 1) corresponds
to the squared L2−norm.

2. multiple idempotency scaling: the scale connector w(·, ·) is arbitrary with the
only constraint that

∃c > 0 ∀v ∈ [0,∞[ w(v, v) = c · v . (7)

For instance, this will turn out to be important for obtaining a “straight” (i.e., unmix-
tured) chi-square distribution for the asymptotics of corresponding scaled Bregman
distances in an i.i.d. sample context, see Subcase 3 in Sect. 4 below. Notice that
for two multiple idempotency scalings w1 and w2, also c1w1 + c2w2 (c1, c2 ≥ 0 with
c1 + c2 > 0),min{w1,w2} andmax{w1,w2} aremultiple idempotency scalings; how-
ever, the latter twomay not inherit the differentiability properties ofw1 andw2 which
may lead to complications in asymptoticity assertions. Let us mention some impor-
tant special cases (see the figures in Fig. 2 for illustration in the discrete case where
u, v ∈ [0, 1]):
2a. Scalings of the form

w(u, v) := wβ, f (u, v) := c · f −1 (β · f (u) + (1 − β) · f (v)) , u ∈ [0,∞[ , v ∈ [0,∞[ (8)

for some strictly monotone function f : [0,∞[→ [0,∞[, β ∈ [0, 1]. This
means that the scale connector wβ, f is a positive multiple of a weighted general-
ized quasi-linearmeanWGQLM (between u and v); for a general comprehensive
study on WGQLMs, see e.g. Grabisch et al. (2009). For fixed β ∈ [0, 1] and
u, v ∈ [0,∞[, we derive from (8) the following useful subsubcases:

2ai. multiple of weighted rth-power mean WRPM, r ∈ R\{0}:

wβ, fr (u, v) := wβ,r (u, v) := c · (β · ur + (1 − β) · vr ) 1r , where fr (z) := zr .

Notice that there is a one-to-one correspondence between wβ,r (u, v) and
wβ1,β2,r (u, v) := (β1 · ur + β2 · vr )1/r with β1, β2 ≥ 0 such that β1 + β2 >

0. For the rest of this paragraph 2ai, we assume c = 1. The case r = 1 corre-
sponds to weighted-arithmetic-mean scaling (mixture scaling) wβ,1(u, v) =
β · u+(1 − β) · v (cf. Fig. 2b). In particular, withw0,1(u, v) = v (cf. Fig. 2a)
one obtains the corresponding Csiszar-Ali-Silvey φ divergence CASD
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2 Some scale connectors; c = 1. a w0,1(u, v) = v (all Csiszar-Ali-Silvey diver-
gences). b w0.45,1(u, v) = 0.45 · u + 0.55 · v. c w0.45,0.5(u, v) = (0.45

√
u + 0.55

√
v)2.

d w0.45,0(u, v) = u0.45 · v0.55. e w0.45, f̃6
(u, v) = 1

6 log
(
0.45e6u + 0.55e6v

)
. f wE (u, v) =

1 + uv −√
(1 − u2)(1 − v2)

u + v
. g wmed

0.45(u, v) = med{min{u, v}, 0.45,max{u, v}}. h wad j (u, v)

with hin = −0.33, hout = −0.25, etc. i wad j (u, v) with hin = 0, hout = 0, etc. j wsmooth
ad j (u, v)

with hin = −0.5, hout = 0.3, δ = 10−7, etc. k Parameter description for wad j (u, v), cf. (h), (i),
(j). l classical outlier/inlier areas Acl

out resp. A
cl
in
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Bφ

(
P, Q |W0,1(P, Q)

) = Bφ (P, Q | Q) =
∫
X

q(x) φ

(
p(x)

q(x)

)
dλ(x)

(9)
(cf. Stummer (2007), Stummer and Vajda (2012)). Hence, in our context
every CASD appears as a subsubcase. For φ(t) := φ1(t) := t log t + 1 − t
one arrives at the Kullback–Leibler information divergence KL (relative
entropy)

Bφ1

(
P, Q |W0,1(P, Q)

) = Bφ1 (P, Q | Q) =
∫
X

p(x) log

(
p(x)

q(x)

)
dλ(x) .

Moreover, the choiceφ(t) := φ1/2(t) (cf. (3)) leads to the (squared)Hellinger
distance Bφ1/2

(
P, Q |W0,1(P, Q)

) = 2
∫
X (

√
p(x) − √

q(x))2 dλ(x),
whereas for φ(t) := φ2(t) (cf. (3)) we end up with Pearson’s chi-square
divergence

Bφ2

(
P, Q |W0,1(P, Q)

) = Bφ2 (P, Q | Q) = 1

2

∫
X

(p(x) − q(x))2

q(x)
dλ(x) .

For general β ∈ [0, 1], we deduce

Bφ2

(
P, Q |Wβ,1(P, Q)

) = 1

2

∫
X

(p(x) − q(x))2

βp(x) + (1 − β)q(x)
dλ(x)

which is (the general-space-form of) the blended weight chi-square diver-
gence BWCD of Lindsay (1994); in particular, Bφ2

(
P, Q |W1,1(P, Q)

)
is

Neyman’s chi-square divergence.
The more general divergences Bφα

(
P, Q |Wβ,1(P, Q)

)
were used in

Kißlinger and Stummer (2013). As far as r is concerned, other interesting
special cases (in addition to r = 1) of Bφ

(
P, Q |Wβ,r (P, Q)

)
are the scal-

ing by (multiple of) weighted quadratic mean (r = 2), weighted harmonic
mean (r = −1), and weighted square root mean (r = 1/2, cf. Fig. 2c). For
instance, the divergence

Bφ2

(
P, Q |Wβ,1/2(P, Q)

) = 1

2

∫

X

(p(x) − q(x))2(
β
√
p(x) + (1 − β)

√
q(x)

)2 dλ(x)

corresponds to (the general-space-form of) the blended weight Hellinger
distance of Lindsay (1994), Basu and Lindsay (1994).

2aii. multiple of weighted geometric mean WGM:

wβ, f0(u, v) := wβ,0(u, v) := c · uβ · v1−β, where f0(z) := log(z)



Robust Statistical Engineering by Means of Scaled Bregman Distances 89

(cf. Fig. 2d). Notice that limr→0 wβ,r (u, v) = wβ,0(u, v). For an exemplary
application of Bφα

(
P, Q |Wβ,0(P, Q)

)
to model search for (auto) regres-

sions, see Kißlinger and Stummer (2015b).
2aiii. multiple of weighted exponential mean WEM, r ∈ R\{0} (cf. Fig. 2e):

wβ, f̃r
(u, v) := c

r
· log (βeru + (1 − β)erv

)
, where f̃r (z) := exp(r z).

(10)
2aiv. multiple of transformed Einstein sum: if u, v are restricted to [0,1]—as it is

the case of probability mass functions in (5)—then for u + v > 0

wE (u, v) = c · 1 + uv −√
(1 − u2)(1 − v2)

u + v
where f (z) := log

(
1 + z

1 − z

)

(cf. Fig. 2f). Within a context not concerned with probability distances, the
special case c = 1 can be found, e.g. in Grabisch et al. (2009).

2b. (further) limits of weighted rth-power means: for any β ∈ [0, 1]

wβ,∞(u, v) := lim
r→∞wβ,r (u, v) = c · max{u, v}

wβ,−∞(u, v) := lim
r→−∞wβ,r (u, v) = c · min{u, v} .

Notice the following bounds:

∀c ∈]0,∞[ ∀β ∈ [0, 1] : c · min{u, v} ≤ wβ,r (u, v) ≤ c · max{u, v} , u, v ∈ [0,∞[.

2c. β−median BM, β ∈ [0,∞[ (cf. Fig. 2g):

wmed
β := c · med{min{u, v}, β,max{u, v}} (11)

where med(x1, x2, x3) denotes the second smallest of the three numbers
x1, x2, x3.

2d. flexible robustness-adjustable scale connector (“robustness adjuster”):
here, we confine ourselves to u, v ∈ [0, 1] which holds for the discrete case
where u = p(x), v = q(x) are probability masses (cf. (5)). For parameters ε0,
ε1, ε0, ε1, uin , vin , uout , vout , hin , hout satisfying the constraints 0 ≤ uin ≤ 1 −
ε1 ≤ 1, 0 ≤ ε0 ≤ 1 − uout ≤ 1, 0 ≤ ε0 ≤ 1 − vin ≤ 1, 0 ≤ vout ≤ 1 − ε1 ≤ 1,
hin > −1, hout > −1, we define εv := ε0 + v(ε1 − ε0), εv := ε0 + v(ε1 − ε0)

and

w(u, v) := wad j (u, v) := wmid(u, v) + win(u, v) + wout (u, v)

:= 1 + (1 − v) ·
{
|u − v| ·

(
1

εv
1[0,εv](u − v) + 1

εv
1[−εv,0)(u − v)

)

−1[−εv;εv](u − v)
}
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+sgn(hin) · max

(
|hin|

(
1 − 1

vin
− u

uin
+ v

vin

)
, 0

)

+sgn(hout) · max

(
|hout |

(
1 − 1

uout
+ u

uout
− v

vout

)
, 0

)
, (12)

cf. Fig. 2k. Notice that w(·, ·) takes the form of the sum of a “plateau wmid(u, v)
of height 1 with increasing rift valley around the diagonal (v, v)”, a “pyra-
mid win(u, v) of (possibly negative) height hin around (u, v) = (0, 1)” and a
“pyramid wout (u, v) of (possibly negative) height hout around (u, v) = (1, 0)”;
depending on the values of the parameters, this may look like an edged ver-
sion of a butterfly, starship or sailplane; see, e.g. Fig. 2h (where here and for (i),
(j) we have fixed the parameters ε0 = 0.12, ε1 = 0.15, ε0 = 0.13, ε1 = 0.1,
vin = vout = uin = uout = 0.1). Furthermore, wad j (v, v) = v for all v ∈ [0, 1].
If hin = hout = 0 (see Fig. 2i) and additionally ε0 = ε1 = ε0 = ε1 =: ε with
extremely small ε > 0 (e.g. less than the rounding-errors-concerning machine
epsilon of your computer), then for all practical purposes wad j (·, ·) is “equal” to
the no-scaling connector wno(u, v) and thus Bφ

(
P, Q |Wadj (P, Q)

)
is “com-

putationally indistinguishable” from the unscaled classical Bregman diver-
gence Bφ (P, Q | 1) (e.g. for φ = φα , the latter are the DPDα). Of course,
the scale connector wad j (·, ·) is generally non-smooth which may be uncom-
fortable for asymptotics properties (see Sect. 4 below). However, one can
generate a smoothed version wsmooth

ad j (u, v) = ∫
R2 wad j (ξ1, ξ2) gδ(u − ξ1, v −

ξ2) d(ξ1, ξ2) in terms of a mollifier gδ(·, ·) with some small tuning parameter
δ > 0, e.g. gδ(z1, z2) := c

δ2
exp{−1/(1 − (z21 + z22)/δ

2)}1[0,δ2[(z21 + z22) where
c > 0 is the normalizing constant; see Fig. 2j where we have used δ = 10−7,
together with parameters ε0 = 0.6, ε1 = 0.2, ε0 = 0.3, ε1 = 0.1, vin = 0.4,
vout = uin = 0.1, uout = 0.2. For “practical purposes”, wsmooth

ad j (·, ·) “coincides”
with wad j (·, ·). An analogous smoothing can be done for the scale connectors in
2b and 2c.

2e. Following the lines of Grabisch et al. (2009) on general aggregation functions,
one can construct scale connectors which satisfy (7) by means of w(u, v) =
c · Υ −1

H (H(u, v)) for any (measurable) function H : [0,∞[×[0,∞[�→ [0,∞]
for which z �→ ΥH (z) := H(z, z) is strictly increasing. For scale connectors
where u, v are restricted to [0,1], this applies analogously.

Remark 1 (a) Notice that the scale connectors w in 2ai, 2aii, 2b can be written in
the form w(u, v) = c · v · h ( uv

)
for some function h : [0,∞] �→ [0,∞] (i.e. the plot

of (u, v) �→ w(u, v)/v is constant along every line through the origin) and hence
the corresponding scaled Bregman divergences satisfy Bφα

(P, Q |W (P, Q)) =
Bφ̃α

(P, Q | Q) (α ∈ R\{0, 1}), i.e. they can be interpreted as a CASD with non-
obvious generator φ̃α(t) := 1

α−1

[
h(t)1−α · { tα

α
− t + α−1

α

}]
. For instance, theBWCD

is representable as Bφ2

(
P, Q |Wβ,1(P, Q)

) = Bφ̃2
(P, Q | Q) where φ̃2(t) = (1 −

t)2/(2 · ((1 − β) + β · t)) turns out to be Rukhin’s generator (cf. Rukhin (1994),
see, e.g. also Marhuenda et al. (2005), Pardo (2006)). Moreover, for the (squared)
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Hellinger distanceonehas Bφ2

(
P, Q |W1/2,1/2(P, Q)

) = Bφ1/2

(
P, Q |W0,1(P, Q)

)
.

(b) The scale connectors w(u, v) in 2aiii, 2aiv, 2c, 2d can NOT be written in the form
of c · v · h ( uv

)
, and hence the CASD-connection of Remark 1a does not apply.

(c) In case of symmetric scale connectors w(u, v) = w(v, u), one can produce sym-
metric divergences by means of either

Bφ (P, Q |W (P, Q)) + Bφ (Q, P |W (P, Q)),
max{Bφ (P, Q |W (P, Q)) , Bφ (Q, P |W (P, Q))},
min{Bφ (P, Q |W (P, Q)) , Bφ (Q, P |W (P, Q))};

this also works for φ(t) = φ1(t) together with arbitrary scale-connectors w.
(d) Instead of (robustly) measuring the distance between “full probability distrib-
utions” P , Q—scaled by a “full non-probability distribution” M—with our new
method one can analogously measure (robustly) the distance between the fami-
lies (P[Ez])z∈I , (Q[Ez])z∈I—scaled by (M[Ez])z∈I—of probabilities of some
selected concrete (e.g. increasing) events (Ez)z∈I ⊂ A of interest.

3 Robustness

In the previous section, we have introduced a toolbox Dsc := {Bφ (P, Q | M) : φ ∈
Φ, M ∈ Msc} of divergences where the class of generators is (say) Φ = ΦC1 and
the class Msc of scalings consists of those measures M = W (P, Q) which have
λ−densitym(x) = w(p(x), q(x)) ≥ 0 with some “scale-connector” w(·, ·) between
the λ−densities p(x) and q(x). In the following, as a part of statistical engineering,
we discuss some criteria of how to find good choices of φ and w, having in mind
robustness respectively stability respectively sensitivity (in a wide sense). For the
sake of brevity, this will be done only2 in the above-mentioned context of (finite or
countable) discrete spacesX = {x1, x2, . . .} of outcomes xi where λcount [{xi }] = 1
for all i , p(x) := P[{x}] and q(x) := Q[{x}] are probability mass functions; accord-
ingly, w : [0, 1] × [0, 1] �→ [0,∞] and (5) becomes

0 ≤ Bφ (P, Q |W (P, Q))

=
∑
x∈X

w(p(x), q(x)) ·
[
φ

(
p(x)

w(p(x), q(x))

)
− φ

(
q(x)

w(p(x), q(x))

)

−φ′
(

q(x)

w(p(x), q(x))

)
·
(

p(x)

w(p(x), q(x))
− q(x)

w(p(x), q(x))

)]

=:
∑
x∈X

w(p(x), q(x)) · bφ

(
p(x)

w(p(x), q(x))
,

q(x)

w(p(x), q(x))

)
. (13)

2The general case follows analogously and will appear elsewhere.
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Since the ultimate purposes of a statistical inference based on Dsc may vary from
case to case—e.g. it may serve as a basis for some desired decision/action of quite
heterogeneous nature in finance,medicine, biology, signal-processing, etc.—the flex-
ibility in choosing generators φ and scale-connectors w should be narrowed down in
a well-structured, goal-oriented way:

• Step 1. Declare (or identify) areas A of specific interest for (u, v) := (p(x), q(x)):
for instance, the “outlier area”

Aout := {(u, v) ∈ [0, 1]2 : u is much larger than v, and v is small} ,

the “inlier area”

Ain := {(u, v) ∈ [0, 1]2 : u is much smaller than v, and v is large} ,

the “midlier area”

Amid := {(u, v) ∈ [0, 1]2 : u is approximately (but not exactly) equal to v} ,

and the “matching area”

Amat := {(v, v) : v ∈ [0, 1]} .

The verbal names of Aout , Ain are given in accordance with applications where
P := Pemp

N := 1
N ·∑N

i=1 δXi [·] is the above-mentioned empirical distribution of an
iid sample X1, . . . , XN of size N , u := p(x) = pemp

N (x) = 1
N · #{i ∈ {1, . . . , N } :

Xi = x}, and Q = Pθ is a discrete candidate model distribution with v := q(x) =
pθ (x); we suggest to take this frequent situation as a running example for the
robustness considerations in the whole Sect. 3. Then, Aout corresponds to out-
comes x which appear in the sample much more often than described by the
model where x is rare. Moreover, Ain corresponds to outcomes x which appear
in the sample much less often than described by the model where x is a very
frequent. In other words, Aout , Ain represent “high unusualnesses” (“surprising
observations”)—in terms of probabilities rather than geometry3—in the sampled
data as compared to the candidate model. Of course, one has to define Aout , Ain ,
Amid more quantitatively, adapted to the task to be solved. Notice that our for-
mulation of Aout allows for more flexibility (e.g. expressed by its boundary)
than the more restrictive “classical” definition (for some large constant c̃ > 0
and Pearson residual δ := u

v − 1) Acl
out := {(u, v) ∈ [0, 1]2 : u

v ≥ c̃} = {(u, v) ∈
[0, 1]2 : δ ≥ c̃ − 1} = {(u, v) ∈ [0, 1]2 : v ≤ u

c̃ if u > 0 and . . . if u = 0}. Anal-
ogously, our Ain allows for more flexibility than the classical quantification (for

3Which in view of the prevailing model uncertainty is a very reasonable thing; think of outliers in
the lifetime data of patients infected by a lethal disease—with better modelling they may not be
outliers anymore.
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some small constant c̆ > 0) Acl
in := {(u, v) ∈ [0, 1]2 : u

v ≤ c̆} = {(u, v) ∈ [0, 1]2 :
δ ≤ c̆ − 1} = {(u, v) ∈ [0, 1]2 : v ≥ u

c̆ if u > 0 and . . . if u = 0}; see Fig. 2l.
• Step 2. On the areas A determined in Step 1, specify desired “adjustments” on
the involved generator φ and scale connector w which amount to dampening
(downweighting) respectively amplification (highlighting) on A, to be quantified
in absolute values and/or relative to a given benchmark.

In the following, we explain Step 2 in detail where for the sake of brevity we mainly
concentrate on robustness (arguing on Aout , Ain); for sufficiency studies, the behav-
iour on Amid should be focused on. To gain better insights, with the following investi-
gations we aim for a comfortable interpretability and comparability of the underlying
robustness structures, also supported through geometric 3D visualizations. To start
with, we have seen in Sect. 2 that all Csiszar-Ali-Silvey divergences CASD and all
classical Bregman divergences CBD are special cases of our scaled Bregman diver-
gences SBD. Hence, we can extend all the known robustness results on CASD and
CBD to a more general, unifying analysis. For the sake of brevity, this will be done
only in extracts; the full details will appear elsewhere.

Case 1: Robustness without derivatives (“zeroth order”). For goodness-of-fit
testing, the detection of distributional changes in data streams, two-sample tests,
fast crude model search in time series (see, e.g. Kißlinger and Stummer (2015b)),
and other tasks, the magnitude of Bφ (P, Q |W (P, Q)) itself is of major impor-
tance. To evaluate its performance “microscopically”, one can take an absolute
view and inspect the magnitude of the “summand builder” (cf. (13)) bφ,w(u, v) :=
w(u, v) · bφ( u

w(u,v) ,
v

w(u,v) ) on the areas A of interest. For instance, depending on the
data-analytic goals, one may like bφ,w(u, v) to have “small (resp. large) values” on
Aout and Ain . In Fig. 3 we present bφ,w0,1(u, v) of the following CASD (see the rep-
resentation in (16) below): (a) the Kullback–Leibler divergence KL (cf. φ = φ1), (b)
the (squared) Hellinger distance HD (cf. φ = φ1/2), (c) the Pearson chi-square diver-
gence PCS (cf. φ = φ2), as well as (d) the negative exponential disparity NED of
Lindsay (1994) with φ(t) := φNED(t) := exp(1 − t) + t − 2. Concerning the non-
CASD case (cf. Remark 1a above), we show in Fig. 3 bφ2,w(u, v) for the weights (e)
w = wno (no scaling, leading to DPD2), (f)w = w0.45, f̃6 (WEM scaling, cf. (10)), (g)
w = wmed

0.45 (β−median scaling, cf. (11)), and (h)w = wad j with the same parameters
as in Fig. 2j (cf. (12)). In (a)–(h), notice the partially large differences in the outlier
area Aout which corresponds to the left corner. In addition to the above-mentioned
absolute view, one can also take a relative view and compare the performance of the
scaled Bregman divergence Bφ (P, Q |W (P, Q)) with that of an “overall” bench-
mark (respectively, an alternative) Bφ̃(P, Q | W̃ (P, Q)). For instance, one may like

to check for Bφ(P, Q |W (P, Q)) � Bφ̃(P, Q | W̃ (P, Q)), or even more “micro-
scopically” (cf. (13)) for

bφ,w(u, v) = w(u, v) · bφ

(
u

w(u, v)
,

v

w(u, v)

)
� (14)

w̃(u, v) · bφ̃

(
u

w̃(u, v)
,

v

w̃(u, v)

)
= bφ̃,w̃(u, v)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3 Some density-pair adjustment functions DAF(0) of zeroth order (cf. (a)–(h)), and compar-
isons of DAF(0) (cf. (i)–(l)). a bφ1,w0,1 (u, v) = u log u

v − (u − v) (KL case). b bφ1/2,w0,1 (u, v) =
2(

√
u − √

v)2 (HD case). c bφ2,w0,1 (u, v) = v
2

( u
v − 1

)2 (PCS case). d bφNED ,w0,1 (u, v) =
v · φNED

( u
v

)
(NED case). e bφ2,wno (u, v) = (u−v)2

2 (DPD2 case). f bφ2,w0.45, f̃6
(u, v) =

6 (u−v)2

2 log(0.45e6u+0.55e6v)
(cf. (10)).g bφ2,wmed

0.45
(u, v) = (u−v)2

2med{min{u,v},β,max{u,v}} (cf. (11)).hbφ2,wad j (u, v)

(cf. (12))with parameters taken as inFig. 2j. iwmed
0.45(u, v) − w0.45,0(u, v) = wmed

0.45(u, v) − u0.45v0.55.

j μwno (u, v) = 1 − 0.5v( u
v −1)

2

u
v log u

v +1− u
v

(DPD2 vs. KL case). k μw(u, v) for w(u, v) = wmed
0.45(u, v). l

μw(u, v) for w(u, v) = min(w0.42,1(u, v),w0.25,1(u, v))
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for all (u, v) ∈ [0, 1]2 and especially for (u, v) ∈ Aout , Ain, Amid , Amat . The cor-
responding visual comparison can be done by overlaying (u, v, bφ,w(u, v)) and
(u, v, bφ̃,w̃(u, v)) in the same 3D plot, or by overlaying (u, v, bφ,w(u, v) − bφ̃,w̃

(u, v)) and (u, v, 0) in another 3D plot; the latter has the advantage of an “eye-
stabilizing” reference plane. Intuitively, the inequality < in (14) means “point-wise”
dampening (downweighting) with respect to the benchmark, whereas > amounts to
amplification (highlighting) with respect to the benchmark. In the light of this, one
can interpret (u, v) �→ bφ,w(u, v) as a density-pair adjustment function DAF(0) of
zeroth order. In principle, for fixed (φ̃, w̃) one can encounter three situations in the
relative quality assessment of some candidate (φ, w). Firstly, the scaling is the same,
i.e. w(u, v) = w̃(u, v), and thus (14) turns into

w(u, v) · bφ

(
u

w(u, v)
,

v

w(u, v)

)
� w(u, v) · bφ̃

(
u

w(u, v)
,

v

w(u, v)

)
, (15)

and in case of w(u, v) > 0 one can further simplify by dividing through w(u, v). For
instance, if one compares two CASD Bφ (P, Q | Q) � Bφ̃ (P, Q | Q) then—due to
w(u, v) = w̃(u, v) = w0,1(u, v) = v—the inequality (15) simplifies to

v · bφ

(u
v
, 1
)

= v · φ
(u
v

)
� v · φ̃

(u
v

)
= v · bφ̃

(u
v
, 1
)

(16)

which on {(u, v) ∈ [0, 1]2 : v > 0} amounts to φ
(
u
v

)
� φ̃

(
u
v

)
. Consistently, for the

outlier area one can, e.g. use the classical variant Acl
out and for the inlier area Acl

in .
For classical unscaled Bregman divergences CBD, Bφ (P, Q | 1) � Bφ̃ (P, Q | 1)
leads to bφ (u, v) � bφ̃ (u, v) (cf. (15)). As a second situation in comparative quality

assessment, the generator functions coincide, i.e. φ = φ̃, and hence (14) becomes

bφ,w(u, v) = w(u, v) × bφ

(
u

w(u, v)
,

v

w(u, v)

)
� (17)

w̃(u, v) × bφ

(
u

w̃(u, v)
,

v

w̃(u, v)

)
= bφ,w̃(u, v) .

Within such a context, one can compare a CASDwith its classical unscaled Bregman
divergence CBD “counterpart”. As an example, one can take φ(t) = φ̃(t) = φ2(t) =
(t−1)2

2 which simplifies (17) to

bφ2,w(u, v) = (u − v)2

2w(u, v)
� (u − v)2

2w̃(u, v)
= bφ2,w̃(u, v) . (18)

The choice w(u, v) = w0,1(u, v) = v leads to the PCS Bφ2 (P, Q | Q) and w̃(u, v) =
1 corresponds to the DPD2 Bφ2 (P, Q | 1). Further examples of w(u, v) can be drawn
from Sect. 2. Clearly, (18) amounts to w(u, v) � w̃(u, v) respectively w(u, v) −
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w̃(u, v) � 0 or w(u,v)
w̃(u,v) � 1 (with special care for eventual zeros); see Fig. 3i for

the difference comparison wmed
0.45(u, v) − w0.45,0(u, v) between the β−median BM

wmed
0.45(u, v) and theweighted geometricmeanWGMw0.45,0(u, v). Notice that the case

w(u, v) = wad j (u, v) � 1 = wno(u, v) = w̃(u, v) of the robustness adjuster against
the CDB-relevant unit scaling is especially easy to compare visually. The third situ-
ation is the “crossover” case where φ is different from φ̃ and w is different from w̃.
Then, (14) needs to be treated more individually. The most fundamental example for
a benchmark is clearly theKullback–Leibler divergenceKL Bφ̃

(
P, Q | W̃ (P, Q)

) =
Bφ1 (P, Q | Q) with generator φ̃(t) = φ1(t) = t log t + 1 − t ≥ 0 (with φ1(1) =
φ′
1(1) = 0, φ′′

1 (1) = 1), as well as scale connector w̃(u, v) = w0,1(u, v) = v, yielding
bφ̃,w̃(u, v) = v

(
u
v log

(
u
v

)+ 1 − u
v

)
. Hence, the comparison (14) specializes to

w(u, v) · bφ

(
u

w(u, v)
,

v

w(u, v)

)
� v ·

(u
v
log

(u
v

)
+ 1 − u

v

)
.

For φ = φ2 we get

(u − v)2

2w(u, v)
� v ·

(u
v
log

(u
v

)
+ 1 − u

v

)
⇐⇒ (19)

0 � w(u, v) − 0.5 · v · ( uv − 1
)2

u
v · log ( uv

)+ 1 − u
v

=: μw(u, v) ;

see, e.g. Fig. 3j for the no-scaling case w = wno (i.e., the DPD2 vs. KL comparison)
and (k) for the β−median BM case wmed

0.45. The check for (19) simplifies considerably
if w(u, v) = v · h ( uv

)
for some function h (see, e.g. Fig. 3l for the scale connec-

tor w(u, v) = min(w0.42,1(u, v),w0.25,1(u, v)) being the minimum of two weighted
arithmetic means). Then the left-hand side can be rewritten as a CASD (cf. Remark
1a above) and hence context (16) applies, too.

