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Preface 

 
Earth observation is currently a critical issue of worldwide interest. It is used to 

map the Earth, monitor the environment, manage our limited resources, and pre-
dict, record, and respond to global change and disasters. All space programs 
around the world have a significant component of Earth observation to accomplish 
the above objectives. For such scientific explorations, geospatial technology plays 
a core and fundamental role throughout the entire data acquisition, processing, in-
terpretation, and information extraction process. This rapid progression has driven 
geospatial technology into a transition period. On one hand, sensing technology 
provides abundant data with increasingly higher radiometric, spatial, spectral, and 
temporal resolutions. On the other hand, in terms of data processing and interpre-
tation techniques, various new developments are being introduced to geospatial 
technology from a number of related disciplines, including machine vision, pattern 
recognition, computational science, and applied mathematics. Driven by such new 
developments, the solutions to classical mapping-related tasks are moving towards 
higher level automation and resolution. In the meantime, a new, non-classical task 
is consequently emerging, which is meant to serve the public and decision-makers 
with all types of geospatial products, including data, information, and knowledge.  

The book covers a wide range of topics in Earth observation, which can be 
grouped into seven parts with a total of 19 chapters.  

Part I pertains to system, platform, sensor and sensor integration. The discus-
sion varies from space system (Chapter 1, Li), to aerial platform, in particular 
UAV (Chapter 2, Yan et al.) and mobile vehicles (Chapter 3, Li et al.), all of 
which utilize integrated sensors for Earth observation data collection at a different 
scale for a variety of applications, such as large scale topographic mapping and 
road surface evaluation. Chapter 1 also presents an overview on geospatial infor-
mation service as an extension to the conventional Earth observation tasks.  

Part II, consisting of Chapter 4 (Crespi et al.) and Chapter 5 (Yuan), deals with 
the geometric aspects of data processing in Earth observation. Both chapters dis-
cuss the principles of the physical model and the generalized or replace model, 
with the former more focused on satellite images while the latter is focused on 
both aerial and satellite images. Both chapters provide empirical examples with 
evaluation and comparison of the two types of models. Moreover, Chapter 4 pro-
vides numerical solutions to assure reliable results in sensor orientation.  

Part III concentrates on some physical aspects of remote sensing. Chapter 6 
(Liang et al.) presents algorithms for mapping all types of land surface radiative 
fluxes from MODIS data. The developed algorithms are evaluated by using well-
distributed global measurements over various land cover types at different eleva-
tions. Such a study is useful in driving high-resolution land ecosystem/carbon cy-
cle and hydrological models. Chapter 7 (Gens) starts with a concise overview on 
surface reflective and emissive properties, electromagnetic spectrum, energy-
matter interaction, and passive and active remote sensing. It then presents a wide 



range of vivid applications of remote sensing techniques, including urban areas, 
vegetation, biodiversity and coral reefs, geology and soils, water bodies, and 
cryosphere, some of which are further detailed in subsequent chapters.  

Part IV focuses on algorithms for remote sensing image classification and 
analysis. Chapter 8 (Waske et al.) is a review of classification methods, varying 
from classical and advanced individual classifiers to their combined use (multi 
classifiers). Such methods are used for the classification of SAR, multispectral, 
and hyperspectral images. The classification of multiple data sources such as opti-
cal images and LiDAR are also presented. Chapter 9 (Zhang and Zhong) discusses 
topics related to hyperspectral image analysis: feature selection, clustering (unsu-
pervised classification), and spectral unmixing. After a concise review of popular 
methods, the authors present a framework based on artificial immune systems as 
an alternative solution: the clonal selection approach is used for feature selection, 
while an artificial immune classifier is developed for hyperspectral images. The 
unmixing problem is formulated as a kernel-based least squares estimation.  Chap-
ter 10 (Han et al.) addresses the effect of resolution on image classification. Ver-
sions of Landsat TM and SPOT images under different aggregation rates are used 
for analysis and evaluation.  

Part V is composed of Chapters 11 and 12. The former (Chapter 11, Trinder 
and Sowmya) discusses automated feature extraction in photogrammetry from the 
machine learning point of view. A prototype tool is discussed and evaluated for 
road network extraction from remote sensing images. As for building extraction, 
the chapter presents a solution based on level set segmentation and Dempster-
Shafer fusion of multiple data sources. Chapter 12 (Lisini et al.) presents a frame-
work for image-based feature extraction for geospatial analysis. Results of road 
and building extraction from SAR, LiDAR, and optical images are presented; and 
such a framework is also used for automated SAR image registration and change 
detection as an alternative approach to the pixel-based method.  

Part VI extends the content of the book to web-based geospatial service. Chap-
ter 13 (Gong et al.) outlines the concepts and details the contents, concerns, stan-
dards, technologies, and design of a geospatial service web, a prototype for which 
is reported. Chapter 14 (Zhu et al.) discusses the selection and optimization of 
web services in terms of response time. The developed algorithm is able to deal 
with uncertainty in service response time, which makes the remotely sensed image 
processing service chain more reliable.  

Part VII consists of five chapters that primarily demonstrate various applica-
tions of the geospatial technology. Chapter 15 (Konecny) reports the challenges 
and start-of-the-art of cadastral mapping using integrated Earth observation tech-
niques, ranging from satellite, aerial, and terrestrial surveying to documentation 
using amateur handled cameras and GIS. Chapter 16 (Zhou) seeks an efficient and 
practical method to determine the spatio-temporal pattern of environmental 
change caused by land cover change by integrating multi-temporal and multi-scale 
remotely sensed data from various sources. It quantifies spatial pattern for analyz-
ing land cover changes through calculating the class-level landscape metrics of 
change trajectories. Water remote sensing is discussed in Chapter 17 (Chen and 
Yu). Starting with the effects of water body on electromagnetic radiation and its 

xii Preface



optical properties, this chapter discusses in situ and remote sensing measurements 
and atmospheric correction methods to acquire reliable and precise measurements. 
A variety of applications are also addressed, including oil spill detection, water 
depth, water temperature, and total suspended sediment concentration, colored 
dissolved organic matter concentration, chlorophyll-a concentration, primary pro-
ductivity estimation, and red tide detection. Case studies are presented to demon-
strate the performance of atmospheric correction and costal water environment 
management. Chapter 18 (Shan et al.) reviews the status of flood mapping in the 
USA and reports a case study in the state of Indiana. Temporal Landsat TM im-
ages are used to determine flood extent, while damages are estimated by jointly 
using crop and road GIS layers. A web-mapping service is used for public access 
and information dissemination. Chapter 19 (Zhang et al.) presents an overview of 
the role of Earth observation technology in the establishment of e-government and 
decision-making in China. The applications of such technology and developed 
systems in the recent Wenchuan earthquake (May 2008, China) are highlighted 
through slide identification, hazards assessment, and loss estimation. In addition, 
three intensive prototype systems and their associate studies are reported: the 
Flood Disaster Monitoring and Evaluation System for managing the recent floods 
and their mitigation; the Water Resources and Desertification Monitoring Analysis 
System, which provides related information services for the management and de-
cision-making of government; the West Development Information Service System 
that provides important social and economic development and resource informa-
tion for governments.  

As reflected from the above summary, geospatial technology has played multi-
ple roles in Earth observation, ranging from data acquisition, processing, analysis, 
information extraction, service, and decision-making. It became a key and indis-
pensible core component in Earth observation for sciences, economics, and home-
land security. It is unrealistic for one book of this size to cover all aspects of this 
technology, however, we attempted to select and organize the materials in such a 
way that the essential, fundamental methods and recent, promising developments 
in this and other related disciplines are covered. We also attempted to promote 
geospatial technology by including representative and influential applications and 
case studies that have broad impact.  

The book is primarily targeted to graduate students and professionals. It can be 
used as a reference to augment courses in remote sensing, geographic information 
systems, photogrammetry, and natural resources management. The resources pro-
vided in the book, such as reference to literatures, free and shareware, data ven-
dors or sources, and case studies are useful for both researchers and practitioners 
as well as administrators. We also expect the book to be introductory material to 
more advanced topics and future developments and applications. Finally, we wel-
come corrections, comments, and suggestions that would benefit the audience and 
improve our future endeavors.  
. 

      Deren Li (Wuhan) 
      Jie Shan (West Lafayette) 

      Jianya Gong (Wuhan) 
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Chapter 1 

AN OVERVIEW OF EARTH OBSERVATION AND 
GEOSPATIAL INFORMATION SERVICE 

Deren Li 

1.1 The Space-Air-Ground Borne Integrated Earth Observation 
System 

A great progress in Earth sciences in the past century is Earth Observation (EO) 
from space and storing, managing, and distributing remotely sensed data via net-
worked geographic information systems (GIS). Various topographic maps, the-
matic maps, ortho-images, and other products can be obtained from remotely 
sensed data by air-borne and space-borne remote sensing sensors within the elec-
tromagnetic spectrum, including visible, infrared, and microwave bands. Weather 
forecasts, natural resource exploitations, environmental monitoring, crop yield es-
timations, land use, land cover change, and prediction and prevention of natural 
hazards, such as sandstorms, droughts, floods, volcanoes, and earthquakes, can be 
carried out with Earth observation technology. New Earth observation technology 
improves the living standards of human beings and the development of social 
economy. It has contributed greatly to the sustainable development and research of 
Earth science. 

With the invention of airplanes by Wright Brothers in 1903, it was possible to 
take aerial photographs for various applications. Though the advent of the first ae-
rial camera was in World War I, modern earth observation did not start until 
1930s, when a large number of aerial photographs were collected and interpreted. 
After the launch of the first man-made satellite in 1957, the protocol for Earth ob-
servation was established. For the first time, human beings could observe the 
planet they have lived on for several millions of years. A variety of remote sensing 
platforms (Table 1.1), including space-borne, near space, air-borne, and ground-
based, allow observation from several thousands of meters to 40 thousands kilo-
meters above the Earth. Remote sensing technology is experiencing unprecedented 
changes, as shown by the following 5 features: 

 
1. Innovative sensors continue to be developed. While traditional frame 

cameras (B/W , color, color-infrared, and ultraviolet) are still widely used 
in remote sensing, new types of sensors, such as panoramic cameras, 
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2  Earth Observation Overview 

infrared radiometers, multispectral scanners, CCD linear scanners, 
microwave radiometers/scatterometers, laser altimeters and Lidar also 
come into use. These sensors acquire EO data in various bands of 
electromagnetic spectra, and recorded as hardcopy or softcopy for later 
use. 

Table 1.1 Remote sensing platforms 
Platforms Altitudes Applications 

Geostationary satellites 36,000-40,000 km EO for a given location 

EO satellites (Polar orbit) 500�1,000 km EO for a given period 

Space shuttles 

Or Space Lab 
240�350 km EO, space experiments 

Near space Boat 20-100 km EO for a given Location 

Tele-detection unmanned aircraft 100m�100 km inventory 

Super-altitude jets 10,000�12,000 m military reconnaissance 

Middle-low altitude airplane 500�8,000m aerial photogrammetry 

Aeroboat 500�3,000 m military reconnaissance 

Helicopter 100�3,000 m photogrammetry 

Tele-detection airplanes Less than 500 m photogrammetry 

Glider 50�500 m photogrammetry 

Balloons Less than 800 m inventory 

Ropeways 10�40 m heritages 

Cranes 5�50 m ground-truthing 

Mobile mapping vans 0�30 m ground-truthing 

 
2. Multi-scale image pyramids are created, providing EO data from coarse 

to fine resolution. Spatial resolution of satellite sensors ranges from 1.1 
km per pixel for NOAA AVHRR, 250 m per pixel for MODIS, 79 m per 
pixel for Landsat MSS, 30 m pixel for Landsat TM, 20~10 m per pixel 
for SPOT1-2, 18 m per pixel for JERS-1, 5.8 m per pixel for IRS-1C, and 
1 m, 0.61 m and 0.4 m per pixel for IKONOS, Quickbird and GeoEye-1. 
In addition, airborne and ground-based sensors can acquire images at a 
spatial resolutution of centimeters. Multi-temporal remote sensing data 
can be acquired over a given area. For instance, METEOSAT 
meteoroligical satellite revists every 30 minutes, while NOAA AVHRR 
revists twice a day. The temporal resolutions of other commonly used 
satellites are: 3 days for ERS-1, 26 days for SPOT, and 3 days for 
IKONOS in 1 meter resolution mode and 1.5 days in 1.5 resolution 
mode. Through multiple satellite constellations, the revisit interval can be 
reduced to a few hours. 
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3. Hyper-spectral remote sensing remains an active reseach and potential 
application field. Two trends could be observed in the past decade: one 
was to make use of a wider range of spectrum, and the other was 
concerned with the design of narrower bandwidths. For instance, the 
ETM+ (Enhanced Thematic Mapper) on board of Landsat 7 has a high 
resolution panchromatic band in addition to 7 multispectral bands used in 
the past sensors with wide field-of-view for oceanographic applications 
were developed. Presently, imaging spectrometers with spectral 
resolution less than 5 nm have been used, such as EO-1 from the USA.  

4. As active microwave sensors, the space- and air-borne SAR systems are 
very important because of their all-weather and all-time capabilities. The 
phase of the microwave return can be measured very accurately and thus 
travel path changes in wavelength of very small fractions can be detected. 
Interferometric SAR (InSAR), Differential InSAR (D-InSAR) and 
Permanent Scatters InSAR (PS-InSAR) are used for creating digital 
elevation models (DEMs) which determine terrain deformation and 
extract displacement information due to target motion with high accuracy. 

5. Multi-band and multi-polarization SAR as well as their integration can 
provide more and more information for atmosphere, oceanography and 
coastal zones, water resources and floods, forestry and agriculture, land 
resources and environment, hazards, and other applications. 
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Fig. 1.1 The cycle of EO data acquisition, processing, and applications 
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In summary, data acquisition from space is now featured with multi-platforms, 
multi-sensors, and multi-scale earth observation capabilities with hyper spectral 
resolution, high spatial resolution, and high temporal resolution.� In the future, 
multi-scale images will be acquired from space, near space, aerial, and ground 
platforms, using sensors covering a wide spectrum of ultraviolet, visible, infrared, 
microwave, laser radar, and terahertz with high spatial, spectral, and temporal 
resolutions. With the help of modern communication technology, a space-air-
ground-integrated EO sensor web can be formed with the capability of all-day and 
all-weather-operation. Figure 1.1 describes the cycle of EO data acquisition, proc-
essing, information extraction and applications, which are the main contents of 
this book. 

1.2 Grid Technology and Geospatial Data-Information-
Knowledge -Service Transformation 

1.2.1 Background 

Although much progress has been made in geospatial data acquisition and ap-
plications, the utilization of acquired spatial data is still at a low level, partially 
due to the fact that they are acquired and managed by independent public sectors, 
which provide individual services to particular users. The importance of Spatial 
Data Infrastructure (SDI) information sharing across different organizations has 
been recognized by both government agencies and private sectors. However, there 
is a lack of effective tools to mine potentially rich information from them. 

Geo-services aim at providing basic services to those who need them the most. 
These end users may be distributed geographically over different public sectors, 
and, in some cases, they may be distributed worldwide, such as the member coun-
tries of the Committee on Earth Observation Satellites (CEOS). Vögele et al. 
(2003) summarized the following 4 types of basic geo-services in the context of 
GeoShare Project carried out by the United Kingdom, Germany, Norway, and the 
Netherlands. 

Web Map Services (WMS): Web Map Services produce map renderings of 
geo-referenced data. It is important to note that a “map” in WMS is simply a vis-
ual representation of geo-data that does not contain the data itself. A map may be 
rendered by WMS in raster image format or as vector graphics in the Scalable 
Graphics and Computer Graphics Metadata File formats. The Web Map Services 
Specification is approved by Open GIS Consortium (OGC).  

Web Feature Services (WFS):  Web Feature Services provide an assessment 
to geospatial data stored in a geo-database through HTTP requests. The results of 
such requests are returned in GML format, which is a XML-based geospatial vec-
tor data exchange format. Like WMS, WFS implements an approved OGC  speci-
fication.  
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Geodatabases: Geodatabases contain geodata for meaningful WFS and WMS 
integration. Currently available geodatabases overcome the separation of geomet-
ric and attribute data, and the object-relational schema is much closer to OGC’s 
concept of geographic features.  

The intelligent category services (ICS): Intelligent Category Services play an 
important and central role in the GeoShare Network. It is used to manage the 
metadata descriptions of services, datasets, and data collections in the network. 
The ICS will thus provide a detailed inventory of all registered resources, and que-
ries to ICS are the basis for the retrieval and selection of task-specific data and 
services.  

In addition to web-services, there are many tools for LBS (Location based Ser-
vices) and MLS (Mobile Location Services) through mobile communication net-
works. Figure 1.2 shows the LBS configuration and application interfaces.  

 
 

Internet
TCP/IP

Desktop PC
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PDA

Pocket PC RadioTower

WAP Gateway WAP Server

Web Server

Map Server
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Database
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Fig. 1.2 System configuration of location based services 

At least, the following problems need to be solved in order to meet the basic 
pre-requisites of geo-services previously mentioned: 

 
1. The mechanism and approaches underlying intelligent services provided, 

including the modeling of intelligent services work flow, tasks allocation, 
intelligent search, and system structure of intelligent services platform 

2. The standards of spatial information services and interoperability 
3. The semantic model of spatial information services, which includes on-

tology based semantic model and spatial information service model 
4. The implementation of spatial information services on different termi-

nals, such as notebook computers, mobile phones, PDAs, TV sets, tele-
phones, desktop computers, etc. 
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The central component in such Geo-Services is the integration of spatial infor-
mation systems with computer networks. The information grid has been the main-
stream technique in the third generation Internet. Spatial information grid aims at 
solving the problems listed above by the integration of grid technology and spatial 
information technology. This is the main trend of spatial information for the next 
20 years. The GEOSS 10 Year Implementation Plan approved at the Ministerial 
Summit (Brussels, 2005), attended by more than 50 countries and organized by 
GEO, is a good example of this. 

1.2.2 Grid technology: The Third Surge of the Internet 

Grid technology has emerged as an important new field, distinguishing itself 
from conventional distributed computing by its focus on large-scale resource shar-
ing, innovative applications, and, in some cases, performance orientation (Foster 
and Kesselman 1988).  

Three hierarchies can be defined in grid: computing grid, information grid, and 
knowledge grid. Computing grid is the fundamental layer, providing infrastructure 
to higher levels, namely, information grid and knowledge grid. Information grid 
will provide end users with an intelligent processing platform for removing iso-
lated information islands, so that users can acquire, process, and distribute infor-
mation easily. Knowledge grid will provide end users an intelligent processing 
platform for removing isolated knowledge islands for users to acquire, process, 
and distribute knowledge easily.  

Current research on grid technology mainly focuses on grid computing, infor-
mation grid, and grid services. Grid computing is a virtual and high-performing 
computational environment by connecting various computers (including computer 
groups), databases, mass storages, and peripheral equipment, which are distributed 
geographically. Its applications include distributed computing, high throughput 
computing, collaborative engineering, and database browsing. It can be defined as 
a “seamless integration and collaborated computing environment” across a wide 
region. 

Information grid provides an intelligent data processing and information ex-
traction platform to end users based on currently available network infrastructure, 
protocols, the Internet, and databases. Its objective is to establish a new generation 
Internet-based information processing platform and software infrastructure, which 
is built upon operating sysmtem and the Internet. Within such a platform, informa-
tion processing is distributive, collaborative, and intelligent. Users can access all 
information by only one interface. The ultimate goal of the information grid is to 
provide services on demand. The system structure, information representation, 
meta-information, information connectivity and consistency, and information se-
curity are hot research topics in current information grid.  

Due to its potential innovative applications, research on grid technology is in-
creasing. Industries, government agencies, and academic institutions all pay atten-
tion to it. The international organization OGSA (Open Grid Service Architecture) 
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is now making service protocols and standards. Also, an independent, non-profit 
organization GCF (Global Grid Forum) is established for related research efforts. 

In summary, grid is a new technology based on the Internet, which merges high 
speed Internet, computers, large-scale databases, sensors, and remote equipment 
into one computing environment. It provides researchers and common users with 
more resources, functionalities, and services. People use the Internet for receiving 
and sending emails and browsing the web, while grid gives people more powerful 
functions for sharing resources of computation and storage, data, information, 
knowledge, expertise, etc. Grid computing is a new type of software structure, 
which organizes numerous low cost storage modules and servers into a virtual 
computation environment, where resources are used effectively and transparently. 
Any node in the grid can share services, such as data storage, computation, data-
bases, and location based services. Presently, grid computing is applied to many 
fields, such as simulation, medicine, geosciences, biological science, and military, 
and has achieved much better performance than conventional distributed technol-
ogy. 

1.2.3 Generalized spatial information grid 

It is believed that 80% of natural and social phenomena are closely related to 
spatial location. With the rapid development of information technology, communi-
cation technology, air- and space-borne remote sensing, and satellite navigation 
positioning system in the 1970s, a new interdisciplinary field called geo-spatial in-
formation science (i.e. geomatics or geoinformatics) came into being, with GNSS, 
GIS, and remote sensing (RS) as its core subjects. 

According to the ISO’s definition, geomatics is “a discipline related to spatial 
data acquiring, measuring, analyzing, storing, managing, displaying, and apply-
ing”; it belongs to information science and technology. 

Figure 1.2 shows the data flow of air- and space-borne spatial information sys-
tems. It is obvious that these systems can answer such questions as “what kind of 
changes have taken place with what objects, when, and why” (4 W’s questions). 
However, the state-of-the-art of spatial information systems can not meet the re-
quirements of seamless integration and collaborative computing that require grid 
technology, so it can not answer the above 4 W’s questions in real-time. Main 
problems are as follows. 

The flow of data processing, information extraction, knowledge discovery, and 
application services are serial and separate. Data are acquired over point or area 
support. None of the current data acquisition systems has the capability of on-
board processing or real-time computing. Information processing is usually carried 
out in a single computer with man-machine interaction. Data mining and knowl-
edge discovery are still in the early stages. Application services are isolated due to 
a lack of intelligent services in networked environments. 
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Fig. 1.3 An intelligent aerospace-borne spatial information system (from Zhou and Menas,2002 ) 

Sharing and utilizing satellite resources are at a very low level. It is still very 
difficult to undertake intelligent data processing, information extraction, and 
knowledge discovery, both in theoretical research and algorithmic developments, 
leading to a massive amount of data awaiting information extraction. Earth obser-
vation systems are usually isolated, falling short of being multi-platform, multi-
sensor, multi-resolution, and multi-temporal integrated systems. The current sys-
tems are not application-oriented grid systems with real-time satellite deployment, 
data integration, automatic information extraction, and intelligent services, as sim-
ple integration of geospatial information systems and communication systems is 
not enough.  

The integration of grid technology with geospatial information systems remains 
a major problem. A solution to this problem lies in the generalized information 
grid (Li 2008). 

In the context of grid technology and geospatial information system, the gener-
alized spatial information grid is a kind of real-time or near real-time spatial in-
formation system supported by an information grid. It runs in an environment of 
an information grid with an integrated mode of data acquisition (from space-
borne, air-borne, and ground-based sensors), information processing, knowledge 
discovery, and intelligent geo-services. 

To establish such a grid, we need to do the following: 
 

1. All-weather and all-day data acquisition by space-borne, air-borne, 
and ground based sensors 

2. Seamless links from sensors to services by integrating information 
grid formed by satellite communication networks and ground-based 
wire/wireless computer communication networks 

3. Implementation of quantitative, automatic, intelligent, and real-time 
grid computing in the generalized information grid, extracting infor-
mation and knowledge from data 
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4. Intelligent services to any end-users, providing the most useful infor-
mation to users who need it the most with the fastest speed  

   
To meet the above needs, a generalized spatial information grid should be com-

posed of the following four parts: 

1.2.3.1 Smart Sensor Web 

Current sensors are usually task-specified instruments for data acquisition. The 
raw data acquired are transferred to ground receiving stations and processed by 
specific software systems, with retrievals made available to end users. Such a 
workflow is composed of separated processing units, with man-machine interac-
tions. Real-time processing would be impossible in such a workflow. 

An intelligent sensor web at low cost and catering for large and small scale ap-
plications can be created in the near future, backed by the developments in sensor 
technology, computer hardware and software, and communication technology. 
Such a web will be operable wherever data acquisition and information services 
are needed. Gross (1999) said “in the next century, planet earth will don an elec-
tronic skin. It will use the Internet as a scaffold to support and transmit its sensa-
tions. This skin is already being stitched together. It consists of millions of embed-
ded electronic measuring devices: thermostats, pressure gauges, pollution 
detectors, cameras, microphones, glucose sensors, EKGs, and electroencephalo-
graphs. These will probe and monitor cities and endangered species, the atmos-
phere, our ships, highways and fleets of trucks, our conversations, our bodies--
even our dreams.” Tao (2003) proposed a conceptual framework for such a web, 
indicating that it should be interoperable, intelligent, dynamic, and measurable. 

An intelligent sensor web in the context of a generalized spatial information 
grid should have the following features: (1) a network composed of contact or 
non-contact sensors that are pervasive everywhere and possess functionalities of 
data acquisition and communication; (2) the capability of on-board data process-
ing to provide user-required data in real time; and (3) an intelligent sensor web 
embedded into a global information grid to provide intelligent services to various 
users according to their specific requests.. 

1.2.3.2 An Intelligent Data-Information-Knowledge Transforming System 
Based on Grid Computing 

The volume of data acquired by such a multi-sensor web is massive in the 
range of TBs to PBs. To pre-process and post-process such data, we need to ex-
tract both semantic and non-semantic information and to intelligently mine user-
required knowledge from them. Li and Wang (2007) summarize the author’s work 
in spatial data mining in the past 10 years. 

A typical problem in the current EO system is “rich in data but lacking in in-
formation and knowledge”. Grid computing brings a new prospect for solving this 
problem. However, the following listed issues must be considered in the context of 
grid computing: 
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• Determining the locations and attitudes of sensors under a unified spatial-

temporal datum automatically and in real time 
• Mathematical modeling for inverting physical and geometrical properties 

from data by both contact and non-contact sensors integrally 
• Real-time updating and fusion of multi-source spatial data 
• Intelligent feature extraction and object classification using grid comput-

ing for multi-sensor and multi-platform remotely sensed imagery 
• Spatial data mining and knowledge discovery from huge volume of spa-

tial data and attributes data 
 
We need to make breakthroughs in spatial-temporal datum, remote sensing im-

aging mechanisms, pattern recognition, computer vision, and data mining in order 
to solve the aforementioned issues, in order to realize unified inversion of physical 
and geometrical properties and to process data quantitatively, intelligently and 
automatically. 

1.2.3.3 A New Generation of GIS Suitable for Grid Computing 

It is well known that GIS is a spatial information system that can acquire, store, 
manage, analyze, describe, display, and distribute geo-referenced data. Data ac-
quired by the intelligent sensor web described above will be the data source of 
GIS after they are pre-processed, with information extracted. Knowledge discov-
ered from them will form the knowledge base of intelligent GIS. 

As an information system for data storage, representation, analysis, and appli-
cations, GIS has evolved from single and isolated to networked system, such as 
Web GIS and Mobile GIS. The next generation of GIS should be Grid GIS which 
is an open and distributed geo-spatial information services system with federal da-
tabases and interoperability which runs on a grid computing environment. 

1.2.3.4 Intelligent Geo-Service Agents 

The concept of geo-services has been introduced in Section 1.2.1 above. An in-
telligent Geo-service agent would provide the end-users with the most necessary 
information in the shortest time and at the lowest cost. The central component in 
such Geo-Services is the integration of earth observation satellites, image process-
ing system, and spatial information service system with computer grid via wire- 
and wireless communication networks. To set up such agent we need to solve the 
intelligent geo-service mechanism and modeling, related standards for service and 
interoperability, ontology based semantic model for geo-service, and the realiza-
tion of geo-service at different terminals.  

As one practitioner of geo-services, the Europe Space Agency (ESA) has, since 
2000, setup the Global Monitoring of Environment and Security Plan (GMES) in 
order to promote sustainable development. A typical example of the plan was the 
earthquake rescue in Algeria in 2003. By using SPOT images before and after the 
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earthquake, ESA delineated the destroyed areas quickly and estimated the popula-
tion of people which suffered from the earthquake, providing accurate information 
for earthquake rescue. JAXA (Japan Aerospace Agency) established rapid re-
sponse earth observation system. Japan Fishery Information Center (JAFIC) pro-
vides fishery information to vessels in the sea near Japan at near real-time. They 
have set up a decision support system for guiding ocean fishing by monitoring the 
change of oceanic environment, which influences the clustering of fish groups, so 
as to better locate them. Near real-time applications with MODIS/AIRS using the 
EOS direct broadcast are widely used in the USA for monitoring water quality, 
fire, air quality and polar winds by NOAA, NASA, and related agencies. 

1.3 Towards a New Era for Geo-Information 

1.3.1 Why a New Era of Geo-Information ? 

In recent years, GIS applications have become increasingly widened as the re-
quirements for geo-spatial information services grow. Since the concept of GIS 
was first proposed by Dr. Roger Tomlinson in the 1960s, it has gone through a 
long process of developments and has acquired remarkable achievements over the 
last four decades. Its application fields include mapping sciences, land use, re-
sources management, environmental monitoring, transportation, urban planning, 
precision farming, digital earth, and so on. 

Google Map started changing the way we see the world. The current and forth-
coming Google Earth, Virtual Earth, NGI and Web 2.0, grid technology, new earth 
observation satellites and smart sensor web make geographic information so popu-
lar that not only professional users, but all Internet users can do a variety of work 
on a uniform spatial information service platform. The openness of geo-spatial in-
formation service will greatly boost its applications and popularity.  

Along with the prevalence of Internet and the emergence of Web 2.0 technol-
ogy, the release, distribution and publishing of geo-spatial information supported 
by new technologies are growing at a fast rate. Michael Goodchild proposed his 
idea of “Citizens as Voluntary Sensors” in order to describe the cooperative pro-
duction of geo-spatial information and the transmission and sharing of geo-spatial 
knowledge in a more persuasive way. He outlined the prospect of the whole world 
equipped with facilities that are capable of uploading what they consider as impor-
tant and effective sources of geo-spatial information (Goodchild 2007). 

Web 2.0, as a human-oriented network, brings new opportunities for geo-spatial 
information services and it turns passive users into initiative and creative ones. 
Web 2.0 provides a variety of services with characteristics including experience, 
communication, variation, creativity and relation. For geo-spatial information ser-
vices, visual services are the basis of experience (such as Google Earth, Virtual 
Earth, etc.); measurable services ensure variation and creativity, and minable ser-
vices allow for relation among professional applications. This is a great revolution 
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for our traditional geo-spatial information services based on digital maps. Web 2.0 
has the potential to transform traditional measurement-by-specification to meas-
urement-on-demand by uploading the external orientation elements of Digital 
Measurement Images (DMIs) and corresponding measurement software kit via the 
Internet. Measurement-on-demand means when digital image pairs and their exte-
rior orientation parameters and related software uploaded to the Internet on Web 
2.0, any end users can measure objects as they like. This function allows public 
users to be data and information providers, and geo-spatial data are changing from 
outdated to active participatory services through the integration of smart sensor 
web and Web GIS. Spatial Data Infrastructure with these kinds of geo-spatial in-
formation services provides a better solution to users from all ways of life than be-
fore.  

Google intends to take photos for all streets in the world and develop a street 
scenes web site, as shown in Figure 1.4. Thus, all Internet and 3G network users 
have access to functions on a uniform spatial information service platform. With 
such a platform, geo-spatial data integrated with statistical data, population data, 
and social and economic data, offer comprehensive services of measurement-on-
demand for e-government services, e-commerce, public security and transporta-
tion industries, and can answer the so-called “4W questions”, i.e., when, where, 
what object, and what change. These herald that a new geospatial information era 
is coming. 

 

 

Fig. 1.4 Google intends to take photo for all streets in the world and develop a street scene site 
(UK Daily Mail on July 11, 2008) 
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1.3.2 Main Features of the New Geo-information Era 

Compared with the traditional geo-information systems that are based on elec-
tronic maps, main features of new geo-information systems can be summarized as 
follows:  

1.3.2.1 Data Providers: From Professionals to All Public Users 

In the new geo-information era, data providers are not only professionals but 
also the general public. A great number of users require fundamental information 
which is concerned with professional and individual applications, such as electric 
power facilities, municipal facilities, security facilities, transportation information, 
location-based information, and so on. Unfortunately, these kinds of information 
can not be discovered from traditional 4D (DEM, DOQ, DLG, and DRG) products 
directly. Traditional 4D products can not satisfy the needs of integrity, richness, 
accuracy and reality of geo-spatial information. However, in new geo-information 
era, such information can be acquired from DMI (Digital Measurable Images) 
which are released on the Internet according to specific requirements. As illus-
trated in Figure 1.5, a user is issuing rental advertisement through the ImageCity 
website platform, and other users can decide whether to bid for renting or not by 
browsing the ImageCity website as well. Thus, richer and more comprehensive in-
formation services including maps, images, and POI can be provided by the new 
geo-information systems, which can also support on-line access through distrib-
uted systems and interoperability, ensuring active participation. 

 

 
Fig. 1.5 A user issues rental advertisement through the ImageCity website platform, which is 
helpful for other users bidding for it. 
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1.3.2.2 The Users: Data and Information Providers as Well 

In the traditional geo-information era, there existed a clear boundary between 
data provides and data users. However, in the new geo-information era, this 
boundary has been blurred, as data updating and maintenance can be fulfilled by 
data providers and data users. For example, data users can also upload or annotate 
new geospatial information in addition to traditional downloading.  

Web 2.0 is a revolution and it advocates openness, anticipation, and sharing and 
creativity, which can satisfy individual needs and Web 2.0 turns passive users into 
initiative and creative users. According to characteristics of Web 2.0 technology, 
not only professionals but also public users play the role of data providers in the 
new geo-information era. Provided data and services are transferred from fixed 
updating at regular intervals to more popular updating forms in the new geo-
information era, i.e., from static updating to dynamic updating. 

  

 
Fig. 1.6 The annotation function of ImageCity website 

Take the ImageCity platform developed by the author and his team as an exam-
ple. ImageCity offers an annotation function which actualizes communication 
among map-makers, users and intelligent services. With the convenience of Web 
2.0 technology, business users only need to finish registration and payment on this 
website to annotate their company and brands on image maps. Moreover, regis-
tered business users can offer what they think is important to consumers on the 
website regularly and dynamically. Generally, the information contents include 
business websites, telephone numbers, scene images and text information etc, as 
shown in Figure 1.6. At the same time, the annotation function gives access to reg-
istered public users to finish free publishing and sharing of location-based images 
and text information. 
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A lot of POIs consisting of graphics, images, audios and videos are added. Take 
ImageCity Wuhan as an example. The whole data volume is about 2TB, with more 
than 300,000 POIs added, which provides geo-spatial information services for in-
dividuals, business, industry and government users. 

1.3.2.3 Geospatial Data: From Outdated to Live Through Smart Sensor Web  

In the new geo-information era, information services are provided on the basis 
of data sources acquired through space-borne, airborne, and ground-based, non-
contact and contact sensors. Data and information transmission operates in the 
next generation of the Internet based on Web 2.0 and 3G mobile networks, ena-
bling live information services.  Geo-spatial information services based on speci-
fications, as in the traditional mode, are not adequate, because data provided from 
spatial databases are static. In the new geo-information era, the adoption of sensor 
web technology provides access to services according to specific needs for profes-
sional and general users in multimedia and dynamic service environments. For ex-
ample, for an ITS (Intelligent Transportation System) based on sensor web, mobile 
sensors on vehicles, fixed sensors at road intersections, captured video data, data 
in monitoring centers, road condition inspection data and data for emergence are 
helpful to improve transportation, reduce traffic delay, traffic accidents, and de-
crease gas consumption to a great degree. Furthermore, these kind of sensors can 
be installed on 3G phones, which have been developed in Wuhan Urban Grid 
Management and Service System by using cameras as data collection tools.  

As mentioned previously, all aerial and space sensors can be integrated together 
to build a big and smart sensor web. In this way, the accomplishment of real-time 
data updating, information extraction and services will come true. 
 

Fig. 1.7 Application system in ITS based on sensor web, in which traffic jam can be decreased 
by about 20%. Traffic delay can be decreased by about 10%~25%. Traffic accident can be 
reduced by about 50%~80%. Gas consumption can be reduces by about 30%. 
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Figure 1.8 illustrates the reference architecture for an interoperable sensor web. 
In this architecture, different kinds of data and services can register through regis-
tration center and build catalog services. For an end user, there are three ways to 
implement data mining and knowledge discovering based on the sensor web.  

The first way is based on sensor web model. When an end user sends a request 
on the client side, Decision Support System transfers the received request to a ser-
vice chain and searches for corresponding registered services in catalog services 
through the workflow sequence. Afterwards, registered services acquire informa-
tion of interest and return it to the end user. 

The second way is based on direct feedback of the sensor web, which is applied 
when the corresponding registered service in catalog services can not be found 
through the workflow sequence. In this case, new sensor web feedback is further 
searched. If the required service can be found, it will be returned to the end user 
and will be registered at the registration center. 

The third way is based on retrieval of digital products, which is also applied 
when the corresponding registered service in catalog services can not be found 
through workflow sequence. In this case, required data is further searched through 
a sensor web node instead of the sensor web feedback. 

Recently, OGC has released many standards dealing with smart sensing web 
such as Sensor Model Language (SensorML), Sensor Alert Service, Sensor Obser-
vation Service, Sensor Planning Service, Observations and Measurement, Trans-
dure Markup Language etc. 

 

 
Fig. 1.8 Reference Architecture for an interoperable sensor Web 

Figure 1.9 shows conceptual system architecture of future Grid GIS. In this 
open architecture, the registration of vector data, image data, DEM data and pro-
fessional data and information is completed by the operating and maintenance per-
sonnel of different types of data through registration services. 
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Service providers of different types of software platforms register their typical 
functions in the registration center. The registered functions can then be employed 
for search, integration, sharing of data, information and knowledge through ser-
vice discovery and service chain integration. 

Different types of end users also need to be registered as legal users through 
user security authentication and after that the registered data and information 
based on grid sharing protocol are available for them. 
 

 
Fig. 1.9 The system architecture of the future Grid GIS 

Figure 1.10 provides a description about the three-layered registration center. 
The first layer is data registration, the second is software or function registration, 
and the last is user registration.  

 

 
Fig. 1.10 Geo-spatial information processing and service model of the new generation 

What follows is the procedure of heterogeneous and distributed geo-spatial in-
formation services, as illustrated in Figures 11-15.  
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Step 1: a service provider registers one function (e.g. Binarization Algorithm 
and its service type is transfer service) on the internet. The annotation of this ser-
vice aims for binarization of the image and registers supplementary information 
including relative information of this service provider (e.g. name, phone number, 
email, department, address etc.) 

Step 2: another provider registers another function (e.g. change detection algo-
rithm and its service type is image analyzing) on the Internet. The annotation of 
this service aims for change detection between two different images. In the same 
way, relative information of this service provider is also registered as supplemen-
tary information. 

Step 3: an end user logs in successfully and queries the service needed at a reg-
istration center. 

Step 4: the abstract service chain is established through the project require-
ments and the existing functions. For instance, a service request, such as a flood-
ing area analyzing model, can be established as the combination of the following 
services. 

Step 5: the abstract service chain is mapped into the executed service chain.  
Step 6: results computed according to service chain are shown, from which the 

flooding area is calculated. 
 

Registration 2Registration 2

Registration 1Registration 1

 
Fig. 1.11 Registration of geo-spatial information services 

 
Fig. 1.12 Inquire of geo-spatial information services  
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Fig. 1.13 Service chain setup  

 
Fig. 1.14 Execution of geo-spatial information services 

 
Fig. 1.15 Results of heterogeneous distributed geo-spatial information services 
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Fig. 1.16 An example of the establishment of an abstract service chain 

1.3.2.4 From Measurement by Specification to Measurement on Demand 

In the new geo-information era, geo-spatial data in service are DMI instead of 
simple image maps. The so-called DMI are digital stereo images appended with 
six exterior orientation elements acquired by Mobile Measurement Systems 
(MMS). With DMI on the internet accompanied with measuring software kits, 
measurement of a special object at centimeter level precision is available. Un-
doubtedly, the overlapping of DMI with GIS data makes the representation of 
geographic objects more comprehensive and vivid and facilitates visible, search-
able, measurable and minable functions.   

In Figure 1.17, the overlapping of a DMI and an orthoimage of Beijing Bird's 
Nest, which can support measurement on demand, is illustrated. 

 

 
Fig. 1.17 A DMI and an Ortho image of Beijing Bird's Nest 

Data import  
Band 1 of image (before flooding) 

Data import  
Band 2 of image (before flooding) 

NDVI calculation 

Image binarization 

Color image synthesization 
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1.3.2.5 From Data-Driving to Application-Driving: Service Oriented 
Architecture (SOA) 

In the new geo-information era, service-oriented, spatial information sharing 
facilitates services with different granularity, data updating that is dynamic and 
continuous, integration and interoperability between CORBA, DCOM, and EJB in 
the standard protocol. This is elaborated below. 

Service-Oriented Architecture (SOA) is a software system structure that 
achieves interoperability by packaging the program units, which can accomplish a 
given task. It originates from distributed computing model, promoted by OMG 
(Object Management Group) and IONA and is widely accepted as the standard. 

Service-Oriented Integration (SOI) integrates the traditional objects with highly 
flexible Web Services. SOI provides an abstract interface. Systems are able to 
communicate with one another by this interface, instead of using low-layer proto-
cols and self-defined programming interfaces to prescribe communication with 
other systems. The system only needs to appear in a form of service, select the in-
teractive system, make simple discovery and bind with this service at runtime or in 
design. 

 

 

Fig. 1.18 An example of service-oriented architecture 

There is a more intuitive example, as shown in Figure 18. Service-oriented spa-
tial information sharing based on SOA provides data and tools for active meas-
urement-on-demand service for users instead of just information, such as width of 
roads, position of toll gates, and so on, which is a characteristic of data-oriented 
spatial information sharing.  
 

1.3.3 Problems and Challenges in the New Geo-information Era  

As discussed above, the new geo-information era provides rich geospatial in-
formation. However, this brings about problems and challenges as summarized be-
low. 
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1.3.3.1 Out-of-order Issues in Geospatial Data Collection and Information 
Proliferation 

The out-of-order issues in data collection mean inconsistency among data for-
mat, data content, temporal-spatial characteristics, etc., which needs to be solved 
through data interoperability and standardization of various types of original data.  

Information proliferation is also a hot issue in the new era, as conflicts surface 
between the limited storage space and the information contents. Limited band-
width transfer rate is not compatible with mass information transmission due to 
unprecedented volume of data uploading and downloading in case of emergency. 
How to distinguish useful and useless data efficiently and how to realize rapid 
publishing and sharing of geo-spatial information by using the grid technology are 
major issues. 

1.3.3.2 Quality Issues in Geo-Information Updating  

Traditionally, data uploading and updating are implemented based on standards 
by professionals, while, in the new geo-information era, public users are also data 
providers. The participation of end users is conducive to data updating in real 
time, but how to guarantee updating quality is a problem, which may be resolved 
by some effective web standards and online data cleaning tools. 

1.3.3.3 Security Issues in Geographic Information Services 

Security issues are also a problem, which should not be neglected. For instance, 
high-resolution images, semantic information, orientation and attribute informa-
tion about important departments and locations involve data security issues. How 
to set an automatic security filter on the Internet needs to be solved.  

1.3.3.4 Privacy Issues in Sharing Geo-Information 

How to protect individual privacy in the web environment has attracted more 
and more attention nowadays. In the new geo-information era, the spatial informa-
tion providers release services in the network, the related spatial data would be at 
high precision.  

When high-resolution data are concerned with individual privacy, their protec-
tion becomes a pressing problem: how to find the balance between protecting per-
sonal privacy and sharing spatial information, when the high-precision data would 
come down to personal privacy. Currently, the consensus among many countries is 
that privacy needs to be protected although divergences exist among different 
policies. For example, in America, street view websites have been complained that 
they infringe individual privacy in some aspects and have been warned by Privacy 
International. Therefore, legislative work is necessary. Automatic detecting and 
removing of individual privacy related objects from high resolution image data is 
one of the most important tasks for open geo-services system. 
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1.3.3.5 Property Issues in Sharing Geo-Information 

Although existing policies, laws and rules in surveying and mapping still play 
important role in monitoring and managing of geo-spatial information, they are 
not so effective in the new geo-information era.  

There are many pressing problems, such as how to specify the ownership of 
property rights, the contents of property rights and the property location in geo-
graphic information sharing, and to satisfy the privacy requirement. These require 
new laws and rules.  

1.3.4 Strategies 

The coming of new geo-information era represents developments and ad-
vancement of information technology. Some strategies in terms of standard, plan-
ning, law, technology and application are essential for the opportunities and chal-
lenges discussed above.  

1.3.4.1 Standards 

New issues in new geo-information era need us to standardize rules and laws in 
the first instance and then to accomplish geo-spatial information services better.  

Nowadays, conflicts between mounting earth observation data and pressing re-
quirements from every walk of life lead to an embarrassing situation where there 
are more data but little information. In new geo-information era, geospatial infor-
mation services based on DMI represents new direction in spatial data services, 
and its integration with grid services, interpretation services and telecommunica-
tion services provides solution to automation, intelligence, and popularization of 
geo-spatial information. 

1.3.4.2 Planning 

In the new geo-information era, such rules as product secrecy protection and 
product quality control requirements need to be standardized. One typical example 
is to blur the vehicle identification number or human face. Furthermore, what 
needs to be standardized includes definition, content and relationship with other 
basic geographic information products. Also, technical specifications, technical 
requirements, testing methods, testing rules, distributing format, and secrecy re-
quirements of new products should be considered. 

1.3.4.3 Laws 

Such issues as right of privacy, property right and security brought by the new 
geo-information era need to be resolved by regulations and decrees on the legal 
level to restrict the behavior of the public. It is important that no infringement to 
privacy be conducted. 
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1.3.4.4 Technology 

According to the characteristics of the new geo--information era, developments 
and promotion of high-tech with independent property rights on data obtaining, in-
formation processing, knowledge discovery and intelligent services are indispen-
sable for providing technical support to the construction of the generalized spatial 
information grid. At the same time, it is necessary to offer solutions to information 
security and removal of personal privacy information automatically and techni-
cally. 

1.3.4.5 Applications 

Applications in different industries are encouraged to improve and enrich the 
annotations to geo-information. It is necessary to make the contents and forms of 
the new generation of geo-information as plentiful, vivid, and abundant as possi-
ble to satisfy various needs. These can be applied in many fields, such as digital 
cities management, intelligent transport, police, roads, railways, and so on. Ac-
cordingly, the experiences on data collection, processing, quality control, stan-
dardization, and applications will be accumulated correspondingly. 

 

 
Fig. 1.19 The task-oriented service mechanism 

1.4 Summary 

In this chapter, the background to the new era of geo-information is analyzed at 
first. Main features of the new geo-information era are then compared with those 
of the traditional era. Problems and challenges faced by the new geo-information 
era are discussed, followed by an outline of strategies including standards, plan-
ning, laws, technology, and applications. 
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The new Geo-Information era offers unprecedented opportunities for us. We 
need to develop better tools for storage, management, on-board processing, distri-
bution, and service of geo-spatial information in the environment of Grid comput-
ing and the next generation of Internet. The goal of the new geo-information era is 
to realize one-data collection-many-applications and measurement-on-demand. 
We will explore new strategies for meeting the challenges. 

In prospect, new geo-information era will see the geospatial information indus-
try chain grow to prosperity. Geo-spatial information sharing will bring tremen-
dous economic benefits to the whole world. The ultimate benefit of the new geo-
information era is to realize geo-information for all. 
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Chapter 2 

A UAV REMOTE SENSING SYSTEM: DESIGN AND 
TESTS 

Lei Yan, Zhiyang Gou, Yini Duan 

2.1 Introduction 

Airborne remote sensing refers to reconnaissance techniques using aircraft, bal-
loon, or other platforms. Comparing to satellite remote sensing, it has four main 
advantages: relative low cost, flexibility in the frequency and time of data acquisi-
tion, and the ability to record spatial details finer than current satellite technology 
can (Mei et al. 2001). 

With the development of sensors and communication techniques, high resolu-
tion airborne remote sensing has been successfully applied to large-scale topog-
raphic mapping and surveying for detailed ground information. Although conven-
tional airborne remote sensing has some drawbacks, such as altitude, endurance, 
attitude control, all-weather operations, and monitoring of the dynamics, it is still 
an important technique of studying and exploring the Earth's resources and envi-
ronment.  

