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To my teacher Khaim Kordonsky 



Preface 

The material in this book was first presented as a one-semester course in Relia­
bility Theory and Preventive Maintenance for M.Sc. students of the Industrial 
Engineering Department of Ben Gurion University in the 1997/98 and 1998/99 
academic years. 

Engineering students are mainly interested in the applied part of this theory. 
The value of preventive maintenance theory lies in the possibility of its imple­
mentation, which crucially depends on how we handle statistical reliability data. 
The very nature of the object of reliability theory - system lifetime - makes it 
extremely difficult to collect large amounts of data. The data available are usu­
ally incomplete, e.g. heavily censored. Thus, the desire to make the course 
material more applicable led me to include in the course topics such as mod­
eling system lifetime distributions (Chaps. 1,2) and the maximum likelihood 
techniques for lifetime data processing (Chap. 3). 

A course in the theory of statistics is aprerequisite for these lectures. Stan­
dard courses usually pay very little attention to the techniques needed for our 
purpose. A short summary of them is given in Chap. 3, including widely used 
probability plotting. 

Chapter 4 describes the most useful and popular models of preventive main­
tenance and replacement. Some practical aspects of applying these models are 
addressed, such as treating uncertainty in the data, the role of data contamina­
tion and the opportunistic scheduling of maintenance activities. 

Chapter 5 presents the maintenance models which are based on monitoring a 
"prognostic" parameter. Formal treatment of these models requires using some 
basic facts from Markov-type processes with rewards (costs). In recent years, 
there has been a growing interest in maintenance models based on monitoring 
the process of damage accumulation. A good example is the literature dealing 
with the preventive maintenance of such "nontypical" objects as bridges, con­
crete structures, pipelines, dams, etc. The chapter concludes by considering a 
general methodology for planning preventive maintenance when a system has a 
multidimensional state parameter. The main idea is to make the maintenance 
decisions depending on the value of a one-dimensional system "health index." 

The material of Chap. 6 is new for a traditional course. It is based on the 
recent works of Kh. Kordonsky and considers the choice of the best time scale 
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for age replacement. It would not be an exaggeration to say that the correct 
choice of the time scale is a central issue in any sphere of reliability applications. 

Chapter 7 shows an example of leaming in the process of servicing a system. 
Several strong assumptions were made to make the mathematics as simple as 
possible. It is important to demonstrate to students that the combination of 
prior knowledge with new data received in the process of decision making is, in 
fad, a universal phenomenon, which may have various useful applications. 

It takes me, on the average, two weeks in the classroom (3 hours weekly) to 
deliver the material of one chapter. In addition, I spend some time explaining 
the most useful procedures of Mathematica needed for the numerical analysis 
of the theoretical models and for solving the exercises. Getting to the "real" 
numbers and graphs always give9 students a good feeling and develops better 
intuition and understanding, especially if the material is saturated with sta­
tistical notions. The course concludes with detailed solutions of the exercises, 
including a numerical investigation by means of Mathematica. 

llya Gertsbakh 
Beersheva, January 2000 
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Chapter 1 

System Reliability as a 
Function of Component 
Reliabili ty 

The whole is simpler than the sum 0/ its parts 
Willard Gibbs 

1.1 The System and Its Components 

In reliability theory, as in any theory, we think and operate in terms of models. 
In this chapter we investigate a model of a system, which consists of elements 
or components. Our purpose is to develop a formal instrument to enable us 
to receive information about a system's reliability from information about the 
reliability of its components. The exposition in this section does not involve 
probabilistic notions. 

A system is a set of components (elements). Only binary components will be 
considered, Le. components having only two states: operational (up) and failed 
(down). The state of component i, i = 1, ... , n, will be described by a binary 
variable Xi: Xi = 1 if the component is UPj Xi = 0 if the component is down. 

It will be assumed that the whole system can only be in one of two states: 
up or down. The dependence of a system's state on the state of its components 
will be determined by means of the so-called structure function t/>(x) , where 
x = (Xl, X2, . .• ,Xn ): t/>(X) = 1 if the system is UPj t/>(x) = 0 if the system is 
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down. 
We also use the notation x < y. This means that the components of x are 

less then or equal to the components of y, Le. Xi ~ 1/i, but for at least one 
component j, Xj < 1/j. 

Example 1.1.1: Series system (Fig. 1.la) 
This system is up if and only if all its components are up. Formally, 

n 

tj>(x) = II Xi = min Xi· 
i=1 1~i~n 

(1.1.1) 

Example 1.1.2: Parallel system (Fig. 1.lb) 
The system is up if and only if at least one of its components is up. FormaIly, 

n 

tj>(x) = 1 - II (1 - Xi) = m~ Xi· # 
i=1 1~I~n 

o 

b 

Figure 1.1. Representation of series (a) and parallel system (b) 

Example 1.1.3: k-out-o/-n system 

(1.1.2) 

This system is up if and only if at least k out of its n components are operating. 
Formally, 

k 

tj>(x) = 1, if LXi ~ k, (1.1.3) 
i=1 

and tj>(x) = 0 otherwise 
Example 1.1..~: Cable TV transmitter (Fig. 1.2) 
The system is designed to trans mit from the central station 8 to three Ioeal 
stations SIt S2, 83, The stations are connected by cables numbered 1,2,3,4,5, 
which are the system components. The system is operational (up) if all sub­
stations are connected directly or through another substation to the central 
station. 

One can check that 

tj>(x) = 1 - (1 - x2x3x5)(1 - X2X4X5) 
x (1 - x2x3x4)(1 - x1x3x4)(l - x1x3x5)(1 - x1x2x5)(1 - X1X2X4). 
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We explain later how to derive this formula. 

SI 

3 

S2 

Figure 1.2. Cable TV transmission system 

Example 1.1.5: Series connection 0/ parallel systems (Fig. 1.3) 
For this system, </J(x) = [1 - (1 - xd(l - x2)][1 - (1 - x3)(1 - X4)]. 

Fig. 1.3. Series connection of parallel systems 

Example 1.1.6: Parallel connection 0/ series systems (Fig. 1..4) 
Check that for this system </J(x) = 1 - (1 - XIX2)(1 - X3X4X5). 

1 2 

----IW ~ Wt---
Figure 1.4. Parallel connection of series systems 

3 

It is important to have a systematic way of constructing a formula for the 
structure function </J(.). This will be done by using the notions of minimal paths 
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and minimal cuts. Before doing this let us impose some natural demands on 
t/>(x). 

Definition 1.1.1: Monotone system 
A system with structure function t/>O is called monotone if it has the following 
properties: 

(i) t/>(O,O, •.• ,0) = 0, t/>(I, 1, ... ,1) = 1; 
(ii) x < Y =? t/>(x) ~ t/>(Y) . 

In words: the system is down if all its elements are down; it is up if all its 
elements are up; and the state of the system cannot become worse if any of its 
elements changes its state from down to up. 

Definition 1.1.2: Cut vector, cut set, path vector, path set 
Astate vector x is called a cut vector if t/>(x) = O. The set C(x) = {i : Xi = O} 
is then called a cut set. If, in addition, for any Y > x, t/>(Y) = 1, then the 
corresponding cut set is called minimal cut set or simply minimal cut. 

Astate vector x is then called a path vector if t/>(x) = 1. The set A(x) = {i : 
Xi = I} is then called a path set. If, in addition, for any Y, Y < x, t/>(Y) = 0, 
then the corresponding path set is called minimal path set, or minimal path. 

A minimal cut set is a minimal set of components whose failure causes the 
failure of the whole system. 

If all elements of the path set are "up" then the system is up. A minimal path 
is a minimal set of elements whose functioning (i.e. being up) ensures that the 
system is up. The minimal path set cannot be reduced, as it has no redundant 
elements. 

Examples 1.1.5, 1.1.6 continued 
For Example 1.1.5, Xl = (1,1,1,0) is a path vector. The corresponding path 
set is {I, 2, 3}. It is not, however, a minimal path set because if element 2 is 
turned down the system will still be up. {I,3} is the minimal path set. There 
are three other minimal path sets. Find them! 

For Example 1.1.6, there are two minimal path sets, {I,2} and {3,4,5}. 
The system in Fig. 1.3 has two minimal cuts: {I,2} and {3,4}. 
The set {I, 2,3} is also a cut set but not a minimal one. The system in Fig. 

1.4 has six minimal cuts ofthe form {i,j}, where i = 1,2 and j = 3,4,5. 

Theorem 1.1.1: Structure junction representation 
Let PI, P2 , ••• , PB be the minimal path sets of the system. Then 

B 

t/>(x) = 1 - II (1- II Xi) • (1.1.4) 
j=l iEPi 
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Let Cl, C2 , ••• ,Ck be the minimal cut sets of the system. Then 

k 

tfJ(x) = II (1 - II (1 - Xi» . 
;=1 iEC; 

Proof 

5 

(1.1.5) 

Assume that there is at least one minimal path set, all elements of which are 
up, say Pt. Then niEPl Xi = 1 and this leads to tfJ(x) = 1. Suppose now that 
the system is up. Then there must be one minimal path set having all of its 
elements in the up state. Thus the right-hand side of (1.1.4) is 1. Therefore, 
t/>(x) = 1 if and only if there is one minimal path set having all its elements in 
the up state. This proves (1.1.4). 

We omit the proof of (1.1.5), which is similar. 

It follows from Theorem 1.1.1 that any monotone system can be represented 
in two equivalent ways: as aseries connection of parallel subsystems each being 
a minimal cut set, or as a parallel connection of series subsystems each being a 
minimal path set. Therefore, there are two ways to represent structure functions. 
After corresponding simplifications, these become identical, as the following 
example shows. 

Example 1.1.5 continued 
The structure function gi yen above for the system in Fig. 1.3 is based on minimal 
cuts {1,2} and {3,4}. The system also has four minimal paths: {I, 3}, {I, 4}, 
{2, 3}, {2,4}. Thus, tfJ(x) = 1- (1 - XlX3)(1 - XlX4)(I- x2x3)(1 - X2X4). 

The structure function based on minimal cuts was presented in Example 
1.1.5. Both formulas produce identical results. To verify this, it is necessary 
to simplify both expressions. Note that for binary variables, x~ = Xi for any 
integer k. 

More information on monotone systems and their structure function can 
be found in the literature, e.g. in Barlow and Proschan (1975), Chap. 1, and 
Gertsbakh (1989), Chap. 1. 

1.2 Independent Components: System 
Reliability and Stationary A vailability 

Contrary to Sect. 1.1, let us now assume that the state of component i is de­
scribed by a binary random variable Xi, defined by 

P(Xi = 1) = Pi, P(Xi = 0) = 1 - Pi, (1.2.1) 

where 1 and 0 correspond to the operational (up) and failure (down) state, 
respectively. 
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It will be assumed that all components are mutually independent. This 
implies a considerable formal simplification: for independent components, the 
joint distribution of Xt,X2, ••• ,Xn is completely determined by component 
reliabilities PbP2,··. ,Pn' 

Denote by X = (XI,X2 , ••• ,Xn ) the system state vector. This is now 
a random vector. Correspondingly, the system structure function cj>(X} = 
cj>(X1 , .•• ,Xn } becomes a binary random variable: cj>(X) = 1 corresponds to 
the system up state and cj>(X} = 0 corresponds to the system down state. 

Deflnition 1.2.1: System reliability 
System reliability ro is the probability that the system structure function equals 
1: 

ro = P(cj>(X) = 1) . (I.2.2) 

Since cj>(.) is a binary random variable, the last formula can be written as 

ro = E[c/>(X}] . (1.2.3) 

Expression (1.2.3) is very useful since the operation of taking expectation E[·] 
is a very powerful tool for reliability calculations. The following examples show 
how to compute system reliability via its structure function. 

Example 1.2.1: Reliability 0/ a senes system 
cj>(X) = TI?=1 Xi> and therefore 

n 

ro = E[cj>(X)] = llPi. 
i=1 

Example 1.2.2: Parallel system 
Here cj>(X} = 1 - ll?=1 (1 - Xi). Thus 

n 

ro = E[cj>(X)] = 1- II(1 - Pi) . 
i=l 

Example 1.2.9: Senes connection 0/ pamllel systems (Example 1.1.5 ) 
From the expression for cj>(X) it follows immediately that 

ro = E[cfJ(X)] = [1- (1 - Pl)(1 - P2)][I - (1 - Ps)(1 - P4)] . 

Example 1.2.4: 2-out-of-4 system with identical elements 
For this system, 

(1.2.4) 

(1.2.5) 

(1.2.6) 

(1.2.7) 
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Let (ai; p) denote the vector p with its ith component replaced byai. So 
(li; p) = (Pl, ... ,Pi-l, I,pi+l,· .. ,Pn). 

Theorem 1.2.1: Pivotal decomposition 
Let ro = r(p) = r(pl' ... ,Pn) be the reliability of a monotone system with 
independent components. Then 

(1.2.8) 

Proof 
By definition, ro = E[<!>(X)] = P[<!>(X) = 1]. By the formula oftotal probability, 

ro = PiP(<!>(X) = IIXi = 1) + (1 - Pi)P(<!>(X) = IIXi = 0), or 
ro = PiP(<!>(Ii; X) = IIXi = 1) + (1 - Pi)P(<!>(Oi; X) = IIXi = 0). 

Since Xl,." ,Xn are independent, the last equality takes the form: 

(1.2.9) 

Expression (1.2.9) can be rewritten as 

(1.2.10) 

Physically, r(Ii; p) is the reliability of a system in which the ith component 
is replaced by an absolutely reliable one; similarly, r(Oi; p) is the reliability of 
the system in which the ith component has failed. Pivoting (1.2.10) is applied 
until replacement of components by absolutely reliable ones andJor by failed 
ones produces a structure for which the reliability is easily computable, such as 
the series-parallel system. Let us demonstrate how to use the pivotal formula 
to compute the reliability of the bridge structure shown in Fig. 1.5. 

Figure 1.5. Bridge structure 

Example 1.2.5: Reliability 0/ a bridge structure 
The best choice is to pivot around element 3. Suppose that component 3 is 
up. Then the bridge becomes aseries connection of two parallel subsystems 
consisting of elements 1,2 and 4,5, respectively. Its reliability (cf. (1.2.6» is 

r(I3 ;p) = [1- (1- Pl)(1- P2)][I- (1- p4)(1- Ps)]. 
If 3 is down, then the bridge becomes a parallel connection of two series 

systems: one with components 1,4 and the second with components 2,5. Its 
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reliability is r(03;p) = 1- (I-PIP4)(I-P2P5). Therefore, the system reliability 
is ro = Pa' r(13; p) + (1 - P3)r(03; p). 

It is easy to finish the calculations. The final result is 

ro = E[<{>(X)] = PlPaPS + P2PaP4 + P2Ps + PIP4 - PIP2P3P5 

-PIP2P4P5 - PlPaP4P5 - PIP2P3P4 - P2PaP4P5 + 
2PIP2PaP4PS. (1.2.11) 

It is instructive to obtain the same result by using, for example, minimal 
paths. The bridge has four minimal path sets: {1,3,5}, {2,3,4}, {1,4}, and 
{2, 5}. Thus the random structure function is 

<{>(X) = 1 - (1 - X 1X 3X 5 )(1 - X 2X 3X 4 )(1 - X 2X 5)(1 - X1X4). (1.2.12) 

Expand the terms in parentheses, simplify the expression using the fact that 
X~ :;= Xi and take the expectation. 

More on the use of the pivotal decomposition can be found in Gertsbakh 
(1989) and Barlow (1998) and the references there. 

System reliability ro as defined above is of a purely "static" nature: system 
operation time is not present at alt One can imagine a coin being flipped for 
element i showing "up" and "down" with probabilities Pi and I-Pi, respectively. 
Then, for this static experiment, ro is the probability that the system will be in 
the "up" state. 

Another interpretation might be the following. Assume that we have a cer­
tain instant t* on the time axis and Pi is the probability that component i is 
up at t*. Then by (1.2.2) ro represents the probability that the system is up at 
t*. We will show in the next section how this fact leads to an expression for the 
system lifetime distribution function. 

There is another interpretation of the quantity ro which involves time and is 
related to the so-called system availability. First, suppose that each component 
has alternating up and down periods on the time axis. The whole system also 
has alternating up and down periods on the time axis. Figure 1.6 illustrates this 
situation for a series system of two components. System up periods are those 
for which both components are in the up state. 

Consider component k and denote by ~)'c) and TI)'c), j = 1,2,3, ... , the se-

quential up and down periods for this component. Suppose that ~Jk) + TlJk),j = 
1,2, ... , are Li.d. random variables. The following quantity is called the sta­
tionary availability of component k: 

(k) _ #L(k) 
Av - p.(k) + v(k) , (1.2.13) 
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COMPONENT 1 

I~' ~, 
"'J uP "'2 TIME 

I~" 
I I~ I ;--;--

I I "'i DOWN : I ."'2 
COMPONENT 2: : ~;' up :: ~2 
I~TIME 

'""====-"""' ~ .. 
.".. I : DOWN" 'Mn I I 
"I "2 I 

---~--- TIME 

SYSTEM 

THE SYSTEM 

Figure 1.6. The system is up if and only if both components are up 

A~A:) has the following probabilistic interpretation. Let p(A:)(t) be the prob­
ability that component k is up at some time instant t. Then 

Av(A:) = lim p(A:) (t). (1.2.14) 
t--+oo 

One can say that the stationary availability is the probability that the com­
ponent is up at some remote instant of time (formally, as t ~ 00). Another 
interpretation is the following. Denote by V(A:) (T) the total amount of up time 
for component kin [0, T). Then 

A~A:) = lim E[V(A:) (T)]/T. (1.2.15) 
T--+oo 

Now we are able to claim the following. Suppose that we have a formula ex­
pressing the "static" up probability ro of the system as a function of component 
up probabilities Pi, Le. TO = 1jJ(Pl,fJ2, .•• ,Pn)' (Recall that the components are 
assumed to be independent.) Suppose that PA: = A~A:), k = 1,2, ... ,n, Le. PA: 
equals the stationary availability of the kth component. Then system stationary 
availability Av is equal to 

Av = 'IjJ(A~l), .. . , A~n». (1.2.16) 

System stationary availability can be interpreted as the limiting probability 
that the system will be in the up state at a remote moment in time. Alterna­
tively, let V(T) be the total amount of up time for the system on [0, T]. Then 
Av = limT--+oo E[V(T)]/T. 

The proof of (1.2.15) can be found in, for example, Barlowand Proschan 
(1975), Chap. 7. 

For aseries system of independently operating and repaired components, Av 
has the form 

(1.2.17) 
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This important formula is widely used in reliability practice. 
System availability will be discussed in Chap. 4 in connection with alternat­

ing renewal processes. 

1.3 Lifetime Distribution of a System without 
Component Renewal 

The following properties of system components will be assumed for the exposi­
tion in this section: 

(i) Component i has lifetime Ti with known cumulative distribution function 
(c.d.f.) ]ii(t) = P(Ti $ t), i = 1, .. . ,n. 

(ii) Ti are independent random variables (r.v.'s), i = 1, . .. ,n. 
(Hi) At t = 0, all components are up. A component which fails is not renewed 

or repaired. A components which fails remains in the failure (down) state ''for 
ever." 

To define system lifetime, we need some extra notation. Let a binary 0/1 
r.v. Xi(t) be defined as folIows: Xi(t) = 1 if and only if Ti > t. H Ti $ t then 
Xi(t) = O. In other words, Xi(t) equals one as long as component i is up, and 
becomes zero when this component goes down. 

Let X(t) = (Xl (t), . .. , Xn(t)) be the component state vector at time t. 

Definition 1.3.1: System li/etime 
System lifetime T is the time until the system first enters the down (failure) 
state: 

T = inf[t: cf>(X(t» = 0] . (1.3.1) 

We define system reliability R(t) as the probability that T exceeds t: R(t) = 
P(T> t). Often R(t) is called the survival probability or survival function. 

Let ro = E[cf>(X1 , ••• ,Xn)] = t/J(pt, ... ,Pn) be the "static" reliability of the 
system; see Definition 1.2.1. The following theorem teIls us how to find R(t) by 
means of the function t/J(Pl, ... , Pn). 

Denote by Rä(t) the reliability of component i, Le. Ri(t) = P(Ti > t). 

Theorem 1.3.1: System reliability 

R(t) = 'IjJ(R1 (t), R2 (t), . .. , Rn (t)), 

where Rä(t) = 1 - Fi(t). 

Proo/ 

(1.3.2) 

It follows from the definition of Ri(t) that R(t) is the probability that the system 
is up at time t. A monotone system consisting of nonrenewable components 
starts operating at t = 0 in the "up" state, eventually entering the "down" 
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state and remaining in it for ever. Thus, if the system is "up" at the instant t, 
it was "up" during the whole time interval [0, t], or R(t) = P(T > t). 

Theorem 1.3.1 says that the system reliability function is obtained by replac­
ing in the structure function the component reliabilities Pi by the corresponding 
reliability functions Ri(t). 

Example 1.3.1: Minimum-maximum calculus 
For aseries system, ro = n~=IPi. Then by Theorem 1.3.1, 

n 

R(t) = II (1 - Fi(t)) . (1.3.3) 
i=l 

Let F(t) be the c.d.f. of system lifetime T. Then 

n 

P(T::; t) = F(t) = 1- R(t) = 1- II(1- Fi(t)). (1.3.4) 
i=l 

Let us recall how the formula for the c.d.f. of the minimum T of n independent 
r.v.s Tb ... , Tn is derived. The events {T > t} and {Tl> t, ... , Tn > t} are 
equivalent. Thus P(T > t) = n~=l P(Ti > t) = n~=l ~(t). 

Therefore, the lifetime of aseries system of independent components coin­
eides with the minimum lifetime of its components. 

For a parallel system, ro = 1 - n~=l (1 - Pi), and therefore 

n 

R(t) = 1 - II Fi(t) . (1.3.5) 
i=l 

Similarly to the series system, it is easy to show that 1 - R(t) = n~=l Fi(t) 
is the formula for the c.d.f. of the maximum of n independent r.v.'s T = 
max(TI, T2, ... , Tn ). In other words, the lifetime of a parallel system coineides 
with the maximum lifetime of its components. 

It is now obvious that the lifetime of a series-parallel system can be expressed 
via the component lifetimes using minimum and maximum operations. Let us 
consider, for example, the system shown in Fig. 1.7.1 

Let Ti rv Fi(t). Clearly, the system lifetime is 

T = max(T5, min(TI, T4, max(T2, T3))). (1.3.6) 

Obviously, 

T* = max(T2,T3) rv F*(t) = F2(t)F3(t). (1.3.7) 

Similarly, 

T** = min«(rI,T4),T*) rv 1- RI(t)R4(t)R*(t). (1.3.8) 

lReprinted from Gertsbakh (1989), p. 15, by courtesy of Marcel Dekker Inc. 
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Now, T = max(Ts,T**), and by (1.3.7), 

(1.3.9) 

2 
1 4 

3 

5 

Figure 1.7. A series-parallel system 

We have seen that for a series-parallel system it is quite easy to derive an 
expression for system lifetime distribution. It turns out that the reliability 
function of a monotone system with independent components can be approzi­
mated from above and from below by a reliability function of a specially chosen 
series-parallel system. This is summarized in the following statement; see, for 
example, Barlow and Proschan (1975), Chap. 2. 

Theorem 1.3.2 
Let AlI A2 , ••• ,A, be the minimal path sets, and let ClI C2 , ... ,Cm be the 
minimal cut sets of a monotone system. Denote the reliability of ith component 
by Pi, and the system reliability by ro. Then 

m , 

II(I- II(l-pj))~ro~l-II(l- IIpj)· (1.3.10) 
Al=1 r=l 

This theorem says that ro is bounded from above by the reliability of a 
fictitious system (with independent components) which is a parallel connection 
of series subsystems each being the minimal path set of the original system. 
Similarly, the lower bound is the reliability of a system obtained by aseries 
connection of parallel subsystems each being the minimal cut set of the original 
system. For example, the "lower system" for a bridge is shown in Fig. 1.8a. 
Similarly, Fig. 1.8b shows the "upper system". Note that the elements i and i* 
are assumed to be independent. 

Denote the lower bound in (1.3.10) by LB(pt, ... ,Pn) and the upper bound 
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by U B(Pl, ... ,Pn). Then, using the arguments of Theorem 1.3.1, we can estab­
lish the following: 

o. b. 

Figure 1.8. The "lower" (a) and the "upper" (b) system for the bridge 

Corollary 1.3.1 

LB(R1(t), ... ,Rn(t)) ~ R(t) ~ UB(R1(t), ... ,Rn(t)). (1.3.11) 

In other words, the system reliability function R(t) is bounded from above 
and from below by the reliability function of the "lower" and "upper" system, 
respectively. 

In condusion, let us present a very useful formula for computing the mean 
value of system lifetime. Suppose that r is a nonnegative random variable, Le. 
P(r ~ 0) = 1. Let F(t) be the c.d.f. of r, Le. P(r ~ t) = F(t). Then 

E[r] = 100 (1- F(t))dt. (1.3.12) 

To prove this formula, integrate ft (1 - F(t))dt by parts and use the fact 
that if E[r] exists, then limt-t00[t(1 - F(t))] = O. 

Example 1.9.2 
Let r '" F(t) and let T be a constant. Define X = min[r, T]. Find E[X]. 

The physical meaning of the r.v. X is the following. Suppose that r is the 
system lifetime. We stop the system either at its failure or at "age" T, whichever 
occurs first. This situation is typical for the so-called age replacement which we 
will be considering later; see Chap. 4. Then Xis the random time span during 
which the system has operated before it was stopped. 

Note that T can be viewed as a discrete random variable whose all probability 
mass is concentrated in the point t = T. T has the following c.d.f.: FT(t) = 
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P(t S T) = 0 for t < T, and FT(t) = 1 for t ~ T. Moreover, T is independent 
of T. Then by (1.3.3) 

Fx(t) = (1 - F(t)) . (1 - FT(t)). (1.3.13) 

Since Fx(t) = 0 for t ~ T, 

E[X] = foT(l- F(t))dt. (1.3.14) 

1.4 Exercises 

1. Consider the following system: 

~--------~4~------~ 

All elements are independent. Denote by Pi the reliability of element i, i = 
1,2,3,4. 

a. Find 4>(x), the system structure function. 
b. Find ro = E[4>(X)], the system reliability. 
c. Find the Barlow-Proschan upper and lower bouilds on ro. 
d. Suppose that the lifetime Ti of element i is exponential, i.e. P( Ti S t) = 

1 - e-).;t. Find the system lifetime distribution function. 
e. Suppose that element i is up, on average, during time /-Li = 10 + i, and 

is down, on average, during time Vi = 2 + O.5i. Periods of up and down times 
alternate for each element. Find the system stationary availability. 

2. Let system reliability be ro = 1/J(pl,P2, ... ,Pn). 
The so-called Birnbaum importance index of element i is defined as R( i) = 

81/J/8Pi. 
a. Find R(3) for the system of Exercise 1. Find the element with greatest 

importance for Pl = 0.9,P2 = 0.8,P3 = 0.5 = P4. 
b. Use the pivotal decomposition formula (1.2.10) to prove that R(i) = 

r(li; p) - r(Oi; p). 
Hint: Differentiate r(p) with respect to Pi. 

3. Let (li, x) be the vector x = (Xl, ... , 1, ... , xn ), i.e. the ith coordinate is 
set to 1. Similarly, (Oi, x) is the vector x with ith coordinate equal to O. Prove 
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that 4J(x) is a linear combination of 4J(1i , x) and 4J(Oi, x) with coefficients Xi and 
1 - Xi, respectively. 

4. n identical elements, each with exponentially distributed lifetimes, are con­
nected in parallel. The mean lifetime of a single element equals l/A = 1. What 
value of n would make the mean lifetime of the whole system equal to at least 
2? . 

5. Let n independent elements be connected in series. Suppose that the lifetime 
of component I is exponential with parameter Ai, i = 1,2, ... , n. Find the 
lifetime distribution function for the whole system. 

6. Consider the bridge structure of Sect. 1.2. Assume that all elements have 
reliability P = 0.9, 0.95, 0.99. Compute the exact reliability and the Barlow­
Proschan upper and lower bounds. 

7. Consider a parallel and aseries system with component reliabilities Pi < 
P2 ~ ... ~ Pn· What are the most important components for these systems, 
according to Birnbaum's measure? 

8. Compute bridge reliability using the pivot al decomposition formula. 
Hint: Pivot around component 3 in Fig. 1.5. 

9. A radar system consists of three identical, independently operating stations. 
The system is considered to be "up" if and only if at least two stations are 
operational. Assume that station's lifetime G(t) = 1 - exp[-At]. After the 
system enters the down state, it is repaired and brought to the "brand new" 
(up) state during time t rep = O.l/A. 

a. Find the mean duration of the "up" time. 
b. Find the system stationary availability. 

10. A system consists of two units, A and B. If A is up and Bisdown, or 
vice versa, the system is in the "up" state. Because of the power supply system 
deficiency, simultaneous operation of A and B is impossible, since there is not 
enough power for both units. Is this system monotone? 



Chapter 2 

Parametrie Lifetime 
Distributions 

Everything should be made as simple as possible, but not simpler. 
Albert Einstein 

2.1 Poisson Process - Exponential and Gamma 
Distri butions 

Suppose that we observe eertain events that appear at random time instants. 
For example, the events might be arrivals of buses at a bus terminal, or telephone 
ealls addressed to a eertain person, or failures of a piece of equipment. To be 
specifie, we shall refer to some particular sort of event, say telephone ealls. 

Denote by N(t) the total number of ealls which take place during the interval 
(0, t). For each fixed t, N(t) is a random variable, and a family of random 
variables {N (t), 0 < t < oo} is termed a counting random process. 

In this section we restrict our attention to processes with stationary inere­
ments: the number of ealls in the interval (tl +8, h+s) has the same distribution 
as the number of ealls in any other interval of length (t2 - tl ). 

One very important proeess of this type is the so-ealled Poisson proeess. 
Denote by ßi the interval (t, t + ßi] and let Ai (ki) be the event "the number of 
ealls during ßi equals ki ." Denote by N(h) the number of events in the interval 
(t,t+h]. 
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Definition 2.1.1 
{N(t), t > O}, is said to be a Poisson process with rate A, if: 

(i) for any set of nonoverlapping intervals ~l," ., ~m, and for any collection 
of integers kl , k2 , ••• , km, the events Al (kd, ... , Am(km) are jointly indepen­
dent; 

(ii) P(N(h) = 1) = Ah + o(h) as h -t 0; 
(iii) P(N(h) ~ 2) = o(h) as h -t O. 

Our purpose is to derive formulas for the probabilities Pk(t) that there are 
exactly k calls in the interval of length t. 

In addition to the above assumptions (i)-(iii), we postulate that the proba­
bility of having more than zero events in a zero-Iength interval is zero: Pk(O) = 
0, k ~ 1. Therefore, Po(O) = 1. 

It follows from Definition 2.1.1 that Po(h) = 1 - Ah + o(h) and thus 

Po(t + h) = P(N(t + h) = 0) = P(N(t) = 0, N(t + h) - N(t) = 0) 

= P(N(t) = O)P(N(t + h) - N(t) = 0) 

= Po(t)[l - )"h + o(h)] . 

Hence, 

(Po(t + h) - Po(t))lh = -)..Po(t) + o(h)lh. (2.1.1) 

Now letting h -t 0, we obtain the differential equation 

P~(t) = -)..Po(t), (2.1.2) 

which has to be solved for the initial condition Po(O) = 1. The solution is 

(2.1.3) 

Similarly, for n > 0, 

Pn(t + h) = Pn(t)Po(h) + Pn- l (t)P1 (h) + o(h). (2.1.4) 

Substitute into Po(h) = 1 - )"h + o(h) in (2.1.4). This leads to the equation 

(2.1.5) 

This must be solved under the condition that Pn(O) = 0, n > O. Let us omit 
the routine solution procedure and provide the answer: 

Pn(t) = e-At()..t)n In! . (2.1.6) 

(Verify it!) We have therefore proved the following result: 
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Theorem 2.1.1 
In a Poisson process with parameter A, the number of calls in an interval of 
length t has a Poisson distribution with parameter At. 

This would be a good time time for a' short reminder about the Poisson 
distribution. We say that the r.v. X has a Poisson distribution with parameter 
p (written X '" P(p» if P(X = k) = e-J.lpk /k!, k = 0,1,2, .... The mean value 
of X is E[X] = p and the variance is Var[X] = p. 

The Poisson distribution is closely related to the binomial distribution. Sup­
pose that we have a series of n independent experiments, each of which can be a 
success (with probability p) or a faHure with probability 1-p. Then the random 
variable Y which counts the total number of successes in n experiments has the 
binomial distribution: 

P(Y = k) = (~)pk(l_ p)n-k . (2.1. 7) 

We will use the notation Y '" B(n,p). 
Now assume that n -+ 00 and p -+ 0, in such a way that n . p = p. Then it 

is a matter of simple algebra to show that 

P(Y = k) = (~)pk(l_ p)n-k -+ e-J.lpk /k!, 

as n -+ 00. 

(2.1.8) 

One can imagine the Poisson process with rate A in the following way. Divide 
the interval [0, t] into M small intervals, each of length A = t / M. Imagine that 
a "lottery" takes place in each such small interval, the result of which can be 
either "success" or "failure", independently of the results of all the previous 
lotteries. Each success is an "event" ( a call) in the counting process No(t) 
which is the total number of successes in [0, t]. Now let the probability of success 
be PA = ~ . A, Le. proportional to the length of the small interval. Then, as 
M -+ 00, 

PA' M = (A' tiM)· M = At. (2.1.9) 

The number of successes in [0, t] has, for any finite M, the binomial dis­
tribution, which in the limit (as M goes to infinity) approaches the Poisson 
distribution with parameter At. The above-described discrete "lottery process" 
is in fact a discrete version of Definition 2.1.1 (with A = h). 

Denote by Ti the interval between the (i -1 )th and the ith call in the Poisson 
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process. (Assume that the caH number zero appears at t = 0; see Fig. 2.1.) 

Tl T2 Ti 
~I'---~ 

1 2 i~ i 
.t 

Figure 2.1. Poison process. Ti rv Exp(,X) 

Theorem 2.1.1 implies the foHowing 

Corollary 2.1.1 
(i) Tl, T2, .. . , Tn , ... are Li.d. random variables, 

P(Ti ~ t) = 1- e-.\t. (2.1.10) 

(ii) Define Tk = L~=l Ti' Then 

k-l . 
P(T. < t) = 1 _ e-.\t '"' ('xt)~ . 

k_ ~ i! 
i=O 

(2.1.11) 

The distribution of Ti is called exponential and will be denoted by Exp(,X). 
It plays an extremely important role in reliability theory. The distribution of Tk 
is called the gamma distribution and it will be denoted by Tk rv Gamma(k, )..). 

Proof 
Part (i) foUows from the fact that Po{t) = e-.\t. Indeeed, it says that the time 
to the first caU exceeds t with probability Po(t). Therefore, the time to the first 
caU Tl rv Exp()..). 

From the definition of the Poisson process it foUows that the time T2 between 
the first caH and the second call has the same distribution and is independent 
of Tl, etc. 

To prove (ii), note that the events {Tk > t} and "there are (k - 1) or less 
events in [0, Tl" are equivalent. Thus, 

k-1 . 

P(Tk > t) = e-.\t L ('x.~)~ . 
i=O Z. 

(2.1.12) 

The exponential distribution is a particular case of the gamma distribution: 
Exp()..) = Gamma(l, 'x). The mean and variance of these distributions is given 
below. For T rv Exp()..), 

E[T] = 1/'x; Var[T] = 1/,X2 . (2.1.13) 
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The exponential distribution is the only continuous distribution which pos­
sesses the so-called memoryless property. Let r rv EXp(A). Then P(r > t) = 
ftoo Ae->'xd,x = e->.t. Suppose it is known that {r > tI}. Let us compute the 
conditional probability 

P(r>tl+t2) e->.(tl+t2) ->.t 
P(r > tl + t21r > tl) = P( ) = >.t = e 2, (2.1.14) r > tl e- 1 

which equals P(r > t2). In physieal terms, (2.1.14) says that if the "system" 
has survived past tl, the chances of surviving an extra interval of length t2 are 
the same as if the system were "brand new". 

To get a better understanding of the exponential distribution, let us consider 
its discrete version. Suppose that the time axis is divided into small intervals of 
length ß. A certain event, say a faHure, may appear with probability p in each 
of these intervals, independently of its appearance in any other interval. Let us 
define the random variable K as the ordinal number of that ß-interval in whieh 
the failure has appeared for the first time. Obviously, P(K = n) = (1- p)n-lp. 
It is a matter of routine calculation to show that P(K > n) = E:n+1 P(K = 
i) = (1 - p)n. Now let us consider the conditional probability 

P(K > n+m) 
P(K > n+mlK > n) = P(K > n) = (l_p)m = P(K > m).(2.1.15) 

This is exactly the discrete analog of the memoryless property of the exponential 
distribution: if the "system" did not fail during the first n intervals, the chances 
of not failing at least another m intervals are the same as the chances of not 
failing during the first m intervals for a "new" system. 

A random variable K which is distributed as P(K = n) = (1 - p)n-lp, n = 
1,2,3, ... , is said to have a geometrie distribution. We will denote this byK rv 

Geom(p). For this random variable, 

E[KJ = l/p; Var[KJ = (1- p)/p2 . (2.1.16) 

The geometrie distribution is in fact a discrete version of the exponential 
distribution. Let UB consider a time seale in whieh the lifetime r is measured 
in ß -units: r = K· ß. Then P(r > t) = P(Kß > t) = P(K > [t/ß]) = 
(1- p)[t/~J = (1- p)(l/p)·P·[t/~J ~ e-at , where p ~ a· ß and p -t O. So, if the 
failure probability is approximately proportional to the intervallength and tends 
to zero, the geometrie distribution approaches the exponential distribution. 

From the model of the gamma distribution, it follows that 

E[Tkl = k/A; Var[Tkl = k/A2 . (2.1.17) 

The densities of the exponential and gamma distributions are, respectively, 

Aktk-1e->.t 
fr(t) = Ae->.t, hk(t) = (k -I)! ' t > O. (2.1.18) 
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A useful characteristic of a distribution of a positive random variable is the 
coefficient ojllariation (e.v.) defined as 

C.lI. = ../Var[r]j E[r] . (2.1.19) 

The more peaked is the d.f., the smaller ja the e.v. For the gamma family 
(2.1.18), 

1 
C.lI. = .fk . 

f(t) 3 

1 2 

(2.1.20) 

t 
3 4 

Figure 2.2. The gamma densities. All three densities have the same mean 1. 
The c.v. is 1, 0.5 and 0.35 for curves 1,2 and 3, respectively 

Figure 2.2 shows the form of the density funetions for the gamma family. 
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Figure 2.3. The failure appears with the appearanee of the kth shock 

The gamma distribution is quite useful for reliability modeling because it 
may describe eomponent (system) lifetime for the so-ealled shock accumulation 
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scheme. Imagine that external shocks arrive according to a Poisson process with 
parameter ~ and that the component can survive no more than k - 1 shocks. 
Then the appearance of the kth shock means failure. Therefore, the component 
lifetime distribution function will be Gamma(k, ~}. 

For "large" k, a normal approximation can be used and 

P(~ T, < t) = p(E~=l Ti - k/~ < t - k/~) ~ ~(t - k/~) . (2.1.21) 
~ ,- ../k/~ - ../k/~ ../k/~ 

Here ~(-) is the standard normal c.d.f. Since the normal random variable for­
mally may have negative values and the lifetime is by definition a positive ran­
dom variable, the use of normal approximation is justified if its left (negative) 
tail may be neglected. We recommend using the normal approximation only for 
k ~ 9-12. 

A useful modification of (2.1.10) is the exponential distribution with a loca­
tion parameter. Its density f(t) is 0 for t < a, and 

f(t) = ~e-"(t-a), for t ~ a. (2.1.22) 

In applications, a is usually positive, and in reliability theory it is called the 
threshold parameter. The density (2.1.22) might reflect the following single 
shock failure model. Imagine that that there is some latent deterioration process 
going on in the system, and during the intervaI [O,a - a) the deterioration is 
comparatively small so that the shocks do not cause system failure. During 
a relatively short time interval [a - a, a), the deterioration progresses rapidly 
and makes the system susceptible to shocks. Afterwards, a single shock causes 
failure. The notation T '" Exp(a,~) is used for the r.v. with dJ. (2.1.22). 

Since the exponential distribution plays a prominent role in reliability and 
preventive maintenance theory, we will present two additional models leading 
to the exponential distribution. The first is a formalized scheme of a "Iarge" 
renewable system. 

Suppose that the system consists of n independent components, for n "Iarge" . 
The lifetime of component i is Ti, the mean lifetime of Ti is I'i = E[Ti]. After 
the component fails, it is immeadiately replaced by a statistically identical one. 
Assume that all components are organized in series, and each component failure 
causes system failure. 

Let us consider the ordered sequence of time instants of system failures 
tl < t2 < ... < tk < . . .. This sequence is obtained by positioning all component 
failure instants on a common time axis. 

The following remarkable fact was first discovered by Khinchine (1956). If 
the mean component lifetimes are approximately of the same magnitude, then 
the intervals between system failures am = (tm - tm-d behave, for large m 
and n, approximately as LLd. exponentially distributed r.v.'s. The parameter 
of these r.v.'s approaches A = E;=1 l'i1 • 

If Ti '" Exp(1/l'i), then the pooled sequence of failures forms a Poisson 
process with parameter A = E~ll'il. This becomes obvious if we recall that 
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in the pooled process, the probability of an event in the interval [t, t + 6] equals 
6 E~ll';l + 0(6). The above described fact about arbitrary sequences of r.v.s 
Ti describes a model for creating a random process which approaches, under 
appropriate conditions, the Poisson process with a constant event rate. For 
more details see Barlow and Proschan (1975, Sect. 8.4). 

Now let us turn to the sum of a random number of LLd. random variables. 
Formally, our object will be the random variable 

S = 1'1 + Y2 + ... + YK, (2.1.23) 

where K '" Geom(p). It is assumed that K is independent on the Li.d. r.v.s 
Y1 , Y2 , • • •• Recall that 

P(K = r) = (1 - pt-1p, r = 1,2,3,.... (2.1.24) 

The r. v. S is created in the following way. Imagine that we have a coin 
which shows "heads" (failure) with probability p. We Hip the coin until failure 
appears for the first time. For example, if we obtain the sequence "tails, tails, 
heads", the failure appears on the third trial. The r.v. K counts the number of 
trials needed to obtain heads for the first time. After K becomes known and 
K = k is observed, we put S = Y1 + ... + Y1c. 

Let us give a practical interpretation of (2.1.23). Suppose that the system 
lifetime is described by an r.v. Yi. At the instant offailure, an emergency unit 
replaces the failed system. It is capable of working only a short period of time, 
say 1 hour. During this time the failed system must be diagnosed and repaired. 
Let 1 - p be the probability that this mission could be carried out with success. 
If the repair succeeds, the emergency unit returns to standby, and the system 
continues to work. Otherwise, with probability p, the system fails. One hour is 
considered a negligible period of time. 

An interesting fact is the following: 

Theorem 2.1.2 
If Yi '" Exp(I/I'), then 

S '" Exp(PII'), 

Le. S has an exact exponential distribution with parameter plI'. 
We leave the proof as an exercise. 

(2.1.25) 

What happens if Yi is not an exponential r. v.? It turns out that if pis "smali" 
then S is "elose" to the exponential distribution with parameter pI E[Yi). For 
more details we refer to Gertsbakh (1989, Chap. 3). 

2.2 Aging and Failure Rate 

Let us consider in this section a system (component) which is not renewed at its 
failure. The event "failure" might be defined in many ways, depending on the 
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appropriate circumstances. It might be a mechanical breakdown, deterioration 
beyond the permissible value, appearance of certain defect in the system per­
formance (overheating, noise), or a decrease in system performance index below 
a certain previously established critical level. 

For our formal treatment, the particular definition of the failure is not im­
portant, but what is important is that we fix a certain time scale, define the 
event "failure" and measure the time T elapsed from the system's "birth" (the 
beginning of its operation) to its "death" or failure. We assume further that the 
lifetime, i.e. the time from "birth" to "death", is a continuous positive random 
variable with density function f(t) and c.d.f. F(t) = P(T $ t). 

In reallife, on failure, the system is usually repaired or restored, partially 
or completely, and starts a "new life", fails again, etc. In other words, most 
systems are subject to renewal in the course of their operation. Our analysis 
in this section deals with nonrenewable systems: we study the properties of the 
time interval until the appearance of the first failure. 

Of considerable importance and use in reliability analysis is the conditional 
probability of system failure in a small interval [t, t + ~] gitJen that at time 
t the system is "up" ("alive"). Formally, we are interested in the conditional 
probability 

P( ~I) P(failure appears in (t, t + ~)) 
t $ T $ t + T > t = P( T > t) . (2.2.1) 

Since the numerator in (2.2.1) equals approximately f(t) . ~, we arrive at the 
following formula: 

f(t) . ~ 
P(t $ T $ t + ~IT > t) ~ 1 _ F(t) . (2.2.2) 

In other words, the conditional failure probability in [t, t +~] given the system 
is up at t is, for small ~, approximately proportional to f(t)/(l - F(t)). 

Definition 2.2.1 
Suppose that the lifetime is a positive random variable with d.f. f(t) and c.d.f. 
F(t). Then the function 

f(t) 
h(t) = 1 _ F(t) (2.2.3) 

is called the failure or hazard rate. Note that h(t) is defined only for t such that 
F(t) < 1. 

In the branch of survival analysis which deals with the probabilistic analysis 
of lifetime for biological objects, the notion of rate of mortality is used instead 
of the "failure rate." 

Recalling that the exponential distribution arises as the time to the first 
event in the Poisson process, and that the probability of the appearance of an 
event in [t, t+~] is proportional to~, it should be expected that the failure rate 
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for the exponentially distributed lifetime is constant. Indeed, for f(t) = .xe-At 
and F(t) = 1 - e-At , 

f(t) 
h(t) = 1 _ F(t) = .x . (2.2.4) 

Suppose that we know the system failure rate h(t). Could we reconstruct in a 
unique way its lifetime density function and/or the lifetime c.d.f.? The answer 
is "yes" since there is a simple and useful relationship between the survival 
probability R(t) = 1 - F(t) = P(r > t) and the failure rate h(t): 

P(r > t) = R(t) = exp ( -fot h(u)du) . 

To prove it represent the integral in (2.2.5) as - J~ d[log(l - F(t))]. 

Definition 2.2.2 

(2.2.5) 

A random variable r is of increasing (decreasing) failure rate type if the corre­
sponding failure rate h(t) is an increasing (decreasing) function of t. 

We write rE IFR (DFR) or F E IFR (DFR) if h(t) is increasing (decreasing). 
The exponential random variable is, by definition, both of IFR and DFR 

type. 
A phenomenon which is very important, for reliability theory in general and 

for preventive maintenance in particular, is aging. On an intuitive level, aging 
means an increase of failure risk as a function of time in use. In that case the 
failure rate is an appropriate measure of aging. The memoryless exponential 
distribution reftects the "no aging" situation. A lifetime r E IFR displays an 
increasing faHure risk and reftects the situation when the object is subject to 
aging. If rEDFR, the faHure risk decreases in time, and the corresponding 
system, contrary to aging, becomes "younger." We will show later that mixtures 
of exponential distributions have this somewhat surprising property. 

Another approach to the formalization of aging is considering the conditional 
survival probability R(xlt), as a function of t, for an interval of fixed length x, 
[t, t + x], given that the system is alive at t. Obviously, 

R(xlt) = P(r>t+x) = R(t+x). 
P(r > t) R(t) 

(2.2.6) 

If this conditional probability decreases as a function of t, it would be natural to 
say that the system is aging. It turns out that this type of aging is completely 
identical to the IFR property. Indeed, using (2.2.5), it is easy to establish that 
R(xlt) = exp( - ftt+ x h(u)du). Taking the derivative of R(xlt) with respect to t, 
we arrive at the following theorem: 
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Theorem 2.2.2 
R(xlt) is decreasing (increasing) in t if h(t) is increasing (decreasing). 

In the case of discrete random variables, the definition of IFR and DFR should 
be given in the terms of the survival probability R(xlt). 

Definition 2.2.3 
Let Xi, i = 1, ... ,n, be independent random variables with d.f. h(t). We say 
that Y is a mixture of Xl! ... ,Xn if its dJ. is 

Mixtures arise, for example, if the daily production of several similar ma­
chines is mixed together. O:i is then the relative portion of the ith machine in 
the daily productionj Xi is the random characteristic of the items produced on 
the ith machine, say the random lifetime of a resistor which came out of the ith 
machine. An interesting fact which also has important practical implications is 
stated in the following 

Theorem 2.2.3. 
A mixture of exponential distributions has a DFR distribution. 

Proo/ 
Let Xi ,..., Exp(Ai). Obviously, the probability P(Y > t) can be represented 
in the form P(Y > t) = E[e- At], where A is a random variable such that 
P(A = Ai) = O:i· Then the failure rate of Y is 

Now consider the derivative of hy(t) with respect to t. The differentiation can 
be carried out inside the E[·] operator: 

dhy(t) 
dt 

_E[eAt]E[A2eAt] + (E[Ae At])2 

(E[eAt])2 

Now define X = eAt/ 2 and Z = Ae-At/ 2 . Then the numerator in the last 
expression is E2 [XZ] - E[X2 ]E[Z2]. It is nonpositive by the Cauchy-Schwarz 
inequality, which proves the theorem. 