Case 2: Robustness with first derivatives (“first order”). In many cases, one of the
two distributions P , Q depends on a multidimensional parameter, say Q ∈ QΘ :=
{Qθ : θ ∈ Θ}, Θ ⊂ R

d . Then, not only the magnitude of Bφ (P, Qθ |W (P, Qθ ))

but also its derivative ∇θ Bφ (P, Qθ |W (P, Qθ )) with respect to θ may be of major
importance. The most well-known context is minimum distance estimation, where P
is a data-derived probability-measure-valued statistical functional and one wants to
find thememberQ θ̂ ofQΘ whichhas the shortest distance to P (if this exists), i.e. θ̂ =
argminθ∈ΘBφ (P, Qθ |W (P, Qθ )); for instance, P := Pemp

N := 1
N ·∑N

i=1 δXi [·] is
the above-mentioned empirical distribution of an iid sample X1, . . . , XN of size N .
If φ andw are smooth enough, the corresponding optimization leads to the estimating
equation



Robust Statistical Engineering by Means of Scaled Bregman Distances 97

0 = −∇θ Bφ (P, Qθ |W (P, Qθ ))

= −
∑
x∈X

∇θ w(p(x), qθ (x)) · bφ

(
p(x)

w(p(x), qθ (x))
,

qθ (x)

w(p(x), qθ (x))

)

= −
∑
x∈X

∂

∂v

(
w(p(x), v) · bφ

(
p(x)

w(p(x), v)
,

v

w(p(x), v)

)) ∣∣∣∣
v=qθ (x)

· ∇θqθ (x)

provided that one can interchange the sum and the derivative. In the same spirit as in
Step 1, it makes sense to study the density-pair adjustment function DAF(1) of first
order (u, v) �→ aφ,w(u, v) defined by

aφ,w(u, v) := − ∂

∂v
bφ,w(u, v) = − ∂

∂v

{
w(u, v) · bφ

(
u

w(u, v)
,

v

w(u, v)

)}

= −bφ

(
u

w(u, v)
,

v

w(u, v)

)
· ∂

∂v
w(u, v) − w(u, v) · ∂

∂v
bφ

(
u

w(u, v)
,

v

w(u, v)

)

= −bφ

(
u

w(u, v)
,

v

w(u, v)

)
· ∂

∂v
w(u, v)

+
{
φ′
(

u

w(u, v)

)
− φ′

(
v

w(u, v)

)}
· u

w(u, v)
· ∂

∂v
w(u, v)

+φ′′
(

v

w(u, v)

)
·
(

u

w(u, v)
− v

w(u, v)

){
1 − v

w(u, v)

∂

∂v
w(u, v)

}

=
{

u

w(u, v)
φ′
(

u

w(u, v)

)
− φ

(
u

w(u, v)

)
− v

w(u, v)
φ′
(

v

w(u, v)

)
+ φ

(
v

w(u, v)

)

− v

w(u, v)
φ′′
(

v

w(u, v)

)
·
(

u

w(u, v)
− v

w(u, v)

)}
· ∂

∂v
w(u, v)

+φ′′
(

v

w(u, v)

)
·
(

u

w(u, v)
− v

w(u, v)

)
, (20)

where we have used the definition of bφ given in (13). Notice that for arbitrary CASD
Bφ (P, Q | Q) (which corresponds to the special choice w(u, v) = w0,1(u, v) = v),
the first-order DAF(1) defined in (20) reduces by use of φ(1) = φ′(1) = 0, Cφ(t) :=
φ(t + 1) (t ∈ [−1,∞[), and the Pearson residual δ = u

v − 1 ∈ [−1,∞[ to

aφ,w0,1(u, v) = u

v
· φ′

(u
v

)
− φ

(u
v

)
= (δ + 1) · C ′

φ (δ) − Cφ(δ) =: ǎCφ
(δ) . (21)

Here, ǎCφ
(·) is the residual adjustment function RAF of Lindsay (1994), Basu and

Lindsay (1994), defined for Cφ−disparities which are nothing but alternative repre-
sentations of CASD divergences with generator φ. In other words, (21) shows that
our framework of first-order density-pair adjustment functions DAF(1) aφ,w(u, v) is
a bivariate generalization of the concept of univariate residual adjustment functions
RAFs. This extension allows in particular for comfortable direct comparison between
the robustness structures of the (nearly disjoint) CASD and the CBDworlds, as it will
be demonstrated below. Also notice that the RAF has unbounded domain, whereas
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the first-order DAF has bounded domain which is advantageous for plotting purposes
(of bounded a). The inspection of the function aφ,w(·, ·) for the two effects dampen-
ing or amplification—especially on the areas Aout , Ain , Amid , Amat of interest—can
be performed analogously to the inspection of bφ,w(·, ·), in absolute values and/or
relative to a benchmark. For instance, for outlier and inlier dampening, |aφ,w(·, ·)|
should be close to zero on Aout , Ain , and closer to zero than the benchmark. The
latter may be the Kullback–Leibler divergence case

aφ1,w0,1(u, v) = u

v
− 1 = δ = ǎCφ1

(δ)

which is positive on the area Asub := {(u, v) ∈ [0, 1]2 : v < u} and especially highly
positive on Aout ⊂ Asub; in contrast, aφ1,w0,1(u, v) is negative on Asup := {(u, v) ∈
[0, 1]2 : v > u} and especially moderately negative on Ain ⊂ Asup (see also Fig. 2l
for an illustration of Asub, Asup together with the classical outlier and inlier areas
Acl
out , A

cl
in which are less flexible than our Aout , Ain). In Fig. 4, we have plotted the

DAF(1) aφ,w0,1(u, v) (cut-off at height 6) of some prominent CASD, namely of (a) the
Kullback–Leibler divergence KL (cf. φ = φ1), (b) the (squared) Hellinger distance
HD (cf. φ = φ1/2), (c) the Pearson chi-square divergence PCS (cf. φ = φ2), and (d)
the negative exponential disparity NED (cf. φ = φNED). Notice that on Asub (and
especially on the outlier area Aout in the left corner) the DAF(1) of HD resp. PCS
resp. NED is closer to zero resp. farther from zero resp. much closer to zero than
the DAF(1) of the KL; moreover, on Asup (and especially on the inlier area Ain

in the right corner) the DAF(1) of HD resp. PCS resp. NED is farther from zero
resp. closer to zero resp. closer to zero than the DAF(1) of the KL (see also the
corresponding difference plots (i), (j), (k) described below). This indicates that the
outlier robustness of HD and NED (resp. PCS) is better (resp. worse) than that of the
KL, and the inlier robustness of PCS and NED (resp. HD) is better (resp. worse) than
that of the KL. Hence, these 3D plots of the bivariate DAF(1) confirm and extend the
well-known results deduced from the 2D Plots of the univariate residual adjustment
functions RAF. In contrast to the CASDworld above, for unscaled classical Bregman
divergences CBD Bφ (P, Q | 1) one obtains from (20) with w(u, v) = wno(u, v) = 1
the first-order DAF(1) aφ,wno(u, v) = φ′′ (v) · (u − v). The linear dependence in u
shows that all CBD have restricted flexibility in robustness modelling, compared
with our SBD. To continue with other special cases, for φ(t) = φ2(t) = (t−1)2

2 we
get from (20)

aφ2,w(u, v) = u − v

w(u, v)
+ (u − v)2

2w(u, v)2
· ∂

∂v
w(u, v), (u, v) ∈ [0, 1]2. (22)

Some examples for (22) are presented in Fig. 4, namely (e) aφ2,wno(u, v) = u − v
(DPD2 case), (f) aφα,wno(u, v) = (u − v) · vα−2 (DPDα case, α = 1.67) and (g)
aφ2,wβ, f̃r

(u, v)withWEM scale connector wβ, f̃r
(u, v); the inspections of the left resp.

right corners indicate that the performance of (e), (g) for outliers resp. inliers are
comparable and (mostly) even better than the—already very good—corresponding
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4 Some first-order density-pair adjustment functions DAF(1) (cf. (a)–(h)), and comparisons
of DAF(1) (cf. (i)–(s)). OUT refers to outlier performance (for (a) in absolute terms, for (b)–(h)
relative to the benchmark (a)), IN refers to inlier performance, ASYMP refers to the asymptotics
in Corollary 1 (= nice) resp. the more complicated Theorem 1 (= compl). a aφ1,w0,1 (u, v) = u

v − 1,
KL (benchmark): OUT = bad, IN = ok, ASYMP= nice. b aφ1/2,w0,1 (u, v) = 2 · (√u/v − 1), HD:
OUT = less bad, IN = worse, ASYMP = nice. c aφ2,w0,1 (u, v) = ((u2/v2) − 1)/2, PCS: OUT =
worse, IN = better, ASYMP = nice. d aφNED ,w0,1 (u, v) = 2 − (1 + u

v ) · exp1−(u/v), NED: OUT
= much better, IN = better, ASYMP = nice. e aφ2,wno (u, v) = u − v, DPD2: OUT = much bet-
ter, IN = better, ASYMP = compl; also inefficient. f aφα,wno (u, v) = (u − v) · vα−2, DPD1.67:
OUT = much better, IN = better, ASYMP = compl. g aφ2,w0.45, f̃6

(u, v), φ = φ2, w = WEM :

OUT = much better, IN = better, ASYMP = nice. h adesad j (u, v) (designed) φ = φ2, w cf. (23): OUT

= much better, IN = much better. i ρφ1/2,w0,1 (u, v) = −
(√

u
v − 1

)2
(HD vs. KL). j ρφ2,w0,1 (u, v) =

1
2

( u
v − 1

)2 (PCS vs. KL). k ρφNED ,w0,1 (u, v) = 2 − (
1 + u

v

)
exp

(
1 − u

v

)− u
v + 1 (NED vs.

KL). l ρφ2,w0.45, f̃6
(u, v). m ρφ2,wdes (u, v) = adesad j (u, v) − u

v + 1. n ρφ2,wno (u, v) = ( u
v − 1

)
(v − 1)

(DPD2 vs. KL). o aφ1/2,w0,1 (u, v) − aφ2,wno (u, v) = 2
(√

u
v − 1

)
− (u − v) (HD vs. DPD2). p

ζw0,1 (u, v) = ( u
v − 1

) · (1 + 1
2

( u
v − 1

)− v
)
(PCS vs. DPD2). q aφNED ,w0,1 (u, v) − aφ2,wno (u, v) =

2 − (
1 + u

v

)
exp

(
1 − u

v

)− (u − v) (NED vs. DPD2). r aφ2,w0.45, f̃6
(u, v) − aφNED ,w0,1 (u, v). s

aφ2,w0.45, f̃6
(u, v) − aφ2,wno (u, v)
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(j) (k) (l)

(m) (n) (o)

(p)

(s)

(q) (r)

Fig. 4 (continued)

performance of the NED (d). The behaviour in the midlier area indicates that the
efficiency of (g) (but not of (e)) is similar with that of (d).

One can also carry out some “reverse statistical engineering” by first fixing a first-
order density-pair adjustment function ades(u, v)with desired properties on the areas
A of interest (e.g. on Aout , Ain , Amid ) (and integrability with respect to v ∈ [0, 1]
should hold, too). Thereafter, one wants to deduce a corresponding scale connector
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w which satisfies aφ2,w(u, v) = ades(u, v) for all (u, v) ∈ [0, 1]2; this amounts to
solving the differential equation produced by (22) under some designable constraint,
(say), e.g. the “boundary” conditionw(·, c) = h(·) for some arbitrary strictly positive
function h(·) on [0, 1] and some arbitrary constant c ∈ [0, 1]. Accordingly, (with
special care of possible zeros) (22) is satisfied by

wdes(u, v) = (u − v)2

(u−c)2

h(u)
+ ∫ v

c ades(u, s) ds
, (u, v) ∈ [0, 1]2 . (23)

For instance, one can take the “first-order DAF(1) robustness adjuster”

adesad j (u, v) := min(u/v − 1, cut) + sgn(hin) · max

(
|hin |

(
1 − 1

vin
− u

uin
+ v

vin

)
, 0

)

+sgn(hout ) · max

(
|hout |

(
1 − 1

uout
+ u

uout
− v

vout

)
, 0

)
, (24)

which is a robustified version of the first-order DAF(1) aφ1,w0,1(u, v) = u
v − 1 of the

Kullback–Leibler divergence KL. The range and meaning of the constants uin , vin ,
uout , vout , hin , hout in (24) is the same as in Sect. 2.2d above (with the exception that
hin , hout can be smaller than −1), and the cut-off constant cut is strictly positive; in
Fig. 4h one can find a plot for the choice uin = vin = uout = vout = 0.2, hin = +0.9,
hout = −1.6, cut = 1.6.As a less flexible alternative to (23), ifϕ(u, v) := ades (u,v)

u−v =:
ϕ(v) does not depend on u then with the generator φ̃(t) := ∫ v

c1

∫ z
c2

ϕ(s) ds (with arbi-
trary constants c1, c2 ∈ [0, 1]) the classical Bregman divergence CBD Bφ̃ (P, Q | 1)
has the desired DAF(1), since aφ̃,wno

(u, v) = φ̃′′ (v) · (u − v) = ades(u, v).
For relative-performance analysis, we compare whether −∇θ Bφ(P, Qθ |W

(P, Qθ )) is � the benchmark −∇θ Bφ̃

(
P, Qθ | W̃ (P, Qθ )

)
. Accordingly, (20)

leads to

aφ,w(u, v) � aφ̃,w̃(u, v) ⇐⇒ aφ,w(u, v) − aφ̃,w̃(u, v) � 0 (25)

for all (u, v) ∈ [0, 1] × [0, 1] and especially for (u, v) ∈ Aout , Ain, Amid , Amat . The
corresponding visual comparison can be achieved by overlaying (u, v, aφ,w(u, v))
and (u, v, aφ̃,w̃(u, v)) in the same 3D plot, or (for magnitude inspection) by overlay-

ing
(
u, v, aφ,w(u,v)

aφ̃,w̃(u,v)

)
and (u, v, 1) in another 3D plot. Also, the overlay of (u, v, aφ,w

(u, v) − aφ̃,w̃(u, v)) and (u, v, 0) is a natural choice; in accordance with the above-
mentioned “nearness-to-zero” robustness-quality criteria for aφ,w, the difference
aφ,w(u, v) − aφ̃,w̃(u, v) should be negative on Asub or at least on Aout ⊂ Asub (i.e. in
the left corner of the figures) and positive on Asup or at least on Ain ⊂ Asup (i.e. in
the right corner).

For the special case w(u, v) = w̃(u, v) = w0,1(u, v) = v of CASD, the corre-
sponding 3D overlay of (u, v, aφ,w0,1(u, v)) (cf. (21)) and (u, v, aφ̃,w0,1

(u, v)) serves
as an alternative of the 2D overlay of the RAF plots (δ, ǎCφ

(δ)) and (δ, ǎCφ̃
(δ)).



102 A.-L. Kißlinger and W. Stummer

However, the interpretation of this kind of 3D overlay is not optimally describeable
in greyscale pictures, in a few words; thus we prefer to show the a-difference-plots.

For the Kullback–Leibler divergence benchmark, with aφ1,w0,1(u, v)) = u
v − 1 we

get

aφ,w0,1(u, v) � u

v
− 1 = aφ1,w0,1(u, v)

and more generally

aφ,w(u, v) � u

v
− 1 = aφ1,w0,1 (u, v) ⇐⇒ ρφ,w(u, v) := aφ,w(u, v) − u

v
+ 1 � 0 .

(26)
Concerning (26), in Fig. 4 we present ρφ,w(u, v) for the CASD cases of (i) (squared)
Hellinger distance HD, (j) Pearson chi-square divergence PCS, and (k) negative
exponential disparity NED, as well as for the non-CASD cases of (l) φ = φ2, WEM
w = wρ, f̃r

, (m) φ = φ2, w = wdes of the “first-order DAF(1) robustness adjuster”
adesad j , and (n) φ = φ2, w = wno (DPD2 vs. KL).

Another interesting line of comparison is amongst the φ2−family

aφ2,w(u, v) = u − v

w(u, v)
+ (u − v)2

2w(u, v)2
· ∂

∂v
w(u, v) � u − v = aφ2,wno(u, v)

⇐⇒ ζw(u, v) := u − v

w(u, v)
+ (u − v)2

2w(u, v)2
· ∂

∂v
w(u, v) − (u − v) � 0 (27)

which for u �= v can be further simplified. Alternatively,
aφ2 ,w(u,v)
aφ2 ,wno (u,v) � 1 is use-

ful for the quantification of the “relative magnitude” of the method. Thus, now the
benchmark is of non-CASD type, namely DPD2. An example for the applicabil-
ity of (27) can be found in Fig. 4p, where ζw(u, v) is given for the CASD case of
Pearson’s chi-square divergence PCS. In “crossover” contexts, some comparisons
along the right-hand side of (25) between CASDs (other than PCS) and the DPD2

are represented in Fig. 4o for the (squared) Hellinger distance HD, and Fig. 4q for
the negative exponential disparity NED. As the NED is known to be highly robust
against outliers and inliers, it makes sense to use it as a benchmark itself. In Fig. 4r
we plotted aφ2,w0.45, f̃6

(u, v) − aφNED ,w0,1(u, v) which shows that our new divergence
Bφ2(P, Q |W0.45, f̃6(P, Q)) has even better robustness properties than theNEDwhich
can be written in SBD form as BφNED (P, Q | Q) = BφNED

(
P, Q |W0,1(P, Q)

)
. The

comparison of the robustness of Bφ2(P, Q |W0.45, f̃6(P, Q)) with that of the DPD2

Bφ2 (P, Q | 1) can be found inFig. 4s bymeans ofaφ2,w0.45, f̃6
(u, v) − aφ2,wno(u, v). One

can conclude that both divergences are similarly robust; however, by changing the
WEMscale connectorw0.45, f̃6 towβ, f̃r

with someother parameters (β, r) �= (0.45, 6),
one can even outperform the density power divergence DPD2. For the sake of brevity,
this will appear elsewhere.

As a final remark, let us mention that for fixed area A of interest (e.g. Aout , Ain),
the behaviour of the first-order DAF(1) aφ,w(·, ·) may differ from that of the zeroth-
order DAF(0) bφ,w(·, ·). For instance, the dampening (respectively, amplification)
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may be considerably weaker or stronger, or may even switch from dampening to
amplification, or vice versa. To quantify this effect is important for avoiding undesired
effects if, e.g. one uses Bφ (P, Qθ |W (P, Qθ )) synchronously forminimumdistance
estimation and goodness-of-fit testing.

As a corresponding quantifier we suggest the adjustment propagation function
APF

ηφ,w(u, v) := aφ,w(u, v)

bφ,w(u, v)
= − ∂

∂v
logw(u, v) − ∂

∂v
log bφ

(
u

w(u, v)
,

v

w(u, v)

)
.

For example, for φ(t) = φ2(t) = (t−1)2

2 one obtains from (18) and (22) the APF
ηφ2,w(u, v) = 2

u−v + ∂
∂v logw(u, v).

4 General Asymptotic Results for Finite Discrete Case

In this section, we assume additionally that the function φ(·) ∈ ΦC1 is thrice contin-
uously differentiable on ]0,∞] (which implies φ′′(1) > 0), as well as that all three
functionsw(u, v),w1(u, v) := ∂w

∂u (u, v) andw11(u, v) := ∂2w
∂u2 (u, v) are continuous in

all (u, v) of some (maybe tiny) neighbourhood of the diagonal {(t, t) : t ∈]0, 1[}.4 In
such a setup,wedealwith the following context: for i ∈ N let the observationof the i th
data point be represented by the random variable Xi which takes values in some finite
spaceX := {x1, . . . , xs}5 which has s := |X | ≥ 2 outcomes (and thus, we choose
λ := λcount as reference measure). Accordingly, let X1, . . . , XN represent a ran-
dom sample of independent and identically distributed observations generated from
an unknown true distribution Pθtrue which is supposed to be a member of a parametric
family PΘ := {Pθ : θ ∈ Θ and Pθ has the probability mass function pθ (·)
with respect to λ} of hypothetical, potential candidate distributions. Here, Θ ⊂ R

�

is a �−dimensional parameter set. Moreover, we denote by P := Pemp
N := 1

N ·∑N
i=1 δXi [·] the corresponding empirical distribution for which the probability mass

function pemp
N (·) consists of the relative frequencies p(x) = pemp

N (x) = 1
N · #{i ∈

{1, . . . , N } : Xi = x} (i.e. the “histogram entries”). Notice that Pemp
N is a probability-

measure valued statistical functional (statistics). If the sample size N becomes large
enough, it is intuitively plausible that the scaled Bregman divergence (cf. (13))

0 ≤ T φ,w
N (Pemp

N , Pθ )

2N
:= Bφ

(
Pemp
N , Pθ |W (Pemp

N , Pθ )
)

=
∑
x∈X

w(pemp
N (x), pθ (x)) · bφ

(
pemp
N (x)

w(pemp
N (x), pθ (x))

,
pθ (x)

w(pemp
N (x), pθ (x))

)

4So that (41) holds for ψ11(u, v) given by (36) below.
5(Equipped with some σ−algebra A ).
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between the data-derived empirical distribution Pemp
N and the candidate model Pθ

converges to zero, provided thatwehave found the correctmodel in the sense that Pθ is
equal to the true data generating distribution Pθtrue . In the same line of argumentation,
Bφ

(
Pemp
N , Pθ |W (Pemp

N , Pθ )
)
becomes close to zero, provided that Pθ is close to

Pθtrue . Notice that (say, for strictly positive probability mass functions pemp
N (·) and

pθ (·)) the Kullback–Leibler divergence KL case

Bφ1

(
Pemp
N , Pθ |W0,1(P

emp
N , Pθ )

) =
∑
x∈X

pθ (x) · φ1

(
pemp
N (x)

pθ (x)

)
(28)

=
∑
x∈X

pemp
N (x) · log

(
pemp
N (x)

pθ (x)

)

is nothing but the (multiple of the) very prominent likelihood ratio test statistics (like-
lihood disparity); minimizing it over θ produces the maximum likelihood estimate
θ̂MLE . Moreover,

Bφ2

(
Pemp
N , Pθ |W0,1(P

emp
N , Pθ )

) =
∑
x∈X

(pemp
N (x) − pθ (x))2

2pθ (x)

represents the (multiple of the) Pearson chi-square test statistics. Concerning the
above-mentioned conjectures where the sample size N tends to infinity, in case
of Pθtrue = Pθ one can even derive the limit distribution of the scaled-Bregman-
divergence test statistics T φ,w

N (Pemp
N , Pθ ) in quite “universal generality”:

Theorem 1 Under the null hypothesis “H0: Pθtrue = Pθ with pθ (x) > 0 for all x ∈
X ”, the asymptotic distribution (as N → ∞) of

T φ,w
N (Pemp

N , Pθ ) = 2N · Bφ

(
Pemp
N , Pθ |W (Pemp

N , Pθ )
)

has the following density fs∗6:

fs∗(y; γ φ,θ ) = y
s∗
2 −1

2
s∗
2

∞∑
k=0

ck ·
(− y

2

)k
Γ
(
s∗
2 + k

) , y ∈ [0,∞[ , (29)

with c0 =
s∗∏
j=1

(
γ

φ,θ

j

)−0.5
and ck = 1

2k

k−1∑
r=0

cr

s∗∑
j=1

(
γ

φ,θ

j

)r−k
(k ∈ N) (30)

where s∗ := rank(ΣAΣ) is the number of the strictly positive eigenvalues
(γ

φ,θ

i )i=1,...,s∗ of the matrix AΣ = (
c̄i · (δi j − pθ (x j ))

)
i, j=1,...,s consisting of

6(with respect to the one-dim. Lebesgue measure).
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Σ = (pθ (xi ) · (δi j − pθ (x j ))i, j=1,...,s (31)

A =
⎛
⎝φ′′

(
pθ (xi )

w(pθ (xi ),pθ (xi ))

)

w(pθ (xi ), pθ (xi ))
δi j

⎞
⎠

i, j=1,...,s

(32)

c̄i = φ′′
(

pθ (xi )

w(pθ (xi ), pθ (xi ))

)
· pθ (xi )

w(pθ (xi ), pθ (xi ))
. (33)

Here we have used Kronecker’s delta δi j which is 1 iff i = j and 0 else.

In particular, the asymptotic distribution (as N → ∞) of T φ,w
N (Pemp

N , Pθ ) coin-
cides with the distribution of a weighted linear combination of standard-chi-square-
distributed random variables where the weights are the γ

φ,θ

i (i = 1, . . . , s∗).
The proof of Theorem 1 is given in the appendix. Furthermore, let us mention that

we can also study the asymptotics of (i) the statistics 2N · Bφ

(
P̂θN

, Pθ |W (P̂θN
, Pθ )

)
with scaled-Bregman-divergence minimum distance estimator θ̂N , as well as (ii) the

two-sample statistics 2 · N1 · N2

N1 + N2
· Bφ

(
PN1 , PN2 |W (PN1 , PN2)

)
. The corresponding

theorems about the latter two have a structure which is similar to that of Theorem 1,
with (partially) different matrices A and Σ . The details will appear elsewhere.

From the structure of Theorem 1, one can see that the asymptotic density fs∗

of the scaled-Bregman-divergence test statistics 2N · Bφ

(
Pemp
N , Pθ |W (Pemp

N , Pθ )
)

depends in general on the parameter θ . However, for a very large subclass we end
up with a parameter-free chi-square limit distribution:

Corollary 1 Let the assumptions of Theorem 1 be satisfied. If c̄ j ≡ c̄ > 0 does not
depend on j ∈ {1, . . . , s}, then 2N · Bφ

(
Pemp
N , Pθ |W (Pemp

N , Pθ )
)
/c̄ is asymptoti-

cally chi-square-distributed with s − 1 degrees of freedom.

Having found out explicitly the asymptotic distribution of the test statistics, one can
derive corresponding goodness-of-fit tests in a straightforward manner (chi-square-
distribution quantiles, etc.). To prove Corollary 1 from Theorem 1, it is straightfor-
ward to see that s∗ = s − 1 andγ

φ,θ

i = c̄ for all i = 1, ..., s − 1. Plugging this into the

definitions of c0 and ck , one can show inductively that ck = Γ (k + (s∗/2))
k! · Γ (s∗/2) · c̄k+(s∗/2) .

Hence, fs∗(y; γ φ,θ ) = g̃(y/c)/cwhere g̃(·) is the density of a chi-square distribution
with s∗ degrees of freedom.

The following important contexts are covered by Corollary 1:
Subcase 1: Uniform Distribution . Let the true distribution Pθtrue be the uniform dis-
tribution onX = {1, · · · , s}, i.e. under H0 one has pθ (xi ) = 1/s for all i = 1, ..., s.
Accordingly, the factor c̄ j becomes c̄ j = c̄ = φ′′(1/(s · w ( 1s , 1

s

)
)
)
/(s · w ( 1s , 1

s

)
).

Hence, our Corollary 1 generalizes the Corollary 5 of Pardo and Vajda (2003) who
used the uniform distribution together with the unit scalingw(u, v) = wno(u, v) = 1.

Subcase 2: Kullback–Leibler-Divergence . For the corresponding generatorφ(t) =
φ1(t) = t · log(t) + 1 − t one gets φ′′(t) = 1

t and hence c̄ j = c̄ = t · φ′′(t) ≡ 1 for
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any arbitrary scale connectorw(·, ·). Thus, Corollary 1 is muchmore general than the
classical result that the 2N-fold of the likelihood ratio statistics (28) is asymptotically
chi-square-distributed with s − 1 degrees of freedom.

However, one can go far beyond:
Subcase 3: multiple idempotency scaling . Let w(·, ·) be an arbitrary scale con-
nector which satisfies the condition ∃c > 0 ∀v ∈ [0,∞[ w(v, v) = c · v (cf.
(7)) and which is twice continuously differentiable in its first component in some

neighborhood of the diagonal. Then we deduce c̄ j = φ′′
(

pθ (x j )

w(pθ (x j ), pθ (x j ))

)
·

pθ (x j )

w(pθ (x j ), pθ (x j ))
= φ′′( 1

c )
c . Hence, from Corollary 1 we see that for all

(eventually sufficiently smoothed) scale connectors w of Sect. 2.2 and all
generators φ, the corresponding scaled-Bregman-divergence test statistics
2N · Bφ

(
Pemp
N , Pθ |W (Pemp

N , Pθ )
)
/c̄ is asymptotically chi-square-distributed with

s − 1 degrees of freedom. From this general assertion one can immediately deduce
the well-known result (see, e.g. Zografos et al. (1990), Basu and Sarkar (1994) for the
one-to-one concept of disparities, Pardo (2006)) about the asymptotic chi-square-
distribution (of s − 1 degrees of freedom) of all 2N/φ′′(1)-folds of Csiszar-Ali-
Silvey divergences CASD test statistics, since they are imbedded as (cf. (9) from
Sect. 2.2.ai)

2N

φ′′(1)
Bφ

(
Pemp
N , Pθ |W0,1(P

emp
N , Pθ )

) = 2N

φ′′(1)
Bφ

(
Pemp
N , Pθ | Pθ

)

= 2N

φ′′(1)

∑
x∈X

pθ (x) φ

(
pemp
N (x)

pθ (x)

)
.

