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Preface

The practice of imaging has grown tremendously in the past few decades, both
in sophistication and importance. There is a strong thread of commonality in the
diverse quilt of applications of imaging in medicine, engineering, and the physi-
cal sciences. In particular, the same mathematical techniques, such as the use of
trajectory-based and asymptotic methods, the central topic of this book, often serve
as the underpinnings of each application. However, to the uninitiated, it might seem
that each discipline has adopted a distinct formulation of the imaging problem.
Thus, a sense of unity is lost in traversing the various applications. In addition,
the development of imaging methods may be more extensive in one particular field
compared to others. For example, in applied mathematics, trajectory-based imaging
methods have been extended to a wide range of situations, such as diffusive and
non-linear wave propagation. These advancements may not be appreciated or even
known in other areas.

The goal of this book is to bring unity to the range of trajectory-based techniques
for modeling fluid flow that may serve as the basis for efficient imaging algorithms.
A secondary objective is to highlight the wide array of physical phenomena to
which trajectory-based imaging methods lend themselves. It is widely known that a
trajectory-based method, such as ray theory, is applicable to hyperbolic equations,
typified by the wave equation. Less well known is the fact that trajectory-based
methods may be used to study diffusive systems, governed by a parabolic equation.
Similarly, ray methods for non-linear waves have been developed in applications
such as gas dynamics and plasma physics, but are relatively unknown in such fields
as hydrology. The fundamental techniques are then applied to important problems
in the Earth sciences. Hopefully, after finishing this book the reader will glimpse
the full range of trajectory-based imaging methods.

This book describes trajectory-based imaging from its mathematical formula-
tion, through the formation and solution of the imaging equations, to the determi-
nation of the accuracy and resolution associated with the image. Our presentation
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viii Preface

is unique in that we cover a rather complete spectrum of physical phenomena. At
the same time we have tried to focus on the practical side of imaging, emphasizing
methods that are efficient and robust. Obtaining an image is not the end of the story,
we need some measure of the reliability of our solution. We describe methods for
assessing the solution, computing the resolution and uncertainty associated with
an image. Finally, as illustrations, we include a wide range of applications and
emphasize their similarity.

This book is intended for those involved in imaging research. It is hoped that
the cross-fertilization between disciplines will spur innovation. The book is also
appropriate for students involved in the physical sciences, engineering, medical
imaging, and applied mathematics. Online resources including computer softwares
and example data files have been provided for the reader to acquire hands on
experience in the techniques and applications discussed throughout the book.
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1

The propagation of a disturbance in relation to imaging

1.1 Background and motivation

In the study of the Earth one encounters a wide array of physical processes. Exam-
ples which quickly come to mind are transient pressure variations associated with
fluid flow, the propagation of elastic and electromagnetic waves, inelastic deforma-
tion, reactive chemical transport, and multiphase flow. This diversity rivals that of
any other discipline. On the surface, these phenomena may seem unrelated, and it is
difficult to envision techniques, other than numerical modeling, which could prove
useful across such a wide range of processes.

Our understanding of the complex systems that comprise our planet is hampered
by a difficulty characteristic of the Earth Sciences; our observations are, for the most
part, remote and indirect. That is, measurements are typically gathered at the Earth’s
surface or from a relatively small number of boreholes penetrating the depths. Thus,
the details of the physical system are shielded from view by the Earth itself. To be
sure, great advances have been made in geophysical imaging and in a sense it is
possible to ‘see’ within the Earth. However, as compared to a physics laboratory,
a completely controlled field experiment is the exception rather than the rule in
the geosciences. This necessitates tackling what is known as the inverse problem,
the complement to the modeling of a natural system. In the inverse problem, remote
observations are used to infer properties, usually model parameters, describing the
system. For example, seismic amplitude and arrival time changes gathered in time-
lapse monitoring are used to infer saturation and pressure changes in a reservoir due
to fluid production. Increasingly, other fields such as medicine and non-destructive
testing are adopting imaging and inversion for non-invasive evaluation.

In large measure this book is concerned with modeling techniques developed
with the inverse problems in mind. To this end we shall be concerned with methods
that place a premium on efficiency, flexibility, simplicity, and physical intuition.
For example, finite-difference techniques, extremely versatile but computationally
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2 The propagation of a disturbance in relation to imaging

intensive methods that often do not scale well with problem size, will not play a
large part in our discussion. Rather, we shall emphasize trajectory-based techniques
perhaps best known for their use in medical and geophysical tomographic imaging.
Though we shall be dealing with a methodology which is known and successful
in solving particular classes of imaging problems, our setting will be much more
general. That is, we shall use the approach not just to study high-frequency, wave-
like behavior, but also in the study of diffusive and mixed propagation. Typically,
diffusive behavior, such as a pressure change, is treated as having little in common
with propagating high-frequency elastic or electromagnetic waves. This distinction,
while valid in some sense, ignores the many traits that these transient phenomena
share (Virieux et al., 1994). Their common characteristics are particularly useful
in solving the inverse problem, for example, estimating properties such as per-
meability or hydraulic diffusivity within the Earth. We will also consider non-
linear processes, such as multiphase flow. In that sense, parts of our book might be
considered as a follow-up to texts concerned with the extension of ray methods to
non-linear problems (Whitham, 1974; Anile et al., 1993; Maslov and Omel’yanov,
2001). Our emphasis will be on techniques that work in the face of the significant
heterogeneity found within the Earth and most other natural systems.

Our intent is to provide methods which are applicable across a range of dis-
ciplines. One goal is to provide some degree of unity across the various special-
ties such as geochemistry, hydrogeology, geophysics, and reservoir engineering.
A common framework and a shared methodology is particularly important with the
emergence of fluid flow monitoring and time-lapse imaging. Due to the increasing
expense of identifying and exploiting petroleum and geothermal reservoirs, and
the increasing importance of water resources, there is less room for failed wells
and inefficient extraction. It is necessary to take full advantage of large geophysical
data sets in understanding fluid flow at depth. With the increasing role of unconven-
tional hydrocarbon resources, it is important to understand the interaction between
hydraulic fractures and natural fractures in the subsurface. The trajectory-based
methods in this book are useful in both geophysical and flow-related modeling.
The efficiency of this approach and its favorable scaling properties mean that it is
useful in treating large data sets and large models. The visual and intuitive nature of
the methods make them useful for interpreting observations. Also, the rapid turn-
around time for an inversion means that the techniques are appropriate for time-
lapse monitoring. The approaches described in this book transcend applications
in the Earth sciences. In particular, the techniques and governing equations for
dispersive, dissipative, and non-linear propagation occur in other areas, such as
non-destructive testing and engineering, as well as in medical imaging.

The trajectory-based solutions that we shall describe provide insight into the
physics of propagating disturbances and introduce flexibility into the modeling.
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For example, the trajectories facilitate visualization of the movement of material
and energy in complex systems. Furthermore, the formulation of a solution defined
along a trajectory typically partitions into two distinct problems: a propagation time
problem and another calculation involving the evolution of the amplitude. As we
shall see, this partitioning provides flexibility, particularly in the treatment of the
inverse problem. Thus, one may use the travel time of a disturbance as a basis for
imaging an object. This leads to the idea of travel time tomography for a wide range
of processes and the images that it can provide. As we shall see, the relationship
between travel times and the properties of an object, such as the porosity and
permeability, is often relatively direct and simple. This contrasts with the more com-
plicated dependence of the amplitude of the disturbance on the internal structure of
an object. Intuitively, the amplitudes depend upon the behavior of all trajectories
in a given neighborhood, particularly how they diverge or converge. Thus, the
amplitudes will not only depend upon the properties along a given trajectory, but
also upon how the properties vary with distance away from the trajectory.

In the remainder of this chapter we shall discuss applications of a few of these
ideas in a somewhat intuitive manner. We will examine a transient solution to the
diffusion equation and how one might define a propagation time. The relationship
between the propagation time and the properties of the medium will be described
for a simple homogeneous medium. We will discuss the computation of a travel
time for multiphase flow. Finally, a variety of applications will be noted to illustrate
the power and utility of the trajectory based methods.

1.2 A propogating disturbance

At the most basic level we are concerned with the propagation of a disturbance
or a change in an observable quantity, such as fluid pressure or elastic strain in
a solid. Ultimately, we wish to relate the characteristics of the disturbance, such
as its arrival time and amplitude to the properties of the medium through which
it propagates. Some of the other processes of interest are the advective transport
of a conservative or reactive tracer, multiphase flow, reactive chemical transport,
electromagnetic processes, and heat flow. Typically, the disturbance is man made,
as due to the injection or extraction of a volume of fluid, giving rise to transient
phenomena, with propagation from a source to an observation point. One simple
mathematical representation of a one-dimensional disturbance that maintains its
shape as it propagates is

u(x, t) = f (x − ct) (1.1)

where the profile of the disturbance at t = 0 is f (x). The disturbance propagates to
the right, in the positive x direction, with velocity c. The reader may consider the
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argument η = x − ct to be a time dependent translation of the x-axis, where the rate
of translation is specified by c.

We present a simple derivation of the governing equation here. A differential
equation with (1.1) as a solution follows from differentiating u(x, t) with respect to
x and t. First, define the variable η representing the argument of f :

η = x − ct. (1.2)

Then, differentiating u(x, t) with respect to x gives, upon using the chain rule

∂u

∂x
= ∂η

∂x

df

dη
= df

dη
(1.3)

while the time derivative is

∂u

∂t
= ∂η

∂t

df

dη
= −c

df

dη
(1.4)

and so one may infer from these two equations that u(x, t) satisfies

∂u

∂t
+ c

∂u

∂x
= 0. (1.5)

Equation (1.5) is the simplest possible linear wave equation (Whitham, 1974, p. 6),
describing propagation through a uniform medium. Equation (1.5) describes one-
way wave propagation, that is movement in only one direction. In many cases it
is also possible to have movement in the reverse direction, leading to the classi-
cal wave equation which is a second-order partial differential equation (Whitham,
1974, p. 6).

Most physical processes cause the disturbance to change shape as it propagates
and translational invariance is not maintained. For example, there is dispersion in
which the propagation velocity depends upon the slope of the waveform, which
is quite commonly observed. Then there is dissipation in which the attenuation
of a propagating pulse depends upon its amplitude or perhaps its curvature. This
behavior is characteristic of diffusive phenomena. Thus, features in a waveform
are preferentially decreased in amplitude at a rate that is proportional to the height
or possibly the curvature, leading to the ‘smoothing’ of a pulse as it propagates.
Finally, the effects of dispersion and dissipation, present even when a medium
behaves linearly, can be confounded by the effects of non-linear behavior. Non-
linearity can lead to a sharpening or steepening of a disturbance, think of a breaking
wave, counteracting the effects of dispersion and dissipation (Whitham, 1974). We
shall touch on some of these effects in this chapter and in the chapters that follow.
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1.3 An example involving dissipation

A large class of physical processes, from heat flow and fluid pressure diffusion,
to electromagnetic wave propagation (Virieux et al., 1994), involve some form
of dissipation. As an example, consider the change in fluid pressure p(x, t) as a
function of the spatial coordinates x and time t, associated with the injection of a
slightly compressible fluid, governed by the diffusion equation

∇ ·
(

k

μ
∇p

)
= S

∂p

∂t
+ f (1.6)

where k(x) is the intrinsic or absolute permeability, μ is the fluid viscosity, S(x) is
the specific storage coefficient, and f (x, t) is the fluid source or sink (de Marsily,
1986). Equation (1.6) follows directly from mass conservation and the relationship
between fluid flow velocity q and the fluid pressure gradient

q = k

μ
∇p (1.7)

first derived by Henri Darcy in a study of the fountains of Dijon, France (de Marsily,
1986, p. 58). Equation (1.7) simply states that the flow velocity q is proportional
to the pressure gradient with the proportionality constant k/μ. Darcy’s law (1.7)
is akin to Fouriers equation (Fourier, 1822) describing the conduction of heat in a
solid, later used by Fick (1855) to develop a quantitative basis for diffusion (Crank,
1975, p. 2). As we shall see in Chapter 2, the governing equation for the evolution
of pressure, Equation (1.6), follows from the equation for the conservation of the
fluid mass. Substituting Darcy’s law, Equation (1.7), into the mass conservation
equation results in Equation (1.6) if the porous medium is assumed to behave in a
linear elastic fashion.

Let us consider a numerical simulation as an example: the injection of fluid at
a constant rate into a well intersecting a heterogeneous formation (Figure 1.1). As
fluid is pumped into the well indicated by the bulls-eye in the figure, the pressure
increases in the surrounding formation. The pressure increase migrates away from
the well in a diffusive fashion, leading to a gradual change in pressure throughout
the formation. In response to the sudden injection or withdrawal of fluid at the well,
as with the initiation of pumping, the fluid pressure will evolve over time according
to Equation (1.6). The pressure change will propagate out into the reservoir in a
diffusive manner, as determined by the spatially varying coefficients S(x) and k(x)
of Equation (1.6). If one examines snapshots of the pressure field at various times,
there is no clear pressure ‘front’ per se, just a gradual change in pressure over time
(Figure 1.2). The calculation of the evolving pressure, given the source term f (x, t)
and the medium properties S(x) and k(x), constitutes the forward problem and
requires the solution of Equation (1.6). Solving the forward problem, calculating
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Figure 1.1 Permeability variation used in modeling a pumping experiment. The
injection well is indicated by the bulls-eye.

Figure 1.2 Normalized change in fluid pressure at various times due to injection.
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(a) (b)

Figure 1.3 The change in fluid pressure (a) and its time derivative and (b) for the
seven observing wells.

the pressure p(x, t) given the flow properties at all points on a simulation grid, is
a stable and well-posed task, usually accomplished using a numerical technique
such as a finite-difference or a finite-element routine (Peaceman, 1977; Pruess
et al., 1999; Datta-Gupta and King, 2007). Figure 1.2 displays the pressure changes
over time, as calculated by a integral finite-difference numerical simulator (Pruess
et al., 1999), for a medium with the spatially varying permeability indicated in
Figure 1.1. The pressure changes resulting at the seven observation points, denoted
by open circles in Figures 1.1 and 1.2, are shown in Figure 1.3.

The pressure changes associated with a step function source do not display
well-defined onsets. Rather, the pressure increases monotonically with time and
it is not possible to define an ‘arrival time’ for the pressure disturbance at each
station. It is also difficult to define an ‘amplitude’ because the pressure increases
gradually over time and no clear maximum is attained. The situation improves if
we consider the time-derivative of pressure rather than the pressure itself. Consider
the pressure derivatives with respect to time, shown in Figure 1.3, for each of the
seven observation wells. The pressure time-derivative has a greater resemblance
to a propagating pulse, with a well-defined peak, denoting the maximum rate of
pressure change. The peak can be used to define an arrival time and an amplitude
for the propagating pulse at each observation point. The time-derivative of the
pressure, normalized by its amplitude, more closely resembles a propagating wave
(Figure 1.4). The fact that the time-derivative of the pressure variation is
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Figure 1.4 Normalized pressure derivative field at various times due to fluid
injection.

pulse-like in nature makes physical sense. Because the source is a step-like
function, as required to propagate pressure changes away from the source well,
its time-derivative is an impulsive function. The time-derivative maps the pressure
variation back into the equivalent of an impulse response. The resulting pulse-like
feature is such that we can measure the amplitude of the change and we can define a
time at which the rate of change is a maximum – the arrival time of the disturbance.

Motivated by the numerical simulation, let us return to the pressure Equation
(1.6) and to the notion of a propagating pulse. We can produce one of the simplest
solutions if we assume a homogeneous medium with an intrinsic permeability k0,
viscosity μ0, and a specific storage coefficient S0. In Chapter 4 we shall consider
propagation in a fully heterogeneous medium. For a homogeneous medium without
a source or sink, we may write Equation (1.6) as

D∇ · ∇p = ∂p

∂t
(1.8)

where D = k0/μ0S0 is the diffusion coefficient (Crank, 1975, p. 11). Equation (1.8)
implies that the rate-of-change of p at a point is proportional to the spatial curvature
of the pressure field. Thus, sharp spatial variations will decay rapidly, leading to
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impulsive source corresponding to four observation points located at successively
greater distances from the source.

a smoothing of the pressure field with time. For an impulsive or delta-function
source one may solve Equation (1.8) using either the Fourier transform (Bracewell,
2000) or separation of variables (Miller, 1977). The solution is (Crank, 1975, p. 11;
de Marsily, 1986, p. 162)

p(r, t) = C√
t3

exp

(
− 1

4D

r2

t

)
(1.9)

where r is the radial distance of the observation point from the injection location,
C is an arbitrary constant which is determined from the initial amplitude of the pres-
sure pulse source. In Figure 1.5, the pressure variation at four different distances are
plotted as a function of time.

We can dig a little deeper in an attempt to better define what we mean by the
arrival time of a propagating pressure pulse. Notice that we have switched from
the step-like source, used in the numerical simulation, to an impulsive, or delta-
function like source. For the pressure Equation (1.8) this is not a significant change
because, as a consequence of its linearity, we can easily switch between these two
source types by either differentiation or integration. The most identifiable features
of the curves in Figure 1.5 are the locations of the peaks in the pressure variations.
The condition for a pressure peak is given by the vanishing of the time derivative
for a particular observation point ro:

∂p

∂t
=
[
− 3

2t
+ r2

o

4Dt2

]
C√
t3

exp

(
− 1

4D

r2
o

t

)
= 0. (1.10)
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For finite values of t and a non-vanishing pressure variation, the exponential term is
non-zero and condition (1.10) is satisfied when the expression in the square brackets
vanishes, leading to

to = r2
o

6D
, (1.11)

where to signifies the time at which the peak pressure is observed at the point ro.
Equation (1.11) reveals that the arrival time of the peak pressure at ro is determined
by the quantity

D = k0

μ0S0
,

providing a relationship between an observable quantity and the properties of the
medium and the fluid. We can turn Equation (1.11) around and use the observed
arrival time, to, at the location ro to infer the value of D for a particular medium,
thus solving the simplest of inverse problems.

As indicated earlier, a transient solution of the diffusion equation can be viewed
as a propagating disturbance. This brings us to one of the central points of this
book – we can interpret both conventional wave-like processes, such as elastic
and high-frequency electromagnetic propagation and diffusive phenomena using
a common framework. This is useful because many real-world physical systems do
not fall neatly into either category and can display aspects of both. Another point,
demonstrated in Chapter 4, is that we can use trajectory-based methods to develop
semi-analytic solutions and to model such processes. Such solutions complement
purely numerical approaches by providing insight, both from visualization and
from the semi-analytic expressions themselves. Furthermore, the trajectory-based
solutions provide additional flexibility by subdividing the modeling into a travel
time calculation and an amplitude calculation. We shall have much more to say
about these ideas in the chapters that follow.

1.4 A non-linear example

Linear governing equations, as exemplified by the diffusion Equation (1.6), can be
used to model important physical processes, but they are by no means the entire
story. In fact, one would not get very far in modeling fluid flow under the restriction
of linearity. Compressible flow, multiphase flow, and reactive transport are but a few
examples of non-linear behavior. Trajectory-based modeling techniques are equally
applicable to physical processes described by non-linear equations. In fact, some of
the earliest applications of the method of characteristics were to problems involving
compressible gas dynamics (Courant and Friedrichs, 1948). In this section we will
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simply touch upon some of these ideas. For the interested reader there are excel-
lent expositions that can provide additional details (Courant and Friedrichs, 1948;
Whitham, 1974; Debnath, 2005).

Perhaps the simplest way to introduce non-linearity into the equation governing
the propagation of a disturbance is to allow the velocity c in Equation (1.5) to be
a function of the amplitude. An important example is provided by the Buckley–
Leverett equation. This equation provides a simple model of waterflooding, a tech-
nique whereby water is injected into a reservoir to displace the in situ oil and
to maintain the fluid pressure. We can write the Buckley–Leverett equation as a
kinematic wave equation governing the evolution of the water saturation S(x, t)

∂S

∂t
+ c(S)

∂S

∂x
= 0 (1.12)

(Whitham, 1974; Peaceman, 1977; Lake, 1989; Debnath, 2005), where

c(S) = q

φ

dfw
dS

(1.13)

is the saturation velocity, q is the total fluid velocity obtained by solving the two-
phase pressure equation (Peaceman, 1977, p. 19), and φ is the porosity. A key
feature of two-phase flow is that one fluid can resist the flow of the other. Thus, the
ease at which a fluid flows will depend upon its current saturation S at that location.
The fractional flow function, fw(S) describes the ability of the phase to flow for a
given saturation at the point x and at time t. The fractional flow function depends
strongly upon the water saturation S. As required by our governing Equation (1.12),
we will only consider one-dimensional flow, However, as we shall see in Chapter 6,
everything works just as well in a three-dimensional setting.

We will seek a solution S(x, t) along a curve x(t), known as a characteristic.
Along the trajectories x(t), the time derivative of the saturation is given by

d

dt
(S(x(t), t)) = ∂S

∂t
+ dx

dt

∂S

∂x
. (1.14)

From Equation (1.14) we can see that if one considers trajectories x(t) defined by

dx

dt
= c(S), (1.15)

then it follows from Equation (1.12) that the saturation remains constant along these
curves:

d

dt
(S(x(t), t)) = ∂S

∂t
+ c(S)

∂S

∂x
= 0. (1.16)

Given sufficient initial or boundary conditions we can solve Equations (1.15) and
(1.16) for a trajectory-based solution of Equation (1.12). The trajectory-based
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formulation provides an expression for the velocity of the saturation along the
trajectory

dx

dt
= c(S) = q

φ

dfw
dS

. (1.17)

Up to this point we have written the position x as a function of time t but we could
easily write both of these variables as functions of another parameter, r, such as
arc-length along the path, or the equivalent single-phase travel time based on the
total fluid velocity (also called the time-of-flight) along the path. We will discuss
this transformation in detail in Chapters 5 and 6. For now, we rearrange (1.17) and
integrate along the trajectory from the injection point to the observation point xo to
derive an expression for the travel time of a saturation front:

T(xo) =
∫

X

φ

q

(
dfw
dS

)−1

dr. (1.18)

Notice that the travel time is a function of the properties of the porous medium
and the fluid through the total velocity q, the fractional flow function, and Darcy’s
law in Equation (1.7). Thus, the arrival time of the injected phase at various obser-
vation points provides us with a mechanism for inferring the spatial variation of
flow properties via transport tomography. This typically involves computing the
water front propagation using the Buckley–Leverett solution along trajectories, or
streamlines (Datta-Gupta and King, 2007). This is illustrated in Figure 1.6 for an
injector-producer pair with multiple perforation intervals and will be discussed in
detail in Chapter 6.

1.5 Heterogeneity and imaging

If the Earth were laterally homogeneous it would simplify a great many activities
such as energy production and waste disposal. However, heterogeneity is present
at many scales within the Earth and we typically must expend significant effort
in order to characterize the distribution of properties at depth. Properties, such as
hydraulic and electrical conductivity, often vary by orders of magnitude, signifi-
cantly altering flow patterns in the subsurface. Thus, we are forced to consider the
influence of heterogeneity on the propagation of mass and energy fluxes. Tomo-
graphic imaging is one method for characterizing the heterogeneity in a porous
medium.

1.5.1 Tomography: an intuitive introduction

The goal of computational tomography is simple: to image the spatial variation of
the properties of a region. For example, the travel time associated with pressure
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(a) Heterogenous permeability field. (b) Trajectories depicting the flow paths and
time of flight.

(c) The propagation of water saturation
along the trajectories.

Figure 1.6 An illustration of multiphase transport calculations in heterogeneous
media using the Buckeley–Leverett solution along one-dimensional characteristic
curves [from Kam and Datta-Gupta (2015)]. Reprinted with permission. Copyright
SPE. For the colour version, please refer to the plate section.

Figure 1.7 Illustration of tomographic imaging.

propagation along a trajectory X(s), may be used to estimate the spatial variation
in diffusion coefficients. Tomographic imaging is accomplished by sub-dividing
a region of interest and propagating pulses through a sufficient number of sub-
divisions such that one can estimate the properties throughout the region. The
basic idea is illustrated in Figure 1.7 for an area with four sub-divisions. The
first pulse only propagates along a trajectory though grid block 1, allowing for
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Figure 1.8 Trajectories associated with a seismic tomographic imaging experi-
ment.

the determination of property D1. Pulse number 4 samples both grid block 1 and
grid block 3, and, after correcting for the propagation through grid block 1, can
be used to estimate property D3. A similar procedure enables one to determine
property D2 and property D4 from the propagation along trajectories 2 and 3,
However, there usually are regions that are not well resolved, such as the upper-
and lower-most cross borehole regions in Figure 1.8. Note that the uniqueness of the
estimates depends upon the number of grid blocks used to represent the variation
within the region and the spatial coverage of the trajectories. With a fine enough
discretization and limited coverage, essentially all grid blocks could be poorly
determined. Typically, in a real experiment many more raypaths are used (Figure
1.8) and a fine discretization may still be resolvable. In addition, there will likely be
grid blocks intersected by a large number of trajectories. Due to errors in the data,
the propagation time associated with these trajectories may be inconsistent and no
single distribution of property values may satisfy all of the observations exactly.
That is why a least squares approach is usually adopted in which one minimizes the
sum of the squares of the misfit to the data (Parker, 1994). Furthermore, in the face
of non-uniqueness, functions that penalize model roughness and deviations from
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the geologic model (penalty functions) are often added to the misfit function to
stablize the inversion (Menke, 1989). We will discuss these topics in greater detail
in Chapters 5 and 6.

1.5.2 Examples

Let us view a few examples in which external flow-related data are used to image
internal properties such as permeability. We hope to convey some idea of the diver-
sity of current applications. Some of these examples will be revisited in the chapters
to come.

Transient pressure tomography

We have already indicated that the arrival time of a pressure disturbance is sen-
sitive to the flow properties of a porous medium. That discussion culminated in
Equation (1.11) relating to, the travel time to a point at a distance of ro from the
injection site, to the diffusivity D of the medium. We can combine that expression
with the tomographic approach in order to estimate the diffusivity D. In Chapter 4,
we shall discuss this methodology in a rigorous fashion. There we will consider
the crosswell pressure experiment portrayed in Figure 1.9 in which we have nine
sources in the injection well on the left. An impulsive source is activated succes-
sively in each source location, giving rise to a pressure variation that is recorded
by ten sensors, located in the adjacent observation well. The sensors are isolated
by a packer system so that the pressure does not propagate up the well. The arrival
time is associated with the observed peak pressure at each of the receivers. The
paths taken by the transient pressure pulses from the sources to the receivers are
indicated by the trajectories in Figure 1.9. Note the significant curvature of the
paths due to the large variations in the diffusivity of the medium. The travel time
variations may be used to infer the large-scale variation in propagation velocity, as
shown in Figure 1.9. This requires iterative updating of a starting (prior) model to
reconcile the model predicted and observed travel times.

Tracer response and transport tomography

In tracer experiments, a trace chemical is introduced into a fluid in motion. Typi-
cally, a flow field is prescribed using an injection well and one or more extraction
wells. The technology has advanced significantly and now there are experiments
utilizing multi-level samplers and other downhole devices. For example, in one
such application each well segment can have a different chemical tracer. With such
novel technologies analysis of the tracer effluent is indicative of both the loca-
tion and the breakthrough time along the wellbore (Kam and Datta-Gupta, 2015).
The appearance of the tracer and its breakthrough at an extraction well can be used
to infer the flow properties and the distribution of a reactive pore fluid between
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Figure 1.9 An example of transient pressure tomography. Trajectories from the
nine sources to the ten receivers. The background color variation represents the
imaged velocity variations associated with transient pressure propagation.

the wells (Jin et al., 1995). As in the case for transient pressure, one can derive a
relationship between the breakthrough time and the porosity and permeability of the
medium. A trajectory-based model of tracer transport provides an efficient approach
for inverting tracer breakthrough data (Press et al., 1992; Vasco and Datta-Gupta,
1999; Datta-Gupta et al., 2002; Vasco et al., 2015). The techniques are particularly
useful in the presence of a large data set, as might be produced by an array of
multi-level samplers, or from the geophysical monitoring of tracer flow in a porous
medium.

As an example, we refer to the multi-level tracer tests illustrated in Figure 1.10
(Annable et al., 1998). In this experiment, multiple tracers were injected into an
isolated test cell using four injection wells. Tracer breakthroughs were measured at
three extraction wells and twelve multi-level samplers located within the test cell.
The tracer particle trajectories and travel time along the trajectories are also shown
based on a prior conceptual model. Trajectory-based methods are particularly well-
suited to rapidly identify the changes required to reconcile the prior model and the
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Injector
Producer
Multilevel sampler

(a)

(b)

Figure 1.10 (a) Test cell diagram with multi-level samplers. (b) Tracer particle
trajectories and travel times [from Yoon et al., (2001)]. Reprinted with permission.
Copyright SPE. For the colour version, please refer to the plate section.

tracer response. These changes provide useful insight into the geologic heterogene-
ity in transport properties and flow mechanisms. We will have more to say about
this in Chapter 5.

Multiphase fluid flow and production tomography

A major challenge in the characterization of a hydrocarbon reservoir is the recon-
ciliation of high resolution geologic models and multiphase fluid production and
pressure data. Here, we consider an example involving the arrival times of the
injected water at the extraction wells in a hydrocarbon reservoir and the fraction
of produced water, also called water-cut, as a function of time. The characterization
of hydrocarbon reservoirs typically starts with the construction of one or more geo-
logic models through the integration of a variety of static (independent of time) data
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sources: cores, wells logs, 3D seismic and prior geologic information. Very often
the modeling of fluid flow through these models fails to reproduce the observed
dynamic (time-varying) response of the reservoir such as fluid production rates and
wellbore pressures.

Inverse modeling, also known as history matching, is used to update the prior
geologic models to match the observed dynamic data. The process may require a
significant computational effort because these models can consist of several million
cells, resulting in a very large inverse problem. The trajectory-based methods
discussed in this book are particularly well-suited for such large-scale inverse
problems because we can compute the parameter sensitivities in an efficient, semi-
analytic fashion. Model parameter sensitivities are partial derivatives, relating
changes in the reservoir properties to changes in observed data. Sensitivities form
the basis for many different inverse modeling schemes as we will see in subsequent
chapters. Trajectory-based inversions utilizing semi-analytic sensitivities share the
efficiencies of tomographic imaging, leading to a form of production tomography
(Vasco and Datta-Gupta, 2001a,b).

As an illustration, we consider the application of inverse modeling to an offshore
turbidite oil reservoir (Hohl et al., 2006). The prior model describing the spatial
variations in permeability and the well locations in this reservoir is shown in Figure
1.11(a). The model consists of about one million grid blocks. A snapshot of the
trajectories, depicting the flow paths in the reservoir at a given instant, is shown in
Figure 1.11(b). These trajectories are used to construct semi-analytic sensitivities
needed in the inversion of dynamic flow data. Inverse problems related to calibra-
tion of high-resolution geological models are typically ill-posed with many possible
solutions. A common way to tackle this issue is to regularize the inverse problem,
for example, by anchoring to our prior model. This is illustrated in Figure 1.12
for the off-shore turbiditic reservoir (Hohl et al., 2006). Trajectory-based tomog-
raphy provides a rapid means to identify discrepancies between the prior geologic
model and the actual field performance, often leading to new geologic insights and
improved understanding of reservoir flow.

Geophysical time-lapse imaging

Geophysical field studies routinely provide information pertaining to the structure
of the Earth, assisting in exploration for and exploitation of resources such as water,
petroleum, geothermal fluids, and minerals. Recently, we have seen an increased
interest in the geophysical monitoring of changes in the Earth associated with activ-
ities such as fluid extraction and waste disposal. The primary means of geophysical
monitoring is time-lapse imaging in which observations from multiple surveys,
gathered at distinct times, are differenced to estimate changes in a geophysical
attribute. Attributes can consist of, among others, the amplitudes of transmitted and
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(a) Permeability distribution.

(b) Streamlines or flow paths.

Figure 1.11 Geologic model describing permeability distribution and a snapshot
of streamlines for an offshore turbidite reservoir [from Hohl et al., (2006)].
Reprinted with permission. Copyright SPE. For the colour version, please refer
to the plate section.

reflected elastic waves, electric field amplitude and phase information, and travel
times from a tomographic survey. For example in Figure 1.13 we show reflection
amplitude data from the Norne field (Watanabe et al., 2014). We will discuss the
analysis of these data in more detail in Chapter 6. An advantage of time-lapse
monitoring is that the differencing cancels out much of the static heterogeneity,
enhancing signals due to changes in fluid pressure and saturation. Thus, time-lapse
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(a) (b) (c)

A sand

B sand

Main sand

Figure 1.12 An illustration of geologic model calibration using multiphase flow
data (a) Prior geologic model, (b) Updated model, and (c) Changes made during
calibration [from Hohl et al., (2006)]. Reprinted with permission. Copyright SPE.
For the colour version, please refer to the plate section.

differences are sensitive to changes in the state of a reservoir. As such, they are
useful for estimating flow properties such as reservoir porosity and permeability.
We will discuss how this is accomplished in Chapter 6.

Seismic reflection amplitude changes are a common example of time-lapse
geophysical data used to monitor fluid flow. Seismic surveys provide high spatial
resolution and are capable of estimating saturation and pressure changes within
a reservoir (Tura and Lumley, 1998; Landro, 2001). When combined with fluid
flow observations such as well bore flowing pressure and fluid production data, the
changes in seismic attributes can provide valuable constraints on flow properties
(Huang et al., 1998; Behrens et al., 2002; Calvert, 2005; MacBeth and Al-Maskeri,
2006). Trajectory-based methods are useful because of the efficient sensitivity
computation of the seismic response to reservoir properties. In most cases, such
sensitivities can be formulated semi-analytically and require little computational
overhead beyond the flow simulation (Vasco et al., 2004; Rey et al., 2012; Watanabe
et al., 2014).

Another potential strength of time-lapse monitoring is associated with high-
resolution temporal sampling, providing information on the time variation of pro-
cesses at depth. That is, given sufficient sampling in time, it should be possible
to capture the propagation of transient phenomena. Contrast this with the far more
common case of a few static ‘snapshots’, widely spaced in time, missing most of the
temporal variations. Such sampling typically aliases all of the changes due to fluid
flow. For example, signals due to the pressure variation, saturation changes, and
thermal fluctuations will be indistinguishable without adequate temporal resolution.
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(a) Inline and crossline sections of seismic amplitudes from the Norne field.

(b) A three-dimensional perspective indicating the locations of the inline and
crossline sections within the geologic model.

Figure 1.13 Seismic reflection observations from the Norne field (Watanabe et al.,
2014). Reprinted with permission. Copyright SPE. For the colour version, please
refer to the plate section.

Fortunately, we are beginning to see improvements in the temporal sampling
associated with the geophysical monitoring of flow and transport. Permanent arrays
of seismic instruments are providing cost-effective, long-term monitoring for sev-
eral major oil fields (van Gestel et al., 2008; Bertrand et al., 2014). Automated seis-
mic source-receiver arrays, such as the continuous active seismic source monitoring
(CASSM) system, provide temporal sampling on the order of minutes (Daley et al.,
2011), making it possible to monitor processes such as injection into a fracture
(Ajo-Franklin et al., 2012). In Chapters 5 and 7 we shall explore the advantages
of using the onset of changes in geophysical attributes to better understand fluid
flow in a porous medium. As an example, consider the crosswell configuration in
Figure 1.14, with a single source in the well on the left and six receivers in the adja-
cent borehole (Daley et al., 2011; Vasco et al., 2014). The source is triggered at four
pulses per second and these are stacked (averaged) into a single composite pulse
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(a) (b)

Figure 1.14 (a) Continuous active source seismic monitoring (CASSM) system
with a single active source, indicated by the star on the left, and six receivers in
the well on the right, denoted by open circles. The layer containing the injected
carbon dioxide is denoted by two dipping parallel lines. The raypaths for the given
velocity model are also plotted. (b) Seismic travel time changes observed at the
receivers due to the injection of carbon dioxide. For the colour version, please
refer to the plate section.

to increase the signal relative to the noise. As the system was operating, carbon
dioxide was injected into a porous layer slightly below the source. The layer con-
taining the carbon dioxide is denoted by the two parallel lines in Figure 1.14. Over
time the carbon dioxide migrated away from the injection well, primarily traveling
up dip toward the observation borehole containing the receivers. This migration,
and the resulting substitution of carbon dioxide for the in situ water, gave rise to a
decrease in the seismic velocity within the layer and an increase in the travel time
to the six receivers (Figure 1.14). While we can use the magnitude of the travel time
change to infer saturation changes within the layer, the effects of pressure changes
are small, there are advantages in using the onset time of the changes. We define
the onset time as the calendar time at which the observed quantity begins to deviate
from its background value. The onset times in Figure 1.14, denoted by the unfilled
squares, are those points in time when the travel time deviation reaches 5 percent of
its peak change. In general, onset times are more sensitive to flow-related changes,
such as saturation changes, and less influenced by variations in the rock physics
model relating seismic velocities and fluid saturations (Vasco et al., 2014, 2015).

Imaging using deformation and strain

Geodetic data, involving the displacement of points on and within the Earth, form
yet another set of time-lapse measurements. This class of observations can be quite
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diverse, ranging from time strains derived from time-lapse seismic reflection data,
through tilt, leveling, and displacement data from the Global Positioning System,
to interferometric synthetic aperture radar (InSAR) data derived from passing satel-
lites. One advantage of geodetic data is that it is usually gathered more often than
other geophysical measurements, providing improved temporal sampling. Another
advantage is that deformation and strain observations are often sensitive to volume
and aperture changes frequently associated with fluid pressure variations. We will
consider two common types of geodetic data, tilt measurements, and range change
observations from interferometric synthetic aperture radar (InSAR).

Similar in principle to a bubble level, a tiltmeter measures angular changes over
time. Each tiltmeter provides two horizontal components, the gradient of the verti-
cal displacement in two directions. The technology for measuring tilt has advanced
to a significant degree and it is now possible to obtain measurements in shal-
low boreholes or even wells several kilometers deep. A distinct advantage of tilt
data is the temporal sampling that it can provide, of the order of a sample per
minute. Under favorable circumstances, such as a sufficient signal and a target that
is resolvable, one can use tilt data to infer volume or aperture changes due to fluid
injection (Vasco et al., 2001, 2002). The temporal sampling is sufficient to estimate
the onset of volume change induced by flow within a fracture (Vasco 2004b). The
estimated onset time can be used to calculate flow paths within the fracture zone
and from these quantities one may estimate effective permeability variations within
the fracture zone.

At best, individual instruments, such as tiltmeters, provide a dispersed network
of point measurements. A different acquisition strategy is provided by instruments
that scan an area, reflecting electromagnetic waves off the Earth’s surface and
measuring the returning energy. Both laser ranging (LIDAR) and interferometric
synthetic aperture radar (InSAR) are examples of this approach. While scanning
system surveys are typically less frequent, current satellite-based systems have
return times between one week and a few months but this is not a fundamental
limitation. For example, there are laser-scanning engineering systems that could
gather local data every few minutes if necessary.

Even the monthly, or almost weekly, sampling by current satellite systems
is useful for monitoring large-scale and long-term fluid injection or production.
(Figure 1.15). For example, InSAR has proven valuable in monitoring the geologi-
cal storage of carbon dioxide at the In Salah project in Algeria (Vasco et al., 2008a,
2010) and nearby gas production (Rucci et al., 2010). The temporal sampling
varied from one to several months, depending upon the variations in the satellite
orbit. However, given the large volumes of injected carbon dioxide and the planned
fifteen year life of the project, the sampling proved sufficient to image associated
reservoir volume changes (Vasco et al., 2008a). We present an analysis of injection
data from the In Salah project in Chapter 7. It also proved feasible to detect range
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Figure 1.15 Range change in millimeters for four time intervals since the start of
production at well KB-11. The segment of the production well within the reservoir
is indicated by the black line. For the colour version, please refer to the plate
section.

change associated with production from an adjacent gas field. The peak range
changes are observed at rather large distances, from 1 to 2 km, from the production
well. One would expect the largest production-related fluid pressure change to
occur in the vicinity of the well. This discrepancy may be due to variations in the
porosity and compressibility of the reservoir leading to larger volume changes, and
corresponding range changes, far from the well. This points to one of the difficulties
of trying to relate the magnitudes of reservoir volume and pressure changes
within the reservoir. In order to do this successfully, we typically must know
coupling coefficients that are likely to vary spatially. Because the reservoir was
thin, essentially two-dimensional, one could solve for the history of reservoir
volume change using the InSAR range change data. Assuming a model of reservoir
compressibility it is possible to estimate reservoir pressure associated with the
volume change. Rucci et al. (2010) used two models to estimate the pressure
changes, a uniform reservoir compressibility model and a variable compressibility
model based upon the magnitudes of the long-term volume changes. Using the
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Figure 1.16 Contour plot of the square root of the onset time of reservoir
pressure change due to gas production at well KB-11. The trajectories denote
the propagation path of the transient change in reservoir pressure. Values in the
left panel were computed using a uniform model or reservoir compressibility.
Values in the right panel are based upon a spatially variable model of reservoir
compressibility derived from the long term deformation data.

entire history of pressure estimates, one can map the onset time of the pressure
changes in the reservoir (Figure 1.16). The onset times were calculated in two
ways. First using a uniform compressibility model to map the volume change into
pressure, and second using a spatially varying compressibility model. The pair of
onset time estimates are plotted in Figure 1.16. The two estimates agree rather
well, an indication that the onset time is not very sensitive to spatial variations
in the reservoir compressibility (Rucci et al., 2010) used in the calculation.
Furthermore, the earliest onset times are in the region around the production
well, in agreement with our intuition that the pressure changes start at the well and
propagate outward. The robustness of the onset times with respect to changes in the
reservoir compressibility was also demonstrated analytically in Rucci et al. (2010).

The trajectories plotted in Figure 1.16 form the basis for an inversion of the
onset times. Specifically, we can break up the reservoir model into grid blocks and
perform what is akin to diffusive traveltime tomography. The intuitive idea is rooted
in the discussion in Section 1.3. The basis for our approach to diffusion tomography
is given in Chapter 4 for fluid pressure. In Chapter 7, we extend the discussion
to coupled poroelastic propagation and consider a problem that is very similar to
what we face here. There we note that having the field of onset times allows us to
calculate the trajectories from the observations, effectively linearizing the inverse
problem for diffusivity. Furthermore, the temporal sampling allows us to specify
the incremental travel time change along the trajectory, providing resolution along
the ray path. So, in spite of the absence of crossing rays, we can still resolve the
travel time increments along the path and hence calculate the diffusivity necessary
to produce the incremental changes.
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(a) (b)

Figure 1.17 An application of a trajectory-based method to medical image
analysis (a) minimal path between two points using the Fast Marching Method
and trajectory construction (Deschamps and Chen, 2001) and (b) an angiographic
image of brain vessels. Reprinted with Permission. Copyright Elsevier Limited.

1.6 Summary

In this chapter we have emphasized that processes associated with fluid flow, trans-
port, and associated deformation can be viewed as propagating disturbances. Fur-
thermore, one can define paths forming the basis for the trajectory-based modeling
of such propagation. The paths may be used to our advantage in tackling the inverse
problem and in performing tomography using observations related to fluid flow and
transport. It is worth pointing out that the trajectory-based methods discussed in the
book have found applications in numerous other fields, such as medical imaging
and image analysis. For example, in Chapter 4 Section 4.3.1 we discuss the fast
computation of front propagation in diffusive flow using Fast Marching Methods
(Sethian, 1999) and the construction of trajectories from the fronts. In Figure 1.17,
an identical approach is used to compute the minimal path on an angiographic
image of brain vessels (Deschamps and Chen, 2001). Such minimal paths can be
used for virtual endoscopy whereby the clinicians can generate perspective views
of the image along user defined paths without invasive intervention. The power and
utility of the trajectory-based methods lie in their broad range of applicability, com-
putational efficiency and the visual and intuitive appeal. The reader is encouraged
to attempt the software examples in the subsequent chapters to acquire hands-on
experience and appreciation of these methods.
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Principles and equations governing fluid flow
and deformation

2.1 Introduction

In this chapter we review the basic governing equations for fluid flow in permeable
media. Our treatment is general and includes coupled deformation and fluid flow.
Starting with the basic conservation laws we derive the pressure and transport
equations for single phase and multiphase flow in porous media. We cover physical
processes involving both miscible and immiscible displacements as well as mass
transfer from compositional effects and present the equations describing these pro-
cesses. We have included a fairly extensive discussion on the underlying principles
behind elastic deformation and how the concepts carry over for modeling fluid flow
in deformable porous media. We conclude the chapter with a discussion on poroe-
lasticity and the associated equations for fluid flow in deformable porous matrix
in the presence of one or more fluid phases. In summary, this chapter provides
the foundation and notation for subsequent developments. However, in each of
the subsequent chapters we will start with the relevant governing equations so the
reader may comfortably skip this chapter and refer back to it as necessary.

2.2 Underlying principles

2.2.1 Motion, force, momentum, work, and energy

At the most basic level there are the concepts of motion and force. We can all agree
when an object is stationary with respect to a ‘stable’ reference point. First, define
a reference point in a chosen coordinate system by x0 and the position of our object
in that coordinate system by the vector x. An object is considered stationary when
its position relative to the reference point is unchanging, that is,

x − x0 = c,

27
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where c is a constant. Such a motionless object is termed static. An object in motion
changes its position over time and one may think of the position vector as a function
of time x(t). In order to describe the motion of an object with some precision we
define the velocity of an object v(t), the rate of change of an object’s position with
time, formally defined as the limit

v(t) = lim
�t→0

�x(t)
�t

,

where �x = x(t + �t) − x(t). In addition, we also need a measure of the change
of an object’s velocity over time because the deviation from motion at a constant
velocity is an important indicator that a force is pushing or pulling on the object,
acting to change its motion. Thus, we define the acceleration, a(t), as the rate of
change of the velocity of an object

a(t) = lim
�t→0

�v(t)
�t

.

The notions of velocity and acceleration provide a quantitative description of the
motion of an object and their formal definition required the invention of the calcu-
lus, a significant advancement in mathematics.

Quantitative descriptions of position and motion appeared soon after the for-
mulation of a coordinate system by Descartes and others. They were particularly
influential in the development of astronomy. But, determining how and why an
object moves, for example in the Earth’s gravitational field, took some time to figure
out. To say that a force is something that induces the motion of an object, a push
or a pull, is simply a qualitative definition and does not advance our knowledge
significantly. It took the genius of Galileo and Newton (Newton, 1729), among
others, to determine that motion at a constant velocity was the ‘natural’ state of an
object, and that a force was needed to change the situation in a very specific way,
giving rise to the acceleration of an object, a change in its current velocity.

Let us begin with an easy situation, an object at rest with respect to a reference
point. Thus, the resultant force on the object is zero. ‘Resultant’ is the key word
here because we might have several non-zero forces acting on the object, balancing
out to produce zero net force. Consider the case of M such forces

F̄ =
M∑

i=1

Fi = 0, (2.1)

where Fi is the i-th force, such as gravity, frictional resistance, or an electromagnetic
attraction, and F̄ is the resultant or net force. When the imposed forces sum to zero,
the system is said to be in static equilibrium. If the forces do not balance, the object
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undergoes an acceleration and it begins to move. Specifically, Equation (2.1) is
replaced by

F̄ =
M∑

i=1

Fi = d(mv)
dt

, (2.2)

where v(t) is the velocity of the particle and m is a proportionality factor which is
the inertial mass of the object. This is Newton’s equation of motion, the bedrock
of classical dynamics. In words, Equation (2.2) states that a net force gives rise to
a non-zero acceleration. Equation (2.2) connects the forces acting on a point mass
to its motion in a very precise yet simple manner, a profound achievement indeed!
The quantity in parenthesis in Equation (2.2) is known as the momentum of the
object and is often denoted by the vector p = mv.

The French mathematician d’Alembert moved the dynamics of Equation (2.2)
back to the realm of statics by defining the force of inertia A

A = −d(mv)
dt

and rewriting Equation (2.2) as

F̄ + A = 0. (2.3)

Equation (2.3), known as d’Alembert’s principle, states that the sum of the imposed
forces and the force of inertia results in a system at equilibrium. One way to think
of d’Alembert’s approach is to imagine allowing the reference point to vary as a
function of time x0(t) and to accelerate along with the object. A useful treatment of
this viewpoint is given in Lanczos (1962, p. 88). Because the velocity is the time
derivative of position, Equation (2.3) leads to a second-order differential equation
for the position of the particle as a function of time. This is one motivation for
the study of second-order differential equations. Indeed, the theory of differential
equations tells us that, if the forces depend upon time, the spatial coordinates, and
the first time derivative of the spatial coordinates, solutions to Equation (2.3) exist
and depend uniquely upon the initial conditions (Courant and Hilbert, 1962).

Along with the concepts of motion and force we have the associated idea of the
energy of an object or system. As with the other ideas, the exact definition of energy
and related concepts has a long history (Lanczos, 1962). Perhaps because of the
subtle nature of energy there were several competing attempts to relate it to the
motion of an object. It may be easier to conceive of the work done by a force upon
a particle. The precise definition of work is

W = Fi ·�x = |Fi| |�x| cos θi, (2.4)
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where Fi denotes the particular force under consideration, �x signifies a permis-
sible displacement, θi represents the angle between the force vector and the dis-
placement vector and provides a quantitative measure of the interaction between
a force and the motion of an object. The expression is most useful in the study
of the many forces that are functions of the spatial coordinates x, such as the
pull of gravity or the tug of a magnetic force. To enhance our understanding of
this definition, consider the example of a spherical object, such as a ball bearing,
sitting on a polished floor. Assuming that the floor is level, as the ball bearing rolls
the force of gravity does no work upon it because the motion is perpendicular to
the gravitational force vector. Thus, for permissible displacements within the plane
defined by the floor, the ball bearing is in equilibrium with respect to the force of
gravity. Were the floor to suddenly give way and the ball bearing to fall, it would
accelerate under the force of gravity and the force of gravity would do measurable
work upon the bearing. Given measurements of the force and the displacement, one
can compute the exact value of the work done for the particular motion of an object
subject to a force.

We can use the idea of work to formulate an exact definition of equilibrium for
an object under the influence of a set of forces. To do this, we consider the virtual
work due to a permissible virtual displacement �x. For our ball bearing example
the permissible virtual displacements are those within the plane defined by the floor.
The principle of virtual work states that a given object will be in equilibrium if,
and only if, the total virtual work of all impressed forces vanishes:

δWT = F̄ · δx = 0. (2.5)

Note that the virtual work is zero when the contributing forces cancel and F̄ van-
ishes, or when the resultant force is perpendicular to all permissible displacements.
Equation (2.5) applies to the static situation in which there is no motion in the
direction of the forces. Using d’Alembert’s principle, we can extend the idea of
equilibrium to the dynamic situation in which an object moves steadily in response
to a force. We can do this by defining an effective force

E = F̄ + A, (2.6)

incorporating both the impressed forces and the force of inertia. Let us further
generalize the situation by considering a system containing N particles in which
case the virtual work associated with the permissible displacements is given by

δW =
N∑

k=1

Ek · δxk =
N∑

k=1

(F̄k + Ak) · δxk = 0. (2.7)
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The conceptual point of view of d’Alembert underlies all of mechanics and is the
genesis of many advanced techniques.

The definition of work can be used to motivate an expression for the energy
associated with the motion of a particle, that is, the kinetic energy. Kinetic energy
is perhaps the easiest form of energy to quantify because it is defined directly in
terms of an object’s velocity and mass. Consider the work done by a force on a
particle during a finite motion. Because the force may vary for each increment of
distance traveled, the total work is an integral over all portions of the path:

W =
∫

F̄ · dx. (2.8)

For the sake of illustration consider one-dimensional motion, for which
Equation (2.8) becomes the integral

W =
x∫

x0

F̄dx (2.9)

that can be explicitly evaluated by incorporating Newton’s law, Equation (2.2), and
writing the acceleration as

a = dv

dt
= dv

dx

dx

dt
= v

dv

dx
. (2.10)

Substituting Equation (2.2) and Equation (2.10) into the integral expression for
work, Equation (2.9), we find that

W =
x∫

x0

F̄dx =
x∫

x0

mv
dv

dx
dx =

x∫
x0

mvdv =1

2
mv2 − 1

2
mv2

0. (2.11)

Thus, the total work associated with the path from x0 to x is given by the change in
kinetic energy, where the kinetic energy K is defined by

K = 1

2
mv2, (2.12)

a result known as the work-energy theorem.
In addition to the kinetic energy associated with the motion of an object, there are

numerous types of stored or internal energy to consider. There are various important
ways to categorize these different types of energy. One type of energy is the poten-
tial energy of objects situated in a force field or subject to a force. For example, a
rock taken to the top of a building has potential energy due to its placement within
the Earth’s gravitational field, or a pinball situated at the end of a coiled spring.
There is internal energy due to micro-processes such as molecular, atomic, and
sub-atomic reactions, including thermal and acoustic processes. Alternatively, we
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may categorize energy as due to conservative forces and non-conservative forces.
For a conservative force, such as the force of gravity in interstellar space, the
amount of work done on a particle acted upon by the force and traveling from a
point x0 to a point x, does not depend on the path taken by the particle. Thus, for a
conservative force the work

W(x, x0) =
x∫

x0

F̄ · dx (2.13)

only depends on the initial and final points of the path. Analogous to the kinetic
energy, we can define the potential energy as the work in going from the initial
point to the final point of the path, if we imagine moving so slowly that the square
of the velocity is negligible. The potential energy is given by

U(x)− U(x0) =
x∫

x0

F̄ · dx. (2.14)

One typically defines a reference point xR at which the potential energy is zero, then
we can imagine traveling from the reference point to the point x0 and then onto the
point x resulting in the expression

U(x)− U(x0) =
x∫

xR

F̄ · dx −
x0∫

xR

F̄ · dx. (2.15)

The overlapping portion of the path from xR to x0 cancels in Equation (2.15) result-
ing in the expression (2.14) for the change in potential energy. It is common prac-
tice to take the reference position to be a location at which the force is zero. For
example, the reference point for the gravitational force of the Earth is usually an
infinite distance from the center of the Earth. For a non-conservative force the
work is path-dependent. A well-known non-conservative force is friction. Because
a conservative force only depends on the initial and final points of its journey, for
a fixed starting point we can write it as a function of the end point x: U(x). Note
that, because the position vector is often considered to be a function of time, x(t),
the potential energy of a system is also an implicit function of time. However, con-
servative forces cannot depend explicitly upon either time or the particle velocity.
If the force did depend upon time, a longer path would produce a different result
because the forces would have changed during the additional time taken to travel
along the path. Similarly, traveling the same path at a different velocity does not
change the work done by a conservative force.
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Continuous objects and fields: continuum mechanics

We do not typically encounter point masses in our daily lives. Rather, one is faced
with continuous fluids or extended solid bodies, that are in reality vast collections of
tightly coupled atomic masses. Trying to decompose such objects into constituent
point masses would be a computational nightmare. A successful approach for mod-
eling extended objects involves smoothing over the individual point masses and
treating the body as a continuous distribution of material, leading to the notions of
continuum mechanics. Thus, for a given volume of material we assume an average
density, mass per unit volume, as well as other average properties such as electrical
and thermal conductivity and viscosity. The issue of averaging or smoothing is
particularly acute for the study of flow through a porous media, where the process
under consideration occurs in an intrinsically heterogeneous medium.

There are mathematical techniques for effectively scaling up from atomic,
molecular, or grain-sized particles to a macroscopic sized body, methods known
as effective medium theories. Three approaches are prominent in the study of
poroelasticity: mixture theory (Truesdell, 1962; Green and Naghdi, 1965; Garg,
1971; Morland, 1972; Drumheller, 1978; Berryman, 1986; Berryman et al., 1988),
volume averaging (Slattery, 1968, 1981; Whitaker, 1969; Pride et al., 1992) and the
related averaging over a representative elementary volume (Bear, 1972; de Marsily,
1986), and homogenization techniques such as the method of multiple scales and
the two-space method (Keller, 1977; Auriault, 1980; Burridge and Keller, 1981).
While we shall have a bit more to say about such techniques later, in the section
on poroelasticity, we shall not invoke such formal techniques. Rather we take it for
granted that at some intermediate length scale very large collections of particles
have definable average properties (Figure 2.1).

For example, we assume that one can, at least in theory, estimate the density in
the vicinity of a point by taking a very small cube of material surrounding the point
and weighting it in order to estimate the mass �M. If the volume of the cube is �V
then the density is given by the ratio

ρ(x) = lim
�V→0

�M(x)
�V(x)

, (2.16)

where it is assumed that this ratio is relatively constant for a range of intermediate
length scales. We assign the estimated density to the reference point. Furthermore, it
is assumed that we can, again in theory, repeat this process for every point x of the
body, thereby constructing a continuous distribution of density ρ(x). The length
scale is termed intermediate because it is taken to be large enough to contain a
sufficient number of particles to form a stable average and small enough that it is not
influenced by the large scale heterogeneity of the body. Note that the construction
of averages, as described here, can require some thought and ingenuity, particularly
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Figure 2.1 Averaging of properties in continuum assumption. We assume that
materials have definable average properties over a range of length scales.

in the presence of pervasive structure such as small-scale layering. For example,
averaging a layered structure leads to an apparently anisotropic material.

Just as properties such as mass are averaged, leading to a distribution, the forces
acting upon a body can be averaged to produce resultant ‘body forces’ acting on all
points of an object. For example, the force of gravity will pull all points of a body
towards the Earth’s center, similar to its action on a point mass. However, because
an object is a vast collection of constituent points there will be an additional com-
plication due to the interaction of the points. Such interactions cannot be modeled
as single forces acting upon each small piece of the body. For example, the pressure
in a fluid due to the weight of any overlying mass does not act in a single direction.
Rather, it is best visualized as three mutually perpendicular force couples impressed
upon a small sample. Each pair of force couples is squeezing a small portion of the
sample along one axis. If we imagine a cut, oriented perpendicular to that direction,
the force couple would act to squeeze the two sides together. However, if we rotate
the cut so that the force couple lies parallel to it, then its sides will not be forced
together. Thus, the effect of a force f on the surface of the cut depends upon its
orientation with respect to the surface, denoted by S. The forces on each side of the
cut must be equal and opposite because we cannot have a non-zero resultant force
acting upon the cut, as it is in static equilibrium. We can define the traction as the
force per unit area, our first encounter with the concept of stress. As with density,
we can define the surface traction vector t as the ratio

t(x) = lim
�S→0

�f(x)
�S(x)

, (2.17)
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Figure 2.2 Surface traction vector at point x is given by t(x) = lim
�S→0

�f (x)/

�S(x) where �f is the force acting on the surface �S. The orientation of the
surface is defined by the unit vector n̂ perpendicular to S.

where f is the force associated with the cut that has a surface area of �S
(Figure 2.2).

As mentioned above, the traction vector is not just a function of the area of
the surface, it also depends upon the orientation of the surface with respect to
the force vector �f. The orientation of the surface is usually characterized by,
n̄, the unit vector perpendicular to the surface S. Because the orientation of the
surface is specified by the normal vector, n̄ and a vector in three dimensions may be
completely specified by a sum of multiples of the unit vectors along each axis, one
might postulate that the traction vector t in any direction is given by a weighted sum
of traction vectors associated with planes perpendicular to each axis. We denote the
traction vector associated with the surface perpendicular to the i-th axis by

ti =
⎛
⎝ σ1i

σ2i

σ3i

⎞
⎠ . (2.18)

We might suppose that we can write t in terms of the three vectors t1, t2, and t3. One
can show that this is indeed the case by considering a force balance on a tetrahedral
element, as shown in Fung (1969, p. 52), resulting in

tj�S − σjin̂i�S = 0 (2.19)

or, using vector-matrix notation and dividing by �S,

t = σ · n̂, (2.20)



36 Principles and equations governing fluid flow and deformation

Figure 2.3 The nine components of the stress tensor acting on a cubic element.
Note that the first subscript denotes the direction and the second subscript denotes
the plane the component is acting on. The components acting perpendicular to
the plane (σ11, σ22, σ33) are called the normal stresses, while the components
tangential to the plane (σ12, σ13, σ21, σ23, σ31, σ32) are called the shear stresses.

where σ is the stress tensor, a matrix whose columns are given by (2.18)

σ =
⎛
⎝ σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎞
⎠ .

This matrix provides a general representation of the internal tractions in a body
(Figure 2.3). Note that, in general, the stress cannot be represented by a single
vector. A vector is a physical quantity that is specified by a magnitude and a direc-
tion. The stress tensor, on the other hand, requires specification of a magnitude and
two directions: one for the force and one for the plane of interest. For example,
consider the pressure p within a fluid at a particular depth. As we shall see [refer to
Equation (2.67)] the corresponding stress tensor is given by

σ =
⎛
⎝ p 0 0

0 p 0
0 0 p

⎞
⎠ .

Multiplication by the unit vectors along each axis will return different traction
vectors. Because stress is defined in terms of a force (a vector) and a plane (charac-
terized by a vector, the normal to the surface), it seems sensible that the stress cannot
be related to any single vector. There are special cases, such as the compression of
a long, stiff rod, where one component of the stress tensor, such as σ11, dominates
and a vector may provide a sufficient representation.
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All of the quantities described above, scalars such as density and temperature,
vectors such as a body force, and tensors such as the stress are functions of position
x and are refered to as fields. Such objects are the basic quantities providing the
observations gathered in field experiments and in the laboratory.

Conservation principles

We have already encountered a number of ideas from mechanics, such as
Newton’s relationship between a force and a change in mv, as well as d’Alembert’s
principle. These relationships should not depend on the units used to specify the
physical quantities, such as distance, time, or mass, involved in the physical laws.
Furthermore, the principles should hold independent of the coordinate system used
in the specification. Thus, for example if we use a translated or rotated set of
coordinates, the principles should still be valid. Equivalently, the laws of physics
must not depend upon our location or orientation in space. Such invariance can be
shown to lead to conservation equations related to the particular transformation.
For example, one can show that a translational invariance leads to the conservation
of linear momentum. We should note that the phrase ‘linear momentum’ refers
to the fact that it corresponds to straight line motion, as opposed to angular
(rotational) momentum. A physically motivated route to the conservation of linear
momentum begins with Newton’s law of motion, Equation (2.2). The basic idea
is that for a system which is not subject to external forces the right-hand-side of
Equation (2.2) vanishes and so

d(mv)
dt

= 0 (2.21)

or

mv = a constant. (2.22)

Thus, the momentum of the object isolated from external forces is a constant.
Let us generalize the conservation of linear momentum to an extended body, as

discussed in the previous sub-section, subject to a distribution of body (volumet-
ric) forces and surface forces (surface tractions). Due to the presence of external
forces, the right-hand-side of Equation (2.21) is no longer zero, rather the rate of
change of the momentum balances the sum of the external forces. Because the
body and the forces are distributed, we have to sum, or integrate to get the total
force on an extended object. Consider an object of volume V , bounded by a surface
S (Figure 2.4). The mass distribution of the object is characterized by the density
ρ(x), defined by Equation (2.16). The total external volumetric forces f and surface
tractions t balance the rate of change of the total linear momentum, thus∫

V

fdV +
∫
S

tdS = d

dt

∫
V

ρvdV. (2.23)
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Figure 2.4 The conservation of linear momentum requires that the total external
volumetric forces f and the surface traction force t balance the rate of change of
linear momentum over the volume V .

Box 2.1 The divergence theorem

The divergence theorem, also known as Gauss’ theorem in recognition of his early
proof, relates the divergence of a vector field F contained within a volume V to the
flux of the field through the surface S bounding the volume. The exact mathematical
statement is ∫∫∫

V
∇ · FdV =

∫∫
S

F · n̂dS

where n̂ is the normal vector to the surface S. A general proof of Gauss’ theorem is
better left to a book on vector calculus such as Marsden and Tromba (1976). However,
following Schey (1973) we can provide a brief motivation by considering a simple
volume that may be subdivided into N subvolumes (think small cubes).

Now for any two adjacent subvolumes (cubes) sharing a common internal surface
Si, the contribution F · ni across that surface from one cube will be canceled by the
contribution back across the surface from the other cube. This cancellation occurs
because the normal vectors are equal and opposite for an internal surface while F
remains the same on the surface. Thus, we can write the surface integral in the above
expression as a sum over the surfaces of all the subvolumes

∫∫
S

F · n̂dS =
N∑

l=1

∫∫
Sl

F · n̂dS,
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with the understanding that the contributions from all the internal surfaces will cancel
in the sum. Dividing and multiplying each term in the sum by the volume of the
respective cube give

∫∫
S

F · n̂dS =
N∑

l=1

[
1

�Vl

∫∫
Sl

F · n̂dS

]
�Vl

In the limit as the subvolumes shrink in size the quantity in square brackets approaches
the divergence of the vector field F at the center point of the cube, thus we have

lim
N→∞,�Vl→0

N∑
l=1

[
1

�Vl

∫∫
Sl

F · n̂dS

]
�Vl =

∫∫∫
V

∇ · FdV,

ending our argument.

The integrals are over the internal volume of the object and over the external
surface of the object. We can write the surface traction vector t in terms of the
stress tensor, using Equation (2.20):∫

V

fdV +
∫
S

σ · n̂dS = d

dt

∫
V

ρvdV. (2.24)

Applying the divergence theorem [see Box 2.1], the surface integral in (2.24) can
be written as a volume integral∫

V

fdV +
∫
V

∇ · σdV = d

dt

∫
V

ρvdV . (2.25)

A similar conservation law holds for angular momentum. At this point let us simply
note that the conservation of angular (rotational) momentum leads to the conclusion
that the stress tensor σ is symmetric

σ = σ T , (2.26)

where the superscript T signifies the transpose of the matrix (Fung, 1969). In terms
of components, Equation (2.26) means that

σij = σji. (2.27)

Similar principles apply to other physical quantities such as the conservation of
the mass of the system. At its simplest, the conservation of mass states that the
mass contained in an isolated volume V is constant

dm

dt
= d

dt

∫
V

ρdV = 0. (2.28)
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As we shall see, there are alternative forms for this conservation equation, known as
the equation of continuity, depending on the nature of the coordinates used to state
the principle. There is also a conservation principle for energy that is important in
certain situations (Goldstein, 1950) but will not be part of our discussion.

Constitutive equations

The various conservation principles lead to equations governing fluid flow, defor-
mation, and other processes of interest. However, the resulting equations typically
contain more variables than equations and cannot be solved uniquely. Therefore,
one must rely on the physics of the process under study to invoke a constitutive
relation between the various unknowns. For example, in Equation (2.25) we can
write the velocity in terms of the time derivative of the displacements, a straight-
forward definition. However, we must invoke a relationship between the stresses
in the body and the displacements in order to produce a set of equations solely in
terms of the displacements. We will illustrate this in the material that follows.

2.3 Deformation

2.3.1 The basics

In response to forces and surface tractions, objects can move and change shape,
that is deform. In this section we shall concentrate on deformation and strain, a
change in the distance between the parts of a body, and especially on a quanti-
tative description. In discussing deformation we idealize a hypothetical volume
of material, denoted by V , bounded by a surface S. We need to account for the
initial and final positions of the material of the body, the positions before and after
the deformation. So as not to confuse the various states and coordinate systems,
some rather precise language is required. For example, the word point will mean a
location in space, the point of a coordinate system. Conversely, the word particle
denotes a small volume element of the body. The deformation evolves as a function
of time, with the time t0 denoting the start of the deformation. At a later time, t, the
deformation has progressed and the particles of the body have moved along various
paths. A continuous one-to-one function relates the current position (at time t), x,
of a particle that was initially (at time t0) at point X

x = x(X, t), (2.29)

constituting the Lagrangian description of the deformation. In the Lagrangian
approach the spatial coordinates x are dependent variables, functions of the material
point X and the time. An alternative description of the deformation keeps track of
the particle X currently occupying the location x via functions of the form

X = X(x, t), (2.30)
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Figure 2.5 Illustration of the Lagrangian and Eulerian description for a group of
passive particles flowing in a velocity field, v. The Lagrangian description tracks
the spatial position of a particle, identified by X = x0

i with time: x(X, t). The
Eulerian description keeps track of the particle X = x0

i that occupies a given
position x at a given time t: X(x, t).

being the Eulerian description of the deformation. In the Eulerian description the
spatial coordinates are independent variables, as is the time t. This is illustrated in
Figure 2.5.

The function in (2.29) is continuous if the partial derivatives of each component
of x with respect to the components of the independent variables X exist and are
finite. Furthermore, at a fixed time t, the mappings are one-to-one if the determinant
of the matrix of partial derivatives

F =

⎛
⎜⎜⎜⎜⎜⎝

∂x1

∂X1

∂x1

∂X2

∂x1

∂X3
∂x2

∂X1

∂x2

∂X2

∂x2

∂X3
∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

⎞
⎟⎟⎟⎟⎟⎠ (2.31)

does not vanish. The matrix can be represented more compactly in terms of its
components

Fij =
(
∂xi

∂Xj

)
. (2.32)

In what follows, we shall invoke the Einstein summation convention [see Box 2.2]
and sum over repeated indices. The matrix F is referred to as the material deforma-
tion gradient. The companion matrix H, the spatial deformation gradient related
to the transformation (2.31) is defined as

Hij =
(
∂Xi

∂xj

)
. (2.33)
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Using the chain rule, one can show that Hij satisfies

FijHjk = ∂xi

∂Xj

∂Xj

∂xk
= δik, (2.34)

where δik is the Kronecker delta function, equal to 1 if i equals k and is zero
otherwise. Thus, the matrix F is the inverse of the matrix H.

We can define the displacement vector, a measure of the change in position that
occurs between the initial time 0 and the final time t. Because at time 0 the body
has not yet deformed, the particles are in their original positions given by X. Thus,
the displacement vector is given by

u = x − X, (2.35)

a measure of the movement that occurred between time 0 and time t. Note that

x = X + u,

and one may think of x and X as two coordinate systems and of u as the map from
one to the other (Figure 2.6). The strain is a measure of the change in distance
between two nearby particles due to the deformation. Thus, it involves two dis-
placements, one for each particle, over the specified time interval. Let us denote the

Figure 2.6 The undeformed configuration of a material body is shown together
with its deformed configuration at a later time after displacement u. The deforma-
tion of a material element at its initial position P0 is related to its final position P
by the deformation gradient, F.
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original distance between the particles by dX and the distance after the deformation
by dx. The change in squared distance (dx)2 − (dX)2 is used as a measure of the
deformation. Using the functional relationship (2.29) and the chain rule, we can
write

dxi = ∂xi

∂Xj
dXj (2.36)

and hence the change in squared distance may be written as

(dx)2 − (dX)2 =
(
∂xk

∂Xi

∂xk

∂Xj
− δij

)
dXidXj. (2.37)

The quantity in the parenthesis on the right-hand-side provides a measure of the
strain.

Box 2.2 Einstein’s summation convention

The Einstein summation convention implies that when an index occurs more than
once in the same expression, the expression is summed over all possible values of that
index. For example, from Equation (2.29), we obtain a relationship between dxi

and dXj:

dxi =
3∑

j=1

∂xi

∂Xj
dXj.

Using Einstein’s convention, this sum can be written succinctly as (2.36), where we
omit the summation sign over the repeated indices j. Similarly, (2.37) implies

(dx)2 − (dX)2 =
3∑

k=1

3∑
i=1

3∑
j=1

(
∂xk

∂Xi

∂xk

∂Xj
− δij

)
dXidXj.

A useful measure of strain is given in terms of the components of the displace-
ment vector u. We can derive such a measure by taking the partial derivative of
the displacement vector, Equation (2.35) with respect to the components of X and
solving for

∂xk

∂Xi
= ∂uk

∂Xi
+ δki (2.38)

and

∂xk

∂Xj
= ∂uk

∂Xj
+ δkj. (2.39)
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Substituting these expressions into Equation (2.37) results in an expression for the
strain in terms of the spatial derivatives of the components of the displacement
vector:

(dx)2 − (dX)2 =
(
∂ui

∂Xj
+ ∂uj

∂Xi
+ ∂uk

∂Xi

∂uk

∂Xj

)
dXidXj. (2.40)

Thus, we can define the Lagrangian or Green’s finite strain tensor

Lij = 1

2

(
∂ui

∂Xj
+ ∂uj

∂Xi
+ ∂uk

∂Xi

∂uk

∂Xj

)
. (2.41)

In a similar fashion, we can derive the Eulerian finite strain tensor

Eij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi
+ ∂uk

∂xi

∂uk

∂xj

)
. (2.42)

The reader should show this as an exercise. If the displacement gradients are small
the product terms can be neglected, and Lij and Eij reduce to the Lagrangian

lij = 1

2

(
∂ui

∂Xj
+ ∂uj

∂Xi

)
, (2.43)

and the Eulerian

εij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (2.44)

infinitesimal strain tensors, respectively. These tensors provide useful measures
of the strain for small deformations (Fung, 1969, p. 98). If the displacements are
small, there will be very little difference between the material and the spatial coor-
dinate systems and hence lij ≈ εij and one need not worry about which coordinate
description to use. The elements of the infinitesimal strain tensor have geometric
interpretations (Fung, 1969, p. 99). For example, the diagonal elements of the tensor
represent extensions along each of the axes, respectively. The off-diagonal elements
represent the change in angle between the originally orthogonal pairs of axes. No
such simple interpretation is possible if the components of strain are not small. On
many occasions we shall be interested in the time derivative of the strain tensors, for
example when dealing with fluids. A useful quantity in fluid mechanics is the rate-
of-deformation tensor, which is simply the time derivative of the strain tensor. In
the case of the Eulerian coordinates, the rate-of-deformation tensor is defined as

ε̇ij = dεij

dt
= 1

2

d

dt

(
∂ui

∂xj
+ ∂uj

∂xi

)
= 1

2

(
∂vi

∂xj
+ ∂vj

∂xi

)
, (2.45)

where vi is the time derivative of ui.
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While the assumption of infinitesimal strain is often applicable, there are situa-
tions in which the strain is significant and we must be mindful of the Lagrangian
and Eulerian coordinate descriptions. For example, in viscoelastic processes there
can be significant flow during the deformation. Therefore, let us revisit the two
coordinate systems and examine how physical properties and their changes are
described. Remember the Lagrangian or material description follows the movement
(position) of a particle, via the function x = x(X, t). When the interest is in the
change of a particular quantity, some care is required in order to produce a useful
measure. For example, one could keep a record of the density of a specific particle
as it winds its way through space. If these values are used to measure the change
in density, then we are considering the material or convective derivative of the
density. There are two different ways to compute the rate of change of a property
of a specific particle. Let us consider this carefully, fixing the particle and denoting
it by X0 = X(x, 0). If we consider Lagrangian specification and use the particle
identity and the time as independent variables, then the total derivative with respect
to time is the same as the partial derivative because time only appears once

dρ(X0, t)

dt
= dρ(X(x, 0), t)

dt
= ∂ρ(X0, t)

∂t
. (2.46)

However, if we consider Eulerian specification in which x and t are the independent
variables, then the density of a specific particle is both an implicit and an explicit
function of time, ρ(x(X0, t), t) and the derivative must account for the change in the
position of the particle as well as for the change in the density of the particle so that

dρ(x(X0, t), t)

dt
= ∂ρ

∂t
+ ∂ρ

∂xi

∂xi

∂t
. (2.47)

Because the identity of the particle is fixed, the spatial position only depends upon
t, x = x(X0, t), and we can write the partial derivative of xi as a total derivative, and
Equation (2.47) becomes

dρ(x(X0, t), t)

dt
= ∂ρ

∂t
+ ∂ρ

∂xi

dxi

dt
, (2.48)

or, in terms of the components of the velocity vector, vi,

dρ(x(X0, t), t)

dt
= ∂ρ

∂t
+ vi

∂ρ

∂xi
= ∂ρ

∂t
+ v · ∇ρ. (2.49)

The derivative given above is known as the material derivative operator of the
density and the second term on the right is called the convective rate of change,
expressing the contribution of the motion of the particle to the rate of change of the
density.
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Figure 2.7 Material derivative in Eulerian coordinates is dρ/dt = lim
�t→0

ρ(x +
�x, t +�t)− ρ(x, t)/�t, while the material derivative in Lagrangian coordinates
is dρ/dt = [ lim

�t→0
ρ(X0, t +�t)− ρ(X0, t)]/�t.