Let us now investigate the relations hip between the failure rate of compo­
nents and the failure rate of the system. It is assumed that the system consists 
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of independent components. The situation is very simple for aseries system, as 
the following theorem states: 

Theorem 2.2.4 
The faHure rate of aseries system is the sum of its component failure rates. 

Proof 
The reliability of aseries system is R(t) = n~=l .R;(t). Take the logarithm of 
both sides. Differentiate with respect to t. Then we obtain that 

n 

h(t) = Lhi(t), (2.2.7) 
i=l 

It is clear from (2.2.7) that if all components are of IFR (DFR) type, then 
the series system is of the IFR (DFR) type. 

Historically, the fact established in Theorem 2.2.4 became an important im­
pulse for the design of reliable systems and for the development of reliability 
theory. During the era of first-generation computers, designers and users sud­
denly became aware that their computers faH extremely often, say once per hour. 
They realized that it was because the computer consisted of tens of thousands 
of parts (tubes, relays, etc.) which had failure rates of the order of 10-5 hr-1 . 

As a system, the computer is basically aseries system, i.e. the failure of each 
part means the failure of the system. Thus the system failure rate for the first­
generation computers was of the order of 1 - 0.5 hr-1 . Thus the average interval 
between failures was 1-2 hours. 

There is an interesting and useful connection between the mean lifetimes of 
the components of aseries system and the mean system lifetime. We state it 
without proof. 

Theorem 2.2.5 
Let Jl.i be the mean lifetime of the ith component. If all components are of IFR 
type, then the system mean lifetime JI. satisfies the following inequality: 

n 

JI. > (LJI.;lr1 • (2.2.8) 
i=l 

We have seen that the IFR property is inherited by aseries system from its 
components. The situation differs for a parallel system. It may happen that the 
IFR property of the components in not inherited by the whole system. Exercise 
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3 demonstrates that a system of two parallel elements with exponentiallifetimes 
may have a nonmonotone failure rate. 

The following theorem shows that the exponential distribution represents 
the "worst case" from the reliability point of view. Denote by r the system 
lifetime. 

Theorem 2.2.6 
If F E IFR and E[r) = 1-", then, for 0 ~ t ~ 1-", 

R(t) ~ e-t/IJ. . (2.2.9) 

We omit the proof, which can be found in Gertsbakh (1989, p. 63). This 
theorem has an immediate and very useful implication. 

Corollary 2.2.6 
Let ro = E[<p(X}, ... ,Xnl = 'IjJ(pl,IJ2, ... ,Pn) be the system reliability function. 
(<PO is the system structure function). Then, for 0 ~ t ~ min{l-"l, 1-"2,···, I-"n}, 

R(t) ~ 'IjJ( e-t/IJ.l, e-t /IJ.2, ... ,e-t/IJ.n) . (2.2.10) 

Proof 
This follows immediately from Theorem 2.2.6 and the monotone dependence of 
'IjJ(Pl, ... ,Pn) on each Pi· 

This statement says that on the time interval [0, min{J.tl, 1-"2, . .• , J.tn}) , the 
worst-case situation would take place if all system components (being organized 
in a system with the same structure function) were replaced by exponential 
ones, with the same mean lifetimes. 

We can view the results of the last two theorems as an attempt to extract 
information about the system lifetime when the information available is the 
mean lifetime and the behavior of the failure rate. The more we know about 
the statistical properties of the system, the more accurately we can predict 
system lifetime. An elegant mathematical theory was developed by Barlow and 
MarshalI (1964) for IFR distributions with known first and second moment. 
This theory allows us to obtain a quite accurate bounds on system reliability. 
This turns out to be very useful for various applications, including preventive 
maintenance. 

2.3 Normal, Lognormal and Weibull Families 

2.3.1 Normal and Lognormal Distributions 
We have already introduced the normal distribution in the previous seetion in 
the context of a damage accumulation process described by the model r = 



30 CHAPTER 2. PARAMETRIC LIFETIME DISTRIBUTIONS 

Tl + T2 + ... + Tk, where Ti are the intervals between the successive events in 
Poisson process. We say that T '" N (/1, 0") if 

( t - p,) 1 j(t-IJ.)/(J' 
P(T :$ t) = ~ - =. fiC exp[-v2 /2]dv . 

0" y27r-00 

(2.3.1) 

/1 and 0" are the mean value and the standard deviation ofthe r.v. T, respectively. 
The support of the normal distribution is the whole axis (-00,00) and therefore 
formally this distribution cannot represent a positive random variable. However, 
if 0"//1 < 1/3, the negative tail of the normal distribution is negligible, and it may 
serve as a c.dJ. for a positive random variable. Let us compare, for example, 
the normal and gamma distributions for k = 10. By (2.1.20), the c.v. of the 
gamma distribution is l/v'IO. Thus we might expect the survival probabilities 

RI(t) = e-AtL:~=oAi/i! and R2 = 1- ~((t -lO/A)/v'IOA-I) 

to be dose to each other (both distributions have the same mean and variance). 
This is in fact true, as Fig. 2.4 shows. 

R(t) 

1 r----==::--.. +- ,\ = 1, k = 10 
0.8 

0.6 

+- J.L = 10, (J = y'IO 
0.4 

0.2 

t 
2.5 5 7.5 10 12.5 15 

Figure 2.4. Comparison of gamma and normal survival probabilities 

The normal random variable is of the IFR type. Figure 2.5 shows typical 
curves of the failure rate. 

The lognormal distribution is defined in the following way. We say that the 
r.v. Y has a lognormal distribution with parameters /1 and 0" (which will be 
denoted as Y '" log N (/1, 0")), if 

P(Y ~ t) = ~COg:-/1). (2.3.2) 

The corresponding density function is 

1 ((lOgt _ p,)2) 
fy(t; /1,0") = fiC exp - 2 2 ' for t > 0 . 

y27rO"t 0" 
(2.3.3) 
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Let T = logY. How is T distributed? 

peT ~ t) = P(1ogY ~ t) = P(Y ~ et ) = 41C: JL) . (2.3.4) 

We see, therefore, that T = logY '" N(JL,a). The logarithm of a lognormal r.v. 
is anormal random variable. 

h(t) 
2 

3.5 

3 

2.5 

2 1 

1.5 

1 

0.5 

t 
2 4 6 8 

Figure 2.5. h(t) for the normal distribution. 1 - for N(JL = 5, a = 1), 2 - for 
N(JL = 5, a = 1.33) 

The first two central moments of the lognormal distribution are as follows: 

E[Y] = exp(JL + a2 /2), 

Var[YJ = (e0'2 -1) ·exp(2JL+a2 ). 

(2.3.5) 

(2.3.6) 

For the lognormal distribution, the coefficient of variation is a function of a 
only: 

C.V. = ve0'2 - 1 ~ a for a < 0.5 . (2.3.7) 

Table 2.1 shows how the c.v. depends on a. 
The lognormal density is left-skewed and has for large values of c.V. a heavy 

right tail. The density becomes more symmetrical for small c.v. valuesj see Fig. 
2.6. 

The three-parameter lognormal distribution has density 

1 ((lOg(t-tO)-Jl.)2) 
Jy(tjJl.,a) = J2-i exp - 2 2 ' for t > to, (2.3.8) 

27l'a(t - to) a 

and to is called the threshold of sensitivity. The density (2.3.8) is used when 
the lifetime data follow the lognormal density for t > to, and failures were not 
observed on [0, tol. 
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Table 2.1: Coefficient of variation for the lognormal distribution 

u 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.7 
c.v. 0.10 0.151 0.202 0.254 0.307 0.416 0.533 0.658 0.795 

f(t) 
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Figure 2.6. The lognormal density for I' = 2,u = 0.6 (curve 1), I' = 2,u = 0.3 
(curve 2) and I' = 2,u = 0.15 (curve 3) 

Investigation of the failure rate h(t) = Jy(tjl',u)j(l - ~«logt -I')ju» 
reveals that h(t) -+ 0 as t -+ 0 and as t -+ 00. Thus, the lognonnal random 
variable is neither of IFR nor of DFR type. This distribution may be suitable 
for describing the lifetime of objects which display so-called ''training effectsj" 
see Gertsbakh and Kordonsky (1969, p. 76) for more details. 

There are several probabilistic models in the reliability literature describing 
the appearance of the lognonnal distribution. An interesting source is the book 
of Aitchison and Brown (1957). Gertsbakh and Kordonsky (1969) show that 
the lognonnal distibution arises in a model of damage accumulation in which 
the probability of a single damage occurrence in [t, t+~] is ~·>..f(l+t). In fact, 
the lifetime defined as the time to the appearance of the kth damage event is 
the time to the kth event in a nonhomogeneous Poisson process with intensity 
function A(t) = A/(l + t)j see Appendix A. 

2.3.2 The Weibull distribution 

Lawless (1983) writes that about half of all papers on statistical methods in 
reliability in the period 1967-1980 were devoted to the Weibull distribution. The 
popularity of this distribution lies in the fact that, depending on the parameters, 
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it may describe both IFR and DFR random variables. Besides, a logarithmic 
transformation of the Weibull random variable produces an r.v. which belongs 
to the so-called location-scale family which possesses several very good features 
for statistical analysis. 

We say that the r.v. r has a Weibull distribution with parameters ..x and ß 
if the density function of r equals, for t > 0, 

J(t;..x, ß) = ..xß ßtß- 1 exp( -(..xt)ß), (2.3.9) 

and zero otherwise . ..x > 0 is called the scale parameter, and ß > 0 the shape 
parameter. 

The Weibull c.d.f. is 

F(t;..x, ß) = 1 - exp( -(..xt)ß) for t > 0, (2.3.10) 

and F(tj ..x,ß) = 0 for t ~ O. The notation r '" W(..x,ß) will be used for the 
Weibull distribution. 

h(t) 

5 

4 +- ß =2 

3 +- ß = 0.6 +- ß = 1.75 

2 

t 
0.5 1 1.5 2 

Figure 2.7. h(t) curves for the Weibull distribution (..x = 1) 

Obviously, for ß = 1, the Weibull distribution equates to the exponential 
distribution. The failure rate for the Weibull family is 

h(t) = J(t; ..x,ß)/(l- F(t; ..x,ß)) = ..xßßtß- 1 • (2.3.11) 

h(t) is increasing in t for ß > 1, decreasing in t for ß < 1 and remains constant 
for ß = 1; see Fig. 2.7. 

The mean value of the Weibull random variable is 

E[r] = ..x-I r(l + ß-l), (2.3.12) 

where ro is the gamma function: r(x) = It vz - 1r tldv. The variance is also 
expressed via the gamma function: 

(2.3.13) 
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Table 2.2: The values of r[1 + 1/ ßl, r[1 + 2/ ß] and r[l + 2/ ß]- (r[1 + 1/ ß])2 

ß r[l+l/ßl 
0.75 1.19064 
1.00 1.00000 
1.25 0.93138 
1.50 0.90274 
1. 75 0.89062 
2.00 0.88623 
2.25 0.88573 
2.50 0.88726 
2.75 0.88986 
3.00 0.89298 
3.25 0.89633 
3.50 0.89975 
3.75 0.90312 
4.00 0.90640 
4.25 0.90956 
4.50 0.91257 
4.75 0.91544 
5.00 0.91817 

r[1+2/ßl 
4.01220 
2.00000 
1.42962 
1.19064 
1.06907 
1.00000 
0.95801 
0.93138 
0.91409 
0.90275 
0.89534 
0.89062 
0.88776 
0.88623 
0.88564 
0.88573 
0.88632 
0.88726 

r[1 + 2/ßl - (r[l + 1/ß])2 
2.59458 
1.00000 
0.56215 
0.37569 
0.27587 
0.21460 
0.17349 
0.14415 
0.12224 
0.10533 
0.09193 
0.08107 
0.07213 
0.06466 
0.05834 
0.05294 
0.04828 
0.04423 

Table 2.3: The c.v. for the Weibull family 

ß 0.5 1 1.5 2 3 4 5 
c.v. 2.24 1 0.68 0.52 0.36 0.28 0.23 

To make it easier to calculate the mean value and the variance, Table 2.2 gives 
the values of r[l + 1/ ß], r[1 + 2/ ß] and r[l + 2/ ß]- (r[1 + 1/ ß])2 for various 
ß values. 

For the Weibull distribution the c.v. depends only on ß: 

( )
0.5 

C.V. = r(l + 2/ß)/r2 (1 + l/ß) - 1 . (2.3.14) 

Table 2.3 shows how this dependence for a few ß values. 
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The Weibull densities for various e.v. values are shown in Fig. 2.8. 
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Figure 2.8. The Weibull densities (mean = 1) 
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Let T '" W(A, ß). Consider the random variable X = logT. It has the 
following e.d.f.: 

P(X :5 t) = F(t) = 1 - exp-exp((t-a)/b), -00 < t < 00, (2.3.15) 

where a = -log A and b = 1/ ß. The derivation of (2.3.15) is left as an exercise. 
The e.d.f. (2.3.15) is of Ioeation-scale type. This fact is very important for 

statistical inferenee ab out the Ioeation and scale parameters. 

Definition 2.3.1 
Suppose that the r.v. X has a e.d.f. F(tj 1', 0'), where 0' > 0, and that the 
e.dJ. Fo(t) is parameter-free. We say that F(tj 1',0') is of loeation-scale type if 
F(tj 1', 0') = Fo«t -1')/0'). 

The eorresponding density function is fo({t -1')/0') . 0'-1 j I' and 0' are the 
loeation and scale parameters, respectively. 

The two-parameter exponential distribution (2.1.22), the normal and the 
extreme-value distribution (2.3.15) belong to loeation--scale families. 

The notation X '" Extr(a,b) will be used to denote an r.v. with e.dJ. 
(2.3.15). This distribution is known in probability theory as the extreme-value 
distribution of the third type. For more details see Bariow and Proschan (1915, 
Chap.8). 

Suppose that we have a eollection ofindependent r.v.'s Tl, ... , Tn , such that 
the eorresponding e.d.f.'s behave near zero as P(71 :5 t) = ctd (1 + 0(1», c > 
0, d > Oj t > O. Then consider the random variable Zn = an min(T1"'" Tn), 
where an is a normalizing eonstant, an = n1/ d . Then it can be proved that Zn 
converges in distribution to the Weihull random variable, with parameters c1 / d 

and d, as n tends to infinity. 
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The Weibull family is closed with respect to the minimum-type operation, 
in the following sense. If Ti '" W(Ai,ß), Ti are independent r.v.'s and T(1) = 

min1:::;i:::;n{Ti}, then T(1) '" W(Ao,ß), where AO = CE~1 Af)1/ß . We leave the 
reader to prove this property as an exercise. 

Let us consider an arbitrary monotone system with independent and non­
renewable components. The component i has lifetime Ti '" EXp(Ai). Let us 
assurne that the components are "highly reliable", Le. formally 

(2.3.16) 

Following Burtin and Pittel (1972), let us show that the lifetime of this system 
can be approximated by a Weibull distribution. 

For any state vector x, let G(x) = {i: Xi = I} and B(x) = {i: Xi = O}. 
Denote by D the set of all state vectors which correspond to the system down 
state, Le. 

D = {x: tj>(x) = O}. (2.3.17) 

The set D can be partitioned into subsets D r , D r+1, ..• ' according to the 
number of failed elements in the state vectors: D = U~=r D k • So, Dr is a 
collection of all state vectors which have the smallest number r of failed elements. 
(In other words, r is the size of the smallest cut set in the system.) 

Let T be the system lifetime. Let us partition the event "the system is down" 
into the events "the system is in Dk ," k ~ r. Then 

n 

R(t) = 1-L ( L II e-A;t II (l-e-Ait») .(2.3.18) 
k=r xED" {iEG(x), xED,,} {iEB(x), xED,,} 

Indeed, the sum in (2.3.18) is the probability that the system is in one of its 
down states. For each such state x, the elements of G(x) are up and the elements 
of B(x) are down. Now expand e->.;t = 1 - Ait + O(A~t2) = 1 - a(# + O(a2) 
and substitute it into (2.3.18). 

The main term in (2.3.18) will be determined by the first summand with the 
smallest k = r. After some algebra it follows that 

(2.3.19) 

where g(.) is the sum of the products of (J; over all cut sets of minimal size r: 

g(O) = L rr Oi· (2.3.20) 
xED~ iEB(x) 

Equation (2.3.19) suggests that the lifetime of a system with highly reliable 
exponential component lives approximately follows the Weibull distribution: 

(2.3.21) 
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Remark 
More formally, (2.3.21) states that for any t in a fixed interval [0, to], R(t) ap­
proaches exp( _artr g(8)) as a -+ O. 

H there are reasons to believe that the lifetime follows the Weibull pattern 
only for t ~ to > 0 and that failure can never occur before to, the natural 
extension of (2.3.10) is the three-parameter Weibull distribution: 

P(r ~ t) = 1- exp(-(A(t - to))ß), t ~ to. (2.3.22) 

As in the lognormal case, to is called a threshold or a guaranteed time parameter. 

Let us consider an example illustrating the quality of the approximation 
(2.3.21). 

Example 2.9.1: s-t connectitJitll 0/ a dodecahedron network 
Figure 2.9 shows a network with 20 nodes and 30 edges called dodecahedron. 
The nodes are absolutely reliable. The edges faH independently and have life­
times r ,.... Exp(A). The network faHs if there is no path leading from node 1 
("source") to node 2 ("terminal"). The reliability of such a network is termed 
the s-t connectivity. 

We assume that all 8i = 1 and a is "smalI." The dodecahedron has two 
minimal-size minimal cut sets with r = 3 edges. Indeed, node 1 is disconnected 
from node 2 if the edges {1'7, 18, 19} or the edges {6, 19,30} faH. All other cut 
sets separating the source from the terminal have size greater than r = 3 

Figure 2.9. The dodecahedron network 

Let us take t = 1 and consider how good is the approximation to network 
faHure probability provided by the expression Fapproz(l) = 1 - exp[a3g(8)], for 
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Table 2.4: Comparison of exact and approximate reliability 

e a a Fapproz(l) Fezact(l) rel. error (%) 
0.8 0.22314 0.0219 0.0362 39 
0.85 0.16252 0.0854 0.0122 30 
0.90 0.10536 0.00234 0.00288 18 
0.92 0.08338 0.00116 0.00136 15 
0.94 0.06188 0.000474 0.000528 10 
0.96 0.04082 0.000136 0.000146 7 
0.98 0.02020 1.65 x 10-5 1.7 X 10-5 3 
0.99 0.01005 2.0 x 10-6 2.03 X 10-6 1.5 

various values of a approaching zero. Since there are two minimal cuts of size 3, 
g(9) = 2(J3 = 2 by (2.3.20). Thus our approximation is Fapproz(l) = 1-exp[2a3]. 

Table 2.4 shows the values of network reliability using the Burtin-Pittel ap­
proximation versus the exact values ofnetwork failure probabilities Fezact(I), for 
a ranging from 0.22314 = -lnO.8 to 0.01005 = -lnO.99. (Values of Fezact (l) 
were computed by J.S. Provan using an algorithm based on cutset enumeration; 
see Fishman 1996, p. 62). 

It is seen from Table 2.4 that for a below 0.05 the Burtin-Pittel approxima­
tion is quite satisfactory. 

Estimation of network reliability may be a quite difficult task, especially 
for large and highly reliable networks. The exact calculation needs special al­
gorithms and software. Monte Carlo simulation is a good alternative, see e.g. 
Elperin et al (1991). Example 1.3.1 shows that for very reliable networks with 
failure probability less than 10-4 , the Burtin-Pittel approximation provides a 
reasonably accurate solution with minimal efforts. 

2.4 Exercises 

1. A system of five identical components operates in the following way. One 
component is operating while the rest four remain idle. When the operating 
component faHs, its place is immediately taken by an idle unit. The failed 
component is not renewed. (This situation is often termed "cold standby.") 
System failure occurs when all components have failed. Assume that component 
life is exponential with parameter ~. Deduce that system lifetime is Gamma(5, 
~). 

2 Let T'" U(O, 1). Find the faHure rate h(t). 

3. Two exponential components with failure rates ~1 = 1 and ~2 = 5 are con­
nected in parallel. Find the expression for system failure rate. Investigate 
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theoretically and/or numerically the behavior of the system failure rate. Is it 
monotone? 

4. Assume that at time t = 0 we start testing n identical and independent 
devices, each having an exponential lifetime with parameter'\. Each failed 
device is not replaced, and we stop after observing r failures, r =5 n. Denote by 
TTT the total time Oß test. Prove that TTT "" Gamma(r,'\). 
Hißt. The time to the first failure is "" Exp(n'\). The time between the first 
and the second failure is "" Exp((n - 1)'\). Then note that TTT = E;=l (n­
i + I)(T(i) - T(i-l». 

5. Suppose that a population with d.f. EXp('\l = 1) is contaminated byadding 
some amount of units with lifetime distributed according to Exp('\2) = 5. The 
lifetime of a randomly chosen unit is distributed according to F(t) = 0.2[1 -
e-5t] + 0.8[1 - e-t ]. 

Investigate the failure rate theoretically or numerically and show that it is 
ofthe DFR type. 

6. Suppose that T "" W(,\,ß), E[Tl] = 1, Var[T2] = 0.16. Find ,\ and ß. 
Repeat the same calculations by assuming that T has a lognormal distribu­

tion. 

7. Element a is connected in series to a parallel group of two identical elements 
band C. Ta "" W('\ = 1, ß = 2). Elements b and C are exponential with mean 
lifetime 0.5. Find the analytic form of the system failure rate h(t). 

8. For the system in Exercise 7, use Corollary 2.2.6 to find the lower bound on 
the system reliability. What is the interval for which this lower bound is valid? 

9. Prove formula (2.2.5). 

10. Prove Theorem 2.1.2. 
Hißt: Use the Laplace transform. The Laplace transform of the exponential 
density is 

L(s) = E[e-Bt] = Jooo e-Bt '\e->.tdt = ,\j('\ + s). 

11. Let T"" W(,\,ß). Find the c.d.f. of X = logT. Introduce new parameters 
b = ß-1 and a = -log'\. 

12. Let Ti "" W('\i,ß). Find the c.d.f. of T = min(TI, ... ,Tn ). 

13. Show that the Burtin-Pittel approximation for the system lifetime of the 
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bridge system shown on Fig. 1.5 is given by g(8} = 8182 + 8485. 

14. Consider aseries system of independent components with failure rates 
hl (t), . .. , hn(t}. Prove that the mean lifetime for this system is given by E[T] = 
f; exp[- f~ E?=l h;(x}dx]dt. 
Hint. Use (1.3.12), (2.2.5) and Theorem 2.2.4. 

15a. Find the c.d.f. of aseries system consisting of two independent components. 
The lifetime of the first one is Tl '" Exp(Al} and the lifetime of the second one 
is T2 '" W(A2 = O.906,ß = 4). 

b. Find the density function of the system lifetime and investigate it graph­
ically for Al values 0.5,1,2 and 4. 



Chapter 3 

Statistical Inference from 
Incomplete Data 

Statistics is the science of producing unreliable facts from reliable figures. 
Quips and Quotes, p. 765. 

He uses statistics as a drunkard uses a lamppost, for support, not for illu­
mination. 

Chesterton 

3.1 Kaplan-Meier Estimator of the Reliability 
Function 

Central to the statistical inference in reliability theory is the probabilistic char­
acterization of lifetime. To solve any problem in preventive maintenance we 
eventually will need information ab out the lifetime distribution function: the 
estimates of its parameters and/or a nonparametric estimate of the survival 
probability function. 

By the very nature of lifetime, obtaining a complete sampIe of observations 
is practically impossible. In a laboratory test, we stop the experiment either 
at a prescribed time or after observing a prescribed number of failed items. 
Otherwise, the experiment becomes too costIy and too time-consuming. Thus, 
for some items the lifetime is censored, Le. our information about it has the 
form "the lifetime T exceeds some value t c ." 

Suppose we monitor a sam pIe of 100 new type transmissions instalIed on 
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new trucks. It is agreed that a failed transmission will be immediately reported, 
together with the corresponding mileage. But it may happen that the truck is 
damaged in an accident and/or the transmission has been dismantled. Then 
the information received might be the following: the lifetimes tl, t2, ... ,t45 of 
45 failed transmissions have been observed and recorded. For the remaining 55 
transmissions, the information has the following form: the lifetime Tj exceeds 
some constant Lj, j = 46,47, ... ,100. 

An important case of incomplete information was described and formalized 
in the paper by Artamanovsky and Kordonsky (1970). After a fatigue failure is 
discovered in an operating aircraft, the whole fleet is grounded and inspected. 
The following information is recorded for aircraft i: the total time airborne Ti, 
and the presence or absence of a specific fatigue crack. So, for the ith aircraft, 
it is known only whether the fatigue life Ti exceeds 1i or not. 

This section describes a very useful nonparametric estimation procedure for 
the survival probability nmction R(t), Le. for the probability of survival past 
time t. This procedure does not assume any parametric framework, Le. no a 
priori assumptions are made about the nmctional form of R(t). 

It will be assumed that the following information is available. A group of n 
identical items starts operating at to = O. During the operation, the items may 
fail and also may be withdrawn (lost) from the follow-up. It is assumed that 
the failure times are recorded, together with the number of items "alive" just 
prior to the failure time. 

Suppose, failures occur at the instants 0 < tl < t2 < ... < tle. Let nj 
be the number of items "at risk" (Le. "alive") just prior to tj. Denote by Wj 
the number of items withdrawn from the observation in the interval between 
the (j - l)th and jth failure, Le. in the interval (tj-l, tj), to = O. Obviously, 
nl = n - WI, n2 = nl - 1 - WI, etc. 

Kaplan and Meier (1958) suggested their famous nonparametric estimator 
R(t) of the survival prob ability R(t), which has the following form: 

R(t) = II (1 - I/ni) . (3.1.1) 
{i:t.9} 

By (3.1.1), R(t) is right-continuous. It equals 1 for 0 ::; t < tli if observation 
(follow-up) stops at the instant of the kth failure tle, while some items remain 
alive, R(t) is defined only for the interval [0, tle]. 

A heuristic derivation ofthe estimator (3.1.1) can be made as folIows. Sup­
pose our observations of the sampie are carried out at the time instants ti, i = 
1,2, .... At ti we record the number nj of items alive just prior to the observa­
tion instant. In addition, assume that the number offailures ("deaths") dj is 
known for the interval A.j = (tj_l,tj). Therefore, we know also the number of 
items Wj "lost" or withdrawn in this interval. Let T be the item lifetime. Write 
P(T > tj) = R(tj) = P( survival past tj). Obviously, 

R(tj) = P(r > t~)P(T > ttlr > t~)··· P(T > tjlr > tj-l). (3.1.2) 
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Table 3.1: ABS test data 

failure number i mileage ti ni (ni - 1)/ni R(ti) 
1 3220 50 0.980 0.980 
2 6250 49 0.980 0.960 
3 12660 46 0.978 0.939 
4 15610 42 0.976 0.916 
5 22980 39 0.974 0.892 
6 27570 35 0.971 0.866 
7 30800 34 0.971 0.841 
8 33460 30 0.967 0.813 
9 38500 27 0.963 0.783 
10 41290 25 0.960 0.752 
11 44870 20 0.950 0.714 
12 50070 16 0.938 0.670 

Let Pi = P(T > tilT > ti-i). A natural estimate of Pi is the quantity 
Pi = 1-di/ni, where ni is the average number of items operational during the 
interval ö'i. It seems reasonable to put nj = nj - wj/2. Thus the so-called 
life-table estimate R( tj) of R( tj) is obtained as 

j 

R(tj) = IIpi. 
i=l 

(3.1.3) 

The Kaplan-Meier estimator can be viewed as the limiting case of the esti­
mator (3.1.3). Imagine that the lengths of ö'j tend to zero, and the number of 
these intervals tends to infinity. Some of these intervals which do not contain 
failures will contribute to (3.1.1) by a factor of 1. The only nontrivial contribu­
tion will come from those intervals which contain failures. For them, assuming 
that failure instants are separated from each other, pi = 1 - I/ni = 1 - I/ni. 
Thus we arrive at the Kaplan-Meier estimator also termed the product-limit 
(PL) estimator. 

Example 3.1.1. Kaplan-Meier estimates for ABS units 
A new experimentally designed automatie braking system (ABS) was installed 
in 50 cars. At ABS failures, the mileage of each car was recorded. In addition, 
some cars were removed from testing due to the failures of other parts or because 
of accidents. The experiment was designed in such a way that at the instant of 
the ABS failure or car removal, the corresponding mileage was recorded. The 
data and the computation of R(t) are summarized in Table 3.1. 

It can be shown that under a rather general random withdrawal mechanism, 
R(t) is an unbiased estimator of R(t). The following formula known in the 
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literat ure as the Greenwood's formula gives an estimate of Var[R(t)]: 

Var[R(t)] = [R(t)]2 L (ni (ni - 1))-1 . (3.1.4) 
{i:t.:9} 

An approximate 1-20: confidence interval on the survival probability for a fixed 
value t can be obtained as 

(3.1.5) 

where Za is the 0: quantile of the standard N(O, 1) normal distribution. 

3.2 Probability Paper 
In this section we describe a popular graphical technique for analyzing lifetime 
data which uses so-called probability paper. This technique is usually the first 
step in lifetime data analysis. By means of probability paper it is possible to 
check visually how closely the data follow the hypothetical distribution function. 
Furthemore, it provides a quick estimation of the distribution parameters. Very 
convenient is also the fact that the probability paper is applicable to a right 
censored sampies, a feature which is very important for reliability applications. 

Use of probability paper is restricted to location-scale families; see Definition 
2.3.1. 

Suppose, therefore, that the c.d.f F(·) of lifetime r is such that 

( t - a) P(r 5:. t) = F -b- , b> O. (3.2.1) 

We assume that F(·) is a continuous and strictly increasing function. Then, for 
any p between 0 and 1, the equation 

p=Fc~a) (3.2.2) 

has a single root denoted by tp • 

Definition 3.2.1: p quantile 
The root t = tp of (3.2.2) is called the quantile of level p, or the p quantile. 

The p quantile has a simple probabilistic meaning: the p part of the 
probability lies to the left of tp : 

(3.2.3) 

The median is the 0.5 quantile, and the lower quartile is the 0.25 quantile. 
Denoting by F-l(.) the inverse function of F(·), we obtain that 

(3.2.4) 
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or 

tp = a + bF- I (p). (3.2.5) 

This equation shows that for a location-scale family there is a linear relationship 
between F-I(P) and the tp- This is the basis for constructing the prob ability 
paper. 

Let tri), t(2)' ... ' t(n) be the ordered observations from the population r '" 
F((t - a)jb). 

The sampie counterpart of the c.d.f. is called the empirical c.dJ. and denoted 
by Fn(t). It is a stepwise ftmction that jumps by 11n at each t(i). 

Definition 3.2.2: The empirical distribu.tion function Fn(t) 
Fn(t) = 0 for t < tri) and Fn(t) = 1 for t ~ t(n), and 

Fn(t) = kin, for t(k) :S t < t(k+l)' k = 1, ... , n - 1 . (3.2.6) 

Let tp be the p quantile of F(·). Then it is easy to prove that Fn(tp ) -t p 
as n -t 00 (since p is the probability that an observed lifetime is at most t p ). 

Then t(k) is the empirical value of the p = kin quantile, and we can write 

(3.2.7) 

or 

(3.2.8) 

This relationship is the key for probability plotting: the observed lifetimes 
t(k) must be plotted against F-I(ßk). F(t) changes from (k - l)ln to kin at 
t(k); plotting t(k) against F- I((k-O.5)jn) is recommended; (see e.g. Vardeman 
1994, pp. 77,78). 

Then a straight line must be drawn by eye through the plotted points. elose­
ness of the points to this line is confirmation that the sample belongs to the 
population with the hypothetical c.d.f. F(t). 

To facilitate the use of probability paper, we present in Appendix D the 
Weibull and the normal probability paper, together with Mathematica code for 
producing the paper and plotting on it. 

Let r = 'IjJ(X), 'IjJ be a monotonically increasing function, and let the c.dJ. 
of r belong to a location-scale family. Then 

P(X :S y) = P('IjJ(X) :S 'IjJ(y)) = F('IjJ(y~ - a). (3.2.9) 

Therefore, changing the time scale from t to 'IjJ(t) enables us to obtain a proba­
bility plot for an r.v. X. We give two very important examples. 

(i) Let r = log X '" N(J,t, (12), Le. X is lognormal. We write this as X '" 
logN(J,t, (12). Here 'IjJ(X) = logX. Thus, probability paper for the lognormal 
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distribution is obtained from normal paper by replacing the time axis by a 
logarithmic time scale. 

(ii) Let r '" Extr(a,b), Le. P(r > t) = 1- exp(_e(t-a)/b) . Then X = e'" '" 
W(A, ß), with A = e-a , ß = b-1 . Therefore, Weibull paper is obtained from the 
probability paper for the extreme-value family by a logarithmic change of time 
scale. 

Example 3.2.1 
Seven braking units were installed on experimental trucks. Five failures were 
observed in the experiment, at 2.25, 6.7, 37.6, 85.4 and 110.0 (in thousands of 
miles) . It was decided to stop the test after observing five failures. Two braking 
units survived 110000 miles. The following table presents the data needed for 
a probahility plot: 

1 2.25 
2 6.7 
3 37.6 
4 85.4 
5 110.0 

(i - 0.5)/7 
0.071 
0.214 
0.357 
0.50 
0.642 

Figure 3.1 shows 5 points with coordinates (t(i) , F-l «i - 0.5)/7» plotted 
on Weibull paper. They follow quite closely a straight Une. We presume that 
if the two remaining points had been observed, they would have been elose to 
the line drawn. We have, therefore, some evidence that the underlying c.d.f. 
is Weibull. It is important to note that we are dealing with an incomplete 
samplel Note also that in most applications, the left tail of the distribution is 
of greatest importance. In practice, we will hardly ever be able to observe all 
order statistics. 

Weihull paper also enables us to obtain parameter estimates. The estimation 
of A uses a special Une which corresponds to the probability 1 - e-1 ~ 0.632. 
The time value which corresponds to the intersection of the line drawn and this 
specialline is the estimator of 1/ A. In our case, ~ = 1/115. 

To estimate the Weibull shape parameter ß, we suggest the following proce­
dure. Read from the graph of the Une drawn the time value tp which corresponds 
to a certain p-value, say p = 0.35. We see that tO.35 ~ 27. Then use the following 
formula: 

ß = log ( -log(~ - p». 
log(tpA) 

(3.2.10) 
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For our data we obtain ß = 0.58. 
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Figure 3.1. The Weibull plot for Example 3.2.1 

To facilitate the use ofWeibull paper, we present in Appendix D Mathemat-
ica code for plotting on it. To activate this program, define 

(i) the observed lifetimes as "tw", see In[l] and 
(ii) "nobsw" , the total number of observations. 
The program in Appendix Dis designed for the range of observations [1, 1 000]. 

H the observations fall outside this range, rescale the range. For example, if the 
maximal observation is 100000 cycles, express the results in hundreds of cycles. 
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There is an ample literature on using graphical methods for data analysis and 
estimation. We refer the interested reader to Abernethy et al (1983), Dodson 
(1994) and Vardeman (1994). 

Example 3.2.2: Fatigue test data /or cyclic bending 0/ a cantilever beam 
The following are the results of a fatigue experiment. A cantilever beam made of 
alloy B-95 was bent with maximal cyclic stress 30 kg mm-2 (Kordonsky 1966). 
Of 22 specimen put on test, 13 failed in the interval [0, 1.25 X 105], see Table 
3.2. N(i) is the lifetime in the units of 100000 cycles. 

Table 3.2: The fatigue test results 

i N(i) IOglO N(i) 
1 0.53 4.724 
2 0.65 4.813 
3 0.76 4.881 
4 0.80 4.905 
5 0.87 4.940 
6 0.90 4.954 
7 0.902 4.955 
8 1.02 5.009 
9 1.07 5.029 
10 1.074 5.031 
11 1.09 5.037 
12 1.16 5.064 
13 1.22 5.085 

Figure 3.2 is the plot on normal paper of the lifetimes of the noncensored 
observations obtained by means of the Mathematica program presented in Ap­
pendix D. In our case, we have to supply the program with the following data: 

(i) the logarithms of the lifetimes put into the list "tn", the third column of 
Table 3.2; 

(ii) the total number of observations (including censored), "nobsn." In our 
case, nobsn=22. 

(iii) the first argument of PlotRange should include the minimal and the 
maximal observed lifetime (in logarithms). We took [4.6,5.2]; see Fig. 3.2. 

Figure 3.2 shows that the dots closely follow a straight Une. Assuming that 
the censored lifetimes belong to the same population, it seems very plausible 
that the actuallifetimes follow the lognormal distribution. (Recall that if log T "" 

N (p" 0'), then T '" logN (p" 0'». 
Parameter estimation from the normal plot is very simple. Draw a straight 

line L through the plotted points. The intersection of L with the horizontal 
line marked 0.5 is the estimate of p,. In our case, fi, = 5.060. To obtain the 
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estimate of u, read the abscissa Xo of the intersection of L with the horizontal 
line just above the line marked 0.15 (this line corresponds to the probability 
0.159): Xo = 4.893. The estimate of u is 0- = ji, - Xo = 5.060 - 4.893 = 0.167. 
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Figure 3.2. The normal plot for Example 3.2.2 

Remark 
So far we have described the use of probability paper for complete or right­
censored sampies. Could we draw a probability plot for data subject to more 
complicated censoring? A practical solution would be to use the Kaplan-Meier 
estimate R(t) to produce a substitute for the empirical distribution function. 
Put F(t) = 1 - R(t). Suppose that at the point ti, F(t) jumps from pt to pi·. 
Then calculate Pi = (Pi + pt) /2 and plot (ti, F-l (Pi» on the probability paper. 
In other words, use Pi instead of (i - 0.5)/n. 
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3.3 Parameter Estimation for Censored and 
Grouped Data 

3.3.1 The Maximum Likelihood Method 
Suppose we observe a sampie {tl, t2, ... , tn } from a population with density 
function !(tja,ß). (For the sake of simplicity, we assume that !O depends on 
two unknown parameters a and ß .) The standard maximum likelihood method 
of estimating the parameters works as follows. 

(i) Write the likelihood function 

n 

Lik = Lik(a, ßj tl, ... , tn ) = rr !(tij a, ß) . (3.3.1) 
i=l 

(ii) Find the values of a and ß (depending on the ohserved sampie values) 
which maximize the likelihood function. These values & = &(t1, t2, ... , tn ) and 
ß = ß(t1' t2, . .. , t n ) are called the maximum likelihood estimates (MLEs) of the 
parameters. 

In practice, the MLE are found by taking the logarithm of the likelihood 
function 

n 

logLik = Llog!(tija,ß), (3.3.2) 
i=l 

and by solving the system of equations 

ßlogLik = 0 ßlogLik = 0 
aa ' aß . (3.3.3) 

Assume that the solution (a, ß) of (3.3.3) does exist, is unique and corre­
sponds to the maximum of the likelihood function. Then (a,ß) are the maxi­
mum likelihood estimates. 

Typically, the MLEs have good statistical properties and in some cases co­
incide with the optimal estimates. 

Remark 
Finding the MLE as the stationary point via the system of equations (3.3.3) 
does not work in one important case: when the support of the density function 
!(tj·,·) depends on the parameters. An example is the exponential density with 
a threshold parameter: !(tj >., a) = >.e->.(t-a), t ~ a . Here the support depends 
on the parameter a, and the maximum of the likelihood function is not attained 
at the point where partial derivatives are zero. But the principle that the MLE 
should maximize the likelihood function remains valid. We demonstrate later 
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for the exponential distribution with threshold parameter that the MLE can be 
found directly from the expression for logLik; see Exercise 4 in Sect. 3.4. 

Remark 
An important property of the maximum likelihood method is the so-called in­
variance. Suppose that we want to find the MLE (j; of some parametric function 
'lj;(a, ß). By definition, (j; is the value of the function 'lj;(a, ß) which corresponds 
to the global maximum of the likelihood function. We may be tempted to 
express the likelihood function as a function of 'lj; and to maximize it. This, 
however, is somewhat tedious, and there is a much easier solution: the MLE of 
'lj; is obtained via the formula 

(j; = (j;(a,ß). (3.3.4) 

For example, the p quantile for a location-scale family F((t - a)jb) equals 
tp = a + b· F-l(p). (Verify it!) Suppose that we have the MLEs a and b of a 
and b, respectively. Then the MLE of the p quantile tp is 

(3.3.5) 

The main advantage of the maximum likelihood method is that it can be 
easily adjusted for incomplete data, such as censored andjor grouped sampies. 
This we demonstrate in the next subsection. 

3.3.2 Maximum Likelihood Function for Censored and 
Grouped Data 

Censoring by an order statistic 

The population has density function f(t; a, ß) and c.dJ. F(t; a, ß). The infor­
mation available consists of the first korder statistics tel)' t(2)' ... ' t(k). The 
only information about the remaining n - k observations is that they exceed 
t(k). This type of data (termed type II censoring) is typical in reliability test­
ing: n devices are subjected to a test which terminates, because of time or cost 
restrictions, exactly when the kth failure is observed. The likelihood function 
has the following form: 

k 

Lik = IIf(t(i);a,ß)· [1- F(t(k);a,ß)]n-k. 
i=l 

Example 3.3.1: Exponential distribution 
Let f(t,:A) = :Ae-At . Then 

logLik = k log:A - :A(t(1) + ... + t(k) + (n - k)t(k)). 

(3.3.6) 

(3.3.7) 
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The expression in brackets in (3.3.7) is the total time on test, TTT. The 
equation 8logLikj8>" = 0 gives 

,\ = kjTTT. (3.3.8) 

It is worth recalling that TTT ,... Gamma(k, >,,)j see Exercise 4, Sect. 2.4. This 
fact is useful in investigating the statistical properties of X. 

Censoring by a constant 

The lifetime data are censored by a fixed constant T (so-called type I censoring). 
A typical example is testing n devices during a fixed period of time [0,1']. Denote 
the observed lifetimes t(1)' t(2)" " ,t(k)' exactly as in the previous case, with the 
difference being that here k is random and is not fixed in advance. To make the 
maximum likelihood method work, we must observe at least one noncensored 
lifetime. The likelihood function is similar to type 11 censoring: 

k 

Lik = II!(t(i)jO,ß}' [1- F(Tjo,ß}]n-k. (3.3.9) 
i=1 

Random noninformative censoring 

Suppose that the lifetime Ti of the ith item can be observed only during a 
random time interval [0, Ti]. The r.v. Ti - G(t} is assumed to be independent 
of Ti' For example, the lifetime of a transmission can be observed on the time 
interval [O,Ti], where Ti is the actual mileage done by the ith truck during the 
warranty period, say one year. If the transmission fails during the first year, 
we will know the actual value of Ti = ti and also that Ti > ti. Otherwise, we 
observe the truck one-year mileage Ti = Xi and know only that Ti exceeds Xi. 

We assume that Ti ,..., !(tj 0, ß), and that the c.d.f. of Ti is F(tj a, ß). 
The following assumption is important: the c.d.f. of Ti does not depend on 

the parameters (0, ß), which justifies the name nonin!ormatitJe censoring. 
To write the likelihood function we need a notation g(t} for the density 

function and the c.dJ. of Ti. It is convenient to introduce an indicator random 
variable c5i which equals 1 if Ti $ Ti, and ° otherwise. Denote by Yi the observed 
lifetime or the censoring time for the ith item. Then the contribution of the ith 
item to the Iikelihood function is 

Liki = [/(Yij a, ß) . (1- G(Yi}]6i • [g(Yi) . (1 - F(Yij 0, ß»](1-6i ). (3.3.10) 

Now the log-likelihood function becomes logLik = n~=1 Liki: 

n 

logLik = L log [f(YijO,ß}6i.(1-F(YijO,ß»(1-6i)] +H(yl, ... ,Yn).(3.3.ll) 
i=1 
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Here the last term H(·) depends only on g(Yi) and G(Yi) and does not 
contain unknown parameters. Since we proceed by taking partial derivatives of 
the log-likelihood with respect to Q: and ß, this H-term Can simply be omitted. 

Quantal response data 

We already mentioned the work of Artamanovsky and Kordonsky (1970), in 
which the following important situation was studied. For the ith item, the 
information about its lifetime is the following: either the item failed during the 
interval [0, Yi], where Yi is a known quantity, or survived past Yi. The exact time 
of the failure is not known. This type of yes/no data about the failure time is 
called quantal. It is typical for periodic inspections and follow-up studies. 

For the sake of simplicity, let us number the "yes" responses (Le. the failed 
items) using the index iranging from 1 to r. The nonfailed items have numbers 
from r + 1 to n (the "no" response). Then the likelihood function is 

r n 

Lik = TI F(YiiQ:,ß)· TI (1- F(YiiQ:,ß)) . (3.3.12) 
i=l i=r+l 

It has been proved in the above cited paper that for a location-scale family, the 
system of likelihood equations for this case has a unique solution if at least one 
''yes'' and one "no" response have been observed. 

Example 3.3.2: Testing n items on the interval [0, y] 
Consider F(ti'x) = 1 - e->.t, all Yi = y. r items have failed on [0, y] and n - r 
have survived past y. Here Lik = (1 - e->.yte->.y(n-r) , so 

logLik = r 10g(1 - e->'Y) - 'xy(n - r). 

Hence 

_81_o8::-:g~_~_·k = rye->'Y /(1 - e->'Y) - y(n - r) = 0, 

which gives 

A -1 n 
,X = Y log ( )" n-r 

Grouped data 

Another situation often arising in lifetime testing and/or in follow-up studies is 
the following: the time axis is divided into nonoverlapping time intervals 11 = 

(to, tl], 12 = (tl, t2], . .. ,1k = (tk-l, tk], Ik+l = (tk, tk+1)' where to = 0, tk+l = 
00. N items are put on test (or are followed up) at t = 0, and the information 
available is that N j of them have failed in the interval I j , j = 1, ... , k + 1, 
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E;;:: Nj = N. One of the first monographs devoted to parameter estimation 
for grouped data was by Kulldorf (1961). 

Assume that the items fail independently and that their lifetime has c.d.f. 
F(tja,ß). The likelihood function is 

"+1 Ni 
Lik= rr [F(tija,ß) -F(ti-1j a,ß)] . 

;=1 

(3.3.13) 

Example 9.9.9: Fatigue test data 
Twenty-five specimens made from duralumin alloy were tested over aperiod of 
90 million cycles. The following data were recorded: 7 units failed on the 
interval [0,45], 13 units failed on the interval (45,90], 5 units survived the 
test. Previous experience says that the lifetime follows the Weibull distribution, 
F(tj A, ß) = 1-exp[-('\t)ß]. Prior information suggests that the scale parameter 
,\ is in the range 0.008-0.02, and that the shape parameter ß lies between 2 and 
4. The likelihood function has the following expression: 

Lik = (1- exp[-(,\. 45)ß]) 7 

x ( exp[-(A' 45)ß] - exp[-(,\. 90)ß]) 13 exp[-5('\. 90)ß]. 

Let us show how to use Mathematica to find the MLEs A and ß. 
In the printout presented as Fig. 3.3, In/l] defines the log-likelihood function 

as 10gLik, and its partial derivatives fl and f2 with respect to A and ß, respec­
tively. The operator "FindRoot" solves the system (3.3.3), and Out[4] is its 
solution: ,\ = 0.0137 and ß = 2.29. This operator requires the initial values for 
the variables to be defined. As such were taken ,\ = 0.014 and ß = 3, near the 
middle of the the prior range for these parameters. Since the point where both 
partial derivatives are zero is not necessarily the maximum point, it is highly 
advisory to make a contour plot of the log-likelihood function. This is carried 
out by means of the operator "ContourPlot"j see In[5]. The plot provided by 
Out[5]leaves no doubt that X,ß are indeed the MLEs. 