Airborne remote sensing can be categorized to manned aerial vehicle remote 
sensing and unmanned aerial vehicle (UAV) remote sensing according to the plat-
form. The name UAV covers all vehicles which are flying in the air with no person 
onboard with the capability of controlling the aircraft (Eisenbeiss and Zhand 
2004). Thanks to GPS and communication technology, UAVs can be remotely 
controlled or flown autonomously based on pre-programmed flight plans or more 
complex dynamic automation systems.  

Over the past years, with the rapid development of micro-electronics, commu-
nications, and materials and propulsion systems, research on UAV has made  
an obvious progress. The number of UAV systems is growing fast, and most of 
them are for military use or part of a development project (Blyenburgh 2008).  
In this international activity, 49 countries around the world are involved (Europe: 
23; Asia: 14; South-America: 4; North-America: 3; Australia: 2; Africa: 2) (Ever-
aerts 2008). Some typical UAV are the Darkstar (Lockheed Martin and Boeing, 
USA), Predator (General's Atomic Energy, USA), Heron (Aircraft Industries,  
Israel), and Alenia Mirach (Italy). Several UAV models are shown in Fig. 2.1 
(www.livingroom.org.au/uavblog). Take the most well-known UAV "Global Hawk" 
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a                                   b                                           c 

Fig. 2.1 Examples of unmanned aerial vehicles: (a) Predator; (b) Cypher; (c) Global Hawk. The 
images are from http://www.livingroom.org.au/uavblog/archives/Predator-UAV_nh_100201.jpg 

UAV remote sensing system is based on UAV which has both the common 
characteristics of aerial remote sensing and its own unique features. Compared 
with manned aerial vehicles, remote sensing systems with the platform of UAV 
can work all-day and all-weather and perform flight tasks in high-risk areas. 
Moreover, UAVs are able to operate rather close to the object and acquire images 
with few centimeter resolution (Eisenbeiss and Zhand 2006), providing sufficient 
detail.  

Due to the cost of the mission, the need for rapid response or the fact that ob-
servations need to be carried out in an environment that may be harmful or dan-
gerous to an aircrew, scientific interest in this type of platforms is growing, and a 
number of experiences have already been reported (Berni et al. 2009). Many re-
mote sensing applications have benefited from the use of UAVs. A remarkable ex-
ample is the adoption of remote sensing using UAVs in archaeology (Çabuk et al. 
2007, Eisenbeiss and Zhand 2006). UAVs have also been used successfully in 
vegetation monitoring (Herwitz et al. 2004, Rango et al. 2006, Berni et al. 2009), 
and in Japan these systems are considered to be an integral part of farm equipment. 
With the ability to get close to the object, they were also used for road condition 
assessment (Zhang 2008). Rapid response imaging using UAVs has received a lot 
of attention as well (Everaerts 2008). This has been demonstrated in road accident 
simulations (Haarbrink and Koers 2006) and in many cases of forest fire monitor-
ing (Réstas 2006, Martínez-de Dios et al. 2006). UAVs have also been proposed as 
platforms to monitor volcanoes (Puri et al. 2007, Doherty 2004). Some UAV sys-
tems have also used Lidar and SAR (Wang et al. 2009, Edrich 2006). 

Besides the UAV with a fixed wing, there are many other kinds of UAVs, some 
of which even were used in remote sensing before the manned aircraft. In some 
sense, the kite is the simplest and most primitive model of the UAV. M. Arthur Ba-

as an example. It flies at an altitude of more than 10,000 m with a fuselage of 13.5m 
long and 4.62m high, a wingspan of 35.4m, maximum take-off weight of 11,622kg, 
maximum payload of 885kg, cruise speed of 635km/h, practical ceiling of 20,500m. 
So far, it is the largest UAV that can implement a high-altitude, long-distance and 
long-time continuous reconnaissance mission http://www.livingroom.org.au/ 
uavblog/archives/1_global_hawk.jpg. It uses a variety of cameras including electro 
optical and infrared and has capabilities of transmitting pictures in real time to 
bases. 
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tut took the first aerial photograph using a kite. It was taken over Labruguiere, 
France in the late 1880s.   

A tethered balloon (Çabuk et al. 2007, Vierling et al. 2006) or blimp is also a 
simple UAV. Fig. 2.2 shows a modern blimp (en.wikipedia.org/wiki/Blimp). It is 
easily controlled (especially its altitude), but of course quite unstable if the wind 
speeds increase. The balloon can be adapted to the size and mass of the instru-
ments that need to be carried. Tethered balloons have been widely used for remote 
sensing purposes for over a century. In 1858, Gaspard Felix Tournachon (later 
known as "Nadar") captured the first recorded aerial photograph from a balloon 
tethered in Paris, in which the houses can be seen clearly (Robert 1975). Recently, 
true color and infrared aerial photographs taken from balloons or kites have been 
used in photography-based studies of periglacial features, vegetation growth, and 
soil properties (e.g. Boike and Yoshikawa 2003, Buerkert et al. 1996, Friedli et al. 
1998, Gerard et al. 1997, Chen and Lee 2006). 

 

 

Fig. 2.2 A modern 
blimp 

Fig. 2.3 An unmanned 
powered paraglider 

(Thamm and Judex 2006) 

Fig. 2.4 Yamaha R-MAX 

 
   Unmanned powered paragliders (Fig. 2.3) are interesting because they need 

very little ground support, use proven technology, carry substantial loads, and are 
low-cost compared to other low-altitude systems(Everaerts 2008). They have been 
flown successfully in remote areas that cannot be addressed economically with 
conventional survey equipment (Thamm and Judex 2006).  

Another kind of UAV is the unmanned helicopters which come in many types 
and sizes. Some companies already use helicopters with/without GPS navigation 
for the production of aerial imagery of single buildings and cities or for documen-
tation of industrial constructions. Zischinsky et al. (2000) used images taken from 
a modelhelicopter partly for the generation of a 3D-model of a historical mill. 
Fig.2.4 (www.livingroom.org.au/uavblog) shows the model of RMAX which came 
out in the year 1997 and was equipped with an azimuth and a differential GPS 
sensor system 3 years later. The RMAX UAV system from Yamaha was success-
fully used as a ground truth measurement system (Hongoh 2001). In Japan, hun-
dreds are used in agriculture as platforms to plough, sow, spray, etc (Everaerts 
2008).  

UAV is playing a more and more important role in land resource surveying, 
city planning, environmental protection, pollution monitoring, disaster monitoring, 
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and other applications. This chapter introduces the design and tests of an airborne 
remote sensing system based on UAV. In the following sections, a real sample of 
UAV remote sensing system will be introduced. 

2.2 UAV Remote Sensing System 

The architecture of the proposed UAV remote sensing system is shown in Fig. 
2.5. One or more unmanned airplanes may serve as the airborne remote sensing 
platform. Even though the UAV can fly automatically under the control of the pre-
set program, it is always controlled and monitored from the Ground Control Sta-
tion, so it needs reliable communication links to and from the aircraft. The Ground 
Control Station provides a working space for a pilot, navigator, instrument opera-
tor and usually a mission commander. The sensors onboard are controlled by the 
airborne control system to capture images of the working area. After basic and 
real-time processing on board, the data can be downloaded to the Ground Control 
Station for on-site processing or forwarded to a processing center. The data proc-
essing center or ground receiving station will then further process, archive, man-
age and distribute the data for expert users. Advanced processing may involve in-
formation extraction and application of RS images. This way the business 
operation of the UAV remote sensing system is formed and a complete set of pro-
tocols and standards can be realized.  
 

 

Fig. 2.5 General view of the architecture of UAV remote sensing system  

In general, the four core components of a UAV remote sensing system include 
remote sensing airborne control system, remote sensing ground monitoring system, 
multimode airborne digital camera system, and automatic path-planning system. 
They are respectively introduced in the following subsections. 
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2.2.1 Remote Sensing Airborne Control System  

The unmanned airplane implements automatic judgment and performance. 
Once a malfunction occurs in any component or module of the UAV remote sens-
ing airborne control system, the quality of the results will be affected. Therefore, 
the design and development of a stable and reliable remote sensing airborne con-
trol system is the primary task for the implementation of unmanned airplanes for 
remote sensing. 

The remote sensing airborne control system carries out positioning, camera 
auto-triggering, and data storage and transmission between the camera and the 
unmanned airplane platform, etc. It can implement fast update and reliable con-
nection between airplane and remote sensing sensors. It can also load different 
kinds of remote sensing sensors which meet the requirements of interfaces.  

2.2.1.1 Composition 

According to the task demands, the control system is constituted of three mod-
ules: the photographing control module, data processing and transmission module, 
and power supply management module, which are depicted by Fig. 2.6. 

 

 

Fig. 2.6 Composition of remote sensing airborne control system 

1) Photographing Control Module 
 

This module is the core of the whole airborne control system. Since the survey 
tasks lay much emphasis on data accuracy, different control strategies should be 
adopted according to topographies and weathers. In this module, two schemes are 
available. The first scheme is to photograph by triggering the camera shutter in 
fixed time interval. The second scheme is to photograph at fixed positions. When 
the airplane enters the target regions according to the position information from 
the unmanned airplane, it will automatically take pictures. Because the airflow 
disturbance has much influence on the flight route of the unmanned airplane, some 
places will be redundantly photographed and there exist some gaps or incom-
pletely photographed regions if the first scheme is adopted in bad weather. In this 
condition, the airplane must accurately photograph at selected positions. The 
flowchart of photographing control procedure is illustrated in Fig. 2.7. 

Airborne Control System

Photographing 
Control

Data Processing 
and Transmission

Power 
Management

Navigation 
data receiving

Data Package Data 
Transmission
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Fig. 2.7 Flowchart of UAV photographing control  

2) Data Processing and Transmission Module 
 
After the scene is photographed, the raw images are stored in the airborne stor-

age and sub-sampled to be transmitted to the control system. The data processing 
and transmitting module packages the information such as position, attitude, and 
time and image data, and then sends them to the ground. 
 

3) Power Supply Management Module 
 
The unmanned airplane contains a 27V DC power supply, while in general the 

power supply of industrial compute is 5V or 12V. Thus voltage must be converted 
before being used. The power supply management module transforms voltage, 
provides stable power output, and controls the power supply of the industrial 
computer system. 
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2.2.1.2 Software Design 

This subsystem’s main control software is a multi-thread program including 
three main threads: the position and attitude data acquisition thread, image data 
acquisition thread, and photographing control thread. 

 The position and attitude data acquisition thread receives data of the plane by 
the low speed RS422 interface, and these data will be transmitted to the photo-
graphing control program for further processing.  

The image data acquisition thread receives the snapshots transmitted from the 
camera system. The communication mode adopts C/S structure, which is based on 
TCP/IP protocol, implementing computer interconnection with the camera system 
being the client and the control system being the server. The camera system cannot 
work until the interconnection with the server is set up.  

The photographing control thread controls the process of photographing by 
analyzing the current position of the airplane or the time according to different 
scheme. 

2.2.1.3 Hardware Design 

The hardware of the system includes a photographing control board and a 
power control board. The control program manipulates circuit board by setting the 
state of the parallel interface. The photo control board controls the camera exposal 
by triggering the camera shutter with relays, and the power control board controls 
the power switch of the camera with relays. In order to guarantee the proper work-
ing of the switch in a high-vibration condition, aero electric relays instead of 
common ones are adopted. The parallel interface has a certain voltage output dur-
ing hardware initialization after the industrial computer starts, but the system re-
quires that the parallel interface should be set after the start of the control program. 
So a time delay circuit may be added to the hardware circuits to keep the relay off 
during the starts of the industrial computer. Fig. 2.8 shows the photos of two kinds 
of circuit boards (a and b) and a photo control device (c). 

 

   
a                                       b                                            c 

Fig. 2.8 Examples of UAV Hardware Components: (a)Photo Control Board; (b)Power Control 
Board; (c)Photo Control Device 
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2.2.2 Remote Sensing Ground Monitoring System  

The ground monitoring system is developed to provide the pilot, navigator, in-
strument operator, and mission commander with real-time downloaded image data 
and navigating data and report sensor working state. With the help of the ground 
transmission channel of the unmanned airplane, the ground monitoring system 
displays working states of the on-board devices during the flight as often as possi-
ble to ensure the data collection quality.  

2.2.2.1 Composition  

The ground monitoring system is constituted of four modules: the data acquisi-
tion module, data processing module, data display/storage module, and data 
downloading module, which are illustrated by Fig. 2.9.  

During the flight, the ground monitoring system receives and sends the data to 
the data processing module. Then the valid data is transmitted to the data dis-
play/storage module for real-time monitoring and storing of the data for ex-post 
analysis. 

The remote sensing data downloading module downloads the raw image data to 
computers. The module empties the storage space of the on-board devices and im-
plements consecutive flight without refitting the devices. The four modules of the 
ground monitoring system are illustrated by Fig. 2.9.  

 

Remote sensing data 
acquisition module

Remote sensing data 
processing module

Remote sensing data 
display/storage module

Remote sensing data 
downloading module

Ground control system for 
unmanned airplane

Massive storage devices for 
sensors

 

Fig. 2.9 Modules of the ground monitoring system 

1) Data Acquisition Module 
 
The function of the remote sensing acquisition module is to receive and send 

the data to the navigation data including position (longitude, latitude and height), 
altitude (pitching angle, rolling angle, yaw angle), and the real-time image data to 
the processing module. The air-to-ground transmission channel of the unmanned 
airplane packages the remote sensing data, and every data package has a specified 
mark. By detecting the marks, the data acquisition module sends the specified data 
to the remote sensing processing module for further processing. 
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2) Data Processing Module 
 
The function of the remote sensing data processing module is to unpack data. 

The remote sensing airborne control system firstly marks the navigating path data 
and image data before transmitting them, then re-packs the data according to the 
specifications of the navigating task and finally transmits the data to the ground 
through the air-to-ground transmission channel. The remote sensing data process-
ing module acquires the validated data after removing the navigating task marks. 
The data is directly sent to the remote sensing data display/storage module. 

 
3) Data Display/Storage Module 

 
The remote sensing data display/storage module displays image data together 

with the navigating path data corresponding to the image. Simultaneously, this 
module records the remote sensing data in the database for post playback and 
analysis, which provides an objective evaluation for the photographing quality. 
This module is the key part for the ground monitoring system. 
 

4) Data Downloading Module 
 
The remote sensing downloading module is relatively independent. After the 

unmanned airplane lands and the cabin is opened without changing the load, all 
the remote sensing data photographed during the flight are downloaded to ground 
computers. The unmanned airplane can then instantly implement the next task.  

2.2.2.2 Software Design  

The software of the ground monitoring system is implemented by the following 
three programs: data acquisition program, data processing program, data dis-
play/storage program. The data acquisition program is developed based on pipe-
line communication. It works in the following procedure: initialize pipeline, set up 
connection with pipeline server, read data into pipeline, recognize package sym-
bols and send data to the data processing program. The data processing program is 
in fact an unpacking program which searches marks of the navigating data and 
image data. The data are then sent to the remote sensing data display/storage mod-
ule. The communication between data display/storage module and data processing 
module adopts C/S structure based on TCP/IP.  

2.2.3 Multi-Mode Digital Camera System  

UAVs are used to carry off-the-shelf light-weight instruments such as consumer 
digital cameras (Haarbrink and Koers 2006, Shortis et a.l 2006), miniature 
RADAR, passive microwave radiometers, and LiDAR (Vierling 2006, Sugiura et 
al. 2005, Sugiura et al. 2007, Martínez-de Dios 2006, Archer et al. 2004).  
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In order to realize the combination of high-resolution, wide view field, multi-
spectra and stereo imaging, a set of multi-mode airborne digital cameras (MADC) 
have been developed. Limited by the actual load of the UAV, we use a small effi-
cient digital camera which has a 4k×4k area array CCD and a focal length of 
80mm. The ground resolutions corresponding to different flight altitudes are 
shown in Table 2.1.  

Table 2.1 Ground resolution at different altitudes (focal length=80mm)  

Altitude (m) 500 1000 1500 2000 3000 4000 5000 6000 7000 

Ground spacing (cm) 5.6 11.2 16.9 22.5 33.8 45.0 56.2 67.5 78.8 

 
Here three cameras are installed on a simple supporting rack. Relative position 

is designed differently for different modes, such as wide vision field, multi-
spectrums. Synchronized triggering of the shutters for the three cameras is per-
formed by the control system. At the same time, the synchronizing pulse is sent to 
the input interface of the position and orientation system (POS) to sign the time of 
the photographing moment. After the exposure, image data are transmitted to an 
industrial computer through and stored in the high speed hard drive. By changing 
or adjusting the positions and orientations of the three cameras on the simple cam-
era support rack, the following two modes can be composed.  

2.2.3.1 High-Efficiency Wide Angle Airborne Digital Imaging Mode 

This is one trend of improving the efficiency of airborne photography. This 
mode aims at implementing high efficiency of digital airborne photogrammetry. 
This system improves the spatial and geometrical stability of airborne photograph-
ing images with the technical innovation based on wide-angle imaging technology, 
which mainly involves large (wide) area array. The images acquired are actually 
from three different cameras with certain overlap between each other. The final 
wide angle field image with larger area is formed from those three images by 
matching, correcting and splicing. The installation of the three cameras for wide 
field imaging is shown in Fig. 2.10. The real configuration (Fig. 2.10 b) also has a 
low resolution color camera.  

 

            
a                                                                       b 

Fig. 2.10 Wide field of view mode: (a) imaging mode; (b) photograph of the installed cameras 

 



UAV Remote Sensing 37 

2.2.3.2 Multi Spectrum Remote Sensing Data Acquisition Mode 

This digital airborne photographing system shown above can also service as a 
multi spectrual remote sensing sensor system after reset the geometric relationship 
of the three cameras. When three cameras photograph the same scene simultane-
ously, different camera catches different spectral information with a filter.  

2.2.4 Automatic Path-Planning System 

Aerial photogrammetry based on the airplane platform has a history of 70 to 80 
years after the Wright brothers invented the airplane. However, the aerial photog-
raphy planning (especially the path planning) has long been depending on the 
planners’ manual operations. This method involves much work and can not easily 
accommodate airborne route change. This traditional planning strategy cannot sat-
isfy the needs in UAV mapping. During the unmanned flight, the mission control-
lers on the ground have to conduct real-time monitoring on the state of aircrafts 
and sensors. Thus, a computerized system specially designed for path planning is 
needed to design flight path automatically, upload the data to the controlling sys-
tem of unmanned aircrafts and sensors before flight, receive the data from the air-
craft in flight, and display on a digital map. This ensures that the mission control-
lers on the ground can learn about the state of spacecrafts and sensors and control 
them properly.  

Airborne route planning software will provide necessary interface for users to 
read a vector/raster map or Digital Orthogonal Map (DOM) used for path planning. 
The data must meet the requirement of geometric precision, and must be trans-
formed to a common geographic reference. The software can enable the techni-
cians to plan the target area interactively and get the optimum airborne route that 
meets the requirements for remote sensing and airborne surveying. In addition, the 
technicians can calculate and get several parameters such as the width of strip, de-
gree of overlapping of the image, internal of exposure time, etc. In the end, the re-
lated digital aerial file is formed and can be uploaded to the control systems of 
unmanned aircrafts and sensors to control the aircrafts to fly in the scheduled path 
and the sensors to get data as designed.  

The path-planning system developed in this book includes the following func-
tions: map/image input, flying area planning, and path-planning.  

(1) map/image input 
It is designed to read vector/raster map or image with geographical coordinates 

in the format of SHP, GeoTIFF, etc. The input data can be arranged as different 
layers. 

(2) flying area planning 
It is an interactive interface by which users can define and modify the flying 

area on the map or image. 
(3) path-planning 
It provides the user with visual and non-visual path-planning. The visual path-

planning allows the user to plan the path under the background of a map or image 
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which can directly show the relationship between the path and the geographic 
element. With the non-visual path-planning mode, user can only do it with flying 
area information without the map and image background.  

Fig. 2.11 shows an example of the path-planning system application. This ex-
ample uses digital map as background. The area with semitransparent mask is the 
working area and the line indicates the air route. The yellow dot, green dot and red 
dot represent the preparation point, start point and end point of every air route, re-
spectively. 

 

Fig. 2.11 The main interface of the path-planning system 

2.3 Experiment of UAV Remote Sensing System 

China's first high-end and multi-functional remote sensing based on unmanned 
aerial vehicle (UAV) made its successful test flight on August 8, 2005 in Anshun 
City, southwest  of China's Guizhou Province. The remote sensing system, jointly 
developed by Peking University and Guizhou Aviation Industry (Group) Co Ltd, 
adopts intelligent and high-definition data retrieving technologies. This experi-
ment had three flights (see Table 2.2). The first flights aimed at testing the imag-
ing device on-board. The second time was carried out according to the require-
ment of photogrammetry, which tested the whole UAV remote sensing system. 
And, the last one tested the ability of real-time compression and decompression 
and validated some improvements.  

What is more notable is that the resolution has reached 2.25cm at low altitude, 
with clear identification of heads and tails of ducklings on the farm (Fig. 2.12). 
Fig. 2.13 shows the air route designed for remotes sensing experimental flight of 
the UAV. The lines are preset air routes and the dots are the start and end of a line. 
The area in the box is the working area. An image auto-spliced from images pho-
tographed by the high-efficiency wide angle airborne digital imaging mode of 
MADC is shown by Fig. 2.14.  
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Table 2.2 General results of experimental flights in August, 2005 

 First Flight Second Flight Third flight 

Date and time 10:00 , Aug. 8 15:30 , Aug. 18 9:30 , Aug. 24 

area An airport Anshun City An airport 

weather cloudy sunny cloudy 

Relative 
altitude 

200m 1000m 200m�400m 

Ground resolution 0.02m 0.10m 0.02m�0.04m 

flight velocity 40m/s 40m/s 40m/s 

Lens focus 80mm 80mm 80mm 

shutter 1/1000s 1/1000s 1/500s 

Aperture value 2.8 2.8 2.8 

Photograph mode fixed time interval fixed position fixed position 

longitudinal overlap 0 54.79% 0 

lateral overlap 0 30� 0 

Number of images 33 158 48 
 
 

 

Fig. 2.12 Enlarged images of the duck farm 
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Fig. 2.13 The air route designed for remotes sensing experimental flight of the unmanned aircraft 
in Anshun, Guizhou Province in 2005 

 

Fig. 2.14 Image auto-spliced by images taken by three parallel high-resolution digital cameras 

Fig. 2.15 shows four images acquired at an altitude of 0.2 km by the first ex-
perimental flight. Fig. 2.16 gives a part of the real-time mosaic of the snapshots. 
Fig. 2.17 is an image spliced by images photographed at an altitude of 1km on 
August 18, 2005. 

Generally, this experiment was carried out successfully. In the field of un-
manned airborne remote sensing, it firstly adopted integrated, intelligent, and 
high-resolution spatial data acquisition and other important technologies. The ap-
plication capability has been qualified, especially in the aspects of reliability, fly-
ing altitude, stabilization, navigating precision, operation costs and image acquisi-
tion. The experimental flights successfully validate airborne control, ground 
monitoring, image acquisition and path-planning of the UAV remote sensing sys-
tem. Even though, the results have shown that UAV is able to be a complement of 
conventional airborne remote sensing and satellite remote sensing, it still has some 
problems to be solved, which are listed as follows: 

 
� Complete the path planning system to implement professional task flight 

of unmanned airplane; 
� Study the movement compensation of images to solve the bottleneck 

problem in high-speed ultra low situation; 
� Complete information downloading and compressing/decompressing 
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functions to provide the basis for the real-time application; 
� Minimize the size and weight of digital cameras and remote sensing sys-

tems to solve the bottleneck problem of limited payload; 
� Develop a complete set of software systems for the automatic processing 

of UAV remote sensing. 

 

Fig. 2.15 Four images acquired by the UAV system in Anshun City, China 

 

 
 

Fig. 2.16 The real-time mosaic of the snapshots  
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Fig. 2.17 Image spliced by images photographed at an altitude of 1km  

2.4 Conclusions  

Since UAV has a limited loading capacity, the load must be reasonably de-
signed to reduce the volume, weight, and power consumption while reaching the 
required performance index. Considering the current development of UAV, UAV 
remote sensing system should be equipped with one sensor in the early stage. 
However, the system should have the ability to change according to different sen-
sors quickly (such as optical digital camera, infrared digital camera and SAR). 
Multiple sensors can be equipped only within the range of the loading capacity of 
the system. UAV usually has a high precision GPS/INS navigation and positioning 
device and needs real-time position and altitude data of the station. In order to re-
duce the weight and power consumption, the positioning data of the remote sensor 
also shares the GPS/INS data of the UAV. Thus, there is no need to install posi-
tioning and altitude measuring equipments any more.  

The number of UAV systems used in remote sensing and mapping has been in-
creasing fast in the past years. Many of them are still under research phase, and 
there are few systems that offer complete solutions to a user. UAVs have given 
remote sensing a new appeal for scientists and will certainly become the preferred 
platform for development of remote sensing instruments and applications in the 
near future when the necessary regulations and techniques are solved.  

UAVs are unlikely to replace more conventional remote sensing platforms, but 
they do offer advantages as means of supplementing conventional field data, espe-
cially by providing data that can be coordinated with broad-scale imagery from 
aircraft and satellite platforms. 
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Chapter 3 

DESIGN AND APPLICATIONS OF AN 
INTEGRATED MULTI-SENSOR MOBILE SYSTEM 
FOR ROAD SURFACE CONDITION DETECTION 

Qingquan Li, Yong Liu, Qingzhou Mao 

3.1 Introduction 

Landborne Multi-Sensor Integration System (LMSIS) has great advantages in 
data acquisition, i.e., accurate and comprehensive acquisition, rapid and automatic 
data processing. Moreover, its application has been expanded to vehicle naviga-
tion, road survey and design, traffic surveillance, and so on.  

In the past few decades, with the development of information technology and 
automatic controlling and high precision micro-measurement technology, IMSMS 
has advanced greatly in the types and properties of sensors and has been put into 
service in road surface condition detection. For instance, the Road Surface Pro-
filometer, a product of the Dynatest Company in Denmark, is a portable road sur-
face detection system designed to provide advanced, automatic pavement rough-
ness measurement in high quality for engineers and construction managers 
(Dynatest 2009). This Top-of-the-line Profilometer involves up to 21 lasers, accel-
erometers, Inertial Motion Sensor, GPS receivers, etc. Moreover, ARAN—
Automatic Road Analyzer (Roadware 2008) of RoadWare Company in Canada is 
an advanced platform available for collecting pavement condition and asset data. 
Its sensors include Distance Measuring Instrument (DMI), GPS receivers, laser 
SDP, laser XVP, etc. Those products are mainly used to measure road roughness, 
rutting, landslide, detect cracks, distress, and so on. In addition, the Hawkeye2000 
series (Arrb 2008) of ARRB company in Australia, Digital Highway Data Vehicle 
(Waylink 2008) (DHDV) of WayLink company in USA and Road Assessment Ve-
hicle (WDM 2008) (RAV) of WDM company in UK have similar functions in 
road surface detection. All those international products apply the latest and most 
sophisticated technology, but they are expensive for many consumers in develop-
ing countries, such as China.  A low-cost integrated multi-sensor mobile system 
needs to be developed.  

Starting from the 1990s, some research institutes and universities in China, 
such as Research Institute of Highway Ministry of Communications (RIHMC), 
Wuhan University, Nanjing University of Science and Technology (NJUST), etc., 
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have begun to develop IMSMS which aims at road surface detection. The CiCS of 
RIHMC, an experimental system, has been developed to measure roughness, de-
tect pavement distress and grab front images while the JG-1 of NJUST, can meas-
ure roughness, rutting and detect crack at the vehicle speed of 70Km/h. Later in 
2000s, supported by National Natural Science Foundation, Enterprise Innovation 
Fund of the Ministry of Science and Technology and National 985 Project, State 
Key Laboratory for Information Engineering in Surveying, Mapping and Remote 
Sensing in Wuhan University developed an IMSMS —SmartV. However, most re-
searchers have only focused on one function of IMSMS (Aris et al. 2006, Chen et 
al. 2006, Randeniya et al. 2008, Kelvin et al. 2002, Li and Yuan 2002, Li and Liu 
2007,  Nagai et al. 2004, Sreenivas et al. 2006). Few studies examine the whole 
system. Given this, this paper sets out to examine the functions of the whole sys-
tem of SmartV and its application comprehensively. 

3.2 SmartV System Overview 

3.2.1 Components of SmartV 

The hardware of SmartV refers to all the sensors and the vehicle which are 
used as the sensor carrier. Besides the vehicle, the sensors are divided into two 
categories: 

� Vehicle Sensors: the sensors assembled in the vehicle by the automobile 
manufacturer. The outputs of these sensors are useful for some customer 
sensors. For example, pulse signal of vehicle odometer and vehicle revers-
ing signal can be used as inputs of GPS/DR. 

� Customer Sensors: the sensors equipped by consumers according to the 
requirements of some special application. For example, positioning sensors 
can locate vehicles, and laser range finders can measure distance. 

 
The software of SmartV comprises onboard grabbing software and indoor post-

processing software. 
� Onboard data acquisition software: the software which is installed on 

the workstation of the SmartV’s vehicle, and is mainly used to acquire in 
real-time and store massive data. The performance requirements of this 
software are automatic, real-time processing and steadily running. 

� Indoor data post-processing software: the software which is used to 
post-process the acquired data and operated by the indoor workers. This 
software needs friendly user interface, performance of managing the mas-
sive data, and diverse report forms. 
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3.2.2 Major Functions 

SmartV has various functions in application. In road surface detection, SmartV 
can be divided into the following subsystems, as shown in Figure 3.1. 
 

 
Fig. 3.1 Functions of SmartV in road surface detection 

The functions of each subsystem are as follows: 
1) The sensor of Vehicle Positioning and Attitude Determination Subsys-

tem/System (VPADS) assisted by the positioning technology of road linear refer-
ence system (RLRS) is dead reckoning GPS receiver. This system can provide 
Spatial Reference Coordinate System (SRCS, vehicle current WGS coordinate and 
attitude) and Reference Time System (RTS, synthesized GPS time) for other sub-
systems.  

2) The sensors of Road 3D Data Acquisition Subsystem/System (R3DAS) are 
multiple industrial CCD cameras and multiple laser scanners. Geometric size of 
objects in the public field of view of stereo cameras and object properties can be 
obtained. On the other hand, 3D point cloud of both sides of the scanned road can 
be obtained by registering different profile scans together, and needed road infor-
mation can be analyzed.  

3) The sensor of Road Surface Imaging Subsystem/System (RSIS) is a high 
resolution linear CCD camera. This system can grab high definition road surface 
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images by scanning and then the surface distress can be analyzed through the im-
ages. 

4) The sensors of Road Surface Roughness Measurement Subsystem/System 
(RSRoMS) are high precision laser range finders and accelerometers, and this sys-
tem can measure roughness of the road surface. 

5) The sensors used in Road Surface Rutting Measurement Subsystem/System 
(RSRuMS) are linearly structured light and CCD camera. Thus, high resolution 
and precision 3D road surface models can be obtained through this system by tri-
angulation technology, and rutting of road surface can also be obtained. 

3.2.3 Applications 

According to the above functions, SmartV can be widely applied in the follow-
ing areas: 

 
� Navigation: The trajectory of vehicles can be used to create digital maps 

which are the fundamental database for navigation. Property data of naviga-
tion, such as building, gas station and traffic light, can be obtained by front 
CCD cameras. 

� Road facilities management: The data of road facilities, such as facility 
location, road planting, roadside slope and road fence etc., can be collected. 

� Road survey and design: The road 3D data can be used to analyze earth 
volume calculation and evaluation of construction workload of road main-
tenance or reconstruction. 

� Road surface condition detection. 

3.3 System Design 

For sequential data merging and information extracting, the output data of sen-
sors should be effectively obtained. In order to achieve this, the following two cri-
teria of the system must be achieved: 

1) The system should satisfy the condition of the installation, power supply of 
the sensors and the condition of sensor data acquisition, transmission, and 
storage. Firstly, the sensors must be installed in the limited space of the ve-
hicle. Secondly, enormous demand on power for sensors, accessory equip-
ments, and workstations need extra power supply since the power supply of 
the vehicle can only meet its own demands. 

2) The system should satisfy the condition of time synchronization and coor-
dinate unification among the sensors. In order to query and locate certain 
data from massive information, and analyze the correlation among them, 
the data must be stamped by SRCS and RTS. It involves two aspects: firstly, 
how to generate the SRCS and RTS; secondly, how to unify the data with 
them.  
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The following sections will discuss how to achieve the two criteria from hard-
ware architecture (sensors controlling and synchronization) and software architec-
ture (coordinate transformation). 

3.3.1 Sensors Controlling 

Sensors controlled in SmartV are shown in Figure 3.2. According to the figure, 
extra power supply, SRCS and RTS supply for other subsystems comprehensively. 
For one thing, there are two schemes for extra power supply, i.e., (1) gasoline gen-
erator which works when driving, (2) commercial power interface which is used 
when parking. So enough power supply is provided in whatever condition the ve-
hicle is. What is more, gasoline can be saved and work environment in the vehicle 
can be improved. SRCS and RTS are provided by VPADS. SRCS is based on the 
location of the GPS receiver, which is a unique coordinator in WGS. RTS benefits 
from the atomic clock which is mounted on the GPS satellite and provides a high 
precision time benchmark. 

In addition, there is an independent controller for each subsystem. The major 
functions are discussed as follows: 
� It can provide the power supply for the sensors and workstations of its sys-

tem (except for high power equipments). There are many kinds of sensors 
which use different voltage and the controller can transform voltage for 
them. 

� It can provide trigger pulse signal by time interval or distance interval. This 
signal can be used to grab the image at every 10 meters when driving or at 
every 2 seconds when parking. 

� It can provide high precision time output at high frequency for data acquisi-
tion. 

 
Fig. 3.2 Control of sensors in SmartV 
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3.3.2 Time Benchmark and Sensor Synchronization 

Although GPS can provide high precision time in UTC at a high level accuracy 
of 50 nanoseconds, it can not be used directly for data acquisition workstation. 
The following two reasons account for this: 

1) GPS signal is not guaranteed on vehicles. Especially when the vehicle is in 
the tunnel or under a shelter, the GPS receiver in the controller can not ob-
tain a GPS signal. So time precision can not be guaranteed. 

2) Raw GPS refresh rate is too low. In a high-speed data acquisition system, 
such a refresh rate is too low to stamp time and location for each data frame.  

To solve these problems, a timer has been embedded into the controller and it 
has two functions as follows: 

1) The controller in each subsystem has the function of timing. When the sig-
nal is lost, the timer starts to time based on the latest received GPS time; 
and when the signal is recaptured again, the timer calibrates the current 
time, which can prevent error cumulating. Time error of the timer, using a 
high stable crystal oscillator as the timing unit, is 1 millisecond in 12 hours. 

2) Time can be subdivided. The timer takes GPS satellite as time resource and 
provides high frequency time output with the identical high precision as 
raw GPS time, e.g., at a rate of 100Hz. 

The controller also provides the function of synchronous controlling. This is 
achieved by outputting multiple trigger pulse signals, such as the signal for stereo 
cameras synchronous exposing. 

3.3.3 Coordinate Transformation and Unification 

SRCS of SmartV is established on GPS with twin antenna and gyroscope and is 
a world geodetic system. The location of road surface customarily uses road linear 
reference (i.e., pile numbers and odometer offset). Thus, RLRS must be trans-
formed into world geodetic system at first. The following Figure 3.3 shows the 
reference systems used in this transformation. 

 
Figure 3.3 WGS84 and road linear reference system 
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In Figure 3.3, LS1-XYZ and LS2-XYZ are road linear reference systems. After 
transformation, GPS combined with RLRS form the SRCS. But the data from 
other subsystems is located in the local coordination system fixed on vehicle or 
sensor. So this requires another transformation from the local coordinate system 
into SRCS. Moreover, the transformation between SRCS and local coordinate sys-
tems are rotation and translation. 

3.4 Multi-Source Data Acquisition and Processing 

3.4.1 Vehicle Positioning and Attitude Determination 

 
Fig. 3.4 Principle diagram of VPADS 

VPADS is composed of GPS receiver, i.e., an absolute positioning technology, 
and gyroscope, i.e., a relative positioning sensor. It combines the advantages of the 
two technologies. So vehicle location can be accurately estimated. The following 
Figure 3.4 shows the principle diagram of VPADS. First, dead reckoning GPS 
(DRGPS) module takes GPS signal, gyroscope output and DMI signal as input. 
Next, it exports GPS data as NEMA format to ARM single chip after merging 
them together by serial port, along with pulse-per-second (PPS) signal to CPLD 
chip. Then, CPLD receives the ARM’s setting parameters. Finally, it merges DMI 
signal, atomic clock signal and PPS together to export the following signals: 

 
1) Distance pulse signal used as dead reckoning signal to DRGPS 
2) Distance pulse signal to ARM chip to estimate distance 
3) Shaped signal of AB phase signal of DMI to other controllers 
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4) Shaped signal of PPS to other controllers and ARM chip used as time cor-
recting signal 

5) Millisecond signal and operating frequency signal to ARM chip 
 
In this way, ARM chip actually works as a CPU of VPADS, by receiving out-

side control command, transmitting data, merging different data and uploading po-
sition, and time data to workstation and other controllers.  

3.4.2 Road 3D Data Acquisition and Processing 

Road 3D data include two types of data: stereo image database and 3D point 
cloud. On the one hand, stereo image is grabbed from a stereo camera mounted in 
the front of the vehicle by an image grab board and imaging road scene. Conse-
quently, geometric size of viewable objects can be measured by photogrammetry 
and properties of them can also be obtained. Also, they can simply serve as land-
scape images. Stereo cameras expose synchronously by the distance signal from 
the R3DAS controller. On the other hand, 3D point cloud is obtained through a la-
ser scanner at a high scanning frequency. By these means, the laser scanner con-
tinuously exports scanned data which are stamped with high precision time in 
workstation. In this process, time is crucial for registering every data frame. The 
following Figure 3.5 describes the processing of road 3D data.  

 

 
Fig. 3.5 Processing of road 3D data 

3.4.3 Laser Illumination, Road Surface Imaging and Crack 
Detection 

The linear CCD camera is used as an image sensor which works through scan-
ning imaging. Figure 3.6 is the flow chart of imaging and image processing. 
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Fig. 3.6 Road surface imaging and image processing 

From the figure, we can see that the RSIS controller receives the distance sig-
nal of DMI and exports an exposure pulse signal to the linear CCD camera and a 
high power liner laser is used as illuminating light. Due to the high line rate of the 
linear CCD camera, the exposure time is very short. Moreover, in natural condi-
tions, illumination is changed significantly. For instance, in shadow or in a cloudy 
day the illumination is much lower than in a sunny day. So, high illumination is 
needed. Because of the high illumination that the laser can provide, the high 
power line laser can be used to provide enough illumination in any environment. 
Moreover, it is also served as structured light for RSRuMS. 

Crack detection can be achieved from road surface image. Figure 3.7 shows 
the processing flow. 
 

 
Fig. 3.7 Crack detection processing flow 
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The following steps illustrate the process in the figure. The first step is Scale 
transform. That is, multi-level pyramid images are created for improving process-
ing efficiency and low-pass filter is used to keep the texture edge. The next step is 
Road surface mark detection. This involves detect marks, such as lane line, zebra 
crossing or guiding signs. As a result, the detection region narrows between two 
lane lines. Then, Dodging Processing, based on projection compensation, can ef-
fectively remove the uneven illumination in the image. Consequently, Filtering 
enhancement can reduce noise and enhance the distress texture by morphological 
filtering and linear enhancement filtering. Finally, in Image segmentation, the dis-
tress feature is segmented by differential statistics in neighborhood. After all these 
steps, statistics are used to detect the planar features and calculate the degree of 
road distress.  

3.4.4 Road Surface Roughness Measurement 

Laser range finder method with inertia compensation is a longitudinal section 
measurement method. First, vertical distance between the vehicle and road surface 
is obtained by a high precision laser range finder sensor. Next, the vertical bumpi-
ness caused by vehicle driving is measured with accelerometer. Then, the position 
can be located accurately with DMI. Finally, all the data is processed and analyzed, 
and therefore, the international roughness index (IRI) can be obtained. The follow-
ing Figure 3.8 shows the principle diagram of road surface roughness measure-
ment. 
 

 
Fig. 3.8 Principle diagram of road surface roughness measurement 

Laser range finder and accelerometer are rigidly connected together, and 
mounted on the vehicle. The vertical distance from the road surface to laser range 
finder cannot exceed the work distance of the laser range finder. Besides, the con-
troller of RSRoMS sends a pulse signal to the data grab board. So the data acquisi-
tion, transmission and processing can be done synchronously. At the same time, 
DMI provides the horizontal translation for calculating IRI. 
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3.4.5 Road Surface Rutting Measurement 

As shown in Figure 3.9, the following principle diagram illustrates the process 
of road surface rutting measurement. 

 
Fig. 3.9 Principle diagram of road surface rutting measurement 

Figure 3.9 shows that rutting measurement is based on the technology of struc-
tured light triangulation. Line laser is used as structured light. Planar CCD camera 
with a high frame rate can image transverse sections of road surface which are il-
luminated by laser.  

Furthermore, Figure 3.10 shows the steps of calculating rutting and distortion 
index (RDI). First, centerline of the laser line in the image is extracted and outliers 
are removed. Next, world coordinate of the centerline is interpolated by a look-up 
table which has been built as a Delaunay triangle. Then, a key point is set at every 
20 points and all key points are connected as line segments one-by-one. For each 
line segment, if there is a key point above it, this line will be deleted. Then there is 
a line segment that all key points are below it, and this line segment is a fitting line 
to the road transverse section profile. Finally, from the first point of the centerline 
to the last one, the distance between the point and the line is calculated and the 
maximal distance is the current rutting. 
 

 
Fig. 3.10 The steps of calculating rutting and distortion index 

If all transverse section profiles are registered together, 3D road surface model 
can be obtained. 
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3.5 Experimental System and Applications 

3.5.1 Experiments System 

As shown in the following Figure 3.11, Wuhan University has developed an 
experimental IMSMS –SmartV. The experimental system has been put into tests 
and applications. As a result, accurate measurement results have been obtained. 
For example, some calibration station tests in crack detection, roughness and rut-
ting measurement. The results are showed in Tables 3.1-3.3. Table 3.2 compares 
the values with standard IRI; the correlation coefficient is 0.9932, which is above 
the 0.98 demand. Table 3.3 compares the values with manual measurement results; 
the correlation coefficient is 0.9814, which is above the 0.95 demand. 

 
Fig. 3.11 SmartV of Wuhan University 

Table 3.1 Contents of crack detection test for RSIS 

Contents Achieve goal Result 

Crack detection 
 100% for crack ( crack width bigger than 2mm) 

Width error � 1mm 
100% 

Area error � 5% 3.5% 

Auto detection rate (2mm width crack) � 80% 85% Raveling detection 

Auto detection rate � 80% 85% 

Area error � 5% 4.0% 

Other distress detection 
Auto detection rate � 80% 80% 

DMI error � 0.1% 0.1% 

Repetition Cv � 5% 2.0% 
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Table 3.2 Roughness test for RSRoMS 

Road No. 
Contents 

1 2 3 4 5 

Average 1.53 3.23 2.01 4.86 6.43 

Standard deviation 0.070 0.073 0.080 0.172 0.199 

variation coefficient 4.58% 2.28% 4.01% 3.54% 3.10% 

Standard IRI 1.57 2.59 1.88 3.74 5.13 

 
 

Table 3.3 Rutting test for RSRuMS 

Road No. 
Contents 

1 2 3 4 5 6 7 

Average 30.6 27.6 24.6 17.5 13.5 11.8 3.6 

Standard deviation 0.297 0.164 0.245 0.396 0.789 0.122 0.114 

variation coefficient 0.97% 0.59% 1.00% 2.26% 5.83% 1.04% 3.20% 

Manual measurement 31.2 25.4 22.6 17.7 14.1 11.9 6.2 

3.5.2 Applications 

Presently, there are several IMSMS for road surface condition detection that 
have equipped some highway engineering Co., Ltd. and have been successfully 
put into use. This system can be used to investigate the Pavement Surface Condi-
tion Index (PCI), the Riding Quality Index (RQI), and the Rutting Depth Index 
(RDI) of the highway. Furthermore, the report form can satisfy the standard of the 
CPMS pavement management system of Ministry of Transport of the People’s 
Republic of China.  

For example, in 2008 October, the system had been used to detect the road sur-
face conditions of the Fu-Ning highway. This highway, connecting from Fuding 
city to Ningde city of Fujian province, China, was opened for traffic in 2003. Fur-
thermore, its whole length is 141 Km and it is a bituminous pavement, but mixed 
with some concrete pavement. The following reports the investigation results. 
 
a) Evaluation of overall distress 

PCI, which can be calculated from Pavement Distress Ratio (DR), is often used 
as evaluation index for road surface distress. Moreover, there are five scales range 
from Excellent, Good, Average, Fair to Poor. Readers who are interested in this 
field can refer to the highway performance assessment standards (China Commu-
nication Press, 2008) for details about the evaluation system. 

As a result, Table 3.4 is the overall distress evaluation, and Table 3.5 and Table 
3.6 are respectively the distress of bituminous pavement and concrete pavement. 
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From these tables, we can draw a conclusion that this highway is still in good con-
dition, and we can also investigate the damage level of each distress in detail. 

Table 3.4 Overall distress evaluation 

Evaluation Object DR (%) PCI Evaluation 

Up-Direction 0.69 88.2 Good 

Down-Direction 0.57 88.8 Good 

Overall 0.63 88.5 Good 

 

Table 3.5 Distress of bituminous pavement 

Distress Types (Unit) Up-Direction Down-Direction 

Alligator Cracking (m�m) 920.1 348.3 

Block Cracking (m�m) 0.0 1.2 

Longitudinal Cracking (m) 686.5 519.8 

Transverse Cracking (m) 1043.9 1543.8 

Pot Holes (m�m) 269.2 77.9 

Ravelling (m�m) 161.6 583.1 

Subsidence (m�m) 0.0 0.0 

Rutting (m) 0.0 0.0 

Upheaval (m�m) 0.0 0.0 

Bleeding (m�m) 0.0 0.0 

Repairing (m�m) 1084.8 1339.4 

 
b) Evaluation of riding quality Index 

RQI is generally defined as an expression of irregularities in the pavement sur-
face, and can be calculated from International Roughness Index (IRI). Table 3.7 is 
the overall RQI evaluation. 

Table 3.7 shows that the riding quality is satisfactory, i.e. the drivers or passen-
gers traveling on this highway must feel comfortable. 
 
c) Evaluation of rutting depth index 

Table 3.8 shows the overall RDI evaluation which RDI is calculated from Rut-
ting Depth (RD). We can see that the distress of rutting is a bit serious. 



Multi-Sensor Mobile System 59 

 

Table 3.6 Distress of concrete pavement 

Distress Types (Unit) Up-Direction Down-Direction 

Slab Damage (m�m) 1090.0 375.5 

Cracking m 336.9 280.8 

Corner Damage of Slab (m�m) 97.1 71.1 

Faulting of Slab Ends m 0.0 0.0 

Pumping m 0.0 0.0 

Edge Failure m 20.4 8.4 

Jointing Material Damage (m�m) 14.8 13.9 

Hole (m�m) 6.5 5.5 

Arching (m�m) 0.0 0.0 

Surface Angularity (m�m) 7.9 0.0 

Repairing (m�m) 76.3 94.7 

 

Table 3.7 Overall RQI evaluation 

Evaluation Object IRI (Unit: m/km) RQI Evaluation 

Up-Direction 2.54 88.05 Good 

Down-Direction 2.41 88.95 Good 

Overall 2.47 88.50 Good 

  

Table 3.8 Overall RDI evaluation 

Evaluation Object RD (Unit: mm) RDI Evaluation 

Up-Direction 10.53 78.94 Average 

Down-Direction 10.70 78.60 Average 

Overall 10.61 78.77 Average 

 
Besides of the overall evaluation, detailed evaluation can be also obtained, e.g. 

evaluating the highway per kilometer or hectometer. Similarly, taking the Fu-Ning 
highway as example, the distress evaluation per Km is shown as Table 3.9. 
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Table 3.9 Distress evaluation per kilometer 

Evaluation per Kilometer  (Unit) Excellent Good Average Fair Poor 

Up-Direction            (Km) 105.1 29.7 7.0 2.1 0.2 

Down-Direction         (Km) 99.7 35.9 7.0 1.6 0.0 

  
Table 3.6 shows the road length that lies in each evaluation scale, and most of 

the road is good condition. Moreover, PCI can be obtained at each pile number 
and this is shown in Figure 3.12. 