Box 2.3 Physical motivation of the material time derivative

A more physically motivated derivation of the material time derivative (2.49) is
possible if we consider a particle and its motion over a time increment �t
(Figure 2.7). During this time interval the particle will move a distance �x = v�t
where v = dx(X0, t)/dt is the particles velocity vector. The change in density during
the motion is given by

�ρ = ρ(x + v�t, t +�t)− ρ(x, t).

We can expand the first term on the right-hand-side as a Taylor series and, assuming
that �t is small, neglect terms of order (�t)2 and higher:

�ρ = ρ(x, t)+ ∂ρ

∂xi
vi�t + ∂ρ

∂ t
�t − ρ(x, t)

=
[
∂ρ

∂xi
vi + ∂ρ

∂ t

]
�t.

Hence, in the limit as �t approaches zero we have

lim
�t→0

�ρ

�t
= dρ

dt
= ∂ρ

∂ t
+ vi

∂ρ

∂xi
,

producing the result (2.49).

Now consider the time derivative of the position vector for a particle, the velocity
of the particle. We can make use of the definition of the displacement vector,
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Equation (2.35), and the fact that the identity of the particle is fixed and does not
depend on time to write the velocity as

v = d(u + X0)

dt
= du

dt
. (2.50)

As noted above, one can express the velocity vector in terms of Lagrangian or
Eulerian coordinates, depending on our needs. In Lagrangian coordinates, for a
fixed particle denoted by X0, the total derivative is equivalent to the partial deriva-
tive with respect to time

v = du(X0, t)

dt
= ∂u(X0, t)

∂t
. (2.51)

In Eulerian form, the displacement is a function of the spatial location vector x and
the time and hence the velocity vector is given by

vj = duj(x(X0, t), t)

dt
= ∂uj

∂t
+ vi

∂uj

∂xi
(2.52)

an implicit expression for the velocity. As the reader may want to show, similar
considerations apply when computing the acceleration vector components, leading
to the Lagrangian expression

a = ∂2u(X0, t)

∂t2
(2.53)

and, alternatively, the Eulerian expression

aj = ∂vj

∂t
+ vi

∂vj

∂xi
,

or

a = dv
dt

= ∂v
∂t

+ v · ∇v, (2.54)

where ∇v is the matrix of derivatives

∇v =

⎛
⎜⎜⎜⎜⎜⎝

∂v1

∂x1

∂v2

∂x1

∂v3

∂x1
∂v1

∂x2

∂v2

∂x2

∂v3

∂x2
∂v1

∂x3

∂v2

∂x3

∂v3

∂x3

⎞
⎟⎟⎟⎟⎟⎠

known as a dyadic. Note that in Eulerian coordinates the acceleration is non-
linearly related to the velocity due to the deformation. This fact renders the gov-
erning equations of finite deformation, such as the Navier–Stokes equations for
fluid flow, non-linear. Such non-linearity leads to mathematical complexity but also
provides a certain richness to the models, leading to such phenomena as vortices
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and finite-amplitude breaking waves (Chorin and Marsden, 1993). In addition to
derivatives there are integrals of variables, and we shall need to represent such
integrals in the appropriate coordinate systems. For example, we will encounter the
material derivative of volume integrals at several points in this chapter. Instead of
a detailed derivation of the expression for the material derivative of an integral,
we simply present the result, motivated by the plausibility argument in Box 2.4
The reader can either accept the expression or seek a more analytical treatment in a
book on continuum mechanics such as Truesdall (1985). The formal expression for
a material derivative of the integral of a scalar quantity ρ(x, t), such as the density, is

d

dt

∫
V

ρdV =
∫
V

[
∂ρ

∂t
+ ∇ · (ρv)

]
dV

=
∫
V

[
∂ρ

∂t
+ v · ∇ρ + ρ∇ · v

]
dV

=
∫
V

[
dρ

dt
+ ρ∇ · v

]
dV , (2.55)

where we have made use of the definition of the material derivative operator (2.49)
in vector form.

Box 2.4 Plausibility argument for the form of a material derivative
of a volume integral

As motivation, consider the underlying definition of the material derivative of the
integral for the total mass in volume V:

d

dt

∫
V

ρdV = lim
�t→0

1

�t

⎡
⎢⎣∫

V

ρ(x, t +�t)dV −
∫
V0

ρ(x, t)dV

⎤
⎥⎦, (2.56)

where V0 is the volume of integration at time t and V is the volume of integration at a
slightly later time t +�t. We denote the change in volume by �V = V − V0 and
partition the first integral on the right-hand-side in Equation (2.56) into one over the
original volume V0 and another over the change in volume �V

d

dt

∫
V

ρdV = lim
�t→0

1

�t

⎡
⎢⎣∫

V0

ρ(x, t +�t)dV +
∫
�V

ρ(x, t +�t)dV −
∫
V0

ρ(x, t)dV

⎤
⎥⎦

= lim
�t→0

⎡
⎢⎣ 1

�t

∫
V0

{ρ(x, t +�t)− ρ(x, t)}dV + 1

�t

∫
�V

ρ(x, t +�t)dV

⎤
⎥⎦
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=
∫
V0

∂ρ

∂ t
dV + lim

�t→0

1

�t

∫
�V

ρ(x, t +�t)dV.

The last integral on the right-hand-side requires some analysis because as �t
approaches zero the new volume V approaches the initial volume V0 and hence the
volume change �V approaches zero. Because the boundary of the volume is being
deformed by the flow field v, the volume change during the time interval �t for a
surface patch �S is given by

�V = v · n�S�t, (2.57)

where n is the vector normal to the surface element �S. In the limit of �t approaching
zero, the expression for the material derivative of the integral is

d

dt

∫
V

ρdV =
∫
V0

∂ρ

∂ t
dV + lim

�t→0

1

�t

∫
S

ρ(x, t +�t)v · n�tdS

=
∫
V0

∂ρ

∂ t
dV +

∫
S0

ρv · ndS, (2.58)

which, after invoking Gauss’s theorem, may be written as the volume integral

d

dt

∫
V

ρdV =
∫
V0

∂ρ

∂ t
dV +

∫
V0

∇ · (ρv)dV. (2.59)

One interpretation of the formula, particularly Equation (2.59), is that we must
account for the variation in the range of integration which is a function of time, a
generalization of the rule for differentiation under the integral sign.

The material derivative of an integral allows us to express the conservation laws
for an extended body. For example, one can express the conservation of mass, which
states that the mass of an object may be constant, unchanging with time:

d

dt

∫
V

ρdV =
∫
V

[
dρ

dt
+ ρ∇ · v

]
dV = 0.

If we assume that mass conservation holds for each sub-volume of the body, then
the region of integration may be varied arbitrarily. In particular, the integration
volume can be shrunk to lie around any point of the body. Thus, the integrand
[the quantity in brackets in Equation (2.55)] must vanish and the conservation of
mass leads to the equation of continuity for the body:

dρ

dt
+ ρ∇ · v = 0. (2.60)
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Using the definition of the material derivative operator, Equation (2.49) we can
write the equation of continuity as

∂ρ

∂t
+ v · ∇ρ + ρ∇ · v = 0

or

∂ρ

∂t
+ ∇ · (ρv) = 0. (2.61)

We can also use the material derivative of an integral to convert the integral
statement of the conservation of linear momentum, Equation (2.25)

d

dt

∫
V

ρvdV =
∫
V

[∇ · σ + f]dV

into a partial differential equation. Noting again the expression for the material
derivative of an integral, Equation (2.56), we can write this equation as

∫
V

[
∂

∂t
(ρv)+ v · ∇ (ρv)+ (ρv)∇ · v

]
dV =

∫
V

[∇ · σ + f]dV. (2.62)

Because the volume of integration is arbitrary we can assume that this relationship
holds for each point of the volume V . In addition, we expand the time derivative
and the gradient of ρv in (2.62)

v
∂ρ

∂t
+ ρ

∂v
∂t

+ (v · ∇ρ) v + ρv · ∇v + (ρv)∇ · v = ∇ · σ + f.

Regrouping terms, we can write this equation as

v
{
∂ρ

∂t
+ ρ∇ · v + v · ∇ρ

}
+ ρ

{
∂v
∂t

+ v · ∇v
}

= ∇ · σ + f, (2.63)

and note that the terms in the first set of braces vanish by the equation of continuity,
Equation (2.60), and the terms in the second set of braces are just the material
derivative of the velocity vector v. Hence, Equation (2.63) reduces to

ρ
dv
dt

= ∇ · σ + f, (2.64)

a system of partial differential equations known as Cauchy’s equations of motion.
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Constitutive equations revisited: a preview of linear elasticity
and Newtonian viscosity

Before venturing on to the equations governing motion in an elastic medium, the
topic of the next section, let us consider the role of constitutive equations in char-
acterizing a material. A constitutive equation or relation is an equation describing
a property of a material. As one might imagine, there are now thousands of con-
stitutive equations for the many types of materials employed today. Here we will
note two of the classic constitutive equations frequently invoked in the study of
solids and fluids. Earlier, we alluded to the importance of constitutive equations in
reducing the number of unknowns in a set of governing equations. For example, the
conservation of linear momentum leads to Equation (2.64), a set of three coupled
equations in the three unknown components of u and six independent components
of the symmetric stress tensor σ . A constitutive equation relating the stress tensor
to components of the displacement vector would enable us to write Equation (2.64)
entirely in terms of u. In this treatment, we shall most often deal with such stress-
strain constitutive relationships. However, we note that constitutive equations exist
for processes as diverse as heat transfer, electromagnetics, and mass transport.

One early constitutive equation was Hooke’s law, originally derived to describe
the mechanics of an elastic spring in which the stress was linearly proportional to
the strain. It has subsequently been generalized to describe a linear relationship
between the six independent components of the stress tensor σ [remember from the
conservation of angular momentum we saw that the stress tensor is symmetric, see
Equation (2.27)] and the six independent components of the strain tensor ε, such as
the infinitesimal Eulerian strain tensor (2.44),

σij = Cijklεkl = Cijkl
1

2

(
∂uk

∂xl
+ ∂ul

∂xk

)
, (2.65)

where the matrix Cijkl is a tensor of linear elastic moduli that are independent of
stress or strain. After accounting for the symmetry of both the stress and strain
tensors, one finds that there are thirty-six independent linear elastic moduli (Fung,
1969). Because the finite and infinitesimal strain tensors are defined in terms of
the spatial derivatives of the components of the displacement vector [see Equa-
tions (2.42) and (2.44)], substituting Hooke’s law into Equation (2.64). produces
three equations for the three components of u. The linear elastic body is one of
the most useful physical models for the study of materials and one that we shall
employ extensively, starting in the next section. However, there are many other
such mathematical models of materials, and new ones are developed with some
regularity.

Perhaps the most important constitutive relationship for the purposes of this book
is that associated with a fluid. In a Newtonian fluid the shear stress is linearly
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proportional to the rate-of-deformation, the time derivative of the strain, a model for
a viscous liquid. It is based on the idea that the faster one deforms a fluid, the greater
is the required force. The exact constitutive equation, providing an expression for
the stress tensor is

σij = −pδij + Dijklε̇kl, (2.66)

where Dijkl is a tensor of viscosity coefficients characterizing the fluid and p is the
fluid pressure (Fung, 1969). Here the dot signifies the time derivative and εij is
given by Equation (2.44). For a non-viscous or inviscid fluid all components of
Dijkl vanish and Equation (2.66) reduces to

σij = −pδij, (2.67)

an expression noted previously, following Equation (2.20). The negative sign in
expression (2.67) results from our adoption of the convention used in geophysics
in which the traction vector, acting across a surface, has the direction of a force
due to the material on the side to which the normal vector n points (Aki and
Richards, 1980a, p. 13). It should be noted that other constitutive relationships may
be required in reducing a governing equation, such as Equation (2.65), to a form
with a unique solution. For example, the density can depend upon the pressure as
well as the temperature. For an ideal gas, we have

p = RTρ,

where R is a constant and T is the temperature, while for liquid water one often uses

ρ = ρ0eβ(p−p0)

where ρ0, β, and p0 are constants. For a solid, the density is often assumed to be
constant and thus treated as a parameter rather than a variable.

These models are perhaps the simplest possible mathematical abstractions of the
behavior of real solids and liquids. Any real material is likely to deviate somewhat
from these relationships. Fortunately, many solids do behave elastically over a lim-
ited range of stresses and strains. Furthermore, it is often possible to apply the elas-
tic model incrementally over a deformation history, much as one would sub-divide
a non-linear curve into a sequence of approximately linear segments. However,
at some point a material will usually undergo failure and then an elastic model no
longer applies. Even in this case one can try and isolate the non-linear source region
and invoke a source model in that region, treating the rest of the body as elastic
(Backus and Mulcahy, 1976). This step is often taken when modeling an explosion
or earthquake source, for example. As might be imagined, the possible deviations
from elastic behavior are too numerous to describe in our short treatment. Classic



2.4 Elastic deformation 53

examples are brittle failure, which involves fracture, and plastic failure in which the
body yields and experiences unrecoverable deformation (Jaeger et al., 2007).

2.4 Elastic deformation

We now consider a few specific constitutive equations that are useful in model-
ing a wide range of materials. In this section, we will be concerned with elastic
deformation which is a good model for many solid materials undergoing short-
term deformation. By short term we mean a time interval over which the elastic
behavior dominates inelastic behavior, such as flow or fracture, although this time
interval quite possibly may extend to several years. We choose to start with elastic
deformation, because even when studying fluid flow we shall have to consider
elastic behavior. That is because we will be interested in fluids flowing within a
porous solid matrix. It is frequently assumed that the solid matrix behaves elas-
tically while the fluids flow within it. Most elastic deformation can be modeled
assuming infinitesimal strain and neglecting the distinction between the Lagrangian
and Eulerian formulations.

Our goal is to derive an equation, or set of equations, governing the deformation
of a heterogeneous elastic material. We begin with the appropriate conservation
laws, the conservation of mass and the conservation of momentum. Augmenting
these conservation laws with the constitutive equation for an elastic medium pro-
duces the desired governing equations. So let us start with the conservation of mass,
where the total mass contained in our elastic body is given by the integral

m =
∫
V

ρdV.

According to the conservation of mass, the total mass of the system is conserved
during the deformation and so

dm

dt
= d

dt

∫
V

ρdV =
∫
V

[
dρ

dt
+ ρ∇ · v

]
dV = 0, (2.68)

where we have used the formula for the material derivative of an integral,
Equation (2.55). Now Equation (2.68) holds for any portion of the body because
we are not adding or subtracting mass anywhere within our volume V . Thus, the
volume of integration is arbitrary and hence the equation holds point-wise, leading
to the partial differential equation of continuity [see Equation (2.60)]

dρ

dt
+ ρ∇ · v = 0, (2.69)
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a reformulation of the conservation of mass as a differential equation. We can
re-arrange Equation (2.69) to arrive at the expression

1

ρ

dρ

dt
= −∇ · v (2.70)

which relates the fractional change in density to the divergence of the velocity field
associated with the deformation. Noting the definition of the material derivative,
Equation (2.49), we can write the equation of continuity (2.69) entirely in terms of
partial derivatives

∂ρ

∂t
+ ∇ · (ρv) = 0. (2.71)

Next, we invoke the conservation of linear momentum for the volume V , leading to
Cauchy’s equations of motion, derived earlier [Equations (2.62) to (2.64)]:

ρ
dv
dt

= ∇ · σ + f. (2.72)

Equation (2.72) holds regardless of the type of material we are modeling. That is,
the equations are independent of the constitutive equation.

The final step in our derivation incorporates a constitutive equation into
Equation (2.72), reducing it to a solvable system of partial differential equations.
For an elastic model the appropriate constitutive relationship is the generalized
Hooke’s law given previously, in Equation (2.65),

σ = Cε (2.73)

where C is the tensor of elastic moduli. The strain tensor ε could be the Eulerian
finite strain tensor, given by Eij in Equation (2.42), but is more likely to be the
infinitesimal strain tensor

εij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(2.74)

because most work utilizing elasticity involves small strains. When we are
interested in small strains, the material derivative in Equation (2.72), given in
Equation (2.54) is well approximated by the partial derivative with respect to time:

dv
dt

= ∂v
∂t

+ v · ∇v ≈ ∂v
∂t

= ∂2u
∂t2

(2.75)

because the displacements and the gradients of the displacements are small, mean-
ing that the product terms are even smaller and may be neglected.

Substituting the expression (2.74) into the constitutive relationship (2.73) pro-
duces a relationship between the spatial derivatives of the displacement vector
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components and the stress tensor. In index notation we can write an expression
for the components of the infinitesimal elastic stress tensor

σij = 1

2
Cijkl

(
∂uk

∂xl
+ ∂ul

∂xk

)
. (2.76)

Equation (2.76) is appropriate for a fully anisotropic body, characterized by the
entire set of thirty-six independent elastic moduli. In many cases the elastic mate-
rials of interest have a particular symmetry, such as transverse isotropy. For each
specific symmetry one can reduce the number of elastic moduli required to char-
acterize a given material. For an isotropic material, in which the elastic properties
do not depend upon the propagation direction, only two moduli are required to
characterize an elastic body (Fung, 1969; Aki and Richards, 1980a). When the body
is isotropic Equation (2.76) reduces to

σij = λ∇ · uδij + G

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (2.77)

where λ is referred to as Lame’s constant and G is known as the shear modulus
(Figure 2.8). The shear modulus is a measure of the rigidity of the material and,
as the name indicates, is the parameter that most strongly influences the shear
velocity of a material. Be forewarned, there are a large number of material constants
available for describing an elastic body, and each one is useful in a particular context
or laboratory setting. This profusion of moduli becomes even more severe when we
consider poroelasticity. Thus, there are several equivalent pairs of elastic constants
that may be used to state the isotropic constitutive relationship (2.77). An important
parameter for us is the bulk modulus (Turcotte and Schubert, 1982, p. 112)

Kb = λ+ 2

3
G,

Figure 2.8 The shear modulus is defined as the ratio of shear stress (F/S) to the
shear strain (�x/L), or, written explicitly G = FL/S�x.
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relating the pressure p to the fractional volume change

p = Kb
�V

V
(2.78)

that arises when studying the interaction of fluid pressure and solid deformation.
Writing the constitutive equation for an isotropic body (2.77) in terms of the shear
and bulk moduli results in the stress relationship

σij = Kb∇ · uδij + G

[(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2

3
∇ · uδij

]
, (2.79)

a form that appears prominently in studies of poroelastic material. There are a
couple of points to note regarding Equation (2.79). First, we can write it in tensor
or dyadic notation, similar to matrix notation:

σ = Kb (∇ · u) I + G

[
∇u + ∇uT − 2

3
(∇ · u) I

]
,

where

∇u =

⎛
⎜⎜⎜⎜⎜⎝

∂u1

∂x1

∂u2

∂x1

∂u3

∂x1
∂u1

∂x2

∂u2

∂x2

∂u3

∂x2
∂u1

∂x3

∂u2

∂x3

∂u3

∂x3

⎞
⎟⎟⎟⎟⎟⎠ ,

and ∇uT is the transpose of this matrix. Second, if we take the trace of the σ , the
sum of the diagonal elements of the stress matrix [denoted by tr (σ )], the second
term on the right-hand-side vanishes. That is, the quantity in square brackets on the
right-hand-side vanishes because tr (∇u) = tr

(∇uT
) = ∇ · u and tr (I) = 3.

Substituting expression (2.79) into Cauchy’s equation of motion (2.72) results in
a system of partial differential equations for the components of the displacement
vector. After regrouping terms, and assuming small strains so that the approxima-
tion (2.75) may be used, we can write this equation as

ρ
∂2u
∂tt

= G∇2u +
(

Kb − 1

3
G

)
∇∇ · u + ∇

(
Kb − 2

3
G

)
∇ · u + 2∇G · ε + f,

(2.80)

where ε is the infinitesimal strain tensor given in Equation (2.74). The reader may
show this as an exercise.
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2.5 Fluid flow

A derivation of the equations of motion for a fluid would follow the steps taken in
our presentation on elastic deformation. For example, the fluid would be subject to
the equation of continuity and the conservation of linear and angular momentum,
leading to Cauchy’s equations of motion (2.72). For a Newtonian fluid, we would
incorporate the constitutive law (2.66) to derive the equations of motion, called the
Navier–Stokes equations. While the derivation may be straight-forward, the results
are very important. For fluid flow in the natural environment, one cannot typically
assume small strains or even small strain gradients and must deal with a system of
non-linear differential equations. The richness of the phenomena contained in these
equations is truly impressive: solitons, vortices, and finite-amplitude waves are just
three examples (Vallis, 2006). Anyone who has faced the ocean or encountered
severe weather can testify to the power of fluid dynamics.

Our task is complicated by the fact that we are considering flow in a porous
medium. Thus, our fluid will be interacting with an enveloping solid and we are
actually modeling a two-component system. The most accurate approach involves
coupled or simultaneous modeling of all components of the system. In the next
section, we describe this approach in the case of a Newtonian fluid and an elastic
solid, leading to the equations of poroelasticity. In that section we treat the case in
which the porous matrix only plays a minor role in the dynamics of the system. This
approximation allows us to focus primarily upon the fluid, limiting the complexity
of the governing equations. Furthermore, we shall assume that the flow regime is
such that the velocity gradients are small and the non-linear terms in the material
derivative may be ignored. Even with these approximations, the equations can
become quite complicated, particularly when multiple fluids are allowed to flow
simultaneously, leading to multiphase flow. However, we begin with single phase
flow in order to find our footing.

2.5.1 The flow of a single fluid

The literature on fluid flow in a porous medium is vast. Numerous books and
papers describe flow in an idealized medium under a range of conditions. To keep
from getting bogged down in the myriad of possibilities we shall limit ourselves
to the flow of a single homogeneous fluid in a porous medium that behaves rather
passively. One useful mental image is water flowing through a consolidated or semi-
consolidated sand body. Water migrates through the connected pore space, between
the sand grains, in a possibly tortuous path. In keeping with our general approach,
we treat the porous medium as a continuum characterized by spatially varying
properties. For us, the most important attribute of the solid, at least with respect
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to the fluid flow, is the amount of pore space accessible to the fluid. Accessible
space means a greater fluid mass in a given volume. In addition, as we discuss later,
greater pore space typically enhances the ability of the fluid to flow because there is
less solid material blocking its path. The porosity is the percentage of empty space
in a specified volume of the porous medium that may be occupied by the fluid. We
denote porosity by ϕ and define it as the void space volume divided by the sample
volume. Perhaps a more relevant measure is the kinematic porosity, defined as the
ratio of the volume of water able to circulate to the volume of the sample. Note that
the porosity is a spatially varying quantity and may even vary with time if we allow
the porous medium to deform or fill with material.

We can incorporate porosity into our definition of the fluid mass mf contained in
the volume V . In particular, the fluid mass contained in V is given by the density
of the fluid multiplied by the fluid volume. Since the fluid can only occupy the
pore space, the fluid volume is given by the total volume multiplied by the porosity
assuming a fully saturated medium. Thus, an appropriate measure of the fluid mass
is the integral

mf =
∫
V

ϕρf dV, (2.81)

where ρf is the density of the fluid which may, along with the porosity, vary as a
function of position and time. Thus, we may re-state the conservation of mass for a
fluid contained in a porous medium

dmf

dt
= d

dt

∫
V

ϕρf dV =
∫
V

[
d
(
ϕρf
)

dt
+ ϕρf ∇ · v

]
dV = 0, (2.82)

leading to the equation of continuity for the fluid

∂
(
ϕρf
)

∂t
+ ∇ · (ϕρf v) = 0. (2.83)

The equation of continuity is usually written in terms of the filtration velocity
vector

q = ϕv, (2.84)

as explained below, resulting in an expression for the conservation of the mass of
the fluid

∂
(
ϕρf
)

∂t
+ ∇ · (ρf q) = 0. (2.85)

It turns out that we can make considerable headway by simply working with Equa-
tion (2.85) and equations relating the fluid pressure to the fluid density, the filtration
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velocity vector, and the porosity. First, we expand the differentiations of the product
terms in Equation (2.85)

ϕ
∂ρf

∂t
+ ρf

∂ϕ

∂t
+ ρf ∇ · q + ∇ρf · q = 0. (2.86)

Let us then recall the equation-of-state for a slightly compressible fluid, a constitu-
tive law, relating the fluid density to the fluid pressure p

ρf = ρ0eβ(p−p0),

where ρ0, β, and p0 are constants. From this relationship, we can derive expressions
for the temporal and spatial derivatives of the fluid density:

∂ρf

∂t
= ρ0eβ(p−p0)β

∂p

∂t
= ρfβ

∂p

∂t
(2.87)

and

∇ρf = ρ0eβ(p−p0)β∇p = ρfβ∇p. (2.88)

Substituting these expressions into Equation (2.86), we find, after dividing through
by ρf , that

ϕβ
∂p

∂t
+ ∂ϕ

∂t
+ ∇ · q + β∇p · q = 0. (2.89)

Box 2.5 A derivation of Darcy’s law

A classic paper by Hubbert (1940) was the first to demonstrate that Darcy’s law is
equivalent to the Navier–Stokes equations for the conservation of the linear
momentum of a fluid. A fairly simple derivation of Darcy’s law from the conservation
of momentum for a fluid was given by Hart and St. John (1986). The conservation of
linear momentum, Equation (2.64), re-stated here

ρ
d

dt
v = ∇ · σ + f,

describes the balance of forces and the acceleration of a fluid. For a non-viscous, or
otherwise inviscid fluid, the stress tensor is given by [Equation (2.67)],

σij = −pδij,

where p is the pressure. The body forces f acting on a fluid flowing in a porous
medium are the force of gravity g and a force due to the interaction of the fluid with
the walls of the pores, which we denoted by I. Thus, the conservation equation may
be written as

ρ
d

dt
v = −∇p + I − ρg,
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where g is a vector pointing in the direction of the gravitational force. The interaction
force I is commonly written in the form

I = −μ

k
q,

where q is the filtration velocity, μ is the fluid viscosity, and k is the permeability. Due
to the low velocity of fluid flowing in a porous medium, one can often neglect the
inertial term on the left-hand-side of the momentum equation and we have

−∇p − μ

k
q − ρg = 0.

Solving for the velocity q, gives the generalized form of Darcy’s law (containing a
gravitational force):

q = − k

μ
(∇p + ρg) .

Next, we incorporate a relationship between the filtration velocity vector q and
the fluid pressure gradient proposed by Henri Darcy around 1856, the result of his
study of the fountains in the city of Dijon, France. As noted by Whitaker (1969)
and outlined in Box 2.5, Darcy’s law is actually an expression of the conservation
of momentum for the porous medium. Specifically, the general equations for the
conservation of momentum for a Newtonian fluid, the Navier–Stokes equations,
reduce to Darcy’s law under appropriate assumptions.

Neglecting the influence of gravity, Darcy’s law states that the filtration velocity
is proportional to the fluid pressure gradient:

q = − k

μ
∇p, (2.90)

where μ is the fluid viscosity and k is the absolute permeability of the medium,
a measure of the ease with which fluid flows in the porous medium. The absolute
permeability k depends upon both the amount and the spatial distribution of pore
space within the medium. It is particularly sensitive to the connectivity of the pore
space and very much influenced by the pore ‘throats’, those narrow constrictions
acting to impede flow between pores. Darcy’s law (2.90) is analogous to Fourier’s
law relating heat flow to the temperature gradient in a thermally conducting solid.
Substituting Darcy’s law into Equation (2.89) results in

ϕβ
∂p

∂t
+ ∂ϕ

∂t
− ∇ ·

(
k

μ
∇p

)
− βk

μ
∇p · ∇p = 0. (2.91)
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Our final task is to relate changes in porosity (ϕ) to changes in fluid pressure.
This is where the mechanical properties of the porous material comprising the
matrix will be accounted for. While this is a subject that might deserve an entire
chapter, for the sake of simplicity we shall assume an elastic model in which the
change in the pore volume is proportional to a change in the fluid pressure

∂ϕ

∂t
= α

∂p

∂t
, (2.92)

where α is the constant of proportionality. Note that this model includes the situa-
tion in which the porosity does not depend upon the fluid pressure as a special case.
Substituting Equation (2.92) into Equation (2.91) results in an equation governing
the evolution of pressure in the porous medium

Ss
∂p

∂t
− ∇ ·

(
k

μ
∇p

)
− βk

μ
∇p · ∇p = 0, (2.93)

where Ss = ϕβ + α is the specific storage coefficient. This equation is non-linear
because of the dependence of the density and the porosity upon the pressure. The
pressure-dependence of the density, via Equation (2.88), leads to the right-most
term containing the scalar product of the pressure gradient with itself.

There are a few methods by which to simplify, in particular to linearize,
Equation (2.93). First, as we are interested in flow in a porous medium, the veloc-
ities are typically quite low and hence a quadratic term in the velocity magnitude
can usually be safely neglected. Second, we could assume an incompressible fluid
in which the fluid density is constant in both space and time. Then those terms
containing derivatives of the fluid density vanish and we only need to consider the
relationship between the porosity and the fluid pressure. Third, we can assume that
the fluid density is variable in time but less so in space (de Marsily, 1986, p. 108).
Adopting the first approach, neglecting terms of second order in the pressure
gradient magnitude, leads to the following partial differential equation

Ss
∂p

∂t
− ∇ ·

(
k

μ
∇p

)
= 0, (2.94)

a diffusion equation governing the evolution of pressure in the porous medium.
Note that even with these assumptions, Equation (2.94) may still be non-linear due
to the dependence of the storage coefficient (Ss) upon the fluid pressure. Assuming
an incompressible or slightly compressible fluid can produce a linear diffusion
equation for p. In conclusion, as was done for elastic deformation, combining the
conservation of mass and the conservation of momentum (in the form of Darcy’s
Law) with appropriate constitutive laws produces a governing equation, in this case
for fluid pressure. Given sufficient boundary and initial conditions, we can solve
this equation for the evolution of the pressure field.
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Before moving on, we should note that the pressure equation given above may
be also generalized to allow for anisotropic permeability, the presence of a grav-
itational body force, and pressure-dependent flow properties. We may do this by
generalizing Darcy’s law (2.90) to

q = − k
μ
(∇p − ρgz) , (2.95)

where k is the permeability tensor, accounting for the anisotropy, g is the gravita-
tional constant, and z is a vector in the direction of the local gravitational field. One
final complication is introduced when we allow the flow properties, the porosity,
and the absolute permeability to depend on the fluid pressure. We have already
noted that the porosity can change as the fluid pressure changes. Furthermore,
the permeability is often strongly linked to the porosity. Therefore, there may be
situations in which the permeability also depends upon the fluid pressure. This
renders the flow Equation (2.94) non-linear, with the non-linearity depending on
the particular nature of the pressure-dependence of the permeability.

2.5.2 The flow of two or more fluids

Now consider a multi-component fluid, a fluid composed of distinguishable chemi-
cal components. There are two primary situations to treat: miscible and immiscible
flow. In the first case the fluid components are able to mix with one another to
form a single homogeneous phase, while in the second case there are two fluid
phases with a distinct phase boundary and the presence of one phase may impede
the flow of the other(s). We end this section with a general formulation that covers
both miscible and immiscible flow: the compositional approach. In this formulation
phase changes and chemical mixing are allowed between components.

Miscible flow: the advection of passive and active material

In this section, we assume that the flow of one of the chemical components does
not interfere with the flow of the others, or of the fluid as a whole. One canonical
example of this is a chemical tracer that is transported by advection in a flowing
solution. If the tracer concentration is low and of a relatively benign nature, then
its presence does not influence the flow of the advecting fluid. Thus, the problem
uncouples to some degree, and we can model the flow of the total fluid using the
method described previously. Given the details of the flow field of the total fluid,
we can then model the evolution of the tracer as the flow progresses. The tracer will
certainly be subject to advection as it is ‘carried’ along by the fluid. In addition, due
to molecular processes and variations in concentration, the tracer will be subject to
diffusion. Furthermore, small-scale flow variations due to pore-scale heterogeneity
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in the porous medium will introduce dispersion. Other processes are possible, such
as chemical reactions between the advected species and elements of the porous
matrix or chemical elements bound in the pore fluids. Initially, we will neglect such
reactive tracers and focus on non-reactive, or conservative, tracers.

Non-Reactive Chemical Species
For the moment consider a stationary fluid, such as still water. If the fluid con-

tains a distribution of some chemical species, or if we introduce a drop of some
identifiable chemical, the molecules of the chemical will move within the host fluid
due to random molecular motion, a process known as molecular diffusion. If the
distribution of the chemical species was uniform, then molecules moving from one
side of an imaginary planar surface within the fluid to the other side would be
balanced by the movement of molecules in the opposite direction. However, if
there is a variation in the concentration of the chemical species, then there will
be a net migration from regions of high chemical concentration to regions of low
concentration. A higher-concentration gradient leads to a greater imbalance in the
number of molecules on either side of the plane, resulting in a greater flux of
molecules from the region of high concentration to the region of low concentration.
This idea, known as Fick’s law, differs little from that underlying Fourier’s law

for heat flow. For a fluid in motion, this net diffusive migration of material will be
superimposed upon the advection of the chemical species due to the flow of the
aqueous solution.

In addition to molecular diffusion, there is another micro-scale process asso-
ciated with a fluid in motion within a porous matrix, acting to redistribute the
chemical species. This is kinematic dispersion, a mixing of the fluid due to micro-
scopic heterogeneities within the porous medium. The heterogeneities vary from
sub-pore scale to greater than pore scale in length, while remaining smaller than
the averaging volumes used in the continuum modeling. The overall effect of this
random mixing is different from molecular diffusion. That is, there are additional
considerations because the porous medium can have a more complicated structure
than the fluid. Furthermore, the fluid is in motion, leading to a physical anisotropy
with respect to the flow direction. For example, the distribution of porosity can be
anisotropic due to layering, fractures and crystalline structure, while the structure
of the fluid is almost universally isotropic. It should be noted that the dividing
line between kinematic dispersion and advection in a heterogeneous medium is not
always clear cut. In fact, some investigators have defined dispersion for an entire
formation, lumping all the effects due to heterogeneity into kinematic dispersion.
Such global definitions of dispersion can sometimes require more involved models
of mixing than those discussed in this section.
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Let us now derive an equation governing the evolution of a chemical species in
a porous medium. As in the section above, we denote the velocity of the carrier
(usually aqueous) fluid by the flow velocity vector v . The total velocity of the
chemical species α is denoted by vα, and a random component of velocity due to
diffusion and kinematic dispersion, vd. The total velocity of the chemical species is
given by the sum

vα = v + vd. (2.96)

Thus, one may think of the total velocity of the chemical species α as composed
of two components: a component due to advection and a stochastic component due
to molecular diffusion and kinematic dispersion. For the quantitative discussion to
follow we need to define precisely what is meant by the concentration of a chemical
species. The concentration of a chemical species α is the mass of tracer per unit
volume of the solution:

c = mα

V
= ρα

Vα

V
, (2.97)

where ρα is the density of the chemical species and Vα is the volume of the chemical
contained in the volume V of the fluid. The total mass of the chemical species α is
given by the integral

mα =
∫
Vα

ϕkραdVα (2.98)

where ϕk is the kinematic porosity, mentioned in the previous section. Kinematic
porosity is needed in the mass calculation because the chemical species will, for
the most part, only travel to those locations in the porous medium where the fluid
can flow. The integral expression is analogous to the total fluid mass, given above.
Using Equation (2.97), we can write this integral in terms of the total fluid volume
and the concentration

mα =
∫
V

ϕkcdV . (2.99)

Now we invoke the principle of the conservation of mass, in this case being the
mass of the chemical species of interest. Thus, the mass given by the integral mα is
a constant and

dmα

dt
= d

dt

∫
V

ϕkcdV =
∫
V

[
ϕk
∂c

∂t
+ ∇ · (ϕkcvα)

]
dV = 0, (2.100)

where we have assumed that the porosity does not change with time. This is an
acceptable assumption for most tracer transport which tends to occur under steady-
state, or time invariant, flow conditions. Note that the the integration volume is to
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some degree arbitrary. Hence, the integrand must vanish, leading to a differential
equation for c. We can re-phrase the last equality in terms of the vector qα = ϕkvα as

ϕk
∂c

∂t
+ ∇ · (cqα) = 0, (2.101)

and make use of the decomposition (2.96) to write the equation of continuity as

ϕk
∂c

∂t
+ ∇ · (cq + cqd) = 0, (2.102)

where the filtration velocity vectors correspond to the partition given in
Equation (2.96).

As noted at the beginning of this section, the flow velocity vector for the total
fluid, and hence the vector q, is found by solving the pressure Equation (2.93).
The vector qd, which now represents both the diffusive and dispersive velocities,
requires additional treatment. As noted above, molecular diffusion induces flow
from regions of higher concentration to regions of lower concentration, similar to
heat flow. Thus, it should not come as a surprise that the diffusive flux is governed
by an equation similar to that of Fourier for heat flow. In particular, Lightfoot and
Cussler (1965) have shown that the most general linear relationship between mass
movement and concentration gradients is given by Fick’s law, in which case the flux
is proportional to the concentration gradient. Fick’s law was also found to govern
the dispersive flux due to sub-scale heterogeneity (Taylor, 1953). Thus, the vector
qd is related to the concentration via the equation

cqd = −D∇c, (2.103)

where D is the dispersion matrix accounting for both molecular diffusion and
small-scale dispersion of the chemical species. Both the idea and nomenclature
were introduced by Scheidegger (1954). Even in an isotropic porous medium
the dispersion matrix is anisotropic because dispersion in the direction of flow
(longitudinal dispersion) generally differs from dispersion in the direction
perpendicular to flow (transverse dispersion) (Nikolaevskii, 1959; Bear, 1961;
Scheidegger, 1961). The coefficients of the dispersion matrix generally depend
upon the flow velocity vector q (Scheidegger, 1957). Initially, the dispersion
matrix was assumed to be symmetric (Scheidegger, 1961), based upon a simple
argument involving reversibility. However, the asymmetry of D was demonstrated
by Koch and Brady (1987) and later verified by Auriault et al. (2010). Carbonell
and Whitaker (1983) noted that only the symmetric component of the dispersion
tensor influences the transport if the medium is uniform, a possible explanation of
the earlier suggestions of symmetry.
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Substituting (2.103) into the equation of continuity (2.102), we derive a govern-
ing equation for the evolution of the tracer

ϕk
∂c

∂t
− ∇ · (D∇c)+ ∇ · (cq) = 0, (2.104)

which is an equation that can represent both diffusive behavior and wave-like
behavior, depending upon the values of the coefficients. For example, if the
coefficients of the dispersion matrix are sufficiently small that we can neglect
the second term in (2.104) which then reduces to

ϕk
∂c

∂t
+ ∇ · (cq) = 0, (2.105)

being a hyperbolic partial differential equation representing non-dispersive tracer
propagation, similar in nature to a propagating wave.

Box 2.6 A concentration-dependent flow field

As an aside, consider the situation in which the concentration of each chemical species
actually influences the total flow field. For example, the amount of a chemical may be
sufficiently large so that the fluid density is a function of its concentration. In order to
model the movement of the chemical species, we must solve the coupled equations:

ϕ
∂ρf

∂ t
+ ρf

∂ϕ

∂ t
+ ρf ∇ · q + ∇ρf · q = 0, (2.106)

and

ϕk
∂c

∂ t
− ∇ · (D∇c)+ ∇ · (cq) = 0,

subject to the dependence of the fluid density on the concentration

ρf = ρ(c). (2.107)

The interaction of a saline fluid and fresh water is one example of such coupled flow.
Dissolved carbon dioxide in water is another example of coupled flow. However, in
such cases the viscosity is also influenced by the concentration of the chemical
species.

Reactive Chemical Species
In addition to diffusion and dispersion, there is the possibility that the chemi-

cal species will interact with the porous medium itself. Chemical processes such
as acid-base, oxidation-reduction, precipitation-dissolution, adsorption-desorption,
and ionic reactions are several classes of such interactions. Furthermore, there are
also radioactive and biological reactions to consider. The entire suite of reactions
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may be represented by including a generic term S in Equation (2.104) representing
the addition or removal of the chemical species α,

ϕk
∂c

∂t
+ S = ∇ · (D∇c)− ∇ · (cq) . (2.108)

Chemical Adsorption and Desorption
Often, some of the chemical species may attach to the minerals making up the

solid matrix of the porous medium. We define a mass fraction, representing the
mass of the chemical species adsorbed per unit mass of solid matrix. The total mass
of solid in a unit volume of the matrix is

msolid = (1 − ϕ) ρs. (2.109)

The source term represents the change in the mass of the chemical over time and is
thus given by

S = ∂ [(1 − ϕ) ρsF]

∂t
= (1 − ϕ) ρs

∂F

∂t
, (2.110)

where F is the mass concentration, representing the mass of substance adsorbed
per unit mass of solid. In Equation (2.110), we are assuming that the porosity and
solid density do not change with time. This approach must be modified if a sufficient
number of molecules attach themselves to the solid matrix so as to modify the
porosity or the density of the matrix. Substituting (2.110) into Equation (2.108)
produces

ϕk
∂c

∂t
+ (1 − ϕ) ρs

∂F

∂t
= ∇ · (D∇c)− ∇ · (cq) . (2.111)

The nature of the adsorption is determined by the relationship between the mass
fraction adsorbed per unit mass and the concentration of the chemical species. If
we assume that the relationship between these quantities is linear then, at a fixed
temperature,

F = Kdic, (2.112)

where the proportionality coefficient, Kdi, is known as the distribution coefficient.
The linear relationship assumes that the adsorption is both reversible, and instan-
taneous. Because the linear relationship holds at a fixed temperature, it is referred
to as a linear absorption isotherm or simply as a linear isotherm. Combining the
relationship (2.112) with the governing Equation (2.111), we can write

[ϕk + (1 − ϕ) ρsKdi]
∂c

∂t
= ∇ · (D∇c)− ∇ · (cq) , (2.113)
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or

ϕkR
∂c

∂t
= ∇ · (D∇c)− ∇ · (cq) , (2.114)

where we have defined the retardation factor due to adsorption

R = 1 + 1 − ϕ

ϕk
ρsKdi. (2.115)

Thus, the chemical adsorption has an effect on the coefficient of the time deriva-
tive in Equation (2.114), modifying both the arrival time and the amplitude of a
propagating pulse of the chemical species.

As might be expected, in addition to the linear adsorption isotherm, a host of
non-linear relationships between F and c have been proposed. We shall just mention
some of the more commonly used formulas:

F = K1c − K2c2

known as the isotherm of second degree, as well as Langmuir’s isotherm:

F = K1c

1 + K2c
,

Freundlich’s isotherm:

F = K1c
1
n ,

and the exponential isotherm:

c = K1FeK2F.

These relationships will produce non-linear partial differential equations governing
the concentration of the chemical species.

Up to this point we have not distinguished between the mobile pore fluid and the
fluid which adheres to the pore walls and is therefore immobile. This distinction can
be important, particularly when dealing with fluid recovery such as oil extraction
or the clean-up of a contaminant. Furthermore, the ‘immobile’ fluid fraction can
sometimes be induced to move by the introduction of specially designed fluids
called surfactants or other types of fluids. To state the problem precisely, let us
recall the kinematic porosity ϕk, the pore space occupied by the mobile fluid, and
the total porosity ϕ. Furthermore, let ci denote the concentration of the immobile
fraction. The equation governing the distribution of the chemical species is given
by the following modification of Equation (2.111)

ϕk
∂c

∂t
+ (ϕ − ϕk)

∂ci

∂t
+ (1 − ϕ) ρs

∂F

∂t
= ∇ · (D∇c)− ∇ · (cq) , (2.116)
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which contains an additional term [the second term on the left-hand-side] related to
the change in concentration within the immobile fraction of the fluid. Assuming a
linear adsorption isotherm, F = Kdic, and a linear relationship between the concen-
tration in the mobile and immobile phases, ci = Kic, we can write Equation (2.116)
as a single equation for c

ϕkRi
∂c

∂t
= ∇ · (D∇c)− ∇ · (cq) , (2.117)

where we have defined the modified retardation factor

Ri = 1 + ϕ − ϕk

ϕk
Ki + 1 − ϕ

ϕk
ρsKdi (2.118)

that accounts for the change in concentration in the immobile fraction as well as the
adsorption onto the solid matrix.

Radioactive decay:
In some instances the chemical species may be subject to radioactive decay. This

is particularly true of some types of tracers for which the radioactivity aids in the
detection and monitoring. The law governing radioactive decay is well established
and the rate of change in the concentration of the substance is proportional to the
current concentration

∂c

∂t
= −λc, (2.119)

where λ is a decay constant related to the time it takes for half of the material to
decay, the half-life, T1/2,

λ = ln 2

T1/2
.

Substituting the expression for radioactive decay (2.119), after being multiplied by
the kinematic porosity, for the term S in Equation (2.108) results in the governing
equation for a radioactive tracer:

ϕk

(
∂c

∂t
+ λc

)
= ∇ · (D∇c)− ∇ · (cq) . (2.120)

If there is adsorption as well as radioactivity, then the concentration in the adsorbed
phase will also be subject to radioactive decay and hence

∂F

∂t
= −λF. (2.121)
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Combining this effect with Equation (2.111) gives the radioactive equivalent to
Equation (2.111)

ϕ

(
∂c

∂t
+ λc

)
+ (1 − ϕ) ρs

(
∂F

∂t
+ λF

)
= ∇ · (D∇c)− ∇ · (cq) . (2.122)

For a linear adsorption isotherm, Equation (2.122) may be written as a linear partial
differential equation for the concentration

ϕR
∂c

∂t
+ ϕRλc = ∇ · (D∇c)− ∇ · (cq) , (2.123)

where R is the retardation factor defined above [Equation (2.118)].

Biological Activity:
Biological reactions can often be modeled in the same fashion as radioactive

decay (de Marsily, 1986). However, there is the additional possibility of growth in
a biological community.

Multiphase flow of immiscible fluids

Now we consider the simultaneous flow of a number of fluids that are immisci-
ble, that is, the constituent fluids are insoluble and remain distinct as they flow.
Because the fluids cannot mix and must remain distinct, we encounter a new type
of behavior where one fluid can block the flow of another, much like the grains of
the solid matrix can prevent flow. This leads to the idea of relative permeability, a
permeability multiplier that depends upon the saturation of a particular phase. Such
a notion renders the governing equations for multiphase flow non-linear because the
presence or absence of a phase can influence the nature of the flow of that phase.
If the presence of one fluid phase, such as oil, can block the flow of another, say
water, then it is important to keep track of the relative percentages of each phase.
Thus, we need to consider the volumetric saturation of each fluid:

Si = pore volume occupied by fluid i

total pore volume
. (2.124)

The volumetric saturation of each phase is an important factor, controlling the
‘ease’ with which each fluid flows through the porous medium. Furthermore, the
saturation of liquids and gases of interest (water, various hydrocarbons, carbon
dioxide, etc.) can have important economic and environmental implications.
Because the fluids must fill the pore space completely, the saturations must sum to
unity ∑

i

Si = 1,

where the summation is over all of the fluid phases.
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As in the case of a single fluid, we can consider the various laws governing
the flow of each particular phase. The governing principles are the same as those
discussed above: the conservation of mass, the conservation of momentum, some
type of constitutive relationship or an equation-of-state. In addition, we will need
to consider fluid pressure differences between the various phases and the constraint
that the total fluid volume cannot exceed the total pore volume. The conservation
principles must now reflect variations in the saturation of each phase within the
pores. For example, the conservation of mass for the ith phase, as expressed by the
continuity equation, given by

∂ (ϕρiSi)

∂t
+ ∇ · (ρiqi) = 0, (2.125)

is similar to Equation (2.85), being the continuity equation for a single fluid. One
difference from single phase flow is the presence of the saturation of the ith phase,
Si, which reflects the fraction of the phase present in the pore space. Note that the
saturation can vary as a function of time as well as a function of space. Another
difference between multiphase and single phase flow is implicit in Equation (2.90),
contained within the filtration velocity vector qi. Specifically, the filtration velocity
vector is related to the fluid pressure gradient of the ith phase via a multiphase
generalization of Darcy’s law:

qi = −ki(Si)

μi
∇pi, (2.126)

where ki(Si) is the intrinsic permeability for fluid i, a quantity that is proportional
to the absolute permeability, k, associated with the porous medium

ki(Si) = kri(Si) · k. (2.127)

The proportionality factor kri(Si) is known as the relative permeability. If we use
the more general definition of qi, given by Equation (2.95), we have

qi = −ki(Si)

μi
(∇pi − ρigz) , (2.128)

where

ki(Si) = kri(Si)k. (2.129)

We reiterate that the above relationships (2.126) and (2.128), two generalizations of
Darcy’s law for multiphase flow, are a consequence of the conservation of momen-
tum, reductions of the full Navier–Stokes equations (Whitaker, 1969). For each
liquid and/or gas we will have an equation-of-state relating the fluid density of a
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particular phase to the fluid pressure associated with that phase. For example, the
relationship between density and pressure given by

ρf = ρ0eβ(p−p0) (2.130)

is commonly used for water. Note that the fluid pressure associated with the various
phases can differ. In particular, there can be a discontinuity in pressure across the
interface separating two immiscible fluids. As noted by Bear (1972), the behavior
of the interface between the fluids is similar to that of a stretched membrane and the
curvature of the interface is related to the pressure differential pc

ij between phase i
and phase j,

pc
ij(S) = pi − pj, (2.131)

known as the capillary pressure. Specifically, the radius of curvature of the inter-
face, r, is related to the capillary pressure via the relationship

pc
ij = 2σij

r
, (2.132)

where σij is the surface tension between phase i and phase j. Capillary pressure
is a function of the saturation of the two phases and the capillary pressure curves
are typically determined experimentally. The capillary pressure curve can display
hysteresis and the values for an increase in a phase differ from the values asso-
ciated with a decrease in the phase. Substituting Darcy’s law, for example Equa-
tion (2.128), into the continuity Equation (2.125) produces

∂ (ϕρiSi)

∂t
+ ∇ ·

[
ρi

kri

μi
k (∇pi + ρigz)

]
= 0, (2.133)

which is subject to the capillary pressure constraint (2.131) and the fact that the
saturations of the phases sum to unity∑

Si = 1. (2.134)

The ratio of the relative permeability to the fluid viscosity,

λi = kri(Si)

μi
, (2.135)

is known as the relative phase mobility, or simply the mobility of the fluid
phase i. Even with all the simplifications involved in producing the system of
Equations (2.133), such as the reduction of the Navier–Stokes equations to Darcy’s
law, these equations can still be rather difficult to solve. One difficulty is the non-
linearity due to the dependence of the relative permeability upon the saturation Si.
Furthermore, as discussed above, for compressible flow the density may also
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depend upon the pressure, introducing additional non-linearity. The equations for
multiphase flow (2.133) are most frequently solved using numerical techniques.

Mass transfer between phases: the compositional approach

In the previous sections we assumed that the phases retained their identities
throughout the flow process. However, there are situations in which a chemical
component can transform from one phase into another. For example, given
particular changes in temperature and/or pressure, water can vaporize to produce
a gaseous phase. Or, a gaseous hydrocarbon or carbon dioxide can dissolve into a
fluid hydrocarbon oil phase. Thus, each distinct chemical species can exist in one
of a number of phases depending upon the pertinent flow conditions. Needless to
say, such conversions between phases complicates the bookkeeping associated with
mass conservation and increases the number of conservation equations. However,
these complications are essential for correctly modeling important processes such
as three-phase oil-water-gas flow.

At this stage, because we are not going to consider chemical reactions, the
basic quantities being conserved are the distinct chemical species, that we label as
chemical components. We assume that the k-th chemical component can exist in NP

possible phases. Note that the term ‘phase’ does not simply mean the solid, liquid,
or gas in the pore space. Rather, it means a quantity that flows as a homogeneous
material. For example, there may be a water phase (w) as well as an oil phase
(o), both of which are liquids. Furthermore, the liquid phase may also contain
dissolved gasses, components that are essentially ‘hidden’ in a particular phase.
Under certain conditions these dissolved components might exsolve and move into
one of the gas phases. Consider a system of NC distinct chemical components that
can be distributed over the NP phases. Let Ck

i denote the mass or mole fraction of
component k in phase i. Let Si denote the saturation of phase i contained in the
surrounding pore space. The mass fractions and the saturations are the fundamental
dependent variables in the conservation equations. Because the phases are assumed
to fill the pore space, the saturations must sum to unity:

NP∑
i=1

Si = 1. (2.136)

Similarly, the mole fractions of the components in each phase must add up to unity,
introducing the requirement that

NC∑
k=1

Ck
i = 1. (2.137)
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As the compositional formulation contains the miscible and immiscible flow
problems as special cases, one would expect it to contain elements of each
approach. For example, since the chemical components can diffuse through the
various phases we expect that the velocity of each chemical species in each phase,
denoted by vk

i , to be the sum of an average flow velocity of the phase, vi and
a random component rk

i due to the diffusion, as was the case for the flow of a
miscible fluid. We considered such a decomposition, in which the total velocity of
component k is,

vk
i = vi + rk

i , (2.138)

as in our treatment of the flow of an miscible fluid [see Equation (2.96)]. There are
also elements of immiscible flow that must be taken into account. In particular, we
shall require the idea of relative permeability in which the presence or absence of
one phase can influence the flow of another [see Equation (2.127)]. We will also
need to account for possible differences in fluid pressure in each phase, giving rise
to capillary pressure [see Equation (2.131)]. Thus, in addition to the conservation
equation derived below, we shall also need constitutive equations in the form of
relative permeability curves, capillary pressure curves, and equations-of-state for
the densities.

The total mass in a component k is obtained by adding up all the mass fractions
from each phase. For the sake of illustration, we shall assume two phases: a gas,
denoted by g, and a liquid, denoted by l. The total mass in component k is given by
the mole fraction of k in each phase weighted by the mass of each phase (porosity ×
density × saturation)

mk =
∫
V

ϕ
[
ρlSlC

k
l + ρgSgCk

g

]
dV,

and the conservation of the mass of component k requires that mk is constant:

dmk

dt
= d

dt

∫
V

ϕ
[
ρlSlC

k
l + ρgSgCk

g

]
dV = 0. (2.139)

When fluid is injected or withdrawn the mass of a particular component k may
increase or decrease, at a rate of Qk. Thus, the rate of change of mk is given by

dmk

dt
= d

dt

∫
V

ϕ
[
ρlSlC

k
l + ρgSgCk

g

]
dV =

∫
V

QkdV . (2.140)

Making use of the definition of the material derivative of an integral (2.59), keeping
in mind that the component k in each phase may move with a distinct velocity vk

i ,
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given by Equation (2.138), we derive an equation for the conservation of mass of
the component k, ∫

V

[
∂Mk

∂t
+ ∇ · (qk

l + qk
g

)]
dV =

∫
V

QkdV, (2.141)

where we have defined the quantities

Mk = ϕ
[
ρlSlC

k
l + ρgSgCk

g

]
, (2.142)

being the mass per unit volume of component k, and

qk
l = ϕρlC

k
l vk

l , (2.143)

qk
g = ϕρgCk

gvk
g, (2.144)

being the flux vectors for the liquid and gas phases, respectively. Note that the
vectors qk

l and qk
g are multiphase generalizations of the filtration vector defined

previously [see Equation (2.84)]. Deriving Equation (2.141) from Equation (2.140)
is left as an exercise. Because we can vary the integration volume arbitrarily, the
integrands must vanish, resulting in the differential equation

∂Mk

∂t
+ ∇ · (qk

l + qk
g

) = Qk, (2.145)

a conservation or mass balance equation.
We have yet to invoke the other major conservation law: the conservation of

linear momentum. Doing so will provide an expression for the component vi of the
total velocity vector (2.138). Remember that vi denotes the average velocity of
phase i. As noted above, for most situations involving fluid flow within a porous
medium, the flow velocities of the various phases are slow enough that we can
neglect inertial terms. Similarly, product terms in the convective derivative are
also small and can be safely ignored. Under these conditions, the Navier–Stokes
equation, representing the conservation of linear momentum for phase i, reduces
to a multicomponent variant of Darcy’s law, producing an expression for the flow
velocity of the phase i

vi = −kkri

ϕμi
(∇pi − ρigz) , (2.146)

being similar in form to the generalization of Darcy’s law for multiphase flow [see
Equations (2.128) and (2.129)]. The other component of vk

i , that is rk
i , represent-

ing molecular diffusion and small-scale dispersion of the component k within the
phase i, is given by Fick’s law, as discussed in the section on the flow of miscible
flow [see the discussion surrounding Equation (2.103)]. Briefly, the diffusive and
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dispersive flux is driven by the concentration gradient of the component k within
the phase i. The exact expression

Ck
i rk

i = −ρi

ϕ
Dk

i ∇Ck
i , (2.147)

where Dk
i is the dispersion tensor, is similar to the expression (2.103). Combining

the various expressions results in an equation for each component. These equa-
tions are augmented by the constraints (2.136) and (2.137), as well as the relative
permeability curves, the capillary pressure curves, and the equations-of-state for
the density. In addition, initial and boundary conditions are incorporated into the
approach for solving the resulting governing equations.

2.6 Coupled deformation and fluid flow

2.6.1 General considerations

Now we present a more comprehensive treatment of fluid flow in a deformable
matrix. Whereas in the previous section, we assumed that the deformation of the
porous matrix played only a minor role in the fluid flow, here both the deformation
of the matrix and the flow of a viscous fluid are on an equal footing. In contrast
to our earlier constitutive models, heterogeneity is a fundamental aspect of the
modeling. That is, rather than a single uniform behavior for the entire material,
our model must account for two very different behaviors: that of the fluid and that
of the solid (Coussy, 2010). While the constitutive equations for the component
materials may be well established, (e.g. a Newtonian fluid) the aggregate behavior
of the composite will depend upon other attributes. Specifically, the behavior of the
composite material will not only depend on the nature of the individual components
but also on the nature of the interaction of these components.

It is best to study the interaction of the individual components at the microscopic
scale, modeling the movement of a fluid through the pore space between the solid
grains. At that scale, one can use the well-established model of a viscous liquid
for the fluid, and an appropriate constitutive model, such as an elastic solid, for the
matrix. One must then average over sub-volumes to derive governing equations for
the composite material. The importance of this choice has long been recognized,
and there are several methods for scaling up from the microscopic to the macro-
scopic scale, each involving some form of averaging of the microscopic equations.

Currently, three main approaches have been followed in deriving the larger-scale
continuum equations. Volume averaging (Bear et al., 1984; Pride et al., 1992;
Tuncay and Corapcioglu, 1997) is one straight-forward approach, based upon a
theorem for averaging the gradient operator (Slattery, 1968, 1981). However, the
averaged equations require an additional closure relationship in order to form a
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complete system. A second approach, based upon the two-space method, some-
times called the method of multiple scales (Levy, 1979; Auriault, 1980; Burridge
and Keller, 1981), presents the governing equations in terms of large and small
scales and invokes averaging as part of the derivation. Having two scales leads to
more complicated intermediate equations, as compared to the averaging
method. A third approach, called mixture theory, also known as the theory of
interacting continua (Garg, 1971; Morland, 1972; Drumheller, 1978; Truesdell,
1985; Berryman, 1986; Berryman et al., 1988; Santos et al., 1990; Lo et al., 2002;
Voyiadjis and Song, 2006), assumes that the various phases (solid, fluid, etc) can be
overlapping, that is, existing everywhere in the medium, and also interacting. One
problem with mixture theory is that the specific forms of the interaction terms are
not always known and must be derived by some other means, such as averaging.

In this exposition we adopt mixture theory as a means to produce governing
equations for coupled deformation and flow. In order to keep the arguments short,
we will take a somewhat heuristic approach, and we shall present just what is
needed to derive the governing equations. In mixture theory it is assumed that each
component is present in any given volume of material (Truesdell, 1962, 1985). For
example, if we take a one cubic centimeter sample of a water saturated sand, it will
contain a large number of sand grains and some significant volume of water. In this
approach the exact nature of the microstructural boundary between the solid and
the fluid is not treated explicitly. Rather, the microstructure is included implicitly,
in the form of interaction terms. One advantage of an approach based on mixture
theory is that our derivation of the governing equations can be related to our earlier
discussions on elastic deformation and fluid flow, though in an intuitive and non-
rigourous manner. In particular, we can base our derivations on the conservation
principles for mass and momentum.

In order to illustrate the main ideas, we shall first consider the basic conservation
principles for the flow of a fluid through a generic solid, obeying an unspecified
constitutive law. Because we are considering two materials interacting across an
interface, our previous approach must be modified. Following this, we shall con-
sider two specific materials: an elastic matrix and a viscous fluid.

A single fluid phase

As a first step, consider the flow of a single fluid through a solid matrix. The
fluid is assumed to fill the pore space completely. The volume fraction of the
material occupied by the pore volume is denoted by the porosity ϕ. Quantities
associated with the fluid are denoted by a subscript f , while those associated with
the solid are denoted by a subscript s. For example, we denote the displacement
of the solid matrix by the vector us and the displacement of the fluid by a distinct
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vector uf . The velocity components of the solid and fluid, the time derivatives of
the displacements, are denoted by dots over the respective variables: u̇s and u̇f . In
this section u̇f is the velocity vector defined in Equation (2.84) written in terms of
the time derivative of the fluid displacement.

As in our previous treatments of homogeneous solids and liquids, let us begin by
considering the conservation of mass. We stipulate that the total mass (solid plus
fluid) in a given volume is conserved if the system is isolated:

d
(
ms + mf

)
dt

= d

dt

∫
V

[
(1 − ϕ) ρs + ϕρf

]
dV = 0.

Because the volume of integration is the total volume, V , we scale the integration
by the volume fraction of each material. For the fluid we scale by the porosity, ϕ,
this being the fraction of the volume containing the fluid. Following the procedure
outlined by Equation (2.55) to derive the equation of continuity, we can transform
the derivative of the total mass integral, and the condition that the total mass is
constant becomes

∫
V

[
d
(
ϕρf
)

dt
+ ϕρf ∇ · u̇f

]
dV +

∫
V

[
d (1 − ϕ) ρs

dt
+ (1 − ϕ) ρs∇ · u̇s

]
dV

= 0.

As noted in the box below, if there is no mass transfer across the interface between
the two constituents, then there is no explicit coupling between fluid and solid terms
and each of the integrals vanishes separately. Thus, we have a conservation law for
the fluid mass (mf ), stated mathematically as [see Equation (2.82), remembering
that u̇f is just another representation of v],

dmf

dt
= d

dt

∫
V

ϕρf dV =
∫
V

[
d
(
ϕρf
)

dt
+ ϕρf ∇ · u̇f

]
dV = 0, (2.148)

and a conservation law for the solid mass (ms) given by

dms

dt
= d

dt

∫
V

(1 − ϕ) ρsdV =
∫
V

[
d (1 − ϕ) ρs

dt
+ (1 − ϕ) ρs∇ · u̇s

]
dV = 0.

(2.149)
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Because the integration volume can be varied, in particular one can shrink it down
to a very small volume around any point of interest, we have equations of continuity
for both the fluid and solid components:

∂
(
ϕρf

)
∂t

+ ∇ · (ϕρf u̇f
) = 0, (2.150)

∂ (1 − ϕ) ρs

∂t
+ ∇ · [(1 − ϕ) ρsu̇s] = 0, (2.151)

where we have used the definition of the the total derivative as illustrated by Equa-
tion (2.49).

Box 2.7 The making of an interaction term

In the theory of mixtures each component may be present in a region, however small,
about any point in the medium. Let us see what this means for our conservation laws.
In particular, let us consider the conservation of linear moment for a porous medium
containing a fluid. At any point in the medium the total momentum is related to the
sum of the imposed forces according to Newton’s law [see Equation (2.25)]. The
conservation of total linear momentum is given by

d

dt

∫
V

[
(1 − ϕ) ρsu̇s + ϕρf u̇f

]
dV

=
∫
V

{
(1 − ϕ) [∇ · σs + fs] + ϕ

[∇ · σf + ff
]}

dV,

which can be re-arranged to give

d

dt

∫
V

(1 − ϕ) ρsu̇sdV −
∫
V

(1 − ϕ) [∇ · σs + fs] dV

+ d

dt

∫
V

ϕρf u̇f dV −
∫
V

ϕ
[∇ · σf + ff

]
dV = 0.

While the sum on the left-hand-side of this equation vanishes, the terms associated
with the fluid and the solid do not sum to zero separately. Rather, because forces can
act across boundaries, the subset of terms associated with each material can be
non-zero and we may write

d

dt

∫
V

(1 − ϕ) ρsu̇sdV −
∫
V

(1 − ϕ) [∇ · σs + fs] dV =
∫
V

dsdV
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and

d

dt

∫
V

ϕρf u̇f dV −
∫
V

ϕ
[∇ · σf + ff

]
dV =

∫
V

df dV ,

where ds = −df in order to be consistent with the conservation of total linear
momentum . Let us denote df simply as d. The variable d represents a momentum
transfer or interaction term that we can incorporate into the theory. Note that this
quantity is, as yet, unconstrained and we must resort to other means, such as
averaging, in order to estimate it. The same principle holds for the conservation of
mass. However, because there is no transfer of mass across the internal boundary
separating the two constituents, the interaction terms vanish and the sets of terms for
each component may be set to zero, leading to Equations (2.148) and (2.149).

Next, consider the conservation of linear momentum for the solid and fluid com-
ponents, as given by Equation (2.25). As noted in Box 2.7, when forces can act
across boundaries, one component can interact with another and we must include
momentum transfer terms ds and df in the conservation equations. The conservation
of linear momentum for the fluid is given by

d

dt

∫
V

ϕρf u̇f dV −
∫
V

ϕ
[∇ · σf + ff

]
dV =

∫
V

df dV, (2.152)

where the subscript f signifies quantities associated with the fluid. A similar equa-
tion also holds for the solid phase, but in this case we scale by the solid volume
fraction, 1 − ϕ,

d

dt

∫
V

(1 − ϕ) ρsu̇sdV −
∫
V

(1 − ϕ) [∇ · σs + fs] dV =
∫
V

dsdV (2.153)

with the requirement that df = −ds = d. Evaluating the derivative of the integrals
in Equations (2.152) and (2.153) and making use of the equations of continuity
(2.150) and (2.151), as was also done above for Equation (2.63), we arrive at the
equations of motion

ϕρf

{
∂u̇f

∂t
+ u̇f · ∇u̇f

}
= ϕ∇ · σf + ϕff + d, (2.154)

(1 − ϕ) ρs

{
∂u̇s

∂t
+ u̇s · ∇u̇s

}
= (1 − ϕ)∇ · σs + (1 − ϕ) fs − d. (2.155)

Though we have successfully derived useful conservation laws for mass and
momentum, there is still an issue of the coupling between the fluid and the solid.
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We do not yet have an expression for the interaction variable d in terms of the
solid and fluid displacements or their derivatives. Because we are not discussing
specific material models in this section, only a few general comments are in order.
The coupling between the fluid and solid occurs in two places in the conservation
of momentum Equations (2.154) and (2.155). There are explicit contributions to df

and ds that couple the fluid and solid momentum. The primary contribution is due to
the viscous dissipation induced by the relative motion of the solid and fluid and the
relative acceleration between the solid and the fluid. Considering the momentum
balance for an inviscid fluid as it flows through a solid matrix, Garg (1971), Pride
et al. (1992), Tuncay and Corapcioglu (1997) and Wilmanski (2006), among others,
produced expressions for the coupling force

df = −ds = ϕμf

k

(
u̇f − u̇s

)
, (2.156)

where μf is the fluid viscosity and k is the permeability. The coupling term
d = df is a dissipative force due in part to the relative motion of the solid
and fluid and it makes physical sense that it should contain a term depending
upon the time derivative of the relative displacement. Equation (2.156) is similar
to Darcy’s law and is related to the physics of laminar flow that dominates in
many applications. The implications of expression (2.156) are actually much more
complicated than its simple form suggests. The source of the complexity is the
frequency-dependence of the drag forces. In particular, it has been pointed out
(Johnson et al., 1987) that there is a distinction between high and low frequency
behavior, depending upon the thickness of the viscous skin depth of the flow
with respect to pore size. The permeability k is generally taken to be frequency
dependent (Johnson et al., 1987; Pride et al., 1992, 1993) and referred to as the
dynamic permeability k(ω).

It is worth spending a little time discussing the nature of the dynamic permeabil-
ity, particularly its frequency dependence, because it does impact the explicit form
of the governing equations and differences in formulation may lead to some confu-
sion. In Box 2.8 we attempt to provide some insight into the nature of the dynamic
permeability, following the approach of Johnson et al. (1987). There we describe
what is sometimes referred to as a branching-function approach (Müller et al.,
2010), where exact high- and low-frequency limits are honored, while imposing a
causality principle and a simple functional form to connect the limits. This approach
has been extended and applied to consider the impact of patchy-saturation and
mesoscopic heterogeneity on the frequency-dependence of poroelastic coefficients
(Pride et al., 2004). Because of the frequency dependence, the coefficient in the
expression (2.156) is actually a integrodifferential operator that is applied to the
difference

(
u̇f − u̇s

)
.
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Box 2.8 Dynamic permeability and tortuosity

The thought experiment that expresses our thinking on this topic was developed in
Johnson et al. (1987). The test involves the application of a sinusoidal macroscopic
pressure gradient, ∇Peiωt, to a large sample of porous material where ∇P is constant.
The medium is characterized by its porosity ϕ and by a measure of the ease of flow,
such as the permeability k, while the fluid is characterized by its viscosity (μf ) and
density (ρf ). The pressure gradient is postulated to give rise to a macroscopically
averaged fluid velocity v = u̇f . The amplitude of the oscillation is assumed to be
small enough that the fluid response is linearly related to the pressure gradient at any
given frequency:

v = −k(ω)

ϕμf
∇Peiωt,

which is just Darcy’s law, and similarly for the time derivative of v

∂v
∂ t

= − 1

ρf ν(ω)
∇Peiωt,

where k(ω) is the ‘dynamic permeability’ and ν(ω) is the ‘dynamic tortuosity’. Due
to the sinusoidal nature of the pressure gradient and the linear relationship at a given
frequency, we can assume that v also varies in a sinusoidal fashion, and at the same
frequency, so that

∂v
∂ t

= iωv

and ν(ω) and k(ω) are related:

k(ω) = 1

ω

iμfϕ

ρf ν(ω)
.

Based on some reasonable assumptions, Johnson et al. (1987) derive approximate
forms for ν(ω) and k(ω). The basic concepts underlying the approach are causality,
and the low- and high-frequency limits of the function. To be consistent with
causality, k(ω) must be analytic (have no branch points or poles) for ω in the upper
half of the complex plane. Correspondingly, ν(ω) has no zeros in this region. The
transition from low- to high-frequency behavior is determined by skin depth of the
viscous fluid flow, δ, given by

δ =
√

2μf

ρfω
,

and its size relative to the characteristic diameter of the pores in the medium.
In the low-frequency regime, as ω approaches zero, the dynamic permeability must

approach the static permeability of the medium, ko:

lim
ω→0

k(ω) = ko
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and, because of the relationship between k(ω) and ν(ω) given above, it follows that

lim
ω→0

ν(ω) = 1

ω

iμfϕ

ρf ko
.

In the high-frequency limit the skin depth becomes much smaller than the
characteristic pore size and the boundary layer associated with the flow becomes quite
small. Outside of the narrow boundary layer, the flow is well approximated by the
flow of an ideal fluid and Johnson et al. (1987) argue that

lim
ω→∞ ν(ω) = ν∞ + β∞√−iω

,

where ν∞ and β∞ are real-valued and independent of the frequency. For their model
of dynamic tortuosity Johnson et al. (1987) consider a function of the general form

ν(ω) = ν∞ + iμfϕ

ωkoρf
F(ω),

where F(ω) is chosen so that the high- and low-frequency limits are honored.
In particular, they note that limω→0 F(ω) = 1, and

lim
ω→∞ F(ω) = 2koν∞

�ϕ

√
−iωρf

μf

leading to the following simple model for F(ω)

F(ω) =
√

1 − 4ν2∞k2
oρf

μf�2ϕ2 iω,

with the corresponding expression

ν(ω) = ν∞ + iμfϕ

ωkoρf

√
1 − 4ν2∞k2

oρf

μf�2ϕ2 iω,

for the dynamic tortuosity. The one parameter that we have not yet discussed is �,
twice the ratio of the weighted pore volume to the weighted surface area (Johnson
et al., 1987). Using the relationship between dynamic tortuosity and dynamic
permeability given above, we can develop an expression for k(ω),

1

k(ω)
= 1

ko

[√
1 − i

ω

ωc
�− i

ω

ωc

]
.

In order to keep the expression compact, we have defined the pore geometry term �

� = 4
ν∞ko

�2ϕ
,
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and the transition frequency, ωc, signifying the crossover from viscous dominated
flow to flow dominated by inertial forces,

ωc = μf ϕ

ρf ν∞ko
.