3.3.3 Finding Maximum Likelihood Estimates for a Cen-
sored Sampie: Weibull and lognormal Distribution 

Weibull distribution 

In this subsection we denote by tl, t2, ... ,tr the noncensored observations, and 
by t r +lt ... ,tn the censored ones. For example, for type 11 censoring, tr +1' .•. , tn 

are equal to the largest observed order statistic. 
It is more convenient to work not with the actual observed (or censored) 

lifetimes but rather with their logarithms. So let 

y; = logt;, i = 1, ... ,r,r + 1, ... ,no (3.3.14) 
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In[l];= loqLik = 7 *Loq[1- Exp[- (45 A) "ß]] + 

13 * Log [Exp [- (45 A) "ß] - Exp[ - (90 A) "ß]] - 5 * (90 A) "ß; 
f1 = 0 [logLik, A] ; 

f2 = o [logLik, ß] ; 

FindRoot[{f1 == 0, f2 == O}, {A, O.014}, {ß, 3}) 

Out[4]= p..~O.0136744, ß~2.29257} 

In[5];= ContourPlot[logLik, {A, 0.01, 0.016}, {ß, 2, 3}, Contours-+30] 

0 . 01 0 . 011 0.012 0.013 0 . 014 0 . 015 0.016 

Out[5]= - ContourGraphics-

Figure 3.3. Mathematica printout for solving Example 3.3.3 
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Recall that if the original observations ti come from the Weibull distribution, 
then their logarithms have the extreme-value distribution Extr(a,b), where a 
and bare expressed through the Weibull parameters: 

A=e-a , ß=l/b. (3.3.15) 

The system of likelihood equations has the following form: 

n 

8logLik/8a = -r/b + b-1 L e(Yi-a)/b = 0, 
i=1 
r n 

8logLik/8b = -r/b - b-2 L(Yi - a) + b-2 I:e(Yi-a)/b(Yi - a) = O. 
i=1 i=1 

From the computational point of view, it is always easier to solve one nonlinear 
equation than a system of two. The first of the above equations allows a to be 
expressed as a nmction of b: 

n 

a = blog (r- 1 L eYi / b) • (3.3.16) 
i=1 

Using (3.3.16), we obtain an equation for b only: 

"n . y;/b r 
L...i=1 y,e -1 '""' b "n Yi/b = r L.JYi + . 
L...i=1 e i=1 

(3.3.17) 

This equation usually has a single root and is easily solved numerically. Denote 
its solution by b. This will be the desired MLE of b. Now substitute it into 
(3.3.16) and obtain d. 

Lognormal distribution 

We know that if the logarithms of actuallifetimes follow the normal distribution, 
then the lifetimes themselves are lognormal. So, we process the logarithms 
(Yi, i = 1, ... , n) as if they are normally distributed. The procedure for finding 
the MLEs for the normal case with censored observations is based on a rather 
efficient iterative procedure, which is aversion of the so-called Expectation­
Maximization algorithmj see e.g. Lawless (1982, Chap. 5). To describe it, we 
need some notation. 

Let 

lj>(x} = (V'2:;i-")-le-z2 /2, R(x) = 100 lj>(t}dt. (3.3.18) 

Define also 

U(x} = lj>(x)/R(x}j '"Y(x} = U(x}· (U(x) - x} . (3.3.19) 
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Denote by IJ and 0" the parameters of the normal distribution. Define Xi = 
(Yi -IJ)/O", Wi = Yi for i = 1, ... ,r, i.e. for the noncensored observations, and 
Wi = IJ + 0"' U(Xj) for i = r + 1, ... , n, Le. for the censored observations. 

Now use the following iterative procedure. 
Step O. Define initial estimates of IJ and 0". Denote them as fJ.o and 0"0' 

Step 1. Use fJ.o and 0"0 to compute Wj from the above formulas, for i = 
1,2, ... ,n. 
Step 2. Compute 1J1 and 0"1 from the equations 

n 

1J1 = Lw;/n 
i=1 

and 

Go to step 1 by setting lJo := 1J1 and 0"0 := 0"1. 

Repeat steps 1,2 until procedure converges. 

(3.3.20) 

(3.3.21) 

It is easy to implement the above procedure on Mathematica because it has 
built-in operators for computing R(x). 

We have considered in this section the most useful parameter estimation 
techniques for incomplete data. This type of statistical inference is probably 
the most relevant to the implementation of reliability theory and preventive 
maintenance models to real-life situations. 

There is an ample literature on this topic. The reader can find a lot of 
information in Lawless (1982) and Gertsbakh (1989). These sources also give 
numerous references on inference from censored' grouped and quantal-type data. 

3.3.4 Point and Confidence Estimation of Location and 
Scale Parameters Based on Linear Combination of 
Order Statistics 

The purpose of this subsection is to describe methods of parameter estimation 
for incomplete data when the sampIe is drawn from a location-scale family. 
The parameter estimates are linear combinations of observed order statistics. 
These methods are easy to use and the quality of the corresponding estimators 
is comparable to the quality of maximum likelihood estimators. 

Suppose that a random sampIe X 1,X2 , •• "Xn is drawn from a population 
of location-scale type; see Definition 2.3.1. Recall that Xi '" Fo«t - IJ)/O"). 
Denote by X(i) the ith order statistic, and let Zi = (Xi - IJ)/O". Obviously Zj 
is parameter-free, P(Zi :$ t) = Fo(t). Then one can write the following set of 
equations: 

(3.3.22) 
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where m(i) = E[Z(i)]. The index i in (3.3.22) takes on the ordinal numbers of 
the observed order statistics. For example, we observe the second, third and 
fifth ordered observations. Then i = 2, 3 and 5. To simplify the exposition, we 
assurne that we observe the first r order statistics, i.e. we are in a situation of 
type II censoring. Then in (3.3.22), i = 1,2, ... ,r. 

Since Zi is parameter-free, the values of mi can be viewed as known. Thus 
the set of r equations (3.3.22) contains two unknowns, fL and O"j the term fi = 
Z(i) -m(i) is a zero-mean random variable. Expression (3.3.22) has matrix form 

X = Dß + O"f, (3.3.23) 

where X' = (X(l) , ... , X(r)) (the prime denotes transposition)j ß is a column 
vector with components fL,O"j f is a column vector with components f}, ... ,fr. 
D is the matrix 

D=[::: ~::~l. 
1 m(r) 

Expression (3.3.23) is a standard linear regression relationship. To make the 
regression mechanism work, we have to compute the variance--covariance matrix 

y = IICov[fi' filii, i,j = 1,2, ... , r . (3.3.24) 

This can be done since the fi are parameter free. It is known from regression 
theory (see e.g. Seber 1977, Chap. 3) that: 

(i) the minimal variance linear unbiased estimators of fL and 0" are 

(fi"fJ")' = (D'y-1D)-lD'y-1Xj 

(ii) the covariance matrix of (fi" 0-) is 

0"2(D'y-1D)-1 . 

(3.3.25) 

(3.3.26) 

fi" fJ are called the best linear unbiased estimators (BLUEs). As follows from 
(3.3.25), these estimators have the following general form: 

r 

fi, = La{n,rji)X(i)' 
i=l 

r 

0- = I)(n,rji)X(i). 
i=l 

Recall that the regression method works for any collection of order statistics. 
If we have at our disposal the order statistics with indices il, i 2, ... ,ir, the same 
method applies with obvious changes in the D matrix and in the Y matrix. 



3.3. CENSORED DATA: PARAMETER ESTIMATION 59 

The normal case has been given extensive theoretical and numerical con­
sideration. If we have a sampie which, by assumption, foHows the lognormal 
distribution, we have to process the logarithms of the observations as a sam­
pIe from the normal distribution. The paper by Sarhan and Greenberg (1962) 
contains tables of the coefficients a(n, ri i), b(n, ri i), for a wide range of n and r 
values. It considers type 11 censored sampies, as weH as left- and right-censored 
sampies. We recommend the use of the above source for the normal case. 

If we have a sampie from the Weibull distribution then the logarithms of 
the observations follow the so-called extreme-value distribution (2.3.15). BLUE 
estimators for this case have been investigated by Lieblein and Zelen (1956). 

To facilitate the numerical work in calculating the BLUEs, we present in 
Appendix B the V matrices for the normal and the extreme-value case, for 
n = 8, 10 and n = 15, together with the mean values of the order statistics m(i). 

An interesting theoretical and practical issue is to compare the maximum 
likelihood estimators and the BLUEs. A suitable criterion for comparison is the 
mean square error (m.s.e.). Recall that the m.s.e. of an estimator 0 is defined 
as 

m.s.e.[O] = Var[O] + E[(O - 0)2]. (3.3.27) 

For the extreme-value distribution, both methods provide dose results in the 
absence of of heavy censoring. If heavy censoring is present, the MLEs should 
be used in preference to the BLUEs. 

So far we have demonstrated several methods of obtaining point estimators 
for location and scale parameters. Now let us discuss confidence estimation 
for these parameters. Let fJ, and fJ be the estimators of the location and scale 
parameters, respectively. These estimators are functions of the observed order 
statistics X(1), ... ,X(r): 

fJ, = '/fII(X(1), ... ,X(r)), 

fJ='/fI2(X(1), ... ,X(r)) . 

Definition 3.3.1: Equivariance 

(3.3.28) 

(3.3.29) 

If, for any d and any c > 0, the estimators '/fII, '/fI2 satisfy the following properties: 

'/fII(CX(I) +d, ... ,cX(r) +d) 
'/fI2(CX(I) +d, ... ,cX(r) +d) = 

then they are termed equivariant. 

ctPI(X(I), ... ,X(r)) +d, 
ctP2(X(I), ... , X(r)), 

(3.3.30) 

(3.3.31) 

Expression (3.3.30) means that if all observations Xi undergo the transfor­
mation Xt = cXi + d, then the estimator of the location parameter undergoes 
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the same transformation. Expression (3.3.31) means that for the same trans­
formation, the estimator of the soole parameter is multiplied by factor c and 
remains insensitive to d. 

We state without proof that the BLUEs of I' and u are equivariant. 
The following notion plays a central role in confidence estimation. 

Definition 3.3.2: Pi1Jotal quantity 
Let the c.d.f. of Xi depend on some parameter 9. Then afunction of Xl, ... ,Xn 

and 9, Q(X1! X 2 , ••• Xn ; 9), is called a pi1Jotal quantity if the distribution of Q 
is parameter-free. 

To show how a pivotal quantity can be used for confidence estimation, let 
us recall the famous expression 

v'n=l(X - 1') 
q = 0.5' 

( L~=l (Xi - X)2 In) 
(3.3.32) 

where Xi '" N(I',u), and X = L~=l Xiln is the sampie average. The reader 
knows from the theory of statistics (see e.g. Devore 1982, p. 259) that q is 
distributed according to the so-called t distribution (with n - 1 degrees of free­
dom), which does not depend on the parameters I' and u. Then the confidence 
interval for I' is obtained from the following relationship: 

P(ta ~ q ~ tl-a) = 1 - 2a, (3.3.33) 

where ta, h-a are the corresponding quantiles of the t distribution. Transform­
ing the inequalities inside PO in (3.3.33) leads to the following well-known 
1 - 2a confidence interval: 

[- ta - tl-a] X - .;ris, X + .fii 8 , (3.3.34) 

( _ )0.5 
where 8 = L~=I(Xi - X?I(n -1) . 

Let GQ (t) be the c.dJ. of the pivotal quantity Q. Then a confidence interval 
for 9 could be obtained by using the relationship 

(3.3.35) 

where qa, ql-a are the corresponding quantiles of GQ(t). The desired confidence 
interval on 9 will be obtained if we succeed in "pivoting," i.e. in solving the 
inequalities inside P(·) in (3.3.35) with respect to 9. Let us show how this 
procedure works if we have at our disposal equivariant estimators satisfying 
(3.3.30) and (3.3.31). 
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Theorem 3.3.1 
Let t/1l and t/12 satisfy (3.3.30), (3.3.31), and let tp be the p quantile of the r.v. 
Y '" Fo((t - j.t)/a). Then 

A - t/1l - j.t A _ t/12 A _ t/1l - j.t A _ t/1l - tp 
1---, 2--, 3---, 4-

t/12 a a t/12 
(3.3.36) 

are pivotal quantities. 

Proof 
LetYi = (Xi-j.t)/a beU.d., Yi ",Po(t). Then Y(i) = (X(i)-j.t)/a, i = 1, ... ,n. 
Obviously, t/12 (Y(l) , ... , Y(r») is a pivotal quantity. It equals 

t/12((X(1) - j.t)/a, ... , (X(r) - p.)/a)) = t/12(X(1) , ... , X(r»)/a = A2. 

Similarly, t/1l(Y(l)' ... ' Y(r») is a pivotal quantity. By (3.3.30), it equals 

(t/1l(X(l)' ... ,X(r») - j.t)/a = A3 • 

Al is a pivotal quantity because Al = A3 /A2 . For a location-scale family, 
tp = j.t + at~, where Po(t~) = p. A4 is a pivotal because 

A4 (t/1l (X(l), ... ,X(r») - tp )/t/12 (X(l), ... ,X(r») 

(t/1l (j.t + aX(l)'.·· ,j.t + aX(r) - j.t - at~) 

t/12 (j.t + aX(l)' . .. , p. + aX(r») 

(t/11 (Y(1)' ... , Y(r») - t~) /t/12 (Y(l)' ... , Y(r»)· 

If the quantiles of the c.dJ. of the pivotals are known, then the use of Theo­
rem 3.3.1 for obtaining confidence intervals is straightforward. For example, let 
A4 '" G 4(t), G4(ta ) = 0 and G4(tl- a ) = 1 - o. Then 

(3.3.37) 

Solving the inequality inside P(·) with respect to tp (assuming t/12 > 0) produces 
the following 1 - 20 confidence inter val on tp : 

(3.3.38) 

The only remaining obstacle is finding the quantiles of the pivotals. The 
case with the t distribution is a rare exception because the c.dJ. of the pivotal 
is available in a closed form. For practical purposes, the following Monte Carlo 
simulation procedure could be used to find the quantiles of the pivotals. 

Step 1. Generate a random sample Yl, ... , Yn from the distribution poet). 
Step 2. Calculate the statistics t/11, t/12 and the pivotal quantities Al, ... ,A4 • 

Denote by A}k) , j = 1,2,3,4, the kth replica of the respective pivotal. 
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Do N (say, N = 100000) iterations of steps 1,2. Order the sampies of A)k), k = 
1,2, ... ,Nj j = 1,2,3,4. For each j, take as an estimate ofthe corresponding 
a quantile the [IN allth ordered observation. 

~ (2500) • For example, lor N = 100 000 and a = 0.025, tO.025 = A j , l.e. the 
quantile estimate is the 2500th ordered observation. Similarly, tO.975 = A)97 500) • 

The paper by Elperin and Gertsbakh (1987) demonstrates the implementa­
tion of the above method for confidence estimation. 

3.3.5 Large-Sample Maximum Likelihood Confidence 
Intervals 

The log-likelihood funetion (3.3.2) and the MLEs a and P can be used for obtain­
ing approximate confidence intervals for the parameters. First, we will describe 
the modus operandi of this approach. Later we will discuss the conditions under 
which this approach provides good results. 

Suppose that we have at our disposal the MLEs a,p. 
1. Compute the following second-order derivatives: 

V; ( ß) __ 82logLik 
11 a, - 8a2 ' 

82logLik 
VI2 (a, ß) = - 8a8ß ' 

8210gLik 
V22 (a,ß) = - 8ß2 . 

(3.3.39) 

(3.3.40) 

(3.3.41) 

2. Substitute the MLEs into the expressions Vi;. Denote the correspond­
ing expressions Vij = Vij(a,P). Form the following matrix called the Fisher 
observed information matrix: 

I - [ViI Vi2] F - A A • 

Vi2 V22 

This matrix is positively definite. 

3. Find the inverse of IF: 

I-I = [~ll ~12]. 
F W12 W22 

4. Let Z-y be the "( quantile of the standard normal distribution N{O,I). 
Approximate 1 - 2"( confidence intervals for a and ß are calculated by the 
following formulas: 

for a: [a - z-y· JW11 , a + ZI--y· JWlll, (3.3.42) 

for ß: [ß - z-y . JW22, P + Zl-'Y . JW22l . (3.3.43) 
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The principal statistical fact behind these formulas is the following: If the 
likelihood function has the form (3.3.1), where ti are the observed values of Li.d. 
r andorn variables, and the density function J ( t; 0:, ß) satisfies some regularity 
conditions, the most critical of which is that the support does not depend on 
the parameters, then, as n -t 00, the MLEs 0: and ß are asymptotically normal 
and unbiased, with variance-covariance matrix IFl . 

This result remains true if the observations are subject to type I and type 
11 censoring. Under some additional conditions on J(t; 0:, ß), it can be extended 
to the case of random independent censoring; see Lawless (1982, p. 526). 

The crucial point is that the above result is true asymptotically, Le. for 
large sampies. In reliability practice, a large sampie of observed lifetimes is 
unlikely to be available. Applying the maximum likelihood method to small and 
medium-size sampies, as weH as to sampies which are obtained under arbitrary 
censoring, may lead to inaccuracies in the actual confidence level. The issue 
of applicability of asymptotic results to finite sampies needs further theoretical 
and experimental research. We suggest using the above described method with 
caution, and treating the results as approximate. 

Example 3.3.3 continued: Large-sample confidence intervals for the parameters 
The necessary calculations are presented by the Mathematica printout in Fig. 
3.4, which is a continuation of the printout in Fig. 3.3. 

In [6] defines the elements of the matrix I F as the corresponding second-order 
partial derivatives. These derivatives are calculated by means of the operator 
"D[ ... ]". Then the derivatives are numerically evaluated at the MLEs found 
in Out[4]; see Out[6] , Out[7] , Out[8]. I n[9] defines the observed Fisher informa­
tion matrix and its inverse as "Finv=Inverse[F]" , and Out[lO] is IFl . Out[ll] 

and Out[12] are the estimates of the corresponding standard deviations. We 
summarize this as folIows: ,\ = 0.0137 ± 0.0014, ß = 2.29 ± 0.55. 

3.4 Exercises 
1. Suppose Tl "" W(A, ß), with E[TIJ = 1, and Var[Tl] = 0.16. Find A and ß. 
Suppose that T2 '" logN(Jl., 0'), with E[T2] = 1 and Var[T2] = 0.16. Find Jl. and 
0'. Compare the 0.1 quantiles of Tl and T2. 

2. Mann and Fertig (1973) give the following data on a lifetime test of 13 
identical components (in thousands of cycles): 0.22, 0.50, 0.88, 1.00, 1.32, 1.33, 
1.54, 1.76, 2.50, 3.00. The test was terminated after the tenth failure. 
a. Assume that the lifetime follows the WeibuH distribution. Estimate para­
meters using the Weibull paper. Estimate tO.l. 
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b. Solve the above problem for the lognormal distribution. 
c. Find the MLE for Weibull parameters oX and ß. 

3. Ten items were put on test at t = 0 and inspected at t = 2. Four had failed, 
the rest were operating. Assume that the lifetime follows W(OX = O.4,ß). Find 
numerically the MLE of ß. 

4. The lifetime T is distributed as Exp(a, oX)j see (2.1.22). Suppose tl, ... , t n 
are the observed lifetimes. Find the MLE of a and oX. 
Hint: Derive from the log-likelihood that a = min(tl' ... , tn ). 

5.The lifetime of a certain piece of equipment has c.dJ. F(tjQjß). n units 
operating at t = 0 were inspected at h = T, t2 = 2T and t3 = 3T. k1 units 
failed in [0, T), k2 in [T, 2T), and the remaining n - k1 - k2 failed in [2T,3T). 

Write in a general form the expression for the likelihood function and for 
finding the MLE of Q and ß. 

6. Replacement 0/ a component on a finite interval [0, T) 
a. Suppose a new component started operating at t = O. When the component 
fails, it is immediately replaced by a new one. The replacements take place only 
on the interval [0, T). The density nmction of component lifetime T is /(tj Q, ß), 
and the c.dJ. is F(tj Q, ß). 

Suppose the re placements took place at the instants {ti}, 0 < tl < t2 < 
... < tk < T. Use this information to derive an expression for the likelihood 
function. 

Hint: The following lifetimes were observed : d1 = h, d2 = t2 - tl, ... ,dk = 
tk - tk-l and T > T - tk. Thus the corresponding likelihood nmction is 

k 

Lik = IIf(dijQ,ß)· [1- F(T - tkjQ,ß)). 
i=l 

b. Assume that T ,.... F(tj ß) = 1-e-tß • The following data were received in the 
replacement process described in part a: T = 10, tl = 2, t2 = 3.3, t3 = 5.6, t4 = 
7.2, ts = 8.9. Find the MLE of ß. 

7. The hazard plot 
a. If R(t) = P(T > t) is the survival function, then the expression A(t) = 
-logR(t) is called the cumulative hazard. 

Prove that if TEIFR, then the cumulative hazard is a convex function 
(assume that r has a differentiable failure rate). 
Hint. By (2.2.5), the cumulative hazard equals A(t) = I~ h(v)dv. Differentiate 



3.4. EXERCISES 65 

A(t) twice, and use the property that for the IFR family, h' > O. 

b. The property established in a is used for a graphical investigation of R(t). 
Plot -log R(ti) versus ti, where R(t) is the Kaplan-Meier estimator of the 
survival function. This graph is called the hazard plot. If the hazard plot 
reveals convexity, this might be an evidence that T E IFR. 

Construct the hazard plot for the ABS data in Example 3.1.1. 
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In[6]:= IFll=-O[logLik, A, A] /. {A-+0.0137, ß-+2.292} /IN 

IF12 = -0 [logLik, A, 13] /. {A -+ 0.0137, 13 -+ 2. 292} / / N 

IF22 = -0 [logLik, 13, 13] /. {A-+0.0137, ß-+2.292} /IN 

Out[6]= 512978. 

Out[7]= 180.019 

Out[8]= 3.33224 

In[9]:= F= {{512978, 180.019}, {180.019, 3.33224}}; 

FInv = Inverse [F] 

Out[10]= {{l. 98707 x 10-6 , -0. 000107348}, {-O. 000107348, O. 305898}} 

In[ll]:= Sig[A] = (1.98707*"-6) "0.5 

sig [13] = (0.305898) "0.5 

Out[ll]= 0.00140963 

Out[12]= 0.55308 

Figure 3.4. Mathematica printout for the continuation of Example 3.3.3 



Chapter 4 

Preventive Maintenance 
Models Based on the 
Lifetime Distribution 

When it is not necessary to change, it is necessary not to change 
Viscount Ludus Cary Falkland 

1/ it ain't broke, don't fix it 

4.1 Basic Facts from Renewal Theory and 
Reward Processes 

4.1.1 Renewal Process 

When we choose a preventive maintenance scheme, we are usually interested 
in selecting the maintenance parameters, e.g. the maintenance period, in the 
"best" possible way. To do this, we need to compare the expressions for mean 
(expected) costs or rewards for various maintenance periods. Our first task is 
to leam how to write expressions for these costs or rewards. We will need some 
basics from the rene wal theory. 

Definition 4.1.1: Counting process 
{N(t), t > O} is said to be a counting process if N(t) represents the total 
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number of "events" on (0, t]. 

Obviously, N(t) is integer-valued, s < t implies that N(s) :::; N(t), N(O) = 0, 
and N(t) - N(s) is the number of events on (s, t]. 

Denote by X n the random time between the (n - l)th and nth events; see 
Fig. 4.1. (The zeroth event takes place at t = 0 and is ignored.) 

Definition 4.1.2: Renewal process 
Let {Xi} be Li.d. nonnegative random variables, Xi '" F(t). Then the counting 
process N(t) 

N(t) = {max n: Sn = Xl + X 2 + ... + X n :::; t} 

is called a renewal process. 

O~ ~ 
n-l 

Figure 4.1. The renewal process 

( 4.1.1) 

Xn 

~-n t 

To put it simply, the renewal process counts the numher of Xi intervals on 
(0, tJ. If E[XiJ = Jl., then by the law of large numbers, Sn/n --+ Jl. as n --+ 00 

with probability 1. 
Let us establish the distribution of N(t). Write Fn(t) = P(Sn :::; t). Denote 

FI (t) = F(t), the c.dJ. of Xi. 

Theorem 4.1.1 
P(N(t) = n) = Fn(t) - Fn+l (t). 

Proof 
N(t) ~ n <=> Sn:::; t. Then P(N(t) = n) = P(Sn :::; t) - P(SnH :::; t). 

Definition 4.1.3: Renewal junction 
The mean number ofevents m(t) on (0, t] is called the renewal function: E[N(t)] = 
m(t). 

Theorem 4.1.2 
00 

m(t) = L Fn(t) . (4.1.2) 
n=l 
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Proof 
met) = L~l nP(N(t) = n), which after some algebra, is equal to Fl (t) + 
F2 (t) + ... + Fn(t) + .... 

Example 4.1.1: Poisson process 
In a Poisson process, Xi '" Exp(A)j see Sect. 2.1. From the description and the 
properties of this process we know that the number of "calls" (events) on (0, tj 
has a Poisson distribution with parameter At. Therefore, the mean number of 
events on (0, tj equals At and thus met) = At. 

Theorem 4.1.3 
As t -+ 00, with probability 1, 

N(t) 1 
---+-. 

t JL 

Proof (Ross 1993) 
Obviously 

SN(t) :::; t < SN(t)+l' 

which we can also express as 

SN(t) < _t_ < SN(t)+1 . 
N(t) - N(t) N(t) 

(4.1.3) 

(4.1.4) 

(4.1.5) 

As t -+ 00, so does N(t). SN(t)/N(t) is an average of N(t) Li.d. random variables 
Xl, ... ,XN(t), and by the strong law of large numbers, SN(t)/N(t) -+ JL. Write 

The first factor tends to JL and the second to 1, as t goes to infinity. Therefore, 
t/N(t) -+ tt, or N(t)/t -+ l/tt· The quantity l/tt is called the renewal rate. 

Theorem 4.1.4: Elementary renewal theorem 
As t -+ 00, 

met) 1 
-- -+-. 

t tt 

We omit the proof. 

(4.1.6) 

At first glance, this theorem seems to be a corollary of Theorem 4.1.3 since 
the convergence of N(t)/t to l/JL must imply that the E[N(t)l/t also converges 
to 1/ tt. There are, however, some subtle details which complicate the proofj see 
Ross (1970, p. 40) or Ross (1993, p. 275). 
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Theorem 4.1.5 
Suppose the inter-renewal intervals have mean J1 and variance a2 • Then, as 
t ~ 00, 

a2 1 
[met) - tl J11 ~ - - - . 2J12 2 

(4.1. 7) 

We omit the proof, which can be found in Gnedenko et al (1969). The 
theorem states that met) has an asymptote, as shown in Fig. 4.2. 

m(t) 

Figure 4.2. The behavior of the renewal function met) 

Theorem 4.1.6: Asymptotic distribution 0/ N(t) 
As t ~ 00, 

N(t) - tlJ1 ~ N(O, 1). 
Jt a 2/J13 

(4.1.8) 

Loosely speaking, N (t) for large t is approximately normal with mean tl J1 
and variance ta2 I J13. We omit the proof, which can be found in FeIler (1968, 
Chap. 13). 

In applications, we often need an explicit expression for the renewal function 
met). Unfortunately, closed-form expressions for met) can be found only for the 
gamma and normal cases. 

Example 4.1.2: m(t) tor gamma and normal cases 
(i) The gamma distribution. Let Xi f'V Gamma(k, A). Note that Fn(t) is an 
n-fold convolution of this distribution. Remembering the model of the gamma 
distribution, Fn rv Gamma(nk, A). Therefore, writing Fl(t) = Gamma(t; k, A), 

00 

met) = L Gamma(t; kn, A) . ( 4.1.9) 
n=l 
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(ii) The normal distribution. Assume that the normal distribution is used to 
describe a nonnegative random variable. This implies that the negative tail 
might be ignored. Then 

m(t) = ~ C)C :;') . (4.1.10) 

However, for most cases we are forced to use approximations to the renewal 
function. It is easy to show that the nth convolution is always less than or 
equal to [Fdt)]n: Fn(t) ~ [F(t)]n, where we put F1 (t) = F(t). Then it follows 
from Theorem 4.1.2 that 

00 

Fdt) + ... + Fn(t) ~ m(t) ~ Fl (t) + ... + Fn(t) + L [F(t)]i. (4.1.11) 
i=n+l 

For practical purposes, for small t values, it is enough in (4.1.11) to take 
n = 2. Then, assuming that F(t) < 1, 

(4.1.12) 

This approximation is reasonably good for t < 0.5E[Xi ]. 

To facilitate the use of the renewal function in computations related to pre­
ventive maintenance, we present in Appendix E a table of the renewal function 
for the Weibull family. The results were obtained by using the approximation 
m(t) ~ L~l Fn(t). We used the following recursive formula: 

Fn(t) = l t 
f(x)Fn- 1(t - x)dx, 

where F1 (t) = F(t) = 1 - exp( -tß), /(t) = dF(t)/dt. The integral has been 
replaced by a finite sumo The maximum error of the approximation in the table 
does not exceed 0.001. 

The following theorem proved by D. Blackwell describes the local behavior 
of the renewal function m(t) as t goes to infinity. 

Theorem 4.1.7 (Blackwell) 
Let the c.dJ. of Xi be a continuous function. Then, for all a> 0, 

lim [m(t + a) - m(t)] = ~ . 
t-+oo #.I. 

(4.1.13) 

We omit the proof, which can be found in Ross (1970, p. 41). From (4.1.13) it 
follows that limHoo[m(t + a) - m(t)]/a = 1/#.1. and thus 

lim 1'lm m(a + t) - m(t) = ~ . (4 4) .1.1 
a-+O t-+oo a #.I. 
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Suppose it is possible to interchange the limits. Then 

lim dm(t) = m'(t) = .!., 
t-+oo dt I-" 

( 4.1.15) 

Le. the derivative of the renewal function for "I arge" t equals the renewal rate. 
m' ( t) is called the renewal density or the renewal rate. 

Let us give a probabilistic interpretation of the renewal density. Obviously 

m'(t)t:.t ~ m(t + t:.t) - m(t) 
= E[# of renewals in (t, t + t:.t)] 

P(exactly one renewal in (t, t + t:.t)) + 

'LjP(j renewals in (t,t+t:.t)). 
j>l 

It can be shown (see Gnedenko et al 1969, Sect. 2.3) that the sum in the 
last formula is o(t:.t) as t:.t -4 0. Thus, 

m'(t) . t:.t ~ P(exactly one renewal in (t, t + t:.t)). (4.1.16) 

4.1.2 Renewal Reward Process 

Let us associate with each renewal period a nonnegative random variable R;. 
called the reward or rost. It will be assumed that {R;.} are LLd. random vari­
ables, with mean value E[R;.] = E[R]. (R;. and Xi may be dependent r.v.'s). 

Let us assume that the reward R;. for the ith renewal period is accounted at 
the end of this period. Then the total reward accumulated on the interval [0, t] 
will be R(t) = E;:5:) R;., since there are N(t) renewal periods on (0, t]. 

The following theorem is the key to computing the reward per unit time. 

Theorem 4.1.8 
(i) With probability -4 1, 

R(t) E[R] 
--_4--

t I-" 
(4.1.17) 

as t -4 00. 

(ii) As t -4 00, 

---,E[,---,R(~t) J _4 _E[_RJ • 
t I-" 

(4.1.18) 

Proof 
(i) Write 

R(t) E!<:) R;. E!<:) ~ N(t) 
-t- = t = N(t) t (4.1.19) 



4.1. RENEWAL THEORY: BASIC FACTS 73 

By the strong law of large numbers, the first fraction on, the right-hand side 
tends to E[R] as t ~ 00. By Theorem 4.1.3, the second ratio tends to 1/1', 
which proves (i). 
(ii) It might seem strange that here the proof is more difficult than for (i). We 
omit it and refer the reader to Ross (1993). 

Example 4.1.3: Comparing two replacement strategies 
A piece of equipment has two independent parts, a and b. Their lifetimes are 
r.v.s Xa and Xb, respectively: Xa '" F(t) and Xb '" G(t). Let E[Xal = fJ.a, 
E[Xb] = fJ.b· 

If apart fails, an emergency repair (ER) takes place: the part is immediately 
replaced by an equivalent new one. The cost of an ER is CER = $1000, a "large" 
cost. There is also an option to combine the ER of one part with a preventive 
repair (PR) of the another one. PR means replacing the part in the absence of 
failure by an equivalent new one. The cost of combined repair is Ccom = CER+~, 
and ~ is relatively small. Assume Ccom = $1030. 

Two service strategies are suggested: replace each part at its failure only 
(strategy I); together with the ER of one part, carry out the PR of the other 
one (strategy 11). Strategy 11 is often called opportunistic. It is decided to 
compare both strategies by comparing the values of the expected cost per unit 
time over an infinite time period. 

Strategy 1. Obviously the cost per unit time "11 is 

1JI = lim E[the costover[O,tl]/t = CER(l/l'a + 1/l'b) . 
t-too 

(4.1.20) 

Strategy lI. Let Z = min(Xa,Xb), and let E[Z] = f.J.o. Then, on the average, 
each f.J.o units of time, a cost Ccom is paid. Thus the cost per unit time is 
"111 = ccom/I'o. 

Let us compare these strategies for two cases : X a and X b both exponential, 
with parameters Aa and Ab, respectively; and X a and Xb both Weibull, with 
parameters A = 1,ß = 2 for X a , and A = 2,ß = 2 for X b• 

For the first case, Z = min(Xa , X b) '" EXp(Aa + Ab) and thus 1JI = CER X 

(Aa + Ab)' As to "111, it equals Ccom(Aa + Ab)' 
So, the conclusion is that for exponentiallifetimes, strategy I is always prefer­

able. It is, in fact, clear without any formal derivation because for an exponential 
(nonaging) part a preventive replacement (even for a small extra cost) is just a 
waste of money. 

For the Weibull case the situation is different. First, let us compute the 
means of X a and X b• The easiest way is to use the formula E[X] = fc~(1 -
F(t»dt which gives I'a = 0.886, and I'b = 0.443. One can use numerical inte­
gration in Mathematica. 

To compute E[Z], use (1.3.4) and (1.3.12). 

P(Z > t) = exp[-(Aat)ß]exp[-(Abt)ß] = exp[_(V5t)2]. 
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Now E[Z] Jooo P(Z > t)dt = 0.396, and 'fJI = $3390 and 7]/1 = $2600. 
Therefore, the opportunistic policy is better than the replace-only- upon-failure 
policy. 

4.1.3 Alternating Renewal Process. Component Station­
ary Importance Measure for a Renewable System 

Consider a component which has alternating "up" and "down" states. Assume 
that the up periods are described by a sequence of Li.d. positive random vari­
ables }j, j = 1,2, ... , and the down periods by another sequence of positive LLd. 
random variables Xj,j = 1,2, .... These two sequences are assumed to be in­
dependent. It is convenient to assume that time t = 0 coincides with the end 
of an up period, and thus the duration of alternating states is described by the 
sequence Xl. Yl. X 2 , Y2 , •••• 

Let Zi = Xi + Yi, i = 1,2, .... These r.v.s describe statistically identical op­
eration cycles. At the instants Zl, Zl + Z2,' .. ,Zl + ... + Zk, . .. , the component 
fails. Obviously, thecountingprocessNa(t) = {maxn: Sn = Zl+Z2+" ,+Zn ~ 
t} is a renewal process. 

Let E[Xj ] = v, E[}j] =~. Obviously, v + ~ is the mean interval between 
rene wals in the process Na(t). Let Av(t) be the ratio: 

A ( ) _ total time up on [0, t] 
v t - . 

t 
(4.1.21) 

Obviously the numerator lies between Y1 + ... + YN,,(t) and Y1 + ... + YN,,(t)+1' 
We are interested in the behavior of Av(t) as t ~ 00. Let us divide the 

numerator and the denominator by Naet). As t ~ 00, Naet) also goes to infinity. 
Since (Y1 + ... +YN,,(t»)INa(t) ~ ~,and tINa(t) ~ (v+~), (see Theorem 4.1.3), 
we arrive at the following result: 

lim Av(t) = -~- = Av • 
t-+oo ~ + v 

(4.1.22) 

This limit is called stationary availability. This notion was introduced in Section 
1.2. The probabilistic interpretation of Av is as the probability that at some 
remote instant t the component is in the up state. 

The quantity 1/(~ + v) is the limit of the renewal density as t ~ 00. We 
call this limit the stationary renewal rate. 

Recalling the probabilistic interpretation of the renewal density (see above), 
t1t/(~+ v) is the probability that the component fails in the interval (t, t + t1t), 
as t tends to infinity. 

Now suppose that we have a monotone system consisting of n independent 
renewable components. Each component has alternating up and down intervals. 
To describe the renewal process for component j, we use the previously intro­
duced notation and add index j. So the stationary availability of component j 
is denoted by Av(j) and equals ~(j)/(~(j) + v(j)). 
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Suppose also that we know the system structure function <jJ(Xb ... , xn ). Re­
call from Chap. 1 that E[<jJ(X1, .•. , X n )] = 'IjI(Av(l), ... , Av(n)) = Av is the 
system stationary avaHability. 

From time to time the system fails. We are interested in obtaining the 
relative proportion of system failures coinciding with the /ailure 0/ component 
j. 

Denote by Q(t) the mean number of system failures in the interval (0, t] and 
by Qj(t) the mean number of system faHures caused by the failure of component 
j. We call the limiting value of the fraction Qj(t)/Q(t) (for t - 00) Barlow's 
stationary index 0/ importance 0/ component j and denote it by Bj : 

B 1· Qj(t) 
j = 1m Q(). t->oo t (4.1.23) 

Let us consider an example which cIarify the meaning of Bj • Exercise 1 in 
Sect. 1.4 considers a series-parallel system of four components: components 2 
and 3 are in parallel, both are in series with component 1, and components 1,2,3 
are in parallel with component 4. Suppose we are interested in system failures 
caused by the failures of component j = 2. Its stationary renewal rate equals 
1/(J.t(2) + v(2)). Not each failure of this component causes system faHure. For 
example, let component 2 faH when 1 and 3 are up and 4 is down. The system 
will not fail. SimHarly, if 1 and 4 are down and component 2 fails, it does not 
cause the system to fail because it is already in the down (failure) state. On 
the other hand, let component 2 faH when 3 and 4 are down and 1 is up. Then 
clearly this failure causes system faHure. 

More formally, we might say that the faHure of component 2 coincides with 
system failure if <jJ(Xb 12,x3,x4) - <jJ(Xl,02,X3,X4) = 1. Indeed, this difference 
equals 1 if and only if the first term is 1 and the second is 0, which means that 
(i) the system with component 2 in the up state is up and 
(ii) the system with component 2 in the down state is down. 

Since <jJ(X) is a binary variable, 

P(<jJ(X1 , .•. , 1j, ... ,Xn ) - <jJ(Xb ... ,Oj, ... ,Xn ) = 1) 

= E[<jJ(X1 , ••• , 1j, ... ,Xn ) - <jJ(X1 , ••• ,Oj, ... ,Xn )] 

= E[<jJ(X1 , ••. , 1j , ••• ,Xn )]- E[<jJ(Xl, ... ,Oj, ... ,Xn )] 

= 'IjI(Av(l), ... , 1j , •.• , Av(n)) - 'IjI(Av(l), ... , Oj, ... , Av(n) . (4.1.24) 

The first term on the last line is the stationary availability of the system in which 
the component j is "absolutely reliable" , Le. is always up. The second term is the 
stationary availability of the system with component j always being down. Note 
that the expression in (4.1.24) does not involve the reliability characteristics of 
component j . 

Note also that (4.1.24) is Birnbaum's importance measure of component j 
defined as 8'1j1/8pj (see Exercise 2 in Sect. 1.4). Indeed, by pivoting around 
component j, one obtains that 
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Now 

tjJ(Av(1), ... , Av(n» = Av(j)'IjJ(Av(I), ... , Ij, ... ,Av(n» 

+(1 - Av (j»'IjJ(Av (1), ... , Oj, ... , Av(n». (4.1.25) 

8'IjJ(·) 
8Av(j) = 'IjJ(Av (1), ... , Ij, ... , Av(n»-'ljJ(Av (1), ... , Oj, ... , Av (n» .(4.1.26) 

Now it is clear that Birnbaum's importance measure of component j ap­
plied to component stationary probabilities Pj = A v (j) is the stationary prob­
ability that the system is in the "j-critical state", Le. in such astate that 
component j's failure coincides with system failure. On a "Iarge" time span 
[0, t], the mean duration of the time during which the system is j-critical equals 
t· 8'IjJ(Av(I), ... , Av(n»/8Av(j). 

Now let us consider a small time interval (t, t + At) as t -+ 00. The event 
Cj = "component j fails in this interval and the system is in j-critical state" 
has probability 

P(C.) ~ 8'IjJ(Av (I), ... ,Av (n» At 
J 8Av (j) p,(j) + v(j) 

(4.1.27) 

The above reasoning is in fact a heuristic proof of the following theorem by 
Barlow (1998, Sect. 8.3): 

Theoretn 4.1.9 

(4.1.28) 

~xar.nple 4.1.4 
Compute Barlow's stationary importance measures Bj for the system described 
in Exercise 1, Sect. 1.4, for the following data: p,(I) = 1, v(I) = 0.2; p,(2) = 
1, v(2) = 0.3; p,(3) = 0.8, v(3) = 0.2; p,(4) = 1.5, v( 4) = 0.5. 

The stationary availabilities are: Av(l) = 0.833; Av(2) = 0.769; Av(3) = 
0.8, Av (4) = 0.75. The structure function of the system is 

1 - (1 - XIX2)(I - XIX3)(I - X4) 

XI X 2 + XI X 3 - XIX2X3 + X4 - XIX2X4 - XIX3X4 

+ XI X 2 X 3 X 4· 
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Replace Xi by Av(i) and take the partial derivatives: 

81/JO/8Av (1) = Av (2) + Av (3) - Av (2)Av (3) - Av (2)Av (4) 

- Av (3)Av (4) + Av (2)Av (3)Av (4) = 0.238; 

= 0.042; 

81/J(·)/8Av (3) 

= 0.048; 

81/JO/8Av (4) = 1 - Av (1)Av (2) - A v (l)Av (3) + Av (1)Av (2)Av (3) 

0.205. 

Substituting these values and the values of (J.t(i) + V(i»-l into (4.1.27), we 
obtain that B l = 0.52; B2 = 0.08; B3 = 0.13; B4 = 0.27. Thus, 52% of system 
failures coincide with the failures of component 1. 

4.2 Principal Models of Preventive Maintenance 
The models which we describe now are central to the applications of preventive 
maintenance theory. We will describe the preventive maintenance policy and 
derive an expression for a cast (reward) criterion to charaderize each model. 

4.2.1 Periodic (Block) Replacement - Cost-type Criterion 
A new unit starts operating at t = o. At each of the time instants T, 2T, 3T, ... 
the unit is replaced by a new one, from the same population. This replacement, 
termed pre1Jenti1Je maintenance (PM), costs c, where C < 1. At each failure 
which appears between the PMs, the unit is also replaced by a new one. This 
replacement upon failure is ca1led an emergency repair (ER) and costs CER = 1. 
All replacements take negligible time. The information available is the c.d.f. of 
unit lifetime F(t). Figure 4.3 explains the block replacement model. 

~ t 

Figure 4.3. Scheme of block replacement 
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Here the ERs between two adjacent PMs form a renewal process on [0, T]. 
The mean cost over one period of length T equals E[R;] = c+ meT) x 1, where 
meT) is the mean number of ERs on [0, T]. Then the mean cost per unit time 
is 

(T) _ c+ meT) 
1'/A - T . (4.2.1) 

Block replacement is the simplest and most widely used maintenance scheme. 
A formal complication with the expression for 1'/A (T) is that it depends on the 
renewal function, which is difficult to compute. Often the following upper and 
lower bounds are satisfactory (see (4.1.12)): 

c + F(T) + F 2(T) (T) 
T < 1'/A 

C + F(T) + F2 (T) + [F(T)]3 /(1- F(T)) 
< T . (4.2.2) 

Investigation of the expression for 1'/A (T) is postponed untillater. Obviously, 
small values of T lead to large costs for frequent PMs. Large values of T save 
on PMs but lead to large costs on ERs. 

It is worth noting that as T -+ 0, 1'/A (T) -+ 00; if T -+ 00, then by Theorem 
4.1.4 meT) behaves as T/p. and 1'/A(T) -+ 1/p.. 

Remark: the relevant time scale 
It is important to determine what is meant by "time" in the context ofpreventive 
maintenance in general, and in the context of block replacement in particular. 
Time t may have several meanings, depending on the specific circumstances: 
calendar time, operation time, the number of operation cyc1es, etc. H the time 
is defined as calendar time, then the c.d.f. of the system lifetime is related to 
calendar time and the maintenance periods are expressed as calendar units, say 
hours, days or months. If the relevant time is the operational ("up") time, then 
the lifetime distribution, preventive maintenance periods, etc. are measured 
in corresponding units, e.g. operation hours. In many cases, the choice of the 
relevant time units is obvious. For example, calendar time is a natural choice for 
continuously operating equipment. Very often, there might be several competing 
"parallel" time scales, such as the calendar time and the mileage scales for a 
car. It is not immediately clear which of these two scales is the ''true" one for 
each particular car system. We will return to the choice of the best time scale 
in Chap. 6. 

4.2.2 Block Replacement: Availability Criterion 

A new unit starts operating at t = o. The time axis is calendar time, which 
includes operation and idle time. At each failure, an ER is carried out which 
lasts time tER. After the total accumulated operation al time reaches T, a PM 
is carried out, which takes tpM. Both ER and PM completely renew the unit. 
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After a PM, the process repeats itself, as is seen from Fig. 4.4. Typically, 
tPM «: tER· 

~ 
o 

Figure 4.4. PM is carried out after each T units of operational time 

We are interested in maximizing the stationary atJailability. One renewal 
period has the mean duration T + meT) . tER + tpM. The total operational 
("up" ) time on this period equals T. This is the "reward" in our situation. 
The average reward per unit of calendar time gives the stationary availability: 

T 
TlB(T) = . 

T + m(T)tER + tpM 

Divide the numerator and denominator by T. Then this expression takes the 
form 

1 
TIBeT) = 1 + tERTlA(T) ' (4.2.3) 

where TlA (T) is the cost for block replacement with c = tpM /tER. So, maximiz­
ing the availability is equivalent to minimizing the corresponding costs. 

4.2.3 Periodic Group Repair - Operation Time Based Cri­
terion 

A group of n cold drinks machines located in the same building are serviced 
according to the following rule. Each T units of calendar time they are visited 
by a technician who checks all the machines, loads them and eliminates all 
malfunctions. This work completely "renews" all the machines. The cost of the 
technician's visit is, on average, cp +nCo. The duration ofthe service is assumed 
to be negligible (it can be done, say, at night when the machines are not in use). 
Each machine provides a revenue of Sr! per unit of its operation time and a 
1088, Le. a negative "revenue," $r2 for each unit of its idle time, r2 < O. Figure 
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4.5 illustrates the operation and servicing of the machines. 

n 
"'-----

3 

2 

1 

r--- OPERATIONAl 

-------
t-.... IDl E 

TIME 
~ 

o r, _P .. P..... ~2T 
~ 

Figure 4.5. Periodic servicing of n machines 

We assume that we know the distribution of the operational time T for each 
machine: T "" F(t). Let f(t) be the corresponding density function. 

Let us find the expression for the mean reward per unit of calendar time. 
Note that we have a rene wal process with fixed renewal period T. A machine 
fails in the interval [x, x + dx], with probability f(x)dx, for x E [0, T] and does 
not fai! in [0, T] with probability 1 - F(T). Thus the mean reward from one 
machine on the interval [0, T] is 

r(T) = lT (rlx + r2(T - x))f(x)dx + r1T(1 - F(T)) . (4.2.4) 

Now the reward per unit time from n machines is obviously 

(T) _ nr(T) - cp - neo 
l1c - T . (4.2.5) 

The expression for l1c (T) can be further simplified. It is advisable to carry out 
its investigation numerically. There is typically an optimal period T* which 
maximizes the reward, if r2 is negative: if T is very small, frequent visits by 
the technician will be very costly; if T is very large, then most of the time the 
machines will be idle. It is possible to establish that Um l1c(T) = -00 as T -t 0 
and that lim l1c(T) = nr2 as T -t 00. 

Example 4.2.1 
Assume rl = 1, r2 = -0.1, F(t) = 1 - exp[-t]. The repair costs are cp = 
0.1, eo = 0.01 and the number of machines in the group is n = 10. 

Figure 4.6 shows the graph of l1c(T). It has a maximum at T* ~ 0.2, 
which is about 1/5 of the machine mean up time. The maximal 11 ~ 8. It 
is instructive to note that very frequent technician's visits, say with T = 0.15 
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would considerably lower the reward per unit time, while taking T = 0.5 of the 
mean up time leads to much smaller decrease in the 110 value. 

17(T) 

8-~t-- ---I ---1---
c I i .1'---.... i 

2tt-·--··-j--·-_··_\ .... _ .............. _-_._._ .. . 

-'>-

Figure 4.6. Tlc(T) in Example 4.2.1 

Another interesting feature of the maintenance model considered in this sub­
section is that there is an optimal preventive maintenance policy even if the 
lifetime follows the exponential distribution, as the graph shows! On the one 
hand, there is no need for PM if all machines are up, if the lifetimes are expo­
nential. But on the other hand, in most cases, the PMs put an end to the idle 
period and thus increase the rewards. 

4.2.4 Periodic Preventive Maintenance with Minimal 
Repair 

Minimal repair with complete periodic renewal 

The weakness of all preventive maintenance models previously considered was 
the assumption of a complete renewal at failure and at the PM. The present 
model makes a more realistic assumption: the ER eliminates the failure but does 
not change the failure rate. Recall that the failure rate h(t) has the following 
meaning: h(t)At ~ P(failure in (t, t + At)lr > t). 

The minimal repair made at time to eliminates the failure but leaves h( to) 
unchanged. 

An important fact is the following. 

Theorem 4.2.1 
Under minimal repair, the mean number of failures on [0, T] is equal to 

H(T) = l T 
h(t)dt . (4.2.6) 
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We omit the proof, which is based on the fact that for minimal repair the failure 
instants follow a Poisson process with time-dependent event rate A(t) = h(t)j 
see Appendix A. 