 

	


	

�	

�	

	

�	

�	

�	

�	

�	


		


 �



�

�
�

�
�

�
�

�
�




�
	

�


�



�
�

�
�

�
�

�
�

�
	

�
�



	





	
�





�





�



�
�



�
�



�
�

��������������� 

�
!
"

 
Fig. 3.12 PCI curve per kilometer 

From this figure, we know each part of the highway’s PCI. For example, the 
PCI between 63Km and 66Km is lower than the others. That is to say the condi-
tion of this part is not good, and the owner should determine whether it needs to 
be repaired or not. 

3.6. Conclusions 

To summarize, this paper reports the significant findings of an ongoing re-
search, Integrated Multi-Sensor Mobile System in the application of road surface 
detection. The SmartV, composed of many subsystems, has made great contribu-
tions in multi-source data acquisition, storing, and processing. Experiments and 
applications have proved that the measurement results are accurate and reliable. 
Consequently, SmartV would also contribute to great social and economic benefits 
for the industries. 

With the development of sensors, IMSMS should be advanced in the future. 
Therefore, further studies need to improve the performance of the system. More 
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research can be carried out to meet new challenges and problems. Firstly, further 
exploration is required to examine data fusion and information extraction. How to 
achieve multi-source data fusion and high-level information extraction remains to 
be a challenging work. Further research can be carried out in these areas. Secondly, 
future study needs to consider cost reduction since new sensors which IMSMS are 
mainly based on are costly before widely used. Thirdly, IMSMS should update 
continuously with the latest development of technology and sensor. Therefore, re-
searchers must keep pace with the development of new technology, familiarize 
themselves with the performance of new sensors, and master how to use those new 
sensors. 

References 

Arrb, 2008.  www.arrb.com.au/index.php?option=com_content&task=view&id=64&Itemid=52 
(Acc. 2008-09-25) 

Yunfang Chen, Ye Zetian, Xie Caixiang, Shi Bo,Wang Guibin, 2006. 3D Data Collection and 
Modeling by Vehicle-borne CCD and Laser Scanner Aided by IMU and GPS, Science of Sur-
veying and Mapping, 2006.9, Vol.31 No.5, P91~92. 

China Communication Press, 2008. Highway Performance Assessment Standards 
Dynatest, 2009. www.dynatest.com/functional-rsp.php?tab=functional (Acc. 2009-06-13) 
Deren Li, Yuan Xiuxiao, 2002. Error Processing and Reliability Theory [M]. Wuhan: Wuhan 

University Press, 2002.7. 
Qingquan Li, Liu Xianglong, 2007. An Algorithm to Image-based Pavement Cracks Geometry 

Features Extraction [J]. Science paper Online. 2007.7, 2(7):P517-522. 
M. Nagai, R. Shibasaki, H. Kumagai, S. Mizukami, D. Manandhar, H. Zhao, 2004. Construction 

of Digital Surface Model by Multi-Sensor Integration from an Unmanned Helicopter, Pro-
ceedings of the ISPRS Working Group V/6, Volume XXXVI, Part 5/W1. 

Aris Polychronopoulos, Nikos Floudas, Angelos, Dirk Bank, Bas van den Broek, 2006. Data Fu-
sion in Multi-sensor Platforms for Wide-area Perception [C]. Intelligent Vehicles Symposium, 
2006.6, Tokyo, Japan. 

D.I.B. Randeniya, M. Gunaratne, S. Sarkar, A. Nazef, 2008. Calibration of Inertial and Vision 
Systems as a Prelude to Multi-sensor Fusion [J]. Transportation Research Part C, 16 (2008), 
P255~274.  

Roadware, 2008. www.roadware.com/products_services/aran/ (Acc. 2008-09-25) 
Sreenivas R. Sukumar, Sijie Yu, David L. Page, Andreas F. Koschan, Mongi A. Abidi, 2006. 

Multi-sensor Integration for Unmanned Terrain Modeling. In Proc. SPIE Unmanned Systems 
Technology VIII, Vol.6230, Orlando, FL, P65~74, 2006.4. 

Kelvin C.P. Wang and Weiguo Gong, 2002. Automated Pavement Distress Survey: A Review and 
A New Direction, 2002 Pavement Evaluation Conference, 2002, Roanoke, Virginia. 

Waylink, 2008. www.waylink.com/ (Acc. 2008-09-25) 
WDM, 2008. www.wdm.co.uk/product.htm (Acc. 2008-09-25) 
  
 



Chapter 4 

HIGH RESOLUTION SATELLITE IMAGE 
ORIENTATION MODELS 

Mattia Crespi, Francesca Fratarcangeli, Francesca Giannone,            
Francesca Pieralice 

4.1 Introduction 

A few years ago high resolution satellite imagery became available to a limited 
number of government and defense agencies that managed such imagery with 
highly sophisticated software and hardware tools. Such images became available 
to civil users in 1999 with the launch of Ikonos, the first civil satellite offering a 
spatial resolution of 1 m. Since then other high resolution satellites have been 
launched, among which there are EROS-A (1.8 m), QuickBird (0.61 m), Orbview-
3 (1 m), EROS-B (0.7 m), Worldview-1 (0.5 m) and GeoEye-1 (0.41 m), with 
many others being planned to launch in the near future. High resolution satellite 
imagery is now available in different formats and processing levels at an afford-
able price. The diverse types of sensors and their growing availability are revolu-
tionizing the role of satellite imagery in a number of applications, ranging from in-
telligency to insurance, media, marketing, agriculture, utilities, urban planning, 
forestry, environmental monitoring, transportation, real estate etc. As a possible 
alternative to aerial imagery, high resolution satellite imagery has also impact in 
cartographic applications, such as in orthophoto production, especially for areas 
where the organization of photogrammetric surveying may be critical. 

Moreover, an increasing demand for large scale mapping and terrain modelling 
exists so that almost all the satellites have along-track stereo acquisition capabil-
ity. Many new satellites dedicated to stereo viewing, for example Cartosat-1 (2.5 
m), have been launched. This compensates the limited capacity of very high reso-
lution satellites for three-dimensional point determination and enables the genera-
tion of Digital Elevation Models (DEMs) and Digital Surface Models (DSMs), 
and also for 3D feature extraction (e.g. for city modelling). 

However, the possibility of using high resolution satellite images for cartogra-
phy depends on several factors: mapping specifications, sensor characteristics 
(geometric and radiometric resolution and quality), types of products made avail-
able by the companies managing the satellites, quality of the software used to pro-
duce the cartographic products, and quality of the final results. 

© Springer Science + Business Media, LLC 2009
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One of the primary barriers to a wider adaptation and utilization of satellite im-
agery is the sensor model being able to provide a high level geometric correction 
through image orientation. The distortion sources can be related to two general 
categories: the acquisition system, which includes the platform orientation and 
movement, and the imaging sensor optical-geometric characteristics; the atmos-
phere refraction, causing a remarkable deviation from the collinearity hypothesis 
(Noerdlinger 1999). 

Two different types of orientation models are usually adopted: the physical 
sensor models (also called rigorous models) and the generalized sensor models. In 
the first ones, based on a standard photogrammetric approach where the image and 
the ground coordinates are linked through the collinearity equations and the in-
volved parameters have a physical meaning. Besides, they require knowledge on 
the specific satellite and orbit characteristics. On the contrary, the generalized 
models are usually based on the Rational Polynomial Functions (RPFs), which 
link image and terrain coordinates by the Rational Polynomial Coefficients 
(RPCs) and do not need the knowledge about the sensor and acquisition features. 
The RPCs can be calculated by the final users via a Least Squares (LS) estimation 
directly from Ground Control Points (GCPs), or proprietarily generated by the 
sensor managing companies based on their own physical sensor models and dis-
tributed to users through imagery metadata. Nevertheless, the first strategy (also 
called terrain-dependent) is not recommended if a reliable and accurate orientation 
is required. In the second strategy, they can be generated according to a terrain-
independent scenario, using known physical sensor. In order to avoid instability 
due to high correlations among the coefficients, two different methods can be 
used: Tichonov regularization or an innovative method based on Singular Value 
Decomposition (SVD) and QR decomposition, estimating only the strictly re-
quired coefficients. 

This chapter will discuss many features of the sensor models, both for single 
images and stereopairs. Specifically, discussions will be focused on the rigorous 
model for the orientation of the basic image (level 1A) (Sect. 4.2, 4.3, 4.6) and of 
the image projected to a specific object surface (usually an expanded ellipsoid de-
rived from the WGS84) (level 1B) (Sect. 4.4). The RPC model for the orientation 
of single and stereopairs images is discussed in Sections 4.7, 4.8. Section 4.9 ad-
dresses the methods for accuracy assessment, while Section 4.10 presents applica-
tion examples of different sensor modelling.  

4.2 Rigorous Models  

The rigorous model is based on a standard photogrammetric approach, i.e., the 
collinearity equations describing the physical-geometrical image acquisition. It 
must consider that an image from a pushbroom sensor is formed by many (from 
thousands to tens of thousands) individual lines, each acquired with proper posi-
tion (projection center) and attitude values. All the acquisition positions are related 
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by the orbital dynamics. Therefore, the rigorous model is based on the reconstruc-
tion of the orbital segment during image acquisition through the knowledge of the 
acquisition mode, sensor parameters, satellite position and attitude parameters. 
The approximate values of these parameters can be computed by using the infor-
mation contained in the image metadata file, delivered with each image. These ap-
proximate values are then corrected by a LS estimation process based on a suitable 
number of GCPs. Moreover, in order to relate the images to the ground coordi-
nates, expressed in an Earth Centered - Earth Fixed (ECEF) reference frame, a 
translation and a set of rotation matrices depending on orbital parameters (Keple-
rian elements) and sensor attitude have to be used. These matrices include those 
needed to shift between sensor, platform, orbital and Earth Centered Inertial (ECI) 
coordinate systems, while the transformation between ECI and ECEF coordinate 
systems must take into account precession, nutation, polar motion and Earth rota-
tion matrices (Kaula 1966). 

4.2.1 Coordinate Systems 

 In order to introduce the collinearity equations, the definitions of some coordi-
nate systems are needed (Westin 1990): 

Image system (I): is a 2-dimensional system describing a pixel position in an 
image. The origin is in the upper left corner, and the pixel position is defined by 
its row (J) and column (I). The column numbers increases toward the right and 
row numbers increases downwards (Fig. 4.1a). 

Sensor system (S): the origin is at the perspective center (whose orbital motion 
may be described as if it were the satellite center of mass), the z-axis is directed 
from the perspective center to pixel array, the x-axis is approximately tangent to 
the orbit directed as the satellite motion (see paragraph 4.2.4, 4.2.5), and y-axis 
forms a right-handed Cartesian system. Note that y-axis is approximately parallel 
to the pixel array. The principal point is the orthogonal projection of the perspec-
tive center onto the pixel array (Fig. 4.1b). 
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Fig. 4.1 Image system (a) and sensor system (b) 



66   Satellite Image Orientation 

Body system (B): it is aligned to the flight system (see below) when the angle 
roll (�), pitch (�) and yaw (�) are zero. 

Flight system (F): the origin is at the perspective center, the X-axis is tangent 
to the orbit along the satellite motion, the Z-axis is in the orbital plane towards the 
Earth center of mass and the Y-axis completes the right-handed coordinate system. 

Orbital system (O): the Xo-Yo plane coincides to the orbital plane, which is 
defined by right ascension of the ascending node (�) and by the orbit inclination 
(i). X-axis is along the nodal line, Y-axis and Z-axis complete the right-handed co-
ordinate system. With the hypothesis of Keplerian orbit, Z-coordinate of satellite 
in the orbital system is zero. 

Earth Centered Inertial system - ECI (I): the origin is at the Earth center of 
mass, the X-axis points to vernal equinox (epoch J2000 - 1 January 2000, hours 12 
UT), the Z-axis points to celestial north pole (epoch J2000) and the Y-axis com-
pletes the right-handed coordinate system (Teunissen and Kleusberg 1998, Hof-
mann et al. 2008). 

Earth-Centered Earth-Fixed system — ECEF (E): the origin is at the Earth 
center of mass, the X-axis is the intersection of equatorial plane and the plane of 
reference meridian (epoch 1984.0), the Z-axis is the mean rotational axis (epoch 
1984.0) and the Y-axis completes the right-handed coordinate system (Teunissen 
and Kleusberg 1998, Hofmann et al. 2008). 

Geodetic Local system (L): the origin is a chosen point on the ellipsoid (here 
the WGS84 is used) the N-axis is tangent to the local meridian, E-axis is tangent to 
the local parallel and h-axis (elevation axis) is along the ellipsoid normal. 

4.2.2 Orbital Parameters 

  The satellite orbit can be described using the well-known Keplerian elements 
(Fig. 4.2). According to Keplerian laws, a satellite (considered as a material point), 
under the effect of a gravitational field generated by a mass concentrated in a 
point, moves in a plane describing an elliptic orbit. The satellite position at each 
generic epoch T is represented by seven parameters (Kaula 1966, Westin 1990). 
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Fig. 4.2 Keplerian parameters 
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semi-major axis (a): it is semi-major axis of the orbital ellipse. 
orbit inclination (i): it is the angle (positive if counter clockwise) between the 

orbital plane and the equatorial plane. By convention it is between 0 and 
��
right ascension of the ascending node (�): it is the angle (positive if counter 

clockwise observed from the North Pole) at the center of the Earth from the vernal 
equinox to the ascending node. 

eccentricity (e): it is the eccentricity of the orbital ellipse. 
true anomaly (v): it is the angle measured in the center of the ellipse between 

the perigee and the position of the satellite at generic epoch T defined to be 0 at 
perigee. 

argument of the perigee (	): it is the angle between the nodal line (intersec-
tion between the orbital plane and the equatorial plane) and the semi-major axis, 
measured in the orbital plane from the ascending node to the perigee. 

time of the perigee passage (Tp): it is the time referring to the epoch when the 
satellite is nearest to the Earth. 

The approximate values of these parameters can be computed based on the 
ephemeris information in the metadata file released together with the image. 

In some cases (e.g. Ikonos, QuickBird Standard OrthoReady, Cartosat-1), the 
metadata file released by the sensor managing Companies do not include the 
ephemeris file (spacecraft position and velocity every few seconds) but only one 
satellite mean position that is described by two angles: 

azimuth (�): it specifies the satellite position relative to the area that is col-
lected on Earth, it is measured clockwise from the North. 

elevation (e): it is the angle from the horizon up to the satellite. 
Nevertheless, some main features of the orbit (a, i) are always known, so that 

the approximate values of the other Keplerian elements may still need to be com-
puted.  

4.2.3 Attitude Angles 

To define the sensor during the acquisition it is necessary to know its attitude 
described by the roll (�), pitch () and yaw (�) angles, respectively referred as X, 
Y, Z axes of the flight system. The approximate values of these angles are calcu-
lated with the metadata file information. The corrections to these approximate val-
ues may be modeled by second order polynomials. Although there is not any 
physical meaning in doing this, good results seem to support this choice (Westin 
1990) 
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where�� is the time, in seconds, such as tJ s ���  where t is the time needed to 
scan a row on the ground and Js is the row of the pixel. The nine coefficients (ai, 
bi, ci) are unknown and need to be estimated with the LS adjustment. 

In some case (e.g. Ikonos) the satellite can acquire images at a stated scan azi-
muth (the exact angle from the starting point of the scan and it is measured clock-
wise from North) and following a stated scan direction (“forward” or “reverse”); a 
reverse scan is generally from North to South, whereas a forward scan being from 
South to North. 

J

I North

Js

scan azimuth 180°
North

Js

scan azimuth 90°

 
Fig. 4.3 Example of Js-axis direction 

If the scan azimuth is 180° and the scan direction is “reverse”, the image is col-
lected from North to South, or if scan azimuth is 90° and the scan direction is 
“forward”, the image is collected from West to East. In the former case, the J-axis 
of image system is directed to the scanning direction, whereas in the latter the 
scanning direction is perpendicular to the J-axis of the image system (Fig. 4.3). So 
the position of a generic point p (I, J) has to be projected on scanning direction (Js-
axis) with the following relation: 

 �� sincos ����� IJJs  (4.2) 

where � is the scan azimuth and I, J are the image coordinates. 

4.2.4 Coordinate System Transformations 

The global rotation matrix from the sensor system to the ECI can be expressed 
through three rotations (Westin 1990) 

 SBBFFISI RRRR ���  (4.3) 

which can be detailed recalling the standard from the matrices representing the ro-
tations around the axes of the right-handed Cartesian coordinate system: 
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(rotations �, � �� are positive if they are counter clockwise when seen from the 
positive semi axes). 

Inertial-Orbital matrix (ROI): this allows the passage from inertial geocentric 
system (ECI) to the orbital one. It is a function of right ascension of ascending 
node (���and of orbit inclination (i) 

 )()i( ��� ZXOI RRR  (4.5) 

Inertial-Flight matrix (RFI): this allows the passage from the inertial geocen-
tric system (ECI) to the flight one. It is a function of Keplerian orbital parameters 
and varies with the time inside each scene (for each image row J) 

 )()i()()
2

()
2

( ������� ZRXRUZRZRXRFIR 

  (4.6) 

where i is the inclination, � the right ascension of the ascending node, vU �� 	  
with 	�argument of the perigee and v true anomaly 

Flight-Body matrix (RBF): it allows the passage from the orbital system to the 
body one through the attitude angles (�, , �), which depends on time (for each 
pixel row) 

 )()()( �� XYZBF RRRR ���  (4.7) 

Body-Sensor matrix (RSB): it allows the passage from the body to the sensor 
system. This matrix considers the deviation of the parallelism between axes 
(X,Y,Z)S and (X,Y,Z)B and it is considered constant during a scene for each sensor. 
Its elements may be provided in the metadata files. 

The rotation matrix for the transformation from ECI system to ECEF system 
(REI) can be subdivided into four sequential steps, considering the motions of the 
Earth in space: precession, the secular change in the orientation of the Earth's rota-
tion axis and the vernal equinox (described by the matrix RP); nutation, the peri-
odic and short-term variation of the equator and the vernal equinox (described by 
the matrix RN); polar motion, the coordinates of the rotation axis relative to the 
IERS Reference Pole (described by the matrix RM); and Earth's rotation about its 
axis (described by the Sideral Time through the matrix RS) (Montenbruck Gill 
2001). 

 PNSMEI RRRRR ����  (4.8) 

The product of REI and RSI
T matrices allows the passage from sensor S to ECEF 

system, with the final rotation matrix being: 
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 )()()( WRPRKRRRR XYZ
T

EIES
SI

�����  (4.9) 

where the angles (K, P, W) define the satellite attitude at the epoch of the acquisi-
tion of image row J with respect to the ECEF system. 

4.2.5 Interior Orientation and Self-Calibration Parameters 

The interior orientation parameters describe the intrinsic geometric features of 
the sensor. Moreover, self-calibration parameters are used to correct the geometric 
errors in the CCD linear array and the optical system. Note that, referring to the 
linear array design, one CCD line can be made of ns segments being Npi is the 
number of pixels contained in i-th segment. The modeling of the geometric errors 
is easy if carried out in the sensor system (S). For the sake of simplicity, here we 
consider models under the assumption of 1�ns . More details may be found in 
(Poli 2005). 

4.2.5.1 CCD Linear Array Geometric Errors 

The geometric errors that may occur in CCD linear array sensors are briefly de-
scribed and modeled hereafter: 

1. The change of the pixel size. It has the effect to change the image scale (Fig. 
4.4).  

If (px, py) are the pixel dimensions and (dpx, dpy) a change of the pixel size in x 
direction and in y direction respectively, the errors (dxp, dyp) result: 

 
y

y
pxp p

dp
ydydpdx ���                      (4.10) 

The error dyp may be also due to the focal length variation and the radial distor-
tion. Note that the first order terms in 4.10, 4.13 are highly correlated. Therefore, 
it is not possible to estimate both the pixel dimension variation together the focal 
length variation. 

xs

ys

 
Fig. 4.4 Effect of pixel size change in yS direction “from (Poli 2005)” 

2. The shifts and rotations of the CCD segments in the focal plane. These errors 
are described and modelled as follows: 
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� shifts in x- and y-directions (Figs. 4.5a, 4.5b): constant quantity dxc and dyc, re-
spectively 

ys

xs

dxc

ys
dyc

xs  
Fig. 4.5 Shift of CCD segment in yS direction (a) and shift of CCD segment in xS direction (b) 
“from (Poli 2005)” 

� effect of horizontal rotation � in the CCD plane. The rotation produces the error 
dy� in yS direction and dx� in xS direction (Fig. 4.6), but only the latter has to be 
considered since �� is small: 

 �� sin�� ydx  (4.11) 
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Fig. 4.6 Effects of rotation of CCD segment in the focal plane “from (Poli 2005)” 

3. The line bending in the focal plane. The straight CCD line is supposed to be de-
formed into an arc if the size of the bending is described by the central angle � 
that subtends the arc described by the deformed line and the central angle !’ is 
related to the generic pixel position, the error results Fig. 4.7, 

P''P'

xs

ys

R
!

!'

dx!'

C

1/2(Nppy)

 
Fig. 4.7 Line bending in the focal plane “from (Poli 2005)” 
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where 

2
2 !sen

pN
R yp �

�  and the bending is supposed in the plane defined by 0"Sx . 
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2
coscos '

'
!!! Rdx  (4.12) 

If the CCD line is bending in the plane where 0)Sx , equation (4.12) is valid 
with the opposite sign. 

4.2.5.2 Optical System Errors 

The possible errors that may occur in an optical systems have been deeply in-
vestigated in close range, airborne and satellite photogrammetry (Brown 1971, 
Beyer 1992, Jacobsen 1998).  

1. The displacement of the lens principal point. This error is modelled with con-
stant shifts �xp, �yp applied to the principal point coordinates (xp, yp) in x and y 
directions and is totally correlated with the shift of the CCD linear array in the 
focal plane. 

2. The change of the focal length f. The effect of this error �f in x and y directions 
is modeled as 
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where pp xxx �� and pp yyy �� . 

3. The symmetric lens distortion is described by the coefficients k1 and k2 and 
modelled as 
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where 222
pp yxr �� . For pushbroom sensors with CCD linear array only dyr may 

be significant and 22
pyr + . 

4. The decentering lens distortion is modeled as 
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Again, only dyd may be significant. 

4.2.5.3 Final Consideration about the Self-Calibration Parameters 

Accounting for the described general models for the CCD linear array geomet-
ric errors and for the optical system errors and considering their significance and 
correlations, only a few self-calibration parameters need to be introduced. More-
over, these parameters can be conveniently chosen to directly model self-
calibration with respect to the image coordinates (I, J). In detail, the following 
self-calibration parameters are worth to be set up: 

1. The position of principal point (I0, J0), accounting also for the shift of the 
CCD linear array in the focal plane (as described in Fig. 4.5). 

2. The rotation of the CCD linear array in the focal plane (k) (as described in 
Fig. 4.6). 

3. The change of the focal length (!f), accounting also for the scale variation 
and the isotropic change of pixel dimension. 

4. The symmetric lens distortion up to the third order in y direction only (d2) 

Another possible parameters is ! representing the line bending, however, it will 
not be considered in the following rigorous model implementation. 

4.3 Rigorous Model for Original Images (Level 1A) 

As mentioned before, a rigorous model is based on the collinearity equations 
and describes the imagery acquisition both from the geometrical and physical (and 
stochastic) points of view. It is now possible to write the collinearity equations re-
lating to the position of a point in the image space to the corresponding point in 
the object space, according to a central projection. In our case, the collinearity 
equations may be conveniently expressed in the Earth Centered Inertial (ECI) sys-
tem starting from the relationship (Fig. 4.8) 
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where (Xt, Yt, Zt)I are the ECI coordinates of the ground point, (Xs, Ys, Zs)I are the 
ECI coordinates of the perspective center, (ux, uy, uz)I are the components in the 
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ECI system of the unit vector ûSI directed from satellite to the ground point, and d 
is the distance from the perspective center to the ground point. 

 � � � � � �222
StStSt ZZYYXXd ������  (4.17) 
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Fig. 4.8 Central projection mode 

Therefore, introducing the sensor system the collinearity equations read: 
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where f is the focal distance, RSI is the rotation matrix from ECI to sensor system 
and ds is the perspective center to image point distance 

 222 fyxd SSs ���  (4.19) 

Finally, the standard form of two collinearity equations for each ground point is 
obtained by dividing the first two equations of (4.18) by the third one: 
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With simple geometric consideration (Fig. 4.1b) the collinearity equations can 
be written as a function of image coordinates, interior orientation and self-
calibration parameters previously set up, Keplerian orbital and attitude parameters. 
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Therefore, equating (4.20) and (4.21) the relationship between the image and the 
ground coordinates is found: 
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The collinearity equations depend on the parameters described in the para-
graphs 4.2.2, 4.2.3 and 4.2.5. In some cases the image metadata file is not supplied 
with the satellite position and velocity at every interval time; thereby the orbit is 
reconstructed using the procedure described in paragraph 4.4.1 (Crespi et al. 
2008b). 

As mentioned, the approximate values for all parameters may be derived from 
the information contained in the metadata files, released together with the image 
(a, i, �, e, v, 	, �, , �, f and I0) or they are simply fixed to zero (ai, bi, ci, J0, k 
and d2). In theory, these approximate values must be corrected by an estimation 
process based on a suitable number of GCPs, for which the collinearity equations 
are written. Nevertheless, since the orbital arc related to each image acquisition is 
extremely short (a few hundreds of kilometers) compared to the whole orbit length 
(tens of thousands). Some Keplerian parameters are not estimable at all (a, e,�	) 
and others (i, �, TP) are extremely correlated both among themselves and with re-
spect to the sensor attitude, interior orientation and self-calibration parameters (f, 
I0, J0, k, d2) (Giannone 2006). The parameters estimable are (ai, bi, ci, TP, f, I0, J0, 
k, d2). Regarding the stochastic model, the standard deviations of the image obser-
vations are set equal, since manual measurement tests carried out independently 
by different operators range from 1/3 to 1/2 pixel in accuracy. For the GCP coor-
dinates standard deviations are usually set equal to the mean values obtained dur-
ing their direct surveying or cartographic selection (Brovelli et al. 2008).  
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In this rigorous model also the refraction effect has been taken in account. At-
mospheric refraction effect causes a well know bending of the optical paths due to 
the variation of atmospheric density (Fig. 4.9a). The purpose of atmospheric re-
fraction modeling is the correction of the image coordinates in order to remove the 
refraction effect and to estimate the orientation parameters under the hypothesis of 
straight optical paths, which are actually modeled by collinearity equations (4.22). 
In fact, the ground point P is projected onto the image along a refracted path in p�, 
but equations (4.22) model the collinearity condition along the straight path POp. 
Therefore, we need to compute the correction from p� to p in order to properly 
adopt the model (4.22). The deviation from the collinearity assumption due to the 
atmospheric refraction is computed by a model duly described in (Noerdlinger 
1999) (Fig. 4.9b, Table 4.1) which basically allows to calculate the displacement d 
due to the refraction effect and the position of P� on the ground, starting from the 
off-nadir angle. Therefore, a first rough orientation is performed, neglecting the 
refraction effect, in order to estimate the off-nadir angle under which each ground 
point is imaged, then the corresponding P�. 
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Fig. 4.9 Effect of atmospheric refraction 

Moreover, through the collinearity equations, starting from P and P�, the corre-
sponding image position p and p� are computed, so that the components of the vec-
tor a suitable to remove the atmospheric refraction effect from the image coordi-
nates can be computed by: 
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 (4.23) 

The vector a  is applied to the coordinates collected on the image, from which a 
new estimation process is performed in order to refine the orientation parameters. 
Note that one iteration is usually enough, since the refraction is well estimated on 
the basis of the first rough orientation.  
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(a) (b)
 

Fig. 4.10 Distribution of atmospheric refraction effect, represented by vector a  computed for 
each ground point 

It is important to consider the refraction effect especially when the satellite atti-
tude variation during the image acquisition causes a refraction effect not uniformly 
distributed (Fig. 4.10a). On the contrary, its impact is lower when the satellite atti-
tude variation causes a rather uniform refraction effect (Fig. 4.10b). 

Table 4.1 Displacement d over the local sphere approximating the ellipsoid due to refraction ef-
fect function of z0 

z0 (°) z' (°) z0 - z' (°) d (m) 
10 9.99710 0.0029 0.47 
20 19.9939 0.0061 1.06 
30 29.9904 0.0096 1.97 
40 39.9860 0.0140 3.62 
45 44.9834 0.0166 5.03 
50 49.9802 0.0198 7.21 

 
In order to avoid instability due to high correlations among some parameters 

leading to design matrix pseudo-singularity, Singular Value Decomposition (SVD) 
and QR decomposition are employed to evaluate the actual rank of the design ma-
trix, to select the actually estimable parameters and finally to solve the linearized 
collinearity equations system in the LS sense (see Sect. 4.5). Moreover, the statis-
tical significance of each estimable parameter is checked by a Student T-test so to 
avoid over-parameterization. In case of a statistically non-significant parameter, it 
is removed and the estimation process is repeated until all parameters are signifi-
cant.  
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Pseudo-observation on the GCPs are also allowed, in order to account for their 
accuracy, which may vary depending on their source (cartography or direct sur-
veying). 
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Fig. 4.11 Model geometry 

4.4 Rigorous Model for Pre-Processed Images (Level 1B) 

In this case it has to be noted that the images are projected onto a specific ob-
ject (usually an “inflated” ellipsoid, derived from the WGS84 choosing a certain 
ellipsoidal height) (level 1B). The collinearity equations link points on the ground 
and points projected on the mentioned “inflated” ellipsoid (Pieralice 2007, see Fig. 
4.11). 

Each point on the ground surface corresponds to a point on “inflated” ellipsoid, 
identified from line of sight (LOS), i.e. the line directed from the perspective cen-
tre to the point on the ground. The collinearity condition is satisfied when SIû  
(the unit vector directed from perspective centre to image point) coincides with 

STû  (the unit vector directed from perspective centre to ground point), i.e., 
ground point and image point are lined up on LOS. The collinearity equations may 
be conveniently expressed in the ECEF system in vector form: 

 STSI uRu ˆˆ ��  (4.24) 

where R is a rotation matrix. In fact, relative “small” translation of ground with re-
spect to ellipsoid can be expressed with an infinitesimal rotation around the per-
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spective center, because the height of satellite platform (hS) is much more than the 
difference of elevation between ground surface and the “inflated” ellipsoid (*h).   

1,,cos +��� , 
������ +++ sin,sin,sin ) the rotation matrix R is reduced to the sum of the 

unit matrix and an anti-symmetric matrix. 

 
�
�
�

�

�

�
�
�

�

�

��
��,

�
�
�

�

�

�
�
�

�

�

��
������

1
1

1

0
0

0
        ~

��
��
��

��
��
��

!!! RRRIRRR  (4.25) 

where the attitude angles are supposed to be modelled by a time-dependent func-
tion up to the second order, similar to (4.1). The (4.24) can also be expressed in 
the following way: 
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where 

1�is the scale factor, (ratio of perspective centre-image point distance dSI and 
perspective centre-ground point distance dST: STSI dd�1 ; 

XT, YT, ZT are the ground coordinates in the ECEF system; 
XI, YI, ZI are the image coordinates in the ECEF system; 
XS, YS, ZS are the perspective centre coordinates in the ECEF system. 

Finally, note that in this case the collinearity equations on the basis of previous 
consideration, now reads 
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The collinearity equations depend on the parameters described in paragraphs 
4.2.2 and 4.2.3. The approximate values for all parameters may be derived from 
the information contained in the metadata files, released together with the image 
(� �� �e �i ��) or they are simply fixed to zero (ai, bi, ci). Again, these approximate 
values must be corrected by an estimation process based on a suitable number of 
GCPs, for which the collinearity equations are written. Finally, the parameters es-
timable are (ai, bi, ci). 

It has to be noted that the image coordinates in the collinearity equations (4.27) 
must be expressed in the ECEF system, while on the other hand the image coordi-
nates are obtained by point measurement on the image so that only I and J are 
known. 

Under this infinitesimal rotation hypothesis (
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First of all, it is required to change image coordinates into cartographic coordi-
nate through the simple equations: 
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where 

NP, EP are the North and East UTM WGS84 coordinates of a generic point P. 
NA, EA are the North and East UTM WGS84 coordinates of upper left corner 

A of the image. 
I, J are the coordinates of a generic point P in the image system. 
p is the pixel size (in meters). 

Moreover, the cartographic coordinates are converted into geographic coordi-
nates (latitude ��and longitude 2). Finally, since the ellipsoidic height (h) of points 
on the image is the elevation of “inflated” ellipsoid, the geodetic coordinate (�, 2, 
h) are converted in Cartesian coordinates (ECEF system). 

4.4.1 Computation of Satellite Positions 

In general the detailed information about the satellite position are not supplied 
for the level 1B images, therefore the satellite coordinates can be computed only 
on the basis of the angles (azimuth and elevation) that define satellite position with 
respect to image center (Fig. 4.12). 

 

ellipsoid

inflated ellipsoid

S

B

C
h_ref

H

e

R

�

	

 
Fig. 4.12 Satellite position with respect to image center 
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Referring to Fig. 4.12 the off-nadir angle � and B distance between the image 
center C and the satellite position S are calculated with the sine theorem.  
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where R is the radius of local sphere, H is the height of satellite, h_ref is the height 
of “inflated” ellipsoid in reference to the WGS84 ellipsoid, e is the elevation an-
gle, � is the off-nadir angle and )2/( 
�
	 ���� e . The satellite coordinates in 
a geodetic local system, whose origin is the center of image (C) are: 
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Local coordinates are transformed into ECEF coordinates, and from the unique 
satellite position it is possible to reconstruct the orbit segment. Satellite coordi-
nates are converted from ECEF to ECI system (4.8), then from ECI to the orbital 
system with ROI matrix (4.5). 

Generally the inclination i is known, on the contrary the right ascension of as-
cending node ��can be calculated under the hypothesis of Keplerian orbit 
( 0�SOrbitZ ). This equation has two solutions (�3 ��4� that correspond to ascending 
and descending orbit respectively. If the satellite moves on descending orbit while 
acquires images, the right value of � is obtained with 0)( )CSX  (abscissa in the 
orbital system), otherwise the solution is with 0)( "CSX  if the satellite is ascend-

ing.  
On the orbital plane the satellite position relative to image’s center (S(C)) identi-

fies the UC angle, where )/arctan( )()( CSCSC XYU � ; consequently the satellite 

position relative to each image row is obtained, moving the satellite forward and 
backward on the orbit with respect to central position: 

 UJsJsUU iCCi *���� )(  (4.32) 

where Jsc is the scanning row of image’s center, and Jsi is a generic scanning row 
of the image and *U is the angular displacement relative to one scanning row. 
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The satellite position (Si) in the orbital system is: 
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where R is the radius of local sphere and H is height of satellite platform (Fig. 
4.12). Then the satellite coordinates must be converted into the ECI system and 
into the ECEF system. The ECEF coordinates enter in collinearity equations. 

4.5 Computation Techniques 

  As mentioned, the design matrix is likely to be close to singularity, so that 
rank estimation and estimable parameter selection is mandatory. In this respect 
SVD and QR decomposition are quite useful tools and they will be shortly recalled 
here. The Singular Value Decomposition (SVD) and the QR decomposition are 
employed to solve the linearized collinearity equations system in the LS sense 
(Strang and Borre 1997, Golub and Van Loan 1993). As usual, the solution is ob-
tained iteratively due to non-linearity of the system; the iterative procedure stops 
when the estimated variance of the unit weight observation stabilizes.  

4.5.1 Singular Value Decomposition 

The Singular Value Decomposition (SVD) is a very powerful technique to deal 
with sets of equations or matrices that are either singular or numerically very close 
to being singular. The SVD of a matrix nmA �56 (with nm 7 ) is any factoriza-
tion of the form: 

 TUWVA �  (4.35) 

where nnW �56 is a diagonal matrix with positive or zero elements � �ijw  that are 

the singular values of A; nmU �56 and nmV �56 are orthogonal matrices, whose 
columns � �jj vu ,  are called the left and right singular vectors. For a system of lin-

ear equations � �bAx � , using the SVD we can write (Golub and Van Loan 1993): 

 b=xUWVT  (4.36) 

and the LS solution x minimizes 
2

2bAx � . Since the orthogonal matrix pre-

serves the norm, for any nx 56 we have: 
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where xVz T�  and r is the rank of A. 
2

2bAx �  = min holds, if 
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then using the SVD, the LS problem is now in form of a diagonal matrix, and fi-
nally 
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The advantage of using the SVD is that it can reliably handle the rank deficient 
case as well as the full rank case. 

4.5.2 QR Decomposition 

The QR decomposition of a matrix nmA �56  (with nm 7 ) is given by: 

 QRA �  (4.40) 

where mmQ �56 is an orthogonal matrix and nmR �56 is an upper triangular ma-
trix. If the rank of A is equal to n, the first n columns of Q form an orthonormal 
basis for the Rank(A). Thus, the calculation of the QR factorization is a way to 
compute an orthonormal basis for a set of vectors. 

The standard algorithm for the QR decomposition involves sequential evalua-
tion of Householder transformations. An appropriate Householder matrix, applied 
to a given matrix, can zero all the elements, situated below a given element, in a 
column of the matrix. For the first column of the matrix A, an appropriate matrix 
H1 is evaluated, which puts on zero all the elements below the first element in the 
first column of A. Similarly H2 zeroes all elements in the second column below the 
second element and so on up to Hn-1 

 AHHR n 11L��  (4.41) 

where 11 HHQ n
T K�� , i.e., 11 �� nHHQ K . 

The generic matrix Hi zeroes all elements in the first column below the first 
element for a sub-matrix of A ( � � � �� �inim

iA ���56 ). If A is rank deficient, the QR 
factorization does not give a basis for the Rank(A). In this case to calculate an or-
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thonormal basis for Rank(A), it is necessary to compute the QR decomposition of 
a column-permuted version of A, i.e., QRAP �  (Golub and Van Loan 1993) 
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where P is a permutation, r is the rank of A, R11 is an upper triangular and non sin-
gular matrix and Q and P are products of Householder matrices rHHQ K1� , 

rPPP K1� . 
For understanding the role of the permutation matrix, it is necessary to define 

the vector mN 56  for a generic matrix nmA �56 : 
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The element of the N are the square value of norm calculated for each column 
of A. The permutation matrix P applied at the generic matrix A makes a matrix 
AP=AP such that the elements of the corresponding vector N are placed in de-
scending order. As for the generic matrix Hi, the generic matrix Pi permutes the 
column of a sub-matrix of � � � �� �inim

iA ���56 ; if k is the column with the maxi-
mum value of norm, the permutation matrix Pi exchanges the columns i and k. 

In a system of linear equations � �bAx � , if nmA �56  and has a rank r, the QR 
decomposition produces the factorization QRAP �  where R is described in the 
equation (4.41). As for the LS problem we have: 
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where 



Satellite Image Orientation 85 

 

rm
r

d
c

bQ

rn
r

z
t

xP

T

T

�;
;

�
�

�
�
�

�
�

�;
;

�
�

�
�
�

�
�

 (4.46) 

If x is a LS minimizer we have 
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If z is a set of zeroes in this expression, we obtain the basic solution: 
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Bx has at most r non-zero components and so BAx  involves a subset of A col-
umns. 

4.5.3 Subset Selection Using SVD and QR 

For a system of linear equations � �bAx � , with nmA �56 (with nm 7 ) it is 
necessary to select the estimable parameters. We describe an SVD-based subset 
selection procedure, due to Golub, Klema and Stewart (Golub and Van Loan 
1993), that proceeds as follows: 

� we compute the SVD TUWVA �  and use it to determine a rank estimate r 
� with the QR decomposition APQR �  we select an independent subset of A 

columns; if bQxR T
B �11  with r

Bx 56 and we set 
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�
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�

0
Bx

Pt  (4.49) 

then tA �  is an approximate LS predictor of b that involves the first r columns of 
AP. The permutation matrix P is calculated so that the columns of the matrix 

rmB �561 in - .21, BBAP �  are “sufficiently independent” 

� we predict b with the vector tA �  where t is described in the equation (4.49), 
and z minimizes 21 bxB B � . 
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4.6 Stereo Rigorous Model 

  The rigorous model developed to orientate both level 1A and level 1B single 
scene can be extended to manage both along-track and across-track stereopairs 
(Crespi et al. 2008a). In this case, it has to be noted that the orbital elements are 
the same for two images if they were acquired during the same orbital path (along-
track stereopairs) or are different if the images are acquired during two different 
orbital paths at different epochs (across-track stereopairs). 

Again, the approximate values of these parameters can be computed by using 
the information in the metadata file and have to be corrected by a least square es-
timation process based on a suitable number of GCPs. The estimable parameters 
can be selected using the procedure described in Section 4.5. In this respect, since 
the tie points may be conveniently considered, it is necessary to establish a proce-
dure for the computation of their approximate ground coordinates, which have to 
be LS estimated together with all other parameters. 

First of all, the single scenes have to be separately oriented adopting the already 
described rigorous model. This separated orientation has to be considered just as 
approximate ones; they have to be refined in a block adjustment possibly includ-
ing suited tie points. In theory, the homologous rays should intersect, identifying a 
unique ground point for each couple of homologous points chosen over the image. 
Nevertheless, errors remaining in the separate orientations cause the well known 
parallaxes, so that homologous rays do not intersect and no ground point can be 
found by intersection. Therefore, it is necessary to set up a rule to compute the ap-
proximate tie point ground positions. To this aim, the choice was made to compute 
the positions of the two points on the homologous rays at minimal distance and 
then to average their coordinates. The minimum distance between the two rays is 
computed. The equations of two rays supposed straight can be written in paramet-
ric form 
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where (X0, Y0, Z0)1,2 are the coordinates of perspective centers in the ECEF system 
for the two images, (a, b, c)1,2 are direction cosine known from the separate orien-
tations. The condition to identify the two points on the rays at minimal distance 
reads: 
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4.7 Rational Polynomial Function with Rational Polynomial 
Coefficients 

A few years ago high resolution satellite imagery were available to a limited 
number of government and defence agencies that managed such imagery with 
highly sophisticated software and hardware tools. High resolution satellite im-
agery are now available in different formats and processing levels and at an af-
fordable price. These types of sensors and their growing availability are revolu-
tionizing the role of satellite imagery in a number of applications ranging from 
intelligency to insurance, media, marketing, agriculture, utilities, urban planning, 
forestry, environmental monitoring, transportation, real estate etc. 

One of the primary barriers to a wider adaptation and utilization of satellite im-
agery is the sensor model being able to provide a high level geometric correction 
through the image orientation. Sensor models are a key component to represent the 
functional relationships between the image space and the object space, and are es-
sential for single/multi imagery orientation.  

Even if the rigorous models should theoretically provide the highest accuracy, 
they are only available for some satellites and can be managed by some commer-
cial available software. Moreover, in order to estimate the unknown parameters of 
rigorous models, users are still faced with the challenging task of recovering the 
exterior orientation of the sensor using a set of GCPs usually no small than 10. 
When no or few GCPs are available, users cannot recover the exterior orientation 
of the sensor and therefore are unable to perform various mapping and data collec-
tion operations. With the introduction of generalized sensor models, this situation 
has changed considerably. Generalized sensor models, such as the RPF (Tao and 
Hu 2001a), have smoothed the requirement to manage a physical sensor model. 
Furthermore, as the RPC implicitly provides the interior and (approximate) exte-
rior sensor orientation, the availability of several GCPs is no longer a mandatory 
requirement. Consequently, the use of the RPC for photogrammetric mapping is 
becoming a new standard in high-resolution satellite imagery that has already been 
implemented in various high-resolution sensors, such as Ikonos, QuickBird and 
WorldView. 

4.7.1 RPC Usage and Orientation Refinement 

As mentioned before, some companies (for example DigitalGlobe for Quick-
Bird and WorldView and Space Imaging for Ikonos, India Space Research Or-
ganization for Cartosat-1) usually supply the RPCs, as part of the image metadata 
to enable image orientation via RPF. 

The RPF relate object point coordinates (latitude, longitude and height) to pixel 
coordinates (I, J), as a physical sensor models, but in the form of ratios of poly-
nomial expressions: 
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where��, 2�are the geographic coordinates, h is the height above the WGS84 ellip-
soid and (I, J) are the image coordinates. The order of these four polynomials is 
usually limited to 3 so that each polynomial takes the generic form: 
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with 30 1 == m ; 30 2 == m ; 30 3 == m  and 3321 =�� mmm , where tijk are the RPC. 
The number of RPC depends obviously on  the polynomial order: if the equa-

tions (4.52) are written with third order polynomials, the maximum number of co-
efficients is 80 (20 for each polynomial). Actually, the total number of RPC is re-
duced to 78, because the two equations can be divided for the zero order terms of 
the denominators. 

The great power of these equations is the independence from the physical char-
acteristic of the image acquisition (NIMA 2000). Although ground coordinates are 
not directly connected with the acquisition physics, it is possible taking into ac-
count the further approximated considerations (Tao and Hu 2002): ratios of the 
first order terms can represent distortions caused by the optical projection, while 
corrections such as Earth curvature, atmospheric refraction and lens distortion can 
be well modelled by the second-order terms; other unknown and more complex 
distortions with high-order components may be absorbed by the third-order terms. 

The ground coordinates (�, 2, h) in the equation (4.52) are normalized to (-1, 
+1) range using normalization parameters supplied in the metadata file, in order to 
improve the numerical precision during the computation. 

The generic simple formula utilized for the normalization, is: 

 
scale

offset
n T

TT
T

�
�  (4.54) 

where Tn are the normalized coordinates, Toffset, Tscale are the normalization pa-
rameters available in the metadata file and T is the original ground or image coor-
dinate (T=I, J; �, 2, h). 

Since the residual bias may be present into the RPC, the orientation can be re-
fined on the basis of the known GPs, acting as GCPs. A possible refinement of the 
model (4.52) (written in normalized coordinates), allowing for bias compensation, 
is accomplished in a quite common way with the introduction of a simple first or-
der polynomial in the RPF (4.55) whose parameters are estimated, provided a suit-
able number of GCPs is known (Hanley and Fraser 2004, Fraser and Hanley 
2003). 
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where (In, Jn) are the normalized images coordinates, and Pi are third order poly-
nomial functions of object space normalized coordinates (�n, 2n, hn); Ai and Bi 
terms describe image shift and drift effects in particular: 

A0, A1, A2, B0, B1, B2 describe a complete affine transformation. 
A0, A1, B0, B1 model the shift and drift. 
A0, B0, describe a simple coordinate shift. 

(a) (b)  
Fig. 4.13 Example of residuals adjustment with an affine transformation on a QuickBird image. 
Uncorrected image (a), corrected (b) 

The six new coefficients (Ai, Bi) are LS estimated based on GCPs. It is noted 
that in theory the model is not linear, since the 2nd and 3rd terms of the right side 
involve both observations (In, Jn) and parameters (Ai, Bi). Nevertheless, usually in 
the right side observations In, Jn are considered as fixed coefficients, so that the 
model is treated as linear with respect to the six coefficients (Ai, Bi) (Fig. 4.13a, 
4.13b). 

4.7.2 RPC Generation 

The RPC can be generated by terrain-dependent scenario without using physi-
cal sensor model (Tao and Hu 2001b) or according to a terrain-independent sce-
nario, using known physical sensor model. 
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For the terrain-dependent scenario, which is a kind of registration of the origi-
nal image to 3D geometry represented by the GCPs, the RPF model tries to ap-
proximate the complicated imaging geometry across the image scene using poly-
nomial terms. The solution is highly dependent on the actual terrain relief, the 
distribution and the number of GCPs. The RPCs have to be estimated in a LS ad-
justment so that the number of GCPs could be very high (at least 39 if RPC up to 
the third order are looked for). This method is very weak and vulnerable in pres-
ence of outliers and it is likely to cause deformations far from the GCPs returning 
not good accuracies. Therefore, the RPFs solved by terrain-dependent approach 
must not be used as a replacement sensor model if high accuracy is required (Tao 
and Hu 2001b, Tao and Hu 2001c, Toutin et al. 2000) and will not be considered 
anymore hereafter. 

For a terrain-independent scenario, a 2D image grid covering the full extent of 
the image is established and its corresponding 3D object grid with several layers 
(e.g., four or more layers for the third-order case) slicing the entire elevation range 
is generated. The horizontal coordinates (X, Y) of a point of the 3D object grid are 
calculated from a point (I, J) of the image grid using the physical sensor model 
with an a priori selected elevation Z. Then, the RPC are LS estimated with the ob-
ject grid points and the image grid points. This terrain-independent computational 
scenario can make the RPF model a good replacement to the physical sensor mod-
els, and has been widely used to determine the RPCs.  