To continue, notice that the case of classical-Bregman-distance test statistics

2N · Bφ

(
Pemp
N , Pθ | 1

)
=

2N
∑

x∈X
φ(Pemp

N (x)) − φ(pθ (x)) − φ′(pθ (x)) · (Pemp
N (x) − pθ (x))

(cf. (6)) is not covered by Corollary 1; however from themore general Theorem 1 one
can deduce its parameter-dependent asymptotic distribution by plugging w(u, v) =
wno(u, v) = 1 into (33) which leads to c̄ j = pθ (x j ) · φ′′ (pθ (x j )

)
; for the special case

of the DPDα 2N · Bφα

(
Pemp
N , Pθ | 1) (α ∈ R\{0, 1}) this reduces to c̄ j = pθ (x j )

α−1;
an asymptoticity result which is similar to the latter can be found in Basu et al.
(2013), with the following main differences: they use 2αN · Bφα

(P̂
θ

(N )
β

, Pθ | 1)where
α > 1, Pθ need not (but is allowed to) be discrete, and θ̂

(N )
β is the parameter ϑ which

minimizes β · Bφβ

(
Pemp
N , Pϑ | 1) for β > 1.

As a modelling alternative to 2N · Bφ

(
Pemp
N , Pθ | 1), one can work with the

smoothed robustness-adjusted scale connector wsmooth
ad j (u, v) of Sect. 2.2d—with

hin = hout = 0 (see Fig. 2i) and ε0 = ε1 = ε0 = ε1 =: ε with extremely small ε > 0
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(e.g. less than the rounding-errors-concerning machine epsilon of your computer);
then for all practical purposes at reasonable sample sizes,

B̃N := 2N Bφ(Pemp
N , Pθ |Wsmooth

ad j (Pemp
N , Pθ )) is “computationally indistinguish-

able” from2N Bφ(Pemp
N , Pθ | 1), but B̃N/φ′′(1) is asymptotically chi-square-distributed

with s − 1 degrees of freedom (being parameter-free).
Let us finally remark that all our concepts can also be performed for non-

probability measures P , Q, and for similar functions. This will appear in a forth-
coming paper.
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Appendix

Proof of Theorem 1 Let us start by rewriting

2N · Bφ

(
Pemp
N , Pθ |W (Pemp

N , Pθ )
)

= 2N
∑
x∈X

[
w(pemp

N (x), pθ (x)) ·
{

φ

(
pemp
N (x)

w(pemp
N (x), pθ (x))

)
− φ

(
pθ (x)

w(pemp
N (x), pθ (x))

)}

−φ′
(

pθ (x)

w(pemp
N (x), pθ (x))

)
· (pemp

N (x) − pθ (x)
) ]

=: 2N
∑
x∈X

ψ(pemp
N (x), pθ (x)), (34)

where the function ψ : [0, 1]×]0, 1] �→ [0,∞[ is defined by

ψ(u, v) := w(u, v) ·
{
φ

(
u

w(u, v)

)
− φ

(
v

w(u, v)

)}
− φ′

(
v

w(u, v)

)
· (u − v)

(with the proper extension for u = 0). As an ingredient for the below-mentioned
Taylor expansion, we compute the first two partial derivatives of ψ(·, ·) with respect
to its first argument:

ψ1(u, v) := ∂ψ

∂u
(u, v) = ∂

∂u

{
w(u, v) ·

(
φ

(
u

w(u, v)

)
− φ

(
v

w(u, v)

))
− φ′

(
v

w(u, v)

)
(u − v)

}

= w1(u, v) ·
(

φ

(
u

w(u, v)

)
− φ

(
v

w(u, v)

))

+w(u, v) ·
(

φ′
(

u

w(u, v)

)
· w(u, v) − u · w1(u, v)

w(u, v)2
+ φ′

(
v

w(u, v)

)
· v · w1(u, v)

w(u, v)2

)

−φ′
(

v

w(u, v)

)
+ φ′′

(
v

w(u, v)

)
· v · w1(u, v)

w(u, v)2
· (u − v)
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= w1(u, v) ·
(

φ

(
u

w(u, v)

)
− φ

(
v

w(u, v)

))

+φ′
(

u

w(u, v)

)
· w(u, v) − u · w1(u, v)

w(u, v)
− φ′

(
v

w(u, v)

)
· w(u, v) − v · w1(u, v)

w(u, v)

+φ′′
(

v

w(u, v)

)
· v · (u − v) · w1(u, v)

w(u, v)2
, for all u > 0, v > 0,

ψ1(v, v) = 0 for all v > 0, (35)

ψ11(u, v) := ∂2ψ

∂u2
(u, v)

= w11(u, v) ·
(

φ

(
u

w(u, v)

)
− φ

(
v

w(u, v)

))

+w1(u, v) ·
(

φ′
(

u

w(u, v)

)
w(u, v) − u · w1(u, v)

w(u, v)2
− φ′

(
v

w(u, v)

)
· −v · w1(u, v)

w(u, v)2

)

+φ′′
(

u

w(u, v)

)
· w(u, v) − u · w1(u, v)

w(u, v)2
· w(u, v) − u · w1(u, v)

w(u, v)

+φ′
(

u

w(u, v)

)
· w(u, v) (−u · w11(u, v)) − w1(u, v) · (w(u, v) − u · w1(u, v))

w(u, v)2

−φ′′
(

v

w(u, v)

)
· −v · w1(u, v)

w(u, v)2
· w(u, v) − v · w1(u, v)

w(u, v)

−φ′
(

v

w(u, v)

)
· w(u, v) · (w1(u, v) − v · w11(u, v)) − (w(u, v) − v · w1(u, v)) · w1(u, v)

w(u, v)2

+φ′′′
(

v

w(u, v)

)
· −v · w1(u, v)

w(u, v)2
· v · (u − v) · w1(u, v)

w(u, v)2

+ φ′′
(

v

w(u, v)

)
·

w(u, v)2 · (v · w1(u, v) + v · (u − v) · w11(u, v)) − 2w(u, v) · v · (u − v) · (w1(u, v))2

w(u, v)4

= w11(u, v) ·
(

φ

(
u

w(u, v)

)
− φ

(
v

w(u, v)

)
− u

w(u, v)
· φ′

(
u

w(u, v)

)

+ v

w(u, v)
· φ′

(
v

w(u, v)

)
+ v · (u − v)

w(u, v)2
· φ′′

(
v

w(u, v)

))

+φ′′
(

u

w(u, v)

)
· (w(u, v) − u · w1(u, v))2

w(u, v)3

+φ′′
(

v

w(u, v)

)
· w1(u, v) · (2v · w(u, v) + v · (v − 2u) · w1(u, v))

w(u, v)3

−φ′′′
(

v

w(u, v)

)
· v

2 · (u − v) (w1(u, v))2

w(u, v)4
, for all u > 0, v > 0, (36)

ψ11(v, v) = 1

w(v, v)
· φ′′

(
v

w(v, v)

)
> 0 for all v > 0. (37)

By adapting the lines of Pardo and Vajda (2003) to our context, with the help of (34),
(35), (37) we can perform a second-order Taylor expansion of ψ(u, pθ (x)) around
u := pθ (x) > 0 (x ∈ X ) to achieve for each fixed sufficiently large integer N
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2N · Bφ

(
Pemp
N , Pθ |W (Pemp

N , Pθ )
) = 2N

∑
x∈X

ψ(pemp
N (x), pθ (x))

= 2N ·
∑
x∈X

{
ψ(pθ (x), pθ (x)) + ψ1(pθ (x), pθ (x)) · (pemp

N (x) − pθ (x)
)

+1

2
ψ11(p

∗
θ (x), pθ (x)) · (pemp

N (x) − pθ (x)
)2 }

= N ·
∑
x∈X

ψ11(p
∗
θ (x), pθ (x)) · (pemp

N (x) − pθ (x)
)2

for some p∗
θ (x)with |p∗

θ (x) − pθ (x)| ≤ |pemp
N (x) − pθ (x)| (x ∈ X ). Therefore, by

using (37) we obtain

∣∣∣2N · Bφ

(
Pemp
N , Pθ |W (Pemp

N , Pθ )
)− N ·

∑
x∈X

φ′′
(

pθ (x)
w(pθ (x),pθ (x))

)

w(pθ (x), pθ (x))
· (pemp

N (x) − pθ (x)
)2 ∣∣∣

≤ N ·
∑
x∈X

∣∣∣ψ11(p
∗
θ (x), pθ (x)) − ψ11(pθ (x), pθ (x))

∣∣∣ · (pemp
N (x) − pθ (x)

)2

= N ·
∑
x∈X

∣∣∣ ψ11(p∗
θ (x), pθ (x)) − ψ11(pθ (x), pθ (x))

ψ11(pθ (x), pθ (x))

∣∣∣ ·ψ11(pθ (x), pθ (x)) · (pemp
N (x) − pθ (x)

)2

≤
⎧⎨
⎩ sup

(u,v):|u−v|≤supx∈X |pemp
N (x)−pθ (x)|

∣∣∣ ψ11(u, v)

ψ11(v, v)
− 1

∣∣∣
⎫⎬
⎭ · N ·

∑
x∈X

φ′′
(

pθ (x)
w(pθ (x),pθ (x))

)

w(pθ (x), pθ (x))
· (pemp

N (x) − pθ (x)
)2

. (38)

Denoting the random (overall) sup−term within the curly brackets of (38) by YN

one gets from (38) the sandwich (squeeze) bounds

sup

⎧⎨
⎩0, (1 − YN ) · N ·

∑
x∈X

φ′′
(

pθ (x)
w(pθ (x),pθ (x))

)

w(pθ (x), pθ (x))
· (pemp

N (x) − pθ (x)
)2
⎫⎬
⎭

≤ 2N · Bφ

(
Pemp
N , Pθ |W (Pemp

N , Pθ )
)

≤ (1 + YN ) · N ·
∑
x∈X

φ′′
(

pθ (x)
w(pθ (x),pθ (x))

)

w(pθ (x), pθ (x))
· (pemp

N (x) − pθ (x)
)2

. (39)

But

YN
a.s.−→ 0 as N → ∞, (40)

since supx∈X |pemp
N (x) − pθ (x)| a.s.−→ 0 as N → ∞ (cf. e.g. Vapnik and Chervo-

nenkis (1968)) and
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lim
c→0+

sup
(u,v):|u−v|≤c

∣∣∣ ψ11(u, v)

ψ11(v, v)
− 1

∣∣∣ = 0 (41)

due to our assumptions on the functions φ(·) and w(·, ·). Furthermore, it is well
known (cf. e.g. Serfling 1980) that the N−sequence of random vectors

RN := √
N · (pemp

N (x1) − pθ (x1), ..., p
emp
N (xs) − pθ (xs)

)tr

converges in distribution to a s-variate normal R with mean vector 0 and covariance
matrix Σ given by (31). Thus, in terms of the matrix A given by (32) one gets the
convergence in distribution

N ·
∑
x∈X

φ′′
(

pθ (x)
w(pθ (x),pθ (x))

)

w(pθ (x), pθ (x))
· (pemp

N (x) − pθ (x)
)2 = Rtr

N · A · RN
D−−−→

N→∞ Rtr · A · R =: R̃ . (42)

In addition, one can apply a theorem of Dik and de Gunst (1985) on quadratic
forms of normal variables to deduce that the distribution of R̃ coincides with that

of R̆ :=
s∗∑
j=1

γ
φ,θ

j · Z2
j , where s∗ := rank(ΣAΣ) is the number of the (ordered)

eigenvalues γ
φ,θ
1 ≥ γ

φ,θ
2 ≥ . . . ≥ γ

φ,θ
s∗ > 0 of the matrix AΣ and Z1, . . . , Zs∗ are

i.i.d. (univariate) standard normal random variables. The corresponding power series
expansion of the density of R̆ follows from investigations of Kotz et al. (1967), which
we slightly simplify in the following. For the case s∗ = 1we have R̆ = γ

φ,θ
1 · Z2

1 with

density g(y) := (2π · γ
φ,θ
1 · y)−1/2 · exp

(
− y

2γ φ,θ
1

)
; on the other hand, by straight-

forward induction one can explicitly solve (30) to ck = (2k)!
(k!)2·4k ·(γ φ,θ

1 )k+1/2
(k ∈ N0),

and plugging this into (29) leads to the desired representation fs∗(y; γ
φ,θ

1 ) = g(y).
In the remaining case s∗ ∈ N\{1} (and thus, s∗

2 − 1 ≥ 0), for complex-valued t with

Re(t) > −(2γ φ,θ

1 )−1, c̃0 :=
s∗∏
j=1

(
γ

φ,θ

j

)−0.5
and dk := 1

2

s∗∑
j=1

(
γ

φ,θ

j

)−k
(k ∈ N) let us

compute the “modified logarithmic Laplace transform”

log
{
(2t)s

∗/2 · E
[
exp

(
−t · R̆

)]}
= log

⎧⎨
⎩(2t)s

∗/2 ·
s∗∏
j=1

E
[
exp

(
−t · γ

φ,θ
j · Z2

j

)]
⎫⎬
⎭

= log

⎧⎨
⎩(2t)s

∗/2 ·
s∗∏
j=1

(
1 + 2t · γ

φ,θ
j

)−1/2

⎫⎬
⎭ = log (c̃0) +

s∗∑
j=1

(
− 1

2

)
· log

(
1 + 1

2t · γ φ,θ
j

)

= log (c̃0) +
s∗∑
j=1

∞∑
k=1

1

2k
·
(

− 1

2t · γ
φ,θ
j

)k

= log (c̃0) +
∞∑
k=1

dk
k

·
(

− 1

2t

)k

=: M1
(−(2t)−1) . (43)

On the other hand, for the density g(·) of R̆ one can make the ansatz

g(y) :=
∞∑
k=0

ck · hk(y), y ∈ [0,∞[, (44)
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for some sequence (ck)k∈N0 of strictly positive real numbers and the power functions

hk(y) :=
( y
2

)s∗/2−1 · (− y
2

)k
2Γ

(
s∗
2 + k

) (recall that s∗
2 − 1 ≥ 0). The corresponding modified

logarithmic Laplace transform of g computes—formally—as

log

⎧⎪⎨
⎪⎩

(2t)s
∗/2 ·

∫

[0,∞[
exp(−t · y) · g(y) dy

⎫⎪⎬
⎪⎭

= log

⎧⎪⎨
⎪⎩

(2t)s
∗/2 ·

∫

[0,∞[
exp(−t · y) ·

∞∑
k=0

ck · hk(y) dy

⎫⎪⎬
⎪⎭

= log

⎧⎪⎨
⎪⎩

∞∑
k=0

ck · (2t)s
∗/2 ·

∫

[0,∞[
exp(−t · y) · hk(y) dy

⎫⎪⎬
⎪⎭

= log

{ ∞∑
k=0

ck ·
(

− 1

2t

)k
}

=: M2
(−(2t)−1) . (45)

By the uniqueness of the Laplace transform, the two functions M1(·) and M2(·)
have to coincide, and thus, by means of the reparametrization χ := −(2t)−1 the
coefficients ck (k ≥ 1) can be identified by equating their derivatives which implies

∞∑
k=0

ck+1 · (k + 1) · χk =
( ∞∑
k=0

ck · χk

)
·
( ∞∑
k=0

dk+1 · χk

)
=

∞∑
k=0

(
k∑

r=0

cr · dk−r+1

)
· χk . (46)

Hence, ck+1 =
k∑

r=0
cr · dk+1−r for all k ∈ N0 and also c0 = c̃0 (fromM1(0) = M2(0)),

which together with (44) leads to the desired series expansion (29) of the density
of R̆. Finally, the interchangement in the second equality of (45) can be justified by
Lebesgue’s dominated convergence theorem, since

c0 ·
∞∑
k=0

χk

k! · E
⎡
⎢⎣
⎛
⎝

s∗∑
j=1

Z2
j

2γ φ,θ
j

⎞
⎠

k
⎤
⎥⎦ = c0 ·

s∗∏
j=1

E

[
exp

(
χ

2γ φ,θ
j

· Z2
j

)]
= c0 ·

s∗∏
j=1

(
1 − 2χ

2γ φ,θ
j

)−1/2

= exp (M1(χ)) = exp (M2(χ)) =
∞∑
k=0

ck · χk

and thus for all y > 0

∞∑
k=0

|ck | · |hk (y)| =
∞∑
k=0

c0
k! · E

⎡
⎢⎣
⎛
⎝

s∗∑
j=1

Z2
j

2γ φ,θ
j

⎞
⎠

k
⎤
⎥⎦ · |hk (y)| ≤

∞∑
k=0

c0

k! · (2γ φ,θ
s∗ )k

· E
⎡
⎢⎣
⎛
⎝

s∗∑
j=1

Z2
j

⎞
⎠

k
⎤
⎥⎦ · |hk (y)|

=
∞∑
k=0

c0

k! · (2γ φ,θ
s∗ )k

·
2k · Γ

(
k + s∗

2

)

Γ
( s∗
2

) ·
( y
2

)s∗/2+k−1

2Γ
( s∗
2 + k

) = c0
2s∗/2 · Γ

( s∗
2

) · ys∗/2−1 · exp
(

y

2γ φ,θ
s∗

)
.

�
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SB-Robustness of Estimators

Arnab Kumar Laha and A.C. Pravida Raja

1 Introduction

Outliers are observationswhich are strikingly different from the rest in a dataset.Real-
life datasets often contain a few outliers. Many commonly used statistical procedures
are substantially impactedby thepresenceof outliers in a datasetwhich is undesirable.
However, robust statistical procedures are not significantly impacted by the presence
of outliers and hence are more suitable for use in situations where one suspects that
outliers may be present in the dataset. In showing how an estimator responds to the
introduction of a new observation, Hampel (1968, 1974) introduced the influence
curve (IC) a.k.a influence function (IF) which allows us to understand the relative
influence of individual observations on the value of an estimate or test statistic.

Huber (1964) introduced the gross error model F(x − θ) = (1 − ε)G(x − θ) +
εH(x − θ) assuming that a known fraction ε, (0 ≤ ε < 1) of the data may consist of
“gross errors” with an arbitrary unknown distribution H(x − θ) while the rest of the
data come from a parametric model G(x − θ) for known G. The influence function
of the functional T at the underlying distribution F is defined as

IF(x;T ,F) = lim
ε→0

T((1 − ε)F + εδx) − T(F)

ε

where δx denote the degenerate distribution assigning probability one to the point x.
The gross error sensitivity (g.e.s.) of the estimator T at F is defined as (Hampel
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γ (T ,F) = supx|IF(x;T ,F)|

If γ (T ,F) is finite then the estimator is said to be bias-robust (or B-robust) at F
(Rousseeuw 1981).

When working with bounded parameter spaces or bounded support the notion of
robustness based on finiteness of g.e.s. needs modification. This is because g.e.s is
bounded in such situations. Ko and Guttorp (1988) introduced the notion of Stan-
dardized Influence Function (SIF) of a functional T w.r.t. a functional F as

SIF(x;T ,F, S) = |IF(x;T ,F)|
S(F)

, S(F) �= 0

where F is the underlying distribution. The standardized gross error sensitivity
(s.g.e.s) of T with respect to the functional S at the family of distributions � is
defined as

γ ∗(T ,�, S) = sup�supxSIF(x;T ,F, S)

If γ ∗(T ,�, S) is finite then the estimator is said to be standardized bias robust (or
SB-robust) at the family of distributions �. It may be noted that the notion of SB-
robustness depends on the choice of the functional S. Usually, S is taken to be a
dispersion measure and hence the notion of SB-robustness depends on the choice
of the dispersion measure used. Ko and Guttorp (1988) gives a set of desirable
conditions that a measure of dispersion S on a (q-1)-dimensional sphere Ωq of �q

should satisfy. Let X and Y be two random unit vectors with unimodal distributions
F and G with modal vectors T(X) and T(Y) respectively. A real-valued functional
S is called a dispersion on Ωq,

1. S(F) ≤S(G)whenever d(Y ,T(Y)) is stochastically larger than d(X,T(X))where
d is a metric on Ωq

2. S(F) = S(G) if Y = Γ (X) for an orthogonal matrix Γ

3. S(δc) = 0 if c is a fixed point on Ωq.

Circular data analysis differs from the standard univariate or multivariate data
analysis in that it requires the inference not to depend on the choice of origin and
sense of rotation. For this reason, the arithmetic mean as well as standard deviation
are not useful as measures of central tendency and dispersion when working with
circular data. Treating each angular observation Θ as a unit vector joining the origin
with the point (cos Θ , sin Θ), we define the mean direction of a set of angular
observations as the direction of their resultant vector.

Let C = ∑n
1 cosΘi and S = ∑n

1 sinΘi where Θ ′
i s are independently and identi-

cally distributed circular random variables. The circular mean direction of a set of n
angular observations Θ1,Θ2,…,Θn is given by

Θ̄0 = arctan∗(
S

C
)
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where arctan∗ is the quadrant-specific inverse of the tangent function which is
defined as

arctan∗(
S

C
) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arctan( S
C ) if C > 0, S ≥ 0

π
2 if C = 0, S > 0

arctan( S
C ) + π if C < 0

arctan( S
C ) + 2π if C ≥ 0, S < 0

(see Jammalamadaka and SenGupta (2001), p. 13). When both C = 0 and S = 0 the
circular mean direction is not defined. Thus, for the uniform distribution on the unit
circle, the circular mean direction is not defined. It should be noted that the circular
mean direction does not depend on the choice of origin and the sense of rotation. That
is, it is rotationally invariant. The length of the resultant vector R = √

C2 + S2 is a
useful measure of concentration for unimodal data. IfR is close to 0 then dispersion is
largewhereas a value ofR close to n imply that the observations have small dispersion
or more concentration toward the mean direction.

The outlier problem in the circular data setup differs considerably from that in the
univariate linear data case. Since there is not much room for an observation to out
lie it may be expected that fewer outlier problems will arise in circular data analysis.
Moreover, the presence of outliers can be detected only if the remaining observations
have high concentration. Jammalamadaka and SenGupta (2001) suggests use of an
appropriate circular distance to judge how far an observation is from the circular
mean for identifying outliers. The robustness properties of statistical procedures for
circular data have not been much studied (see however Mardia and Jupp (2000), pp.
267–269).

Wehrly and Shine (1981) derived the influence function of the circular mean
T(F) = arctan∗[ EF (sinΘ)

EF (cosΘ)
] as IF(θ;T ,F) = sin(θ−μF )

ρF
where μF and ρF are the mean

direction and concentration parameter of the underlying distribution. For any value of
θ , the influence curve is bounded by±ρ−1

F . Thus, the circular mean is B-robust. Laha
andMahesh (2011) proved that the circular mean T(F) is B-robust but not SB-robust
at the family of distributions � = {vM(μ, κ), κ >0}when the measure of dispersion
is S(F) = EF(d(Θ,μ)) where vM(μ, κ) denotes the von-Mises distribution with
mean direction μ and concentration parameter κ (see Sect. 2 for the definition),
F ∈ � and d(Θ,μ) = min(Θ − μ, 2π − (Θ − μ)).

An alternative approach to the robustness problem for estimators in the circular
data set-up is given in Agostinelli (2007). He introduced robust estimators based on
minimum disparity measures (MDE) and weighted likelihood estimating equations
(WLE). Since outliers are observations which are highly unlikely to occur under
the assumed model, these estimators are based on the difference of the estimated
density (using a kernel density estimator) from the assumed model. In the absence of
outliers, the estimator based on weighted likelihood is asymptotically equivalent to
the maximum likelihood estimator but has positive breakdown point in the presence
of outliers. However, both these estimators are not SB-robust.

He and Simpson (1992) introduced distance-based breakdown function for
general parametric family of distributions and proposed an alternative definition
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of SB-robustness based on the same. They show that under certain conditions the
notion of SB-robustness proposed by them coincides with that of Ko and Guttorp
(1988) which we have adapted for this paper. In particular, they show that for the
von-Mises distribution the KL-gross error sensitivity coincides with the s.g.e.s. of Ko
and Guttorp (1988) for the choice of the dispersion measure

(√
κA(κ)

)−1
. With this

dispersionmeasure, their work shows that for the family� = {vM(μ, κ), κ >0} both
the circular median and symmetrically 100α% trimmed circular mean are SB-robust
for any 0 < α < 1.

For circular data, it has been argued that breakdown occurs when contamination
causes the direction to change by 180◦. Davies and Gather (2006) proposes an alter-
native concept called the ‘definability breakdown point’ which is based on the notion
of definability of the estimator and not on bias. For rotation equivariant functionals
a high definability breakdown point (close to the maximum of 0.5) is attainable at
concentrated distributions but only low values of this measure is possible for more
dispersed distributions.

Control charts introduced by Shewhart (1931) play a very important role in the
control of manufacturing processes. It has gained increasing popularity over the past
eight decades as an effective tool for detecting shifts in the process mean from its
target value μ0 and for detecting uncontrolled variation in the process. In recent
years, the application of robust statistics in statistical process control has received
more attention in research. Albers et al. (2004, 2006), Chan et al. (1988), David
(1989), Rocke (1989, 1992), Stoumbos and Reynolds (2000), Vommi and Seetala
(2005, 2007), Celano (2009), Chenouri et al. (2009), Hamid et al. (2009) has exam-
ined different aspects of robustness in control chart construction in univariate and
multivariate set-ups. Some of the most widely used performance measures for con-
trol charts are False Alarm Probability (FAP), No Signal Probability (NSP), Average
Sample Number when the process is in-control (ASN0) and Average Sample Number
when the process is out-of-control (ASN1). Two of the performance measures FAP
and NSP are bounded between 0 and 1. Thus, it is natural to investigate whether the
estimators of these performance measures are SB-robust. The other two performance
measuresASN0 andASN1 can take values between 0 and∞ but their robustness prop-
erties have not been studied in the literature to the best of our knowledge. Hence,
we study robustness and SB-robustness of all the four performance measures for the
Shewhart control chart for monitoring the mean of a process. We assume that the
quality characteristic follows a normal distribution and that the rational subgroup
size is one.

Suppose that the distributions F and G of the random variables X and Y are
symmetric about μ and ν, respectively. Bickel and Lehmann (1976) define measures
of dispersion as non-negative functionals τ(F) (also denoted as τ(X) where X is a
random variable having distribution F) which satisfy the following conditions:

1. τ(kX) = |k|τ(X)

2. τ(X + b) = τ(X) for all b
3. τ(F) ≤ τ(G) whenever G is more dispersed than F.
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If the random variable X has a symmetric distribution then τ(X) = τ(−X) and (1)
above holds for all k �= 0. An important class of dispersion measures for symmetric

distributions F is provided by the functional τ(F) =
(∫ 1

0 (F−1∗ (t))γ dΛ(t)
)1/γ

where

F is assumed to be symmetric about μ, F∗ denotes the distribution of |X − μ|, Λ

is any probability distribution on (0, 1) and γ is any positive number. The standard
deviation (SD) of F which is possibly the most widely used measure of dispersion
for real-valued random variables is a special case of the above (γ = 2 and Λ the
uniform distribution on (0, 1)). The random variable Y is said to be more dispersed
about ν than the random variable X about μ if |Y − ν| is stochastically larger than
|X − μ|.

The structure of the paper is as follows. Section 2 describes someof thewell known
circular distributions. In Sect. 3, some of the available results on SB-robustness of
circular mean and trimmed estimators of mean and concentration parameters are
discussed. In Sect. 4, we discuss the SB-robustness of FAP andASN0 of control charts
and Sect. 5 deals with the SB-robustness of NSP and ASN1. Section 6 concludes the
paper.

2 Circular Distributions

A circular random variable is a measurable map Θ : Ω −→ T from a probability
space Ω to the unit circle T. The distribution of Θ can be characterised by specify-
ing the probabilities P(Θ ∈ [α1, α2)) for all arcs [α1, α2) traversed in anti-clockwise
direction. The probability distribution of a circular random variable Θ has the prop-
erty that P(Θ ∈ T) = 1 and are often referred to as circular distribution. The prob-
ability density function (p.d.f) f (θ) of a circular random variable has the following
properties:

1. f (θ) ≥ 0 for all 0 ≤ θ < 2π
2.

∫ 2π
0 f (θ)dθ = 1

3. f (θ) = f (θ + 2πk) for any integer k and all θ , 0 ≤ θ < 2π (i.e., f is periodic).

The popular circular distributions include the von-Mises distribution (vM), the
Wrapped Normal distribution (WN), the Wrapped Cauchy (WC) distribution, the
Circular Uniform distribution(CU), the Cardiod distribution etc. A comprehensive
account of the properties of these distributions can be found in Mardia and Jupp
(2000), Jammalamadaka and SenGupta (2001). Among these, the von-Mises (a.k.a.
Circular Normal) distribution is the most popular circular distribution for applied
work. A circular random variable Θ is said to have a vM distribution with mean
direction parameter μ and concentration parameter κ if it has the probability density
function (p.d.f)

f (θ;μ, κ) = 1

2π I0(κ)
exp(κ cos(θ − μ)), 0 ≤ θ < 2π, 0 ≤ μ < 2π, κ > 0
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where I0(.) is the modified Bessel function of order 0. This distribution is sym-
metric about μ and is unimodal. We will denote this distribution as vM(μ, κ). For
sufficiently large κ the vM(μ, κ) distribution can be approximated by a normal dis-
tribution with mean μ and variance 1√

κ
.