In particular, the probability of absence of failures on [0, TJ equals e-H(T). 

This formula is similar to (2.1.3). 
If ER costs CER = 1 and PM costs CPM = c, then the average cost per unit 

time is 

(T) _ H(T) +C 
'f/D - T . (4.2.7) 

Example 4.2.2 
Let h(t) = A. Then 'f/D(T) = A + c/T, and obviously the best strategy is 
T = 00, Le. to avoid any PM. This is quite expected because a constant failure 
rate characterizes the exponential distribution. 

Suppose now that h(t) = at (this corresponds to the Weibull distribution 
with shape parameter ß = 2). It is easy to derive that 'f/D(T) = aT/2 + c/T. 
The optimal T* always exists and is equal to T* = J2c/a. 

Minimal repair with partial renewal 

Complete renewal, as considered above, demands in practical terms either re­
placement of the whole component (or the system) by a new one, or aseries of 
repair actions which would bring each part of the system to a "brand new" state. 
For example, all worn mechanical parts would be replaced by new ones. This 
is not always technically feasible. Very often, periodic repair activity improves 
the system but does not bring it to the brand new state (we call this "partial 
renewal"). 

It will now be assumed that this partial repair (e.g. lubrication, replacement 
of badly worn parts, adjustment and tuning of others) made at instant t = T 
does not bring the system failure rate h(t) to its initial level h(O). Formally, the 
behavior of the failure rate on the interval [T,2TJ will not be a copy of the 
failure rate behavior on the interval [0, TJ. 

In the literature, several models of partial renewal have been proposed. 
Zhang and Jardine (1998) suggest that partial renewal makes the system failure 
rate between "bad as old" and "good as new" , which means the following. Sys­
tem failure rate at t = 0 is h(O)j before the partial repair which is carried out 
at time to, system failure rate is h(to). The partial repair means reducing the 
failure rate to the value h(t*) which lies between h(O) and h(to). The paper by 
Usher et al (1998) considers a partial renewal which reduces the actual system 
age by a certain fraction. 

We suggest the following partial renewal model. In each interval I k = [T(k-
1), Tk], the system failure rate will be equal to the system failure rate on the 
previous interval I k - 1 multiplied by a "degradation" factor ecx , where a > 0 and 
a is an unknown parameter. For example, if the failure rate in 11 is h(t) and 
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ranges between h(O) and h(T), then in 12 , after the partial renewal at t = T, 
the failure rate will be ea h(t) ranging between h(O)ea and h(T)ea. In the third 
interval 13 , the failure rate will vary between e2ah(0) and e2a h(T), etc. This 
implies that the mean number of failures in interval h is H1 = H(T), in 12 

H2 = eaH(T), and so on. In h, the mean number of failures will be equal to 
Hk = e(k-l)CtH(T). 

In our calculations, only the mean number of failures Hk in the intervals 
1k , k ~ 1, playa role, and not the failure rate in these intervals. Therefore, we 
might say that we postulate the following property of partial renewal: the mean 
number of failures in the interval 1k after a partial renewal carried out at the 
instant Tk-l equals the mean number of failures in the interval 1k - 1 multiplied 
by the degradation factor ea . 

We assume further that after K partial renewals the system undergoes a 
complete renewal. In the above references, this is termed an "overhaul." An 
overhaul brings the system failure rate to its initial level h(O), Le. to the "brand 
new" state. 

Let us define the following costs: Cmin is the cost of the minimal repair; cpr 

is the partial renewal cost; Cov is the overhaul cost. Simple reasoning leads to 
the following expression for the cost per unit time: 

(K) = Cmin H (T)(l + ea + ... + ea(K-l») + (K - l)cpr + Cov 
1] KT . (4.2.8) 

It is assumed that T is given. We are looking for an optimal K* which minimizes 
1](K). The above formula can be simplified by noting that l+ea+ ... +eCt(K-l) = 
(e CtK - l)/(eCt -1). 

Example 4.2.3 
Suppose that T = 1, the failure rate h(t) = 2t, the degradation factor is eCt = 1.1. 
The costs are: Cmin = $15, cpr = $150, and Cov = $1000. Figure 4.7. shows the 
graph für 1](K) derived by Mathematica. It is seen that the optimal K* = 20. 
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Figure 4.7. The graph of 1](K) 

Two quantities appear in (4.2.8) : H = H(T) and et. For applicatiüns, 
it is vital to have an easy way of estimating these parameters from the data 
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available. Suppose we register the numbers of failures Ni, i = 1, ... , T, in 
r consecutive intervaJs 11,12, .. . , Ir: n1, n2, . .. , nr. TheoreticaJly, the mean 
number of failures Mi in Ii equals Mi = ea (i-1) H. Then 

log Mi = 10gH + a(i -1). (4.2.9) 

We suggest replacing log Mi by log ni and using the linear regression tech­
nique for finding a = log H and a. In other words, these parameters must be 
found by minimizing the expression 

r 2 

S = L (logni - a - (i - l)a) . (4.2.10) 
;=1 

So far we have considered periodic maintenance policies. These are conve­
nient for implementation, but the choice of the period T has been made without 
taking into account the previous maintenance history, e.g. the actual age of the 
system. In the next subsection we consider the so-called age replacement policy, 
which does take into account the system age. 

4.2.5 Age Replacement - Cost-type Criterion 

At t = 0, a new unit starts operating. Its lifetime c.d.f. is F(t). The unit is 
replaced when it reaches age T, or at its faHure, whichever occurs first. The 
ER (repair upon failure) costs CER, the PM (preventive replacement at age T) 
costs CPM «CER. Each replacement completely renews the system and takes a 
negligible time. Denote by r the unit's lifetime. Let Z = min(r,T) . Obviously, 
the first renewal appears after a random time Z. So the inter-renewal period 
has mean 

E[Z] = lT (1 - F(x»dxj 

see Example 1.3.2. The mean cost during one renewal period equals F(T)CER + 
(1 - F(T»cPM. Therefore, the mean cost per unit time is 

(T) _ F(T)CER + (1 - F(T»cPM 
T/age - f: (1 - F(x»dx 

(4.2.11) 

Let us derive a formula for the mean time to failure in age replacement. 
A typical maintenance-repair history is as follows. A new component starts 
operating at t = O. On a random number N of occasions the age T is reached 
before failure oeeurs, and on the (N + l)th eyde the failure takes place before 
age T is reached. Thus the failure appears at time tf = TN + {, where P(N = 
k) = (1 - F(T»/c F(T), k ~ 1, and E[{] lies between 0 and T. It is easy to 
establish that E[N] = (1 - F(T»j F(T) and thus the bounds on the mean time 
to failure are 

T(I- F(T» T 
F(T) < E[tf] < F(T)· (4.2.12) 
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Example 4.2.4: Age replacement 0/ a chemical reactor 
A chemical reactor producing cyanides has a system of pipes subject to the 
action of extremely active and dangerous chemicals. A post-failure repair of 
these pipes is very costly because of air pollution and contamination. The cost 
of ER is estimated as CER = $100000. PM of the pipes costs much less -
CPM = $1000. 

Expert opinion, based on past experience of using similar reactors, has it 
that the mean lifetime of a reactor is 1000 operation cycles. It is also assumed 
that the lifetime follows the Weibull distribution with shape parameter ß = 3. 
Let us find the optimal replacement age T* , the minimal costs "lage (T*) and the 
mean interval between reactor failures. Note that there is a safety constraint on 
the failure probability on the interval [0, T]: the probability of reactor failure 
should not exceed 0.0l. 

It follows from (2.3.12) that A = r[1 + 1/3]/1000 = 0.000893. Thus F(t) = 
1- exp[-(0.000893t)3], CER = 100000, CPM = 1000. 

Figure 4.8 shows the graph of "lage (T). The optimal replacement age T* ~ 
200 cyclesand "lage (T*) ~ $8 per cycle. F(200) = 1-exp[-(200 x 0.000893)3] = 
0.0057, which satisfies the safety constraint. 
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Figure 4.8. "lage (T) in Example 4.2.4 

It is interesting to compare this value with the cost of using the reactor if no 
PM is carried out. Then, the amount of $100000 is paid, on average, every 1000 
cycles and thus "lage (00) = 100, which is about 12.5 times the value "lage (T*). 

The mean interval between failures by (4.2.12) is approximately equal to 
T* / F(T*) = 35200 cycles . 

4.2.6 Age Replacement - A vailability-type Criterion 
Let us preserve all the assumptions of Section 4.2.5 except that now PM and 
ER last tpM and and tER, respectively. Typically, tER » tpM. Denote by f(t) 
the lifetime density. 
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One renewal period will be equal either to X = t + tER, if the unit fails in 
the interval (t, t + dt), t ~ T, which takes place with probability f(t)dt, or 
to X = T + tpM, if the unit reaches age T, which takes place with probability 
1 - F(T). Thus, after simple algebra, 

E[X] = lT 
(1- F(x»dx + tERF(T) + tpM(l - F(T» . (4.2.13) 

In one renewal period the unit is operational, on average, for time J{ (1 -
F(x»dx. Suppose that the reward equals the operational time. Then the mean 
reward per unit time is the system stationary availability: 

(T) _ JOT (1 - F(x»dx 
'T1F - T Jo (1- F(x»dx + tERF(T) + tpM(l - F(T» 

It is easy to simplify this expression: 

F(T) = (1+ tERF(T)+tPM (l-F(T»)-l. 
'T1 JOT (1 - F(x»dx 

(4.2.14) 

Thus we see that maximizing the availability is equivalent to minimizing the 
corresponding cost-type criterion (4.2.11). 

4.3 Qualitative Investigation of Age and Block 
Preventive Maintenance 

The basic expressions for the average costs are 

'T1block (T) = (c + m(T» /T, 

for the block replacement and 

'T1age (T) = (F(T) + c(l - F(T»)/ lT (1 - F(x»dx, 

for the age replacement. 

4.3.1 The Principal Behavior of 'T]block(T) and 'T]age(T) as a 
Function of T - the Role of c and F(t) 

Both expressions behave similarly when T --t 0: both tend to infinity. As 
T --t 00, both expreSBions tend to 1//1, where /1 is the mean lifetime. We 
proved this fact earlier for block replacement. For age replacement, note that 
the denominator tends to /1 as T tends to infinity and the numerator tends to 
1. 
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There are two types of behavior of 11(.) (T), as shown in Fig. 4.9. Type 
I means that the minimal cost is attained at T = 00, or the PM should be 
avoided. It easy to check that for F(t) = 1 - e-~t this is the case, obviously 
for both age and block maintenance. Type 11 behavior means that there is a 
finite optimal maintenance period andJor optimal age T*. H c > 1 or F(t) has 
a DFR, we observe type I behavior. 

'1](n '1](1) 

TYPE 1 TY PE 1I 

.1. -1. 
J-L fL 

'1]min 

T r* T 

Figure 4.9. Type I and type 11 behavior 

Figure 4.9 suggests a natural measure Q of preventive maintenance efficiency: 

Q = 11(.)(00) = 1 . 
minT>ol1(.)(T) 110(T*).1' 

(4.3.1) 

For type I behavior, Q = 1 j for type 11 behavior, Q > 1. The greater is Q, the 
more efficient is the optimal preventive maintenance. 

As a general rule, we can say that Q increases with a decrease in c and with 
a decrease in the coefficient of variation of the lifetime F(t). In simple words, 
preventive maintenance (with a proper choice of T*) is more efficient if the PM 
costs less in comparison with the cost of ER, and if the density /(t) is more 
"peaked" around the mean value. 

Note that the largest possible value of Q will be attained for an "ideal" 
distribution: F(t) = 0 for t < 1', and F(t) = 10therwise. For this case, the 
optimal T = I' - 0 ("a little less" than 1'), and the maximal Q = l/c. 

Table 4.1 shows the values of Q and T* for various values of c and the coef­
ficient of variation of F(t). These calculations were done for block replacement, 
for the gamma distribution Gamma(k, A). The picture for age replacement is 
similar. Recall that c.v. = I/Vk. 

It is seen from Tab. 4.1 that Q is nondecreasing for each c as the c.v. de­
creases. Similarly, for each fixed c.v., Q increases with the decrease in c. Typi­
cally, the optimal maintenance period T* increases with a decrease in c.v. and an 
increase in c. It is also typical that the optimal T lies in the range [0.4 - 0.65]1'. 
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Table 4.1: Q and T* for block replacement 

c k=2 k=4 k=8 k = 16 T*,Q 
0.15 0.421' 0.41' 0.471' 0.561' T* 

1.11 1.72 2.50 3.23 Q 
0.35 - 0.571' 0.581' 0.641' T* 

1 1.01 1.28 1.56 Q 
0.50 0.681' T* 

1 1 1 1.15 Q 

Table 4.2: Dependence of Qage/Qblock on c and k 

k c = 0.2 c = 0.5 c= 0.2 c= 0.5 c = 0.2 c= 0.5 
2 1.10 1 1.08 1.03 1.05 1.14 

4.3.2 Which is Better: Age or Block Replacement? 

Suppose we apply age and block replacement to the same system, each of them 
in its optimal way. The PM in both schemes costs Cj the cost of the ER is 1, 
as it is for age and block replacement. Let us compare minT>O "lage (T) with 
minT>O "Iblock(T). 

It turns out that the optimal age replacement is more profitable than the 
optimal block replacement. To prove this, we need to involve the notions of 
optimal Markovian-type strategiesj for details see Gertsbakh (1977, p. 99). 
Table 4.2 presents a comparison between age and block replacement for the 
gamma family and various C values. 

This table shows that age replacement is always better than block replace­
ment, but the ratio of the emdendes Qage/Qblock is relatively close to 1. 

It should be noted that in practice, for the same ER cost, the cost of a PM 
carried out at a preplanned time, as in block replacement, will be smaller than 
the corresponding PM cost for age replacement. 

4.3.3 Finding the Optimal Maintenance Period (Age) T* 

Formally, T* must satisfy the equation 

8rJO(T) _ 
8T -0. (4.3.2) 

Simple formulas are not available for the root of this equation. It is a waste of 
time trying to find T* analytically, and the problem should be tackled numeri­
cally. This is very simple using Mathematica software. Plot the corresponding 
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Table 4.3: Effideney Q as a funetion of E 

ß E= 0.0 E= 0.1 E =0.2 A E=O.O E = 0.1 E=0.2 ß 
2 1.38 1.28 1.22 2 1.96 1.64 1.47 3 
2 1.38 1.25 1.13 4 1.96 1.52 1.39 3 
2 1.38 1.22 1.13 8 1.96 1.52 1.35 3 

l1(.)(T) for T < 21-" Typically, if the optimal T exists, it lies within the interval 
[0,21-']. Loeate the optimal T and use the "FindMinimum" operator. 

4.3.4 Contamination of F(t) by Early Failures 
In practice, the effideney of the optimal preventive maintenanee eould be eon­
siderably impaired by eontaminating the population F(T) by an exponential 
population with much smaller mean value. Formally, let us assume that the 
lifetime distribution has the e.d.f. 

F(t) = EF} (t) + (1 - E)Fo(t), (4.3.3) 

where Fo is the prindpal population with an inereasing failure rate. It is eon­
taminated with the addition of 100E% of "bad" items having exponentiallifetime 
F}(t) = 1 - e->.t. Recall that for e.d.f. F}, no optimal preventive maintenance 
poliey exists. Let us eonsider a numerical example. 

Example 4.3.1 : Optimal age replacement /or a contaminated Weibull population 
Let us take F} (t) = 1 - e->.t and Fo(t) = 1 - e-tfl , ß = 2 and 3. Table 4.3 
presents the results of eomputing Q for various € and A values, for e = 0.2. It 
is seen that even a small eontamination of 10% may eonsiderably reduee the 
effideney Q. 

4.3.5 Treating Uncertainty in Data 
When we know exactly the lifetime distribution F(t) and the maintenance eost 
e, the problem of finding the optimal maintenanee period (or age) T* is in 
principle a simple task, even if there are no closed-form expressions for T*. 

How do we handle the problem of finding the best maintenance poliey if 
there is uneertainty with regard to F and e? To be more spedfie, let us eonsider 
an age replacement model with two possibilities regarding the e.d.f. F(t), e.g. 
F} ,... W(Al,ßl) and F2 ,... W(A2,ß2)' 

Suppose that these two distributions represent two extremes: the "best" and 
the "worst" ease, respectively. We suggest defining these extremes aceording to 
the value of the eoeffident of variation. So, F1 has the smallest e.v. and F2 has 
the largest e.v. 
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Suppose that the cost C lies between Cmin and Cmax . Thus we consider four 
data combinations: data(l) = CF!, Cmin); data(2) = CF!, cmax ); data(3) = 
(F2 , Cmin); data(4) = (F2 , Cmax ). 

Figure 4.10 presents four curves of 'fIage (T; data( i)) for i = 1,2,3,4. We wish 
to choose an appropriate age T for the PM. How do we do that in the presence 
of uncertainty? 

One possible solution would be the "statistician's approach": let us assign 
a certain "probabilistic weight" to each data set and calculate the average cost 
flage (T). Then we choose that value ofT which minimizes flage. (The statistician 
would say that he/she is minimizing the average risk.) A reasonable approach is 
to give equal weight to all four data combinations. Thus we write the expression 

~ (T) _ 'fIage(T;data(l)) + ... + 'fIage(T;data(4)) 
'fIage - 4 ' ( 4.3.4) 

and look for T** which minimizes fI: minT>O flage(T) = flage(T**). In the 
statisticalliterature flage(T**) is called Bayesian risk (see DeGroot 1970, Sect. 
8.2), and TU is called the Bayesian decision. The Bayesian risk is shown in Fig. 
4.10 as a dashed curve with open circles. 

'7 ( r; doto (i l) 

2 
3 

4 

~----------~~~RH~----------~_r 

r* r*r*r'" 1 3 2 4 

Figure 4.10. Curve i corresponds to data(i), i = 1,2,3,4 

Another approach, which I would call "the pessimist's solution," is the fol­
lowing: choose for each data set the best age Tt. Assume that "nature" plays 
against us and, as if by Murphy's Law, the real data would always correspond 
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to the maximal cost for this age. For example, Fig. 4.10 shows that data set 
4 is the worst for Ti. The maximal costs are shown by filled black dots, and 
the minimal costs by small filled dots. Now choose the data set which gives the 
minimal value of the maximal costs. For the curves in Fig. 4.10, this will be 
data( 4). The corresponding "best" T is T; . 

Suppose that we have to choose between two extreme cases: the first is an 
IFR-type lifetime distribution with mean {L. The optimal maintenance age T* 
guarantees TJage (T*) = 0.7/ {L. The second is an exponentiallifetime distribution 
with the same mean {L, for which, as we know, the optimal age is infinity and 
TJage (00) = 1/ {L. The "pessimist 's approach" chooses in this situation the option 
"never do a PM," Le. formally an infinite age for the replacement. This is 
consistent with the principle: "If it ain't broke, don't fix it." 

Another version of the pessimist's approach is the so-called minimax prin­
ciple. Rappoport (1998, p. 51) says " ... that it rests on the assumption that 
the worst that can possibly happen will happen. Application of the principle 
amounts to expecting the worst possible outcome of each choice and choosing 
the alternative of which the worst outcome is the best of all the worst outcomes 
associated with the alternatives." See also DeGroot (1970, Sect. 8.7). 

In our case, "the alternatives" are the replacement ages T. The implemen­
tat ion of the minimax principle to our situation means: 
(i) calculating TJmax(T) = max{ TJage(T; data(l)), ... , TJage(T; data(4))}; 
(ii) finding the value To which would minimize TJmax(T). 

The minimax approach is illustrated in Fig. 4.11. The curve TJI corresponds 
to an exponential distribution with mean {LI = 1, and the curve TJ2 to an IFR 
distribution with mean {L2 = 1/2. The dashed curve is TJmax(T). According 
to the minimax approach, we should choose the age To. The pessimist would 
choose Ti. 

4.3.6 Age Replacement for the IFR Family 

We have already mentioned in Sect. 2.2 that there are quite satisfactory bounds 
on 1 - F(t) if Fis of IFR type and the first two moments are known. Let us 
use these bounds for finding the best age replacement policy. Recall that the 
standard expression for the average cost is 

(T) _ F(T) + c(1 - F(T)) 
TJage - T ' 

fo (1 - F(x))dx 

or 

(T) _ 1 - (1 - c)(1 - F(T)) 
TJage - T . 

fo (1 - F(x))dx 
(4.3.5) 

Let [1 - F(t)]* and [1 - F(t)]* be upper and lower bounds for [1 - F(t)], 
respectively. Substitute the lower bound into (4.3.5). Then we obtain an upper 
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bound on l1age(T) which we denote rPmax(T). Similarly, substitute the upper 
bound and obtain the lower bound denoted rPmin(T). Therefore, 

t/>min(T) < 1- ~ - c)(1- F(T» < t/>max(T). 
fo (1 - F(x»dx 

JL=2~~~------------------------~~ 
fLI 

1 _ 
--1 
fL2 I I 

I I 
I I 
I I 
I I 
I I 
I I 
I I 

~ ____________ ~) _____ ~6 ______ ~J~ 
r;* 2 TO Ti· (J) 

Figure 4.11. The dashed curve is max(111 (T), T/2(T» 

(4.3.6) 

Figure 4.12 shows the curves for tPmin(T) and rPmax(T), for a2 / /J2 = 0.2 and 
c = 0.1. The coefficient of variation is y'ö.2 = 0.45. The time scale has been 
changed to express the replacement age in units of the mean lifetime. This can 
always be achieved by replacing T by T1 /J. If we choose Tt = 0.5, Le. replace 
at age 0.5/J, our c08ts will be between tPmin = 0.20 and rPmax = 0.65. In the 
worst-case situation, the C08tS will not exceed 0.65. This means that in the 
worst case the efficiency ofthe age replacement is Q = l/tPmax = 1/0.65 = 1.54, 
which is quite a satisfactory result. 

More information on this topic can be found in Gertsbakh (1977, pp. 103-
108). 

4.3.7 Age Replacement with Cost Discounting 
We have measured the efficiency of the preventive maintenance policy in terms 
of the mean costs per unit time. This was in fact a mathematical "trick" which 
helped U8 compare infinite costs over an infinite time period. But there are other 
ways to tackle infinity. Very often, the costs are calculated by means of so-called 
discounting. Each amount of money earned or spent at time t is converted to 
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an equivalent amount at the actual starting time t = 0 by multiplying it by 
the discount factor e-at , where a is a small positive number called the discount 
rate. 

cl> 

1.3 

11 

0.9 

0.7 

0.5 

0.3 

0.1 

Ql 0.3 
... 

0.9 1.1 Tl 
Figure 4.12. The upper and lower bound t/>max(Tt} and t/>min(T1) 

Let us derive an expression for age replacement cost with discounting. Assume 
that PM costs c, EM costs 1, and the discount factor equals a. Denote by Ca(T) 
the discounted cost for replacement at age T. Then we can write the following 
recursive formula: 

Ca(T) = 1T f(x)e-az(I+Ca(T))dx+(I-F(T))e-aT(c+Ca(T)) .(4.3.7) 

Indeed, with probability f(x)dx the failure takes place in [x, x+dx], 0 $ x $ T, 
and the cost of it is 1 plus the future cost Ca(T), all multiplied by the discount 
factor e-az • If there is no failure in [0, T], then PM is carried out at age T, and 
the corresponding cost c + Ca(T) is discounted by the factor e-aT. 

If a --+ 0, the cost Ca(T) goes to infinity. The cost per unit time (without 
discounting) equals 

Co(T) = F(Tj, + c(l - F(T)) . (4.3.8) 
10 (1 - F(x))dx 

The following theorem connects the discounted cost and the cost per unit time 
for small a tJalues. 

Theorem 4.3.1 

lim (aCa(T)) = Co(T), 
a-tO 

(4.3.9) 
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for all T > O. 

Proof 
Express CO/(T) using (4.3.7) and multiply it bya: 

aCO/(T) = (JoT f(:)e-O/Zdx + c(1 - F(T))e-O/T). a . 
1 - Jo f(x)e-O/zd,x - (1 - F(T))e-O/T 

In this fraction, numerator and denominator tend to zero as a tends to zero. 
Use L'Höpital's rule, differentiate the numerator and denominator with respect 
to a and set a = O. The result fo11ows. 

The practical condusion from this theorem is that for small discount factor 
values (which is practically the case in reality), the cost per unit time Co(T) 
is approximately proportional to the discounted cost CO/(T). In practical terms 
this means that it does not matter which of these cost criteria are used for 
finding the best replacement age T*. 

4.3.8 Random Choice of Preventive Maintenance Periods 

It was assumed in a11 the principal maintenance models considered in Section 
4.2 that the maintenance period T or the maintenance age T is a nonrandom 
quantity which we choose in some "optimal" way to optimize costs or rewards. 
In practice, however, the maintenance period is always subject to certain random 
changes. For example, it has been decided to inspect the mechanical equipment 
of an elevator every half a year. The technicians who carry out the maintenance 
may start the inspection a week later (or a week earlier), depending on their 
workload in taking care of other elevators. 

The "right" nomination of the inspection time for an elevator should be 
done in terms of operation hours. For example, it is assumed that the elevator 
works, on average, 8 hours daily. Suppose that the best inspection period is 
1500 operation hours, which on the average is dose to a half-year inspection 
period. But even if the elevator is inspected exactly every 182 days, the total 
amount of operating time between inspections will show considerable variations. 

We have two tasks. First, we have to derive an expression for costs for the 
random maintenance period. Second, we have to investigate how the presence of 
randomness influences the expected costs. Suppose that we are able to control 
the randomness of the maintenance period, Le. to choose the c.dJ. GT(t) of 
the maintenance period T. Is it possible to reduce the minimum expected costs 
by a proper choice of the c.dJ. GT(t)? It is easy to derive an expression for 
costs under the condition of a random maintenance period. Assume that the 
random maintenance period T is independent on the system lifetime and has 
the density function 9T(t). A typical expression for the average cast per unit 
time for a fixed maintenance period T has the form 

E[R(T)] 
7'J(T) = E[L(T)] ' (4.3.10) 
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where the denominator is the expected duration of the renewal period (which 
of course depends on T), and the numerator is the expected cost for one such 
renewal period. For example, in case of age replacement, E[L(T)] = J; (1 -
F(t))dt, and E[R(T)] = cfF(T) + Cpm(1 - F(T)), where F(·) is the c.d.f. of 
system lifetime, cf and cpm are the costs associated with the ER and PM, 
respectively. 

Now, if T is a random variable itself, the expected duration of one renewal 
period becomes 

Lo = 1000 E[L(x)]gT(X)dx. 

Similarly, the expected cost for one renewal period is now 

Ro = 1000 E[R(x)]gT(X)dx . 

Then the expected cost per unit time becomes 

Ro 
'TJo = -. 

Lo 

(4.3.11) 

(4.3.12) 

(4.3.13) 

For example, consider age replacement with Trandom, e.g. T is uniformly 
distributed in the interval [tmin, tmax]. Then 

u _ ft::x(cfF(X) + Cpm(1 - F(x)))dx 

'f/o - J/"'."x ( rX (1 - F(t))dt)dx 
t mm JO 

(4.3.14) 

The following theorem demonstrates that no reduction in the expected costs 
can be obtained by introducing randomness in the maintenance parameter T. 