 

WGS84

h=h1

h=h2

h=h3

 
Fig. 4.14 Grid for RPC generation in the terrain-independent approach 

It has to be underlined that in the usually adopted terrain-independent approach, 
the least square solution is often carried out through a regularization, since un-
known RPCs may be highly correlated so that the design matrix is almost rank de-
ficient (Neumaier 1998). In order to overcome the regularization requirements, an 
innovative algorithm for the RPC extraction, with a terrain independent approach, 
is analyzed. In details, at first an image discretization is made, dividing the full ex-
tent image space in a 2D grid. Then, the points of the 2D image grid are used to 
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generate the 3D ground grid: the image was oriented and by the knowledge of the 
rigorous orientation sensor model, the collinearity equations were derived and 
used to create the 3D grid, starting from each point of the 2D grid image. In this 
respect, it has to be underlined that the 2D grid is actually a regular grid, whereas 
the 3D one is not strictly regular, due to the image attitude. Moreover, the 3D grid 
points were generated intersecting the straight lines modelled by the collinearity 
equations with surfaces (approximately ellipsoids) concentric to the WGS84 ellip-
soid, placed at regular elevation steps. So, the dimension of the 3D grid is both 
based on the full extent of the image and the elevation range of the terrain. The 
grid contains several elevation layers uniformly distributed, and the points on one 
layer have the same elevation value (Fig. 4.14). 

Note that the finest subdivision depends on the incompressible error of the rig-
orous model used to generate the RPCs, so that a very fine discretization is unuse-
ful and an upper discretization limit also exists. The RPCs least squares estimation 
(Tao and Hu 2001c) is based on the linearization of the generic RPFs equations, 
which can be written as: 
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where ai, bi, ci, di are the RPCs (78 coefficients for third order polynomials), (In, 
Jn) and (�n, 2n, hn) are the normalized coordinates obtained throughout the equa-
tion (4.54), with scale and offset factors computed according to: 
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where k is the number of available GCPs and n° column/row are the overall col-
umns/rows of the image; the normalization range is (0, 1). 

Deeper investigations underlined that many RPCs are highly correlated. In or-
der to avoid instability due to high correlations, leading to a pseudo-singular de-
sign matrix, Tickhonov regularization is usually used. Generally, the regulariza-
tion is exploited in a Tickhonov fashion, adopting a damping factor to the diagonal 
of the normal matrix, in order to guarantee its non singularity. A new alternative 
approach is based on the Singular Value Decomposition (SVD) and QR decompo-
sition which are employed to evaluate the actual rank of the design matrix and to 
select the actual estimable coefficients (Bianconi et al. 2008, Brovelli et al. 2008); 
again, the SVD-based subset selection procedure is due to Golub, Klema and 
Stewart (Strang and Borre 1997, Golub and Van Loan 1993). 
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4.8 Stereo Model via RPC 

RPF model represents an attractive tool also for managing stereopairs orienta-
tion and possible subsequent DSM generation. Also in this case, the first problem 
to solve is the computation of terrain point’s approximate coordinates (� �2 �h). A 
straight forward procedure is based on the Direct Linear Transformation (DLT). 
The near-linear projection of the high resolution satellite image ensures rapid con-
vergence of the spatial intersection from even very coarse initial values for the ob-
ject point coordinates. 

The DLT is not using any pre-information about image orientation. The 22 un-
knowns (11 for each images) for the transformation of the object coordinates to 
the image coordinates have to be determined with at least 6 control points. The 
DLT equations are: 
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where (I, J) are the image coordinates, (E, N, U) are the ground coordinates re-
spect to the Cartesian Local system centered in the center of the image and the Li 
are the DLT parameters. In case of stereopairs the equations (4.58) are doubled 
and expressed in the following forms for every GCP: 
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where superscripts 1 or 2 are related to the first and the second image respectively. 

4.9 Accuracy Assessment of High Resolution Satellite Imagery 
Orientation by Leave-One-Out Method 

4.9.1 Hold-Out Validation 

Currently, the most used method to assess spatial accuracy of oriented high 
resolution satellite image is the Hold-Out Validation (HOV), also known as test 
sample estimation. According to it, the data set (known ground points) is parti-
tioned in two subsets: the first one used to determine the orientation-
orthorectification model (GCPs) and the second to validate the model itself (check 
points or CPs). The only restriction on such selection is to have both sets suffi-
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ciently well-distributed on the whole image; apart from this consideration, the se-
lection should be random. Once the model is trained, accuracy is usually evaluated 
as Root Mean Squared Error (RMSE) of residuals between imagery derived coor-
dinates with respect to CPs coordinates, independently determined and used as 
reference. 

This method has the advantage of being simple and easy to compute, but it also 
has some drawbacks, as it is generally not reliable and it is not applicable when a 
low number of ground points is available. First of all, once the two sets are se-
lected, accuracy estimate is not reliable since it is strictly dependent on the points 
used as CPs; if outliers or poor quality points are included in the CPs set, accuracy 
estimate is biased. In addition, when a low number of ground points is available, 
almost all of them are used as GCPs and very few CPs remain, so that RMSE may 
be computed on a poor (not significant) sample. In these cases, accuracy assess-
ment with the usual procedure is essentially lost. In addition, this method displays 
a low efficiency, making a poor use of the available information, as a large part of 
it must be collected and used only for validation purpose. 

4.9.2 Leave One Out Cross Validation 

In order to overcome the drawbacks of HOV a possible alternative procedure to 
perform accuracy assessments of orthorectified image is the Leave-One-Out cross-
validation (LOOCV) method. The LOOCV is a statistical estimation technique 
currently applied in different fields such as machine learning (Elisseeff and Pontil 
2002), bioinformatics (Simon et al. 2003) and generally in any other field requir-
ing an evaluation of the performance of a learning algorithm (e.g. in geostatistics). 
It is a special case of the k-fold cross-validation method (Stone 1974, Geisser 
1975), which involves the partitioning of the original data set in k subsets of equal 
size (approximately). The model is trained k times, using each subset in turn as the 
test set, with the remaining subsets being the training set. The overall accuracy can 
be obtained averaging the accuracy values computed on each subset. The LOOCV 
is a k-fold cross-validation computed with k=n, where n is the size of the original 
data set. Each test set is therefore of size 1, which implies that the model is trained 
n times. Therefore, the alternative proposal consists in applying the LOOCV as an 
effective accuracy evaluation method for image orientation, being particularly use-
ful when a low number of ground points is available. 

This method applied involves the iterative application of the orientation model, 
using all the known ground points as GCPs except one, different in each iteration, 
used as a check point. In every iteration, the residuals between image derived co-
ordinates and the CP coordinates (prediction error of the model on CP coordi-
nates) are calculated. The overall spatial accuracy achievable from the oriented 
image may be estimated by calculating the usual RMSE or, better, a robust accu-
racy index like the median Absolute Deviation (mAD) of the prediction errors on 
all the iterations. 
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In this way we solve both mentioned drawbacks of the classical procedure: it is 
a reliable and robust method, not dependent on a particular set of CPs and on out-
liers, and it allows us to use each known ground point both as a GCP and as a CP, 
maximizing all the available ground information. Obviously, this is of particular 
relevancy when the ground point number is kept as low as possible due to budget 
and/or logistic constraints. LOOCV may obviously apply to both with a rigorous 
and with a RPC-based (with possible zero or first order correction) orientation 
model.  

Some experiments were carried out to assess how well LOOCV derivable accu-
racy indices (mAD and RMSE) are able to represent the overall accuracy and 
which are their advantages with respect to the HOV RMSE. They led to the fol-
lowing main conclusions, pointing out that the LOOCV method with accuracy 
evaluated by mAD seems promising and useful for practical cases: 

� the LOOCV RMSE and HOV RMSE are too sensitive to outliers and “critical” 
points (mainly located along the perimeter of the area covered by ground 
points), which may display high residuals when they act as CPs. 

� HOV RMSE displays the risk to be too dependent on the geometric distribution 
of CPs, so that the HOV derived accuracy is likely to be not representative for 
the whole image when only a few CPs are available. 

� the LOOCV mAD is a robust index able to filter out the effect of the high re-
siduals; this is of particular relevancy for the “critical” points, which are not 
representative of the mean achievable accuracy. 

Finally a simple decreasing exponential function was proposed to represent the 
accuracy trend versus the number of GCPs. This model may be conveniently ap-
plied to LOOCV mAD to find the minimum number of GCPs for accuracy as-
sessment when a number of ground points is available: 

 
tbxeay
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where y is the RMSE, x is the number of GCPs used to build the model, a and b 
are estimated with standard deviation (?a, ?b) by LS adjustment. 

The value of t is calculated iteratively, starting with 1�t  and estimating the 
two coefficients a and b. If the difference from the asymptotic value at 

2/nGCPx �  (that is anGCPy �)2/( ), is larger than a chosen threshold (e.g. >1 
cm) the value of t is increased by a unit and the estimates of a and b have to be re-
computed. This choice to constrain the slope of the function to the asymptotic 
value has been done in order to avoid that possible false oscillations of estimated 
accuracy on a few CPs can affect the estimation of the a and b parameters. The as-
ymptotic value a±?a enables the determination of the number of GCPs (ñGCP) suf-
ficient to achieve the maximum accuracy, that is the x value corresponding to 

aay ?2��  (2? upper confidence limit) rounded to the nearest upper integer (Fig. 
4.15). 
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Fig. 4.15 Example of RMSE CP vs. n° GCP fit 

4.10 Application of the Orientation Models 

This section presents some results obtained using the previously described ori-
entation models. The orientation models are implemented in a scientific software 
(SISAR - Software per Immagini Satellitari ad Alta Risoluzione) developed at the 
DITS (Dipartimento di Idraulica Trasporti e Strade), Area di Geodesia e Geo-
matica, Sapienza Università di Roma. SISAR results are compared with orienta-
tion models implemented in commercial software (OrthoEngine 10.0 PCI Geo-
matica, Erdas 9.0, Leica Geosystems) (Crespi et al. 2008a, Bianconi et al 2008, 
Crespi et al 2008b). All images of Rome (2 EROS-A, 2 QuickBird, 1 Ikonos, 1 
Cartosat-1) cover areas of different dimensions; the GPs were surveyed with static 
or fast static procedures by a Trimble 5700 GPS receiver and their coordinates are 
estimated by Trimble Geomatic Office software with respect to available GPS 
permanent stations (MOSE at Rome Faculty of Engineering). The mean horizontal 
and vertical accuracies of the coordinates are between 10 and 20 cm. The two Au-
gusta (Sicily) scenes are a stereopair, with ground points (GPs) positioned in the 
overlapping area. The Salerno image includes three different QuickBird standard 
format images coming from the same orbital segment; the particularity of this im-
age is the latitude extension (around 48 Km). 

The ground points for the Augusta and Salerno images were surveyed by geo-
detic quality GPS in RTK mode; the mean horizontal and vertical coordinate accu-
racies are between 5 and 10 cm. The point distribution on Bagnoli stereopair is not 
homogeneous due to the sea in the South-West area. The ground points of Bagnoli 
were acquired by GPS surveys using Topcon Legacy receivers in post processing 
procedure with respect to quite far permanent stations. The mean horizontal and 
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vertical accuracies of the coordinates are between 10 and 20 cm. The ground 
points for the Castelgandolfo area were collected in RTK mode, the mean horizon-
tal and vertical coordinate accuracies are around 15 cm. The ground coordinates 
for all points are expressed in the WGS84 system, while the orthometric heights 
were obtained applying geoid undulations from the ITALGEO95 public model. 

For each image and for each software the orientation was carried out several 
times, varying the number of GCPs, and the related accuracies, represented by the 
RMSE computed over check point residuals (RMSE CP), were computed and ana-
lyzed. The RMSEs were computed both for the North and East residual compo-
nents separately. 

The available images for the experimentation have been acquired by several 
sensors. Their features are summarized in Table 4.21. 

Table 4.2 Properties of the used data sets 

Off-nadir 
angle (°) Sensor Area GSD [m] 

start End 

Scene coverage 
(Km x Km) 

Available  
GPs 

Rome (R1) 1.80 9.1 9.4 13x10 49 EROS A Rome (R2) 2.60 31.0 40.1 17x12 49 
Rome (level 1A) 0.61 3.0 17x17 49 
Rome (level 1B) 0.60 2.2 17x17 24 
Augusta (*P001) 0.77 29.2 21x20 39 
Augusta (*P002) 0.75 28.2 20x19 39 

QuickBird 

Salerno “joint” 0.67 20.0 48x19 57 
Bagnoli-1 1.00 22.98 13x9 25 
Bagnoli-2 1.00 24.27 13x9 25 Ikonos 

Rome 1.00 18.7 11x10 27 
Rome BandA 2.5 4.97 7.5x30 43 
Rome BandF 2.5 26.09 7.5x30 43 

Castelgandolfo  
BandA 2.5 12.35 30x30 25 Cartosat-1 

Castelgandolfo  
BandF 2.5 28.20 30x30 25 

                                                           
1 EROS A Rome (R1): ITA1-e1038452; 

EROS A Rome (R2): ITA1-e1090453; 

QuickBird Salerno “joint” is obtained to stitch three QuickBird images in order to have a single “strip” image: 

QuickBird Salerno (*P001): 05JUL17100900-P1BS-005520834030_01_P001; 

QuickBird Salerno (*P002): 05JUL17100903-P1BS-005520834030_01_P002; 

QuickBird Salerno (*P003): 05JUL17100906-P1BS-005520834030_01_P003; 

QuickBird Augusta (*P001): 04JAN06093201-P1BS-000000130187_01_P001; 

QuickBird Augusta (*P002): 04JAN06093307-P1BS-000000130187_01_P002; 

QuickBird Rome (level 1A): 02JUN03100558-P1BS-000000032060_01_P001; 

QuickBird Rome (level 1B):05APR28101432-P2AS-005746807010_01_P001 

Ikonos Rome: po_15194; 

Ikonos Bagnoli-1: po_918_pan_0000010001; 

Ikonos Bagnoli-2: po_918_pan_0010000001; 
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4.10.1 Rigorous Model for Single Image (Level 1A) 

An image EROS A of Rome (Fig. 4.16) was oriented with the two rigorous 
models implemented in SISAR and in OrthoEngine. Results in terms of RMSE on 
CPs are compared. RMSE trend are globally similar for both software and its 
value is comparable with the GSD, except for the North component. 

4.10.2 Rigorous Model for Single Image (Level 1B) 

As example for the level 1B imagery, one image was selected, acquired respec-
tively by Ikonos (Fig. 4.17) satellites. Image represents the area of city of Rome. 
The image has been oriented with rigorous models implemented in SISAR and in 
OrthoEngine. Also in this case the RMSE trend is similar for both software and 
accuracy is around the GSD value.  

 

 
Fig. 4.16 Image accuracy vs. GCP number for EROS A (ITA1-e1090724) 

 
Fig. 4.17 Image accuracy vs. GCP number for Ikonos image of Rome 
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4.10.3 Rigorous Model for Stereopair (Level 1A) 

One example of stereopair orientations using rigorous models is presented. It 
concerns along-track stereopair acquired by Cartosat-1 satellite (Fig. 4.18). Notice 
that Cartosat-1 is a satellite dedicated expressly to stereo viewing, having two 
CCD-line sensor cameras, looking respectively in forward direction with a nadir 
angle of 26° and in aft direction with a nadir angle of 5°. For the Cartosat-1 stere-
opair RMSE CP trend in all components is similar, except for the East component 
where SISAR results are less than 2.0 m, while OrthoEngine ones are slightly 
worse. 

 
Fig. 4.18 Image accuracy vs. GCP number for Cartosat-1 stereopair of Rome 

4.10.4 Usage and Generation RPC for Single Image 

The next example is dedicated to the application of RPC model, supplied by the 
sensor managing companies, to a QuickBird image of Rome. Model was tested 
with three software, in fact the SISAR results are compared with the OrthoEngine 
and Erdas ones (Fig. 4.19). 

 
Fig. 4.19 Image accuracy vs. GCP number for QuickBird image of Rome 
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Moreover, one example of RPCs generation is presented, considering the 
QuickBird Salerno “joint” image. These example is very interesting, since RPCs 
for the whole strip are not available by the sensor managing companies, but they 
provide RPCs only for the three separated images. 

In this case the results obtained from RPC generated in SISAR are compared 
with the results of rigorous model implemented in OrthoEngine (Fig. 4.20). The 
greater differences between the two model are showed in J direction, the RMSE 
CP trend with RPC model is more consistent than RMSE CP trend obtained with 
rigorous model. 

 

 
Fig. 4.20 Image accuracy vs. GCP number for QuickBird Salerno “joint” 

4.10.5 Stereo Model via RPC 

Finally, an example of stereopair orientation via RPC are presented. The stere-
opair used is acquired by Cartosat-1 satellite on the area of Castelgandolfo. Re-
sults of SISAR software are compared with the Erdas ones (Fig. 4.21). 

 
Fig. 4.21 Image accuracy vs. GCP number for Cartosat-1 stereopair of CastelGandolfo 
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4.10.6 Summarizing Results  

In this paragraph, results on satellite images, described in the data set table 
(Tab. 4.2), are presented. Single images and stereopairs have been oriented with 
rigorous and RPC model. The next tables (Table 4.3, 4.4, 4.5) list the accuracy for 
the orientation tests performed with a number of GCPs, evaluated with the (4.61), 
suited to achieve the maximum accuracy.  

 
Table 4.3 Results of rigorous model applied to single images 

Rigorous model single image 
RMSE CP 

SISAR OrthoEngine Sensor     Area 
n° GCP E[m] N[m] n° GCP E[m] N[m] 

Salerno “joint” 17 0.52 0.84 21 0.72 0.65 
QuickBird 

Rome (level 1B) 10 0.54 0.30 10 0.49 0.38 
Ikonos Rome 10 0.87 0.67 10 0.97 0.74 
Eros A Rome (R2) 17 4.11 5.45 17 4.75 7.54 

 
Table 4.4 Results of rigorous model and RPC model applied to stereopairs 

Rigorous model for stereo images 
RMSE CP 

SISAR OrthoEngine Sensor     Area 
n° GCP E[m] N[m] Up[m] n° GCP E[m] N[m] Up[m] 

Eros A Rome 17 2.55 2.75 5.85 21 3.17 4.40 6.97 

QuickBird Augusta 13 0.58 0.84 1.02 21 0.78 1.07 1.33 

Cartosat Rome 15 1.58 1.60 2.27 15 2.07 1.63 2.13 

Ikonos Bagnoli 11 1.93 1.35 1.95 13 0.90 1.55 1.95 

RPC model for stereo images 
RMSE CP 

SISAR Erdas Sensor     Area 
n° GCP E[m] N[m] Up[m] n° GCP E[m] N[m] Up[m] 

Cartosat-1 Castelgandolfo 12 1.53 1.19 1.29 12 1.53 1.21 1.29 

 
Table 4.5 Comparison of results of RPC generated with SISAR and rigorous model ones 

RPC generation 
RMSE CP 

SISAR RPC OrthoEngine rigorous model Sensor Area 
n° GCP I [pix] J [pix] n° GCP I [pix] J [pix] 

Eros A Rome 13 2.01 2.75 13 1.85 3.17 
QuickBird Salerno “joint” 13 0.91 1.67 17 0.78 1.45 
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4.10.7 Accuracy Assessment 

In the following, the results of accuracy assessment by LOOCV method are 
presented. The results are related to the QuickBird image of Augusta. To test the 
proposed method a new routine performing LOOCV into the software SISAR 
were implemented to perform the rigorous orientation of HRSI. Moreover, the im-
age was also oriented by OrthoEngine, manually performing LOOCV since only 
HOV is possible with this software. No large residuals are evidenced in this case 
and the LOOCV accuracies (RMSEs and mADs) have essentially the same order 
of magnitude of HOV RMSE (Table 4.6), but again mADs are slightly lower than 
HOV RMSEs and they are significantly closer to HOV RMSEs than LOOCV 
RMSEs. 

Table 4.6 Comparison between models and accuracy indices (in pixels) for Augusta image 

Accuracy index SISAR OrthoEngine 
LOOCV North East Module North East Module 
RMSE 1.52 1.45 2.09 1.83 1.56 2.40 
mAD 1.01 1.17 1.77 1.19 0.96 1.68 

Abs max 3.36 3.64 3.78 3.62 3.54 4.59 
HOV North East Module North East Module 

RMSE 1.16 1.38 1.80 1.32 1.33 1.87 

4.11 Summary 

High resolution satellite imagery became available to civilian users in 1999 
with the launch of Ikonos, the first civilian satellite offering a spatial resolution of 
1 m. Since then, other high resolution satellites have been launched, among which 
are EROS-A (1.8 m), QuickBird (0.61 m), Orbview-3 (1 m), EROS-B (0.7 m), 
Worldview-1 (0.5 m) and GeoEye-1 (0.41 m), with many others being planned to 
launch in the near future.  

High resolution satellite imagery is now available in different formats and 
processing levels at an affordable price so that they already represent a possible al-
ternative to aerial imagery for cartographic applications and orthophoto produc-
tion, especially for areas where the organization of photogrammetric surveying 
may be critical. Moreover, an increasing demand for terrain modeling exists so 
that almost all the satellites have along-track stereo acquisition capability. Many 
new satellites dedicated to stereo viewing, for example Cartosat-1 (2.5 m), have 
been launched. This enables the generation of digital elevation models, digital sur-
face models, and 3D features, e.g. city models.  

The geomatic utilizations of satellite imagery for cartographic applications and 
terrain modeling requires a high level geometric correction through image orienta-
tion. Some fundamental problems related to sensor models and their parameters 
estimation, both for single images and stereopairs, were addressed and some real 
applications were discussed. 
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Specifically, the discussions were concerned with both physical sensor models 
and generalized sensor models for the orientation of basic images (level 1A) and 
of the image projected onto a specific object surface (usually an expanded ellip-
soid derived from the WGS84, level 1B). As for the rigorous models, a thorough 
investigation on the fundamentals of their functional model was developed and the 
issue of parameter estimability was concerned. A solution was proposed based on 
SVD and QR decompositions. RPC models were discussed not only with respect 
to possible refinements by zero and first order transformations, but also (and 
mainly) with respect to the RPCs generation, based on previously established rig-
orous model. Thanks to SVD and QR decompositions, it was shown that many 
RPCs are not estimable parameters, therefore, they are not necessary to obtain the 
best achievable accuracy level. 

Real applications demonstrated that rigorous and RPC models both for Level 
1A and Level 1B imagery can provide an orientation accuracy at the level of 1-1.5 
pixels in the horizontal components, and of 1-2 pixels in the height for stereopairs 
(even better with Cartosat-1 and slightly worse with EROS-A). 

Moreover, HOV and LOOCV methods for accuracy assessment were discussed 
and compared, showing that the drawbacks of the usually adopted HOV can be 
overcome by LOOCV. LOOCV is reliable and robust, not dependent on a particu-
lar set of CPs and on outliers, which allows the use of each known ground point 
both as a GCP and as a CP, maximizing all the available ground information. Ob-
viously, this is of particular relevancy when the number of ground points is kept as 
low as possible due to budget and/or logistic constraints. LOOCV may obviously 
apply to both rigorous and RPC-based (with possible zero or first order correction) 
orientation models. 

Finally, a simple but effective method to represent the accuracy trend versus 
the number of GCPs was proposed. This model may conveniently be applied to 
LOOCV to find the minimum number of GCPs for accuracy assessment when a 
number of ground points are available. 
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Chapter 5 

GEOMETRIC PROCESSING MODELS FOR 
REMOTELY SENSED IMAGERY AND THEIR 
ACCURACY ASSESSMENT 

Xiuxiao Yuan 

5.1 Introduction 

For a long time, geometrical positioning through frame perspective images has 
been a key research issue in the field of photogrammetry and remote sensing. Dur-
ing the era of analogue photogrammetry, frame perspective cameras are the only 
means to acquire remote sensing images whether in aerial photogrammetry or in 
space photogrammetry, which have provided large amount of high quality images 
for photogrammetric applications (Li and Zheng 1992). For aerial or satellite im-
agery which meet the requirements for overlapping, the aerial triangular network 
can be reconstructed after retrieving the relative orientation parameters of the im-
age pair. Then the object space coordinates can be calculated by implementing a 
bundle block adjustment. This mature technology can achieve centimeter-level ac-
curacy and realize the goal of high-precision remote sensing georeferencing.  

With the progress of space positioning technology during the recent twenty 
years, humans are able to obtain orbit positions and sensor attitudes during image 
acquisition, with the aid of the modern navigation systems such as GPS (Global 
Positioning System) and POS (Position and Orientation System). Combing the 
auxiliary data and photogrammetric observations, we can greatly reduce or even 
avoid the use of ground control points (GCPs), leading to a new aerial image posi-
tioning method called GPS/POS-supported aerial triangulation. This technology 
has proved its practicability and played an important role in topographic surveying 
for border areas and inaccessible regions. 

With the development of sensor technology, the dominancy of frame camera 
has been weakened. At the mean time, linear push-broom sensor gradually attracts 

light but steady geometric structure, which maintains stable geometric relationship 
between the images and corresponding objects; ii) low power consumption, help 
realize multispectral scanning with high temporal and spatial resolution; iii) large 
coverage, under long strip scanning mode the spaceborne sensor can perform con-
tinuous global observation; iv) flexible observing manner, perfect base-height ste-

public’s attention for its obvious advantages in aerial and space photogrammetry: i) 

© Springer Science + Business Media, LLC 2009
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reo images can be easily collected in both along-track and cross-track modes; v) 
integrated with advanced POS, capable to execute direct georeferencing or support 
aerial triangulation for high precision location-fixing applications. On the other 
hand, due to the geometric distinction between linear push-broom and frame im-
agery, the traditional geometric processing models based on frame imaging are no 
longer applicable for modern sensors, leading to a new research focus in photo-
grammetry and remote sensing science. 

For high precision positioning with linear push-broom imagery, image orienta-
tion is a key step, the accuracy of which has a direct influence on the subsequent 
production flow. Linear array imagery are acquired through line-by-line scanning 
with CCD sensors, each line corresponding to different scanning time and external 
orientation elements. Consequently, orientation adjustment methods for linear-
array imagery are more complicated than traditional methods for frame image 
(Shao et al. 2000). Scholars have proposed several kinds of rigorous models ac-
cording to different assumptions concerning platform’s attitudes and positions 
(Kratky 1989, Westin 1990, Kornus et al. 1999, Poli 2002, Dowman and Michalis 
2003, Jacobsen and Passini 2003, Toutin 2004). It should be noted that all these 
models are based on the classical collinearity equation so they are theoretically 
strict and able to achieve high georeferencing accuracy. However, these rigorous 
geometric models are also demanding in image geometric processing and require 
users having certain knowledge background in photogrammetry.  

For the sake of concealing complicated parameters of the sensor and realizing 
real-time calculation, general sensor models which mathematically express the re-
lation between image coordinates and corresponding object coordinates emerge. 
General sensor models possess important advantages, such as simplicity and less 
demanding computation. After the launch of the IKONOS-2 satellite, methods 
based on rational polynomial coefficients (RPCs) fully show their unique charac-
teristics, such as platform-independence, excellent interpolation performance and 
high precision comparable to rigorous model (Yang 2000). All these elements 
make it widely used. Later on, more and more high-resolution imagery vendors 
deliver RPCs as the geometric parameters of the imagery to users. Moreover, 
mainstream remote sensing software systems including ERDAS, PCI and ENVI 
provide the RPCs support module for satellite imagery processing. Rational func-
tion models (RFMs) have become universal for high-resolution imagery process-
ing. The relevant researches ranging from high-precision resolution of model pa-
rameters, error propagation properties to optimized schemes for adjustment are 
going on. 

Compared with spaceborne linear array sensors, exterior orientation elements 
of airborne linear array sensor vary more in flight, which makes it even harder to 
be processed. As to the processing of aerial linear array imagery, orientation image 
method (Ebner et al. 1992) is commonly employed nowadays. Its processing flow 
can be described as follows: First, orientation images are extracted at equal time or 
space intervals. Second, exterior orientation elements of any linear array are inter-
polated from adjacent orientation images using Lagrange polynomials. Finally, 
combined adjustments are implemented to calculate the exact orientation elements 
of all the orientation images and the coordinates of the object points. Relevant re-
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searches have proved that linear push-broom imagery can achieve locational accu-
racy similar to that of frame images and can be applied in 4D production, i.e. digi-
tal line graphs (DLG), digital raster graphs (DRG), digital elevation models 
(DEM), and digital orthophoto maps (DOM). 

5.2 Geometric Processing Models for Central Projection-planar 
Array Remote Sensing Images 

5.2.1 Self-Calibration Bundle Block Adjustment with Additional 
Parameters 

Fig. 5.1 Principle map of bundle block adjustment 

Bundle block adjustment is a rigorous photogrammetric point determination 
method, which regards image point coordinates as observations, single space ray 
as an adjusted unit, and collinearity condition of central projection as basic equa-
tion. It makes homologous lays among images intersect optimally to one point and 
bring it to the coordinate system of GCPs by the rotation and translation of each 
space ray. It is a positioning method of remote sensing images, which computes 
ground coordinates of object points and image exterior orientation elements by 
image coordinates directly. This method has been widely used in digital photo-
grammetric systems. The basic principle of bundle block adjustment is shown in 
Fig. 5.1.  

The theoretical basis of bundle block adjustment is the three-point collinearity 
equation, which represents the object point – its corresponding image point – the 
camera station lie on the same line. From the collinearity condition, two equations 
for each image point are as follows: 

X 

Yt 

Z 
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where yx,  represent image coordinates, whose origin is the principal point; 
f represents the camera principal length; 

ZYX ,,  represent the ground coordinates of the object point; 

SSS ZYX ,,  represent the linear elements of the exterior orientation elements 
of image; 

321 ,,, caa L  represent cosine values of angular elements of the exterior ori-
entation elements of image. 

 
A lot of factors will affect the quality of images, such as lens distortion, film 

distortion, atmospheric refraction, earth curvature, image digitalization and so on. 
Image measurement will also result in certain errors, so the observation data of 
image coordinates must have systematic errors. Additional parameters are used to 
compensate for the systematic errors present in observation data (Wang 1990). 
Generally, Bauer model with 3 additional parameters, Ebner model with 12 addi-
tional parameters and Brown model with 18 additional parameters are often se-
lected and used to compensate the systematic errors of image point coordinates in 
bundle block adjustment (Li and Yuan 2002). In order to make following discus-
sion convenient, take the simplest model proposed by Bauer as an example. 
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where 321 ,, sss  represent additional parameters. The collinearity equations with 
correction for systematic errors in image point coordinates are as Eq. (5.3) below, 
where the image point coordinates are regarded as observations, and object space 
coordinates, exterior orientation elements and additional parameters are regarded 
as unknowns. 
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When the interior orientation elements of aerial camera are known accurately, 
Eq. (5.3) can be expanded by Taylor series in some neighborhood of the un-
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knowns’ approximations. If the first order derivatives are considered only, the er-
ror equation can be concluded: 
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where 00, yx  represent the coordinate values computed by taking the approxima-

tions of exterior orientation elements and ground coordinates into Eq. (5.3). 
 

To avoid over-parameterization, additional parameters are not regarded as free 
unknowns in bundle block adjustment, but regarded as virtual observations. Then, 
virtual observation equations can be set: 
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When n image points are measured, n sets of error equations in the form of Eqs. 
(5.4) and (5.5) can be written in matrix form as: 
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     (5.6) 

where Sx VV ,  represent the correction vectors of image point observations and 
virtual additional parameters observations; 

- .TZYX ***�x  represents the incremental vector of ground coordi-
nates of the object point; 

- .TSSS ZYX�� ******� �t  represents the incremental vector 
of exterior orientation elements of image; 

- .T321 sss ***�s  represents the incremental vector of additional pa-
rameters; 

SBA ,,x  represent the coefficient matrices of corresponding unknowns; 
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E  represents the unit matrix; 

�
�
�

�

�
�
�

�

�
�

� 0

0

yy
xx

xL  represents the residual vector of image point coordinate ob-

servations; 

EP 2

2
0

S
S ?

?
�  represents the weight matrix of virtual observations of the ad-

ditional parameters, with 0?  being the measuring accuracy of image point 
coordinates, and S?  the systematic errors of image point coordinates. 

 
The generally highly over-determined system of equations given by Eq. (5.6) is 

solved via least-squares estimation. Then, the most probable values of the ground 
coordinates, the exterior orientation elements and the additional parameters can be 
obtained. 

5.2.2 GPS-Supported Bundle Block Adjustment 

 
Fig. 5.2 Principle map of the aerophotogrammetry with GPS 

Based on self-calibration bundle block adjustment, GPS data are combined 
with photogrammetric data in GPS-supported bundle block adjustment. Here, the 
camera station coordinates obtained via GPS at exposure instant are regarded as 
weighted observations. The offset vector between phase center A of airborne GPS 
antenna and perspective center S of aerial camera are shown in Fig. 5.2.  

The object space coordinates of phase center of airborne GPS antenna and the 
perspective center of aerial camera is ),,( AAA ZYX  and ),,( SSS ZYX  in the coor-
dinate system M-XYZ, respectively. If the three dimensional coordinate for the 
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phase center of airborne GPS antenna is (u, v, w) (called GPS spatial offset) in the 
ideal camera coordinate system, then the transformation is accomplished with ori-
entation matrix R  consisting of three image attitude angles @	� ,, . The following 
relationship equation can be concluded: 
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Friess (1991) found that GPS dynamic positioning based on carrier phase 
measurements generates drift systematic errors that have a linear relationship with 
flight time t when the continuous flight period is not too long. This systematic er-
ror is referred to as time-dependent GPS errors and datum inconsistencies between 
the GPS and the given GCP system (including localized distortion in national geo-
detic networks), which can be compensated for by the following model: 
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where 0t  represents the reference time; when the drift errors are regarded as a 
block invariant or strip invariant, 0t may be the exposure time of the first 
image in the block or the strip; 

ZYXZYX b,b,b,a,a,a  represent the correction coefficients of the GPS drift 
systematic errors. 

 
The rigorous geometric relationship between GPS station coordinates and the 

perspective center coordinates of aerial camera are shown in Eq. (5.8). To make 
the camera station coordinates obtained via GPS can be regarded as weighted ob-
servations in the self-calibration bundle block adjustment, the observation equa-
tions have to be linearized. Here, AAA ZYX ,,  are regarded as observations, the 
exterior orientation elements are regarded as unknowns. Considering the measur-
ing errors of GPS spatial offset (u, v, w), Eq. (5.8) can be expanded by Taylor se-
ries in some neighborhood of the unknowns’ approximations. If the first order de-
rivatives are considered only, the error equation of GPS station coordinates can be 
concluded: 
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(5.9) 

where 000 ,, AAA ZYX  represents the camera station coordinates calculated by taking the 
approximations of exterior orientation elements and GPS spatial offset into Eq. 
(5.8). It can be written as the matrix form, 

 ggggg LdDRrtAV ����   (5.10) 

where - .Twvu ***�r  represents the incremental vector of GPS offset un-
knowns; 

- .TZYXZYXg bbbaaa ******�d  represents the incremental 
vector of correction coefficients of GPS drift errors; 

DA ,g  represent the coefficient matrices of corresponding unknowns; 
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L  represents the residual vector of the observations of 

the camera station coordinates obtained via GPS. 
 

According to Eq. (5.5), the correction coefficients of GPS drift errors can be 
treated as virtual observations, and the error equations can be built: 
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  (5.11) 

Comparing the Eq. (5.4) with Eq. (5.9), there are six same unknowns 
@	� ****** ,,,,, SSS ZYX . Therefore, two equations can be solved simultane-
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ously. Considering Eqs. (5.5) and (5.11), the basic equation of GPS-supported 
bundle block adjustment is formed: 
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  (5.12) 

If the corresponding weights are consisted with their respective accuracy of 
image point coordinate measurements and camera station coordinates obtained via 
GPS, then the most probable values of object coordinates can be solved using the 
least squares estimation. The systematic errors of the camera station coordinates 
obtained via GPS can be eliminated simultaneously; the accurate image exterior 
orientation elements can be obtained. 

5.2.3 POS-Supported Aerial Triangulation 

Based on the GPS-supported bundle block adjustment, POS data are combined 
with photogrammetric data in POS-supported bundle block adjustment. Here, the 
camera attitude data obtained via IMU are regarded as weighted observations. The 
aerophotogrammetric principle for the POS is shown in Fig. 5.3.  

The IMU body coordinate system III zyxI �  and camera coordinate system 
are not totally parallel due to limitations of equipment installation and there is a 
tiny direction shift ),,( III @	�  between the respective axes in the two coordinate 
systems, which is known as boresight misalignment (Bäumker and Heimes 2002). 
For simplicity, the coordinate system III zyxI �  can be regarded as the coordi-
nate system uvwS �  after rotating III @	� ,, around axes wuv ,,  sequentially. 
 

 
Fig. 5.3 Principle map of the aerophotogrammetry with POS 
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When the attitude angles of the camera determined via the IMU are @	� AAA ,, , 
the orthogonal transformation matrix R  consisting of image rotation angles 

��� ,,  can be represented as: 

T
BIMU RRR ��                                           (5.13) 

where @	� AAA� RRRR IMU ; 
III @	� RRRR �B . 
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The camera attitude angels obtained via the IMU will have bigger drift errors 
but still follow a linear relationship with flight time t. According to Eq. (5.8), they 
can be corrected by: 
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where 0t  represents the reference time. When the drift errors are regarded as a 
block invariant or strip invariant, 0t may be the exposure time of the first image in 
the block or the strip.  

Eq. (5.15) represents the rigorous geometric relationship between camera atti-
tude angles @	� AAA ,,  and exterior orientation elements @	� ,, . Camera attitude an-
gles obtained via IMU can be regarded as weighted observations in bundle block 
adjustment, i.e. @	� AAA ,,  are regarded as observations, and exterior orientation ele-
ments, boresight misalignment, drift error correction coefficients are regarded as 
unknowns. The error equations of camera attitude angles obtained via IMU are as 
follows: 
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                                                                                                                    (5.16) 
where 000 ,, @	� AAA  are the camera attitude angles computed by taking approxima-

tions of exterior orientation elements into Eq.(5.15).  
Comparing Eqs. (5.4), (5.9) and (5.16), it can be seen that the same un-

knowns @	� *** ,, exist in three equations. Combining Eqs. (5.6), (5.11) and 
(5.16), the basic error equations of POS-supported bundle block adjustment are: 
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                      (5.17) 

where - .TIII @	� ***�m represents the incremental vector of the boresight 

misalignment; 

- .T@	�@	� bbbaaaI ******�d  represents the incremental vector 

of correction coefficients for IMU drift errors; 

II DMA ,,  represent the coefficient matrices of the corresponding un-
knowns; 
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IL  represents the residual vector of camera attitude angles 

obtained via IMU, 000 ,, @	� AAA  represent attitude angles computed by tak-

ing approximations of unknowns into Eq.(5.15); 

EP 2

2
0

I
I ?

?
�  represents the weight matrix of camera attitude angles obtained 

via IMU, I?  can be set as the nominal accuracy of camera attitude angles 

determined via IMU. 
 

When the orientation parameters of m images taken over the adjusted block are 
determined via POS and n image point coordinates are measured, there will be 
2n+6m error equations in the form of Eq. (5.17). If their corresponding weights 
are consistent with their respective accuracies in image point coordinates, the ex-
posure station coordinates obtained via GPS, and camera attitude angles obtained 
via IMU, then the most probable values of object space coordinates and the exte-
rior orientation elements of the images can be solved by the least squares estima-
tion. Because the cumulative errors of the POS measurements are considered in 
error equations and the proper compensation models of POS systematic errors are 
imported, the correction coefficients of systematic errors are solved together in the 
adjustment. When the adjustment has iterative convergence, the position transla-
tion errors and linear drift errors generated by the POS, can be self-calibrated and 
self-eliminated, which improves the accuracy of the exterior orientation elements 
of the images. That not only implements direct georeferencing of aerial images, 
but also refines image exterior orientation elements obtained via POS. 

5.3 Geometric Processing Models for Imagery Acquired by 
Linear Array Sensors 

5.3.1 Rigorous Geometrical Models for Linear Array Imagery 

5.3.1.1 Position-fixing Based on Satellite Linear Array Imagery 

For geometric location-fixing based on satellite imagery, the optimal ground 
coordinate system would be the geocentric coordinate system (OC-XCYCZC illus-
trated in Fig. 5.4), which is conducive to introduce the platform’s ephemeris data 
directly. The main function of geometric processing model is to establish the con-
version formula from sensor coordinates ),( yx to the ground coordinates 

),,( AAA ZYX . 
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Fig. 5.4 The space relationship of relevant coordinate systems in remote sensing location 

Assuming the sensor coordinates of any point in scan-line i as )0,( ix , the corre-
sponding object space coordinates as ),,( AAA ZYX , a series of orthogonal transfor-
mation processes are executed to convert )0,( ix  to ),,( AAA ZYX . For different 
types of satellite imagery, the specific forms of transformation are not definitely 
consistent. Generally, the process can be described as: 
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where � is the scale factor; 
f is the focus length of the sensor lens; 
S is the rotation matrix from satellite orbit coordinate system OO-XOYOZO 
to the geocentric coordinate system OC-XCYCZC, which is determined by 
the position and velocity vector of the satellite platform; 
R is the rotation matrix from satellite body coordinate system OB-XBYBZB 

to the satellite orbit coordinate system OO-XOYOZO, which is determined 
by the sensor attitude angles ),,( iii yawrollpitch ; 

T is the rotation matrix from sensor coordinate system o-xy to satellite 
body coordinate system OB-XBYBZB; 

),,(
iii SSS ZYX are the coordinates of perspective center of scan-line i in the 

object-space coordinate system. 
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From Eq. (5.18), the relationship between the sensor coordinates and its corre-
sponding object-space coordinates can be described as: 
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         (5.19) 

where )3,2,1(,, �jcba ijijij are direction cosine values of orthogonal transformation 
matrix SRTQ � . 

Recently, high resolution remote sensing satellites usually carry high-
performance orbit and attitude measurement system onboard, such as GPS, 
DORIS, stellar camera, laser gyro, and so on, which provide measurement of im-
age orientation parameters in a certain frequency. The satellite orbit parameters 
determined via GPS or DORIS can reach decimeter-level accuracy, while sensor 
attitude angles determined by the stellar camera can reach arc-second-level accu-
racy. From orbit and attitude observation data mentioned above, the approximate 
exterior orientation elements of any scan-line i can be obtained with appropriate 
interpolation algorithm.  

For direct georeferencing with single imagery, the elevation information is in-
dispensable for determining the intersection point of imaging ray with ground sur-
face (Fig. 5.5). 

 

Fig. 5.5 Intersection point of imaging ray with the Earth ellipsoid 

If stereo pair of imagery are available, the three dimensional coordinates of 
target point can be obtained with space intersection method, which realizes the di-
rect georeferencing of linear array satellite imagery (Poli 2002). 

While not considering the model error and other complicated distortion, the ac-
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curacy of direct georeferencing completely depends on the accuracy of the exte-
rior orientation elements. It is necessary to analyze the effects of each error of the 
exterior orientation elements on object location. Figure 5.6 illustrates the location 
discrepancy caused by errors of each linear and angular elements with imagery 
acquired in the orbit height of 400 km and 600 km with viewing angel as 25º. The 
errors of the exterior orientation elements are set as 0~50 m for linear elements 
and 0~50 arcsecond for angular elements, respectively. 

 

 
(a) 

 
(b) 

Fig. 5.6 Effect of image exterior orientation element errors on locational accuracy in the orbit 
height of 400 km (a) and 600 km (b) 
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Figure 5.6 indicates that the accuracies of angles�  and	 have the most obvi-
ous impact on location, which would increase with orbit height. Angles�  and	  
are definitely the main error sources. Comparatively, the impact of linear elements 
Xs and Ys is much smaller and they belong to translation error which is also ir-
relevant to the orbit height. The impact of angular element @  is the minimum. 
From the analysis above, the refinement for the angular elements especially �  
and	 should be emphasized. 

Due to the stability of the satellite trajectory, the motion of the platform and the 
change of the attitude angles can be expressed by multi-order polynomial func-
tions as (Lee et al 2000): 
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where 000000 ,,,,, fedsnm are the orientation elements of the centre scan line; 

111111 ,,,,, fedsnm  are the coefficients of the polynomials and they can be 
computed by the discrete ephemeris and attitude observations provided in 
metadata file. Experiment results show that the order of polynomial set to 
be 2 is appropriate (Amnon 2000). 
 

When there exist sufficient and well distributed GCPs, the optimal orientation 
process is to adjust all the exterior orientation elements even including interior 
orientation elements simultaneously. To overcome the strong correlation between 
unknowns, the orientation elements should be treated as virtual observations. The 
basic equation can be described as: 
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                                 (5.21) 

where 21,, VVVx are residual vectors of image coordinate observations, virtual ob-

servations of linear element coefficients and virtual observations of angular 
element coefficients, respectively; 

- .T
222111 ......ZYXZYX ******�x  is the incremental vector of 
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the object-space coordinates of the object points; 

- .T1110001 ......snmsnm ******�t is the incremental vector of 

linear element coefficients; 

- .T1110002 ......fedfed ******�t is the incremental vector of 

angular element coefficients; 

21,AA are coefficient matrices of unknowns 21, tt  respectively; 

21,, EEE are unit matrices; 

xL is the discrepancy vector of image coordinates of GCPs; 

21, PP are weight matrices of virtual observations of linear and angular ele-
ment coefficients, which should be assigned according to the accuracy of 
observed exterior orientation elements to restrict the corrections of the sys-
tematic errors within the expected range. 

 
For each GCP, error equations in the form of Eq. (5.19) can be established. 

When there are sufficient GCPs, the least-squares estimation are able to use to cal-
culate the exterior orientation elements of the linear array imagery. However, due 
to the extreme narrow view field angle, there exists strong correlation among the 
unknowns. The column vector of the error equations present linear correlation and 
the state of the norm equations is seriously ill conditioned, making the solution 
very poor or even fail (Huang 1998). For situations in lack of GCPs, the simplified 
method can be adopted. As analyzed above, angular element errors are the main 
reasons for location errors. If the accuracy of linear elements is accurate enough, 
the angular elements are only refined. By this way, it not only avoids the strong 
correlation between linear and angular elements, but also greatly reduces the quan-
tity requirement of the GCPs. At present, the orbit positioning accuracy of most 
high-resolution remote sensing satellite have exceed the meter level, which fully 
satisfy the requiremnt of simplified processing. 

5.3.1.2 Position-fixing Based on Airborne Liner Array Imagery 

Generally, a satellite runs in a stable track and spaceborne linear array sensors 
can easily acquire continuous high quality remotely sensed imagery. However, 
impacted by the strong airflow, the airborne platforms are unstable, leading to ir-
regular variation of the sensor attitude angles. Consequently, aerial imagery col-
lected by linear push-broom sensors always contains serious geometric distortion. 
To solve this problem, it is necessary to maintain a stable platform to restrain the 
change of exterior orientation elements or install POS to record the exterior orien-
tation elements of each scan line. 

Take three-linear array aviation digital camera Leica ADS 40 as an example. It 
carries PAV 30 peg-top stable platform and high precision POS. During the aerial 
photography, object points would be captured by three linear CCD placed in the 
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same focal plane and imaged in three different strips. Thus the target area is three-
fold covered and any two of the imagery can construct a stereo image pair. The 
imagery and their orientation elements are recorded in the synchronous mode.  

As shown in Fig. 5.7, for a object point P, )( AAA ,yxp , 
),( BBB yxp and ),( CCC yxp  corresponding to different imaging time 

AN , BN and CN  are homogenous points in front, middle and back view imagery. 
Three looking rays AE , BE and CE  intersect at point P. If exterior orientation 
elements of front, middle and back view images are known, the three-dimensional 
coordinates of the object point can be calculated through multi-ray space intersec-
tion. This is the basic principle of position-fixing with three-linear array imagery. 
So the key issue is to obtain the accurate exterior orientation elements. 

 

 
Fig. 5.7 Imaging principle of three-linear push-broom sensor (Zhao 2007) 

Within a POS system, GPS can provide three-dimensional coordinates of the 
exposure station with high accuracy, and IMU measures three attitude angles of 
the sensor. GPS has the characteristics of low frequency and high accuracy while 
IMU being of high frequency and high accuracy. Both GPS and IMU data can be 
integrated to compensate for the systematic errors effectively and obtain sensor 
position and attitude data with high accuracy. On the other hand, for there exist 
spatial offset between the sensor perspective center and the phase center of GPS 
antenna, the boresight misalignment between the IMU body coordinate system 
and the image space coordinate system, and the drift errors caused by long flight, 
the position and attitude data obtained via POS are not the true image orientation 
elements defined in photogrammetry. These errors can be corrected in the adjust-
ment process with a few of GCPs (Zhao and Li 2006). 