The maximum likelihood estimate (MLE) of the parameters μ and κ are given by
μ̂ = arctan∗( S

C ) and κ̂ = A−1(R̄)where R̄ = R
n . The function A(κ) = I1(κ)

I0(κ)
has many

interesting properties like

1. 0 ≤ A(κ) < 1
2. A(κ) −→ 0 as κ −→ 0
3. A′(κ) = d

dκ
[A(κ)] = [1 − A(κ)

κ
− A2(κ)] ≥0

i.e., A(κ) is a strictly increasing function of κ. The MLE of μ does not depend on
the value of κ but that is not the case for the MLE of κ (see Jammalamadaka and
SenGupta (2001), pp. 86–88).

Another useful distribution on the circle is the Wrapped Normal (WN) distrib-
ution which is obtained by wrapping a N(μ, σ 2) distribution around the circle. Its
probability density function is given by

g(θ) = 1

σ
√
2π

∞∑
m=−∞

exp[−(θ − μ − 2πm)2

2σ 2
]

Alternatively this density can be represented as

g(θ) = 1

2π
(1 + 2

∞∑
p=1

ρp2cos p(θ − μ)), 0 ≤ θ < 2π, 0 ≤ μ < 2π, 0 < ρ < 1

Here, μ is the mean direction parameter and ρ is the concentration parameter. The
parameters ρ and σ are related by ρ = exp(−σ 2

2 ). Like the vM distribution, the WN
distribution is also unimodal and symmetric about the value θ = μ.

3 SB-Robustness of Circular Mean

Laha and Mahesh (2011), Laha et al. (2013) studied the robustness of circular
mean for different families of circular distributions. They showed that the circu-
lar mean is SB-robust for the following families: (1) mixture of two von-Mises
distributions (2) mixture of wrapped normal and von-Mises distributions, and (3)
mixture of two wrapped normal distributions when the measure of dispersion is
S(F) = EF(d(Θ,μ)). As mentioned in Sect. 1, an estimator T may be SB-robust
at the family of distributions � for one choice of dispersion measure while it
may not be so for another choice of dispersion measure. For example, He and
Simpson (1992) showed that the circular mean is SB-robust estimator of μ at
� = {vM(μ, κ), κ > 0} for the dispersion measure

(√
κA(κ)

)−1
whereas Ko and
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Guttorp (1988) showed that the circular mean is not SB-robust at � when the disper-
sion measure is

√
1 − A(κ). Laha and Mahesh (2011) proved that the circular mean

is SB-robust at F1 = {vM(μ, κ), κ > m > 0} for all the three dispersion measures
mentioned above.

3.1 Equivalent Dispersion Measures

Suppose S1 and S2 are two dispersion measures defined on the family of distributions
�. Then, S1 and S2 are said to be equivalent measures of dispersion for the family
of distributions � if sup�R(F) and sup�R−1(F) are both finite, where R(F) = S1(F)

S2(F)
.

Laha andMahesh (2011) introduced this concept and proved that if S1 and S2 are two
equivalent measures of dispersion for the family of distributions � and if the esti-
mating functional T is SB-robust at � when the measure of dispersion is S2, then T
is also SB-robust at � when the measure of dispersion is S1. Further they proved that
S1 = √

1 − A(κ), S2 = EF(d(Θ, 0)), and S3 = (κA(κ))−(1/2) are equivalent mea-
sures of dispersion for the family of distributions �∗ = {vM(0, κ); κ > m > 0}. But
for the family� = {vM(μ, κ); κ > 0}, they proved that S1 and S2 are equivalentmea-
sures of dispersion, but S1 and S3 are not, thus explaining the apparently conflicting
results obtained in He and Simpson (1992), Ko and Guttorp (1988).

Laha et al. (2013) considered another family of distributions �1
∗ = {WN(0, ρ);

0 < m < ρ < 1}. In this case they took four dispersion measures S1(F) = √
1 − ρF ,

S2(F) = EF(d(Θ, 0)), S3(F) = (ρFA−1(ρF))−(1/2) and S4(F) = Eγ,F(d(Θ, 0)) (See
Sect. 3.2 below for definition of Eγ,F(d(Θ, 0))). They proved that all the above are
equivalent measures of dispersion for the family �1

∗. However for the family of
distributions �̃ = {WN(0, ρ); 0 < ρ < 1}, S1, S2 and S4 are equivalent measures
of dispersion but S2 and S3 are not. The circular mean direction T(F) is proved
to be SB-robust for �∗∗ = {WN(0, ρ); 0 < m < ρ < M < 1} when the measure of
dispersion is S1. Using the concept of equivalence of dispersion measures and by
noting that �∗∗ ⊂ �1

∗, Laha et al. (2013) proved that it is also SB-robust at �∗∗ w.r.t.
the dispersion measures S2, S3 and S4. Also they show that T(F) is not SB-robust
for the family of distributions �̃1 = {WN(μ, ρ); 0 < ρ < 1} when the measure of
dispersion is S2(F) = EF(d(Θ,μ)) where F ∈ �̃1. Hence, it is also not SB-robust
for �̃1 w.r.t.the equivalent dispersion measures S1 and S4.

3.2 SB-Robustness of Trimmed Estimators of Mean
and Concentration Parameters

As the circular mean is B-robust but not SB-robust for � = {vM(μ, κ), κ >0}, Laha
and Mahesh (2011) introduced the concept of γ -circular trimmed mean. Suppose Θ
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is a circular random variable with p.d.f. f (θ) and 0 ≤ γ < 0.5 is fixed. Let α, β be
two points on the unit circle satisfying

1.
∫ α

β
f (θ)dθ = 1 − 2γ

2. d1(α, β) ≤ d1(μ, ν) for allμ, ν satisfying
∫ μ

ν
f (θ)dθ = 1 − 2γ where d1(φ, ξ) is

the length of the arc starting from ξ and ending atφ traversed in the anti-clockwise
direction.

The γ -circular trimmed mean (γ -CTM) is then defined as

μγ = arg[ 1

1 − 2γ

∫ α

β

exp(iθ)f (θ)dθ ]

where γ is the trimming proportion. Laha and Mahesh (2011) proved that the γ -
CTM (μγ ) is SB-robust at the family of distributions � = {vM(μ, κ), κ >0} when
the measure of dispersion is S(F) = Eγ,F(d(Θ,μ)) where F ∈ � and 0 ≤ γ < 0.5

Ko and Guttorp (1988) proved that K(F) = A−1(ρF) where

ρF =
√
E2
F(cosΘ) + E2

F(sinΘ) = A(κ)

is not SB-robust at the family� = {vM(μ, κ), κ >0}when themeasure of dispersion
is S(F) = √

1 − A(κ). Laha and Mahesh (2012) discussed robust estimation of κ

for vM distribution. They showed that K(F) is not SB-robust w.r.t. the dispersion
measure S(F) = EF(d(Θ,μ)). They proposed a new trimmed estimator for κ which
is defined as follows: Let f (θ;μ, κ) be the p.d.f. of vM(μ, κ) distribution and α(κ)

and β(κ) be symmetrically placed around μ such that

∫ α(κ)

β(κ)

f (θ;μ, κ)dθ = 1 − 2γ

where γ is the trimming proportion such that γ ∈ [0, 0.5). Define

g∗(κ) = Eγ,F(d(Θ,μ)) =
∫ α(κ)

β(κ)

d(θ, μ)f (θ;μ, κ)dθ

Then the new trimmed estimator for κ is defined as

Tγ (F) = g∗−1[Eγ,F(d(Θ,μ))]

Laha and Mahesh (2012) proved that if Θ ∼ vM(0, κ), d(θ) = π − |π − θ | and
g∗(κ) = Eγ,F(d(Θ)), then Tγ (F) = g∗−1[Eγ,F(d(Θ))] is SB-robust at the family
of distributions �∗ = {vM(0, κ); 0 < m ≤ κ ≤ M} w.r.t. the dispersion measure
S(F) = Eγ,F(d(Θ)) = (1 − 2γ )−1

∫ α(κ)

β(κ)
d(θ)dF. Similar results on SB-robustness

of mean and concentration parameter of Wrapped Normal distribution can be seen
in Laha et al. (2013).
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4 SB-Robustness of FAP and ASN0 of Control Chart

In the construction of control charts, one of the most important consideration is that
of the False Alarm Probability (FAP). This is the probability that an observation
falls outside the control limits of a control chart when the process distribution has
not changed. The FAP is controlled at some chosen level α which is conventionally
taken to be 0.0027. Suppose that a control chart has been constructed withN(μ0, σ0)

as the underlying distribution of the quality characteristic and rational subgroup size
1. Then, the Lower Control Limit (LCL) and Upper Control Limit (UCL) of the X̄
chart are μ0 − 3σ0 and μ0 + 3σ0, respectively. The FAP can be represented as a
functional given below.

T(F) = EF(I�(LCL,UCL)(X)) = PF(X ≤ LCL or X ≥ UCL) where

I�(LCL,UCL)(X) =
{
1 if X ≤ LCL or X ≥ UCL
0 otherwise.

(1)

Here, �(LCL,UCL) denotes the complement of the interval (LCL,UCL). When F =
N(μ0, σ0) we have

T(F) = 1 − [Φ(
UCL − μ0

σ0
) − Φ(

LCL − μ0

σ0
)] = α (2)

Let � = {N(μ, σ0) : k1 ≤ μ ≤ k2}, μ0 ∈ [k1, k2]. In the theorem below we dis-
cuss the SB-robustness of FAP at the family �.
Theorem 1 1. T(F) = EF(I�(LCL,UCL)(X)) is B-robust.
2. T(F) is SB-robust at the family � when the measure of dispersion is S(F) =√
T(F)(1 − T(F)).

Proof Let Gε = (1 − ε)F + εδx. Then the functional corresponding to Gε can be
written as

T(Gε) = E(1−ε)F+εδx (I�(LCL,UCL)(X))

= (1 − ε)EF(I�(LCL,UCL)(X)) + ε(I�(LCL,UCL)(x))

= (1 − ε)T(F) + ε if x ∈ �(LCL,UCL)

= (1 − ε)T(F) if x ∈ (LCL,UCL)

As defined earlier

IF(x;T ,F) = lim
ε→0

T(Gε) − T(F)

ε
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Substituting T(Gε) in the above we get,

IF(x;T ,F) =
{
limε→0

[(1−ε)T(F)]+ε−T(F)

ε
if x ∈ �(LCL,UCL)

limε→0
[(1−ε)T(F)]−T(F)

ε
if x ∈ (LCL,UCL)

A simple calculation yields

IF(x;T ,F) =
{
1 − T(F) if x ∈ �(LCL,UCL)

−T(F) if x ∈ (LCL,UCL)
(3)

Therefore, γ (T ,F) = supx|IF(x;T ,F)| < ∞ as |IF(x;T ,F)| < 1,∀x. Hence T(F)

is B-robust.
Now, the standardised influence function of T at F is

SIF(x;T ,F, S) =
⎧⎨
⎩

√
1−T(F)

T(F)
if x ∈ �(LCL,UCL)

−
√

T(F)

1−T(F)
if x ∈ (LCL,UCL)

(4)

Now, when F = N(μ, σ0), let t1 = μ0−μ+3σ0

σ0
and t2 = μ0−μ−3σ0

σ0
. Then, we can

write T(F) = 1 − [Φ(t1) − Φ(t2)]. Now it can be seen using simple calculus that
min�T(F) > 0 and the minimum is attained at μ = μ0. Also we note the following:

1. T(F) = h(μ) = 1 − [Φ(t1) − Φ(t2)]
2. h is a decreasing function of μ in the interval (−∞, μ0] and is an increasing

function of μ in the interval [μ0,∞). Further limμ→∞ h(μ) = 1 and limμ→−∞
h(μ) = 1.

Thus we conclude that max�T(F) < 1 and hence γ ∗(T ,�, S) < ∞. Hence the the-
orem. �

Remark 1 The FAP is not SB-robust at the family �∗ = {N(μ, σ0) : −∞ < μ < ∞}
w.r.t. the dispersion measure S(F).

Theorem 2 T(F) = EF(I�(LCL,UCL)(X)) is not SB-robust at the family �1 when the
measure of dispersion is S(F) = √

T(F)(1 − T(F)) where �1 = {N(μ0, σ ) :
σ > 0}.
Proof From Eq. 4 above, we have

SIF(x;T ,F, S) =
⎧⎨
⎩

√
1−T(F)

T(F)
if x ∈ �(LCL,UCL)

−
√

T(F)

1−T(F)
if x ∈ (LCL,UCL)

Note that when F = N(μ0, σ ), we have T(F) = g(σ ) = 1 − [Φ(t) − Φ(−t)]
where t = 3σ0

σ
. Also we observe that as σ −→ 0, g(σ ) −→ 0 and as σ −→ ∞,

g(σ ) −→ 1. Therefore, γ ∗(T ,�1, S) = ∞. Hence the theorem. �
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Remark 2 The FAP is SB-robust at the family �∗
1 = {N(μ0, σ ) : 0 < m1 ≤ σ ≤ m2}

w.r.t. the dispersion measure S(F).
In Theorem 3 below we discuss the SB-robustness of the FAP at the family

�2 = {N(μ, σ ) : k1 ≤ μ ≤ k2, 0 < m1 ≤ σ ≤ m2}, μ0 ∈ [k1, k2].
Theorem 3 T(F) = EF(I�(LCL,UCL)(X)) is SB-robust at the family�2 when the mea-
sure of dispersion is S(F) = √

T(F)(1 − T(F)).

Proof From Eq. 4 above, we have

SIF(x;T ,F, S) =
⎧⎨
⎩

√
1−T(F)

T(F)
if x ∈ �(LCL,UCL)

−
√

T(F)

1−T(F)
if x ∈ (LCL,UCL)

Note that when F = N(μ, σ ), we can write T(F) = 1 − [Φ(t3) − Φ(t4)] where
t3 = μ0−μ+3σ0

σ
and t4 = μ0−μ−3σ0

σ
. It can be seen using simple calculus that min�2

T(F) = 1 − [Φ(t5) − Φ(−t5)] > 0 and max�2T(F) = 1 − [Φ(t6) − Φ(−t6)] < 1
where t5 = 3σ0

m1
and t6 = 3σ0

m2
. Thus γ ∗(T ,�2, S) < ∞. Hence the theorem. �

Another important consideration for control chart performance is ASN0, which is
the average run length before an out-of-control signal is given by the control chart.
It is expected that the ASN0 should be large when the process is in-control and it
should be small if the process is out-of-control. The ASN0 can be represented as a
functional given below.

T1(F) = [EF(I�(LCL,UCL)(X))]−1 = 1

T(F)

In Theorem 4 below we discuss the SB-robustness of ASN0 at the family � =
{N(μ, σ0) : k1 ≤ μ ≤ k2}, μ0 ∈ [k1, k2].
Theorem 4 1. T1(F) = [EF(I�(LCL,UCL)(X))]−1 = 1

T(F)
is B-robust.

2. T1(F) is SB-robust at the family � with respect to the dispersion measure S∗(F) =
1−T(F)

(T(F))2
.

Proof LetGε = (1 − ε)F + εδx whereF = N(μ, σ0). The functional corresponding
to Gε can be written as

T1(Gε) =
{

1
(1−ε)EF (I�(LCL,UCL)(X))+ε

if x ∈ �(LCL,UCL)
1

(1−ε)EF (I�(LCL,UCL)(X))
if x ∈ (LCL,UCL)

The influence function of T1 at F is

IF(x;T1,F) = lim
ε→0

T1(Gε) − T1(F)

ε
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Thus,

IF(x;T1,F) =
{
limε→0

1
(1−ε)T(F)+ε

− 1
T(F)

ε
if x ∈ �(LCL,UCL)

limε→0

1
(1−ε)T(F)

− 1
T(F)

ε
if x ∈ (LCL,UCL)

which on simplification and applying the limits gives

IF(x;T1,F) =
{

T(F)−1
T(F)2

if x ∈ �(LCL,UCL)
1

T(F)
if x ∈ (LCL,UCL)

(5)

Hence supx |IF(x;T1,F)| < ∞. Thus, T1 is B-robust.
Now to check the SB-robustness of T1, we note that

SIF(x,T1,F, S∗) =
{ −1 if x ∈ �(LCL,UCL)

T(F)

1−T(F)
if x ∈ (LCL,UCL)

(6)

As noted in Theorem 1, max�T(F) < 1. Thus γ ∗(T1,�, S∗) < ∞. Hence the theo-
rem. �

Remark 3TheASN0 is not SB-robust at the family�∗ = {N(μ, σ0) : −∞ < μ < ∞}
w.r.t. the dispersion measure S∗(F).

In Theorem 5 below, we discuss the SB-robustness of ASN0 at the family �2 =
{N(μ, σ ) : k1 ≤ μ ≤ k2, 0 < m1 ≤ σ ≤ m2}, μ0 ∈ [k1, k2].
Theorem 5 T1(F) = [EF(I�(LCL,UCL)(X))]−1 = 1

T(F)
is SB-robust at the family �2

when the measure of dispersion is S∗(F) = 1−T(F)

(T(F))2
.

Proof From Eq. 6 above,

SIF(x,T1,F, S∗) =
{ −1 if x ∈ �(LCL,UCL)

T(F)

1− T(F)
; if x ∈ (LCL,UCL)

Now note that whenF = N(μ, σ ), T(F) = 1 − [Φ(t3) − Φ(t4)]. It can be proved
using arguments similar to that given in the proof of Theorem 3 that γ ∗(T1,�2, S∗) <

∞. Hence the theorem. �

5 SB-Robustness of NSP and ASN1

It is expected that the control chart would be able to detect quickly that a process is
out-of-control. In terms of measures of performance one usually considers the NSP,
which is defined as the P (out-of-control signal is not given by the control chart when
the process is out-of-control), and the ASN1 (which is the ASN when the process is
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out-of-control). It is expected that NSP and ASN1 be both small when the process is
out-of-control. In this section,we study the SB-robustness of these twomeasuresNSP
andASN1. In theTheorem6below,we discuss the SB-robustness of theNSPwhen the
process is out-of-control at the family � = {N(μ, σ0) : k1 ≤ μ ≤ k2}, μ0 ∈ [k1, k2].
Theorem 6 1. T2(F) = EF[I(LCL,UCL)(X)] is B-robust.
2. T2(F) is SB-robust at the family � when the measure of dispersion is S∗∗(F) =√
T2(F)(1 − T2(F)).

Proof Let F = N(μ, σ0), T2(F) = β(μ). Then we have, β(μ) = P(t2 <
X−μ

σ0
<

t1) = Φ(t1) − Φ(t2), where t1 and t2 are defined in Theorem 1. LetGε = (1 − ε)F +
εδx. Then the functional corresponding to Gε can be written as

T2(Gε) = E(1−ε)F+εδx (I(LCL,UCL))(X) =
{

(1 − ε)T2(F) + ε if x ∈ (LCL,UCL)

(1 − ε)T2(F) if x /∈ (LCL,UCL)

Hence

IF(x;T2,F) =
{
1 − T2(F) if x ∈ (LCL,UCL)

−T2(F) if x /∈ (LCL,UCL)
(7)

Thus γ (T2,F) < ∞ as |IF(x;T2,F)| ≤ 1,∀x. Hence T2(F) is B-robust.
To check the SB-robustness of T2 at F, we consider

SIF(x,T2,F, S∗∗) =
⎧⎨
⎩

√
1−T2(F)

T2(F)
if x ∈ (LCL,UCL)

−
√

T2(F)

1−T2(F)
if x /∈ (LCL,UCL)

(8)

Now, note that when F = N(μ, σ0), we have T2(F) = β(μ) = [Φ(t1) − Φ(t2)]. As
earlier we can see using simple calculus that maximum value of T2(F) as F varies
over � is attained at μ = μ0 and max�T2(F) < 1. We also note the following.

1. β(μ) = [Φ(t1) − Φ(t2)]
2. β is increasing in the interval (−∞, μ0] and decreasing in the interval [μ0,∞),

as limμ→∞β(μ) = 0 and limμ→−∞β(μ) = 0.

Therefore, we conclude that min�T2(F) > 0 and thus γ ∗(T2,�, S∗∗) < ∞. Hence
the theorem. �

Remark 4 The NSP is not SB-robust at the family �∗ = {N(μ, σ0) : −∞ < μ < ∞}
w.r.t. the dispersion measure S∗∗(F).

In the theorem below, we discuss the SB-robustness of the ASN1 at the family �.
Theorem 7 1. T3(F) = EF[I(LCL,UCL)(X)]−1 = 1

T2(F)
is B-robust.

2. T3(F) is SB-robust at the family � when the measure of dispersion is S∗∗∗(F) =
1− T2(F)

[T2(F)]2 .
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Proof Let Gε = (1 − ε)F + εδx. Then, the functional corresponding to Gε can be
written as

T3(Gε) =
{

1
(1−ε)EF [I(LCL,UCL)(X)]+ε

if x ∈ (LCL,UCL);
1

(1−ε)EF [I(LCL,UCL)(X)] if x /∈ (LCL,UCL)

The influence function is

IF(x;T3,F) = lim
ε→0

T3(Gε) − T3(F)

ε

Thus

IF(x;T3,F) =
⎧⎨
⎩
limε→0

1
(1−ε)T2(F)+ε

− 1
T2(F)

ε
if x ∈ (LCL,UCL)

limε→0

1
(1−ε)T2(F)

− 1
T2(F)

ε
if x /∈ (LCL,UCL)

(9)

On simplification we get,

IF(x;T3,F) =
{

T2(F) − 1
[T2(F)]2 if x ∈ (LCL,UCL)

1
T2(F)

if x /∈ (LCL,UCL)
(10)

Therefore γ (T3,F) < ∞ and hence T3 is B-robust at F. Now to check the SB-
robustness of T3 at F, we consider

SIF(x;T3,F, S∗∗∗) =
{ −1 if x ∈ (LCL,UCL)

T2(F)

1−T2(F)
if x /∈ (LCL,UCL)

(11)

Now, note that when F = N(μ, σ0), we have T2(F) = [Φ(t1) − Φ(t2)]. Arguing
as in the proof of Theorem 6, we get max�T2(F) < 1 and min�T2(F) > 0 which
implies that γ ∗(T3,�, S∗∗∗) < ∞. Hence the theorem. �

In the theorem below, we discuss the SB-robustness of the ASN1 at the family
�2 = {N(μ, σ ) : k1 ≤ μ ≤ k2, 0 < m1 ≤ σ ≤ m2}, μ0 ∈ [k1, k2].
Theorem 8 T3(F) = EF[I(LCL,UCL)(X)]−1 = 1

T2(F)
is SB-robust at the family �2

when the measure of dispersion is S∗∗∗(F) = 1− T2(F)

[T2(F)]2 .

Proof From Eq. 11 above

SIF(x;T3,F, S∗∗∗) =
{ −1 if x ∈ (LCL,UCL)

T2(F)

1−T2(F)
if x /∈ (LCL,UCL)

Now, note that when F = N(μ, σ ), we have T2(F) = [Φ(t3) − Φ(t4)]. Arguing
as in the proof of Theorem 7, we get max�2T2(F) < 1 and min�2T2(F) > 0 which
implies that γ ∗(T3,�2, S∗∗∗) < ∞. Hence the theorem. �
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6 Conclusion

In this paper, we have reviewed the SB-robustness of estimators of mean and concen-
tration parameters of von-Mises distribution. Laha and Mahesh (2011, 2012), Laha
et al. (2013) discusses the shortcomings of the MLEs of circular mean direction and
concentration parameter with respect to SB-robustness and proposes new estimators
which have better properties. Considering the importance of robustness of perfor-
mance measures in statistical process control, we have examined the SB-robustness
of some of the control chart performance measures in this article. It is seen that the
FAP, NSP, ASN0 and ASN1 are all B-robust. They are also SB-robust at the family
�2 = {N(μ, σ ) : k1 ≤ μ ≤ k2, 0 < m1 ≤ σ ≤ m2}, μ0 ∈ [k1, k2]. However, none of
these performance measures are SB-robust when we consider the larger family of
distributions {N(μ, σ ) : −∞ < μ < ∞, σ > 0}. This opens the possibility of con-
sidering alternative measures which are SB-robust for this larger family. We intend
to take this up for studying in a future paper.
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Combining Linear Dimension Reduction
Subspaces

Eero Liski, Klaus Nordhausen, Hannu Oja and Anne Ruiz-Gazen

1 Introduction

Dimension reduction plays an important role in high dimensional data analysis. In
dimension reduction one wishes to reduce the dimension of a p-variate random
vector x = (x1, . . . , xp)t using a transformation z = Btx, where the transformation
matrix B is a p × k matrix with linearly independent columns, k ≤ p. The column
vectors of B then span the k-dimensional subspace of interest. The transformation to
the subspace can also be done using the corresponding p × p orthogonal projection
PB = B(BtB)−1Bt . The transformation z = PBx projects the observations onto a
linear k-variate subspace.

There are two major types of dimension reduction methods, supervised and unsu-
pervised dimension reduction. Unsupervised methods such as principal component
analysis (PCA) or independent component analysis (ICA) reduce the dimension of
x by trying to lose as little information as possible; in PCA the information loss is
measured in terms of variance and in ICA in terms of non-gaussianity. In supervised
dimension reduction, the goal is to reduce the dimension of x without losing any
information on the dependence between x and a response variable y. It is then hoped
that y is independent from x conditionally on Btx. Popular supervised dimension
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reduction methods are for example SIR, SAVE, PHD and SICS (see Li 1991; Cook
and Weisberg 1991; Li 1992; Liski et al. 2014a, respectively).

For practical problems, several dimension reduction methods are often available
and it is difficult to decide which one to use. Individual dimension reduction methods
are usually adequate to find only special types of subspaces or special types of
relationships between x and y. In statistical learning, it is a current state of the art not
to rely on a single learner but to train simultaneouslymany learners and combine them
instead. Such combination rules are often called ensemble methods. See e.g. Zhou
(2012) for a nice overviewwith explanations why ensemblemethods are beneficial in
practice. The goal in this paper is to use an ensemble of several dimension reduction
methods. To combine the different dimension reduction methods is to say that we
combine the individual orthogonal projections possibly with various ranks and find
an “average orthogonal projection” (AOP) with an optimized rank. Our approach is
similar to the approach in Crone and Crosby (1995). The idea is to find the AOP
which is, on average, closest to the individual orthogonal projections with respect to
some distance criterion.

The paper is organized as follows. In Sect. 2 we discuss subspaces and propose a
generalization of the Crone and Crosby distance. Crone and Crosby (1995) consid-
ered subspaces of equal dimensions, whereas ourweighted distance allows subspaces
of different dimensions. Some natural choices of weights are given. Furthermore,
the concept of averages of subspaces is discussed. In Sect. 3 the performance of the
weighted distance and the differentAOPs is evaluated in two unsupervised dimension
reduction applications, one supervised dimension reduction simulation study and a
real data example. Different dimension reduction methods may be complementary.
The examples illustrate that the average of the associated orthogonal projections will
make the most of them in the sense that (i) the AOP might outperform any indi-
vidual dimension reduction method and (ii) the AOP is hardly affected by a few
bad dimension reduction methods. In particular, when several methods coincide on
someprojection directions, the average orthogonal projection takes them into account
and downplays projection directions rarely found. The paper ends with some final
remarks.

2 Subspaces and Distances Between Subspaces

2.1 Subspaces with the Same Dimension k

We first consider linear subspaces in R
p with a fixed dimension k, 1 ≤ k < p. A

linear subspace and the distances between subspaces can be defined in several ways.

1. The subspace is defined as a linear subspace spanned by the linearly independent
columns of a p × k matrix B, that is,SB = {Ba : a ∈ R

k}. This definition based
on a matrix B is a bit obscure in the sense thatSB = SBA for all full-rank k × k
matrices A. According to this definition, the same subspace can in fact be fixed
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by any member in a set of matrices equivalent to B,

{BA : A is a full-rank k × k matrix}.

The non-uniqueness of B may cause technical problems in the estimation of a
subspace. Consider two p × k matrices B1 and B2 with rank k. Then a measure
of distance between subspaces spanned by B1 and B2 can be defined as k −∑k

i=1 ρ2
i = k − tr(RtR)where ρ2

1 , . . . , ρ
2
k are the squared canonical correlations

between B1 and B2 (Hotelling 1936) and

R = (Bt
1B1)

−1/2Bt
1B2(Bt

2B2)
−1/2 .

Note that if B1 and B2 are equivalent then the squared canonical correlations are
all 1.

2. The subspace is defined as a linear subspace spanned by the orthonormal columns
of a p × k matrix U. Note that, starting with B, one can choose U = B(BtB)−1/2

for this second definition. Unfortunately, the definition is still obscure as SU =
SUV for all orthonormal k × k matrices V, and the same subspace is given by
any matrix in the class of equivalent orthonormal matrices

{UV : V is an orthonormal k × k matrix}.

The principal angles θi ∈ [0, π/2] between the subspaces U1 and U2 with cor-
responding k-variate direction vectors ui and vi i = 1, . . . , k, are recursively
defined by maximizing ut

i (U
t
1U2)vi subject to the constraints ut

iui = vtivi = 1,
and ut

iu j = vtiv j = 0, j = 1, . . . , i − 1. The i th principal angle is then such that
cos θi = ut

i (U
t
1U2)vi , i = 1, ..., k, and a measure of distance between the sub-

spaces may be obtained as k − ∑k
i=1 cos

2 θi = k − ∑k
i=1(u

t
ivi )

2. It is easy to see
that it equals to k − ∑k

i=1 ρ2
i .