It was pointed out that the expression generally fits values from both experimental
(Charlaix et al., 1988) and numerical modeling (Zhou and Sheng, 1989) except at low
frequencies, ω < ωc, where the imaginary part generally under-estimates the true
value, sometimes by as much as 90 percent. The discrepancy is particularly
pronounced when the slope of the channel wall is steep in the throat region. Pride et
al. (1993) present a modified expression based upon the physical principle that the
drag force is primarily due to two mechanisms:

d = dform + dfriction,

including a form factor, dform, due to convergent, divergent, or tortuous flow channels
and a frictional effect, dfriction, due to friction drag that is most evident in the smallest
pores. Pride et al. (1993) show that this model provides an improved fit to values from
an analytical solution of a variable-width pore model.

An additional coupling between the fluid and the solid is contained in the expres-
sion for the fluid and solid stresses, σf and σs, respectively. While the exact form of
this coupling will depend upon the particular constitutive equations, as well as the
nature of the solid material, we can make some general comments: the most basic
observation is that, as a fluid-filled porous material deforms, the induce pressure
changes can cause the fluid to migrate. This phenomena was elucidated early on by
Karl Terzaghi (1943) in relation to the settling of a structure located on a saturated
soil. Terzaghi developed the fundamental concept of effective stress. For a soil
with incompressible grains the effective stress is the difference between the applied
stress and the fluid pressure (Wang, 2000, p. 9). Any sudden loading of a fluid-
saturated soil is initially borne by both the porous matrix and the fluid itself. As the
fluid migrates from the region, due to the corresponding fluid pressure increase, the
load is gradually shifted to the solid matrix. In terms of the total stress tensor σs,
the effective stress tensor, σ̄s, is given by

σ̄s = σs + αpf I, (2.157)

where α is a constant that was introduced by others, pf is the fluid pressure and
I is the identity matrix. This concept was also adopted by Biot in his insightful
analysis of three-dimensional consolidation (Biot, 1941) and in his later study of
wave propagation in a poroelastic medium (Biot, 1956a,b), which both still hold up
today. We shall have more to say about poroelasticity in the sections that follow.
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Within the context of poroelasticity the parameter α is known as the Biot–Willis
coefficient. α represents the ratio of added fluid volume to the change in bulk
volume under the constraint that the pore pressure is constant (Wang, 2000, p. 22).

Multiple fluid phases

Now consider the flow of multiple fluids through a deformable porous solid. For
illustration we consider two fluid phases, which we designate as liquid (l) and gas
(g). The fluid phases move through a porous, or solid (s), matrix. The most general
approach would be a compositional formulation in which we track the various
chemical components as they flow though the pore space [see Equations (2.139) to
(2.145)]. However, such an approach requires additional bookkeeping that conflicts
with our goal of keeping the exposition as simple as possible. Therefore, we illus-
trate the approach for the flow of just two immiscible fluid phases, in this case a
liquid phase and a gas phase. Though there are multiple constituents, the basic
principles, the conservation of mass and the conservation of linear momentum, still
apply. Furthermore, concepts from mixture theory, such as momentum transfer or
interaction terms, can also be incorporated into a formulation involving multiple
fluids.

First consider the conservation of mass for each of the phases (solid, liquid, and
gas). The fluid phases (liquid and gas) are assumed to occupy the pore space, char-
acterized by the porosity (ϕ). The remaining fraction of the volume is composed
of the solid matrix. The liquid fraction of the fluid is indicated by the saturation Sl.
The fraction of gas is given by the gas saturation Sg. The two fluids completely fill
the pore space and, as a consequence, we have Sl + Sg = 1. If we denote the liquid
saturation by Sl = S, then the gas saturation is given by Sg = 1 − S. Because there
are two fluid phases there will be two fluid displacement vectors, denoted by ul

(liquid) and ug (gas). As in the case of a single fluid, we begin with the conservation
of the total mass:

d
(
ml + mg + ms

)
dt

= d

dt

∫
V

[
ϕSlρl + ϕSgρg + (1 − ϕ) ρs

]
dV = 0,

and assume that there is no transfer of mass between the phases (i.e., no phase
changes). For multiphase flow this is not always the case and we may actually have
mass transfers between fluid phases. In such cases we must modify the approach
to include fluid-fluid interaction terms. We will neglect mass transfers across phase
boundaries, so that the mass of each fluid in the system is conserved independently,
leading to

dml

dt
= d

dt

∫
V

ϕSlρldV = 0, (2.158)
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for the liquid and

dmg

dt
= d

dt

∫
V

ϕSgρgdV = 0, (2.159)

for the gas, if there are no sources or sinks. In the presence of a source or a sink
we would have non-zero source terms on the right-hand-sides of Equations (2.158)
and (2.159). In order to keep the expressions compact, especially in the presence
of multiple fluid phases, we write the conservation equations for the liquid and the
gas as a single indexed equation

dmp

dt
= d

dt

∫
V

ϕSpρpdV = 0, (2.160)

where p = l, g for the liquid and gas, respectively. Now consider the equation for
the solid, occupying the remaining 1 − ϕ fraction of the volume. The statement of
the conservation of the solid mass (ms), of density ρs, is

dms

dt
= d

dt

∫
V

(1 − ϕ) ρsdV = 0. (2.161)

We can use the expression for the material derivative of an integral, as given by
Equation (2.55), and the fact that the volume of integration is arbitrary, to express
the conservation of mass for the system (liquid, gas, and solid) as three differential
equations

∂
(
ϕSpρp

)
∂t

+ ∇ · (ϕSpρpu̇p

) = 0, (2.162)

∂ (1 − ϕ) ρs

∂t
+ ∇ · [(1 − ϕ) ρsu̇s] = 0, (2.163)

where p = l, g.
Another set of conservation equations are those for the linear momentum of

each phase. As in the previous section, we must account for the fact that forces
can act across phase boundaries, resulting in interactions between constituents.
We therefore incorporate momentum transfer or interaction terms that lead to the
possibility that, due to such interactions, we may have a source of momentum. The
resulting conservation of linear momentum for the two components of the fluid is
expressed as

d

dt

∫
V

ϕρpSpu̇pdV =
∫
V

ϕ
[∇ · σp + fp

]
dV +

∫
V

dpdV, (2.164)
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where p = l, g, while for the solid we have

d

dt

∫
V

(1 − ϕ) ρsu̇sdV =
∫
V

(1 − ϕ) [∇ · σs + fs]dV +
∫
V

dsdV, (2.165)

where dg + dl + ds = 0 [see Box 2.7]. Using the definition of the material derivative
of an integral, incorporating the continuity equations [which are Equations (2.162)
and (2.163)], and using the fact that the volume of integration is arbitrary, we can
derive the set of governing differential equations

ϕSpρp

{
∂u̇p

∂t
+ u̇p · ∇u̇p

}
= ϕ∇ · σp + ϕfp + dp, (2.166)

(1 − ϕ) ρs

{
∂u̇s

∂t
+ u̇s · ∇u̇s

}
= (1 − ϕ)∇ · σs + (1 − ϕ) fs + ds, (2.167)

the multiphase equivalents of Cauchy’s equations of motion [see the derivation
associated with Equation (2.64)]. The reader can fill in the remaining steps as an
exercise.

The conservation equations provide the basis for a set of governing differential
equations that may be solved for solid and fluid displacements. However, the issue
of the coupling between the various components, that is among the liquid, the
gas, and the solid, still remains. As noted previously, in the discussion associated
with Equation (2.156), the coupling occurs in the interaction terms dp and ds in
Equations (2.166) and (2.167). Phase coupling also occurs in the expressions for
the stress: σp and σs. We have already pointed out that one drawback of mixture
theory is that the form of the coupling terms must generally be derived using
other approaches, such as the method of averaging. For frequencies low enough
that Darcy flow dominates, for frequencies below about 104 Hz in consolidated
sediments, the coupling in the interaction terms dp, p = l, g, and ds is primarily
due to the viscous drag resulting from the relative motion between the phases (Biot,
1956a,b; Garg and Nayfeh, 1986). Thus, there are terms proportional to the velocity
of the fluid and gas relative to the velocity of the solid: u̇l − u̇s and u̇g − u̇s, and a
term proportional to the velocity of the gas relative to the velocity of fluid: u̇g − u̇l.
Hence, the coupling terms in the body force vectors are assumed to be of the general
form

dl = −Dls (u̇l − u̇s)+ Dgl
(
u̇g − u̇l

)
, (2.168)

dg = −Dgs
(
u̇g − u̇s

)− Dgl
(
u̇g − u̇l

)
, (2.169)

and

ds = Dls (u̇l − u̇s)+ Dgs
(
u̇g − u̇s

)
, (2.170)
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where, as in the case of a single fluid phase, Dls, Dgs, and Dgl might be frequency
dependent [see the discussion following Equation (2.156)] and also might depend
upon capillary pressure in the most general case. The interaction terms given above
satisfy the condition dg + dl + ds = 0 that is required in order to conserve the
total linear momentum of the system. The frequency dependence of these coeffi-
cients allows for higher-order derivatives because multiplying (dividing) by ω in
the frequency domain is equivalent to differentiating (integrating) with respect to
time.

The second source of coupling between the fluids in the pores and the solid
matrix is via the stress tensors for the solid, σs and the fluids σp for p = l, g. We can
generalize the idea of effective stress, formulated by Terzaghi (1943) for single-
phase flow, to the simultaneous flow of multiple fluids. Recall that the effective
stress is the stress acting on the solid grains of the porous matrix. The total stress is
composed of the sum of the effective stress and pressure in the fluid. When there are
two or more fluids within the pores, each fluid may have a distinct pressure due to
capillary effects [see Equation (2.131)]. For a given imaginary planar surface cut-
ting through the porous medium, the total pressure will be the pressure transmitted
through the grains, the effective pressure, σ̄ij plus the pressure transmitted through
the fluids. Because, by convention, the stress in a solid is normally taken to be
positive in tension, while the fluid pressure is designated positive in compression,
there is a sign difference. Hence, the total stress is given by

σs = σ̄s − αpf I, (2.171)

as given above, in Equation (2.157). The total fluid pressure is the weighted sum of
the pressure in each fluid phase. For the liquid and gas mixture under consideration,
neither of which can support shear stress, the total stress is given by

σs = σ̄s − α
(
χlpl + χgpg

)
I, (2.172)

where χp are the weights. Bishop and Blight (1963) have shown that there is a
direct linear relationship between the weighting χp and the fluid saturation Sp, in
fact χp = Sp is one common approximation. Thus, Equation (2.172) may also be
written

σs = σ̄s − α
(
Slpl + Sgpg

)
I. (2.173)

This quantity is substituted for the solid stress σs in Equation (2.167) to determine
the coupling. Equations (2.166) and (2.167), along with the appropriate constitu-
tive equations and equations-of-state, form the elementary equations governing the
displacements in the fluid and in the solid matrix.
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2.6.2 Coupled elastic deformation and fluid flow: poroelasticity

Now we consider the case in which the solid matrix behaves elastically. The fluid
permeating the pores is assumed to behave as a viscous liquid. Some of the earliest
treatments of this topic were Kosten and Zwikker (1941), Frenkel (1944), and the
well known work of Biot (1956a,b, 1962b,a) [see de Boer (2000) for a compre-
hensive history]. Their work was concerned with the coupled deformation and flow
of an elastic porous matrix saturated with a single fluid phase. We now start with
this case and later generalize the formulation to allow for multiple fluids. In an
effort to avoid additional complications, we only consider isotropic media. Thus,
the stress-strain relationship has a form similar to Equation (2.77) or (2.79). For an
anisotropic body one may also generalize the more complicated relationship (2.76)
to allow for the presence of one or more fluids.

A single fluid phase

We begin by considering the constitutive equations at play in the poroelastic
medium. First, consider the behavior of the fluid saturating the solid. The fluid
does not support shear stresses and the stress in the fluid is dominated by the fluid
pressure. Therefore, the fluid stress is typically assumed to be of the form

σf = −pf I (2.174)

where I is the identity matrix. The interaction of the fluid with the matrix, giving rise
to viscous forces, is accounted for via the coupling force df [see Equation (2.156)].

Next, we derive the stress tensor for the fluid-saturated porous matrix. As a
prelude, consider the solid matrix in isolation, drained of all fluid. An imaginary
plane through a volume of the matrix can be subject to the stresses transmitted
through the grains of the matrix. Thus, the stress in the volume will be the effective
stress, that is the stress experienced by the matrix. Because we are assuming that
the solid matrix deforms as an elastic body, the stress-strain relationship for an
isotropic material is given by Equation (2.79), written in tensor or dyadic notation:

σ̄s = Kd (∇ · us) I + G

[
∇us + ∇uT

s − 2

3
(∇ · us) I

]
, (2.175)

which relates the stress tensor for the solid matrix, being the effective stress tensor
σ̄s, to the spatial derivatives of the displacement of the solid matrix, us. We have
switched notation here, replacing the bulk modulus Kb with Kd to denote the drained
bulk modulus that we describe shortly. Recall that the trace of the quantity in square
brackets vanishes. Also note that we have adopted a linear elastic constitutive model
for the porous matrix. This choice is not the only possible model of elasticity, there
are also non-linear elastic models as well, but they would take us too far afield.
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Now consider the impact of a pore fluid on the deformation. The underlying
idea is that of Terzaghi (1943) concerning effective stress and the role of the pore
fluid in supporting the load on a porous matrix. Terzaghi formulated his idea for a
general, not necessarily elastic, porous medium subject to one-dimensional loading.
The idea was extended to three-dimensions by Biot (1941) for an elastic porous
medium. From Equation (2.157), we observe that the total stress σs is

σs = σ̄s − αpf I, (2.176)

being a sum of the effective stress and the fluid pressure, the negative sign is due
to the different sign convention of compressive stress for the matrix and for the
fluid. Thus, if we also incorporate Equation (2.175), the full expression for the total
stress is

σs = Kd (∇ · us) I + G

[
∇us + ∇uT

s − 2

3
(∇ · us) I

]
− αpf I. (2.177)

The constitutive Equations (2.174) and (2.177) state the stress tensors in terms
of the solid and fluid displacements and in terms of the fluid pressure pf . It is
advantageous to express the stress tensors entirely in terms of the solid and fluid
displacements or their derivatives. In order to do so, we revisit the early work of
Biot (1941). Taking the trace (the sum of the diagonal elements) of the matrices
comprising each side of Equation (2.177), noting that the trace of the quantity in
square brackets vanishes, produces the scalar expression

Pc = αpf − Kd∇ · us, (2.178)

where we have defined the confining pressure,

Pc = −σ11 + σ22 + σ33

3
, (2.179)

representing the average total pressure acting upon a sample [recall that the trace of
I is 3]. Equation (2.178) is one of the two constitutive equations introduced by Biot
(1941)) in his formulation of three-dimensional poroelasticity (Wang, 2000, p. 17).
The other constitutive equation postulated by Biot is associated with the increment
of fluid content, ζ , being a measure of the relative change in fluid content, and
given by

ζ = −∇ · w, (2.180)

where w is the motion of the fluid, relative to that of the solid weighted by the
porosity of the material

w = ϕ
(
uf − us

)
. (2.181)
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Note that

ζ = − [∇ · ϕuf − ∇ · ϕus
]

,

represents the difference between the divergence of the vector fields ϕuf and ϕus.
Biot postulated that the increment of fluid content was linearly related to the con-
fining pressure (Pc) and the fluid pressure (pf ). The exact relationship is given by
(Wang, 2000, p. 35)

ζ = − α

Kd
Pc + α

KdB
pf , (2.182)

where B is Skempton’s coefficient which can be defined as the ratio of pore pres-
sure to confining pressure under undrained conditions, that is:

B = pf

Pc
(2.183)

when no fluid is allowed to enter or leave a sample (ζ = 0). Rewriting
Equations (2.178) and (2.182) as two equations in Pc and pf , produces the system

∇ · us = − 1

Kd
Pc + α

Kd
pf , (2.184)

∇ · w = α

Kd
Pc − α

KdB
pf , (2.185)

that one can solve for Pc and pf in terms of ∇ · us and ∇ · w :

Pc = −Ku∇ · us − KuB∇ · w, (2.186)

pf = −KuB∇ · us − KuB

α
∇ · w, (2.187)

where Ku is the undrained bulk modulus

Ku = Kd

1 − αB
. (2.188)

Under undrained conditions the fluid content of the sample is constant, no fluid
enters or leaves the sample (Rice and Cleary, 1976). This is one of the canonical
states of the porous material that is often simulated in experiments in order to esti-
mate some of the parameters that characterize the medium [see Box 2.9]. Drained
conditions are also commonly invoked when discussing a porous material. In this
state fluid may freely enter or leave the sample, but the fluid pressure is required to
remain constant. At various times we may encounter drained or undrained moduli,
characterized by these two conditions. Let us take a moment to point out the impor-
tance of the product αB in Equation (2.188). As noted by Zimmerman (2000), this
product is a poroelastic coupling parameter that indicates if one can safely neglect
geomechanical effects when computing fluid pressure variations. In particular, if the
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product αB is small, then one may neglect the coupling between the deformation of
the solid matrix and fluid pressure changes. It is clear from Equation (2.188) that
Ku and Kd are virtually identical when αB � 1.

Equations (2.186) and (2.187) allow us to express both the confining pressure
and the fluid pressure in terms of the solid and fluid displacements. Thus, one
may formulate a complete set of governing equations solely in terms of the solid
and fluid displacements. We are now in a position to combine all the elements
discussed above to produce a set of governing equations. The equations of motion
for a fluid within a porous matrix, Equations (2.154) and (2.155), together with the
expressions for the coupling forces (2.156), give

ϕρf

{
∂u̇f

∂t
+ u̇f · ∇u̇f

}
− ρc

∂ẇ
∂t

= ϕ∇ · σf , (2.189)

(1 − ϕ) ρs

{
∂u̇s

∂t
+ u̇s · ∇u̇s

}
+ ρc

∂ẇ
∂t

= (1 − ϕ)∇ · σs,

where

ρc = ρfϕ
μf

k

is the coefficient for the interaction, or coupling, term and we are neglecting body
forces f in this section.

Box 2.9 The nature of the essential poroelastic coefficients

Up to this point we have encountered a fair number of coefficients and we will
introduce a few more before we are through. This bounty of poroelastic constants can
be bewildering to those encountering the theory for the first time. Therefore, it is
reassuring to know that only three incompressibilities are required to characterize an
isotropic porous elastic body. This can be clearly seen in the system of
Equations (2.186) and (2.187),

Pc = −Ku∇ · us − KuB∇ · w,

pf = −KuB∇ · us − KuB

α
∇ · w,

relating the system pressures, Pc, pf , to the divergences the vector fields us and w.
Here, the essential coefficients are the undrained bulk modulus Ku, Skempton’s
coefficient B, and the Biot–Willis coefficient α, introduced after Equation (2.157).
However, the three parameters that are perhaps the easiest to define are the undrained
bulk modulus, the drained bulk modulus, and Skempton’s coefficient. The coefficients
Ku and Kd, being the undrained and drained bulk moduli, relate changes in the
confining pressure, δPc, to fractional volume changes, δV/Vo, under different
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boundary conditions: no change in fluid content and no change in fluid pressure,
respectively. Skempton’s coefficient, B, relates changes in fluid pressure to changes in
confining pressure for the case in which the fluid content does not vary.
The three coefficients, Ku, Kd, and B are relatively straight-forward to determine
experimentally. For Ku, one measures δPc and δV/Vo when the fluid content of the
sample is fixed:

Ku = −
(

δPc

δV/Vo

)
∇·w=0

.

To measure Ku one increments the confining pressure by δPc and measures the change
in volume. To estimate Kd, the external or confining pressure Pc is changed and then
the fluid content of the sample is adjusted to bring pf back to its initial value,

Kd = −
(

δPc

δV/Vo

)
δpf =0

.

The resulting volume change is then measured and the ratio computed. Skempton’s
coefficient is determined by incrementing Pc by an amount δPc and then controlling
pf so that no fluid enters of leaves the sample:

B = −
(
δpf

δPc

)
∇·w=0

.

The change in fluid pressure δpf required to ensure that the fluid content is constant is
used to compute Skempton’s coefficient B.

The stresses and pressures may now be written in terms of the spatial derivatives
of the solid and fluid displacements. In the last page or so we have taken a few
turns in defining various coefficients. In Box 2.9 we follow Pride (2005) and find
an essential set of coefficients that can easily be related to both thought experiments
and actual laboratory measurements.

Before moving on to the case of multiple fluid phases, we can clean things up
a bit, defining a couple of well-known coefficients and presenting an abbreviated
form for σs. As a start, consider the constitutive equation for the fluid stress σf , of
the form (2.174)

σf = −pf I, (2.190)

because an inviscid fluid does not support shear stress. An expression for pf in terms
of the spatial derivatives of us and w is provided by Equation (2.187)

pf = −C∇ · us − M∇ · w, (2.191)

where we have defined the modulus

C = KuB, (2.192)
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associated with the coupling between the fluid pressure and the elastic deformation
of the solid matrix, referred to as Biot’s coupling modulus, and the fluid-storage
coefficient (Pride, 2005)

M = C

α
= KuB

α
, (2.193)

representing the amount of fluid that can accumulate in a sample at constant volume
(Wang, 2000).

The constitutive expression for the solid component, given by Equation (2.177),
can be written in a form that is only slightly more complicated then the constitutive
equation for the fluid stress, Equation (2.190):

σs = −PcI + τ ,

where Pc is given by (2.186) which we may rewrite in terms of C

Pc = −Ku∇ · us − C∇ · w, (2.194)

and

τ = G

[
∇us + ∇uT

s − 2

3
(∇ · us) I

]
(2.195)

is the contribution to the solid stress due to the (elastic) shear strain. Note that
the first term in the expression for σs only contains elements on the diagonal of
the stress matrix while the second term has a vanishing trace. As a result of the
vanishing trace, the quantity τ is known as the deviatoric stress tensor.

Typically, the non-linear terms in Equations (2.189), u̇f · ∇u̇f and u̇s · ∇u̇s, are
only significant in a confined region of the medium. For example, such terms may
be large near an energetic source, such as an explosion, a vibrational source on soft
ground, or near a well subjected to a high flow rate. Alternatively, there may be
regions of failure due to inelastic collapse or shear failure in a volume of weakness
within the medium. In such regions the assumptions underlying the adoption of an
elastic constitutive relation are often violated, for example the use of the infinites-
imal strain tensor, and thus the region is best modeled by a more comprehensive
approach. However, the non-linear effects tend to decay rapidly with distance from
the source and may be neglected outside of a volume immediately surrounding the
source or failure zone. While it is quite common to neglect the non-linear terms in
Equations (2.189), one can also re-arrange these equations, moving the non-linear
terms to the right-hand-side:

ϕρf
∂u̇f

∂t
− ρc

∂ẇ
∂t

= ϕ∇ · σf − ϕρf u̇f · ∇u̇f

(1 − ϕ) ρs
∂u̇s

∂t
+ ρc

∂ẇ
∂t

= (1 − ϕ)∇ · σs − (1 − ϕ) ρsu̇s · ∇u̇s (2.196)



2.6 Coupled deformation and fluid flow 95

and treat them as source terms. In fact it is not unusual to construct an equivalent
elastic source by simply ‘cutting out’ the non-linear region and placing equivalent
boundary stresses and/or displacements on the surface of the cut volume. This
approach leads to ideas such as source moment tensors and has proven to be pow-
erful in fields such as earthquake seismology (Backus and Mulcahy, 1976). For the
remainder of this section, we assume that the source is far away, or that the source
may be treated as a boundary condition. In this case the pair of Equations (2.196)
may be written as

ϕρf
∂u̇f

∂t
− ρc

∂ẇ
∂t

= ϕ∇ · σf , (2.197)

(1 − ϕ) ρs
∂u̇s

∂t
+ ρc

∂ẇ
∂t

= (1 − ϕ)∇ · σs. (2.198)

These are the basic governing equations for a poroelastic medium containing a
single fluid phase, first advanced by Biot (1956a,b). Equations (2.197) and (2.198)
may be re-arranged in various ways (Burridge and Keller, 1981; Pride et al., 1992;
Lo et al., 2002; Wilmanski, 2006) depending on the desired form. For example,
φρf ∂u̇s/∂t may be added and subtracted from Equation (2.197) to write it entirely
in terms of w and us:

ϕρf
∂u̇s

∂t
+ ρl

∂ẇ
∂t

= ϕ∇ · σf , (2.199)

where

ρl = ϕρf − ρc. (2.200)

We also obtain a commonly encountered version of the pair of Equations (2.197)
and (2.198) by adding Equations (2.197) and (2.198), producing the system

ϕρf
∂u̇s

∂t
+ ρl

∂ẇ
∂t

= ϕ∇ · σf , (2.201)

ρw
∂u̇s

∂t
+ ϕρf

∂ẇ
∂t

= (1 − ϕ)∇ · σs + ϕ∇ · σf , (2.202)

where we have defined the weighted density

ρw = (1 − ϕ)ρs + ϕρf . (2.203)

While there are situations for which the derivatives of ẇ may be neglected, due to
the gradual nature of fluid flow, it is important to retain them for full generality. The
derivative terms are crucial for the generation of the Biot fast waves, analogous to
an elastic wave. Furthermore, there are situations in which the propagation of a fluid
front may lead to inelastic behavior and the rapid collapse of the matrix, generating
elastic waves.
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Box 2.10 Gassmann’s equations

We have settled on the essential constants necessary to specify a poroelastic material,
such as Ku, B, and α, or the triple Ku, Kd and B. In Box 2.9 we even noted the basic
steps required to determine the latter three coefficients in the laboratory. However,
laboratory experiments are not always feasible and it can be difficult to acquire an
intact sample from a deep formation. Furthermore, we should like to know how the
poroelastic coefficients change as the fluid saturation varies or for different lithologies.
Therefore, it is useful to relate the poroelastic coefficients directly to the properties of
the constituent fluids and the solid matrix. In this area, the work of Gassmann (1951b)
stands out as a seminal contribution. Gassmann (1951b) derived an expression for the
bulk modulus of a fluid saturated porous material, Ks, and Skemption’s coefficient B
in terms of the bulk moduli of the constituent solid grains (Kg), the bulk moduli of the
fluid (Kf ), the bulk modulus of the dry frame (Kd), and the porosity of the material (φ):

Ks = Kd +
(
1 − Kd/Kg

)2
φ/Kf + (1 − φ) /Kg + Kd/K2

g
,

and

B = 1/Kd − 1/Ks

1/Kd − 1/Ks + ϕ
(
1/Kf − 1/Ks

) .

The technique was developed for the study of waves propagating through a packing of
spheres, a model for a material such as a gravel or sand, or even a sandstone
(Gassmann, 1951a). The result generally holds for disturbances with wavelengths
much longer than the size of the pores and for a porous frame composed of a single
mineral. Furthermore, in Gassmann’s work, the fluid does not influence the shear
modulus of the poroelastic material. For the most part, the material constants in these
formulas, in particular the bulk modulus of the solid grains and of the fluid, and the
porosity are known or can be estimated from available data.

The main difficulty in applying Gassmann’s formulas is obtaining the dry frame
bulk modulus Kd and shear modulus G. There are numerous theoretical models for
estimating these frame moduli, summarized in Berryman (1995) and Mavko et al.
(1998). In many practical settings well logs or core samples are used to try and
estimate the moduli for formations of interest. The results of Gassmann have been
generalized in a number of ways since their publication. For example, Berryman and
Milton (1991) have shown how to calculate effective bulk moduli for a porous
medium containing two constituents.

Multiple fluid phases

Now we move on to the case in which two or more fluids are present in a deformable
elastic porous medium. While the basic conservation principles (mass and momen-
tum) are the same, there are important differences to note; for example, due the
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movement of the fluid phases and aspects of multiphase flow such as relative per-
meability and capillary pressure, the governing equations are fundamentally non-
linear. This is true even for a poroelastic medium. Many non-numerical studies,
focusing on wave propagation, linearize the problem by assuming that the given
saturation changes, relative to some background saturation distribution (S0), are
small. This assumption is not generally true in problems involving significant flow,
as saturation changes can be large and rather widespread.

The essential conservation laws are the conservation of mass of the fluid and
solid components [also see Equation (2.162) and (2.163)]

∂
(
ϕSpρp

)
∂t

+ ∇ · (ϕSpρpu̇p
) = 0, (2.204)

∂ (1 − ϕ) ρs

∂t
+ ∇ · [(1 − ϕ) ρsu̇s] = 0, (2.205)

where p = l, g for two fluid phases and 1, 2, ..., N for N fluid phases. The conserva-
tion of linear momentum, Equations (2.166) and (2.167) take the form

ϕSpρp

{
∂u̇p

∂t
+ u̇p · ∇u̇p

}
= ϕ∇ · σp + dp, (2.206)

(1 − ϕ) ρs

{
∂u̇s

∂t
+ u̇s · ∇u̇s

}
= (1 − ϕ)∇ · σs + ds. (2.207)

The coupling terms in Equations (2.206) and (2.207), denoted by dp and ds are
given above [see Equations (2.168), (2.169), and (2.170)]:

dp = − ϕ2S2
pμp

kkrp(Sp)

(
u̇p − u̇s

)
, (2.208)

ds =
N∑

j=1

ϕ2S2
j μj

kkrj(Sj)

(
u̇j − u̇s

)
, (2.209)

where we have incorporated a multiphase generalization of the coefficients Dls and
Dgs given by Garg and Nayfeh (1986), that is valid for frequencies below about
104 Hz.

The remaining task is to specify the various equations-of-state, constitutive equa-
tions, and constraints on the variables and medium parameters such as μp the
fluid viscosities, ϕ the porosity, the fluid pressures pl and pg, the fluid and solid
stresses σp and σs, the densities ρp and ρs, the relative permeability and capillary
pressure functions. There is also the additional constraint that the saturations must
sum to unity, as given by Equation (2.134). Several of these relationships, such as
the equations-of-state for the densities and fluid viscosities, the relative permeabil-
ity curves, and the capillary pressure curves may involve fits to laboratory data.
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The coefficients in the previous section and in the multiphase generalization in
Chapter 7 are appropriate for Biot’s original formulation in which fluid equilibra-
tion at the scale of a seismic wavelength, or larger, dominates. As noted in Box 2.11,
dispersion and attenuation due to such large-scale processes are not adequate to
explain observed field data.

The form of the stresses σp and σs follows from the constitutive relationships
for elastic material and the theory of poroelasticity. In particular, the stresses in the
liquid and gas phases are dominated by the pressure, as in Equation (2.174)

σp = −ppI, (2.210)

where p = l, g. For the solid matrix, the stress is that of a drained elastic body, with
modifications for the effects of the pore fluids via the concept of effective stress:

σs = Kd (∇ · us) I + G

[
∇us + ∇uT

s − 2

3
(∇ · us) I

]
− αpf I. (2.211)

As noted in the discussion surrounding Equation (2.173), the total fluid pressure pf

is given by the weighted sum of the pressure in the liquid and the gas phases, with
the weighting given by the fluid saturations:

pf =
N∑

i=1

Sipi. (2.212)

There are several paths forward from this point. As was done for a single fluid
phase, one can solve for the pressures, such as pl, pg, and ps in terms of the displace-
ment derivatives, ∇ · ul, ∇ · ug, and ∇ · us for two fluid phases. This approach was
taken in investigations related to wave propagation in a poroelastic medium (Garg
and Nayfeh, 1986; Tuncay and Corapcioglu, 1997). Alternatively, we could deal
directly with the equations in terms of the displacements, saturations, and pressures
(Panday and Corapcioglu, 1989). We shall not pursue either approach here, as there
are advantages to both and the best course of action depends upon the particular
application.

Box 2.11 Mesoscopic heterogeneity

It is generally recognized that, by themselves, Biot’s equations do not reproduce the
level of intrinsic attenuation that is observed in seismic field data (Pride et al., 2004).
To remedy this, additional attenuation mechanisms have been proposed, primarily
adding internal structure, such as compliant cracks in the squirt-flow mechanism
(Dvorkin et al., 1995) to a poroelastic solid. Most generally, one must add what is
known as mesoscopic heterogeneity, spartial variations in properties larger then the
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pore scale yet smaller then a wavelength, in order to generate sufficient attenuation at
the frequencies of observed seismic waves. This solution had been recognized at least
since the patchy-saturation model of White (1975) and has evolved into a general
model of mesoscopic-scale heterogeneity formalized by Pride et al. (2004), and
outlined in this box. Along the way, essential work by Dutta and Ode (1979a,b),
Norris (1993), Johnson (2001), and others, provided important advancements,
clarifications, and generalizations.

The essential idea is to describe the internal structure or heterogeneity as multiple
phases or a dual-porosity/dual-permeability model and then to rewrite the equations as
an effective Biot theory (Pride et al., 2004; Pride, 2005). The starting point is the
compressibility law for a three-phase medium containing a solid, a liquid, and one
other quantity. The additional quantity represents the heterogeneity and may be a fluid
phase in the case of patchy-saturation, or a solid phase with differing properties, such
as more compliant inclusions. The additional attenuation results from the interaction
between this additional phase and the two original phases. The compressibility
equations for the three phase system are⎛

⎝ ∇ · us

∇ · w1

∇ · w2

⎞
⎠ = −

⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠
⎛
⎝ Pc

p1

p2

⎞
⎠−

⎛
⎝ 0

ξint

−ξint

⎞
⎠ .

The quantity

ξint = iγ (ω)

ω
(p1 − p2) ,

representing the macroscopic flow, is the average fluid volume transferred from phase
1 to phase 2, normalized by the total averaging volume (Pride, 2005). Note that this
system of equations may be written as a generalization of Equations (2.184) and
(2.185) to three phases. The compressibility coefficients aij, given in Pride and
Berryman (2003a) and Pride (2005), control the elastic response at the early stages,
before the fluid pressure in the two phase equilibrates.

The complex and frequency-dependent coefficient γ (ω) represents the internal
transport from one porous phase to another within the sample. Following the
branching function approach of Johnson et al. (1987) discussed in Box 2.8, Pride and
Berryman (2003b) determine that γ (ω) has the approximate form

γ (ω) = γo

√
1 − i

ω

ωo

where ωo is a transition frequency related to the fluid-pressure diffusion and γo is an
internal transport coefficient (Pride and Berryman, 2003a,b).

The next step is to write the equations for the three-phase system as an effective
Biot theory with a solid and a fluid phase. The presence of the internal structure, due
to the third phase, leads to complex and frequency-dependent coefficients. These
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coefficients are in addition to the dynamic permeability k(ω) already present in
conventional Biot theory, as discussed in Box 2.8.

The approach taken by Pride et al. (2004) and Pride (2005) is to assume that the
new third phase is entirely enveloped by the other phases so that its flux into and out
of the volume is zero. Placing ∇ · w2 equal to zero in the compressibility equations
given above allows us to eliminate p2 from the equations, resulting in equations
relating ∇ · us and ∇ · w1 to Pc and p1. The resulting 2 × 2 system can be inverted for
Pc and p1, as in the Biot Equations (2.186) and (2.187) for a single fluid. However,
now the coefficients Ku, Kd, and B depend upon the compressibilities aij, γ (ω), and ω
according to

1

Kd(ω)
= a11 − a2

13

a33 − γ /iω

B(ω) = −a12 (a33 − γ /iω)+ a13 (a23 + γ /iω)

(a22 − γ /iω) (a33 − γ /iω)− (a23 + γ /iω)2

1

Ku(ω)
= 1

Kd(ω)
+ B(ω)

[
a12 − a13 (a23 + γ /iω)

a33 − γ /iω

]
.

The additional frequency-dependence provided by the mesoscopic heterogeneity
allows for a level of dispersion (frequency-dependent velocity) and attenuation that
matches observed field data (Pride et al., 2004). The formulation is sufficiently
general to cover a variety of situations. Pride et al. (2004) consider three specific cases
in their study: a patchy-saturation model, a heterogeneous matrix model, and a model
representing squirt-flow.

The approach described in the box, invoking heterogeneity on a scale smaller then
a seismic wavelength, so-called mesoscopic heterogeneity, has been found to lead
to the correct level of attenuation and dispersion. This approach leads to complex
and frequency-dependent coefficients that can be easily incorporated into our for-
mulation.

2.7 Summary

We have reviewed the basic governing equations controlling fluid flow and
deformation. We will invoke these equations repeatedly in the chapters that
follow. Although these equations seem to be mathematically disparate, covering
a broad range of processes ranging from pressure diffusion to poroelastic wave
propagation, in the next few chapters we will explore a common framework for
their solution. Several practical applications will be presented to illustrate the power
and utility of these trajectory-based methods in obtaining solutions that are not only
computationally efficient but also visual, intuitive, and easy to interpret.
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Trajectory-based modeling

3.1 Introduction

In this chapter, we develop asymptotic and trajectory-based methods for the solu-
tion of partial differential equations that arise in flow and transport through per-
meable media. After some background, we discuss specific forms of asymptotic
solutions applicable to a wide range of problems in hydrology, geophysics, and
petroleum engineering. We describe the construction of a trajectory-based solution
and illustrate the procedure by an application to the wave equation. A major advan-
tage of the asymptotic method is the partitioning of the modeling into a travel time
calculation and an amplitude calculation. For example, the asymptotic method leads
to the eikonal equation that governs the geometry of a propagating fluid front and
the travel time of the front. Such travel times form the basis for many of the imaging
and inversion techniques discussed in subsequent chapters. We conclude the chapter
with an overview of a multiple scale asymptotic technique that is well-suited to
problems involving spatial heterogeneity and non-linearity, two features that appear
frequently in the modeling of multiphase flow through natural porous media.

3.1.1 Transients and propagating disturbances

As we noted in Chapter 1, our focus will be on using observations related to fluid
flow and transport to better characterize the properties of a porous medium. The
observations might be from an external experiment, such as a geophysical survey,
attempting to image flow-related attribute changes. Alternatively, the observations
might be data from tests that involve flow directly, such as the injection of a trace
chemical or the monitoring of transient fluid pressure. The important point is that
we will be dealing with transient disturbances that propagate through the medium.
Thus, there will be a source of the disturbance, such as an injection interval. The
transient will travel from the source outward into the medium, ultimately reaching
an observation point where one or more instruments record the passing disturbance.

101
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Based upon causality, there is a region ‘ahead’ of the propagating front,
representing the undisturbed volume and a region ‘behind’ the front through which
the disturbance has already propagated. We assume that the surface separating the
undisturbed and disturbed volumes may be characterized by an equation of the
form

S(x, t) = 0, (3.1)

defining its spatial position at time t (Whitham, 1974, p. 236). As long as the front
varies with time, so that

∂S

∂t
�= 0,

we can solve the equation S(x, t) = 0 for t as a function of the spatial coordinates,
at least locally. We write this function as

t = σ(x),

and the equation for the hypersurface [a surface in space and time coordinates]
becomes

S(x, t) = t − σ(x) = 0. (3.2)

We illustrate this in Figure 3.1 with an example from tracer transport. The physical
field of interest, representing a quantity such as a jump in pressure, an elastic
compression, a tracer concentration, a change in fluid saturation, and so on, is
denoted by u(x, t). In the undisturbed region ahead of the propagating front, u(x, t)
is assumed to be zero. With the passage of the front u(x, t) takes on non-zero values,
either in a continuous or in a discontinuous fashion, as determined by the physical
processes at play. At any given instant in time t, the field value u(x, t) depends upon
the distance from the front and the position on the front:

u(x, t) =
{
ϒ(x, S(x, t)) S(x, t) > 0
0 S(x, t) < 0

. (3.3)

Note that ϒ depends upon x both explicitly and implicitly, through the surface
S(x, t). It is possible to relax the requirement that the field directly ahead of the
front is zero. That is, due to dissipation and dispersion, the changes associated with
the front may have ‘diffused’ a bit ahead of the surface defined by the vanishing
of S. Conceptually, one can think of the front as a moving boundary layer sep-
arating the two regions (undisturbed and disturbed). As in a boundary layer, the
interface between the two regions might be expected to widen into a zone of finite
width.
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Figure 3.1 An illustration of a propagating tracer front for an injector (bottom
left)-producer (top right) pair. Here, σ(x)represents the tracer travel time along
trajectories (streamlines). The fronts are defined by the isochrones (equal travel
time) and S(x, t) identifies the front location at a specific time. For the colour
version, please refer to the plate section.

3.1.2 An illustrative example

Physical systems are most frequently modeled using differential equations. We have
already encountered examples in Chapter 2 and we shall discuss some of them in
more detail in the remainder of the book. Because of their importance, we will
attempt to illustrate the ideas introduced in this chapter by way of an example
differential equation. A fairly commonly encountered form, encompassing many
of the equations found here, is

∂

∂xi

(
cij
∂u

∂xj

)
+ Bu = 0, (3.4)

where we have adopted the Einstein convention of summing over repeated indices.
Equation (3.4) is a second-order, scalar, partial differential equation for the function
u(x). The wave equation (Whitham, 1974, p. 3)

∇ · (c2∇u
)− ∂2u

∂t2
= 0, (3.5)
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provides a well-studied example. In order to put it in the form (3.4), we can extend
the definition of x to the 4-dimensional vector (x0, x1, x2, x3) = (t, x, y, z). Alterna-
tively, we could apply the Fourier transform, discussed below, producing

∇ · (c2∇U
)+ ω2U = 0, (3.6)

where U is the Fourier transform of u.
To extract a solution in the form of a propagating front, with minimal complica-

tions, let us further simplify Equation (3.5) by considering a medium with constant
properties, c, and one spatial dimension:

c2 ∂
2u

∂x2
− ∂2u

∂t2
= 0. (3.7)

This equation may be written in a factored form(
c
∂

∂x
− ∂

∂t

)(
c
∂

∂x
+ ∂

∂t

)
u = 0 (3.8)

and we may treat each factor separately (Whitham, 1974, p. 3). Thus, the first factor

c
∂u

∂x
+ ∂u

∂t
= 0, (3.9)

represents the simple one-way wave equation. In Chapter 1 we showed that this
equation admits a solution

u(x, t) = f
(

t − x

c

)
(3.10)

where f is an arbitrary function. If f is in the form of a sharp jump or step, then our
solution represents a propagating front, such as the one described by Equation (3.3).
The other factor in Equation (3.8) introduces a front propagating in the opposite
direction. Initial and boundary conditions dictate the solutions that are active at a
given location at a given time.

3.2 Series representation of a moving front

The form (3.3) of a moving front is too general and does not provide enough insight,
flexibility, or efficiency to be useful for treating the inverse problem, where we
image the internal properties of an object. For efficiency, we would like to represent
a propagating disturbance in terms of a succession of relatively simple functions.
For insight, the first few terms of the series should pertain to the most important
aspects of our solution, serving as a basis for modeling and imaging. These points
should become clearer as we proceed through this chapter.

Historically, the most important expansion has been in the form of powers of a
variable, in this case powers of S, such as a Taylor series expansion. Power series
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(a) 0th order discontinuity. (b) 1st order discontinuity. (c) 2nd order discontinuity.

Figure 3.2 Examples of discontinuous functions of different orders.

are one of the most general forms for solutions of linear and non-linear partial
differential equations (Bender and Orszag, 1978). Furthermore, if we consider a
complex valued S = r exp iθ , where r is the amplitude and θ is the phase, then
the series solution comprises a Fourier series representation of u (Needham, 2000,
p. 77). Because of the discontinuity in the representation (3.3) at S = 0, we must
modify the power series representation somewhat. For example, we could general-
ize the modeling, allowing for weak solutions containing discontinuities (Whitham,
1974), and develop a formal mathematical apparatus for that approach. Instead we
adopt a more informal approach, simply requiring continuity in the solutions up
to a particular order m. That is, we will allow the front to contain discontinuities
in derivatives beyond order m. Physically, this allows for fronts characterized by
different degrees of smoothness (Figure 3.2). One can expand the function ϒ(x, S)
as a Taylor series in S for points immediately behind the front

u(x, t) =
{
ϒ0(x)Sm/m! +ϒ1(x)Sm+1/(m + 1)! + · · · S > 0
0 S < 0

(3.11)

where m might even involve fractional powers, for example to model cylindrical
waves (Whitham, 1974). The coefficients, such as ϒ0, ϒ1, represent spatial varia-
tions in the magnitude of the discontinuity. In fact, the n-th coefficient represents
the m + n-th one-sided derivative with respect to S

ϒn = ∂m+nϒ

∂Sm+n
(3.12)

where the derivatives are taken from behind the front towards the leading edge
of the front, from positive S towards zero. The derivatives do not exist in the other
direction due to the discontinuity at S = 0. One can see that the first discontinuity is
in the m-th derivative. Specifically, derivatives with respect to S of lower order than
m vanish on the surface defined by S = 0. Thus, the lower-order derivatives vanish
on both sides of the interface and are thereby continuous, equal to the constant
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value zero. However, the m-th derivative with respect to S gives a non-zero value
of ϒ0(x) at, or immediately behind the front, and vanishes ahead of the front. Thus
the derivative jumps by ϒ0 across the front.

Recalling our expression for the propagating disturbance,

S(x, t) = t − σ(x) = 0,

we can represent the propagating front (3.11) as the sum

u(x, t) =
∞∑

n=0

ϒn(x)fn[t − σ(x)] (3.13)

where fn[t − σ(x)] is the discontinuous function

fn[t − σ(x)] =
{ [t − σ(x)]n+m/(n + m)! t > σ(x)

0 t < σ(x)
, (3.14)

and m denotes the lowest-order discontinuity across the hypersurface. This sum
is over successively higher-order discontinuous functions, with the discontinuity
located at the hypersurface defined by S(x, t). We can use the Heaviside function
H(S), defined as a step-like change from a value of zero to a value of one, with the
jump occurring at the front where S = 0:

H(S) =
{

1 S > 0
0 S < 0

, (3.15)

to write the series (3.13) as

u(x, t) =
∞∑

n=0

ϒn(x)
[t − σ(x)]n+m

(n + m)! H[t − σ(x)]. (3.16)

A power series expansion in terms of higher-order discontinuous functions is known
as a ray series. The form of the solution given by the sum (3.13) is really quite gen-
eral and encompasses many useful series solutions to partial differential equations
used in modeling physical processes.

3.3 The frequency domain and high-frequency approximations

The frequency domain, entered via the Fourier transform, provides another per-
spective on a propagating discontinuity, one that has a long and fruitful history. The
Fourier integral transformation (F), of a function f in the space-time domain to
a function F in the space-frequency (ω) domain is

F(x,ω) = F [f (x, t)] = 1√
2π

∫ ∞

−∞
f (x, t)eiωtdt, (3.17)



3.3 The frequency domain and high-frequency approximations 107

(a) Input function in the time domain. (b) Output Fourier transform.

Figure 3.3 Example of the Fourier transform pair for an impulsive function.

(Bracewell, 2000). There are a several definitions of the Fourier transform, with
different sign conventions and normalizations to ensure that the transformation back
to the time domain, the inverse Fourier transform, has a very similar form. Here, we
are adopting the form that is commonly used in physics, particularly when spatial
variables are involved. In Figure 3.3 we plot an example of a Fourier transform
pair (Bracewell, 2000). Note that the Fourier transform is a complex quantity. For
our purposes a key property for transforming the series representation (3.16) into a
series in the frequency domain is the Fourier transform of the product of the step
function, H(t), and a power of t,

F
[
H(t)tn

] ∼ (−iω)−(n+1) (3.18)

where ω > 0 in order to avoid a singularity at the origin (Bracewell, 2000; Grad-
shteyn and Ryzhik, 1965). Applying the Fourier transform we can map the function
u(x, t), given by Equation (3.16), into the frequency domain:

U(x,ω) = e−iωσ(x)
∞∑

n=0

ϒn(x)
(−iω)(m+n+1)

, (3.19)

for ω > 0. The requirement that ω > 0 is not an issue because we are interested in
a high-frequency approximation, where ω is large. In deriving the expression (3.19)
we have used both the linearity of the Fourier transform and the fact that a transla-
tion or shift in the time domain by the factor σ(x) is equivalent to multiplication by
e−iωσ(x) in the frequency domain (Bracewell, 2000). This series in inverse powers of
the frequency ω is the basis for the high-frequency approximation that has been
used to solve many important problems. When ω is a large number, only the first
few terms of the series will be significant. For processes governed by linear differen-
tial equations with coefficients that are independent of time, the frequency-domain
approach works remarkably well and has a somewhat intuitive appeal. Much of the
earliest rigorous work on high-frequency asymptotic solutions arose from efforts
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to reconcile existing geometrical optics approximations with Maxwells equations
governing the propagation of electromagnetic waves (Sommerfeld, 1964; Kline and
Kay, 1965; Luneburg, 1966). Why have we chosen the Fourier transform? There
is no fundamental reason why we could not use another integral transform such
as the Laplace transform. One advantage of the Fourier transform is the physical
interpretation associated with the frequency domain solution.

3.4 Asymptotic series and solutions

3.4.1 General ideas

As we have seen, transient disturbances are generally represented by functions that
may be discontinuous across a propagating front. Non-linear processes can lead to
discontinuous solutions, such as shocks, even when the initial state and the gov-
erning equation are smooth (Whitham, 1974; Drumheller, 1998; Debnath, 2005).
This brings us into the realm of generalized functions or distributions (Lighthill,
1958; Bracewell, 2000). For generalized functions the classical notions of con-
tinuity and differentiability will not always apply. We shall need analytical and
numerical methods to handle such functions. One useful technique is the use of
asymptotic series (Erdélyi, 1956) to represent functions that may not have sufficient
differentiability to allow for a straight-forward Taylor series expansion. While the
theory of asymptotic series was initially developed by Poincaré (1886), their use
dates back at least to Euler (Euler, 1754).

At the beginning of this chapter we constructed a representation of a transient
disturbance using a Taylor series expansion that was only valid on one side of
the propagating front. Due to the discontinuity, it is not possible to use a single
Taylor series to represent the function over its entire range of interest. In particular,
the Taylor series fails at the edge of the front, a region of some significance, due
to a discontinuous change in some of its derivatives. Thus, a single Taylor series
expansion cannot represent the transient disturbance over the range of interest.

We would like to construct a representation of a propagating disturbance that,
as in a Taylor’s series, provides an expansion in terms of a succession of relatively
simple functions. Ideally, the first few terms of the series would provide the most
important elements of the approximation, particularly in the limit of some desired
condition. An example of such a series is provided by the Fourier transformation
of the discontinuous series (3.16), given by the expansion (3.19) in inverse powers
of −iω. The series solution (3.19) is a representation in terms of simple functions
and the first few terms provide an increasingly accurate representation of U(x,ω)
as ω takes on larger and larger values. Note that, given enough terms, the series
may diverge for a fixed value of ω, depending upon the values of the successive
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expansion coefficientsϒn(x). This follows from the fact that, unlike a Taylors series
expansion, we cannot assume that all derivatives exist for all values of x. Following
Poincaré’s lead, we can abstract these ideas and use such asymptotic series to
represent approximate solutions to physical problems. The conditions that we shall
invoke will typically involve a high-frequency assumption or the idea of a medium
with smoothly varying properties.

While the early use of asymptotic series, with their divergent behavior, was
initially met with some skepticism, their spectacular success in solving physical
problems won them respect in time. Formalism quickly followed and asymptotic
methods now comprise an important segment of applied mathematics and math-
ematical physics (Bender and Orszag, 1978). Consider a function, f (x, ε), that
depends upon a set of independent variables such as position, x, and an expansion
parameter, ε, representing quantities of interest in a physical problem, such as the
inverse of the frequency (1/ω), a ratio of length scales, or the non-dimensionalized
width of a boundary layer. The function could be expanded in the vicinity of x using
a Taylor series

f (x, ε) = f (x)+ f ′(x)ε + · · · + f n

n! (x)ε
n + · · ·

However, such an expansion is limited to functions that are differentiable in the
region around x. In the asymptotic approach we generalize the series expansion in
terms of a sequence of elementary functions of ε, denoted by �i(ε):

f (x, ε) = γ0(x)+ γ1(x)�1(ε)+ · · · + γn(x)�n(ε)+ · · · (3.20)

The basis functions of the expansion, �i(ε), are referred to as gauge functions. The
expansion is unique for any given set of gauge functions, but one has considerable
latitude in their choice. Commonly, successive powers of ε(1, ε, ε2, . . . , εn, . . .) are
used. In most cases the gauge functions are dictated by the physics of the problem.
For example, as we shall see in Chapter 4, an expansion in terms of powers of

√
ε,

where ε = 1/ω, is needed in order to honor the physics of diffusion. It is certainly
worth spending some effort finding a good set of gauge functions.

A key feature of asymptotic expansions is that as ε approaches a limiting value,
that we will take to be 0, the expansion is increasingly dominated by the earliest
terms. That is, we require that all the gauge functions of an asymptotic sequence
satisfy

lim
ε→0

�n+1(ε)

�n(ε)
= 0 (3.21)

for all n. We can write the relationship (3.21) between the two functions �n and
�n+1 succinctly through the use of the order symbol small o (Panton, 2005, p. 351).
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The statement that the function �n+1(ε) is of smaller order than the function �n(ε)

is written

�n+1(ε) = o [�n(ε)] (3.22)

and is equivalent to Equation (3.21). One can then define an equivalence relation-
ship between functions in terms of the order symbol o. For example, we say that a
function is asymptotically equal to the first three terms of its expansion, which we
write as:

f (x, ε) ∼ γ0(x)+ γ1(x)�1(ε)+ γ2(x)�2(ε), (3.23)

if they differ by a term of order o [�2(ε)].
There is the practical issue of calculating the coefficients of the asymptotic

expansion. The utility of a Taylor series expansion rests on the expression of the
coefficients in terms of the derivatives of the function, as in Equation (3.12). The
coefficients of an asymptotic expansion can be defined in terms of the limit as
ε → 0:

γ0(x) = lim
ε→0

f (x, ε)

γ1(x) = lim
ε→0

f (x, ε)− γ0(x)
�1(ε)

(3.24)

γ2(x) = lim
ε→0

f (x, ε)− γ0(x)− γ1(x)�1(ε)

�2(ε)

and similarly for the coefficients of the higher-order terms. In most applications
the coefficients are determined by substituting the asymptotic expansion into the
governing equations and considering terms of the same order. We will illustrate this
a number of times in the chapters that follow.

To some degree we have had to give up on our hope that the asymptotic series
converges as we sum a large number of terms. Part of the problem is that we are
trying to represent functions that may contain discontinuities in one or more of
its derivatives. Thus, the function possibly contains singularities, hence we might
expect a divergent series. However, because we are most interested in an accurate
approximation in a few terms, summing a large number of terms is somewhat
burdensome, the divergence of the series is usually not an issue. The ultimate
divergence or convergence of a series is a property of its tail (Dingle, 1973, p. 4),
the terms far out in the summation, and is not related to the usefulness of the initial
terms in approximating a function (Panton, 2005, p. 352).

To motivate the use of an asymptotic expansion, consider the ways in which one
might represent a special function, the modified Bessel function of order zero, I0(x)
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(Abramowitz and Stegun, 1972, p. 374). A straight-forward power series expansion
can be written in the form

I0(x) = 1 +
1
4 x2

(1!)2
+ ( 1

4x2)2

(2!)2
+ ( 1

4x2)3

(3!)2
+ ( 1

4 x2)4

(4!)2
+ . . . (3.25)

and is absolutely convergent. For large values of x we will need many terms in
this series in order to approximate I0(x) to sufficient accuracy. This is because
the convergence of the power series involves a race between the large terms in
the numerator, powers of x, and the large terms in the denominator, the factorials
that depend upon the number of terms used. The terms are not negligible until
the denominator becomes much larger than the numerator. As noted by Panton
(2005, p. 352), the situation becomes even more difficult when the terms in the
expansion alternate in sign, as in a Taylor series expansion of the Bessel function
J0(x). Such a long series can also be difficult to evaluate numerically because one
must operate with some very large numbers. The representation (3.25) provides
very little insight into the behavior of I0(x) for large values of x. In contrast, the
leading term of asymptotic expansion of I0(x), in the limit of large values of x, is
given by (Abramowitz and Stegun, 1972, p. 378)

I0(x) ∼ ex

√
2πx

. (3.26)

From the asymptotic representation (3.26) we can get an accurate estimate of I0(x)
for large values of x in an efficient manner. Furthermore, the expression provides
some insight into the behavior of I0(x) for large values of x. In the applications
presented in this book the computation of successive terms in the asymptotic series
will require some effort, thus it is important to obtain an accurate solution with
just a few terms. The applicability of asymptotic techniques to a wide range of
problems, involving dispersion, dissipation, heterogeneity, and non-linearity is also
important.

Exercise 3.1. Compare the results of the power series (Equation 3.25) and
the asymptotic solution (Equation 3.26) representation of the modified Bessel
function, I0(x) for x = 10 . Notice that you need up to 9 terms in the power
series to obtain equivalent results.

Exercise 3.2. The asymptotic approach can be used to identify the dominant
behavior of the local solution of a differential equation. Recall that the asymp-
totic solution is a representation of the behavior of the solution of a differential
equation near a point (possibly singular) as an infinite series. The first term of the
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series is called the Leading Behavior and the most rapidly changing component
of the first term is known as the Controlling Factor (Bender and Orszag, 1978).
Let us find the controlling factor of the following differential equation.

y′ = √
x y, x → 0+.

Solution: Start with a test function, usually in the form of an exponential (Bender
and Orszag, 1978), y(x) = eS(x). Then, y′ = S′eS and after substituting into the
differential equation, S′eS = √

xeS and S′ = √
x as eS �= 0. After integration,

S(x) ∼ 2
3 x3/2. Hence the controlling factor of the solution will be e

2
3 x3/2

.
Notice that in the above quadrature we did not include the constant of

integration, hence the use of ∼ rather than the equal sign. In order to obtain the
leading behavior, we need to include the constant of integration and substitute
back into the differential equation and carry out additional steps. We will not
dwell upon the details here as there are excellent references that specifically
address the asymptotic solution of differential equations (Bender and Orszag,
1978). Instead, in the section that follows we focus on two asymptotic solutions
of special interest to fluid flow in porous media.

3.4.2 Examples from the frequency domain

The discussion in Section 3.4.1 on asymptotic series and solutions provides some
idea of the flexibility that is available to us and the broad outlines of what is needed
for a useful power series expansion. However, that discussion is too general to
provide a practical tool for solving problems. For example, the asymptotic series
was in terms of a generic set of gauge functions and we require a little more
guidance concerning useful choices. We noted the importance of the physics of
the problem in determining the specific form of the gauge functions. For a prop-
agating front, the frequency domain representation (3.19) follows from a Taylor’s
series expansion (3.11) and the application of the Fourier transform. For physical
problems specified by one or more linear partial differential equations with spatially
varying coefficients, the slightly more general asymptotic power series

U(x,ω) = e−σ(x,ω) 1

(−iω)α

∞∑
n=0

An(x)
(−iω)βn

, (3.27)

where α and β are real constants, is sufficiently flexible to cover a wide range of
applications. Note that the phase function σ now has a general frequency depen-
dence, and the numerical values of α and β are determined by the particular set
of governing equations. These values may be determined, as in the Chapter 4 on
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diffusive processes, by an analysis of the equations associated with the simplest
possible version of the medium. For example, we may utilize an analytic solution
for a homogeneous, isotropic, and infinite medium and consider its asymptotic
representation in order to determine α and β.

Some appreciation of the generality of the series (3.27) follows from the consid-
eration of two specific cases. First, consider the case in which σ(x,ω) = iωτ(x),
α = 1, and β = 1, resulting in the asymptotic expansion

U(x,ω) = −e−iωτ(x)

iω

∞∑
n=0

An(x)
(−iω)n

,

where τ(x) is an arbitrary function of x. In the limit as ω → ∞ the first term is the
most significant and we have

U(x,ω) ∼ −e−iωτ

iω
A0(x)

and upon applying the inverse Fourier transform to return to the time-domain, we
have the solution

u(x, t) = A0(x)H[t − τ(x)].
The solution represents a propagating step with an amplitude that varies with x and
a propagation time of τ(x). This functional form is characteristic of solutions to the
wave equation (3.9), that is the function given in (3.10).

A very different solution results if we consider the asymptotic series specified by
σ(x,ω) = −√−iωτ(x), α = 0, and β = 1/2,

U(x,ω) = e−√−iωτ(x)
∞∑

n=0

An(x)

(
√−iω)n

,

encountered in Chapter 4. In the limit of high-frequency, ω → ∞, the asymptotic
solution is again dominated by the zeroth-order (n = 0) term

U(x,ω) ∼ e−√−iωτA0(x).

This approximation transforms back to the function

u(x, t) = F−1
[
e−√−iωτ(x)A0 (x)

]
= A0(x)

τ (x)

2
√
π t3

e−τ 2(x)/4tH(t)

in the time-domain, a form similar to the analytical solution of the diffusion
equation (Crank, 1975) for a homogeneous medium. Thus, the series (3.27) can
encompass many different functional forms, representing a wide range of physical
processes.



114 Trajectory-based modeling

3.5 Characteristics and trajectories

The central topic of this book is the development of trajectory-based solutions for
modeling of fluid flow and transport and the use of these solutions for imaging
flow properties. Here we will describe an algorithm for treating general first-order
partial differential equations that results in such a trajectory-based solution. Note
that the technique will not be applied directly to the governing equations introduced
in Chapter 2 and discussed in more detail in later chapters. Such equations are
typically second-order partial differential equations. Rather, we will use this method
to solve equations emerging from the asymptotic approach. An application to the
wave equation should illustrate how it all works.

Consider a first-order partial differential equation written in the form

F(x, t, p, q, u) = 0, (3.28)

where u(x, t) is a function of the three spatial coordinates, x, and time, t. The
additional variables p and q are associated with the derivatives of u. Specifically,
p is a vector of the spatial derivatives of u, given by p = ∇u, while q is the time
derivative of u(x, t)

q = ∂u

∂t
.

We have chosen to distinguish the space and time variables in Equation (3.28) and
in our derivation. We could just as easily extend the vector of independent variables,
x, to include time, simplifying the presentation a bit. Note that there is no restriction
on the nature of the partial differential equation (3.28), it may represent a linear, a
quasi-linear, or a fully non-linear equation.

In this section we will show that the first-order partial differential equation (3.28)
is equivalent to a system of ordinary differential equations, the characteristic
equations. The ordinary differential equations will define a solution along a
trajectory, that is along a curve in both space,

x = x(s) (3.29)

and time

t = t(s) (3.30)

parameterized by the variable s. The nature of the parameter s is left open at this
point, it may represent distance along the trajectory, or position with respect to a
reference point, or time itself.

There are at least two ways to derive the system of ordinary differential equations
defining the trajectory and the solution u(x, t). First, there is a geometrical approach
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that arose early in the study of partial differential equations (Courant and Hilbert,
1962). Second, there is a rather straight-forward analytic derivation (Logan, 2008).
We present the second approach, as it should be easier for the reader to follow
and also easier to generalize. In our derivation we invoke Einstein’s summation
convention, introduced in Box 2.2 of Chapter 2, where repeated indices indicate
summation from 1 to 3.

The differential equations specifying the path and the solution along the path
must be related to Equation (3.28) in some fundamental fashion. In particular, the
equations will most likely be determined by the explicit dependence of F on its
arguments, as characterized by its partial derivatives with respect to these quanti-
ties. In order to have a complete system of ordinary differential equations defining
the trajectory, we need to consider the derivatives of all of the independent and
dependent variables x, t, p, q, and u, along the trajectory parameterized by s. While
it might seem obvious that we should start with the derivatives of x(s) and t(s), let
us begin with the derivatives of p(s) and q(s) instead. As we shall see very shortly,
this choice will quickly pay off in terms of a useful set of differential equations
defining the trajectory. If we compute these derivatives explicitly and write them in
terms of the derivatives of x and t with respect to s, we have

dpi

ds
= d

ds

(
∂u

∂xi

)
= dxj

ds

∂2u

∂xj∂xi
+ dt

ds

∂2u

∂t∂xi
(3.31)

dq

ds
= d

ds

(
∂u

∂t

)
= dxj

ds

∂2u

∂xj∂t
+ dt

ds
.
∂2u

∂t2
(3.32)

In order to relate these derivatives to the dependence of F(x, t, p, q, u) on its argu-
ments, we take the partial derivatives of Equation (3.28) with respect to the spatial
variables and time,

∂F

∂xi
+ ∂F

∂u

∂u

∂xi
+ ∂F

∂pj

∂2u

∂xj∂xi
+ ∂F

∂q

∂2u

∂t∂xi
= 0 (3.33)

∂F

∂t
+ ∂F

∂u

∂u

∂t
+ ∂F

∂pj

∂2u

∂xj∂t
+ ∂F

∂q

∂2u

∂t2
= 0, (3.34)

where i = 1, 2, 3 signifies the component of x. Comparing the set of Equations (3.31)
and (3.32) with Equations (3.33) and (3.34) we note similarities in the sets of mixed
partial derivatives. In fact, if we equate their coefficients:

dxj

ds
= ∂F

∂pj
(3.35)

dt

ds
= ∂F

∂q
(3.36)
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then the two right-most terms in Equations (3.33) and (3.34) are identical to the
right-hand-sides of Equations (3.31) and (3.32). Then we can replace the two right-
most terms in Equations (3.33) and (3.34) by dpi/ds and dq/ds, respectively. Solv-
ing the two resulting equations for these derivatives, we have

dpi

ds
= −∂F

∂xi
− ∂F

∂u

∂u

∂xi
(3.37)

dq

ds
= −∂F

∂t
− ∂F

∂u

∂u

∂t
. (3.38)

Equations (3.35), (3.36), (3.37), and (3.38) constitute eight ordinary differential
equations relating the derivatives of the independent variables along the trajectory
to derivatives of F. Counting the number of independent and dependent variables
that are functions of s in Equation (3.28), x, t, p, q, and u, we see that we shall
need nine ordinary differential equations to determine all relevant quantities. If
we consider the expression for the total derivative of the dependent variable u, we
obtain one additional equation

du

ds
= ∇u · dx

ds
+ ∂u

∂t

dt

ds

= p · dx
ds

+ q
dt

ds
. (3.39)

Replacing the derivatives of x and t with respect to s by the partial derivative
of F given in Equations (3.35) and (3.36), provides the ninth and final ordinary
differential equation,

du

ds
= pj

∂F

∂pj
+ q

∂F

∂q
. (3.40)

Taken together, Equations (3.35), (3.36), (3.37), (3.38), and (3.40) define a
trajectory-based solution for any first-order partial differential Equation (3.28),
be it linear, quasi-linear, or non-linear. These equations constitute the characteristic
equations associated with Equation (3.28) and the trajectories are known as the
characteristic curves (Logan, 2008, p. 87). In Box 3.1 we summarize this set of
equations, writing them as vector equations, for future reference.

Box 3.1 The ray equations.

We summarize the equations for the trajectory, x(s), t(s), the derivatives of the
dependent variables, p(s), q(s), and the dependent variable u(x, t) along the trajectory.
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dx
ds

= ∇pF

dt

ds
= ∂F

∂q
dp
ds

= −∇F − p
∂F

∂u
.

dq

ds
= −∂F

∂ t
− q

∂F

∂u
.

du

ds
= p · ∇pF + q

∂F

∂q
,

where ∇p signifies that the partial derivatives are with respect to the components of
the vector p rather than x. Later in the book we shall need these results.

3.6 Trajectory-based modeling: the wave equation

Let us apply the approaches from the last two sections to the wave equation (3.5)
transformed into the frequency domain [see Equation (3.6)],

c2∇ · ∇U + ∇c2 · ∇U + ω2U = 0, (3.41)

where U(x,ω) is the Fourier transform of u(x, t). Our goal is to derive a semi-
analytic solution to Equation (3.41) that is valid at high frequencies, an asymptotic
solution. To this end, we seek a solution in the form of the asymptotic power series
(3.27). Our first task is to determine the values of the exponents α and β to use
in the expansion (3.27). At this stage, rather than pursuing an analysis of the wave
equation in an infinite, isotropic, and homogeneous medium, we shall simply take
advantage of previous work along those lines (Aki and Richards, 1980a; Chapman,
2004). An expansion of the form

U(x,ω) = e−iωσ(x)
∞∑

n=0

An(x)
(−iω)n

(3.42)

has been found to produce a useful asymptotic solution of the wave equation in the
limit of high frequency (Kline and Kay, 1965).

Upon substituting the high-frequency asymptotic representation (3.42) into
Equation (3.41), we can apply the vector differential operators to each term. For
example, ∇ applied to U(x,ω) gives

∇U(x,ω) =
[
−iω∇σ

∞∑
n=0

An(x)
(−iω)n

+
∞∑

n=0

∇An(x)
(−iω)n

]
e−iωσ(x). (3.43)
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The operator ∇· may be applied to the expression (3.43) to obtain ∇ · ∇U, but
we will leave that computation as an exercise. We simply present the results of
the substitution of these operators, and the asymptotic representation of U, into the
governing equation,

(−iω)2 [c2∇σ · ∇σ − 1
] ∞∑

n=0

An

(−iω)n

+(−iω)

[
∇ · (c2∇σ ) ∞∑

n=0

An

(−iω)n
+ 2c2

∞∑
n=0

∇σ · ∇An

(−iω)n

]

+
∞∑

n=0

∇ · (c2∇An)

(−iω)n
= 0 (3.44)

where we have grouped the terms according to the power of the coefficient −iω.
In Equation (3.44) we have divided out the common factor e−iωσ with the under-
standing that it does not vanish.

For large values of ω we are interested in the terms of highest order in ω, or
conversely, terms of the lowest order in 1/ω. Considering terms of order (−iω)2,
contained in the top line of Equation (3.44), we obtain the equation[

c2∇σ · ∇σ − 1
]

A0 = 0. (3.45)

Assuming that A0, the zeroth-order amplitude of the propagating disturbance does
not vanish, Equation (3.45) implies that

∇σ · ∇σ − 1

c2
= 0. (3.46)

This is the eikonal equation, a differential equation for the phase function σ(x). As
we shall see, there are many roads to the eikonal equation, and it appears in several
contexts when modeling propagating disturbances. The eikonal equation is a first
order, non-linear, partial differential equation of the form (3.28),

F(x, p) = p · p − 1

c2(x)
= 0, (3.47)

where p = ∇σ . We may use the method described in Section 3.5 to derive a
trajectory-based solution for σ(x). To apply that approach we first write x and p
as functions of position, s, along the trajectory. Then, Equations (3.36) and (3.38)
in Section 3.5 [also the first and third equations written in Box 3.1] give a self-
contained system of ordinary differential equations for the trajectory x(s) and the
gradient of σ , p(s),
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dx
ds

= 2p

dp
ds

= −∇
(

1

c2

)
.

These ordinary differential equation may be integrated using available numerical
methods (Press et al., 1992). The differential equations indicate that the trajec-
tory x(s) is determined by the spatial variation of 1/c2, along with the boundary
conditions, primarily the source and receiver locations and the angle at which the
trajectory leaves the source, the take-off angle.

The phase σ is determined by the characteristic equations in Section 3.5, and may
be found by a one-dimensional integration along the trajectory x(s). In particular,
the final ray equation in Box 3.1, for F(x, p) given by Equation (3.47) produces an
equation for σ

dσ

ds
= 2p · p = 2

c2(x)
,

where we have used the eikonal equation (3.47) to substitute for p · p. The first ray
equation allows us to substitute for p in Equation (3.47) giving

dx
ds

· dx
ds

=
(

dx

ds

)2

= 4

c2

Upon integrating the expression for the derivative of σ along the trajectory, we
arrive at

σ(x) =
∫

2

c2(x)
ds =

∫
dx

c(x)
,

an explicit expression for σ(x), defined along the trajectory.
The high-frequency asymptotic approach works well for equations containing

coefficients that vary spatially but do not depend upon time. However, when
the coefficients are time-dependent then one must contend with products of
time-varying functions. The Fourier transform of such product terms becomes a
convolution in the frequency domain, coupling the various frequencies (Bracewell,
2000). This coupling also occurs for non-linear problems, when the coefficients
are functions of the dependent variables. Thus, the high-frequency asymptotic
approach, while still applicable, can become cumbersome in the face of non-
linearity and in the presence of time-dependent coefficients. For this reason, in
Section 3.7 we will discuss a class of techniques that, while certainly applicable in
the frequency domain, work just as well in the time domain.
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Exercise 3.3. The transport equation

∂c(x, t)

∂t
+ v(x) · ∇c(x, t) = 0

describes the motion of a passive tracer, with concentration denoted by c(x,t),
advected in a steady velocity field v(x) with no diffusion or dispersion. Show
that a high-frequency asymptotic solution leads to the equation

v(x) · ∇τ(x) = 1,

for the phase τ(x).
Hint: Consider a frequency domain solution of the form

C(x,ω) = −e−iωτ(x)

iω

∞∑
k=0

Ak(x)
(iω)k

.

and insert the solution into the governing differential equation. Then equate the
coefficient of the highest power of ω [lowest power of 1/ω] to zero to obtain
the phase equation. The phase equation describes the travel time of the tracer
particle in the flow field. We elaborate on this in Chapter 5.

Exercise 3.4. The diffusion equation

φ(x)μct
∂p(x, t)

∂t
− ∇ · [k(x)∇p(x, t)] = 0

governs the evolution of pressure in a permeable medium. Show that a high-
frequency asymptotic solution leads to the equation

∇τ(x) · ∇τ(x) = φ(x)μct

k(x)

for the phase,
Hint: Consider a frequency domain solution of the form

P(x,ω) = −e
√−iω τ(x)

∞∑
k=0

Ak(x)

(
√−iω)k

.

Insert this solution into the governing equation and equate the coefficient of
the highest power of

√−iω to zero, as discussed in the previous exercise. The
equation for the phase describes the travel time of the peak of a pressure pulse
for an impulse source. We discuss this further in Chapter 4.
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(a) Total velocity (b) Integrated trajectories (streamlines)

Figure 3.4 The velocity field and the resulting characteristics (streamlines) for
an injector (bottom left) and producer (top right) configuration with no-flow
boundaries.

Exercise 3.5. Consider the convective transport equation describing the motion
of a passive tracer in a steady velocity field v(x) = (vx, vy, vz), with no diffusion
or dispersion,

∂c(x, t)

∂t
+ v(x) · ∇c(x, t) = 0.

Show that the characteristics are given by integrating the velocity field,

dx

vx
= dy

vy
= dz

vz
= dt.

Also, show that the concentration c(x, t) does not change along the
characteristics.

Hint: The differential equation can be written in the form

F(x, t, p, q, c) = q + v · p = 0.

Use the results in Box 3.1 to derive the characteristics equations. The integration
of the velocity field leads to characteristics or streamlines along which tracer
particles travel. We discuss the streamline-based transport calculations in detail
in Chapter 5. Figure 3.4 is an example of the velocity distribution v(x) in a
two-dimensional flow field and the resulting streamlines, locally tangent to the
velocity field.
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(a) (b) (c)

Figure 3.5 Inviscid Burger equation: (a) Initial solution at t = 0. (b) Characteris-
tics associated with the inviscid Burger equation. (c) Solution at t = 0.5.