The main idea of adjustment is to extract several linear images as orientation 
images at certain time intervals supported by the POS-provided image orientation 
elements. The exterior elements of any scan line �,,,,,� PPPPPP ZYX @	�  can be 
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interpolated from exterior orientation elements ]),1[(�,,,,,( njZYX jjjjjj 6@	�  
of the nearest n orientation images by Lagrange polynomials as Eq. (5.22). In the 
process of adjustment, for scan line p where the measured point lies, the partial 
coefficients in the error equation would be decomposed and redistributed to the 
corresponding partial coefficients of the referred orientation imagery with contri-
bution parameter Wj. By this way, the exterior orientation elements of the orienta-
tion imagery can be calculated through minimizing interpolating errors in a least-
squares adjustment. 
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where B

9
� �

�
�

n

jk
k kj

k
j tt

tt
W

1

 can be regarded as the contribution parameter of orientation 

image j for scan line p. 
 

5.3.2 General Geometric Models for Linear Array Pushbroom 
Remote Sensing Imagery 

5.3.2.1 Rational Function Models (RFMs) 

Rigorous geometric processing models based on collinearity equations are 
theoretically strict, but is dependent on sensor and complicated. What is more, it-
erative computations have to be done when coordinates are transformed from ob-
ject-space to image-space. At present, RFMs are utilized much more in the posi-
tioning and orientation of high resolution remote sensing imagery. In a RFM, 
image pixel coordinates are expressed as the ratios of rational polynomials of 
ground point coordinates. For the object-to-image transformation, the defined ra-
tios of polynomials are as follows: 

�
�
�

��
�

�

�

�

),,(
),,(

),,(
),,(

HLPDen
HLPNums

HLPDen
HLPNuml

S
S

l
l

                                 (5.23) 

where sl,  are the normalized image coordinates; 
HLP ,,  are the normalized object coordinates (e.g. geocentric coordinates, 

geodetic coordinates and projection coordinates). 
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The definitions of the polynomials are as follows: 
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where )20,,2,1(,,, L�idcba iiii  are rational polynomial coefficients (RPCs), in 
which 11,db  are normally set to 1. 

The order of polynomial functions is typically limited to 3. In a RFM, the dis-
tortions caused by the optical projection can generally be represented by the ratios 
of first-order terms, while corrections such as Earth curvature, atmospheric refrac-
tion, lens distortion, and so on, can be well approximated by the second-order 
terms. Some other unknown distortions with high-order components, such as cam-
era vibration, can be modeled with the third-order terms.  

Eq. (5.23) expresses the object-to-image coordinate transformation called for-
ward transformation. Also a RFM could represent the inverse image-to-object 
transformation, i.e. 
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                                         (5.24) 

5.3.2.2 Solution to the RPCs 

The RFMs are independent of sensors, and the RPCs have no significant physi-
cal meanings. With the rigorous geometric processing models unknown, the RPCs 
can be solved according to the actual GCPs, i.e. terrain-dependent computational 
scenarios. In this case, the solution is highly dependent on the actual terrain relief, 
the number of GCPs, and their distribution, which may cause the solution unstable 
even unreliable. In practice, terrain-independent computational scenarios are more 
preferable. Having the rigorous geometric models established, intensive and 
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evenly distributed object grids (Fig. 5.8) are firstly generated according to the rig-
orous geometric processing models, and then the RPCs are solved using the object 
grid points as virtual GCPs through least squares estimation. Actually, the terrain-
independent computational scenarios are utilizing the RFM to mathematically fit 
the rigorous geometric processing models and some relevant research has reported 
that the fitting accuracy could reach as high as ±0.01 pixels for IKONOS and 
QuickBird imagery (Grodecki and Dial 2001). The specific computational flow is 
shown in Fig. 5.9. 
 

 
Fig. 5.8 The virtual control grids for solving the RPCs 

 
Fig. 5.9 Calculation flow of the RPCs 

output of the RPCs

original imagery rigorous geometric model

rigorous geometric model 

image coordinates�l, s of 
check points 

image coordinates�lRPC�sRPC of 
check points

computing the normalization pa-
rameters and normalized coordinates 

solving the RPCs

#l=lRPC-l 
#s=sRPC-s

generating control grid 

S



126   Geometric Processing Models 
 

The division of the control grids should rely on the terrain relief of the cover-
age area. High accuracy solution could not be attained with the grid too sparse, 
while an intensive grid will result in much more computation and has a negative 
effect on the speed of RPCs solution. Generally, having the gird divided into 10 
rows by 10 columns or 20 rows by 20 columns in planimetry and 4 or 5 layers in 
elevation, the solution of the RPCs could meet the accuracy requirement (Tao and 
Hu 2001). When generating the control grids, a check grid could be generated in 
the same way in order to check the solution accuracy of the RPCs. 

In order to use the least squares estimation to solve the RPCs, Eq. (5.23) can 
then be formed as: 
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where 

- .- .T
201918432

322 11 bbbbbbHHPHLHPLB LL� ; 
- .- .T

201918432
322 11 ddddddHHPHLHPLD LL� ; 

- .T
20322021 bbbaaa LL�J ; 

- .T
20322021 dddccc LL�K . 

 
The third-order RFMs with different denominators have 78 parameters for each 

set, which are much more than that in the rigorous geometric processing models 
and inevitably result in correlation among the parameters. Hence, in order to over-
come the correlation and achieve high accuracy solution, the classical least 
squares estimation should be improved by introducing generalized ridge estima-
tion or employing iteration method by correcting characteristic values. After solv-
ing the RPCs, one should take the coordinates of check points into the RFMs so as 
to check the solution accuracy. When the RMSE of check points is in accordance 
with that of control points, it is indicated the solution is acceptable and reliable. 

5.3.2.3 Georeferencing of Remotely Sensed Imagery Based on RFMs 

Having the RFMs of both the left and the right images of a stereo pair estab-
lished respectively, how to get the object-space coordinates of corresponding ob-
ject point according to the image-space coordinates of conjugate image points is a 
RFM-based 3D reconstruction problem. Both the forward and the inverse RFMs 
could be utilized for 3D reconstruction, but the former is preferable in practice 
(Fraser and Hanley 2004), which considers the coordinates of object points as un-
knowns and has Eq. (5.23) linearized: 
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Given a pair of conjugate image points ),( ll sl , ),( rr sl , four error equations could 
be listed as Eq. (5.26) and the object-space coordinates of corresponding object 
point can be derived using the least squares estimation. 

5.3.2.4 Refinement of the RPCs 

The accuracy achieved using the RPCs provided to users with the imagery by 
the vendor can only be as high as that of direct georeferencing, which can not 
meet the mapping requirements in most situations. Therefore, it is necessary for 
users to refine the RPCs with GCPs. With the relevant information about the rig-
orous geometric processing models unavailable for general users, it is difficult to 
refine the RPCs directly. In practice, additional affine transformation terms are in-
troduced into the original models in order to compensate for the systematic errors 
(Di et al. 2003, Fraser and Hanley 2003, Hu et al. 2004), i.e. 
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Correction terms nn seleel 210 ���* and nn sflffs 210 ���* can effectively 
compensate for the effects caused by positioning and orientation errors along-track 
and across-track, and significantly enhance the locational accuracy. For each GCP, 
two error equations are as follows: 
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Three or more GCPs are needed to solve the six additional parameters for each 
image. And for a stereo pair of images, additional parameters and coordinates of 
the connection points could be solved together by introducing constraint condi-
tions of the tie points, whereby few GCPs used as adjustment reference could be 
enough to compensate for the systematic errors. Presently such a method is called 
RFM-based bundle adjustment. Comparing to the case of single image, bundle ad-
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justment with stereo images is stricter in theory and may achieve higher accuracy. 
The error equations of bundle adjustment are as follows: 
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where ZYX *** ,,  are corrections for the object-space coordinates of image 
points. 

5.4 Accuracy Assessment of Object Positioning in Remote 
Sensing 

Object positioning in aerial or spaceborne photogrammetry is to determine the 
spatial positions of object points. As a key quality evaluation index, positioning 
accuracy is concerned mostly. Usually, the posterior variance after adjustment, 
theoretical and empirical accuracy of object-space coordinates are set as measures. 

5.4.1 Root Mean Squares Error of the Unit Weight 

The essence of object positioning in photogrammetry is to inverse the three-
dimensional spatial coordinates of object points from 2-dimensional images. The 
method of least squares adjustment is adopted commonly. According to the princi-
ple of min�8 pvv , the three-dimensional spatial coordinates of object points can 
be solved iteratively. 

After iteration convergence, posterior root mean squared error of the unit 
weight can be computed according to the residuals of all observations: 

r/T
0 PVV�?                                              (5.30) 

where V represents the residual vector of observations; 
P represents the weight matrix of observations; 
r represents the redundancy of adjustment system. 
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5.4.2 Theoretical Accuracy of Object-Space Coordinates 

Regarding corrections to object-space coordinates as random variables, theo-
retical accuracy of object-space coordinates will be analyzed in theory by comput-
ing the variance-covariance matrix D in least squares estimation. 

QD 2
0?�                                                                     (5.31) 

is set as measure, and the theoretical accuracy formula of individual unknowns i 
can be written as: 

),,(,0 ZYXiQm ii �� ?                                      (5.32) 

When a photogrammetric block contains n object points, Eq. (5.33) can be used to 
express the overall theoretical accuracy for planimetry and for elevation determi-
nation. 
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i
ZZ

i
YY

i
XX QQQ ,,  in Eqs. (5.31)~(5.33) are the diagonal elements of the i-th un-

known coordinate ZYX ,, ’s co-factor matrix Q. 

5.4.3 Empirical Accuracy of Object-Space Coordinates 

Comparing the adjusted coordinates with field surveying coordinates, and re-
garding residual errors of n check points iii ZYX *** ,, as true errors, the empirical 
accuracy of object-space coordinates is the average RMSE of n check points cal-
culated by Eq. (5.34). 
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5.5 Application Demonstration 

In order to validate the validity and practicability of the theory, this section will 
describe some empirical studies using aerial digitalized images with POS data, 
three-line-array digital aerial imagery and high resolution satellite imagery (SPOT-
5) for object positioning. 

5.5.1 Object Positioning in Aerial Photogrammetry 

5.5.1.1 GPS-Supported Aerial Triangulation 

In order to discuss the feasibility of GPS precise point positioning (PPP) in dy-
namic aerophotogrammetry and the accuracy of GPS-supported bundle block ad-
justment with GPS exposure station coordinates obtained by the PPP technique, 
four sets of actual aerial photos taken from four experimental projects which are 
different in terrain and photographic scale are selected and used. The photographic 
scales of them are 1:2 500, 1:3 000, 1:32 000 and 1:60 000, respectively. The dis-
tributions of the test projects are shown in Fig. 5.10. The main technical parame-
ters of the empirical images are given in Table 5.1.  

Fig. 5.10 Distributions of empirical projects 

After all negatives are scanned with a resolution of 21�m, WuCAPS (Yuan 
2008) and JX-4 digital photogrammetry workstation (Geo-vision 2009) are used 
for automatic point transfer. The corresponding image coordinates of all GCPs are 
measured manually in the stereoscopic mode. The root mean square error (RMSE) 
of all image coordinates is less than ±6.0 �m according to the results of the con-
secutive relative orientation with conditions for model connection and blunder 
elimination by WuCAPS. The observations obtained via GPS/IMU are processed 
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together using POS data post-processing software system POSPacTM (Applanix 
2008). Six elements of exterior orientation for each image can be determined after 
coordinate transformation, and they are the exterior orientation elements deter-
mined via POS. 

Table 5.1 Details of images used in the empirical studies 

specifications Test 1 Test 2 Test 3 Test 4 
date Nov, 2004 Oct, 2005 Sep, 2005 Oct, 2005 
aircraft Yun-12 Yun-12 Yun-8 Citation II 
aerial camera Leica RC-30 Leica RC-30 Leica RC-30 Leica RC-30 
flight control system Track Air Track Air CCNS 4 CCNS 4 
POS system POS AV 510 POS AV 510 POS AV 510 POS AV 510 
film Kodak 2444 Kodak 2044 Kodak 2402 Kodak 2402 
principal length (mm) 153.84 303.64 154.06 153.53 
frame (cm2) 23 × 23 23 × 23 23 × 23 23 × 23 
photo scale 1:2 500 1:3 000 1:32 000 1:60 000 
longitudinal overlap (%) 61 63 64 64 
lateral overlap (%) 32 33 33 30 
strips 9 10 9 4 
control strips 2 2 2 0 
number of photographs im-
ages 255 405 244 48 

GCPs 72 155 34 29 
object points 3632 6538 2957 712 
area (km2) 4 × 5 5 × 8 47 × 52 40 × 57 

maximum terrain undula-
tion (m) 

38.6 
(flat) 

181.6 
(general moun-
tain) 

729.3 
(high mountain)

109.3 
(upland) 

airborne GPS receiver Trimble BD 950 Trimble BD 950 Trimble BD 950 TrimbleBD 950 
GPS receiver of reference
station Ashtech Trimble 5700 Trimble 5700 Trimble 5700 

sampling interval of air-
borne GPS receiver (sec-
ond) 

0.1 0.1 0.1 0.1 

sampling interval of ground
GPS receiver (second) 

2.0 0.5 1.0 1.0 

maximal range from air-
craft to reference station
(km) 

28.988 28.459 187.592 145.400 

GPS initialization (min) 5 5 5 5 

antenna-camera offset (m) 0.303,-0.110,-
2.029 

0.303,-0.110,-
2.002 

-2.015,-
0.030,3.102 

2.034,-
0.520,1.320 

 
In order to analyze the accuracy of the actual aerial photogrammetric point de-

termination, three different photogrammetric adjustment methods are employed in 
the test projects distributed in Fig. 5.10. They are divided into traditional bundle 
block adjustment (referred to as “TRA”), GPS-supported bundle block adjustment 
with one cross-strip on each end of the adjusted block (referred to as “GPS”) and 
POS-supported bundle block adjustment with 4 full GCPs in the four corners of 
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the adjusted block (referred to as “POS”). Moreover, the theoretical accuracy of 
three different methods is evaluated. The results are shown in Table 5.2. 

 

Table 5.2 Accuracy of bundle block adjustment 

images Test 1 Test 2 Test 3 Test 4 

methods TRA GPS POS TRA GPS POS TRA GPS POS   TRA GPS POS 

	0 (μm) 5.7 6.9 6.3 4.8 6.6 5.2 6.4 6.9 6.6 5.9 6.4 6.2 

XY 23 4 4 39 4 4 20 4 4 15 4 4 

   
# 

G
C

Ps
 

Z 39 4 4 69 4 4 25 4 4 19 4 4 

XY 49 67 67 116 151 151 14 30 30 10 25 25 

   
# 

ch
ec

k 
po

in
ts

 

Z 33 67 67 86 150 150 9 30 30 14 25 25 

X 0.18 0.26 -0.20 -0.20 -0.29 -0.29 -1.44 1.54 -1.36 3.13 4.02 4.22 

Y 0.14 0.23 -0.33 0.17 0.19 0.25 -0.98 -2.54 1.49 -2.73 4.68 4.59 

XY 0.198 0.232 0.212 0.205 0.328 0.338 1.738 2.637 1.648 3.385 4.893 5.117 

   
m

ax
. r

es
id

ua
ls

 
   

 o
f c

he
ck

 p
oi

nt
s (

m
) 

Z -0.241 0.237 -0.265 -0.382 0.383 0.502 0.892 -1.666 1.593 2.054 -2.644 -2.653 

X 0.08 0.08 0.08 0.06 0.11 0.11 0.67 0.80 0.68 1.28 1.46 1.52 

Y 0.06 0.08 0.08 0.06 0.07 0.07 0.47 0.74 0.83 1.29 1.88 1.86 

XY 0.103 0.119 0.119 0.087 0.131 0.129 0.818 1.089 1.068 1.818 2.375 2.402 

  e
m

pi
ric

al
 a

cc
ur

ac
y 

(m
) 

Z 0.079 0.105 0.099 0.126 0.157 0.178 0.639 0.738 0.913 1.416 1.350 1.320 

X 0.01 0.04 0.02 0.01 0.04 0.02 0.27 0.41 0.25 0.31 0.35 0.33 

Y 0.02 0.04 0.02 0.02 0.04 0.03 0.28 0.64 0.76 0.36 0.42 0.41 

XY 0.022 0.058 0.030 0.022 0.053 0.035 0.391 0.760 0.802 0.474 0.547 0.523 

   
 th

eo
re

tic
al

 a
cc

ur
ac

y 
(m

) 

Z 0.029 0.061 0.095 0.062 0.115 0.189 0.678 0.617 0.879 0.771 1.053 1.015 

 
Note:  
‘TRA’ denotes the self-calibration bundle block adjustment with 3 additional parameters; 
‘GPS’ denotes the GPS-supported bundle block adjustment; 
‘POS’ denotes the POS-supported bundle block adjustment. 

 
In Table 5.1, images in Tests 1 and 2 can be used for 4D production at a scale 

of 1:500~1:2000, images in Test 3 can be used for 4D production at a scale of 
1:5000~1:10000, and images in Test 4 can be used for 4D production at a scale of 
1:50000, respectively. According to the existing specifications for aerophoto-
grammetric office operation (GB 12340-90 1991, GB/T 13990-92 1993, GB 7930-
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87 1998), the empirical blocks of Test 1, Test 4, Test 2 and Test 3 can be consid-
ered as representing flat areas, uplands, hills, and high mountains, respectively. 
The following conclusions can be deduced by analyzing the results in Table 5.2: 

1) The accuracy of photogrammetric points determined by three adjustment 
methods all can satisfy the requirement of 4D production at corresponding scales. 
However, there are 4 height check points exceeding the specifications’ tolerance in 
the POS-supported bundle block adjustment of Test 2, which accounts 2.7% of the 
150 height check points. After correction, these points can meet the requirements 
of photogrammetric point determination. These results show that any photogram-
metric method in this section is practicable in 4D production. 

2) As far as theoretical accuracy is concerned, accuracy of traditional bundle 
block adjustment is the highest. Comparing the accuracy of GPS-supported bundle 
block adjustment with that of POS-supported bundle block adjustment, the former 
is higher in elevation, while the latter is higher in planimetry; and the larger the 
scale, the greater the advantage. The reason is that the use of cross-strip can in-
crease the number of image point observations and import corresponding meas-
urement errors (the change of 0?  can valid this conclusion). The scales of images 
for mapping are different from that of cross-strip images, and then, the errors of 
point transfer in control images are larger than that in the images for mapping. In 
photogrammetric point determination at a large scale, measurement errors are 
small, so the point transfer error becomes obvious. 

3) As far as each block is concerned, the empirical accuracy of traditional 
bundle block adjustment is the highest, which is consistent with the theoretical 
analysis. There is no material difference between accuracy of GPS-supported bun-
dle block adjustment with one cross-strip on each end of the adjusted block and 
POS-supported bundle block adjustment with 4 full GCPs in the four corners of 
the block. The reason is that there are some identification errors because all the 
check points are outstanding points and are measured manually in the stereoscopic 
mode. Additionally, negative distortion, scan errors and errors of exterior orienta-
tion elements obtained via POS will affect the orientation results. Although a se-
ries of systematic error compensation are incorporated in the adjustment, there are 
errors in photogrammetric results all the same. Therefore, the empirical accuracy 
is much lower than theoretical accuracy, for planimetry, especially. 

4) As far as ground control is concerned, accuracy of traditional bundle block 
adjustment depends on the distribution and distance between ground control points. 
The larger the region, the more the number of ground control points. On the other 
hand, GPS-supported bundle block adjustment and POS-supported bundle block 
adjustment require four full GCPs in the four corners of the adjusted block only, 
regardless of the size of block. However, when the block is large, GPS-supported 
bundle block adjustment needs to lay one cross-strip on each end of the adjusted 
block, in order to ensure the photogrammetric accuracy in elevation. 
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5.5.1.2 Positioning by Airborne Liner Array Camera ADS 40 

Test data were collected by three-linear camera ADS 40 in January 2007. The 
whole area is composed of 9 strips. The size of the area is about 17×12 km2. The 
average elevation is 775 m and elevation variation is within 150 m. The camera 
principal distance is 62.7 mm and the flight height is about 2 000 m. The CCD 
pixel size is 6.5 �m with a ground sampling distance of 20 cm. Side overlap is 
about 25%. The image length is 186 000 rows, and 372 orientation images at the 
interval time of 8 seconds are processed. There are 9 horizontal and vertical GCPs 
(Fig. 5.11) evenly distributed in the area. All GCPs are obtained from GPS static 
net surveying with an accuracy of ±5 cm on the ground. Five tests of the three-
linear array imagery were performed by Zhao and Li (2006). The results are listed 
in Table 5.3.  

 

 
Fig. 5.11 GCP distribution of test area 

Table 5.3 Location results of three-linear imagery of ADS 40 

maximum residuals of 
check points (m) empirical accuracy (m) location methods 

check 
points 

X Y Z X Y XY Z 

direct georeferencing 9 0.875 1.028 1.912 0.542 0.633 0.834 1.010 

bundle block adjustment 
without GCPs 

9 0.299 0.158 0.825 0.213 0.086 0.229 0.640 

bundle block adjustment with 
one GCP 

8 0.296 0.142 0.825 0.194 0.091 0.214 0.632 

bundle block adjustment with 
four corner GCPs�three-
linear array  

5 0.190 0.194 0.226 0.153 0.129 0.200 0.122 

bundle block adjustment with 
four corner GCPs�twin-
linear array  

5 0.254 0.301 0.289 0.197 0.211 0.288 0.140 
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The following conclusion can be drawn by analyzing the results in Table 5.3: 
1) Using the exterior orientation elements of each image obtained via POS to 

implement multi-ray space intersection, the locational accuracy is assessed by the 
9 check points according to Eq. (5.34). The accuracy is better than ±4 pixels for 
planimetry and about ±5 pixels for elevation, respectively. Obviously, the loca-
tional accuracy is not very good. 

2) Using GPS exposure station as control condition, the bundle block ad-
justment was implemented without any GCPs. Both the planimetric accuracy and 
height accuracy is obviously improved. Comparing with direct georeferencing, the 
planimetric accuracy increase by 72.5%=(0.8338-0.2294)/0.8338, and the height 
accuracy by 36.6%=(1.0097-0.6398)/1.0097. 

3) When one center GCP is selected and used as orientation point in the bun-
dle block adjustment, the accuracy is close to that of bundle block adjustment 
without any GCPs. 

4) When four GCPs distributed in four corners are selected and used as the 
orientation points in the bundle block adjustment, the planimetric accuracy is bet-
ter than ±1 pixel and the height accuracy is ±0.6 pixels. It is obvious that the POS 
systematic errors can be compensated for effectively. 

5) Considering the imaging geometry of airborne three-linear camera, both 
imagery of forward view and back view are used to implement the bundle block 
adjustment separately. Comparing to three-linear array case, the height accuracy is 
similar while the planimetric accuracy decreases by 44.3%=(0.2884-
0.1998)/0.1998. This result illustrates that the height accuracy of the object points 
depends on the forward view and back view images. However, geometric stability 
of three-linear array is stronger than that of twin-linear array. 

5.5.2 Positioning Based on High Resolution Satellite Imagery 

5.5.2.1 Experiment Design 

The empirical imagery are image pairs of HRG-1A level SPOT-5 across-track 
stereo scenes in Qianxi, China. Scene 1 was acquired on October 19th, 2004 and 
the viewing angle is 26.73º. Scene 2 was acquired on October 21st, 2004 and the 
viewing angle is -24.04º. The geometric condition of intersection is excellent with 
a base-height ratio of 0.9. Both scenes are only processed to enhance the radiomet-
ric quality. The size is 12 000 pixels by 12 000 pixels and the ground sampling 
distance is about 6 m. The terrain of the covering area is flat and the maximum 
height difference is within 120 m. In this area, 55 ground characteristic points (Fig. 
5.12) are collected and the 3-D coordinates of them are obtained by GPS-
supported block bundle adjustment with aerial images at 1:60 000 scale. The cal-
culation was performed on the basis of WuCAPS system. The densification accu-
racy was ±2.5 m for planimetry and ±2.0 m for elevation. These points were used 
as orientation points and check points for assessing the geometric locational accu-
racy of the SPOT-5 scenes. 
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Fig. 5.12 GCP distribution of test area 

Table 5.4 Accuracy of positioning using rigorous geometric model for SPOT-5 imagery 

maximum residuals of 
check points (m) empirical accuracy (m) 

GCPs check 
points 

X Y XY Z X Y XY Z 

0 55 14.72 15.15 16.62 21.58 8.82 5.55 10.42 9.46 

4 51 8.38 14.51 14.81 17.58 3.77 4.45 5.83 5.37 

6 49 7.63 16.05 16.06 17.44 2.82 4.63 5.29 5.37 

8 47 7.66 13.13 13.13 15.85 2.81 4.31 5.14 4.48 

10 45 7.28 10.88 10.89 13.96 2.78 3.49 4.47 3.69 

12 43 7.16 9.40 9.43 13.39 2.84 3.17 4.26 3.49 

14 41 8.10 9.42 9.43 13.42 2.98 3.18 4.35 3.50 

 

Table 5.5 Accuracy of positioning using rational function model for SPOT-5 imagery 

maximum residuals of 
check points (m) empirical accuracy (m) 

GCPs check 
points 

X Y XY Z X Y XY Z 

0 55 14.20 15.21 16.61 22.49 8.37 4.86 9.68 10.21 

4 51 8.49 11.87 11.88 14.64 3.81 4.91 5.81 5.02 

6 49 8.24 11.50 11.50 15.05 3.84 4.78 5.73 5.33 

8 47 8.65 9.30 9.36 14.89 2.96 4.06 5.26 4.84 

10 45 8.34 8.46 9.73 14.19 2.98 3.08 4.29 3.63 

12 43 8.18 8.18 8.50 13.16 3.07 3.10 4.36 3.70 

14 41 8.23 8.85 9.18 13.20 3.04 3.05 4.31 3.79 

 

scene 1                         scene 2               ground control point 
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5.5.2.2 Position-Determination with Rigorous Geometric Models and RFMs 

For above SPOT-5 stereo scenes, the tests with rigorous geometric models and 
rational function models were performed. The test includes direct georeferencing 
without any GCPs and indirect methods after scene reorientation with different 
quantity of GCPs. The results are listed in Tables 5.4 and 5.5. The following con-
clusion can be drawn from Tables 5.4 and 5.5: 

1) Employing direct positioning with rigorous geometric processing models 
or rational function models, the planimetric accuracy is ±10.42 m and ±9.68 m, re-
spectively, about ±1.7 pixels. According to the statistic results of CNES, the direct 
positioning accuracy of SPOT-5 without considering the relief should be ±10 pix-
els. The empirical accuracy has outperformed the expected result. 

2) When applying the bundle adjustment based on rigorous geometric proc-
essing models, the exterior orientation elements are expressed by second-order 
polynomials, with 36 unknowns to solve for. Using GCPs in four corners of the 
region, the planimetric and vertical accuracies of indirect positioning reach ±5.83 
m and ±5.37 m, about ±1 pixel. The accuracy can be better when more GCPs are 
used, although the improvement may be very limited. When the number of GCPs 
exceeds 10, the positional accuracy stabilizes at the level of ±5 m for planimetry 
and ±4 m for elevation. 

3) When applying the bundle adjustment based on rational function models, 
the planimetric accuracy is increased notably and reached the level of ±1 pixel 
with four corner GCPs. Although there are 78 RPCs contained in a rational func-
tion model, only 6 affine transformation coefficients instead of the initial RPCs 
were actually used in the adjustment to correct for the systematic errors. This 
makes the process much more stable and achieves satisfactory results. 

4) In this case, the indirect positioning accuracies achieved by two models 
are at the same level. However, it is worth noting that the test area belongs to a flat 
region. For the mountainous regions, the accuracy of rational function models may 
become deteriorated. Rigorous geometric processing models remain the first 
choice in high-precision geometric location of linear array push-broom satellite 
remotely sensed imagery. 

5.6 Summary 

One of the main tasks, also one of the fundamental problems, in photogram-
metry and remote sensing is to obtain three-dimensional coordinates of the ground 
objects (i.e., to extract the non-semantic information) from multi-overlapping ae-
rial or satellite remotely sensed imagery with space intersection method. Begin-
ning from the basic principles of georeferencing with remotely sensed imagery, 
this chapter gives a comprehensive introduction to the geometric processing mod-
els of the frame central projection and linear push-broom imagery, including col-
linearity equations based on perspective projection and rational function models, 
and accuracy estimation algorithm of photogrammetric point coordinates. These 
particular methods addressing the problem of photogrammetry with limited 
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ground control points are emphasized. Finally, to analyze the potential georefer-
encing accuracy achieved by current remote sensing method, several newly ac-
quired aerial or satellite images have been tested. The following conclusions can 
be drawn by analyzing the empirical results: i) for aerial frame images, the empiri-
cal accuracy of traditional bundle block adjustment is the highest. There is no sub-
stantial difference between accuracy of GPS-supported bundle block adjustment 
with one cross-strip on each end of the adjusted block and POS-supported bundle 
block adjustment with 4 full GCPs in the four corners of the adjusted block. ii) for 
airborne three-linear imagery, when 4 full GCPs distributed in the four corners are 
selected and used as the orientation points in the bundle block adjustment, the 
planimetric accuracy is better than ±1 pixel and the height accuracy is ±0.6 pixels. 
iii) for SPOT-5 stereo scenes with 6 m ground sampling distance, employing  bun-
dle adjustment based on the rigorous geometric processing models or rational 
function models with 4 full GCPs in the four corners of the adjusted block, the 
planimetric and vertical accuracies are about ±1.0 pixel, respectively. 
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Chapter 6 

MAPPING HIGH-RESOLUTION LAND SURFACE 
RADIATIVE FLUXES FROM MODIS: 
ALGORITHMS AND PRELIMINARY VALIDATION 
RESULTS 
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6.1 Introduction 

Land surface radiative fluxes are needed to address a variety of scientific and 
application issues related to climate changes, hydrologic and biogeophysical mod-
eling, solar energy applications, and agriculture. The Earth's surface radiation 
budget (SRB) is the key quantity that determines global climate and climate 
change from elevated greenhouse gases, air pollution (Wang K. et al. 2009), and 
land cover and land use changes (Wang et al. 2007b). The SRB is also important 
to life and to the use of clean renewable solar energy to improve the quality of the 
environment.  

Altering surface radiation force will lead to a significant adjustment in surface 
temperature, moisture, and fluxes during the consequent complex land surface 
thermodynamic and hydrological processes. It affects the surface heat and mois-
ture budget as well as biological productivity. The observed reduction in land sur-
face radiation over the last several decades (1960-1990), the so-called "dimming 
effect,'' and the more recent evidence of a reversal in "dimming'' over some loca-
tions beyond 1990 suggest several consequences on climate, notably on the hydro-
logical cycle (Liepert and Romanou 2005, Wild et al. 2005, 2007). Such a reduc-
tion in radiation should imply reduced surface temperature and precipitation. 
Overestimation of the incoming solar radiation over land has major impacts on the 
climate over land (Betts et al. 1996, Dickinson 1995, Garratt et al. 1993). Viterbo 
and Beljaars (1995) found that excessive net radiation at the surface forced exces-
sive surface evaporation, and dried out the soil moisture during data assimilation 
in the ECMWF (European Centre for Medium-Range Weather Forecasts) global 
model.  
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There are several global radiative flux data sets derived from either satellite ob-
servations or GCM (General Circulation Model) reanalysis. The CERES (Clouds 
and the Earth's Radiant Energy System) Science Team (Wielicki et al. 1998) uses 
cloud and aerosol information from MODIS (Moderate-Resolution Imaging Spec-
troradiometer) and top-of-atmosphere (TOA) broadband fluxes as a constraint to 
produce radiative fluxes at the spatial resolution of 140 km. The ISCCP (Interna-
tional Satellite Cloud Climatology Project) has produced a new 18-year (1983-
2000) global radiative flux data product called ISCCP FD, every three hours on a 
280-km equal-area global grid (Zhang et al. 2004). ISCCP FD is calculated using 
a radiative transfer model from the Goddard Institute for Space Studies (GISS) 
GCM with the atmosphere and surface properties primarily from the TIROS Op-
erational Vertical Sounding (TOVS) data. The GEWEX SRB Release 2 has a spa-
tial resolution of 1° x 1° and temporal resolution from 3-hour data, daily to 
monthly from July 1983 to 2007 (Pinker et al. 2003,http://www.gewex.org/ssg-
21/2009-SSG_GRP-status.pdf). The reanalysis datasets are usually of coarse spa-
tial resolutions (>1°) and fine temporal resolutions, such as those from the NASA 
DAO (Data Assimilation Office), ECMWF (ERA-40) and NCEP/NCAR (National 
Centers for Environmental Prediction/ National Center for Atmospheric Research.  

Since almost all of these products focus on radiative fluxes at different atmos-
pheric profiles from surface to the TOA, the surface radiative fluxes may not have 
the accuracy required for land applications. For example, the CERES team uses 
the predefined albedo and emissivity maps to calculate surface radiative fluxes, 
which cannot account for their dramatic variations. More importantly, the spatial 
resolutions of current surface radiative flux products are too coarse to be used for 
many land applications. For example, the MODIS science team currently has to 
use the DAO coarse-resolution reanalysis solar radiation product as the forcing 
data to produce the 1-km PSN/NPP (Photosynthesis/Net Primary Production) 
product (MOD17) (Zhao et al. 2006). The resulting accuracy is not satisfactory 
and 1-km incident PAR data are a critical need. The hydrological product (Mu et 
al. 2007, Cleugh et al. 2007) from MODIS data (MOD16) is also of 1-km resolu-
tion, but the meteorological forcing data currently available are quite coarse. As 
Berg et al. (2005) pointed out, bias to many of the reanalysis fields limits their use 
for hydrological modeling. 

One relevant issue is that for coarse spatial resolutions, existence of unresolved 
sub pixel clouds are crucial. It is actually extremely difficult to quantify the error 
bounds and uncertainties of the current coarse-resolution SRB products because of 
the inevitable mismatches with ground “point” measurements in both space and 
time for validation. The current products have large uncertainties. On a daily basis, 
the estimate of the solar incoming shortwave radiation from GOES (Geostationary 
Operational Environmental Satellite) data has an uncertainty of approximately 
10%, but at shorter time increments, for example hourly, the uncertainty is much 
greater (on the order of 20-30%), especially for partly cloudy conditions. The SRB 
errors for shortwave and longwave over snow and ice surfaces and for longwave 
in persistently cloudy regions are larger than those in other regions (Pinker et al. 
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2003). Raschke et al. (2006) examined ISCCP and GEWEX (Global Energy and 
Water Cycle Experiment)-SRB data sets and found that there are serious errors in 
ancillary data that lead to large uncertainty in the final products and they recom-
mended complete reprocessing. Hicke et al. (2005) found that mean global NCEP 
solar radiation exceeded that from GISS by 16%, likely due to lower cloudiness 
within the NCEP reanalysis compared to satellite observations. Locally, relative 
differences were up to 40% in the mean and 10% in the trend of solar radiation 
and NPP, and varied in sign across the globe.  

Because of the improved spatial and spectral resolutions of the MODIS solar 
and IR imager and an available suite of high-level land and atmosphere standard 
products, we anticipate a significant improvement of radiative flux estimates from 
the kilometer-scale MODIS observations. They will be extremely useful in driving 
high-resolution land ecosystem/carbon cycle and hydrological models, and vali-
dating the coarse resolution SRB products for improved water and energy fluxes. 
However, the EOS (Earth Observing System) standard products from MODIS in-
clude only certain components of SRB (e.g., broadband albedo, spectral emissivity 
and skin temperature).  

In this chapter, we describe the algorithms for generating all land surface radia-
tive fluxes from MODIS data, including incident insolation and PAR (Photosyn-
thetically-Active Radiation), shortwave net radiation, clear-sky longwave down-
ward and upward radiation, and all-wave all-sky net radiation. The validation 
results are also presented. The overview of these algorithms is shown in Figure 1, 
and the individual algorithms are discussed below in details. Measurements col-
lected at about 100 sites globally are being used to validate the algorithms de-
scribed here. These measurements are collected from different networks, including 
SURFRAD (Surface Radiation Budget Network), ARM (Atmospheric Radiation 
Measurement), FLUXNET (Ameriflux, Euroflux and Asiaflux), GAME ANN 
(GEWEX Asian Monsoon Experiment, in which GEWEX stands for Global En-
ergy and Water cycle Experiment, Asian Automatic Weather Station Network) 
and AERONET (AErosol RObotic NETwork). The land cover types of these sites 
include desert, cropland, grassland, and forest. The locations of the sites vary from 
tropical to temperate and polar areas, with elevations ranging from near sea level 
to about 5 km high on the Tibetan Plateau.  

6.2 All-Sky Incident PAR and Insolation 

6.2.1 Background 

Incident solar radiation, either PAR in the visible spectrum (400-700 nm) or in-
solation in the total shortwave (300-4000 nm), is a key variable required by almost 
all land surface models. Many ecosystem models calculate biomass accumulation 
linearly proportional to incident PAR. Information on the spatial and temporal dis-
tribution of PAR, by control of the photosynthesis and transpiration process, is re-
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quired for modeling the hydrological cycle and for estimating global oceanic and 
terrestrial net NPP. 

 

 
Fig. 6.1 Flowchart of the estimation of net radiation flux from MODIS 

The only practical means of obtaining incident PAR/insolation at spatial and 
temporal resolutions appropriate for most modeling applications is through remote 
sensing. The existing products normally have high temporal resolutions (around 3 
hours) but coarse spatial resolutions (around 1°). They are primarily suitable for 
climate modeling and analysis.  

Because the high-resolution incident PAR/insolation over land surfaces is not a 
standard EOS product, the MODIS science team has to disaggregate the NASA 
data assimilation PAR product of three-hourly 1º by 1.5º spatial resolution to pro-
duce 1-km NPP and net PSN products using the BIOME-BGC model (Running et 
al. 1999, Running et al. 2004). The simplified PAR flux models have been used to 
produce the incident PAR flux over oceans using MODIS data (Carder et al. 1999) 
and SeaWiFS (Sea-viewing Wide Field-of-view Sensor) data (Frouin et al. 2000). 
No PAR product has been routinely generated from MODIS data over land by 
NASA. The incident PAR product constitutes a major uncertainty in carbon cycle 
modeling.  

Satellite TOA observations contain information from both the atmosphere and 
the land surface. The current methods (Carder et al. 1999, Frouin et al. 2000, Gu 
et al. 2004, Pinker and Laszlo 1992, Pinker et al. 2003) assume that either the at-
mospheric information is available from other sources (e.g., the ISCCP PAR 
product with atmospheric climatology data as input) or water surface reflectances 
are known (e.g., SeaWiFS and MODIS PAR products over oceans).  

If the atmospheric parameters and surface spectral albedos are known, the ex-
isting algorithms for MODIS (e.g., van Laake and Sanchez-Azofeifa 2004, 2005) 
may be directly applied. However, these models are based on rudimentary two-
stream approximations for multiple scattering or even simpler schemes. Computa-
tion is speeded up significantly with the simplified models, but they usually are 
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not accurate in calculating multiple scattering that dominates when the atmos-
pheric optical depth is large (hazy or cloudy) and/or the surface is very bright 
(snow/ice). Simple models are easy to implement, and suitable for cases where no 
accurate input parameters are available (e.g., processing GOES data alone). In-
creasing the model complexity increases difficulties of implementation for re-
gional and global applications. Furthermore, the MODIS aerosol optical depth 
products have much coarser spatial resolution (~10km) and contain many gaps 
over land surfaces (Remer et al. 2005, 2008). Therefore, the method of van Laake 
and Sanchez-Azofeifa is not suitable for estimating incident PAR from MODIS 
data at 1-km resolution.  

Another issue is the separation of direct and diffuse PAR radiation. The volume 
of shade within vegetation canopies is reduced by more than an order of magni-
tude on cloudy and/or very hazy days compared to clear, sunny days because of an 
increase in the diffuse fraction of the solar radiance. In a recent study, Gu et al. 
(2002) found that: (1) diffuse radiation results in higher light use efficiencies by 
plant canopies; (2) diffuse radiation has much less tendency to cause canopy pho-
tosynthetic saturation; (3) the advantages of diffuse radiation over direct radiation 
increase with radiation level; and (4) temperature as well as vapor pressure deficit 
can cause different responses in diffuse and direct canopy photosynthesis, indicat-
ing that their impacts on terrestrial ecosystem carbon assimilation may depend on 
radiation regimes and thus sky conditions. Wang K. et al. (2008b) provided obser-
vational evidence that diffuse radiation results in not only higher light use effi-
ciencies but also higher evaporative fractions. These findings call for different 
treatments of diffuse and direct radiation in models of global primary production, 
and studies of the roles of clouds and aerosols in the global carbon cycle (Gu et al. 
2003). In fact, many land surface process models, such as SiB2 (Simple Biosphere 
Model, Sellers et al. 1996) and CLM (Community Land Model, Dai et al. 2003), 
separate direct and diffuse solar radiation. However, none of the existing PAR 
products separate these two components.  

A new algorithm for estimating incident PAR and insolation from MODIS data 
using the look-up table (LUT) approach has been developed (Liang et al. 2006). It 
has been revised to map incident PAR over China (Liu et al. 2008). This algorithm 
has also been extended to GOES data (Zheng et al. 2008, Wang D. et al. 2009b) 
and is being altered for other satellite data (Liang et al. 2007). Although this algo-
rithm was primarily designed for mapping incident PAR, insolation is one of the 
outputs. We have further refined the algorithms specifically for PAR and insola-
tion, and the details are given below.  

6.2.2 All-sky PAR  

6.2.2.1 Instantaneous PAR 

Incident PAR depends mainly on atmospheric properties, but also to a lesser 
extent on surface reflectance. It can be demonstrated by the following formula for 
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calculating downward spectral flux )( 0CF
 
at the solar zenith angle 

0� ( )cos( 00 �C � ) over a Lambertian surface (Chandrasekhar 1960, Liang, 2004): 
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 where )( 00 CF is the downward flux without any contributions from the surface, 

sr  is surface reflectance, )( 0CF  spherical albedo of the atmosphere, 0E  is the 
extraterrestrial solar irradiance, )( 0C� is the total transmittance (direct plus dif-
fuse) in the solar illumination direction. It is clear that the surface contribution to 
the incident PAR mainly depends on 1sr . If the atmosphere is very clear (i.e., 
1 is small) or the surface reflectance sr  is low, the surface contribution to the in-
cident PAR is relatively small.  

All radiometric variables are functions of wavelength. PAR is the integration of 
the downward spectral fluxes from 400 nm to 700 nm: 

 D� 700
400 00 )()( 2CC 2 dFPAR   (6.2) 

We use the energy unit Wm-2 in our LUT. Note that many ecosystem process 
models typically employ PAR data in quantum units (photosynthetic photon flux 
density, μ mol m-2 s-2) and the conversion between the energy units to the quantum 
units was discussed by Dye (2004).  

Our method first estimates surface reflectance from multi-temporal imagery 
and then appraises PAR flux for each imagery. The basic procedure is composed 
of two steps, including (1) determination of the surface reflectance from observa-
tions under ‘clearest atmospheric conditions during a temporal window and (2) 
calculation of incident PAR from the determined surface reflectance and TOA ra-
diance/reflectance using the LUT approach. Determining the length of the tempo-
ral window needs to be done carefully. Obviously, it must be short enough so the 
surface properties do not change dramatically, but long enough to include ade-
quate observations under clear conditions. In all our case studies, it seems a period 
of one to three months is a reasonable choice.  

Most PAR algorithms do not consider surface topography. Evaluating the sig-
nificance of this omission, Winslow et al. (2001) found that the ISCCP-PL PAR 
product in mountainous regions was underestimated in comparison to long-term 
radiation climatologies. This is particularly relevant for carbon cycle modeling 
when the spatial resolution increases since many forests are distributed over 
mountainous regions. We could add a new dimension to the LUT, but it would 
make the process much more complicated. We have incorporated topographic cor-
rection in our PAR mapping from GOES (Zheng et al. 2008), and the new eleva-
tion adjustment to the instantaneous PAR from MODIS is presented here.  

In the PAR spectral region, surface elevation influences the atmospheric mass 
that in turn affects Rayleigh scattering transmittance. In creating the LUT to esti-
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mate PAR, surface elevation was set at sea level. Ignoring the influence of eleva-
tion may introduce substantial errors in PAR retrieval. Since the impacts of aero-
sol and clouds are considered in the original algorithm, the elevation effect on 
Rayleigh scattering is considered. To quantify this influence, the normalized 
transmittance is defined as follow:  
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,
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T
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where Tray,z is the Rayleigh scattering transmittance at an elevation of z in km and 
Tray,0 is the Rayleigh scattering transmittance at sea level. We calculate the nor-
malized transmittance using an atmospheric radiative transfer model, 6S (Vermote 
et al. 1997).    

 
Fig. 6.2 Normalized Rayleigh scattering transmittance (Equation (3)) as a function of surface 
elevation and solar zenith angle 

Figure 6.2 shows that the normalized transmittance is the function of surface 
elevation and the solar zenith angle. It is shown that PAR can be under-estimated 
up to 10% for highlands. This effect has not been addressed in the current algo-
rithms to estimate surface solar radiation and PAR. Study has shown that the sys-
tematic underestimation of solar radiation products over the Tibetan Plateau (ele-
vation is higher than 4000 m for the most part) perhaps resulted from ignoring the 
elevation effect (Yang et al., 2006). Figure 6.2 illustrates that it is essential to in-
corporate the effect of surface elevation. However, since including surface eleva-
tion into an LUT explicitly as one dimension will substantially increase the com-
putational time in searching for the LUT, we apply an empirical regression to 
correct for the influence of elevation on Rayleigh scattering: 
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  (6.4) 

where sC is the cosine of the solar zenith angle (less than 85º), and z is surface ele-
vation in km. Equation (6.4) predicts the normalized transmittance with a correla-
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tion coefficient of 0.9998, a bias of 0.000085 and a standard deviation of 0.00037. 
Surface elevation data used here are from GTOPO30 at a spatial resolution of 30 
arc seconds (http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html). 

Although PAR flux is less dependant on surface reflectance, we need to con-
sider an abrupt significant change of surface reflectance. The extreme case is 
snowfall and snowmelt. The snow observations have to be labeled and separated 
from non-snow observations. They must be processed separately but in the same 
fashion. The MODIS team is routinely producing snow and ice cover maps. These 
maps can be used to distinguish snow and cloud, which has been an issue in previ-
ous studies (e.g., Pinker et al., 2003). Our algorithm separates snow and non-snow 
observations using the MODIS snow cover maps and applies the same procedures 
to these two groups of observations separately. 

The validation results had been published (Liang et al. 2006, 2007). The valida-
tion exercises were conducted using ground measurements of incident PAR at six 
FLUXNET sites (Fort Peck, Montana; Lost Creek, Wisconsin; Oak Ridge, Ten-
nessee; Walker Branch, Tennessee; Santa Rem, Brazil; and Black Hills, South 
Dakota) from 2002-2004. For each site, a 3km x 3km window (9 pixels) of the 
MODIS TOA radiance (MOD02) and angular values were extracted from the 
MODIS datasets ordered from the EOS Gateway. The ground measurements col-
lected every half-hour or one hour were compared with the retrieved values. The 
measurement values closest to the time of MODIS data acquisition were used to 
compare with the value of the central pixel in the extracted 9-pixel window with-
out any interpolation.  

 
Fig. 6.3 Validation of MODIS-derived instantaneous PAR data at six FLUXNET sites. The solid 
line is the 1:1 line, the dashed line is the best fit line based on least squares regression. 

6.2.2.2 Daily PAR 

Daily-integrated PAR is more useful than instantaneous PAR in many cases 
because many ecosystem models require a daily or coarser temporal resolution. 
MODIS acquires data from both Terra and Aqua satellites, and the number of 
overpasses depends on geographical location. Multiple observations are used for 
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calculating daily PAR. A regression method was proposed in our original algo-
rithm (Liang et al., 2006), but we found later that the LUT method performs much 
better (Wang, D. et al., 2009).  

When estimating instantaneous PAR, atmospheric visibility is stored in the 
LUT as an intermediate quantity. The visibility values at any other times are inter-
polated based on these recorded visibility values for the instantaneous PAR. If 
there is only one observation on a given day, the visibility value estimated at the 
overpass time is used for the entire day. If there are more than one observation per 
day, the first visibility value is used for the time before the first overpass time and 
the last visibility value is used for the time after the last overpass time; the visibil-
ity value at other times is linearly interpolated: 
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where tVV  is the interpolated visibility value at time t , nT and 1�nT  are the two 
satellite overpass times immediately before and after t , and 

nTVV  and 
1�nTVV  are 

the corresponding visibility values estimated from satellite observations.  
After obtaining the visibility value at a given time, we can estimate PAR at the 

moment. To maximize computation efficiency, we calculate the instantaneous 
PAR values at 30-minute intervals. Daily PAR is obtained by integrating the 30-
minute instantaneous PAR values: 
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where N is the number of instantaneous PAR values used to calculate daily PAR, 
t*  is the time interval, )(tInstPAR  is the instantaneous PAR at time t , calculated 

with the interpolated visibility value.  
The validation results have been presented elsewhere in details (Wang D. et al. 