3. The subspace is defined as the linear subspace given by an orthogonal projection
P, that is, a p × p transformation matrix P such that

(x1 − Px1) ⊥ Px2 for all x1, x2 ∈ R
p which is equivalent to P = Pt = P2.

The matrix P provides a unique way to fix the subspace SP = {Px : x ∈ R
p}.

Note that, starting fromB, one can defineP = PB = B(BtB)−1Bt in a uniqueway.
Starting from U gives similarly P = PU = UUt . The squared distance between
the subspaces given by two orthogonal projections P1 and P2 may then be defined
as the matrix (Frobenius) norm

||P1 − P2||2 = 2(k − tr(P1P2)) = 2(k −
k∑

i=1

cos2 θi ) = 2(k −
k∑

i=1

ρ2
i ).
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Crone and Crosby (1995) use

D(P1,P2) = (k − tr(P1P2))
1/2 = 1√

2
||P1 − P2||

as a distance between two k-dimensional subspaces of Rp given by orthogonal
projections P1 and P2. It is then easy to see that 0 ≤ D2(P1,P2) ≤ min{k, p −
k} and, because it is based on a norm, that the distance obeys the triangular
inequality D(P1,P3) ≤ D(P1,P2) + D(P2,P3) for any orthogonal projections
P1, P2, and P3.

2.2 Subspaces with Arbitrary Dimensions

Assume next that the ranks of the orthogonal projections P1 and P2 are k1 and
k2, respectively, where k1, k2 = 0, ..., p. For completeness of the theory, we also
accept projections P = 0 with rank k = 0. As ||P1 − P2||2 ≥ |k1 − k2|, one possible
extension of the above distance is D(P1,P2) = 1√

2

[||P1 − P2||2 − |k1 − k2|
]1/2

.

Then 0 ≤ D2(P1,P2) ≤ min{k1, k2, p − k1, p − k2} but, unfortunately, the triangu-
lar inequality is not true for this distance. We therefore consider other extensions of
the metric by Crone and Crosby (1995).

Let w(0), . . . ,w(p) be positive weights attached to dimensions 0, . . . , p. (We
will later see that the choice of w(0) is irrelevant for the theory.) We then give the
following definition.

Definition 1 A weighted distance between subspaces P1 and P2 with ranks k1 and
k2 is given by

D2
w(P1,P2) = 1

2
||w(k1)P1 − w(k2)P2||2 . (1)

The weights are used to make the orthogonal projections P1 and P2 with different
ranks more comparable in some sense (see below some illustrating special cases). As
the distance Dw(P1,P2) is based on thematrix (Frobenius) norm, (i) Dw(P1,P2) ≥ 0,
(ii) Dw(P1,P2) = 0 if and only if P1 = P2, (iii) Dw(P1,P2) = Dw(P2,P1), and (iv)
Dw(P1,P3) ≤ Dw(P1,P2) + Dw(P2,P3), and we have the following results.

Lemma 1 For two p × p orthogonal projections P1 and P2 with ranks k1 and k2,
respectively

max{p − k1 − k2, 0} ≤ tr(P1P2) ≤ min{k1, k2}.

Proof First note that P1 = U1Ut
1 and P2 = U2Ut

2 where U1 has k1 orthonormal
columns and U2 has k2 orthonormal columns. Then tr(P1P2) = ||Ut

1U2||2 ≥ 0.
As tr(P1P2) + tr(P1(Ip − P2)) = tr(P1) = k1 and tr(P1P2) + tr((Ip − P1)P2) =
tr(P2) = k2 one can conclude that tr(P1P2) ≤ min{k1, k2}. Similarly, tr(P1(Ip −
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P2)) ≤ min{k1, p − k2} and therefore tr(P1P2) = k1 − tr(P1(Ip − P2)) ≥ k1 −
min{k1, p − k2} = max{k1 + k2 − p, 0}, and the result follows. �

Note also that the lower and upper bounds in the above lemma are strict. The
upper bound is obtained with the choices

P1 =
k1∑
i=1

eieti and P2 =
k2∑
i=1

eieti ,

and the lower bound with the choices

P1 =
k1∑
i=1

eieti and P2 =
p∑

i=p−k2+1

eieti ,

where ei is a p-vector with the i th component one and other components zero.

Proposition 1 For all weight functions w, Dw(P1,P2) is a metric in the space of
orthogonal projections, and the strict lower and upper bounds of D2

w(P1,P2) for the
dimensions k1 and k2 are

m(k1, k2) − w(k1)w(k2)min{k1, k2} ≤ D2
w(P1,P2) ≤

m(k1, k2) + w(k1)w(k2)min{p − k1 − k2, 0}

where

m(k1, k2) = w2(k1)k1 + w2(k2)k2
2

.

Proof One easily sees that

D2
w(P1,P2) = w2(k1)k1 + w2(k2)k2

2
− w(k1)w(k2)tr(P1P2)

= m(k1, k2) − w(k1)w(k2)tr(P1P2),

and the proof follows from Lemma 1. �

Some interesting choices of the weights are, for k > 0

(a) wa(k) = 1, (b) wb(k) = 1

k
, and (c) wc(k) = 1√

k
.

Weights in (a) give the distance by Crone and Crosby (1995). Weights in (b) and (c)
standardize the matrices so that tr(w(ki )Pi ) = 1 and ||w(ki )Pi || = 1, respectively,
if ki > 0. It is remarkable that
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D2
wc

(P1,P2) = 1 − tr(P1P2)√
tr(P1)tr(P2)

where
tr(P1P2)√
tr(P1)tr(P2)

= vec(P1)
t vec(P2)√

vec(P1)t vec(P1)
√
vec(P2)t vec(P2)

is a correlation between vectorized P1 and P2 introduced in Escoufier (1973) as the
RV coefficient.

Proposition 1 implies that, for nonzero k1 and k2, the distances D2
w(P1,P2) get

any values on the closed intervals

(a) :
[
1

2
|k1 − k2|, 1

2
(k1 + k2) + min{p − k1 − k2, 0}

]
,

(b) :
[
1

2

∣∣k−1
1 − k2

−1
∣∣, 1
2

(
k1

−1 + k2
−1

) + k−1
1 k−1

2 min{p − k1 − k2, 0}
]

, and

(c) :
[
1 − min{k1/21 k−1/2

2 , k−1/2
1 k1/22 }, 1 + k−1/2

1 k−1/2
2 min{p − k1 − k2, 0}

]
.

If k1 = 0, for example, then D2
w(P1,P2) is simply w2(k2)k2/2. Recall that, for all

three choices of weights, the distance is zero only if P1 = P2 (and k1 = k2). For
weights wa , the largest possible value for D2

w(P1,P2) is p/2 and it is obtained if and
only if P1 and P2 are orthogonal and P1 + P2 = Ip (i.e., k1 + k2 = p). For weights
wb, D2

w(P1,P2) ≤ 1, and D2
w(P1,P2) = 1 if and only if P1 and P2 are orthogonal

and k1 = k2 = 1. Finally, for weights wc, the maximum value Dw(P1,P2) = 1 for
k1, k2 �= 0 is attained as soon as P1 and P2 are orthogonal and k1 + k2 ≤ p.

The following two special cases illustrate the differences between the three dis-
tances.

1. First, consider the casewhenSP1 ⊂ SP2 . Then naturally tr(P1P2) = tr(P1) = k1
and

D2
w(P1,P2) = w2(k1)k1 + w2(k2)k2

2
− w(k1)w(k2)k1

and therefore, for k2 �= 0 and with λ = k1/k2

D2
wa

(P1,P2) = k2
2

(1 − λ),

D2
wb

(P1,P2) = 1

2k1
(1 − λ), and

D2
wc

(P1,P2) = 1 − √
λ.

One can see that D2
wc

(P1,P2) depends only on the ratio between k1 and k2, which
can be seen as a nice feature. D2

wa
(P1,P2) and D2

wb
(P1,P2) however depend

additionally on the actual values of k1 and k2. In fact, D2
wa

(P1,P2) depends on
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the difference k2 − k1. It implies that the distance between the subspaceSP1 and
SP2 will remain the same whether the dimensions k1 = 1 and k2 = 2 or whether
k1 = 99 and k2 = 100, while we would expect the distance to be much smaller
in the latter case.

2. Second, consider the case when SP1 and SP2 are orthogonal, that is, when
tr(P1P2) = 0. Then

D2
w(P1,P2) = w2(k1)k1 + w2(k2)k2

2

and therefore, for nonzero k1 and k2

D2
wa

(P1,P2) = 1

2
(k1 + k2),

D2
wb

(P1,P2) = 1

2

(
1

k1
+ 1

k2

)
, and

D2
wc

(P1,P2) = 1.

It is natural to think subspaces that are orthogonal to each other are furthest apart
possible. This information is apparent in D2

wc
(P1,P2). However, interpreting both

D2
wa

(P1,P2) and D2
wb

(P1,P2) is again more difficult since they depend on the
actual values of k1 and k2.

2.3 Averages of Subspaces with Arbitrary Dimensions

Consider the orthogonal projections P1, . . . ,Pm with ranks k1, . . . , km . To combine
the orthogonal projections we give the following

Definition 2 The average orthogonal projection (AOP) Pw based on the weights
w(0), . . . ,w(p) is an orthogonal projection that minimizes the objective function

σ 2
w(P) = 1

m

m∑
i=1

D2
w(Pi ,P).

To find the AOP, we can use the following result.

Lemma 2 The AOP Pw maximizes the function

D(P) = w(k)tr(P̄wP) − 1

2
w2(k)k,
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where

P̄w = 1

m

m∑
i=1

w(ki )Pi

is a regular average of weighted orthogonal projections, and k is the rank of P.

Proof As shown before

D2
w(Pi ,P) = 1

2
w2(ki )ki + 1

2
w2(k)k − w(ki )w(k)tr(PiP).

Then

σ 2
w(P) = 1

m

m∑
i=1

D2
w(Pi ,P) = 1

2m

m∑
i=1

w2(ki )ki + 1

2
w2(k)k − w(k)tr(P̄wP).

The first term in the latest sum does not depend on P or k. Thus, σ 2
w(P) is minimized

when w(k)tr(P̄wP) − 1
2w

2(k)k is maximized. �

Naturally, P̄w is symmetric and nonnegative definite, but not an orthogonal pro-
jection anymore. In the following derivations, we need its eigenvector and eigenvalue
decomposition

P̄w = UΛUt =
p∑

i=1

λiuiut
i ,

where λ1 ≥ . . . ≥ λp ≥ 0 and ui is the eigenvector corresponding to the eigenvalue
λi . Recall that the eigenvectors are uniquely defined only for eigenvalues that are dis-
tinct from other eigenvalues. Using the Lemma 2 and the eigenvector and eigenvalue
decomposition P̄w, our main result easily follows.

Proposition 2 The rank k of the AOP Pw maximizes the function

fw(k) = w(k)(
k∑

i=1

λi )I (k > 0) − 1

2
w2(k)k, k = 0, . . . , p,

where λ1 ≥ . . . ≥ λp ≥ 0 are the eigenvalues of P̄w. Moreover

Pw = I (k > 0) ·
k∑

i=1

uiut
i

where u1, . . . , uk are the eigenvectors corresponding to eigenvalues λ1, . . . , λk .
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Proof The AOP Pw maximizes

D(P) = w(k)tr(P̄wP) − 1

2
w2(k)k,

where k is the rank of P. Assume first that k > 0 is fixed and P = VVt where V has
k orthonormal columns. Then D(P) is maximized as soon as tr(P̄wP) is maximized.
Then, as P̄w = ∑p

i=1 λiuiut
i , tr(P̄wP) = tr(P̄wVVt ) = tr(Vt P̄wV) is maximized if

V = (u1, ...,uk), and the maximum value is
∑k

i=1 λi . For fixed k > 0, the max-
imum value of D(P) is then w(k)

∑k
i=1 λi − 1

2w
2(k)k, and D(0) = 0. The result

follows. �

Note that the calculation of theAOPPw is easy, only the eigenvalues and eigenvec-
tors of P̄w are needed. The AOP Pw is not always unique. This happens for example
if the rank of an AOP is k and λk+1 = λk . Consider now the three weight functions

(a) wa(k) = 1, (b) wb(k) = 1

k
, and (c) wc(k) = 1√

k
, for k > 0.

The function fw for these three weight functions is, for k > 0

(a)

k∑
i=1

λi − k

2
, (b)

1

k

(
k∑

i=1

λi − 1

2

)
, and (c)

1√
k

(
k∑

i=1

λi

)
− 1

2
.

Note that fw(0) = 0 for all weights w. To find local maxima for these functions,
one can then use the results

(a) : fw(k + 1) ≥ fw(k) ⇔ λk+1 ≥ 1

2
,

(b) : fw(k + 1) ≥ fw(k) ⇔ λk+1 ≥ 1

k

(
λ1 + . . . + λk − 1

2

)
, and

(c) : fw(k + 1) ≥ fw(k) ⇔ λk+1 ≥
(√

k + 1

k
− 1

)
(λ1 + . . . + λk)

for k = 1, . . . , p − 1.
Note that for (a), fw(k) is a concave function and theglobalmaximumis simply the

largest k with the eigenvalue λk ≥ 1
2 . The functions in (b) and (c) are not concave,

however, and the global maximum is found by computing all the values fw(k),
k = 0, ..., p.
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3 Application

In this section we discuss the performance of the average orthogonal projections
(AOP) for four different dimension reduction problems. The orthogonal projections
and their combinations aim for different targets in different applications. Each prob-
lem with natural orthogonal projections is first shortly introduced, and then the per-
formance of AOP is demonstrated using three simulation studies and a real data
example. The three simulated studies lead to different situations concerning the
estimation of ranks. In the first simulated example, the ranks of the orthogonal pro-
jections together with the rank of the AOP are considered as fixed while only the
rank of the AOP is estimated in the second example and all ranks are estimated in the
third example. The computations in this section are done using R (R Development
Core Team 2012) and the packages bootstrap (Tibshirani 2013), class (Venables and
Ripley 2002), dr (Weisberg 2002), ICS (Nordhausen et al. 2008), MASS (Venables
and Ripley 2002), MMST (Halbert 2011), MNM (Nordhausen and Oja 2011), pcaPP
(Filzmoser et al. 2012) and robustbase (Rousseeuw et al. 2012). Furthermore, the
weighted distance (Definition 1) and the AOP (Definition 2) are implemented in the
R package LDRTools (Liski et al. 2014b).

3.1 Principal Component Analysis

Classical principal component analysis (PCA) may be based on the eigenvector and
eigenvalue decomposition of the covariance matrix of a p-variate random vector x,
that is, on

cov(x) = UΛUt =
p∑

i=1

λiuiut
i

where λ1 ≥ ...λp ≥ 0 are the ordered eigenvalues and u1, ...,up are the corre-
sponding eigenvectors. The orthogonal projection Pcov = ∑k

i=1 uiu
t
i then projects

p-variate observations to the k-variate subset with maximum variation. It is unique
if λk+1 > λk .

Let Fx be the cumulative distribution function of x. A p × p matrix valued func-
tional S(Fx) is a scatter matrix if S(Fx) is a nonnegative definite and symmetric
matrix with the affine equivariance property

S(FAx+b) = AS(Fx)At for all full-rank p × p matrices A and all p -vectors b.

It is remarkable that, if x has an elliptic distribution then the ordered eigenvectors of
S(Fx) are those of cov(x). Therefore, in the elliptic case, any scatter matrix can be
used to find P = ∑k

i=1 uiu
t
i and the matrix P is a well-defined population quantity

even if the second moments (and the covariance matrix) do not exist. Naturally,
the sample statistics corresponding to different scatter matrices then have different
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statistical (efficiency and robustness) properties. For a fixed value of k, one can then
try to “average” these different PCA approaches to get a compromise estimate.

Wenext illustrate the performanceof theAOP in the following simple scenario. Let
first x ∼ N6(0,Λ),Λ = diag(9, 7, 5, 1, 1, 1).We choose k = 3 andwish to estimate
PΛ = diag(1, 1, 1, 0, 0, 0). Let then x1, ..., xn be a random sample from N6(0,Λ),
and find an estimate Pcov, an orthogonal projection with rank k = 3 obtained from
the sample covariance matrix. This estimate is then combined with three robust
estimates, namely,

PT yler that is based on Tyler’s shape matrix (Tyler 1987) with the affine equivariant
version of spatial median as a multivariate location estimate (Hettmansperger
and Randles 2002).

PMCD that is based on the minimum covariance determinant (MCD) estimator
(Rousseeuw 1986).

PPP that is based on the projection pursuit (PP) approach for PCAwith the median
absolute deviation (mad) criterion as suggested in Croux and Ruiz-Gazen
(2005).

In the simulations, x1, . . . , xn was a random sample from N6(0,Λ)with n = 400, and
the sampling was repeated 1000 times. As k1 = . . . = km = k = 3 is fixed, the AOP
Pw does not depend on the weight function and we use only wa . A similar simulation
study was conducted but with observations coming from a heavy-tailed elliptical t2
distribution with the corresponding scatter matrix Λ = diag(9, 7, 5, 1, 1, 1). Note
that the regular covariance matrix does not exist in this case but the true orthogonal
projection is still well defined. The average squared distances D2

wa
between the four

orthogonal projection estimates, their AOP Pwa , and PΛ are shown in Table1 for both
the normal and the t-distributed settings, respectively in the left and right columns.
Note that for both settingsPΛ is the same, but the four orthogonal projection estimates
and their AOP differ.

The results in the multivariate normal case show, as expected, that the orthogonal
projection estimate based on the covariance matrix is the best one here. Also the
average orthogonal projection performs very well although it combines information
coming from the much worse PPP . In the t2 distribution case, traditional Pcov fails
but the average orthogonal projection is still performing well. Recall the second
moments and Pcov do not exist in this case.

Table 1 Average squared distances D2
wa

between the four orthogonal projection estimates, their
AOP Pwa , and true PΛ. For all orthogonal projections, rank k = 3. The averages are based on 1000
random samples of size n = 400 from N6(0,Λ) (left column) and t2 (right column)

PΛ(N ) PΛ(t)

Pcov 0.005 0.114

PT yler 0.007 0.007

PMCD 0.007 0.012

PPP 0.061 0.070

Pwa 0.009 0.016
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In practice, the distribution of the random sample is unknown, but from the sim-
ulations we can see that whether the distribution is gaussian or with heavy tails, the
AOP procedure will make the most of the different PCA methods.

3.2 Averaging One-Dimensional PP Orthogonal Projections

In the previous section we used the projection pursuit (PP) approach for principal
component analysis. PP is a much more general technique, however, and there are
many other types of indices than just measures of variation to define “interesting”
one-dimensional directions. PPactually dates back toFriedmanandTukey (1974) and
usually one searches for non-gaussian directions. For a recent review of the existing
indices, see for example Rodriguez-Martinez et al. (2010). A major challenge in PP
is that it is computationally difficult to find the direction which globally maximizes
the index and that there are usually several local maxima. However, since the local
maximamay be also of interest, one possible strategy, as detailed in Ruiz-Gazen et al.
(2010), is to run the algorithm many times using different initializations. With this
strategy, the user has many orthogonal projections of rank one but many of them are
usually redundant. So, it is of particular interest to summarize all these orthogonal
projections in order to extract the directions that are useful and unique. It means
that, in that case, one is interested in an average orthogonal projection of orthogonal
projections with rank one that may have a higher rank.

To demonstrate the interest of AOP in the context of PP, we choose the deflation-
based fastICAmethod (Hyvärinen 1999) as an example since it iswell understood and
computationally quite simple. While deflation-based fastICA is originally developed
in the context of independent component analysis (ICA), it can be seen as a traditional
PP approach when only one direction is extracted. For a random variable x with the
standardized version z = cov(x)−1/2(x − E(x)), deflation-based fastICAmaximizes
a measure of non-gaussianity of the form |E(G(utz))|, under the constraint that
utu = 1, where G is a selected twice differentiable nonlinear nonquadratic function
withG(0) = 0. The final PP direction is then (ut cov(x)−1u)−1/2 cov(x)−1/2u, and the
corresponding orthogonal projection is (ut cov(x)−1u)−1 cov(x)−1/2 uut cov(x)−1/2.
In our simulations, we use four common choices of G(u) with derivative functions
g(u): (i) u3, (ii) tanh(u), (iii) u exp(u2/2), and (iv) u2. If there are more than one
non-gaussian direction in the data, the direction to be found depends heavily on the
initial value of the algorithm, see e.g. Nordhausen et al. (2011), Miettinen et al.
(2014).

In our simulation study, we choose a 10-variate x = (x1, . . . , x10)t where the
first three variables are mixtures of gaussian distributions and xi ∼ N (0, 1), for i =
4, . . . , 10.More precisely, x1 = 1√

5
(p1y1 + (1 − p1)y2 − 2)with p1 ∼ Bin(1, 0.5),

y1 ∼ N (0, 1) and y2 ∼ N (4, 1); x2 = 1/
√
2.89(p2y3 + (1 − p2)y4 − 2.1)with p2 ∼

Bin(1, 0.3), y3 ∼ N (0, 1) and y4 ∼ N (3, 1), and x3 = 1/
√
24.36(p3y5 + (1 − p3)y6 −

2) with p3 ∼ Bin(1, 0.4), y5 ∼ N (0, 9) and y6 ∼ N (8, 9). We generated 1000 ran-
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Fig. 1 Relative frequencies
of the estimated ranks of the
AOP using the weight
functions wa , wb and wc
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dom samples of sizes n = 200 from the 10-variate distribution described above. For
each sample, we found 100 one-dimensional PP directions (4 choices of G, 25 ran-
dom initial values for the algorithm for each choice of G). For each sample, 100 PP
orthogonal projections were then averaged using each of the three weight functions
wa , wb, and wc. In this setting, the average orthogonal projection should be close to
the orthogonal projection Ptrue = diag(1, 1, 1, 0, . . . , 0) with rank 3 that picks the
three non-gaussian components of the data.

Figure1 shows the relative frequencies of the ranks of the AOPs obtained with
the three weight functions in 1000 repetitions. Clearly the weight function wa is
not appropriate in this application because k1 = k2 = . . . = km = 1 implies that∑m

i=1 λi = 1 with λi ≥ 0, which means that there cannot be more than one eigen-
value larger than 1/2 and, consequently, the rank k equals zero or one. With weight
functions wb and wc, the correct rank 3 is obtained in 82.6% and 68.3% of the runs,
respectively. It is also hoped that the AOPs are close to the true orthogonal projection
Ptrue. To evaluate that, we calculated in Table2 the average distances D2

wa
, D2

wb
, and

D2
wc

(columnwise) between Pwa and Ptrue, between Pwb and Ptrue, and between Pwc

and Ptrue. Notice that, for all distances, the AOP Pwb is closest on average to the true
value Ptrue, which illustrates the interest of averaging.

Table 2 Average squared distances D2
wa
, D2

wb
, and D2

wc
(columnwise) between Ptrue and Pwa , Pwb

and Pwc , respectively

Ptrue(D2
wa

) Ptrue(D2
wb

) Ptrue(D2
wc

)

Pwa 1.005 0.335 0.425

Pwb 0.122 0.018 0.043

Pwc 0.199 0.035 0.074
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3.3 Supervised Dimension Reduction

In the PCA application, we used the same k = 3 for the orthogonal projections and
their AOP. In the PP application, the rank of the orthogonal projections was taken
as one while the rank of their AOP was not fixed. However, for many dimension
reduction methods, the ranks of the individual orthogonal projections are not fixed
but also estimated from the data, and the ranksmay differ fromonemethod to another.
We now look at this scenario in the framework of supervised dimension reduction.

In supervised dimension reduction, one often assumes that a response variable y
and the p-vector x are related through

y = f (bt1x, . . . ,b
t
kx, ε),

with an unknown function f and an unknown error variable ε. The goal of supervised
dimension reduction is to estimate the value of k and the matrix B = (b1, . . . ,bk) to
obtain PB with rank k. Hence, for supervised dimension reduction, the joint distrib-
ution of y and x is of interest and, for the matrix B, it holds that y ⊥⊥ x|Btx.

Many supervised dimension reduction methods have been suggested in the lit-
erature and their performances often strongly depend on the unknown function f .
The well-known sliced inverse regression (SIR) for example may not find directions
with nonlinear dependencies while, on the other hand, principal Hessian directions
(PHD) cannot find linear relationships. Hence, when using supervised dimension
reduction methods in practice, the estimated rank k and the corresponding orthogo-
nal projection might differ considerably depending on the method. Therefore there
were already several approaches suggested in the framework of supervised dimen-
sion reduction to combine different methods, see for example Ye and Weiss (2003),
Shaker and Prendergast (2011) and references therein for further details. We propose
to use in the following AOP in order to summarize in an efficient way the information
brought by the complementary estimation strategies.

In our example we generate data sets from the following two models:

M1: y =bt11x − (bt12x)
2 + σε

M2: y = (bt21x)
2 + σε,

where x ∼ N10(0, I10), ε ∼ N (0, 1), σ = 0.5 and bi j ’s are all 10-dimensional col-
umn vectors

b11 = (2, 3, 0, . . . , 0)t and b12 = (0, 0,
√
5, 0, . . . , 0)t ,

b21 = (1, 0, 0, 0, . . . , 0)t .

Hence k = 2 for model M1 and k = 1 for model M2. In both cases, we generated
100 samples of size 400.

In our illustration, we use supervised dimension reduction methods implemented
in the dr package that provide both the estimate of k and the corresponding orthog-
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onal projection estimate. The estimation strategies are then (i) sliced inverse regres-
sion (SIR), (ii) sliced variance estimation (SAVE), (iii) inverse regression estimation
(IRE), and three types of principal hessian directions (PHD), namely, (iv) response
based principal hessian directions (PHDY), (v) residual based principal hessian direc-
tions (PHDR), and (vi) the so-called q-based principal hessian directions (PHDQ).
For details about these estimation methods, see Weisberg (2002) and references
therein. We also add here (vii) PCA with k chosen simply as the number of eigen-
values larger than 1. Naturally, PCA ignores y and is therefore not supervised. (Its
use could be motivated by the aim to avoid directions with small variation. In our
case it just provides random orthogonal projections.) Furthermore, do we compare
our proposal with another combination approach (viii) suggested by Ye and Weiss
(2003) called bootstrapping (BOOT) that also combines several reduction dimension
methods. Roughly speaking, the method is based on linear combinations of matri-
ces obtained from different dimension reduction methods that lead to estimators of
the subspace and its dimension. The methods we combine in this study are the so-
called SIR and SAVE matrices MSI R and MSAV E using (1 − c)MSI R + cMSAV E ,
c = 0, 0.1, . . . , 1. Among all the possible linear combinations we find the linear
combination of minimal variability using the vector correlation coefficient as mea-
sure. Ye and Weiss (2003) presented also an approach for estimating k, but due to
the tedious task of the process we fix k to the true in our simulation study. For more
details on the bootstrapping combination approach, see Ye and Weiss (2003).

In the following we compare the eight methods above and the AOPs for methods
(i)–(vii) based on the weight functions wb and wc. The use of wa is not reasonable
here because of the varying estimates of k. We consider therefore here the following
two AOPs.

AOP1: The AOP using wb with estimated k.
AOP2: The AOP using wc with estimated k.

Some simulation results are collected in Figs. 2, 3. The figures show the boxplots
for the observed D2

wb
and D2

wc
distances between the true orthogonal projection and

the orthogonal projection estimates coming from the different dimension reduction
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Fig. 2 Boxplots of the observed D2
wb

(left panel) and D2
wc

(right panel) distances between the true
and estimated orthogonal projections when the observations come from the model M1 with k = 2



146 E. Liski et al.

SIR SAVE PHDR PHDY PHDQ IRE PCA BOOT AOP1 AOP2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D
w

b

2

SIR SAVE PHDR PHDY PHDQ IRE PCA BOOT AOP1 AOP2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D
w

c

2

Fig. 3 Boxplots of the observed D2
wb

(left panel)and D2
wc

(right panel) distances between the true
and estimated orthogonal projections when the observations come from the model M2 with k = 1

approaches. Consider first the behavior of the estimates in the model M1 with k = 2
(see Fig. 2). The performances of SIR, SAVE and PHD estimates seem to be very
similar and they usually find only one direction. (For example, SIR finds only the
component with linear dependence, and SAVE only the component of quadratic
dependence.) The same seems to be true with IRE but with more varying estimates.
Recall that, if SP1 ⊂ SP2 and k1 = 1 and k2 = 2, then λ = k1/k2 = 0.5, and the
average distances of SIR, SAVE and PHD estimates tend to be close to

D2
wb

(P1,P2) = 1

2k1
(1 − λ) = 0.25 and D2

wc
(P1,P2) = 1 − √

λ = 0.293,

respectively. The AOP estimates nicely pick up the two dimensions and clearly
outperform other estimates. Note that even though k is fixed and true for BOOT, it is
still outperformed by the AOP estimates. PCA has a poor performance as expected.