Exercise 3.6. Consider the inviscid Burger equation

∂u

∂t
+ u

∂u

∂x
= 0.

where u(x, t) represents the density along a one-dimensional path. With the initial
data given as follows (Trangenstein, 1988)

u(x, 0) =

⎧⎪⎨
⎪⎩

1, x ≤ 0

1 − x, 0 < x < 1

0, 1 ≤ x

derive the equation for the characteristics (trajectories) and show that along the
characteristics u is constant.

Hint: Write the equation as

F(x, t, p, q, u), = q + up

where p = ∂p/∂x and utilize the ray equations in Box 3.1. The initial
conditions and the characteristics are shown in the Figure 3.5. Notice that the
characteristics are straight lines that intersect whenever 1 < x < t . Because
u is constant along the characteristics, the solution u(x, t) can be obtained by
tracing back along the characteristics to the initial data, until the characteristics
intersect. The intersection of characteristics leads to the formation of shocks
and discontinuities as discussed in Chapter 6 in the context of multiphase flow
problems.

Exercise 3.7. Compute the operator ∇·∇U where ∇U is given by the asymptotic
expression (3.43).
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3.7 Multiple scale asymptotics

3.7.1 Overview

One of our goals is the imaging of the internal structure of an object using external
observations. While we might know the major features, such as large-scale faults
and/or interfaces, the body is assumed to be heterogeneous, with variations in
properties between these boundaries. This is particularly true for flow properties,
such as permeability, because they can vary significantly within a known reservoir.
Typically, given remote and sparse observations one cannot expect to resolve small-
scale heterogeneity. Rather, the observations only constrain large-scale variations
in internal properties. Therefore, it makes sense to develop efficient modeling tech-
niques, tailored to a medium containing smoothly varying heterogeneity between
known boundaries. In this section we shall develop an asymptotic approach for
this very case. In the class of techniques described here, we introduce the idea of
transforming the independent variables, x and t, in conjunction with an asymptotic
series representation of the dependent variable(s). Such an approach has a long
history, starting with the early work of Poincaré (1886) [republished in 1992] and
Lindstedt (1883). The significant advantage of the approach, as it relates to the
subject of this book, is that it is applicable to problems involving both heterogeneity
and nonlinearity.

Because we will illustrate this approach with applications in almost every chap-
ter, our discussion here will be brief and expository in nature. However, we will
end this section with an application of the technique to the wave equation, provid-
ing a concrete illustration of the procedure. Finally, our primary applications will
involve the calculation and interpretation of arrival times related to flow, transport,
and associated geophysical monitoring. Therefore, we will not spend much time
discussing the calculation of amplitudes here, or in any of the other chapters.

We are interested in disturbances propagating in a medium with smoothly vary-
ing heterogeneity. Hence, we can assume that, away from boundaries, the coef-
ficients in the equation(s) governing the transient behavior depend upon slowly
varying coordinates. Put another way, if the disturbance is characterized by a length
scale l, then the heterogeneity is assumed to vary over a larger length scale L � l.
The ratio of these two length scales defines a parameter

ε = l

L
.

For a smoothly varying medium or a relatively sharp front, ε is a small number,
much smaller than 1. Many non-linear processes, such as multiphase fluid flow,
give rise to self-sharpening fronts, similar to shock waves in gas dynamics (Courant
and Friedrichs, 1948; Chorin and Marsden, 1993). Our assumptions are reasonable
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when modeling the propagation of such fronts in a medium with smoothly varying
attributes. For sharp boundaries, such as interfaces between layers, the assumptions
will no longer hold. However, such discontinuities are typically treated as boundary
conditions in the modeling. Similar considerations enter into ray-based modeling
and geometrical optics (Kline and Kay, 1965). The presence of boundaries between
regions with smoothly varying properties leads to conditions on trajectories cross-
ing the interfaces, such as Snell’s law (Chapman, 2004, p. 201).

Many of the properties of the propagating front, such as its amplitude, are mod-
ulated by the heterogeneity. Therefore, it makes sense to rewrite the governing
equations in terms of the new variables

X = εx (3.48)

characterized by the scale parameter ε � 1. A similar expression holds for the
time t and the rescaled time T = εt. For non-linear processes, X and T might
signify the length and time scales over which the effects of the non-linearity become
significant. Non-linear processes may require a more flexible relationship between
the two scales, in its most general form we may write this relationship as

X = χ (x, ε) (3.49)

where χ is a specified function. For example, for quasi-linear problems involving
dispersion and dissipation the relationship between the independent space and time
variables is:

X = εa (x − λt)

and

T = εa+1t

where a is determined by the length scale of the non-linearity and the length scale
of the dispersion and λ is determined by the propagation velocity associated with
the linearized system (Debnath, 2005, p. 604). Such a transformation was developed
for solitary wave propagation in a plasma and is known as the Gardner–Morikawa
transformation (Gardner and Morikawa, 1960). In the discussion that follows we
shall work exclusively with the relationship (3.48). However, its possible general-
ization to (3.49) should be kept in mind.

The underlying idea is the existence of a localized faster variation, in space
and/or time, associated with a transient propagating disturbance, contrasting with
much slower variations in the surrounding medium (Maslov and Omel’yanov, 2001,
p. 3). If we adopt a coordinate system advancing with the wave front, then we
can relate the approach to that of boundary layer theory (Cole and Kevorkian,
1963; Kevorkian and Cole, 1996). In order to position ourselves on the front as it
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propagates, we shall need a measure of the front position, such as the surface S(x, t)
[Equation (3.1)] from Section 3.1, or its spatial component σ(x) [Equation (3.2)].
We will generally represent the location and propagation of the front by the phase
function θ(x, t). The phase function will be a critical component of our treatment
of a propagating disturbance. To highlight its importance, the phase is explicitly
included in the expression for the disturbance:

u(x, t) = U(X, T , θ) (3.50)

where X depends upon x and ε through the definition (3.48) or (3.49). Thus,
ultimately u depends upon x and t. However, during intermediate steps in our
application of the method of multiple scales, we shall treat U as a function of the
variables X, T , and θ .

Note that the introduction of a distinct phase function is similar to writing the
solution in a complex or polar form

u(x, t, θ) = A0(x, t) exp iθ(x, t) (3.51)

with an amplitude function A0 and a distinct phase function θ . Such a representation
is assumed in the linear WKB method (Bender and Orszag, 1978) and in the high-
frequency asymptotic method given previously [see Equation (3.19)]. However, we
cannot always assume the simple exponential form (3.51) because, as noted by
Luke (1966) and Miura and Kruskal (1974), it does not usually suffice for solutions
of non-linear equations. Even linear problems may require a more general form
for zeroth-order solution, for example in an area where there is intense focusing
(Ludwig, 1966). We need to allow for a more general dependence on the phase, as
given in (3.50), particularly when we consider non-linear problems. The function θ
determines the variation of U(X, T , θ) across the front, which is assumed to occur
over a short distance and over a small time span. As such, it is a rapidly changing
quantity that depends upon x and t (Whitham, 1974, p. 494; Jeffrey and Kawahara,
1982, p. 146). As noted by Luke (1966), the idea of the representation (3.50) is to
include the relatively fast local oscillations by including the variable θ while the
dependence upon X and T take care of the slower variations.

Due to the dependence of U(X, T , θ) on θ(x, t) there is both an explicit and
an implicit dependence upon the independent variables. The derivatives of u(x, t),
reflecting this dual dependence are given by

∂u

∂xi
= ∂Xi

∂xi

∂U

∂Xi
+ ∂θ

∂xi

∂U

∂θ

= ε
∂U

∂Xi
+ ∂θ

∂xi

∂U

∂θ
, (3.52)
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where we have used the relationship (3.48) between the two coordinate systems.
A similar expression exists for the derivative with respect to t.

The final task is to represent the dependence of U(X, T , θ) upon ε. Most com-
monly the relationship is expanded in a power series in ε, that we write in the
somewhat generalized form,

U(X, T , θ) =
∞∑

n=0

εβn+αAn(X, T , θ). (3.53)

In fact, this form is almost universally adopted in applications of the technique
to non-linear, dispersive, diffusive, and heterogeneous media. Just as in the high-
frequency asymptotic expansion (3.27), the constants α and β are determined by
the physics of the problem and An(X, T , θ) are the successive amplitude corrections.
The amplitude corrections account for such complications as spatial variations in
material properties and/or non-linearity. Note the similarity of this expansion to the
high-frequency asymptotic approximation (3.27) if we take

ε = − 1

iω
. (3.54)

3.7.2 Illustration via an application to the wave equation

As a simple illustration, consider the wave equation 3.5 introduced at the beginning
of this chapter

c2∇ · ∇u + ∇c2 · ∇u − ∂2u

∂t2
= 0. (3.55)

The first order of business involves writing the differential operators in Equa-
tion (3.55) in terms of the slow variables and the phase, then rewriting the
derivatives, as in Equation (3.52). For example, the gradient of u(x, t) = U(X, T , θ)
is given by

∇U = ε∇U + ∇θ ∂U

∂θ
(3.56)

where the overbar indicates that the partial derivatives in the gradient operator
are with respect to the slow variables X. Expanding all differential operators in
Equation (3.55) in this fashion, we have the expression

ε0

[
c2∇θ · ∇θ ∂

2U

∂θ2
−
(
∂θ

∂t

)2
∂2U

∂θ2

]

+ ε1

[
c2∇ ·

(
∇θ ∂U

∂θ

)
+ c2∇θ · ∇

(
∂U

∂θ

)
+ ∇c2 · ∇θ ∂U

∂θ
− 2

∂θ

∂t

∂2U

∂θ∂T

]

+ ε2

[
c2∇ · ∇U + ∇c2 · ∇U − ∂2U

∂T2

]
= 0. (3.57)
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In this equation we have grouped terms according to the power of ε that results from
rewriting the derivatives. Now we substitute the asymptotic power series expan-
sion (3.53),

U(X, T , θ) =
∞∑

n=0

εnAn(X, T , θ). (3.58)

where we have taken α = 0, and β = 1, into Equation (3.57) and consider terms of
various orders in ε. Because ε � 1 only the first few terms are important. In fact,
our interest in the trajectories and the travel times means that we can concentrate
on terms of order zero.

Terms of order ε0 ∼ 1

Substituting the power series expansion (3.58) for U(X, T , θ) into Equation (3.57)
and considering terms of order ε0 ∼ 1, gives[

c2∇θ · ∇θ −
(
∂θ

∂t

)2
]
∂2A0

∂θ2
= 0. (3.59)

Equation (3.59) is equivalent to the highest-order term of the high-frequency
asymptotic expansion (3.44). Assuming that the second derivative of A0 with
respect to θ does not vanish, we have a non-linear partial differential equation for
θ(x, t)

c2∇θ · ∇θ −
(
∂θ

∂t

)2

= 0. (3.60)

of the same form as Equation (3.46).
Because Equation (3.60) is a first order, non-linear, partial differential equation

for θ(x, t), we may use the techniques from Section 3.5 to derive a trajectory-
based solution. However, we can simplify our task if we take advantage of the
mathematical structure of Equation (3.60). Specifically, the terms are homogeneous
in the sense that they are both products of first derivatives. Additionally, the equa-
tion is separable in the sense that all the spatially dependent terms and derivatives
can be isolated from the time derivatives. The symmetry and separability of the
equation suggests that the solution should also share those properties. One form of
the solution that comes to mind is similar to Equation (3.2) for the propagating front

θ(x, t) = t − σ(x). (3.61)

Substituting this for θ in Equation (3.60) produces a reduced equation for σ(x)

∇σ · ∇σ − 1

c2
= 0. (3.62)
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Figure 3.6 The velocity function c(x) used for an example calculation of the ray
trajectories and for the solution of the eikonal equation. The velocity only varies
as a function of the depth (z). The steep jump in velocity simulates an interface at
z = 1500m.

This is the eikonal equation, first encountered in Section 3.6. So now we are in
familiar territory, faced with a non-linear, first-order, partial differential equation
that may be written in the form of Equation (3.28)

F(x, p) = p · p − 1

c2
= 0 (3.63)

where p = ∇σ(x). We may therefore follow the procedures outlined in Section 3.5
and derive the ray equations equivalent to Equation (3.63). Since we have already
done the work in our treatment of the wave equation using a high-frequency asymp-
totic expansion (Section 3.6), we merely write down the appropriate ray equations

dx
ds

= 2p (3.64)

dp
ds

= −∇
(

1

c2

)
(3.65)

dσ

ds
= 2

c2
. (3.66)
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Figure 3.7 Raypaths from a seismic source to five receivers at the rightmost end
of the simulation grid. The velocity model for the computations is plotted in Figure
3.6. Travel time contours, obtained from a finite-difference solution of the eikonal
equation, are also shown.

We can also derive an explicit expression for the spatial component of the phase
function as an integral along the trajectory x(s)

σ (xo) =
∫ xo

xs

dx

c(x)
(3.67)

using the first and final ray equations, along with the eikonal equation (3.63). The
ray equations and the expression for σ(x) provide one method for solving the
eikonal equation. There are also efficient numerical techniques, primarily finite-
differences, for the direct solution of the eikonal equation 3.62. For illustration
purposes, in Figure 3.7, we plot a finite-difference solution of the eikonal equation,
for the velocity model in Figure 3.6. We will briefly touch upon the finite difference
solution of the eikonal equation in Chapter 4. However, this is a subject worthy of
an extended discussion. In fact there are excellent texts available, describing the
various numerical approaches (Sethian, 1999; Osher and Fedkiw, 2003).
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Terms of order ε

The terms of order ε, contained in the first two lines of Equation (3.57), can be
treated in a similar fashion. Because we are mainly interested in calculating the
trajectories and travel times we will leave this treatment as an exercise. The result is
a transport equation governing the evolution of the amplitude A0(X, T , θ). In some
of the applications that follow, particularly in Chapter 4, we illustrate the treatment
of the terms of order ε.

Exercise 3.8. Derive an expression for the zeroth-order amplitude function
A0(X,ω) by considering terms of order ε in Equation (3.57).

Construction of the zeroth-order solution

The lowest-level approximation is provided by the zeroth-order term in the asymp-
totic series (3.58)

U(X, T , θ) = A0(X, T , t − σ(x)), (3.68)

where we have inserted the separable form (3.61) for the phase. This is a propagat-
ing disturbance, similar in form to the moving fronts encountered early on in this
chapter.

3.7.3 Summary

We have presented an asymptotic and trajectory-based method for solving the gov-
erning equations related to flow and transport through porous media. The asymp-
totic method leads to the eikonal equation, an equation for the phase or the travel
time of the front. The approach presented here is general and encompasses wave
propagation, convective transport, and also diffusive processes such as transient
pressure transmission in permeable media. The asymptotic method is particularly
well-suited for partial differential equations with spatially varying coefficients, a
situation typically encountered in Earth sciences. A major advantage of the method
is that it allows partitioning of the modeling into a phase or propagation time calcu-
lation and amplitude calculations. Much of the geologic heterogeneity is embedded
in the phase. This fact can be used to our advantage in simplifying the amplitude
calculations. Thus, semi-analytic methods can significantly speed up computations.
The visual and intuitive nature of the calculations greatly facilitates analysis and
interpretation of field data. We will illustrate the power and utility of the approach
using a variety of applications in the chapters that follow.
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Equations in diffusion form

4.1 Introduction

Diffusive processes are often assumed to have very little in common with solutions
of the hyperbolic partial differential equations governing wave-like propagation.
Indeed, solutions of the diffusion equation decay in an exponential fashion with
distance from the source of a disturbance. Thus, to propagate an observable dis-
turbance away from a source it is often necessary to continuously supply mass
or energy. For example, in order to propagate an observable pressure disturbance
from an injection point to a distant location it is typically necessary to introduce
fluid at a constant rate into the porous medium for a sustained period of time.
However, as indicated in Chapter 1, transient solutions to the diffusion equation
do indeed propagate, and, as will be shown in this chapter, one may derive an
expression governing the phase of such a propagating disturbance. The governing
equation for the phase is a Hamilton–Jacobi equation, identical in form to the
eikonal equation encountered earlier. However, the interpretation and the effect of
the phase function is significantly different from that of a propagating wave, in
keeping with the very different nature of diffusion. In this chapter we shall consider
one approach for developing a trajectory-based solution for diffusion equation, a
high-frequency asymptotic expansion. We shall illustrate the approach and its utility
with a few applications, including diffusion tomography.

4.2 A high-frequency asymptotic solution

Here we derive a high-frequency asymptotic solution for the diffusion equation.
The phrase ‘high-frequency’ is not commonly associated with diffusive processes.
However, a high-frequency component is present in the early rapid variations of
pressure due to the onset of fluid injection. Also, the notion of what constitutes a
high frequency is relative to the temporal variation of the background field, which
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can be gradual. Admittedly, the approximation does not have the long reach asso-
ciated with processes such as elastic wave propagation and is often restricted to a
region surrounding the source. Still, the range over which we can utilize a transient
pressure disturbance is far enough to provide a powerful tool for imaging flow
properties between a given source and receiver. Furthermore, our asymptotic anal-
ysis allows us to draw a connection between the well developed modeling of wave
propagation and transient solutions to the diffusion equation. Such a connection is
useful in understanding coupled processes and equations of a mixed nature: those
that are neither entirely wave-like nor completely diffusive in character.

4.2.1 Motivation and derivation of the asymptotic expression

Let us begin with an equation in diffusion form containing coefficients that vary
with position

∇ · λ(x)∇p = S(x)
∂p

∂t
. (4.1)

Such an equation governs the evolution of fluid pressure, p(x, t), in a porous
medium. In fact, Equation (4.1) is a variation of Equation (2.94) for a heterogeneous
medium characterized by spatially varying properties, λ(x) and S(x). The fluid
mobility λ(x) is the ratio of medium permeability k(x) and fluid viscosity μ,

λ(x) = k(x)
μ

.

The storage coefficient, S(x) is the product of porosity, ϕ(x) and total system com-
pressibility (rock plus fluid) ct,

S(x) = ϕ(x)ct.

Because we are interested in a high-frequency solution we first apply the Fourier
transform

P(x,ω) = 1√
2π

∫ ∞

−∞
p(x, t)eiωtdt (4.2)

(Bracewell, 2000; Debnath, 2005), introduced earlier in Chapter 3. The Fourier
transform will take us into the frequency domain and makes the dependence of the
pressure P(x,ω) upon frequency, ω, explicit. It is the natural setting in which to
derive a series solution for P in terms of powers of ω. Note that we are adopting a
sign convention that is often used in wave propagation within the Earth (Aki and
Richards, 1980a, p. 130). Applying the integral transform (4.2) to the diffusion
Equation (4.1) results in

∇ · λ(x)∇P + iωS(x)P = 0. (4.3)
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To extract the high-frequency component we now consider a power series rep-
resentation of the pressure. As noted in the introduction to the high-frequency
asymptotic approximation in Chapter 3, we motivate the form of our power series
solution by first considering solutions for a homogeneous medium. This was the
approach taken by Virieux et al. (1994) in their study of diffusive electromagnetic
imaging. Thus, consider Equation (4.3) when λ(x) and S(x) are constants λ and S,
respectively

λ∇ · ∇P + iωSP = 0. (4.4)

For a homogeneous medium Equation (4.4) may display some degree of symmetry
depending upon the initial or boundary conditions. The source of the disturbance
may be treated both as an initial condition and as a boundary condition. Thus, the
symmetry of the source will determine the overall symmetry of the solution. For
example, when we consider a line source, such as injection in a long well, in a
homogeneous medium, the problem and hence the solution has cylindrical symme-
try. In that case it makes sense to write the divergence operator ∇ · ∇ in cylindrical
coordinates (r, θ , z) (Davis, 1967, p. 193), where r is the radial distance from line
of symmetry, θ is the angle about the line of symmetry, and z is the distance along
the line of symmetry. In cylindrical coordinates Equation (4.4) becomes

λ

r

∂

∂r

(
r
∂P

∂r

)
+ λ

r2

∂2P

∂θ2
+ λ

∂2P

∂z2
+ iωSP = 0. (4.5)

Due to the symmetry of the problem, we expect the pressure field to only depend
upon the radial (r) coordinate, and Equation (4.5) is an ordinary differential equa-
tion for P(r,ω):

λ

r

d

dr

(
r

dP

dr

)
+ iωSP = 0, (4.6)

where the frequency ω is treated as a parameter and not as a variable. Multiplying
this equation by r2 and expanding the derivative gives

r2 d2P

dr2
+ r

dP

dr
+ iωr2 S

λ
P = 0, (4.7)

a modified form of Bessel’s equation (Dingle, 1973, p. 281).

Box 4.1 A series solution of the modified Bessel’s equation

Our derivation of an asymptotic representation of the modified Bessel function (4.23)
begins with the governing Equation (4.7). After dividing through by r and defining

β = −iω
S

λ
, (4.8)
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the result is the equation

r
d2P

dr2
+ dP

dr
− rβP = 0. (4.9)

The coefficient β can be removed by writing Equation (4.9) in terms of the new
variable

s = √βr (4.10)

with the corresponding derivative

ds

dr
= √β . (4.11)

Writing the governing equation in terms of s gives

d2P

ds2
+ 1

s

dP

ds
− P = 0. (4.12)

We shall be interested in a power series solution of Equation (4.12). However, this
equation has singularities when s approaches zero and ∞. We shall assume that we
are a sufficient distance away from the origin that r is not small relative to

√
β. Thus,

we only need to consider the singularity at ∞. In order to capture the behavior in the
limit of large s, we first consider the Equation (4.12) when ω and hence β and s are
large [see (4.10)]. For large values of s, Equation (4.12) is well approximated by

d2P

ds2
− P = 0, (4.13)

which has the stable solution

P(s,ω) ∼ e−s. (4.14)

Now consider a solution of the full Equation (4.12), of the form

P(s,ω) = e−sp−(s). (4.15)

Substituting the form of the solution (4.15) into Equation (4.12) gives an equation for
p−(s)

s
d2p−

ds2 + (1 − 2s)
dp−

ds
− p− = 0. (4.16)

We shall consider the function p−(s) in the form of a power series with a leading order
term sσ present, representing the singular behavior as s approaches ∞:

p−(s) = sσ
∞∑

n=0

Ans−n. (4.17)

In order to discover the leading order behavior of the solution, that is the value of σ ,
we substitute a trial solution of the form
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p−(s) = sσ , (4.18)

which is just the s component of the zeroth term in the series (4.17), into
Equation (4.16) which produces the equation

σ 2

s
− (2σ + 1) = 0. (4.19)

For large values of s, Equation (4.19) implies that

σ = −1

2
(4.20)

and so the full solution is of the form

P(s,ω) = e−ss−1/2
∞∑

n=0

Ans−n. (4.21)

We can determine the coefficients Ai by substituting the full solution (4.21) into the
governing Equation (4.12). Because

s = √βr = √−iω

√
S

λ
r,

the asymptotic power series solution of the original problem, the modified Bessel
Equation (4.9), is of the form

P(r,ω) = 1√√−iω
e−√−iω

√
S/λr

∞∑
n=0

An

(√
λ/S

r

)n+1/2 (√−iω
)−n

(4.22)

As noted by Virieux et al. (1994) for an impulsive source, that is a source given
by a scaled delta function δ(t) located on the source line, Equation (4.7) has the
solution

P(r,ω) = 2K0

[
r
√−iω

√
S

λ

]
(4.23)

where K0(x) is the modified Bessel function of order zero (Press et al., 1992). In
Box 4.1 we apply a power series expansion method directly to the modified Bessel
equation to derive an asymptotic representation of (4.23).

As pointed out by Virieux et al. (1994), and demonstrated in Box 4.1, the solution
of the modified Bessel equation, specifically the modified Bessel function of order
zero, has the asymptotic expansion:

P(r,ω) = e−√−iω
√

S/λr
∞∑

n=0

An

(√
λ/S

r

)n+1/2 (√−iω
)−n

(4.24)
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for an impulsive line source. In the expression (4.24) we have suppressed the
1/
√√−iω term because, as noted by Virieux et al. (1994), this term depends

upon the spatial distribution of the source and thus depends upon the type of
source. Typically, the solution associated with an impulse is convolved with a
source function so such factors appear in this later step. We should note that
solutions of the form (4.24) also hold for planar (one-dimensional) and point
(three-dimensional) sources (Virieux et al., 1994).

For a medium with smoothly varying properties λ(x) and S(x) are slowly varying
functions of x. If we let λ and S in Equation (4.24) depend upon position, then we
can write the asymptotic expansion in the generalized form

P(x,ω) = e−√−iωσ(x)
∞∑

n=0

An (x)(√−iω
)n (4.25)

as in Virieux et al. (1994) and Vasco et al. (2000). In this expression we have
grouped all terms depending upon the spatial variables into the two functions σ(x)
and An(x). The functions An(x) represent amplitude terms associated with the var-
ious orders of 1/

√−iω. The quantity σ(x), known as the phase or pseudo-phase,
shares characteristics with the phase of a propagating wave. However, there are
important differences because the frequency-dependent multiplier is

√−iω. The√
ω frequency-dependence leads to a very different temporal variation in the solu-

tion, once the inverse Fourier transform is applied and we return to the time-domain.
To see this, consider the inverse Fourier transform applied to the zeroth-order term
of the series (4.25)

p(x, t) = F−1
[
e−√−iωσ(x)A0 (x)

]
= A0(x)

σ (x)

2
√
π t3

e−σ 2(x)/4tH(t), (4.26)

(Virieux et al., 1994), similar in form to the solution of the diffusion equation in
a homogeneous medium. Note that the phase or pseudo-phase, σ(x), appears both
as an argument of the exponential, and as a multiplier of the amplitude. Thus, the
solution decays in an exponential fashion as a function of the square of the phase.
This decay will likely dominate the variation of the amplitude A0(x) with distance
from the source.

To summarize the results of this section, an asymptotic power series represen-
tation of the solution for a homogeneous medium suggests a frequency-domain
solution for a heterogeneous medium of the form (4.25). At high-frequencies, the
series should be dominated by terms of the lowest order in 1/

√−iω. For the zeroth-
order (n = 0) expression there are two unknown functions σ(x) and A0(x). In the
section that follows, we shall determine these functions and explore some of their
properties.
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4.2.2 Determination of the phase and amplitude functions

The functions σ(x) and An(x) are found in a rather straight-forward fashion. We
simply substitute the asymptotic series (4.25)

P(x,ω) = e−√−iωσ(x)
∞∑

n=0

An (x)(√−iω
)n

into the frequency-domain version of the governing equation, Equation (4.3), writ-
ten in the expanded form

λ(x)∇ · ∇P + ∇λ(x) · ∇P + iωS(x)P = 0, (4.27)

and consider terms of various orders in 1/
√−iω. Most of our effort is spent in

computing the spatial derivatives of the asymptotic series. For example, the gradient
of P(x,ω) is given by

∇P(x,ω) = e−√−iωσ(x)

[
−√−iω∇σ(x)

∞∑
n=0

An (x)(√−iω
)n +

∞∑
n=0

∇An (x)(√−iω
)n
]

. (4.28)

We can gain some insight into the phase function, σ(x), by considering the expres-
sion (4.28) for high frequencies, when it is accurately represented by the zeroth-
order term. For large values of ω expression (4.28) may be approximated as

∇P(x,ω) = −e−√−iωσ(x)
√−iωA0 (x)∇σ(x) (4.29)

and the phase gradient is oriented parallel to the pressure gradient but pointing in
the direction of decreasing pressure. For lower frequencies the spatial variation of
the amplitude function A0(x) has an influence on the pressure gradient.

Returning to the governing Equation (4.27), the term ∇·∇P is obtained by apply-
ing the divergence operator to the expression (4.28). We shall not show this step but
leave it as an exercise for the reader. The complete expression for Equation (4.27)
is given by

− (iω) [λ∇σ · ∇σ − S]
∞∑

n=0

An√−iωn

−(√−iω)

[
∇ · (λ∇σ)

∞∑
n=0

An√−iωn
+ 2λ

∞∑
n=0

∇σ · ∇An√−iωn

]

+
∞∑

n=0

∇ · (λ∇An)√−iωn
= 0 (4.30)

where we have factored out the exponential multiplier, grouped terms according
to their order in

√−iω and suppressed the dependence of λ, S, σ , and An upon x
in order to streamline the expression. This equation contains an infinite number
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of terms of various orders in
√−iω. Since we are interested in high-frequency

solutions, we shall assume that the frequency ω is large and that terms of the
highest order in

√−iω, or conversely, of the lowest order in 1/
√−iω are the most

significant. In the sub-sections that follow we shall consider terms of order two and
one in

√−iω, the two highest orders in Equation (4.30).

Terms of order (
√−iω)2 ∼ −iω: an expression for the phase

Collecting terms of the highest order, those containing (
√−iω)2 ∼ −iω, leads to

the equation

[λ∇σ · ∇σ − S] A0 = 0. (4.31)

Assuming that the amplitude A0(x) does not vanish, Equation (4.31) provides a
partial differential equation for the phase σ(x):

∇σ · ∇σ − 1

κ(x)
= 0, (4.32)

known as the eikonal equation. In Equation (4.32) we have defined the quantity

κ(x) = λ(x)
S(x)

(4.33)

which is the diffusivity (de Marsily, 1986, p. 162) associated with the original
diffusion Equation (4.1). From Equation (4.32) we see that the phase depends upon
the diffusivity of the medium. Also, from Equation (4.29) we have seen that for high
frequencies the phase gradient is in the direction of the pressure gradient. We will
make use of this property in Section 4.3.2 to solve for pressure distribution. Greater
physical insight about the phase can be achieved once we construct a zeroth-order
approximation to the solution of the diffusion equation as discussed in the next
section. For now, it suffices to say that the phase is related to the propagation of the
peak of pressure disturbance corresponding to an impulse source.

The eikonal Equation (4.32) is a non-linear, scalar, first-order partial differen-
tial equation, a particular example of a Hamilton–Jacobi equation discussed in
Chapter 3. It has two attractive features that will help in finding a solution σ(x).
First, it does not depend upon time or frequency, only upon spatial coordinates.
Thus, through the form (4.25) of our asymptotic solution, we have successfully
peeled off the frequency dependence. That is, we have isolated a function related to
the propagation that does not depend upon frequency and hence is independent of
time. Second, the eikonal equation is a first-order scalar differential equation and is
therefore amenable to the various methods for solving such equations (Courant and
Hilbert, 1962; Debnath, 2005). We shall have more to say about that in a moment.
There are also some difficulties associated with the eikonal equation. It is non-
linear, so that linear techniques may not be applied. A consequence of this, well
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known in elastic wave propagation, is the possibility of multi-valued solutions.
Also, the coefficient κ(x) may be any given function of x and, in general, we may
not take advantage of any particular symmetry.

Because the eikonal Equation (4.32) is a scalar, first-order, partial differential
equation we can solve it using numerical methods such as finite differences. In
fact there are techniques suited specifically for Hamilton–Jacobi equations such as
the eikonal equation (Crandall and Lions, 1983; Crandall et al., 1984; Osher and
Fedkiw, 2003). These methods introduce a viscosity term to suppress the multiplic-
ity of solutions, producing a unique solution corresponding to the smallest phase
values. The approach was introduced into seismology by Vidale (1988). The tech-
nique has advanced further, through a combination of a narrow band methodology,
in which changes are made to a set of points in a narrow region around an outwardly
propagating front, and a fast heapsort algorithm which finds the grid point with the
smallest phase value. The technique, known as the Fast Marching Method, was
introduced by Sethian (1996) and is described in greater detail later in this chapter.
Such viscosity solutions do not recover the full multi-valued solution. However,
one can expend additional effort, such as formulating and solving escape equations
(Formal and Sethian, 2002) or by combining the finite difference approach with
ray tracing (Benamou, 1996), and compute multi-valued solutions. If we choose
to use an eikonal solver such as Fast Marching Method to compute the phase on a
numerical grid, we can use the phase as a spatial coordinate to simplify the pressure
equation. Specifically, we can define a reduced equation for the pressure along the
trajectory and solve it using standard finite difference methods. We discuss this
approach in detail in the application section.

An alternative approach is provided by the method of characteristics (Courant
and Hilbert, 1962, p. 75) introduced in Chapter 3. The technique starts with the
eikonal Equation (4.32) written in the form

F(x, p) = p · p − 1

κ(x)
= 0, (4.34)

where we have defined the conjugate momentum vector

p = ∇σ . (4.35)

In the method of characteristics we derive a system of ordinary differential equa-
tions equivalent to the eikonal Equation (4.32), The solutions are defined upon tra-
jectories, or paths, through the medium, and points along the path are parameterized
by s. The trajectory itself is denoted by the position vector x(s). The characteristic
equations associated with a first-order partial differential equation, and given in
Box 3.1 in Chapter 3, are
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dx
ds

= ∇pF = 2p (4.36)

dp
ds

= −∇xF − p
∂F

∂σ
= ∇

(
1

κ(x)

)
, (4.37)

where ∇pF is the gradient of F with respect to the components of p and ∇x is the
standard gradient with respect to the spatial variables. Because there is no explicit
dependence upon σ , the partial derivative ∂F(x, p)/∂σ vanishes in Equation (4.37).
These equations comprise a system of ordinary differential equations for the raypath
x(s) and the conjugate momenta along the raypath. Note that the trajectories are
completely determined by the function κ(x).

In order to obtain a unique solution, the differential Equations (4.36) and (4.37)
must be accompanied by a set of boundary conditions. Because the variables are
x(s) and p(s), the boundary conditions can involve either or both of these quantities
at either one or both endpoints of the trajectory. Thus, for example, we can specify
the starting point x(0) and the conjugate momentum vector p(0) at the initial point
of the trajectory, the source point. This brings up the various approaches for solving
the coupled system of Equations (4.36) and (4.37). Two conditions, prescribed at
the starting point of the trajectory, constitute an initial value problem that may be
integrated numerically (Press et al., 1992, p. 701). Alternatively, when the boundary
conditions are specified at the initial and final points, one has a two point boundary
value problem. Two point boundary value problems generally require more effort
to solve (Press et al., 1992, p. 745). For example, one technique, the shooting
method, requires solving a sequence of initial value problems. Two point boundary
value problems can have multiple solutions, as trajectories leaving a source at
different angles can bend around due to heterogeneity and intersect at the target
point.

A complete wavefield is obtained when one has determined all contributing
trajectories between a source point and a receiver point. When a single trajectory
connects a source and receiver the phase field is single valued. A multivalued phase
function results when two more trajectories meet at a point. The advantage of the
trajectory-based approach is that it can handle multiple arrivals quite naturally
because it develops the solution trajectory by trajectory and does not rely on an
underlying regular grid. The disadvantage is that the approach requires more effort
to implement numerically than does a straight-forward finite difference solution
of the eikonal Equation (4.32). Furthermore, it can be difficult to map the results
into a regular grid. One property of a diffusive disturbance is the rapid exponential
decay with propagation distance. In practical terms this means that interference
from multiple arrivals is likely to be less of a problem due to the much smaller
amplitude of contributions from later arrivals that have traveled greater distances.
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The third ray equation derived in Section 3.5, see Box 3.1, gives an expression
for σ(x) along the trajectory x(s):

dσ

ds
= p · ∇pF

or
dσ

ds
= 2p · p = 2

κ(x)
. (4.38)

In the right-most equality we have used the eikonal Equation (4.34). Using
Equation (4.36) to substitute for p, we find that(

dx

ds

)2

= 4

κ(x)
(4.39)

or

dx

ds
= 2√

κ(x)
. (4.40)

Integrating Equation (4.38) from a source location xs to an observation point xo

gives

σ(xo) =
∫ xo

xs

2

κ(x)
ds =

∫ xo

xs

1√
κ(x)

dx (4.41)

upon using Equation (4.40). Thus, by solving the coupled ray Equations (4.36)
and (4.37) we obtain the trajectory, x(s), and by an integration of (4.41) along the
trajectory we obtain the phase. As mentioned before, the phase function has an
important physical interpretation. The phase is associated with the propagation time
of the peak of an impulsive pressure disturbance. We will sometimes refer to the
phase function as the ‘diffusive time of flight’ of a pressure pulse. In Figure 4.1 we
illustrate the trajectories for a heterogeneous permeability field. The phase variation
or diffusive time of flight along the trajectories are also shown. It is clear that the
effects of permeability heterogeneity are embedded in the phase variations. Note
that in Equation (4.41), the phase has unit of square root of time which is consistent
with the scaling behavior of diffusive processes.

It is interesting to draw a comparison at this point with convective trajectories
or streamlines which we will discuss in detail in Chapter 5. Unlike the diffusive
trajectories that correspond to the propagation of a pressure pulse, streamlines are a
depiction of the velocity field and represent the flowpaths of a passive tracer. Analo-
gous to the diffusive time of flight, we can define a ‘convective time of flight’ along
the streamlines. For comparison purposes, we have also shown the streamlines and
time of flight in Figure 4.1. Both the diffusive and the convective time of flight are
very useful for characterizing of the flow properties in heterogeneous permeable
media, as we will see.
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(a) (b)

(c)

Figure 4.1 An illustration of the spatial variation of the phase function σ(x)
along trajectories for a heterogeneous permeable medium. (a) Permeability field
(b) Trajectories and phase (c) Streamlines and convective time of flight for an
injector (bottom left)-producer (top right) configuration. For the colour version,
please refer to the plate section.

Terms of order
√−iω: an expression for the amplitude

A complete specification of the zeroth-order approximation, the first term in the
series (4.25), requires the amplitude function A0(x). Isolating the terms of the next
highest order in Equation (4.30), those containing

√−iω:

(λ∇σ · ∇σ − S)A1 − ∇ · (λ∇σ)A0 − 2λ∇σ · ∇A0 = 0, (4.42)

we arrive at an equation containing the zeroth-order amplitude A0(x) and its deriva-
tive. Because the phase function σ solves the eikonal Equation (4.32), the coeffi-
cient of the A1(x) term vanishes and Equation (4.42) reduces to

∇ · (λ∇σ)A0 + 2λ∇σ · ∇A0 = 0, (4.43)
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a partial differential equation for A0(x) known as the transport equation. Note,
if we multiply Equation (4.43) by A0 and collect terms, we can write the transport
equation in the form of a divergence

∇ · (λA2
0∇σ

) = 0.

Assuming that the phase is known, one may solve the transport equation for the
amplitude function. Dividing Equation (4.43) by A0(x), and expanding the first term
and dividing by λ(x) gives

2∇σ · ∇ ln A0 + ∇σ · ∇ ln λ+ ∇ · ∇σ = 0, (4.44)

a first-order, linear partial differential equation for ln A0(x). The coefficients of
this differential equation depend upon the components of ∇σ and ∇ ln λ(x). Thus,
the amplitude is determined by the gradient of the phase and the gradient of the
logarithm of the function λ(x).

One may solve for the amplitude A0(x) using one of several approaches. First,
one may discretize and solve the transport Equation (4.44), a linear partial differ-
ential equation for the scalar amplitude function, directly using numerical meth-
ods such as finite differences (Press et al., 1992). Alternatively, one may integrate
the linear differential equation for ln A0(x) along the trajectory using methods for
ordinary differential equations. Such an integration will require calculating the
divergence of the vector field ∇σ . This quantity is usually obtained by tracing a
suitable number of trajectories adjacent to the desired ray. Alternatively, one can
devise equations for the direct calculation of the divergence of ∇σ along the ray.
Finally, because the amplitude occurs in only one term in Equation (4.44), one can
manipulate the differential equation further and obtain an explicit expression for its
value [see Kline and Kay (1965, p. 156), Kravtsov and Orlov (1990, p. 22)]. The
exact equation describing the evolution of the amplitude along the trajectory is

A0(r) = A0(r0)

√
λ(r0)

λ(r)

√√
κ(r)J(r0)√√
κ(r0)J(r)

, (4.45)

where J(r) is the Jacobian, measuring the expansion of the surface area of the front
with distance r along the trajectory. This term is related to the divergence of the
vector field p and is obtained in the same fashion, by tracing several neighboring
rays and calculating their divergence. This procedure is described in more detail
elsewhere (Kravtsov and Orlov, 1990; Chapman, 2004).

4.2.3 Construction and interpretation of the zeroth-order solution

Having obtained the phase, σ(x), and amplitude, A0(x) functions, as described
above, we may construct the lowest-order approximation of the solution to the
diffusion Equation (4.1). The zeroth-order term in the asymptotic series (4.25) is
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P0(x,ω) = A0 (x) e−√−iωσ(x). (4.46)

This expression is useful if we wish to transform data into the frequency domain
and interpret quantities in that realm. However, it is much more common to work
in the time-domain, requiring the application of the inverse Fourier transform to
(4.46). As noted earlier [see Equation (4.26)], the inverse Fourier transform of the
expression (4.46) is

p(x, t) = F−1
[
e−√−iωσ(x)A0 (x)

]
= A0(x)

σ (x)

2
√
π t3

e−σ 2(x)/4tH(t). (4.47)

This expression is similar to the analytical solution of the diffusion equation for a
homogeneous medium with an impulsive source (Crank, 1975). The main differ-
ence is the presence of the spatially varying amplitude and phase functions, A0(x)
and σ(x), respectively.

We have a rough understanding of the role of the function A0(x). It is the ampli-
tude of the pressure change that propagates along the trajectories and is a function
of position along the path x(s). From the differential Equation (4.44) we see that
changes in the amplitude A0(x) are primarily due to the gradient of λ(x) and the
divergence of the trajectories, as measured by ∇ · p = ∇ · ∇σ . The role of the
phase function, σ(x), in the evolution of the pressure pulse p(x, t) is decidedly more
complicated. It occurs in two locations in expression (4.47), both as an amplitude
term, and as a term in the argument of the exponential.

In an effort to gain some insight into the nature of the phase function and its
role in the evolution of the pressure pulse, consider the zeroth-order, semi-analytic
expression (4.47). Plotting the evolving pulse for varying distances from the source,
as in Figure 1.5 of Chapter 1, suggests that the function (4.47) has a single peak
when considered as a function of time. One can show that the phase is directly
related to the arrival time of this peak. At this peak or pressure extremum, the
derivative of p(x, t)with respect to time vanishes. If we consider only positive times
the derivative is given by the quantity

∂p(x, t)

∂t
= A0(x)e−σ 2(x)/4t

(
− 3

2
√

t5
+ σ 2(x)

4
√

t7

)
. (4.48)

For finite values of the phase function and non-zero times, the exponential term
does not vanish and hence the condition for an extremum in pressure is given by

− 3

2
√

t5
+ σ 2(x)

4
√

t7
= 0. (4.49)
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Equation (4.49) is satisfied when either t approaches infinity or when 6t = σ 2(x).
Thus, the phase function σ(x) may be interpreted in terms of the time at which the
peak pressure is observed at a particular point x, denoted by Tmax

σ(x) = √6Tmax. (4.50)

Using this relationship and the explicit expression (4.41) for the phase function, we
may relate Tmax to the properties of the medium along the trajectory connecting the
observation point to the source point:

√
Tmax = 1√

6

∫ xo

xs

1√
κ(x)

dx. (4.51)

Because of the relationship (4.50) between the phase function and the propaga-
tion time of the pressure peak, σ(x) has been refered to as the diffusive time of
flight, even though it is actually proportional to the square root of the arrival time.
Equation (4.51) serves as the basis for a form of diffusion equation tomography,
in which ‘arrival times’ are used to image variations in the diffusivity κ(x) (Vasco
et al., 2000). We shall demonstrate this using an example given at the end of this
chapter.

In closing this section, we will return to the example in Figure 4.1. In Figure 4.2
we have converted the ‘diffusive time of flight’ in Figure 4.1 to physical time using
the 2D equivalent of Equation 4.50 (see Exercise 4.1). For comparison purposes, we
have also shown the convective tracer travel time. Notice that the diffusive ‘pressure
front’ propagates much faster compared to the convective ‘tracer front’. This is
consistent with field observations where pressure response can be observed much
sooner than the tracer arrivals.

(a) (b)

Figure 4.2 The propagation of the diffusive pressure front (a) versus convective
tracer front (b). For the colour version, please refer to the plate section.
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Exercise 4.1. Show that the relationship between the phase and the arrival time
of the ‘peak’ pressure for an impulse source as given in Equation (4.50) takes
the following forms for one- and two-dimensional flow.

1D:σ(x) = √
2Tmax,

2D:σ(x) = √
4Tmax.

Hint: The inverse Fourier transform of Equation (4.46) for two-dimensional
flow is given by

p(x, c) = A0(x)
σ (x)

2
√
π t2

e−σ 2(x)/4tH(t).

4.2.4 An alternative method for calculating the phase and the trajectories

One approach for calculating the trajectory, x(s), and the phase σ(x) is to solve
the ray Equations (4.36), (4.37), and then integrating (4.41). Numerical routines
are available for solving such systems of differential equations (Press et al., 1992).
However, because these ray-tracing techniques are distinct from numerical methods
such as finite differences typically used to model fluid flow, their implementation
and testing can be a barrier to their use. Fortunately, one can calculate the phase
and trajectories directly from the output of a numerical flow simulation and without
solving the ray equations (Vasco and Finsterle, 2004). We briefly outline the
approach in this section.

One may ask, why it is even necessary to calculate the phase or trajectories,
given that the simulator has already calculated the pressure variation throughout the
reservoir. Besides being visual and physically intuitive, the simple answer is that the
phase and trajectories may be used for a tomographic-style inversion of pressure
arrival times, as discussed in the Applications section below. Such arrival time
inversions, a by-product of the partitioning of the trajectory-based modeling into
distinct travel time and amplitude computations, has some advantages in compari-
son to the direct inversion of the pressure variation. First, the relationship between
arrival times and reservoir parameters is quasi-linear (Cheng et al., 2005), in con-
trast to the decidedly non-linear relationship associated with pressure amplitudes.
Practically, this means that an inversion of travel times is much less sensitive to the
initial reservoir model and less likely to converge to a local minimum. Therefore, a
travel time inversion is a good method for constructing an initial reservoir model,
prior to inverting the pressure amplitude observations. Second, as shown below,
the trajectory-based expression (4.51) for the travel time provides a semi-analytic
sensitivity, allowing for an efficient inversion algorithm. Sensitivities are partial
derivatives of the arrival time with respect to subsurface properties such as porosity
and permeability. Calculating the sensitivities efficiently typically constitutes an
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integral part of an inversion algorithm. Finally, the travel time inversion makes use
of the early, rapidly varying portion of the transient pressure curve. Therefore, one
does not have to continue a pressure test until a steady-state is reached, resulting in
rapid field experiments. For example, arrival time inversion is useful in the analysis
of crosswell slug tests (Brauchler et al., 2010).

The procedure for constructing the phase and trajectories is straight-forward and
follows from the results of the previous section. One first conducts a numerical sim-
ulation, computing the pressure variation throughout the region of interest. Next,
extract the time at which ∂p/∂t attains its maximum, based upon the simulated
pressure histories for each grid block. Equation (4.50), stating that

σ = √6Tmax,

is then used to map the peak pressure arrival time into a phase value. This procedure
is followed for each grid block, resulting in phase estimates throughout the reservoir
volume. With the phase defined over the simulation grid one can compute

p = ∇σ
using a numerical differencing algorithm. The trajectory is found by stepping down
the gradient of the phase from an observation point x to the source at xs. An
iterative procedure, such as a second-order Runge-Kutta technique, may be used
to calculate the trajectory. For example, Heun’s method is one approach that is easy
to implement. In this algorithm one improves upon a step by computing the gradient
at an intermediate point x̂i, given by

x̂i = xi + p(xi)δs.

where δs is the intermediate step length. The actual step taken to the next point
along the path xi+1 is computed using the average of the gradient at the current
point, xi, and the intermediate point

xi+1 = xi + 1

2

[
p(xi)+ p(x̂i)

]
δs.

Note that calculating the trajectory in this fashion is far simpler than solving the
full set of ray Equations (4.36), (4.37), and (4.38). The numerical integration of
these differential equations requires two-point raytracing, and more complicated
computer code then Heun’s method.

4.3 Applications

The advantages of the trajectory-based approaches described in this book are most
apparent when trying to image the internal structure of an object using remote
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observations, the so-called inverse problem. The utility springs not simply from
the efficiency of the methods, there is also an important conceptual advancement.
Specifically, the partitioning of the modeling into phase (travel time) and amplitude
computations introduces additional flexibility into both the forward and inverse
problems. This flexibility has been used to some advantage in such fields as med-
ical imaging, geophysical tomography, and petroleum reservoir characterization.
We shall examine the differences between travel time and amplitude computations
below, in our discussion on model parameter sensitivities. Before that, we will touch
upon the numerical solution of the eikonal equation and its use in flow visualization
and well drainage calculations. The phase or ‘diffusive time of flight’ has two
primary applications. First, it can be utilized to visualize the interaction between
heterogeneity and fluid flow. Second, the phase may be used as a spatial coordinate
to decouple the effects of heterogeneity from fluid flow calculations.

4.3.1 Fast Marching Solutions of the eikonal equation

We have seen that a trajectory-based solution to the eikonal equation involves the
construction of a ray path, or trajectory, by solving Equations (4.36) and (4.37) and
then calculation of the line integral in Equation (4.41) to compute the phase. An
alternative approach to computing the phase function is the Fast Marching Method
which does not require explicit construction of the trajectories (Sethian, 1999).
Here we briefly review the solution of the eikonal equation using the Fast Marching
Method.

Fast Marching Method

In this section we illustrate the solution of the eikonal equation, Equation (4.32),

∇σ · ∇σ − 1

κ(x)
= 0,

using the Fast Marching Method. This technique can be used to solve the eikonal
equation. It is a single-pass method utilizing the fact that σ(x) only depends upon
the value of σ along the characteristic(s) passing through the point x (Sethian,
1996). Thus, the solution σ can be constructed in an orderly one-pass fashion from
smaller values of σ to larger values.

The basic framework of Fast Marching Method comprises the following steps
(Sethian, 1999):

(1) Label all grid nodes as unknown;
(2) Assign σ values (usually zero) to the nodes corresponding to the initial

position of the propagating front and label them as accepted;
(3) For each node that is accepted, locate its immediate neighboring nodes that

are unknown and label them as considered;
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(a) (b) (c)

(e) (f) (g)

Figure 4.3 Illustration of FMM in a 5-stencil Cartesian grid.

(4) For each node labeled considered, update its value based on its accepted
neighbors using the minimum of the local solutions of Equation (4.32) as illustrated
below [see Equation (4.52)];

(5) Once all nodes labeled considered have been locally updated, we pick the
node which has the minimum value among them and label it as accepted;

(6) Go to step (3) until all nodes are accepted.
In a 5-stencil Cartesian grid, these steps can be illustrated in Figure 4.3. We put

one point as the initial position of the propagating front and label it as accepted
(solid) as shown in (a). Then its immediate neighbors A, B, C, and D are marked as
considered (open circles) as shown in (b). After the σ values of A, B, C, and D have
been updated, we pick the smallest one (suppose it is A) and mark it as accepted
as shown in (c). Then its neighbors E, G, and F are added into the considered as
shown in (d). These steps will repeat for the next accepted point (suppose it is D) as
shown in (e) and continued as shown in (f) until all nodes are visited. Local updates
of σ , using Equation (4.32) for the 5-stencil Cartesian grid, can be written with the
standard finite difference notation as (Sethian, 1996):

max(D−x
ij σ , −D+x

ij σ , 0)2 + max(D−y
ij σ , −D+y

ij σ , 0)2 = 1

κ(x)
. (4.52)

Here the standard finite difference operator D for ±x directions can be written as
D−x

ij σ = (σi, j − σi−1, j/�x) and D+x
ij σ = (σi+1, j − σi, j/�x) . Similar equations hold

for ±y directions. In Equation (4.52), the value of σ at unknown points is regarded
as infinity and the ‘max’ function is used to guarantee the ‘upwind’ criteria.
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Equation (4.52) leads to a quadratic equation and its minimum positive root gives
us the value at point (i, j). We calculate σ values from each of the four quadrants
(bottom-left, bottom-right, top-left, and top-right) by the similar finite difference
formulation and then take the minimum σ value. The generalization of the Fast
Marching Method to complex grids and anisotropic medium has been discussed
by Sethian (1999). In particular, in the presense of anisotropy the characteristics
may not be aligned with the computed σ -gradient resulting in erroneous front
propagation. Under such conditions the σ -gradient must be computed carefully, by
expanding the stencil for finite-difference calculations. More details can be found
in Sethian (1999).

Exercise 4.2. Use the software ‘FRONTS3D’ to solve the eikonal equation and
visualize the diffusive time of flight (phase) distribution for a homogeneous
reservoir with a single central well (data file ‘Homogeneous GRAT.fip’). Also,
visualize the evolution of the pressure front in physical time by thresholding
at various times. Repeat the exercise for the heterogeneous example (data file
‘Heterogeneous GRAT.fip’).

Well drainage: horizontal wells with multistage fractures

We have seen that the phase function σ(x) is related to the propagation time of the
peak pressure disturbance caused by an impulse source. In the reservoir engineering
literature, the propagation distance of the pressure disturbance is known as the
depth of investigation and the associated volume defines the drainage volume,
a measure of the well performance (Lee, 1982). The drainage volume is that region
of the reservoir contributing to the oil and gas production of the well at any given
time. The quantification of well drainage volume is useful in well performance
predictions, identifying new well locations and planning, designing and optimiz-
ing hydraulic fractures in unconventional hydrocarbon reservoirs such as shale oil
and gas.

The asymptotic approach provides a relatively straightforward technique for
computing and visualizing well drainage under very general conditions. We can
solve Equation (4.32) for the phase σ(x) using the Fast Marching Method and
compute the propagation time for the pressure front using the relationship in
Equation 4.50. By thresholding the propagation time at selected intervals, we can
visualize the evolution of the well drainage. Most importantly, the approach allows
us to account for the spatial variations in reservoir properties, such as porosity and
permeability, understand the interaction between hydraulic and natural fractures
and incorporate complex well geometry. Unconventional resources, such as shale
gas, have taken a significant share in the energy supply in the United States



(a) Heterogenous permeability field. (b) Trajectories depicting the flow paths and time
of flight.

(c) The propagation of water saturation along the
trajectories.

Figure 1.6 An illustration of multiphase transport calculations in heterogeneous
media using the Buckeley–Leverett solution along one-dimensional characteristic
curves [from Kam and Datta-Gupta (2015)]. Reprinted with permission. Copyright
SPE.

(a) (b) (c)

Figure 1.12 An illustration of geologic model calibration using multiphase flow
data (a) Prior geologic model, (b) Updated model, and (c) Changes made during
calibration [from Hohl et al., (2006)]. Reprinted with permission. Copyright SPE.



(a)

(b)

Figure 1.10 (a) Test cell diagram with multi-level samplers. (b) Tracer particle
trajectories and travel times [from Yoon et al., (2001)]. Reprinted with permission.
Copyright SPE.



(a) Permeability distribution.

(b) Streamlines or flow paths.

Figure 1.11 Geologic model describing permeability distribution and a snapshot
of streamlines for an offshore turbidite reservoir [from Hohl et al., (2006)].
Reprinted with permission. Copyright SPE.
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(a) Inline and crossline sections of seismic amplitudes from the Norne field.

(b) A three-dimensional perspective indicating the locations of the inline
and crossline sections within the geologic model.

Figure 1.13 Seismic reflection observations from the Norne field (Watanabe et al.,
2014). Reprinted with permission. Copyright SPE.



(a) (b)

Figure 1.14 (a) Continuous active source seismic monitoring (CASSM) system
with a single active source, indicated by the star on the left, and six receivers in
the well on the right, denoted by open circles. The layer containing the injected
carbon dioxide is denoted by two dipping parallel lines. The raypaths for the given
velocity model are also plotted. (b) Seismic travel time changes observed at the
receivers due to the injection of carbon dioxide.

Figure 1.15 Range change in millimeters for four time intervals since the start of
production at well KB-11. The segment of the production well within the reservoir
is indicated by the black line.



Figure 3.1 An illustration of a propagating tracer front for an injector (bottom
left)-producer (top right) pair. Here, σ(x)represents the tracer travel time along
trajectories (streamlines). The fronts are defined by the isochrones (equal travel
time) and S(x, t) identifies the front location at a specific time.

(a) (b)

(c)

Figure 4.1 An illustration of the spatial variation of the phase function σ(x)
along trajectories for a heterogeneous permeable medium. (a) Permeability field
(b) Trajectories and phase (c) Streamlines and convective time of flight for an
injector (bottom left)-producer (top right) configuration.



(a) (b)

Figure 4.2 The propagation of the diffusive pressure front (a) versus convective
tracer front (b).

Figure 4.5 Visualizing the evolution of the well drainage volume using the Fast
Marching Method.
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(b) Diffusive time of flight

(c) Drainage volume and derivative (d) Pressure solution

Figure 4.7 An example of calculated drainage pore volume using the Fast March-
ing Method and its derivative for a two-dimensional heterogeneous reservoir with
a central well: (a) log permeability distribution; (b) calculated diffusive time of
flight using the Fast Marching Method; (c) calculated drainage pore volume (Vp)
and its derivative (dVp/dσ ); (d) comparison of wellbore pressure calculated using
the 1-D solution in σ -coordinates and multidimensional numerical solution using
a commercial simulator (EclipseTM) [from Zhang et al. (2014)]. Reprinted with
permission. Copyright SPE.

(a) Permeability field (b) Time of flight

(c) Coordinate transformation

Figure 5.5 An illustration of the streamline-based approach: (a) 3-D permeability
fields and wells, (b) streamline trajectories colored by time of flight variation, and
(c) transformation from 3-D space to the time of flight coordinates.



(a)

(b)

Figure 5.11 (a) Heterogeneous permeability field, dis-
playing the well locations. (b) The streamlines associated
with the flow field.

(a)

(b)

Figure 5.12 Streamline time of flight from the injector
thresholded at two different times displaying the reservoir
swept volume, the volume encountered by the injected
fluid.



(a)

(b)

Figure 5.13 Streamline time of flight to the producer
thresholded at two different times displaying the reservoir
volume drained by the producing wells, the drainage
volume.

(a) Injector pore volume

(b) Producer pore volume

Figure 5.14 Streamlines displaying the reservoir pore
volumes associated with (a) injectors and (b) producers.



Figure 5.15 Streamlines displaying communication between the wells and the
well allocation factor.

Figure 5.17 Tomographic x-ray attenuation data from the injection of a saline
tracer into a sandstone core.



(a) (b)

(c) (d)

Figure 6.6 Stepwise illustration of the multiphase streamline approach in a quarter
five spot with a single injector and a producer. (a) saturation transport along
streamlines, (b) saturation mapping on to the grid (note that more streamlines were
used for the mapping than are displayed here), (c) accounting for cross-streamline
mechanisms (capillarity) on the grid, and (d) resampling of saturation on to the
streamline trajectories for the next time interval calculations.

(a) (b)

(c)

Figure 6.8 Visualization of phase streamlines. (a) Water phase streamlines
showing movement of the injected water, (b) oil phase streamlines showing mobile
oil being drained by producers, and (c) gas phase streamlines showing regions
where depletion drive is active.



(a)

(b) (c) (d)

Figure 6.12 (a) Top surface of the reservoir indicating fault blocks, (b) initial
fluid phase distribution, (c) initial horizontal permeability distribution, and (d)
initial porosity distribution [from Rey et al. (2012)]. Reprinted with Permission.
Copyright SEG.
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Figure 6.13 Well configuration and flow geometry during time lapse seismic
surveys [from Rey et al. (2012)]. Reprinted with Permission. Copyright SEG.



(a) (b)

Figure 6.14 (a) Time lapse seismic acoustic impedance changes displayed on the
reservoir grid and (b) a transect along the section marked ‘1900’ in (a) indicating
hardening and softening of the rock because of reservoir production [from Rey
et al. (2012)]. Reprinted with Permission. Copyright SEG.

Water production rate Oil production rate

Figure 6.17 Comparison of the observed and calculated multiphase production
response [from Rey et al. (2012)]. Reprinted with Permission. Copyright SEG.



Pre-calibration Observed Post-calibration

K = 13

K = 11

K = 5–9

Figure 6.16 Acoustic impedence changes in selected layers before (pre-
calibration) and after inversion (post-calibration) and their comparison with the
observed values [from Rey et al. (2012)]. Reprinted with Permission. Copyright
SEG.



Figure 7.13 Normalized time derivative of reservoir volume change after approx-
imately 300 days of injection. The intersection of the horizontal well and reservoir
is indicated by the solid black line.
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Figure 4.4 Permeability variations used in the well drainage volume calculation.

Figure 4.5 Visualizing the evolution of the well drainage volume using the Fast
Marching Method. For the colour version, please refer to the plate section.

and the world energy market. The advent and growth of the development of
these resources have been driven largely by the advances in technologies such as
horizontal well drilling and multistage (multiple) hydraulic fracturing. However,
reservoir engineers today still face significant challenges in optimizing production
and predicting well performance in unconventional reservoirs.

Figure 4.4 shows a shale gas reservoir model with a matrix permeability of
100 nano-Darcy and a horizontal well with four hydraulic fractures. The natural
fractures in the vicinity of the hydraulic fractures are also shown. The hydraulic
fractures have different length, height, and orientation in the reservoir. We have
shown the reservoir volume drained by the well at various times by computing
the phase function using the Fast Marching Method and then thresholding it at the
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times of interest (Figure 4.5). This allows us to understand and visualize the inter-
action between the hydraulic fractures and natural fractures and most importantly,
the onset of interference between different fracture stages. This can be crucial in
optimizing the number of fracture stages in shale gas wells in order to maximize
the well drainage volume.

Exercise 4.3. Use the software ‘FRONTS3D’ to solve the eikonal Equation and
visualize the diffusive time of flight (phase) distribution for a homogeneous
medium with a single hydraulic fracture in the middle (data file ‘SFracture-
Hom.fip’). Also, visualize the evolution of the pressure front in physical time
by thresholding at various times. Repeat the exercise for the heterogeneous
example(data file ‘SFracture-Het.fip’).

Exercise 4.4. Use the software ‘FRONTS3D’ to solve the eikonal Equation
and visualize the diffusive time of flight (phase) distribution for a shale gas
reservoir with multiple hydraulic fractures (data file ‘MFracture-Hom.fip’). Also,
visualize the evolution of the pressure front in physical time by thresholding
at various times. Repeat the exercise for the heterogeneous example (data file
‘MFracture-Het.fip’).

4.3.2 Using the phase as a spatial coordinate

We have seen in the previous section that the impact of spatial heterogeneity is
embedded in the phase function or the diffusive time of flight. There are computa-
tional and conceptual advantages if one uses the phase as a spatial coordinate. In
fact, subject to our high-frequency assumption, rewriting the diffusion equation in
trajectory-based coordinates reduces it to a simpler expression. Specifically, we
can transform the pressure Equation (4.1) in three spatial variables, x, and one
temporal variable, t, to an equation in one spatial variable σ and time t. This leads
to substantial savings in computation time in the numerical solution of the diffusion
equation (Zhang et al., 2014; Fujita et al., 2015). This approach is analogous to the
streamline formulation of fluid transport, discussed in chapters 5 and 6.

As a starting point, consider the eikonal Equation (4.32), a partial differential
equation for the phase, rewritten as

|∇σ | = 1√
κ(x)

. (4.53)

As indicated in Equation (4.29), for sufficiently rapid variations (high frequencies),
the phase gradient vector (∇σ ) is aligned with the pressure gradient and we have
the approximation
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∇p ≈ ∂p

∂σ
∇σ = ∂p

∂σ

1√
κ

p̂, (4.54)

where p̂ represents the phase gradient vector (4.35) normalized by its magnitude.
Note that p̂ is a unit vector orthogonal to the contours of σ(x). The approximation
(4.54) is a reasonable one for pressure propagation in a medium with smoothly
varying heterogeneity. Using (4.54) to substitute for ∇p in the governing equation
for pressure, Equation (4.1), results in

∇ ·
(

S
√
κ
∂p

∂σ
p̂
)

= S
∂p

∂t
, (4.55)

where we have used Equation (4.33) to substitute κS for λ. We would like to
make a transformation from an equation in physical coordinates, (x, y, z) to one
in trajectory-based coordinates (σ ,ψ ,χ), where σ is the diffusive phase. The other
two coordinates, ψ and χ are defined on the contour surfaces of σ and are orthog-
onal to each other and to σ .

Box 4.2 Transformation of the pressure equation into σ -coordinates

In this box we transform the pressure Equation (4.55)

∇ ·
(

S
√
κ
∂p

∂σ
p̂
)

= S
∂p

∂ t
.

to an equation in (σ , t)-coordinates. In order to derive this equation we assumed that
the pressure gradient aligns with the σ gradient direction [see Equation (4.29)]. This is
equivalent to the requirement that isosurfaces of equal pressure p correspond to
isosurfaces of the phase σ . The divergence of a vector F in 3-D Cartesian coordinates
can be expressed as

∇ · F = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
.

Our goal is to transform from Cartesian coordinates (x, y, z) to trajectory-based
coordinates (σ ,ψ ,χ), where σ is the diffusive time of flight. The variables ψ and χ
are defined on the contour surfaces of σ and are orthogonal to each other and to σ .
Now, the divergence operator in the (σ ,ψ ,χ) coordinate system can be written as

∇ · F = 1

hσhψhχ

[
∂(hψhχFσ )

∂σ
+ ∂(hσhχFψ)

∂ψ
+ ∂(hσhψFχ )

∂χ

]
,

where hσ ,hψ , and hχ are the length of the vectors along each coordinate axis. For
example, hσ is the length of the coordinate vector, tσ given explicitly by the
expression
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hσ = |tσ | =
∣∣∣∣ ∂x
∂σ

∣∣∣∣ =
√(

∂x

∂σ

)2

+
(
∂y

∂σ

)2

+
(
∂z

∂σ

)2

The other two coordinate vector magnitudes are defined in a similar fashion.
Rewriting our starting equation in trajectory-based coordinates and assuming that
pressure gradients are aligned with phase (σ ) gradients, so that p̂ only has a non-zero
component along the σ axis, we can use the expression given above for the divergence
operator to write

1

hσhψhχ

∂

∂σ

(
hψhχS

√
κ
∂p

∂σ

)
= S

∂p

∂t
.

From the eikonal equation, hσ = |tσ | = √
κ so that this equation becomes

1

hσhψhχ

∂

∂σ

(
hσhψhχS

∂p

∂σ

)
= S

∂p

∂t
.

Since the product hσhψhχ is simply the Jacobian of the coordinate transformation, J,
representing the ratio of volumes in the physical space to (σ ,ψ ,χ) coordinates, this
equation reduces to

1

J

∂

∂σ

(
JS
∂p

∂σ

)
= S

∂p

∂t
.

As shown in Box 4.2, the coordinate transformation results in an equation for the
fluid pressure

∂

∂σ

(
JS
∂p

∂σ

)
= JS

∂p

∂t
, (4.56)

that only contains derivatives with respect to σ and t. Here, J is the Jacobian of the
transformation, representing the ratio of a volume element in the transformed coor-
dinates to the volume element in the original coordinates (Marsden and Tromba,
1976, p. 258).

In Equation (4.56) the Jacobian of the coordinate transformation J and the stor-
age S are functions of (σ ,ψ ,χ) in general. To eliminate any remaining depen-
dence on ψ and χ we integrate both sides over these two coordinates. Because the
pressure is assumed to depend solely upon σ and t, any terms containing p(σ , t)
can be moved outside of the integral. Furthermore, if we assume constant system
compressibility ct, then Equation (4.56) reduces to

1

w(σ )

∂

∂σ

[
w(σ )

∂p

∂σ

]
= ∂p

∂t
, (4.57)

where

w(σ ) =
∫ ∫

φ (σ ,ψ ,χ) J(σ ,ψ ,χ)dψdχ .
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Figure 4.6 Generalization of the radial pressure diffusivity equation to heteroge-
neous media using the diffusive time of flight as spatial coordinate.

The result is a single partial differential Equation (4.57), in two variables σ and t,
that can be solved using standard numerical methods such as finite difference. Phys-
ically, we are using the fact that, for the high-frequency component, the changes in
fluid pressure are in the direction of the phase gradient. Thus, along the isosurfaces
of equal phase, the pressure amplitude is constant. The function w(σ ) can be related
to the drainage pore volume, Vp, the volume of pore space in communication with
a given well,

Vp(σ ) =
∫ σ

σ0

[∫ ∫
φ(σ ,ψ ,χ)J(σ ,ψ ,χ)dψdχ

]
dσ =

∫ σ

σ0

w(σ )dσ . (4.58)

The coordinate transformation is illustrated schematically in Figure 4.6. Note
that Equation (4.57) can be viewed as an extension of the radial pressure diffu-
sivity equation for a homogeneous medium, given in the frequency-domain by
Equation (4.6), to a medium that is heterogeneous. The two-dimensional case
is illustrated in Figure 4.6. In place of the radial symmetry associated with a
homogeneous medium, the heterogeneity is now captured by the deformation of
the contours. Furthermore, the function w(σ ) is related to the area of an isosurface
associated with a phase value of σ . Depending upon the symmetry of the medium
and the source, the transformed pressure Equation (4.57) may be reduced to the
standard linear, radial or spherical diffusion equation [see Exercise 4.6]. Analytical
solutions are available for these symmetric cases (Lee, 1982).

Exercise 4.5. Starting with the definition of the Jacobian of the transformation,

dxdydz = Jdσdψdχ ,

derive Equation (4.58).
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Exercise 4.6. Show that for a homogeneous medium, Equation (4.57) reduces
to the following equations:

(i) 1-D linear flow:

∂2p

∂x2
= 1

κ

∂p

∂t

(ii) 2-D radial flow:

1

r

∂

∂r

(
r
∂p

∂r

)
= 1

κ

∂p

∂t

(iii) 3-D spherical flow:

1

r2

∂

∂r

(
r2 ∂p

∂r

)
= 1

κ

∂p

∂t

Hint: For 1-D linear flow,

σ = x√
κ

,

where Vp(σ ) = ϕAx = ϕA
√
κσ and w(σ ) = dVp/dσ = ϕA

√
κ .

Similarly, for 2-D radial flow,

σ = r√
κ

,

where w(σ ) = 2πϕκhσ , h is the thickness. For 3-D spherical flow we have

σ = r√
κ

,

and w(σ ) = 4πϕκ3/2σ 2.

Exercise 4.7. Generalize the transformation of the 3D pressure equation for an
anisotropic hydraulic conductivity field,

∇ · λ∇p = S
∂p

∂t
,

where λ= κ(x)
μ

and κ(x) is the permeability tensor, to diffusive time of flight
coordinates. Show that the resulting equation has the same form as Equa-
tion (4.57) when the diffusive time of flight is computed for the anisotropic
medium.

For more general cases involving spatially heterogeneous and anisotropic
permeable medium, we need to solve Equation (4.57) numerically (Zhang et al.,
2014; Fujita et al., 2015). For this, we require the drainage volume derivative w(σ ).
As discussed before, the drainage pore volume Vp(σ ) can be calculated using the
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(b) Diffusive time of flight

(c) Drainage volume and derivative (d) Pressure solution

Figure 4.7 An example of calculated drainage pore volume using the Fast March-
ing Method and its derivative for a two-dimensional heterogeneous reservoir with
a central well: (a) log permeability distribution; (b) calculated diffusive time
of flight using the Fast Marching Method; (c) calculated drainage pore volume
(Vp) and its derivative (dVp/dσ ); (d) comparison of wellbore pressure calculated
using the 1-D solution in σ -coordinates and multidimensional numerical solution
using a commercial simulator (EclipseTM) [from Zhang et al. (2014)]. Reprinted
with permission. Copyright SPE. For the colour version, please refer to the plate
section.

Fast Marching Method. Once the Vp versus σ data has been tabulated, we can cal-
culate its derivative. Figure 4.7 shows an example of a drainage volume calculation.
The drainage pore volume and its derivative for a two-dimensional heterogeneous
reservoir are plotted as functions of the phase σ . Also shown is a comparison of
results from the one-dimensional solution of Equation (4.57) and multidimensional
solution of Equation (4.1). The close agreement validates the one-dimensional
formulation. For field-scale applications involving high-resolution geologic mod-
els, the one-dimensional formulation can result in speed-ups of several orders of
magnitude compared to the multidimensional solution (Zhang et al., 2014).

Exercise 4.8. Solve Equation (4.57) using finite differences with the stencil
given in Figure 4.8 and the boundary conditions shown.
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Figure 4.8 1-D finite difference solution.

Hint: The spatial derivative can be discretized as follows:

∂

∂σ

(
w(σ )

∂p

∂σ

)
= Ti−1/2pi−1 − (Ti−1/2 + Ti+1/2)pi + Ti+1/2pi+1

�σi
,

where Ti±1/2 represents the inter-cell transmissibility between i and i ± 1.

Ti±1/2 = wi±1/2

�σi±1/2
; wi−1/2 =

(
dVp

dσ

)
i−1/2

= Vp,i − Vp,i−1

σi − σi−1
; wi+1/2 = Vp,i+1 − Vp,i

σi+1 − σi
.

Discretizing the time derivative and rearranging will lead to a tri-diagonal system
of equations.

Exercise 4.9. This is a continuation of Exercise 4.2. Using FRONTS3D, visual-
ize the pressure distribution in the reservoir for the constant well production rate.
Compare the contours of the diffusive time of flight and the pressure and observe
the similarities. Examine the pressure response computed at the well bore using
the phase as a spatial coordinate as discussed in the previous section. Repeat the
exercise for a constant well bottomhole pressure and examine the rate response
(data files ‘Homogeneous BHP.fip’ and ‘Heterogeneous BHP.fip’).

Exercise 4.10. This is a continuation of Exercise 4.4. Using FRONTS3D,
visualize the pressure distribution in the shale gas reservoir at the given time.
Observe the similarities between the contours of the diffusive time of flight and
the pressure. Calculate the rate and the pressure response at the well bore using
the phase as a spatial coordinate as discussed in the previous section.

4.3.3 Sensitivity computation

Model parameter sensitivities are a critical component of iterative imaging tech-
niques (Menke, 1989; Aster et al., 2013). These sensitivities relate perturbations
in model properties, such as S(x) or λ(x) in Equation (4.1), to deviations in the



4.3 Applications 159

observed field data, such as p(x, t) measured at a particular location. In order to
compute model parameter sensitivities we take advantage of the fact that the pertur-
bations are small. That is, because we are interested in an iterative construction of a
model fitting the data, we will only perturb the model in small increments and by a
small amount. Thus, we can assume that any perturbation in model properties, say
δλ(x), will be small, and will lead to a correspondingly small deviation in the field
δp. Given the flexibility provided by the trajectory-based approach, partitioning the
problem into a travel time calculation and an amplitude computation, it is fitting
that we first consider perturbations in the travel times of a disturbance. After that we
consider the more complicated relationship between model parameter perturbations
and field amplitude deviations. However, we shall take advantage of the trajectory-
based approach to gain both insight and efficiency in the computation of amplitude
sensitivities.