2009). Figure 6.4 shows a comparison of field-measured and MODIS-estimated 
daily-integrated total PAR at ten AmeriFlux stations using the LUT method (Table 
6.1), which is better than the sinusoidal method. It demonstrates that MODIS data 
alone adequately capture the diurnal variations of incident PAR at high latitudes 
where the number of MODIS overpasses is large. Generally, the estimated values 
correlate well with field-measured values, and the average R2 value is 0.927. The 
average RMSE is 1121.8 kJ/m2/day. 
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Fig. 6.4 Scatterplots of field-measured and MODIS daily-integrated PAR at 10 AmeriFlux sta-
tions 

Table 6.1 Comparison of validation results for the adjusted sinusoidal interpolation (SIN) and 
look-up table (LUT) methods at the ten AmeriFlux stations 

R square RMSE Bias Relative Error  Station 
 No SIN LUT SIN LUT SIN LUT SIN LUT 

1 0.887� 0.891� 1392.8 1090.0 645.8 21.5� 14.7%� 12.6%�
2 0.863� 0.873� 2125.5 1544.2 1535.3 911.3 26.4%� 19.1%�
3 0.933� 0.937� 1138.2 955.8 420.3 -227.6 11.9%� 10.8%�
4 0.936� 0.941� 1643.7 1079.9 1125.4 508.9 19.8%� 14.2%�
5 0.953� 0.950� 1266.1 863.2 668.6 -45.1 12.2%� 10.2%�
6 0.952� 0.949� 1854.5 1234.4 1363.8 719.8 25.3%� 18.2%�
7 0.927� 0.925� 1313.6 1252.3 83.2� -560.9 19.8%� 19.5%�
8 0.942� 0.940� 1305.0 985.4 541.3 -74.1 19.2%� 15.9%�
9 0.947� 0.943� 1137.4 1030.7 279.4 -383.2 15.7%� 15.8%�

10 0.927� 0.925� 1319.3 1181.9 291.4 -502.3 19.3%� 19.2%�
Average 0.927� 0.927� 1449.6 1121.8 695.4 36.8� 18.4%� 15.6%�

 
The temporal-scaling approach of the LUT is able to scale both diffuse and di-

rect portions accurately as well. Diffuse PAR is not a standard measurement at 
AmeriFlux stations, so we cannot perform an extensive validation for diffuse ra-
diation. We chose the Bartlett Experimental Forest, New Hampshire station 
(44°3'52.7" N, 71°17'17.1" W) to evaluate the performance of our LUT method. 
An experimental forest of the US Forest Service, the Bartlett Forest is a northern 
temperate hardwood forest consisting primarily of American beech, red maple, 
paper birch and hemlock trees. We used the diffuse and total PAR measured in 
2005 at Bartlett Forest to validate our algorithm (Figure 6.5). The validation result 
for total PAR is similar to PAR at the other stations. Diffuse radiation was not as 
accurately estimated at Bartlett Forest compared to total radiation based on R2 and 
bias.  
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Fig. 6.5 Comparison of field-measured and MODIS-estimated daily-integrated PAR at Bartlett 
Experimental Forest: total PAR (left), and diffuse PAR (right). 

The LUT method has been employed to produce a three-year (2003-2005) dai-
ly-integrated PAR product over North America that is being distributed through 
ORNL DAAC (Oak Ridge National Laboratory Distributed Active Archive Cen-
ter). Figure 6.6 is the map of daily-integrated PAR compared with GOES PAR for 
June 3-6, 2003. PAR values are generally high because the solar zenith angle is 
small and the number of daylight hours is large. Clouds have a strong effect on 
PAR values. Cloud patterns from MODIS daily-integrated PAR correlate well 
with GOES patterns. The GOES PAR map is relatively smooth because GOES ob-
serves the surface with greater frequency, thus fragmented clouds are usually av-
eraged over time. We calculated the relative difference, D , to better illustrate the 
difference between MODIS PAR and GOES PAR: 

 2( )D=
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Figure 6.6 shows that there is little relative difference between MODIS and 
GOES for most areas. Although daily-integrated GOES and MODIS PAR corre-
late well, there are differences between the two datasets. The greatest difference 
occurs near cloud boundaries because cloud patterns are highly variable near cloud 
boundaries. A small number of MODIS observations per day cannot accurately re-
cord variable daily cloud conditions. If the sky is overcast at the time of a single 
MODIS overpass, the algorithm classifies the entire day as overcast and daily-
integrated PAR is underestimated. Overestimation of daily-integrated PAR occurs 
when the sky is clear at the time of the MODIS overpass, but cloudy at other times 
during that day. Figure 6.7 gives an example of the monthly incident PAR over 
North America in 2003. 
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Fig. 6.6 Comparison of MODIS and GOES daily-integrated PAR and relative difference maps of 
the conterminous United States for June 3-6, 2003. 

 
Fig. 6.7 Monthly incident PAR over North America continent in 2003 
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6.2.3 All-sky Insolation 

Insolation is outputted from the LUT in the same way as incident PAR. Here 
we further consider atmospheric water vapor effects. We could add atmospheric 
water vapor as another dimension in the LUT, but a simpler parameterization is 
desirable. The atmospheric water vapor transmittance for insolation has been ex-
amined for quite some times, and many parameterizations can be found in the lit-
erature, for example, 

(1) water vapor transmittance is calculated as (Duchon and Malley 1999): 

 3.0)(077.01 muTw ����   (6.8) 

where u is water vapor amount in cm, m is atmospheric mass at surface: 
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where s�  is solar zenith angle.  
(2) water vapor transmittance is calculated as (Annear and Wells 2007):  
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We evaluated the above parameterizations with the atmospheric radiation mod-
el 6S (Vermote et al. 1997) simulation. Figure 6.8 shows a comparison between 
the 6S simulated water vapor transmittance and simplified Equation (6.8). It ap-
pears equation (6.8) has a systematic overestimation compared with the 6S simula-
tion. Figure 6.9 shows a comparison between the 6S simulated water vapor trans-
mittance and simplified equation (6.10) that appears to have a systematical 
underestimation.  

Because of their significant differences with the 6S simulation results, we have 
derived a new formula that works much better than the previously mentioned me-
thods:  

 )lg(07066.08197.0 muTw ����   (6.11) 

Figure 6.10 shows a comparison between the 6S simulated water vapor trans-
mittance and simplified equation (6.11). There is no bias, and the RMSE is 
0.0036.  
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Fig. 6.8 Comparison between the 6S simulated water vapor transmittance and equation (6.7). The 
bias is 0.0304, and the RMSE is 0.0041.  

 
Fig. 6.9 Comparison between the 6S simulated water vapor transmittance and equation (6.9). The 
bias is -0.0481, and the RMSE is 0.0239.  

 
Fig. 6.10 Comparison between the 6S simulated water vapor transmittance and simplified equa-
tion (6.11).  
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Fig. 6.11 Comparison of MODIS insolation retrieval (y-axis) and ground measurements (x-axis) 
in 2000 at Dunhuang (top), D66 (middle) and Amdo in 2000-2003 (bottom). 
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Yang et al. (2008) evaluated some state-of-the-art satellite products of incident 
insolation over the Tibetan Plateau. Their results show that the current satellite 
products have substantial uncertainty over the Tibetan Plateau area.  Here we pre-
sent our preliminary validation results over the Tibetan Plateau. Ground measure-
ments at three sites were selected: (1) Amdo (32.241N, 91.625E) has a surface 
elevation of 4700 m and a land surface type of grassland, (2) Dunhuang (40.15N, 
94.683E) has a surface elevation of 1140 m and is located in a desert oasis (grass-
land and cropland), and (3) D66 (35.523N, 93.785E) has a surface elevation of 
4600 m and is located in desert. The 30-minute-average insolation data were 
downloaded from (http://aan.suiri.tsukuba.ac.jp/aan-center.html). We compared 
the 30-minute measurements with our MODIS retrievals, and the results are 
shown in Figure 6.11. Table 6.2 summarizes the evaluation results of our MODIS 
insolation products and other satellite insolation products reported by Yang et al. 
(2008). The GEWEX insolation product clearly exhibits substantial biases, be-
cause this product does not account for the elevation effect on the insolation as 
discussed in Section 6.2.3. Table 6.2 shows that the MODIS insolation product has 
a much smaller RMSE compared to other satellite insolation products over the Ti-
betan Plateau.  

Table 6.2 Summary of the validation results of current satellite products of hourly incident inso-
lation over the Tibetan Plateau. *: calculated from Table 3 in Yang et al. (2008) 

Products Spatial 
resolution 

Temporal 
resolution 

Relative 
bias 

Relative 
RMSE 

GEWEX V2.5* 1º 3 hour -19.9% 41.4% 
GEWEX V2.81* 1º 3 hour 6.5% 33.7% 
ISCCP-FD* 2.5º 3 hour  -4.7% 35.4% 
University of Maryland -SRB* 0.125º 1 hour  -0.4% 36% 
MODIS 1 km Instantaneous -4.4% 21.9% 

6.2.4 All-sky shortwave net radiation 

Surface shortwave net radiation can be calculated from insolation ( s
dF ) and 

upward radiation or the total shortwave broadband albedo (� ): 
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Assuming we can accurately map insolation, calculation of shortwave net ra-
diation now becomes albedo mapping. Global surface broadband albedo is a stan-
dard MODIS product and has been generated routinely from MODIS data every 8 
days (MOD43) (Schaaf et al., 2002). We can combine it with the insolation esti-
mate to obtain incident shortwave net radiation.     
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6.3 Clear-sky Downward Longwave Radiation 

Downward longwave radition (Fd
l) is a critical component in energy balance 

calculations. There have been several comprehensive reviews of methods for esti-
mating the surface thermal radiation (Diak et al. 2004, Ellingson 1995, Schmetz 
1989). The downward longwave radiation algorithms include three types (Darnell 
et al. 1986, Gupta et al. 1992). The first is empirical functions using satellite-
derived meteorological parameters, for example, the near-surface temperatures 
and water vapor burden. The second is to calculate the radiation quantities with 
radiative transfer models using satellite-derived soundings. A strong feature of this 
approach is the validity of the physics. The third is to use satellite observed radi-
ances directly to avoid the propagation of retrieval errors of meteorological pa-
rameters into the final radiation estimate (Lee and Ellingson 2002). It embeds the 
physical merits of the radiative transfer within the parameterization of nonlinear 
functions of observed radiance.  

It is straightforward to calculate Fd
l using atmosphere profiles and a radiative 

transfer model. However, the physical method is sensitive to the errors in the at-
mosphere profile. Fd

l is dominated by the radiation from a shallow layer that is 
close to the earth surface. The contribution from the atmosphere above 500 m 
from the surface only accounts for 16-20% of total Fd

l (Schmetz 1989). The verti-
cal resolution of the MODIS-retrieved atmosphere profiles is too coarse. Only 5 
layers are available between 1000 - 800 hPa pressure levels and the detailed struc-
tures of the atmosphere cannot be captured (Seemann et al. 2003). Our recent 
study (Wang W. and Liang 2009) showed that Fd

l cannot be estimated with ac-
ceptable accuracy using the MODIS atmospheric profile product, especially over 
high elevation surfaces. For example, we compared Fd

l calculated from the 
MODIS atmospheric profile product and ground-based measurements at two 
SURFRAD sites: Sioux Falls (473 m) and Boulder (1689 m). The errors at both 
sites are larger than 20 W/m2, and the RMSE at the Boulder site is 37.26 W/m2.  

Consequently, we developed a new hybrid algorithm that combines extensive 
radiative transfer simulation (physical) and regression analysis (statistical). Vali-
dation results indicate that it performs very well (Wang W. and Liang, 2009). 

6.3.1 Radiative Transfer Simulation 

The MODIS Terra atmosphere product was used to establish the atmosphere 
profiles database needed in radiative transfer simulation of TIR (Thermal Infrared)  
TOA radiances and Fd

l to derive statistical relationships. The database consists of 
more than 8000 representative profiles. Ts, surface pressure, column water vapor, 
elevation, and Ta (derived from the temperature profile) corresponding to each 
profile were also included in the database to facilitate method development.  

The plant function type for each atmosphere profile was determined using the 
co-located MODIS land cover product. The Johns Hopkins University (JHU) 
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emissivity spectra in the ASTER (Advanced Spaceborne Thermal Emission and 
Reflection Radiometer) Spectral Library (ASTER, 1999) were used to approxi-
mate spectral emissivity for each plant function type.  

MODTRAN4 (MODerate spectral resolution atmospheric TRANSsmittance, 
Berk et al. 1999) was used in the radiative transfer simulation. Fd

l, spectral Fd
l, 

thermal path radiance, and surface-TOA transmittance were simulated for each 
atmosphere profile. Thermal path radiance and transmittance were calculated at 
0°, 15°, 30°, 45°, and 60° sensor view zenith angles. Surface temperature was as-
signed using Ts from the MODIS atmosphere product. A Lambertian surface was 
assumed in the simulation. Spectral surface emissions were calculated using 
Planck’s function and emissivity spectra. MODIS TOA radiances were synthe-
sized using spectral Fd

l, spectral surface emission, emissivity spectra, thermal path 
radiance, surface-TOA transmittance, and MODIS Terra spectral response func-
tion.  

6.3.2 Regression Analysis 

Previous studies indicate Fd
l can be modeled using a linear combination of 

thermal-IR TOA radiances (Smith and Wolfe 1983, Morcrette and Deschamps 
1986). MODIS channels 27-29 and 31-34 are most valuable for predicting Fd

l. 
This is consistent with the physics that govern Fd

l: 27 and 29 are water vapor 
channels; 33 and 34 are air temperature profile channels; 29, 31, and 32 are used 
for retrieving land surface skin temperature (Ts). Near-surface air temperature (Ta) 
is one of the dominant factors for clear-sky Fd

l. Ts channels are important for es-
timating Fd

l because it is closely correlated to Ta. However, the daytime and night-
time relationships between Ta and Ts differ, especially over bare ground and high 
elevation surfaces. Therefore, separate models were developed to predict Fd

l for 
daytime and nighttime. 

Surface pressure is also an important factor in estimating Fd
l because of the ef-

fect of the pressure broadening of the spectral lines (Lee and Ellingson 2002). Sur-
face pressure has not been included in the Fd

l models in previous studies. We used 
elevation (H) as a surrogate for surface pressure to account for the surface pressure 
effect. The nonlinear Fd

l model was developed to account for the nonlinear effect 
(Wang W. and Liang, 2009):  
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where TairL  equals 31L  in the nighttime models and equals 32L  in the daytime 
models; ia , ib , and 1c  are regression coefficients. The nighttime nonlinear model 
explains more than 93 % of the variation, with standard errors less than 14.90 
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(nighttime) and 15.20 (daytime) W/m2. Table 6.3 shows nonlinear model fitting 
results and the regression coefficients of the nonlinear models are given in Table 
6.4. 

Table 6.3 Nonlinear downward longwave radiation model fitting results (Standard error unit 
W/m2). 

Linear 
Daytime Nighttime � 
R2 Std. Err. R2 Std. Err. 

0º 0.939 14.44 0.943 13.98 
15º 0.938 14.47 0.942 14.01 
30º 0.938 14.55 0.943 14.10 
45º 0.936 14.74 0.940 14.32 
60 º 0.932 15.20 0.936 14.79 

     

Table 6.4 Nonlinear downward longwvae radiation model regression coefficients. 

Daytime Nighttime  
0º 15º 30º 45º 60 º 0º 15º 30º 45º 60 º 

a0 150.20 153.15 162.14   180.91     214.23      84.14       87.07     95.44      112.65          142.44 
a1 4.45 4.34 3.91 3.12 2.13 5.37 5.27 4.90 4.18 3.05 
a2 -1.74 -1.80 -1.99 -2.41 -3.28 -1.78 -1.83 -1.99 -2.37 -3.20 
a3 -21.03 -20.37 -18.46 -14.02 -3.72 -15.51 -14.87 -13.07 -8.88 0.43 
a4 32.22 31.68 30.23 -26.55 16.93 27.08 26.52 25.07 21.51 13.06 
b1 -150.87 -154.97 -167.04 -192.69 -239.24 -106.53 -110.08 -119.87 -140.71 -177.34 
b2 33.18 34.01 35.64 40.59 53.68 62.67 63.05 63.20 64.90 69.79 
b3 -26.81 -25.89 -22.38 -16.07 -6.78 -40.55 -39.73 36.61 -30.99 -21.95 
c1 -1.91 -1.91 -1.90 -1.91 -1.99 -1.98 -1.98 -1.97 -1.96 -2.00 

6.3.3 Validation Results 

The nonlinear Fd
l model was first evaluated using MODIS Terra TOA radi-

ances and co-located SURFRAD ground data. To make the MODIS-derived and 
ground-measured Fd

l comparable, the model was adapted to predict Fd
l in the spec-

tral range of 4 - 50 μm. The error caused by the spectral range difference between 
the Fd

l model and ground instruments is less than 0.5%, smaller than ground in-
strument uncertainty. Fd

l for different view zenith angles was derived using linear 
interpolation. Clear-sky observations were identified using the MODIS cloud 
product. We also examined all data points manually to exclude cloud-
contaminated pixels with unreasonably low TOA radiance values in MODIS 
channel 31.  

The statistics of validation results using Terra data are summarized in Table 
6.5. Figure 6.12 shows the validation plots. RMSEs vary from 14.35 to 20.35 
W/m2 and biases from -6.88 to 9.72 W/m2.  Analysis of the preliminary spatial 
scaling shows that RMSEs were further reduced by 2 W/m2 after the nonlinear 
model-predicted Fd

l was aggregated to 5 km and beyond. Our predicted Fd
l is more 
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accurate than the existing Fd
l products (21-33 W/m2, monthly) (Wielicki et al. 

1996, ASDC 2006, Francis and Secora 2004). 
 
Table 6.5 Summary of validation results using MODIS terra and aqua data 

(unit: W/m2) 
Terra Aqua  

Sites 
Bias  RMSE Bias  RMSE 

Bondville -9.49 17.75 -7.36 14.98 
Sioux Falls -13.55 17.87 -12.81 17.74 
PennState -7.32 12.72 -5.21 10.92 
DesertRock -21.93 25.03 -20.21 23.94 
FortPeck -8.88 17.46 -7.33 15.11 
Boulder -4.62 19.24 -5.50 18.76 
Mean -10.97 18.35 -9.74 16.91 

 

 
 

Fig. 6.12 Nonlinear LWDN (downwelling longwave radiation) models validation results using 
MODIS Terra data (black-fallwinter/day; cyan-fallwinter/night; magenta – springsummer/day; 
green- spring summer/night). 
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The spatial mismatch between the MODIS footprint (1 km at nadir) and the 
ground PIR footprint (~ 200 m) may be a potential cause of the larger scattering 
during daytime in the model validation results. The Earth’s land surface behaves 
almost as an isothermal and homogeneous surface during nighttime. During day-
time, sT can exceed aT  by more than 20°K (Wan and Dozier 1996). Although 
MODIS channel 32, rather than channel 31, was used in the daytime nonlinear 
models, it is still sensitive to sT .  

Cloud contamination may be a significant source of error in this study. The 
MODIS cloud product cannot mask clouds in all cases, especially for cirrus 
clouds. Some pixels used in the study may be contaminated by clouds even after 
manual screening. The TOA radiances of these pixels are mixtures of surface and 
cloud top contributions and will be lower than true clear-sky values (Wang et al. 
2007a, Wan 2008). This is especially true at the Desert Rock site. Air traffic out of 
Los Angeles produces a considerable amount of cirrus over this site.  

 

 
Fig. 6.13 Nonlinear LWDN (downwelling longwave radiation) models validation results using 
MODIS Aqua data (black: fall-winter/day; cyan: fall-winter/night; magenta: spring-summer/day; 
green: spring-summer/night). 

Although the Fd
l model was developed using MODIS Terra retrieved atmos-

phere profiles and spectral response functions, it was also applied (without modi-
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fication) to two years of MODIS Aqua data (2005 and 2006) because the two sen-
sors have similar designs. Table 6.7 also summarizes the validation results using 
Aqua data. Figure 6.13 shows the validation plots. The nonlinear models’ biases 
range from -10.03 to 5.40 W/m2 and RMSEs range from 13.82 to 18.89 W/m2. 
Terra and Aqua have different satellite overpass times: 10:30 am and 10:30 pm 
versus 1:30 pm and 1:30 am (local time). The atmosphere and land surface condi-
tions are different when these two sensors overpass. However, the nonlinear model 
biases and RMSEs are generally smaller for Aqua. Liu et al. (2008) show that the 
Aqua sensor has smaller systematic errors than Terra in thermal channels, which 
may contribute to the small errors in Aqua-derived Fd

l. The Aqua validation re-
sults indicated that the Fd

l model developed in this study is sufficiently general to 
be applied for both Terra and Aqua observations. 

6.4 Clear-Sky Upward Longwave Radiation 

The upward longwave radiation emitted in the spectral wavelengths greater 
than 4 �m is sometimes referred to as "terrestrial radiation" or "infrared radiation". 
If we know surface skin temperature ( sT ) and spectral emissivities ( iε ) that are 
converted to broadband emissivity ( � ) , we can easily calculate this quantity: 

 
4)1( s

l
d

l
u TFF ?EE ���   (6.13) 

where Fd
l is downward longwave radiation and � is the Stefan-Boltzmann’s con-

stant. We recently published the formulae for converting the MODIS spectral 
emissivities to broadband emissivity (Wang et al. 2005, Jin and Liang 2006).    

MODIS has routinely generated skin temperature products globally. The 
MODIS land team produces the land surface temperature (MOD11) using both a 
split-window algorithm and day/night algorithm (Wan et al. 2002). The MODIS 
atmospheric team is also producing surface skin temperature at 5 km resolution 
(MOD07). We have recently validated the MODIS skin temperature products 
(MOD7 and MOD11) using FLUXNET sites (Wang W. et al. 2008) and found 
that both products agreed reasonably well with ground measurements over vege-
tated sites, with biases as large as 3.4° K and root-mean square errors (RMSE) 
3.8° K in all eight sites investigated. The uncertainties from both skin temperature 
and broadband emissivity may result in larger errors in the calculated upward 
longwave radiation.   

Our validation results using ground measurements did not prove that this me-
thod is better than the hybrid algorithm discussed in Section 6.3 for downward ra-
diation (Wang W. et al. 2008). Therefore, we propose to apply the hybrid algo-
rithm in this study.  
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In fact, Smith and Woolf (1983) used a hybrid method to estimate both Fu
l and 

Fd
l from the NOAA geostationary satellite’s Visible Infrared Spin Scan Radiome-

ter (VISSR) Atmospheric Sounder (VAS) TOA radiance at the 1000 hPa pressure 
level. Meerkoetter and Grassl (1984) used the hybrid method to estimate Fu

l and 
surface net longwave radiation from the Advanced Very High Resolution Radi-
ometer (AVHRR) split-window radiance. However, previous studies have focused 
on estimating surface longwave radiation over sea surfaces and constant emissiv-
ity was usually assumed. We used the hybrid method in this study to derive clear-
sky Fu

l models for MODIS data over land surfaces. The emissivity effect is explic-
itly considered in the radiative transfer simulation process.  

The simulated databases were analyzed to develop models for predicting Fu
l 

from TOA radiance. Multiple regression analysis was first employed to develop a 
linear Fu

l model. It is found that MODIS bands 29, 31, and 32 predict Fu
l best, 

consistent with the physics that governs Fu
l. All three bands are sensitive to Fu

l 
variations. Moreover, these three bands differ in water-vapor absorption. Bands 31 
and 32 are used to retrieve column water vapor, an important factor in estimating 
Fu

l from satellite data. The derived linear model is as follows:  

 3233122910 LaLaLaaFl
u ����   (6.14) 

where 0a , 1a , 2a , and 3a are regression coefficients (Table 6), and 29L , 31L , 

32L  are MODIS channels 29, 31, and 32 TOA radiance. Statistical analysis indi-
cates that the linear model accounts for more than 99% of the variation in the si-
mulated databases, with standard errors of 4.89 W/m2 (0° sensor view zenith an-
gle) to 6.11 W/m2 (60° sensor view zenith angle).  

We evaluated some non-linear models using both TOA radiance and brightness 
temperature to reduce the nonlinear effect in the residuals, but the models were not 
significantly improved.   

Table 6.6 Summary of linear model fitting results (� – sensor viewing zenith angle; unit of stan-
dard error: w/m2) 

 Linear Regression 
� a0 a1 a2 a3 R2 Std. Err 

 0º 102.7589  10.4963 121.3973 -100.4079 0.993 4.89 
15º 104.5829 10.6894 123.4974 -103.0277 0.993 4.94 
30º 110.4514 11.4267 129.9471 -111.2339 0.992 5.10 
45º 122.3125 13.5455 141.1782 -126.4748 0.991 5.41 
60 º 146.0408 20.5749 157.2946 -152.6469 0.990 6.11 

 
The validation results were recently published (Wang et al. 2009). Figure 6.14 

shows the validation results with MODIS Terra data. The linear model has biases 
ranging from -4.62 to -21.93 W/m2 and RMSEs ranging from 12.72 to 25.03 
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W/m2. The validation method for the Aqua data is the same as that used for Terra 
data. It has biases ranging from -5.21 to -20.21 W/m2 and RMSEs ranging from 
10.92 to 23.94 W/m2.  

 

 
Fig. 6.14 Linear model method validation results using MODIS Terra TOA radiances. 

6.5 Clear-Sky Net Longwave Radiation 

MODIS-derived surface net longwave radiation validation used the same 
SURFRAD sites as Fd

l (Wang W. and Liang 2009). Table 6.7 summarizes the va-
lidation results. Figure 6.15 illustrates validation results from Terra MODIS data 
at individual sites. The averaged RMSEs were 17.72 W/m2 (Terra) and 16.88 
W/m2 (Aqua); the averaged biases are -2.08 W/m2 (Terra) and 1.99 W/m2 (Aqua). 
The RMSEs over all sites are less than 20 W/m2, the acceptable accuracy for the 
instantaneous surface longwave radiation budget. Larger scattering exists for day-
time observations during spring and summer (high temperature and moisture con-
ditions), similar to the error patterns in Fd

l and surface upward longwave radiation 
validation results.  
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Table 6.7 Surface net longwave radaition validation results (unit W/m2) 

 

 

 
Fig. 6.15 MODIS Terra-derived surface net longwave radiation validation results. 

Figure 6.16 compares the MODIS net longwave radiation using the algorithms 
described above and the corresponding CERES product over the Washington DC 
and Baltimore Metropolitan region. The MODIS product reveals much more spa-
tial details than the CERES product that has only several values due to its coarse 
spatial resolution. Note the CERES mean value is also about 23 W/m2 smaller. 

Terra Aqua 
Sites 

Bias RMSE Bias RMSE 

Bondville 3.97 19.12 7.67 19.74 

Sioux Falls -2.43 17.08 -1.00 15.60 

PennState 1.37 18.92 6.19 18.87 

DesertRock -3.88 18.40 -0.09 16.90 

FortPeck -1.79 13.44 4.70 14.44 

Boulder -9.69 19.38 -5.51 15.75 

Mean -2.08 17.72 1.99 16.88 
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Fig. 6.16 MODIS-derived from Aqua satellite (left) vs. CERES-derived(right) instantaneous 
clear-sky longwave net radiation (W/m2) images over the Washington D.C. - Baltimore Metro-
politan Area (April 10, 2007 18:10 UTC) 

6.6 Cloudy-Sky Net Radiation 

Sections 6.4 – 6.5 discussed the algorithms for mapping downward and upward 
longwave radiation under clear-sky conditions. For cloudy-sky conditions, there 
are many algorithms that have been proposed in the literature (e.g., Diak et al. 
2004, Zhou and Cess 2001), but we lack confidence that these algorithms are suf-
ficiently mature to generate the products from MODIS during the course of this 
study. Two empirical formulae have been developed recently. 

6.6.1 Instantaneous Value Estimation 

An empirical regression method has been developed to estimate instantaneous 
all-wave net radiation from shortwave net radiation under FLUXNET data under 
cloudy conditions (Kim, 2008). Cloud-sky measurements at 13 FLUXNET sites 
were filtered out and their relationship is shown in Figure 6.17. It is highly linear 
(Rn=0.8347Sn+20.1898), with R2 = 0.9469 and RMSE =35.1 Wm-2, but the scat-
ters are also significant.  
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Fig. 6.17 Measured all-wave net radiation and the shortwave net radiation under cloudy-sky con-
ditions 

To improve the relationship, we group data in different cover types and add the 
enhanced vegetation index (EVI) as a new independent variable. The resulting 
formula is expressed as follows:   

 EVISaSaEVIaaR nnn ����� 3210              (6.15) 

The coefficients for different land cover types are listed in Table 6.8. The esti-
mates are appreciably improved for all cover types except grasslands (see Figure 
6.18) because EVI in grass is usually low and the exposed soil and dead grass 
could increase the outgoing thermal radiation and decrease accuracy. 

 
Table 6.8 Regression coefficients used to estimate cloudy-sky all-wave net ra-

diation 
PFT a0 a1 a2 a3 R2 RMSE 
Broadleaf crop 18.57 8.05 0.76 0.19 0.9729 27.4 
Evergreen needleleaf 11.84 -6.19 0.86 0.03 0.9736 28.9 
Grass -35.46 36.39 0.66 0.46 0.9339 43.1 
Deciduous broadleaf -14.40 -15.32 0.74 0.24 0.9605 31.9 

6.6.2 Daily Value Estimation 

Kjaersgaard et al. (2007) compared six existing models for calculating daytime 
Rn from solar shortwave radiation using meteorological data at two temperate 
sites, and concluded that local calibration of the models with at least five years of 
data is essential to obtain stable calibration coefficients. However, all six methods 
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failed to consider surface characteristics (such as vegetation cover fraction) that 
have substantial effects on surface energy partitioning into latent and sensible heat 
fluxes (Wang et al. 2007c, Wang and Liang 2008a) which in turn, affect Ts  and 

l
uF  (Wang et al. 2006, Wang et al. 2007b).  
 

 
 

 
Fig. 6.18 Cloudy-sky all-wave net radiation fitting dependant on plant functional types 

Therefore, based on analysis of available long-term measurements, we pro-
posed a robust method to estimate Rn from all-sky shortwave radiation (Wang K. 
and Liang 2009a). The equation is as follows: 

  RHaVIaDTRaTaa
S
R

n
n ���������##

$

%
&&
'

(
432min10       (6.16)                    

where Tmin is daily minimum Ta (or Ts), DTR is daily Ta (or Ts) range, VI is the 
MODIS global NDVI (Normalized Difference Vegetation Index) or EVI product 
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with a spatial resolution of 1 km and a 16-day temporal resolution, and RH (Rela-
tive Humidity) is relative humidity. To incorporate the elevation contribution, the 
Tmin used in equation (6.16) is corrected to sea level by decreasing temperature 6.5 
ºC for each 1-km increase in elevation.  

Since the relationships between Rn/Sn and DTaR (Diurnal air Temperature 
Range), Tamin, VI, and RH are not exactly linear, none of these parameters can 
individually account for the variance in Rn/Sn although the four parameters in com-
bination estimate the variance in Rn/Sn with greater accuracy. We also performed 
the regression analysis with the square of the terms in addition to the linear terms 
but could not improve the results substantially.  

In the equation, near surface air temperature and DTaR are input parameters. 
These parameters are difficult to obtain at satellite pixel scale with reasonable ac-
curacy. Fortunately, the algorithm is not very sensitive to these parameters and 
they can be obtained from GMAO (Globally Modeling and Assimilation Office , 
http://gmao.gsfc.nasa.gov/).   

The strength of this method is that it accurately estimates Rn for a wide variety 
of land cover types and climates, and a range of surface elevations, without local 
calibration. 

The validation results are described in a recent paper (Wang K. and Liang, 
2009a). The data collected at twenty-four sites of three networks (ARM, 
SURFRAD and FLUXNET) have been used for validation. We used the Amdo, 
Bondville, Desert Rock, EF02, EF07, EF12, EF15, EF18, EF19, Fort Peck, Penn 
State, and Sioux Falls data to derive the coefficients in equation (6.16), and vali-
dated the coefficients with the Boulder, Gaize, EF04, EF08, EF09, EF13, EF20, 
EF22, EF26, EF27, Goodwin Creek and Wind River data. Table 6.9 lists the de-
rived coefficients. 

Table 6.9 The fitted parameters in equation (6.16) and the statistics for all 24 sites. Equation 
(6.16) is used to predict daytime Rn at all 24 sites using the parameters shown in the following 
columns. The correlation coefficients and RMSE between measured and predicted daytime Rn 
are given in the last two lines. DTsR: Diurnal land surface Temperature Range; DTaR: Diurnal 
air Temperature Range 

Combinations of pa-
rameters 

NDVI, Ts min, 
DTsR, RH 

NDVI, Ta min, 
DTaR, RH 

EVI, Ts min, 
DTsR, RH 

EVI, Ta min, 
DTaR, RH 

a0 0.5749 0.5129 0.5842 0.5195 
a1 0.0026 0.0025 0.0026 0.0024 
a2 -0.0018 0.0000 -0.0018 0.0001 
a3 0.1299 0.1401 0.1813 0.1944 
a4 0.2053 0.2604 0.2063 0.2651 
Correlation 
coefficient 

0.99 0.99 0.99 0.99 

RMSE 16.9(6%) 17.6 (7%) 17.0 (6%) 17.8 (7%) 
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Equation (6.16) and Table 6.9 coefficients accurately estimate Rn for a range of 
land cover types, surface elevations, and climates without local calibration. The 
bias varies from -7.8 W m-2 to +9.7 W m-2 (F 3% in relative value) for different 
sites. The RMSE varies from 12.8 W m-2 to 21 W m-2 (from 5% to 9% in relative 
value) for different sites and an average of 16.9 W m-2 (6% in relative value) for 
all the sites, and the correlation coefficient is about 0.99 for all the sites.  

 
Fig. 6.19 Scatterplot of measured and predicted daytime Rn calculated with Equation (6.16) using 
daily minimum land surface temperature (Ta min), daily land surface temperature range (DTR), 
relative humidity (RH), and NDVI using data collected at Pawhuska, Oklahoma (EF12) from 
2002 to 2006. 

Both EVI and NDVI can be used to estimate Rn. Our previous studies also 
show that Ts is directly related to Fu

l while the relationship between Ta and Fu
l is 

indirect (Wang et al., 2005, 2007c, 2008a). Since satellite Ts retrieval is not avail-
able under cloudy conditions, we provide an equation using Ta. under cloudy con-
ditions.  

6.7 All-Wave All-Sky Net Radiation 

When we calculate all-wave all-sky net radiation, the errors associated with 
each individual component may not be a simple addition. To assess the uncertainty 
of the final product, SURFRAD ground measurements were also used. Figure 6.20 
illustrates the preliminary validation results from six SURFRAD sites. It seems the 
calculated product matches the ground measurements very well. There is a slightly 
nonlinear pattern, but more extensive validation is still going on. 
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Fig. 6.20 Validation of all-sky all-wave net radiation at six SURFRAD sites in 2005 

6.8 Summary  

High-resolution land surface radiative fluxes are greatly desired by many land 
surface models and applications. We have developed a series of algorithms for es-
timating 1-km daily radiative fluxes from MODIS data, which include incident all-
sky PAR insolation and shortwave net radiation, clear-sky upward and downward 
longwave radiation, cloudy-sky longwave net radiation, and all-wave all-sky net 
radiation. All of the algorithms have been published. Extensive validation activi-
ties have been carried out and the results indicate that these algorithms can be used 
for generating global high-resolution radiation fluxes accurately. Some of the al-
gorithms have already been used to produce these radiation fluxes on the regional 
scale. More extensive validation activities will continue.  

Those users wishing to characterize land surface biogeophysical and biogeo-
chemical processes at fine spatial resolution should consider using these data sets 
because they are the only data sets available at such a spatial resolution.   
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Chapter 7   

SPECTRAL INFORMATION CONTENT OF 
REMOTE SENSING IMAGERY 

Rudiger Gens  

7.1 Physical Properties of Material and Energy-Matter 
Interactions 

The Earth surface materials show phenomenal diversity in composition, 
density, grain size, porosity, dielectric constant, surface texture, roughness, 
orientation, geometry, etc. that in turn control the reflectance, emittance and 
related physical properties  that are particularly significant for remote sensing of 
Earth's surface. 

7.1.1 Physical Properties 

Reflectance and related properties: Reflectance and reflectance related 
properties are in general inconsistently defined and used within the remote sensing 
community. Directional attributes of reflectance, in particular, are used in loose 
and unspecified ways in published literature. An excellent summary of reflectance 
quantities and ambiguities in their usage is presented by Schaepman-Strub et al. 
(2006).  

To understand reflectance related measurements, we need to first revisit the 
concept of energy of a photon or quanta. It is a well accepted fact in the field of 
electromagnetic radiation studies that energy is not continuous along the wave but 
concentrated in discrete packets called photon or quanta. Radiant energy is the 
energy of a photon or quanta and is usually measured in joules (J) or kilowatt hour 
(kWh). Radiant flux, also known as power or radiant power, is usually measured 
in watts (W), which equals joule per second. Radiant energy can be calculated by 
integrating radiant flux over time. 

Radiant flux density is the radiant flux per unit area at a point on a surface, 
where the surface can be real or imaginary (a mathematical plane). Standard unit 
of all forms of radiant flux density is watts per square meter (W/m2). An 
imaginary surface can, for example, be used to calculate or measure radiant flux 
density anywhere in space. Depending on the direction there can be two cases: 
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total amount of radiant flux incident upon a point on a surface from all directions 
above the surface is irradiance, and the total amount of radiant flux leaving a 
point on a surface into all directions above the surface is known as exitance. In 
remote sensing, it is common to consider radiation measurements specific to a 
particular wavelength, i.e. to make the measurements monochromatic instead of 
spanning over the entire or large parts of the electromagnetic spectrum.  Such 
wavelength dependent measurements are typically denoted with a prefix spectral 
to the measurement term. 

Radiance is by far the most important measurement for quantitative analysis of 
directional effects of radiation. Radiance is the radiant flux density or the total 
amount of radiant energy measured at a particular angle and azimuth (particular 
solid angle). Radiance can be incoming/incident radiance or outgoing radiance, 
depending on the direction we measure. It is measured in W/m2/sr. A surface 
where outgoing radiance is uniform in all directions and does not vary with angle 
is referred to as a Lambertian surface. All real world surfaces are, to varying 
degrees, non-Lambertian. 

Outgoing radiance is assumed to be dependent on the incoming radiance onto 
the surface. The ratio of the radiant exitance with the irradiance is known as 
reflectance. Being a ratio, reflectance has no unit and its value ranges from 0 to 1.   

The Bidirectional Reflectance Distribution Function (BRDF) describes the 
directional dependence of reflected radiation. It defines the radiance reflected into 
a specific view direction as a result of the radiant flux incident upon a surface 
(Roberts 2001).  However, the Bidirectional Reflectance Factor (BRF) relates the 
reflectance from a target surface to the reflectance that would be observed from a 
Lambertian surface located at the target. BRF is unitless and is equal to 	 BRDF.  

 
Emittance and related properties:  The power thermally emitted (given out) by 

a surface, primarily by virtue of its temperature, is often referred to as the emitting 
ability or emittance of the surface. The amount and the characteristics of 
electromagnetic radiation emitted by the surface are controlled by two factors: 
emissivity and temperature.  

Emissivity is the emittance of a real material compared to that of an ideal black 
body (a body that absorbs all energy incident on it, and later emits all energy that 
it has absorbed) at the same temperature. It depends on the nature of the object’s 
surface. Emissivity denoted by epsilon (�) is a ratio and varies between 0 and 1. 
Emissivity has a strong spectral control and directional dependence. If emissivity 
is independent of wavelength, then the surface is referred to as a gray body.  

Temperature (kinetic) is a measure of the amount of heat energy contained in a 
body. It is measured in different units, such as in Kelvin (K); degrees Centigrade 
(°C); degrees Fahrenheit (°F). 
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7.1.2 Electromagnetic Spectrum and Dominant Energy-Matter 
Interactions 

Within the wide range of wavelengths constituting the electromagnetic 
spectrum, the wavelength ranges from 0.4 Cm (i.e. 400 nm) through 14 Cm, and 
from 0.75 cm through 1 m are popularly utilized for terrestrial remote sensing.  

Following the concept of total energy, all energy incident upon a surface is 
either reflected off, transmitted, or absorbed (and later emitted) by the surface. It is 
indeed this interaction of energy with matter that makes it possible for us to make 
meaningful measurements for remote sensing. Fig. 7.1 shows the dominant 
processes operating in different parts of the electromagnetic spectrum. 

 
 

 
Fig. 7.1 Regions of the electromagnetic spectrum used for remote sensing and dominant 
processes operating in these regions. 

7.1.3 Energy Interaction with Earth Surface Materials 

As mentioned earlier the three primary processes when energy interacts with 
matter are reflection, transmission, and absorption (see Fig. 7.2). 

Reflection: In principle, a flat surface can be extremely smooth so that energy 
incident on the surface is bounced away (reflected) from the surface following the 
standard laws of reflection. Such reflection is referred to as specular reflection 
(Fig. 7.3A). On the other hand, a surface can cause the incident energy to bounce 
off equally in all directions, so that reflected radiation is uniform in all directions. 
Such a surface that causes reflected energy to have no directional dependence is 
known as a Lambertian surface (Fig. 7.3B). Natural surfaces are neither 
completely specular nor Lambertian and cause non-uniform (anisotropic) 
scattering of incident energy. Such scattering is a result of incident energy being 
reflected off in different amounts in different directions (Fig. 7.3C). 
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Fig. 7.2 Basic concept of reflection, transmission and absorption 

 
 

 

 
 
Fig. 7.3 Specular (A), Lambertian (B) and non-uniform (anisotropic) (C) scattering of 
electromagnetic signals 

 
The process of scattering is also dependent on the relationship between the 

wavelength of the incoming radiation and the wavelength range of the target 
material.  

In microwave remote sensing, for example, when the wavelength of the 
incoming signal is the same order of magnitude, or much smaller than the 
wavelength of the target material, surface scattering is dominant. However, as the 
wavelength of the incoming signal becomes longer, the signal can penetrate the 
target/medium, and volume scattering starts coming to play. In volume scattering, 
the radar signal undergoes multiple scattering events, before it finally emerges out 
of the medium and is captured by the sensor.  This is very common in vegetation 
canopies (Fig. 7.4). In microwave remote sensing, volume scattering is also a 
function of  moisture content of the medium, as the moisture content changes the 
electrical properties (specifically the dielectric constant) of a medium, which in 
turn controls the amount of incoming signal reflected, absorbed and transmitted by 
the medium. In principle, volume scattering decreases rapidly and surface 
scattering takes prominence with increasing moisture content. 
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Fig. 7.4 Volume scattering of active microwave signals 

 
One related term, commonly used in microwave remote sensing, is backscatter. 

Backscatter received by the sensor for a particular pixel is the sum of responses of 
all individual scatterers on the ground within the respective resolution cell.  

Transmission: When incident energy interacts with matter, a part of it can 
transmit (or pass through) material, following the basic laws of refraction. This 
process, called transmission, is also dependent on the relationship between the 
wavelength of the incoming radiation and the wavelength range of the target 
material, and the transmissivity of the target material. Remote sensing is typically 
carried out in wavelength ranges where the intervening atmosphere between the 
energy source and target is most transmissive. 

Absorption: Absorption is inversely proportional to transmission. All Earth 
surface material absorbs electromagnetic radiation to some extent. Clear water, for 
example, absorbs most of the energy incident on it. The absorbed energy raises the 
temperature of the target material and the warm target later emits the absorbed 
energy, albeit at a longer wavelength. This process of emission from natural 
surfaces of the Earth is most dominant in the thermal infrared portion of the 
electromagnetic spectrum. Emitted energy can also be dominant in shorter 
wavelength regions when target temperatures are very high, such as for forest 
fires, volcanic eruptions, and coal mine fires. Advances in sensor technology, now 
also enable us to record the small amount of emitted energy in the microwave 
region, if the surface over which we make the integrated measurement is 
sufficiently large. 
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7.2 Remote Sensing Techniques 

Remote sensing techniques can be classified based the regions of the 
electromagnetic spectrum, the number of spectral bands, the spectral band widths, 
based on the source of energy (Table 7.1).   

 

Table 7.1  Remote sensing data sources with their respective characteristics. 

 
 
When the remote sensing systems depend on natural sources of energy, such as 

the incoming radiation from the sun or the emitted radiation from the Earth's 
surface, remote sensing is classified as passive remote sensing. When energy 
pulses required for remote sensing are generated by the sensor itself, then remote 
sensing is called active remote sensing.  

7.2.1 Passive Remote Sensing 

Traditional remote sensing was all passive remote sensing. The remote sensing 
systems, almost always, relied on the sun as the source of energy. Remote sensing 
was, therefore, restricted to day time. Earliest images were black-and-white (grey 
scale) and acquired only in the visible part of the spectrum in one broad 
panchromatic band. With advancement in camera systems, multi-band color 
images could be acquired and soon after near-infrared imaging capability was 
added. This took passive remote sensing from panchromatic to multispectral 
(many spectral bands/wavelength ranges) mode. Modern day sensors can image in 
a much wider span of the electromagnetic spectrum, in multi-spectral mode as 
well as hyperspectral mode. Multispectral sensors operate in spectral bandwidths 
that are in the order of about 100 nm wavelength range. Hyperspectral sensors 
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typically have many more very narrow spectral bands that are an order of 
magnitude narrower than the multispectral bands.  

Multispectral and hyperspectral remote sensing images can span over visible 
and infrared regions, including the thermal infrared region. However, remote 
sensing in the thermal infrared region was earlier restricted to single broad band 
mode as the earlier sensors were not powerful enough to record a signal from the 
low amount of energy emitted from the Earth's surface. These days, sensor 
technology has advanced to the extent that if we integrate the signal over a very 
large area (radius ranging from about 7 to 25 km) we can capture emitted energy 
from the Earth's surface even in the longer microwave wavelength regions, 
making passive microwave remote sensing possible.  

7.2.2 Active Remote Sensing 

The pulse of energy generated for active remote sensing is typically at a 
specific frequency (and, therefore, specific wavelength).  

Light Detection And Ranging (LiDAR) remote sensing operates in the near-
infrared wavelength. Though typically such systems provide high quality point 
data, more recent systems also provide intensity images in the near infrared range 
of the electromagnetic spectrum. The airborne LiDAR systems acquire high 
density altimetry data from which digital elevation models are generated (Wehr 
and Lohr 1999).  

Synthetic Aperture Radar (SAR) is another class of active remote sensing 
where imaging is carried out in the microwave portion of the electromagnetic 
spectrum (c.f. Fig. 7.1). In principle, in SAR remote sensing, we measure the time 
and magnitude of the signal backscattered from the ground to the radar antenna. 
As SAR images can be acquired at any time of the day, and in all weather-
conditions, it gives tremendous advantage to these data, especially for applications 
in geographic regions that have frequent cloud cover issues and in polar regions 
where there are extended periods of darkness. 

Covering the entire application range of passive and active remote sensing is 
beyond the scope of this chapter. Here we restrict our discussions to extracting 
spectral information from active and passive remote sensing data for six selected 
application areas. These include remote sensing investigations of urban areas; 
vegetation; biodiversity and coral reefs; geology and soils; water bodies; and 
cryosphere. 

7.3 Extracting Spectral Information Using Remote Sensing 

The following six sections provide a comprehensive overview of the current 
state and practices in information extraction for different application areas. The 
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diversity of topics within each broad section, and constant influx of new satellite 
data and data processing and analysis techniques, makes these sections serve just 
as examples to demonstrate the tremendous potential of remote sensing images 
acquired in different parts of the spectrum.   

7.3.1 Remote Sensing in Urban Areas 

Monitoring urban areas by means of remote sensing has been carried out for 
decades at various scales. Small (2006) offered three reasons why the studying the 
urban climate is of particular interest: the ever rising urban population, the partly 
predictable dynamics, and the potential of influencing it with specific land use 
patterns.  