Figure3 gives the results for the model M2 with k = 1 and quadratic dependence.
SAVE and PHD approaches work very well, and SIR and IRE completely fail in
this case. AOP using wc neglects the bad estimates and picks up nicely the correct
direction, whereas AOP using wb is somewhat affected by the bad estimates. BOOT
performs very well and as in model M1, PCA provides a random reference method
with a bad performance.

4 Real Data Example

As the final example AOP is demonstrated on a real data set which considers pen-
based recognition of handwritten digits. The data set which is available in the R
package MMST contains 16 variables for 10992 digits ranging from 0–9 and the
usual goal is to perform supervised classification. In our illustration we first divide
the data set randomly into two equal parts, training data and testing data, we next use
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different dimension reductions methods and two different supervised classification
methodswith training data to obtain classification rules, and the rules are then applied
to the testing data where the misclassification percentage is computed.

As dimension reduction methods we use all four principal component analysis
methods as described in Sect. 3.1 denoted in the following as PCAcov, PCATyler ,
PCAMCD and PCAPP respectively. For each method the dimension is chosen visu-
ally using screeplots. Furthermore we use two versions of invariant coordinate selec-
tion (ICS) (Tyler et al. 2009). The first version denoted as ICScov,cov4 uses the regular
covariance matrix and the matrix of fourth moments whereas the second version
denoted ICSMCD,T yler usesMCD and Tyler’s shape matrix. In both cases the dimen-
sions are chosen visually based on scatter plots. The last dimension reductionmethod
is SIR, which can be seen as a supervised version of ICS, see Liski et al. (2014a). In
SIR we use 10 slices corresponding to the 10 digits and the estimated dimension is
based on the tests available in the dr package. All these methods are then combined
using the three weight functions introduced earlier with their own estimate for the
dimension. Note that the dimension reduction methods here are quite different. The
principal components methods search for directions with large variation mainly hav-
ing an ellipticalmodel inmindwhereas the ICSmethods look for rather non-elliptical
directions with extreme kurtosis values.

For all 10 dimension reduction methods classification rules are then built using 1-
nearest neighbor (knn) classification and quadratic discriminant analysis (QDA) and
evaluated on the testing data. Table3 gives for all 10 different dimension reduction
methods and the two different classifiers the estimated dimension of the data and
the percentage of misclassification in the testing data. The table shows that for the
individual dimension reduction methods the estimated dimension of the data varies
from 3 to 5, where PCAPP with an estimate of 4 yields the smallest classification
error for both knn and QDA. When combining these individual methods the AOP
with weight functionwb prefers a rank higher than any of the individual methods and

Table 3 Classification errors in percent and the estimated dimensions k for the different dimension
reduction and classification methods

MET k knn QDA

PCAcov 3 0.14 0.18

PCAT yler 3 0.16 0.20

PCAMCD 3 0.20 0.25

PCAPP 4 0.08 0.13

ICScov,cov4 5 0.21 0.28

ICSMCD,T yler 5 0.20 0.22

SIR 4 0.13 0.19

AOPwa 3 0.17 0.22

AOPwb 6 0.04 0.04

AOPwc 5 0.07 0.12
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gives in total the smallest classification error. But also the weight function wc which
uses as rank 5 still obtains classification errors smaller than any of the individual
methods which makes very clear that for these data different methods emphasize
different features of the data and the average of all of them is most informative for
further analysis.

5 Final Comments

Dimension reduction and subspace estimation is a topic with increasing relevance
since modern data sets become larger and larger. Different approaches have different
shortcomings and combining the results coming from different approaches might
give a better total overview. In this paper, we propose a generalization of the Crone
and Crosby distance for the orthogonal projections, a weighted distance that allows
to combine subspaces of different dimensions. Some natural choices of weights are
considered in detail. The performance of three weighted distances and the combining
approach is illustrated via simulations and a real data example, which show that each
of them has its own justification depending on the problem at hand. Similar to other
areas of statistics, this kind of “model averaging” seems to be a way to combine
information from competing estimates and to give a better idea of the true model at
hand.
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On the Computation of Symmetrized
M-Estimators of Scatter

Jari Miettinen, Klaus Nordhausen, Sara Taskinen and David E. Tyler

1 Introduction

Almost all of the classical multivariate methods, including principal component
analysis, multivariate regression, canonical correlation analysis, etc., are dependent
on the use of the sample covariancematrix. It iswell-known that under the assumption
of multivariate normality, the methods based on this estimator are optimal. However,
if the normality assumption is not satisfied, e.g., if the data are contaminated with
outlying observations or have heavier tails than that of the normal distribution, then
methods based on the sample covariance matrix perform poorly.

A widely used approach for robustifying classical multivariate methods is the so-
called plug-in approach. In this approach, the sample covariance matrix is replaced
by a robust scatter matrix. As a consequence, a vast variety of robust alternatives
for the sample covariance matrix have been proposed in the literature. Some widely
used robust estimators include M-estimators (Maronna 1976; Huber 1981), MCD-
estimators (Rousseeuw1985), andS-estimators (Davies 1987;Lopuhaä 1989) among
others. For an overview of robust multivariate methods, see Maronna et al. (2006).
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When robust plug-in methods are proposed, one important issue is often ignored,
namely that a multivariate method may not be valid unless the robust scatter matrix
satisfies certain crucial properties that hold for the sample covariancematrix. InNord-
hausen and Tyler (2015) a thorough discussion of such properties is given. Focus-
ing on the so-called joint and block independence properties (defined in the next
section), Nordhausen and Tyler (2015) give several examples of plug-in multivariate
methods, which are not valid unless the scatter matrix possesses these properties.
Examples include independent component analysis, observational regression, and
graphical modeling. For the role of scatter matrices in independent component analy-
sis, see also Oja et al. (2006), Nordhausen et al. (2008), Tyler et al. (2009), among
others.

In Oja et al. (2006), it is shown that by computing any scatter matrix using
pairwise differences rather than the observations themselves produces an estima-
tor with the joint independence property. Sirkiä et al. (2007) discuss general sym-
metrized M-estimators and give as examples the symmetrized Huber estimators,
and Dümbgen’s (1998) estimator, which is a symmetrized version of Tyler’s (1987)
M-estimator. Croux et al. (1994), Roelant et al. (2009) propose using symmetrized S-
estimators in univariate and multivariate regression settings, respectively, with their
main focus being on improving efficiency at the normal model.

As symmetrized estimators are defined using pairwise differences, the compu-
tations become intensive with increasing sample size. In this paper, we focus on
the computational aspects and consider a few practical ways to handle this problem,
especially in the context ofM-estimates. The paper is organized as follows: In Sect. 2
we recall the definitions of scatter matrix and block and joint independence, and in
Sect. 3 the definition and main properties of symmetrized M-estimators of scatter.
Section4 provides some new approaches for computing symmetrized estimators. In
Sects. 5 and 6 simulation studies are given to compare efficiencies and computa-
tion times of different approaches, respectively. The paper is concluded with some
discussion in Sect. 7.

2 Scatter Matrices and Block Independence

Recall first the definition of a scatter matrix functional.

Definition 1 Let x be a p-variate random vector with cumulative distribution func-
tion Fx. Then a p × p matrix valued functional V = V(Fx) is a scatter matrix func-
tional if it is symmetric, positive semi-definite and affine equivariant in the sense
that

V(FAx+b) = AV(Fx)At (1)

for any full rank p × p matrix A and any p-vector b.

A scatter matrix is then naturally defined as V̂ = V(Fn), where Fn is the empirical
cdf. Most robust counterparts of covariance matrix satisfy (1). However, they usu-
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ally do not satisfy the so-called joint and block independence properties, which are
characteristic of the covariance matrix and are defined as follows.

Definition 2 Assume that x = (xt1, . . . , x
t
k)

t is a p-vector consisting of k mutually
independent subvectors with dimension pi , i = 1, . . . , k, such that

∑k
i=1 pi = p.

(i) The scatter matrix functional V(Fx) is said to have the block independence
property, if it is a block diagonal matrix with block sizes pi , i = 1, . . . , k.

(ii) If k = p, which means that x has independent components, and V(Fx) is a
diagonal matrix, then it is said to have the joint independence property.

Note that the block independence property implies the joint independence property,
but not vice versa. In Nordhausen and Tyler (2015), several examples of multivariate
methods are given for which it is necessary for a scatter matrix to possess the joint
or block independence property.

Most scatter functionals do not posses the joint or block independence property.
A common conjecture here is that only scatter matrices which can be expressed
as functions of pairwise differences have this property. For example COV(x) =
E((x − E(x))(x − E(x))t ) = 2−1E((x1 − x2)(x1 − x2)t ), where x1 and x2 denote
independent copies of x, can be written in such a way.

What about scatter matrices which cannot be expressed using pairwise differ-
ences? A quite simple but ingenious approach is to apply a scatter functional to the
pairwise differences, which is known as symmetrization. Theorem 1 in Oja et al.
(2006) shows that when a scatter matrix functional is applied to the pairwise differ-
ences of the observations, then the resulting functional possesses the joint indepen-
dence property. In Nordhausen and Oja (2011), Nordhausen and Tyler (2015), it is
shown that symmetrization yields to a more general block independence property.

A formal definition of symmetrization is given as follows.

Definition 3 Let V(Fx) be any scatter functional. Then the corresponding sym-
metrized scatter functional is defined as

Vs(Fx) = V(Fx1−x2),

where x1 and x2 are two independent copies of x.

In this paper, we are mainly interested in computational aspects of symmetrized
scatter matrices. Although the computational issues discussed herein apply to any
symmetrized scatter matrix, this paper focuses on symmetrizedM-estimators of scat-
ter (Sirkiä et al. 2007), which, as to be seen, can bemade computationally feasible for
fairly large sample sizes. The next section reviews the definition and basic properties
of symmetrized M-estimators of scatter.



154 J. Miettinen et al.

3 Symmetrized M-Estimators of Scatter

Write again x for a p-variate random vector with cumulative distribution function
Fx. In this paper, we focus on elliptically symmetric distributions. Such a distribution
family is often used in robustness studies as it includes distributions with heavy tails
(e.g., elliptical Cauchy distribution) as well as distributions which can be used to
generate atypical observations (e.g. contaminated normal distribution).

An elliptically symmetric distribution is obtained as an affine transformation
of a spherical distribution. Recall that a p-variate random vector z is spherically
symmetric around the origin if Uz ∼ z for all orthogonal p × p matrices U. Then
x = Ωz + μ, whereΩ is a full rank p × pmatrix andμ a p-vector, has an elliptically
symmetric distribution with density of the form

f (x;μ,Σ, g) = |Σ |−1/2g(Σ−1/2(x − μ)),

where g(z) = exp(−ρ(||z||)) represents the density of z, with ρ(·) being a nonneg-
ative function and Σ = ΩΩ t . Without loss of generality, Σ1/2 is taken to be the
symmetric positive definite square root of Σ . Note that the density of z depends
only on the value of its radius ||z||, and the function ρ(·) does not depend on the
parameters μ and Σ .

The parameterμ is the location center of the distribution and the scattermatrixΣ is
proportional to the regular covariance matrix (if it exists). Examples of function g(·)
include g(z) = (2π)−p/2 exp(−ztz/2), which corresponds to the p-variate normal
distribution and

g(z) = Γ ((p + ν)/2)

Γ (ν/2)(πν)p/2

(
1 + ztz

ν

)−(p+ν)/2

,

which corresponds to the p-variate t-distribution on ν degrees of freedom. Within
the class of elliptical distribution, i.e., for unknown g, only the location μ and the
“shape” of Σ , i.e., the value of Σ up to proportionality, is well defined, whereas the
constant of proportionality is confounded with the function g.

Next, we recall the definition of the symmetrized M-functional as given in Sirkiä
et al. (2007).

Definition 4 Assume that x is a p-variate random vector with cdf Fx, and let x1 and
x2 be two independent copies of x. A symmetrized M-functional Vs = Vs(Fx1−x2) is
defined as a solution to

E[w1(r12)(x1 − x2)(x1 − x2)t − w2(r12)Vs] = 0,

where r12 = [(x1 − x2)tV−1
s (x1 − x2)]1/2, and w1 and w2 are some real-valued func-

tions on [0,∞).
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Sirkiä et al. (2007) observe that the assumptions on the weight functions and on
the distribution of the pairwise differences needed for the existence and unique-
ness of symmetrized M-functionals follow from Huber’s (1981) results for (non-
symmetrized) M-functionals. When x has an elliptical distribution, Vs ∝ Σ , with
the constant of proportionality being dependent on the weight functions w1 and w2

and the density g, but not on the parameters μ or Σ .
An estimator corresponding to a scatter matrix functional Vs is obtained when

Fx1−x2 in Definition 4 is replaced with the empirical distribution function of the
pairwise differences. A symmetrized M-estimator of scatter, V̂s , then solves

(
n

2

)−1 ∑ ∑
i< j

[w1(ri j )(xi − x j )(xi − x j )
t − w2(ri j )Vs] = 0,

where w1 and w2 are real-valued functions on [0,∞). Notice that choices w1(r) =
ρ ′(r)/r and w2(r) = 2 yield the maximum likelihood estimator under a specific
elliptical distribution. The robustness properties and limiting distributions of general
symmetrized M-estimators were discussed in Sirkiä et al. (2007).

In this paper, we consider the following symmetrized M-estimators:

• The sample covariance matrix, which corresponds to w1(r) = 1 and w2(r) = 2,
or equivalently to w1(r) = 1/2 and w2(r) = 1

• The symmetrized CauchyM-estimator, which has weight functions corresponding
to those of themaximum likelihood estimator for the elliptical Cauchy distribution,
i.e., w1(r) = (1 + p)/(1 + r2) and w2(r) = 1. It is worth noting that this is not
the same as the maximum likelihood estimator based on the pairwise differences
from a random sample of an elliptical Cauchy distribution.

• The symmetrized Huber estimators, which have weight functions w2(r) = 1 and

w1(r) =
{
1/σ 2, r2 ≤ c2

c2/(r2σ 2), r2 > c2,

where c is a tuning constant defined so that q = Pr(χ2
p ≤ c2/2) for a chosen q.

The scaling factor σ is chosen so that E[w1(||x1 − x2||)] = p, where x1, x2 ∼
N (0, Ip), which makes the estimator Fisher-consistent for Σ at the multivariate
normal model.

• Dümbgen’s (1998) estimator, which corresponds to choosing w1(r) = p/r2 and
w2(r) = 1.

Dümbgen’s estimator is only defined up to proportionality, i.e., both V̂s,1 and V̂s,2 sat-
isfy the corresponding estimating equations, if and only if V̂s,1 ∝ V̂s,2. Furthermore,
as noted previously, under sampling from an elliptical distribution, the symmetrized
Cauchy M-estimator is Fisher consistent for the parameter Σ only up to proportion-
ality. This is also true of the sample covariance matrix, and the symmetrized Huber
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M-estimator at elliptical models other than the multivariate normal. These factors,
though, are not important to the efficiency comparisons given in Sect. 5, since only
the shape of the scatter matrices are considered in these comparisons.

4 Computation of Symmetrized M-Estimators

Hereafter, we consider only the case w2(·) = 1, which agrees with the original def-
inition of the M-estimators given in Maronna (1976). Note that this case holds for
the three M-estimators discussed in the previous section, as well as for the maxi-
mum likelihood estimators of scatter under an elliptical family of distributions, i.e.,
with a fixed g. A general recent overview of the M-estimators of scatter for the
case w2(·) = 1 can be found in Dümbgen et al. (2015). They point out that the most
commonly used method to compute such M-estimates is via a simple fixed point
algorithm, which is known to converge under very general conditions to a unique
solution, regardless of the initial value, as shown in Kent and Tyler (1991).

Assume in the following that we have a sample of n vectorsX = (x1, . . . , xn) and
the goal is to compute the symmetrized M-scatter matrix Vs of interest. The most
naive approach would be to apply the fixed point algorithm for the unsymmetrized
scatter of interest to all n(n − 1) pairwise differences xi − x j with i �= j . Notice
that now the location center does not need to be estimated as for the symmetrized
vectors the location center is naturally the origin. Nevertheless, even for a moderate
sample size n, the computational burden can be tremendous and so new approaches
are needed to to deal with this. In the following, we will consider a few practical
ways to reduce the computational burden and memory demand.

The number of pairwise differences can be halved since only the n(n − 1)/2
pairwise differences xi − x j with i < j are needed to compute the symmetrized
scatter matrix. Hence the most basic algorithm is the fixed point algorithm with
updating step at iteration k:

Vk+1
s (X) =

(
n

2

)−1 ∑
i< j

{
w1(r

k
i j )(xi − x j )(xi − x j )

t
}
,

where rki j is based on the current scatter estimateVk
s . Recently, Nordhausen and Tyler

(2015) suggested rewriting the above algorithm as

Vk+1
s (X) = 2(n(n − 1))−1

n∑
i=2

Sk+1
i (X),
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where

Sk+1
i (X) =

i−1∑
j=1

w1(r
k
i j )(xi − x j )(xi − x j )

t .

The computation of Sk+1
i (X) then can be naturally divided into several threads. We

refer to this algorithm as the parallel algorithm and study, in Sect. 6, how much this
approach speeds up computations.

Dümbgen et al. (2016) have recently argued that using a fixed point algorithm for
computing M-estimates of scatter can be less than optimal. They consider several
alternative algorithms and recommended a partial Newton (PN) algorithm, which, in
most cases, is considerably faster. The basic idea behind the PN algorithm is to first
perform a few fixed point steps and to then evaluate whether shifting to a Newton–
Raphson step with an approximated Hessian is better. We refer to the reader to the
aforementioned paper for more details regarding the algorithm. A restriction of the
PN algorithm is that the weight functions must be smooth, which excludes, for exam-
ple, Huber’s weight functions. Two versions of the PN algorithm were introduced
in Dümbgen et al. (2016), with one version requiring all pairwise differences xi − x j

with i < j being in the memory, and the other version being a sequential algorithm
which avoids storing all pairwise differences. The sequential algorithm seems to be,
in most cases, faster than the one that stores all pairwise differences.

We have, thus, several algorithms available so far for the computation of sym-
metrized M-estimators of scatter. However, these are all computationally intensive
as they either store all pairwise differences xi − x j with i < j in the memory or
compute sequentially all quantities of interest. This computational burden is demon-
strated later in Sect. 6.

A possible way to ease this computational problem can be motivated by noting
the resemblance of the symmetrized scatter matrix to a U -statistic of order two.
Recall that for a sample X = (x1, . . . , xn) a U -statistic for a parameter θ based on a
symmetric kernel h(x(1), . . . , x(K )) of order K is defined as

U = N−1
N∑
i=1

h(x(1), . . . , x(K )),

where N = ( n
K

)
and the kernel is computed for all possible subsamples of size K

denoted by x(1), . . . , x(K ). A simple example of aU -statistic is the sample covariance
matrix, which has a kernel of order two and can be expressed as

h(x(1), x(2)) = 2−1(x(1) − x(2))(x(1) − x(2))
t

and hence

COV(X) =
(
n

2

)−1 ∑
i �= j

2−1(x(i) − x( j))(x(i) − x( j))
t .
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In general, though, not all symmetrized scatter matrices can be expressed as U -
statistics, since they typically have only an implicit rather than an explicit represen-
tation in terms of pairwise differences.

In the context of U -statistics, Blom (1976) noted that it is possible to use less
than N terms without losing much information when estimating θ , and he called
such estimates incomplete U -statistics. Such estimates have also been referred to
as weighted U -statistics, with weights 0 or 1, or as reduced U -statistics. In Blom
(1976), Brown andKildea (1978), the statistical properties of incompleteU -statistics
are derived.

Following the idea of incompleteU -statistics,manyways to choose the terms used
in computations are possible. The most basic one is independent subsampling, where
m sets out of all N sets are chosen at random. This can, however, give different weight
to different observations in the data. Another convenient choice for kernels of order
K = 2, which gives each observation equal weight, is what we refer to as a “running
average of lengthm.” For this purpose, we treat the ordering of the data as cyclic and
define an extended data matrix X∗ = (x∗

1, . . . , x
∗
n+m) = (x1, . . . , xn, x1, . . . , xm).

Our incomplete symmetrized M-estimator of length m, V̂I , then solves

VI = 1

nm

n∑
i=1

i+m∑
j=i+1

w1(ri j )(x∗
i − x∗

j )(x
∗
i − x∗

j )
t .

In the following, we explore the idea of computing symmetrized scatter matrices
by using running averages of different lengths m and compare the loss in efficiency
to the gain in computation time. From a practical point of view, the observation
order should be randomly permuted in order to avoid the effect of how the data was
recorded. Using permutations in the simulations, though, are not needed since the
simulated data set follows the same model as any permutation of it.

5 Efficiency Comparisons

In this section,we compare the efficiencies of the incomplete (using onlymn pairwise
differences) symmetrized estimators to that of the corresponding complete sym-
metrized estimator. We include the symmetrized Huber estimator with q = 0.90,
Dümbgen’s estimator and the symmetrized CauchyM-estimator in the comparisons.
Since, as previously discussed, the estimators are only comparable up to proportion-
ality, we standardize all estimators so that their traces are equal to p.

To compare the finite sample efficiencies, we first carried out a simulation study
with samples of size n = 1000, 2000, and 4000, dimensions p = 3 and p = 8, and
under the normal distribution (N), the contaminated normal distribution (cN), and
the t-distribution on five degrees of freedom (t5). The cumulative distribution func-
tion of the contaminated normal distribution is Φε,c(x) = (1 − ε)Φ(x) + εΦ(x/c),
where ε, c > 0 and Φ denotes the cumulative distribution function of the standard
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Table 1 Asymptotic efficiencies of the symmetrized Huber M-estimator, Dümbgen’s estimator
and the symmetrized CauchyM-estimator relative to the sample covariance matrix. The asymptotic
relative efficiencies are evaluated at the normal (N), the contaminated normal (cN), and t-distribution
on five degrees of freedom (t5)

p = 3 p = 8

N cN t5 N cN t5

Symmetrized Huber 0.99 1.67 2.12 1.00 1.65 2.12

Dümbgen 0.93 2.27 2.40 0.96 2.43 2.57

Symmetrized Cauchy 0.94 2.20 2.38 0.96 2.40 2.54

multivariate normal distribution. In our simulation settings, we used ε = 0.1 and
c = 3.

The asymptotic efficiencies of the three standardized robust scatter estimators rela-
tive to the standardized sample covariancematrix are listed inTable1. The asymptotic
relative efficiencies were computed using the results in Sirkiä et al. (2007), wherein
they observed that the symmetrized Huber estimator and the Dümbgen’s estimator
are highly efficient not only at heavy tailed distributions but also at the multivari-
ate normal distribution. The symmetrized Cauchy M-estimator, though, suffers from
some efficiency loss at the multivariate normal distribution case.

To compare the finite sample efficiencies, the mean squared errors of the off-
diagonal elements of the standardized scatter matrices, that is,

MSE(V̂) = 2

Np(p − 1)

N∑
k=1

p−1∑
i=1

p∑
j=i+1

(V̂
(k)

i j − Ii j )2,

were computed using N = 2000 samples. The efficiencies were then defined by
taking the ratios of the corresponding MSEs. The results are listed in Tables2, 3 and
4. For all of the estimators, there is some loss, but somewhat surprising not a large
loss, in efficiency whenm = 10, and whenm = 20, the efficiency loss is always less
than 5%. The loss in efficiency is slightly worst for the Dümbgen’s estimator than
for the other estimators.

Among the symmetrized scatter matrices considered in this paper, only the sample
covariance matrix is a U -statistic. Nevertheless, the simulations indicate that all
scatter matrices computed using running averages of length m seem to behave in a
similar fashion. These empirical results suggest that theoretical results obtained for
the incomplete sample covariance matrix may give us insight into the behavior of
other incomplete symmetrized estimates of scatter.

In particular, results from Brown and Kildea (1978) for incomplete U -statistics
allow us to compute the asymptotic relative efficiency of the incomplete sample
covariance estimator with respect to the complete sample covariance matrix. For a
spherically symmetric distribution with COV(z) = Ip, the efficiency of the incom-
plete symmetrized sample covariance matrix relative to the complete one is
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Table 2 Finite sample relative efficiencies (MSE from 2000 samples) of the incomplete sym-
metrized Huber M-estimator with respect to the complete estimator

m p = 3 p = 8

N cN t5 N cN t5

n = 1000 10 0.94 0.95 0.94 0.95 0.96 0.95

20 0.97 0.97 0.98 0.97 0.98 0.97

50 0.98 0.98 0.98 0.98 0.98 0.98

100 0.97 0.99 0.98 0.98 0.98 0.98

n = 2000 10 0.94 0.95 0.95 0.95 0.96 0.95

20 0.97 0.98 0.97 0.97 0.98 0.97

50 0.99 0.99 0.98 0.98 0.99 0.99

100 0.99 0.99 0.99 0.99 0.99 0.99

n = 4000 10 0.95 0.97 0.96 0.95 0.96 0.97

20 0.98 0.98 0.97 0.97 0.98 0.98

50 0.99 1.00 0.99 0.99 0.99 0.99

100 0.99 0.99 0.99 0.99 0.99 0.99

Table 3 Finite sample relative efficiencies (MSE from 2000 samples) of incomplete Dümbgen’s
estimators with respect to the complete estimator

m p = 3 p = 8

N cN t5 N cN t5

n = 1000 10 0.90 0.93 0.91 0.94 0.94 0.94

20 0.95 0.95 0.96 0.96 0.97 0.97

50 0.97 0.97 0.97 0.98 0.98 0.98

100 0.98 0.97 0.97 0.98 0.98 0.98

n = 2000 10 0.90 0.92 0.92 0.93 0.94 0.94

20 0.94 0.96 0.96 0.97 0.97 0.97

50 0.98 0.98 0.98 0.98 0.98 0.99

100 0.98 0.99 0.98 0.99 0.99 0.99

n = 4000 10 0.90 0.92 0.92 0.94 0.94 0.95

20 0.95 0.96 0.96 0.97 0.97 0.97

50 0.98 0.97 0.99 0.98 0.99 0.99

100 0.98 0.99 0.99 0.99 0.99 0.99

ARE(V̂s, V̂
(m)

I ) = 2mκ

0.5 + (2m − 1)κ
, (2)

where κ = E[z2i z2j ]/(2(E[z2i z2j ] + 1)), and zi and z j are different components of z.
In Fig. 1 we plot the asymptotic relative efficiency of the symmetrized incomplete
sample covariance matrix as a function of m for the 3-variate normal, contaminated
normal and t5-distribution, for which κ = 1/4, 25/68, and 3/8 respectively. We also
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Table 4 Finite sample relative efficiencies (MSE from 2000 samples) of incomplete Cauchy
M-estimators with respect to the complete estimator

m p = 3 p = 8

N cN t5 N cN t5

n = 1000 10 0.93 0.94 0.95 0.94 0.95 0.95

20 0.96 0.97 0.98 0.97 0.97 0.97

50 0.98 0.98 0.98 0.98 0.98 0.98

100 0.98 0.99 0.98 0.98 0.98 0.98

n = 2000 10 0.93 0.95 0.95 0.94 0.95 0.95

20 0.96 0.97 0.98 0.97 0.97 0.97

50 0.98 0.98 0.98 0.98 0.99 0.99

100 0.98 0.99 0.99 0.99 0.99 0.99

n = 6000 10 0.93 0.94 0.93 0.94 0.95 0.95

20 0.96 0.97 0.96 0.97 0.97 0.97

50 0.98 0.99 0.99 0.99 0.99 0.99

100 0.98 0.99 0.99 0.99 0.99 0.99
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Fig. 1 Finite sample efficiencies of the incomplete symmetrized sample covariance matrix with
respect to the symmetrized sample covariance matrix (dashed lines) for different distributions
with n = 1000 and p = 3. The distributions from left to right are the normal distribution, the
contaminated normal distribution and the t5-distribution. The solid lines give the asymptotic relative
efficiencies

simulated the finite sample efficiencies, which correspond to the dash lines in the
figures, computed as ratios of MSEs using n = 1000 and N = 2000 repetitions. It
can be seen that the efficiencies increase rapidly as a function of m, with a limit of
one as m → ∞. Interestingly, the efficiency at m = 1 is notably higher in the case
of heavy tailed distributions than in the case of the normal distribution. The choice
m = 20 is sufficient to produce an estimator with very high efficiency.

All simulations so far have focused on data coming from an elliptical model,
among which the only distribution with independent marginals is the multivariate
normal distribution. However, there are many areas of applications, such as inde-
pendent components analysis, for which independent marginals outside of the multi-
variate normal distribution are of interest. Consequently, we also simulated data for
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different sample sizes and dimensions from amodel withmutually independent com-
ponents, where each component has a standard exponential distribution. Here, if the
scatter functional possesses the joint independence property, then the off-diagonal
values of the scatter matrix are equal to zero. For this setting, we compare the sym-
metrized M-estimators (Dümbgen’s estimator and the Cauchy M-estimator) based
on all pairwise differences to the corresponding estimators using running averages
of length 20. Figure2 gives the mean squared errors of the off-diagonal values based
on 1000 repetitions. The figure shows that in this case the incomplete estimators with
m = 20 behave similarly to the regular symmetrized estimators.
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Fig. 2 Mean squared errors of the off-diagonal elements of the Dümbgen’s estimate, the incom-
plete Dümbgen’s estimate with m = 20, and Tyler’s estimate on the left, and MSE of the sym-
metrized Cauchy M-estimate, the incomplete symmetrized Cauchy M-estimate with m = 20, and
nonsymmetrized Cauchy M-estimate on the right, when the three-dimensional (on the top row)
and eight-dimensional (on the bottom row) data are generated from a distribution with mutually
independent and exponentially (with mean 1) distributed components
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For comparison, we also compute the corresponding non-symmetrized versions
of the scatter matrices (Tyler’s estimator and the Cauchy M-estimator, which corre-
sponds to theMLE for theCauchy distribution, respectively). These estimators do not
possess the desired joint independence property, and so the corresponding function-
als of these nonsymmetrized versions do not have zero off-diagonal elements even
though the variables are independent. Consequently, as seen in Fig. 2, their MSEs do
not go to zero as n increases.