Travel time sensitivities

The requisite governing equation is the expression (4.41) for σ(x),

σ(xo) =
∫ xo

xs

1√
κ

dx. (4.59)

We revert to the expression for σ rather than the integral (4.51) for
√

Tmax in order
to avoid the proliferation of factors of 1/

√
6. However, it should be kept in mind

that σ = √
6Tmax. The simple expression (4.59) hides the complications that arise

from the fact that the integral is along the trajectory x(s), and is therefore a path
integral. A perturbation in the reservoir model, say δκ from a background model κ ,
given by

κ = κ + δκ, (4.60)

will induce a perturbation in both the model κ(x) as well as a perturbation in the
trajectory x(s)

x(s) = x + δx. (4.61)

Note that, while the ray path may vary between the end points x(0) and x(rs), the
end points themselves are considered to be fixed points, as the source and receiver
locations are known. In the sensitivity calculation one perturbs κ in the eikonal
Equation (4.32) and computes the corresponding deviations of the phase function
σ(x).

It has been shown in tomographic formulations that the effect of the perturbation
in the path is second order in δκ and may typically be neglected. Thus, to first order,
we can integrate over the ray path x in the background model κ and the effect of a
perturbation in κ on σ will only involve a perturbation of the integrand in (4.59)
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δσ =
∫ xo

xs

δ

[
1√
κ

]
dx. (4.62)

Carrying out the perturbation of the integrand gives

δσ = −1

2

∫ xo

xs

1√
κ

δκ

κ
dx. (4.63)

Because κ is defined in terms of S(x) and λ(x), [see the definition (4.33)], we could
write (4.63) in terms of perturbations in these component model parameters. It is
evident from the definition (4.33) that there is a trade-off between variations in
λ(x) and S(x). However, it might be possible to express λ(x) in terms of S(x) or
to combine travel time observations with other types of data in order to reduce or
eliminate the trade-off. Alternatively, the variations in λ(x) might dominate any
deviations in S(x), or vice-versa, allowing us to neglect one of these parameters.

Diffusion tomography

With the relationship (4.63) we can devise an algorithm to estimate spatial variation
in κ , given a collection of arrival times Tmax. The method is simply a concrete
realization of the intuitive tomographic approach described in Chapter 1. We shall
outline the steps in general terms but refer to a specific crosswell geometry (Figure
4.9) that is suited to hydrological field tests.

In a crosswell configuration a finite segment of the well is isolated using inflat-
able packers, preventing flow outside the interval. The pressure within that segment
is then varied. The exact time variation of the pressure depends upon the nature
of the test. If the wells are close enough a pressure pulse may be transmitted from
one to another. For example, one can conduct a crosswell extension of a slug test
(Brauchler et al., 2010). In a slug test one monitors the recovery due to a prescribed
and rapidly varying pressure transient (Karasaki et al., 1988; Butler et al., 2003). In
a crosswell slug test one also monitors the pressure in nearby wells in order to infer
flow properties further from the source. For distant wells it might be necessary to
use a step function source, in which fluid is injected or withdrawn from the packed-
off interval at a constant rate (Vasco et al., 2000). The step is due to the initiation of
flow within the interval. For such tests one may consider the time derivative of the
recorded pressure rather than the pressure itself, in order to determine a peak rate
of pressure change and to define the arrival time, as noted in Chapter 1.

For the test represented in Figure 4.9 the wells were approximately 3.5 meters
apart and the porous medium consisted of soft sediments. Thus, it was possible to
transmit a pressure pulse to the observation well (Figure 4.10). From the recorded
signals one extracts the time at which the first peak is observed, Tmax, for each of
the ten receivers. There were nine sources in all, situated in the well at the left-
hand-side of the panel in Figure 4.9. The area between the wells is subdivided into
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Figure 4.9 Crosswell pressure test geometry with the trajectories plotted as black
curves and the final estimates of κ indicated by the variations in color.

a 5 (horizontal) by 20 (vertical) grid of cells for a total of 100 model parameters.
Within each cell it is assumed that κ has a constant value. The value of κ within
the i-th cell, denoted by κi, is constrained by the travel times of all trajectories
intersecting the grid block. Stated another way, each travel time Tmax constrains σ ,
and hence the values of κ , along the trajectory via the path integral (4.59). Similarly,
given deviations in the travel time from a value calculated using some initial model,
Equation (4.63) constrains perturbations of the model. For a piece-wise constant
distribution of κ , the trajectory will be composed of straight-line segments within
each grid block. Thus, the integral (4.63) may be written as a sum over all grid
blocks intersected by the k-th trajectory:

δσk = −1

2

∑
i∈Xk

�xik√
κi

δκi

κi
. (4.64)

where κ is the background value of κ for the i-th block, �xik is the trajectory
length in grid block i, and Xk is the collection of grid blocks traversed by the
k-th trajectory.
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Figure 4.10 Pressure variations measured at ten receivers within isolated sections
of the observation well.

The basic strategy is to repeatedly update an initial or starting model, at each
iteration incorporating changes to improve the fit to the data. This approach has
several desirable features. First, it plays to the strengths of the trajectory-based
approach, providing a semi-analytic sensitivity that is easy to calculate. Second, the
relationship between the observed data and the model parameters is quasi-linear so
that the algorithm generally converges, even when the starting model is far from
the true model (Cheng et al., 2005). Third, the approach provides some measure of
data reduction, an entire transient pressure curve is reduced to a single quantity, the
peak arrival time. These attributes indicate that the inversion of travel time might be
a useful first step in imaging the internal structure of an object. Indeed, such travel
time-based inversion is often the most cost effective form of tomographic imaging
and is widely used in fields such as geophysics and medicine.

We begin with a starting model κ . Next, trajectories are calculated for all
the source and receivers, based upon the starting model. There are a number of
ways to accomplish this. For example, one could solve the characteristic, or ray,
Equations (4.36) and (4.37) using a numerical approach to integrate the ordinary
differential equations (Press et al., 1992, p. 701). Alternatively, one could solve the
eikonal Equation (4.32) directly using an efficient finite difference algorithm such
as Fast Marching or a related approach (Sethian, 1999; Osher and Fedkiw, 2003).
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Then one can use a technique for marching down the gradient of the travel time
field, such as a Runge-Kutta algorithm (Press et al., 1992). That is the approach
taken to generate the trajectories shown in Figure 4.9, using a smoothed and
interpolated version of the spatial variation in κ between the wells. Finally, as
noted in Section 4.2.4, one could use a reservoir simulator directly to compute the
pressure history and calculate the arrival time field and phase function from the
output of the simulation. Then one can trace a path down the gradient of the travel
time field. This is not the most efficient approach but requires the least amount of
programming, given an existing reservoir simulator. Regardless of the approach,
one obtains the trajectories x(s) from the sources to the receivers and computes the
sensitivities using the expression given in the sum (4.64).

A collection of source-receiver pairs, obtained from the crosswell pressure test,
leads to a set of linear equations, each of the form (4.64). We can write this system
of equations in matrix-vector form

δσ = Mδκ (4.65)

where δσ is a vector of deviations of σi from values predicted using the background
model. The length of this vector is equal to the number of source-receiver pairs.
The vector δκ represents the changes in values of κ for each of the grid blocks in
our model of the permeable medium between the wells. One could try and solve
Equation (4.65) directly. However, simple accounting, with 90 observations and
100 model parameters, suggests that the system of equations is under-determined.
Solutions of such under-determined systems are typically unstable with respect to
errors in the observations and numerical noise in the computations.

Alternatively, one could solve Equation (4.65) using a method such as least
squares (Lawson and Hanson, 1974; Dorny, 1983). That is, we could minimize
the sum of the squares of the misfit to each observation:

μ2 = (δσ − Mδκ)t · (δσ − Mδκ) . (4.66)

The conditions for an extremum of this system are the vanishing of the derivatives
of μ2 with respect to each of the model parameters δκ , that is

∇κμ
2 = −Mtδσ + MtMδκ = 0 (4.67)

or

Mtδσ = MtMδκ . (4.68)

Unfortunately, even these normal equations for the solution of the least squares
problem are prone to instability when the original system of equations is under-
determined. That is, our estimate of δκ , obtained by solving (4.68), can vary
dramatically in the face of data noise and numerical errors.
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The most common strategy for stabilizing the solution of the inverse problem,
the solution of the system (4.68), involves introducing additional constraints or
attributes that we seek in our solution. One attribute is suggested by the fact that
we have a sparse data set and cannot expect to resolve fine details of the spatial
variation of δκ . Therefore, we should probably try and find the smoothly varying
component of the spatial distribution of δκ . One way to do this in the context of
finding a least squares solution, is to introduce a measure of the smoothness, or con-
versely the roughness, as a penalty term in the minimization problem (Menke, 1989;
Aster et al., 2013). For example, we can introduce a matrix L that is a difference
operator on the vector of model parameters δκ . In particular, y = Lδκ is a vector of
differences between values of δκi for adjacent grid blocks, a discrete approximation
to the gradient ∇δκ. Adding βyty to the misfit term μ2 and minimizing results in a
modification of the normal Equations (4.68):

Mtδσ = (MtM + βLtL
)
δκ , (4.69)

this is the regularized inverse problem. The scalar weighting factor β controls the
importance of a smooth solution with relative to matching the observations. The
presence of the roughness penalty term stabilizes the solution of Equation (4.69)
(Aki and Richards, 1980a; Menke, 1989). Note that other penalty terms are possi-
ble, such as a norm penalty or a term weighting the changes by the distance from
a given point. Because the trajectories typically intersect a small number of grid
blocks in the model, the matrix M is sparse, primarily consisting of zeros, and
algorithms for solving the system (4.69) can take advantage of that structure (Paige
and Saunders, 1982; Saad, 2003).

After solving Equation (4.69) for δκ , we then complete the update by adding it
to the background model. Because the problem is non-linear, the trajectories deter-
mining the coefficients in M depend upon κ(x), we must iterate, taking additional
linearized steps in order to solve the full problem. At each step we recalculate
the trajectories and recompute the residuals. Nineteen iterations were required to
construct the final model plotted in Figure 4.9. The initial and final fits to the 90
travel times are plotted in Figure 4.11. We discuss further such model updating via
inversion including model assessment in Chapters 5 and 6 for single and multi-
phase transport problems. Note that this iterative approach is the least sophisticated
technique for solving the inverse problem with little control on its convergence
characteristics. There are other algorithms, such as the conjugate gradient routine,
specifically designed for solving non-linear problems (Luenberger, 1973; Gill et al.,
1982).

Waveform sensitivities and amplitude inversion

Let us move on to the consideration of sensitivities for the time-varying field itself,
that is for the waveform p(x, t). In the discussion that follows we shall work in the
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Figure 4.11 Initial and final fits to the observed travel time data. Travel times
were calculated using the initial background model (Initial) and the final model
that resulted after 19 iterations (Final). The calculated values are plotted against
the observed values.

frequency domain and focus on P(x,ω), as this leads to a cleaner derivation that
is easier to follow. We can transform back if it is necessary to obtain time-domain
expressions. In deriving waveform sensitivities there are at least two approaches to
consider. First, we could treat the asymptotic expression (4.46) directly, perturbing
a parameter such as permeability and following through to determine the resulting
perturbations in phase and amplitude. This leads to the question of perturbations of
the ray paths that was touched upon in the previous section, and to the topic of ray
perturbation theory. Such derivations, though they lead to more efficient algorithms,
can be rather elaborate and we shall not consider this approach further. As an
alternative approach, we can consider a general perturbation technique beginning
with the governing equation itself. We then introduce an asymptotic approximation
at the end of our derivation, providing some of the efficiency associated with a
trajectory-based approach.

The general perturbation approach is outlined in Box 4.3, given below. Our
starting point is the diffusion equation in the frequency domain, Equation (4.3)
where we have multiplied through by an assumed constant fluid viscosity μ,

∇ · (k(x)∇P)+ iωμS(x)P = 0. (4.70)
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Because model parameter sensitivities relate small variations in model parameters
to small changes in observed field quantities, we can use a perturbation approach for
their calculation. In this spirit, consider the calculation of conductivity sensitivities.
That is, let us calculate the changes in P(x,ω) that arise when k(x) is perturbed
from a background value k(x), by a small amount δk(x):

k(x) = k(x)+ δk(x). (4.71)

We will leave the simpler calculation of S(x) sensitivities as an exercise.

Box 4.3 A perturbation solution

In this box we present an overview of a perturbation technique for computing a
solution of a linear equation of the form

L f = 0

where L is a linear operator and f (x,ω) is the solution. For our particular application L
is given by the differential operator with spatially varying coefficients: L = ∇ · k(x)
∇ + iωS(x). We hope that by keeping the presentation general, the reader can see
what is going on without the many distracting details necessary for our particular
application below.

We will assume that L is the perturbation of a linear operator L,

L = L + δL,

where L defines an equation

Lf = 0

that we can solve. Furthermore, we write the solution to the original equation, L f = 0,
as a perturbation of f

f = f + δf .

Hence, we can write the original equation as(
L + δL

) (
f + δf

) = 0.

Carrying out the multiplication gives

Lf + Lδf + δLf + δLδf = 0

Because f satisfies the equation Lf = 0, the first term vanishes. In addition, because
the perturbations δL and δf are assumed to be small, we can neglect the product term
δLδf , giving the equation

Lδf = −δLf .
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This is the background operator L applied to δf with a non-zero right-hand-side. The
source term on the right consists of the operator δL applied to the solution of the
background equation, f . We may construct a formal solution to this equation using a
Green’s function approach (Roach, 1970; Stakgold, 1979), where the Green’s
function, G(x,ω; y), is the solution of the background equation with a Dirac delta
function source term:

LG(x,ω; y) = δ(y).

The formal solution for the perturbation, δf , is then

δf (x,ω) = −
∫

G(x,ω; y)δLf (y,ω)dy.

The derivation proceeds in two stages. First, we derive a general expression for
δP(x,ω) in terms of δk(x). Second, we use our asymptotic expression for P(x,ω) to
derive an efficient method for computing the sensitivities. The introduction of the
perturbation in the model, δk(x), will result in a perturbation of the field, which we
write as the sum

P(x,ω) = P(x,ω)+ δP(x,ω) (4.72)

where P is the field associated with the background model, and the perturbation,
δP, is assumed to be small. Substituting the expressions (4.71) and (4.72) into the
governing differential Equation (4.70) gives

∇ · [(k + δk
)∇ (P + δP

)]+ iωμS
(
P + δP

) = 0 (4.73)

or, expanding the products and neglecting terms of second order in the perturbations

∇ · (k∇P
)+ iωμSP + ∇ · (k∇δP

)+ ∇ · (δk∇P
)+ iωμSδP = 0. (4.74)

Because P satisfies the diffusion equation for the background model, the first two
terms vanish and we are left with the equation

∇ · (k∇δP
)+ iωμSδP = −∇ · (δk∇P

)
. (4.75)

This is a linear partial differential equation for the perturbation δP, that is identi-
cal to the governing Equation (4.70) but with a non-zero source term on the right-
hand-side.

As noted in Box 4.3, we may formally solve the inhomogeneous partial differ-
ential Equation (4.75) using a Green’s function, G(x,ω; y), which is the solution of
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∇ · (k(x)∇G
)+ iωμS(x)G = δ(y). (4.76)

where δ(y) is a Dirac delta function situated at y. The solution of Equation (4.75),
written in terms of the Green’s function is

δP(x,ω) = −
∫

V
G(x,ω; y)∇ · (δk∇P

)
dy, (4.77)

where the integration is over the volume V (Stakgold, 1979). Typically, the volume
V is the entire modeling domain and will extend a great distance from the point x.
Note that Equation (4.77) is in the form of the final equation in box 4.3.

At this point we are close to our ultimate goal, however, due to the presence
of the divergence operator, we do not yet have a direct linear relationship between
the perturbation in P and the perturbation in k. In fact, we are just an exercise in
vector analysis away from our final expression. In Exercise 4.11 we ask the reader
to derive the final representation of δP(x,ω):

δP(x,ω) =
∫

V

[∇G(x,ω; y) · ∇P(y,ω)
]
δk(y)dV , (4.78)

a formula relating a perturbation in k at point y to a perturbation in P at the observa-
tion point x. The sensitivity, the quantity contained within the square brackets, takes
the particularly simple form of the scaler product of the gradient of the Green’s
function with the gradient of the background pressure field.

Exercise 4.11. Fill in the steps necessary to go from Equation (4.77) to
Equation (4.78), in other words show that:∫

V
G∇ · (δk∇P

)
dV = −

∫
V

(∇G · ∇P
)
δkdV .

Hint: Start with the Gauss’ divergence theorem∫
V

∇ · FdV =
∫
�

F · nd�

taking F = Gg. Adopt the particular form g = δk∇P for the vector g. Note that
it is typically assumed that the perturbation δk vanishes on the boundary, either
because k is known on the boundary or because the boundary is so far away that
a perturbation there will not influence our results at point x.

Up to this point we have not made use of the asymptotic expression for P(x,ω)
or p(x, t), given by Equations (4.46) and (4.47), respectively. Any method could
be used to find the functions G(x,ω; y) and P(y,ω), that contribute to the integral
(4.78). In fact, the form of the integrand provides an entry point into adjoint-state
techniques for calculating model parameter sensitivities (Sun, 1994). In order to
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see this, consider the component terms within the square brackets of the integrand.
The Green’s function represents propagation from the point y to the observation
point x. The function P(y,ω) denotes the field at the point y due to the source. Using
reciprocity, one can calculate the Green’s function using a source at the observation
point x and observation points at all points y within model. Thus, one may compute
the sensitivities for a given data point, observed at x, and a given source location
(xs), using two forward simulations, with sources at x and xs, respectively.

Let us take advantage of the semi-analytic zeroth-order asymptotic solution
(4.46) with a slight variation on the notation

P(y,ω) = A (xs, y) e−√−iωσ(xs,y). (4.79)

where (xs, y) in the amplitude and phase terms signifies that the source is at xs and
the observation is at y. Similarly, for the Green’s function we have

G(x,ω; y) = A (y, x) e−√−iωσ(y,x), (4.80)

for a source at y and an observation at x. These solutions are defined on trajectories
extending from the source to the receiver. The trajectories will curve in response to
spatial variations in k(x). In order to compute the sensitivities using the expression
in square brackets in (4.78) we need the gradients of P and G. In Exercise 4.12 we
ask the reader to derive these gradients and to substitute them into Equation (4.78)
to derive the asymptotic approximation of the pressure sensitivity

δP(x,ω) = −iω
∫

V
∇σ(xs, y) · ∇σ(y, x)A (xs, x) e−√−iωσ(xs,x)δk(y)dV . (4.81)

In this equation A (xs, x) (given by Equation 4.45) and σ (xs, x) are composite terms
due to the propagation from the source, xs, to the point at which the sensitivity is to
be calculated, y, and from y to the observation point x, given by

A (xs, x) = A (xs, y)A (y, x) (4.82)

and

σ (xs, x) = σ (xs, y)+ σ (y, x) . (4.83)

Exercise 4.12. Apply the gradient operator to the asymptotic expressions for
P(y,ω) and G(x,ω; y), Equations (4.79) and (4.80), respectively. Substitute the
resulting expressions into Equation (4.78)

δP(x,ω) =
∫

V

[∇G(x,ω; y) · ∇P(y,ω)
]
δk(y)dV,
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to derive the high-frequency asymptotic expression (4.81) relating a perturbation
in the model to a perturbation in the observable pressure.

Hint: For the high-frequency asymptotic solution only terms of the highest
order in

√−iω are important.

To recapitulate, in order to compute a model parameter sensitivity we require
two trajectory-based solutions. The first is from the source to the location of the
point of interest. The second is from the point of interest to the observation point.
The total perturbation δP is a volume integration over all of the model parameter
perturbations δk.

The semi-analytic form (4.81) provides insight into the nature of the sensitivity
kernel, relating a perturbation in k(y) to a perturbation in the observed pressure
P(x,ω). An example of a sensitivity kernel is plotted in Figure 4.12. The sensitivity

Figure 4.12 Permeability sensitivity for an observation gathered 0.16s after the
start of injection. The sensitivity was computed using the perturbation approach
described in this section and an asymptotic solution. The source and receiver are
denoted by an unfilled star and an open circle, respectively.
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kernel is given by the integrand of (4.81) along with the outer factor −iω. From
the structure of the integrand one notices that the sensitivity kernel involves a
propagation from the source at xs, to the point of interest y and then onto the point x
at which the pressure is measured. This quantity is weighted by the scalar product of
the gradients of the phase for each path, ∇σ(xx, y)·∇σ(y, x). The scalar product is a
strong function of distance from the source and observation points and also changes
sign when the angle between the two paths at y is between 90 and 270 degrees.
These features are evident in the Figure 4.12 where we see negative sensitivities
behind the source and observation points. Intuitively, this corresponds to the fact
that lowering the permeability behind the source and/or the observation point will
increase the observed pressure response. The −iω term in the Equation (4.81)
transforms into a temporal derivative in time domain. It reflects the fact that the
slope of the pressure curve is important for the high-frequency sensitivity. The
slope of the pressure curve provides a relationship between a time shift of the pulse,
because an increase or decrease in k(y) results in a change in σ and hence a time
shift, leading to a change in the amplitude of the curve.

4.4 Summary

Though diffusion and wave propagation are dramatically different physical pro-
cesses, they can be studied and understood using common approaches. In particular,
asymptotic series and a trajectory-based formulation can be applied to both. This is
helpful conceptually, allowing for the partitioning of the problem into a travel time
calculation and an amplitude computation. Furthermore, the common framework is
welcome because many physical problems do not simply fall into either category,
and may change character depending on the range of their parameters.
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Equations governing advection and transport

5.1 Introduction

An important characteristic of a fluid in motion is its ability to transport dissolved
or microscopic material. This property forms the basis for numerous important
physical processes in porous media. Furthermore, by monitoring the movement
of advected objects one can image the structure of the host medium and infer its
flow properties. Intuitively, one might postulate that the concentration of advected
material will depend in a fundamental way upon the trajectories associated with the
fluid flow. In this chapter we develop a trajectory-based solution for the concen-
tration of an advected material as a function of time and spatial position. Though
our derivation in the next section is along the lines of the asymptotic approach
developed previously, solutions of this type have a long history. We connect the
asymptotic results to current streamline-based modeling techniques. We conclude
the chapter with applications illustrating the use of such techniques in visualization,
in sensitivity computation, and in imaging spatial variations in flow properties.

5.2 The governing equation

The equation governing the concentration of an advected chemical component,
c(x, t), was given in Chapter 2. It can be written as the partial differential Equation
[see Equation (2.104)]

φ
∂c

∂t
= ∇ · (D∇c − qc), (5.1)

where φ is the kinematic porosity, D is the dispersion tensor, and q is the Darcy
flow velocity. The dispersion tensor was introduced in Chapter 2 and some of
its characteristics are noted in Box 5.1. Equation (5.1), the advection-dispersion
equation, can be of mixed character. That is, the equation may have solutions
that display both diffusive and wave-like behavior, depending upon the relative

172



5.2 The governing equation 173

magnitude of the coefficients. As noted in Chapter 2, this is the governing equation
for the simplest case of a non-interacting tracer, where the advected material does
not significantly influence the flow field. In that case we refer to (5.1) as the equa-
tion governing tracer transport. However, there are a host of more complicated
processes, such as reactive transport and multiphase flow, that may be modeled
by equations of the form of (5.1). Some of these phenomena render the governing
equations nonlinear. However, we will tackle the simpler linear case first, leaving
the nonlinear multiphase case for the Chapter 6.

In order to complete the specification, we need to relate the flow velocity vector
q to the properties of the medium and the pressure field. For that task we invoke
Darcy’s law, Equation (2.90), relating the flow velocity to the gradient of the pres-
sure field p:

q = − k
μ

· ∇p

where k(x) is the permeability tensor. From this equation and Equation (5.1) one
can see that the concentration of advective fluid depends upon the kinematic poros-
ity, the dispersion matrix, the hydraulic conductivity tensor, and the gradient of the
fluid pressure. The presence of the pressure field, implicit in Equation (5.1), means
that we must also solve its governing equation, the diffusion equation treated in
Chapter 4, [see Equation (4.1)] or its steady-state version

∇ · k
μ

· ∇p = Q(x) (5.2)

where Q(x) is a source term. This must be done either first, if the concentration
does not change the flow field, or simultaneously, when the presence of the advected
material influences the flow field. The dependence on the fluid pressure field is a
hallmark of advective processes that must always be kept in mind. It is particularly
meaningful for the inverse problem, when using tracer for imaging properties of the
porous medium. In that case, changes in the flow properties can produce variations
in both the pressure field and the concentration distribution.

Box 5.1 Hydrodynamic dispersion

The hydrodynamic dispersion of a solute describes the spreading of the material due
to the local heterogeneity of both the porous material as well as the flow field. Early
studies emphasized both diffusion and the mixing due to variable velocity for flow in
small tubes (Taylor, 1953). Scheidegger (1954) conducted an early examination of the
small scale mixing caused by flow variation in a microscopically heterogeneous
porous medium. After initial work, it was realized that dispersion is inherently
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anisotropic even if the medium is isotropic and the principle directions are determined
by the flow direction (de Josselin de Jong, 1958; Nikolaevskii, 1959; Saffman, 1959;
Bear, 1961; Scheidegger, 1961). The contributions of stochastic methods to hydrology
(Warren and Skiba, 1964; Schwartz, 1977; Gelhar et al., 1979; Dagan, 1982; Gelhar
and Axness, 1983) have advanced our understanding of transport in heterogeneous
permeable media. As a result of these and other efforts, there are now several models
of dispersion in a porous medium, and work in this area continues (Liu and Si, 2008;
Bruining et al., 2012). Here we adopt an established approach that accounts for both
molecular diffusion and hydrodynamic dispersion. Experimental evidence, as cited by
de Marsily (1986, p. 237), indicates that in most flow regimes and for an isotropic
medium, the dispersion along (Dl) and transverse (Dt) to the flow direction, are well
approximated by

Dl = ϕkdm + αlq

and

Dt = ϕkdm + αtq

where dm is the molecular diffusion coefficient, q is the magnitude of the Darcy
velocity vector. The parameters αl and αt are the intrinsic dispersion coefficients, or
dispersivities, in the longitudinal (parallel to the flow) and transverse (perpendicular
to the flow) directions. The approach described here is appropriate for a general
anisotropic porous medium in which the dispersion in the principle directions of the
dispersion tensor are given by three scalars, say D1, D2 and D3. Hence, our
development will be in terms of a general tensor D.

The dispersion tensor is commonly assumed to be symmetric. In fact, the
asymmetry of the dispersion tensor was demonstrated by Koch and Brady (1987), and
recently verified by Auriault et al. (2010) in the case of low Pectlet numbers. The
general asymmetry of D has not been emphasized in hydrology. This may be due to
the fact that the symmetry holds in a homogeneous media, but not in one that is
heterogeneous (Carbonell and Whitaker, 1983). To see this, consider equation 5.1
when the dispersion tensor does not depend upon x. The symmetry of the array of
second-order spatial derivatives of C, and the invariance of the other terms in the
equation, implies the symmetry of the dispersion tensor.

5.3 An asymptotic solution

There are several ways to derive a trajectory-based solution to a governing equation,
such as (5.1). In Chapter 4 we adopted an approach based upon an expansion
in powers of 1/ω, a very common avenue to such solutions. This approach is
typically implemented in the limit of high frequency. There are situations in which
the frequency might be expected to vary over a wider range of values and ω may
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not always be large. The multiple-scale asymptotic method for a smoothly-varying
medium, introduced in Chapter 3, will allow us to derive a trajectory-based solution
that is slightly more general. The approach may be used in the frequency domain,
as is done here, or in the time domain, as in Chapter 6.

The general idea is that the leading edge of the concentration front is sharp,
relative to the controlling features of the problem, in this case the heterogeneity of
the medium. Note that this condition is only required in regions between interfaces.
That is, as in the manner of geometrical optics and ray methods (Chapman, 2004),
we may include rapid variations in medium properties as boundary conditions.
Away from such boundaries, it is assumed that the properties vary over a length
scale that we shall characterize by the parameter L. In essence, we are stipulating
that all heterogeneity or background variations are over length scales that are greater
or equal to L. The propagation of the advected material is defined by a front,
over which the concentration varies from an initial background value to a value
characteristic of the injected material. The length scale over which this transition
is achieved is denoted by l. The requirement that the front is sharp, or that the
heterogeneity is smoothly-varying, is formulated in terms of the inequality:

l � L. (5.3)

Note that this condition may be applied to either spatial or temporal length scales
or to both. From the inequality (5.3) we can define a scale parameter, based upon
the ratio of length scales:

ε = l

L
� 1. (5.4)

To facilitate the scale separation we introduce coordinates that are designed to
represent the slowly-varying background properties. These coordinates are defined
in relation to the physical coordinates x and t, in terms of the scale parameter:

X = εx (5.5)

and/or

T = εt. (5.6)

So, as the physical coordinates x, t vary by a unit amount, the coordinates X, T vary
by a correspondingly small multiple ε. The asymptotic solution is a power series
representation of the concentration variation c(x, t), in our case an expansion in
powers of ε,

c(x, t) = c(X, T , ε) =
∞∑

n=0

εncn(X, T , θ). (5.7)
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For a given value of ε, the series (5.7) may ultimately diverge as n grows large.
However, in the limit as ε approaches zero, the first few terms in the series provide
an increasingly accurate in representation of c(x, t) (Dingle, 1973).

In our analysis of concentration variations we shall work in the frequency
domain. In doing so, we shall maintain some continuity with the results of
Chapter 4, and provide a transition to the applications in Chapter 6 and 7.
Furthermore, it is easier to motivate aspects of a propagating front, such as the
front phase, in the frequency domain. As in Chapter 4, we apply the Fourier
transform to the governing equation, in this case Equation (5.1)

∇ · (D∇C − qC)+ iωφC = 0 (5.8)

where C(x,ω) denotes the Fourier transform of c(x, t)

C(x,ω) = 1√
2π

∫ ∞

−∞
c(x, t)eiωtdt (5.9)

(Bracewell, 2000; Debnath, 2005, p. 35) which is a complex quantity. The asymp-
totic representation (5.7) may be partitioned into phase and amplitude components:

C(x,ω, ε) = eθ(x,ω)
∞∑

n=0

εnCn(X,ω), (5.10)

where θ(x,ω) is the phase and Cn(X,ω) are successive amplitude terms. In the
frequency domain the phase shift associated with a propagating transient distur-
bance or wave takes the form of an exponential factor. Thus, one can consider
the representation (5.10) as a generalized wavefront expansion of a propagating
disturbance (Aki and Richards, 1980a). Note that the phase, representing the jump
across the propagating front, varies rapidly in space, and therefore depends upon
the physical coordinates x. The amplitude terms Cn(X,ω) represent the much more
gradual decay of the concentration with distance, which varies over the length scale
of the heterogeneity and is thus a function of the X coordinates. The partitioned
form provides additional flexibility in both the forward modeling and in solving the
inverse problem, allowing for a form of travel time tomography, as illustrated at the
end of this chapter.

In substituting C(x,ω, ε) into the governing equation (5.8) some care must be
exercised when computing the spatial derivatives. In particular, the relationship
between x and X in Equation (5.5) needs to be accounted for, as does the implicit
dependence upon x, through the presence of the phase function θ(x,ω). Thus, the
partial derivative with respect to xi is given by
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∂C

∂xi
= ∂Xi

∂xi

∂C

∂Xi
+ ∂θ

∂xi

∂C

∂θ

= ε
∂C

∂Xi
+ ∂θ

∂xi
C, (5.11)

where we have used the fact that the solution is taken to have the form (5.10) and
the partial derivative with respect to θ returns the original function:

∂C

∂θ
= C.

Writing Equation (5.8) in terms of C(X,ω, ε) and its derivatives with respect to xi,
results in the expression

ε2∇̄ · (D · ∇̄C)

+ ε
[∇̄ · (D · ∇θC)+ ∇θ · (D · ∇̄C)− q · ∇̄C − C∇̄ · q

]
+ (∇θ · D · ∇θ)C − ∇θ · qC + iωφC = 0, (5.12)

where the overbar signifies that the gradient is with respect to the X coordinate.
Because we are constructing a solution in a medium with smoothly varying het-
erogeneity, the condition ε � 1 holds and terms of lowest order in ε are the most
significant. We consider these terms in some detail in the sub-section that follows.

Exercise 5.1. Derive the asymptotic expression

ε2∇̄ · (D · ∇̄C)

+ ε
[∇̄ · (D · ∇θC)+ ∇θ · (D · ∇̄C)− q · ∇̄C − C∇̄ · q

]
+ (∇θ · D · ∇θ)C − ∇θ · qC + iωφC = 0,

starting from the governing equation (5.8) and using expression (5.11) for the
spatial derivatives of C.

5.3.1 Zeroth-order terms: expressions for the trajectories and the phase

Note that each term in (5.12) is linear in C. Therefore, after we substitute the series
(5.10) for C, the terms of lowest order in ε, those of zeroth-order, are found in the
third line of Equation (5.12):

[∇θ · D∇θ − ∇θ · q + iωφ] C0 = 0. (5.13)

The terms of order-zero are obtained when we consider the first term of the asymp-
totic series (5.10). From the above equation it is clear that the quantity in square
brackets must vanish in order to have a non-trivial solution:

∇θ · D∇θ − ∇θ · q + iωφ = 0, (5.14)

producing a first-order, non-linear, scalar partial differential equation for θ(x,ω).
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At first sight, it may seem like a drawback to go from a linear, scalar partial
differential equation (5.1) to our current equation (5.14). However, there is a com-
pelling reason to make this transition. The original governing equation (5.8) is
second-order partial differential equation while the current equation is only first-
order. As indicated in Chapter 3, there is a rich literature (Courant and Hilbert,
1962; Sneddon, 2006, p. 44) on solving such first-order equations. These techniques
provide important physical insight and will allow us to define solutions along one-
dimensional trajectories. Introducing the phase gradient vector p = ∇θ , we can
write Equation (5.14) as

F(x, p) = p · D
φ

p − p · q
φ

+ iω = 0. (5.15)

Equation (5.15) may be treated using the method of characteristics, introduced in
Section 3.5 of Chapter 3, where the independent variables x and p are considered
to be functions of a scalar quantity s. The scalar s is a parameter signifying position
along a trajectory extending from the source to the observation point. For F given
by Equation (5.15) the characteristic equations are

dxl

ds
= ∂F

∂pl
= 2

Dlj

φ
pj − ql

φ
,

dpl

ds
= −∂F

∂xl
= −pi

∂

∂xl

(
Dij

φ

)
pj + ∂

∂xl

(
qi

φ

)
pi, (5.16)

[see the ray equations in the box following Section 3.5]. This form was derived
in an early analysis of dispersion governed by the advection-diffusion equation
containing a constant scalar diffusion coefficient in place of our tensor D (Smith,
1981). We can also write these equations in matrix-vector form:

dx
ds

= 2
D
φ

p − q
φ

dp
ds

= −pT · ∇
(

D
φ

)
p + ∇

(
q
φ

)
· p (5.17)

(Vasco et al., 2016). Given the coefficients D, q, and φ and the appropriate initial
conditions such as the source point, xs and the initial vector ps or, equivalently, the
take-off angle of the trajectory, the ray is uniquely determined by the coupled set
of ordinary differential equations (5.17). Thus, taking the ray-based approach, one
simply solves the system of equations (5.17) numerically using software for the
integration of ordinary differential equations (Press et al., 1992, p. 701). We should
not lose sight of our main task in this section, to determine the phase θ(x,ω), the
solution of Equation (5.14). For this, one may use the third ray equation [see the
box following Section 3.5]:
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dθ

ds
= p · ∇pF = 2p · D

φ
p − p · q

φ
, (5.18)

which may be integrated numerically, in conjunction with the system of Equa-
tions (5.17).

There is another intriguing approach that leads us on an entirely new path.
Specifically, we can adopt the trajectory defined by a simplification of the first set
of ray equations (5.17)

dx
ds

= −q
φ

(5.19)

as our path, rather than the exact ray path. This equation follows from the ray
equations if the dispersion vanishes. Given the flow field q, say one obtained from
a numerical solution of the pressure equation (5.2), the computation of the trajec-
tory x(s) based upon Equation (5.19) is an elementary undertaking. The trajectory
has a useful physical interpretation as a streamline of the flow field. There is a
vast literature on streamline computation and streamline-based fluid flow modeling
(Bear, 1972; Crane and Blunt, 1999; Datta-Gupta and King, 2007). We will have
more to say about streamline modeling later in this chapter. However, the reader
should keep in mind that streamlines are completely determined by the flow field
and are not necessarily paths taken by the tracer itself. This is clear in the dipole
flow field portrayed in Figure 5.1, where we plot both the trajectories x(s) defined
by the Equation (5.17) on the left and corresponding streamlines on the right. In this

Figure 5.1 A comparison of the ray paths(left) and streamlines(right) for a dipole
flow field.
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dm~10–9 –7

dm~10–6 dm~10–5

Figure 5.2 A comparison of the trajectories for varying values of molecular
diffusion, dm.

case the longitudinal and transverse dispersion are taken to be equal to exaggerate
the effects. As indicated by the first equation (5.17), the tangent to the asymptotic
trajectory x(s) is determined by the phase gradient vector, p = ∇θ , as well as
by the flow velocity vector q. In certain situations the vector field defined by the
right-hand-side of the first equation (5.17) can differ significantly from q. In the left
panel of Figure 5.1 we plot the normalized tangent vectors as short line segments.
They are notably different from the normalized flow directions q̂ plotted in the right
panel. Admittedly, this is an extreme case, typically the longitudinal dispersion is
much larger than the transverse dispersion. But this example illustrates that tracer
trajectories can deviate from streamlines, and the first equation of (5.17) quantifies
this deviation. In Figure 5.2 we plot the asymptotic trajectories for varying values
of molecular diffusion, dm. As the molecular diffusion increases the trajectories
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increasingly deviate from conventional streamlines. Later in this chapter we discuss
a technique for including transverse dispersion in streamline calculations.

Exercise 5.2. Starting with Equation (5.15), derive the trajectory equations given
by Equation (5.17) and (5.18). Hint: Refer to the ray equations in Box 3.1.

Exercise 5.3. Use the software ‘TRACE3D’ to visualize the streamlines for a
homogeneous medium with a five spot well configuration (a central injector
and four surrounding producers). Use the data files in the folder ‘Examples/
Simulation/5-Spot-Hom’ by creating a project in the same folder and run-
ning the software. Repeat the exercise for the heterogeneous example (in
‘Examples/Simulation/5-Spot-Het’). View the heterogeneous permeability field
and the streamlines side by side to examine how the trajectories are impacted by
the heterogeneity.

5.3.2 Terms of order ε: an expression for the amplitude

The next level of approximation involves consideration of terms of first order in
Equation (5.12). The only terms that could possibly be of order ε, after substituting
in the series (5.10), are contained in the last two lines. Recalling Equation (5.14)
from the previous section, we find that the expression in brackets in the bottom line
of Equation (5.12) vanishes. We are left with everything within the brackets in the
second line of (5.12). If we insert the asymptotic series (5.10) into the resulting
equation then the only terms of order ε will be those corresponding to n = 0.
Factoring out eθ under the assumption that it does not vanish, and grouping terms
that contain C0 and ∇C0 results in

ϒ · ∇C0 = υC0. (5.20)

where

ϒ = Dp + p · D − q (5.21)

υ = ∇ · (Dp)+ 2 (Dp) p − q · p − ∇ · q. (5.22)

Equation (5.20) is a linear, first-order partial differential equation for the zeroth-
order amplitude C0(X,ω), commonly known as the transport equation. As there are
numerous texts on the numerical solution of linear partial differential equations
in general and on the solution of the transport equation in particular, we shall
not discuss the solution of (5.20) any further. We end by pointing out that one
may derive a semi-analytical solution of the transport equation in ray coordinates
(Kravtsov and Orlov, 1990).
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5.3.3 Construction and interpretation of a zeroth-order
expression for the concentration

The expressions for the phase θ(x,ω) and the zeroth-order amplitude C0(X,ω)
provide the ingredients that we need to construct the lowest-order approximation
of the concentration as a function of position and frequency:

C(x,ω) = eθ(x,ω)C0(x,ω), (5.23)

the first term of the asymptotic series (5.10). A time-domain solution is obtained
by applying the inverse Fourier transform to (5.23) (Bracewell, 2000). Because
the inverse Fourier transform of a product of two functions is equivalent to the
convolution of their inverse Fourier transforms, the time-domain solution will have
the form

c(x, t) = F−1 [eθ(x,ω)] ∗ c0(x, t), (5.24)

where F−1 [F(ω)] denotes the inverse Fourier transform of the function F(ω) and ∗
denotes a convolution. If the phase function θ(x,ω) does not have an analytic form,
for example it is defined by the differential equation (5.18), then it is not possible to
compute a closed form inverse Fourier transform. That is not an issue, because it is
trivial to compute Fourier transforms numerically, using the fast Fourier transform
algorithm (Press et al., 1992, p. 498). In certain situations, such as a rapid variation
in concentration or a non-dispersive porous medium, one can perform an explicit
evaluation of the inverse transform. The resulting semi-analytic solutions provide
some insight into the contributions to the concentration variation at a particular
observation point. We discuss these two cases in the sub-sections that follow.

The differential equation (5.18) is helpful in obtaining a numerical estimate
but does not offer much insight into the structure of the phase. To make further
progress in finding a useful expression for the tracer concentration we will need an
alternative form for the phase. It is fruitful to return to the defining equation (5.15).
Because the velocity vector q, the porosity φ, and the dispersion tensor D are known
parameters, the real value of Equation (5.15) is that it provides a semi-analytic
relationship between the phase θ(x) and the properties of the medium. To see this,
we first use the singular value decomposition of the dispersion tensor (Noble and
Daniel, 1977, p. 306)

D = U�VT ,

where U and V are orthonormal matrices (their columns are vectors of unit magni-
tude) and � is a diagonal matrix, to write Equation (5.15) as a scalar equation for
p = |p|, the magnitude of the vector p:

βp2 − γ p + iωϕk = 0. (5.25)
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The coefficient β of this quadratic equation is given by

β =
3∑

i=1

Di cosμi cos νi

where Di is the i-th element on the diagonal of �, cosμi = ui · p̂ is the cosine
of the angle between p̂, the unit vector in the direction of p, and the i-th column
of U, Similarly, cos νi = vi · p̂ denotes the cosine of the angle, νi, between vi and p.
Note that diagonal elements Di are discussed in Box 5.1, where they are related to
the molecular diffusion and the intrinsic dispersion coefficients. The coefficient γ
is sensitive to the fluid velocity vector q,

γ = q cos η, (5.26)

where q = |q| and η is the angle between the vectors p and q. In the exercises we
ask the reader to derive Equation (5.25). It is straight-forward to solve the quadratic
equation and find the two solutions for p:

p = γ

2β
±
√
γ 2 − 4βϕkiω

2β
. (5.27)

In the characteristic coordinate system, determined by the trajectories x(s),
Equation (5.27) may be integrated with respect to s, the distance along the
trajectory. Thus, we can write the phase θ(x,ω) succinctly as

θ(x,ω) = ξ(x)± χ(x,ω), (5.28)

where we have defined a function that only depends upon spatially varying
quantities,

ξ(x) =
∫

x

γ

2β
ds (5.29)

and a function that describes the frequency-dependence,

χ(x,ω) =
∫

x

√
γ 2 − 4βϕkiω

2β
ds, (5.30)

as well as the spatial variation contained in γ , β, and ϕk. The time-domain solution
is obtained by substituting this expression for θ(x,ω) into Equation (5.24) and
performing the inverse Fourier transform followed by the convolution.

As an illustration, we consider the simple case of an impulsive injection of tracer
into a uniform, two-dimensional flow field. Cleary and Ungs (1978) provided an
analytic solution for this case, as presented in Javandel et al. (1984). The solution
corresponds to a pulse-like injection along a linear segment oriented perpendicular
to a uniform flow field. The dispersion is characterized by transverse (Dt) and
longitudinal (Dl) coefficients, which are 1.0 × 10−6 m2/s and 2.0 × 10−3 m2/s,
respectively. In Figure 5.3 we plot the temporal variation in concentration observed
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Figure 5.3 A comparison of the semi-analytic solutions for concentration with
exact analytic solutions.
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at a point 21 m directly downstream of the source. For comparison, we also plot
the asymptotic solution, given by the expression (5.24) where θ(x,ω) is provided
by Equation (5.28), which are very similar.

Exercise 5.4. Using the singular value decomposition (Noble and Daniel, 1977,
p. 306).

D = U�VT

reduce the equation for the phase θ(x,ω),

p · Dp − q · p + iωφ = 0,

to a quadratic equation for p. [Hint: The columns of U and V are orthornormal
vectors.]

A rapidly varying concentration

For a general solution of the form (5.24) we can derive an expression for the
concentration. However, due to the complexity of the frequency-dependence of the
phase [see Equations (5.28), (5.29), and (5.30)], we cannot derive a time-domain
semi-analytic expression for the concentration. If we consider a concentration that
is varying rapidly in time, relative to the background or natural variation, then
a semi-analytic expression is possible. In such a case, one can assume that the
frequency of the variation, ω, approaches a large value. Therefore, we can consider
the function χ(x,ω), defined by the expression (5.30), in the limit of large frequen-
cies. First, Equation (5.30) is rearranged by factoring out

√−iω from the square
root

χ(x,ω) = √−iω
∫

x

√
1 + ω−1δ

√
φ

β
ds (5.31)

where

δ = iγ 2

4βφ
. (5.32)

Then the limit as ω takes on large values is

lim
ω→∞χ(x,ω) = lim

ω→∞
√−iω

∫
x

√
1 + ω−1δ

√
φ

β
ds

= √−iω
∫

x

√
φ

β
ds. (5.33)

Thus, we can write the limit in a partitioned form

lim
ω→∞χ(x,ω) = √−iωχ(x) (5.34)
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where we have denoted the spatially dependent component of limω→∞ χ(x,ω) as

χ(x) =
∫

x

√
φ

β
ds. (5.35)

The inverse Fourier transform of eθ may now be evaluated analytically (Virieux
et al., 1994),

F−1
[
e−√−iωχ(x)

]
= χ(x)

2
√
π t3

exp

[−χ2(x)
4t

]
H(t) (5.36)

where H(t) is the Heaviside (step) function that is 0 for negative values and 1 for
non-negative values. Using Equation (5.28), the complete expression (5.24) for the
time-varying concentration is given by

c(x, t) = χ(x)

2
√
π t3

exp

[
ξ(x)− χ2(x)

4t

]
H(t) ∗ c0(x, t) (5.37)

for an impulsive source-time function. Where the negative sign was chosen to
ensure that the concentration is positive. For a general time-varying source, we
simply convolve expression (5.37) by the appropriate source-time function. In
Figure 5.4 we plot the approximation (5.37) against the full asymptotic solution.
The dispersion and flow field are identical to those used for the calculations
associated with the results plotted in Figure 5.3. The approximation (5.36) generally
agrees with the full asymptotic result.

Figure 5.4 A comparison of the semi-analytic solution for concentration with the
rapidly varying approximation (5.36) for an impulsive source function.
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Exercise 5.5. We can gain some physical insight into the meaning of the
phase function, at least for a rapidly varying concentration, if we consider the
solution (5.37) for the case of an impulsive source:

c(x, t) = eξ(x)
χ(x)

2
√
π t3

e−χ2(x)/4t

at non-negative times. Following a procedure similar to that taken in Chapter 4,
use this relationship and the explicit expression for the phase function, to relate
Tmax to the properties along the path from the injection point to the observation
point. In particular, show that

√
Tmax = 1√

6

∫ rs

0

√
φ

β
dr

in the case of non-zero dispersion β. The general dependence upon β and the
decrease in arrival time with increased dispersion is evident in Figure 5.3 and
discussed in more detail in Vasco et al. (2016).

A non-dispersive porous medium

As an aside, note that if the dispersion can be neglected then the matrix D in
Equation (5.14) vanishes, or equivalently, β in Equation (5.25) is zero. Therefore
Equation (5.25) reduces to

p = iω
φ

γ
, (5.38)

where γ is given by (5.26). We orient our coordinate system along the trajectory,
use expression (5.38) to integrate p along the path, and derive an equation for the
phase

θ(x,ω) = iωτ(x) (5.39)

where we have defined the function

τ(x) =
∫

x

φ

γ
ds. (5.40)

The zeroth-order expression for the concentration may now be written as

C(x,ω) = eiωτ(x)C0(x,ω). (5.41)

Taking the inverse Fourier transform gives

c(x, t) = c0(x, t − τ(x)), (5.42)

indicating that the concentration is a shifted version of the Fourier transform of
the zeroth-order amplitude function. Thus, τ(x) as the non-dispersive travel time,
is also known as the convective ‘time of flight’. Note that there will generally be
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changes in the amplitude with propagation due to attenuation introduced by the
transport equation (5.20), hence the dependence of the amplitude on the position
along the trajectory x(s).

Exercise 5.6. This is a continuation of Exercise 5.3. Use ‘TRACE3D’ to
visualize the ‘time of flight’ (phase field) from the injector for the homogeneous
five spot pattern. Use the data files in the folder ‘Examples/Simulation/5-Spot-
Hom’ by creating a project in the same folder. Notice that the time of flight
displays the convective tracer front propagation in the medium. Also, visualize
the evolution of the front by thresholding at various times. Repeat the exercise for
the heterogeneous example (in ‘Examples/Simulation/5-Spot-Het’) to visualize
how the tracer front propagation is impacted by the permeability heterogeneity.

5.4 The streamline approach for transport modeling

As alluded to earlier, one may interpret streamlines as trajectories derived by
integrating the ray equation (5.17) in the absence of dispersion. The streamline
approach to transport modeling approximates three-dimensional fluid flow and
advection calculations using a sum of one-dimensional solutions along these
trajectories. The choice of streamline directions for the one dimensional calcu-
lations makes the approach especially effective for modeling advection dominated
transport. Such is the case when heterogeneity primarily governs flow behavior.
A key concept in the streamline approach is to divorce the effects of geologic
heterogeneity from the underlying physics of flow calculations. Mathematically,
this is accomplished with the help of a coordinate transformation in which the
streamline time of flight or the travel time of a tracer particle is used as a spatial
coordinate variable. The exact definition of the time of flight, the travel time of a
tracer in a non-dispersive porous medium, follows directly from equations (5.40)
and (5.26)

τ =
∫

φ

|q|ds (5.43)

because in the absence of dispersion γ = q = |q|. With τ as the spatial vari-
able along the trajectory, the effect of any heterogeneity is contained in the time
of flight as well as in the geometry of the streamline. The task of modeling the
physical processes associated with the advection and dispersion of a transported
component is reduced to finding solutions along trajectories. The details of the
coordinate transformation will be discussed later. Because the streamlines are gen-
erally distributed in space with higher resolution than the underlying spatial grid,
one can obtain excellent transverse resolution in regions of faster flow. Transport
calculations decouple from any underlying three dimensional spatial grid and may
be carried out with little or no intrinsic numerical time-step and stability limitations
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(Datta-Gupta and King, 2007). To illustrate these concepts, the basic steps involved
in the trajectory-based approach are outlined below with an example.

• Given a heterogeneous spatial variation of properties and specified boundary
conditions, we can use numerical methods to trace the trajectories for a given
flow velocity field. The velocity field is obtained by solving the governing equa-
tion (5.2) for fluid pressure, as noted at the beginning of this Chapter. Figure 5.5
shows a heterogeneous permeability field and the streamlines corresponding to a
five-spot well pattern with a central injection well and four surrounding extraction
wells. Notice that the streamlines tend to cluster along the high permeability
streaks, providing higher resolution along preferential flow paths.

• Along streamlines, we compute the travel time of a neutral particle – the stream-
line time of flight. Figure 5.5 shows the color-coded time of flight field defined
on the trajectories. The time of flight contours or isochrones correspond to fluid
fronts of transported material, allowing for a quantitative form of flow visualiza-
tion. The time of flight also serves as a measure of distance, and will be used as a
spatial coordinate during fluid transport calculations.

• Finally, we solve the transport equations for saturation and/or concentration along
the streamlines. These calculations are performed in the time of flight coordinate

(a) Permeability field (b) Time of flight

(c) Coordinate transformation

Figure 5.5 An illustration of the streamline-based approach: (a) 3-D permeability
fields and wells, (b) streamline trajectories colored by time of flight variation, and
(c) transformation from 3-D space to the time of flight coordinates. For the colour
version, please refer to the plate section.
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system, effectively decoupling heterogeneity effects and significantly simplifying
the calculations. As shown in Figure 5.5, in the transformed coordinates the
streamlines are straight lines and the heterogeneity is reflected in the variable
domain lengths. That is, the heterogeneity leads to variations in the time of flight
along the different trajectories and the time of flight acts as the domain length for
the 1-D calculation.

Exercise 5.7. This exercise illustrates the steps involved in streamline simula-
tion. Run ‘TRACE3D’ using the data files in the folder ‘Examples/Simulation/
5-Spot-Hom’ by creating a project in the same folder. Visualize the pressure
distribution, streamline trajectories, time of flight from the injector and produc-
ers, water saturation distribution, oil-water production history and oil recovery
history for water injection into an oil reservoir. The details of the two-phase
displacement calculations will be discussed in Chapter 6. Repeat the exercise for
the heterogeneous example (in ‘Examples/Simulation/5-Spot-Het’) to examine
the impact of heterogeneity in the two-phase displacement calculations.

5.4.1 Time of flight as a spatial coordinate

A key feature of trajectory-based modeling is that it isolates the effects of spatial
heterogeneity from the transport calculations themselves. We have already noted in
general terms how this is done: by transforming to a coordinate system in which
the time of flight is the independent variable parameterizing position along the
trajectory. Effectively, given the trajectories, we solve problems in two dimensions
with time and time of flight as coordinates, rather than in four dimensions with
time and three spatial variables x as coordinates. Let us look in some detail at the
mechanics of this process. To start with, we rewrite Equation (5.43) in a differential
form as follows

q · ∇τ = φ. (5.44)

We can relate this equation back to our asymptotic derivation in the previous sec-
tion. In particular, if we consider Equation (5.14) for the phase θ in the absence of
dispersion, then Equation (5.44) follows if

θ(x,ω) = iωτ(x)

which is just the expression for the phase in a non-dispersive medium [see Equa-
tion (5.39)] and τ is simply the spatial variation of the phase. Notice that the
equivalence of Equations (5.43) and (5.44) is apparent from the following,

φ

|q| = dτ

ds
= q

|q| · ∇τ . (5.45)
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Because the time of flight gradients are defined along the streamlines, we can
invoke an orthogonal coordinate system that is defined in terms of the time of
flight and two orthogonal bases ψ and χ called the bi-stream functions (Bear,
1972; Datta-Gupta and King, 2007). Formally, a streamline in 3D is defined by the
intersection of two stream function surfaces, with each given by a constant value
for ψ and a constant value for χ , respectively. The velocity field for a general three-
dimensional medium is related to the bi-stream functions in the following manner:

q = ∇ψ × ∇χ (5.46)

(Bear, 1972). Note that this definition automatically satisfies the continuity
Equation (2.60) for a steady-state flow field and an incompressible fluid, via a
well-known vector identity for arbitrary scalar functions ψ and χ :

∇ · q = ∇ · (∇ψ × ∇χ) = 0 (5.47)

(Marsden and Tromba, 1976, p. 166).
A coordinate system determined by t, τ , ψ , and χ is rooted in the physics of flow

within the porous medium (Bear, 1972). A number of useful properties follow from
this fact (Datta-Gupta and King, 2007) and we will outline a few of them here. For
example, the spatial gradient along the streamline assumes a very simple form in
the time of flight coordinates. That is, using the (τ ,ψ ,χ) spatial coordinate system,
the gradient operator can be expressed as

∇ = (∇τ) ∂
∂τ

+ (∇ψ) ∂
∂ψ

+ (∇χ) ∂
∂χ

. (5.48)

Because q is orthogonal to both ∇ψ and ∇χ , a consequence of (5.46), we have the
following operator identity

q · ∇ = (q · ∇τ) ∂
∂τ

= φ
∂

∂τ
, (5.49)

where we have invoked Equation (5.44). The operator identity in Equation (5.48)
forms the basis for coordinate transformation from physical space to the streamline
and time of flight space as we will see shortly. Because of Equation (5.44), the
Jacobian of the transformation, relating the volume elements in the two coordinate
systems, assumes a very simple form∣∣∣∣

∣∣∣∣∂(τ ,ψ ,χ)

∂(x, y, z)

∣∣∣∣
∣∣∣∣ = ∇τ · (∇ψ × ∇χ) = ∇τ · q = φ. (5.50)

Another advantage of the τ coordinate system becomes evident when we consider
the transport equation (5.1) in the absence of dispersion.

φ
∂c

∂t
+ ∇ · (qc) = 0. (5.51)

This equation can be expanded and transformed with τ as the spatial coordinate
using Equation (5.49), resulting in the following equation
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∂c

∂t
+ ∂c

∂τ
= 0, (5.52)

describing transport along the streamline. In deriving Equation (5.52) we have
assumed that the fluid is incompressible and made use of the Equation (5.47)
to remove the term containing ∇ · q. With this coordinate transformation, we
have decomposed Equation (5.51) in three spatial variables into a series of
Equations (5.52) in one spatial variable τ defined along the streamlines. Individual
elements of the family of trajectories are determined by particular values of the two
bi-stream parameters ψ and χ . This is similar to the asymptotic solution described
in the previous section, characterized by the initial conditions used to specify the
trajectory. The initial conditions are typically the take-off angles, the direction at
which the trajectory leaves the source. Equation (5.52) is equally valid in one,
two and three spatial dimensions, and in both homogeneous and heterogeneous
media. The τ transformation includes all of these effects. All that is required
for the implementation is the velocity field, obtained by solving the pressure
equation (5.2), and the evaluation of the line integral in Equation (5.43). This
integration is relatively straight-forward, given an efficient algorithm for tracing
streamlines, as described in the next section.

5.4.2 Tracing trajectories and computing the time of flight

We now describe the computational aspects of evaluating the integral (5.43). A crit-
ical component of this calculation is the construction of a trajectory within a grid
block. We presume that the associated pressure field has been calculated, typically
using numerical methods, for example a finite difference solution of Equation (5.2).
From the pressure solution, and Darcy’s law, we know the volumetric flux across
the faces of each cell of the model (Figure 5.6). To trace the trajectory across a cell,
we use the simplest possible representation of the velocity field that allows us to
smoothly interpolate the fluxes across the faces. As will be shown, these equations
are exactly integrable in time, describing the trajectory of a particle within a cell.
The most commonly used trajectory calculations follow an approach known as
Pollock’s algorithm (Pollock, 1988), based upon a linear velocity model within
each grid block. In particular, each velocity component varies linearly between the
values on appropriate pairs of cell faces:

qx = qx1 + cx(x − x1)

qy = qy1 + cy(y − y1)

qz = qz1 + cz(z − z1),

(5.53)

(see Figure 5.6). The velocity gradients in each direction are computed from the
difference of Darcy velocities on the grid block faces, for example in the x direction
we have: cx = (qx2−qx1)/�x. Note that the velocity interpolation in Equation (5.53)
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Figure 5.6 Illustration of grid block time of flight calculations.

is quite general and applies to compressible as well as incompressible flow. For
incompressible flow, and away from any sources or sinks, the divergence-free nature
of the velocity field requires that

cx + cy + cz = 0. (5.54)

For compressible flow the sum (5.54) will not vanish because fluid and rock expan-
sion and compression act effectively as source and sink terms. For the velocity
models in Equation (5.53), the time of flight can be integrated explicitly, and inde-
pendently, in each direction. For example, the integral solution in the x-direction
starting from location x0 within the cell (Figure 5.6) will be given by,

�τxi

φ
=
∫ xi

x0

dx

qx0 + cx(x − x0)
(5.55)

= 1

cx
ln

[
qxi

qx0

]
. (5.56)

The index i = 1, 2 indicates the grid block faces in the x-direction. Identical
constructions will arise when integrating in the y- and z-direction. Thus, the actual
cell time of flight for the particle �τ , will be given by the minimum positive arrival
time over allowable edges (Pollock, 1988) that is the minimum of�τx1 ,�τx2 ,�τy1 ,
�τy2 , �τz1 , and �τz2 , where only positive values are considered. After computing
the particle time of flight, its exit coordinates can be obtained by simply rearranging
Equation (5.56) as follows.

x = x0 + qx0

(
ecx�τ/φ − 1

cx

)
. (5.57)

Notice that the term within parentheses in Equation (5.57) increases with time and
can be thought of as a pseudo-time,
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η = ecx�τ/φ − 1

cx
.

In terms of η, the Equation (5.57) has now a simple linear form,

x = x0 + qx0η. (5.58)

When the cell velocity is uniform (constant) in a given direction, for example in the
x-direction, then cx = 0. In this limit,

1

cx
ln

[
qx

qx0

]
→ x − x0

qx0

(5.59)

ηx = ecx�τ/φ − 1

cx
→ �τ

φ

x = x0 + qx0

�τ

φ
. (5.60)

As expected, the position varies linearly with time for a constant velocity. The
trajectory and time of flight calculations discussed above can be extended to com-
plex and unstructured grids that are often used to represent reservoir geometry,
stratigraphy, and faults (Datta-Gupta and King, 2007).

5.4.3 Transport equation and amplitudes

Let us now return to the transport equation (5.51) and its one-dimensional form
(5.52) in streamline and time of flight coordinates. If the injection rate varies as
a function of time then Equation (5.52) constitutes a time-dependent boundary
value problem. One may recall that we have seen expression (5.52) before, as
Equation (1.5) in our discussion of propagating disturbances in Chapter 1. It was
an example of the simplest possible wave equation, describing propagation through
a uniform medium. Equation (5.52) only appears to describe propagation through a
uniform medium because we have embedded all of the heterogeneity into the time
of flight variable τ . As shown in the previous section on non-dispersive transport
[see Equation (5.42)], the tracer concentration at the observation point at time t will
simply be the injected concentration delayed by the time it takes to travel along the
streamline:

c(t) = c0(t − τ) = c0

(
t −
∫

φ

|q|ds

)
, (5.61)

where we have substituted our definition (5.43) for τ . For the special case of a step
in the rate of injection, jumping from zero to a fixed injection rate at t = 0, the
solution will be particularly simple:

c(t) =
{

0, t < τ

c0, t ≥ τ ,
(5.62)
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(a) Streamlines

(b) Time of flight

Figure 5.7 (a) Streamlines and (b) time of flight in a quarter five-spot pattern [from
Datta-Gupta and King (1995)]. Reprinted with permission. Copyright Elsevier
Limited.

a step function at t = τ . The solution for a common pulse test, with injection from
time t0 to t1, can be obtained by simply replacing the source function (5.62) by

c(t) = c0H(t − t0)H(t1 − t), (5.63)

where H(t) is the Heaviside step function, which is zero for t < 0 and one
otherwise.
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Figure 5.8 Tracer response calculations in a homogeneous porous medium.
(a) The time of flight function. (b) Tracer response at the observation point for a
pulse injection [From Datta-Gupta and King (1995)]. Reprinted with permission.
Copyright Elsevier Limited.

The solution of the transport equation, given by the expression (5.61), corre-
sponds to the contribution from a single streamline. In certain situations that may be
the only significant component at a particular observation point. However, in most
cases the observation point will be at an extraction well and the trajectories will
converge at that location. Thus, there will be a family of streamlines connecting the
source and observation points, as shown in Figure 5.7. The overall tracer response
at an observation point will be given by the sum of contributions from all the
streamlines in that family,

c(t) =
∫

c0 (t − τ(�)) d�/
∫

d�

= 1

Q

∫
c0 (t − τ(�)) d� , (5.64)
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(a) Streamlines
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Figure 5.9 Tracer response calculations in a heterogeneous quarter five-spot
pattern (a) streamlines (b) the time of flight function, τ(�) at the producer [From
Datta-Gupta and King (1995)]. Reprinted with permission. Copyright Elsevier
Limited.

where � identifies members of the family of streamlines. In general, the integration
will be over the two-dimensional surface that parameterizes the family of stream-
lines. Thus, d� will signify a surface area element of the form dψdχ specifying
the volumetric rate associated with the trajectory and ψ and χ are the bi-stream
coordinates (Datta-Gupta and King, 2007). The denominator Q in the expression
is the total fluid production at the well. Hence, Equation (5.64) will incorporate
concentration dilution effects.
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Figure 5.10 Tracer response for pulse injection in a heterogeneous quarter five-
spot pattern [From Datta-Gupta and King (1995)]. Reprinted with permission.
Copyright Elsevier Limited.

As an illustration, consider the injection of a passive tracer into a homogeneous
porous medium, with an injection well on the bottom left and an extraction well
at the top right (Figure 5.7). No flow is allowed across the edges of the grid,
a ‘no-flow’ boundary condition. This pattern constitutes the well known ‘quarter
five spot’ configuration that is often used in applications due to its simplicity. The
streamlines and the time of flight are shown in the top and bottom panels, respec-
tively. The time of flight distribution function, τ(�), associated with this quarter
five spot example, is plotted in Figure 5.8(a). For this homogeneous case, the central
streamline, which is the shortest path, arrives first and the travel time, or the time of
flight, increases monotonically towards the boundary streamlines that are progres-
sively longer. Furthermore, the flow velocity slows near the boundaries, leading
to a further increase in the travel time associated with the outermost streamlines.
Notice the ‘flatness’ of the τ(�) function with a single minimum in the middle
region in Figure 5.8(a). The near absence of curvature and lack of dip signifies the
arrival of a large number of streamlines in a relatively short time, resulting in a
sharp peak in concentration [Figure 5.8(b)] for a narrow injection pulse given by
Equation (5.63). Heterogeneity can be easily introduced into the tracer response
calculations through the τ(�) function which simply represents the arrival time
distribution for various streamlines. In general, and particularly in the presence of
high permeability contrasts, flow channels or barriers, the τ(�) function will be
non-monotonic, potentially with a number of peaks and valleys, leading to a tracer
response containing multiple arrivals for each local minimum (see Figures 5.9 and
5.10). In Box 5.2 we reach back into the section on the asymptotic approach to
explain why each minimum (valley) gives rise to a peak in the tracer concentration.
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This argument, based upon the method of stationary phase, is just one illustration
of the interplay between the asymptotic approach and streamline methods that
provides insight into the nature of tracer transport.

Box 5.2 The method of stationary phase and multiple arrivals

For simplicity, consider a tracer front propagating in two-dimensions, thus each
trajectory associated with the front is characterized by a single number �. For
example, � may represent the ‘take-off’ angle, the angle (direction) at which a
trajectory leaves the injection point, the initial angle at which the streamlines leave the
source in Figures 5.7(a) and 5.8(a). As indicated by Equation (5.64) an arbitrary
variation in concentration is synthesized by an integration over the trajectories. Our
starting point will be this integral in the frequency domain, using the
frequency-domain representation (5.41) of the asymptotic solution for the tracer
concentration in a non-dispersive porous medium:

C(x,ω) =
∫

C0(�,ω)eiωτ(�)d� .

To simplify the presentation we are setting the normalizing constant 1/Q, which has
no effect on our argument, to unity. In order to obtain a solution in the time-domain
we take the inverse Fourier transform of C(x,ω),

c(x, t) =
∫ ∞

−∞

∫
C0(�,ω) exp [iωτ(�) − iωt] d�dω

=
∫ ∞

−∞

∫
C0(�,ω) exp [−iωχ(�)] d�dω

where

χ(�) = t − τ(�).

Using a physical argument made by Lord Kelvin (Thomson, 1887), known as the
method of stationary phase, one can approximate the integral as a sum of arrivals from
a discrete set of trajectories. The idea is that for relatively large values of ω the
exponential term in the integrand is highly oscillatory. The superposition of such
waves in any given interval �� will destructively interfere except where there is a
concentration of waves with nearly the same phase. Such a concentration occurs when
χ(�) is stationary with respect to changes in � , that is where:

χ ′ = dχ

d�
= −dτ

−d�
= 0,

where the prime denotes a derivative with respect to �. We can denote such a
stationary point by �s. Thus, the main contributions to the integral over � will be
from all stationary points of τ , from all local minima of the time of flight curve.
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This approach, along with alternative techniques collectively known as saddle-point
methods (Dingle, 1973, p. 134), are helpful in evaluating integrals containing a
rapidly-varying exponential factor multiplied by a function. The basic idea is similar,
the exponential contribution decays rapidly away from critical points (extrema) in its
argument, localizing the contribution to the integral.

Exercise 5.8. This exercise illustrates continuous tracer injection in a quarter
five-spot pattern with one injector and one producer. The fluid properties are
chosen to emulate a unit mobility ratio, piston-like displacement along stream-
lines. Run ‘TRACE3D’ using the data files in the folder ‘Examples/Simulation/
Q5-Spot-Hom’ by creating a project in the same folder. Visualize the pressure
distribution, streamline trajectories, time of flight from the injector, and the oil-
water production history. The time of flight displays the tracer front propagation
and the fractional water production (water-cut) emulates the tracer concentration
history for a continuous injection. Repeat the exercise for the heterogeneous
example (in ‘Examples/Simulation/Q5-Spot-Het’) to examine the impact of
heterogeneity on the tracer concentration history.

Including dispersion in the streamline solution

So far we have neglected physical dispersion in our streamline calculations. Lon-
gitudinal dispersion can be accommodated easily along streamlines (Abbaszadeh
and Brigham, 1984). However, transverse dispersion across streamlines will require
special treatment. Typically, operator splitting methods have been used to account
for transverse mechanisms whereby different physical mechanisms are incorpo-
rated in sequence, some along the trajectories and some on the grid (Datta-Gupta
and King, 2007). That is one advantage of the asymptotic solution given in the
previous section, one can incorporate a general dispersion tensor directly into the
trajectory calculations themselves, resulting in the ray equations (5.17). Such an
approach offers additional insight into the factors controlling dispersion and the
physical path of the dispersing material.

5.4.4 Partitioning tracer

Partitioning chemical species, which partially dissolve into a hydrocarbon or non-
aqueous phase liquid (NAPL) form an important class of tracers for numerous
applications. This is a form of reactive tracer in which the injected chemical species
interacts with an in-situ fluid phase, a topic discussed in Section 2.5.2 of Chapter 2.
For example, in the presence of an organic phase a tracer travel time may increase
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due to dissolution or partitioning into the phase. The resulting tracer delay, ref-
erenced to a non-partitioning tracer, can be used to estimate the in-situ saturation
distribution of the phase. The tracer equations presented above can be easily gener-
alized to allow for partitioning, by redefining the tracer transit time as

τ =
∫

φ(Sa + KnSn)

|q| ds (5.65)

[see the related Equations (2.113) to (2.115) in Chapter 2]. The quantities Sa and
Sn in Equation (5.65) are aqueous and non-aqueous saturations, respectively. The
coefficient Kn is the partitioning or distribution coefficient, defined as the ratio of
the tracer concentration in the non-aqueous phase to that in the aqueous phase. For
a non-reactive tracer, Kn is unity and the equation reverts back to the time of flight
definition in Equation (5.43).

5.5 Applications

5.5.1 Flow visualization: trajectories, time of flight and tracer fronts

One attractive feature of trajectory-based methods is their intuitive appeal. This
makes such approaches particularly well-suited for visualizing the interaction
between subsurface heterogeneity and the flow field imposed by the injection/
extraction wells. The flow diagnostics generated from such quantitative visual-
ization can have a variety of applications in subsurface characterization, reservoir
management, process optimization, and field development strategies. In particular
for oil and gas applications, geologic models routinely consist of millions of
cells, making detailed flow simulation a computationally expensive task. The
simplified diagnostic plots discussed here can be generated relatively fast and can
provide valuable insights for comparing numerous geologic scenarios or multiple
reservoir development strategies. It is worth pointing out that during subsurface
flow modeling, we encounter many situations and decision points that do not call
for the full complexity of the underlying process physics. Under such conditions,
flow diagnostic plots can provide valuable insight, particularly when the transport
process is dominated by subsurface heterogeneity.

The trajectories provide a visual representation of the velocity field. These flow
paths are analogous to highways along which the fluids travel. The streamlines
tend to cluster in regions of high velocity (flux) and spread apart in regions of
low velocities, thus, automatically giving higher resolution in regions of faster
flow (Figure 5.11). The time of flight or the tracer travel time along streamlines
provides a quantitative aspect to the flow visualization, allowing us to ask ques-
tions like “Where is the injected fluid going from a specific injector?” This is
simply a depiction of the time of flight starting from the injector (Figure 5.12)
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(a) (b)

Figure 5.11 (a) Heterogeneous permeability field, displaying the well locations.
(b) The streamlines associated with the flow field. For the colour version, please
refer to the plate section.

(a) (b)

Figure 5.12 Streamline time of flight from the injector thresholded at two different
times displaying the reservoir swept volume, the volume encountered by the
injected fluid. For the colour version, please refer to the plate section.

and is commonly referred to as the ‘swept volume’. Swept volume calculations
are particularly useful for optimizing fluid injection strategies and the placement
of injection wells. Similarly, we can display the region contributing to the fluid
production for a given extraction well, otherwise known as the ‘drainage volume’.
This will be the time of flight computed by reversing the flow field and starting from
the producer (Figure 5.13). Visualization of the drainage volume can be useful in
optimizing fluid extraction strategies by the proper placement of the production
wells. By thresholding the time of flight, we can visualize the evolution of the
flood front. Understanding this evolution can have a variety of uses in dynamic
reservoir characterization. For example, the streamlines can also be used to partition
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(a) (b)

Figure 5.13 Streamline time of flight to the producer thresholded at two different
times displaying the reservoir volume drained by the producing wells, the drainage
volume. For the colour version, please refer to the plate section.

(a) Injector pore volume (b) Producer pore volume

Figure 5.14 Streamlines displaying the reservoir pore volumes associated with
(a) injectors and (b) producers. For the colour version, please refer to the plate
section.

the domain and identify the pore volumes associated with individual injectors and
producers (Figure 5.14). An important piece of information that naturally comes
out of streamlines is the communication between the wells (Figure 5.15). Such
information is not readily accessible from standard finite difference and finite ele-
ment simulation models. Because each streamline carries a known volume of fluid,
the knowledge of well communications also allows computing the well allocation
factors, that is, how the injected fluid is distributed among various producers. These
allocation factors are extremely useful for balancing fluid injection and production
rates in order to maintain reservoir pressure and improve the performance of fluid
injection/extraction strategies.
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Figure 5.15 Streamlines displaying communication between the wells and the
well allocation factor. For the colour version, please refer to the plate section.