Theorem 4.3.2 
Let 

. (T) (T*) E[R(T*)] 
~~~ 'f/ = 'f/ = E[L(T*)] . 

Then 'f/o ~ 'f/(T*). Proof 

Since 

E[R(x)] E[R(T*)] 
'f/(x) = E[L(x)] ~ E[L(T*)] ' 

E[R(x)]E[L(T*)] ~ E[R(T*)]E[L(x)] . (4.3.15) 

Multiply both sides of (4.3.15) by gT(X) and integrate with respect to x from 0 
to 00. Then 

1000 E[R(x)]E[L(T*)]gT(X)dx ~ 1000 E[R(T*)]E[L(x)]gT(X)dx. (4.3.16) 
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But (4.3.16) is equivalent to 

E[R(T*)] Jooo E[R(x)]gT(X)dx 
---':--'----''-'- < 00 , 

E[L(T*)] - Jo E[L(x)]gT(X)dx 
(4.3.17) 

which proves the theorem. 

Example 4.3.2: Minimal repair with mndom maintenance period 
Suppose that the system is maintained according to the minimal repair scherne; 
see Section 4.2.4. The failure rate is h(t) = 0.5t, the PM cost is c = 0.2, the 
failure cost is 1. Find the optimal period of minimal repair. 

Consider a random choice of the minimal repair period T, T rv Exp(l), 
and compare the costs. In our case the cost criterion is r/D(T) = (JoT 0.5tdt + 
0.2)jT = (0.25T2 + 0.2)jT. 
The optimal period is T* = J2cja = 0.89. This corresponds to r/D(T*) :::::: 0.45. 

The cost criterion for random T equals, according to (4.3.13), 

Jooo 0.25x2e-xdx + 0.2 
T/o = 00 Jo xe-xdx 

(4.3.18) 

After a little algebra we obtain T/o = 0.52. Interestingly, this is not much worse 
than the optimal result 0.45. 

Remark 
The expression (4.3.10) has a general form TJ = J f(x)dF(x)j J g(x)dF(x), 
where F(x) is the c.d.f. of some random variable. Very often, this c.dJ. is 
not known, and only partial information is available about it. For example, we 
might know only the first two moments ( the mean and standard deviation) of 
the r.v. X rv F(x). An interesting mathematical theory developed by Stoikova 
and Kovalenko (1986) (see also Kovalenko et al (1997)) allows us to obtain 
bounds on T/ in the dass of all c.dJ.s having the given values of the moments. 

4.4 Optimal Opportunistie Preventive Mainten­
anee of a Multielement System 

4.4.1 Introduction 
Preventive maintenance of real-life systems is characterized by three features: 
the maintenance policy involves many components (elements); most preventive 
maintenance actions usually involve several components simultaneously; the cost 
of a "joint" preventive action is considerably smaller than the total cost of simi­
lar maintenance actions if carried out sepamtely. When several components are 
served simultaneously, then the instant chosen for maintenance may weIl not 
be "optimal" for all components involved. But nevertheless, there is a gain in 
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cost and in convenience terms when a group of components undergoes simulta­
neous checking, inspection and maintenance. This type of servicing is termed 
opportunistic. Most complex real-life systems in fact have an "opportunistic" 
maintenance schedule, for example cars, passenger aircraft and the like. So 
far we have considered only one example of an opportunistic maintenancej see 
Example 4.1.3. Now we look at this in detail. 

4.4.2 System Description - Coordination of Maintenance 
Actions - Cost Structure 

We assume that the whole assembly under service has three levels: the element 
level; the subsystem level and the system level. It would be useful to follow 
the description by checking with the example in Fig. 4.13. The subsystems 
are denoted by indices i = 1,2. The elements of subsystem i are denoted by 
(i,j), j = 1,2, .... Figure 4.13 shows that subsystem 1 has elements (1,1),(1,2), 
and subsystem 2 has elements (2,1),(2,2) and (2,3). 

To plan and coordinate the maintenance actions, a common time axis t is 
introduced. It is convenient to consider t not as calendar time but as an opera­
tional time scale, for example the mileage scale. On this scale, the maintenance 
actions are carried out simultaneously for groups of elements. To simplify the 
maintenance scheduling and to allow joint maintenance actions to be carried 
out, a common time grid with a step ~ is introduced. One may assume that 
~ = 1. Any preventive maintenance action can be carried out only at times t* 
which are multiples of ~: t* = k~, where k is an integer. 

Assume that the cost of a failure of element (i,j) is aij. 

The cast of a preventive (Le. scheduled) maintenance (PM) action of element 
(i,j) consists of directcosts Cij plus set-up costs. The structure ofthese set-up 
costs is crucial in our problem. If an element (i, j) undergoes a PM, the cost 
paid in addition to Cij is 10 for involving the whole system plus li for involving 
the subsystem i to which this element belongs. 

The "opportunistic" nature of the costs is refiected in the following. Suppose 
that at a certain instant ~k = t, a maintenance action is planned for elements 
which constitute a group G. Suppose that G involves a set S of subsystems. 
Then the total costs of servicing the whole group G will be 

C(G) = L Cij + Lli + 10. (4.4.1) 
(ij)EG iES 

Don't be alarmed by this expression. In Fig. 4.13, at time t = 6, a PM 
is planned for elements (1,1), (1,2), (2,1), and (2,3). This is group G. The 
subsystems involved are 1 and 2; S = {1,2}. The total PM cost will be Cu + 
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C12 + C21 + C23 + h + h + /0. 
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Figure 4.13. Scheme of the opportunistic maintenance 

Let us consider an example. 

Example 4.4.1 
Write an expression of the costs per unit time for the system shown in Fig. 4.13. 
Let element (i,j) be serviced with period tij. Write t = (tu,t12,t21,t22,t23). 
Assume tu = 2, t12 = 3; t21 = 2, t22 = 4, t23 = 6. 

Each element is repaired according to the minimal repair scheme (see Section 
4.2.4) and the average number offailures on [O,tij] for element (i,j) is Hij(tij). 

The least common multiple (l.c.m.) of all tij values is 12 (set ~ = 1). The 
whole preventive maintenance scheme is shown in Fig. 4.13. The mean costs 
per unit time are: 

ll(t) = 

+ 

(6(HU (2)au + cu) + 4(H12 (3)a12 + C12») 

12 

(6(H21 (2)421 + c2d + 3 (H22 (4)422 + C22) + 2(H23 (6)423 + C23») 

12 
8/0 + 8b +612 

+ 12 

Let us explain this expression. The component (1,1) is repaired six times 
in the period (0,12], the component (1,2) fOUf times, etc. This explains the 
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coefficients of the Hij(-) terms. Furthemore, subsystems 1 and 2 are involved 
in preventive maintenance 8 and 6 times, respectively. For example, subsystem 
2 is "opened" at t = 2,4, 6, 8, 10, 12. The total number of maintenance actions 
in the period (0,12] is eight. This explains the last term. 

4.4.3 Optimization Algorithm. Basic Sequence 

We wish to find an optimal vector t which would minimize l1(t). A formal 
description of the optimization algorithm needs requires the notion of a basic 
sequence. Suppose that for a subsystem i we have a set of preventive maint&­
nance periods to = (tu, ... , tim). Without loss of generality, we may assume 
that this sequence is ordered, SO that tu :$ ... :$ tim. 

By definition, the basic sequence consists ofvectors to, t}, t2, ... , where each 
successive vector is obtained by increasing by 6. the minimal component(s) 
of the previous one. For example, if to = (2,4,5) then tl = (3,4, 5)j t2 = 
(4,4,5), ts = (5,5,5), etc. 

The optimization algorithm consists of the following steps: 

Step 1: Individual (element) optimization. At this step, an optimal PM 
period is found for each element separately, without taking into account the 
subsystems and system set-up costs. 
Step 2: Optimization at subsystem level. Take the optimal periods of PM 
found for elements of a subsystem i in step 1 and organize them into a vector 
ti. This will be the initial vector of the basic sequence for this subsystem. The 
basic sequence for subsystem i is obtained according to the above description. 
For each vector of this basic sequence t?, t} , t~, ... , calculate the costs per unit 
time for the ith subsystem. These costs include the set-up costs Ii only. 

Denote by ti the best vector for subsystem i. 
Step 3: Qptirnization at systelD level. Concatenate all subsystem optimal 
vectors {ti} obtained in step 2 into one vector for the whole system. Denote 
it by tg. Construct the corresponding basic sequence. Optimize the total costs 
per unit time on the vectors of this sequence. Take into account all set-up 
costs, including 10. The vector from the "all-system" basic sequence t~ which 
minimizes the costs is the optimal PM vector. 

Example .4 . .4.1 continued 
Let us implement the above algorithm for the system of Fig. 4.13, for the fol­
lowing data: all aij = 1. Cll = 0.1, C12 = O.4j C21 = C22 = C2S = 0.2. Also, 
H ll (t) = t2 j H12 (t) = 0.25t2 j H21 = t + t2; H22 (t) = O.lt2j H2S(t) = 0.05t2 • 

The set-up costs are !t = h = 5, 10 = 8. 
Step 1: Optimization at element level. 
For element (i, j), the expression for minimization is 

Aij(t) = Hij(t)aij + Cij . 
t 

( 4.4.2) 



100 CRAPTER 4. PREVENTIVE MAINTENANCE MODELS 

Simple calculations show that the optimal periods for elements (i,j) are: til == 
1, ti2 == Ij til == 1, ti2 == 2, tis == 2. 
Step 2: Minimization at subsystem level. 
Subsystem 1 
The basic sequence is (1,1), (2, 2), (3,3), .... We have to minimize the sum of 
individual costs plus the contribution of the subsystem 1 set-up costs. 

Let dl be the l.c.m. of tu, tl2 and let M l (tl1, tl2) be the number of PMs 
on the interval (O,dl ]. Then add the subsystem 1 set-up cost Mdt/dl . For 
example, if tll == 2, tl2 == 3, then dl == 6 and Ml == 4, since the PMs are done 
at the instants 2,3,4,6. Then one should add 4ft/6. 

For subsystem 1 we have to minimize the following expression: 

B _ x2 + 0.1 0.25y2 + 0.4 5 
Z'II- + +-. 
'X Y x 

(In our example x == Yj the subsystem 1 is "opened" every x units of time). 
For (1, 1) we have Bu == 6.75. For (2,2), B2 ,2 == 5.25. For (3,3) we obtain 
Bs,s == 5.58, etc. The optimal vector is (2,2). 
Subsystem 2 
For subsystem 2, the basic sequence is (1,2,2), (2,2,2), (3,3,3), .... Similarly to 
subsystem 1, we obtain that the best vector is (2,2,2). 
Step 3: The system level. The basic sequence for the whole system is 
(2,2,2,2,2), (3,3,3,3,3), (4,4,4,4,4),. ... Use for minimization the following 
principal expression: 

( ) _ ~ Rij(xij)aij + Cij + Mdl + M2h + Mofo (443) 
'TJ Xl1!" • , X2S - L...J .. d"- da" . . . x'3 1 U2 ',3 

Mi and di require explanation. d; is the least common multiple of (Xil, Xi2, •.• ). 

For example, if Xii == 2, Xi2 == 3, XiS == 4, then di == 12. Mi is the total number 
of PMs made to subsystem i on (0, d;]. For the above numbers, Mi == 8. do is 
the l.c.m. of (xu, ... , X2S), and Mo is the total number of PMs on (O,do]. 

In our example, the calculations are very easy because all Xij are the same for 
each vector of the basic sequence. The minimal costs are obtained for (3,3,3,3,3) 
and are equal to 14.6. 

The main advantage of the above-described algorithm is that one must in­
vestigate only the vectors of the basic sequence. This algorithm provides the 
exact minimum if 

(i) thetime intervals allowedfor PM form asequence oftype A , Akl , Akl k2 , • 

where kl , k2, ... are integers. For example, the following sequence satisfies this 
property: 1, 2, 4, 12,24, ... j 

(ii) Hij(x) are convex functions of x. 
(H) is satisfied if the component lifetimes are of!FR type. 

We believe that in the general case our algorithm provides a solution dose 
to optimal. More details about this algorithm can be found in Gertsbakh (1977, 
pp. 216-227). 
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4.4.4 Discussion - Possible Generalizations 

1. The additive structure of PM costs, as described above, might be adequate 
for servicing a truck. The cost 10 reftects the cost of removing the truck from 
service and of taking it to the service stationj b is the cost paid every time the 
engine is inspected, diagn08ed and repairedj h is the payment for inspecting 
and testing the braking system, etc. It is a reasonable assumption that all these 
costs must be added together. 

A quite different situation is servicing a military aircraft. Here the main 
purpose is to achieve the maximal readiness (availability). Instead of costs it 
would be wise to look at the du ration of servicing aircraft systems, i.e. the 
time it takes to service these systems. If the fuel system and engines are served 
simultaneously by two different service teams, then the true "cost" would be 
the service duration determined by the longest service time. 
2. Optimal planning of maintenance activities has a lot in common with schedul­
ing problems. The following example, suggested by George et al (1979), is a 
good illustration of how replacement and "c1assical" scheduling are related to 
each other. Suppose we have to maintain in proper condition the engines of 
a two-engine aircraft. Each engine has a limited resource in terms of hours of 
continuous operation. The following stock of engines is available: one engine 
with 100 hrs re80UrCej four engines with 300 hrs resourcej one engine with 200 
hrs resourcej one engine with 500 hrs re80urce. The total re80urce of all engines 
is 2000 hrs. A schedule which allows operation of the aircraft for 1000 flight 
hours is shown in Fig. 4.14a. 

ENGINE 1 300 11 300 11 300 IIlOO 
1 I , 

ENGINE 2 500 I 1[$]1 300: I I I 
I I I , I I 

'0 
~ 11 11 11 11 11 • TIME 

o. 

ENGINE 1 500 IL@Q]I 300 
1 

ENGINE 2 300 11 30~ IIiQ9JI 300 1 
I I I I I 
I I I I I 

'0 • k k • • .. TIME 

b. 

Figure 4.14. Two engine replacement schedules 

The replacement of one engine or of two engines simultaneously costs c = 1. 
Thus the cost of the schedule in Fig. 4.14a is 6. 

Clearly, it is not the most economic solution. A relatively small enumeration 
reveals that there is a cheaper schedule which is shown in Fig. 4.14b. Here the 
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total cost of engine replacements is 5. 
Finding an optimal replacement schedule for a fleet of several aircraft may 

be quite achalienging combinatorial problem. 
The crucial feature of engine replacement schedule is that the simultaneous 

replacement of two engines costs half as much as two individual replacements. 
Cost reduction due to the simultaneous performance of several maintenance 
actions is typical of any opportunistic replacement scheme. 

4.5 Exercises 
1. You have at your disposal the following data on failures of the compressor 
unit of a new type of industrial refrigerator: 127 units started operating on 
January 1, 1990; 8 of them failed during the first two years of operation; a total 
of 58 failures was registered during the period [1990, 1994], Le. from January 
1, 1990 to December 31, 1994. 
a. Assume that the compressor's lifetime has a lognormal distribution. Equate 
tl = 2 years to the 8/127 quantile, and t2 = 5 years to the 58/127 quantile. 
Estimate the parameters. 
b. Assume that each failure of the compressor costs $3500, and each preventive 
replacement costs $1000. Would you advise carrying out an age replacement at 
age T = 3 years? 

2. A machine for cotton production has two identical, independently failing 
mechanical parts. Two service strategies are suggested: 
(i) replace each part upon its failure only; 
(ii) at any failure, replace also the nonfailed part. 

Each replacement completely renews the corresponding part. An individual 
replacement costs $1500. Replacing the nonfailed part together with the failed 
part costs $2000. There is uncertainty regarding the lifetime distribution of the 
parts. The first hypothesis is that T '" Gamma(k = 7, >. = 1). The second 
hypothesis is that T I'V Gamma(k = 4, >. = 0.5). 

Analyze replacement strategies (i) and (ii) under both hypotheses and make 
your suggestions regarding the "best" maintenance policy. 

3. An age replacement is considered for bearing unit of a paper production 
line. The lifetime (in years) is T I'V W(>' = 1,ß = 4). The cost of emergency 
repair (upon failure) lies within the limits Ce = [5,20]. The cost of the PM is 
Cp = 1. Make a recommendation regarding the optimal age of the preventive 
maintenance. 

4. Astreet lamp is replaced periodically, with the replacement period T being 



4.5. EXERCISES 103 

a random variable T "" N({t = 1,0'2 = 0.1). The lifetime of the lamp is T '" 

Gamma(k = 4,'x = 1). Each failure costs $100, each preventive maintenance 
costs $5. Derive an expression for costs per unit time and evaluate it numerically. 
Hint: Consider first a fixed period T. The costs per unit time have the form 
'Tl(T) = A(T)jT. Argue that for random T, one should take 'Tl = E[A(T))j E[T), 
where the mean is taken with respect to the distribution of T. 

5. The lifetime of a mechanical part has a Weibull distribution with mean 2000 
hrs, and c.v. = 0.3. It has been decided to carry out an age replacement of the 
part. The ER takes 50 hrs and completely renews the part. The PM (which also 
renews the part) lasts 10 hrs. Find the optimal age T* for the age replacement 
which would maximize the stationary availability. 
Hint: Derive an expression for the stationary availability and reduce the problem 
to finding an optimal age replacement. 

6. A system consists of two parts denoted 1 and 2. Each part undergoes a 
periodic repair. The repair period can be T = ß, 2ß, 4ß, 8ß, 16ß (set 
ß = 1). Failures between scheduled repairs are eliminated according to the 
minimal repair scheme. The failure rates of the parts are: 'xdt) = 0.1t; 'x2(t) = 
0.06t2• Each failure costs $10, each scheduled repair costs $2. The system set­
up cost paid at each scheduled repair is fo = 8. Find an optimal opportunistic 
replacement schedule for the system. 

7. Two-new type heavy trucks were monitored for 50000 and 70000 miles, 
respectively. Engine failures were observed at 26000, 32500 and 43300 miles 
in the first truck, and at 19500, 35300, 50200, and 68700 miles in the second 
truck. 
a. Assume that engine failures occur according to a nonhomogeneous Poisson 
process (NHPP) with intensity nmction ,X(t) = exp[a + ßt). Estimate a and ß 
using the maximum likelihood method described in Appendix A. 
b. Each faHure costs, on average, $1000 and each preventive repair costs between 
$100 and $300. Assume that the engines are serviced according to the minimal 
repair scheme (Section 4.2.4). Assume that the engine failures appear according 
to a NHPP with intensity nmction 'x(t) = exp[o: + ,Bt), where 0: and ,B are 
the MLEs found in part (a). Make a recommendation regarding the optimal 
minimal repair period. 

8. Optimal periodic inspection of chemical defense equipment. 
Chemical defense equipment (CDE) is periodically inspected during its storage 
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in order to maintain its readiness. During the inspection, checks are made on 
the capability of the CDE to neutralize active ingredients of chemical weapons 
in the case of a chemical attack. 

The interval between inspections is T, and the inspection lasts time to. The 
time to. The storage-inspection scheme is shown in Fig. 4.15. At the instant 
t = 0, the CDE is put in storage. During the interval [T, T + tol, the CDE is 
inspected. Ifthe CDE has failed in the interval [0, Tl, then the inspection reveals 
the failure, and the CDE is completely renewed toward the end of the inspection 
period. If there is no failure, the next inspection starts at the instant 2T + to, 
and lasts to. It will reveal the failure if it appeared after the last inspection, 
and so on. 

Assume that the lifetime of the CDE has a known density function J(t). 
The CDE is available for use ("ready") ifit has not failed, and only between 

inspections. (It is not available during the inspections.) It is assumed that the 
"lifetime failure dock" works during the inspection and between the inspections 
in the same way. 

INSPECTIONS COMPlETE RENEWAL 

~llURE TIME 

OPERATION 
IDlE TIME 

Figure 4.15. Operation-inspection scheme of the CDE 

It will be assumed that if the CDE fails during the inspection, this fact will 
be immediately revealed, and the CDE will be completely renewed toward the 
end of the inspection. 

Our task is to find the optimal vaIue T* of the inspection period T to max­
imize the stationary afJailability of the CDE. Denote by 'fI(T) the stationary 
availability of the CDE. Investigate 'fI(T) numerically for J(t) = e-t and to in 
the range 0.05--0.1. 
Hint: 'fI(T) = A(T)/B(T), where A(T) is the "ready" time of the CDE during 
one storage-inspection-renewal cyde, and B(T) is the mean duration of this 
eyde. 
The expression !or A(T). 
Suppose that the CDE fails at the instant x, which lies inside the "ready" period: 
xE [k(T+to), k(T+to)+T], where k = 0, 1,2, .... Then with probability J(x)d:r:, 
the "ready" time equals x - kto. 
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Ifthe CDE fails during the inspection, Le. x E [k(T+to)+T, (k+ l)(T+to)), 
then the "ready" time equals (k + l)T. This leads to the following expression: 

00 fa.+T 00 

A(T) = L Ja (x - kto)f(x)dx + L[F(aHd - F(a1c+l - to)](k + l)T, 
.1:=0 a" .1:=0 

where a.l: = k(T + to) and F(t) = I~ f(x)dx. 
The expression for B(T). 
If the faUure appears in the interval [a1c,aH1)' the eyde length equals (k + 
l)(T + to). This leads to the expression 

00 

B(T) = 2)k + l)(T + to)[F(aHd - F(a.l:)) . 
.1:=0 

9. The following problem is diseussed by Elsayed (1996, p. 530). 
A eritieal eomponent of a eomplex system fails when its failure mechanism 

enters one of two stages. Stage 1 is entered with probability 0: and stage 2 
with probability 1 - 0:. The lifetime of the eomponent in stage i is exponentially 
distributed with parameter ,xi, i = 1,2. Determine the optimal preventive main­
tenanee interval for different values of ,xl and ,x2, if the failure eosts Cf = $500 
and the preventive maintenanee eosts cp = $100. (The author meant a block 
replacement.) What is, in your opinion, the optimal period of the preventive 
maintenanee? 

10. Age replacement with a minimum-type exponential contamination. 
Consider an age replacement applied to aseries system eonsisting of two inde­
pendent components. The lifetime of the first component is Tl '" EXP(,xl), and 
the lifetime of the seeond eomponent is T2 '" W(,x2 = 1, ß = 2). The failure 
costs Cf = 1, the preventive maintenance eosts Cp = 0.2. 

Find the value of ,xl which would give E[Tl) = E[T2)' Write the expression 
for the eost functional "l(T), where T is the replacement age. Investigate "l(T) 
numerically and graphically andfind the optimal T value and the eorresponding 
minimal cost. Compute also the efficieney Q of the optimal age replacement. 

Repeat the ealeulations for a system whieh has only one (the seeond) eom­
ponent. You will obtain much higher effideney. Explain. 

11. Comparison 0/ optimal age replacement policies. 
Compare "lage(T) for two distributions logN(I',a) and W(,x,ß), which have the 
same mean 1 and the same eoeffident of variation 0.25. Assume that the failure 
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costs cI = 1, and that the PM costs c = 0.2. 

12. Minimal repair with partial renewal. 
A machine is repaired according to the minimal repair scheme with partial Te­

newal (Section 4.2.4). It is repaired at the instants Tok, k = 1,2,3. The 
degradation factor equals eQ • The machine was observed on the first five con­
secutive intervals and the following numbers of failures were recorded: n1 = 
7, n2 = 9, n3 = 12, n4 = 16, ns = 21. The interval between incomplete renewals 
is To = 1. Estimate the mean number of failures H(I) = J; h(v)dv and the 
degradation factor eQ • Assume the following costs: Cmin = $15, Cpr = $150, and 
CO'IJ = $1000. Find the optimal period K* for equipment overhaul. 



Chapter 5 

Preventive Maintenance 
Based on Parameter 
Control 

Everywhere in li/e, the question is not what we gain, hut what we do 
Carlyle, Essays 

5.1 Introduction - System Parameter Control 
So far we have distinguished two system (component) states - up and down, or 
failure and nonfailure. The statistical information about the system (compo­
nent) was related to its li/etime, Le. to the transition time from the nonfailure 
("good") state into the failure ("bad") state. We can picture the state of the 
system as a binary random process, see Fig. 5.1a. In this chapter we consider 
several models of preventive maintenance for which we know enough to distin­
guish intermediate states between the "completely new" and the "completely 
failed" system. A good example might be the description of failure by means of 
a damage accumulation model - recall the model leading to the gamma distri­
bution. Preventive maintenance of a system with many states is an intervention 
in the damage accumulation process et by "pulling it down" from a dangerous 
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state into the "safe" state, see Fig. 5.1b. 

~(I) 

GOOO .--------..., 

FAllURE 
FAllURE.O'--______ ~t'=_-----_ 

a. 

b. 

n 

n-l 

3 

2 

~(t) 
FAllURE STATE 

"OANGEROUS" STATE 

J 
J' 

J 

FAllURE 
../ 
T 

~\ 

PM 
/ 

11 

Figure 5.1. (a) A binary system. (b) Shifting system parameter from state 
n - 1 to state 0 

Mechanical deterioration is a good example of a process in which we can dis­
tinguish intermediate states between "brand new" and failed. The recent paper 
by Redmont et al (1997) studies the deterioration of concrete constructions (e.g. 
bridges) and defines 12 stages of failure development, from a hairline crack to 
large-volume splitting and corrosion. A system with n standby units allows a 
natural definition of intermediate states ~(t) = i, i = 0,1,2, ... , n, according to 
the number i of failed standby units. 

The most advanced preventive maintenance methods are based on a periodic 
or continuous follow-up of system diagnostic parameters, such as vibration mon­
itoring or output fluid control; see Williams et al (1998). We discuss in Sect. 5.7 
the preventive maintenance strategy based on a following up a multidimensional 
prognostic parameter. 

Obviously, one might expect that preventive maintenance based on a peri­
odic or continuous monitoring of system diagnostic parameters must be more 
effident than a preventive maintenance policy based only on the knowledge 
of the existence of "good" and "bad" states. There is, however, a price for 
this higher effidency: we have to know the statistical properties of the random 
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process ~(t) which represents the damage accumulation and/or serves as a prog­
nostic parameter for system faHure. Usually this is a more involved task than 
just describing in statistical terms the transition time from ~(t) ="brand new" 
into ~(t) = "failure" . 

5.2 Optimal Maintenance of a Multiline System 
We consider in this section a system consisting of n identical subsystems (lines). 
Every line operates and faHs independently of the others, while the replacement 
(repair) of the failed line requires that the wor k of all lines be stopped. During 
the operation of the system, information is received about lines' failures. Define 
the state of the system ~(t) as the number offailed lines at time t. We assume 
therefore that we observe ~(t). We will also assume that the failure-free 
operation time of every line has a known c.d.f. F(t). 

System maintenance is organized as folIows. When the number of failed 
lines ~(t) reaches the prescribed number k, 0< k:5 n, the system is stopped for 
repair, all failed lines are repaired, and all nonfailed lines are rendered "brand 
new". Thus the maintenance policy means shifting ~(t) from "dangerous" state 
~ = k into the initial state ~ = O. 

The real-life realization of the multiline system are certain types of mass 
production lines, and it is natural to assume that the reward from them is 
proportional to the total failure-free operation time. So we assume that each 
line gives a unit reward during a unit of failure-free operation. Denote by t(k) 
the time needed to repair the system. Our purpose is to find the optimal k 
which provides the maximal mean reward per unit time. 

Denote by 1'i the failure-free operation time of line i, i = 1,2, ... , n. Denote 
by 1'(i) the ith ordered failure instant. The total system operation time during 
one operation-repair cycle is then 

W(k) = n1'(l) + (n -1)(1'(2) - 1'(1» + ... + (n - k+ l)(1'(k) - 1'(k_1».(5.2.1) 

The length of one operation-repair cycle is 

L(k) = 1'(k) + t(k). (5.2.2) 

Recalling the theory from Section 4.1, we arrive at the expression for the mean 
reward per unit time: 

E[W(k)] 
v(k) = E[L(k)]' (5.2.3) 

In order to be able to compare maintenance efficiency for systems with dif­
ferent n values, it is convenient to characterize the efficiency of the maintenance 
rule by the ratio 

Xk = v(k)/n. (5.2.4) 
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We assume that each line has a constant failure rate .\. 
The expression for W(k) is in fact identical to the formula for the total time 

on test; see Exercise 4, Section 2.4. Thus W(k) ,...., Gamma(k,.\) and 

E[W(k)] = kj.\. (5.2.5) 

For T "" Exp(.\), E[T(k)] = .\-1 L:7=1 (n - i + 1)-1. Using simple algebra we 
obtain that 

1 k 
Xk = ;J; L:7=1 (n - i + 1)-1 + t(k).\ . 

(5.2.6) 

Suppose that the repair time of k lines is 

t(k) = N + Lk. (5.2.7) 

Consider first the ease N = 0. It is easy to show that the denominator of Xk 
inereases with k, and therefore the optimal k = 1. In other words, for N = 0, 
the best poliey is to stop the system for the repair immediately after the first 
failure of a line. 

Now assume that the repair time is eonstant and does not depend on k, Le. 
t(k) = N. Then the optimal k is usually not equal to one. 

Figure 5.2 shows several graphs for the reward per unit time, for various 
values of n = 4,6,8,12 and N = 0.1,0.2,0.3. (We ass urne that .\ = 1). It will 
be seen that an ineorrect ehoice of k may eonsiderably reduee the reward. For 
example, for n = 8 and N = 0.2, the best k = 3. It provides a 50% inerease in 
X in eomparison with a wrong choice of k, say k = 1. 

Remark 
The problem considered in this section is very similar to the block replacement 
of a group of machines; see Seetion 4.2.3. The maintenanee poliey eonsidered 
there does the following: all machines are renewed after time T has elapsed 
since the last repair. Thus, the decision was based on time. A similar problem 
was eonsidered by Okumoto and Eisayed (1983). In this section, the decision 
to renew the machines is based on observing the number of failed machines 
("lines"). An interesting theoretical question is which poliey ean provide better 
results. It turns out that the answer is not trivial, and involves some advanced 
theoretieal eonsiderations. So, if the machines have identieally distributed expo­
nentiallives, the optimal maintenanee poliey among all possible policies belongs 
to the subclass of the so-ealled Markovian policies. To put it simply, these are 
the maintenanee rules which are based on observing the proeess ~(t). The best 
maintenanee decision belongs to the dass "repair after ~(t) has reaehed some 
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criticallevel". This issue is discussed fuller in Gertsbakh (1984). 
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Figure 5.2. Reward for various k and n values 
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5.3 Preventive Maintenance in a Two-Stage Fail­
ure Model 

5.3.1 The Failure Model 
We distinguish initial failures and terminal failures. The initial failures appear 
according to a nonhomogenoous Poisson process (NHPP) with rate A{t). This 
means that an initial failure appears in the interval [t, t + Al with probability 
A{t)A + o(A) as A -t o. 
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Each initial failure degenemtes into a terminal failure after a random time 
Xj see Fig. 5.3. An initial failure which appears at time Ti degenerates into a 
terminal failure after time Xi, Le. at the instant Zi = Ti + Xi. We assume that 
{Xi} are Li.d., independent on Ti, and that Xi '" F(t). We assume also that 
each terminal failure creates damage which costs C = 1. 

TERMINAL FAllURES 

TIME 

Figure 5.3. Degeneration of initial faHures into terminal failures 

5.3.2 Preventive Maintenance. Costs 

The process of failure appearance and preventive maintenance is considered on 
a finite time interval [0, Tl j see Fig. 5.4. Preventive maintenance actions are 
scheduled at the instants tl. t2, ... ,tk, ° < h < t2 < ... < tk < T. The 
number of PMs k is fixed in advance. Each PM carried out at ti reveals and 
eliminates all initial faHures existing at this instant. Our goal is to find the 
optimallocation of the PM instants t}, ... ,tk which would minimize the mean 
number of terminal failures on [0, Tl. It is equivalent to minimizing the mean 
damage cost on [0, Tl. 

Figure 5.4. Preventive maintenance is scheduled at the instants h, ... , tk 

5.3.3 Some Facts about the Nonhomogeneous Poisson Pro­
cess 

We will need some facts from the theory of NHPPj see Appendix A for a detailed 
derivation. 
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Theorem 5.3.1 
Let (t be an NHPP process with rate '\(t). Denote by vk(h,t2) the probability 
that exactly k events appear in the interval [tb t2]. Then 

[A(tt, t2)Jk 
Vk(tl, t2) = exp[ -A(tl, t2)) k! ' k = 0,1, ... , (5.3.1) 

where A(tl, t2) = J~2 '\(t)dt - J~l '\(t)dt = ftt12 '\(t)dt. In particular, the mean 
number of events in [tl, t2) is 

and the probability of no events in [tl, t2) is 

P«(t2 - (tl = 0) = exp[ -A(tl, t2)). 

(5.~.2) 

(5.3.3) 

We see from this theorem that the NHPP is characterized by the integral of 
the event rate, the so-called cumulative event rate 

A(t) = 1\(V)dV. 

The key to our analysis is the following theorem ( for the proof see Andronov 
and Gertsbakh 1972; Andronov 1994). 

Theorem 5.3.2 
The appearance times of terminal failures constitute an NHPP with cumulative 
event rate AF(t) defined as 

AF(t) = 1t 
'\(t - y)F(y)dy. (5.3.4) 

Often, the following equivalent form is more convenient: 

AF(t) = 1t '\(y)F(t - y)dy . 

To derive it, put y = t - v in (5.3.4). 
As a corollary, the mean number of terminal failures on [tl, t2] is 

(5.3.5) 

and the probability of no terminal failures on [tl, t2) is 

(5.3.6) 
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5.3.4 Finding the Optimal Location of the PM Points 
Suppose that there is only a single PM at t = tle. 
terminal failures on [tle, t1c+1 = 1'] is 

Then the mean number of 

l tlo+1 

M[tle, t1c+d = A(v)F(t1c+1 - v)dv . 
t. 

(5.3.7) 

Indeed, in the absence of the PM, the mean number of failures on [0, t1c+l = 1'] 
would be J;"+l A(v)F(t1c+l - v)dv. 

The terminal faiulures in [tle, tleH] are oftwo types: those arising from initial 
failures "born" in [0, tle] and those arising from initial failures "born" in [tle, tleH]. 
The former are eliminated by the PM. This is equivalent formally to putting 
A(V) = 0 for v E [O,trr]. Thus we arrive at (5.3.7). 

It is instruetive to give a heuristic proof of (5.3.7). Divide the interval 
[tle, t1c+tl into a large number of small intervals, each of length a. An ini­
tial failure appears in [v, v + a] with probability A(V)a, and with probability 
F(t1c+l - v) it degenerates into a terminal faHure within the interval [tle, t1c+l]. 
Thus the contribution of one a-interval to the mean number of terminal failures 
is the sum of all terms A(v)aF(tleH - v), which tends to the integral (5.3.7) 
when a ~O. 

Now suppose that m PMs are planned at the instants 0< tl < t2 < ... < 
tm < T . Then the mean number of terminal failures will be 

m (tH 1 

M(tl' ... ' tm) = L lt A(x)F(tHl - x)dx, 
j=O tj 

(5.3.8) 

where to = 0, tm+l = T. 
Now our problem is to loeate the PM points tl, ... ,tm optimally in order to 

minimize M(tl, ... ,tm). This is a typical dynamic programming problem. Let 
us recall the Bellman's dynamic programming principle (Bellman 1957, p. 18): 
"An optimal poliey has the property that whatever the initial state and the ini­
tial decision are, the remaining decisions must eonstitute an optimal poliey with 
regard to the state resulting from the first deeision." We apply this principle 
to our problem aB follows. Denote by N(x,Tj 8) the minimum mean number of 
terminal failures in the interval [x, T] if 
(i) a PM is made at t = Xj 

(ii) 8 PM points are optimally loeated in the interval (x, T]. 
Suppose that we do the first PM in [x, T] at time t = tl, and afterwards fol­
low the optimal strategy in the remaining period (tl, Tl. Then we obtain the 
following principal recurrence relation for 8 = 1,2, ... : 

l t1 N(x,Tj 8+1) = min ( A(v)F(tl -v)dv+N(t1,Tj8)). 
z<t1<T z 

(5.3.9) 

It is more eonvenient to write the integral in (5.3.9) in an equivalent form: 
J;l-Z A(tl - y)F(y)dy (by means of the change of variables tt - v = y). 
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Numerical implementation of BelIman's principle 

To facilitate the numerical solution of (5.3.9), we use a discrete time scale. 
Suppose that a certain interval A is taken as a time unit, the interval [0, T] is 
a multiple of A, Le. T = AM, and that the instants for PM ti can be only the 
values ti = kiA, where ki are integers. Then (5.3.9) takes the form (setting 
A = 1): 

N(k,M; s + 1) 

l (Z-k) 

= min ( A(x - u}F(u)du + N(x, M; s»), 
k+1$z$M-(1+s) 0 

(5.3.1O) 

s = 1,2, ... ; k = 0,1, ... , M - 2. 
First, we choose the optimum position of a single PM point according to 

N(k, M; I} (5.3.11) 

l (Z-k) l(M-Z) 
= min ( A(x - u)F(u)du + A(M - u)F(u)du). 

k+1$z$M-l 0 0 

To find the optimallocation of two PM points we use the expressions N (k, M; 1) 
just found: 

N(k,Mj 2) (5.3.12) 

l (Z-k) 

= min ( A(x-u)F(u)du+N(x,Mj 1»), 
k+l$z$M-2 0 

k = 0,1, ... ,M - 3,and so forth. 

Example 5.9.1 
The rate of initial failures is A( t) = 0.3 X 10-2 + 0.75 X lO-at. The time interval 
has length T = 50 time units. On average, there will be one initial failure on 
[0,50]. The c.d.f. of the regeneration time is F(t) = 1 - exp[-0.2t], Le. the 
initial failure becomes a terminal one after 5 units of time, on average. 

The optimallocation of a single PM point is at t = 39, giving N(O, 50; 1) = 
0.78. (Recall that this is the mean number of terminal failures.) If we take the 
PM point in the middle, at t = 25, then NO = 1.21, which is considerably 
larger. 

The optimallocation of two PM points is at tt = 32 and t2 = 42. This gives 
N(O, 50; 2) = 0.68. The optimallocation ofthree PM points is at tl = 27,t2 = 
36, ta = 43. Then N(O, 50; 3) = 0.6. The optimallocation of four points is at 
tl = 23, t2 = 32, ta = 39, t4 = 45, and the minimum N(O, 50; 4) = 0.54. If the 
arrangement of points were uniform, at tl = 10, t2 = 20, ta = 30, t4 = 40, then 
the mean number of terminal failures would be 0.61. 
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5.4 Markov-Type Processes with Rewards 
(Costs) 

5.4.1 Markov Chain 
The preventive maintenance models considered in this chapter are based on 
a probabilistic description of the system behavior. This description involves 
many (more than two) states. An adequate formal tool for finding optimal 
maintenance policies in this situation is a Markov-type processes with rewards 
(or costs) associated with the transitions from state to state. 

Our starting point will be a finite-state Markov chain. Although we asume 
that the reader is al ready familiar with the notion of a Markov chain, let us 
recall briefly the relevant facts. 

Consider a sequence of random variables {{k, k = 0,1,2, ... }, where each 
~k takes on a finite number of possible values which we call states. These 
possible values will be denoted by the set of nonnegative integers from the set 
S = {1, 2, ... , n}. If {k = i, then the Markov chain is said to be in state i at 
time k. We will use often the word "process" instead of "Markov chain." 

The random mechanism which governs the transitions from state to state 
is the following. Suppose that whenever the process is in state i, there is a 
probability Pij that the next state will be j. Formally, we assume that 

(5.4.1) 

Pij is called the one-step transition probability. This is the probability that the 
process makes a transition from state i to state j. Expression (5.4.1) postulates 
that this probability does not depend on the states of the chain before it entered 
state i. Obviously, Pij ~ 0 and :EJ=l Pij = 1. We will need the n x n matrix P 
of one-step transition probabilities: 

P=llPijll, i,j=1,2, ... ,n. (5.4.2) 

One can imagine the evolution in time of a Markov chain ~k as the movement 
of a fictitious particle over a set of states. This movement is a sequence of jumps, 
every jump occurs at time instants k, k = 1,2,3, .... The particle is in state i 
at time n. At time n + 1, it jumps from i to j with probability I{j, no matter 
where the particle was before time n. This is in fact the Markovian property 
expressed by (5.4.1). 

We now define the r-step transition probabilities. Let Plj be the probability 
that the process which presently is in state i will be in state j after r transitions: 

Pij = P({q+r = jl{q = i), r > 0, i,j = 1,2, ... ,n . 

Denote by p(r) the matrix of the r-step transition probabilities. Then 

p(r) = IIPijl1 = pr. 

(5.4.3) 

(5.4.4) 
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Thus the r-step transition probabilities are obtained simply by raising the P 
matrix to the rth degree. This result is known as the Chapman-Kolmogorov 
equation; see Taylor and Karlin (1984). 

We will consider a nonperiodie Markov chain with a single class of com­
municating states. Formally, this is equivalent to the assumption that for any 
pair of states i and j, there is some 8 such that Plj > 0 for all r ~ s. In other 
words, there is a positive probability that a particle can reach any state j from 
any state i in s transitions. 

The following principal theorem establishes the limiting behavior of the r­
step transition probabilities. 

Theorem 5.4.1 
(i) limr-too Pi~) = 'lrj; 'lrj are nonnegative, and Li=l 'lrj = 1. 

(ii) 'lrj is the unique nonnegative solution of the system 

n n 

'lrj = L'lriPij, j = 1,2, ... ,n, L'lri = 1. (5.4.5) 
i=1 ;=1 

The 'lri are termed stationary or limiting probabilities of the Markov chain. 
Let us mention several valuable properties of the stationary probabilities. 

By Theorem 5.4.1, 'lri is the limiting probability that the process is in state i 
at some remote time instant t, formally as t ~ 00 (ass urne that each transition 
takes one time unit). Suppose that we observe the chain during a large number 
of transitions N. Let Ki(N) be the number of times the process visits state i. 
Then the long-run proportion Ki(N)/N ~ 'lri as N ~ 00. 

For state j, define mj; to be the mean number of transitions until a Markov 
chain, starting in state j, returns again to that state. It turns out that 

1 
'lrj =-. 

mjj 
(5.4.6) 

A heuristic proof is as follows (see e.g. Ross 1993). The chain spends 1 unit of 
time in state j each time it visits j. Since, on average, it visits j once in mjj 

steps, the limiting probability for this state must be l/mjj. 

The returns of the Markov chain to any fixed state, say state 1, form a 
renewal process. The behavior of the chain after its return to state 1, which 
took place at the time instant K 1, does not depend on the past history for 
t < K 1• Ifthe returns to state 1 take place at the instants K1!K2 ,K3 , • •• , then 
the intervals K2 - K1,K3 - K 2 , ••• , etc. are i.i.d. r.v.s with mean mn. 

5.4.2 Semi-Markov Process 

It was assumed that the transitions in the Markov chain take place at the 
instants t = 1,2,3, .... One might imagine that after the transition into state 
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i, the Markov chain is "sitting" in this state i exactly one unit of time, after 
which the next transition takes place. 

Let us consider now a very useful generalization of a Markov chain called 
semi-Markov process (SMP). In simple terms, this is a chain with mndom time 
intervals between transitions; these random intervals do not depend on the past 
trajectory. 

Suppose that we have the same set of states {1, 2, ... , n} as for the Markov 
chain and the same probabilistic mechanism governing the change of states. 
Suppose that our new process starts at t = 0 from state i. The next state 
will be, as in the Markov chain, the state j chosen with probability Pij . Now 
introduce the one-step tmnsition time Tij' If the next state is j, then the SMP 
spends time Tij in i, and then jumps into j. The SMP will be denoted by (t. 
The distribution of Tij is defined as 

P(Tij ~ t/transition i=} j) = Fij(t). (5.4.7) 

The trajectory of (t is constructed as follows. Take the initial state i. Choose 
randomly the next state according to the distribution ~k, k = 1,2, ... , n. Sup­
pose the next state is 8. Then let the process stay at i a random time Tis '" Fis ( t), 
after which the process jumps into state 8. If the next state is q the process sits 
in 8 a random time TB '" FBq(t) and then jumps into q, etc. Figure 5.5 shows 
the trajectory of an SMP. 

Denote by Q j the limiting probability of state j. Formally, 

Qj = !im P«(t = j) . 
t-too 

(5.4.8) 

Qj equals the long-run proportion of time which the SMP spends in state j: 

Q 1. time in j on [0, tj 
j = 1m . 

t-too t 
(5.4.9) 

Denote by Ljj the mean first-passage (return) time from state j to state j. 
To formulate the next theorem, we need to introduce the mean one-step 

transition time Vi for state i. Prom the description of (t it follows that 

(5.4.10) 

The following important theorem expresses Qj and Ljj as a function of Vj 

and 1I'j; see Ross (1970). 

Theorem 5.4.2 

Q . _ 1I'jVj 
J - n , 

2:i=1 'lriVi 
(5.4.11) 

L .. - 2:~1 1I'iVi 
JJ - • 

1I'j 
(5.4.12) 
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Figure 5.5. Trajeetory of an SMP. Transitions oeeur at tl, t2, t3, t4, t5 into the 
states 4, 4, 3, 2 and 4, respectively. 

Let us present a heuristic proof of this theorem. Consider a large time 
span [0, Tl, during which K i transitions oeeur into state i. The SMP spends, on 
average, time Vi in state i after each such transition. Therefore, T ~ E~=l KiVi' 

Sinee the total time spent inj is Kjvj, Qj ~ Kjvj/ E~=l KiVi. Now divide both 
sides by K = E:"l K i and take into aceount that Ki/K ~ 1I'i. This explains 
the first claim. Suppose that Ct returns into j every L jj units of time. On 
average, after each return the process sits in j time Vj. Thus, Qj ~ Vj/Ljj , 

which explains the second claim of the theorem. 
Further details on the SMP ean be found in Ross (1970) or Gertsbakh (1977). 

5.4.3 SMP with Rewards (Costs) 

Now let us define rewards or costs associated with the transitions in the SMP. 
Assume that areward tPij ( Tij) is aceumulated for a transition i :::} j which lasts 
Tij' Then the average re ward Wi for a one-step transition from i is obtained by 
averaging tPij (x) over all possible durations of the one-step transition and over 
all possible destinations j: 

Wi = Epij 100 
tPij (x)dFij (x) . 

j=1 0 

(5.4.13) 

Now we are ready for a formula for long-run mean reward per unit time. 
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Theorem 5.4.3 
The mean long-run reward per unit time is 

(5.4.14) 

It is instructive to derive this formula heuristically. Consider again a large 
time span [0, T). During this time, K i transitions occur into i, and after each 
such transition the SMP stays in this state, on average, for time Vi. Therefore, 

(5.4.15) 

On the other hand, every visit to state i gives areward whose mean value is Wi. 
Therefore, the total accumulated reward on [0, T] is 

(5.4.16) 

Now 

'" Reward on [0, T) = (~ KiWi ) (~ KWj )-1 
g", T L.J "':' K· L.J "'! K· . 

i=l L.J)=l J ;=1 L.JJ=l J 

(5.4.17) 

Now note that K i / E?=l K; is approximately equal to the stationary probability 
11" i. This formula will be used in the next two sections. 

5.4.4 Continuous-Time Markov Process 
Let ~(t) be a continuous-time Markov process with a finite number of states 
0,1,2, ... , N. This means that for all t1, t2, t1 $ t2, and any pair of states i, j, 

P(~(t1 + t2) = jl~(td = i, any history ofc~(u) on [0, u), u < td 
= P(~(t1 + t2) = jl~(t1) = i) . (5.4.18) 

It is postulated, therefore, that the future behavior of ~(t) after h depends only 
on its present state i at t1' 

A convenient way of defining the transition probabilities Pii (t2) = P(~(t1 + 
t2) = jl{(td = i) is to describe the behavior of the process on a small time 
interval. 

Let us define the following transition rates >-ki: as tl.t ~ 0, 

P(~(t + tl.t) = jl{(t) = k) = ).kitl.t + o(tl.t) , j -::J k, 

P(~(t + tl.t) = jl~(t) = j) = 1 - L ).kjtl.t + o(tl.t) . 
i# 

(5.4.19) 

Let the initial state at t = 0 be i: P(~(O) = i) = 1. We will describe a standard 
procedure for finding the transition probabilities 

Pij (t) = P(~(t) = jl{(O) = i) . 
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Let us introduce the following matrix B: 

AO A01 Ao2 AON 
AlO Ar A12 A1N 

B= 

ANO AN1 AN2 A* N 

Here 

Ak = - LAkj, k = O,l, ... ,N. (5.4.20) 
j# 

Let pat) and Pi(t) be the columns with elements PIo(t), ... , PiN(t) and PiO(t), 
... , PiN(t), respectively. The transition probabilities Pij (t) satisfy the following 
system of differential equations: 

(5.4.21) 

with the initial condition Pik (0) = 0, if k "I i and Pii(O) = 1. B' is the transpose 
ofB. 

To prove (5.4.21), let us derive the equation for Pij(t). Expression (5.4.21) 
says that 

Pij(t) = L Pik (t)Akj + AjPij(t). (5.4.22) 
k#j 

Let us consider the transition probability from state i to state j during the 
interval [t, t + ~t]. To be in state j at t + ~t, the process ~(t) either has to 
be in state k, k "I j, at time t and then jump into state j during the interval 
[t, t + ~t], or has to be already in state j at t and remain in this state during 
the interval [t, t + Llt). This leads to the following probability balance equation: 

Pij(t + ~t) = L Pik (t)Akj Llt + (1 - L Akj~t)Pij(t) + o(~t). (5.4.23) 
k#j j#k 

Now transfer the term Pij(t) from the right to the left, divide by Llt and set 
~t -+ O. We obtain the desired equation (5.4.22). 

The method which usually simplifies the analytic solution of the system 
(5.4.21) is applying the Laplace transform, which leads to a system of linear 
algebraic equations. Let 

1I"j(8) = 100 
e-,tPij(t)dt. (5.4.24) 

Applying the Laplace transform (5.4.24) to each row ofthe system (5.4.21) and 