As this section demonstrates, using running average sets of pairwise differences
with small to moderate values of m results in only a small loss of efficiency relative
to their complete version. In the next section, we will see how this small loss in
efficiency pays off in computation time.

6 Computation Times

In comparing the computation times of the different algorithms presented in Sect. 4,
we again chose the two dimensions p = 3 and p = 8, and use five sample sizes
n = 1000, 2000, 4000, 8000, 16,000. For each combination of p and n, 50 samples
from the multivariate t-distribution with five degrees of freedom are generated, and
the computation times of the different algorithms are measured. The scatter matri-
ces under consideration are the same as those used in previous sections. For the
symmetrized Cauchy M-estimator and for the Dümbgen’s estimator, both the fixed
point algorithms and the partial Newton algorithms can be found in the R-packages
ICSNP (Nordhausen et al. 2012) and fastM (Dümbgen et al. 2014), respectively. The
symmetrized Huber estimator can also be computed using the R-package ICSNP.
Currently, there are plans to implement the running average versions of the estima-
tors in these packages.

Our main interest in the following comparisons is twofold. First, we are interested
in when parallelization is beneficial, and second, in how fast the running average
versions are relative to the standard implementations. In the simulations, we chose
m = 20 for the incomplete estimators as this was in all cases considered to yield
highly efficient estimators.We also used the partial Newton algorithm from the fastM
package that uses sequential computations as this seems to be faster than having all
pairwise differences in the memory (Dümbgen et al. 2016). All functions are mainly
written in C or C++ with an R interface and should be therefore comparable (but
have sometimes slightly different convergence criteria). The comparisons were done
using R 3.1.1 (R Core Team 2014) on a Intel(R) Core(TM) i7-3770 CPU with 3.40
GHz, 32 GB of memory using 64-bit Red Hat Linux.

Medians of the computation times (on the logscale) of the symmetrized Cauchy
M-estimator, Dümbgen’s estimator and the symmetrized Huber estimator are given
in Figs. 3, 4 and 5, respectively.

As expected, the regular fixed point algorithm utilizing all pairwise differences
is slowest while the incomplete estimator is the fastest to compute. The ratio of
their computation times is approximately the ratio of the number of pairs, which is
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Fig. 3 Median computation times in seconds on a logscale for various algorithms used to compute
the symmetrized Cauchy M-estimator. For each sample size, the median computation time is based
on 50 independent random samples from the multivariate t5-distribution. In the left panel p = 3
and in the right panel p = 8
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Fig. 4 Median computation times in seconds on a logscale for various algorithms used to compute
Dümbgen’s estimator. For each sample size, themedian computation time is basedon50 independent
random samples from the multivariate t5-distribution. In the left panel p = 3 and in the right panel
p = 8

0.5(n − 1)/m. With large sample sizes, using two cores gains approximately 50%
in computation time and using four cores approximately 75% relative to using only
one core. We compared also the computation times when using six cores, but the
computation times did not differ significantly different the version using four cores.
Notice that the gain percentage of the parallel computation growswith the sample size
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Fig. 5 Median computation times in seconds on a logscale for various algorithms used to compute
the symmetrized Huber M-estimator with q = 0.90. For each sample size, the median computation
time is based on 50 independent random samples from the multivariate t5-distribution. In the left
panel p = 3 and in the right panel p = 8

and the dimension until it reaches a limiting level. Parallelization becomes beneficial
somewhere around n = 2000 when p = 3 and around n = 1000 when p = 8.

As already pointed out in Dümbgen et al. (2016), the partial Newton algorithm
is not considerably faster than the fixed point algorithm when computing Dümb-
gen’s estimator. However, the PN algorithm computes Dümbgen’s estimator and the
symmetrizedCauchyM-estimator equally fast, whereas all the other algorithms com-
pute Dümbgen’s estimator much faster than the symmetrized Cauchy M-estimator;
for p = 3 and p = 8, approximately 5 and 18 times faster, respectively. Hence, the
PN algorithm is superior to parallelized fixed point algorithm using four cores for the
symmetrized Cauchy M-estimator, and vice versa for Dümbgen’s estimator. Recall
that the PN algorithm cannot be applied to the Huber estimator since the weight func-
tions are not smooth. The computation time of the symmetrized Huber estimator is
approximately the same as that of the Dümbgen’s estimator when p = 3, but twice
as long when p = 8.

7 Discussion

The relevance of symmetrized scatter matrices has only recently been recognized
within the statistics literature. The benefit of using such scatter matrices is twofold:
(i) they do not require a location estimate, and (ii) they possess the joint and the
block independence properties, which are necessary properties for manymultivariate
methods. These benefits, however, come at a cost, namely that symmetrized scat-
ter matrices tend to be more computationally intensive and are slightly less robust
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than their unsymmetrized counterparts. In this paper, the computational aspects of
symmetrized M-estimators have been considered. In particular, it is shown that par-
allelization of the fixed-point algorithm is possible for these M-estimators and that
this provides a considerable gain when, for example, four cores are used. Paralleliza-
tion of the fixed point algorithm alone, though, is not as computationally efficient as
more recently proposed partial Newton algorithms. Another computational alterna-
tive, proposed within the paper, is motivated by results on incomplete U -statistics,
namely to reduce the number of pairwise differences used in computations. Such
an approach proves to be promising. A huge gain in computation time is achieved
with only a small loss in efficiency. Finally, we note that while the parallelization
approach is specific for M-estimators, the subsampling of pairwise differences can
be applied to any symmetrized scatter matrix.
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Mortality and Life Expectancy Forecasting
for a Group of Populations in Developed
Countries: A Robust Multilevel Functional
Data Method

Han Lin Shang

1 Introduction

Many statistical methods have been proposed for forecasting age-specific mortality
rates (see Booth 2006; Booth and Tickle 2008; Shang et al. 2011; Tickle and Booth
2014, for reviews). Of these, a significant milestone in demographic forecasting was
the work by Lee and Carter (1992). They applied a principal component method to
age-specific mortality rates and extracted a single time-varying index of the level
of mortality rates, from which the forecasts are obtained by a random-walk with
drift. The method has since been extended and modified. For example, Renshaw and
Haberman (2003) proposed the age-period-cohort Lee–Cartermethod;Hyndman and
Ullah (2007) proposed a functional datamodel that utilizes nonparametric smoothing
and high-order principal components; Girosi and King (2008) and Wiśniowski et al.
(2015) considered Bayesian techniques for Lee–Carter model estimation and fore-
casting; and Li et al. (2013) extended the Lee–Carter method to model the rotation
of age patterns for long-term projections.

These works mainly focused on forecasting age-specific mortality for a single
population, or several populations individually. However, joint modeling mortality
for two or more populations simultaneously is paramount, as it allows one to model
the correlations among two or more populations, distinguish between long-term and
short-term effects in the mortality evolution, and explore the additional information
contained in the experience of other populations to further improve point and interval
forecast accuracy. These populations can be grouped by sex, state, ethnic group,
socioeconomic status, and other attributes (e.g., Li and Lee 2005; Alkema et al.
2011; Raftery et al. 2012, 2013; Li 2013; Raftery et al. 2014; Ševčiková et al. 2015).

As an extension of Li and Lee (2005), we consider a robust multilevel functional
datamodel described in Sect. 2 by extending thework of Di et al. (2009), Crainiceanu
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et al. (2009), Crainiceanu and Goldsmith (2010), Greven et al. (2010) and Shang
(2016). The objective of the multilevel functional data method is to model multiple
sets of functions that may be correlated among groups. In this paper, we propose a
robust version of this technique to forecast age-specific mortality and life expectancy
for a group of populations. We found that the robust multilevel functional data model
captures the correlation among populations, models the forecast uncertainty through
Bayesian paradigm, and is adequate for use within a probabilistic population mod-
eling framework (Raftery et al. 2012). Similar to the work of Li and Lee (2005), Lee
(2006), Delwarde et al. (2006), the robust multilevel functional data model captures
the common trend and the population-specific residual trend. It produces forecasts
that are more accurate than the ones from the standard multilevel functional data
method, in the presence of outliers. Illustrated by the age- and sex-specific mortality
rates for the United Kingdom, we study and compare the performance of the standard
and robust multilevel functional data methods in Sect. 3. In Sect. 4, we provide some
concluding remarks.

2 A Robust Multilevel Functional Data Method

We present this method in the context of forecasting female and male age-specific
mortality in a country, although the method can easily be generalized to any number
of subpopulations. Let y j

t (xi ) be the log central mortality of the j th population for
year t = 1, 2, . . . , n at observed ages x1, x2, . . . , xp where x is a continuous variable
and p is the number of ages.

Since we consider forecasting age-specific mortality from a functional data ana-
lytic viewpoint, each function should be smooth and continuous. A nonparametric
smoothing technique is thus implemented to construct a time series of functions{
f j
1 (x), f j

2 (x), . . . , f j
n (x)

}
. That is

y j
t (xi ) = f j

t (xi ) + δ
j
t (xi )ε

j
t,i , (1)

where xi represents the center of each age or age group for i = 1, 2, . . . , p, ε
j
t,i is

an independent and identically distributed (iid) standard normal random variable,
δ
j
t (xi ) captures different variances for different ages. Together, δ

j
t (xi )ε

j
t,i represents

the smoothing error (also known as measurement error).
Let m j

t (xi ) = exp{y j
t (xi )} be the observed central mortality for ages xi at year

t and let Nt (xi ) be the total mid-year population of age xi in year t . The observed
mortality rate approximately follows a binomial distribution with estimated variance

Var
[
m j

t (xi )
]

≈
m j

t (xi ) ×
(
1 − m j

t (xi )
)

Nt (xi )
.
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ViaTaylor’s series expansion, the estimated variance associatedwith the logmortality
rate is given by

(̂
δ
j
t

)2
(xi ) = Var

[
ln

(
m j

t (xi )
)]

≈ 1 − m j
t (xi )

m j
t (xi ) × Nt (xi )

.

Since m j
t (xi ) is often quite small,

(
δ
j
t

)2
(xi ) can also be approximated by a Poisson

distribution with estimated variance

(̂
δ
j
t

)2
(xi ) ≈ 1

m j
t (xi ) × Nt (xi )

.

Let the weights be the inverse variances wt (xi ) = 1/
(̂
δ
j
t

)2
(xi ), the log mor-

tality rates are smoothed using weighted penalized regression spline with a partial
monotonic constraint for ages above 65 (Hyndman and Ullah 2007). The penalized
regression spline can be written as

f̂t (xi ) = arg min
θt (xi )

M∑
i=1

wt (xi ) |yt (xi ) − θt (xi )| + α

M−1∑
i=1

∣∣∣θ ′
t (xi+1) − θ

′
t (xi )

∣∣∣ ,

where i represents different ages (grid points) in a total ofM grid points,α represents a
smoothing parameter, and

′
symbolizes the first derivative of a function.While the L1

loss function and the L1 roughness penalty are employed to obtain robust estimates,
the monotonic increasing constraint helps to reduce the noise from estimation of
high ages (see also He and Ng 1999).

In the multilevel functional data method, we first apply (1) to smooth different
sets of functions from different populations that may be correlated. In the case of two
populations, the essence is to decompose curves among two populations into an aver-
age of total mortality, denoted by μ(x), a sex-specific deviation from the averaged
total mortality, denoted by η j (x), a common trend that is shared by all populations,
denoted by Rt (x), a sex-specific trend that is specific to j th population, denoted
by U j

t (x), and model error e j
t (x) with finite variance (σ 2) j . The common trend is

obtained by projecting a functional time series onto the eigenvectors of covariance
operators of the aggregate and centered stochastic process. The sex-specific trend is
then obtained by projecting the residual functions from the first eigen decomposi-
tion, onto the eigenvectors of covariance operators of the sex-specific and centered
stochastic process. To express our idea mathematically, the smoothed log mortality
rates at year t can be written as follows:

f j
t (x) = μ(x) + η j (x) + Rt (x) +U j

t (x) + e j
t (x), x ∈ I , (2)

for each t , where I represents a function support.
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Since R(x) and U j (x) are unknown in practice, they can be approximated
by a set of realizations R(x) = {R1(x), R2(x), . . . , Rn(x)} and U j (x)

=
{
U j

1 (x),U j
2 (x), . . . , U j

n (x)
}
. Thus, the sample mean function of total mortality

and sex-specific mortality can be expressed as follows:

μ̂(x) = 1
n

∑n
t=1 f Tt (x) (3)

μ̂ j (x) = 1
n

∑n
t=1 f j

t (x) (4)

η̂ j (x) = μ̂ j (x) − μ̂(x) (5)

where { f T1 (x), f T2 (x), . . . , f Tn (x)} represents a set of smooth functions for the age-
specific total mortality; μ̂(x) represents the simple average of smoothed total mor-
tality; whereas μ̂ j (x) represents the simple average of smoothed male or female
mortality; and η̂ j (x) represents the difference between the mean of total mortality
and the mean of sex-specific mortality.

Then,we consider a two-step algorithmby combining a robust functional principal
component analysis and binary weighting. This can be described as

(1) Use a robust principal component analysis, such as RAPCA (Hubert et al. 2002)
or ROBPCA (Hubert et al. 2005), to obtain initial (highly robust) values for{
β̂t,k

}
and

{
φ̂k(x)

}
for t = 1, . . . , n and k = 1, . . . , K .

(2) Define the integrated squared error for year t as

vt =
∫
x∈I

[
ft (x) −

K∑
k=1

β̂t,k φ̂k(x)
]2
dx .

It identifies those outlying years that have higher values of vt . We then assign
weights wt = 1 if vt < s + λ

√
s and wt = 0 otherwise, where s is the median of

{v1, v2, . . . , vn} and λ > 0 is a tuning parameter to control the efficiency of this
robust algorithm. When λ = 3, it represents Φ(3/

√
2) = 98.3% efficiency, where

the number of outliers is 1.7% of total number of observations. When λ → ∞, there
is no outlier in the data; when λ → 0, all observations are identified as outliers. For
λ > 0, this algorithm retains the optimal breakdown point of 0.5.

Having obtained a set of robust basis functions, the common and sex-specific
trends can be estimated by

R̂t (x) ≈
K∑

k=1

β̂t,k φ̂k(x),

Û j
t (x) ≈

L∑
l=1

γ̂
j
t,lψ̂

j
l (x), (6)

where
{
β̂k = (

β̂1,k, β̂2,k, . . . , β̂n,k
); k = 1, . . . , K

}
represents the kth sample princi-

pal component scores of R(x); Φ = [
φ̂1(x), φ̂2(x), . . . , φ̂K (x)

]
are the correspond-
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ingorthogonal sample eigenfunctions in a square integrable function space. Similarly,
{γ̂ j

l = (γ̂
j
1,l , γ̂

j
2,l , . . . , γ̂

j
n,l); l = 1, . . . , L} represents the lth sample principal com-

ponent scores ofU j (x), andΨ = [ψ̂ j
1 (x), ψ̂ j

2 (x), . . . , ψ̂ j
L(x)] are the corresponding

orthogonal sample eigenfunctions. Since two stochastic processes R(x) and U j (x)
are uncorrelated, β̂k are uncorrelated with γ̂

j
l .

It is important to select optimal K and L , and three common approaches are
leave-one-out or leave-more-out cross validation (Rice and Silverman 1991), Akaike
information criterion (Yao et al. 2005) and explained variance (Crainiceanu and
Goldsmith 2010; Chiou 2012). We use a cumulative percentage of total variation to
determine K and L . The optimal numbers of K and L are determined by

K = arg min
K :K≥1

{
K∑

k=1

λk

/ ∞∑
k=1

λk ≥ P

}
,

L = arg min
L:L≥1

{
L∑

l=1

λ
j
l

/ ∞∑
l=1

λ
j
l ≥ P

}
, for each j.

Following Crainiceanu and Goldsmith (2010), Chiou (2012), we chose P = 0.9.
An important parameter in the multilevel functional data method is the propor-

tion of variability explained by aggregate data, which is the variance explained by
the within-cluster variability (Di et al. 2009). A possible measure of within-cluster
variability is given by

∑∞
k=1 λk∑∞

k=1 λk + ∑∞
l=1 λ

j
l

=
∫
I var{R(x)}dx∫

I var{R(x)}dx + ∫
I var{U j (x)}dx . (7)

When the common factor can explain the main mode of total variability, the value
of within-cluster variability is close to 1.

Substituting Eqs. (3)–(6) into Eqs. (2) and (1), we obtain

y j
t (x) = μ̂(x) + η̂ j (x) +

K∑
k=1

β̂t,k φ̂k(x) +
L∑

l=1

γ̂
j
t,lψ̂

j
l (x) + e j

t (x) + δ
j
t (x)ε

j
t ,

where β̂t,k ∼ N
(
0, λ̂k

)
, γ̂ j

t,l ∼ N
(
0, λ̂ j

l

)
, e j

t (x) ∼ N
(
0, (̂σ 2) j

)
and λ̂k denotes the kth

eigenvalue of estimated covariance operator associated with the common trend, and
λ̂
j
l represents the lth eigenvalue of estimated covariance operator associated with the

sex-specific residual trend.
Conditioning on the estimated functional principal components Φ, Ψ and contin-

uous functions y j = [y j
1 (x), y

j
2 (x), . . . , y

j
n (x)], the h-step-ahead point forecasts of

y j
n+h(x) are given by:
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ŷ j
n+h|n(x) = E

[
yn+h(x)|Φ,Ψ , y j

]

= μ̂(x) + η̂ j (x) +
K∑

k=1

β̂n+h|n,k φ̂k(x) +
L∑

l=1

γ̂
j
n+h|n,lψ̂

j
l (x),

which β̂n+h|n,k and γ̂
j
n+h|n,l are forecast univariate principal component scores,

obtained from a univariate time series forecasting method, such as random walk
with drift (rwf), exponential smoothing (ets), and autoregressive integrated mov-
ing average (ARIMA(p, d, q)) in which its optimal orders p, d, q are determined
automatically using an information criterion, such as corrected Akaike information
criterion.

If {γ̂ 1
n+h|n,l − γ̂ 2

n+h|n,l; l = 1, . . . , L} has a trending long-term mean, the multi-
level functional data method does not produce convergent forecasts. However, if the
common mean function and common trend capture the long-term effect, the multi-
level functional data method produces convergent forecasts, where the forecasts of
residual trends would be flat.

To measure forecast uncertainty, the interval forecasts of y j
n+h(x) can be obtained

through a Bayesian paradigm equipped with Markov chain Monte Carlo (MCMC).
Di et al. (2009) present a derivation of posterior of principal component scores, where
MCMC is used to estimate all variance parameters and to draw samples from the
posterior of principal component scores. The bootstrapped forecasts are given by

ŷ b, j
n+h|n(x) =μ̂(x) + η̂ j (x) +

K∑
k=1

β̂ b
n+h|n,k φ̂k(x) +

L∑
l=1

γ̂
b, j
n+h|n,lψ̂

j
l (x)+

ê b, j
n+h(x) + δ̂

b, j
n+h(x)ε

j
n+h, (8)

for b = 1, . . . , B. As previously studied by Di et al. (2009, supplementary mate-
rials), we first simulate {β̂ b

1,k, . . . , β̂
b
n,k} drawn from its posterior, and then obtain

β̂ b
n+h|n,k using a univariate time series forecasting method for each simulated sam-

ple; similarly, we first simulate {γ̂ b, j
1,l , . . . , γ̂

b, j
n,l } drawn from its posterior, and then

obtain γ̂
b, j

n+h|n,l for eachbootstrap sample; ê b, j
n+h(x) is drawn from N (0, (̂σ 2)b, j ),where

(̂σ 2)b, j is estimated at each iteration ofMCMC.Sincewe pre-smooth functional data,
we must add the smoothing error δ̂

b, j
n+h(x) as another source of randomness and ε

j
n+h

is drawn from N (0, 1) and B = 1000 represents the number of MCMC draws. The
prediction interval is constructed from the percentiles of the bootstrapped mortality
forecasts. The interval forecasts of life expectancy are obtained from the forecast
age-specific mortality using the life table method (Preston et al. 2001).
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3 Application to the UK’s Age- and Sex-Specific Mortality

Age- and sex-specific mortality rates for the United Kingdom between 1922 and
2009 are available from the Human Mortality Database (2015). For each sex in a
given calendar year, the mortality rates obtained by the ratio between “number of
deaths” and “exposure to risk,” are organized in a matrix by age and calendar year.
By analyzing the changes in mortality as a function of age x and year t , it can be
seen that age-specific mortality rates have shown a gradual decline over years. In
Fig. 1a, b, we present functional time series plots of female and male log mortality
rates. Using a weighted penalized regression spline, the smoothed female and male
log mortality rates are obtained in Fig. 1c, d.

In the top panel of Fig. 2, we display the estimated common mean function μ̂(x),
first estimated common functional principal component φ̂1(x) and corresponding
scores {β̂1,1, β̂2,1, . . . , β̂n,1} along with their 30-years-ahead forecasts. The first com-

Fig. 1 Observed and smoothed age-specific female and male log mortality rates for the United
Kingdom. Data from the distant past are shown in light gray, and the most recent data are shown in
dark gray
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Fig. 2 Estimated common mean function, first common functional principal component, and asso-
ciated scores for the UK total mortality (top); estimated mean function deviation for females,
first functional principal component, and associated scores for the UK female mortality (middle);
estimated mean function deviation for males, first functional principal component, and associated
scores for the UK male mortality (bottom). The dark and light gray regions show the 80 and 95%
prediction intervals, respectively

mon functional principal component captures more than 98% of the total variation
in the age-specific total mortality. In the middle panel of Fig. 2, we show the esti-
mated mean function deviance of females from the overall mean function η̂F(x),
first functional principal component for females ψ̂F

1 (x) and corresponding scores
{γ̂ F

1,1, γ̂
F
2,1, . . . , γ̂

F
n,1}with 30-years-ahead forecasts. In the bottom panel of Fig. 2, we

display the estimated mean function deviance of males from the overall mean func-
tion η̂M(x), first functional principal component for males ψ̂M

1 (x) and corresponding
scores {γ̂M

1,1, γ̂
M
2,1, . . . , γ̂

M
n,1} with 30-years-ahead forecasts. In this data set, the first

three functional principal components explain at least 90% of the remaining 10%
total variations for both females and males. Here, we display only the first functional
principal component, which captures more than 64 and 50% of the remaining 10%
total variations for both females andmales, respectively. Based on (7), the proportion
of variability explained by the total mortality is 94% for females and 95% for males.
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3.1 Forecast Accuracy Evaluation

3.1.1 Evaluation of Point Forecast Accuracy

We split our age- and sex-specific data into a training sample (including data from
years 1 to (n − 30)) and a testing sample (including data from years (n − 29) to n),
where n represents the total number of years in the data. Following the early work
by Hyndman and Booth (2008), we implement an expanding window approach as
it allows us to assess the forecast accuracy among methods for different forecast
horizons.With the initial training sample,weproduceone-to 30-year-ahead forecasts,
and determine the forecast errors by comparing the forecasts with actual out-of-
sample data. As the training sample increases by one year, we produce one-to 29-
year-ahead forecasts and calculate the forecast errors. This process continues until
the training sample covers all available data.

To measure the point forecast accuracy, we utilize the root mean squared forecast
error (RMSFE), root maximum squared forecast error (Max RSFE), mean absolute
forecast error (MAFE), maximum absolute forecast error (Max AFE), and mean
forecast error (MFE). They are defined as

RMSFE(h) =
√√√√ 1

(31 − h) × p

n∑
k=n−30+h

p∑
i=1

[mk(xi ) − m̂k(xi )]
2,

Max RSFE(h) =
√
max
k,i

[mk(xi ) − m̂k(xi )]
2,

MAFE(h) = 1

(31 − h) × p

n∑
k=n−30+h

p∑
i=1

|mk(xi ) − m̂k(xi )| ,

Max AFE(h) = max
k,i

|mk(xi ) − m̂k(xi )| ,

MFE(h) = 1

(31 − h) × p

n∑
k=n−30+h

p∑
i=1

[mk(xi ) − m̂k(xi )] ,

for k = n − 30 + h, . . . , n and h = 1, . . . , 30, where mk(xi ) represents mortality
rate at year k in the forecasting period for age xi , and m̂k(xi ) represents the point
forecast.

3.1.2 Evaluation of Interval Forecast Accuracy

To assess interval forecast accuracy, we use the interval score of Gneiting and Raftery
(2007) (see alsoGneiting andKatzfuss 2014). For each year in the forecasting period,
one-year-ahead to 30-year-ahead prediction intervals were calculated at the (1 −
α) × 100% prediction interval, with lower and upper bounds that are predictive
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quantiles at α/2 and 1 − α/2, denoted by xl and xu . As defined by Gneiting and
Raftery (2007), a scoring rule for the interval forecast at age xi is

Sα(xl, xu; xi ) = (xu − xl) + 2

α
(xl − xi )I {xi < xl} + 2

α
(xi − xu)I {xi > xu}, (9)

where I {·} represents the binary indicator function, and α denotes the level of signifi-
cance, customarily α = 0.2. A forecaster is rewarded for narrow prediction intervals,
but incurs a penalty, the size of which depends on α, if the observation misses the
interval. The smallest interval score is the one that achieves the best trade off between
empirical coverage probability and halfwidth of prediction interval.

For different ages and years in the forecasting period, the maximum and mean
interval scores for each horizon are defined by

max[Sα(h)] = max
k,i

Sα,k(xl , xu; xi ),

S̄α(h) = 1

(31 − h) × p

n∑
k=n−30+h

p∑
i=1

Sα,k(xl , xu; xi ),

where p represents the total number of ages or age groups in the evaluation data set.
The best forecasting method is considered to be the one that produces the smallest
maximum or mean interval score.

3.2 Comparison of Point Forecast Accuracy

We compare the point forecast accuracy between the standard and robust multilevel
functional data methods. As with the robust multilevel functional data method, it
is necessary to specify a tuning parameter λ. When λ → ∞, it corresponds to the
standard multilevel functional data method, where no outlier can be detected. When
λ → 0, it considers all observations as outliers. Here, we consider four different
values for λ = 1.81, 2.33, 3, 3.29, which reflects 90, 95, 98.3, and 99% of effi-
ciency. For this data set, we found that the robust multilevel functional data method
outperforms the standard multilevel functional data method. The optimal forecast
accuracy is achieved when λ = 1.81, regardless which univariate time series fore-
casting method (rwf, ARIMA, ets) is used. Among the three univariate time series
forecasting methods, the randomwalk with drift generally performs the best with the
smallest forecast errors for female and male mortality rates and male life expectancy,
whereas the ARIMA forecasting method produces the smallest forecast errors for
female life expectancy (Table1).
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3.3 Comparison of Interval Forecast Accuracy

The prediction intervals for age-specific mortality are obtained from (8), whereas the
prediction intervals for life expectancy are obtained from the percentiles of simulated
life expectancies obtained from simulated forecast mortality rates as described by
Hyndman and Booth (2008). Based on the mean interval scores in Table2, we found
the robust multilevel functional data method outperforms the standard multilevel
functional data method. The ARIMA forecasting method gives the smallest inter-
val scores for females when λ = 2.33, whereas the exponential smoothing method
performs the best for males when λ = 1.81.

4 Conclusion

In this paper, we put forward a robust multilevel functional data method to forecast
age-specific mortality and life expectancy at birth for a group of populations. This
method inherits the smoothness property a functional time series possesses, thus
missing data can be naturally dealt with. In addition, this method is a robust approach
that can handle the presence of outliers.

As demonstrated by the empirical studies consisting of two subpopulations in
the UK, we found that the robust multilevel functional data method produces more
accurate forecasts than the standardmultilevel functional datamethod in the presence
of outlying years largely due to World Wars and Spanish flu pandemic in the UK.
Based on the averaged forecast errors, the robust multilevel functional data method
with λ = 1.81 gives the most accurate point forecasts among all we considered. Fur-
thermore, we consider three univariate time series forecasting methods and compare
their point and interval forecast accuracy.Among the three univariate time series fore-
casting methods, the random walk with drift generally performs the best for female
and male mortality rates and male life expectancy, whereas the ARIMA forecasting
method produces the smallest point forecast errors for female life expectancy. Based
on the mean interval scores, the ARIMA forecasting method gives the smallest inter-
val scores for females when λ = 2.33, whereas the exponential smoothing method
performs the best for males when λ = 1.81. It is a straightforward extension to aver-
age forecasts obtained from all three univariate time series forecasting methods in
hope to improve forecast accuracy. Although λ = 1.81 works well in the data set
considered, the optimal selection of λ remains as a challenge and an open problem
for future research.