Exercise 5.9. This exercise illustrates the practical application of the streamline-
based modeling using a 3D example with multiple injection and extraction wells
in a highly heterogeneous reservoir. Run ‘TRACE3D’ using the data files in
the folder ‘Examples/Simulation/3D-Multiwell-Het’ by creating a project in the
same folder. Visualize the pressure distribution, streamline trajectories, time of
flight from the injector (injector swept volume) and producer (producer drainage
volume), pore volumes associated with individual injectors and producers, well
communications and allocation factors.

5.5.2 Sensitivity computation

An added advantage of a trajectory-based approach is the efficient computation
of parameter sensitivities used for reservoir characterization and inverse modeling
(Vasco and Datta-Gupta, 1999; Datta-Gupta et al., 2002; Vasco and Finsterle,
2004). The goal of inverse modeling is to estimate subsurface properties such
as permeability, porosity, and fluid saturation distribution in the subsurface.
Model parameter sensitivities constitute an integral part of most inverse modeling
techniques that we discuss later. Sensitivities are partial derivatives that comprise
the coefficients in a linear relationship between a perturbation in a model parameter
and a perturbation in an observation. Several methods for computing sensitivities
are described in the literature. Among these techniques numerical perturbation
methods, sensitivity equation methods, and adjoint methods (Sun and Yeh, 1990;
Yeh, 1990) are the most prominent. The methods are limited by their computational
costs and the degree of algorithm complexity required for their implementation.
The streamline approach provides an extremely efficient means for comput-
ing parameter sensitivities using a single flow simulation. Sensitivities can be
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computed semi-analytically, requiring the evaluation of one-dimensional integrals
along streamlines. Thus, trajectory-based methods scale favorably with increasing
problem size, roughly as the growth in the number of cells intersected by a line
through the model. The semi-analytic expressions that appear in the sensitivities are
relatively simple in form and easy to implement in a computer code. This makes the
streamline approach, and trajectory-based methods in general, particularly effective
for high-resolution inverse modeling.

The trajectory-based formulation provides some additional flexibility in formu-
lating the inverse problem. This follows from the partitioning of the modeling into
two sub-problems: a travel time or time of flight calculation and an amplitude com-
putation. These two problems are particularly evident in the asymptotic approach.
The governing equation for the travel time is associated with the zeroth-order terms
of the asymptotic expansion, while the transport equation (5.20) for the amplitude
results when first-order terms are considered. Sensitivities for the arrival time are
typically much simpler to compute than are amplitude sensitivities. For example,
the first arrival time is determined by the travel time associated with the path that has
the smallest travel time, while the amplitude is typically controlled by the family of
trajectories with similar arrival times, sometimes leading to non-local calculations.

In deriving the trajectory-based sensitivities, and to exploit an analogy with seis-
mic rays, we will rewrite the travel time (5.43) in terms of slowness, the reciprocal
of speed [see Equation (5.45)], as is commonly done in seismology (Nolet, 1987).
For tracer, the definition of the slowness is

s(x) = φ(x)
|q(x)| = φ(x)μ

k(x)|∇p(x)| , (5.66)

with φ denoting the porosity, μ the fluid viscosity, k the permeability , and p the
pressure. In Equation (5.66), we have used Darcy’s law, given at the beginning
of the chapter. The travel time along the trajectory, as in Equation (5.43), can be
written as

τ(�) =
∫
�

s(x)dx, (5.67)

where � identifies the trajectory and may represent the two bi-stream coordinates
(ψ ,χ) or the two take-off angles. The integral is along the trajectory or streamline
x(r)where r is the position along the trajectory. The concentration at an observation
point is given by Equation (5.64), an integration over all streamlines connecting this
point with the injection:

c(t) = 1

Q

∫
c0 [t − τ(�)] d� . (5.68)
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Consider a small perturbation in a subsurface property, for example, permeability or
porosity. The perturbation will induce changes in the observed tracer concentration

c(t) = co(t)+ δc(t), (5.69)

where co refers to the concentration associated with an initial model. Due to the
linearity of the sensitivities and the linearity of the integration over the streamlines,
we can compute the effect of a perturbation on a single streamline and then integrate
over all the streamlines to get the total perturbation. Thus, for a single streamline
indexed by � , we simply have to consider the effect of a perturbation in reservoir
properties on the integrand of (5.68). For a fixed trajectory the perturbation follows
from an application of a Taylor’s series expansion and the chain rule,

δc�(t) = −ċ0
[
t − τ o(�)

]
δτ(�), (5.70)

where τ o(�) is the time of flight in the background model. In Equation (5.70),
ċ0 is the time derivative of the injection history, acting as a weighting term. From
Equation (5.70) we would expect that those portions of the injection history with
the steepest slope would have the greatest influence. This makes physical sense
because Equation (5.70) relates a perturbation in the travel time to a perturbation in
the size of the concentration. A time shift will have the most significant effect on
the amplitude precisely in those regions where the slope of the concentration curve
is greatest.

The next order of business is to relate the perturbation in the travel time, δτ(�) in
Equation (5.70), to the perturbations in reservoir flow properties. In order to do this
we need the integral relationship (5.67) where the integrand s(x), the slowness, is
given by Equation (5.66). However, before attacking this problem we must address
what might seem like a subtle point. In perturbing the flow properties, such as
porosity and permeability, we will change the flow field and therefore the trajec-
tories. Thus, the path of integration � in the expression (5.67) will also change
and this perturbation should be accounted for. This issue has been examined in
other fields, such as electromagnetic and elastic wave propagation, and the effect
has been shown to be second order in the model perturbations (Nolet, 1987). We
can also provide a plausibility argument, based upon the fact that the perturbation
is small in magnitude and is over a single grid block. Thus, for a single small grid
block, a perturbation will likely induce a small lateral shift in the trajectory. This
lateral shift will change the length of the trajectory by a very small amount. The
small change in length is unlikely to have much effect on the total travel time and
we can use the path in the unperturbed medium. Having addressed this issue, we
now perturb the integral relationship (5.67) to arrive at

δτ(�) =
∫
�o

δs(x)dx, (5.71)
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where �o is the trajectory in the unperturbed model. Because the slowness s(x) is
given by the expression (5.66), its variation with respect to perturbations in the flow
properties φ and k can be written as

δs(x) = ∂s(x)
∂k

δk(x)+ ∂s(x)
∂φ

δφ(x) (5.72)

if we neglect the implicit dependence of p(x) upon φ and k. Arguments for neglect-
ing the implicit dependence of the steady-state pressure field p(x) upon flow prop-
erties are similar to those for ignoring the perturbation of the ray path. Because the
steady-state pressure is governed by an elliptic equation and is strongly controlled
by the large-scale permeability distribution and boundary conditions, a small per-
turbation in permeability over a small grid block is unlikely to change the pressure
field significantly. We can compute the partial derivatives using the analytic form
(5.66) for s(x)

∂s(x)
∂k

= − φ(x)μ
k2(x)|∇p| = − s(x)

k(x)
,

∂s(x)
∂φ

= μ

k(x)|∇p| = s(x)
φ(x)

.
(5.73)

These partial derivatives provide semi-analytic expressions for the model parameter
sensitivities. Note that these sensitivities, and Equation (5.71) can also be used to
relate perturbations in flow properties to deviations in tracer breakthrough times.
The final task is to sum up the contributions from all the trajectories connecting the
source and the observation point. Thus, we must evaluate the integral

δc(t) = − 1

Q

∫
ċ0
[
t − τ o(�)

]
δτ(�)d� (5.74)

where the range of integration spans all relevant trajectories.
It is important to note that the sensitivity computations involve quantities that

are readily available along the trajectories. Furthermore, the expressions are given
by line integrals along the trajectories, requiring little additional computation.
Figure 5.16 shows the concentration sensitivity to perturbations in porosity and
permeability, computed using the semi-analytic, trajectory-based approach. The
well configuration consists of a source in the top left corner and an observation
point in bottom right corner. For comparison, on the right we have plotted the
results of a numerical perturbation approach, whereby each parameter is perturbed
in succession and the calculated concentration is recomputed using a distinct
forward simulation. Thus, for N parameters the numerical perturbation approach
takes N + 1 forward runs. The overall agreement between the numerical and
trajectory-based sensitivities demonstrates the general validity of the semi-analytic
approach.
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(a) Tracer sensitivity with respect to permeability

(b) Tracer sensitivity with respect to porosity

Figure 5.16 A comparison of sensitivities computed using a trajectory-based
semi-analytic approach (left panels) and a numerical perturbation–based approach
(Right panels) [from Vasco and Datta-Gupta (1999) and Datta-Gupta et al. (2002)].
Reprinted with permission. Copyright AGU.

5.5.3 Estimation of subsurface properties: tracer tomography

In this section we discuss the estimation of subsurface properties from experiments
involving tracers. The properties of interest are three-dimensional distributions of
permeability, porosity and, in case of a partitioning tracer, the saturation distribution
of an in-situ fluid phase. In most cases, we are faced with an inverse problem in
which remote observations are used to infer the internal properties of an object
(Menke, 1989; Parker, 1994; Aster et al., 2013). As noted above, a trajectory-
based approach is a particularly efficient means for formulating and solving many
inverse problems. There are at least two attractive features to recommend it. First,
as is evident from the section on the asymptotic approach, the forward problem
of calculating the tracer concentration at an observation point partitions into two
sub-problems: a travel time computation and the computation of the amplitude.
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This partitioning provides additional flexibility in treating the inverse problem.
Thus, one can first match tracer arrival or breakthrough times to produce initial
estimates of flow properties. The advantage is the quasi-linearity of travel time
tomography, leading to better convergence properties. Second, a trajectory-based
approach provides semi-analytic expressions for sensitivities, simply requiring one
set of forward runs for every model update.

Formulation: tracer travel times

As an illustration, consider an inverse problem based upon the use of tracer travel
times, governed by Equation (5.67). Given a set of observed travel times Tobs

and an initial estimate of the flow properties of the porous medium, we can use
Equations (5.66) and (5.67) to calculate the expected travel times Tcal. One can
relate the residual δτr = Tobs − Tcal to a model perturbation using Equations (5.71),
(5.72), and (5.73)

δτr = −
∫
�o

∂s(x)
∂k

δk(x)dx −
∫
�o

∂s(x)
∂φ

δφ(x)dx

=
∫
�o

so
δk

k
dx −

∫
�o

so
δφ

φ
dx (5.75)

=
∫
�o

so

(
δk

k
+ δφ

φ

)
dx.

where so(x) is the slowness (5.66), calculated using the properties of the initial or
background porous medium. From Equation (5.75) we conclude that one can only
resolve an effective permeability, given by the linear combination

δke

ko
= δk

ko
− δφ

φ
(5.76)

from an inversion based solely upon tracer arrival times. There are a number of
ways to deal with this limitation. One could augment the travel times with other
observations to try and resolve the trade-off. One can reformulate the problem in
terms of a better resolved variable such as the ratio k/φ. Or one can simply solve
for effective permeability and interpret the results. Often, the relative variations in
permeability are much larger than relative porosity variations. Also, the spatial vari-
ations in porosity can be better characterized using well and seismic data compared
to permeability. Thus, the effective permeability might reflect the relative changes
in permeability, particularly if we restrict the changes in porosity.

Models of porous media are usually defined over a network or a grid of cells.
The grid may be structured, such as a finite difference grid, or an unstructured
mesh, but it will be described by a finite set of discrete elements. Most commonly,
each element has a constant set of properties such as porosity and permeability.
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In that case, due to the linearity of integration, Equation (5.75) can be decomposed
into a sum of integrations along segments of trajectories intersecting each grid
element. Figure 1.7 in Chapter 1 gives an intuitive presentation of one simple
discretization. If we denote the collection of elements or grid blocks intersected
by the i-th trajectory by Ei, then the integral expression (5.75) may be rewritten as
the sum (neglecting porosity variations)

δτi =
∑
j∈Ei

lijs̄j
δkj

k̄j
(5.77)

where lij is the length of the segment of the i-th trajectory intersecting the j-th
element. The overbars in s̄i and k̄j indicate that the quantities are taken from the
background model. With just a single breakthrough time, we would be rather lim-
ited in our ability to image flow properties. Fortunately there are instruments such
as multi-level samplers, that provide much denser spatial sampling (Figure 1.10). In
addition, there are multi-chemical tracer systems in which each well segment can
be identified with a particular chemical signature. Coupled with horizontal wells,
such a system can be used to identify flow patterns within a reservoir.

One can also couple tracer experiments with laboratory and geophysical imaging
in order to monitor tracer migration in three dimensions. With automated systems,
such as the multi-level continuous active source seismic monitoring (ML-CASSM)
system it is possible to monitor the tracer migration with dense sampling in both
time and space (Daley et al., 2011; Ajo-Franklin et al., 2012). We will examine
one particular example, x-ray imaging of tracer migration through a core sample,
in some detail (Figure 5.17). This experiment illustrates the advantages of the
partitioning of the inverse problem into a phase or travel time matching component
and an amplitude matching problem.

One of the issues associated with the use of time-lapse laboratory or geophysical
imaging data is that it can be difficult to relate the magnitudes of changes in the
observations to the state of the porous medium, for example to relate time-lapse
seismic amplitude changes to changes in saturation and pressure. An alternative
approach, that may be used when there are a sufficient number of time-lapse snap-
shots, avoids using the magnitudes of changes directly. Rather, the methodology
makes use of the onset time of a change in an observation (Press et al., 1992; Vasco
et al., 2014, 2015). The onset time is the time at which the measured quantity starts
to deviate from its background or initial value. For example, in the volume elements
(voxels) of the core cross-section plotted in Figure 5.17 the onset time is associated
with time at which the attenuation changes from its initial value. There are a number
of ways to define an onset time. For example, when the changes in attenuation
exceed some threshold value, such as 5 percent of the peak value, or when the atten-
uation changes most rapidly. Because this time is sensitive to the arrival of the saline
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Figure 5.17 Tomographic x-ray attenuation data from the injection of a saline
tracer into a sandstone core. For the colour version, please refer to the plate section.

tracer, and insensitive to coupling parameters that must be known when amplitudes
are used, the onset time may be used as a measure of the tracer arrival time, Tobs,
at each voxel. Onset time estimates are increasingly accurate with improved tem-
poral sampling. However, as shown in Vasco et al. (2015), one can estimate large-
scale variations in flow properties using surveys that are widely spaced in time. In
Figure 5.17 the x-ray images are an hour apart but newer systems allow for much
denser time sampling. In Figure 5.18 we plot the onset times extracted from the
laboratory x-ray attenuation data.

Given a collection of x-ray onset or tracer arrival times, and the associated
constraints of the form (5.77), we can define a system of equations constraining
updates to a given permeability model

δτ = Mδκ , (5.78)

where δτ is a vector of N travel time residuals and δκ is the vector of J unknown
model parameter perturbations. The elements of the matrix are the combination of
the parameters given in Equation (5.77), that is

Mij = lijs̄j

k̄j
.

The inverse problem is nonlinear because the trajectories depend upon the flow
properties. Each time the model is updated the trajectories change and must be
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Figure 5.18 Onset time of the changes in x-ray attenuation from the background
value.

Figure 5.19 Trajectories associated with the final model update.

recomputed for the current porous medium. For example, in Figure 5.19 we plot
the trajectories corresponding to the final update (50th iteration) of the effective
permeability (Figure 5.20).

Because the model is an approximation of the actual porous medium and due
to experimental limitations, we expect model and observational errors. Such errors
preclude an exact solution to the system (5.78). In the face of such uncertainty we
follow Gauss’s lead and attempt to solve the system in a least-squares sense. That
is, we seek to minimize the sum of the squares of the residuals

μ2
d = (δτ − Mδκ)t · (δτ − Mδκ) . (5.79)
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Figure 5.20 Final effective permeability model.

However, we are faced with an additional consideration because real-world appli-
cations very often involve a large number of unknown parameters and a limited
number of measurements. Typically, there are many more unknowns than con-
straints, and the inverse problem tends to be ill-posed, leading to non-uniqueness
and instability in the least-squares estimates (Parker, 1994). One remedy is to add
penalty terms to the sum of the square of the residuals (5.79) and then minimize the
total, a process known as regularization (Menke, 1989; Parker, 1994; Aster et al.,
2013). Two common penalty functions are quadratic forms associated with the size
and the roughness of the model updates. The norm penalty, given by

μ2
n = δκ t · δκ , (5.80)

ensures that the model perturbation is not large and the updated model does not
stray too far from our current model. This makes intuitive sense, given that we are
taking an iterative approach involving a local linearization. Too large a step might
violate the conditions of the linearization. The roughness penalty

μ2
r = (Lδκ)t · (Lδκ) , (5.81)

accounts for the fact that each travel time datum is an integrated response over an
entire trajectory and is incapable of resolving fine-scale features of the model. The
multiplier L is a differencing matrix that provides a finite difference approximation
to the spatial curvature of the model. For example, the j-th term of the vector Lδκ
might be given by

(Lδκ)j = 6δκj − δκj+1 − δκj−1 − δκj+n − δκj−n

−δκj+m − δκj−m (5.82)
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where n and m are the offsets in the indices that are necessary to recover the
elements adjacent to the j-th cell in the y and z directions, respectively. Rather
than simply minimizing the data misfit μ2

d, we now find the model update δκ that
minimizes the augmented misfit function

μ2 = μ2
d + wnμ

2
n + wrμ

2
r , (5.83)

where wn and wr are weighting coefficients that determine the importance of hon-
oring the regularization relative to fitting the data. A necessary condition for a
minimum ofμ2 is the vanishing of its gradient with respect to the model parameters:

∇κμ
2 = −Mtδτ + [MtM + wnI + wrLtL

]
δκ = 0 (5.84)

or [
MtM + wnI + wrLtL

]
δκ = Mtδτ . (5.85)

These are the normal equations, first encountered in Chapter 4. The solution of the
regularized inverse problem, our model update δκ , is obtained by solving the system
(5.85). At this point it is worth making a few observations regarding the nature of
these equations. First, given the advancement of technology and the continuing
integration of remote imaging techniques with fluid flow modeling and inversion,
it is possible that the system (5.85) could be rather large. Second, each of the
matrices in Equation (5.85), M, I, and L, is sparse. This is evident from Figure 5.19
because the non-zero elements of each row of the matrix are associated with the
cells intersected by one particular trajectory. And a single trajectory only samples
a small percentage of the total number of cells in the model. Thus, only a small
percentage of the elements of each matrix are non-zero. Note that the same cannot
be said about the matrix in the square brackets in Equation (5.85) because the matrix
products, such as MtM, are not necessarily sparse. These observations suggest tak-
ing advantage of sparse matrix methods in which we only store and manipulate the
non-zero elements of the coefficient matrices (Saad, 2003). One particularly useful
scheme for solving large, sparse, linear systems, the LSQR algorithm of Paige
and Saunders (1982), was widely adopted for geophysical imaging. Approaches
such as these have led to the efficiencies that are associated with tomographic
imaging and which have proven to be so helpful in large-scale imaging problems
(Nolet, 1987). Note that these sparse matrix techniques are also applicable to more
sophisticated approaches for solving the nonlinear inverse problem, methods such
as the conjugate gradient algorithm and limited-memory quasi-Newton methods.
However, we limit ourselves to discussing the iterative updating scheme, we do not
have space for even a cursory review of these other methods. Fortunately, there are
several excellent texts that provide useful introductions to these valuable techniques
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(Gill et al., 1982; Press et al., 1992; Fletcher, 2000; Nocedal and Wright, 2006).
As a final note, we point out that we can use Equation (5.85) to derive a formal
expression for our estimated model update

δκ̂ = [MtM + wnI + wrLtL
]−1

Mtδτ

= G†δτ , (5.86)

where

G† = [MtM + wnI + wrLtL
]−1

Mt (5.87)

is known as the generalized inverse. This quantity is primarily useful for deriva-
tions and algorithm development. We are unlikely to ever try and form the general-
ized inverse explicitly, nor to even construct the matrix inside its square brackets, a
potentially large, dense, and unwieldy array.

Assessing the estimates: model parameter covariance and resolution matrices

In solving Equation (5.85), perhaps using the LSQR algorithm (Paige and Saunders,
1982), we can obtain an estimate of our model update. But, we have already noted
that the parameters are typically poorly constrained and that the data may not
resolve anything but the large-scale spatial variations in properties. Even if we have
dense spatial sampling, as provided by the array of multi-level samplers plotted
in Figure 1.10 in Chapter 1, we may still have poor spatial resolution, due to
the spatial averaging that is an inherent property of tracer data. For example, in
a uniform flow field the trajectories can average over significant distances in par-
ticular directions (Figure 1.10). Also, our solution depends upon the regularization
weighting parameters wn and wr. How does the solution change as these parameters
are varied? What can we use to guide our choice of these weights? Because of
these limitations, an important part of the solution of an inverse problem involves
assessing the uncertainty and resolution associated with a particular estimate.

The uncertainty associated with the model parameter estimates is perhaps the
easiest issue to deal with because it is almost always a part of any exercise in
parameter estimation. Thus, we have a long history to draw from and help may be
found in many quarters (Tarantola, 1987; Menke, 1989; Parker, 1994; Aster et al.,
2013). The most important factors in calculating the model parameter uncertainties
will be the nature of the errors contained in the data and the fact that, at least for
a given model perturbation, the estimate is a linear function of the observations.
The linear dependence of the estimate upon the data is clear from Equation (5.85).
The nature of the errors contained within the data is less clear-cut. In order that
this discussion not take us far-a-field we are going to assume that the errors follow
a Gaussian distribution. This assumption is also compatible with our decision to
use a least-squares approach, as it provides a maximum-likelihood estimate for
the model parameters in the presence of Gaussian errors (Menke, 1989). Such
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Figure 5.21 Model parameter standard errors obtained from the model parameter
covariance matrix.

errors can be characterized by a data covariance matrix, denoted by Cdd. If the data
errors are Gaussian, characterized by a data covariance matrix, and the relationship
between the model parameter estimates and the data is linear, then the posteriori
model parameter covariance matrix associated with the model parameters, Cmm,
is given by

Cmm = G†Cdd(G†)t (5.88)

(Tarantola, 1987). There may be some issues associated with computing Cmm as it
requires computing the generalized inverse. It may be advantageous to compute the
model parameter covariance matrix using a singular value decomposition (Menke,
1989). In Figure 5.21 we plot the model parameter standard errors, the square root
of the model parameter variances (diagonal elements of the covariance matrix).
Because the temporal sampling of the snapshots, plotted in Figure 5.17, is one hour,
we assume that the uncertainty of the arrival times is 30 minutes. This results in
a rather large model parameter uncertainty associated with the model parameter
estimates plotted in Figure 5.20.

The question of model parameter resolution is not commonly dealt with in fields
outside of geophysics. That is unfortunate because model parameter resolution
allows one to judge the quality of the estimates in a manner that is not so dependent
upon the assumed data errors. In order to derive the resolution matrix one assumes
that there is an actual or true distribution of properties, the resolution matrix relates
this true model to the estimated model parameters. If no errors are present, the
relationship between the true model δκ and the error-free data is expressed by
Equation (5.78). Substituting this expression for δτ in Equation (5.86) results in

ˆδκ = G†Mδκ , (5.89)
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which relates the true model, if there were such a model, to our estimates of the
model parameters. Therefore, the resolution matrix is given by

R = G†M (5.90)

and

δ̂κ = Rδκ . (5.91)

The resolution matrix R may be interpreted as a linear filter through which we view
the actual spatial distribution of flow properties. The rows of the resolution matrix
are averaging coefficients indicating the contribution of various other parameters
to our estimate of a property in a given cell. In Figure 5.22 we plot elements from
two rows of the resolution matrix. The fact that few other cells contribute to the

Figure 5.22 Two rows of the model parameter resolution matrix. The elements of
each row are averaging kernels indicating the contribution of each parameter in
the model to an estimate of the value in the cell marked by the unfilled star.
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Figure 5.23 Estimated of model parameter resolution provided by the diagonal
elements of the resolution matrix.

estimate indicates that it is fairly well resolved spatially. Thus, even though the
trajectories are all sub-parallel to the length of the core, the temporal sampling pro-
vides resolution along each trajectory. In an ideal case the resolution matrix would
be an identity matrix and we would resolve the properties of each cell perfectly,
with no tradeoff between adjacent estimates nor with other classes of parameters.
An estimate of the resolution of a model parameter is provided by the diagonal
elements of the resolution matrix. If the diagonal value is close to 1 then the model
parameter is well resolved but if it is near 0 then the parameter is poorly resolved.
In Figure 5.23 we plot the diagonal elements of the resolution matrix associated
with our x-ray imaging experiment. From this figure one can see that most of the
model parameters are well resolved. The poorly resolved cells are located near the
top and bottom of the core where there are few or no trajectories. One advantage
of the resolution matrix is that it is independent of the data uncertainty and only
depends on our sensitivities and the geometry of our experiment. The concept of
model parameter resolution is particularly important for inverse modeling based
upon a sparse distribution of data from widely spaced observation points.

There is a trade-off between model parameter resolution and model parameter
covariance. That is, if one tries to improve the model parameter resolution, for
example by reducing the model roughness wr in the inversion, this will tend to
increase the model parameter covariance. Thus, one can use this trade-off to deter-
mine those values of the weighting wr that balance the desire to have reasonable
error estimates against the goal of well or moderately resolved parameters. This
balancing argument has been formalized into the idea of a trade-off curve, in which
reasonable values of model parameter uncertainty and model parameter resolution
are sought (Menke, 1989; Aster et al., 2013).
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In closing, we must point out that there is an alternative probabilistic formulation
of the inverse problem based on the well-known Bayes theorem which provides
a convenient framework for combining the data and prior information (Tarantola,
1987). The Bayesian approach updates our prior knowledge of the parameter dis-
tribution by integrating data to derive a posterior distribution which represents
solution to the inverse problem. Advanced sampling techniques such as Markov
Chain Monte Carlo (MCMC) methods can be used to sample from the posterior
distribution and to quantify the uncertainty in the parameter estimates. Some of the
advantages of the trajectory-based methods in terms of fast forward modeling and
sensitivity computations will also apply to Bayesian inversion and sampling (Ma et
al., 2008). A huge body of literature exists on Bayesian inverse modeling and its
link with the more deterministic framework discussed earlier. The reader is referred
to the book by Tarantola (1987) for further information.

5.6 Summary and conclusions

An asymptotic formulation of a solution to the equation governing advection and
transport leads to a trajectory-based approach. In the limit of no dispersion, the
trajectory-based technique reduces to the streamline formulation for transport mod-
eling. These methods provide insight and efficiency in both forward and inverse
modeling. In particular, the techniques provide a foundation for tracer tomography
and efficient imaging of flow properties.



6

Immiscible fluid flow

6.1 Introduction

In the Chapter 5 we considered the case in which transported material did not
influence the fluid flow. Now we consider the situation in which at least two distinct
fluids are present in the porous medium and the presence or absence of one of
the fluids will have a significant impact on the flow of the other. In Chapter 2 we
discussed the governing equations for the flow of such immiscible fluids, so we
will limit our remarks to the key features of such flow. One restriction maintained
in this chapter is that the mass transfer between fluid phases is negligible. Such a
restriction is not necessary for the adoption of trajectory-based methods, but simply
serves to limit the complexity of our treatment.

6.2 Governing equations for two-phase flow

A classic example of the type of immiscible fluid flow that we have in mind is the
movement of oil and water within a porous material. In fact, this example illustrates
some of the most important characteristics of multiphase fluid flow within a solid
containing connected pore space. For example, it is often the case that the molecules
of one fluid will have an affinity for the molecules of the solid matrix. This fluid
tends to adhere to the solid surface of the pores, or to wet the solid. We will denote
the saturation of this ‘wetting’ phase by Sw. The other fluid, simply referred to as
the ‘non-wetting’ phase, has less attraction for the solid and tends to occupy the
central regions of the pores. The saturation of the non-wetting phase is denoted
by Sn. Since the pore volume of the medium is completely occupied by some
combination of the two fluids, the saturations must sum to unity

Sw + Sn = 1. (6.1)

The differential affinity for the solid has another consequence, leading to surface
tension and curvature in the boundary separating the two fluids. The result is greater

220
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pressure in the non-wetting fluid relative to the pressure in the wetting fluid. This
pressure difference is termed the capillary pressure, pc, and is most frequently
assumed to be a unique function of the fluid saturation:

pn − pw = pc(Sw). (6.2)

The capillary pressure curve pc(Sw) is an important aspect of multiphase fluid flow
and a key constitutive equation. However, the difference in capillary pressure is
often much smaller than the average fluid pressure. As pointed out by Peaceman
(1977), and shown below, this fact can be used to derive a governing equation for
the average fluid pressure.

As noted in Chapter 2, the governing equations for multiphase flow are rooted in
the conservation of mass for the l-th fluid phase, as expressed by the equation,

∂ (ϕρlSl)

∂t
+ ∇ · (ρlql) = Ql, (6.3)

where l denotes either w or n, ϕ is the porosity, ρl is the density of the l-th fluid.
The source term on the right-hand-side, Ql(x, t), represents either the injection or
withdrawal of the l-th fluid at one or more locations. The vector ql is the superficial
flow velocity, given by the multiphase extension of Darcy’s law, Equation (2.128)
in Chapter 2, attributing the fluid flow velocity to two forces: the fluid pressure
gradient and the gravitational attraction g acting in the direction of the vector z. For
the wetting phase Darcy’s law takes the particular form

qw = −λw (∇pw − ρwgz) (6.4)

where qw is the velocity of the wetting phase, and we have defined the phase
mobility of the wetting fluid

λw = krl(Sw)k

μw
(6.5)

k being the absolute permeability, krw(Sw) is the relative permeability function, an
additional constitutive equation. One can think of the relative permeability function
as a reduction factor in the permeability due to the presence and interference of the
other fluid. That is, if the medium was fully saturated by the wetting phase, krw(Sw)

equals 1 and the product krw(Sw)k equals the absolute permeability k. For Sw less
than 1 the function krw(Sw) becomes successively smaller, approaching zero as Sw

approaches small values. The final constitutive equation relates the density of the
fluid phases to the fluid pressure, ρl(pl) and is related to the compressibilities of the
fluids. In fact, we can formally define the fluid compressibilities as

cl(pl) = 1

ρl

dρl

dpl
. (6.6)
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The expression (6.3) represents a system of two equations in the two unknown
fluid saturations Sw and Sn. The equations are linked by the fact that the saturations
sum to unity, as expressed by (6.1). While we can combine the set of equations
with appropriate constitutive equations to construct a solvable system, there is some
advantage and additional physical insight if we reformulate them. In particular,
we can derive a pressure equation and a saturation equation. This is advantageous
because of the very different nature of the pressure variation in comparison to the
saturation variation. For example, the saturation changes propagate with the same
velocity, coupled by the constraint (6.1), while the pressure changes can propagate
at a substantially different velocity (Vasco, 2011). This fact has implications for
the modeling of multiphase flow, allowing for the time separation that is used to
ones advantage in streamline modeling, as described later in this chapter. Thus, the
saturation equation can be solved over long time intervals, during which the average
fluid pressure is largely constant

6.2.1 A pressure equation

The pressure differential equation is obtained from the Equations (6.3) by eliminat-
ing the time derivatives of the saturation. If we expand the time derivative in each
of these equations we have

ρlSl
∂ϕ

∂t
+ ϕSl

dρl

dpl

∂pl

∂t
+ ϕρl

∂Sl

∂t
+ ∇ · (ρlql) = Ql. (6.7)

Dividing each equation by the appropriate density ρl, adding them together, and
noting that Sw + Sn = 1, a constant, we obtain a single equation

∂ϕ

∂t
+ ϕSwcw

∂pw

∂t
+ ϕSncn

∂pn

∂t
+ 1

ρw
∇ · (ρwqw)+ 1

ρn
∇ · (ρnqn) = Q̂t, (6.8)

where we have used the definition (6.6) and defined the weighted source term
representing the total flow rate

Q̂t = Qw

ρw
+ Qn

ρn
, (6.9)

in terms of injected volume rather than mass. If the rock and fluids are incompress-
ible then the compressibilities are zero and any spatial or temporal derivatives of
the densities vanish as well. Therefore, Equation (6.8) takes a particularly simple
form:

∇ · qt = Q̂t (6.10)
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where

qt = qw + qn (6.11)

is the total velocity
Incompressible fluids are something of an idealization, and the effect of com-

pressibility typically must be taken into account in any realistic model of fluid
flow. However, it is usually the case that the capillary pressure is very small in
comparison to the average fluid pressure given by

p̄ = pw + pn

2
. (6.12)

In the box below we rewrite the pressure Equation (6.8) in terms of the average
and capillary pressures. Note that, because the capillary pressure is considered to
be a function of the saturation [see Equation (6.2)], the final equation in Box 6.1 is
really an equation in terms of the average fluid pressure and the saturation. Often
the capillary pressure terms are negligible in comparison to the average pressure
terms (Peaceman, 1977, p. 18) and the final pressure equation in Box 6.1 reduces
to an equation for p̄,

ϕc̄
∂ p̄

∂t
− 1

ρw
∇ · [ρwλw∇p̄] − 1

ρn
∇ · [ρnλn∇p̄] = ˆ̄Q. (6.13)

where the coefficient of the time derivative is

c̄ = 1

ϕ

dϕ

dp̄
+ Swcw + Sncn, (6.14)

and the modified source term

ˆ̄Q = Q̂t − 1

ρw
∇ · (ρ2

wλwgz
)− 1

ρn
∇ · (ρ2

nλngz
)

(6.15)

contains the effects of gravitational forces as well as those due to injection and
withdrawal.

Box 6.1 The pressure equation in terms of the average
and capillary pressures

In this box we rewrite the pressure Equation (6.8) in terms of the average p̄ and
capillary pc pressures. First, the wetting and non-wetting fluid phase pressures are
written as

pw = p̄ − 1

2
pc
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and

pn = p̄ + 1

2
pc.

These expansions are then substituted into Equation (6.8), taking into account the
generalized Darcy’s law, given by the expression (6.4) for the wetting phase. The
resulting equation is

∂ϕ

∂ t
+ ϕSwcw

∂ p̄

∂ t
− 1

2
ϕSwcw

∂pc

∂ t
+ ϕSncn

∂p̄

∂t
+ 1

2
ϕSncn

∂pc

∂t

− 1

ρw
∇ ·
[
ρwλw

(
∇p̄ − 1

2
∇pc − ρwgz

)]

− 1

ρn
∇ ·
[
ρnλn

(
∇p̄ + 1

2
∇pc − ρngz

)]
= Q̂t.

We can recast this as an equation in p̄ and pc, with coefficients that depend upon the
saturations and other parameters if we rewrite the time derivative of porosity, ϕ, in
terms of the time derivative of the average fluid pressure. That is, we assume that the
porosity is a function of the average fluid pressure, ϕ(p̄), so that the first time
derivative in the equation above may be written as

∂ϕ

∂ t
= dϕ

dp̄

∂p̄

∂t
.

Now we can regroup terms, collecting the coefficients of each time derivative.
Furthermore we can move all the gravitational terms to the right-hand-side, and define
a modified source term that includes these gravitational effects. Thus, the source term
will now act over all regions of the model due to the pervasive nature of the
gravitational force. The resulting pressure equation is

ϕc̄
∂ p̄

∂t
+ϕcc

∂pc

∂ t
− 1

ρw
∇·
[
ρwλw

(
∇p̄ − 1

2
∇pc

)]
− 1

ρn
∇·
[
ρnλn

(
∇p̄ + 1

2
∇pc

)]
= ˆ̄Q,

where we have defined the coefficients

c̄ = 1

ϕ

dϕ

dp̄
+ Swcw + Sncn,

cc = Sncn − Swcw

2
,

and the modified source term

ˆ̄Q = Q̂t − 1

ρw
∇ ·
(
ρ2

wλwgz
)

− 1

ρn
∇ ·
(
ρ2

nλngz
)

.
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The coupling to saturation changes occur in several locations in Equation (6.13)
and the equation is non-linear because the densities are functions of pressure. For
incompressible fluids the coefficients cw and cn vanish, and the densities on the left-
hand-side drop out. In that case, the coupling to saturation is primarily through the
saturation-dependence of the total phase mobility, λt = λw + λn, and the source
term Q̄. Furthermore, the equation is nearly linear in the average pressure.

6.2.2 A saturation equation

We still need to model the evolution of the fluid saturation. In many ways, this is
our ultimate goal and the fluid pressure is just an intermediate step in that direc-
tion. Furthermore, even if capillary pressure effects are negligible and we can use
Equation (6.13) to calculate the average pressure, the coefficients still depend upon
the saturation, the coupling is still present. Therefore, we shall need one additional
equation in order to specify the physical system completely, and to determine the
pressure and saturation. Starting from one of the conservation Equations (6.3), we
can derive the necessary equation for the saturation of one of the fluid phases. The
other saturation may be determined from the constraint (6.1). For the sake of illus-
tration, we will consider the wetting phase saturation Sw and begin with the equation

∂ (ϕρwSw)

∂t
+ ∇ · (ρwqw) = Qw. (6.16)

Let us see what we can do to rewrite Equation (6.16) in terms of the total fluid
velocity, qt, and Sw. So we will need to express qw in terms of these quantities.
Taking the gradient of Equation (6.2), defining capillary pressure, gives

∇pc = ∇pn − ∇pw. (6.17)

Using Equation (6.4) and its non-wetting counterpart, we can write ∇pc in terms of
the fluid velocities:

∇pc = qw

λw
− qn

λn
+ (ρn − ρw) gz. (6.18)

Using Equation (6.11) to write qn in terms of the total velocity and the velocity of
the wetting phase, and the fact that pc(Sw) is actually a function of the saturation
of the wetting phase, we can rewrite and rearrange Equation (6.18) to provide an
expression for qw, we have

qw = fwqt + λnfw (ρn − ρw) gz − hw∇Sw, (6.19)

after multiplying by λwλn/(λw + λn). In Equation (6.19) fw(Sw) is the fractional
flow curve, or the flux function,

fw(Sw) = λw

λw + λn
(6.20)
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(a) (b)

Figure 6.1 Example of relative permeability (a) for two-phase oil-water
displacement (b) and water fractional flow.

that depends upon the relative permeabilities and the viscosities of the fluids. Inter-
estingly, the fractional flow fw does not depend upon the absolute permeability
because k divides out when the ratio is formed. The fractional flow curve is an
extremely important characteristic of a porous medium and the two fluids that it
contains.A typical example of relative permeability and fractional flow curves for a
two-phase oil-water system is shown in Figure 6.1. The function hw(Sw) accounts
for the dependence of the capillary pressure upon the fluid saturation

hw(Sw) = − λwλn

λw + λn

dpc

dSw
(6.21)

and vanishes when the capillary pressure effect may be neglected or is constant.
Substituting expression (6.19) into the governing Equation (6.16) gives a partial
differential equation for the saturation of the wetting phase

∂ (ϕρwSw)

∂t
+ ∇ · ρwfw [qt + λn (ρw − ρn) gz] − ∇ · ρwhw∇Sw = Qw. (6.22)

Equation (6.22) is of mixed character, depending upon the relative magnitude of the
coefficients. Generally, if capillary effects are important, the equation is parabolic
(diffusive) in nature. If capillary effects can be neglected, or when the convective
term containing the total velocity vector qt dominates, the equation is hyperbolic
(wave-like), and reduces to

∂ (ϕρwSw)

∂t
+ ∇ · ρwfw [qt + λn (ρw − ρn) gz] = Qw. (6.23)

6.3 An asymptotic approach

Trajectory-based methods for modeling the flow of immiscible fluids have a long
history. The earliest work is rooted in the method of characteristics and will be
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discussed later. This includes the classic work of Buckley and Leverett (1942) on
one-dimensional two-phase fluid displacement as well as multi-dimensional gener-
alizations. Later efforts branched into streamtube and streamline-based modeling of
two-phase flow and transport (Datta-Gupta and King, 2007). Asymptotic techniques
for modeling immiscible fluid flow in a heterogeneous medium are a more recent
development, although trajectory-based methods have been use to model non-linear
fluid flow for some time (Courant and Friedrichs, 1948; Keller, 1954).

Because fluid velocities typically increase as a function of saturation, multiphase
fluid flow often leads to shelf-sharpening fronts, particularly when capillary effects
are not significant. Such sharp fronts are quite compatible with the central tenet
of the asymptotic approach: that the length scale of the propagating front, denoted
by l, is much smaller than the length scale of the heterogeneity (L) within a given
porous layer. We shall discuss this in more detail shortly. But first, we have to settle
on the governing equation that will underlie our analysis.

6.3.1 The governing equation

It is certainly possible to apply the asymptotic approach to the more general gov-
erning Equation (6.22) or indeed, even to the original system (6.3) (Taniuti and
Nishihara, 1983; Vasco, 2004a; Debnath, 2005; Vasco, 2011, p. 95) but the result
is too complicated to serve as an introduction to the technique. In order to keep
the complexity to a minimum and maintain continuity with the streamline devel-
opments to follow, we will make some simplifying assumptions. First, there is
the issue of the total fluid velocity, qt, or fluid pressure to deal with. That is,
Equation (6.22) contains the vector qt, that follows from the solution of the pressure
Equation (6.13). Because the fluid pressure variations are transient and decrease
rapidly with distance from the well, one can often use the steady-state pressure
associated with a particular set of boundary conditions. The upshot is, one can often
solve the pressure equation in a piecewise fashion in time. When the boundary con-
ditions change, for example due to the placement of a new injection or production
well, the pressure is recalculated to capture the response due to the new configura-
tion. The resulting quasi-static pressure field is used in Equation (6.22). Similarly,
the pressure is recomputed when the flow rate is adjusted, or a well is taken off-line.
Second, we will adopt the convection-dominated Equation (6.23), neglecting the
effects of capillary pressure. Third, we will assume that the compressibility of the
wetting phase can be neglected so that we shall not have to deal with the complica-
tions of a varying aqueous fluid density, ρw. In many applications the wetting phase
is water, a fairly incompressible liquid. The density may often be treated as constant
for this fluid phase and we may factor it out of Equation (6.23). Note that we will
allow for a compressible non-wetting phase, and hence ρn may vary spatially and
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temporally. Finally, since we will only be dealing with the wetting phase, and there
is no danger of confusion, we shall designate the saturation by S in order to save on
subscripts. Based upon these considerations, we adopt Equation (6.23) and factor
out the density ρw, giving

ϕ
∂S

∂t
+ ∇ · [fwqt + gwz] = Q̂w, (6.24)

where

Q̂w = Qw

ρw
. (6.25)

is the volume flux at the source, and

gw = λn (ρw − ρn) gfw (6.26)

is a coefficient related to the gravitational forces. We are also assuming that the
porosity does not change in response to the pressure and saturation change and so
we can pull it out from under the derivative.

6.3.2 An asymptotic equation for the phase

Recall from the previous chapters that the asymptotic solution is tailored to a
porous medium containing smoothly-varying properties between known interfaces.
Because the characteristic length-scale of the heterogeneity, L is assumed to be
much larger than the characteristic length-scale of the fluid front, l, we can define
the ratio

ε = l

L
. (6.27)

where ε � 1. Because the heterogeneity varies slowly in comparison to the satura-
tion change across the front, many of the coefficients vary in a similar fashion.
Therefore, it makes sense to write Equation (6.24) in terms of slowly varying
temporal and spatial coordinates, denoted by T and X, respectively. The slow coor-
dinates may be defined in terms of ε:

T = εt (6.28)

and

X = εx. (6.29)

Our representation of S(X, T) will take advantage of the fact that ε is small, repre-
senting the solution as the power series

S(X, T) = S0(X, T)+
∞∑

i=1

εiSi(X, T , θ) (6.30)
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where θ(x, t) represents the phase associated with the propagating two-phase front.
The presence of the phase indicates that we are treating the saturation change as a
propagating front and θ is related to the propagation time of the front to locations
within the reservoir. The function θ(x, t) controls the kinetics of the front and is a
key variable. Note that we have pulled out the S0(X, T) term from the sum because it
represents the slowly-varying background saturation variation and does not depend
upon the phase. For ε � 1 the series (6.30) is dominated by it’s first few terms. In
many cases only the first one or two terms are of interest.

If we are going to rewrite Equation (6.24) in terms of the slow coordinates
then we must rewrite the temporal and spatial derivatives in terms of T and X.
In addition, we must account for the presence of the phase function θ(x, t), and it’s
implicit dependence upon x and t. The resulting expression for the time derivative is

∂S

∂t
= ∂T

∂t

∂S

∂T
+ ∂θ

∂t

∂S

∂θ

= ε
∂S

∂T
+ ∂θ

∂t

∂S

∂θ
(6.31)

where we have made use of the relation (6.28) between t and T . A similar
expression,

∇S = ε∇S + ∇θ ∂S

∂θ
(6.32)

holds for the spatial derivatives, where ∇ denotes that the gradient involves spatial
derivatives with respect to the slow coordinates. If we substitute these expressions
for the derivatives in Equation (6.24) we end up with the expression

ϕ

(
ε
∂S

∂T
+ ∂θ

∂T

∂S

∂θ

)
+
(
ε∇ + ∇θ ∂

∂θ

)
· [fwqt + gwk · z] = ε

∂mw

∂T
(6.33)

where we have used the definition (6.25) of Q̂w and the fact that the flow rate is the
mass flux, the rate of change of the fluid mass, mw(t), at the borehole.

Many of the coefficients in Equation (6.33), such as fw, qt, and gw depend upon
the saturation S. To account for this dependence, we expand these functions as
power series in S and substitute the representation (6.30) for S, resulting in

fw(S) = fw(So)+ ε
∂fw
∂S

S1 + O(ε2),

qt(S) = qt(So)+ ε
∂qt

∂S
S1 + O(ε2), (6.34)

gw(S) = gw(So)+ ε
∂gw

∂S
S1 + O(ε2),
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where the derivatives are evaluated at the saturation S0. We substitute these
expansions and the asymptotic power series (6.30) for S into Equation (6.33).
The resulting equation contains an infinite series of terms, each one containing ε to
some power. Because ε is small, we shall be concerned with the terms of the lowest
order in ε. When all is said and done, and we have made all the substitutions and
power series expansions, retaining only terms of lowest order (ε), we are left with
the equation

ϕ
∂So

∂T
+∇ ·[fw(So)qt(So)+ gw(So)k · z]+

[
ϕ
∂θ

∂t
+ v · ∇θ

]
∂S1

∂θ
= ∂mw

∂T
, (6.35)

where we have defined the vector

v = ∂fw
∂S

qt + fw
∂qt

∂S
+ ∂gw

∂S
k · z. (6.36)

In many cases the total flow velocity qt is not a strong function of saturation and we
may neglect its derivative with respect to S, resulting in the reduced expression for v

v = ∂fw

∂S
qt + ∂gw

∂S
k · z. (6.37)

Because the background saturation satisfies the governing Equation (6.24) the first
two sets of terms and the right-hand-side of equation (6.35) vanish. We assume
that S1 does in fact depend upon the phase. As a consequence, its partial derivative
with respect to θ is never zero. Therefore, the quantity in the second set of square
brackets in Equation (6.35) must vanish. This constraint produces a linear, first-
order partial differential equation for θ(x, t)

ϕ
∂θ

∂t
+ v · ∇θ = 0. (6.38)

Defining the slowness vector

p = ∇θ (6.39)

one can write the equation for θ as the Hamilton–Jacobi equation

ϕ
∂θ

∂t
+ v · p = 0, (6.40)

one of the most important classes of equations in mathematical physics, among
other fields (Courant and Hilbert, 1962). Such equations have been studied exten-
sively in mathematics and geometrically inspired solutions, based upon the method
of characteristics, are available [see Chapter 3]. This approach leads to a trajectory-
based solution, as we shall now see. One can also solve Equation (6.38) or
Equation (6.40) using purely numerical techniques such as level set methods
and fast marching methods (Sethian, 1999; Osher and Fedkiw, 2003). The methods
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are based on the viscosity solution of a Hamilton–Jacobi equation and have become
popular for calculating wave propagation times.

6.3.3 The method of characteristics, trajectories, and travel times

In Section 3.5 of Chapter 3 we discussed a method for solving first-order equations
such as (6.40), the method of characteristics. The approach is fairly general and
is applicable to linear, quasi-linear, and fully non-linear first-order partial differ-
ential equations. Thus, we are on fairly firm ground in applying the technique to
Equation (6.40). In fact, because the governing Equation (6.24) itself is a quasi-
linear, first-order equation, we could have applied the technique directly, without
the intervention of an asymptotic representation. Such an approach has a long
history, from the work of Buckley and Leverett (1942) to studies of compressible
flow related to gas dynamics (Courant and Friedrichs, 1948). The real advantage
of asymptotic and related WKB techniques, methods that partition the solution
into amplitude and phase functions, is that they can convert second-order partial
differential equations to first-order, non-linear partial differential equations. Such
equations are ripe for the application of the method of characteristics. We will
not need to take advantage of that aspect here, since our equation is already first-
order, rather we will be focused on the semi-analytic, trajectory-based nature of
the solution. In particular, the partitioning of the equation into an equation for the
phase, or travel time, and an equation for the amplitude, offers some insight into
the nature of the propagation of the two-phase front. We remind the reader that the
full governing Equation (6.22), containing capillary effects, is actually a second-
order partial differential equation. An asymptotic approach is applicable to this
more general equation (Vasco, 2011).

Let us return to the method of characteristics and its application to Equation
(6.40). As in Chapter 3 we will consider the partial differential equation to be a
function in the two sets of variables x and p. Note the presence of the time derivative
in Equation (6.40). This is not a serious issue because, as shown in Chapter 3, we
can just add time to the set of independent variables x and add its partial derivative,
denoted by q is Chapter 3, as a component of the vector of derivatives, p. However,
we adopt a simpler approach if we take advantage of the mathematical structure of
the equation. First, note that the equation is linear in the derivatives. Second, if we
divide through by ϕ then Equation (6.40) is separable and the spatial derivatives
and spatially dependent coefficients may be moved to the right-hand-side, isolating
the time derivative. Thus, we expect that the solution is also separable, motivating
us to attempt a solution of the form

θ(x, t) = ϑ(x)− t. (6.41)

We will use this form of the solution in the derivation that follows.
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Equation (6.40) may be interpreted as the vanishing of a function in x and p,
given by

F(x, p) = v · p − ϕ = 0, (6.42)

a linear partial differential equation for ϑ(x), the spatial component of the phase.
As explained in Chapter 3, the partial differential Equation (6.42) is equivalent to
the system of ordinary differential equations [see Box 3.1 for the full set of ray
equations]

dx
ds

= ∇pF = v (6.43)

dϑ

ds
= p · ∇pF = p · v = ϕ,

where s is a variable signifying position along the trajectory, and we have used
Equation (6.42) to replace p · v by ϕ. Note that, because the governing equation
is of first-order, the ray equations uncouple, and the equation for p does not really
play a role in our trajectory calculations.

We can combine the first ray Equation (6.43) with the definition of v,
Equation (6.37) to get a defining expression for the trajectory

dx
ds

= dfw
dS

qt + ∂gw

∂S
z (6.44)

that includes both the influence of the flow field as well as the effects of gravity.
However, if the non-wetting phase is very compressible and of a sufficiently differ-
ent density then one will have to update the pressure field and the saturation changes
periodically. However, for incompressible constituents with moderate density con-
trasts, the flow field may change slowly once the transients due to changes in the
well conditions have dissipated. Thus, we would only need to update the pressure
field infrequently and can solve for saturation changes along the trajectories x(s).
Therefore, Equation (6.44) serves as our entry point into the world of streamline
simulation and trajectory-based modeling in the next section.

We can combine the two ray Equations (6.43) to derive an explicit expression for
ϑ(x), a measure of the traveltime of the two-phase front, and for the phase θ(x, t),
a reduced time. As a first step, note that

dx
ds

· dx
ds

=
(

dx

ds

)2

= v · v = v2

where v is the magnitude of the vector v. Integrating Equation (6.43) for the spatial
component of the phase produces the expression

ϑ(x) =
∫

x
ϕds =

∫
x

ϕ

v
dx.
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The velocity v is given in Equation (6.37):

v = dfw
dS

qt + ∂gw

∂S
z.

In situations in which gravity is not important the travel time of the saturation
front is given by

ϑ(x) =
∫

x

ϕ

v
dx =

∫
x

(
dfw
dS

)−1
ϕ

|qt|dx, (6.45)

an expression that we shall meet again later in this chapter, and the phase is

θ(x, t) =
∫

x

(
dfw
dS

)−1
ϕ

|qt|dx − t.

6.4 Streamline modeling of immiscible fluid flow

The asymptotic methodology produced an equation for the trajectory x(s) and for
the phase ϑ(x) without too much effort. And, after examining the preceding chap-
ters, the reader can probably fill in the steps needed to derive an equation for
the zeroth-order amplitude S0. However, at this juncture we will go in a different
direction and consider a streamline approach for computing the evolution of the
saturation. In streamline simulation the solution of the saturation Equation (6.22),
or one of it’s simplifications, is partitioned into a family of one-dimensional calcula-
tions along pre-determined trajectories. In many situations the streamlines coincide
with the trajectories of the preceding asymptotic analysis. In streamline simulation
one calculates the evolution of the saturation amplitude along the streamline using
analytical or numerical technique such as finite-differences. Because the calculation
is dominantly one-dimensional, the technique scales well with problem size and
efficiencies ensue for large three-dimensional problems.

Our starting point is the governing Equation (6.24), neglecting gravitational
forces. Moving the velocity divergence term to the right-hand-side where it can be
treated as a source term, one has

ϕ
∂S

∂t
+ dfw

dS
∇S · qt = Q̂w − fw∇ · qt. (6.46)

It is not essential to neglect gravity. In fact, Equation (6.44) provides a trajec-
tory valid in the presence of gravitational forces. Streamline approaches typically
account for gravity via a numerical technique known as operator splitting, as noted
below. The right-hand-side of Equation (6.46) may be thought of as an effective
source term, accounting for the effects of compressibility and also flow into and out
of wells.
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6.4.1 Transforming the saturation equation into characteristic
or streamline coordinates

In streamline simulation, and in most other numerical techniques, there is an under-
lying finite-difference or finite-element grid for the pressure calculations where
Equation (6.13) is solved. However, the saturation calculations are, in a sense,
free of such a grid. That is, these calculations take full advantage of the char-
acteristic coordinates and characteristic variables defined below. In particular, the
streamlines are intimately related to qt, the total flow velocity. In streamline sim-
ulation one transforms the saturation, defined in the three-dimensional space of
the finite-difference grid into characteristic coordinates. In the transformation of
Equation (6.46) into characteristic coordinates we shall assume that we are not at a
well nor in a region where compressibility effects are important. Thus, the source
terms on the right side of Equation (6.46) are zero. Generalization to compressible
flow will be discussed later. Also, things are a bit more compact if we consider the
partial differential equation in terms of the derivative of the fractional flow function

ϕ
∂S

∂t
+ qt · ∇fw = 0. (6.47)

We may rewrite this equation in terms of the vector

ν = 1

ϕ
qt (6.48)

to arrive at an equation governing the evolution of the saturation in space and time:

∂S

∂t
+ ν · ∇fw = 0. (6.49)

It is evident from Equation (6.48) that the transformation and the streamline coor-
dinates are computed in terms of the total phase velocity qt of the fluid mixture.
This is important because, away from sources and sinks, the total velocity field is
continuous. This may not be the case for the velocity field of individual fluids, as
a particular phase can appear or disappear, depending upon the conditions within
the porous medium. The development of streamline coordinates using total phase
velocity follows the same procedure described in Chapter 5 and is valid for both
compressible and incompressible flow (Datta-Gupta and King, 2007).

Our goal is to express Equation (6.49) in terms of a set of trajectory-based
characteristic variables (King and Datta-Gupta, 1998). To this end, we define a
local coordinate system oriented with respect to the vector field ν. We specify the
coordinate system by the functions (s,ψ ,φ) where s is oriented in the direction of
ν, while ψ and φ are associated with coordinate axes orthogonal to ν. The gradient
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operator in physical space is decomposed into components in the new coordinate
directions

∇ = ∇s
∂

∂s
+ ∇ψ ∂

∂ψ
+ ∇φ ∂

∂φ
. (6.50)

The new spatial variables s, ψ , and φ provide a physically based coordinate system
in which to model the evolving saturation front. Because of the orthogonality of the
ψ and φ axes to ν we have

ν · ∇ = ν · ∇s
∂

∂s
= νs

∂

∂s
, (6.51)

where νs denotes the component of ν along the trajectory. Thus, we can write
Equation (6.49) solely in terms of the time, t, and the position along the trajectory, s,

∂S

∂t
+ νs

∂fw

∂s
= 0. (6.52)

Equation (6.52) takes a simpler form if we rewrite it in terms of a new variable

τ(s) =
∫ x(s)

x(0)

1

νs
dx =

∫ x(s)

x(0)

ϕ

|qt|dx (6.53)

where the integral is taken along the trajectory x(s) from the source to the obser-
vation point at a distance s along the trajectory. In adopting τ as a spatial variable
we are accounting for the variations in the velocity field which in turn encompasses
geologic heterogeneity. Implicit in this procedure is the assumption that the total
mobility λt = λw + λn does not vary strongly as a function of saturation. If λt is
significantly influenced by the saturation then one must recalculate qt at frequent
intervals and regenerate the streamlines. That is, the time interval of interest must
be sub-divided into enough increments over which the pressure field is stable. The
variable τ is the multiphase equivalent of the time of flight introduced in Chapter 5.
In terms of the new independent variable, (6.52) simplifies to

∂S

∂t
+ ∂fw

∂τ
= 0, (6.54)

a quasi-linear hyperbolic equation in a single spatial variable, τ , and time. This
is the Buckley–Leverett equation expressed in streamline coordinates (Buckley
and Leverett, 1942). Because it is quasi-linear, we can solve Equation (6.54) using
the method of characteristics as discussed next. Alternatively, due to the reduction
from three spatial variables to a single variable τ , Equation (6.54) can be solved
efficiently using a numerical technique such as finite-differences.
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6.4.2 Solving for the saturation along the streamlines

A semi-analytic expression for the saturation

We reiterate that, as a quasi-linear equation, we can apply the method of character-
istics directly to the saturation equation. However, rather then apply it to the original
Equation (6.49) in three spatial dimensions, we will treat Equation (6.54), written
in characteristic or streamline coordinates,

∂S

∂t
+ c(S)

∂S

∂τ
= 0, (6.55)

where c, sometimes referred to as the velocity function, is the derivative of the
fractional flow curve, a function of S(τ , t),

c(S) = dfw
dS

, (6.56)

making Equation (6.55) decidedly non-linear.
In order to complete the formulation of the problem we need to specify initial and

boundary conditions. For the Riemann problem we envision flow from left to right
along a horizontal τ (spatial) axis, and consider an initial saturation distribution in
the form of a step:

S(τ , 0) =
{

Sl, τ ≤ 0

Sr, τ > 0,
, (6.57)

where Sr < Sl. Here Sr denotes the initial saturation to the right, or ‘downstream’, of
the front while Sl is the saturation behind, or ‘upstream’, of the front. For the bound-
ary conditions we will assume that the far-field values of saturation are S(−∞, t) =
Sl and S(∞, t) = Sr. While the specification (6.57) is a simple step, it covers some
important situations, such as the injection of a fluid into a porous medium contain-
ing a different fluid. It can also represent the advection of an existing fluid interface,
such as a gas-water boundary. Finally, the solution to the Riemann problem provides
a basis for the Lagrangian front-tracking algorithm outlined below.

In method of characteristics, rather than allowing the variables τ and t to be
completely independent, we parameterize the problem by the time t. That is, we
consider the variation in S(τ , t) along a curve τ(t). Some insight is provided by
considering the total derivative of S(τ , t), bearing in mind that by assumption, τ
depends upon t and the function τ(t) is differentiable,

dS

dt
= ∂S

∂t
+ dτ

dt

∂S

∂τ
. (6.58)

Comparing this expression for the total derivative with the governing partial dif-
ferential Equation (6.55), we observe that if we stipulate that the path τ(t), the
characteristic curve, satisfies
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dτ

dt
= c(S), (6.59)

then Equation (6.55) states that the total derivative of S along τ(t) vanishes

dS(τ (t), t)

dt
= ∂S

∂t
+ c(S)

∂S

∂τ
= 0. (6.60)

Let us denote the value of τ at the initial time t = 0 by τ0. Equation (6.60) implies
that S is constant along τ(t) [we denote this constant value by S0], it follows that
c(S) is also constant along the path. Equation (6.59) implies that the derivative of
τ(t) with respect to t is also constant along the path. Integrating Equation (6.59)
with respect to t we find that the curve τ(t) is a linear function of t, a straight line
in (τ , t)-space,

τ(t) = τ0 + c(S0)t. (6.61)

We can solve Equation (6.61) for τ0 = τ −c(S0)t, allowing us to construct the solu-
tion at any given time and location by starting with the initial conditions, (τ0, 0, S0),
and traveling along the characteristics with speed c(S0). Because the saturation is
constant along the characteristic curve, we have the representation of S(τ , t)

S(τ (t), t) = S(τ0, 0) = S [τ − c(S0)t, 0] . (6.62)

The feasibility of this approach depends upon the nature of the flux function. An
example of a well-behaved flux function F = fw(S) is shown in Figure 6.2, along
with velocity function c(S), the saturation characteristics, and the corresponding
saturation solution S(τ (t), t). Because the initial saturations are constant on each
side of the origin, the characteristic lines within each of the two sets are parallel.
With the initial saturation distribution given by the step (6.57) at τ = 0, the char-
acteristic lines intersecting the t-axis to the left of the origin, corresponding to Sl,
are steeper than those intersecting the t-axis to the right of the origin [see panel (c)
in Figure 6.2]. Thus, the characteristic lines for the two sets diverge and do not
intersect. There is a ‘fan’ of trajectories lying between the two families of charac-
teristics. This expansive fan defines a third family of characteristics, representing a
rarefaction wave. Each characteristic line within the fan is associated with a value
of saturation contained in the initial jump from Sr to Sl found at τ = 0. Thus, the
angular spread of the fan is bounded by slopes associated with the limits of the
step. Physically the rarefaction wave represents the spreading out of the step over
time, with the toe of the saturation front, corresponding to the lowest saturations,
propagating the fastest [see panel (b) in Figure 6.2], and moving away from regions
of higher saturation. It is evident from Figure 6.2 that every point in the τ − t plane,
other then the origin, lies on a unique characteristic line. The origin is a singular
point associated with the saturation jump at t = 0.
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(a) Flux function (b) Velocity function

(c) Saturation characteristics (d) Saturation solution

Figure 6.2 An illustration of the solution of Equation (6.55) for a convex flux
function.

The geometrical construction given above is not possible when the characteris-
tics intersect in the (τ , t) plane, as in Figure 6.3, resulting in two values of saturation
at a particular location. This is because the intermediate saturations moving at a
higher speed overtake the lower saturations ahead. Preventing this behavior requires
the flux function to be convex, resulting in the saturation velocity increasing from
left (upstream) to right. In multiphase flow, the above condition is often violated
because the flux function, fw(S) may be non-convex resulting in a non-monotonic
velocity profile. Such a situation is illustrated in Figure 6.3 for a typical quadratic
flux function commonly encountered in water-oil displacement. The velocity func-
tion in Figure 6.3 does not satisfy the condition given above, and the intermediate
saturations move at a faster speed. This leads to the intersection of characteristics
and physically unrealistic multivalued solutions as shown in Figure 6.3d.

In reality, the difficulties noted above simply highlight the limitations of our
modeling. To begin with, one could call into question the very use of a partial



6.4 Streamline modeling of immiscible fluid flow 239

(a) Flux function (b) Velocity function

(c) Saturation characteristics (d) Saturation solution

Figure 6.3 An illustration of the solution of Equation (6.55) with a non-convex
flux function, leading to multivalued solution.

differential equation to describe a process that often results in solutions containing
discontinuities. Even if the initial solution contained the appropriate continuity and
differentiability, a discontinuity may appear due to non-linear steepening. This has
prompted the development of approaches that allow for functions lacking deriva-
tives at some points. The simplest approach involves reformulating the original
differential Equation (6.54) in an integral form, either from first principles or by
simply integrating with respect to τ between two fixed points a and b∫ b

a

∂S

∂t
dτ +

∫ b

a

∂fw
∂τ

dτ = 0 (6.63)

or, if S is sufficiently continuous,

d

dt

∫ b

a
Sdτ + fw(S(b, t))− fw(S(a, t)) = 0, (6.64)
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an expression that does not involve derivatives of S. Techniques such as integral
finite differences, that discretize a volume into elemental subdomains and evaluate
the mass balance for each element (MacNeal, 1953; Todd, 1959; Narasimhan and
Witherspoon, 1976; Pruess and Narasimhan, 1982) take advantage of such formu-
lations and avoid local derivatives and their associated difficulties.

An alternative approach is motivated by rewriting Equation (6.55) in terms of
fw(S), multiplying the resulting equation by a smooth function ϒ(τ , t) and integrat-
ing over a region R in the τ − t plane:∫ ∫

R

[
∂S

∂t
+ ∂fw

∂τ

]
ϒdτdt = 0.

Integration by parts, and stipulating that the functionϒ(τ , t) vanishes on the bound-
ary of the region of interest R, produces an expression∫ ∫

R

[
S
∂ϒ

∂t
+ fw(S)

∂ϒ

∂τ

]
dτdt = 0, (6.65)

that is equivalent to (6.55) but does not involve any derivatives of the saturation.
Solutions S(τ , t) that satisfy Equation (6.65) for all arbitrary continuous functions
ϒ(τ , t) are said to be weak solutions of the differential Equation (6.54) or (6.55).
Again, the essential idea is to go back to an integral formulation of the governing
equations, as this form may retain its validity even when there is not enough differ-
entiability to justify a differential formulation. One can show that the weak solution
actually solves the integral formulation of the governing equations (Chorin and
Marsden, 1993). Mathematical formulations in terms of weak solutions provide
a basis for some important numerical methods, such as finite element analysis
(Belytschko et al., 2014).

Often the breakdown of the solution is due to approximations in the modeling
itself. For example, one might recall that the original saturation Equation (6.22),
written here in an abbreviated form, contained second-order spatial derivatives and
a coefficient hw(S) representing capillary forces,

ϕ
∂S

∂t
+ ∇ · Fw(S)− ∇ · hw(S)∇S = 0, (6.66)

where we have assumed an incompressible wetting phase, defined the fractional
flow vector

Fw = ρwfw [qt + λn (ρw − ρn) gz] ,

and are considering a source-free region. The second derivative term represents
dissipation and/or dispersion effects that become important when the saturation
starts to varying rapidly in space. Thus, it will have the greatest influence in the
regions where the curvature of the saturation distribution is the largest, such as the
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regions where the saturation variation is steepening due to non-linearity. In fact,
once the transient effects have died away, a stable solution emerges, representing
a balance between the non-linear steepening and the dissipation due to capillary
forces (Whitham, 1974, p. 33). Second derivative, or ‘viscosity’, terms have been
used to great effect in stabilizing numerical methods for the solution of non-linear
conservation and Hamilton–Jacobi equations (Sethian, 1999; Holden and Risebro,
2002; Osher and Fedkiw, 2003). In this procedure, known as viscous regulariza-
tion, one perturbs the original Equation (6.55) by adding a diffusive term:

∂S

∂t
+ c(S)

∂S

∂τ
+ ε

∂2S

∂τ 2
= 0, (6.67)

and considers the limit as ε → 0. One can show that the solution of this equation in
this limit is a weak solution of the original governing Equation (6.55) (Chorin and
Marsden, 1993). As an aside, we note that when c(S) = S in Equation (6.67), it can
be transformed into the linear heat equation and an analytic solution follows (Hopf,
1950; Cole, 1951). This particular form is known as Burgers equation (Whitham,
1974; Karpman, 1975; Sachdev, 2000) and, as one of the best known examples of
a solvable non-linear equation, has been extensively studied.

In spite of the limitations of our modeling, we can actually construct a relatively
useful and instructive solution to the Riemann problem, based upon a few simple
assumptions. First, returning to Equation (6.54), we note that the expression is self-
similar and admits a symmetry group. Because the flux function fw(S) is given by
(6.20), and the phase mobilities are given by definitions such as (6.5), we have

fw(S) = λw

λw + λn
= krw

krw + μwkrn/μn
. (6.68)

The important point is that the absolute permeability k(x), a quantity that appears in
the phase mobilities λw and λn and typically varies strongly with x, divides out when
the ratio of phase mobilities is formed. Note that the spatially-varying properties,
such as ϕ and qt, are now contained within the new spatial variable τ . Thus, for a
given porous material, and in a pressure range limited by our chosen time interval,
we may assume that the fractional flow function fw only depends upon the saturation
S. For a fractional flow function of that nature, both the governing Equation (6.54)
and the initial conditions (6.57) are invariant with respect to the transformations
from the scaling group

t′ = αt (6.69)

τ ′ = ατ (6.70)

where α is a constant. That is, if the independent variables are transformed accord-
ing to (6.69) and (6.70), both the governing equation and the initial conditions retain
their form. Furthermore, the ratio
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z = τ

t
= τ ′

t′
(6.71)

is invariant with respect to the scaling group as well. We expect the solution to
display the same symmetry as it’s defining equation and boundary conditions. One
way to ensure this symmetry is to write the solution as a function of the invariant
or self-similar variable z. Thus, we assume that the solution has the form

S(τ , t) = S
(τ

t

)
= S(z) (6.72)

and substitute this form into the governing Equation (6.54) or, equivalently,
Equation (6.55). Substituting S(z) into Equation (6.55) produces the ordinary
differential equation

1

t

dfw
dS

dS

dz
− τ

t2

dS

dz
= 0. (6.73)

Under the assumption that 0 < t < ∞ we may multiply through by t, and write
equation entirely in terms of z: [

dfw
dS

− z

]
dS

dz
= 0. (6.74)

Equation (6.74) implies that either S(z) is constant over some interval of z, or that

z = dfw
dS

(S) . (6.75)

If the derivative of fw(S) is a monotonic function of s then we can invert it for S as
a function of z. That is, we can solve Equation (6.75) for S(z),

S(z) = dfw
dS

−1

(z) = c−1(z). (6.76)

Unfortunately, while fw(S) itself is typically monotonic, its derivative with respect
to S, represented by the function c(S), is usually non-monotonic. Figure 6.2 shows
an example of a monotonic function c(S), while Figure 6.3 shows a non-monotonic
example. The non-linear Equation (6.74), in conjunction with a non-monotonic flux
function typically has multiple solutions. The nature of the solutions to this equation
will depend on the flux function as well as on the initial or boundary conditions at
hand.

Given a multitude of possible solutions we need an additional condition to extract
the one that makes physical sense. This is given by the so called entropy condition
(Oleninik, 1957), which simply states that of all possible solutions, the correct one
has the fastest speed. The name originated from applications in gas dynamics, an
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area that generated much of the early work in non-linear fluid flow and shock for-
mation [see Courant and Friedrichs (1948)]. We can motivate this criterion through
a more in-depth analysis of the Riemann problem with the troublesome non-convex
flux function, plotted in Figure 6.3. It should be noted that the entropy condition can
take various forms, and readers may encounter different definitions in other texts.
As noted in Logan (2008, p. 145), for our particular governing Equation (6.54), it
can be shown that an alternative form of the entropy condition is the inequality

dfw
dS

(Sr) > c(S) >
dfw
dS

(Sl) ,

providing bounds on the speed of a propagating disturbance.
Before we dive into our analysis, it would benefit us to try and imagine how the

initial step in saturation,

S(τ , 0) =
{

Sl, τ ≤ 0

Sr, τ > 0,
,

subject to the flux function shown in Figure 6.3, would evolve both in time and
space. Even if we cannot calculate it’s shape accurately without the mathematics,
we should be able to discern the main features that a stable solution might possess.
First, the saturation jump propagates with a finite velocity, so that ahead of the front
the saturation will be at the initial value Sr. Second, the initial discontinuity is likely
to persist for some length of time so we shall have to deal with functions that are not
continuous. Behind the front the saturation distribution will evolve, perhaps leading
to smoothly-varying behavior. At a sufficient distance behind the front the solution
should approach the limiting value Sl. From the nature of the flux function, and
the associated velocity function c(S), plotted in Figure 6.3, it is clear that some
intermediate saturation will propagate the fastest, eventually leading to a jump
to that value as the front propagates. The higher values of saturation, with lower
velocities, will lag behind, while the lower and slower values of saturation will be
overrun by the fluid that propagates the fastest. Therefore, the entropy condition
stipulating that the correct solution has the fastest speed, is in accordance with our
intuition.

To further our understanding we require a little mathematics. In particular, to
construct a solution we shall need a few specific quantities, such as the speed of
the front and the jump in saturation across it. Because our focus is on the saturation
front itself, we cannot simply gloss over the loss of continuity and the breakdown of
the governing differential Equation (6.55). At the very least we must entertain the
possibility of discontinuous solutions, allowing for weak solutions of the governing
equations. One could approach the problem formally, starting with the weak formu-
lation (6.65), dividing the integral into two regions where the solution is continuous
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and a boundary dividing the regions. Integration by parts then gives the governing
equation in each region, that vanishes, and leads to a condition on the jumps in S
and fw(S) across the boundary. Our derivation will be a bit more informal, based
upon the idea of viscous regularization, introduced a few pages back. To this end,
we perturb the governing equation by adding a diffusive term

∂S

∂t
+ c(S)

∂S

∂τ
+ ε

∂2S

∂τ 2
= 0, (6.77)

and consider what happens in the limit as ε → 0. The approach is a variation
of an argument presented in Whitham (1974, p. 33). While the non-linear term in
(6.77) promotes steepening, the second derivative term leads to diffusive smooth-
ing. Because the saturation downstream, to the right of the saturation front, is
constant, and we are interested in a stable front in which the transient effects have
died away, we shall assume that the front is propagating with a constant velocity
V . Therefore, consider a solution in the form of a stable profile, denoted by the
function �, moving with velocity V

S = �(ξ) (6.78)

where

ξ = τ − Vt. (6.79)

The reader may wonder why that this solution is not in the self-similar form (6.72).
The second derivative term in Equation (6.77) changes the equation and its cor-
responding symmetries. Also, one can relate the translational symmetry of (6.78)
to the self-similarity of Equation (6.72) by a logarithmic change in independent
and dependent variables (Barenblatt, 1979; Sachdev, 2000). Substituting (6.78) into
Equation (6.77) gives the differential equation

[c(S)− V]
d�

dξ
= ε

d2�

dξ 2
. (6.80)

Integrating this equation with respect to ξ gives

fw(S)− VS = ε
d�

dξ
(S)+ A (6.81)

where A is a constant of integration. Consider this expression for points to the right
of the front, where S = Sr

fw(Sr)− VSr = ε
d�

dξ
(Sr)+ A (6.82)
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and for a point on the front where the saturation is S∗:

fw(S
∗)− VS∗ = ε

d�

dξ
(S∗)+ A. (6.83)

Note that, in taking the derivative in Equation (6.83) we may have to take the limit
from the left side of the front. Subtracting Equation (6.82) from Equation (6.83),
taking the limit as ε → 0, and solving for V ,

V = fw(S∗)− fw(Sr)

S∗ − Sr
, (6.84)

an expression for the velocity of the front in terms of the changes in S and fw across
the front.