The characterization of impervious surfaces in the urban infrastructure requires 
imagery with (sub-)meter resolution. Roads have been tracked by satellite data in 
the optical (Geman and Jedynak 1996) and microwave range (Tupin et al. 2002). 
Traditionally, the primary image source for impervious surface studies has been 
aerial photography. The automatic extraction of three-dimensional man-made 
objects is a field of research in itself within the computer vision community 
(Katartzis and Sahli 2008). Mayer (1999) reviewed automatic building extraction 
techniques. With the much improved resolution of the data, especially of optical 
sensors, the use of satellite imagery has significantly increased and with that the 
challenges of using the best combination of data, tools and techniques for scale of 
interest (Dell'Acqua and Gamba 2006). The integration of data sets from different 
sources, e.g. thermal and optical data (Lu and Weng 2006), hyperspectral and 
thermal data (Jung et al. 2008) or hyperspectral and multispectral data (Weng et 
al. 2008), has gained more attention. The discrimination of urban residential and 
industrial areas as well as the tracking of urban sprawl is performed with data at 
the 5-m to 20-m resolution (Shaban and Dikshit 2002). Urban multispectral land 
cover characterization and vegetation analysis is typically carried out at 30-m 
resolution level. 

Fig. 7.5 is an example of the use of Landsat multispectral data to visualize 
urban areas and urban sprawl around Rio de Janeiro, Brazil. Even at the 30 meter 
spatial resolution of the data, the densification in urban areas and expansion in the 
urban fringe between 1988 and 2001 is clearly visible. Urban heat islands are 
studied on various scales, from macroscale mapping on the 1-km level 
(Kassomenos and Katsoulis 2006), through mesoscale modeling (Hamdi and 
Schayes 2008) all the way to microscale at discrete surface material level (Martilli 
2007). Combining the results of the various scales, e.g. the relationship between 
microscale urban surface thermal upwelling and the mesoscale regional thermal 
pattern, is still work in progress (Gluch et al. 2006). Especially the geometric 
processing of data, comprehensively reviewed by Toutin (2004), becomes an 
important issue, particularly with higher resolution imagery. 
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Fig. 7.5 Landsat TM 5 False Color Composites (bands 7, 5 and 3 depicted in red, green and blue, 
respectively) of parts of Rio de Janeiro, Brazil. (top)  Image from 1988 (bottom) Image from 
2001. The densification in urban areas and the urban sprawl is evident. Image courtesy of USGS. 

Recently the use of SAR data for studies of urban areas has significantly 
increased, mostly through the development of advanced interferometric permanent 
scatterer technique that allows the detection and long-term monitoring of small-
scale subsidence measurements at sub-centimeter level (Ferretti et al. 2000). 
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Dell'Acqua and Gamba (2006) used multi-scale textural features for urban 
mapping. Stereoscopic airborne radar data has been used to extract rectangular 
buildings (Simonetto et al. 2005).  

7.3.2 Remote Sensing of Vegetation 

Mapping the forest structure with remote sensing helps with a number of 
applications such as wildlife habitat analysis (Hyde et al. 2006), forest inventories 
(McRoberts and Tomppo 2007) as well as fire management and fire effects 
assessment (Chuvieco and Kasischke 2007). However, the forest structure itself 
has been in the focus of research for many years. Recently, Roberts et al. (2007) 
provided a comprehensive overview of remote sensing techniques for forest 
structure assessment, reviewing the role of both active and passive sensors at 
varying spatial scales. Remote sensing data is used to extract attributes such as 
leaf area index, volume, biomass, basal area, forest age class, tree height, crown 
diameter and stand density.  

 

 
Fig. 7.6 Burn scars of the Anaktuvuk River Fire from July 2007, captured by an ERS-2 SAR 
image. The re-vegetated burned area shows a significantly higher backscatter than the 
surrounding areas assisting delineation of fire affected areas. Image © European Space Agency, 
2008. 

SAR data has been used for forest applications for decades. Fig. 7.6 shows a 
SAR image of a forested area, where the central part of the image was affected by 
forest fires. This post fire image is a classic example of the high backscatter 
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signature from re-vegetating burn scars. For forest applications, SAR data with 
different polarizations has also proved to be particularly useful (Durden et al. 
1989). Initially, polarimetric data was mainly acquired with multi-frequency 
airborne systems (Chauhan et al. 1991). Later on, shuttle data helped to estimate 
biophysical characteristics (Dobson et al. 1995). The development of polarimetric 
SAR interferometry (Cloude and Papathanassiou 1998) generated a lot of interest 
as it allowed to extract forest heights and ground topography based on 
interferometric coherence using a random volume over ground coherent mixture 
model (Lee et al. 2003). 

Arroyo et al. (2008) recently reviewed the role of remote sensing for fire 
models and methods to map fuel types and pointed out that most of the challenges 
and difficulties in mapping fuel types, originally comprehensively summarized by 
Keane et al. (2001), are still present. However, the advancements in data 
resolution and analysis techniques have significantly improved the accuracy of the 
results. Especially, the combination of the various data sources and an object 
oriented analysis approach has led to promising results (Arroyo et al. 2008). 
Falkowski et al. (2005) integrated advanced spaceborne thermal emission and 
reflection radiometer data with gradient modeling methods for mapping fuel 
layers. Riaño et al. (2007) estimated shrub height for fuel mapping for orthophotos 
and LiDAR data. Finally, Varga and Asner (2008) combined LiDAR and 
hyperspectral data to model the fuel load. 

Remote sensing can, by measuring spectral reflectance and thermal emittance 
properties of soils and crops, provide valuable information about agronomic and 
biophysical characteristics. Combined with improved position location 
technology, information on plant characteristics forms the basis of the various 
aspects of advanced crop management (water, nutrients and pests) (Pinter et al. 
2003). The basic research in this field has reached a level of maturity that more 
crop specific studies become feasible, e.g. Erickson et al. 2004, Chakraborty et al. 
2005, Beeri and Peled 2006, and Abdel-Rahman and Ahmed 2008. Especially, 
hyperspectral data with its very detailed spectral information content and 
microwave data with its sensitivity to moisture are the main remote sensing data 
sources.  

7.3.3 Remote Sensing for Biodiversity and Coral Reefs 

The use of remote sensing for biodiversity studies has been reviewed a number 
of times in recent years (Gillespie et al. 2008, Vierling et al. 2008, Duro et al. 
2007, Gottschalk et al. 2005, McDermind et al. 2005, Turner et al. 2003, and 
Nagendra 2001). The direct remote sensing techniques map the distribution of 
species assemblages, whereas indirect approaches use the remote sensing data to 
model species distribution and their diversity (Gillespie et al. 2008). Citing a 
number of case studies, Vierling et al. (2008) showed the use of LiDAR remote 
sensing for characterizing the three-dimensional habitat structure of terrestrial and 
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aquatic environments in fine detail across broad areas. They concluded that 
incorporating LiDAR into studies of animal-habitat relationships will help to 
improve models used for species management and conservation. Duro et al. 
(2007) summarized studies of biodiversity indicators at different scales. They 
proposed a conceptual approach to map and monitor biodiversity at a country 
level, with Canada as their example. Especially the issues of inaccessibility of 
parts of the terrain and scalability can be effectively addressed by incorporating 
refined remote sensing techniques (Duro et al. 2007). McDermind et al. (2005) 
collected examples for habitat mapping at local, regional and national/continental 
scales. A more specific review of use of remote sensing imagery for habitat 
analysis and modeling has been given by Gottschalk et al. (2005), looking at 
studies on avian habitat relationships. Nagendra (2001) discussed habitat studies 
in the context of scale, looking at radiometric, spatial, spectral and temporal 
resolution of remote sensing data. The advancement of remote sensing with 
respect to spatial and spectral resolution of sensors significantly increased the 
feasibility for some types of biodiversity studies (Turner et al. 2003). Turner et al. 
(2003) provide a comprehensive list of ecological variables and data sources that 
they considered useful for quantifying and modeling biodiversity. They pointed 
out that there is still a slight disconnect between the remote sensing and the 
application research concerning the spatial scales. However, this situation is 
steadily improving. Gillespie et al. (2008) stressed the importance of field data 
and pointed out that remote sensing, even at increased resolutions, is supposed to 
sustain field data rather than to replace them.  

The use of remote sensing for studying coral reefs goes back to the early days 
of optical satellite imagery, when Smith et al. (1975) worked on the automated 
mapping and inventory of reef zonation with Landsat data. Since then remote 
sensing has proven valuable for collecting information on geomorphologic zones 
and substrate types for coral reef environments (Mumby et al. 1997). A common 
remote sensing approach is the classification of the benthic areas into reef zones, 
substrate types and cover by coral and algal associations (Kutser et al. 2006). 
Recently, Knudby et al. (2007) reviewed the progress in the use of remote sensing 
for coral reef biodiversity studies. They concluded that data and techniques for 
single sensor studies have matured and are able to provide complementary 
information. The usefulness of remote sensing for coral reef studies will need to 
be measured by the ability to map the environmental variables that are relevant for 
the decision making for the conservation of threatened coral reefs. Fig. 7.7 shows 
a standard color composite of the Lighthouse Reef off the coast of Belize captured 
by the AVNIR sensor onboard the Advanced Land Observation Satellite (ALOS). 
With its 10 meter spatial resolution in multispectral mode, it can capture the coral 
reef structure and associated environmental variables in far more detail than the 
Landsat satellite. Andréfouët et al. (2003) analyzed high-resolution optical data 
for coral reef habitat mapping. The inherent diversity of the selected sites and the 
acquisition conditions prevented a similar processing approach, which made a 
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quantitative comparison difficult. The study, however, showed the potential of 
high-resolution optical remote sensing data for this kind of studies. 

 
Fig. 7.7 Lighthouse Reef off the coast of Belize, shown as a false color composite of ALOS 
AVNIR data. The inset shows structural details of the Half Moon Caye. Image © Japan 
Aerospace Exploration Agency, 2007. 

Asner et al. (2008) investigated the use of hyperspectral remote sensing data 
for studying native and invasive species in a tropical forest environment. The 
hyperspectral spectra express the biochemical and structural properties of the 
vegetation but not the species composition. It requires an increased level of 
understanding of the spectral separability, expressed by various leaf and canopy 
properties. Lawrence and Laub (2003) examined the use of subcanopy spatial 
resolution hyperspectral imagery for differentiating Douglas-fir trees attacked by 
the Douglas-fir beetle. Their results showed that the classification and regression 
tree analysis was superior to the step-wise discriminant analysis and that 
hyperspectral imagery is suitable to detect and map tree stress. 
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7.3.4 Remote Sensing of Geology and Soils 

Remote sensing serves as an invaluable tool for regional scale mapping of 
surficial geology, especially in remote, rugged terrains where extensive field based 
mapping is logistically not feasible. Relatively barren rock and soil exposures, and 
lithologically controlled vegetation patterns provide clues to underlying geology. 
Fig. 7.8 shows a standard FCC from Landsat Thematic Mapper data over parts of 
the Delong Mountains, Alaska, showing classic folded and faulted structures.  

 

 
Fig. 7.8 Delong Mountains, Alaska: False color composite (bands 4, 3 and 2) of Landsat ETM, 
acquired in July 2000.  A sequence of folded anticlines and synclines with their major axes 
trending in the east west direction can be seen. Offsets in rock exposures (cyan blue) are due to 
several faults that are present in this area. Image courtesy USGS. 

Sabins (1999) comprehensively reviewed the use of remote sensing for mineral 
exploration, showcasing case studies on mapping of surficial geology and fracture 
patterns at regional and local scales, mostly by optical and radar data, as well as 
the recognition of hydrothermally altered rocks that may be associated with 
mineral deposits, mostly by hyperspectral data. Baghdadi et al. (2005) 
summarized the contribution of radar satellite imagery to geological exploration, 
particularly the suitability of the longer wavelengths in the L-band with their 
ground penetration capability in arid climate for subsurface geological mapping. 
Rajesh (2004) gave an overview about the application of remote sensing in 
mineral resource mapping. As it is clearly pointed out in these reviews, remote 
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sensing can provide complementary information for geological applications that 
are not available in any other form. However, it needs to be understood that 
remote sensing will not replace field mapping. Kruse et al. (2003) compared 
airborne with spaceborne hyperspectral data for mineral mapping purposes and 
concluded that the spaceborne hyperspectral data demonstrated the ability to 
remotely map basic surface mineralogy. Due to the superior signal-to-noise of the 
airborne system, by an order of magnitude, the level of mapping detail is not 
comparable. However, future satellite missions will need to have higher spatial 
and spectral resolution to increase the already very promising potential of 
spaceborne hyperspectral data for mineral mapping. 

Synthetic Aperture Radar has shown its strong potential for retrieving soil 
moisture maps at regional scales due to its sensitivity to the dielectric property that 
is directly related to moisture content in soil. This has been studied for a long time 
(Dubois et al. 1995) with the whole variety of SAR sensors (e.g. Paloscia et al. 
2008, Makkeasorn et al. 2006, Le Hégarat-Mascle et al. 2002). Verhoest et al. 
(2008) summarized the issues related to parameterizing the soil roughness 
parameters used to derive the soil moisture. Soil moisture retrieval techniques on a 
global scale have been established using passive microwave radiometers (Reichle 
et al. 2007, Kerr et al. 2001). Metternicht and Zinck (2003) reviewed the 
potentials and constraints of remote sensing of soil salinity. Even though remote 
sensing can play an important role in detecting, mapping and monitoring salt-
affected surface features, the ground measurements are still the link to determine 
the salt type and degree of salinity in soil and groundwater. Especially, SAR data 
(Aly et al. 2007) and hyperspectral data (Howari 2003) show some promise in 
quantifying the salt-affected features. 

7.3.5 Remote Sensing of Water Bodies 

The ocean has been monitored by remote sensing for decades. The primary 
quantities measured are color, temperature, salinity, roughness and height 
(Robinson 2004). Dickey et al. (2006) reviewed the optical oceanography, 
primarily concerned with the ocean color but also with derived parameters such as 
chlorophyll (Nair et al. 2008, Kutser 2004), suspended particles (Miller and 
McKee 2004) and bathymetry (Adler-Golden et al. 2005). With sea surface 
temperature being the primary measure (Barton 2001, Wentz et al. 2000), 
researchers try to derive the mixed layer depth (Zawada et al. 2006) and the skin 
temperature (Donlon et al. 2002). The sea surface salinity is measured with 
microwave image radiometers (Zine et al. 2008). The sea surface roughness can 
be monitored with active (Mouche et al. 2006) and passive microwave remote 
sensing (Long et al. 1993). Fig. 7.9 shows an example of wind speed derived from 
SAR imagery. The ambiguity of the wind direction can be resolved by the use of 
scatterometer data (Monaldo et al. 2001). Finally, the sea surface height has been 
determined by radar altimetry for decades. From the surface slope other 
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parameters such as geostrophic currents (Cunningham and Pavic 2007), ocean 
geoid (Craig and Sandwell 1988) and sea floor bathymetry (Ramillien and 
Cazenave 1997) can be derived. 

 
Fig. 7.9 (Top) Radarsat image acquired around Kodiak Island, Alaska, showing the ocean 
surface manifestation of gap winds. Image © Canadian Space Agency, 2004. (Bottom) Wind 
speed generated from the Radarsat image overlaid with wind directions from the MM5 forecast 
model. Image © Johns Hopkins University Applied Physics Laboratory. 



Spectral Information Content 193 

For the remote sensing of lakes and rivers we consider these environments in 
this section in their unfrozen state. Frozen lakes and rivers are dealt with in the 
next section. Studies on lakes in their unfrozen state focus mostly on aspects such 
as water clarity (Olmanson et al. 2008, Koponen et al. 2002) and submerged 
aquatic vegetation (e.g. Yuan and Zhang 2008, Williams et al. 2003). Marcus et 
al. (2008) assessed the recent advances in optical remote sensing of rivers and 
concluded that with the vastly improved spatial resolution of recent optical sensors 
the mapping of in-stream habitats, depths, algae, wood, stream power and other 
features should be possible at sub-meter resolution, as long as there is no 
obstruction in terms of water clarity or of view. Another comprehensive review of 
the use of remote sensing in riverine landscapes was given by Mertes (2002).  

Becker (2006) assessed the potential for satellite remote sensing of ground 
water. It is apparent from this review and other studies (e.g. Brunner et al. 2007) 
that remote sensing can be used most effectively in ground water studies in 
combination with ground water modeling. Hyperspectral data has been used to 
study the water quality of coastal areas (Brando and Dekker 2003), lakes 
(Giardino et al. 2007) and rivers (Ritchie et al. 2003). SAR data is useful in 
dealing with flooding events, as the data is particularly helpful for mapping flood 
extents. This information is valuable input for flood inundation modeling and 
runoff predictions (Matgen et al. 2007, 2006, Schumann et al. 2007). 

7.3.6 Remote Sensing of the Cryosphere 

The constituents of the cryosphere include the snow cover, ice sheets and 
glaciers, icebergs, sea ice, freshwater ice, and permafrost (Rees, 2006). As 
permafrost can not be directly studied with remote sensing, it is not covered in this 
section.  

There are a number of snow parameters that can be measured or derived by 
remote sensing at various scales. The most obvious parameter is the snow covered 
area. Snow cover maps are operationally generated by the Moderate Resolution 
Imaging Spectroradiometer (Hall et al. 2002). A number of other snow indices 
have been proposed that can also be used for this purpose (e.g. Shimamura et al. 
2006). Alternatively, the snow cover can be monitored with SAR data (Luojus et 
al. 2006). A number of algorithms based on passive microwave data have been 
developed to extract snow water equivalent and snow depth (e.g. Pulliainen 2006). 
Recently, several groups proposed a combination of optical data and 
complementary passive microwave data to improve the accuracy of the estimates 
for snow cover area and snow water equivalent (Liang et al. 2008, Durand et al. 
2008). Other physical properties of the snow pack that are monitored by remote 
sensing are albedo (König et al. 2001), grain size (Painter et al. 2003) and 
temperature (Stroeve et al. 1996).   

For studying sea ice a number of parameters are of relevance. The sea ice 
extent (Parkinson et al. 1999), concentration (Andersen et al. 2006) and ice type 
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(Walker et al. 2006) are routinely measured by passive microwave data. Langlois 
and Barber (2007) reviewed the issues related to seasonally snow-covered sea ice. 
Some of the ambiguities in the sea ice type determination can be resolved by 
incorporating microwave radiometer data (Voss et al. 2003). The Moderate 
Resolution Imaging Spectroradiometer offers daily sea ice extent and sea ice 
temperature products (Hall et al. 2004). Passive microwave data and scatterometer 
data is used to study large scale ice dynamics. SAR imagery with its much higher 
spatial resolution offers far more detail for the monitoring of ice motion (Lindsay 
and Stern 2003). Fig. 7.10 shows an example of tracking ice motion using 
Radarsat imagery on Arctic basin scale. SAR data can help in determining lake 
depth and ice thickness (Duguay and Lafleur 2003, Jeffries et al. 1996). 

  

 
Fig. 7.10 Ice motion derived by the Radarsat Geophysical Processor System (RGPS). The ice 
flow is tracked over the season on Arctic basin wide scale, showing the cell deformation of the 
initially regular grid at 10 km interval. 

Visible and near-infrared data as well as SAR data play a major role in the 
remote sensing of terrestrial ice masses, viz. glacier, ice sheets and ice shelves. 
Kargel et al. (2005) summarized the contribution of multispectral imagery to the 
global land ice measurements from space. Gao and Liu (2001) reviewed the 
applications of remote sensing in glaciology. SAR data has a long history in 
monitoring glaciers and has been used for large scale mapping missions (Jezek et 
al. 2003, Jezek 1999). Especially, the application of SAR interferometry (InSAR) 
showed its potential in measuring glacier velocities with unprecedented detail 
(Goldstein et al. 1993). Rignot (2002) used the InSAR technique to determine the 
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mass balance of a number of glaciers in the Antarctica. Jaenicke et al. (2006) used 
optical and radar data for the mass balance estimate. Finally, Hubbard et al. (2000) 
combined digital elevation models from two different dates with the surface 
velocity field to map the mass balance.  

7.4 Summary  

The use of remote sensing techniques for extraction of spectral information 
content began in the 1960s, when the theoretical background related to the 
physical properties of material and energy-matter interactions was established. 
The demonstration of the feasibility of remote sensing and development of the 
actual image processing techniques picked up with the availability of satellite 
imagery on a regular basis. Ever since the number and variety of passive as well as 
active remote sensing instruments, that have been deployed, has steadily 
increased. With the advancement of technical capabilities, the performance of 
remote sensing sensors with respect to spectral and spatial resolution has 
improved. This drove the need for more powerful, accurate and flexible image 
processing and analysis techniques. While future advancements in sensor 
technology and processing techniques need to progress in parallel, the increasing 
archive of remote sensing data will expand application research from simple 
mapping to time series analysis and integrated observation promoting 
interdisciplinary research. 
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Chapter 8  

ALGORITHMS AND APPLICATIONS FOR LAND 
COVER CLASSIFICATION – A REVIEW 

Björn Waske, Mingmin Chi, Jón Atli Benediktsson,  
Sebastian van der Linden, Benjamin Koetz 

8.1 Introduction 

8.1.1 Land Cover Classification in Remote Sensing 

During the last decades the manner how the Earth is being observed was revo-
lutionized. Earth Observation (EO) systems became a valuable and powerful tool 
to monitor the Earth and had significant impact on the acquisition and analysis of 
environmental data (Rosenquist et al. 2003). Currently, EO data play a major role 
in supporting decision-making and surveying compliance of several multilateral 
environmental treaties, such as the Kyoto Protocol, the Convention on Biological 
Diversity, or the European initiative Global Monitoring for Environment and Se-
curity, GMES (Peter 2004, Rosenquist et al. 2003, Backhaus and Beule 2005). 
However, the need for such long-term monitoring of the Earth’s surface requires 
the standardized and coordinated use of global EO data sets, which has led, e.g., to 
the international Global Earth Observation System of Systems (GEOSS) initiative 
as well as to the Global Climate Observation System (GCOS) implementation 
plan (GCOS 2004, GEO 2005).  The evolving EO technologies together with the 
requirements and standards arising from their exploitation demand increasingly 
improving algorithms, especially in the field of land cover classification. 

In the context of international policies and global change issues, land cover 
classifications of remote sensing data are the most commonly used EO product 
and the development of adequate classification methods is an ongoing research 
field. In this chapter, state-of-the-art image classification concepts are reviewed. 
These concepts are discussed in the context of EO and relate both to well-known 
approaches and implications of the evolving observation techniques in this field. 
Following this selected applications are presented in order to demonstrate qualities 
and characteristics of these classification concepts. 
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8.1.2 Image Classification Concepts 

Currently, the development of adequate image classification concepts is mainly 
driven by algorithms based on the field of machine learning and pattern recogni-
tion. However, in the early years of satellite remote sensing, methods that origi-
nated from the field of signal processing were modified for image data processing, 
e.g., the Gaussian maximum likelihood classifier (Cardillo and Landgrebe 1966, 
Fu et al. 1969). Thus, many early methods were based on relatively simple data 
models and concepts, which might be a limitation for current data, due to the rapid 
development in EO technologies (Richards 2005). Nevertheless, such methods 
still experience frequent application in operational EO data processing. 

Enhanced EO systems, including numerous bands, high spatial resolution and 
increased repetition rates as well as the availability of more diverse remote sensing 
data sources improve the potential of EO applications. However, such improve-
ments demand more sophisticated classification concepts. Moreover, continuously 
increasing performance requirements, such as near-real time applications with 
high accuracies, also call for development of adequate techniques (Richards 2005, 
Jain et al., 2000). Undoubtedly, the rapidly increased computer power made avail-
able during the last decades was an important factor for faster and more sophisti-
cated processing of huge and diverse data sets. Today, the available literature on 
image classification is huge and users can choose among a multitude of different 
classification approaches. The decision on a classification approach should ideally 
be driven by the input imagery, the available information, the final application and 
the available processing power. Unfortunately, commercial EO data processing 
software does not offer the full range of state-of-the-art concepts. Therefore, such 
approaches are still not fully established.  

Generally, classification methods are categorized, depending on the informa-
tion available for the classifier design. The two main dichotomies are unsuper-
vised and supervised approaches. During unsupervised classification, the data are 
aggregated into natural clusters or classes that have similar properties, without 
having any additional knowledge, for instance from ground truth data. Widely 
used clustering methods are for example the ISODATA and the k-means algo-
rithms (Richards and Jia 2006, Duda et al. 2001). A general problem of unsuper-
vised algorithms is that data may comprise clusters of different shapes and sizes. 
In this context, the definition of clusters and the selection of an adequate similarity 
measure are difficult  (Jain et al., 2000). Another drawback for these algorithms is 
that the number of classes is usually unknown, because the clustering process con-
siders feature classes instead of final information classes, i.e., land cover types. On 
the other hand, supervised classification approaches  rely on a priori knowledge of 
the desired information classes. This a priori knowledge is used to design the clas-
sifier and hence often referred to as training data. Some techniques employ train-
ing data as well as unlabeled data, Such semi-supervised techniques are discussed 
in Section 8.3. 
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Supervised classification concepts can be split into parametric and non-
parametric approaches. The statistical maximum likelihood classifier is the most 
widely used supervised classification strategy and the most prominent example of 
a parametric classifier. The approach is based on the assumption that the form of a 
multivariate probability density function is known (e.g., a Gaussian distribution) 
and the function can be defined for each class by computing the mean vector and 
covariance matrix of the classes in a training data set. If this information is not 
available, the density must be approximated. In such cases, a Parzen window can, 
for example, be used to estimate a density function for a classical statistical Bayes 
classifier. If such estimates are not possible or when the assumption of a specific 
distribution is known to be wrong, alternative approaches need to be taken. Such 
alternative approaches that are not constrained by assumptions on the input data 
distribution include artificial neural networks (ANN) (Benediktsson et al. 1990), 
k-nearest neighbor (kNN), self-learning decision trees (DT) and support vector 
machines (SVM). These non-parametric methods are not constrained by prior as-
sumptions on the distribution of input data as is the case for parametric ap-
proaches and can be applied, even if class conditional densities, class means or 
deviations cannot be estimated reliably.  

Over the past years, a categorization into pixel- and object-based approaches 
has entered the field EO data processing. The latter relates to approaches where 
data preprocessing is extended by a spatial generalization of adjacent pixels, i.e. 
image segmentation, which results in the generation of additional features such as 
textural or contextual information. Despite possible disadvantages for spectral 
classification accuracy (van der Linden et al. 2007), these additional features often 
help overcoming spectral deficiencies (Shackleford and Davis 2003, Bruzzone and 
Carlin 2006). Another efficient approach to conquer such problems is the use of 
morphological profiles (Benediktsson et al., 2003, 2005; Fauvel et al., 2008). 
Against the background of this chapter, however, object-based approaches only 
constitute a modification of the available input data without direct consequences 
on the classification algorithms. Therefore, they are not discussed further here.  

8.2 Supervised Classification Algorithms 

At the beginning of the (image) classification process, patterns (or pixels) are 
represented by d-dimensional random variables or vectors x = (x1, x2,…xd) where d 
denotes the number of available features (e.g., the image bands). These vector rep-
resentations in the feature space 5d are used by classification algorithms to assign 
pixels to one of c land cover classes 
 = {�i}, for i=1,…, c. This constitutes the 
ultimate goal of image classification. In the case of supervised classification these 
assignments are based either on the similarity to a certain class or on the relative 
position to decision boundaries. The bases for comparison of similarity or the po-
sitions of decision boundaries are determined through training patterns (or pixels). 
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Training pixels are represented by vectors in the same feature space 5d and the 
class they belong to is known a priori. 

8.2.1 Maximum Likelihood Classifier 

Although the maximum likelihood classification (MLC) is one of the most 
common supervised classification techniques in the field of remote sensing, a brief 
introduction is given below for a better understanding of differences to the non-
parametric concepts that will be described subsequently. The MLC is derived from 
the Bayes rule which says that classes have equal priorities (i.e, equal prior prob-
abilities). Following the Bayes decision rule a sample x is classified to �i if 

 )|()|( xPxP ji 		 "   (8.1) 

with p(�i|x) being the probability that the true class of x is �i. However, density 
functions p(�i|x) are generally unknown and need to be derived from the so-called 
training data. In the case of EO applications, such training data may exist in the 
form of maps or information from field survey and are often referred to as ground 
truth or reference data. The underlying assumption in this approach is that fea-
tures are represented by specific probability densities, which are conditioned on 
the observed land cover classes. Consequently, a sample x belonging to class �i is 
assumed to be an observation drawn randomly from the class-conditional prob-
ability density function p(x|�i). Thus, differences between two classes �1 and �2 
would be described by differences in the corresponding density functions p(x|�1) 
and p(x|�2) (Duda et al. 2001). Moreover, the approach assumes some prior 
knowledge regarding the occurrence of each class, described by the a priori prob-
abilities p(�i). If, for instance it is known that 30% of a considered image is cov-
ered by class �i then the prior would be p(�i)=0.3 and there would be 30% prob-
ability of finding a pixel x belonging to class �i. Following the Bayes formula the 
desired posteriori probabilities p(�i|x) can be derived by: 
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where p(x) denotes the probability of the sample x. This term is also called evi-
dence, and is just a scaling factor that guarantees that the sum of all posteriori 
probabilities is one (Duda et al. 2001). In general p(x) is a common factor and can 
be removed. Thus, x is classified as �i if the following inequlity is fulfilled 

 )()|()()|( jjii pxppxpif 				 "   (8.3) 
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According to this general decision rule, the selected class is the one which has 
the greatest posteriori probability. At the same time, the probability of making an 
error is minimized. Other approaches aim at the reduction of the risk and loss, re-
spectively, instead of aiming at the error rate which is important, if the costs, of 
misclassification vary with different types of classes. In that context, a risk func-
tion is introduced, which depends on the true class of the sample and the class as 
which it is classified. In doing so all the possible decisions will be weighted. 
However, in general a 1/0 risk function is used that weights all misclassifications 
equally and consequently the decision rule is equal to Eq. 8.3, also called the 
maximum a posteriori rule (MAP). Thus, a classifier with a minimum error rate 
can be constructed, if the class-conditional densities and the prior probabilities are 
known. Usually it is assumed that the priors are known or that they can be esti-
mated by the user. However, generally the likelihoods are known. Often it is as-
sumed that the distributions follow the form of a multivariate normal (Gaussian) 
model. Actually, many processes can be described by a normal model and this 
type of model simplifies the approach, because the model is only described by the 
mean and the covariance matrix. Following the maximum likelihood estimation 
(Duda et al. 2001), the mean and the covariance matrix of the distribution can be 
estimated based on (training) samples, which were taken randomly out of the dis-
tributions. However the maximum likelihood estimation for the covariance matrix 
is generally biased, and consequently (Duda et al. 2001) an unbiased version is 
used for the estimation. The so-called sample covariance matrix is described by 
(Richards and Jia 2006): 
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with xi as the i-th training sample out of n, and C as the mean vector. Finally, after 
estimating the distributions, the Bayes decision strategy is followed and unknown 
pixels are classified to the class with the highest likelihood. Although the Bayes-
ian approach can provide very accurate results, its use might be critical in some 
cases: (1) An adequate number of representative training samples is needed (de-
pending on the dimensionality of our data) for an accurate estimation, and (2) an 
adequate multivariate statistical model needs to be assumed for the data at hand. 
However in context of high-dimensional data sets the number of samples could be 
too low, whereas the assumption of an adequate model might be difficult for 
multitemporal and multisource data sets. Thus, the performance of the classifier 
might decrease. However, Richards and Jia (2008) have introduced a concept to 
handle high dimensional data sets, with a small number of samples. The approach 
is based on the extension of the training set by neighboring pixels that are likely 
belonging to the same class. The expand training set enables the derivation class 
statistics for high dimensional imagery. Another limitation could occur due to dif-
ferences between spectral and information classes. Whereas the final classification 
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aims at the assignment of each pixel to an information class (i.e., the specified 
land-cover classes), the classification algorithm can only differentiate classes 
within the spectral feature space. In this context, it could be possible that a land 
cover class is represented by different spectral classes, which have to be consid-
ered for an adequate training process.  

8.2.2 Decision Trees 

Decision trees (DT) are a non-parametric classification method, which can 
handle diverse data sets, including categorical variables. An overview on DT con-
cept is given by Safavian and Landgrebe (1991). The basic idea of this technique 
differs from other concepts in pattern recognition: Whereas most classifiers use 
the entire features space at once and make a single membership decision per class, 
a DT is based on a multistage or hierarchical concept that does not necessarily in-
clude the entire feature space. During the training phase the DT successively parti-
tion the training data into an increasing number of smaller, more homogenous 
groups. That is done by producing efficient test rules, estimated from the training 
data. Due to its nature, this process might lead to a splitting of thematic classes 
into more than one final node. 

The general structure of a DT comprises a root node, which includes all sam-
ples, internal or split nodes that constitute the successive tests, and the final leave 
nodes, representing the different classes. After a tree is generated based on the 
training samples, an unknown sample is handed-on from one internal node to the 
other following the rules outputs. It is classified according to the class that corre-
sponds to the leaf node in which it finally ends up. 

Most DT are of binary nature, using only one feature at each node (the one with 
highest discrimination power). In contrast to this, multivariate DT use more than 
one feature and rules base on combinations of features. However, in the same time 
the computational complexity is increased compared to the little training times of 
binary DT. In the following discussion, we focus on more common binary trees. 

In general, the handling of DT is rather simple and their training time is rela-
tively low compared to computationally complex approaches such as ANN (Friedl 
and Brodley 1997, Pal and Mather 2003). Another advantage is the transparent 
classification scheme, which enables a direct interpretation of the decision with 
regard to the impact/consequence of individual features, such as spectral regions 
in multispectral data or acquisition dates in multitemporal datasets.  

As mentioned above, the discrimination of the training samples and thus the 
tree induction, is performed by the decision rules, which are derived from the 
training data. The fundamental idea underlying the determination of rule T at node 
N is that of purity: The algorithm aims at generating the descendent nodes as pure 
as possible. However, a contrary formalization of the strategy is more convenient, 
using the impurity rather than the purity (Duda et al. 2001).  
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Several measurements exist (Zambon et al. 2006) and they generally follow 
similar concepts. If all samples within a specific node belong to the same class, the 
node is pure and the measurement value is 0; the value is large, if all samples 
classes are equally distributed over the classes. A common criterion in this context 
is the Gini index (Breiman et al. 1984), which is dominantly peaked in cases with 
equal class distributions (Duda et al. 2001). It is described as: 
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The maximum value is defined by the number of classes and is given by (1-n/nc). 
By using an impurity measurement as the Gini index, it is possible to select an ap-
propriate test, i.e., the test that decreases the impurity as much as possible, result-
ing in the purest possible descendent nodes. This can be defined as: 

 )()()()()()( 2211 NgNPNgNPNgTg �����*   (8.6) 

where N1 and N2 denote the two descendent nodes with their corresponding impu-
rity measures g(N1) and g(N2). P(N1) and P(N2), with P(N1)+P(N2) =1, indicate the 
fraction of samples from the initial node N that will assign to the two new, de-
scendent nodes, when test T is used. The best split rules is maximizing Eq. 8.6, 
which consequently minimizes the impurity of the descendent node. Nevertheless, 
one should bear in mind that such an approach leads to a local optimization, and of 
course it is not guaranteed that the decision also results in a global optimum.  

Like other classifiers (e.g., neural networks) decision trees can be easily over-
fitted and different approaches exist, which can apply during or after the tree gen-
eration to avoid complex tree structures (Esposito et al., 1997). In general, the tree 
induction is stopped, when 1) all training samples in a node belong to the same 
class, 2) have the same attribute values, respectively, 3) the number of samples 
within a node is under a certain threshold, and 4) the improvement in the error rate 
is too low, respectively. In contrast to this (pre-)pruning methods, (post-)pruning 
methods are applied after the tree was fully grown. They eliminate inefficient and 
weak branches of a tree to produce a more compact one, which is consequently 
less overfitted. This is done by evaluating the tree performance with the training 
samples and an additional pruning test set respectively. Some of these techniques 
start at the final leaves and proceed towards the node (bottom-up approach), 
whereas top-down approaches begin at the root node (Esposito et al. 1997). In Pal 
and Mather (2003), four different pruning methods were compared in context of 
remote sensing. Although the authors preferred Quinlan’s error-based pruning 
method, the overall accuracies achieved by the differently pruned trees show only 
small varieties. 
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8.2.3 Support Vector Machines 

Support vector machines (SVM) are well known in the field of machine learn-
ing and pattern recognition (Vapnik 1998, Schölkopf and Smola 2002). The ap-
proach is based on an optimal linear separating hyperplane (OSH), which is fitted 
to the training samples of two classes within a multi-dimensional feature space. 
The optimization problem that must be solved is based on structural risk minimi-
zation. It aims at maximizing the margins between the hyperplane and the closest 
training samples, the so-called support vectors (Vapnik 1998). Hence, the classi-
fier only requires samples close to the class boundary and works well with small 
training sets, even when high dimensional data sets are classified (Melgani and 
Bruzzone 2004, Pal and Mather 2006). Other valuable properties of SVM are their 
ability to handle noisy patterns and multimodal feature spaces. A detailed intro-
duction to the general concept of SVM is given by Burges (1998) and Schölkopf 
and Smola (2002).  

For a binary classification problem in a d-dimensional feature space 5d, xi 6 
5d, i=1,…, n is a training set of n samples with their corresponding class labels 
yi 6 {-1,+1}. The optimal separating hyperplane f(x) is described by a normal vec-
tor w 6 5d and the bias b, where |b|/||w|| is the distance between the hyerplane and 
the origin, with ||w|| as the Euclidean norm from w: 

 bxwxf ���)(  (8.7) 

The support vectors lie on two canonical hyperplanes w � x + b=F1 that are parallel 
to the optimal separating hyperplane. The margin maximization leads to the fol-
lowing optimization problem: 
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where the slack variables 
i and the regularization parameter C are introduced to 
deal with misclassified samples in a non separable case. The constant C is used as 
a penalty for cases that lie on the wrong side of the hyperplane. Effectively it con-
trols the shape of the solution of the decision boundary. Thus, it affects the gener-
alization capability of the SVM, e.g. a large value of C might cause an over-fitting 
to the training data. 

Kernel methods enable the above linear SVM approach to be extended for non-
linear separable cases. Based on a non linear mapping of the data into a higher di-
mensional feature space, an OSH, which appears non linear in the original feature 
space, more complex classes that are not linearly separable in the original feature 
space can be fit to such complex classes. The input sample x can be described by 
�(x) in the new high-dimensional space. The computationally extensive transform 
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into a higher dimensional space is reduced by using a positive definite kernel k, 
which meets Mercers conditions (Schölkopf and Smola 2002): 

 � � � �� � � �jiji xxkxx ,�I�I  (8.9) 

Thus, the final hyperplane can be defined as: 
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with �i Lagrange multipliers. A detailed step by step derivation of the equations is 
given, for example, in Burges (1998). 

The kernel-trick enables to implicitly work within the newly transformed fea-
ture space. Explicit knowledge of � is not required and only the kernel function is 
needed. Consequently, the training process involves the estimation of the parame-
ter(s) of the kernel function in addition to the regularization parameter C. In the 
literature, different concepts for an automatic model selection have been intro-
duced, which are usually based on a cross-validation procedure (Chapelle et al. 
2002, Chung et al. 2003). Widely used kernel functions are the polynomial of 
various orders and the Gaussian radial basis function (RBF) kernel (Schölkopf and 
Smola 2002). The latter is perhaps the widest used in remote sensing. An RBF 
kernel can handle more complex, non-linear class distributions, when compared to 
a simple linear kernel, which is only a special case of the Gaussian RBF kernel 
(Keehrti and Lin 2003). On the other hand, a polynomial kernel is based on more 
parameters than a Gaussian kernel and the computational complexity of the model 
is increased. The RBF kernel is defined as: 
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where the parameter � controls the width of the kernel. 
In contrast to other algorithms, which directly provide a class label as classifier 

output (e.g., DT) and probabilities of class memberships (e.g., MLC) respectively, 
an SVM provides distances of each pixel to the hyperplane. These values are used, 
depending on the multiclass strategy, to determine the final classification result. 

SVM are designed for binary classification problems, which normally do not 
exist in the context of remote sensing applications. In the literature, several multi-
class strategies have been introduced, whereas two main strategies exist: The one-
against-one strategy and the one-against-rest strategy, which are based on the 
separation of the multiclass problem in several binary classifications (Foody and 
Mathur 2004). 
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Let 
 = {�i} with i=1,...,c be a set of c possible class labels (i.e., land cover 
classes). The one-against-one strategy trains c(c-1)/2 individual binary SVM, one 
for each possible pair of classes �i and �j (�i � �j ). The sign of the distance to 
the hyperplane is used for the one-against-one voting scheme. For the final deci-
sion, the score function Si is computed for each class �i which sums all positive 
(i.e., sgn=+1) and negative (i.e., sgn=-1) votes for the specific class. The final 
class for sample x is predicted by a simple majority vote. Using the c(c-1)/2 SVM 
outputs, a simple majority vote is applied to compute the final class membership: 

 � � � �� �8

9
�

�
n

ij
j

iji xfxS
1
sgn  (8.12) 

In the case of the one-against-rest approach, a set of c binary classifiers is trained 
to separate each class from the remaining ones and the maximum decision value 
of the individual SVM classifier is used to define the class membership. In con-
trast to these multiclass strategies one-shot SVM are an alternative approach (See-
bald and Bucklew 2001, Hsu and Lin 2002, Mathur and Foody 2008).  

More recently, approaches have been introduced to convert the rather abstract 
decision measures of SVM, i.e., distances of data points to the hyperplane, into 
more intuitive class probabilities (Wu et al. 2004). Based on the idea of logistic 
regression a sigmoidal function is fit to the distance values of each binary SVM 
and transferred into probability values for individual classes (Lin et al 2003). This 
way, class memberships can be derived from probability values (similar to the 
concept of maximum likelihood classification) and possible ambiguities after ma-
jority vote are avoided. 

8.3 Semi-Supervised Approaches 

One of the critical issues of supervised techniques is the classification of high-
dimensional data, with a relatively small number of training samples. As a matter 
of fact, an increasing number of features could decrease the classification accu-
racy. This effect is known as the Hughes phenomenon (Hughes 1968). The second 
critical issue consists in problems where spatial correlation exists, because training 
and test samples are acquired in the same region. On the other hand, the spectral 
signature of classes in the entire spatial domain of the scene is usually non-
stationary if training and test samples are collected from different areas. To deal 
with such problems, semi-supervised learning (SSL) can be used, which is par-
ticularly interesting in the context of hyperspectral imagery (Shahshahani and 
Landgrebe 1994, Bandos et al. 2006, Chi and Bruzzone 2007). These methods, 
such as self-labeling approaches (Shahshahani and Landgrebe 1994, Joachims 
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1999), low density separation SSL approaches (Chapelle and Zien 2005, Chi and 
Bruzzone 2007) and graph-based approaches (Bandos et al. 2006, Zhu et al. 2003, 
Zhou et al. 2004), consider both labeled and unlabeled samples during the training 
process. A detailed overview is given in Zhu et al. (2003) and Chi (2006).  

The first explicit use of unlabeled samples for semi-supervised learning in the 
context of remote sensing was proposed by Shahshahani and Landgrebe (1994). 
This is an iterative process, referred to the self-labeling approach in the SSL set-
ting, where both labeled and unlabeled samples are used to estimate covariance 
matrices with the aid of the Expectation-Maximization (EM) algorithm (Dempster 
1977). The work was improved by a robust parameter estimation method in an it-
erative framework (Tadjudin and Landgrebe 2000, Jackson and Landgrebe 2002). 
The aforementioned approaches are based on generative models (i.e., a full prob-
ability model of all variables) using Gaussian distribution. The self-labeling ap-
proach is further extended to the discriminative framework with kernel-based 
methods, such as SVM (Joachims 1999, Chi and Bruzzone 2005, Bruzzone et al. 
2006). 

The generalization of SVM with limited labeled samples is poor and semi-
supervised algorithms based on SVM (S3VMs for short) were proposed in (Vapnik 
1998, Chapelle and Zien 2005, Chapelle et al. 2006, Chi and Bruzzone 2007). An 
alternative strategy for SVM with limited labeled samples was given by Foody 
and Mathur (2006), which is based on the generation of small, but synthetic train-
ing sets, containing mixtures of samples. In contrast to a conventional SVM classi-
fier, the S3VM approach aims at finding a hyperplane that separates both labeled 
and unlabeled data with maximum margins. However, with the additional penali-
zation term of unlabeled samples integrated to the objective function of SVM, the 
objective function of S3VM is non-convex such that the solution may be stuck in 
many local minima. This makes the optimization problems difficult. Nonetheless, 
S3VM is implemented on the cluster assumption, i.e., the samples in the same 
cluster belong to a single class and so the obtained decision boundary is set in low 
density regions. This is referred to as low density separation approach. 

An alternative popular SSL implementation can be carried out on manifold as-
sumption, which is graph-based semi-supervised method. Graph-based semi-
supervised methods define a graph where the vertices are labeled and unlabeled 
samples and edges represent the similarity/dissimilarity among samples in the 
datasets. Many graph-based semi-supervised methods can be viewed as estimating 
a function over the graph (Zhou et al. 2004, Zhu 2005). Usually, the function has 
the following two properties: 1) It should be close to given labels on the labeled 
data; and 2) should be smooth on the whole graph. This can be expressed in a 
regularization framework, where the former is related to the loss function and the 
latter is a regularizer. The smoothness is a key issue for the successful semi-
supervised graph-based methods and is usually measured by the graph Laplacian. 
Usually, there exists a closed-form solution, especially in the normalized Lapla-
cian. Different graph-based semi-supervised methods differ due to the choice of 
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the loss function and a regularizer. This approach was used for the classification of 
hyperspectral data (Bandos et al. 2006).  

A more detailed introduction to semi-supervised SVM is given in (Chapelle et 
al. 2006). A brief introduction is given below. In contrast to a common supervised 
SVM� the semi-supervised approach considers both labeled n

iix 1)( � , i.e., the 
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Similarly to the supervised SVM, to be able to handle non-separable training and 
unlabeled data, the slack variables n

ii 1)( �H  and mn
nii

�
�� 1)(H , and the associated pen-

alty values C and *C  are introduced.  
     Joachims (1999) proposed a heuristic iterative algorithm for the quadratic 
implementation using the Lagrange theory; an implementation algorithm was 
intrdouced as S3VMLight1. This is also referred to the self-labeling approach based 
the discriminative approach and further developed to be applied in remote sensing 
data (Bruzzone et al. 2006). Due to the non-convexity of the cost function in Eq. 
8.13, we can use different optimization techniques on the primal formulation 
directly. Firstly, all the constraints for labeled and unlabeled samples are put in the 
objective by rewriting Eq. 8.13 as follows:  
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We can replace the loss of labeled samples as quadratic one and the loss of 
unlabeled samples (i.e., max(0,1-|t|)) in Eq. 8.14 by the Gaussian approximate 
symmetric hinge loss exp(-st2) with s=3 and then a local optimization technique, 
e.g., conjugate gradient descent is applied for the solution of Eq. 8.14, which is 
denoted as OS3VM in this chapter. Although the objective function of S3VM is 
non-convex (Joachims 1999, Chapelle and Zien 2005), the objective function in 

                                                           
1 soft code is available at: http://svmlight.joachims.org. 
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Eq. 8.14 of S3VM is well-designed since it combines the powerful regularization 
with S3VM carried out on the cluster assumption (Chapelle and Zien 2005). 
Accordingly, for the suboptimal problem different implementation techniques can 
yield significantly different results. For this reason, it is important to better 
analyze the optimization problem of S3VM (Chapelle and Zien 2005). 

In the following, a global optimization technique (e.g., the continuation 
approach (Wu 1996)) is introduced in more detail to carry out the S3VM in the 
primal, denoted as cS3VM (Chapelle and Zien 2005). The basic idea is as follows: 
the original objective function is smoothed with a large enough smoothing degree 
�0 such that there only exists a global minimizer, where the optimization is easy 
and the global minimum can be found. Then, the smoothing degree �i, i=1,…,N 
decreases to obtain a less smoothed version of objective function and the new 
minimum is computed on such function. Note that the local optimization search 
starts from the minimizer provided by the previous local search. The algorithm 
iterates until there is no smoothing2. Formally, we let the regularized functional of 
S3VM be convoluted with a multivariate Gaussian3  
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The convolution is done only on w. Since it is easy to convolve two Gaussians 
together, we replace the loss of unlabeled samples by the Gaussian approximate 
symmetric hinge loss as OS3VM and keep using the hinge loss for labeled 
samples, i.e., we let the following functional 
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be the original objective function. Therefore, we have the convolved loss in the 
form  
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2 when �i ; 0 the original function is recovered. 
3 the multivariate Gaussian has a zero mean and identical variance P� i.e., N (0, P�)  
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8.4 Multiple Classifier Systems 

Instead of using only one classifier, one may use sets of classifiers to generate 
the final results. Land cover classifications based on such multiple classifier sys-
tems have been performed successfully during recent years (Benediktsson et al. 
2007). They are particularly interesting for multisource and high-dimensional data 
sets (Benediktsson and Swain 2002, Benediktsson and Kanellopoulos 1999, Briem 
et al. 2002, Ham et al. 2005. Waske and Benediktsson 2007, Waske and van der 
Linden 2008) It has been shown both experimentally and theoretically that the 
classification accuracy can be increased by combining different independent clas-
sifiers in a multiple classifier system (Schapire 1990, Turmer and Gosh 1996). In 
addition, the variance and the bias of the classifier might be reduced in doing so. 
The general idea of this concept is based on the assumption that independent clas-
sifiers produce individual errors, which are not produced by the majority of the 
other classifiers. Consequently, the diversity between the classifiers is an impor-
tant fact in order to improve the classification accuracy (Polikar 2006).  