Other research topics are that although the proposed methods are demonstrated
using the UK data, the methodology can easily be extended to mortality data from
other countries. Furthermore, the multilevel functional data model captures correla-
tion between a group of populations based on sex, but the methodology can also be
extended to some other characteristics, such as state or ethnic group. It would also
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be interesting to investigate the performance of this robust multilevel functional data
method for various lengths of functional time series.
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Asymptotically Stable Tests with Application
to Robust Detection

Georgy Shevlyakov

1 Introduction

LetX1, . . . ,Xn be i.i.d. observations from a distributionF with density f (x, θ), where
θ is an unknown scalar parameter. Consider the problem of testing the null hypothesis

H0 : θ = θ0

against the one-sided alternative

H1 : θ > θ0

with the decision rule based on the comparison of a test statistic Tn(X1, . . . ,Xn)with
a critical value γ1−α: reject H0 if and only if Tn(X1, . . . ,Xn) > γ1−α .

To define the asymptotic power of this test, we consider a decreasing sequence of
alternatives θn = θ0 + A/

√
nwhereA > 0 (Noether 1967; Hossjer andMettiji 1993).

In this paper, we use M-estimators of the parameter θ defined by the estimating
equation (Huber 1964) ∑

ψ(Xi,Tn) = 0 (1)

as a test statistic in the decision rule

n1/2 Tn(X1, . . . ,Xn) > λ1−α. (2)

Here ψ(x, θ) is a score function; λ1−α = �−1(1 − α)V 1/2(ψ, f ) is a threshold
providing the required type I error rate α (Hampel et al. 1986); under regularity
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conditions (Huber 1964; Michel and Pfanzagle 1971), the asymptotic variance of
n1/2Tn is of the following form:

V(ψ, f ) =
∫

ψ(x; θ)2f (x; θ) dx(∫
∂ψ(x; θ)/∂θ f (x; θ) dx

)2
∣∣∣
θ=θ0

; (3)

�(x) = (2π)−1/2
∫ x
−∞ e−t2/2 dt is the standard Gaussian distribution function. In the

case of a location parameter θ , the asymptotic variance (3) was first derived in (Huber
1964); later this resultwas generalized in (Michel andPfanzagle 1971) for an arbitrary
parameter θ .
The power of the Neyman–Pearson test (2) is given by (Hampel et al. 1986, p. 194)

β(ψ, f ) = 1 − �
(
�−1(1 − α) − AV−1/2(ψ, f )

)
. (4)

In (Shurygin 1994a, b), the so-called variational optimization approach to the
design of stable estimators is proposed. In what follows, we comment on the connec-
tion of this approach with the basic concepts of the calculus of variations, as well as
with the classical approach to robustness based on the change-of-variance function
(Hampel et al. 1986). These issues are also discussed in (Shevlyakov et al. 2008).

The variational optimization approach generally leads to redescending
M-estimators (1),whichwere originally proposed in thewell-knownPrinceton exper-
iment (Andrews et al. 1972) from heuristic considerations and only later theoretically
justified within Hampel’s approach to robust estimation: on the whole, commonly
used redescenders outperform the boundedM-estimators of Huber’s type (for exam-
ple, see (Hampel et al. 1986, p. 167, Table3)). The variational optimization approach
gives anotherway of the justification of redescendingM-estimators beingmathemati-
cally based on the solutions of non-standard problems of the calculus of variations. Its
statistical interpretation is also different from the standard robustness philosophy—
in the sequel, we will discuss these issues. Although this approach was originally
proposed about twenty years ago, it still remains unknown to the majority of the sta-
tistical community, and thus, an attempt to expose it with the examples of its fruitful
applications, perhaps, may be called a main contribution of this paper.

An outline of the remainder of the paper is as follows. In Sect. 2, an extensive
review of the variational optimization approach is given. In Sect. 3, we briefly intro-
duce the error sensitivity and stability of a test, which are defined so that the tools
developed for stable estimation can be directly applied to the design of stable tests.
In Sect. 4, the proposed stable tests for location based on redescendingM-estimators
are used for robust detection of a weak signal: they outperform both Huber’s con-
ventional and Hampel’s robust tests under heavy-tailed distributions. In Sect. 5, the
connections of the proposed approach with the conventional robust methods are
discussed, and some conclusions are drawn.
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2 Stable Estimation: A Review

The material presented in this section mostly originates from (Shurygin 1994a, b;
Shevlyakov et al. 2008; Shurygin 2009).

2.1 The Asymptotic Variance of M-Estimators

As the initial point of all further theoretical constructions is the asymptotic variance
of M-estimators, we begin with the conditions under which Eq. (3) holds (Bentkus
et al. 1995).

Let χ = {x : f (x, θ) > 0} denote the support of density f (x, θ) (independent of
θ ). For an open subset T of R, let ψ : χ × T → R be a jointly measurable function.
Denote the partial derivative of the score function ψ(x, t) with respect to t as ψ̇ =
ψ̇(x, t) = (∂/∂t)ψ(x, t).

Theorem 2.1 (Shurygin 2009) Let the following assumptions hold.

1. In the neighborhood T � θ , the function ψ(x, t) is continuous and continuously
differentiable with respect to both variables almost everywhere.

2. For t ∈ T, |Eψ̇(x, t)| is positive and bounded.
3. The function Eψ(x, t)2 is continuous at t = θ .
4. In the neighborhood T � θ , Eψ(x, t)2 > 0.
5. The M-estimator Tn is consistent.

Then

Eψ(x, θ) =
∫

χ

ψ(x, θ)f (x, θ) dx = 0, (5)

the distribution of
√
n(Tn − θ) converges to the normal distribution N(0,V)with the

variance

V = V(ψ, f ) = Eψ(x, θ)2(
d

dt
Eψ(x, t)

∣∣∣
t=θ

)2 ; (6)

for the continuously differentiable ψ(x, t), this variance is equal to

V = V(ψ, f ) = Eψ(x, θ)2(
Eψ̇(x, θ)

)2 . (7)

2.2 Methods of Functional Optimization

In what follows, we aim at optimizing the indicators of the accuracy and stability
of estimation. In particular, we will mostly deal with the asymptotic variance of
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M-estimators that depends on the functions ψ(x, θ) and f (x, θ) of the two variables:
x ∈ χ and θ ∈ �. In this case, optimization is restricted to searching the minima of
integrals of the following form:

J(ψ) =
∫

χ

K(x, θ, ψ, ψ̇) dx

where
K(x, θ, ψ, ψ̇) = Q(x, θ, ψ) + λf (x, θ)ψ̇ ,

λ = λ(θ), the score function ψ(x, θ) and the parameter θ are connected by the
“condition of consistency” (5)

∫
χ

ψ(x, θ)f (x, θ) dx = 0, (8)

and Q(x, θ, ψ) is a positively definite quadratic polynomial of ψ .
Unlike the classical case, here integration is performed by the variable x and

differentiation by the variable θ . The solution of this nonstandard variational problem
is lightened by condition (8). The variations, satisfying this condition, will be called
admissible.

Lemma 2.1 (Shurygin 2009) Letψ(x, θ) be continuously differentiable and satisfy
condition (8). Then there exists a unique, up to the factor independent of x, solution
to the variational problem of minimization of the functional

J(ψ) =
∫

χ

K(x, θ, ψ, ψ̇) dx

under the admissible variations δψ of a score function, and the necessary condition
of minimum is given by

∂Q

∂ψ
+ λ0f (x, θ) − λ1 ḟ (x, θ) = 0 , (9)

where the coefficients λ0 and λ1 do not depend on x.

Proof Taking into account the condition of consistency (8), rewrite the functional
J(ψ) with the corresponding Lagrange multiplier λ0

J(ψ) =
∫

χ

[Q + λ0ψ f + λ1ψ̇ f ] dx .

Compute the variation of the functional J(ψ) under the admissible increment of
the score function δψ
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δJ(ψ) =
∫

χ

[
∂Q

∂ψ
δψ + λ0f δψ + λ1f δψ̇

]
dx .

The admissible increments satisfy the equality
∫
χ
f δψ dx = 0, which after dif-

ferentiation by θ yields
∫
χ
(ḟ δψ + f δψ̇) dx = 0, so that

∫
χ
f δψ̇ dx = − ∫

χ
ḟ δψ dx.

Substituting this equality into the expression for δJ(ψ), we get it in the following
form at the stationary function ψ

δJ(ψ) =
∫

χ

[
∂Q

∂ψ
+ λ0f (x, θ) − λ1 ḟ (x, θ)

]
δψdx = 0 .

Thus,wehave arrived at the standard variational problem.Apparently, the function
ψ , which solves the linear equation [·] = 0, is just the stationary function given by
(9). The uniqueness of this solution directly follows from the assumed quadratic form
of the functional.

2.3 Stable M-Estimators

In order to design stable estimators, we need a measure of the instability or sensi-
tivity of estimation, which could be minimized by the appropriate choice of a score
function. Similarly to the definitions of the influence function (Hampel 1974), the
sensitivity curve (Tukey 1977) and the change-of-variance function (Hampel et al.
1986), a natural choice of this measure is given by some kind of a functional deriv-
ative, as just the derivative of a function is the standard indicator of its changes.
Shurygin (1994a, b) proposed to use the so-called functional Lagrange derivative of
the asymptotic variance V(ψ, f ) (7) with respect to density f under the fixed score
function ψ formally defined as

∂V(ψ, f )

∂f
= ∂

∂f

∫
χ

ψ2f dx
(∫

χ
ψ̇ f dx

)2 =
∫
χ

ψ2 dx
(∫

χ
ψ̇ f dx

)2 − 2

∫
χ

ψ̇ dx
∫
χ

ψ2f dx
(∫

χ
ψ̇ f dx

)3 . (10)

The score function ψ is defined up to the factor independent of x, that is, an M-
estimator is defined by the class of score functions � = {ψ1(x, θ) = c(θ)ψ(x, θ)},
where the constant c(θ) �= 0. Now, we show that there exists an element from this
class, at which the second summand in (10) vanishes (Shurygin 2009).

Consider the second summand in the expression for the functional derivative (10)

Z = −2
∫

χ

ψ̇ dx
∫

χ

ψ2f dx

(∫
χ

ψ̇ f dx

)−3
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and show that it is always possible to find a factor c = c(θ) �= 0 such that
∫
χ

ψ̇1 dx =
0. Let us find the solution of this equation with respect to c

∫
χ

ψ̇1 dx =
∫

χ

(ċψ + cψ̇) dx = ċ
∫

χ

ψ dx + c
∫

χ

ψ̇ dx = 0 .

If
∫
χ

ψ dx = 0, then
∂

∂θ

∫
χ

ψ dx = 0, that is,
∫
χ

ψ̇1 dx = 0 for any value of c(θ).

If
∫
χ

ψ dx �= 0, then set c(θ) =
(∫

χ
ψ dx

)−1
and get that

∫
χ

ψ̇1 dx =
∫

χ

(ċψ + cψ̇) dx =
∫

χ

⎡
⎢⎣− ψ

∫
χ

ψ̇ dx
(∫

χ
ψ dx

)2 + ψ̇∫
χ

ψ dx

⎤
⎥⎦ dx = 0 .

So, Z = 0 also in this case.
It is convenient to take the first summand of (10), which is independent of the

factor c(θ), as a measure of the sensitivity of M-estimators.

Definition 2.1 (Shurygin 1994a, b) The variance sensitivity of the M-estimator (1)
(to possible changes of density f ), corresponding to the score function ψ(x, θ), is
defined as

VS(ψ, f ) = ∂V(ψ, f )

∂f
=

∫
χ

ψ(x, θ)2 dx
(∫

χ
ψ̇(x, θ)f (x, θ) dx

)2 . (11)

Definition 2.2 AnM-estimatorTn and its score functionψ(x, θ) satisfying condition
(8) are called stable, if the variance sensitivity is bounded and unstable otherwise.

Theorem 2.2 (Shurygin 2009) Let �1 be a set of stable score functions ψ(x, θ).
Then the variance sensitivity VS(ψ, f ) is positive and attains its minimum VSmin at
the minimum variance sensitivity (MVS) score function

ψMVS(x, θ) = arg min
ψ∈�1

VS(ψ, f ) = c

(
∂

∂θ
f (x, θ) + βf (x, θ)

)
,

where c �= 0 is an arbitrary constant and β is a constant providing condition (8):

β = βMVS = −1

2

d

dθ
log

∫
χ

f (x, θ)2dx .

Proof The assertion of this theorem directly follows from Lemma 2.1.

Now,we consider the example of stable estimation of a location parameter (a scale
parameter scale is assumed known).
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Corollary 2.1 If a distribution density has the form

f (x − μ, σ) = 1

σ
h

(
x − μ

σ

)
, −∞ < x, μ < ∞, σ > 0,

then the MVS estimate of μ satisfies the following equation

∑ ∂

∂μ
f (xi − μ, σ)

∣∣∣
μ=μMVS

= 0

with the following minimum variance sensitivity

VSmin = VS(ψMVS, f ) =
(∫ ∞

−∞
ψMVS(x − μ)2dx

)−1

.

Proof In the case of estimation of a location parameter with a known scale parameter,
the distribution density becomes a function of one variable denoted as f (x − μ). From
Theorem 2.2 it follows that the MVS score function for μ is of the form:

ψMVS(x − μ) = ∂

∂μ
f (x − μ) + βf (x − μ) = −f ′(x − μ) + βf (x − μ) = −f ′ + βf ;

here prime is used for differentiation by x, and in the last expression, the arguments
are omitted for brevity. The constant β must provide EψMVS = 0:

EψMVS = −
∫ ∞

−∞
f ′f dx + β

∫ ∞

−∞
f 2 dx = −1

2

∫ ∞

−∞
d(f 2) + β

∫ ∞

−∞
f 2 dx

= −1

2
f 2

∣∣∣
∞
−∞

+
∫ ∞

−∞
f 2 dx = β

∫ ∞

−∞
f 2 dx = 0.

Since the last integral is positive, β = 0.

As ψMVS = −f ′, we have
∫ ∞

−∞
ψ2

MVS dx =
∫ ∞

−∞
f ′2 dx.

Further, (∂/∂μ)ψMVS = −ψ ′
MVS = f ′′. Next,

E
∂

∂μ
ψMVS =

∫ ∞

−∞
f ′′f dx =

∫ ∞

−∞
f df ′ = ff ′

∣∣∣∞−∞ −
∫ ∞

−∞
f ′2 dx = −

∫ ∞

−∞
ψ2
MVS dx .

Thus, in the ratio defining VSmin, the reduction of terms takes place

VSmin =
∫ ∞

−∞
ψ2
MVS dx

/ (
E

∂

∂μ
ψMVS

)2

=
∣∣∣E ∂

∂μ
ψMVS

∣∣∣−1 =
(∫ ∞

−∞
ψMVS(x − μ)2dx

)−1

.
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2.4 Definition of Stability

The situation with the measuring of stability is analogous to the situation with the
measuringof efficiency.The asymptotic varianceV is a positivemeasure of efficiency,
whereas the functional VS is a positive measure of sensitivity. The asymptotic vari-
ance attains its minimum VML at the maximum likelihood (ML) estimator, whereas
the functional VS attains the minimum VSmin at the minimum variance sensitivity
(MVS) estimator. Using VSmin as a baseline for the measuring of sensitivity, it is
natural to define stability analogously to efficiency in the range from zero to unit.

Definition 2.3 (Shurygin 1994a, b) The stability of anM-estimator is defined as the
following ratio

stb(ψ, f ) = VSmin(f )

VS(ψ, f )
. (12)

The optimization of estimation with respect to two indicators on the square
eff , stb—is a way to the solution of the problem of stable estimation. This way
depends on the desirable choice of the relation between the values of those indica-
tors: anML-estimator can be of a low stability, whereas anMVS-estimator can be of
a low efficiency. Searching for compromise, the following result may be useful.

Theorem 2.3 (Shurygin 1994a, b) In the conditions of Theorem 2.2, the maximum
of stability under the required efficiency (or the maximum of efficiency under the
required stability) are attained at the M-estimator with the following score function

ψc.opt(x, θ) = c

(
∂

∂θ
log f (x, θ) + β

) / (
1 + γ

f (x, θ)

)
, (13)

where the sense of the constants c andβ is explained in Theorem 2.2, and the constant
γ = γ (θ) > 0 is defined by the chosen rate of efficiency (or stability).

The proof is based on the application of Lemma 2.1.

Definition 2.4 TheM-estimators defined by the score function (13) are called con-
ditionally optimal.

Often conditionally optimalM-estimators canbe approximatedby low-complexity
ones. One of these possibilities is given by the following M-estimators.

Definition 2.5 The M-estimator with the score function

ψrad(x, θ) = c

(
∂

∂θ
log f (x, θ) + β

) √
f (x, θ) (14)

is called radical.

As a rule, radical estimators possess the following property: their efficiency is
equal to their stability:
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eff (ψrad, f ) = stb(ψrad, f ). (15)

In the case of stable estimation of the location parameter μ (without any loss of
generality, we set μ = 0), theMVS-, conditionally optimal and radicalM-estimators
are defined by the following low-complexity score functions:

ψMVS = −f ′(x),

ψc.opt(x) = ψML(x)

1 + γ /f (x)
,

where ψML = −f ′/f is the maximum likelihood score function;

ψrad(x) = ψML(x)
√
f (x) = − f ′(x)√

f (x)
. (16)

Note that for the vanishing at infinity densities, all the aforementioned stable
M-estimators, namely, MVS, conditionally optimal and radical, are redescending.

3 Test Error Sensitivity and Stability

In what follows, we consider the particular case of the tests for location. For the tests
of form (2), instead of the asymptotic variance as a measure of accuracy of a test
statistic, we use the type II error rate (Shevlyakov et al. 2014)

PE(ψ, f ) = 1 − β(ψ, f ) = �
(
ξ1−α − AV−1/2(ψ, f )

)
, (17)

where ξ1−α = �−1(1 − α) (4). Then its Lagrange functional derivative is proporti-
nal to the variance sensitivity of the corresponding test statistic (for details, see
(Shevlyakov et al. 2014)).

Definition 3.1 The error sensitivity of test (2) is defined as

ES(ψ, f ) = k VS(ψ, f ) ,

where k is a constant.

Next, similarly to the tools developed for stable estimation, we search for the
optimal minimum error sensitivity score minimizing the error sensitivity ES(ψ, f )
which evidently coincides with the minimum variance sensitivity score

ψMES(x) = −f ′(x) (18)

and introduce the test stability as follows.
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Definition 3.2 The stability of test (2) is set as

stbtest(ψ, f ) = ESmin(f )

ES(ψ, f )
,

where ESmin(f ) = ES(ψMES, f ) is the minimum error sensitivity of a test.

From Definition 3.2 it directly follows that the test stability also coincides with
the stability of the corresponding test statistic:

stbtest(ψ, f ) = stb(ψ, f ).

Thus, due to the simple structure of test (2) and to the natural choice of the type II
error rate (17) as a measure of test performance, we can directly apply all the tools
developed for stable estimation to the comparative analysis of test performance.

4 Stable Tests for Location

Most results represented below can be found in (Shevlyakov et al. 2014), although
some their interpretations have been changed. In what follows, a brief summary of
those results is given.

4.1 Problem Setup

Consider testing a location parameter H0 : θ = 0 versus H1 : θ > 0 in the model
Xi = θ + ei, i = 1, . . . , n, where {Xi}n1 are observations, θ = A/

√
n is a weak sig-

nal, {ei}n1 are i.i.d. noises with density f .
In this case, the Neyman–Pearson decision rule (2) is used with the M-estimator

of location Tn(X1, . . . ,Xn) as a test statistic satisfying the equation

n∑
i=1

ψ(Xi − Tn) = 0. (19)

4.2 Evaluation Criteria

For performance evaluation of tests, the following criteria, two conventional and
one new, are used: (i) the type II error rate, (ii) Pitman’s efficiency given by the
asymptotic efficiency of a test statistic (an M-estimator Tn(X1, . . . ,Xn) (19) of a
location parameter), (iii) the test stability stb(ψ, f ).
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4.3 Test Statistic Score Functions

The aforementioned criteria of performance evaluation are used to compare tests
with the following score functions: (i) the linear score ψmean(x) = x with the sample
mean as a test statistic, (ii) the sign score ψmed(x) = sgn(x) with the sample median
as a test statistic, (iii) the maximum likelihood score ψML(x) = −f ′(x)/f (x), (iv)
Huber’s linear bounded score ψHuber(x) = max [−1.14,min (x, 1.14)] optimal for
the model of contaminated Gaussian distributions with the contamination parameter
ε = 0.1 (Huber 1964); (v) Hampel’s redescending three-part score (Andrews et al.
1972)

ψHampel(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x, for 0 ≤ |x| ≤ a,
a sign(x), for a ≤ |x| ≤ b,

a
r − |x|
r − b

sign(x), for b ≤ |x| ≤ r,

0, for r ≤ |x|

with the parameters a = 1.31, b = 2.039, and r = 4 (Hampel et al. 1986); (vi)
the redescending minimum error sensitivity score ψMES(x) = −f ′(x), (vii) the
redescending radical score ψrad(x) = −f ′(x)/

√
f (x).

4.4 Noise Distributions

In the comparative study of tests, the following set of noise distribution densi-
ties is used: the standard Gaussian, Laplace, Cauchy, and contaminated Gaussian
(Shevlyakov et al. 2014).

The choice of a Gaussian in this list is conventional (Kim and Shevlyakov 2008).
The presence of the Cauchy and contaminated Gaussian noise distributions is due to
their extremely heavy tails, the detection performance resistance to which is desired.
Although the Laplace noise distribution density has moderately heavy exponen-
tial tails, it is the least favorable (the least informative) distribution minimizing
Fisher information in the class of the nondegenerate distributions (Shevlyakov and
Vilchevski 2002): it has the unique combination of a relatively high sharp central
peak and relatively heavy tails, and thus it deserves consideration.

4.5 Asymptotic Performance Evaluation

Here we briefly summarize the obtained results (for details, see (Shevlyakov et al.
2014)).
Gaussian Noise: Among robust alternatives, the tests based on redescenders are
slightly inferior in efficiency and in the type II error rate to Huber’s test. The worst
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performance is exhibited by the test with the sign score ψmed asymptotically equiv-
alent to the sign test with the efficiency 2/π ≈ 0.637.
Cauchy and Contaminated Gaussian Noises: All the tests based on redescenders
outperform Huber’s test both in efficiency and the type II error rate. Apparently, the
performance of the test with the linear score ψmean is disastrous in the Cauchy and
contaminated Gaussian noises. On the whole, the radical test outperforms the others
in the chosen set of noise distributions.
Laplace Noise: In this case, Huber’s test performs better than Hampel’s one in effi-
ciency and the type II error rate, but the proposed stable tests based on redescenders
slightly outperform Huber’s detector. Although the Laplace density has lighter tails
than the Cauchy, all the competitors are considerably inferior to the maximum like-
lihood test with the sign score.

4.6 Small Samples Performance Evaluation

In real-life applications mostly small or moderate numbers of observations are avail-
able, so the specification of the area of applicability of asymptotic results is of
importance. To achieve this, Monte Carlo experiment on samples n = 20, 40, 60, 80
and 100 (the number of trials equals 40000) was performed with the decision rule (2)
based on the so-called one-stepM-estimates. The results of Monte Carlo experiment
for the type II error rate can be found in (Shevlyakov et al. 2014). From them it follows
that, generally, the small sample results are qualitatively similar to the asymptotic
ones.

1. In the Gaussian noise, the best is the ψmean-test; Huber’s and the redescenders
except the ψMES-detector are slightly inferior to it; the worst are the ψmed and
ψMES-tests.

2. In the Cauchy noise, the radical test dominates over the others.

The obtained results confirm that, on the whole, the tests based on redescending
score functions outperformHuber’s linear bounded conventional tests in heavy-tailed
noise distribution models (Shevlyakov et al. 2010).

5 Concluding Remarks

1. Our general aim is to recall some results within Shurygin’s approach to stable
estimation and to apply them to robust hypothesis testing in the particular case
of the Neyman-Pearson decision rules: it is shown that this approach works quite
well in heavy-tailed distribution models, outperforming Huber’s and Hampel’s
optimal tests. The aforementioned advantages of Shurygin’s approachmost reveal
themselves in robust estimation and hypothesis testing for location problems. Our
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recent experience to apply this approach to stable estimation of a scale parameter
has shown that although the designed stable procedures perform rather well,
there exist considerably better in efficiency (about 10%) highly robust estimators
of scale, say, the one based on the proposed by Rousseeuw and Croux (1993)
highly robust and efficient Qn-estimator of scale. However, the application of the
variational optimization approach to the design of stable estimators of regression,
correlation, covariance etc. (especially to the problems of multivariate statistical
analysis) deserve a thorough study.

2. The following connection of the variance sensitivity VS with the change-of-
variance function CVF is of importance. For M-estimators of location with con-
tinuously differentiable score functions ψ(x), the change-of-variance function is
given by (Rousseeuw 1981; Hampel et al. 1986)

CVF(x;ψ, f ) = A(ψ, f )

B2(ψ, f )

(
1 + ψ2(x)

A(ψ, f )
− 2

ψ ′(x)
B(ψ, f )

)
,

where

A(ψ, f ) =
∫

ψ2(x)f (x) dx , B(ψ, f ) =
∫

ψ ′(x)f (x) dx .

Thus, up to an additive constant, the variance sensitivity is equal to the integral
of the CVF, if it exists (Shevlyakov et al. 2008).

3. Now we consider another way to justify the use of the Lagrange derivative (10)
in the case of location

VS(ψ, f ) = ∂V(ψ, f )

∂f
=

∫
ψ(x)2 dx(∫

ψ ′(x)f (x) dx
)2 .

Assume continuous differentiability of score functions ψ(x) and require that
f (x) → 0 as |x| → ∞. Now we analyze the relation of the Lagrange derivative
to the variation δV(ψ, f ) of the asymptotic variance V(ψ, f ) finding its principal
part with respect to ||δf || (assume additionally that the admissible variations of
densities satisfy

∫
δf (x) dx = 0):

V(ψ, f + δf ) =
∫

ψ2(f + δf ) dx(∫
ψ ′(f + δf ) dx

)2

=
∫

ψ2f dx + ∫
ψ2δf dx(∫

ψ ′f dx
)2 + 2

∫
ψ ′δf dx

∫
ψ ′δf dx + (∫

ψ ′δf dx
)2

=
∫

ψ2f dx + ∫
ψ2δf dx(∫

ψ ′f dx
)2

(
1 − 2

∫
ψ ′δf dx∫
ψ ′f dx

)
+ o(||δf ||)
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= V(ψ, f ) +
∫

ψ ′f dx
∫

ψ2δf dx − 2
∫

ψ2f dx
∫

ψ ′δf dx(∫
ψ ′f dx

)3 + o(||δf ||).

Finally, we get
δV(ψ, f ) = V(ψ, f + δf ) − V(ψ, f )

= B(ψ, f )
∫

ψ2δf dx − 2A(ψ, f )
∫

ψ ′δf dx
B(ψ, f )3

+ o(||δf ||)

=
∫ (

ψ(x)2

B(ψ, f )2
− 2

A(ψ, f )ψ ′(x)
B(ψ, f )3

)
δf (x) dx + o(||δf ||).

Taking into account the analog of the Lagrange mean theorem (Bohner and
Guseinov 2003), we arrive at the following relation for the sought variation

δV(ψ, f ) = δf (x∗)
∫ (

ψ(x)2

B(ψ, f )2
− 2

A(ψ, f )ψ ′(x)
B(ψ, f )3

)
dx

where x∗ ∈ R, and thus its principal part is proportional to the Lagrange derivative

δV(ψ, f ) ∝ ∂V(ψ, f )

∂f
.

In other words, the Lagrange derivative reflects the variation of the asymptotic
variance V(ψ, f ) corresponding to the uncontrolled variation of density f .

4. Now we focus on the statistical sense of the variational optimization approach to
stable estimation. Originally, it does not involve the consideration of neighbor-
hoods of an ideal distribution model, like in the historically the first Huber’s min-
imax approach to robust estimation at ε-contaminated distributions (Huber 1964,
1981). InHuber’s approach, the contamination parameter ε is in essence unknown,
otherwise we could use the maximum likelihood estimator in the ε-contaminated
model. However, even within the variational optimization approach, it is possi-
ble to introduce a neighborhood of density f and to design minimax variance
sensitivity estimators—such conventional redescenders like Smith’s and Tukey’s
biweight have been derived in (Shevlyakov et al. 2008).
Another situation is with Hampel’s approach based on influence functions: the
variational optimization approach is close to that (in nowaywe compare the levels
of the elaboration of these concepts) yielding not local indicators of robustness as
the influence and change-of-variance functions, but a global indicator of stability
of estimation in some aspects similar to the notion of efficiency of estimation.
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