using the formula 

100 
e-Bt Pij(t)dt = 811"j(8) - Pij(O), (5.4.25) 
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we obtain the system 

sll(s) - PiCO) = B'll(s), (5.4.26) 

where ll(s) is the column consisting of elements 1I'i(S), j = 0,1, .. . ,N. From 
this follows the system of equations 

(Is - B')II(s) = PiCO), (5.4.27) 

where I is the identity matrix. This system must be solved with respect to 
1I'j(s), j = 0,,,., N, and the functions Pij(t) must be found with the help of 
the Laplace transform tables; see Appendix C. 

For a better understanding of the process {(t) defined via the transition 
rates, let us describe its sampie paths. Suppose that {CO) = i 1• Then {(t) stays 
in il a random time Tit '" Exp( -Ai), after which it jumps into state i2 which 
is chosen with probability Ait,i2/( -AU. In state i2, the process stays a random 
time Ti2 '" Exp( -Ai2 ), after which it jumps into a new state is, etc. 

5.5 Opportunistic Replacement of a Two­
Component System 

5.5.1 General Description 

A system consists oftwo independent parts (components), named a and b. Both 
parts operate continuously and fail independently. If a component faiIs, an in­
spection will reveal it and the failed component will be replaced. After replace­
ment, it is as good as new. If one component, a or b, has failed and is replaced, 
then there are two options with regard to the other component: to replace it 
too or not. The first option is what we call "opportunistic replacement." 

In Sect. 4.1 we considered an example of an opportunistic replacement 
scheme in which both components were always replaced upon the failure of 
either. This policy turned out to be less costly than the policy of replacing each 
component separately (Example 4.1.3). A natural extension of this simplified 
opportunistic replacement is the following: when one of the two components has 
failed, replace the second one only if its age exceeds some critical value Tmax . 

We shall assume that the system is periodically inspected, and that the 
inspection always reveals any existing failure. The following four situations 
may occur: 
(1) no faHure discovered, no action taken; 
(2) one part has faiIed, the other has not, and only the failed part is replacedj 
(3) one part has faiIed, the other has not, and both parts are replacedj 
(4) both parts found failed, and both are replaced. 
Let us introduce the costs associated with these situations. There is a zero cost 
associated with (1); the cost of (2), the single repair cost, is Cfj the cost of (3) 
or (4), the joint repair cost, is Cp,l' 
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5.5.2 Formal Setting of the Problem 

The time interval between inspections a is set to 1. All inspections and repairs 
take negligible time. The lifetimes of a and b are Ta and TrI, respectively, and 
they are independent diserete random variables on a unit-step grid. Let 

P(Ta = i) = Pi, i = I, ... ,K; P(TrI =j) = qj, j = I, ... ,K. (5.5.1) 

We will need the eonditional probabilities that a part fails at "age" k, k > r, if 
it has survived age r. Let 

P(Ta = ilTa > r) = p~r), i = r + 1, r + 2, ... ; 
P(TrI = ilTrl > r) = q!r) , i = r + 1, r + 2, .. . 

Obviously, 

(r) _ Pi . q(r) _ qi 
Pi - r 'i - r . 

1- Lj=l Pj 1- Lj=l qj 
(5.5.2) 

Our opportunistic replacement poliey is formulated as follows: if during an 
inspection it has been revealed that one of the two parts has faiIed, then replace 
the second part only if its age exceeds the critical 1Jalue T max = N. 

The state ( of the two-part system will be defined as follows. Put ( = 
(Ka , Kb), where Ka and Kb are the respective eomponent ages after the inspee­
tion and replacement. The eonsecutive states of the system will be denoted by 
(0,(1, .... 

Consider an exampie. Time t is measured in integers 0,1,2, ... Suppose 
that N = 2. Both parts are brand new at t = 0; the lifetimes of a and b are 
Ta = 1, TrI = 4. The system starts at state (0 = (0,0) at t = ° (think of this 
as signifying that at t = ° both parts have been replaced). The first failure of 
a takes place at t = 1, and only a is replaced since the age of b is Iess than 
N = 2. So, after the first replacement, the state of the system is defined as 
(I = (0,1). Suppose that the part which replaces the faiied a-part has Iifetime T: = 4. The next failure takes place at t = 4; this is the faHure of b. The 
age of a is now 3 > N = 2. Thus, both components need to be replaced, 
and the state of the system becomes (2 = (0,0). Thus the trajectory of (j is 
(0,0) :::} (0,1) :::} (0,0) :::} .... 

Suppose that Ta = TrI = 4. Then the initial state is (0,0). Failure takes place 
for the first time at t = 4, both eomponents are replaced, and the next state is 
again (0,0). So, the trajectory is (0 = (0,0) :::} (1 = (0,0) :::} ... . 

(j has the following state space: S = ((O,O);(O,j), j = I, ... ,Nj(i,O), i = 
1, ... N,}. The state (i, i) for i > ° is impossible. Indeed, after replacement, 
either or both ages will be zero. 

It is an important fact that the states of the system (j, j = 0,1,2, ... , form 
a Markov chain. Indeed, the probability of the transition (h,jd :::} (i2,h) 
depends only on the present state (h,jd and does not depend on previous 
states. This is due to the definition of the system state. If the ages of a and 
b are fixed, the future behavior is determined via the conditional probabilities 
(5.5.2). 
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Our goal is to obtain an expression for the average long-run costs per unit 
time. For this purpose we use the technique described in the previous section. 
In fact, the intervals between transitions from state to state are random, and (t 
fits the description of a semi-Markov process (Section 5.4.2). 

We proceed with a numerical example. 

5.5.3 N umerical Example 

The following are component lifetime data: 

i Pi 
(1) 

Pi 
(2) 

Pi qi 
(1) 

qi 
(2) 

qj 
1 0.08 0.05 
2 0.14 0.152 0.08 0.084 
3 0.17 0.185 0.218 0.16 0.168 0.184 
4 0.17 0.180 0.218 0.30 0.316 0.345 
5 0.15 0.160 0.192 0.20 0.211 0.230 
6 0.11 0.120 0.141 0.10 0.105 0.115 
7 0.18 0.203 0.231 0.11 0.116 0.126 

It will be assumed that N = 2, and thus the system states are: (0,0), (0,1), 
(0,2), (1,0), (2,0). 

The most tedious part of this example is calculating the transition probabil­
ities. Let us start with state (0,0). To avoid mistakes, it is advisable to picture 
the sampie space of (Ta, Tb); see Fig. 5.6. 

A point with coordinates (r, s) represents the event (Ta = r, Tb = S) and 
since the lifetimes of a and b are independent, its probability ia Prqs. 

If the event A(1,o) takes place, the next state after (0,0) will be (1,0). (Verify 
it!) The event A(O,1) denotes transition into (0,1). Similar meanings attach to 
the events A(O,2)' A(2,O). The remaining probability mass corresponds to the 
transition (0,0) => (0,0). It is a matter of a routine computation to obtain 
PoO,OI = 0.046; PoO,02 = 0.122; Poo,IO = 0.076; Poo,20 = 0.062; Poo,OI = 0.694. 

Denote by VOO the mean transition time from state (0,0). If the event BI = 
(Ta = Tb = l)UA(1,o)UA(o,l) takes place, then the system stays in (0,0) one 
time unit. If B2 = (Ta = Tb = 2) U A(2,O) U A(O,2) takes place, the transition 
lasts two time units. The events A 3 , A 4 , A s, A 6 and A 7 mean that the transition 
times are 3,4,5,6 and 7, respectively; see Fig. 5.6. So, Voo = P(BI ) + 2P(B2 ) + 
3P(A3) + ... + 7P(A7 ). The result is Voo = 3.247. 

Let us show how to compute the transition characteristics from state (2,0). 
Figure 5.7 contains the necessary information. The Ta axis is now the residual 
life of a given that it survived past t = 2; see the column pi2 ) in the table above. 
The events A(O,I) and A(O,2) correspond to the transition into (0,1) and (0,2), 
respectively. 

Indeed, suppose that (i = (2,0), Le. b is brand new and a has age 2. (i+1 = 
(0,1) means that after the failure of a, b has age 1. The transition (i => (i+1 can 
happen if and only if the residual lifetime of a is 1 and the age of b is greater 
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than 1, exactly as defined by the event AO,I. This gives P20,01 = 0.207; P20,02 = 
0.190; P2o,oo = 0.603. 
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Figure 5.6. The sam pIe space for the transitions from (0,0) 

The events BI through Bs (see Fig. 5.7), correspond to the transition times 
1,2, ... ,5 respectiveIy. Thus we arrive at V20 = 2.592. 

We omit similar calculations for the transitions starting in states (0,1), (1,0) 
and (0,2). We eventually obtain the following transition probability matrix P: 

state (0,0) (0,1) (1,0) (2,0) (0,2) 
(0,0) 0.694 0.046 0.076 0.062 0.122 
(0,1) 0.719 0 0.077 0.131 0.073 
(1,0) 0.653 0.144 0 0.042 0.161 
(2,0) 0.603 0.207 0 0 0.190 
(0,2) 0.562 0 0.169 0.269 0 
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Figure 5.7. The sampie space for the transitions from (2,0) 

By solving (5.4.5) (see Theorem 5.4.1) we find the stationary probabilities 11'00 = 
0.670,11'01 = 0.059,11'10 = 0.075,11'20 = 0.083,11'02 = 0.113. 

The last task is to find the mean one-step costs. Let us assume that a single 
component replacement costs C / = $1000, and tW<rComponent replacement 
costs C,,/ = $1400. Suppose that the system state is (0,0). The transition into 
state (0,0) costs C,,/. The transitions to any other state cost CI' Therefore, 
the mean cost associated with one transition starting (0,0) is 

Woo = p(O,O) =} (O,O»C/ + (1- P«O, 0) =} (O,O»)C,,/. (5.5.3) 

The mean cost of transitions starting from other states is computed similarly. 
For example, 

WO! = P(O, 1) =} (O,O»C/ + (1 - P«O, 1) =} (O,O)))C,,/. (5.5.4) 

The following table summarizes the stationary probabilities, mean transition 
times and costs. 

state (i,j) (0,0) (0,1) (1,0) (2,0) (0,2) 
1I'ij 0.670 0.059 0.075 0.083 0.113 
Vij 3.247 3.112 2.870 2.592 2.321 
Wij 1278 1288 1261 1241 1225 
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Now everything is ready to compute the mean costs in $ per unit time. By 
(5.4.14), 

(5.5.5) 

By way of comparison, let us calculate the costs for an alternative policy: 
replace both units at the failure of either. The result is 

5.6 Diseovering a Malfunetion in an Automatie 
Maehine 

5.6.1 Problem Description 
An automatie machine produces one article every time unit. H the machine is 
in a "good" state, then there is the probability Po that the article produced is 
defective. H the machine has a malfunction (i.e. it is in a failure state) this 
probability is Pt and Pt > Po. The entire machine operation time is divided 
into periods during which N articles are produced. It is assumed that faHure 
can occur with constant probability 'Y at the beginning of each period. The 
state of the machine is tested by taking sampies of n artieles at the end of each 
period from the batch of N articles produced during this period. All articles in 
a sampie are examined and if the number X of defective articles is k or more, 
there is deemed to be a malfunction (k is the prescribed "critical" level). Hit 
turns out that X ~ k, the machine is stopped for a time mp , during which it is 
established whether there is a faHure or not. H the alarm was false, the machine 
immediately resumes operation. H not, an additional time ma is spent carrying 
out machine repair, after which the machine starts operation with the initial 
low level Po of defective rate. 

It is assumed that each good article gives areward of Cg and each defective 
article incurs a penalty of Cd. Our problem is to find the optimal "stopping" 
rule X ~ k, k = 1,2, ... , n, which would maximize the reward per unit time. 

5.6.2 Problem Formalization 
Define an SMP with the following states: the machine is operating, there is no 
malfunction (state 1); the machine is operating (i.e. producing articles), there is 
a malfunction (state 2); the machine is down, it is repaired after a malfunction 
has been discovered (state 3); the machine is not operating, but there is no 
malfunction (state 4). 
From the above description it follows that the transition probabilities P31 

probabilities P 31 = P 41 = P 23 = 1; see Fig. 5.8. 
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Figure 5.8. State transition diagram 

Let bo(n, k) be the probability that of a sampie of n articles k or more are 
defective ifthe machine is in order, and let bl(n,k) be the same probability for 
a machine which has a malfunction. 

The number of defective articles in a random sampie of size n taken from 
a batch of size N has a s<rcalled hypergeometric distribution; see e.g. Devore 
(1982, p 109). For N ~ n and for Po and Pt. not too dose to zero, which is 
what we have, this distribution can be very weH approximated by a binomial 
X '" B(n,p). Then we can write 

bo(n,k) = P(X 2: k;Po) = t (~)P~(l- Po)n-i, 
i=k l 

(5.6.1) 

bl(n, k) = P(X 2: kiPt.) = t (~)pf (1- Pt.)n-i . 
i=k • 

(5.6.2) 

Let Y be the ordinal number of the period at the beginning of which the 
malfunction occurs. According to the problem description, Y ,... Geom(-y): 

P(Y = q) = (1 - -y)q-I-y, q 2: 1 . 

It fonows that 
00 

P(Y>m)= L P(Y=q)=(l_-y)m. (5.6.3) 
q=m+l 

The transition 1 => 4 occurs if and only if the alarm signal was received 
before the malfunction appeared. By (5.6.1) and (5.6.3) it happens at the end 
of the mth period with probability 

P14(m) = [1- bo(k,n)]m-1bo(k,n)(1- -y)m. (5.6.4) 

From this it follows that 
00 

Pt4 = L PI4(m) = bo(k,n)(l - -y)[l- (1- boCk, n»(l- -y)t1. (5.6.5) 
m=l 
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Obviously, P12 = 1 - g4. Now we have the following transition probability 
matrix P : 

state 1 2 
1 0 P12 

2 0 0 
310 
4 1 0 

3 4 
o P14 

1 0 
o 0 
o 0 

The system (5.4.5), ('IrI, ••• , 'lr4) = ('IrI, ••• ,'lr4)P, has the following solution: 
'lrl = D, 'lr2 = D . P12 , 'lr3 = D . P12 , 'lr4 = D . P14 , where D = 1/(3 - PI 4). 

We now ealeulate the mean one-step transition times. Obviously, V3 = mp + 
m a , V4 = mp • The machine stays in state 1 a random number of periods Z, 
and this number exeeeds m if and only if there was no malfunction and no false 
alarm during these m periods. Thus, 

P(Z > m) = (1- bo(k,n»ffl(l- ,)rn, m> 1. (5.6.6) 

It is a matter ofroutine ealeulation to show that E[Z] = [(l-bo(k,n»(l-'Y)]-I, 
and therefore the mean one-step transition time from state 1 is VI = N E[ Z]. If 
the machine is in state 2, the probability of diseovering the malfunetion after 
one period is b1 (k, n). It is easy to derive from here that the machine stays in 
state 2, on average, for time V2 = N/b1(k,n). 

It remains to determine the mean one-step rewards. Following the problem 
deseription, we obtain 

WI = vt[(l - Po)Cg - PoCd] , 
W2 = &12[(1- pt}Cg - PI Cd] , 
W3 =W4 = O. 

Indeed, an operating machine produces in state 1 a good unit with probability 
1 - Plh and a defective one with probability Po. This explains the formula for 
Wl. The formula for W2 is similar. 

Now we have all the ingredients to allow us to use formula (5.4.14) for the 
mean long-run re ward per unit time: 

(k) - L:=1 'Ir iWi 9 - 4 • 
Li=1 'lrtvi 

(5.6.7) 

5.6.3 Numerical Example 
Let us investigate expression (5.6.7) for the following values of the parameters 
involved: 'Y = 0.1; N = 100 (on average, a malfunction appears onee per 1000 
articles); mp = 50, m a = 100. 

The probabilities of produeing a defeetive article are Po = 0.05 and PI = 0.2. 
This means that, on average, one out of 20 articles is defective when the machine 
operates normally, and one out of 5 is defective when there is a malfunction. 
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The sampie size for checking the machine state is n = 20. The reward Cg = 1. 
The penalty for a defective article is Cd = 1. 

Let us investigate the expression for g(k) numerically. Figure 5.9 presents 
the results. The optimal k = 5. This guarantees g(5) = 0.76. 

g(K) 

0.75 

0.70 

0.65 

O.60:--_~_~~_~:---_~ /{ 
o 10 15 20 

Figure 5.9. Reward as a function of the critical number k 

Smaller or larger values of k reduce the reward substantially, as Fig. 5.9 
shows. For example, if we take k = 2, there will be too many false alarms; if 
k = 10 then the machine will produce too many defective articles. 

5.7 Preventive Maintenance of Objects with 
Multidimensional State Description 

5.7.1 General Description 

We have considered so far in this chapter several preventive maintenance models 
based on the observation of the state parameter. One such parameter was the 
number of failed lines in the multiline system. Another was the state (t of the 
two-component system described in Sect. 5.5. The system degradation in the 
two-stage failure model (Sect. 5.3) is reflected by the accumulated number of 
initial failures. 

The main difficulty intrinsic to these and similar problems is finding an ap­
propriate stochastic description of the process which reflects the system degra­
dation (deterioration) or the damage accumulation. The situation is relatively 
simple if this description can be given in the terms of a one-dimensional Markov­
type process. 

In practice, however, a situation where the state of the system (component) 
is described weIl enough by a one-dimensional parameter is the exception rather 
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than the rule. More often an adequate description of the state of a technical 
object is given in terms of some multidimensional process 

1]( t) = (1]1 (t), 1]2 (t), ... ,1]n (t». (5.7.1) 

An important practical issue is how to construct, based on the observations 
of the vector process 1](t), an optimal preventive maintenance procedure. There 
are several cases where in fact we can reduce the situation to one dimension. 
(a) The processes 1]1c(t), k = 2, ... , n, are functionally related to the first coor­
dinate 1]1(t) as 1]1c(t) = 1jJ(1]Ic(t» + €t, where €t is an observation noise. In this 
case actually only 1]1 (t) contains useful information. 
(b) All1]i(t) are independent processes which can be observed, monitored and 
controlled independently. For example, in a car the state of the braking system 
is described by the average wear on the brake disk 1]1 (t), and the state of the 
engine by the fuel consumption index 1]2(t). We might assume that there is 
no connection between these two processes. One can design maintenance proce­
dures separately for the braking system and for the engine. The only connection 
between the maintenance actions for both these systems may arise as a result 
of cost reduction when these two subsystems undergo preventive maintenance 
simultaneously. 

However, in general, the above-descri bed simplifications are not possible, and 
we have the rather difficult problem of controlling a multi-dimensional process. 
The complications arise as a result of dealing with a multi-dimensional "critical 
region" , which replaces the one-dimensional "critical" level. Besides, and this is 
even more important, we need an adequate probabilistic description of a mul­
tidimensional stochastic process. The difficulties in arriving at this description 
are furt her aggravated by the fact that we never observe "pure", undisturbed 
sampie paths of 1](t) because of breakages, partial repairs, maintenance inter­
ventions in the system, etc. 

How can we remedy this situation? When we take a closer look at mainte­
nance practice, we will always discover that maintenance decisions are based on 
a cleverly chosen one-dimensional system (component) "health index." A good 
car mechanic would take the engine noise as such an index. We would decide to 
sell our car if the yearly service cost (an integrated parameter!) exceeded some 
limit. A production line would be stopped for maintenance if the defective rate 
or a certain product's physical parameter exceeded some critical value. Hast­
ings (1969), Gertsbakh (1972; 1977), Bailey and Mahon (1975), and Kordonsky 
and Gertsbakh (1995; 1998) present examples of the use of one-dimensional 
parameters as the basis for making maintenance decisions. 

Summing up, it would be desirable to replace the vector 1](t) by a scalar 
process r(t) = '1/1(1]1 (t), . .. ,1]n(t» and to use this new "system health index" as 
the basis for our maintenance decisions. 
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5.1.2 The Best Scalarization 

The essential feature of the scalar function r(t) must be the ability to dis­
criminate between failed and nonfailed objects. Constructing such a function 
involves ideas from diseriminant analysis, see Anderson (1984, Chap. 6), Gerts­
bakh (1972; 1977). 

Let us assume that the whole population of objects can be conventionally 
divided into two groups: A (the nonfailed or "good" ones) and B (the failed 
or "unfit" ones). Such a subdivision eannot always be done easily. Medical 
doetors can usually distinguish very weIl between a healthy person and a siek 
one, and moreover, classify the patient within a specifie group according to 
his/her illness. In technology, however, such a classification is sometimes very 
difficult. Indeed, between the states "brand new" and "entirely useless" there 
are many intermediate states whieh are diffieult to distinguish. In practiee, 
however, the decision is made on the basis of intuition, experience and eommon 
sense. 

In our case, we will need to distinguish between two extreme eategories of 
objects: "very good" and "very bad." Thus, we begin by assuming that there is 
an expert who can classify all objects under consideration into these two groups, 
A and B. Let NA and NB be the numbers of objects in these two groups, which 
are characterized by the sampies 

(5.7.2) 

where every vector in the sampie z = A, B, xj, j = 1, ... , N z , is an n-tuple 

(5.7.3) 

The idea of constructing the "best" scalarization is based on replacing the vector 
xj by a scalar 

n 

rj = L'ixji' (5.7.4) 
i=1 

where the eoefficients li are selected in some "optimal" way. 
To explain this approach, let us give a geometrie interpretation to the scalar­

izatiön (5.7.4). The sampies A and B are two clusters of points in the n­
dimensional parameter space. Let I'A and I'B be the n-dimensional vectors of 
mean values for A and B, respectively, and let SA and SB be respective sampie 
varianee-covariance matrices: 

NA 

[J,~) = L x!dNA' 
m=1 

NB 

jJ.~) = L x:!dNB' i= 1,2, ... ,n, 
m=1 

A (A(l) A(n» A B I'z = I'z , ... , I'z ,Z = , , 

(5.7.5) 

(5.7.6) 

(5.7.7) 
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and Sz = IIViill, i,j = 1,2, ... ,n, Z = A,B, where 

N. 
V? = N-1 "(XZ • _ ,,(i))(XZ • _ ;,Ci)) 

I] Z L..J ml t"'z m3 t"'z • (5.7.8) 
m=1 

Linear transformation means replacing each vector observation xj by the 
scalar L?=llixji' Geometrically it is equivalent to projecting each observation 
onto some line whose direction is collinear to the vector l = (lt, ... , In). Figure 
5.10 shows two clusters A and B in a two-dimensinal space. Obviously, the 
projection onto the direction l(1) discriminates better between A and B than 
does the projection onto l(2). 

....... . .,,-.......... , 
....-...--: \. 

\ . B • 
\ 
\ 
\ 

L-______ ~~~~------------------~-~~ 

Figure 5.1: Scheme illustrating the choice of the "best" scalarization 

The fundamental idea due to R. Fisher is to choose the direction l in such a 
way that the ratio of squares of the difference of projected mean values on the 
line l to the sum of the variances of the projected sampies would be maximal. Let 
us represent Fisher's ratio via the vectors of the mean values and the variance­
covariance matrices. 

Supp08e that each vector observation is replaced by the projection 

(5.7.9) 

where l is a row vector, xj is a column vector, and lxj is their scalar product. 
The mean value in the projected sampie z is 

N. n 

yz = I: I: XJk/Nz = l{.&z (5.7.10) 
;=1 k=l 
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({Lz is a column-vector). The variance of the projection of both sampies is given 
by 

N. 

S = l( L (Nz)-l L(xj - {Lz)(xj - {Lz)')! = l(SA + SB)!. (5.7.11) 
z=A,B ;=1 

The prime denotes transposition. Therefore, Fisher's optimal vector l* maxi­
mizes the following expression: 

D = (l({LA - {LB))2 . 
l(SA + SB)l' 

The following theorem is a well-known fact from linear algebra: 

Theorem 5.7.1 

(5.7.12) 

Let S A + SB be a nonsingular matrix. Then D is maximized by the vector l* 
defined as 

(5.7.13) 

The maximal value of D equals 

D* = ({LA - {LB),(SA + SB)-l({LA - {LB). (5.7.14) 

It is instructive to compare the result of this theorem with another approach 
used in mathematical statistics for the classification of objects into two groups. 
Let the probabilistic properties of populations A and B be described by their 
density functions PA{X) and PB{X), respectively. According to the Neyman­
Pearson lemma, the best inference about a given vector Xo 's membership of 
populations A or B must be formed on the basis of the value of the likelihood 
ratio 

(5.7.15) 

or on the value of some other monotone function of r A,B. 
Suppose that PA and PB are multidimensional normal densities with ident­

ical (nonsingular) covariance matrices V. Then, using standard manipulations, 
we obtain that 

In this formula, thesecond term is a constant which does not depend on the 
actual observation vector Xo and the first term is nothing but a scalar product 
of the vector Xo and the vector V-1{J-tA - J-tB). This vector is analogous to the 
vector l. in Fisher's approach. Thus there is a elose similarity between Fisher 
and Neyman-Pearson approaches. 
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5.7.3 Preventive maintenance: multidimensional state de­
scription 

Let us describe the procedure of data processing and organizing the preventive 
maintenance for a system whose state description is multidimensional. 

Step 1. Two sampies representing "brand new" and "entirely unfit" objects are 
selected. It is desirable that the first sampie should consist of well-functioning 
units operating for a relatively short time. The second sampie contains units 
which have already been in operation for a longer time, and according to expert 
opinion would be considered unfit or dose to failure. The actual values of the 
parameters have to be measured for every object in the sampies, and sampies 
of type (5.7.2) must be formed. It is not expedient to restrict ourselves apriori 
in terms of number of parameters measured (i.e. by the dimension of the vector 
xj). 
Step 2. The vectors fi.A, fi.B, the matrices SA, SB, and (SA + SB)-l are 
calculated, and finally the vector l. defined by (5.7.13) . Using this vector, each 
n-tuple of observations is reduced to a single value yjj see (5.7.9). Now two 
one-dimensional sampies yt, j = 1, ... ,NA, and yf, j = 1, ... ,NB, must be 
investigated in order to decide whether the discrimination between A and B 
is satisfactory or not. Figure 5.11 shows two examples of comparison of the 
projected sampies. 

Figure 5.11. Patterns of bad and good discrimination 

Ifthe situation is similar to the case shown on the left in Fig. 5.11, we can say 
that we have succeeded in creating a one-dimensional discrimination function. 
Ifnot (Fig. 5.11, right), the above discrimination technique cannot be used. We 
suggest the following half-empirical criterion. Let GA and GB be the standard 
deviations of the projected sampies A and B, respectively. Then we assume 
that the discrimination is good if 

(5.7.17) 
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Step 3. Suppose that we are lucky and there is good discrimination between 
"good" and "bad" objects. Figure 5.12 shows a possible way of organizing the 
preventive maintenance. Consider a certain object which at the initial time 
instant to has vector of parameters 71 (to) = (711 (to), 712 (to), ... , 71n (to»· 

"2 

B 

A 

Figure 5.12. Preventive maintenance scheme based on control of the scalar 
parameter r(t) 

Until now, when speaking about discrimination, we have acted as if the parame­
ters were "frozen;" their evolution in time has not been taken into consideration. 
Now recall that TIi(t) are random processes. On the parameters' "phase space" 
shown in Fig. 5.12, the evolution of an object from population A into population 
B goes along BOme random path. We are interested only in the projection of 
the vector 71(t) on the line l which was chosen as a line with best discriminating 
properties between A and B. Therefore, our maintenance actions are nothing 
but a control of the scalar process 

r(t) = 1Jl (t)h + 712 (t)l2 + ... + 1Jn(t)ln· (5.7.18) 

This is justified because in the area when this parameter changes, there are 
clearlyexpressed zones corresponding to "good" and "bad" objects. Apparently, 
it is expedient to introduce two levels for r(t), H and h, so that the situation 
r > H might be considered as a failure, the state h ~ r(t) ~ H as marginal, 
and the state r(t) < h as the good one. No maintenance actions should be 
undertaken if the object is in the good zone; preventive maintenance (PM) 
must be undertaken if the object is discovered in the marginal zone, and an 
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emergency repair (ER) must be done if the process enters the failure zone. PM 
and ER mean shifting the process from its actual state to some state in the 
(r(t) < h) rone. 
Step 4. This step is investigation and validation of the stochastic pattern 
for the behavior of r(t). This is probably the most difficult part of the whole 
maintenance procedure. First, we will need to observe sampie paths of r(t). 
Very probably, there will be a small number of complete paths and many partial 
paths since the system under observation is subjected to changes, repairs, etc. 
We suggest first of all trying to fit a Markov-type process. If discrete levels are 
introduced for the process r(t), then in fact our first choice is to fit a Markov 
chain to the stochastic behavior of r(t). 

We will not go into the details of this investigation. Let us mention only that 
Section 3.4 of Gertsbakh (1977) presents an example of such statistical analysis. 
The objects were hydraulic pumps used in the aircraft industry. A sampie of 33 
pumps was examined and classified into two groups A and B by an expert, with 
25 and 8 units, respectively. Measurements of eight physical characteristics 
were made, including apressure oscillation index, spectral characteristics of 
vibrations and noise. The analysis of the Fisher discrimination ratio showed 
that for the optimal discrimination, the ratio (YA -yB)j(aA +aB) = 2.52. The 
range of r(t) was divided into 25 levels, where the levels 1,2,3 were defined as 
"good" , the levels r > 16 as failure, and the rest as marginal. Statistical analysis 
based on observing 17 pumps during 3000 hrs of operation allowed a Markov 
chain model to be constructed with 25 states for r(t). Two inspection periods 
were introduced: ~ = 200 hrs and ~ = 400 hrs. The inspection, maintenance 
and ER costs were defined as Cin,p = 1,cPM = 10 and CER = 100, respectively. 
The optimal policy was found which prescribes inspecting a pump after 400 hrs 
if it was found in one of the states 1,2, ... ,9, and inspection every 200 hrs for 
the states 10,11, ... ,16. The maintenance action was a shift from marginal or 
failure state to one of the good states. It was also established that the optimal 
policy is robust with respect to the changes in cost parameters. 



Chapter 6 

Best Time Scale for Age 
Replacement 

Counting time is not so imporlant as making time count. 
James J. Walker 

You will never ''find'' time for anything. If you want time, you must make it. 
Charles Buxton 

6.1 Introduction 
As a rule, the lifetime of any system (component) can be measured and observed 
on more than one time scale. There are two widely used "parallel" time scales 
for cars: the calendar time scale and the mileage scale. For aircraft frame, three 
time scales are popular: the calendar time scale, the number of flight hours 
(time in the air) and the number of takeoffsjlandings. For jet engines, the age 
is measured in operation hours and in operation cycles. 

In some cases, the choice of the most "relevant" time scale is obvious. For ex­
ample, the "true" age of a car body must be measured in calendar time, and not 
in mileage because the main aging factor is corrosion which goes on in "usual" 
time. On the other hand, the age of the braking system must be measured on 
the mileage scale since the dominating factor is the wear of brake disks and 
shoes which develops as a function of mileage. For an aircraft undercarriage, 
the lifetime must be related to the number of operation cycles (the number of 
takeoffs and landings). 
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There are, however, many cases where the right choice of the most relevant 
time scale is not so obvious. For example, aircraft frame failure is a result 
of fatigue cracks in the most heavily stressed joints. The appearance of these 
cracks depends on both corrosion and fatigue damage accumulation. Corrosion 
developes in calendar time and as a function of time in the air , and fatigue 
cracks may depend on the total time in air and the number of heavy-stress 
cydes which take place on takeoffs and landings. 

Attempts are being made to design by technical means so-called damage 
counters which create their own artificial time scale, see e.g. Kordonsky and 
Gertsbakh (1993). 

The eorrect ehoiee of the "best" time scale is of crucial importanee for aceu­
rate failure prediction and for planning preventive maintenanee activities. Let 
us eonsider a very simple but instructive example: replacement of a eutting tool 
on an automatie production line (APL). 

It is known that the milling cutter is eapable of providing the neeessary 
aceuracy during, say 1000-1200 operation eydes. (Suppose, that the instrument 
manufacturing proeess as weH as the work of the APL are highly stable well­
eontrolled proeesses). The APL works for 2-18 hours a day, depending on 
the market demand, averaging 10 hours. One operation eyde lasts exactly 10 
minutes. Thus, on the average, the APL completes 600/10=60 eydes a day. 
Suppose that the maintenanee manager decides to earry out the preventive 
replacement of the tool every 16 days. On "average", this eorresponds to 960 
operation cycles, which seems to be a reasonable age. But obviously, this is not 
a very wise decision: due to large variations in the daily operating time, the 
tools will actually be replaced every 200 - 1700 cycles. In most cases, either a 
good new tool will be replaced or one which has already worn out. It would be 
much better to record the APL's operating time and initiate the replacement 
as soon as this number reaches the "critical age" of 960 eydes. 

In more formallanguage, there are two time seales for the milling cutter, the 
operating time and calendar time, and the relevant time seale is the operating 
time. 

Onee there are at least two observable principal time scales (say, mileage 
and operating time), it is always possible to introduee a new time scale by 
eonsidering a weighted sum of the principal time scales. In this way we arrive 
at the problem of ehoosing the best, most appropriate time scale. 

Kordonsky suggested the following definition of the "best" time seale (see 
Kordonskyand Gertsbakh 1993). The best time seale provides the minimal 
coefficient 0/ variation (e.v.) of the time to failure. There is a good intuitive 
reason behind this definition. If on a eertain time seale a system has a lifetime 
whose e.v. is very small, then failure predietion on this seale will be almost 
eertain, and maintenanee actions might be earried out very effi.ciently. We 
have already demonstrated in Chap. 4 that the e.v. is one of the main factors 
influencing maintenance effideney. 

In the next section we define formally the the best (optimal) time scale for 
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the family of time scales obtained as a convex combination (with nonnegative 
weights) of two principal time scales. In Sect. 6.3 we consider an example of 
fatigue test data and demonstrate the difference in the c.v. between various time 
scales. We introduce a cost criterion for age replacement for an arbitrary time 
scale and describe a numerical procedure for finding the optimal time scale for 
age replacement. In Sect. 6.4 this procedure is applied to the fatigue test data 
and it is demonstrated that the optimality in the terms of the c.v. and in the 
terms of the cost criterion for age replacement practically coincide. 

Several types of data are considered. For complete sampies, we use a non­
parametric approach to finding the optimal preventive maintenance policy based 
on the empiricallifetime data; see also Arunkumar (1972). For censored and 
quantal-type data, our approach is based on assuming a parametric lifetime 
distribution model and on using maximum likelihood for parameter estimation. 

6.2 Finding the Optimal Time Scale 
We need some notation. Time scales are denoted by script letters {C, T, 1l}. 
Italic capitals L, T, Hand small italic letters l, t, h are used to denote random 
variables and nonrandom variables (constants) in the corresponding time scales, 
respectively. 

As soon as there is more than one scale, the question of which time scale is 
better arises immediately. Intuitively we prefer that time scale which is able to 
predict more accurately the failure instant. We suggest the following: 

Definition 6.2.1 
Suppose that we have several time scales Cl, C2 , ••• , Ck , and let the lifetimes of 
a particular system be LI, L2 , • •• , Lk, respectively. Then we say that the time 
scale Cl is optimal for this system if the corresponding C.v. is the smallest: 

c.v.[L l ] = min {c.v.[Li]}. (6.2.1) 
l~i9 

Recall that the c. v. is defined as 

c.v.[L] = JVar[L]/ E[L]. (6.2.2) 

The c.v., by (6.2.2), is dimensionless, it is invariant with respect to the choice 
of time unit and is relatively easy to estimate, especially if a complete sampIe 
is available. 

When we consider a particular problem for which there is an optimality 
criterion, the best time scale becomes weIl defined: it is the time scale which 
provides the optimal value for this criterion. We examine further an example 
for which the optimality in the terms of the cost criterion for age replacement 
and the optimality in the terms of the c.v. practically coincide. 

Suppose that we have two principal observable time scales C and 1l. Then 
let us consider the family of times scales 

Ta = (1 - a)C + a1l, a E [0,1]. (6.2.3) 



142 CHAPTER 6. BEST TIME SCALE FOR ACE REPLACEMENT 

This expression means that if the given system has lifetimes Land H on the 
time scales C and 1i., respectively, then the lifetime on the Ta scale is defined as 

Ta = (l-a)L+aH. (6.2.4) 

Theorem 6.2.1 
Let S be a nonsingular variance-covariance matrix for the vector V = (L, H) 
and let M be a column vector with components (E[L] , E[HJ). Suppose that both 
components of the vector G = (91.92)' = S-1M have the same sign, where the 
prime means transpose. Then the optimal a = a* giving the minimum c.v. is 

a* = 91 
91 + 92 

(6.2.5) 

If 91 and 92 have opposite signs, the optimal scale is either C, or 1i., depending 
on whieh has the smaller c.v. 

Proof 
Finding the minimum of the c.v. is equivalent to maximizing the ratio (M'G)2/ 
G'SG, G =I- O. It is known (see e.g. Johnson and Wiehern 1988 p. 64), that 
the maximum is attained at G = Const x S-1M. The minimum value of the 
c.v. is 1/M'S-1 M. From here it follows that 

91 E[HlV ar[L] - E[L]Cov[L, H] 
a* = 91 +92,92/91 = E[LlVar[H] -E[H]Cov[L,HJ' (6.2.6) 

It is very instructive to have a geometric interpretation of the Ta scale. This 
scale is obtained by projecting the realizations of a two-dimensional random 
variable (L, H) on a direction whieh is collinear to the vector b = (1 - a, a), 
and by multiplying them by the norm of this vector. (Recall that (6.2.4) is a 
scalar product of two vectors (L, H) and (1 - a, a); see also Fig. 6.1). 

6.3 Optimal Time Scale für Age Replacement: 
Fatigue Data 

Example 6.3.1: Kordonsky's fatigue test data 
A sampie of 30 steel specimens were subjected to cyclic bending until they broke 
of fatigue. The sampie was divided into six groups of size 5, and each group was 
subjected to a two-Ievel periodie loading consisting of 5000Ctj low-Ioad cycles 
and 5000(1 - Ctj) high-load cycles. The lifetimes in terms of the number of low­
and high-load cycles are given in the Table 6.1. 

Denote by L the number of low-Ioad cycles and by H the number of high­
load cycles. The c.v. differ significantly: c.v.[L] = 1.106 and c.v.[H] = 0.399. 
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Table 6.1: The number of low-load and high-load cycles to fatigue failure 

i ll:j Low-load High-load i ll:j Low-load High-load 
1 0.95 256800 13500 16 0.40 32000 45700 
2 235800 11600 17 48000 70400 
3 370150 19250 18 42000 61500 
4 335100 17500 19 42000 60600 
5 380300 20000 20 54000 80400 
6 0.80 153000 38000 21 0.20 10000 37500 
7 176200 44000 22 16000 62700 
8 160300 40000 23 12000 45300 
9 156000 39000 24 19000 72600 
10 103000 25000 25 11000 42000 
11 0.60 84000 54400 26 0.05 3000 53900 
12 81000 52300 27 3750 68550 
13 90000 59900 28 4250 77950 
14 57000 37300 29 3320 57950 
15 66000 42700 30 2750 51250 

H 
Ta=(I-a)L+aH 

Op= [L.(1-a)+ h.al /1(1- a) 2+ a2 

h 

L L 

Figure 6.1. The Ta scale is determined by the vector (1- a,a) 

Let us proceed with the derivation of a formula for long-run mean costs 
for age replacement on the Ta scale. Denote by Fa(t) system lifetime on the 
time scale (6.2.4). We already know from Chap. 4 the formula for the average 
long-run costs: 

(6.3.7) 
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(As usual, the cost of failure is 1, the cost of preventive repair is d < 1; assume 
that these costs are measured in dollars). 

The optimal preventive maintenance age is the value x = X a which minimizes 
1Ja(x). In (6.3.7), Fa(t) isthe system c.d.f. on the time sc ale Ta = (l-a).c+a1l, 
which we call the Ta scale. 

An important issue is comparing costs per unit time on different time scales. 
1Ja(x) has the dimension of dollars per unit of Ta time. In order to be able to 
compare costs for different scales we must express them in the same time unit. 
We will do it by reducing the dimension of the cost criterion to dollars per unit 
of.c time. 

Suppose e.g. that on the flight time scale the value of 1J(x) is $100 per 
hour. Suppose that on the landing time scale the costs are $300 per landing. 
To compare these costs we note that on average one landing corresponds, for 
example, to 4.5 flight hours. Thus $300/1 landing = $300/4.5 hours = $66.67 
per one hour. We have used the fact that the average lifetime in hours ml and 
the average lifetime in landings m2 are related by ml = 4.5m2' 

In general, let the mean life of the system on scale .c be E[L] and the mean 
life on the Ta scale be E[Ta] = (1 - a)E[L] + aE[H]. Therefore, one unit of 
Ta time is equivalent to E[L]/ E[Ta] units of .c time. Therefore, to convert 
the dimension of (6.3.7) into dollars per unit of .c time, we must consider the 
following expression: 

(6.3.8) 

Note that the factor 1/ E[L] is the same for all a and can be omitted when 1Ja(x) 
are compared for various a values. 

A closer look at (6.3.8) reveals that, up to a factor l/E[L], 'Ya(x) is nothing 
but an inverse of the efficiency Q introduced in Sect. 4.3: 

1 
(6.3.9) 

Suppose now that for fixed a, X a is the optimal age: 

(6.3.10) 

Then the optimal Ta scale corresponds to such a = a* as minimizes 'Ya(xa): 

(6.3.11) 

Since 1Ja(x) has the dimensions of dollars per unit of Ta time, and E[Tal has 
the dimensions of Ta time, Q a is dimensionless with respect to any time scale. 
Qa is in fact an "internaI" efficiency measure which fits any time scale. This 
is particularly convenient for comparing various time scales with respect to the 
efficiency of the age replacement. 
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6.4 AIgürithm für Finding the Optimal Ta 
6.4.1 Complete Sampies 

N onparametric approach 

Let us adopt the nonparametric approach according to which the c.dJ Fa(t) in 
(6.3.7) is replaced by the empirical distribution function Fa(t). Let h,· .. ,Im 
and h1 , • .• , hm be the observed lifetimes on the .c and 1l time scales, respec­
tively. Then far fixed a we have a complete sampie of Ta times: ti = (1 - a)li + 
ahi, i = 1,2, ... , m. Assume that ti are already ordered: tl < t2 < ... < t m . 
Then the empirical distribution function is (see Sect. 3.2): 

~ i 
Fa(t) = -, tE [ti, ti+d, i = 1, ... , m - 1, (6.4.12) 

m 

with Fa(t) = 0 for t < tl, and Fa(t} = 1 for t ~ tm . The nonparametric 
estimate of (6.3.7) is 

~ (x) = [Fa(x} + (1- Fa(X»~ . J~Tn(l- Fa (t})dt (E[L]}-I. 
'Ya J;(l- Fa (t»dt 

(6.4.13) 

The procedure for finding the optimal scale is now as follows. Fix a = aoi 
find the optimal PM age Xo which minimizes 1ao (x). Denote this minimum 
value by 1~oi repeat for a := a + ßa on a grid over a E [0,1). Find that a* 
which minimizes 1~o: 

* .....* 'Y = mm 'Yao · 
O"Sao9 

(6.4.14) 

It follows from the general theory that as the sample size m, 00, the optimal 
PM age tends for fixed a with probability 1 to the true optimal PM age on the 
Ta scale. 

Parametric approach 

Let us assume that the lifetime Ta has a known parametric form Ta '" F( Vi 8( a}}, 
where F(·) has a known functional form, and 8(a) is an unknown parameter, 
possibly multidimensional. Denote by f(Vi 8(a» the corresponding density func­
tion. Our goal is to estimate 8(a) and to find the "best" value of a. We suggest 
using a method based on maximum likelihood, which works as folIows. 
For each fixed a, write the likelihood function for the observations {(li, hi ), 

i = 1, ... ,m}: 

m 

Lik = IIf((l- a)li + ahi i8(a». (6.4.15) 
i=1 

Maximize the log-likelihood with respect to 8(a). Let O(a) be the MLEs. 
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Express the coefficient of variation of Ta via 8(a}: 

c,v'(a) = tf;(8(a}}. (6.4.16) 

Put a := 0.00(0.01)1.00. Denote by a = a* that value which minimizes the c.v. 
Then the "best" time scale will be Ta., and the corresponding c.d.f. will be 
F(v; 8(a*}}. 

6.4.2 Right-Censored Sampies 

A procedure similar to the above one for complete sampies can be extended 
to the case of right-censored L and H times. Suppose that the ith item was 
observed until time li on the C scale and was removed from the observation 
afterwards. Suppose that this item survived time h; on the 1l scale. Then 
obviously the lifetime on Ta is right-censored by ta(i) = (1 - a}/; + ah;. 

The key idea is to calculate the Kaplan-Meier estimate of the survival func­
tion Ra(t) and to use 1 - Ra(t) instead of the empirical distribution function 
Fa(t} in (6.4.13). 

There is, however, a complication: for censored data, the Kaplan-Meier esti­
mate is available usually only for a finite interval [0, T maz], where T maz depends 
on the largest noncensored observation; see Sect. 3.1. Typically, this interval is 
large enough for finding the optimal replacement age, but it is not clear how 
to estimate the mean lifetime on Ta. For this purpose we recommend the use 
of a "parametric assumption:" plot the data on probability paper, estimate ap­
proximately the parameters from the plot which sooms to produce the best fit, 
estimate E[Ta ] and plug this estimate into (6.4.13). 

Par8llletric approach 

Here the situation is much easier and recalls the case of complete sampies, the 
only difference being the form of the likelihood function: 

r m 

Lik = IIf«I-a)li +ah;;(J(a» II (I-F«I-a)I;+ahi ;(J(a»).(6.4.17) 
;=1 ;=r+l 

Here i = 1, ... , rare the numbers of complete observations, and i = r+ 1, ... , m 
the numbers of the right-censored ones. The computation now proceeds in a 
manner similar to the procedure in the previous subsection. 

6.4.3 Quantal-Type Data: Parametric Approach 

In real-life situations, very often the reliability data come from periodic in­
spections and thus there are no "complete" observations at all. Below we will 
consider an example in which the data are based on a single inspection. 

Suppose that an item is examined at some point (li, hi ) in the (L,H) plane. 
The information received is as folIows: failure exists or does not exist. Ge­
ometrically, if the failure exists, its appearance point has coordinates within 
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the rectangle with vertices (0,0), (0, hi), (li, 0), (li, hi). On the Ta time scale this 
means that the failure appeared be/ore the instant ta(i) = (l-a)li+ahi. We are 
in a situation described in Sect. 3.1.1 as "Quantal response data." Accordingly, 
the likelihood function is 

r n 

Lik = II F«l-a)li+ ahii O(a)) II (1-F«1-a)li+ ahii O(a))),(6.4.18) 
i=l i=r+l 

where the items with the "yes" response are numbered i = 1, ... , rand the 
items with the "no" response are numbered i = r + 1, ... ,m. 

The search for the "best" time scale goes exactly as described above, with 
the obvious change in the likelihood function. The next section presents two 
examples based on fatigue data. 

6.5 Optimal Age Replacement for Fatigue Test 
Data 

Example 6.9.1 continued 
The data of Example 6.3.1 are plotted on Fig. 6.2 The algorithm described in 
Section 6.4.1 was applied with achanging on the grid 0.0(0.02)1.0. Table 6.2 
shows the optimal age replacement parameters. 
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Figure 6.2. The fatigue test results on the (L, H) plane 
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Table 6.2: Optimal age replacement parameters 

d Optimal a Optimal age X a r Efficieney Q 
0.1 0.88 34,200 1 5.60 
0.2 0.88 34200 1 3.01 
0.3 0.88 34200 1 2.06 
0.4 0.88 38280 3 1.59 
0.5 0.88 38280 3 1.32 

Table 6.3: Effideney Q as a function of a 

a 0 0.4 0.6 0.8 0.88 1.0 
Q 1.03 1.04 1.29 1.86 2.06 1.58 

For small d = 0.1-0.3, the optimal replacement age eoinddes with the small­
est observation t1' It inereases as d inereases, which is typical for age replace­
ment. For d = 0.4-0.5, the optimal age eoinddes with the third ordered ob­
servation t3' For all values of d the optimal a = 0.88. Most interesting is the 
fact that this a value is very elose to a* = 0.873 which provides the minimal 
e.v.! Note that the minimum value of the e.v. equals 0.399, which is eonsider­
ably smaller than the e.v. in the C or 1l scale. The last eolumn shows that the 