Only one task remains, to find the jump in saturation across the front, that is to
determine S∗. Here we used the fact that, for a stable front, the velocity of the front
due to the change in saturation from Sr to S∗, given by Equation (6.84), should equal
the velocity of the peak saturation obtained within the front, which is S∗. If this
were not the case we would observe transient effects as the saturation distribution
rearranged itself. Now the velocity associated with the saturation is c(S∗). Thus, we
have the equality

c(S∗) = dfw
dS

(S∗) = fw(S∗)− fw(Sr)

S∗ − Sr
, (6.85)

a non-linear equation that can be solved for S∗ using an iterative technique such as
Newton’s method. In Figure 6.4a we plot S∗, the point at which the cord from Sr to
S∗, the right-hand-side of Equation (6.85), equals that tangent dfw/dS on the left-
hand-side of the equation. This is consistent with the condition that of all possible
saturation jumps, the physically correct one moves with the fastest speed. Thus, the
chord from Sr to S∗ must lie above all other chords drawn from Sr to any point
on the flux function as shown in Figure 6.3(a). That is the geometric content of
Equation (6.85).

Putting it altogether, we can now present a complete solution for the saturation as
a function of t and τ . The central idea is to replace dfw/dS by a monotonic function.
The particular monotonic function incorporates all of the ideas given above. In
particular, the saturation ahead of the front is Sr. The front consists of a jump
from Sr to S∗, traveling at velocity c(S∗), given by Equation (6.85). The monotonic
function is constructed using the ‘concave envelope’ of the flux function rather than
the original function, as illustrated in Figure 6.4c. The segment of the fractional
flow curve between Sr and S∗ is replaced by the cord, the straight line segment
from Sr to S∗. As indicated in Equation (6.85) this cord is tangent to the fractional
flow curve at S∗. Because the segment of the fractional flow curve from S∗ to Sl

is already concave, we retain that portion of the curve without any changes. The
modified, concave fractional flow curve is denoted by a tilde, f̃w. We can now write
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(a) Entropy condition and shock saturation,
S∗

w

t

(b) Saturation characteristics

(c) Concave envelope

T/t
(d) Saturation solution

Figure 6.4 An illustration of the entropy condition and identification of the correct
solution.

down the general solution of the Buckley–Leverett equation with a flux function
that changes from convex to concave

S(τ , t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sl,
τ

t
<

df̃w
dS

(Sl)[
df̃w
dS

]−1 (τ
t

)
,

df̃w
dS

(Sl) ≤ τ

t
≤ df̃w

dS
(Sr)

Sr,
τ

t
>

df̃w
dS

(Sr)

(6.86)

with a particular realization given in Figure 6.4d.
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The solution (6.86) tells us that after start of the injection of the aqueous phase
only the in situ fluid is produced until the front arrives. The saturation of the aqueous
phase in the produced fluid rises sharply at the beginning and continues to rise at a
slower rate later. The arrival time of the front at location x is given by

T =
[

dfw
dS

(S∗)
]−1

τ(x), (6.87)

where τ(x) is given by Equation (6.53), so that

T =
[

dfw
dS

(S∗)
]−1 ∫ x(s)

x(0)

ϕ

|qt|dx. (6.88)

In the solution (6.86) the jump at the leading edge of the front occurs when
τ/T = dfw/dS(Sr).

Box 6.2 The Riemann problem for three fluids

In many situations three fluids, such as water, oil, and gas, are present in a porous
medium and are free to flow. It is important to understand the nature of such three
phase flow and in this box we outline how the techniques that we have just described
extend to this case. The topic has been studied by Pope (1980), Helfferich (1981),
Shearer and Trangenstein (1989), Guzman and Fayers (1997), Juanes and Patzek
(2004), and Lie and Juanes (2005). In addition to the saturations of the wetting and
non-wetting phases, denoted by Sw and Sn, respectively, we have a phase with
saturation Sg, perhaps representing the presence of gas. The saturations of the three
phases must sum to unity

Sw + Sn + Sg = 1.

Using this relationship, we can reduce the equations for the conservation of mass, the
equivalent of Equation (6.55), to

∂Sw

∂ t
+ ∂ fw
∂Sw

∂Sw

∂τ
+ ∂ fw
∂Sg

∂Sg

∂τ
= 0

∂Sg

∂t
+ ∂ fg
∂Sw

∂Sw

∂τ
+ ∂fg
∂Sg

∂Sg

∂τ
= 0,

where the fractional flow for each phase, fw(Sw, Sg) and fg(Sw, Sg) depends upon the
two independent saturations. We may write the system of equations in vector-matrix
form

∂S
∂t

+ A(S)
∂S
∂τ

= 0
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where S is the vector

S =
[

Sw

Sg

]

and A(S) is the Jacobian matrix of partial derivatives

A(S) =
[

fww fwg

fgw fgg

]
.

For brevity, we are using a subscript notation for the partial derivatives of the
fractional flow functions

fij = ∂ fi
∂Sj

.

The properties of the system of equations, and the nature of its solutions, will depend
upon the eigenvalues and eigenvectors of the Jacobian matrix A(S). For example, if
the eigenvalues are real and distinct then the system is termed hyperbolic and the
solution has the characteristics of a propagating wave. If the eigenvalues are real but
equal, the system is parabolic and the solution is diffusive in nature. The two
eigenvalues of the matrix A(S) are given by

e± = 1

2

[
fgg + fww ±

√(
fww − fgg

)2 + 4fgwfwg

]
.

The eigenvalues of the matrix A(S) depend directly on the three phase relative
permeability functions. Some commonly used relative permeability functions contain
regions in saturation space in which the equations are not hyperbolic (Bell et al.,
1986), perhaps an indication that they are incomplete.

For the three-phase Riemann problem we seek a solution of the governing system
of partial differential equations, subject to the initial condition

S(τ , 0) =
{

Sl τ < 0
Sr τ > 0

,

where we refer to Sl and Sr as the left and right saturation states, respectively. Note
that the system of equations and the accompanying initial conditions admit the same
scaling symmetry group

t′ = αt

τ ′ = ατ

encountered in two-phase flow. In order to ensure that the solution maintains this
symmetry, we write it in terms of the invariant variable

z = τ

t
.
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Substituting a solution of the form S(z) results in the system of ordinary differential
equations

[A(S)− zI]
dS
dz

= 0,

where I is the identity matrix. If this system of equations is to have a non-trival
solution S, the coefficient matrix must be singular and so the determinant of the
quantity within the square brackets must vanish. In fact, this equation is an eigenvalue
problem, where z is an eigenvalue of A(S), given above as e±, and dS/dz is a right
eigenvector. The eigenvectors indicate directions of admissible changes in saturation,
given by

dSg

dz
= 1

2

[
fgg − fww ±

√(
fww − fgg

)2 + 4fgwfwg

]
dSw

dz

(Helfferich, 1981). There are two families of saturation paths, the fast and slow paths,
corresponding to the larger and smaller eigenvalues, respectively. Along these paths
the saturation travels with a characteristic velocity given by the eigenvalues. For the
three-phase Riemann problem we construct a saturation path that connects the left (Sl)
and right (Sr) states. As shown in (Juanes and Patzek, 2004), the path can be
constructed by combining specific fast and slow integral curves of the eigenvector
equation emerging from the left and right states and intersecting in an intermediate
state Sm. The determination of the intermediate state differentiates the three-phase
problem from the two-phase problem. Falls and Schulte (1992) lay out the principles
providing a straight-forward procedure for determining the saturation routes.

While we have focused on two fluids, the solution for a step in saturation, the
Riemann problem, can be extended to three fluids. Box 6.2 outlines how this exten-
sion may be carried out. When it is applicable, an analytic solution of the satura-
tion equation leads to a substantial reduction in computation time and can provide
valuable insight. For example, we have learned that the onset of the saturation
change is determined by τ , defined the integral of ϕ/|qt| over the streamline x(s)
[see Equation (6.53)]. Furthermore, from the form of the solution for saturation,
Equation (6.86), we observed that the magnitude of the saturation change depends
upon the fractional flow curve. As we have seen, the fractional flow curve does
not depend directly on the permeability k(x). Thus, while the arrival time of the
saturation depends upon the permeability, through qt, the size of the saturation
change along a trajectory only depends upon the relative permeabilities and the
fluid viscosities, as evident in Equation (6.68).

In deriving the solution of the Riemann problem, we have assumed that the
saturation distribution ahead of the front is uniform. In general, such an assumption
is not valid when the streamlines need to be updated and the saturations need to
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be remapped onto a new set of trajectories. The formulation developed for the
Riemann problem can be extended to a heterogeneous saturation distribution using
a piecewise constant approach originally developed by Dafermos (1972, 2000) and
extended by Holden et al. (1988) and Bratvedt et al. (1996). This hybrid scheme
provides a numerical method that is described in the next section, along with more
conventional finite-difference algorithms.

Exercise 6.1. Use the software ‘TRACE3D’ to simulate water injection into
an oil reservoir with uniform permeability and a five-spot well configuration
(a central injector and four surrounding producers). Use the data files in the
folder ‘Examples/Simulation/5-Spot-Hom’ by creating a project in the same
folder and running the software. Use analytic solution option (already selected)
for two-phase water-oil displacement calculations along streamlines. Visual-
ize the pressure distribution, streamline trajectories, time of flight from the
injector/producer, partitioning by well regions, well allocation, water saturation
distribution, oil-water production and recovery history. Examine the sensitivity
of the waterflood performance to the fractional flow curve by changing the
water/oil viscosities and the relative permeability curves.

Exercise 6.2. Repeat the Exercise 6.1 for a heterogeneous permeability field (in
‘Examples/Simulation/5-Spot-Het’). View the heterogeneous permeability field
and the streamlines side by side to examine how the trajectories are impacted
by the heterogeneity. Notice how the streamlines tend to cluster along the
high permeability regions and the time of flight reflects the preferential fluid
movement. Also, notice how the oil recovery is impacted by heterogeneity.

Numerical techniques for calculating saturation

The most general approach for calculating the evolving saturation distribution is
one that is based upon numerical methods such as finite differences. The chief
drawback of numerical techniques is the computational burden that they impose.
Fortunately, in the trajectory-based approach, we have reduced the computational
undertaking considerably, from a partial differential equation in four independent
variables, Equation (6.47), to an equation in τ and t, Equation (6.54). We will have
to solve a sequence of such problems, one for each trajectory or streamline. But
the decomposition provides added flexibility, enabling us to pick the particular set
of trajectories that are the most important. There are several texts on numerical
methods for solving the equations governing multiphase flow and front propagation
(Holden and Risebro, 2002; Osher and Fedkiw, 2003; Datta-Gupta and King, 2007),
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and we defer to them for the details of such computations. However, let us take a
moment to outline what these calculations involve.

In general, the numerical techniques can be divided into Lagrangian, or front
tracking methods, and Eulerian, or grid-based methods. The nomenclature is related
to the two possible descriptions of material deformation or motion, given in Section
2.3 of Chapter 2. In an Eulerian approach, x and t are independent variables and the
saturation is a dependent quantity, the numerical algorithm solves Equation (6.54):

∂S

∂t
+ ∂fw

∂τ
= 0, (6.89)

directly on a fixed grid. A method such as finite differences is a typical example of
an Eulerian algorithm and these methods have a long history and are widely used in
modeling multiphase fluid flow (Peaceman, 1977; Aziz and Settari, 1979). Eulerian
approaches work well for dispersive transport but have difficulties with advection-
dominated flow and sharp fronts. In the Lagrangian front tracking approach, one
follows the propagation of quantities of interest, such as a jump in saturation at a
front. As in the Lagrangian description of motion, the spatial coordinate (in this
case τ ) is the dependent variable, governed by

∂τ

∂t
= dfw

dS
. (6.90)

The equation is a generalization of Equation (6.59), accounting for the dependence
of τ on S. The Lagrangian approach works best when modeling the propagation of
sharp fronts and its performance can degrade in areas of smooth saturation variation
(Datta-Gupta and King, 2007). We should note that the distinction between Eulerian
and Lagrangian techniques hold for both the global problem of solving the original
governing equations, such as Equation (6.3), and also for solving the saturation
equation in τ − t coordinates along the streamline, Equation (6.54). In the latter
case, we are adopting a trajectory-based approach, following the fluids and not
operating on a grid, but we solve the reduced saturation Equation (6.89) on the
trajectory, using either a Lagrangian or an Eulerian algorithm. It is this τ − t case
that we shall describe in this section.

Because the Lagrangian front-tracking approach relies upon the solution of the
Riemann problem, which was just discussed, we consider it first. In the Lagrangian-
based algorithm each ‘particle’ that we are tracking is a pre-defined jump in
saturation, let us say with a typical incremental resolution of δS. Intuitively, we
approximate a general saturation variation by a sequence of small steps, and
represent the fractional flow curve by a piecewise-linear construction (Holden and
Risebro, 2002; Datta-Gupta and King, 2007). A saturation profile then appears
as an arrangement of regions of constant saturation. The front tracking method is
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(a)

(b)

Figure 6.5 Streamline transport calculations (a) Lagrangian front tracking
method, (b) Eulerian method with single point upwinding (from SPE 79693).
Reprinted with Permission. Copyright SPE.

based on the observation that if fw(S) is approximated as a piecewise linear function
and the initial condition is approximated as piecewise constant, then the solution
is also piecewise constant (Dafermos, 1972). The speed of each increment can
be obtained from the jump condition, Equation (6.85), where Sr changes for each
jump considered. Combining these operations produces a semi-analytic technique
for determining the saturation evolution along a streamline. The results of this
approach are illustrated in Figure 6.5a. More increments, each with a smaller
saturation jump, will improve the spatial resolution of the saturation profile. As the
fronts propagate they may interact and collide, leading to shock formation. If the
incremental fronts spread further apart, a rarefaction wave results. More details on
front tracking in general, along with specific algorithms, can be found in the book
by Holden and Risebro [2002].
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The second class of numerical approximations, Eulerian approaches, represent
S(τ , t) at discrete points on a numerical grid. For simplicity we shall assume that
the grid spacing is uniform in each direction, perhaps after reinterpolation from an
irregular grid, with grid spacings of �τ and �t. We shall denote the saturation at
grid point (i, n), that is S(i�τ , n�t), by the shorthand Sn

i . One can use standard
finite-difference techniques to discretize Equation (6.89)

Sn+1
i − Sn

i

�t
+ fi+1/2 − fi−1/2

�τ
= 0, (6.91)

where fi+1/2 is the flux at the boundary between nodes i and i + 1, and n is the
timestep counter. In order to minimize the number of subscripts we have changed
the name of the flux function from fw to simply f . As might be imagined, one must
use care when applying finite difference algorithms to non-linear equations. Diffi-
culties, including instabilities and convergence to the wrong solution, are possible.
However, one is at least guaranteed immunity from such incorrect convergence
if the finite difference method used to solve Equation (6.89) can be written in
conservation form (Le Veque 1990, p. 124; Sethian 1999, p. 55), a numerical
approximation of a conservation equation,

Sn+1
i − Sn

i

�t
+ F(Sn

i+1, Sn
i )− F(Sn

i , Sn
i−1)

�τ
= 0, (6.92)

or, solving for Sn+1
i ,

Sn+1
i = Sn

i − �t

�τ

[
F(Sn

i+1, Sn
i )− F(Sn

i , Sn
i−1)
]

, (6.93)

where F(Sn
i+1, Sn

i ) and F(Sn
i , Sn

i−1) are numerical flux functions (Osher and
Fedkiw, 2003, p. 157). The flux functions are approximations for fi+1/2 and fi−1/2

and the various possible choices for these functions lead to the wide variety of finite
difference algorithms that are now available. For simplicity, we have assumed that
the flux functions only depend upon pairs of nodal saturations. More generally, the
numerical flux functions can depend upon an extended set of nodal saturations [see
Le Veque (1990, p. 124)]. If we abstract things a bit, and consider the right-hand-
side of Equation (6.93) as a general function

Sn+1
i = M(Sn

i−1, Sn
i , Sn

i+1) (6.94)

of the three nodal saturations, then the function M(Sn
i−1, Sn

i , Sn
i+1) is said to be

monotone if it is non-decreasing function of all of its arguments (Crandall and
Majda, 1980). A monotone scheme in conservative form produces a solution that
satisfies the entropy condition (Le Veque, 1990).

There are two guiding principles that help in designing finite difference algo-
rithms for modeling immiscible fluid flow. One is adherence to the physics of the
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process. For example, the flow of material should be from the ‘upwind’ direction,
from a higher potential to a lower potential. Another guiding principle is perhaps
better described as a cautionary note. The algorithms should avoid methods that are
unstable in the face of steep gradients, as found in a propagating saturation front.
Any higher-order polynomial approximation methods must be used with great care.
Thus, in the essentially nonoscillatory (ENO) method one uses adaptive polynomial
interpolation designed to avoid steep gradients (Harten and Osher, 1987; Osher and
Fedkiw, 2003, p. 155). Higher order methods, based upon additional terms in a
Taylor series expansion of S(τ , t + �t), are more accurate (as expected), but the
price we pay is oscillatory behavior near discontinuities. Thanks to non-linearity,
such oscillations may grow over time.

One approach to maintaining stability is simply to use a low-order approximation
for the numerical flux function, such as single-point upstream weighting, where

F(Sn
i−1, Sn

i ) = f (Sn
i−1). (6.95)

This is the upwind scheme, first-order accurate but highly diffusive, rapidly
smoothing any discontinuities that might be present (Press et al., 1992, p. 832).
In Figure 6.5b we plot an application of this approach to the Riemann problem of
oil-water displacement. Godunov (1959) came up with a rather clever first-order
approach, based upon a solution of the Riemann problem for each finite difference
interval. That is, for a given interval between i − 1 and i, let S̃i be the solution of
the Riemann problem with the initial data

S̃i(x, 0) =
{

Sn
i−1, x ≤ 0

Sn
i , x > 0

where x is a local coordinate system with the origin at the left end of the interval
and Sn

i and Sn
i+1 are the nodal saturations at the n-th time step. The numerical flux

function is defined in terms of the solution of the Riemann problem

F(Sn
i−1, Sn

i ) = f [S̃i−1(0,�t)]. (6.96)

The solution at the n + 1 time step and the location i − 1/2 is either a rarefaction
or a shock, depending on the relative size of Sn

i−1 and Sn
i . The global solution is a

piecing together of all the intervals. In order to avoid interference from neighboring
intervals, the time step is limited in size by

df

dS
�t ≤ �τ , (6.97)

the Courant-Fredrichs-Levy (CFL) condition (Holden and Risebro, 2002, p. 66).
If the characteristic speeds are all non-negative then Godunov’s method is equiva-
lent to single-point upstream weighting.
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Even though steep gradients are present at saturation fronts, much of the remain-
der of a solution is smooth. Thus, there is a strong temptation to use higher-order
schemes, with their more rapid convergence to the smoothly-varying component
of the solution. This has led to the use of hybrid methods, typically consisting of
the linear combination of a lower-order and a higher-order method (Holden and
Risebro, 2002, p. 66). The numerical flux function is the linear combination

F(Sn
i−1, Sn

i ) = αFl(S
n
i−1, Sn

i )+ (1 − α)Fh(S
n
i−1, Sn

i ) (6.98)

where Fl is a low-order flux function, such as the single-point upstream flux func-
tion (6.95) or the Godunov flux function (6.96). Examples of higher-order flux
functions Fh can be found in Holden and Risebro (2002) and Datta-Gupta and
King (2007). The weighting function α(Sn

i−1Sn
i ) is close to zero when the satu-

ration distribution is smooth and approaches 1 near discontinuities. The general
form (6.98) has led to a great many finite difference algorithms. Perhaps the most
successful class of algorithms are the total variation diminishing (TVD) schemes
(Harten, 1983; Le Veque, 1990; Datta-Gupta and King, 2007), used in conjunction
with flux limiters. The total variation at time n is defined as the sum over all grid
blocks:

TV(Sn) =
∑

|Sn
i+1 − Sn

i |, (6.99)

a measure of the roughness of the saturation distribution along the streamline.
A TVD scheme has the property that the roughness never increases over time,
TV(Sn+1) ≤ TV(Sn). A consequence of this, first observed by Harten (1983), is
that the algorithm preserves monotonicity. The basic procedure for constructing
a TVD scheme is to combine lower-order and higher-order fluxes, according to
Equation (6.98), and then to impose limiter functions on the higher-order fluxes.
Sweby (1984) derived properties on the limiter functions that guarantee mono-
tonicity and prevent extraneous oscillations in the solution (Datta-Gupta and King,
2007).

It is worth pointing out the relative advantages of the Lagrangian and the Eulerian
approaches. The biggest advantage of the Lagrangian front tracking method is that
it is unconditionally stable and thus, has no intrinsic time step limitations. However,
the applicability of the method is limited by the class of problems with available
Riemann solutions and complexities such as multicomponent flow can present dif-
ficulties. The advantage of the Eulerian method is its generality and ability to model
complex physical processes. However, the time step size in Equation (6.92) will be
limited by the Courant-Fredrichs-Levy condition, Equation (6.97), where df /dS is
the maximum speed over the saturation range for an adjacent pair of cells. Clearly
small �τ will limit the allowable time step size. However, an important advantage
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of the trajectory-based calculations is that the one-dimensional solution can be opti-
mized independently along each streamline. Unlike conventional finite-differences,
the method is not limited by any global Courant-Fredrichs-Levy stability criterion,
that is, one imposed over the entire three-dimensional simulation grid.

Exercise 6.3. This is a continuation of Exercise 6.1. Use the software
‘TRACE3D’ to simulate water injection into an oil reservoir with uniform
permeability and a five-spot well configuration (a central injector and four
surrounding producers). Use numerical solution option (already selected) for
two-phase water-oil displacement calculations along streamlines and compare
the results with the analytic solution in Exercise 6.1. Use the data files in the
folder ‘Examples/Simulation/5-Spot-Hom-Num’ by creating a project in the
same folder and running the software. Notice that the numerical solution,
while more general, requires specification of the time step via CFL number.
Visualize the pressure distribution, streamline trajectories, time of flight from the
injector/producer, partitioning by well regions, well allocation, water saturation
distribution, oil-water production and recovery history. Notice the effects of
numerical dispersion on the water saturation distribution as compared to the
analytic solution.

Exercise 6.4. Repeat the Exercise 6.3 for a heterogeneous permeability field (in
‘Examples/Simulation/5-Spot-Het-Num’). Compare the results with the analytic
solution in Exercise 6.2.

Exercise 6.5. One of the ways to counter the adverse impact of heterogeneity
on oil recovery is through optimal well placement in relation to the underlying
heterogeneity. Repeat the Exercise 6.4 for a different well configuration (in
‘Examples/Simulation/5-Spot-Het-Num-W’). Visualize the pressure distribu-
tion, streamline trajectories, time of flight from the injector/producer, water satu-
ration distribution to see how optimal well placement counteracts heterogeneity
effects, resulting in improved recovery. Notice in the input file ‘WELL.DATA’
how well locations have been changed.

6.4.3 Modifications for gravitational, capillary, and compressional effects

In Chapter 5 we discussed trajectory-based modeling of single phase transport
under steady-state conditions. For multiphase flow, the velocity field may change
over time due to a variety of factors. As we have seen, the saturation and pressure
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equations are truly coupled, so temporal variations in saturation can lead to varia-
tions in the flow field. In addition, due to time-dependent flow rates at existing wells
and/or the introduction or removal of a well, the boundary conditions can change.
Under such changes the trajectories will move, generating three-dimensional fluxes
orthogonal to the original flow directions. Time-varying velocity fields can often
be approximated as a sequence of steady velocity fields. Thus, for unsteady state
an additional complexity is introduced in terms of updating the pressure fields and
the streamlines at selected time intervals. The choice of the time interval should be
such that the variations in velocity, measured in a quantitative sense, are kept small.

Time-varying velocity fields are but one means of introducing fluxes across
streamlines, gravitational and capillary forces are another. Such fluxes can be han-
dled via a numerical technique known as operator splitting. For example, consider
the case in which gravity is important but capillary effects may be neglected. The
time evolution of saturation in Equation (6.23) can be split into two components,
convective and gravitational. Thus, one solves for the convective part of the flow
for a brief time increment

∂ (ϕS)

∂t
+ ∇ · fwqt = 0 (6.100)

and then updates the saturation for the gravitational component of the flow

∂ (ϕS)

∂t
+ ∇ · fwλn (ρw − ρn) gz = 0. (6.101)

In these equations we are assuming that the aqueous phase is incompressible. When
gravity is accounted for, the individual phase velocities will no longer be aligned
with the total velocity. We can still use the streamline time of flight based on the
total velocity as a spatial coordinate. Thus, the convective component can be solved
along the streamline coordinate using the transformations given above to derive the
reduced Buckley–Leverett Equation (6.54)

∂S

∂t
+ ∂fw

∂τ
= 0. (6.102)

In a similar fashion, Equation (6.101), representing cross streamline mechanisms
such as gravity can be reduced to an equation in time t and a coordinate ζ in the
direction, z, of the gravity field

∂S

∂t
+ 1

φ

∂

∂ζ
[fwλn (ρw − ρn) g] = 0. (6.103)

When it is necessary to update the streamlines to account for changing velocity
field, an important consideration is the remapping and resampling of saturation.
The remapping of the saturations is also crucial for a correct gravity update.
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(a) (b)

(c) (d)

Figure 6.6 Stepwise illustration of the multiphase streamline approach in a quarter
five spot with a single injector and a producer. (a) saturation transport along
streamlines, (b) saturation mapping on to the grid (note that more streamlines
were used for the mapping than are displayed here), (c) accounting for cross-
streamline mechanisms (capillarity) on the grid, and (d) resampling of saturation
on to the streamline trajectories for the next time interval calculations. For the
colour version, please refer to the plate section.

Two distinct approaches have been used for mapping of saturations (Bratvedt et al.,
1996; Datta-Gupta and King, 2007). In the first approach, a direct streamline-
to-streamline resampling is performed in three dimensions. With a sufficient
density of streamlines, the line to line approach can preserve the saturation fronts.
A simpler alternative is to map the changes onto the underlying finite-difference
grid used for the pressure calculations. In this second approach, the saturations are
averaged within the grid blocks intersected by streamlines. One disadvantage of
this technique is a loss of resolution, resulting in a smearing of the saturation front.
Figure 6.6 shows the steps for multiphase transport calculations. Those include
solution of the 1-D saturation transport equations and accounting for cross-
streamline mechanisms on the grid via saturation mapping and resampling.

Although the operator splitting method has been successfully applied to account
for fluxes transverse to streamlines, it can require frequent pressure updates to
achieve convergence, particularly when the gravitational flux is significant. This can
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Figure 6.7 Under the influence of gravity, the total velocity and phase velocities
may not be aligned. The components of the water phase flux parallel and
orthogonal to the total velocity are shown above. The parallel component can
be solved along streamline trajectories which are based on total velocity for
multiphase flow. The orthogonal component is accounted for using operator
splitting. Reprinted with permission. Copyright SPE. [From Tanaka et al. (2013)]

reduce some of the computational advantages of the streamline approach compared
to more traditional finite difference method. To circumvent this, variations of the
operator splitting approach have been proposed such as orthogonal projection of the
water flux into components parallel and perpendicular to the streamlines (Tanaka
et al., 2013), in order to minimize grid updates, as shown in Figure 6.7.

While capillary pressure effects may be incorporated via operator splitting, there
are also semi-analytic solutions to draw upon. To date, most semi-analytical studies
have assumed that the fluids are incompressible. At the very least, we will take
the aqueous phase to be incompressible, so that the governing Equation (6.22)
reduces to

(ϕ∂S)

∂t
+ ∇ · [ fwqt + gwz − hw∇S] = 0, (6.104)

where, we are denoting the saturation of the wetting phase by S, gw contains terms
related to gravitational forces

gw = fwλn (ρw − ρn) g, (6.105)

and we are considering a region away from any sources or sinks. In addition it is
typically assumed that the flow is one dimensional, either radial or longitudinal
(in the direction of qt). For example, consider a coordinate system in which the
coordinate x is along the flow direction and the saturation variation is dominantly
in that direction. Rewriting Equation (6.104) solely in terms of t and x,

∂ (ϕS)

∂t
+ ∂

∂x

[
fwqt + gw sinα − hw

∂S

∂x

]
= 0, (6.106)
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where qt is the magnitude of the flow vector, and α is the angle between the flow
direction and the vertical direction. Early work (Fokas and Yortsos, 1982; Yortsos
and Fokas, 1983) produced an exact analytic solution in the case of a horizontal
reservoir and a constant flow rate with specific capillary pressure and fractional flow
functions. The specific functional forms are not general enough to model realistic
fluid flow but the solution can still be useful for testing numerical algorithms. Chen
(1988) reviewed a series of published solutions, including a self-similar solution
for the case of axisymmetric flow and linear, one-dimensional flow. One of the
self-similar solutions, one-dimensional flow with the specific boundary condition
Qw(0, t) = Q0t−1/2, was presented in McWhorter (1971) and elaborated upon
by McWhorter and Sunada (1990). This solution was recently used to derive a
semi-analytic solution for immiscible two-phase flow with a dispersing component
within one of the phases (Schmid et al., 2011). However, the specific form of
the boundary condition is not commonly used in actual applications, limiting the
usefulness of the analytic solution.

Chen (1988) also discussed a solution corresponding to the propagation of a
stable front that appears when the flow rate is constant. We can derive the governing
equations for the front velocity and structure, if we adopt a solution of the form
S = S(ξ) where

ξ = x − Vt, (6.107)

reducing Equation (6.106) to an ordinary differential equation,

d

dξ

[
fwqt + gw sinα − VϕS − hw

dS

dξ

]
= 0. (6.108)

Note that we used this technique in our study of the Riemann problem [see
Equations (6.78) and (6.79)]. Integrating this expression once with respect to ξ

results in a first-order differential equation for S

hw
dS

dξ
+ VϕS − qt�(S) = C, (6.109)

where C is a constant of integration. In Equation (6.109) we have followed Chen
[1988] and, for the sake of brevity, defined

�(S) = fw − 1

qt
gw sinα, (6.110)

assuming that the flow velocity does not vanish. Boundary conditions can be used to
specify C and to determine the velocity of the propagating front. As in the Riemann
problem, we assume that the saturation well ahead of the front is Sr. The saturation
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some distance behind the front is taken to be Sl. Therefore S → Sl, a constant value,
as ξ → −∞, and hence

dS

dξ
→ 0

in this limit. Thus, in the limit of large negative values of ξ , Equation (6.109) allows
us to determine that C = VϕSl − qt�(Sl) and hence the first-order equation may be
written

hw
dS

dξ
+ Vϕ (Sl − S)− qt [�(Sl)−�(S)] = 0. (6.111)

Equation (6.111) may be solved using numerical methods. We may use the second
boundary condition, specifying that the saturation approaches a constant value Sr,
and that dS/dξ → 0 as ξ → ∞, to produce an expression for the front velocity V

V = qt

ϕ

�(Sl)−�(Sr)

Sl − Sr
. (6.112)

From this expression we deduce that the velocity of the front is not influenced by
the capillary pressure parameters contained in hw(S). It appears that the effect of
capillary pressure is to alter the shape of the two-phase front but not its speed. This
independence of the front speed from the diffusion coefficient is also observed in
the well-known non-linear diffusion equation known as Burgers equation, where an
exact solution is available (Whitham, 1974, p. 101; Sachdev, 2000, p. 131). Note
that when gravitational forces are negligible, this expression reduces to the velocity
of the front for the Buckley–Leverett equation, if we account for the definition
(6.53) of τ and the fact that we have formulated the governing equation in terms
of the spatial variable x. As indicated in Box 6.3, the effect of fluid compressibility
is included within the numerical calculation of pressures and, with a few modifica-
tions, can be included in the corresponding streamline calculations.

Box 6.3 Including compressibility

Because the average fluid pressure p̄ is calculated numerically, by solving
Equation (6.13), the effects of compressibility are already accounted for. For example,
the fluid compressibilities cl, defined by Equation (6.6), are contained in the equation
for average pressure. A key element in the modeling of compressible flow is the
inclusion of appropriate equations-of-state relating densities and average fluid
pressure. The pressure-dependence of the density does add to the non-linearity of the
differential equation but is not a barrier to its solution by numerical methods. One can
modify the streamline formulation, given primarily in Section 5.4 of Chapter 5, to
incorporate effective density changes. In this box we touch upon the modifications
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necessary to accurately trace the trajectories. Our starting point is Equation (6.46),
rearranged to isolate the source term on the right-hand-side

ϕ
∂S

∂t
+ ∇fw · qt + fw∇ · qt = Q̂w.

Compressibility effects can be accounted for by noting that the tangents to the
trajectories are still parallel to the velocity field generated by the solution of the
pressure Equation (6.13). However, for the flow of multiple compressible fluids it is
the total mass flux that is conserved. Thus, our streamline coordinate system is still
defined with one axis along the total velocity vector qt and the other two axes, with
coordinate functions ψ and χ , in the plane perpendicular to qt. But, rather than
Equation (5.46) relating qt to the gradients of ψ and χ , we have (Bear, 1972)

ρqt = ∇ψ × ∇χ ,

where ρ denotes the effective density. Taking the divergence of both sides of this
equation gives

∇ · ρqt = qt · ∇ρ + ρ∇ · qt = ∇ · (∇ψ × ∇χ) = 0,

the last equality is a known identity from vector analysis. For a given flow field qt this
expression provides a differential equation for ρ. Combining Equations (6.51), (6.53),
and (6.48), we may write the above equation as

ϕ
∂ρ

∂τ
+ ρ∇ · qt = 0,

or, upon rearrangement,

∂ ln ρ

∂τ
= − 1

ϕ
∇ · qt.

If one considers a small enough time increment so that the flow field does not change
significantly, say the time increment �t required for the fluid to traverse a grid block
of a reservoir model, then the right-hand-side of the equation does not depend upon
time and we have

ρ = ρoe− 1
ϕ
∇·qtτ .

One can combine these expressions with the streamline tracing algorithms, such as
that of Pollock [1988], where the cell velocities within each grid block of a
finite-difference model are given by locally linear expressions (Equations (5.53))

(qt)i = (q1)i + ai
[
xi − (x1)i

]
,

where ai are local coefficients and x1 is the entry point of the trajectory into the grid
block and q1 is the velocity at that entry point. Using this expression we find that

∇ · qt =
3∑

i=1

ai
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and

ρ = ρoe− 1
ϕ

∑
i aiτ .

Note that for incompressible flow, the velocity field is divergence-free and∑3
i=0 ai = 0.
Returning to our initial governing equation, we can transform it into streamline

coordinates

∂S

∂t
+ ∂fw

∂τ
+ fw

ϕ
∇ · qt = Q̂w

ϕ
,

and use the expression above to write it as

∂S

∂t
+ ∂fw

∂τ
= Q̂w

ϕ
+ fw

∂ ln ρ

∂τ
.

The change in effective density acts as a source term. Thus, streamline techniques are
applicable in the presence of compressible flow with a few modifications, such as the
computation of effective density and the inclusion of an appropriate source term.

Exercise 6.6. Polymer flooding is an improved oil recovery scheme designed
to counter the adverse impact of heterogeneity on oil recovery. It involves
increasing the viscosity of the injected water by dissolving polymer in it. The
increased water viscosity steepens the fractional flow curve, resulting in a more
favorable (piston-like) displacement. Repeat the Exercise 6.4 for a polymer
flood modeled by increasing water viscosity (in ‘Examples/Simulation/5-Spot-
Het-Num-P’). Visualize the pressure distribution, streamline trajectories, time
of flight from the injector/producer, water saturation distribution to see how
polymer flood counteracts heterogeneity effects, resulting in improved recovery.
Notice in the input file ‘SIMULATION.DATA’ that the pressure field needs to
be updated and streamlines regenerated in this example to account for the effects
of viscosity contrast on the pressure distribution and the resulting changes in
velocity field.

Exercise 6.7. This is a continuation of exercise 6.4. Here four additional
producing wells are introduced after some time to recover the unswept oil in the
reservoir (in ‘Examples/Simulation/5-Spot-Het-Num-Infill’). This kind of devel-
opment strategy is commonly referred to as infill drilling. Visualize the pressure
distribution, streamline trajectories, time of flight from the injector/producer,
water saturation distribution to see how infill drilling counteracts heterogeneity
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effects, resulting in improved recovery. The changing well configuration is given
in the input file ‘WELL.DATA’. Whenever the well configuration is changed
and/or the streamlines are updated, the saturation distribution must be mapped
from the old set of streamlines to the new set of streamlines. This mapping can
be a potential source of error in streamline-based flow simulation.

Exercise 6.8. Use the change in variables

ξ = x − Vt,

to reduce the partial differential equation

∂ (ϕSw)

∂t
+ ∂

∂x

[
fwqt + gw sinα − hw

∂Sw

∂x

]
= 0,

to the ordinary differential equation for front propagation with capillary forces,

d

dξ

[
fwqt + gw sinα − VϕSw − hw

dSw

dξ

]
= 0.

6.5 Applications

6.5.1 Flow visualization

In streamline simulation the trajectories are computed using total fluid flux, that
is by summing the fluxes of all the phases. Streamlines based on total flux are
continuous and allow the use of time of flight as a spatial coordinate. We have seen
in Chapter 5 that these streamlines are convenient for visualizing the impact of
heterogeneity on the flow field. For example, streamlines tend to cluster in regions
of high permeability and spread in regions of low permeability. The visualization of
total flux streamlines also indicates the movement of tracer and water flood fronts,
injector-producer relationship, swept volumes for injectors and drainage volumes
for producers. However, streamlines based upon the total flux can mask important
aspects of reservoir flow embedded in the individual phase fluxes. These include
reservoir dynamics, such as phase distribution, appearance and disappearance of
phases and reservoir drive mechanisms. The phase streamlines can be computed
in the same manner as the total fluid streamlines, but using the individual phase
flux instead of total flux. These trajectories, though discontinuous, provide insight
none-the-less.

Figure 6.8 displays a snapshot of the phase streamlines for waterflooding in a
heterogeneous reservoir. The permeability distribution is the same as shown in
Figure 5.11; however, in this case three phases are present: water, oil, and gas.
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(a) (b) (c)

Figure 6.8 Visualization of phase streamlines. (a) Water phase streamlines
showing movement of the injected water, (b) oil phase streamlines showing mobile
oil being drained by producers, and (c) gas phase streamlines showing regions
where depletion drive is active. For the colour version, please refer to the plate
section.

The water phase streamlines have been traced, starting from the injectors, indicat-
ing the movement of the injected water and the region in which the waterflood
is active. The oil and gas phase streamlines have been traced starting from the
producers. The oil phase streamlines display the mobile oil regions that is being
accessed by individual producers and provide guidelines for placement of new pro-
ducing wells. The gas streamlines show the regions where gas is evolving because
of pressure depletion, promoting primary recovery and potential loss of reservoir
energy. Thus, for multiphase flow the visualization of the phase streamlines can
provide some unique insights in addition to the visualization of the total streamlines
discussed in the Chapter 5.

6.5.2 Sensitivity computations

In this section we shall derive the sensitivity coefficients associated with model
parameter perturbations. That is, we shall determine how small variations in reser-
voir flow properties introduce small changes in observable quantities, such as the
multi-phase front arrival times. We shall make use of our time of flight estimates,
and the expression (6.88) for the phase travel time. In addition to the arrival time,
we shall consider saturation histories, or the magnitude of the saturation changes,
governed by Equation (6.86). For clarity, we shall neglect both capillary and gravi-
tational effects. Towards the end of the section we discuss how to include the effects
of gravity and temporal variations in the trajectories.

Arrival time sensitivities

Arrival time sensitivities follow from either of the two semi-analytical expressions,
(6.45) or (6.88), in conjunction with an equation for the total velocity qt. A little
work is required in order to pull out the important parameters contained within the
flow vector qt. Specifically, we have that
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qt = qw + qn

= −λw∇pw − λn∇pn

= − (λw + λn)∇p (6.113)

where the last equality follows from the assumption that we can neglect capillary
pressure, so that pw equals pn. Using the definition (6.5) of the phase mobilities λw

and λn

qt = −
(

krw

μw
+ krn

μn

)
k∇p

= −κk∇p (6.114)

where we have defined

κ = krw

μw
+ krn

μn
, (6.115)

the total fluid mobility. We shall assume that the total fluid mobility is a weak
function of saturation.

We now consider how a perturbation in the properties of a porous medium, such
as porosity and permeability, relates to a perturbation in the arrival time of the
saturation front at an observation point. Because the goal is to derive sensitivities in
order to update our model of a porous medium, we shall consider perturbations in
the properties of individual grid blocks of the model. Thus, our perturbations will
be localized and of limited extent. Let us denote the reservoir properties associated
with the background model by a subscript o. Substituting the expression (6.114)
for qt into Equation (6.88) we find that the travel time in the background model is
given by

To =
∫

xo(s)

1

κo

(
dfw
dS

)−1
ϕo

ko|∇po|ds (6.116)

where xo(s) denotes the trajectory in the background medium and we are allowing
for a heterogeneous background model. We have moved the function (dfw/dS)−1

inside the integral to account for variations in the background saturation along the
trajectory. Consider a perturbation in the background porosity, ϕ(x) = ϕ0(x) +
δϕ(x), and a corresponding change in the travel time to an observation point:

T =
∫

xo(s)

1

κo

(
dfw
dS

)−1
ϕo + δϕ

ko|∇po| ds (6.117)

for a flow field that is assumed to be constant. In Equation (6.117) we are integrating
along the trajectory xo(s) calculated using this background model rather than the
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trajectory in the perturbed model. It has been shown (Nolet, 1987) that the differ-
ence in trajectories leads to contributions to the travel time that are of second order
in δϕ and can be neglected in our first-order sensitivity estimates. Note that if the
flow field is time-varying, we may have to sub-divide the total time into increments
over which the pressure field is nearly constant. The change in travel time is the
difference δT = T − T0 given by subtracting the integral expression (6.116) from
(6.117)

δT =
∫

xo(s)

1

κo

(
dfw
dS

)−1 1

ko|∇po|δϕds

=
∫

xo(s)

1

|vo|
δϕ

ϕo
ds (6.118)

where vo is the flow velocity of the water, calculated using the background model
of the porous medium

vo = κo
dfw
dS

ko

ϕo
∇po. (6.119)

One can calculate vo either by combining the individual contributions, according to
Equation (6.119), or by direct numerical computation, extracting the phase velocity
from the output of a numerical simulator. Sensitivities are functions relating per-
turbations in model parameters, such as δϕ(x), to changes in observable quantities,
such as the front arrival time T . Formally, the sensitivity is the quantity that multi-
plies δϕ in the integrand of the expression (6.118) for δT . From Equation (6.118)
we see that sensitivity associated with perturbations in the porosity, ϕ, is given by

∂T

∂ϕ
= 1

ϕo|vo| . (6.120)

We may follow a similar procedure with respect to the permeability k(x) and the
pressure gradient magnitude |∇p| to determine the sensitivities

∂T

∂k
= − 1

ko|vo| (6.121)

and

∂T

|∇p| = − 1

|∇p||vo| (6.122)

respectively. Equations (6.120), (6.121), and (6.122) account for the explicit depen-
dence of T on ϕ, k, and |∇p|. There is also an implicit dependence of |∇p| field on
both ϕ and k, through the pressure equation. We could account for this dependence
explicitly by calculating the partial of the pressure gradient magnitude with respect
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to ϕ and k and substituting into (6.121) to obtain additional terms for the sensi-
tivities. However, this approach leads to complicated expressions. Our preferred
approach is to take advantage of the fact that we recompute the pressure field after
each update of the model of the porous medium. Thus, after each change in the
flow properties we conduct a numerical simulation and obtain a new estimate of the
pressure field, p, and its gradient, accounting for the implicit dependence. We can
use the travel time sensitivities, as well as the trajectories, for the efficient imaging
of flow properties, following a procedure akin to geophysical tomography.

Exercise 6.9. Following the procedure used to determine the porosity sensitivity
(6.120), derive the sensitivities for the permeability k(x) and the pressure
gradient magnitude |∇p|, given by

∂T

∂k
= − 1

ko|vo|
and

∂T

|∇p| = − 1

|∇p||vo|
respectively.

Exercise 6.10. Use the software ‘TRACE3D’ to update an initial permeability
distribution (PERMX-INIT.DATA) by matching (via inversion) the water-cut
response at the producing wells (WELL-OBSERVED.DATA) in a 9-spot water
flood (a central injector with eight surrounding producers). Use the data files
in the folder ‘Examples/Inversion/9-Spot-Het’ by creating a project in the same
folder and running the software. Choose the travel time inversion option (already
selected). View the results to examine the improvements in the travel time and
amplitude match. Compare the initial and the updated permeability fields and
also view the changes made to initial permeability distribution during inversion.
Also compare the updated permeability field with the ‘reference’ permeability
field that was used to generate the data (‘reference’ permeability field available
in the folder ‘Examples/Inversion/9-Spot-Het’).

Exercise 6.11. This is a continuation of exercise 6.10. Update the initial
permeability field via a joint inversion of water-cut response at the producing
wells and bottom hole pressure (BHP) data at the injection well. Use the data
files in the folder ‘Examples/Inversion/9-Spot-Het-BHP’ by creating a project in
the same folder and running the software.
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Saturation amplitude sensitivities

Travel times provide useful information related to the hydraulic conductivity within
a porous medium. However, the arrival time provides just a single datum for a given
source and observation point. Furthermore, the first arriving saturation at a particu-
lar location most likely took the fastest path and does not provide information on the
flow properties away from that path. Finally, the initial portion of the breakthrough
curve might be poorly sampled, or not sampled at all, and we may miss the initial
arrival at a well altogether. For these reasons, it is desirable to use as much of the
breakthrough curve as possible in order to infer flow properties between a set of
wells. It this section we describe a simple method to accomplish this (Vasco et al.,
1999; Vasco and Datta-Gupta, 2001a), extending the results of the previous section.
Often it will be possible to conduct a travel time inversion first, adjusting an initial
model to fit a set of observed arrival times. We can then use the amplitude data
to further refine the model. This approach is often taken in geophysical waveform
inversion.

The sensitivities will be based upon the self-similar form (6.72) for the saturation
amplitude. The Buckley–Leverett solution (6.86) provided one example of such a
solution. One may recall that adoption of this form allows for spatially varying qt

and flow properties, but does require the assumption the saturation ahead of the
front is uniform. We will adopt this solution in a local piecewise sense, assuming
that the saturation within grid blocks of the reservoir model have a uniform average
saturation, though the saturation may vary slowly along a path traversing many
blocks. Thus, we adopt the self-similar form of the solution when considering local
propagation across a single grid block, and perturbations to that grid block alone.

We will begin by building upon the results of the previous section and consider
how a perturbation in the time of flight introduces a small deviation in the saturation
amplitude. Once we establish this relationship, we can follow the approach taken
in the last section to relate the perturbation in the time of flight to the properties
of the porous medium. Consider a perturbation in the properties along a trajectory,
or flow path, xo(s) within the porous medium, and the resulting perturbation in the
time of flight, given by

τ = τo + δτ (6.123)

where τo is the value computed using the unperturbed porous structure. There will
be a corresponding perturbation in the saturation at the observation point

S
(τ

t

)
= So

(τ
t

)
+ δS

(τ
t

)
(6.124)

where So(τ/t) is the saturation history in the unperturbed medium. As noted
above, we are assuming that the saturation within the grid block, and ahead of the
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propagating saturation front, is uniform, at least locally, so that the self-similar
form may be used. Expanding S (τ/t) in a Taylor series about the point τo/t we find
that

S
(τ

t

)
= S

(
τo + δτ

t

)

= So

(
τ 0

t

)
+ 1

t
So

′
(τo

t

)
δτ (6.125)

to first order in the time of flight perturbation, δτ , where the prime denotes the
derivative with respect to τ . From Equation (6.125) we find that the perturbation in
saturation is given by

δS
(τ

t

)
= 1

t
So

′
(τ

t

)
δτ . (6.126)

We are almost in a position to relate variations in the saturation amplitude to per-
turbations in the properties ϕ, k, and |∇p|. We will need the relationship between
the time of flight τ and flow properties, given by Equation (6.53) and repeated here
for convenience,

τ(s) =
∫ x(s)

x(0)

ϕ

|qt|dx

where qt is related by κ , k, and ∇p, according to Equation (6.114). Between this
sub-section and the previous one, everything is in place to relate a perturbation in
the amplitude of a saturation change to perturbations in ϕ, k , and |∇p|. We leave it
as an exercise for the reader, to show that the sensitivities are given by

∂S

∂ϕ
= 1

t
So

′ 1

ϕo|qo| (6.127)

∂S

∂k
= −1

t
So

′ 1

ko|qo| (6.128)

∂S

∂|∇p| = −1

t
So

′ 1

|∇p||qo| (6.129)

We can provide a physical interpretation of these expressions. As an example,
consider the porosity sensitivity, given by Equation (6.127). The fractional com-
ponent 1/ϕo|qo| is the time of flight sensitivity associated with a perturbation in ϕ.
The local slope of the saturation curve, S′

o, converts the time-shift sensitivity to an
amplitude-shift sensitivity. For example, steeper slopes, or larger values of S′

o, mean
that a given time-shift leads to larger amplitude shifts. Note that the full sensitivity
is obtained by summing over all paths that contribute to the saturation history at a
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given observation point. A multitude of paths can provide sensitivity to an extended
region between a set of source and observation wells.

Although we have derived the sensitivities in terms of saturation, we can convert
them to fractional flow sensitivities by multiplying each sensitivity given above
by dfw/dS. The derivative of the fractional flow function is computed numerically,
based upon the relative permeability curves. We must emphasize that, even though
δ|∇p| is treated as an unknown parameter in our derivation it functions more as a
correction term. That is, given estimates of flow properties, boundary conditions,
and flow rates we can compute the pressure field and the pressure gradient. And
we do calculate the pressure field numerically for each iteration of our inversion.
However, in solving for reservoir properties we do not know the pressure field
exactly. The pressure gradient perturbation δ|∇p| is a correction term that should
minimize the mapping of deviations in the pressure gradient into reservoir prop-
erties. At each iteration of the inversion we recalculate the pressure field given
our current estimates of reservoir structure and overwrite δ|∇p| with the calculated
value. If the trajectories are not significantly perturbed by the passage of the satu-
ration front then the perturbed trajectory x(s) may be replaced by the unperturbed
trajectory xo(s).

Exercise 6.12. Starting with expression (6.125), show that the saturation
amplitude sensitivities are given by

∂S

∂ϕ
= 1

t
So

′ 1

ϕo|qo|
∂S

∂k
= −1

t
So

′ 1

ko|qo|
∂S

∂|∇p| = −1

t
So

′ 1

|∇p||qo|

Sensitivity estimates and their accuracy

In this section, we explore the accuracy of the trajectory-based approach. Specifi-
cally, we compare the semi-analytic approach with numerical sensitivity estimates.
In a purely numerical approach, conducted using a reservoir simulator, a given
cell permeability is perturbed by a small amount and an entire flow simulation
is run. Changes in the predicted observable quantities, such as the aqueous fluid
saturation at each well, are then calculated. The sensitivity associated with a par-
ticular observation, due to changes in a particular cell, is then the ratio of the
saturation change to the permeability change. While this approach is flexible and
accurate it generally requires extensive computation, a complete simulation for each
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parameter, limiting the number of parameters that can be estimated. Contrast this
with the trajectory-based sensitivities, expressed in Equations (6.127), (6.128), and
(6.129), based upon a single reservoir simulation.

As an illustration, consider the sensitivities associated with the j-th water-cut
estimate, the fraction of water extracted from a given well. First, a forward sim-
ulation is conducted using an initial model of the porous medium. This initial
model would typically be constructed using geographically dispersed data, such
as well-logs or cores. The change in fractional flow at an observation point due to
perturbations in flow properties, are based upon the sensitivities (6.127), (6.128),
and (6.129). If we simply consider perturbations in permeability, then the change
in the j-th value of water-cut is

δfj = −
Nj∑

n=1

1

t

dfw
dS

So
′
(τ

t

)∫
x

1

ko|qo|δkdr, (6.130)

where the sum is over all Nj trajectories contributing to this particular observation,
and the integral is along each trajectory within the sum. The derivative dfw/dS
appears because we are considering observations of fractional flow rather than
saturation. Equation (6.130) is an expression for a change in fractional flow due
to all permeability variations influencing a given observation. In order to isolate
the change due to a variation in a particular cell of the model, say grid-block i,
we simply consider the increments of the trajectory which pass through that block.
Denoting the segment of the path within grid block i by νi, we isolate that part of
Equation (6.130) that is sensitive to changes within the cell,

δfj
δki

= −
Nj∑

n=1

1

t

dfw
dS

So
′
(τ

t

) ∫
νi

1

ko|qo|dr (6.131)

using the fact that the perturbation δki is constant within the grid block. As stated
above, all the quantities appearing in Equation (6.131) are contained in the existing
model or produced by a single numerical simulation.

To verify the accuracy of the asymptotic approach we compare it to a purely
numerical sensitivity calculation. In this example we consider water injection in a
quarter five-spot well configuration with a single injector-producer pair in opposite
corners of the reservoir grid. Trajectories, representing flow between the two wells,
are shown in Figure 6.9, along with the fraction of water appearing at the producing
well as a function of time. In this case the numerical and asymptotic sensitivities
associated with perturbations in porosity, shown in Figure 6.10, are essentially iden-
tical. Because the steady state velocity field is insensitive to porosity variations, the
trajectories do not shift as a result of perturbations in porosity, and the asymptotic
sensitivities are exact.
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(a)

(b)

Figure 6.9 Water injection in a quarter five spot (a) streamline trajectories and
(b) Fractional water production.

Sensitivities associated with changes in reservoir permeability, computed using
Equation (6.131) are plotted in Figure 6.11. The numerical and asymptotic sensi-
tivity coefficients are again very similar. However, there are small but detectable
differences between the sensitivities. These differences are mainly due to the fact
that, unlike porosity, the velocity field is influenced by the permeability varia-
tions. Thus, the assumption of static trajectories is only an approximation. The
patterns are essentially the same, indicating that deviations in fractional flow data
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(a) Numerical sensitivity for point a. (b) Semi-analytic sensitivity for point a.

(c) Numerical sensitivity for point b. (d) Semi-analytic sensitivity for point b.

Figure 6.10 Comparison of trajectory-based semi-analytic sensitivities for poros-
ity with numerical perturbation at two different times.

will be mapped into similar permeability changes by the numerical and asymptotic
approaches.

Accounting for gravity and changing trajectories

So far, the trajectory-based analytic sensitivity computations assumed static tra-
jectories. Many situations can lead to changes in the flow field and the corre-
sponding streamlines. These include the appearance of new wells, the removal of
existing wells, or isolating various reservoir zones to enhance production. Gravita-
tional effects, and other cross streamline mechanisms, can also lead to changing
streamlines. Trajectory-based sensitivity computations have been generalized to
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(a) Numerical sensitivity for point a. (b) Semi-analytic sensitivity for point a.

(c) Numerical sensitivity for point b. (d) Semi-analytic sensitivity for point b.

Figure 6.11 Comparison of trajectory-based analytic sensitivities for permeability
with numerical perturbation at two different times specified by a and b in
Figure 6.9.

handle such situations, albeit in an approximate manner. Two approaches have
been proposed. In the first approach, He et al. [2002] propose a ‘generalized travel
time’ inversion. It involves minimizing a time shift that is obtained by maximizing
the cross-correlation between observed and computed production response. The
sensitivities of the time shift can be obtained analytically, utilizing the arrival time
sensitivities discussed before. The approach combines travel time and amplitude
sensitivities and is analogous to seismic waveform inversion (Zhou et al., 1995).
The generalized travel time inversion has been applied successfully to field appli-
cations (Kim et al., 2010). The other approach involves numerical solution of the
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sensitivity equation along one-dimensional trajectories [Gautier et al., 2001]. The
sensitivity equation is derived by differentiating the finite-difference form of the
transport equation along streamline trajectories.

Exercise 6.13. Use the software ‘TRACE3D’ to update an initial permeabil-
ity distribution (PERMX-INIT.DATA) by matching (via inversion) the water-
cut response at the producing wells (WELL-OBSERVED.DATA) in water
flooding under changing well conditions. Use the data files in the folder
‘Examples/Inversion/9-Spot-Het-Infill’ by creating a project in the same folder
and running the software. The water flooding starts with 4 producing wells and
4 additional producing wells are introduced after 1000 days (see Well.DAT).
Choose the generalized travel time inversion option (already selected). View the
results to examine the improvements in the travel time and amplitude match.
Compare the initial and the updated permeability fields and also view the
changes made to initial permeability distribution during inversion. Also compare
the updated permeability field with the ‘reference’ permeability field that was
used to generate the data (‘reference’ permeability field available in the folder
‘Examples/Inversion/9-Spot-Het-Infill’).

Exercise 6.14. This is a continuation of exercise 6.13. Update the initial
permeability field via a joint inversion of water-cut response at the producing
wells and bottom hole pressure (BHP) data at the injection well. Turn on the
BHP matching option in the data file ‘SIMULATION.DATA’.

6.5.3 Estimation of subsurface properties: multiphase flow
and transport tomography

The advantages of the semi-analytic sensitivities provided by the trajectory-
based approach might best be illustrated in applications involving geophysical
observations. The wealth of data supplied by geophysical time-lapse monitoring
can be a boon to reservoir characterization and the imaging of flow-related
properties such as permeability. As noted by Vasco et al. (2004, 2008b) the
computational efficiency associated with the semi-analytic sensitivities facilitates
reservoir characterization based upon geophysical time-lapse data. Follow-up work
has supported this conclusion (Rey et al., 2012; Watanabe et al., 2014), and new
data sets with improved temporal resolution can potentially provide robust reservoir
characterization based upon the onset of changes in geophysical parameters (Vasco
et al., 2014, 2015). Here we illustrate the application of the trajectory-based
sensitivity computation for reservoir model updating by integrating 4D seismic
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(a)

(b) (c) (d)

Figure 6.12 (a) Top surface of the reservoir indicating fault blocks, (b) initial
fluid phase distribution, (c) initial horizontal permeability distribution, and (d)
initial porosity distribution [from Rey et al. (2012)]. Reprinted with Permission.
Copyright SEG. For the colour version, please refer to the plate section.

surveys with well production data. The approach is particularly well-suited for the
calibration of high-resolution reservoir properties such as permeability, because
the field-scale seismic data are areally dense while the production data effectively
average properties between the wells.

The example discussed here involves waterflooding of a North Sea reservoir
with multiple seismic surveys (Rey et al., 2012; Watanabe et al., 2014). The
reservoir rocks are lower to middle Jurassic sandstones of a high quality, with
an average porosity of 25 percent and permeability in the range of 200–2,000 mD.
Figure 6.12(a) shows the top horizon of the reservoir, the respective segments
(C, D, E, G) and the wells. Figures 6.12 (b)–(d) show the initial phase distribu-
tion accompanied by the porosity and permeability cell properties in the initial
model. The production data include water, oil and gas rates in addition to bottom-
hole pressure. These data are provided exclusively for the wells located in the
E-segment; therefore, we will concentrate the calibration of the reservoir model
over this segment. Figure 6.13 shows the location of the three producers (E-3H,
E-2H, E-3AH) and two injectors (F-1H, F-3H), together with their hydraulic con-
nectivity depicted by streamline trajectories that are colored per injector-producer
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Base survey 2001
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C-4H

E-2HE-3AH
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F-1H-E-2H

F-2H-E-2H
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Figure 6.13 Well configuration and flow geometry during time lapse seismic
surveys [from Rey et al. (2012)]. Reprinted with Permission. Copyright SEG. For
the colour version, please refer to the plate section.

(a) (b)

Figure 6.14 (a) Time lapse seismic acoustic impedance changes displayed on the
reservoir grid and (b) a transect along the section marked ‘1900’ in (a) indicating
hardening and softening of the rock because of reservoir production [from Rey
et al. (2012)]. Reprinted with Permission. Copyright SEG. For the colour version,
please refer to the plate section.

pair. This graphic is an essential tool for visualization of the effect of faults and
barriers on the flow geometry. In addition to the production data, a set of 4D seismic
surveys was acquired at the years 2001, 2003, and 2004. The seismic data were
externally processed and provided for use in model calibration as post stack volumes
of the reflection amplitude together with the corresponding horizons for the top and
base of the reservoir.

The first step in our data calibration procedure is to invert the seismic volumes
of reflection amplitude for changes in acoustic impedance. Figure 6.14 shows
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the results of the geophysical inversion and the upscaling of the seismic volume
from the seismic grid resolution (25m × 25m) to the reservoir grid resolution
(100m × 100m). Collocation of the seismic data in the reservoir grid allows us
to perform a quantitative cell-by-cell evaluation of the match quality during the
calibration procedure. Figure 6.14 also shows the extent of the seismic volume
of the E-segment compared to the size of the entire reservoir. Considering the
small time span between the consecutive surveys, it is reasonable to assume that
the porosity does not vary as a result of subsidence of the reservoir, and that the
temporal changes in acoustic impedance result only from changes in fluid phase
saturations and/or reservoir pressure. In support of this assumption, the inverted
seismic volume indicates the rise of the water-oil contact in the E-segment (Figure
6.14). The red color in the graphic, associated with a positive change in acoustic
impedance, is most likely related to the incremental increase in rock stiffness
corresponding to a water saturation increase through the production period.

Petroelastic model and sensitivity of acoustic impedance

The changes in seismic impedance due to reservoir pressure and fluid saturation
changes are interpreted using a petroelastic model. In addition, we need to compute
the sensitivity of the seismic response to the changes in reservoir properties. The
trajectory-based method can be used to compute these sensitivities efficiently.

The elasticity of the reservoir rock and, therefore, its ability to propagate
mechanical waves is determined by the rock matrix properties, the pore fluids
and the reservoir pressure. For the range of seismic frequencies, Gassmann’s
equation (Gassmann, 1951b), discussed in Box 2.10 in Chapter 2, is an adequate
representation of the elasticity of the bulk rock volume. The equation relates (1)
the bulk modulus of the porous rock, also called the bulk modulus of the dry frame
Kd(φ, p) which is a function of porosity and the lithostatic pressure, (2) the bulk
modulus of the structural rock Kg(φ) which is an intrinsic property of the rock
configuration and can be assumed to be constant under varying conditions from
fluid phase changes in the porous space, and finally (3) the fluid bulk modulus
Kf (Sw, So, Sg, p, T) which is a function of the elastic properties of the complete
mixture. Gassmann’s equation is

Ks = Kd +
(
1 − Kd/Kg

)2
φ
(
Kf − Kg

−1
)−1 + Kg

−1
(
1 − Kd/Kg

) , (6.132)

where the composite fluid bulk modulus, Kf , is calculated from the properties of the
fundamental components and using the harmonic or Reuss average of the properties
weighted by the relative amount of each individual component. The Reuss average
guarantees the lowest value of the modulus obtained by combining the individual
elements (Mavko et al., 1998) and may be written as
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1

Kf
=
∑

i=o,g,w

Si

Ki
. (6.133)

For this application the relationship between the dry frame modulus, Kd, and the
porosity of the rock was determined by laboratory observations made on cores and
is expressed as the linear equations

Kd = a − ϕb

Gd = c − ϕd. (6.134)

The density, ρ, is computed as the weighted average of the densities of the individ-
ual components of the rock

ρ = (1 − ϕ)ρd + φ
∑

i=0,g,w

Siρi. (6.135)

With the density and bulk modulus of the saturated rock, the compressional and
shear velocities can be estimated under the assumptions of an isotropic media and
of insensitivity of the shear modulus to the fluid inside the porous media. The
compressional or p-wave velocity, Vp, is estimated as

Vp =
√

Ks + 4/3Gd

ρ
. (6.136)

The seismic impedance, Z, can then be written in terms of Vp as

Z = ρVp = ρ

√
Ks + 4/3Gd

ρ
. (6.137)

With the above petroelastic model we can compute the changes in the acoustic
impedance as a function of pressure and saturation changes. For a simple two-
phase (oil, water) system, Figure 6.15 shows an increase in acoustic impedance
with increasing water saturation for a fixed pressure and a decrease of acoustic
impedance with increasing pressure at a fixed saturation.

The sensitivity of acoustic impedance with respect to (absolute) permeability
can be achieved from an expression of the differential of Equation (6.137). Under
the assumption that temporal changes in acoustic impedance are a function of
differences in the fluid saturation and the effective pore pressure of the rock, the
differential of acoustic impedance is given by

SZ = δZ

δk
= ∂Z

∂SW

δSW

δk
+ ∂Z

∂Sg

δSg

δk
+ ∂Z

∂p

δp

δk
. (6.138)
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(a)

(b)

Figure 6.15 Acoustic impedance calculation sensitivity (a) with respect to water
saturation changes under a fixed pressure (270 bar) and (b) with respect to pressure
changes under a fixed saturation value (Sw = 0.5).

Here the partial derivatives of acoustic impedance, ∂Z/∂SW, ∂Z/∂Sg, and ∂Z/∂p can
be computed by numerical perturbation using the petroelastic models while the sat-
uration sensitivity and pressure sensitivities can be computed using the trajectory-
based methods. More details on these sensitivity computations can be found in Rey
et al. (2012) and Watanabe et al. (2014).

Joint integration of seismic and multiphase flow data

The data integration is carried out using a deterministic approach in which a penal-
ized misfit function is minimized. The misfit function quantifies the production and
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seismic data misfit together with regularization terms. The regularization terms con-
sist of a norm constraint and a roughness constraint and are introduced to preserve
the spatial continuity and geological realism in the updated model. In this manner,
the model calibration is a balance between reducing the data misfit and minimizing
the changes to the prior model, thereby maintaining geologic consistency. The
penalized misfit function in this case is defined as

f (δk) = α1||δdseis − Gseisδk|| + α2||δdprod − Gprodδk|| + β1||δk|| + β2||Lδk||.
(6.139)

In Equation (6.139), δdseis is the vector of the misfit between the change in acoustic
impedance derived after a geophysical seismic inversion and the change in simu-
lated acoustic impedance. The sensitivity matrix Gseis contains the partial deriva-
tives of the changes in acoustic impedance with respect to the reservoir parameters,
that is, grid cell absolute permeability. The production information is incorporated
to an extent controlled by the weighting factors α1 and α2. When the seismic
information contains excess noise, or when scaling from the seismic to reservoir
flow simulation grid is uncertain, then α1 can be selected so that the seismic infor-
mation is applied as a second smoothness constraint. The quantity δk is the vector
of changes in the reservoir permeability field. The first penalty term is the norm
constraint that penalizes deviation from the prior model. The second penalty term
is the roughness constraint, where the operator L computes the second difference
of each cell permeability, and has an effect analogous to the imposition of a prior
variogram or covariance constraint. For a given step, the minimum of the objectve
function is obtained using a least-squares solution of the augmented linear system
of equations ⎛

⎜⎜⎜⎜⎝
α1Gseis

α2Gprod

β1I

β2L

⎞
⎟⎟⎟⎟⎠ δk =

⎛
⎜⎜⎜⎜⎝
δZ

δdprod

0

0

⎞
⎟⎟⎟⎟⎠ . (6.140)

where the scalars β1 and β2 determine the relative strengths of the norm and
smoothness constraints. The weighting factors are typically determined empirically,
requiring multiple trials, for a specific application. They are enforced only to the
extent that implausible geologic features (i.e., artifacts) resulting from updates
along streamline trajectories are avoided. Figure 6.16 shows the extent of the
modifications in the acoustic impedance for selected layers. Even though the
majority of the time lapse changes are related to the replacement of oil by water
(i.e., positive changes), there are noticeable locations of an increase in acoustic
impedance that are unrelated to water movement and that, we infer, are related
to changes in pressure. These changes are located in areas that are initially fully
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Pre-calibration Observed Post-calibration

K = 13

K = 11

K = 5–9

Figure 6.16 Acoustic impedence changes in selected layers before (pre-
calibration) and after inversion (post-calibration) and their comparison with the
observed values [from Rey et al. (2012)]. Reprinted with Permission. Copyright
SEG. For the colour version, please refer to the plate section.

Water production rate Oil production rate

Figure 6.17 Comparison of the observed and calculated multiphase production
response [from Rey et al. (2012)]. Reprinted with Permission. Copyright SEG.
For the colour version, please refer to the plate section.
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saturated with water; therefore, the decrease in bulk modulus is not related to
changes in fluid saturations at those cells, but rather to changes in the average
pressure. Rey et al. (2012) did not account for the pressure effects on the acoustic
impedance calculations. This discrepancy was corrected in the subsequent work
of Watanabe et al. (2014). They accounted for both pressure and saturation effects
on the seismic response. Figure 6.17 shows the improvement in matches to the
observed multiphase production data after joint calibration.

6.6 Summary

In this chapter we have discussed the application of asymptotic and trajectory-based
methods to multiphase flow and transport in permeable media. As in the previous
chapters, the asymptotic approach leads to an equation describing the phase or
travel time of a propagating front, in this case the fluid saturation front. More impor-
tantly, the asymptotic approach is shown to naturally lead to a multiphase version of
the streamline time of flight introduced in Chapter 5. The time of flight is used as a
spatial coordinate to decouple the three-dimensional multiphase flow equation into
one-dimensional equations along streamlines which are solved using analytic or
numerical methods. The asymptotic method also allows for efficient computation of
sensitivity of multiphase flow response to spatial variations in subsurface properties.
The sensitivities can be used in conjunction with inverse modeling, leading to an
efficient formalism for subsurface imaging using multiphase flow and transport
data.



7

Coupled deformation and fluid flow

7.1 Introduction

With the continuing development of techniques for monitoring fluid flow using
remote observations, there is an increasing need to model the associated defor-
mation of the porous rock containing the fluid. Such modeling helps us understand
displacements induced by fluid flow, as observed by geodetic methods and seismic
time strains. Coupled modeling also provides insight into the deformation-induced
flow associated with the passage of an elastic wave. Understanding this phenomena,
and its relationship to the properties of a porous medium, are critical for effective
time-lapse monitoring of fluid flow. Time-lapse monitoring provides a basis for
the inverse problem: the determination of the properties of a porous medium using
remote observations. In this chapter we develop solutions for coupled deformation
and fluid flow. While one goal is the resulting efficiency associated with trajectory-
based solutions for both forward and inverse modeling, the insight provided by the
semi-analytic solutions is equally important to our understanding. The end result
of our efforts will be similar to what we found in earlier chapters: an equation for
the phase and for the trajectories. The primary difference will be the appearance
of multiple phase velocities, revealing the existance of elastic-like fast waves, and
slow diffusion-like modes of propagation.

In this chapter we consider two important situations in which the governing
equations simplify. First, when a single fluid is present in a poroelastic medium, the
non-linearity due to saturation-dependent properties disappears and the resulting
equations are linear for small strain rates. Second, for the small but rapid displace-
ments associated with the passage of an elastic wave through a poroelastic medium,
we can linearize the equations about the existing saturation distribution.

285
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7.2 Deformation in a porous body containing a single fluid

7.2.1 The governing equations

For fluid injection over a time period during which viscoelastic and plastic behavior
are not significant, one may model the reservoir and the surrounding regions as a
poroelastic medium. In this approximation, we assume that the porous skeleton
behaves elastically while the injected material behaves as a Newtonian viscous
fluid. We are free to adopt the constitutive models and the coupling terms discussed
in Chapter 2. Thus, we can begin with the governing Equations (2.154) and (2.155).
We can simplify these expressions by considering the case in which the body force
terms fs and ff vanish and the convective terms are small enough to be neglected:

ϕρf
∂u̇f

∂t
= ϕ∇ · σ f + df , (7.1)

(1 − ϕ) ρs
∂u̇s

∂t
= (1 − ϕ)∇ · σ s − df . (7.2)

We denote all quantities associated with the fluid by the subscript f , and we have
made use of the constraint df = −ds = d on the interaction terms for the case
of a single fluid [see Box 2.7]. We can now write everything in terms of the solid
displacement us and the displacement of the fluid relative to that of the solid

w = ϕ
(
uf − us

)
, (7.3)

a common formulation in the field of poroelasticity. Note the weighting of the
relative displacement by the porosity in the definition (7.3). If we add and subtract
ϕρf ∂u̇s/∂t from the left side of Equation (7.1), then we can write the system in
terms of us and w

ϕρf
∂u̇s

∂t
+ ϕρf

∂ẇ
∂t

= ϕ∇ · σ f + df (7.4)

(1 − ϕ) ρs
∂u̇s

∂t
= (1 − ϕ)∇ · σ s − df . (7.5)

We can remove the df term from Equation (7.5) by adding Equation (7.4) to it. The
new system of equations that results is

ρf
∂u̇s

∂t
+ ρf

∂ẇ
∂t

− df

ϕ
= ∇ · σ f (7.6)

ρ
∂u̇s

∂t
+ ϕρf ,

∂ẇ
∂t

= (1 − ϕ)∇ · σ s + ϕ∇ · σ f (7.7)

where we have divided the first equation by ϕ, moved the drag force term df to the
left-hand-side of the equation, and defined the composite density

ρ = (1 − ϕ) ρs + ϕρf . (7.8)
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In order to solve the system, we first need to write df , σ f , and σ s in terms of the
velocities, u̇s and ẇ, or the displacements.