optimal age replacement provides a eonsiderable inerease in effideney. 

How strong is the influenee of the parameter a, Le. the choice of the time 
seale, on the effideney of the age replacement? Table 6.3 gives the answer 
for d = 0.3. It is seen that the optimal seale with a = 0.88 is eonsiderably 
more efficient than the best of the two seales C or 1l with a = 0 and a = 1, 
respeetively. 
Example 6.5.1: Fatigue cracks in aircraft wing joints 
Table 6.4 shows the results of inspecting aireraft wing joints. At each inspection, 
the size of the fatigue crack ßR and ßL in millimeters has been reeorded (Ko­
rdonskyand Gertsbakh 1997). (L and R indicate the left and the right joint, 
respeetively). Find the optimal time seale and the optimal age replacement 
poliey. 

The likelihood function is 

34 

Lik = II[F((1-a)li +ahi; O(a))]6. [1- F((I-a)li+ahi; O(a))]1-6. ,(6.5.19) 
i=l 

where !Si = 1 if the object i had a crack, and !Si = 0, otherwise. 
Our principal assumption is that the lifetime on the Ta seale has a lognormal 
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Table 6.4: Cracks in wing joints 

Object i Flight time Li [hrs] # fiights H i AR AL 
1,2 30 15 0 0 
3,4 40 20 0 0 
5,6 60 40 0 0 
7,8 80 60 0 0 

9,10 170 129 0 0 
11,12 180 128 0 0 
13,14 230 140 0 0 
15,16 250 140 0 0 
17,18 350 170 0 0 
19,20 380 160 0 0 
21,22 640 290 0 0 
23,24 670 320 0 0 
25,26 780 260 4 0 
27,28 840 420 0 9 
29,30 860 430 3 5 
31,32 560 470 3 4 
33,34 960 360 0 5 

distribution: 

(6.5.20) 

For each a on a discrete grid 0.00(0.01)1.00, we found the corresponding 
MLEs of J1.a and U a • For the lognormal distribution, the C.v. depends only on 
U a ; see Sect. 2.3. The minimal c.v. and therefore the "best" scale correspond to 
the minimal U a' Below are the results: 

For the C-scale: a = 0, /-La = 6.64. The standard deviation U a = 0.463. 
For the 1l-scale: a = 1, /-La = 5.87. The standard deviation U a = 0.262. 
For the "best" scale: a = 0.852, /-La = 6.036. The standard deviation U a = 

0.197. 
The best time scale is 70.852 = 0.148C + 0.8521l. 

Let d = 0.2, which is a rather high cost for inspection and PM. 
On the "best" sCale, the optimal age for the PM is Tö'.852 = 302. The 

efficiency of the optimal age replacement Q = 1.6. 
Let us check the probability of crack appearance on the interval [0,302]. It 

equals ~((log 302 - 6.036)/0.197) = ~(-1.65) ~ 0.05. 
Suppose that it is necessary to guarantee a much smaller failure probability 

p = 0.001. Then the maintenance per iod x must satisfy the equation p = 
0.001 = ~((log x - 6.036)/0.197), or x ~ 230. Figure 6.3 shows the plot of 
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'f/a" (T). T = 230 will reduce the efficiency of the optimal age replacement to 
Q = 1.45. 
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Figure 6.3. 'f/a. (T) for Example 6.5.1 



Chapter 7 

Preventive Maintenance 
with Learning 

What is all K nowledge too but recorned Ezperience, and a product 0/ History; 
0/ which, there/ore, Reasoning and Belief, no less than Action and Passion, are 
essential materials ? 

Carlyle, Essays 

Leamed /ools are the greatest /0018. 
Proverb 

7.1 Information Update: Learning from New 
Data 

An important feature has been missing in all preventive maintenanee models 
eonsidered so far. This feature is learning. Our decisions regarding the timing 
and type of maintenanee actions were based solelyon the information about the 
system, which we had be/ore we actually started implementing the maintenanee 
poliey. 

Denote the information we initially had by Data{O). Then our poliey so far 
W88 the following: The decisions on pre1Jenti1Je maintenance actions during the 
whole system li/e period were determined solelyon the basis 0/ Data{O). 

In reality, during system operation there is always an information inßux 
regarding system properties, maintenance eosts, ete. The main sources of this 
additional information are new laboratory test data, field data eoming from 
similar systems, new information from the producer, observations on the system 
under service, ete. 
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The right thing to do is to reconsider, in the light of this new knowledge, 
the decisions which were taken previously and were based on lesser knowledge. 
So we arrive at preventive maintenance with leaming. 

The formal framework for preventive maintenance with learning will be the 
so-ealled "rolling horizon" model. We eonsider the policy of inspeetionjrenewal 
of a system based on knowledge of its lifetime distribution. Our initial knowl­
edge denoted Data(O) leads to the following deeision: carry out inspections of 
the system at the instants {tb t2, t3 , •• • }. This sequenee maximizes the reward 
for the given Data(O). We follow this poliey only one step, Le. during the period 
[0, td. At the instant tl, we reconsider all information we have: Data(O) plus 
all new information reeeived during [0, tl]. This eonstitutes our new informa­
tion denoted symbolicaIly as Data(l) = Data(O) 0 data(l). Now we look for 
the optimal maintenanee poliey for the remaining time (starting at tl)' given 
Data(l). Suppose that the "best" inspection times now are {t;, t;, ... }. Carry 
out the first inspection at time t;, reconsider at t; the inspection poliey in the 
light of new data(2), check the system at the next optimal inspeetion instant, 
update the information, etc. 

The information regarding system lifetime consists of two parts: permanent 
and variable. The permanent part is the list of all feasible lifetime c.d.f.'s: 

The variable part is the collection of prior jposterior probabilities: 

m 

{Pl'P2, ... ,Pm}' LPi = 1. 
;=1 

(7.1.1) 

(7.1.2) 

These are subject to change, according to Bayes' theorem, depending on the 
information received during the service and maintenanee process of the system. 

Suppose that at a eertain stage of this process the variable information 
(7.1.2) is {Pt. 172, ... ,Pm}. Then our immediate decision regarding the system 
lifetime will be based on the assumption that the "true" lifetime has e.d.f. 

m 

F(t) = LPiFi(t), (7.1.3) 
;=1 

and that the corresponding lifetime density function is 

m 

jet) = LPdi(t), (7.1.4) 
i=1 

where Ii(t) is the density corresponding to Fi(t). 
Now let us deseribe the mechanism of updating the variable part of the 

information (7.1.2). 
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We assurne that before the system started operating, our initial (prior) in­
formation is summarized in the form of the prior distribution: 

Data(O) = {P?, i = 1, ... , m} . (7.1.5) 

Suppose that at a certain instant we receive new information in the form of 
complete or censored observations regarding system lifetime. For example, we 
receive the following laboratory test data: two system lifetimes Xl and X2 were 
observed; three other systems did not fail during the testing period [0, X3]. 

In order to simplify and make tractable the formal part of our investigation, 
we postulate the following two properties of the information received in the 
course of system operation: 

(I): The information influx does not depend on the properties of the system 
under service. In other words, it comes from "external" sources. 

Denote by data(k), k = 1,2,3, ... , the data we receive in the course of 
system operation at time instants t,r. where tl < t2 < t3 .... 
(11): {data(k), k = 1,2,3, ... } consist of observed values of statistically inde­
pendent random variables. 

Let the likelihood function for data(k) be Lik[data(k)lj), if it is assumed 
that the data are generated by Fj(t). (Recall the material of Sect. 3.3 on the 
likelihood function). 

Now we apply Bayes' theorem to recompute our prior distribution {P?, i = 
1, ... ,m} into the posterior distribution on the basis of new data influx. After 
observing data(I), our posterior distribution will be 

1 pJ . Lik[data(l)lj) 
Pj = L:~l rfl. . Lik[data(l)lr] , j = 1,2, ... , m. (7.1.6) 

Symbolically, Data(l) = {pl' j = 1,2, . .. ,m}. The posterior lifetime c.d.f. 
after observing data(l) will be 

m 

F l (t) = F(tldata(I» = LP}Fj(t), (7.1.7) 
j=l 

with corresponding density ßmction 
m 

l(t) == f(tldata(l» = Lp}/j(t). (7.1.8) 
j=l 

Suppose the variable information was updated k times. Denote the corres­
ponding posterior distribution by Data(k) = {~, j = 1, ... ,m}. After receiv­
ing the next portion of information data(k + 1), the posterior distribution is 
updated as follows: 

k+! _ pjLik[data(k + l)lj] 
Pj - L~=l ~Lik[data(k + 1)lr) , j = 1,2, ... ,m. (7.1.9) 
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If our posterior distribution is {pJ+ I, j = 1, 2, ... , m}, we act as if the 
system lifetime has c.dJ. 

m 

Fk+l(t) = I>~+1 Fi(t) . (7.1.10) 
i=l 

It follows from more advanced statistical theory that if all data come from 
the "true" c.dJ. Fa(t), and if the amount of information goes to infinity, the 
sequence of vectors {p~, j = 1, ... ,m} converges to the vector (0, ... , 1a , ... ,0) 
as k -+ 00 (see e.g. Kullback 1959). 

7.2 Maintenance-Inspection Model with No In­
formation Update 

Suppose that, according to our present information, the system lifetime density 
function is f(t). We assurne that areward of Cl is accrued for each unit of 
failure-free operating time, and a penalty C2 is paid for each unit of operating 
time after a failure has appeared. 

At t = t l the system is inspected and its true state (failed or not) is revealed. 
If the inspection reveals failure, the system is repaired and brought to the "brand 
new" state. The cost of that action is cf. If the inspection reveals no failure, 
the system is preventively repaired and also brought to the "brand new" state, 
at a sm aller cost cp-

All rewards received at time t l are discounted by a factor (1 - ß)tr. 
Suppose that after the inspection no new information has been received. 

Denote by V(f; tl) the mean discounted reward for [0,00] if the inspection 
period is tl and the lifetime has dJ. f(t). Following the above description, 

where R(f; h) is the one-step reward 

[tl 
R(f; t l ) = Cl Jo xf(x)dx + Cl tl (1 - F(tt}) 

[tr 
-C2 Jo (tl - x)f(x)dx - cfF(td - cp (1 - F(tt}) . 

(7.2.1) 

(7.2.2) 

Note that in order to simplify the formal treatment of our problem we have 
adopted a simplified discounting scheme: the rewards received during the first 
inspection period [0, td are not discounted. The discounting in a form of a factor 
(1 - ß)h is applied only to future rewards. 

In order to find the best time for the first inspection, let us introduce 
the maximum discounted reward V (f). This satisfies the following dynamic 
programming-type recurrent relationship: 

V(f) = max[R(f; t) + (1 - ß)tV(f)]. 
t>o 

(7.2.3) 
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Indeed, if we choose the inspection period t, our re ward will be R(fj t) for 
the first step plus the maximum future rewards V (f) discounted by the fador 
(1- ß)t. 

Suppose that the maximum in (7.2.3) is attained at t = t*. Then the optimal 
sequence of inspection times is {kt*, k = 1,2, .. . }. V(f) satisfies the equation 
V(f) = R(fjt*) + (1- ß)t·V(f). Thus V(f) = R(fjt)/(I- (1- ß)t) and, by 
the definition of V (f), 

• R(fjt) 
t = arg maxt>ol_ (1- ß)t . (7.2.4) 

7.3 Rolling Horizon and Information Update 
The optimal inspection policy with no information update is periodic, with 
the period t* found above. Now we implement information updating for the 
nomination of the inspection times. 

We start our process with Data(O) = {P?, i = 1, ... , m}, where p? is the 
prior probability that the true lifetime density is Ii(t). We plan the first inspec­
tion at ti: 

(7.3.1) 

where fO(t) is determined by (7.1.5). 
At t = ti, new information in the form of data(l) is received. We update 

our prior information regarding the lifetime density via the Bayes rule (7.1.6). 
Now we plan the next inspection as if the true lifetime density (in the light of 
our new knowledge) is 

m 

P(t) = LPjlj(t). (7.3.2) 
j=1 

Suppose that the second inspection takes place at the instant h = ti + t;, 
where t; is found from the relationship 

(7.3.3) 

Update again the information, and proceed in a similar way. 
A typical (k + l)th step of the above procedure is as follows. Suppose that 

the (k + l)th inspection is carried out at the instant tk+1 = ti + ... + tk + tk+1' 
The information data(k+l) is receivedat tk+1' Then update the information 

following the Bayes formula (7.1.9); schedule the next inspection at tk+2 

tk+1 + tk+2 , where tk+2 is given by 

(7.3.4) 
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Here 
m 

f(k+1) = LP1+1 h(t). (7.3.5) 
j=l 

7.4 Actual and "Ideal" Rewards 
Suppose that the "true" c.dJ. is Fa(t), where a can in principle be any one of 
the indices 1,2, ... , m. Let us derive an expression for the actual total reward. 

Suppose that using the rolling horiwn policy we derived the following se­
quence of inspection times: tl = ti, t2 = ti + t2, ... ,tk = ti + ... + tk, .... Then 
the total accumulated actual reward is 

(7.4.1) 

where R(fa; tn is the one-step mean reward on [0, tiJ computed for the lifetime 
density fa(-). 

It is interesting to compare the actual reward with the maximal reward Vrnax 
which would have been received if already at t = 0 the true CDF Fa had been 
known. Obviously, 

Vrnax = max[R(fa; t) + (1 - ß)tvrnaxJ . 
t>o 

(7.4.2) 

Let us to characterize the relative efficiency of the rolling horizon policy by 
the ratio 

Va 
11=--· 

Vrnax 

7.5 Numerical Example 

(7.4.3) 

Our initial information regarding the lifetime is the following : F(t) may be one 
of the following three c.dJ.s: 

FI (x) = 1 - e-z , the exponential distribution; 
F2 (x) = 1 - e-z2 , the Weibull distribution with A = 1, ß = 2; 
F3 (x) = 1 - e-O.25z2, the Weibull distribution with A = 0.5,ß = 2. 

Note that FI has mean value 1, F2 has mean 0.886 and F3 has mean 1.77. 
The respective density functions are h(x) = e-z , h(x) = 2xe-z2 , h(x) = 
0.5xe-O.25z2. 

Our Data(O) now is summarized in the following vector of prior probabilities: 
Data(O} = pO = (1/3; 1/3; 1/3). We assign, therefore, equal probabilities to 
any one of the above three possibilities. 

The reward (cost) parameters are: Cl = 50; C2 = 10, CI = 20, cp = 1. We 
assume that the discount factor is ß = 0.1. 
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We start with the lifetime density which is equal to 

3 

fO(t) = LP?h(t) = ~(e-t +2te-t2 +0.5te-O.25t2) . 
;=1 

The relationship (7.2.4) gives ti = 0.256. 
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(7.5.1) 

Suppose that no new information has been reeeived at the instant t1 = ti = 
0.256. Aeeording to our approach, it has been decided to earry out the next 
inspection at t2 = 0.256 + 0.256 = 0.512. Again, there was no new information. 

New data beeame available only at the instant t4 = 4 x 0.256 = 1.024. 
So data(l), data(2) , data(3) were zero. data(4) has the form of three observed 
lifetimes: data(4) = {Xl = 0.904; X2 = 1.222; X3 = 0.921}. These are eomplete 
observations. The expression for the likelihood is 

3 

Lik[data(4)lj] = rr h(Xi). (7.5.2) 
i=l 

Using the Bayes formula (7.1.6) we reeompute our prior probabilities and obtain 
the updated information: p4 = {0.105; 0.767; 0.128}. We write a superseript 
"4" since this vector is obtained at t4. 

Now our starting point is the lifetime density 

r(t) = E~=l pt h(t) = (0.105. e-t + 0.767· 2te-t2 + 0.128· 0.5te-O.25t2). 

Using (7.2.4) we get ts = 0.219. At t5 = 1.024 + 0.219 = 1.243 no new data 
arrived. We apply the inspection period 0.219 onee again, and at time t6 = 
1.243 + 0.219 = 1.462 we have a new portion of information which consists of 
three noncensored observations: data(6) = {Xl = 0.971; X2 = 1.149; X3 = 
0.246}. Using the Bayes formula we obtain 
p6 = {0.056; 0.931; 0.013}. 
It is decided now that the "true" c.d.f. is F2 , Le. W('x = 1,ß = 2). We act 
furt her as if the prior probabilities were p = (0; 1; 0). 

The data given above were randomly generated from the population F2 • 

There is ~ 0.07 probability that our choice of the "true" lifetime is wrong. 
If the true e.dJ. were F2 then (7.2.4) would provide the answer t* = 0.205. 

So, on the interval [t6, 00], the inspection period is eonstant and equals 0.205. 
Suppose that we knew from the very beginning that the true lifetime is F2 • 

Then we would use this period from the very beginning and by (7.2.3) the mean 
reward would have been 

Vma:c = V(h) = maxt>o[R(h; t) + 0.9tV(h; t)] = 388.3. 

Let us eompute by (7.4.1) the mean actual reward. The actual reward eorre­
sponds to the "true" lifetime F2 and the actual nonoptimal choice of the inspec­
tion periods. Calculating R(h; t) by (7.2.2) for t = 0.256, t = 0.219, t = 0.205, 
we obtain: R(h; 0.256) = 10.25; R(h; 0.219) = 8.36; R(h; 0.205) = 8.13. Cal­
culations by (7.4.1) give Va = V2 = 380.2. This number is surprisingly elose to 
Vmax ! By (7.4.3), 'rJ = 0.97. 
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7.6 Exercises to Chapters 5-7 

1. A system has three states denoted 1,2 and 3. The transitions between 
these states occur according to a Markov chain with transition probabilities 
P12 = 0.3, P13 = 0.7, P 21 = 0.1, P 23 = 0.9, P 32 = 1. The system stays in 
states 1 and 3 exactly one hour, after which a transition occurs. In state 2 the 
system stays a random time T f'J Exp(-\ = 0.5). Each transition gives areward 
of $1. Find the mean reward per unit time for the above system. 

2a. Consider a multiline system as described in Sect. 5.2. The time to failure 
T of a line has an arbitrary c.d.f. F(t) and density function I(t). Assume that 
for each line a unit of operational time gives areward Crew and each unit of idle 
time gives a negative reward -cf. The system is totally renewed for a cost Crep 

after k lines out of n have failed. Derive an expression for the reward per unit 
time. 
Hint. Derive first the d.f.s of the order statistics T(l)' T(2) , ..• , T(n). 

2b. Assume that n = 4, the lifetime of a line has the c.d.f. W(-\ = 0.25, ß = 1.5), 
Crew = 1, Cf = 0.1 and Crep = 2. Find numerically the optimal value of k. 

3. Ten hydraulic high pressure hoses were instalied on operating aircraft. The 
hoses were periodically inspected and deemed to have faiied when a microcrack 
has been detected. The data are as folIows: 

i hours to failure 
1 3700 
2 3900 
3 4200 
4 2700 
5 3100 
6 1950 
7 2100 
8 2300 
9 2700 

10 2800 

Hights to failure 
920 

1020 
1200 
1370 
1540 
1520 
1630 
1660 
1760 
1840 

Consider nonparametric age replacement on the time scales 11 (time in 
hours) , F (number of Hights) and in the "best" combined scale Ta = (1-
a)l1 + aF, which provides the smallest value of the c.v. Take a = 0.0(0.05)1.00. 
Assume that ER costs CER = 1, and that PM costs d = 0.2. 

Compare the costs of the optimal age replacement on the 11 and F scales 
and on the best combined scale. 

4. Consider the following modification of age replacement: replace at age tp 

which is the p quantile of c.d.f. F(t). Write a formula for cost per unit time. 
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Try to simplify it by assuming that 1-F(t) changes linearly between the points 
[O,tp ]. 

5. Optimal control 0/ spare parts 
A system has one main part and r - 1 spare parts. The system has to work 
during the time period [0, m + 1]. Any part which is put to work for a unit time 
period has a constant probability of failure p during this period. Once the part 
has failed it is never recovered. At any instant t = k it is possible to put to 
work any number of parts available. For example, if at the instant k there are 5 
nonfailed units, then any number i, 1 ~ i ~ 5 can be put to work for the period 
[k, k + 1]. If all parts put to work for one time period [8, s + 1] have failed, is 
deemed to have occured system failure. Find the optimal policy for putting the 
spare parts to work which would minimize the probability of system failure for 
the period [0, m + 1]. 
Hint. Suppose that kj parts are put to work at the instant t = k for aperiod 
[k, k + 1]. Assign a unit cost if all these parts have failed and zero cost if the 
number of failed parts was z, z < kj. Denote by Wi(m) the minimum average 
cost for a system which has to work m units of time and has initially i non­
failed parts. Write adynamie programming-type recurrence relation expressing 
Wj(m + 1) through Wj(m). Argue that Wj(m) is equal to the probability of 
system failure on [0, m]. For more details see Gertsbakh (1977, p 147). 

6. Suppose that P~ is the prior probability that the "true" density is h(t), j = 
1,2, ... , m. Suppose that the following data, in the form of a complete sample, 
has been received: data = {XI. ... , Xn-I. xn }. Then the posterior probabilities 
are, according to (7.1.6), 

1 P~ Ili=l /j(Xi) 
Pj = "m 0 TIn f ( )' L.,.,k=l Pk i=l k Xi 

j = 1,2, ... ,m. 

Suppose that the data come in portions. The first portion is data(l) = 
{Xl' ... ,xn-d and the second data(2) = {Xn}. Then we can act folIows. First, 
compute the posterior probabilities from data(l): 

~l P~ n~:ll h(Xi) 
Pj = "m 0 nn-l f ( ) , 

L..-k=l Pk i=l k Xi 

j= 1, ... ,m. 
Second, view these probabilities as prior ones and recompute the posterior 
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Show that for all j = 1, ... , m, ~ = p}. 

7. Optimal inspection-repair policy 0/ a partially renewed system 
A system has three states: 0, 1 and 2. State 0 corresponds to a new system, state 
1 is a "dangerous" state, and state 2 is the failure state. System evolution in 
time is described by a continuous-time Markov process e(t) with time-dependent 
transition rates: AOI (t) = t, A12 (t) = t. All other transition rates equal zero. 
The system starts operating from state O. The next inspection is planned after 
time T. If the inspection reveals state 1, e(t) is shifted into state 0, and a new 
inspection is planned after time T. If the inspection reveals failure, the process 
stops. 

The following costs are introduced: the inspection cost is Cins = 1, the repair 
(shift) cost is crep = 2. Each unit oftime the system is in the failure state costs 
B = 5, and the cost offailure is AJ = 10. 
a. Derive the transition probabilities for e(t). 
b. Derive the recurrence relation for the minimum costs to find the optimal 
inspection period T*. 
Hint. Follow the reasoning of Section 5.4.4 to derive the following system of 
differential equations for POi(t) = p(e(t) = ile(O) = 0): 

P~o(t) = -AO,l (t)Po,o(t); 

P~l(t) = Ao,I(t)PO,o(t) - A12(t)PO,1(t). 

Solve this system for the initial condition Poo(O) = 1, PodO) = O. Note that 
P02(t) = 1- Poo(t) - POl (t). 

8. Two-state contin'Uo'Us-time Markov proces8 
A system has two states: 0 and 1. The transition rate from 0 to 1 is A, the 
transition rate from 1 to 0 is J.L. The system is in state 0 at time t = O. Denote 
by poet), PI (t) the probabilities that at time t the system is in state 0 or 
1, respectively. Use the Laplace transform technique to find the probabilities 
poet), PI (t). Investigate their behavior for t -+ 00. 



Solutions to Exercises 

The real danger is not that mach in es will begin to think like men, but that 
men will begin to think like machines. 

Sydney J. Rarris 

Chapter I 

la. There are three minimal paths: {I, 2}, {I, 3}, {4}. By (1.1.4), the structure 
function is: <I>(x) = 1 - (1 - XIX2)(I - XIX3)(I - X4). 

lb. Multiply the express ions in the first two brackets and use the fact that 
xi = Xl· Then <I>(X) = 1 - (1 - X IX2 - XIX3 + XIX2X3)(I- X 4 ). Now 

fO = E[<I>(X)) = 1 - (1- PIP2 - PIP3 + PIP2P3)(1 - P4) = 'Ij;(P1 ,P2,P3,P4). 

lc. The upper bound is the reliability of a parallel system with independent 
paths {I, 2}, {I*, 3}, {4}. By (1.3.10), 

<l>UB(p) = 1 - (1- PIP2)(I- PIP3)(I - P4). 
Similarly, the lower bound is the reliability of aseries connection of two 

parallel systems which correspond to the minimal cuts {1,4}, {2,3,4*}. Thus 
<l>LB(p) = (1 - (1 - pd(I - P4))(1 - (1 - P2)(1- P3)(1- P4)). 

ld. Substitute Pi = e-Ait into the expression of fO. Denote the result by 
fO(t). This will be the system reliability. The lifetime distribution function is 
F(t) = 1 - fO(t). 

le. The stationary availability of element i is Ai = J.l.d(J.l.i + Vi). According 
to the data, Al = 0.815, A2 = 0.8, A3 = 0.788, A4 = 0.778. By (1.2.13) and 
(1.2.16) , system availability is obtained by substituting Ai instead of Pi into 
the expression for 'Ij;(Pl, ... ,P4). The result is Av = 0.951. 

2. Differentiate 'Ij;(.) found in Exercise Ib with respect to Pl,P2 and P3. The 
results are: 

R1 = (1 - P4)(])2 + P3 - P2P3); R2 = (1- P4)Pl(1 - P3), 
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Rs = (1 - P4)PI (1 - P2); R4 = 1 - PIP2 - PIPS + PIP2PS· 
Substitute the Pi values and obtain that R1 = 0.45, R2 = 0.225, Rs = 
0.09, ~ = 0.19. The element 1, therefore, has the highest importance. 

3. Consider any vector x. Its ith coordinate is either 1 or O. In the first case, 
the left-hand side is 4>(1;, x), which is equal to the right-hand side. In the second 
case, the left-hand aide is 4>(0;, x), again equal to the right-hand side. 

4. The mean lifetime of the whole system is (I/n + I/(n - 1) + ... + 1). The 
easiest way to obtain this result is the following. The first failure takes place 
after time imin = min(1'1, ... ,in ), where ii '" Exp(~ = 1). It follows that 
imin'" Exp(n), and E[imin] = I/n. After the first failure, the situation repeats 
itself, with n being replaced by n - 1. Check n = 3. The mean lifetime of 
the parallel system will be 1/3 + 1/2 + 1 = 11/6. Already for n = 4 we have 
1/4 + 1/3 + 1/2 + 1 = 25/12. The answer: n ~ 4. 

6. Follows directly from (1.3.4). 

6. From the expression (1.2.11), the exact reliability equals ro = 2pS + 2p2 -
5p4 + 2p5. The upper bound is r* = 1- (1 - p2)2 (1- pS)2 because there are two 
minimal paths with two elements and two minimal paths with three elements. 
The lower bound is r* = [1- (1- p)2]2[1_ (1- p)s]2 since there are two minimal 
cuts of size 2 and two minimal cuts of size 3. The numerical results are: 

P r. ro r* 
0.90 0.978 141 0.978480 0.997349 
0.95 0.994758 0.994781 0.999807 
0.99 0.999798 0.999798 1.000000 

7. For a series system, OrO/8pi = ni=l Pi/pi; see (1.2.4). Thus the most 
important component has the smallest Pi, i.e. it is the first one. Similarly, for a 
parallel system (see (1.2.5», the most important component has the largest Pi! 
i.e. it is the nth component. 

9a, b. The radar system is a so-called 2-out-of-3 system. It is operational if 
either two stations are up and one is down, or all three stations are up. There­
fore, its reliability is R(t) = 3(1- G(t»2G(t) + (1- G(t»S = 3exp[-2~t](l­
exp[-~t] + exp[-3~t]). After simple algebra, R(t) = 3e-2,xt - 2e-s,xt. 

To obtain the mean up time, use (1.3.12). This gives E[i] = 5/(6)'). By 
(1.2.13), the stationary availability is AlI = E[i]/(E[i] + t rep ) = 0.893. 

10. Obviously, 4>(0,0) = 0, 4>(1,0) = 4>(0,1) = 1. Due to the error in designing 
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the power supply system, 4>(1,1) = 0, and thus this system is not monotone; 
compare with Definition 1.1.1. Note e.g. that here {I} is a minimal path set, 
but {1,2} is not a path set. 

Chapter 2 

1. TB = Tl + ... + TS, where Ti are the lifetimes of the units. The result follows 
from Corollary 2.1.1. 

2. By (2.2.3), h(t) = 1/(1 - t) for t E [0,1), since the density of T is I(t) = 1, 
and F(t) = t. 

3. The c.d.f. of the system is F,(t) = (1 - e-St )(1 - e-t ); see (1.3.5). Let us 
investigate the failure rate using Mathematica. 

In the following printout "F" is the c.dJ., "f" the density and "h" the failure 
rate. Obviously, h(t) is not a monotone function. It is easy to establish that 
limHO h(t) = 0 and that limHoo h(t) = 1. 

In[4j== F= (1-Exp[-St» (1-Exp[-t»; f=D[F, t]; 

h = f / (1 - F) ; 

P1ot[h, {t, 0, 2}, PlotSty1e-+ {Abso1uteThickness[1.2]}, 

AxesLabel -+ {"t", "h (t) "}] 

h(t) 

0.95 

0.9 

0.85 

Out[6j= • Graphics -

1.5 2 

5. Here it is easy to obtain an analytic solution. I(t) = e-St + 0.8e-t . After 
simple algebra, h(t) = 1+0.8/(0.2+0.8e4t). Clearly, h(t) decreases as t increases. 

6a. The coefficient of variation is c.v. = V'var[T]/E[r] = 0.4. Since the 
solution involves the gamma function (see (2.3.14», let us use Mathematica. 
The computation details are given in the following printout. The results are 
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A = 0.889 and ß = 2.696. 

In[l]:= l.hs= (Gamma[1+2/ß]/(Gamma[1+1/ß])"2-1)"O.S-O.4; 

FindRoot[l.hs=O, {ß, 2.S}] 

Out{2]= {(3~2.69562} 

In[3]:= .:l= Gamma [1 + 1/2.69562] 

Out[3]= 0.889234 

6b. By (2.3.7), Veu2 - 1 = 0.4, whence (J = 0.385. To find 1', we have to solve 
the equation 1 = exp(tt + 0.3852/2). The solution is I' = -0.0741. 

7. The group of two elements in parallel has c.d.f. Fb,e(t) = (1 - e-2t)2 j see 
(1.3.5). The failure rate of this group is hb,e(t) = 4(1 - e-2t)e-2t /(1 - Fb,e(t». 

The failure rate of element a is ha(t) = 2tj see (2.3.11). The whole system 
has failure rate h.(t) = ha(t) + hb,c(t). 

8. By (2.3.12), the mean lifetime of ais J1.a = r(1.5) = 0.886. So, its reliability is 
at least as great as the reliability of an exponential element with Aa = 1/0.886. 
By Corollary 2.2.6, the lower bound on system reliability is '1/JL(Pa,Pb,Pe) = 
Pa{1- (1 - pb)2), where Pa = exp( -t/J1.a) and Pb = exp( ":"2t). This bound is 
valid for t E [0, min(0.886, 0.5)] = [0,0.5]. 

9. Substitute heu) from (2.2.3) into (2.2.5). Represent f(u}du/(I - F(u» as 
-d 10g(I - F(u}}. Then integrate. 

10. Consider the Laplace transform of S: 
00 

L(S) = E[e-Zs] = LP(K = k)E[e-z(Yi+ ... +YK)IK = k] 
k=l 

00 00 

= L(I- p)k-lpE[e-Z(Yl+ ... +YIo)j = L(I- p)k-lp(E[e-zY1])k 
k=l k=l 
00 

= L(l - p)k-lp(Aj(A + Z»kpAj(Z + pA). 
k=l 

After furt her algebra, we obtain L(S) = pAj(z + pA), which means that S fV 

Exp(P/J1.}, where 1/1' = A. 
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11. P(X ~ t) = P(lOgT ~ t) = peT ~ et) = 1- exp[-(Aet)ß]. 
Now substitute A = e-a and ß = l/b: P(X ~ T) = 1 - exp[-e(t-a)/bl. 

12. By (1.3.4), peT ~ t) = 1 - n~=l e-(Ait)ß = 1 - exp[-(Aot)ßl, where Ao = 
("~ >/!)l/ß L.....=l. . 

13. A bridge has two minimal cuts of minimal size 2, {1,2} and {4, 5}. This 
explains the expression g((J). 

15a. For aseries system, F(t) = 1 - exp[-Alt - (0.906t)4]. The mean of 
T2 is f[1 + 1/4]/0.906 = 1. The system lifetime density function is J(t) = 
exp[ -Alt - (0.906t)4](AI + 0.9064 • 4t3 ). It is difficult to analyze the behavior of 
J(t) analytically. The graphical investigation provides interesting results, as is 
shown below. 
15b. The printout shows the graphs of J(t) together with the exponential 
density of Tl (thick curves), for various Al values. It is seen that for Al ;::: 2, the 
graph of J(t) almost coincides with the exponential density. 

f(t); /\1=0.5 
1 

0.8 

0.6 

0.20.40.60.8 1 l. 2l. 4 t 

f (t); /\ld 

0.8 

0.4 

0.2 

+---~~._~~-~~~ t 
0.20.40.60.8 1 1.21.4 

f (t); /\1=2 
2 

1 

0.5 

t 
0.20.40.60.8 1 l.2l.4 

f (t); /\1=4 
4 

0.20.40.60.8 1 1.21.4 

When Al is large, Le. when the mean value of the exponential component is 
small, the exponent becomes the dominant component of the density function, 
because the Weibull component has density elose to zero for small values of t. 
On the other hand, for small Al values, the Weibull component prevails and 
J(t) has a elearly expressed mode near its mean value. 
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Chapter 3 

1. According to (3.2.2), the 0.1 quantile of Tl is the root of the equation 1 -
e-(Ato.ä' = 0.1. After some algebra, tO.1 = (A)-1(-logO.9)1/ß. Substitute the 
values of A and ß from the solution of Exercise 2.6a. The result is tO.1 = 0.488. 

Denote by qO.l the 0.1 quantile of T2. This is the root of the equation 
~((lOgqO.l - IJ)/U) = 0.1. Hence (lOgqO.l - IJ)/U = ~-1(0.1) = -1.2816. Using 
the result of Exercise 2.6b, Qo.l = exp(IJ - 1.2816u) = 0.567. 

2c. Let us carry out a straightforward maximization of the likelihood function, 
using Mathematica. Let tl, . .. , tlO be the observed lifetime values in an increas­
ing order. There are three observations censored at tlO = 3. The likelihood 
function for the Weibull case is, according to (3.3.9), 

Lik = I1!~1 (Aß ßtf-l exp[-(Ati)ß]) exp[-3(AtlO)ß]. 
Simplify this expression by taking its logarithm. The contour plot of "logLik" 
shows a dear maximum point in the neighborhood of A = 0.4, ß = 1.4. The 
operator "FindMinimum" applied to the negative of "logLik" gives .Ä = 0.44 
and ß = 1.42. 

ContourPlot[loglik, {A, 0.35, O. 65}, {ß, 1. 2, 1. 6}] 

1.5 

1.4 

1.3 

1. 2'---'--_-'--"--~...:==== 
0.350 . 40.450.50 . 550 . 60 . 65 

Out[4]= - ContourGraphics -

In[5]:= FindMinimum[-loglik, {A, O.4}, {ß, 1.4}) 

Out[5]= {17.6335, P.~O.439918, ß~1.41745}} 

3. Here we have quantal-type data. From (3.3.12), 
Lik = (1- e-(2A)II)4(e-(2A)II)6. 

Substitute A = 0.4. Then logLik = 4Iog(1- e-(O.8)1I) - 6(0.8)ß. The equation 
ölogLik/8ß = 0 leads, after some algebra, to the equation eO.811 -1 = 1/1.5. Its 
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solution is ß = 3.01. 

4. The likelihood is 
Lik = ).n exp[ -). E~l (ti - a)). 

In this expression, a ~ tel) = min(tl, t2, ... , t n ). Thus the largest possible value 
for a is tel)' the smallest observed lifetime. It is seen from the expression for 
Lik that it is maximized by a = tel)' Proceed in the usual way and derive that 
the MLE of)' is >. = n/ E~==l (ti - a). 

5. The likelihood function is Lik = [F(T; 0:, ß)Jkl [F(2T; 0:, ß) - F(T; 0:, ß)Jk2 X 

[1 - F(2T; 0:, ß))(n-k1 -k2 ). 

6b. The likelihood function is 

5 6 

Lik = ß5 rr d!f-l exp[ - L df), 
i==l i==l 

where ~ = T - t6. The printout shows the graph of the logarithm of the 
likelihood (denoted as "logLik") with a maximum near 1.4; see Out[2}. The 
"FindMinimum" operator applied to "-logLik" gives the MLE ß = 1.312; see 
Out[3j. 

In [l} : = 

logLik=5Log[ß] + (ß-1) Log[2*1.3*2.3*1.6*1.7*1.1]-

2" ß - 1. 3" ß - 2.3" ß - 1. 6" ß - 1.7'" ß - 1.1" ß; 

Plot [logLik, {ß, 0.5, 3}] 
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Out[2}= - Graphics -

In [ 3] : = FincIMinimwn [ -logLik I {ß, 1. 4} ] 

Out[3}= {9.61019, {ß-d.3226}} 

Tb. The hazard plot is presented in the printout below. It seems plausible that 
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the true hazard plot is a convex function. 
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Chapter 4 

la. We have two equations: 
~«log2 - I-')/a) = 8/127 = 0.063 and ~«log2 - I-')/a) = 58/127 = 0.457. 

Now 4)-1(0.063) = -1.53, 4)-1(0.457) = -0.108. So we have log2 = I-' -
1. 53a, log5 = I-' - 0.108a. Solving these gives P = 1.678, fr = 0.644. By 
(2.3.5), the mean of the lognormal distribution is exp[p + fr2/2] = 6.59. 

Ib. By (4.2.11), the cost of age re placement at age T = 3 is 

( ) _ 3500F(3) + 1000(1 - F(3» 
'fIage 3 - J:(I- F(t))dt 

The denominator of this expression can also be represented in the following form 
(integrate by parts): 

(1 - F(3))3 + 13 tJ(t)dt, 

where J(t) = (v'21iat)-1 exp[ -(log t- 1-')2 /2a2] is the lognormal density. F(3) = 
~ ((log 3 - jJ,) / fr) = 0.184. The result of the integration is 0.403896. 
Now 1]age(3) = (0.184x3500+0.816x 1000)/(3 x 0.816+0.4039) = 512. Suppose 
that we replace the compressor only at faHure. Then we pay, on average, $3500 
per 6.59 years, or $531 yearly. This is only 4% higher than the cost of age 
replacement at T = 3. 

2. The mean of Gamma(k = 7,>" = 1) is 1-'1 = k/>" = 7; see (2.1.17). The mean 
of Gamma(k = 4, >.. = 0.5) is 1-'2 = 8. Thus, strategy (i) costs 2 x 1500/,",,1 = $429 
and 2 x 1500/,",,2 = $375 for the first and the second c.d.f., respectively. 

Strategy (ii) means that we replace both parts, on average, once per interval 
of length I-'min = E[minh, T2)], where Ti""' Gamma(7, 1) or ""' Gamma(4,0.5). 
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For the first distribution, numerical integration shows that I'min = 5.53. For 
the second distribution, I'min = 5.81. Thus strategy (ii) costs 2000/5.53 =$ 
362 and 2000/5.81 =$344, for the first and the second c.dJ., respectively. Thus 
strategy (ii) always costs less than strategy (i). 

3. The formula for the average costs of age replacement is (4.2.11). We have to 
compare Ce = 20 with Ce = 5. The printout below shows two graphs: "'age (T) 
for Ce = 20, the upper curve, and for Ce = 5, the lower curve. The choke is 
between the optimal age for the upper curve, Tt = 0.36, and Ti = 0.54 for the 
lower curve. The worst-case cost for Tt is about 3.67, while the worst-case cost 
for Ti is ab out 4.80. I would prefer Tt = 0.36. 

In[4}:= Num1 = (1 - Exp[ -T2"4]) * 5 + Exp[ -T2 "4] ; 

Num2 = (1 - Exp[-T2" 4]) * 20 + Exp[ -T2 "4] ; 

Den = Integrate[Exp[-t"4], {t, 0.0, T2}]; 

1'/1 = Num11 Den; 

1'/2 = Num21 Den; 

Plot [{1'/1, 1'/2}, {T2, 0.1, loS}, PlotRange-> {{O, 1}, {O, 8}}, 

GridLines-+ {{0.25, 0.5, 0.75, LO}, {2, 4, 6, 8, 10}}, 

AxesLabe1 -+ {"T", "1'/1 (T) ,1'/2 (T) "} ] 
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Out[9}= - Graphics -

In[10}:= FindMinimum[1'/l, {T2, 0.4}] 

Ou t [ 10 } = { 2 . 4 9712, {T 2 ~ 0 . 538402} } 

In[11}:= FindMinimum[1'/2, {T2, 0.4}] 

Ou t [ 11} = { 3 . 66842, {T 2 ~ 0 . 364 lOl} } 

4. We have a block replacement with random period T. The corresponding 
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expression for the eost criterion is 

t f(T} (lOOm(T) + 5}cfI' 
TI = a E[T] . 

Sinee T '" N(I' = l,u = 0.1), we maytake a = 1'-4u = 0.6 and b = 1'+4u = 1.4. 
The denominator equals I' = 1. Let us use the approximation to meT) based 
on the formula given in Example 4.1.2: 

meT) = E:'=l Gamma(Tj nk, A}. 
It is enough for our case to take m = 4. The eomputation results are presented 
in the printout below. 

"lb" is the approximation to the renewal function from below, Club" from 
above. The result is TI = 6.96089. 

The graph shows the plots of m,(T) with meT} replaced by the upper and 
lower bound, respectively ("UB" and "LB" ). In the neighborhood of the min­
imum point (near T* = 1), both eurves are seen to coincide. 

It is worth noting that in the absence of periodic replacement, the eost will 
be $100/ E[r] = 25, sinee the mean lifetime of the street lamp is E[r] = k/ A = 4. 

In[ll:= g4 =l .. Exp[-t] *Sum[t"i/il, {i, 0, 3}]i 

g8=1-Exp[-t]*Sum[t"i/il, {i, 0, 7}]; 

g12 = 1 - Exp [ - t] * Sum [t " i/i I, {i, 0, 11}]; 

g16=1-Exp[-t]*Sum[t"i/il, {i, 0, lS}]; 

Ib = g4 + g8 + g12 + g16; 

ub = Ib + g4" 5 / (1 - g4) ; 

17 = 100* (Sqrt[2 Pi] *0.1)" (-1) * 

Nlntegrate[lb*Exp[-(t-l} "2/0.02], {t, 0.6, 1.4}] +5 

Out[7J= 6.96089 

In[B]:= Plot[{(100*lb+S} /t, (100*ub+5) /t}, {t, 0.1, 6}, 

GridLines-tAutomatic, AxesLabel-t {"t", "OB, LB"}] 

UB, LB 
4 i ~ 

30 ----rl-___ il ---L----L- -L----J. , I I ' 
I i I I I ! 

2~,-+---r-~--~--~==~ 

10 '-"-"'~"""""""'*"""'-""+"""'-"+-'" -·i················-+· 

1 2 3 4 5 6 

Out[B]= - Graphics -

5. First, find ß and A. From (2.3.14) it follows that ß = 3.714. From (2.3.12) 
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we obtain A = 0.000451. The formula for the stationary availability is 

Av(T) = JoT (1 - F(t; A, ß))dt 
JOT (1 - F( t; A, ß) )dt + 50F(T; A, ß) + 10(1 - F{T; A, ß)) 

After simple algebra, 

Av(T) = 1/(1 + 50F(T; A,ß) + 10{1- F(T; A,ß))) . 
JoT (1 - F(t; A; ß))dt 

The printout shows the investigation of the fraction in the last expression, 
denoted as "Num/Den". Mathematica does not like using the upper integration 
limit T as a variable in the Plot and FindMinimum operators, but nevertheless 
carries out the calculations. The optimal replacement age is T* = 1170 hrs, and 
the availability is Av(T*) = 1/{1 + 0.0118) = 0.988. 

In{18}:= A=0.000451;{3=3.714; 

Num=50 (l-Exp[-(A*T) "(3]) +10*Exp[-(A*T)"ß]; 

Den = Nlntegrate[Exp[-(A*t) "{3], {t, 0, T}]; 

Plot[Num/Den, {T, 100, 4000}, AxesLabel-+ {"T", "Num/Den"}] 

Nlntegrate::nlim: t ~ T is not a valid limit of integration. 
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Out{21}= - Graphics -

In{22}:= FindMinimum[Num/Den, {T, 100}] 

Out{22}= {O. 0118129, {T --t 1169. 79}} 

6. Step 1: Optimization at the element (part) level. 
Part 1: The expression for the costs is 

10 frT O.ltdt + 2 2 
All {T) = 0 T = (0.5T + 2)/T. 

It is easy to check that the minimum on the grid T = 1,2,4,8,16 is attained at 
T=2. 
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Similarly, for part 2, 

A12 (T) = (10 lT 0.06t2dt + 2)/T = (0.2T3 + 2)/T, 

and the optimal T = 2. 
Step 2: Optimization at the system leveL 
The basic sequence is (2,2), (4,4), (8,8), (16,16). The expression for the costs 
is 

1](T) = (0.5T2 + 2)/T + (0.2T3 + 2)/T + 8/T. 

The last term 8/T reßects the system set-up costs paid at each planned replace­
ment. It is easy to check that the minimum of 1](T) is attained at T = 2, Le. for 
the first vector of the basic sequence. The conclusion: replace both parts every 
two time units. The optimal value of 1](T) is 7.8. 

7a. The first step is to solve equation (A.2.9) in Appendix A. Ttot= Tl +T2, 
where T1=26 +32.5+ 43.3=101.8 in thousands of miles. Similarly, T2=19.5 + 
35.3 + 50.2 + 68.7 = 173.7. n1=3, n2=4, are the number of observed engine 
failures. The expression "eq" (see the printout) is the left-hand side of (A.2.9) 
(the fraction is transferred to the left). The operator "FindRoot" produces 
ß = 0.0240447. Substituting it into (A.2.ll) gives a = -3.68376. 

In [l} ; = T = 101.8 + 173.7; n1 = 3; n2 = 4; n = n1 + n2; 

A = Exp[ß SO] * SO + Exp[ß 70] * 70; 
B = Exp[ß 50] + Exp[ß 70]; 

aq = T + n / ß - n * A / (B - 2) ; 
FindRoot[aq:: 0, {ß, 0.05}] 

Out[5}= {ß ~ O.0240447} 

In[6};= 13= 0.024; a = Log [13 (nl+n2) / (Exp[ßSO] +Exp[ß70] -2)] 

Ou t [6} = - 3 . 68376 

7b. The relevant expression for the cost criterion is (4.2.7). Its numerator 
equals num = 1000 JOT exp[a+ßtjdt+Crep = 1000e{r(e~T -l)/ß+Crep , where 
Crep lies between 100 and 300. The denominator equals T. The expression 
(4.2.7) for T/D(T) is denoted in the printout by 1]. The plot shows two curves 
for the costs as a function of T. The upper curve corresponds to Crep = 300, 
the lower - to Crep = 100. The optimal repair periods are 16000 and 25600, for 
crep = 100 and Crep = 300, respectively. If we assume that Crep = 100, and use 
a near-optimal period of 15000 mHes, the worst-case situation would be $50.2 
per thousand mHes. If we assume that crep = 300 and do a minimal repair 
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every T* = 25 000 miles, the worst-case situation would be $46.4 per thousand 
miles. The "minimax" reasoning makes the second option, T* = 25 000 miles, 
preferable. 

In[7J;= a = -3.68376; num = 1000 *Exp[a] * (Exp[ß Tl] - 1) 1 ß + 100; 
den = Tl; 1] = num 1 den; 1]1 = (num + 200) 1 den; 
Plot[{1], 1]1}, {Tl, 1, 200}] 
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Out[9J= - Graphics -

In [10J;= FindMinimum[1] , {Tl, 100}] 

Out[10]= {36.8846, {Tl ~ l5.99l7}} 

In[llJ;= FindMinimum[1]l, {Tl, 100}] 

Out[11J= {46.4234, {Tl ~ 25.5754}} 

In[12J;= Tl = 15; 1] 11 N 

Out[12J= 36.9134 

In[13J;= 1]l1IN 

Out[13J= 50.2468 

In[14J;= Tl = 25; '711 N 

Ou t [ 14 J = 38. 4308 

In[15];= 1]11/ N 

Out[15]= 46.4308 
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8. The printout below shows the details o{ the numerical investigation of 'fI(T) 
tor I(x) = e-z . The c.d.f. F(x) = 1- e-2l • The calculations were done tor k 
ranging from 0 to 20. A(T) is denoted as "A" and "Al," and B(T) as "B" and 
"BI," tor to = 0.05 and to = 0.1, respectively. (to is denoted as ''t"). 

The upper graph shows l1(T) = AlB tor to = 0.05. The optimal T* ~ 0.27, 
and the maximum l1(T*) ~ 0.74. 

The lower graph shows ",(T) tor to = 0.1. The optimal T* ~ 0.4, and the 
maximum 'fI(T*) ~ 0.65. 

An important observation is that choosing large T values, say T = 0.8 
(note that this is 80% of the mean CDE lifetime), may considerably reduce 
the availability. 

In my opinion, taking T = 0.33, i.e. in the "middle," would provide near­
optimal results for any to in the range [0.05,0.1]. 

In [1591 := 

A = Sum [Integrate [ (x - k * t) Exp [ -x], 

{x, k * ('1' + t) , k * ('1' + t) + '1'} ], {k, 0, 20}] + 

Sum[(-Exp[-(k+1) * ('1'+t») +Exp[-(k+1) ('1'+t) +t) * 

(k + 1) '1', {k, 0, 20}]; t = 0.05; 
B = Sum[ (k + 1) * ('1' + t) (Exp[ -k * ('1' + t)] _ 

Exp(-(k+1) * (T+t)]), 

{k, 0, 20}]; t = 0.05; 

Al = Sum[Integrate[ (x - k*t) Exp[-x], 

{x, k* ('1'+t) , k* (T+t) +T}], {k, 0, 20}) + 
Sum[(-Exp[-(k+1) * ('1'+t)] +Exp[-(k+1) ('1'+t) +tJ) * 

(k+1) '1', {k, 0, 20}]; t=O.l; 

B1 = Sum[ (k + 1) * ('1' + t) 

(Exp[-k* ('1'+t)] -Exp[-(k+l) * ('1'+ t) J) , 

{k, 0, 20}]; t = 0.1; 
Plot[{A/B, Al/Bl}, {'I', 0.1, O.S}, 

PlotRanga-+ {{O, O.S}, {0.5, O.S}}, 

AxasLabel -+ {"'1''', "11 ('1') "}, GridLinas-+ 

{{0.2, 0.4, 0.6, O.S}, {0.5, 0.6, 0.7, O.S}}] 
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Out(163]= • Graphics • 
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9. The mixture of exponential lifetimes is a DFR distribution; see Theorem 
2.2.3. Therefore, no finite maintenanee period ean be optimal. The answer is 
T* = 00, i.e. ne ver earry out the PM. 

10. By (2.3.12), E[r2] = r[1 + 1/2] = 0.886. Thus Al should be 1/0.886 = 1.13. 
The lifetime of the series system is Fs(t) = 1 - e-1.13te -t2

• 

The expression for 1j(T) is 
1j(T) = (Fs(T) + (1 - Fs(T))Cp)1 f{ (1 - FB(t))dt. 

This expression is defined in In[93]; see the printout below. The graph of 1j(T) 
is shown in Out[95]. The "FindMinimum" operator In[96] provides T* = 0.565 
and the minimal1j(T*) = 1.808. Reeall that the effideney Q = 1j(E[TB]1j(T*)). 
Out[98] shows that Q = 1.07, quite a low effideney. 

The graph in Out[lOO] shows the function 1j(T) for a system without the 
exponential eomponent. The optimal T is 0.511, and the optimal 'TI is 0.817. 
The eorresponding effideney (denoted as Q) is now 1.38, which is eonsiderably 
higher than the previous value of 1.07. 

How ean this fact be explained? The presenee of an exponential eomponent 
ehanges the form of the density funetion near zero and makes it very elose to the 
exponential density. We advise the reader to reexamine Exercise 15 in Chap. 
2. The presenee of an exponential eomponent with mean life equal to or less 
than the mean life of the aging Weibull eomponent would make Q near 1. We 
eall this phenomenon "exponential minimum-type eontamination." It reduees 
drastically the effideney of the optimal age replaeement. 

The practical eonclusion is the following. If there is a suspidon that the series 
system eontains many exponentially distributed eomponents, it is not advisable 
to replace preventively the whole system. The PM should be applied only to 
that part of the system which has an inereasing failure rate. In our example, 
this is the seeond eomponent whose life follows the Weibull distribution with 
ß=2. 

In[93 J':= c = 0.2; A = 1.13; F1 = 1-Exp[-A*Y]; 

F2 = 1 - Exp [ - y" 2] ; Fs = 1 - (1 - F1) * (1 - F2) ; 

num = 1 - Exp [-A * T - T" 2] + C * Exp [-A * T - T" 2] ; 

den=Nlntegrate[l-Fs, {y, 0, T}]; 7J=num/den; 

Plot[7J, {T, 0.1, 5}. AxesLabel-+ {"T" , "7J(T)"}] 

I 

1. 9S i 

1. 9: 
1. 85! 

1 2 3 4 5 

Out[95J= • Graphics· 
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In[96}:= FindMinimum[77, {T, O.S}] 

Du t [96} = { 1. 8082 9, {T ~ C . :; 6517 9} } 

In[98}:= Q= 1/ (Nlntegrate[l-Fs, {y, 0, S}] .1.808) 

Dut[98}= 1.06899 

In [99} : = c = 0.2; A = 1.13; F2 = 1 - Exp [ -y" 2] ; 

num = 1 - Exp [ - T "2] + c • Exp [ - T" 2] ; 

den=Nlntegrate[Exp[-y"2], {y, 0, T}]; 1)=num/den; 

Plot[17, {T, 0.1, S}, AxesLabel-+ {"T", "1)(T)"}] 

- (T) 

2 3 ~ 5 

Dut[100}= - Graphics -

In[lOl}:= FindMinimum[1), {T, O.S}] 

Dut[lOlj= {O.817048, {T->8.510655}} 

In[102}:= Q = 1/ (NIntegrate[Exp[-y"2], {y, 0, S}] .0.817) 

Du t [1 02 J = -'-. 38113 

11. Check that u = 0.246, P. = -0.030258, and A = 0.913, ß = 4.5 give 
that a c. v. of 0.25 and a mean of 1 for both distributions. Recall that for 
T '" logN(p.,u), the c.dJ. is ~((log(t) - p)ju). The corresponding calculations 
are carried out in In[134]j see the printout below. Note that one has to call the 
"ContinuousDistributions" package and define afterwards the standard normal 
c.dJ. as NormalDistribution[O,l]. Out[141] presents the graphs of 'TIage(T) for 
the lognormal and the Weibull cases. Both curves practically coincide so that 
maintenance age T* ~ 0.6 for both cases. 



In[134j;= «Statistics'ContinuousDistributions' 

ndist = NormalDistribution[O, 1); 

c = 0.2; J.L = -0.030258; 0 = 0.246; 

num= (1-c) *CDF[ndist, (Log[T)-jJ.) 10) +c; 

den = NIntegrate [ 

CDF[ndist, -(Log[x)-jJ.) 10), {x, 0.0001, T}); 

.A = 0 . 913; ß = 4.54; 

mum1= (1-c)*(1-Exp[-(.A*T)"ß]) +c; 

den1 = NIntegrate[Exp[- (,A.* z) Aß), {z, 0, T}); 

Plot[{num/den, muml/den1}, {T, 0.1, loS}) 

2 

1. 75 

1.5 

1. 25 

0.75 

0.5 

Out[141]= - Graphics-
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12. The "FindMinimum" operator applied to S = L~=l (log ni - a - a(i - 1))2 
gives a = 1.93,0: = 0.277. The "Plot" operator produees the graph of 'T/(K) 
shown below. The optimal K* = 5, and the minimal eosts are about $500 per 
eyde. 

1") (K) 
1400 ~-,----,-.---r------~.~-

1000 

800 

600 

2 4 6 8 10 12 

- Graphics -
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Chapters 5-7 

1. The system of equations for finding the stationary probabilities is (5.4.5). In 
our ease, the system is 

11"1 = 0.111"2; 11"2 = 0.311"1 + 11"3; 11"1 + 11"2 + 11"3 = 1. 
Its solution is presented in the printout below: 11"1 = 0.048, 11"2 = 0.483, 11"3 = 
0.469. (Note that one ofthe equations ofthe system 11" = 1I"P ean be deleted. We 
deleted the third one.) The mean one-step rewards are equal to 1, and the mean 
transition times are: VI = 112 = 1, V3 = 2. By (5.4.14), 9 = 1/(11"1 + 11"2 + 211"3) = 
0.681. 

In [165] : = Solve [{1\'1 - 0.1 * 1\'2 == 0, 1\'2 - 0.3 * 1\'1 - 1\'3 == 0, 

1\'1 + 1\'2 + 1\'3 -1 == O}, {1\'1, 1\'2, 1\'3}) 

Out[165]= {{lfl-.?0.0483092, lf2-.?0.483092, lf3-.?0.468599}} 

In[168]:= g= 1/ (0.0483+0.483+2*0.469) 

Out[168]= 0.680596 

2a. The mean length of one operation cycle is E[T(k)] = /.L(k). On this eycle, the 
mean total "up" time of allIines is 

E[W(k)] = n/.L(I) + (n -1)(/.L(2) - /.L(1» + ... + (n - k + l)(I-'(k) -I-'(k-l)' 

see (5.2.1). The mean total operation time of allIines during one eycle is n/.L(k) 
and thus the mean total idle time is E[Idle] = nl-'(k) - E[W(k)]. Thus the mean 
reward per unit time is 

Crew· E[W(k)]- CI· E[Idle]- Crep 
Xk = . 

/.L(k) 