An analysis of the interaction term df

Regarding d = df , we are free to adopt a generalization of expression (2.156) from
Chapter 2. Specifically, we can write df as

df = ϕμfK−1ẇ, (7.9)

where K−1 is a convolutional operator whose Fourier transform is 1/k(ω), the
inverse of the dynamic permeability (Johnson et al., 1987). A time domain expres-
sion was derived by Plyushchchenkov and Turchaninov (2000) and incorporated
into a numerical finite-difference code for modeling poroelastic propagation valid
across all frequencies (Masson and Pride, 2010). In Box 2.8 we discuss a frequency-
dependent expression for the dynamic permeability 1/k(ω):

1

k(ω)
= 1

ko

[√
1 − i

ω

ωc
�− i

ω

ωc

]
(7.10)

where � is a pore geometry term

� = 4
ν∞ko

�2ϕ
, (7.11)

ωc, which is the transition frequency signifying the crossover from viscous-
dominated flow to flow dominated by inertial forces, given by

ωc = μfϕ

ρf ν∞ko
, (7.12)

where ν∞ is the tortuosity at the high-frequency limit and ko is the static perme-
ability. The parameter � also depends upon �, a variable that has an approximate
interpretation as twice the ratio of pore volume to pore surface area (Johnson et al.,
1987). For many porous media � is approximately 1/2 (Johnson et al., 1987). As
noted in Box 2.8, this equation is the simplest model connecting the high- and low-
frequency behavior. For most applications in the Earth Sciences, the transition or
crossover frequency (ωc) is much greater than the frequency of the propagating
disturbance, so in most cases one may safely take k(ω) = ko. In fact, it appears that
medium or mesoscale heterogeneity, such as patchy saturation of fluid or spatial
variations in the material properties of the porous medium, may have a much more
significant effect at the frequencies used in geophysical exploration (White, 1975;
Johnson, 2001; Pride et al., 2004).
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Substituting the expression (7.9) for df into Equation (7.6) and writing out all
temporal derivatives explicitly gives

ρf
∂2us

∂t2
+ ρf

∂2w
∂t2

− μfK−1 ∂w
∂t

= ∇ · σ f (7.13)

ρ
∂2us

∂t2
+ ϕρf

∂2w
∂t2

= (1 − ϕ)∇ · σ s + ϕ∇ · σ f (7.14)

It makes physical sense that the interaction term df should involve a temporal
convolution because the drag forces that it represents are due to viscous flow, a
dissipative process, as well as inertial forcing. The effects of this ‘memory kernel’
on wave propagation in poroelastic media, along with an asymptotic solution, were
discussed by Hanyga and Seredynska (1999).

We finish with a note on the relationship between the frequency-dependence
of the dynamic permeability and the presence of derivatives of various orders in
the time-domain expressions (7.13) and (7.14). First, in an effort to be mutually
consistent, we apply the Fourier transform to Equations (7.13) and (7.14), bringing
them both into the frequency domain

− ω2ρf Us − ω2ρkW = ∇ · �f (7.15)

−ω2ρUs − ω2ρf W = (1 − ϕ)∇ · �s + ϕ∇ · �f , (7.16)

where

ρk = ϕρf − μf

ωk(ω)
i. (7.17)

And we denote the Fourier transform of the solid and fluid displacements by Us

and W, respectively. Depending upon the nature of the dynamic permeability, k(ω)
as a function of ω, Equations (7.15) and (7.16) can contain a variety of temporal
derivatives upon transformation back into the time domain. In order to see this,
consider the model of (Johnson et al., 1987), given by Equation (7.10). If we expand
the quantity under the square root in a Taylor series in ω about zero, we obtain
an infinite series in ω. Upon transforming this into the time domain, we have
an operator containing an infinite series of derivatives with respect to time. The
main point is that, depending upon the particular form of the dynamic permeability
function, the governing equations can contain a variety of derivatives. Also note
that the terms in the series may diminish quite rapidly if ω is much smaller then ωc.

The fluid and solid stresses

The stresses and pressures may be written in terms of the spatial derivatives of the
solid and fluid displacements as was done in Chapter 2. Note that one can argue, as
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in Box 2.11, that the coefficients in the expressions relating fluid and solid stresses
to the fluid and solid displacements are frequency-dependent, particularly in the
presence of variable fluid saturations (White, 1975; Johnson, 2001; Pride et al.,
2004). Frequency-dependent coefficients will not stand in the way of our analysis.
In fact, we will allow for a frequency-dependent permeability k(ω), such as that
given by Equation (7.10). We do not invoke any explicit assumptions regarding
the magnitude of ω. Rather, we shall assume that the microscopic and mesoscopic
processes operate at length scales that are much smaller than the wavelength of the
disturbance that we are modeling. In addition, we allow for a smoothly varying het-
erogeneity between boundaries and interfaces of a length scale that is much larger
than the dominant wavelength of the disturbance. The large-scale heterogeneity will
be reflected by the presence of spatially dependent coefficients in the governing
equations.

Using the method of volume averaging, Pride et al. (1993) obtained explicit
expressions for the the phase averaged stress-strain relations. We transform their
results into the frequency domain and write them in terms of the poroelastic param-
eters Ku (undrained bulk modulus), C (Biot’s coupling modulus), and M (the fluid
storage coefficient) introduced in Chapter 2. If we also write the stress-strain rela-
tionship in terms of the dependent variables Us and W, and assume that the porosity
is locally constant, we arrive at

(1 − ϕ) �̄s = [(Ku − ϕC)∇ · Us + (C − ϕM)∇ · W] I + τ (7.18)

and

�̄f = [C∇ · Us + M∇ · W] I, (7.19)

where the overbar signifies the phase average of the transformed stress tensor, and
τ is the deviatoric stress tensor:

τ = G

[
∇Us + ∇UT

s − 2

3
∇ · UsI

]
, (7.20)

that part of the stress tensor representing the elastic shear stress. Equations (7.18)
and (7.19) may be combined to give

(1 − ϕ) �̄s + ϕ�̄f = [Ku∇ · Us + C∇ · W] I + τ . (7.21)

The expressions (7.19) and (7.21) are compatible with the corresponding results
in Chapter 2, Section 2.6.2, if we identify the phase averaged fluid stress tensor
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�̄f with �f , the Fourier transform of σ f in Chapter 2, and the Fourier transform
of σ s with

�s = (1 − ϕ) �̄s + ϕ�̄f . (7.22)

The governing equations

Substituting the expressions (7.19) and (7.21) for the fluid and solid stresses in
Equations (7.15) and (7.16) results in the final form of the governing equations

− ω2ρf U − ω2ρkW = ∇ (C∇ · U + M∇ · W) (7.23)

−ω2ρsU − ω2ρf W = ∇ (Ku∇ · U + C∇ · W)+ ∇ · τ . (7.24)

These equations spring from Biot’s formulation of the mechanics of a poroelastic
medium (Biot, 1956a,b, 1962b). A number of authors (Levy, 1979; Burridge and
Keller, 1981; Pride et al., 1992; Pride and Berryman, 1998) have validated Biot’s
model of propagation in a poroelastic medium. The effects of the fluid enters these
equations in several places. There are explicit coupling terms but there are also
implicit couplings that enter through the frequency-dependent coefficients. The
term ρk, given by Equation (7.17) is one example of such a coefficient. Additional
frequency-dependent effects can enter through the other coefficients if we allow for
processes such as small-scale patchy saturation and variations in the compressibility
of the medium (White, 1975; Norris, 1993; Johnson, 2001; Pride et al., 2004) and
squirt flow in microcracks (Mavko and Nur, 1975; O’Connell and Budiansky, 1977;
Mavko and Nur, 1979; Dvorkin et al., 1995). Related to this is the heterogeneity of
the porous material itself, due to variations in the properties of the grains, cemen-
tation, and other effects. The literature on this subject is extensive and the works
by Berryman (1995) and Mavko et al. (1998) are helpful in understanding these
effects. Broad overviews of the various complexities due to small-scale structure
and flow are provided by the reviews of Pride (2005) and Müller et al. (2010).

One can solve the system of Equations (7.23) and (7.24) directly using numerical
techniques such as finite differences (Masson et al., 2006; Masson and Pride, 2007,
2011), see Carcione et al. (2010) for a review. However, due to the very different
nature of fluid flow and elastic deformation, there are processes that operate on very
different time scales complicating numerical treatments. For example, as we shall
see below, a poroelastic disturbance typically generates a fast wave that propagates
elastically (see Figure 7.1) and a slow transient that may take minutes, hours, or
even days to propagate. It can be difficult to bridge the gap between these time-
scales using numerical approaches. That is one reason for turning to a semi-analytic
treatment. Such methods also provide insight and flexibility, for example giving
explicit expressions for the velocities, attenuation, and travel times of the various
modes of propagation.
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Figure 7.1 Fast elastic wave propagating outward from a fluid injection source at
(1500 m, −1500 m).

7.2.2 A trajectory-based solution

We now turn our attention to the derivation of a trajectory-based, semi-analytic
solution of Equations (7.23) and (7.24). By now the reader should be well versed
in the asymptotic approach that we will adopt. However, as a refresher, we pro-
vide a brief motivation. The averaging techniques used to formulate the governing
equations account for variations in properties at the mesoscopic length scale, of the
order of a centimeter to a meter or so. We can represent this length scale by the
variable m. In a typical experimental or field setting the mesoscopic scale is much
smaller than the length scale of the propagating disturbance, which we denote by l.
In addition to the small-scale variations, natural objects will also contain larger-
scale spatial variations in properties as well as interfaces between regions with
similar properties. We can treat the interfaces as boundaries and can introduce
boundary conditions in order to match solutions in the various regions. It is the
spatial variation in the properties of the medium, the heterogeneity, changing over
a length scale of L, that we shall account for in developing an asymptotic solution.
We assume that L � l, the heterogeneity is smoothly-varying with respect to the
spatial variation the coupled front. It follows from this assumption that the ratio
ε = l/L is much smaller than one. We introduce the scaled spatial coordinates

X = εx, (7.25)

and consider the solution for U and W in the form of asymptotic power series in ε

U(X, θ ,ω) = eiθ
∞∑

l=0

εlUl(X,ω) (7.26)
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W(X, θ ,ω) = eiθ
∞∑

l=0

εlWl(X,ω) (7.27)

where θ(x,ω) is a function, referred to as the phase, related to the travel time of the
propagating disturbance and Ul and Wl are successive amplitude corrections. The
partitioned or factored form, in which the phase occurs as exponential multiplier,
is adopted because the governing equations are linear and we are working in the
frequency domain. The functional forms (7.26) and (7.27) may be thought of as
a plane wave expansion of a propagating disturbance. Because ε is assumed to be
small, much less than 1, only the first few terms of these power series are likely to
be significant.

As noted in Chapter 3, the trajectory-based approach belongs to the family of
ray methods that have been used in many contexts. However, we do not restrict the
technique to a particular class of equations, such as hyperbolic partial differential
equations. Rather, we apply the approach to Equations (7.23) and (7.24) which may
be of mixed character and contain solutions that display wave-like characteristics
and solutions that are diffusive in nature (Pride, 2005). As shown in Chapter 4, if
suitably generalized, one may derive an asymptotic solution to an equation govern-
ing a diffusive process. The power series representations (7.26) and (7.27) contain
these generalizations, particularly with respect to the frequency-dependence of the
terms in the expansion.

An asymptotic solution is obtained by writing the governing equations in terms
of the coordinates X, substituting in the asymptotic series solutions (7.26) and
(7.27), and considering terms of successive order in ε. For smoothly-varying het-
erogeneity it is only necessary to consider the terms of low order in ε. We first
need to rewrite Equations (7.23) and (7.24) in terms of X, starting with the spatial
derivatives. Using the chain rule, the derivatives may be re-written as

∂U
∂xi

= ∂Xi

∂xi

∂U
∂Xi

+ ∂θ

∂xi

∂U
∂θ

. (7.28)

The differential operators, defined in terms of the partial derivatives with respect to
the spatial coordinates, are likewise re-written as

∇U = ε∇U + ∇θ ∂U
∂θ

(7.29)

∇ · U = ε∇ · U + ∇θ · ∂U
∂θ

(7.30)

where we have made use of the definition of X, given by Equation (7.25), and
∇ denotes the gradient with respect to the components of the variable X. Before
converting all the differential operators in the governing equations, we can make a
few simplifications. The first simplification is based upon the partitioned form of
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the series (7.26) and (7.27) with respect to the dependence on the phase θ , which
leads us to conclude that

∂U
∂θ

= iU (7.31)

∂W
∂θ

= iW. (7.32)

Box 7.1 Keeping the derivatives straight: dyadics

One of the difficulties in treating the equations governing deformation and flow is the
involved bookkeeping associated with the calculation of differential operators of
vectors, particularly when second-order derivatives are present. The concept of a
dyadic can be helpful in this regard, providing the systematics associated with matrix
calculations as a tool for vector calculus. First we consider the representation of a
vector, such as U, that can be written using classic vector notation:

U = U1i + U2j + U3k.

A dyadic is similar in concept to the outer product of two vectors (Golub and
Van Loan, 1989, p. 3). In the outer product elements such as i and j retain their
identities rather then map into another element or into a scalar. The products, known
as unit dyads, are written as ij. The order of the product matters and ij is not the same
as ji. From the classic vector notation we can form a dyadic using simple algebra,
making sure to keep track of the order of the products. For example, consider ∇U
which appeared earlier, we can define it as

∇U =
(
∂

∂x
i + ∂

∂y
j + ∂

∂z
k
)
(U1i + U2j + U3k)

= ∂U1

∂x
ii + ∂U2

∂x
ij + ∂U3

∂x
ik

+ ∂U1

∂y
ji + ∂U2

∂y
jj + ∂U3

∂y
jk

+ ∂U1

∂z
ki + ∂U2

∂z
kj + ∂U3

∂z
kk.

We can represent this quantity as a matrix if we let the first component denote the row
of the matrix and we let the second component denote the column, leading to the array
representation of ∇U, as given in Chapter 2. One can also formulate dyadics using a
purely vector-matrix approach, and the idea of the outer product of two vectors:

∇U =
⎡
⎣ ∂/∂x

∂/∂y
∂/∂z

⎤
⎦ [ U1 U2 U3

]
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=
⎡
⎣ ∂U1/∂x ∂U2/∂x ∂U3/∂x

∂U1/∂y ∂U2/∂y ∂U3/∂y
∂U1/∂z ∂U2/∂z ∂U3/∂z

⎤
⎦ .

Since the same matrix arises, one can choose the approach best suited to the problem
at hand.

The second simplification is notational, to denote the gradient of the phase by the
vector p = ∇θ . Thus, we can write the differential operators (7.29) and (7.30) as

∇U = ε∇U + ipU (7.33)

∇ · U = ε∇ · U + ip · U (7.34)

and similarly for the other differential operators in the governing equations. Higher-
order derivatives are obtained by the repeated application of the first-order opera-
tors. Equation (7.33) is actually a matrix of derivatives often referred to as a dyadic,
a generalization of a vector. We made a passing reference to dyadic’s in Chapter 2,
when discussing the matrices of derivatives ∇v and ∇u. However, confronted with
calculations involving dyadics, it is now time to explore them in somewhat more
depth, which we do in Box 7.1.

As an illustration of the computations involved, we shall consider the first of the
governing Equations (7.23) explicitly. Substituting for the differential operators,
using Equations (7.33) and (7.34) results in the equation

−ω2ρf U − ω2ρkW = ε∇ [C (ε∇ · U + ip · U
)+ M

(
ε∇ · W + ip · W

)]
+ ip

[
C
(
ε∇ · U + ip · U

)+ M
(
ε∇ · W + ip · W

)]
Because we are assuming smoothly-varying properties between interfaces, ε is
small and we shall neglect terms that must be of order ε2 and greater. We are left
with the expression

ω2ρf U + ω2ρkW − Cpp · U − Mpp · W

+ iε
[∇ (Cp · U)+ Cp∇ · U + ∇ (Mp · W)+ Mp∇ · W

] = 0. (7.35)

An application of the approach to the second governing Equation (7.24) results in
a similar expression as indicated in the exercise below. Due to the presence of the
deviatoric stress tensor τ , the second governing equation is more complicated. If we
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neglect terms that must be of order ε2 or greater in the second governing equation,
then we are left with

ω2ρsU + ω2ρf W − Kupp · U − Cpp · W − Gp ·
[

pU + (pU)T − 2

3
p · UI

]
+ iε

[∇ (Kup · U)+ Kup∇ · U + ∇ (Cp · W)+ Cp∇ · W
]

+ iε∇ · G

[
pU + (pU)T − 2

3
p · UI

]

+ iεGp ·
[
∇U + (∇U

)T − 2

3
∇ · UI

]
= 0. (7.36)

The two governing Equations (7.35) and (7.36) appear rather formidable, even
after neglecting terms of order ε2 and greater. However, as we continue some
simplifications will ensue. We first consider terms of the lowest order in ε, those
of order ε0 ∼ 1. As we shall see, these terms will provide an equation for p = |p|,
allowing us to determine the phase θ(x,ω) in terms of the properties of the medium
and the fluid. The kinematics of the propagating disturbance, the velocity and the
travel time, as well as the attenuation, spring from these expressions.

Exercise 7.1. Derive asymptotic expression, given by Equation (7.36), for the
the second governing Equation (7.24),

−ω2ρsU − ω2ρf W = ∇ (Ku∇ · U + C∇ · W)+ ∇ · τ
where τ is given by

τ = G

[
∇U + ∇UT − 2

3
∇ · UI

]
.

7.2.3 Terms of order ε0 ∼ 1: an equation for the phase

Because ε � 1 the terms of lowest order in the asymptotic expansion are most
important. Here we consider terms of zeroth-order in Equations (7.35) and (7.36). In
order to do this we substitute the power series (7.26) and (7.27) into these equations
and consider the zeroth-order terms. After factoring out eiθ we can write the result-
ing expressions as a system of linear equations for the zeroth-order displacements
U0 and W0.

[
ω2ρf I − Cpp · I ω2ρkI − Mpp · I

αI − βpp · I ω2ρf I − Cpp · I

] [
U0

W0

]
=
[

0
0

]
, (7.37)
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where

α = ω2ρ − Gp2, (7.38)

p2 = p · p and

β = Ku + 1

3
G. (7.39)

A well-known theorem in linear algebra states that the system of Equations (7.37)
has a non-trivial (non-zero) solution if the determinant of the coefficient matrix
vanishes (Noble and Daniel, 1977, p. 203). Therefore, if � is the coefficient matrix
of the system of Equations (7.37), then the requirement that there is a non-trivial
solution is

det� = 0. (7.40)

This characteristic equation is a polynomial in the components of p, with coef-
ficients that depend upon the properties of the poroelastic medium and the fluid.
Remember that p = ∇θ , meaning that Equation (7.40) is actually a partial differ-
ential equation for θ(x,ω), a key function in our asymptotic solution. Furthermore,
this function is directly related to the propagation velocity of disturbances within
the poroelastic medium and hence the travel time of waves through the medium.

While it is possible to compute the determinant of the 6 × 6 matrix � directly,
such an approach involves considerable algebra. Alternatively, one can use the fact
that the determinant is given by the product of the eigenvalues of the coefficient
matrix (Noble and Daniel, 1977, p. 264). Let us take a moment to recall the eigen-
vectors and eigenvalues associated with a matrix �. An eigenvector of a matrix,
denoted by e, is a vector that is not changed in direction when multiplied by the
matrix � (Noble and Daniel, 1977, p. 257), rather it is rescaled by λ, the eigenvalue:

�e = λe. (7.41)

From this equation one can see how the vanishing of an eigenvalue of the matrix,
for a non-zero eigenvector e, is equivalent to Equation (7.37). We quickly run into a
stumbling block if we pursue an approach based upon eigenvectors and eigenvalues.
The eigenvalue problem associated with the coefficient matrix � leads to the same
level of algebra as the computation of the determinant. In order to make headway
we need to incorporate additional information in formulating our problem. We can
find at least two sources of inspiration, one mathematical and one physical. Both
considerations relate to the nature of the eigenvectors associated with the coefficient
matrix in Equation (7.37).

Mathematically, we note that the coefficient matrix in Equation (7.37) partitions
into a 2 by 2 block matrix, where each block is composed of a 3 × 3 sub-matrix.



7.2 Deformation in a porous body containing a single fluid 297

Each sub-matrix is similar in structure: a scalar multiple of the identity matrix,
I, added to a scalar multiple of pp · I, which is equivalent to the dyadic ppT .
Any vector multiplied by the first factor will return a scalar multiple of itself while
any vector multiplied by the second factor will return a scalar multiple of p. This
suggests that p is a potential eigenvector because multiplying it by both factors
returns a scalar multiple of itself. In addition, any vector orthogonal to p will also
return a scalar multiple of itself because it will simply eliminate the second factor,
the dyadic ppT . This suggests that candidate eigenvectors are of the form

el =
[

y1p
y2p

]
(7.42)

or

e⊥ =
[

s1p⊥

s2p⊥

]
(7.43)

where p⊥ is a vector orthogonal to p and y1, y2, s1, and s2 are scalars. Note that the
eigenvector p⊥, lying in the plane perpendicular to p, is not unique. In fact p⊥ may
lie anywhere in a two dimensional subspace spanned by two linear independent
vectors perpendicular to p. For now we shall ignore this ambiguity, as it will not
influence the discussion that follows.

Physical considerations align quite nicely with the preceding mathematical anal-
ysis. In particular, in a homogeneous medium one can show that the vectors U0

and W0 must be in the same directions for a non-trivial solution to exist (Pride,
2005). Thus, the solution vectors are of the same general structure as (7.42) and
(7.43). Using potentials, one can show that elastic waves in a homogeneous medium
decouple into a longitudinal mode, in which the displacement is in the direction
of propagation p, and transverse modes with the displacement transverse to the
direction of propagation, in a direction p⊥ (Aki and Richards, 1980b, p. 89). A sim-
ilar decomposition into longitudinal and transverse modes is also meaningful for
disturbances propagating in a homogeneous poroelastic medium containing a fluid
(Pride, 2005). We now consider the two modes, longitudinal and transverse, in
succession as they have rather different characteristics.

The longitudinal mode

Here we consider the longitudinal mode in which the solid and fluid displacements
U0 and W0 are in the direction of propagation p. For this mode the eigenvector
is given by el, defined in Equation (7.42) above, and for a vanishing eigenvalue,
Equation (7.41) reduces to

�el = 0. (7.44)
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For the specific form of el, given by Equation (7.42), Equation (7.44) is
equivalent to[ (

ω2ρf − Cp2
)

I
(
ω2ρk − Mp2

)
I(

α − βp2
)

I
(
ω2ρf − Cp2

)
I

] [
y1p
y2p

]
=
[

0
0

]
. (7.45)

As before, the condition that Equation (7.45) has a non-trivial solution is that the
determinant of the coefficient matrix vanishes. So, we are still confronted with
the calculation of the determinant of a 6 × 6 matrix. However, we can now take
advantage of the structure of the coefficient matrix to reduce this computation to the
determinant of a 2×2 matrix. Specifically, the coefficient matrix in Equation (7.45)
is in the form of a tensor product of two matrices

M ⊗ I =
[

m11I m12I
m21I m22I

]
, (7.46)

where mij are the elements of the matrix M:

M =
[ (

ω2ρf − Cp2
) (

ω2ρk − Mp2
)(

α − βp2
) (

ω2ρf − Cp2
) ] . (7.47)

We can use following theorem for the determinant of a matrix composed of block
submatrices (Silvester, 2000), in particular the determinant of the tensor product
det (M ⊗ I):

det (M ⊗ I) = det (M) det (I)2 (7.48)

where det (I) is squared because M is a 2 × 2 matrix. Because the determinant of I
is just 1, we have that the vanishing of the determinant of the coefficient matrix in
Equation (7.45) is equivalent to the condition:

det

[ (
ω2ρf − Cp2

) (
ω2ρk − Mp2

)(
ω2ρs − Hp2

) (
ω2ρf − Cp2

) ] = 0, (7.49)

where we have made use of the definitions of α and β, Equations (7.38) and (7.39),
and we have defined the undrained compressional modulus H as

H = Ku + 4

3
G. (7.50)

The vanishing of the determinant, Equation (7.48), produces a quadratic equation
for p2

(p2)2 − ω2(ρkH + ρsM − 2ρf C)

(HM − C2)
p2 + ω4(ρsρk − ρf

2)

(HM − C2)
= 0 (7.51)

with the two solutions indicating that there are two longitudinal modes. These two
modes, known as the fast and slow waves, are a hallmark of poroelasticity. The
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fast longitudinal solution is the poroelastic equivalent of the elastic compressional
wave, familiar to seismologists. As we shall see below, the slow wave is akin
to a propagating pressure disturbance at sufficiently low frequencies, familiar to
hydrologist and reservoir engineers. The two solutions are given by the explicit
expression

p2 = γω2

2

[
1 ±

√
1 − 4

γ 2

(
ρsρk − ρf

2
)

(
HM − C2

)
]

, (7.52)

where the auxiliary parameter γ is

γ = ρkH + ρsM − 2ρf C

HM − C2
. (7.53)

The solutions given by Equation (7.52) are generally complex, with non-zero imagi-
nary components. In Figures 7.2 and 7.3 we plot the real and imaginary components
for both the fast and slow wave solutions. Rather than plotting slowness, we plot
its inverse, the speed of the disturbance. The spatial variations represent a simple
example of a linear increase in wave speed with depth. For the fast longitudi-
nal mode the imaginary component is usually small. The imaginary component
increases if there is mesoscopic flow between unequilibrated patches of differing
fluid saturations or regions with different compressibilities (White, 1975; Johnson,
2001; Pride et al., 2004).

Equation (7.52) is similar to an expression for the slowness of the longitudinal
mode given by Pride (2005) for a plane wave in a homogeneous medium. How-
ever, the expression is valid for a medium with smoothly varying heterogeneity
of arbitrary magnitude. Because p2 = p · p = ∇θ · ∇θ , Equation (7.52) is a

Figure 7.2 Real and imaginary components of the fast wave speed.
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Figure 7.3 Real and imaginary components of the slow wave speed.

variant of the eikonal equation, a partial differential for the phase function θ(x,ω).
The frequency-dependence is determined both explicitly, by the presence of the ω2

term, and implicitly by the frequency-dependence of ρk which contains the dynamic
permeability, k(ω), as well as ω, in its definition [see Equation (7.17)]. In fact,
because we are not making any assumptions about the magnitude of the frequency,
for a sufficiently smooth medium the results will hold even if the other moduli, such
as H, M, and C, are frequency-dependent and complex.

The eikonal Equation (7.52), an example of a Hamilton–Jacobi equation, is our
gateway to a trajectory-based solution. That is, we can use the ray equations from
Box 3.1 in Chapter 3 to construct a solution that is defined along a trajectory through
the model. Therefore, we begin with Equation (7.52) written in a form reminiscent
of the results in Chapter 3,

F(x, p) = p · p − χ(x,ω) = 0, (7.54)

where we have defined the function

χ(x,ω) = ω2 γ

2

[
1 ±√1 − ζ

]
(7.55)

which is just the right-hand-side of Equation (7.52). Note that χ can vary spatially
and with frequency but does not depend upon p. The variable ζ , contained within
the square root in Equation (7.55), will have a strong influence on the longitudinal
modes of propagation. An explicit expression for ζ is obtained by combining the
variables under the square root in Equation (7.52) with the definition (7.53) of γ ,

ζ = 4(ρsρk − ρf
2)(HM − C2)

(ρkH + ρsM − 2ρf C)2
. (7.56)
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Before we calculate the trajectories, let us make one observation regarding
the parameters and coefficients in the equations, particularly those present in
Equation (7.54). In the last few pages we have introduced a few quantities, such as
γ and ζ , in order to reduce the complexity of some of the expressions. However,
in all of the equations there are just three fundamental poroelastic constants, H,
M, and C, and three densities, ρs, ρf , and ρk, that are the bedrock of the theory
and each of the variables that we have introduced depends upon these quantities in
some fashion.

Let us return to the trajectory calculation. Based upon the first two ray equations
in Box 3.1 in Chapter 3, with F(x, p) given in Equation (7.54), we have

dx
ds

= 2p (7.57)

dp
ds

= ∇χ . (7.58)

Because the function F(x, p) does not contain the dependent variable θ(x,ω)
explicitly, these two coupled ordinary differential equations are sufficient to
determine the trajectory x(s), given the frequency and the parameters describing
both the poroelastic medium and the fluid. With a sufficient set of boundary
conditions, such as a starting location for the trajectory and a take-off angle, or an
initial value of p at s = 0, one can use numerical techniques for integrating the
ordinary differential equations (Press et al., 1992) to determine x(s) and p(s). In
Figures 7.4 and 7.5 we plot the ray paths from a source to five receivers for the fast
and slow waves. The trajectories were computed using the ray Equations (7.57)
and (7.58) for the complex velocity models plotted in Figures 7.2 and 7.3.

With the final ray equation from Box 3.1 we can derive an expression for the
phase. We shall assume that the first two ray Equations (7.57) and (7.58) have been
solved and that the trajectory is known. The final ray equation is

dθ

ds
= p · ∇pF

= 2p · p (7.59)

= 2χ

if we make use of the functional form of F(x, p) in Equation (7.54). Using Equa-
tion (7.57) to substitute for p in the last equality of Equation (7.59) gives

dx

ds
= 2

√
χ . (7.60)
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Figure 7.4 Trajectories associated with the fast wave calculated by solving the
ray equations (solid) and by marching down the travel time gradient (dashed). The
travel time contours were obtained by solving the eikonal equation.

Integrating Equation (7.59) from a known source location, xs, to a given observation
point, xo, along the trajectory gives

θ(xo,ω) =
∫ xo

xs

2χds, (7.61)

or, upon using Equation (7.60) to change the integration variable,

θ(xo,ω) =
∫ xo

xs

√
χdx. (7.62)

Equation (7.62) gives a closed-form, semi-analytic expression for the phase in terms
of the parameters of the fluid and the porous medium at a particular frequency ω.

Instead of using the ray equations it is also possible to solve the Hamilton–
Jacobi Equation (7.54) using a purely numerical approach such as finite differences
(Sethian, 1999; Osher and Fedkiw, 2003). There are several advantages associated
with these techniques, such as the fact that the solution is defined over the entire
region of interest. One impediment to using the most efficient approaches (Sethian,
1999; Osher and Fedkiw, 2003) is the fact that the phase is generally a complex
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Figure 7.5 Trajectories associated with the slow wave calculated by solving the
ray equations (solid) and by marching down the travel time gradient (dashed).

quantity and simple Fast Marching Methods cannot be applied directly. However,
other approaches may be tried and it may be possible to extend techniques such as
fast marching to partial differential equations involving a complex quantity. This
is an area that would benefit from additional study. In Figures 7.4 and 7.5 we plot
the travel time fields obtained using numerical solutions of the eikonal equations
for the fast and slow waves. For these solutions we used the real components of the
velocity models in Figure 7.2 and 7.3, neglecting the contributions of the imaginary
parts. The trajectories obtained by marching down gradient of the travel time fields
are also plotted in these figures.

The transverse mode

The displacement direction for the transverse mode, characterized by the vector p⊥

[see Equation (7.43)], is perpendicular to the propagation direction of the wave-
front, given by p. We have already noted that vectors perpendicular to p form a
two-dimensional subspace lying in the plane of the wavefront. Therefore, a com-
plete specification of the subspace requires two linear independent vectors. This
requirement does not introduce any real difficulty because, having the vector el

and another vector e⊥ perpendicular to it, it is relatively easy to calculate a third
vector that is perpendicular to both of them using the vector cross product: el × e⊥.
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Therefore, we shall only focus on determining a single eigenvector e⊥ associated
with the transverse mode of propagation, satisfying

�e⊥ = 0. (7.63)

For e⊥ given above and the coefficient matrix � in Equation (7.37), this eigenvalue
problem is equivalent to

[
ω2ρf I ω2ρkI(

ω2ρs − Gp2
)

I ω2ρf I

] [
s1p⊥

s2p⊥

]
=
[

0
0

]
(7.64)

because the terms containing pp · I vanish upon multiplication by p⊥. Again,
there is a non-trivial solution to these equations if the determinant of the coefficient
matrix vanishes. Using the same argument made in the preceding section, regarding
the determinant of a tensor product of two matrices M ⊗ I, one can show that the
requirement that the determinant vanish reduces to

det

[
ω2ρf ω2ρk(

ω2ρs − Gp2
)

ω2ρf

]
= 0, (7.65)

a linear equation in p2

ω4ρ2
f − (ω2ρs − Gp2

)
ω2ρk = 0 (7.66)

Figure 7.6 Real and imaginary velocities associated with the transverse mode of
propagation in a porous solid.
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with just one solution, given by

p2 = ω2

[
ρs −

(
ρf

ρk

)
ρf

]
G

. (7.67)

In general, the solutions of Equation (7.67) are complex due to the presence of ρk.
In Figure 7.5 we plot the real and imaginary components of the velocity of the
transverse mode, which corresponds to the shear wave in an elastic medium. As
with the fast longitudinal wave, the imaginary component is often small at seismic
frequencies if there is no mesoscopic flow (Pride et al., 2004).

Equation (7.67) is an eikonal equation for the transverse mode and we may write
it in the form of a function that depends upon x and p

F(x, p) = p · p − ω2

[
ρs −

(
ρf

ρk

)
ρf

]
G

(7.68)

as we did earlier. Note the implicit dependence upon x through the spatial variations
of the medium properties G, ρs, and ρk. From this functional form springs the ray
equations leading to the defining equations for the trajectories and to a semi-analytic
expression for the phase. We will leave those calculations as an exercise for the

Figure 7.7 Travel time contours and trajectories associated with the transverse
mode of propagation in the model plotted in Figure 7.6.
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reader. In Figure 7.7 we plot the travel time contours obtained by solving the eikonal
equation numerically with the imaginary component of the velocity set to zero.

Exercise 7.2. Starting from the form (7.68) use the ray equations, given in Box
3.1, to derive governing equations for the trajectory of the transverse mode and
to find a semi-analytic expression for the phase.

Terms of order ε and Amplitudes

The first [l = 0] terms in the series (7.26) and (7.27) form the zeroth-order approx-
imation

U(X,ω) = eiθU0(X,ω) (7.69)

W(X,ω) = eiθW0(X,ω). (7.70)

For this level of approximation we need the functions θ(x,ω), U0(x,ω), and
W0(x,ω). We have just seen how to find θ(x,ω) by considering terms of order
ε0 ∼ 1. Equations defining the functions U0(x,ω) and W0(x,ω) follow if we
consider terms of the next higher order in ε. We ask the reader to derive these
equations in the exercise below. It is assumed that U1 and W1 retain their identity
as longitudinal or transverse modes and thus satisfy the same zeroth-order condition
(7.37) as U0 and W0. Therefore, the terms in the top line of Equation (7.35) vanish.
As with the phase, the zeroth-order amplitude functions may also be identified with
a specific mode of propagation. Hence, we can represent them in terms of scalar
amplitude functions, U0(X,ω) and W0(X,ω), and the vector p or p⊥, depending
upon the mode of propagation. Consider the longitudinal mode as an example.
Here, we can write the zeroth-order amplitudes as

U0(X,ω) = U0(X,ω)p (7.71)

W0(X,ω) = W0(X,ω)p (7.72)

and substitute these representations into Equation (7.35). Finally, we can project
Equation (7.35) onto the longitudinal vector p to produce a single linear equation
for the two amplitude functions U0 and W0:

p · ∇ (Cp2U0
)+ Cp2∇ · (U0p)+ p · ∇ (Mp2W0

)+ Mp2∇ · (W0p) = 0. (7.73)

An additional constraint on U0 and W0 is obtained from the second governing Equa-
tion (7.36) using a similar analysis. Because these equations are linear they may be
solved using numerical methods, either directly or by converting the equations to a
system of ordinary differential equations. Note that the equations require that p, and
hence θ , be known, either throughout the region of interest, or along the trajectory
connecting the observation point and the source point.
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Exercise 7.3. Find the terms of order ε, the next level of approximation in
the asymptotic expansion. Consider the first governing Equation (7.35) if we
substitute the series expansions (7.26) and (7.27) and retain terms of order ε.

ω2ρf U1 + ω2ρkW1 − Cpp · U1 − Mpp · W1

+ i
[∇ (Cp · U0)+ Cp∇ · U0 + ∇ (Mp · W0)+ Mp∇ · W0

] = 0.

7.2.4 The nature of the slow and fast longitudinal modes at low frequencies

To gain some insight into the nature of the two longitudinal modes of propagation,
the fast and slow waves, we can consider the semi-analytic expressions in the limit
of low frequencies. In particular, let us examine the zeroth-order expression

U(X,ω, θ) = eiθ(x,ω)U0(X,ω). (7.74)

To some extent the limiting process will constrain the heterogeneity to be increas-
ingly smooth in order that ε remain a small number. In the extreme case we may
require the medium to be homogeneous. This is not really an issue because we are
simply trying to gain some insight into the physical nature of the fast and slow
modes. Equation (7.62) provides an explicit expression for the phase in terms of
χ(x,ω). Using the definition of χ(x,ω) provided by Equation (7.55) we can write
the phase function as an integral over the trajectory x(s),

θ(x,ω) = ω

∫
x

√
γ

2

[
1 ±√1 − ζ

]
dx. (7.75)

The integral representation χ(x,ω) contains an explicit ω frequency dependence
as well as an implicit dependence through the two parameters γ and ζ given by
Equations (7.53) and (7.56), respectively. If the presence of ω in the expressions
for γ and ζ is still not evident, it is because it is hidden within

ρk = ρf − μf

ωk(ω)
i. (7.76)

It is this quantity that will provide the starting point for our low-frequency
exploration. The frequency dependence of k(ω) could present a complication
in general. However, because we are interested in the low-frequency limit, we
can use the results in Box 2.8 to note that k(ω) approaches a constant ko as the
frequency approaches small values. As noted by Pride (2005), for most applications
in the Earth sciences we are operating in the ‘low-frequency’ regime. By way of
clarification, in the limit we will be taking the frequency to be a small number,
denoted by ε, but not down to zero. Thus, we will have
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lim
ω→ε

ρk ≈ − μf

ωko
i, (7.77)

where we have retained ω in the expression because we are interested in the
frequency-dependence of the solution. Substituting this into the expression for ζ
and taking the limit, we find a linear dependence on ω at low frequencies:

lim
ω→ε

ζ ≈ −4
ρsko

(
HM − C2

)
μf H2

iω. (7.78)

The final limit that we shall need is

lim
ω→ε

γ ≈ μf H

ko

(
HM − C2

) i

ω
(7.79)

Because of the linear frequency dependence of ζ in the limit of low frequencies, we
can expand the square root

√
1 − ζ in a Taylor’s series, retaining only the first two

terms:

χ(x,ω) ≈ γω2

2

[
1 ±

(
1 − 1

2
ζ

)]
. (7.80)

We have laid the groundwork and can now consider each of the signs in turn in
order to examine the slow and fast wave solutions associated with a propagating
disturbance in a poroelastic medium.

The slow wave

Consider the solution associated with the positive sign in the expression (7.55) for
χ(x,ω). For real values of

√
1 − ζ , this sign will produce the greatest value for the

slowness magnitude p = p · p [see Equation (7.54)]. Because p is the reciprocal
of the wave speed, this disturbance will travel slower than the other solution. For
this reason this particular longitudinal mode is known as the slow wave. Let us
consider the zeroth-order solution in the limit of low frequency in order to derive a
semi-analytic solution and to gain some insight into the character of the slow wave.
Taking the positive sign in (7.80), and substituting in the limiting expressions for ζ
and γ produces

χslow(x,ω) ≈ iωμf

ko

H

HM − C2
− 4

ρsω
2

H

which, is dominated by the first term for small values of ω. Returning to the integral
expression (7.62), the approximate low-frequency expression for the phase of the
slow wave is given by

θslow(x,ω) ≈ √
iωτ(x) (7.81)
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where we have separated the frequency-dependence and the spatial depencence and
gathered all terms that depend upon x into a single function defined by an integral
(7.62) along the trajectory

τ(x) =
∫

x

√
μf

ko

H(
HM − C2

)dx. (7.82)

Given the explicit form for θslow(x,ω), we can return to the zeroth-order expression
for U(X,ω, θ), given by Equation (7.74). The zeroth-order expression for the slow
wave takes the form

Uslow(X,ω) = e
√−iωτ(x)U0(X,ω)

where we have made use of the fact that i is
√−1. Taking the inverse Fourier

transform to obtain a time domain expression gives (Virieux et al., 1994)

uslow(x, t) = τ

2
√
π t3

e−τ 2/4tH(t) ∗ u0(X, t) (7.83)

where H(t) is the Heaviside or step-function. We have already encountered a
solution of this form in Chapter 4. This is a diffusive wave that decays rapidly
away from the source. The quantity τ(x) is related to the propagation time of the
disturbance but requires some interpretation. In essence, for an impulsive source
τ(x) can be related to the arrival time of the peak displacement. As shown in
Chapter 4, for an impulsive source the condition for the peak of the displacement
specified by Equation (7.83) is the vanishing of

∂uslow

∂t
= u0(x)e−τ 2(x)/4t

[
− 3

2
√

t5
+ τ 2(x)

4
√

t7

]
. (7.84)

For finite values of the phase function τ(x) and non-zero times, the exponential term
is never zero. Hence, the condition for an extremum is given by the vanishing of
the quantity within the square brackets in Equation (7.84), when either t approaches
infinity or when

6t = τ 2(x).

Thus, we may interpret the phase function τ(x) in terms of the time at which the
peak displacement is observed, denoted by Tmax. We can use this fact to produce
a relationship between an observable quantity, the peak deformation associated
with the passing of the slow wave, and the properties of the medium, including
the permeability

√
Tmax =

∫
x

√
μf

ko

H(
HM − C2

)dx. (7.85)
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As we will illustrate in the Application section, Equation (7.85) can serve as the
basis for a form of diffusive wave travel time tomography, similar to that described
in Chapter 4.

The fast wave

Now consider the characteristics of the fast wave in a poroelastic medium. From
the preceding example, we see that it travels at speeds akin to that of an elastic or
seismic wave. If we take the minus sign, expression (7.80) for χ reduces to

χfast(x,ω) = γ ζω2

4

which, in the limit of low-frequency becomes

χfast(x,ω) ≈ ω2ρs

H
.

The expression for the phase of the fast wave is the integral (7.62) of the form

θfast(x,ω) ≈ ω

∫
x

√
ρs

H
dx = ωτ(x), (7.86)

where the function τ(x) contains all of the terms that are functions of x,

τ(x) =
∫

x

√
ρs

H
dx. (7.87)

Note, in this approximation the phase of the fast wave only depends upon the
density of the solid ρs and H and not upon the flow properties of the medium.
The zeroth-order expression for the fast wave is then

Ufast(X,ω) = eiωτ(x)U0(X,ω)

which, upon taking the inverse Fourier transform, provides the time-domain expres-
sion

ufast(x, t) = δ [t − τ(x)] ∗ u0(x, t) = u0 (x, t − τ(x)) (7.88)

where δ signifies the ‘delta’ or impulse function. In this case τ(x) signifies the travel
time along the trajectory x(s) from the source to the observation point. Thus, the
fast wave propagates as an elastic wave and only attenuates with distance due to
geometrical spreading given by the transport equation and contained in U0(X,ω).
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7.3 A porous body containing three fluids

There are important situations in which a porous medium contains two or more
fluids. Water, gas, and hydrocarbons may saturate a petroleum reservoir in spatially
varying fractions with significant economic consequences. Phase changes, such as
those in a geothermal reservoir, will likewise produce variable water, steam, and
gas saturations at depth. In this section we discuss the extension of the previous
analysis to the case in which up to three fluids occupy the pore space. We shall not
be using this in the application concluding this chapter, so the casual reader may
skip this section and proceed directly to the application.

As in the case of a single phase, the presence of the fluids will influence the
response of a porous body to imposed stresses. Furthermore, the porous elastic
solid is still characterized by the porosity ϕ. However, the pores may now be filled
with some combination of three fluids, and we will denote the saturation (fraction)
of the n-th fluid by Sn. Because the pore is taken to be fluid-filled, the saturations
sum to unity

3∑
n=1

Si = S1 + S2 + S3 = 1. (7.89)

It will be convenient to denote the fraction of a given unit volume of material for
the solid

αs = (1 − ϕ) (7.90)

and for the three fluids

αn = ϕSn. (7.91)

As noted in Chapters 2 and 6, the presence of multiple fluids introduces compli-
cations on several levels. The chief difficulty is that it renders the problem non-
linear, because the evolution of the saturation is severely impacted by the current
saturated state. That is, due to the ability of one fluid to block the flow of another,
the fractional flow of the fluid will depend upon the existing saturations. For the
case considered here, the passage of an elastic wave, we linearize the problem by
assuming that the saturation changes induced by the wave are small. Because the
formulation is a direct extension of the derivation in the previous section, and the
results are discussed in detail in Vasco (2013), our discussion will be very brief.
We will merely present the critical steps and indicate how the single fluid approach
from the previous section generalizes when several fluids are involved.

Following the approach taken in Section 7.2, suitably generalized for the case of
three fluids, one can produce the four governing equations where the first equation
is indexed by n = 1, 2, 3 and actually represents three equations:
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νnU + �nWn = ∇
⎡
⎣Cns∇ · U +

3∑
j=1

Mnj∇ · Wn

⎤
⎦ (7.92)

νsU +
3∑

j=1

ξjWj = ∇
⎡
⎣Ku∇ · U +

3∑
j=1

Csj∇ · Wj

⎤
⎦+ ∇ · τ , (7.93)

the analogues of Equations (7.23) and (7.24). In this derivation we have linearized
the equations by assuming that the saturation variations due to the passage of the
wave are small. In addition, we have transformed the equations into the frequency
domain so dependent variables U(x,ω) and Wn(x,ω) for n = 1, 2, 3 are the dis-
placements of the solid and fluids as a function of spatial location and frequency.
To keep the equations in a compact form, we have defined the coefficients

νs = αsρsω
2, (7.94)

νn = αnρnω
2, (7.95)

ξj = αjρj
μj

k(ω)
ω,

�n = αnρn

[
ω − μn

k(ω)

]
ω,

where k(ω) is the dynamic permeability, discussed in Box 2.8.
The system of linear partial differential Equations (7.92) and (7.93) can be solved

using a numerical method such as finite-differences or the spectral-element method
(Carcione et al., 2010; Morency et al., 2011). However, as in the single-fluid case,
due to the presence of slow diffusive modes and fast, elastic-like modes, numerical
codes can require considerable computational resources. As an alternative, we can
consider the asymptotic, trajectory-based approach discussed in Section 7.2.2. It is
possible to follow an entirely analogous procedure for a porous medium containing
three fluids, from the governing equations, through the asymptotic representation
of a solution, to the equations that result from retaining only zeroth-order terms
in the representation (Vasco, 2013). The result is a generalization of the system of
Equation (7.37) for a single fluid, to the zeroth-order equations for a porous medium
containing three fluids,

	Vo = 0 (7.96)

where 	 is the 12 × 12 coefficient matrix

	 =

⎡
⎢⎢⎣

αI − βppT ξ1I − Cs1ppT ξ2I − Cs2ppT ξ3I − Cs3ppT

ν1I − C1sppT �1I − M11ppT −M12ppT −M13ppT

ν2I − C2sppT −M21ppT �2I − M22ppT −M23ppT

ν3I − C3sppT −M31ppT −M32ppT �3I − M33ppT

⎤
⎥⎥⎦ , (7.97)
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p is the phase gradient ∇θ , we have defined the coefficients

α = νs − Gp2,

β = Ku + 1

3
G,

and Vo is the extended vector (U0, W0
1, W0

2, W0
3)

T containing the zeroth-order solid
and fluid displacement amplitudes. The system of linear Equations (7.96) has a
non-trivial (non-zero) solution Vo if, and only if, the determinant of the coefficient
matrix 	 vanishes [see the discussion in Section 7.2.3]. This condition produces
a polynomial equation in the components of p. Because p = ∇θ , the polynomial
equation is actually a non-linear partial differential equation for the phase, similar
to the eikonal equation found in the theory of high-frequency elastic wave propa-
gation.

Note that the structure of the coefficient matrix (7.97) is similar to that of the
matrix (7.37) for the single phase case with block elements composed of the identity
matrix I and the dyadics ppT . This suggests that a vector el composed of multiples
of p

el =

⎡
⎢⎢⎣

y1p
y2p
y3p
y4p

⎤
⎥⎥⎦

is a likely eigenvector for the matrix that allows us to simplify the calculation
of the determinant of 	. This vector is associated with the longitudinal mode of
propagation, discussed in detail in the previous section. A vector e⊥ composed of
multiples of p⊥, a vector perpendicular to p,

e⊥ =

⎡
⎢⎢⎣

s1p⊥

s2p⊥

s3p⊥

s4p⊥

⎤
⎥⎥⎦

is another potential eigenvector, as in Section 7.2.3. The solid and fluid displace-
ments associated with the vector e⊥ are transverse (perpendicular) to the direction
of propagation, similar to an elastic shear wave. Let us consider each of these modes
in turn.

The longitudinal mode

Substituting the vector el into the eigenvalue problem, which for a vanishing eigen-
value is equivalent to Equation (7.96), results in a homogeneous linear system of
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equations. The coefficient matrix of this system is highly structured, in fact it is in
the form of a tensor product

	 = M ⊗ I,

[see Equation (7.46)], where

M =

⎡
⎢⎢⎣

νs − Hs ξ1 − Cs1s ξ2 − Cs2s ξ3 − Cs3s
ν1 − C1ss �1 − M11s −M12s −M13s
ν2 − C2ss −M21s �2 − M22s −M23s
ν3 − C3ss −M31s −M32s �3 − M33s

⎤
⎥⎥⎦ , (7.98)

s = p2, and H = Ku + 4/3G. For matrices composed of identical block sub-
matrices, the identity matrix in this case, one can show that

det (") = det (M ⊗ I) = det (M) det (I)4 = det (M)

(Silvester, 2000). Hence, the condition that the determinant of " vanishes is equiv-
alent to the vanishing of the determinant of M. The determinant of M is a quartic
polynomial in s = p2

Q4s4 − Q3s3 + Q2s2 − Q1s + Q0 = 0 (7.99)

that has four complex roots in general. The coefficients Q0, Q1, Q2, Q3, and Q4 are
given in Vasco (2013) in terms of the medium and fluid parameters. The quartic
equation can be solved either numerically or analytically. An explicit solution can
be derived in terms of the solutions of a related cubic equation, the resolvent cubic
(Faucette, 1996; Nickalls, 2009). Using a numerical approach, we computed the
roots of the quartic (7.99), for a disturbance with a center frequency of 100 Hz
propagating in a porous medium containing oil, water, and gas. In Figure 7.8 we
plot the real component of the phase velocity, given by

c = ω

p

as a function of water and gas saturation. The asymptotic representation consists
of series of the same form as (7.26) and (7.27). From the zeroth-order terms of the
series, U(x, θ ,ω) = eiθU0(X,ω) and W(x, θ ,ω) = eiθW0(X,ω), it is evident that
the imaginary part of the phase θ(x,ω) gives rise to attenuation of the propagat-
ing disturbance. The attenuation coefficient is the imaginary component of p. In
Figure 7.9 we plot the attenuation coefficient as a function of the water and gas
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Figure 7.8 Velocities resulting from the four solutions of the quartic Equa-
tion (7.99). The velocities correspond to the four longitudinal waves in a porous
medium containing three fluids. The velocities are plotted as functions of the water
and gas saturation. The oil saturation is given by 1 − Sw − Sg and is zero along the
diagonal of the triangle and 1 at the origin.

saturations. The fast wave (P1) experiences little attenuation and attenuation gener-
ally increases from P2 through P3 to P4.

The transverse mode

For this mode of propagation the displacements are perpendicular to the direction
of propagation p. The eigenvector is e⊥ and the system of equations associated with
the vanishing eigenvalue is

⎡
⎢⎢⎣

αI ξ1I ξ2I ξ3I
ν1I �1I 0 0
ν2I 0 �2I 0
ν3I 0 0 �3I

⎤
⎥⎥⎦
⎡
⎢⎢⎣

tsp⊥

t1p⊥

t2p⊥

t3p⊥

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ . (7.100)
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Figure 7.9 Attenuation resulting from the four solutions of the quartic Equa-
tion (7.99). The attenuation coefficients are plotted as functions of the water and
gas saturation.

This equation has a non-trivial solution if the determinant of the coefficient matrix
vanishes. Due to the structure of the matrix, it is a tensor product M ⊗ I, this
condition is equivalent to

det

⎡
⎢⎢⎣

νs − Gmp2 ξ1 ξ2 ξ3

ν1 �1 0 0
ν2 0 �2 0
ν3 0 0 �3

⎤
⎥⎥⎦ = 0 (7.101)

where we have used the fact that α = νs −Gp2. The vanishing of the determinant in
Equation (7.101) produces a quadratic equation for p with no linear term. In Figure
7.10 we plot the real velocity of the transverse mode as a function of water and gas
saturation. In addition, plot the attenuation, obtained from the imaginary component
of the velocity. The attenuation coefficient is generally quite small, signifying minor
attenuation.
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Figure 7.10 Velocity and attenuation coefficient associated with the transverse
mode of propagation.

7.4 Application

7.4.1 Diffusive onset time tomography

We can make use of the insight provided by the analysis in Section 7.2.4 to develop
a method for imaging flow properties. First, we have seen that the arrival time of
the fast wave is not directly sensitive to permeability, at least in the low-frequency
approximation. On the other hand, the velocity, and hence the travel time, of the
slow wave is influenced by the permeability, as indicated by Equation (7.85). While
the slow wave is diffusive in nature, it is certainly possible to propagate transient
pressure disturbances for some distance from injection or production wells. That
is, with sufficient mass fluxes, one can transmit observable fluid pressure changes
and associated deformation, possibly for long distances if the permeability is suf-
ficiently large. The resulting pressure changes may be detectable using pressure
transducers in boreholes or using geophysical imaging techniques. In fact, such
propagation is used for transient pressure testing, such as interference tests, in
reservoir engineering and hydrology. Note that the fast wave is still extremely
useful in detecting saturation and fluid pressure related changes. Indeed, that is the
rationale behind the time-lapse imaging of reservoir processes, a very important
aspect of geophysical monitoring.

Because its travel time depends upon ko, it should be possible to use its arrival
times of the slow wave to say something about the flow characteristics of a porous
medium. In fact, we can take advantage of the long propagation times, using
geophysical methods to capture the movement of slow transients in some detail.
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Wide-spread seismic monitoring of such transients will require improvements in
current practice because pressure changes can propagate through a reservoir in
hours, days, or months, depending upon the flow characteristics. Therefore, routine
seismic surveys will typically alias the fluid pressure signal. New techniques, such
as permanent arrays, and continuous active seismic sources (Daley et al., 2011;
Ajo-Franklin et al., 2012) are well suited to track fluid pressure-related changes.
Geodetic methods, such as tiltmeters and Interferometric Synthetic Aperture Radar
(InSAR) can detect fluid-related changes with a temporal resolution of minutes,
weeks, and months. Thus, in favorable cases geodetic methods can be used to
monitor flow and estimate flow properties (Vasco et al., 2001; Vasco, 2004b; Vasco
et al., 2008a; Rucci et al., 2010).

Our basic approach is a straight-forward adaptation of Equation (7.85), akin to
the crosswell pressure imaging technique presented in Chapter 4. However, the
method is closer in spirit to the x-ray imaging of brine injection discussed in
Chapter 5. That is, rather than use crossing rays and varous source-receiver
combinations to provide spatial resolution characteristic of crosswell imaging,
we use the temporal sampling to resolve variations in properties along trajectories.
The approach will become clearer as we illustrate it below.

7.4.2 Geological storage of carbon dioxide at In Salah, Algeria

At a site near In Salah, Algeria excess carbon dioxide extracted from raw natural
gas was reinjected back into a sandstone formation for geological storage. The
roughly 20m thick reservoir was overlain by approximately one kilometer of shale
and an additional kilometer of interbedded sand and shale. In an effort to monitor
the fate of the injected carbon dioxide, Interferometric Synthetic Aperture Radar
(InSAR) was used to observe any surface deformation associated with the storage
effort (Vasco et al., 2008a, 2010). In this approach electromagnetic radiation from
an orbiting satellite is reflected off the surface of the Earth and the complex return is
recorded and processed (Ferretti, 2014). Differences in the processed signals from
repeated satellite passes are used to infer changes in range, essentially displace-
ments along a line extending from the reflection point to a reference point in space.
Given the altitude of the satellite orbit the range change is most sensitive to the
vertical displacement. The reference point is related to the average position of the
satellite source. In Figure 7.11 we plot four images of cumulative range change at
various times since the injection of carbon dioxide began. In all there were 28 snap-
shots of range change covering a period of 950 days, providing roughly monthly
coverage, although there could be gaps of several months in some instances.

Due to the presence of a thick sequence of impermeable shale in the overburden
at In Salah, it was thought that the flow of carbon dioxide would be contained
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Figure 7.11 Four snapshots of cumulative range change due to surface deforma-
tion caused by the injection of carbon dioxide at depth. The horizontal section of
the injection well within the reservoir interval is indicated by the black line.

within the reservoir. Therefore, our model assumes that the injected mass produces
pressure and volume changes within the reservoir, leading to deformation at the
surface. The rapid onset of injection, followed by injection at a rather steady rate,
led to a propagating coupled pressure and deformation front. The deformation prop-
agates elastically to the surface where it is observed as range change. We first use
the range change sequence to infer volume change within the 20m thick reservoir.
This is a linear inverse problem, assuming that the overburden behaves elastically
over the roughly one month interval between satellite passes. The approach has
been described in detail elsewhere (Vasco, 2004b; Vasco et al., 2008a, 2010; Rucci
et al., 2010). The reservoir interval underlying the region plotted in Figure 7.11
was sub-divided into a 33 by 33 grid of blocks. We inverted for the sequence of
volume change associated with each grid block, obtaining a history of reservoir
volume change. Based upon a poroelastic model for the reservoir we mapped the



320 Coupled deformation and fluid flow

Figure 7.12 Inferred pressure evolution within the reservoir, obtained from an
inversion of the range changes plotted in Figure 7.11.

estimated grid block volume changes into reservoir pressure changes since the start
of injection, plotted in Figure 7.12. The calculated reservoir volume changes pro-
vide a time series within each grid block may be used to determine the arrival time
of the pressure disturbance at that location. That is, using the formulation of Section
7.2, in particular Equations (7.83), (7.84), and (7.85), we estimate the arrival time
Tmax. Note that we must modify this approach to account for the differences in
the time variation of the sources. At In Salah, the injection starts suddenly and is
then maintained at a high rate, essentially for the entire time interval under con-
sideration. The step-function rate is the integral of the impulsive or delta-function
source that we considered in the derivation above. We can use the results from the
previous section if we take the derivative of the time series for each grid block.
Specifically, we construct a representation of the function, using cubic splines for
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Figure 7.13 Normalized time derivative of reservoir volume change after approx-
imately 300 days of injection. The intersection of the horizontal well and reservoir
is indicated by the solid black line. For the colour version, please refer to the plate
section.

example, and use the representation to differentiate the time series. An example of
the spatial distribution of the normalized derivative within the reservoir, about 300
days after the start of injection, is shown in Figure 7.13. Note the resemblance to
the propagating pressure fronts plotted in Figure 1.4 in Chapter 1. The arrival time
Tmax corresponds to the time at which the derivative attains its peak value and is
plotted in Figure 7.14.

While we have converted the volume change to pressure change, such a conver-
sion is unnecessary and introduces potential errors due to variations in the mechan-
ical properties within the reservoir (Rucci et al., 2010). For example, parts of the
reservoir that are highly compressible might be assumed to have large pressure
changes if the same rock properties are used throughout the model. One of the
advantages of the arrival time Tmax is that its estimated value is less sensitive to such
variations in mechanical properties than are the magnitudes of pressure changes.
If the reservoir behaves linearly over the monthly time intervals, then the time
at which grid block volume and the peak pressure are changing the most rapidly
should roughly coincide. This idea has been abstracted to the notion of an onset time
(Vasco et al., 2014, 2015). We have already encountered onset times in the applica-
tion presented in Chapter 5 involving a brine injection experiment. An onset time is
associated with time-lapse monitoring and is the time at which an observed quantity,
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Figure 7.14 Square root of the arrival time at each grid block.

such as a seismic reflection amplitude, begins to change from its background value.
When monitoring experiments or field activities involving fluid flow, onset times
are frequently related to saturation or pressure changes. In such cases onset times
are typically influenced by flow properties but are not as sensitive to rock physics
models as are the magnitudes of the time-lapse changes (Vasco et al., 2014, 2015).

Returning to the constraint (7.85) provided by Tmax, we consider the discrete
representation of the reservoir as grid blocks. Because the properties are assumed
to be constant in each grid block, the trajectory is a linear segment within the cell.
We can write the integral as a sum over the linear segments in each grid block

√
Tk =

∑
i∈Xk

√
μi

ki

Hi(
HiMi − Ci

2
)�xik, (7.102)

for the k − th peak travel time and the sum is over all the grid blocks intersected by
the trajectory Xk. Here �xik denotes the length of the k − th ray segment within the
i − th grid block. It is not possible to resolve all of model parameters in the sum
(7.102). In fact one can only resolve an effective property related to the diffusivity
of the transient disturbance, denoted by κi,
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κi =
√
μi

ki

Hi(
HiMi − Ci

2
) (7.103)

allowing us to write the constraint along the trajectory as√
Tk =

∑
i∈Xk

κi�xi. (7.104)

Before we advance any further in our discussion of the solution we need to make
a few observations regarding the construction of the trajectories. First, we are able
to construct the spatial variation of the phase within the model from the time-lapse
estimates of the volume change in the reservoir and from the fact that

τ(x) = √6Tmax(x). (7.105)

Second, knowing the spatial variation of the phase allows us to determine the
trajectory x(s) using the ray Equation (7.57) and the fact that p = ∇θ . We can
obtain the trajectory simply by marching down the phase gradient from the point at
which we have a travel time estimate back to the well. In Figure 7.15 we plot the

Figure 7.15 Trajectories signifying propagation from the injection well to grid
blocks in the model with resolvable volume changes.
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trajectories associated with the arrival time field shown in Figure 7.14. Because we
are using 28 snapshots of range change to calculate the arrival time field plotted
in Figure 7.15, we can resolve propagation to various distances from the well,
allowing us to resolve variations in travel times along the trajectories. This aspect
of our data provides spatial resolution without the need for crossing rays, a unique
characteristic of this approach. Finally, we note that our ability to calculate the
trajectories from the estimated arrival times allows us to effectively linearize the
inverse problem. This a very useful feature because the large spatial variations in
properties such as permeability can lead to significant non-linearity and severe ray
bending. Furthermore, the formalism for the solution and assessment of an inverse
problem, such as the calculation of resolution and covariance matrices described in
Chapters 4 and 5, is in a much more satisfactory state when the problem is linear
(Menke, 1989; Parker, 1994; Aster et al., 2013).

Given a set of arrival times and trajectories, such as those shown in
Figure 7.15 respectively, we can construct a linear system of equations for the

Figure 7.16 The logarithm of the multipliers of 1/κ0 where κ0 is the background
value of the effective parameter given by Equation (7.103). Higher values of the
multiplier correlate with higher permeability.
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effective diffusivity in each grid block. We write the set of linear equations in
matrix-vector form

ϒ = Mκ (7.106)

where ϒ is a vector with elements
√

Tk, the coefficients of matrix M are the trajec-
tory lengths of the path in each grid block, and κ is a vector containing the effective
parameters κi for all grid blocks. If the path does not traverse a particular grid block
then the corresponding entry in M is zero. We have already described techniques
for solving such sparse linear systems in Chapters 4 and 5, so we refer the reader to
those discussions for more details.

The results of a constrained solution of Equation (7.106) for κ are plotted in
Figure 7.16. The results suggest a linear feature that is compatible with a high
permeability zone. It was noted in Vasco et al. (2008a) that the feature correlates
with a fault inferred from a depression in seismic time horizons from an earlier 1997

Figure 7.17 Seismic time horizon for a reflector near the base of the shale
overburden at In Salah. Topography of the horizon indicates a depression, likely
due to velocity push-down induced by the accumulation of injected carbon dioxide
within a fault/fracture zone. The line of black squares indicates the location of
injection well KB-502 within the reservoir layer.
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survey. This interpretation was supported by further analysis of multicomponent
InSAR data (Rucci et al., 2013). Furthermore, a fault/fracture zone of this nature
and orientation was also shown to fit a double-lobbed pattern of range change
associated with the injection of carbon dioxide at a nearby well, KB-502 (Vasco
et al., 2010). Confirmation of the role of these large-scale, linear fault/fracture zones
was provided by observations from a follow-up seismic survey acquired in 2009
(Gibson-Poole and Raikes, 2010; Zhang et al., 2015). A depression in a seismic
time horizon just above the reservoir, likely due to the velocity deviations induced
by the injection of carbon dioxide, images a large, linear feature intersecting the
injection well KB-502 (Figure 7.17). The orientation and location of this linear
feature is well correlated with with the observed surface deformation (Gibson-Poole
and Raikes, 2010).

7.5 Summary

Accurate and efficient modeling of coupled deformation and flow is becoming
increasingly important in reservoir monitoring and characterization. The compli-
cated nature and the wide range of temporal and spatial scales of flow-related defor-
mation can prove challenging for purely numerical techniques. We have seen that
an asymptotic, or trajectory-based method, produces semi-analytic expressions for
the velocity, attenuation, and path of a propagating disturbance. Thus, the approach
provides insight into the factors controlling the observable features of a transient
disturbance. As we have seen in the example, we can use this knowledge to for-
mulate and solve the inverse problem, allowing us to infer the spatial variation of
properties determining flow.
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Appendix: a guide to the accompanying software

The trajectory-based approach for modeling fluid flow is intrinsically geometrical.
As such, it can help to develop some intuition and provide visual aid in under-
standing flow and transport. Here we describe two software packages Fronts3D
and Trace3D for modeling pressure front propagation and streamline simulation,
respectively, provided to the reader with the intent of fostering such insight. The
software, example data files, and user’s manual can be downloaded from the
weblink to the online resources at:

www.cambridge.org/vasco

There is also a graphical user interface for PC users, allowing for a menu-driven
experience as shown in Figure 8.1.

Figure 8.1 The Fronts3D graphical user interface.
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8.1 Fronts3D: computing pressure propagation by Fast Marching

Fronts3D provides the reader with a hands-on introduction to the concepts
discussed in Chapter 4. In particular, the routines allow for the simulation of
diffusive pressure front propagation using a fast eikonal solver, the Fast Marching
Method (Sethian, 1999). The numerical algorithm outlined in Section 4.3.1, and
implemented in Fronts3D, allows the reader to determine the spatial variation of
the diffusive phase within the porous medium. We illustrate the application of the
Fronts3D software by computing the pressure distribution for a single producing
well in a heterogeneous permeability field [see Exercise 4.2]. The permeability
distribution, along with the well location, is shown in Figure 8.2(a). The solution
of the non-linear partial differential equation for the phase σ(x),

∇σ · ∇σ − 1

κ
= 0,

shown in Figure 8.2(b), may be found using the Fast Marching method, as discussed
in Section 4.3.1. This algorithm is implemented in the Fronts3D software package.
The kinematics of the pressure diffusion within the porous medium may be used to
visualize the drainage volume as a function of time, using the relationship (4.50)

σ(x) = √Tmax,

between the phase and Tmax, the arrival time of the peak pressure generated by an
impulsive source [also see Exercise 4.1]. The time evolution of the drainage volume
is shown in Figure 8.3.

(a) Permeability distribution and well location. (b) Diffusive time of flight.

Figure 8.2 Pressure propagation in a heterogeneous permeability field with a
central producing well.
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Figure 8.3 Well drainage volume.

The phase provides a coordinate for the reduction of the diffusion equation in
three space and one time dimensions to an equation in a single spatial and a single
time dimension:

1

w(σ )

∂

∂σ

[
w(σ )

∂p

∂σ

]
= ∂p

∂t
,

as discussed in Section 4.3.2 and Box 4.2 in Chapter 4 [also see Exercise 4.8]. This
reduced equation is solved numerically in Fronts3D to obtain the pressure distribu-
tion within the reservoir. The reduction leads to substantial savings in computation
time compared to a full three dimensional numerical simulation. The pressure dis-
tribution calculated by Fronts3D, corresponding to 3600 days of injection into the
model shown in Figure 8.2, is displayed in Figure 8.4.

8.2 Trace3D: software for trajectory-based modeling and inversion

Trace3D is a three dimensional trajectory-based software package for both forward
and inverse modeling of flow and transport in porous media. It illustrates the con-
cepts related to trajectory/streamline-based simulation and inversion introduced in
Chapters 5 and 6. In the routines contained in Trace3D the time of flight is used as
a spatial coordinate to decouple the three dimensional transport equation into a set
of one dimensional equations along the trajectories. The one dimensional equations



330 Appendix: a guide to the accompanying software

Figure 8.4 Pressure distribution at 3600 days.

are solved using analytic and numerical methods, leading to substantial savings
in computation time compared to a full three dimensional flow simulation. The
inversion module utilizes streamline-based semi-analytic sensitivities to update the
spatial permeability distribution. In the inversion module one may match fluid front
arrival times, fluid front amplitudes, and the flowing bottom-hole pressure.

8.2.1 Forward modeling

We illustrate the use of the Trace3D software by simulating water injection into a
five-spot pattern with a central injector and four neighboring producers [see Exer-
cises 6.1 and 6.2]. The heterogeneous permeability field for this example is shown
in Figure 8.5. The pressure distribution is computed by solving the scalar partial
differential equation (6.13),

ϕc̄
∂ p̄

∂t
− 1

ρw
∇ · [ρwλw∇p̄] − 1

ρn
∇ · [ρnλn∇p̄] = ˆ̄Q

using a finite-difference algorithm, where p̄ is the average fluid pressure. From
the pressure field, p̄, we can compute the velocity field, q using Darcy’s law,
Equation (2.90)
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q = − k

μ
∇p̄,

where k is the absolute permeability and μ is the fluid viscosity. The velocity field
can then be used for generating the trajectories shown in Figure 8.6. Note that for
this multiphase case, the streamline trajectories are constructed using the total phase
velocity qt = qw + qn, where qw is the wetting phase and qn is the non-wetting
phase. The time of flight is obtained by integrating the total velocity along the
trajectories, as given in Equation (6.53),

τ(s) =
∫ x(s)

x(0)

ϕ

|qt|dx

Figure 8.5 Permeability distribution and well configuration for the synthetic test
illustrating Trace3D.

Figure 8.6 Streamline trajectories.
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where the integral is taken along the trajectory x(s) from the source to the
observation point at a distance s along the trajectory. The time of flight can
be computed by starting either from an injector or starting from a producer
[see Section 5.5.1]. The time of flight contours from an injector display the area,
or a volume in three dimensions, swept by a neutral tracer. The time of flight from
the producers displays the regions drained by the respective producing wells. The
streamline bundles provide a convenient mechanism to partition the reservoir using
injection or producing wells as shown in Chapter 5, Section 5.5.1. Finally, as in
Fronts3D, we can use the time of flight as a spatial coordinate transform the four
dimensional saturation equation (three space variables and one time variable) into a
two dimensional differential equation (one space variable, τ , and one time variable)

∂S

∂t
+ dfw

dS

∂S

∂τ
= 0.

In Trace3D, this equation is solved using stable and efficient numerical methods,
as detailed in Chapter 6, Section 6.4.2, to compute the saturation histories at the
individual wells. Note that this equation must be formulated and solved along each
of the streamlines.

8.2.2 Inverse modeling

The Trace3D package has routines for solving the inverse problem, where one
estimates the spatial variation of permeability based upon observations of flow
and transport. In this case the observations are water-cut responses from 8 wells
surrounding a single water injector [see Exercise 6.10]. These observations include
the water breakthrough times, as well as the full watercut (water fraction) histories,
at the 8 adjacent wells. The reference model, the heterogeneous permeability field to
be reconstructed, is shown in Figure 8.7(a). The water-cut observations at the well

(a) Reference permeability distribution. (b) Initial (prior) permeability model.

Figure 8.7 Reference and initial permeability distributions.
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have been generated using the reference permeability distribution and the forward
modeling capability of Trace3D.

The first step involves matching of the water breakthrough or arrival times at
the observation wells using streamline-derived analytical sensitivities, Equation
(6.120–6.122). For example, the sensitivity of the water front arrival time to changes
in permeability at x is given by

∂T

∂k(x)
= − 1

ko(x)|vo(x)|

where the subscript o indicates that the quantities correspond to the background
model values. This is a semi-analytic quantity that may be constructed from the
background model and a single reservoir simulation. The deviation in an arrival
time due to permeability variations along a flow path xo(s) from the injector to the
receiver is given by

δT =
∫

xo(s)

1

|vo|
δk

ko
ds.

The reader may produce this expression by following the derivation (6.116)–(6.118)
for porosity, as requested in Exercise 6.9. The arrival times from the reference
model are compared with those of the initial reservoir model in Figure 8.8 and, as
expected, show large discrepancies from the synthetic arrival times of the reference
model (the ‘data’).

Figure 8.8 Arrival time match based upon the initial model.
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The arrival time inversion implemented in Trace3D is an iterative, linearized
updating of the model described in Section 5.5.3 of Chapter 5. It follows from
the discretization of the preceding integral, producing a linear constraint on the
model perturbations along the trajectory. A collection of such constraints, in this
case 8 travel times, but often many more in actual field settings, produces a linear
system of equations relating the travel time perturbations δT to perturbations in
permeabilities δk,

δT = Mδk.

The coefficients of the matrix M result from the discretization of the preceding
integral. As discussed in Chapter 5, Section 5.5.3, penalty terms are added to sta-
bilize the solution of the linear system of equations and a regularized least-squares
approach is adopted producing the linear system (5.85) of normal equations

[
MtM + wnI + wrLtL

]
δk = MtδT.

This sparse linear system is solved for δk using an iterative solver. The perturba-
tion δk, is added to the initial or starting permeability model, plotted in Figure
8.7(b). The iterative updating continues until the error reduction levels off or the
observations are fit within their estimated uncertainties. The permeability changes
due to the iterative updating are shown in Figure 8.10(a). After the inversion, the
arrival time match for the updated model is shown in Figure 8.9. The arrival time

Figure 8.9 Arrival time match based upon the final inversion result.
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(a) Permeability changes during the inver-
sion.

(b) Final permeability model.

Figure 8.10 Permeabilities resulting from the inversion.

match is followed by an amplitude match, using the semi-analytic fractional flow
sensitivities given by Equation (6.131)

δfj
δki

= −
Nj∑

n=1

1

t

dfw
dS

So
′
(τ

t

) ∫
νi

1

ko|qo|dr.

The updated permeabilities resulting from the inversion are plotted in Figure
8.10(b). A comparison of the final updated permeability distribution with the
reference permeability distribution indicates that the inversion is able to reproduce
much of the large-scale features of the reference permeability field.

The reader is urged to solve the software example problems given throughout the
book to get an appreciation of the power and applicability of the methods.
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