Let fi(t) be the density of the ith order statistic: 

The derivation of this is instruetive. The ith ordered observation lies in the 
interval (t, t + dt) if (i) a single observation lies in this interval; (ii) any i-I 
out of the remaining n - 1 observations are less or equal than t. 

The probability of (i) is (~) f(t)dt; the probability of (ii) is given by the 
expression C~i) [F(t)]i-l [1 - F(t)]n-i. To find /.L(i), we have to integrate 

/.L(i) = 1000 
tli(t)dt . 
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Using the Mathematica operator" Nlntegrate" is very convenient for the nu­
merical evaluation of J1.(i)' 

2b The printout below details the computation. F(t) = 1-exp[-(0.25t)ß). The 
density f(t) is found using the operator "D[F,t)." fl, f2, f3 and f4 are defined 
according to the formula above. J1.1, J1.2, J1.3 and J1.4 are the mean values of the 
order statistics. The upper limit 40 serves as "infinity." The printout shows the 
values of Xl, .. . , X4. The optimal choice is k = 2 which guarantees the highest 
reward 2.74. The choice k = 1 is the second best with reward 2.60. The worst 
choice is k = 4, which would reduce the reward to 1.80. 

In[183]:= F=1-Exp[-(0.25*v) .... 1.5];f=D[F, v]; 

fl = 4 1 « 1 - F) .... 3) * f 1 3 1 ; 

f2 = 41 * F * ( (1 - F) .... 2) * f 1 21 ; 

f3= 41 F .... 2* (l-F) *f/21; f4 =41 (F .... 3) *f/31; 

",1 = Nlntegrate[v*fl, {v, 0, 40}] 

",2 = Nlntegrate[v*f2, {v, 0, 40}] 

",3 = Nlntegrate[v*f3; {v, 0, 40}] 

",4 = Nlntegrate[v*f4, {v, 0, 40}] 

Out[186]= 1.43302 

Out[187]= 2.64486 

Out[188}= 4.05988 

Ou t [ 18 91 = 6. 3061 7 

Inf198]:= xl= (4*1.433-2) 11.433 

x2 = 
«4*1.433+3* (2.645-1.433» 1.1-0.1*4*2.644-2) 1 
2.645 

x3= «4*1.433+3* (2.645-1.433) +2* (4.06-2.65» 1.1-

0.1*4*4.06-2) 14.06 

x4 = «4*1.433+3* (2.645-1.433) +2* (4.06-2.65) + 

(6.31-4.06» 1.1-0.1*4*6.31-2) 16.31 

Out [198}= 2.60433 

Out[199J= 2.73996 

Out[200}= 2.40956 

Out[201}= 1.79997 
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3. In order to be able to process the data, we need to call "DescriptiveStatistics." 
The data are presented in the form of points (hours, flights) in the (H, F) plane. 

The operator "For" investigates the coefficient of variation of the lifetime, 
which is defined as a linear combination of two time scales, hours (H), and flights 
(F): Tdata=(l- a) x Hdata + a x Fdata; a = 0.0(0.05)1.00. The output (only 
the cases a = 0, a = 0.7 and a = 1 are displayed) shows that a = 0.7 provides 
the smallest c.v. (the c.v. is denoted by "cvT"). It equals 0.082, whiIe for the 
lifetime on the number-of-flights scale it equals 0.204. 

To compute the optimal replacement age, we use the formula (6.4.13). Note 
that Fa(t) is a piecewise constant function. For all three scales 1l, F, 10.7, the 
optimal replacement age coincides with the smallest observed lifetime. 

The results are: 
l' = 0.302, for the 1l scale; x* = 1950 hours; 
l' = 0.314, in the F scale; x* = 920 ßights; 
l' = 0.229, in the 10.7 scale, x* = 1649. 

We see, therefore, that using the scale with the smallest c.v. provides a consid­
erable reduction in the mean cost 'Y. 

In[217];= HFdata = {{3700, 920}, {3900, 1020}, 

{4200, 1200}, {2700, 1370}, {3100, 1540}, 

{1950, 1520}, {2100, 1630}, {2300, 1660}, 

{2700, 1760}, {2800, 1840}}; 

Needs["Graphics'MultipleListPlot'''] 

ListPlot[HFdata, Pl.otStyl.e -+ PointSize[O. 025], 
UotRange .... {{O, 4300}, {O, 2100}}, 

AxesLabel-+ {"H", "F"}] 
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Out[219]= - Graphics-

In [220j ;= Hdata = Table[ {3700, 3900, 4200, 2700, 

3100, 1950, 2100, 2300, 2700, 2800}] ; 

Fdata = Table[ {920, 1020, 1200, 1370, 

1540,1520,1630,1660,1760, 1840}]; 



In[261}:= For[i=O, i<21, i++, a=O.OS*i; 

Tdata = (1 - a) Hdata + a * Fdata; 

cvT = (VarianceMLE [Tdata]) "0.5/ Mean [Tdata] ; 

Print[na=n I a, " ... " I flcvT=n, cvT]] ; 

a=O ... cvT=O.248186 

a=O.7 ... cvT=O.0824513 

a=1 .... cvT=O.204244 
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4. Consider expression (6.3.7). Substitute x = tp and use the fact that F(tp ) = 
p. Then (6.3.7) takes the form 

p+ (1- p)d 
'Y(tp ) = I;"(l- F(x))dx' 

The function 1-F(x) equals 1 at x = 0 and 1-p at x = tp ' Assuming linearity, 
it is easy to obtain that the integral equals (1 + (1 - p))tp /2. Substitute this 
into the previous formula. The result is 

'Y(t ) = 2(p+ (1- p)d) . 
p (2-p)tp 

Carrying out the PM at age t p has the advantage that the failure probability 
before the PM does not exceed a predetermined value p. 

5. Suppose we have k nonfailed parts which are put to work for one time 
period. Denote by b(k,z) the probability that exactly z out of k will fail during 
this period, Z = 0,1, ... ,k. Obviously, 

b(k,z) = G)pZ(I- P)k-Z. 

Suppose that we have ahead of us m + 1 time periods and j nonfailed parts. 
We decide to put to work kj parts, kj ~ j, after which we follow the optimal 
policy. The average cost will then be 

k;-l 

Wj(m + 1) = b(kj , kj ) x 1 + L b(kj,z)Wj_z(m). 
z==o 

Indeed, we pay 1 for a failure during the unit interval, which happens when 
all parts put to work have failed during this interval. If z parts fail, z = 
0,1, ... , kj -1, then with probability b(kj, z) we pay, by the definition of Wi(m), 
the minimum cost Wj-z(m) during the m remaining intervals, since we start 
with j - z nonfailed parts. 
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Applying the optimality principle, we write 

In order to find the optimal poliey, we have to apply the "backward motion" 
algorithm. First, find Wj(l) by assuming that there is only one period ahead, 
and j nonfailed parts are available, j = 1, ... , r. (Set Wj(O) = 0.) Then, using 
the values of Wj (I), ealculate Wj(2) via the above recurrence relation, etc. 

Obviously, Wj (l) = minI9;~j pie; = pi = b(j,j). This indicates that Wj (l) 
is equal to the probability that all j parts will fail on a unit-Iength interval. 
Suppose that we are at t = m - 1 and there are two unit-Iength periods ahead. 
Then 

The system failure in [m - 1, m + 1] can occur in two ways: either all kj parts 
put to work at t = m -1 fail during [m - 1, m], or z parts fail in the first period, 
z< kj, and the remaining j - z parts fail during [m, m + 1]. 

Now it is clear that the expression in the brackets is equal to the prob ability 
of system failure during [m -1, m + 1], calculated under the following conditions: 

(i) The process starts at t = m - 1 with j nonfailed parts. 
(ii)The first decision is to put kj parts to work. 
(iii) The decision at t = m is made optimally. 

This means that Wj (2) is equal to the minimum probability of a failure in a 
two-step process. By analogy, it can be shown that Wj(m) gives the desired 
value of the minimum probability in a m-step process. 

6. Substitute Pl' j = 1, ... ,m, into the expression for p~. The denominator of 
P] cancels out, and we arrive at the formula for p}. 

7a. Let the system be in state 0 at t = O. Consider the interval [t, t + h], where 
h > 0, h -t +0. The system will be in state 0 at t + h if it was in this state 
at t and no transition appeared into state 1 during [t, t + h]. This leads to the 
equation: 

Poo(t + h) = Poo (t)(1 - )..Ol (t)h) + o(h) . 

Simple algebra leads to the differential equation 

P~o(t) = -)..Ol (t)Poo(t) . 

Solving for for )..01 (t) = t and the initial eondition Poo(O) = 1 gives Poo(t) = 
exp[-t2 /2]. This result was expeeted: the sitting time in state 0 has the Weibull 
distribution, sinee the transition rate to 1 (Le. the "failure" rate) is )..01 (t) = t. 
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Relating the probabilities of being in state 1 at time t + h to the probabilities 
of being either in state 0 or in state 1 at time t, we arrive at the equation 

POlet + h) = Pol (t)(I- Al2(t)h) + Poo(t)Aodt)h + o(h). 

After simple algebra, letting h -+ 0, we obtain: 

.Pol (t) = -Al2(t)POl (t) + AOl (t)Poo(t). 

The initial condition is POl (0) = O. Check that the solution is POl (t) = 
exp[-t2/2]t2/2. Thus P02 (t) = 1- Poo(t) - POlet) = 1- e-t2 / 2(1 +t2j2). 

Note that P02 (t) = P(T02 ~ t), where T02 is the transition time from state 0 
to state 2. The corresponding density function f02(t) is the derivative of P02(t). 

Tb. Let us derive the recurrence equation for the optimal inspection period. 
Denote by Wo the minimal costs under the optimal inspection policy. Let T 

be the length of the first inspection period. Then 

Wo = min [<!inB + fT (A + B(T - X»f02(X)dx 
O<T 10 

+WO(POl (T) + Poo(T» + CrepPOl (T)] . 

Indeed, the inspection cost <!inB is always paid. With probability Poo(T) the next 

observed state will be 0 and we will pay in the future only WO. With probability 
POl (T) the next observed state is I, and the cost paid will be Crep + Wo, because 
the process is shifted into state O. With probability f02(X)dx the process enters 
the failure state 2 in the interval (x, x + dx) x E [0,1']; the cost associated with 
this event is A + B(T - x). 

Note that the integral in this formula can be simplified and rewritten as 
B foT P02 (x)dx + AP02 (T). 

Suppose that the optimal T = T*. Then, by the definition of Wo, it should 
satisfy the equality: 

T" 

Wo = (<!inB + AP02 (T*) + B fo P02 (x)dx + CrepPOl (T*») / Po2 (T*). 

Then, obviously, Wo and T* can be obtained by minimizing the right-hand side 

of the last expression with respect to T. The printout below shows the results 
of the minimization. The graph suggests that the optimal T is near 1.85. The 
minimum cost Vo = 14.49. 
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In [7] : = PO = Exp [ - T" 2 1 2] ; P1 = PO * T" 2 1 2; P2 = 1 - P1 - PO; 

Plot[ (1 + 10 * P2 + 5 *Nlntegrate[ 

1-Exp[-u"2/2] -Exp[-u"2/2] *u"2/2, {u, 0, T}]) 1 
P2, {T, 1, 4}, AxesLabel -+ {"T", "V"}] 

FindMinimum[ (1 + 10 * P2 + 5 * Integrate[l - Exp[ -u" 2/2] -
Exp[-u"2/2] *u"2/2, {u, 0, T}]) IP2, {T,2}] 

V 

22 

Out[B}= - Graphics -

3 3.5 4 

Out[9]= {14.4883, {T-d.85449}} 

{14.4883, {s-d.85449}} 

8. Two-state continuous-time Markov process. 
The system of differential equations (5.4.21) has, for our problem, the following 
form: 

Po(t) = ->"Po{t) + ~Pl (t), 
pt (t) = APo(t) - /-IP1 (t). 

NotethatPo(O) = 1. WeneedinfactonlythefirstequationsincePo(t)+P1(t) = 
1. Substituting Pt (t) = 1 - poet) into the first equation, we obtain 

P~(t) = p. - (A + /-I) Po (t). 

Applying the Laplace transform to both sides of this equation, we arrive at the 
equation 

S7ro(S) -1 = p./s - (A + /-I)7ro(s), 

where 7ro(s) is the Laplace transform of Po(s) and /-I/s is the Laplace transform 
of /-I; see Appendix C. This leads to the formula 

( s+/-I 1 + P. 
?To 8) = ses + A + 11) = S + A + p. ses + A + /-I) . 

Using Appendix C, we obtain that 

poet) = --L + _A_e-(.HI.I)t. 
A+/-I A+/-I 
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Then 

PI (t) = _A ___ A_e-(>'+/oI)t. 
A+J.' A+J.' 

As t goes to infinity, poet) approaches A = J.'/(A + 1'). This is the stationary 
probability that the process is in state 0: A = E[TOJ/(E[ToJ + E[Tl])' where 
TO '" Exp(A) and Tl '" Exp(J.'). 



Appendix A: 
N onhomogeneous Poisson 
Process 

A.l Definition and Basic Properties 
Definition A.1.1 
The counting process {N(t), t ~ O} is said to be a nonhomogeneous Poisson 
process (NHPP) with intensity nlllction A(t), t ~ 0, if 
(i) N(O) = 0; 
(ii) {N(t), t ~ O} has independent increments; 
(iii)P(N(t + h) - N(t) ~ 2) = o(h) as h -t 0; 
(iv) P(N(t + h) - N(t) = 1) = A(t)h + o(h) as h -t O. 

Denote by A(t) the integral of the intensity function: 

A(t) = fot A(v)dv. (A.l.l) 

A(t) is called the cumulative event rate or the mean value fu,nction ofthe process. 

Theorem A.1.1 

P(N(t + s) - N(t) = k) = e-A(t,s) [A(~t)lk, k ~ 0, 

where A(t, 8) = A(t + s) - A(t) = Itt+ s A(v)dv. 

Proof· 
Our goal is to find the functions 

Pk (t,8) = P(N(t + 8) - N(t) = k). 

(A.1.2) 

(A.1.3) 
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First consider Po(t,s + h). To have no events in (t, t + s + h) means having no 
events in (t, t + s) and no events in (t + s, t + s + h). Due to (ii)-(iv), 

Po(t, s + h) = Po(t,s)Po(t + s,h) = Po(t,s}[l- .\(t + s)h] + o(h). (A.l.4) 

Then 

Po(t, s + h) - Po(t, s) = -Po(t, s).\(t + s)h + o(h). 

Dividing both sides by h and letting h ~ 0 yields 

Po(t, s) = -Po(t, s).\(t + s) . (A.1.5) 

This differential equation must be solved for the initial condition Po(t,O) = 1 
since, with probability 1, there are no events in a zero-Iength interval. The 
solution is 

J. t+. 
R (t ) - -(A(t+8)-A(t» _ - ;\(v)dv o ,s -e -e t _ • (A.1.6) 

It is easy to show that for k > 0, 

P,,(t, s + h) = P,,(t, s)Po(t + s, h) + Pk- l (t, S )P1 (t + s, h) + o(h), 

where Po(t + s,h) = 1- .\(t + s)h + o(h) and P1(t + s,h) = .\(t + s)h + o(h). 
Therefore, 

Pk(t,s + h) = P,,(t,s)[l- .\(t + s)h] 
+P"-l (t, s).\(t + s)h + o(h), 

from which it follows that 

Pk(t,s + h) - P,,(t,s) 
h = .\(t + S}[P"_I(t,S) - P,,(t,s)] + 0(1). 

In the limit, for any k > 0 

Pk(t, s) = .\(t + S)[P"-l (t, s) - P,,(t, s)]. 

(A.l.7) 

(A.1.8) 

This system must be solved with the initial condition Pk (t, 0) = 0 for k > O. 
It is instructive to demonstrate an eflicient way of obtaining the solution. 

Introduce the following generating function: 

00 

F(t, Sj x) = LPk(t,S)Xk. (A.1.9) 
k=O 

Multiplyequation (A.1.8) by x" and sum from k = 0 to infinity. (Set P-1(t,s) == 
0.) Then, after some algebra, we obtain 

oF os = (x - l).\(t + s)F, (A.1.10) 
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or 
8logF ---as- = (x - l)'\(t + s). 

It follows now !rom (A.1.11) that 

logF(t,s;x)-logF(t,O;x) = (x-I) 108 '\(t+v)dv 

{H8 
= (x - 1) lt '\(y)dy 

= (x - l)A(t, s). 

Since F(t, 0; x) = poet, 0) = 1, the solution of (A.1.12) is 
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(A.1.11) 

(A.1.12) 

00 [A(t s)]kXk 
F(t, s; x) = exp[(x - l)A(t,s)] = exp[-A(t, s)] L 'k! . (A.1.13) 

k=O 

Comparing this expression with the definition (A.1.9) of F( t, S; x), we see that 

[A(t,S)]k 
Pk(t,s) = exp[-A(t,s)] k! ' k ~ 0. (A.1.14) 

We see therefore that the number of events in (t, t + s) in an NHPP follows 
a Poisson distribution with parameter A(t, s). For a particular case of '\(t) = '\, 
we arrive at the result (2.1.6) for a Poisson process with rate '\. 

Let us consider the distribution of the random intervals between two adjacent 
events in an NHPP. The situation for a Poisson process with constant rate ,\ 
was very simple: the interval between any two adjacent events is T t"oJ Exp(,\). 
For an NHPP, the distribution of the distance between the event which took 
place at t* and the next event depends on t* . 

Suppose that an event took place in an NHPP at the instant t. Denote by 
Tt the interval to the next event. 

Corollary A.l.l 
(i) In an NHPP with intensity function '\(t), the c.d.f. of Tt is 

1Hz 
P(Tt :5 x) = Ft(x) = 1- exp [- t '\(v)dv], (A.1.15) 

and the density function of Tt is 

1Hz 
ft(x) = '\(t + x) exp [- t '\(v)dv]. (A.1.16) 

(ii) The random variable Tt does not depend on the history of the NHPP on the 
interval [0, t]. 
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Proof. 
J.'+-

(i) Consider the interval (t, t + x). By (A.1.6), Po(t, x) = e -, ),(lI)dll. If there 
are no events in (t, t + x), then the interval to the next event exceeds x. This 
proves (A.1.15) because Ft(x) is the probability of the complementary event. 
The density function !tex) is a derivative of Ft(x) with respect to x. 
(ii) Follows from the assumptions (i)-(iv) of the NHPP. 

For ~(t) == A, we arrive at the exponential distribution of the interval between 
adjacent events. 

Note that the mean number of events on [0, tJ in an NHPP equals 

p[o,t] = A(t). (A.1.17) 

This follows directly from the fact that the number of events on [0, t] has a 
Poisson distribution (A.1.14). 

A.2 Parametrie estimation of the intensity func­
tion 

In this section we consider two important types of the intensity function - the 
so-called log-linear form and the Weibull form. 

Log-linear form of the intensity function 

Suppose that the intensity function of the NHPP has the form 

~(t) = eOl+ßt, (A.2.1) 

where a and ß are unknown parameters. Following Cox: and Lewis (1966), we 
describe the maximum likelihood approach to the estimation of a and ß. 

Suppose we observe an NHPP on the interval [0, T), and suppose that the 
events took place at the instants 0 < tl < t2 < .. , < tn < T. Then by Corollary 
A.1.1, the likelihood function has the form: 

Lik(tlt· .. , tn ) = fO(tl)ftt (t2 - td .. · It.'-l (tn - tn-I) 
x[l- Ft,. (T - tn)l . 

(A.2.2) 

For ft(x) and Ft(x) defined in Corollary A.1.1, the likelihood function takes the 
form 

(A.2.3) 
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Substitute A(t) from (A.2.1) into (A.2.2) and take the logarithm. Then, after 
simple algebra, 

n 

logLik(tl, . .. , tn ) = na + ß L tj - eQ[eßT -1]/ ß . (A.2.4) 
j=l 

The MLE of a and ß will be found as the solution of the maximum likelihood 
equations 

(A.2.5) 

and 
n 

8logLik/8ß = L ti - eQ 
( - (eßT - 1)ß-2 + eßTß-1) = o. (A.2.6) 

j=l 

From (A.2.5) it follows that 

. nß 
eQ - -:---

- e~T - t" (A.2.7) 

Substituting eCi from (A.2.7) into (A.2.6), we obtain, after some algebra, the 
equation for the MLE of ß: 

~ A_l nT 
L.Jti +nß = .. 
. 1- e-ßT 
1=1 

(A.2.8) 

Suppose that we have observed several independent realizations of the NHPP 
with the same intensity function (A.2.1). The data from the ith realization are 
as follows: the events took place at the instants tii ), ... , t~; the process was 
observed on the interval [0, Ti], i = 1,2, ... ,m. 

The "overall" likelihood function will be the product of m likelihood func­
tions for separate realizations. The derivation of the equations for finding the 
MLEs is similar. We present the final result. The equation for ß is 

m A ",m . ",m {3T; T .. 
1: '" /ß L...j-l n, x L...i=1 e , 

tot + L.J nj = ",m ßT. ' 
i=1 L...i=1 e • - m 

where 
nl nm 

'" (1) '" (m) Ttot = L.J tj + ... + L.J t j • 

j=1 j=1 

The equation for a takes the form 

Ci ßL::'1 nj e = . 
"'~ eßT; - m L....=1 

(A.2.9) 

(A.2.1O) 

(A.2.1l) 
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It is desirable to have a measure of the variability of a and ß. We will derive 
the large-sample maximum likelihood confidence intervals described in Sect. 3.3. 
First we compute the second-order derivatives (multiplied by -1 ) evaluated at 
the MLEs a and ß. They are 

(A.2.12) 

n 

Vi2(a, ß) = E t; (A.2.13) 
i=1 

and 
n 

V22 (a,ß) = ß-1 (Et;(ßT - 2) + nT). (A.2.14) 
i=1 

Vii are the elements of the observed Fisher information matrix IF. The elements 
of its inverse IF1 are: 

n 

Wll = V22/(V22n - (Et;)2); 
;=1 

n 

W22 = n/(V22n - (Et;)2). 
;=1 

Therefore, the estimates of standard errors of a and ß are 

Ud = VW11' U{3 = VW22' 

Weibull-form intensity function 

Suppose that the intensity function has the form 

,X(t) = aß ßtß- 1• 

(A.2.15) 

(A.2.16) 

(A.2.17) 

(A.2.18) 

(A.2.19) 

For this intensity function, the time to the first failure TO '" W(a, ß), as follows 
directly from (A.1.15). The loglikelihood now is 

n 
logLik(tt, ... , tn ) = nßloga+n logß+ (ß -1) Elogt; - (aT)ß .(A.2.20) 

;=1 

The MLE will be found as the solution of the following two equations: 

OlogLik/8a = nß/a - ßaß-1Tß = 0 (A.2.21) 
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and 
n 

ßlogLikl8ß = nloga + niß + I)ogt i - (aT)ß log (aT) = O. (A.2.22) 
i=l 

The solution is: 

n -1 

&. = n1/ß IT, ß = (logT - n-1 L logti) ) . 
i=1 

The elements of the Fisher information matrix are: 

" '2, 2 V11 (a,ß)=nß 10., 

V12(&.,ß) = ßnlog(&.T)/&. 

and 

(A.2.23) 

(A.2.24) 

(A.2.25) 

(A.2.26) 

From here it follows that the estimates of standard errors of &. and ß are 

(A.2.27) 

Remark 
Suppose that the point process N(t), t ~ 0, describes failures of a renewable 
system. In this context, the derivative of the mean number of failures on [0, t] 
with respect to t, 

v(t) = E[N(t)] , 
dt 

(A.2.28) 

is called the rate oloccurrence ollailures (ROCOF). This term is very popular in 
reliability literaturej see e.g. O'Connor (1991), Crowder et al (1991). Obviously, 
for an NHPP, the ROCOF equals the intensity function ,x(t)j see (A.1.16). 

The ROCOF is often confused with the lailure rate h(t) defined earlier in 
Chap. 2. The principal difference is that the notion of failure rate is defined 
only for a random variable describing the lifetime of a nonrepairable component 
(system). In an NHPP, the failure rate ofthe time to the first failure 1'0 coincides 
with ,x(t) only on the interval [0,1'0]' 

More information on statistical inference for the NHPP process, including 
simple graphical analysis, can be found Cox and Lewis (1966) and Crowder et 
al (1991). 



Appendix B: Covariances 
and Means of Order 
Statistics 

Table B.1(a) 

Covariance matrix of order statistics for n = 8, Z '" Extr(O, 1) 

i 1 2 3 4 5 6 7 8 
1 1.645 0.422 0.262 0.180 0.131 0.097 0.071 0.048 
2 0.464 0.280 0.193 0.140 0.103 0.076 0.052 
3 0.398 0.201 0.152 0.112 0.082 0.056 
4 0.290 0.168 0.124 0.090 0.062 
5 0.232 0.140 0.102 0.070 
6 0.198 0.121 0.083 
7 0.183 0.106 
8 0.200 

Table B.l(b) 

Mean values of the order statistics 

m(1) m(2) m(3) m(4) m(&) m(6) m(7) m(8) 

-2.6567 -1.5884 -1.0111 -0.5880 -0.2312 0.1029 0.4548 0.9021 
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Table B.2(a). 

The covariance matrix of order statistics for n = 10, r = 9, Z - Extr(O, 1). 

i 1 2 3 4 5 6 7 8 9 
1 1.645 0.436 0.275 0.193 0.144 0.111 0.086 0.067 0.051 
2 0.646 0.290 0.204 0.152 0.117 0.091 0.071 0.054 
3 0.397 0.217 0.162 0.124 0.097 0.076 0.058 
4 0.287 0.174 0.137 0.104 0.081 0.062 
5 0.227 0.145 0.113 0.088 0.067 
6 0.190 0.125 0.098 0.074 
7 0.166 0.111 0.085 
8 0.152 0.100 
9 0.149 

Table B.2(b) 

Mean values of the order statistics, n = 10 

m~l) m~2l m~3l m~4l m~lIl 
-2.800 -1.826 -1.267 -0.868 -0.544 

m~6l m~7l m(8l m(91 m~lOl 
-0.257 -0.012 0.284 0.585 0.990 

'fable B.3(a) 

The covariance matrix of order statistics for n = 15, r = 10, Z - Extr(O,I). 

i 1 2 3 4 5 6 7 8 9 10 

1 1.645 0.455 0.293 0.211 0.162 0.129 0.106 0.088 0.074 0.062 
2 0.645 0.303 0.219 0.168 0.134 0.109 0.091 0.076 0.064 
3 0.396 0.227 0.174 0.139 0.114 0.094 0.079 0.067 
4 0.285 0.182 0.145 0.118 0.098 0.082 0.069 
5 0.223 0.152 0.124 0.103 0.086 0.073 
6 0.184 0.130 0.108 0.091 0.077 
7 0.157 0.115 0.096 0.081 
8 0.138 0.103 0.087 
9 0.124 0.093 
10 0.113 



Table B.3(b) 

Mea.n va.lues of the order statistics 

m(l) m(22 m(32 m(4) m(&2 
-3.285 -2.250 -1.713 -1.340 -1.048 

m(62 m(72 m(82 m(92 mpo2 
-0.802 -0.585 -0.387 -0.201 -0.021 

Table B.4(a) 

The covaria.nce matrix of order statistics for n = 8, Z ..... N(O, 1). 

1 
2 
3 
4 
5 
6 
7 
8 

1 2 3 4 5 
0.373 0.186 0.126 0.095 0.075 

0.239 0.163 0.123 0.098 
0.200 0.152 0.121 

0.187 0.149 
0.187 

Table B.4(b) 

Mean va.lues of the order statistics 

-1.4236 -0.85224 -0.4728 -0.1525 

m(4+1c) = -m(4-Ic+l), k = 1,2,3,4 

Table B.5(a) 

6 7 
0.060 0.048 
0.079 0.063 
0.098 0.079 
0.121 0.098 
0.152 0.123 
0.200 0.163 

0.239 

The covariance matrix of order statistics for n = 10, 

i 1 2 3 4 5 6 7 

1 0.344 0.171 0.116 0.088 0.071 0.058 0.049 
2 0.214 0.147 0.112 0.090 0.074 0.062 
3 0.175 0.134 0.108 0.089 0.075 
4 0.158 0.128 0.106 0.089 
5 0.151 0.126 0.106 
6 0.151 0.128 
7 0.158 
8 
9 
10 

8 

0.037 
0.048 
0.060 
0.075 
0.095 
0.126 
0.186 
0.373 

Z ..... N(O,I). 

8 9 

0.041 0.034 
0.052 0.043 
0.063 0.052 
0.075 0.062 
0.089 0.074 
0.108 0.090 
0.138 0.112 
0.175 0.147 

0.214 

197 

10 

0.027 
0.034 
0.041 
0.049 
0.058 
0.071 
0.088 
0.116 
0.171 
0.344 
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Table B.5(b) 

Mean values of the order statistics 

met) m(2) m(3) m(4) mOl) 

-1.5388 -1.0014 -0.6561 -0.3758 -0.1227 

m(HAo) = -m(5-Ao+I), k = 1,2,3,4,5 

Table B.6(a) 

The covariance matrix of order statistics for n = 15, r = 10, Z .-v N(O, 1). 

1 2 3 4 5 6 7 8 9 10 
1 0.301 0.148 0.101 0.077 0.063 0.053 0.45 0.040 0.035 0.031 
2 0.179 0.122 0.094 0.076 0.064 0.055 0.048 0.043 0.038 
3 0.141 0.108 0.088 0.074 0.064 0.056 0.049 0.044 
4 0.122 0.100 0.084 0.073 0.064 0.056 0.050 
5 0.112 0.095 0.082 0.071 0.063 0.056 
6 0.106 0.091 0.080 0.071 0.063 
7 0.103 0.090 0.080 0.071 
8 0.102 0.090 0.080 
9 0.103 0.091 
10 0.106 

Table B.6(b) 

Mean values of the order statistics 

met) m(2) m(3) m(4) m(lI) m(6) m(7) m(8) 

-1.736 -1.248 -0.948 -0.715 -0.516 -0.335 -0.165 -0.000 

For m(8+Ao) = -m(8-Ao" k = 1,2,3,4,5,8,7 



Appendix C: The Laplace 
Transform 

The Laplace transform1 1I"(S) of a nonnegative function g(t) is defined as 

1I"(s) = 100 e-stg(t)dt. 

1I"(S) g(t) 

1 e->"s (G.l) --
s+). 
p,/s p, (G.2) 

1 e- t / B /a (G.3) 
1 +as 

1 (e"t - l)/a (G.4) 
s(s - a) 

1 
tetB (G.5) 

(s - a)2 

1 eBB _ ebs 
(G.6) (s _ a)(s _ b)' a I- b a-b 

s 
(1 + as)eBS (G.7) 

(s - a)2 

s aeBB _ beb. 
(G.8) 

(s - a)(s - b) a-b 

c~sr 
).k Sk-le->"s 

(G.9) 
(k - I)! 

1 (e - b)eBB + (a - e)esb + (b - a)eSC 
(G.IO) (s - a)(s - b)(s - e) (a - b)(a - e)(e - b) 

lreproduced from Gertsbakh (1989, p. 281)by courtesy of Marcel Dekker Inc 



Appendix D: Probability 
Paper 

D.t. NORMAL PROBABILITY PAPER 

Normal Probability Paper 
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Below is the Mathematica code for producing normal paper and for plotting 
on it. Data processing using normal paper is described in Example 3.2.2. 

In[2141:= Needs ["Statisties 'ContinuousDistributions '''I 
Needs ["Graphies 'MultipleListPlot '''I 
dist = NormalDistribution[O, 1]; 

y=Quantile[dist, 0.99] +2.326; 

tn = {3, 14, 25, 38, 40, 51, 66}; 

(*eomplete observations*) 

nobsn = 10; (*the total number of pobservations*) 

(*+++++++++++++++++++++++++++++++++++++++++++++*) 

tn = Sort[tn] ; 

r = Length[tn] ; 

For [i = 1, i < r + 1, i + +, d1 [i] = tn [ [i] ] ; 

d2[i] = 2.326 + Quantile[dist, (i-0.5) /nobsn]]; 

xydatan= Table[{d1[i], d2[i]}, {i, 1, r}]; 

piet1 = ListPlot[xydatan, 

AspeetRatio ... 1, PlotStyle ... PointSize[O. 02] , 

PlotRange ... {{O, 100}, {O, 4. 652}} , 

GridLines ... {Automatie, 

{O.OO, 0.272, 0.575, 0.771,0.921,1.044, 

1.2896, 1.326, 1.486, 1.651, 1.8016, 

1.941,2.073,2.2,2.326, 

2.452,2.579,2.711,2.850,3.00,3.168,3.362, 

3.608,3.731,3.881, 4.077, 4.380, 4.652}}, 

Ticks ... {Automatie, {{0.272, 0.02}, {0.575, 0.04}, 

{0.771, 0.06}, {0.921, 0.08}, {1.044, 0.10}, 

{1.2896, 0.15}, {1.484, 0.20}, {1.651, 0.25}, 

{1.8016, 0.30}, {1.941, 0.35}, {2.073, 0.40}, 

{2.2, 0.45}, {2.326, 0.50}, 

{2.452, 0.55}, {2.579, 0.60}, 

{2.711, 0.65}, {2.85, 0.70}, 

{3.00, O.75}, {3.168, O.80}, 

{3.362, 0.85}, {3.608, O.90}, {3.731, O.92}, 

{3.881, 0.94}, {4.077, O.96}, 

{4 .380, O. 98}, {4. 652, O. 99}}}, 

PlotLabel ... FontForm["Normal Probability Paper \n", 

{"Times-Bold", 12}]] 
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D.2. WEmULL PROBABILITY PAPER 

Weibull Probability Paper 

o . 99 c··················,···· ..... , T ····rr . .... ... ... .- ......... ········rrr 
~:~:~--_+--+-+_~~_{~_++. ----1_-1-__ ~ __ r __ -__ -__ r __ ~_~_H_-__ -__ -__ -__ ~ __ -__ -_~ __ -_~_~_+-+ __ ++_~~ 
O.94r----+--+-~r+~·~'+---~--~~~rrHH----~--r_~_+++~ 
o 0 ~~ ~-::::.---::::. ... ---::::.---1=--::::.-+=+=+++-P-1-+--::::.----::::.-=t--::::.--:=j-::::.--::j:---::::..---:=j--.. ~--::tt1::::.----::::.----::::.---:=j---~-===+=+:t=1=tt:t::1 

i i ! 

o Ö ~~ 1- .......... +·········1++ I····-l---'=~+== =~-= .... ... ......~===~-_-r:= -fT-i 
--I-I---t--I-Hr-ti-

0.7r----+--+-~r+~~----~~~--~~H_--~r_~_+~~+H 

0.63. 2 ~==t=T$ffim====F=F1==:ttl=tt====1=1=tta·· =tt1 ...... , .. o 61-·· ······1····· f" + 
I· + ........ +++ ............................. - ............ -... -.... - ... .. ··················1····· .. ~. 

o ~ 4 ~ _____ ___ __ r___++t+-_··.·_-_-_-_-t-._-__ -+i _-+.-.. __ -+-++-H--------- -·~1_t--~~H: 

0.4~--_+--+_+_r+~~----1__1~--~~H---~r_~-+~+++H 

0.35 I+++·H ---- .. --.. -- ---.. ----+----,------+ .. ----- --- -+--j--i--++--I 

0.31-····················· +··-········f++·····~ li++·························+ 

0.25r_--_+--+_+-r+~~----+-_1~--~~H---~r_~-+~+++H 

o . 2 1-··············+······1···········+··+-+ ·······························--··t-··-t· j 

o . 15 1-..... .... ..+-...... .. + ... +-++ +.+ ++ ................. "-.... j-..j. Ijt 

i 
O.lr----+--+-+-r+~I~+----+--~~~-rrK----~~r_~-+++~ 

I I 
0.06r----t---+-+-r+~-+----+__1_1--~~~,----~~r-~-+-+~ 

I 
·l---------- -- ----j .. + +-++-1 

I 
2 4 6 S 10 20 40 60 smoo 200 400 600 1000 



204 APPENDIX D: PROBABILITY PAPER 

Below is the Mathematica code for producing Weibull paper and for plotting 
on it. Data processing using Weibull paper is described in Example 3.2.1. 

N8eds["Graphics'Multip18ListPlot'"] 

tw= {2.25, 6.7, 37.6, 85.4, 110}; 

(*comp18t8 obs8rvations*) 

nobsw = 7; (*th8 total number of pobs8rvations*) 

(*+++++++++++++++++++++++++++++++++++++++++++++*) 

a = 0; c = 2 . 302; d = 4. 605; 8 = 3. 9; 

tw = Sort[tw] ; r = Length[tw] ; 

For[i=l, i<r+1, i++, d1w[i] =a+Log[tw[[i]J); 

d2w[i] =3.9+Log[-Log[1- (i-0.5) /nobsw]]]; 

xydataw = Tab18[ {d1w[i] , d2w[i]}, {i, 1, r}]; 

pict1 = ListPlot [xydataw, AspectRatio .... 1, 

PlotSty18 .... PointSiz8[0. 02] , 

PlotRang8 .... {{O, Log[1000] +0.002}, {-3.9+8, 1.527+e}}, 

GridLines -) {{O, 0.693, 1.099, 1.386, 1.609, 1.791, 1.946, 

2.079,2.2, c, 0.693+c, 1.099+c, 1.386+c, 

1.791+c, 1.946+c, 2.079+c, 2.2+c, d, 0.693+d, 

1.099+d, 1.386+d, 1.609+d, 1.791+d, 1.946+d, 

2.079+d, 2.2+d, 2.302+d}, 

{O, -3.2+3.9, -2.78+3.9, -2.25+8, -1.82+8, 

-1.5+8, -1.245+e, -1.031 +e, -0.842+8, 

-0.672+8, -0.514+8, -0.366+8, -0.225+8, 

-0.087+8, O.OO+e, 0.0486+e, 0.186+8, 

0.327+3.90,0.476+8, 0.640+e, 0.834+8, 0.926+8, 

1.034 + e, 1.169 + e, 1.364 + 3.9, 1.527 + 8}}, 

Ticks-> {{{0.683, 2}, {1.38, 4}, {1.791, 6}, {2.079, 8}, 

{2.302, 10}, {0.683+2.3, 20}, {1.38+2.3, 40}, 

{1.791+2.3, 60}, {2.079+2.3, 80}, {4.605, 100}, 

{0.683+4.605, 200}, {1.38+4.605, 400}, 

{1.791+4.605, 600}, {6.908, 1000}}, 

{{O, 0.02}, {0.7, 0.04}, {-2.78+e, 0.06}, 

{-2.25+8, 0.10}, {-1.B17+8, 0.15}, {-1.500+8, 0.20}, 

{-1.246+8, 0.25}, {-1.031+8, 0.3}, {-0.842+8, 0.35}, 

{-0.672+3.9, 0.4}, {-0.514+e, 0.45}, {-0.366+8, 0.50}, 

{-0.087+8, 0.60}, {0.00+8, 0.632}, {0.186+e, 0.70}, 

{0.476+e, 0.80}, {0.64+8, 0.B5}, {0.B34+e, 0.90}, 

{0.926+e, 0.92}, {1.034+8, 0.94}, {1.169+e, 0.96}, 

{1.364+8, O.98}, {1.527+e, 0.99}}}, 

PlotLabel -) FontForm["W8ibull Probability Plot \n", 

{"Times-Bold", 12} J) (*To g8t the W8ibull 

paper without ploted points, put a=10*) 



Appendix E: Renewal 
Function 

Table E.1 

The renewal function m(t) for F(t) = 1 _ e- tß 

t ß = 1.5 ß=2 ß=2.5 ß= 3 ß=3.5 ß=4 
0.05 0.011 0.002 0.001 0.000 0.000 0.000 
0.10 0.031 0.010 0.003 0.001 0.000 0.000 
0.15 0.057 0.022 0.009 0.003 0.001 0.001 
0.20 0.088 0.039 0.018 0.008 0.004 0.002 
0.25 0.122 0.061 0.031 0.016 0.008 0.004 
0.30 0.159 0.087 0.048 0.027 0.015 0.008 
0.35 0.199 0.118 0.070 0.042 0.025 0.015 
0.40 0.241 0.152 0.097 0.062 0.040 0.025 
0.45 0.284 0.190 0.129 0.088 0.059 0.040 
0.50 0.330 0.231 0.165 0.118 0.085 0.061 
0.55 0.377 0.275 0.205 0.155 0.116 0.088 
0.60 0.426 0.322 0.250 0.196 0.155 0.122 
0.65 0.475 0.371 0.298 0.244 0.200 0.164 
0.70 0.525 0.422 0.350 0.296 0.252 0.214 
0.75 0.577 0.474 0.405 0.352 0.309 0.273 
0.80 0.629 0.528 0.462 0.412 0.373 0.338 
0.85 0.681 0.583 0.520 0.475 0.440 0.410 
0.90 0.734 0.640 0.580 0.540 0.511 0.487 
0.95 0.788 0.696 0.641 0.606 0.583 0.563 
1.00 0.841 0.754 0.703 0.672 0.655 0.645 



References 

Abernethy, R.B., Breneman, J.E., Medlin, C.H. and G.L. Reinman. 1983. 
Weibull Analysis Handbook. Air Force Wright Aeronautical Laboratories Tech­
nical Report AFWAL-TR-83-2079. 

Aitchison, J. and J.A.C. Brown. 1957. The Lognormal Distribution. Cambridge 
University Press, New York and London. 

Anderson, T.W. 1984. An Introduction to Multivariate Statistical Analysis, 2nd 
ed. New York: Wiley. 

Andronov, A.M. 1994. Analysis of nonstationary inifinite-linear qeueing system. 
Automat. Control Comput. Sei., 28, 28-33. 

Andronov, A.M. and I. Gertsbakh. 1972. Optimum maintenanee in a certain 
model of aceumulation of damages. Engrg. Cybem., 10(5),620-628. 

Artamanovsky, A.V. and Kh.B. Kordonsky. 1970. Estimate of maximum like­
lihood for simplest grouped data. Theory Probab. Appl., 15, 128-132. 

Arunkumar, S.A. 1972. Nonparametrie age replacement. Sankh1Jii A, 34, 251-
256. 

Bailey, R. and B. Mahon. 1975. A proposed improved replacement poliey for 
army vehicles. Oper. Res. Quart. 26,477-494. 

Barlow, R.E. 1998. Engineering Reliability. Philadelphia: Society of Industrial 
and Applied Mathematics. 

Barlow, R.E. and A. MarshalI. 1964. Bounds for distributions with monotone 
hazard rate, I and II. Ann. Math. Statist., 35, 1234-1274. 

Barlow, R.E. and F. Proschan. 1975. Statistical Theory of Reliability and Life 
Testing. New York: Holt, Rinehart and Winston. 

Bellman, R.E. 1957. Dynamic Programming. Princeton, NJ: Prineeton Univer-



208 REFERENCES 

sity Press. 

Burtin, Yu. and B. Pittel. 1972. Asymptotic estimates of the reliability of a 
complex system. Engrg. Cybem., 10(3), 445-451. 

Cox, D.R. and P.A.W. Lewis. 1966. The Statistical Analysis 0/ Senes 0/ 
Events. London: Chapman and Hall. 

Crowder, M.J., Kimber, A.C., Smith, R.L. and T.J. Sweeting. 1991. Statistical 
Analysis 0/ Reliabilit1l Data. New York: Chapman and Hall. 

DeGroot, M. H. 1970. Optimal Statistical Decisions. McGraw-Hill Company, 
New York. 

Devore, J. L. 1982. Probability and Statistics /or Engineerin9 and the Sciences. 
BrooksjCole Publishing Company, Monterey, California. 

Dodson, B. 1994. Weibull Analysis. ASQC Quality Press, Milwaukee, Wiscon­
sin. 

Elperin, T. and I. Gertsbakh. 1987. Maximum likelihood estimation in a 
Weibull regression model with type I censoring: A Monte Carlo study. Comm. 
Statist., Simulation Computat., 18,349-372. 

Elperin, T., I. Gertsbakh and M. Lomonosov. 1991. Estimation of network 
reliability using graph evolution models. IEEE 7rans. Reliab., 40(5), 572-581. 

Elsayed, E.A. 1996. Reliabilitll Engineering. Addison Wesley Longman, Inc. 
Reading, MA. 

FeUer, W. 1968.Introduction to Probability Theory and Its Applications, Vol. 1, 
3rd ed. New York: Wiley. 

Fishman, G.S. 1996. Monte Carlo: Concepts, Algorithms and Applications. New 
York: Springer. 

George, L., H. Mahlooji and Po-Wen Hu. 1979. Optimal replacement and build 
policies. In Proceedings 1979 Ann. Reliability and Maintainability Symposium. 
New York: Institute of Electrical and Electronic Engineers. 

Gertsbakh, I. 1972. Preventive maintenance of objects with multi-dimensional 
state description. Engrg. Cybem., 10 No. 5,91-95 (in Russian). 

Gertsbakh, I. 1977. Models 0/ Preventive Maintenance. North-Holland, Amster­
dam-New York-Oxford. 

Gertsbakh, I. 1984. Optimal group preventive maintenance of a system with 



209 

observable state parameter. J. Appl. Prob., 16,923-925. 

Gertsbakh, L 1989 .. Statistical Reliability Theory. New York: Marcel Dekker. 

Gertsbakh, L and Kh. Kordonsky. 1969. Models of Failure. Berlin Heidelberg 
New York: Springer. 

Gertsbakh, Land Kh. Kordonsky. 1994. The best time scale for age replace­
ment. Internat. J. Reliab., Quality Safety Engrg. 1,219-229. 

Gnedenko, B.V., Yu.K. Belyaevand A.D. Solovyev. 1969. Mathematical Meth­
ods in Reliability Theory. New York: Academic Press. 

Hastings, C. 1969. The repair limit replacement method. Oper. Res. Quart., 
20, 337-350. 

Johnson, R.A. and D.W. Wiehern. 1988. Applied Multivariate Statistical Anal­
ysis, 2nd ed. Prentice Hall, Englewood Cliffs, New Jersey 07632. 

Kaplan, E.L. and P. Meier. 1958. Nonparametrie estimation from incomplete 
observations. J. Amer. Statist. Assoe., 53,457-481. 

Khinchine, A.Ya. 1956. Streams ofrandom events without aftereffect. Theory 
Probab. Appl., 1, 1-15. 

Kordonsky, Kh.B. 1966. Statistieal analysis of fatigue experiments. Private 
communication, Riga. 

Kordonsky, Kh.B. and L Gertsbakh. 1993. Choiee of the best time scale for 
system reliability analysis. European J. Oper. Res., 65, 235-246. 

Kordonsky, Kh.B and L Gertsbakh. 1997. Fatigue crack monitoring in parallel 
time scales. Proceedings of ESREL, Lisboa, pp. 1485-1490. Kluwer Academic 
Publishers, Dordrecht Boston London. 

Kordonsky, Kh.B and L Gertsbakh. 1998. Parallel time scales and two-dimensional 
manufacturer and individual customer warranties. IIE Transactions, 30, 1181-
1189. 

Kovalenko, LN., N.Yu. Kuznetsov and Ph.A. Pegg. 1997. Mathematical Theory 
of Reliability of Time-Dependent Systems. New York: Wiley. 

KuHback, S. 1959. Information Theory and Statistics. New York: Wiley. 

KuHdorf, G. 1961. Estimation from Grouped and Partially Grouped Data. New 
York: Wiley. 

Lawless, J.F. 1982. Statistical Models and Methods for Lifetime Data. New 



210 REFERENCES 

York: Wiley. 

Lawless, J.F. 1983. Statistical methods in reliability. Technometries, 25,305-
316. 

Lieblein, J. and M. Zelen. 1956. Statistical investigation of the fatigue Ufe of 
deep groove ball bearings. J. Res. Nat. Bur. Stand., 57,273-316. 

Mann, N.R. and K.F. Fertig. 1973. Tables for obtaining confidence bounds and 
tolerance bounds based on best linear invariant estimates of parameters of the 
extreme value distribution. Technometries, 17,87-101. 

O'Connor, P.D.T. 1991. Practical Reliability Engineering, 3rd ed. New York: 
Wiley and Sons. . 

Okumoto, E. and E.A. Elsayed. 1983. An optimum group maintenance policy. 
Naval Res. Logist., 30,667-674. 

Rappaport, A. 1998. Decision Theory and Decision Behaviour. McMillan Press. 

Redmont, E.F., A.H. Christer, S.R. Ridgen, E. Burley, A. Tajelli and A. Abu­
Tair. 1997. OR modeling of the deterioration and maintenance of concrete 
structures. Eropean. J. Oper. Res., 99, 619-631. 

Ross, S.M. 1970. Applied Probabilit1l Models with Optimization Applications. 
San Francisco: Holden Day. 

Ross, S.M. 1993. Introduction to Probability Models. 5th ed. New York: Aca­
demic Press. 

Sarhan, A.E. and B.G. Greenberg. 1962. The best linear estimates for the 
parameters of the normal distribution. In Contributions to Order Statisticsj 
A.E. Sarhan (ed.). New York: Wiley. 

Seber, G.A.F. 1977. Linear Regression Analysis. New York: Wileyand Sons. 

Stoikova, L.S. and I.N. Kovalenko. 1986. On certain extremal problems of 
reliability theory. Tekkn. Kibemetica, 6, 19-23 (in Russian). 

Taylor, H.M. and S. KarUn. 1984. An Introduction to Stochastic Modeling. 
New York: Academic Press. 

Usher, J. S., A.H. Kamal, and W.H. Syed. 1998. Cost optimal preventive 
maintenance and replacement scheduling. IIE 7hJns., 30, 1121-1128. 

Vardeman, S. B. 1994. Statistics /or Engineering Problem Solving. Boston: 
PWS. 

Williams, J.H., A. Davies and P.R. Drake. 1998. Condition-Based Maintenance 



211 

and M achine Diagnostics. London: Chapman and Hall. 

Zhang, F. and A. K.S. Jardine. 1998. Optimal mamtenance models with mini­
mal repair, periodic overhaul and complete renewal. [JE 'Irans., 30, 1109-1119. 



G lossary of Notation 

c.dJ. Cumulative distribution function 

dJ. Density function 

Li.d. Independent identically distributed 

r.v. Random variable 

DFR Decreasing failure rate 

ER Emergency repair 

IFR Increasing failure rate 

NHPP Nonhomogeneous Poisson Process 

PM Preventive maintenance 

SMP semi-Markov process 

X'" F{x) 

X'" f(x) 
T'" B{n,p) 

T '" Geom(p) 
T'" Exp{A) 

T '" Exp{a, A) 

T'" Extr{a, b) 

T '" Gamma{k, A) 

T '" logN{I',O') 

T '" N{I', 0') 

T '" P{I') 
T",U(a,b) 

T",W{A,ß) 
E[X] 

X has c.dJ. F{x). 

X has d.f. f(x). 
T has binomial distribution with parameters n and p. 

T has geometric distribution with parameter p. 

T has exponential distribution with parameter A. 

T has exponential distribution with parameters a, A. 

T has the extreme-value distribution with parameters a, b. 

T has gamma distribution with parameters k, A. 

T has lognormal distribution with parameters 1',0'. 

T has normal distribution with parameters 1',0'. 

T has Poisson distribution with parameter 1'. 

T is uniformly distributed on [a, b]. 
T has Weibull distribution with parameters A, ß. 
The mean (expected) value of r.v. X. 
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Var[X) 
c.tJ.[X) 

tp 

~(t) 

h(t) 

met) 

m'et) 

10gb 

A(t) = l t ~(tJ)dtJ 

GLOSSARY OF NOTATION 

The variance of r.v. X. 

The coefficient of variation of X, Le. 

c.tJ.[X) = JVar[X)/E[X). 
The p quantile, Le. P(X ~ t p ) = p. 

Event rate in an NHPP: 

~(t)Ll ~ P(one event in (t, t + Ll». 

Failure (hazard) rate: h(t) = !(t)/(1 - F(t». 

Renewal function. 

RenewaI density, Le. m'(t) = dm(t)/dt. 

NaturaIlogarithm of b. 

CumuIative event rate in an NHPP. 

x< y, where x = (Xl, X2, ... , Xn), y = (1/1, ... , 1/n), means that Xi ~ 1/i, i = 1, ... , n, 
and there is one coordinate j for which xi < 1/i. 
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additive costs 101 
age replacement 13,84,102,103,105,168, 

169 
availability criterion 85 
best time scale 180 
bounds 91 
cost discounting 92 
cost-type criterion 86 
efficiency 144, 175 
failure probability 149 
fatigue test data 147 
mean time to failure 84 
of a chemical equipment 85 
optimal time scale 142 
qualitative investigation 87 

age replacement at quantile 158 
aging 26 
availability 8,10 
average risk 90 

backward motion algorithm 182 
Barlow -Proschan bounds 14 
Barlow's index of importance 75 
basic sequence 99 
Basyesian risk 90 
Bayes theorem 152, 153 
Bellman's optimality principle 181 
Bellman's principle 114 
best scalarization 131,132 
best time scale 139,140 

definition 140 
binary system (component) 1 
binomial approximation 128 
binomial distribution 19,128 
Birnbaum importance index 14 
Birnbaum's importance measure 75 
block replacement 78, 110, 170 

qualitative investigation 87 

bounds based on first two moments 
29 

bridge structure 7 
Burtin-Pittel approximation 36,40 

Cauchy-Schwarz inequality 27 
censoring 

by a constant 52 
by an order statistic 51 
noninformative 52 
type-I 52 
type-II 51 

Chapman-Kolmogorovequation 116 
coefficient of variation 164 

of the gamma distribution 22 
comparison of age and block mainte­

nance 88 
component 5 

without renewal 10 
component reliability 6, 11 
condition-based maintenance 109 
confidence intervals 

large sampie 62,63 
contamination 

of Weibull population 89 
contamination by early failures 89 
contamination by mixture 39 
coordination of maintenance actions 

97 
cost functional 96 

bounds based on moments 96 
costs in different time scales, compa-

rison 144 
counting random process 17 
criticallevel 110 
cumulative event rate 113, 187 
cut set 4 
cut vector 4 
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damage counters 140 
decreasing failure rate (DFR) 26 
defective rate 127 
degradation factor 83 
diagnostic parameter 109 
discriminant analysis 131 
Dynamie programming 114 

recurrent relationship 155 

emergency repair (ER) 78 
empirieal c.dJ. 45 
empirical distribution function 145,146 
engine replacement 101 
equipment overhaul 106 
equivarianee 59 
expectation-maximization algorithm 56 
exponential contamination 105 
exponential distribution 20 

estimation 51 
location parameter 23 
mean 21 
memoryless property 21 
support 50 
varianee 21 

extreme-value family 46 

failure rate 25, 193 
fatigue cracks 148 
fatigue test data 141 
Fisher observed information matrix 

62 
Fisher's ratio 134 

Gamma distribution 20 
density 21 
mean 21 
normal approximation to 23 
variance 21 

generating function 189 
geometrie distribution 24, 128 

mean 21 
variance 21 

grouped data 53 

hazard plot 168 
hazard rate 25 
health index 131 
hypergeometrie distribution 128 

INDEX 

ineomplete data 51,57 
inereasing failure rate (IFR) 26 
information update 151,152 
initial failure 111 
inspection 

periodic 104 
inspection period 

chemical defense equipment 103 
intensity function 

log-linear form 190 
intensity function of NHPP 187 
intermediate state 108 
internal efficiency measure 144 

k-out-of-n system 2 
Kaplan-Meier estimate 146 
Kaplan-Meier estimator 42 

Laplace transform 122, 185 
learning 152 
lifetime 41 
lifetime e.v. 141 
likelihood ratio 134 
limiting probability of a SMP 118 
linear combination of order statistics 

57 
linear regression 58 
loeation-scale family 44, 57 
lognormal density 31 

faHure rate 32 
threshold of sensitivity 32 

lognormal distribution 148 
density 30 
probability paper 46 
three-parameter 31 

maintenance deeisions 131 
maintenance period 

least common multiple 98 
Markov chain 116 

mean return time 117 
one-step transition probabilities 

116 
stationary probabilities 117 
transition probabilities 116 

Markov process 
sampie path 122 

Markovian poliey 110 
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Markovian property 116 
Markovian-type strategies 88 
M athematica 

Descriptive Statistics 180 
finding maximum 167 
finding MLEs 54 
investigation of failure rate 163 
maximization of the likelihood 

166 
Nlntegrate operator 179 
Normal Distribition 177 
numerical integration 73 
optimal repair policy 83 
using for finding the optimal age 

89 
maximal reward 109 
maximum likelihood 50 

equations 50 
estimation 50 
invariance principle 51 

maximum likelihood estimation 
of a quantile 51 
intensity function 190 

maximum likelihood method 50 
maximum of independent r.v.s 11 
mean discounted reward 154 
mean long-run reward per unit time 

129 
mean one-step sitting time 118 
mean return time of a SMP 119 
mean reward per unit time in SMP 

120 
mean-square error of an estimator 59 
minimal c.v. scale 140 
minimal cut 4 
minimal cut set 4 
minimal partial repair 177 
minimal path 3 
minimal path set 4 
minimal repair 81,98,103 

partial renewal 106 
random repair period 96 

minimal repair model 
complete renewal 83 

minimal repair with partial renewal 
82 

minimal variance unbiased estimators 
58 
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minimax principle 91 
minimum of independent r.v.s 11 
minimum-maximum calculus 11 
minimum-type contamination 175 
mixture of distributions 27 
mixture of exponents 175 
monotone system 

nonrenewable components 36 
multi-dimensional state parameter 131 
multielement system 96 
multiline system 109, 178 

Neyman-Pearson theorem 134 
NHPP 

confidence intervals for the in-
tensity 192 

generating function 188 
maximum likelihood 190 
mean number of events 190 
mean value function 187 
observed Fisher inforrmation ma-

trix 192 
parameter estimation 173,190,191 
parameter of 189 
Weibull-form intensity function 

192 
nonhomogeneous Poisson process 103, 187 
nonparametrie age replacement 145 
nonperiodic Markov chain 117 
normal c.d.f. 23 
normal distribution 

faHure rate 30 
Gamma approximation 30 
me an 30 
quantile 44 
variance 30 

one-dimensional state parameter 131 
one-step transition time 118 
operation-repair cycle 109 
operational time 79,97 
opportunistic maintenance 97 
opportunistic replacement 73, 102, 122 

direct costs 97 
set-up costs 97 
critical age 123 
optimization algorithm 99 

optimal inspection period 183 
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optimal inspection policy 160 
optimallocation of PM instants 112 
optimal stopping rule 127 
optimal time scale 141 

algorithm for finding 145 
optimality principle 182 
optimization algorithm 99 
order statistics 178 
overhaul 83 

p quantile 44, 181 
parallel connection of series systems 

3 
parallel system 2 

faHure rate 39 
lifetime distribution 11 

partial renewal 106 
path set 4 
path vector 4 
periodic replacement 102 
periodic group repair 80 
periodic maintenance 84 
periodic repair 103 
periodic replacement 78 
peventive maintenance 

parameter control 108 
pivotal decomposition 7,8,14 
pivotal quantity 60 
pivotals 

quantiles 61 
PM with learning 151 
Poisson distribution 19 

in aNHPP 189 
Poisson process 17,69 

as an approximation 24 
intensity function 32 
nonhomogeneous 32 
rate 18 

preventive maintenance 
efficiency 87 
many states 108 

preventive maintenance 
random choice of period 94 

preventive maintenance (PM) 78 
prior information 152 
prior probabilities 159 
prior/posterior probabilities 152 
probability balance equation 121 

INDEX 

probability of producing defective ar­
tide 127 

probability paper 44 
censored observations 49 

probability plot 146 
Product-limit estimator 43 

quantal response data 53 
quantal-type data 146 

random maintenance period 94 
random number of Li.d. r.v.s 24 
random sitting time in a SMP 118 
rate of mortality 25 
rate of occurrence (ROOF) 193 
recurrence relation 114 
regression method 84 
reliability of a dodecahedron network 

37 
reliability testing 51 
renewal density 72 
renewal function 68 

approximation 71 
bounds 71,170 
for Gamma 70 
for normal distribution 70 

renewal process 68 
alternating 74 

renewal process with rewards (costs) 
72 

renewal rate 69,72 
renewal theorem 69 
replacement at p quantile 181 
replacement policies 

comparison 73 
reward in SMP 119 
reward per unit time 127 
rewards, actual and "ideal" 156 
right-censored sampie 44,146 
rolling horizon 152, 155 

s-t connectivity 37 
scalarization, geometrie interpretation 

133 
scheduling maintenance 101 
Semi-Markov process 118 
series connection of parallel systems 

3 
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series system 2,23 
availability 9 
failure rate 28 
lifetime distribution 11 
reliabili ty 6 

spare parts 
optimal control 159 

states of the system 1 
stationaryavailability 8,9,14,74,79,104 
stationary importance measure 76 
stationary increments 17 
stationary renewal rate 74 
structure function 2,75 

representation 4 
survival probability 10,42 

life-table estimate 43 
variance estimate 44 

system 5 
system lifetime 14 

mean value formula 13 
system lifetime distribution 10 
system parameter control 108 
system reliability 6,8,10,14 

bounds 12 
system structure function 6,14 

t-distribution 60 
terminal failure 111 

threshold parameter 23 
time scale 

logarithmic change 46 
time scales 78 
time-dependent event rate 82 
total time on test 52 
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total time on test (TTT) 39 
transition rates of a Markov process 

120 
transition time in SMP 118 
two-state Markov process 160 

uncertainty in data 89,90 
up and down states 

variance--covariance matrix 58 

Weibull distribution 32,82,85 
approximation for small failure 

rates 37 
c.v. 34 
mean 33 
minimum-type scheme 35 
MLE of parameters 56 
renewal function 71 
threshold parameter 37 
variance 34 

Weibull probability paper 46 
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