Sets of independent classifiers can be achieved in various ways. On the one 
hand, the input data may be resampled in terms of feature or sample selection. On 
the other, the same set of training data may be used to train different classification 
algorithms. In either case, such procedures lead to different outputs, which are 
combined to create the final results. In order to produce the final results a simple 
majority vote based on the individual outputs is often sufficient, nevertheless more 
sophisticated voting strategies such as weighted voting or meta classifiers are pos-
sible.  

Whereas many multiple classifier systems are based on the same classifier, 
other approaches combine different algorithms (Benediktsson and Kanellopoulos 
1999, Steel 2000, Waske and van der Linden 2008). In doing so, the different ad-
vantages of the algorithms can be joint and perhaps one classifier is more adequate 
to describe one part of the feature space whereas another method is performs more 
accurate in another part of the feature space.  

However, many classifier systems use variants of the same classifier method, 
the so called base classifier. Although these ensemble techniques that base on re-
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sampled input data are not restricted to decision trees (Hansen and Salamon 1990, 
Kim et al. 2003), DT classifiers are particularly interesting due to their simple 
handling and fast training time. Various strategies to resample training data have 
been introduced. Bagging or boosting relate to modifications of the set of training 
samples, whereas the term random feature selection or attribute bagging is used to 
describe approaches that alter the sets of features used with the training data. In 
the following an overview of the main strategies is given: Boosting was originally 
introduced by Schapire (1990) to improve the performance of a weak classifier, 
where weak means slightly better than random guessing. The concept underwent 
various developments and the AdaBoost.M1 approach is nowadays a widely used 
boosting concept in pattern recognition (Freund and Schapire 1996). Boosting is 
an iterative process that successively concentrates on the more difficult training 
samples, i.e. misclassified samples. In the beginning a base classifier is trained on 
the samples x, which have the equal weight 1/n, where n denotes the number of 
training samples. During the boosting process, the weights of the training samples 
are modified after each iteration, using the error rate of the classifier. A new 
weight for correct classified training sample x in iteration I is defined as: 

 )1/( EE	 ��Ix  (8.18) 

where the error rate is defined by the sum of the weights of all misclassified sam-
ples in this iteration: 
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After each iteration the weights are normalized so that the sum is one. The next 
classifier is trained on these newly weighted samples. The final classification is 
generated by a weighted voting over the individual outputs, where a classifier CI is 
weighted by log(1/	I). However, a minimum accuracy is required for the base 
classifier and the boosting process would stop if the classification error is greater 
than 50%. The technique tends to exhibit virtually no overfitting when the data is 
noiseless. Moreover boosting can reduce both the variance and the bias of the 
classification. On the other hand, the sensitivity to noisy training data is a disad-
vantage of boosting.  

Bootstrap aggregating (bagging) by Breiman (1996) describes the random gen-
eration of training sample subsets also known as bootstrapped aggregates or bags. 
The approach is based on the random and uniform selection – with replacement - 
of n samples from a training set of same size n. This way some training samples 
can be selected several times in the same training set and perhaps other samples 
are not considered in this particular bag. Afterwards an individual classifier, e.g., a 
decision tree, is trained on each of these training sample sets, resulting in various 
classifier predictions. In Briem et al. (2002) bagging was used to classify multi-
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source remote sensing data. Although the overall accuracy of single classifiers was 
significantly increased, boosting usually outperforms the bagging technique in 
terms of accuracy.  

In other studies subsets of features are generated, instead of using training sam-
ple subsets – a technique referred to as random feature selection and attribute 
bagging (Ho 1998, Bryll et al. 2003). In contrast to the two aforementioned data 
partitioning strategies, the set of training samples remains unchanged by this con-
cept. For the base classifier, a user defined number of feature subsets is created. In 
contrast to the conventional bagging, the method usually selects a user defined 
number of features without replacement. In Waske et al. (2006) this concept was 
used for classifying a time series of SAR data. In doing so noise in the classifica-
tion results was significantly decreased and a more accurate map could be gener-
ated. 

In Random Forests (RF), which is a classifier based on decision trees, both 
strategies, i.e., the bagging of samples and the random feature selection, are com-
bined (Breiman 2001). Each tree within the ensemble is trained on a subset of the 
original training samples; in addition the split rule at each tree node is determined, 
using only a randomly selected feature subset of the input data. In doing so, a di-
versity of trees with different split rules is generated. Contrary to normal decision 
trees, the trees in a random forest are usually fully grown and not pruned. Again, 
different (preliminary) classification maps are obtained by majority vote. The 
number of selected features within the subset is user-defined, and the parameter is 
usually set to the square root of the number of input features. The computational 
complexity of the individual DT classifier is simplified, by reducing the number of 
features at each split. This enables random forests to handle high-dimensional data 
sets. In addition, the correlation between the classifiers is decreased, which gener-
ally improves the performance of a classifier system. The approach has been suc-
cessfully used in diverse remote sensing applications, and has often performed 
more accurately or at least equally well compared to other classifiers, including 
sophisticated strategies such as support vector machines and other ensemble 
strategies (Pal 2005, Gislason et al. 2006, Waske and van der Linden, 2008). 

8.5 Applications and Experiments 

Evolving technologies and data availability lead to increased information di-
mensionality provided by current and future Earth Observation systems monitor-
ing the complex and dynamic land cover of the Earth. Advanced and reliable algo-
rithms that fully exploit this enhanced Earth Observation information are needed 
to deliver consistent data sets of the Earth land cover describing its spatial distri-
bution and change over time.  



Land Cover Classification 219 

In the following subsection the power of advanced classifiers is presented for 
three case studies exploiting the enhanced information dimensionality of multi-
temporal, hyperspectral and multi-source EO data sets.  

8.5.2 Classification of Multitemporal SAR Data 

8.5.2.1 Data Set and Preprocessing 

The study site for the first experiment is located near the city of Bonn in Ger-
many. The almost flat area is dominated by agriculture and thus characterized by 
the typical spatial patterns that result from differences in the phenology of planted 
crops. The size of the agricultural parcels is approximately 5 ha, with cereals and 
sugar beets being the main crops. The experiments were conducted on a set of 
multitemporal SAR images, consisting of 9 Envisat ASAR alternating polarization 
(HH/HV) and ERS-2 precision images. Hence, the multitemporal SAR data set 
comprised information from varying phenological stages and different data types. 
While it seemed difficult to distinguish between specific classes on a single date, 
the use of the entire multitemporal data set appeared more useful. The SAR data 
was calibrated to backscatter intensity following the procedures suggested by 
Lauer et al. (2002). In addition, an enhanced Frost filter was applied to reduce the 
speckle noise. Finally, the SAR images were orthorectified with a spatial accuracy 
of approximately one pixel, using a digital elevation model, orbit parameters and a 
multispectral reference image.  

8.5.2.2 Methods 

In this experiment the following eight classes were investigated: Arable crops, 
Cereals, Forest, Grassland, Orchards, Rapeseed, Root crops, and Urban. Inde-
pendent training and validation sample sets of respective 300 and 500 samples per 
class were generated from the field survey areas using equalized random sam-
pling. Two multiple classifier systems were applied to the data set: (1) a boosted 
decision tree and (2) Breimans’ Random Forests. The results were compared to 
the results achieved by a traditional maximum likelihood classifier and an SVM 
classifier. Random Forests application is based on a FORTRAN code by Breiman 
and Cutler4. For the boosted DT a C4.5 implementation was used as a base classi-
fier. The number of features in the Random Forest was set to 3 and up to 500 itera-
tions were performed for both classifier systems. 

The SVM was trained, following the OAO approach. The training of the SVM 
classifier with a Gaussian kernel was performed using imageSVM5 (Janz et al. 

                                                           
4 Software available at: (http://www.stat.berkeley.edu/~breiman/RandomForests) 
5 Software is available at http://www.hu-geomatics/imageSVM 
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2007), a freely available IDL/ENVI implementation, that uses the LIBSVM6 ap-
proach by Chang and Lin (2001) for the training of the SVM. The kernel parame-
ters of C and  were determined via grid-search, using a cross validation. Possible 
combinations of C and  were tested in user defined ranges and the optimal com-
bination for  and C was selected to train the final SVM classifier. 

 

 
Fig.  8.1 Overall accuracy [%], using different classification methods and number of classifiers 
within the ensembles (i.e., boosting and RF) 

8.5.2.3 Results and Discussion 

The accuracy assessment shows that the ensembles of DT classifiers signifi-
cantly improve the results of a single DT (Fig. 8.1). They perform clearly better 
than a maximum likelihood classifier (MLC) and similar to SVM. A simple DT 
achieves 53.5%, whereas the overall accuracy of a simple maximum likelihood 
classifier is 57.1%. The main reason for the weak performance of the MLC might 
be the assumption of a Gaussian distribution, which is not fulfilled in context of 
multitemporal SAR imagery. A boosted decision tree achieves 63% overall accu-
racy. However, the inherent noise in the SAR data might be a reason for the 
weaker performance of the boosted DT, compared to the RF and SVM. Boosting 
is performed in series and is iteratively focusing on difficult samples. This fact 
makes the concept relatively sensitive to noise and boosting tends to overtrain a 
classifier. In contrast to this RF and SVM are relatively unaffected by this data in-
herent noise and yield highest accuracies (64.7% and 64.0%). The increase of 
overall accuracy with a growing number of classifiers also demonstrates the posi-
tive effect of including several classifiers within the ensemble: Whereas a rela-
tively small RF system (10 classifier) achieves an accuracy below 58% the accu-
racy is significantly increased by including additional classifiers and already 30 
RF iterations result in an accuracy above 62%. Overall, the accuracy increases 
with the number of classifiers within the ensemble and asymptotically reaches 

                                                           
6 Software is available at  http://www.csie.ntu.edu.tw/~cjlin/libsvm  
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values up to approximately 65%. The boosted DT shows a similar behavior, when 
more iterations are performed.  

A visible assessment demonstrates the better performance of the RF and SVM 
as well as the positive effect of increasing the number of classifiers within an en-
semble. The map produced by a maximum likelihood classifier and a small classi-
fier ensemble respectively shows the general structures of the study site (Fig. 8.2). 
However the entire map appears noisy, sometimes to a degree that the true land 
cover class of a homogeneous parcel cannot be assigned to the entire area. 
Boundaries – particularly along individual agricultural fields – appear blurred; 
consequently they are hard to be identified. This confusion and noise is best re-
duced by sophisticated algorithms and in general features appear with clear edges 
and can easier be assigned to a specific land cover class. 

Irrespectively of the classifier, the class accuracies show relatively high vari-
ances and generally the classification accuracy for the land cover classes arable 
crops and orchards is lower compared to other classes (not presented in detail). A 
reason for the lower accuracies could be the diversity within these two land cover 
classes. Both classes are characterized by spatial varieties, e.g. the surface beneath 
the orchards is generally covered by grassland. Moreover orchards are often char-
acterized by a relatively open canopy. Thus this class can appear as a mixture be-
tween grassland and forest. Classes like cereals and root crops, on the other hand, 
are less variable and consist mainly of winter wheat and sugar beets. Conse-
quently, cereals and forests are classified with relatively high accuracies, followed 
by grassland.  

Overall Random Forests demonstrate the full advantage of multiple classifier 
ensembles and are probably the most powerful assembly of DTs. It has previously 
been seen that small ensembles improve the classification accuracy significantly. 
The simple handling and fast training time – compared to boosting and SVM - are 
some positive side effects, which makes RF particularly interesting in the context 
of operational monitoring systems. Nevertheless, a further improvement of the 
classification results would be appropriate. In this context, the integration of 
multi-frequency data and multispectral imagery could be advantageous, as well as 
the use of spatial contextual information. The concept of RF classifier ensembles 
will remain applicable and beneficial for such large multi-source data stacks 
(Waske and van der Linden 2008). The need for efficient classifiers on SAR im-
agery becomes even more important in regard to the current and upcoming mis-
sions with various polarizations and increasing repetition rates.  

8.5.3 Semi-Supervised Classification of Hyperspectral Data 

Within the semi-supervised land cover study we are focusing on the mapping 
of hyperspectral data. For the comparison, we conducted experiments with the su-
pervised SVM and dual S3VM, i.e., S3VMLight and primal S3VMs including 
OS3VM and cS3VM. 
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Fig.  8.2 Subset of the original SAR time series (a) and classification maps using MLC (b), SVM 
(b) and a RF with 5 (d), 50 (e) and 500 iterations (f). 
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8.5.3.1 Data Set and Preprocessing 

The data analyzed in this study were acquired on May 31 2001 by the NASA EO-
1 satellite over the Okavango Delta, Botswana. The Hyperion sensor on EO-1 ac-
quired the data at 30m spatial resolution over a 7.7 km strip in 242 bands ranging 
from 400-2500 nm of the electromagnetic spectrum. The study area is highly af-
fected by seasonal floods (Chi and Bruzzone 2007). The experiment is focusing on 
14 land cover classes (see Table 8.1). For the experiments the reference data was 
split into a Spatially Disjoint (SD) and Spatially Adjoin (SA) data sets. In the be-
ginning the image data was preprocessed, normalizing the data in a range [-1,1], 
for optimizing the search strategy of the kernel parameters (Chi 2006). 
 
Table 8.1 The original training (reference) dataset, Spatially Disjoint (SD) test dataset and Spa-
tially Adjoin (SA) test dataset 

Land cover class Reference Set SD Test Set 7   SA Test Set 8  
Water 270 126 68 
Hippo grass 101 162 26 
Floodplain grasses 1 251 158 63 
Floodplain grasses 2 215 165 54 
Reeds 269 168 68 
Riparian 269 211 68 
Firescar 259 176 65 
Island interior 203 154 51 
Acacia woodlands 314 151 79 
Acacia shrublands 248 190 62 
Acacia grasslands 305 358 77 
Short mopane 181 153 46 
Mixed mopane 268 233 67 
Exposed soils 95 89 24 

 
8.5.3.2 Methods 

To study the quality and quantity problems, two datasets are investigated, based 
on the selection of the test dataset (Chi 2006, Chi and Bruzzone, 2007). One is the 
Spatially Adjoin (SA) dataset where the training and test data are collected in the 
same area. The second one is the Spatially Disjoint (SD) dataset where test and 
training data are acquired in the different areas (see Table 8.3).  

In case of the SA dataset with 3248 labeled samples, ten randomly sampled 
partitions of the reference data set were drawn and subdivided into sets for train-
ing and testing of 75% and 25% (818 samples) respectively. In order to investigate 
                                                           

7This spatially disjoint test set was not included in the training set. 
8This test set is generated from the labeled set. It covers 25% samples of la-

beled set. 
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the impact of the quantity of labeled data on classifier performance and to under-
line the effectiveness of semi-supervised algorithms, experiments were conducted 
on small training sample sets. Thus the training data were then sub-sampled to ob-
tain ten splits comprised of 50%, 30%, 15%, and 5% of the original labeled data. 
For our problems, only small-size training samples made up of 5% (156 samples) 
originally labeled data are taken into account for the learning. For this dataset, 
these 10 sets of 5% labeled samples and 25% test/unlabeled samples are used for 
the semi-supervised learning. All classifiers were evaluated using the ten sets of 
test data containing 25% of the original labeled samples. For the comparison, the 
classification accuracies using supervised classifiers in different ratio were also 
reported in the following.  

The SD data sets were generated in a similar way, except that the test set (con-
taining 2494 samples) was acquired from a geographically separate location 
within the test site. Therefore, in the SSL setting, the SD training set contain the 
same labeled training data (5% original training set) as the SA and the test set con-
taining 2494 samples (Chi and Bruzzone 2007). In the semi-supervised setting, the 
training dataset contains labeled samples, unlabeled samples and test samples (if 
test and unlabeled samples are different). In the following experiments, we assume 
that the test data as the unlabeled data for both SA and SD datasets. 
 
Table 8.2  Average overall test accuracies over 10 splits for the SA and the SD test sets using the 
supervised SVM and the semi-supervised SVMs.  

supervised semi-supervised  
SVM S3VMLight OS3VM cS3VM 

SA 90.0 89.8 91.2 90.3 
SD 70.7 71.9 74.0 69.8 

 
In the following experiments, 5-fold cross validation is utilized to evaluate the 

experimental results in semi-supervised learning and supervised learning. Gaus-
sian RBF kernels are chosen for all the experiments since they are good general 
purpose kernels. In supervised SVMs, there are two hyperparameter ? (2{0,1,…,5}) 
and  C (=10 and 100). In S3VMLight, OS3VM and cS3VM, an additional penaliza-
tion parameter C*should be selected for semi-supervised learning. To deemphasize 
the influence of unlabeled samples, C* should be smaller than that of labeled sam-
ples. Consequently, the proportion of C, defined as Cp, is considered instead of C* 

as one of hyperparameters such that C* = CR Cp (=0.1 and 1). We used the one-vs-
rest combination strategy for all the algorithms. Regarding the SA and SD data-
sets, average test accuracies over 10 splits for all the experiments are listed in Ta-
ble 8.2. The model selection was conducted over 10 splits. 

8.5.3.3 Results and Discussion 

The experimental results underline the good performance of the semi-
supervised approach. Using the SA data set the semi-supervised approaches per-
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form at least similar or slightly outperform the supervised SVM. Furthermore, it is 
demonstrated that the primal approaches performs better than the S3VM in the 
dual (S3VMLight) and OS3VM performs most accurate.  

Regarding the SD data set, the classification performance is significantly 
decreased, due to the different characteristics of training and test datasets. Again, 
compared to the supervised SVM the S3VMs perform similar or better compared 
to the SVM in terms of accuracy. As in the first case, OS3VM obtained the best 
classification results. 

 

 
Fig. 8.3  Average test accuracies over 10 splits provided by supervised SVMs for different 
proportion of original labeled set (e.g., 5%, 15%, 30%, 50% and 75%)  with comparison to the 
test accuracy obtained by primal S3VM, i.e., OS3VM. 

 
In order to further observe the effectiveness of the semi-supervised algorithms, 

i.e., using the SD dataset, experiments were also conducted by supervised SVMs 
with different proportion of labeled samples, which contains 5%, 15%, 30%, 50% 
and 75% original 3248 labeled samples. A conventional supervised SVM is 
trained using each of these sample sets. The results are compeared to the 
classifcation accuracy achived by a semsi-supervised SVM, which is trained with 
5% of the orignal labeled set. The average test  accuracy achieved by the SVM 
classifiers, using different sample set sizes, is shown in Fig. 8.3. The accuracy 
obtained by OS3VM is reported as a baseline in Fig. 8.3. The results clearly 
demonstrate the advantagous of semi-supervised SVM. One can see from the 
figure, in the semi-supervised setting, the average overall test accuracy by 5% 
labeled samples is almost equal to that with 50% labeled samples in the supervised 
setting.  

Although SVM classifiers have shown good results in terms of accuracies in 
several applications, the performance can be limited in context of large data sets, 
particularly when only small reference data sets are available.  The study pre-
sented here, have addressed this problem. The experimental results demonstrate 
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that semi-supervised approaches can handle this problem and S3VM are particu-
larly interesting in context of small sample sets. A semi-supervised approach with 
uses 125 labeled samples performs similar than a supervised SVM that was trained 
on 1246 training samples. This fact makes the approach particularly interesting for 
operational applications with limited ground truth data.  

8.5.4 Classification of Multisource Data Sets 

8.5.4.1 Data Set and Preprocessing 

Within this multisource land cover classification study we focus on mapping 
forest fire fuel types over a landscape characteristic for wildland-urban interfaces 
and peri-urban woodlands. We have chosen this complex environment in order to 
highlight the synergistic capabilities of the combined data sets of an imaging spec-
trometer and a LiDAR system for land cover classification applications.  

An airborne survey was conducted over a Mediterranean site south of Aix-en-
Provence, France, in early October 2006 (Koetz et al. 2008). The covered site 
comprised typical Mediterranean vegetation intermixed with urban structures, thus 
forming the typical fire prone wildland urban interface in the Mediterranean Ba-
sin. The employed LiDAR (ALTM3100) and the imaging spectrometer 
(AISA/Eagle) were mounted together with a very high-resolution photogrammet-
ric camera (10 cm spatial resolution) on a helicopter operated by the company 
HELIOGS (Sgonico, Italy). The common platform for the two sensor systems 
provided the means to acquire simultaneous observations and cost efficient data 
acquisition, which were both essential for the proposed multisource land cover 
classification. After pre-processing, LiDAR derivatives and surface reflectance of 
the imaging spectrometer were co-registered and jointly considered for the classi-
fication as a layer stack.  

8.5.4.2 Methods 

The multi-source land cover classification was performed by SVM classifica-
tion. SVM were chosen for their insensitivity to small sample sizes and high di-
mensional data sets. Furthermore, they have demonstrated good performance in 
terms of accuracies when applied to multi-source data sets, as for instance SAR 
data and multispectral imagery (Waske and Benediktsson 2007, Waske and van 
der Linden 2008).  

SVM classification was applied to three different data sets to study the classifi-
cation performance relative to different input sources and information dimension-
ality. Separate SVM were trained for three different remote sensing inputs: (a) 
single source imaging spectrometry data consisting of 97 spectral bands between 
0.4 and 0.94 μm (from now on referred to as IS),  (b) 7 layers of single source Li-
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DAR data (LiDAR), and (c) a 104 band multi-source stack of IS and LiDAR data 
(IS & LiDAR). The 7 input layers retrieved from the LiDAR represented simple 
derivatives describing the vertical and horizontal geometric properties of the sur-
face. For this purpose the relative vertical density distribution in six equidistant 
layers, as well as the canopy height model, were derived from the LiDAR returns 
(Naesset 2002, 2005).  

The training of the SVM classifier with a Gaussian kernel was done using im-
ageSVM (Janz et al. 2007) for the training of the SVM. The kernel parameters 
were determined via grid-search and cross validation. The one-against-all (OAA) 
strategy was applied to derive a multiclass SVM classifier. For the training of the 
SVM, a clustered sampling strategy was performed (100 samples per class). The 
selected samples were labeled based on very high-resolution aerial photographs 
acquired along with the remote sensing data. For discrimination of vertical proper-
ties for certain classes the LiDAR canopy height model (CHM) was consulted. An 
independent validation set was collected by unstratified randomized sampling 
(900 samples), which was complemented to ensure a minimum of 100 samples per 
class. 

8.5.4.3 Results and Discussions 

The method presented in this study is capable of a joint one-step SVM classifi-
cation for the fusion of multi-source remote sensing data provided by an imaging 
spectrometer and a LiDAR. The specific advantage of the employed SVM classi-
fier was to exploit efficiently the increased information content in the (hy-
per)spectral and the three-dimensional spatial domain. It was shown that SVM 
generalize well, even when only small training sets were available for the classifi-
cation of the high dimensional data provided by the multiple data sources. The ad-
vantages for land cover mapping of each sensor system and the improvement of 
the multisource fusion has been assessed on three separate SVM classifications 
based on the different remote sensing inputs. The SVM classification of the imag-
ing spectrometer data provided acceptable results in terms of overall accuracy and 
kappa coefficient (Table 8.3). Class specific assessment reveals significant confu-
sion between spectrally similar classes such as the three vegetation classes, which 
leads to moderate user accuracies for these classes.  

The overall classification performance of the pure LiDAR data was poor, but 
nevertheless provided significant user accuracies for classes with properties in the 
vertical dimension, e.g. for roof tiles and tree canopy (Table 8.3). The different 
vertical properties of these two classes caused very distinct signatures in the Li-
DAR derivatives, which significantly supported their separation.  
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Table 8.3  Class and overall accuracies and kappa coefficient for the three classifications 
 

Class IS LiDAR IS & LiDAR 
Bare soil 0 84.9 86.7 
Bare rock 19.3 67.7 75 
Swimming pool  13.0 100 100 
Ground fuel 0 50.4 60.6 
Shrub 40.8 61.4 62.6 
Tree Canopy 66.4 65 80.6 
Road asphalt 20 64.2 76.7 
Road gravel 12 86.8 78.7 
Roof tile 95.1 91 96.8 
Overall accuracy [%] 69.1 31.7 75.4 
Kappa coefficient 0.645 0.226 0.716 

 
The joint classification of the multi-source imaging spectrometer and LiDAR 

data set leads to a significant improvement in terms of overall accuracy and kappa 
(Table 8.3). Most of the achieved improvement in accuracy for the multiple-
source classification can be explained by the decreased confusion between the 
vegetation classes. The vertical information content of the LiDAR observations 
was especially helpful to separate the classes ground fuel and tree canopy improv-
ing their user accuracy by 10.2% and 15.65%, respectively. LiDAR provides no 
additional information on the class shrub due to issues related to vertical separabil-
ity of laser returns in low and dense vegetation. In addition, spectrally similar 
classes such as bare soil and roof tiles made of similar material could be better se-
parated by the vertical information provided by the LiDAR. This effect was not 
revealed by the confusion matrix but is visible in the land cover maps (Fig. 8.4). A 
visual inspection of differences in resulting land cover maps reveals in addition a 
far more continuous and thus realistic discrimination of closed tree canopies in the 
multi-source classification.  

 

 
Fig. 8.4 Land cover map based on the multisource input based on imaging spectrometry and Li-
DAR (after Koetz et al. 2008)  

 
The commonly used approach of land cover classification based on multi-

spectral data is limited by the spectral similarity of certain surface types. More-
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over, three dimensional features of important surface types, such as built-up urban 
construction or vertical vegetation structure, are not directly inferable from the 
spectral information content provided by passive optical sensors. Due to this un-
derdetermined and partly indirect relationship, the interpretation of remote sensing 
data for land cover monitoring should rely on as many independent observations 
as possible. This conclusion leads to the combined exploitation of multiple infor-
mation sources as provided for example by complementary sensor systems. The 
increased dimension and complexity of such information also requires new classi-
fication methods to adequately interpret the data of multiple information sources 
as presented here. 

8.6 Conclusions 

In this chapter on algorithms and applications of land cover classification, di-
verse state-of-the-art image classification concepts were introduced. Examples of 
how such approaches can be applied to currently typical remote sensing data sets 
were shown. Recently the potential of remote sensing land cover applications in-
creased due to the rapid development of EO systems, resulting in the availability 
of such multitemporal, multi-source or high-dimensional data sets.  

The different experiments presented dealt with the mapping of multitemporal 
SAR data, semi-supervised classification of hyperspectral imagery and the fusion 
of a LIDAR and a hyperspectral data sets. The experimental results underline that 
recent approaches handle such complex data sets efficiently and robust. Problems 
that results from limitations of traditional methods are avoided and results are thus 
more accurate.  

A further increase in the number of EO instruments and in the variety of data 
types can be expected for the future. TerraSAR-X, CosmoSky-Med, RapidEye or 
EnMAP are good examples for this trend and the growing demand of EO products 
will lead to a higher degree of operational use of multi-source data. Therefore, 
methodological development is assumed to continue in the direction outlined in 
this chapter. 
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Chapter 9  

ANALYSIS OF HYPERSPECTRAL REMOTE 
SENSING IMAGES 

Liangpei Zhang, Yanfei Zhong 

9.1 Introduction 

Hyperspectral remote sensing, or known as imaging spectroscopy, is a recently 
developed technique since the last two decades of the 20th century (Chang 2003). 
Imaging spectroscopy is a relatively fully-fledged experimental tool that has been 
successfully used in the laboratory by physicists and chemists for over 100 years 
for identification of materials and their composition. Absorption features accord to 
the special chemical bound of a material, which can be calculated by imaging 
spectroscopy. With the demand of earth observation, imaging spectroscopy tech-
nique has extended to the detection and mapping of materials by satellite imagery. 
Since the 1980s, geologists have used sensors on the man-made satellite to obtain 
the spectrum of every position in a large scale in the ground which combines a 
datacube which combines the imaging and spectroscopy in a single system. That’s 
to say that hyperspectral remote sensing not only contain spatial features but also 
spectral features of the ground objects. But it doesn’t refer to the remote sensing 
imagery with only several bands, such as Landsat TM or Modis imagery. In fact, 
the most significant difference between hyperspectral remote sensing and these 
multispectral remote sensing is that it has much more bands with much higher 
spectral resolution. Hyperspectral remote sensing usually has over one hundred 
bands with a spectral resolution of under 10 nm. Fig. 9.1 shows the concept about 
hyperspectral remote sensing imagery which usually comprises of datacube with a 
series of images. In this case, it provides a better discrimination among similar 
targets. On the other hand, subtle spectral differences would be hidden in spectra 
acquired with multispectral remote sensing with broad spectral band sensors. Hy-
perspectral remote sensing has been widely used in many civil and military appli-
cations such as geology, agriculture, and global change, defense, intelligence, and 
law enforcement. The aim of the chapter is to discuss the basic data processing 
and analysis techniques for hyperspectral remote sensing such as feature selection, 
classification, mixed pixel unmixing etc.  
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Fig. 9.1 Datacube of hyperspectral imagery 

9.2 Feature Selection for Hyperspectral Imagery 

As hyperspectral sensors acquire images in very narrow spectral channels, the 
resulting high-dimensional feature sets may contain redundant information. As a 
result of this, the number of features given as input to a classifier can be reduced 
by dimensionality reduction without a significant loss of information (Fukunaga 
1990). In addition, dimensionality reduction in high-dimensional data space can 
decrease the computational cost and may also improve the accuracy during the 
classification process (Chang and Wang 2006). For instance, when a supervised 
classifier is applied to classification problems in high-dimensional feature spaces, 
the Hughes phenomenon (Hughes 1968) can be observed; that is, when the num-
ber of input features exceeds a given limit for a fixed training-sample size, the 
classification accuracy will decrease.  

Dimensionality reduction can be achieved in essentially two ways: feature ex-
traction and feature selection (Webb 2002). Feature extraction finds the transfor-
mation from a higher dimension to a lower dimensional feature space with most of 
the desired information content preserved (Lee and Landgrebe 1993). This trans-
formation may be a linear or nonlinear combination of the original variables and 
may be supervised or unsupervised. In contrast to the feature extraction techniques, 
feature selection identifies the variables that do not contribute to the classification 
process (Sebastiano and Lorenzo 2001). In a discrimination problem, those vari-
ables that do not contribute to class separability would be neglected.  

The problem of feature selection is shown in Fig. 9.2 and the details are as fol-
lows. A hyperspectral remote-sensing dataset TNbxxxX },,{ ,21 K�  through bN  
bands is observed. The objective of feature selection is to reduce the number of 
features utilized to characterize patterns by selecting, through optimization in 
terms of a criterion function F (e.g. maximization of a separability index or mini-
mization of an error bound), a good subset S of mN  features, with bm NN ) , 
without significantly degrading the performance of the resulting classifier: 
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 XSsssS TNm S� },,,{ 21 L   (9.1) 

 
 

Fig. 9.2 Feature Selection for hyperspectral remote sensing imagery 

9.2.1 Feature Selection Algorithms 

Given a set of feature selection criterion, F , different feature selection tech-
niques including optimal and suboptimal search algorithms have been proposed. 
Optimal search algorithms, such as an exhaustive search and branch and bound 
method (Narendra and Fukunaga 1977), are not suitable for use in hyperspectral 
space because of their heavy computational costs. In such a case, suboptimal algo-
rithms will be considered for searching for an appropriate feature subset of hyper-
spectral remote sensing imagery. 

9.2.1.1 Best Individual mN  

The simplest method, and perhaps the one giving the poorest performance, for 
choosing the best mN  features is to assign a discrimination power estimate to 
each of the features in the original set, X, individually (Webb 2002). Thus, the fea-
tures are ordered, so that  

 )()()( 21 bNxFxFxF 777 L                                 (9.2) 

and we select as our best set of mN  features, these features with the best individ-
ual scores 

                                                         }|{ Nixi =                                              (9.3) 

In some cases this method can produce reasonable feature sets, especially if the 
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features in the original set are uncorrelated, since the method ignores multivariate 
relationships. However, if the features of the original set are highly correlated, i.e. 
hyperspectral remote sensing image, the chosen feature set will be suboptimal as 
some of the features will be adding little discriminatory power. There are cases 
when the mN  best features are not the best mN  features even when the variables 
are independent (Hand 1981). 

9.2.1.2 Sequential Forward Selection (SFS) 

Sequential forward selection (SFS) is a bottom-up search procedure that adds 
new features to a feature set one at a time until the final feature set is reached. 
Suppose we have a set of dN  features, dX . For each of the feature jx  not yet 

selected (i.e. in dXX � ) the criterion function )( j
dj xXFF ��  is evaluated. 

The feature that yields the maximum value of jF  is chosen as the one that is 

added to the set dX . Thus, at each stage, the variable is chosen, that, when added 
to the current set, maximizes the selection criterion. The feature set is initialized to 
the null set. When the best improvement makes the feature set worse, or when the 
maximum allowable number of feature is reached, the algorithm terminates (Jain 
and Zongker 1997). The main disadvantage of the method is that it does not in-
clude a mechanism for deleting features from the feature set once they have been 
added should further additions render them unnecessary (Webb 2002). 

9.2.1.3 Sequential Backward Selection (SBS) 

Sequential backward selection (SBS) is the top-down analogy to SFS. Variables 
are deleted one at a time until d measurements remain. Starting with the complete 
set, the variable jx is chosen for which )( jxXF �  is the largest (i.e. jx de-

creases F the least). The new set is }{ jxX � . This process is repeated until a set of 
the required cardinality remains. The procedure has the disadvantage over SFS 
that it is computationally more demanding since the criterion function F is evalu-
ated over larger sets of variables (Webb 2002). 

9.2.1.4 Floating Search Methods 

Floating search methods, sequential forward floating selection (SFFS) and se-
quential backward floating selection (SBFS), may be regarded as a development 
of the SFS algorithm that they may change at different stages of the selection pro-
cedure (Pudil et al. 1994).  

Suppose that at stage k we have a set of subsets kXX ,,1 L  of sizes 1 to k re-
spectively. Let the corresponding values of the feature selection criteria be 1F  to 

kF , where )( ii XFF � , for the feature selection criterion, )(�F . Let the total set 
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of features be X. At the k-th stage of the SFFS procedure, do the following (Webb 
2002).  

Step 1. Select the feature jx  from kXX �  that increases the value of F 

the greatest and add it to the current set, j
kk xXX ���1 . 

Step 2. Find the feature, rx , in the current set, 1�kX , that reduces the 

value of F the least; if this feature is the same as jx  then set )( 11 �� � kk XFF ; 

increment k; go to step 1; otherwise remove it from the set form r
kk xXX �� �1

' . 

Step 3. Continue removing features from the set '
kX  to form reduced sets 

'
1�kX  while 1

'
1)( �� " kk FXF ; 1�� kk ; or 2�k ; then continue with Step 1. 

 
The algorithm is initialized by setting 0�k  and �0X Ø (the empty set) and 

using the SFS method until a set of size 2 is obtained. 

9.2.2 Clonal Selection Feature Selection Algorithm (CSFS) 

Besides these methods above, a new stochastic search strategy for hyperspec-
tral feature selection has been proposed, which is based on the clonal selection al-
gorithm (CSA) (De Castro and Von Zuben 2002) in Artificial Immune Systems 
(AIS). AIS, which are inspired by the immune systems, use the immunological 
properties to support a wide range of applications (Dasgupta 1999, De Castro and 
Timmis 2002, Carter 2000, Zhong et al. 2006). CSA, derived from the clonal se-
lection theory (Burnet 1959, 1978), is an effective method of AIS and has been 
successfully applied to pattern recognition, multi-modal optimization and classifi-
cation (Dasgupta 1999, De Castro and Timmis 2002, De Castro and Von Zuben 
2002, Zhong et al. 2007)). In this research, a new feature selection algorithm, 
namely clonal selection feature selection algorithm (CSFS), has been developed 
based on the clonal selection theory for feature selection in hyperspectral space 
(Zhang et al. 2007a). The algorithm is able to find the feature subset in feature 
space using immune operators, such as clone, selection, mutation, and replacement.  

To apply the clonal selection algorithm to hyperspectral feature selection, 
the entire set of features is represented by a discrete binary space. In this 
search space, each point represents an individual band. Value “0” in the i-th 
position indicates that the i-th feature is not included in the corresponding fea-
ture subset; value “1” in the j-th position indicates that the j-th feature is in-
cluded in the corresponding feature subset. For example, in a simple case with 

6�mN  and 10�bN  features, the binary vector b=(1,1,0,1,0,1,0,1,0,1) indi-
cates the feature subset has the first, second, fourth, sixth, eighth, and tenth 
features. The criterion function F can be viewed as a scalar function defined in 
the discrete binary space. Without loss of generality, there is a case in which 
the criterion function has to be maximized. Thus, the dimensionality reduction 
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problem of selecting mN  out of bN  features can be suitably formulated as an 
optimization problem to find the global maximum of the criterion function. 
The CSFS algorithm consists of the following steps (Zhang et al. 2007a): 

9.2.2.1 Initialization 

A first antibody population AB including N antibodies is generated with the 
value of each bit in each antibody ABabi 6  assigned 1 or 0 according to the num-

ber of selected subset features, mN . The value 0 in the i-th position indicates that 
the i-th feature is not included in the corresponding feature set; the value 1 in the j-
th position indicates that the j-th feature is included in the corresponding feature 
set. 

                             b
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where N is the number of the initial antibody population, Nb is the number of 
features or bands, function Irandom(1, Nb ) returns a random integer value 
within the range [1, Nb] using a uniform distribution. Eq. (9.6) indicates that 
the sum of selected features is equal to Nm, a user-defined feature subset size. 

9.2.2.2 Cycle of the Generations 

After initialization, the simulation of the clonal selection process begins. One 
generation after another is created and each must prove its affinity to the criterion 
function. In each iteration, several possible solutions are generated by means of 
applying the immune operators such as clone, mutation, selection in a stochastic 
process guided by an affinity measure. The algorithm seeks to evolve an optimal 
solution to the problem. 

 
(1) Calculation of Affinity 
According to the initial antibody population, the affinity of all N abs in the 

antibody population AB are calculated using the criterion function )( iabFF � . 
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As a criterion function, the proposed algorithm uses the average Jeffries-
Matusita (JM) distance (Bruzzone et al. 1995, Swain and Davis 1978), which 
is a common class separability index utilized by the remote sensing commu-
nity for feature selection in multiclass problems and is a saturating transform 
of the Bhattacharyya distance (BD) (Richards 1986). Assuming that there exist 
c classes with Gaussian distributions, in order to simplify the computation of 
the Bhattacharyya distance, the average JM distance of a feature subset is cal-
culated using the following equation: 
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where c is the number of classes, m and n are the two classes being compared, Pm 
is a priori probability of the m-th class, Gm and Mm are the covariance matrix and 
mean vector of the m-th class, respectively, T is the transposition function, and 
|Gm| is the determinant of Gm.The JMmn distance between classes m and n is an 
affinity/distance measure of separability. The smaller the JMmn distance, the more 
difficult it is to separate the classes and vice versa. Assuming 0�mmJM , the av-
erage JM distance can be written as Eq. (9.10) and the proposed algorithm uses 
this equation as the affinity function: 
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(2) Selection 
From AB, ‘n’ highest affinity antibodies are selected to compose a new set 

}{nAB  of high-affinity antibodies and the highest affinity memory cell is found 
(memory cell, mc). 

 
(3) Clone 
After receiving antibody individuals closer to the solution, the next generation 

should mainly be derived from the better-fitting individuals. Thus, the n selected 
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abs are cloned based on their antigenic affinities, generating the clone set C. The 
total number of clones generated, Nc, is defined as follows: 

                                                       8
�

��
n

i
c NroundN

1
)(�  (9.11) 

where � is a multiplication factor 
N is the total number of antibodies 
round(·) is the operator that rounds its argument. 

This step draws the evolutionary process closer to the goal. It raises the average 
affinity value and gives the following steps a good chance to further move towards 
the solution. 

 
(4) Mutation 
Provide each ab in the clone set C with the opportunity to produce mutated off-

spring C*. The higher the affinity, the smaller the mutation rate. To adaptively de-
termine the mutation rate according to the affinity of each ab, the process is as fol-
lows: 

Firstly, for each antibody ABabi 6 , normalize its affinity F(abi) into the 
range [0, 1]: 

                             c
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Then, let each iab have the chance to mutate; the mutation rate is adaptively cal-
culated as: 

                                               ))(2exp( '
im abFp ���  (9.13) 

where pm is the mutation rate of each ab, 2 is the empirical value to control the de-
cay, and )(' iabF  is the affinity according to Eq. (9.12). In Eq. (9.13), the range of 
the mutation rate is ]1,0[ . The mutation process utilizes the non-uniform mutation 
operator (Zhang et al. 2007a). 

Finally, the cloned antibodies are mutated with probability mp . This step is cru-
cial in the proposed algorithm. It generates random changes of single features of 
the individual solutions. The value of these changes can be found at the criterion 
function calculation within the next generation cycle. This helps avoid local 
maxima and produces new properties of mutated antibodies that can remain if they 
are successful.  

To avoid chaotic development and maintain the best abs for each clone during 
evolution, one original ab for each clone without mutation during the maturation 
process is kept; else it would destroy the positive development of the previous step 
and disable any major development towards the solution. 
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(5)Re-Calculation of Affinity 
Calculate the affinity F*(abi) of the matured clones C*. 
 
(6)Reselection 
From the mature clone set C*, reselect the n abs with the highest affinity to re-

place the n abs with the lowest affinity in AB. Select the highest affinity ab in 
C* to be a candidate memory cell, candidatemc . If the affinity of candidatemc  is 

higher than the memory cell, mc, then candidatemc  will replace mc and become a 
new memory cell. 

 
(7)Displace 
In order to replace the d lowest affinity abs from AB, d new antibodies are pro-

duced by a random process. This step may increase the diversity of the antibody 
population. 

9.2.3 Stopping Condition 

When the number of iterations reaches the user-defined number or the change 
of memory cell between two consecutive iterations is less than a change threshold, 
terminate the execution of the algorithm. Otherwise, return to 9.2.2 until the stop 
criteria are satisfied. 

Finally, the proposed algorithm outputs the value of the memory cell and ob-
tains the subset space through transformation from the binary space. 

9.2.4 Experiments  

Experiments have been conducted to test the performance of the above feature 
selection algorithms using the hyperspectral remote sensing imagery. Consistent 
comparisons between CSFS and the traditional feature selection algorithms: SFS 
(sequential forward selection) and SFFS (sequential forward floating selection), 
were performed.  

The primary running parameters that should be provided by users for CSFS 
were the number of iterations, antibody population size N, the number of highest 
affinity ab, n (see also step (3)), clone multiplication factor � (see also Eq. (9.11)), 
the number of displace antibody, d (see also step (7)) To facilitate the comparison 
of the proposed algorithm with other traditional algorithms, n is set to N and d to 
zero. The affinity function is determined by the JM distance in Eq. (9.10). The 
values of parameters in the experiment were set as: Population size = 50, Maxi-
mum iterations = 100, n = 50, � = 0.02, d = 0. 
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9.2.4.1 Dataset 

The dataset used in this experiment was acquired from the Xiaqiao test site, a 
mixed agricultural area in China, using the Pushbroom Hyperspectral Imager (PHI) 
produced in China. Eighty bands of the PHI image (340×390 pixels) were tested, 
and their spectral ranges were from 0.417 to 0.854 �m. Fig. 9.3 shows the experi-
mental PHI image cube. The ground truth spectral data were collected by field 
spectrometer SE590. Nine representative classes, i.e., corn1 (713 samples), corn2 
(217 samples), corn3 (322 samples), vegetable-sweet potato (464 samples), vege-
table-cabbage (253 samples), soil (1368 samples), float grass (220 samples), road 
(662 samples), and water (659 samples) were considered. Fig. 9.4 displays the re-
flectance curves of the above nine land cover classes. The field map is shown in 
Fig. 9.5 based on the ground truth data (Zhang et al. 2007a). In order to test three 
algorithms, approximately half of the available samples were used as the training 
dataset, with the other half of the available samples serving as the test dataset. The 
number of features in the feature subset is selected from 2 to 70 to test these algo-
rithms. 

 

   
Fig. 9.3 Xiaqiao PHI image  Fig. 9.4 The reflectance of nine land cover 
classes 

 

 
Fig. 9.5 The field map of the Xiaqiao site 
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9.2.4.2 Results 

An important characteristic of the algorithms is their execution time. In our 
case, it is in the form of processor ticks (1 millisecond (msec)) spent in the user 
space. Fig. 9.6 shows the execution times with different feature subset sizes pro-
vided by the three algorithms. For every number of selected features from 2 to 70, 
SFS is the fastest and CSFS is slower. When the number of selected features is 
over 67, SFFS is the slowest. 
 

  
Fig. 9.6 Execution times required by different 
algorithms 

Fig. 9.7 Values of the criterion function for 
different feature subset sizes provided by dif-
ferent algorithms 

  
Fig. 9.8 The classification accuracy achieved 
by the six algorithm using the training data 

Fig. 9.9 The classification accuracy achieved by 
the six algorithms: using the test data  

Fig. 9.7 depicts the values of the criterion function computed on the subsets in 
the training process provided by CSFS, SFS, and SFFS to different numbers of se-
lected features from 2 to 70. All algorithms were described by the relationship 
curves between the predefined number of features in the subset and the corre-
sponding JM distance. To better present the experiment results, the JM distance of 
SFS was used as a reference; that is, the values of the criterion functions provided 
by SFFS, and CSFS are divided by the corresponding values obtained by SFS. For 
example, if the CSFS and SFS provided the same JM distance values, the value on 
Fig. 9.7 equals to 1.  
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For a more detailed comparison of different algorithms: SFS, SFFS and CSFS, 
all the labeled training and test samples were classified using the dimensionality 
reduction algorithms with the increase of selected feature numbers. The Maximum 
Likelihood (ML) classifier was employed in this case. Fig. 9.8 and Fig. 9.9 illus-
trate the overall accuracy for training data and test data, respectively. For conven-
ience of description, SFS-ML denotes the maximum likelihood classifier with the 
feature subsets provided by the SFS algorithm. Other notations can be inferred by 
analogy. 

As can be found from Fig. 9.7, Fig. 9.8 and Fig. 9.9, the SFFS and CSFS algo-
rithm perform better than SFS for all the selected subset features. Comparing the 
results of CSFS with those of SFFS, CSFS make some improvements over SFFS. 
In particular, when the number of selected features is below 50, the improvement 
is greater. The highest overall accuracies achieved by CSFS-ML using the test data 
is 93.07%. A comparison between CSFS and SFFS shows that CSFS usually pro-
vides better results than those provided by SFS; however, the differences can be 
neglected when the number of selected features is larger than 50. Specifically, the 
Hughes phenomenon can be observed: when the number of input features exceeds 
around 50, the classification accuracy decreases.  

9.3 Unsupervised Classification 

Various algorithms such as maximum likelihood, parallelepiped, and minimum 
distance from mean have been employed in the past for classifying hyper-spectral 
data in a pixel-wise manner (Landgrebe 2002). These algorithms are based on the 
fact that each class of materials, in accordance to its molecular composition, has 
its own spectral signature. A vast majority of these are supervised algorithms, 
which require that the number of classes and the class distribution model be 
known in advance. Furthermore, these algorithms entail training samples from 
each class to build models for different classes. Unsupervised classification algo-
rithms are built to solve the site labeling problem without the need for training 
samples.  

9.3.1 Unsupervised Classification Algorithms 

Today several different unsupervised classification algorithms are commonly 
used in hyperspectral remote sensing. The two most frequently used algorithms 
are the K-mean and the ISODATA (Iterative Self-Organizing Data Analysis Tech-
niques) clustering algorithm.  

9.3.1.1 K-means Algorithm 

K-means algorithm is one of the simplest unsupervised classification algo-
rithms and classify a given remote sensing imagery through a certain number of 
clusters (often assume k clusters) fixed a priori by the iterative procedures (Jensen 
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2005). The objective of K-means algorithm is to minimize the within cluster vari-
ability, which the objective function is the sums of square distance (errors) be-
tween each pixel and its assigned cluster center (Duda et al. 2001). In general, it 
assigns first an arbitrary initial cluster vector.  The second step is to take each 
pixel belonging to a given data set and associate it to the nearest centroid. In the 
third step the new cluster mean vectors are calculated based on all the pixels in 
one cluster. The second and the third steps are repeated until the “change” between 
the iterations is small. The “change” can be defined in several different ways, ei-
ther by measuring the distances the mean cluster vector have changed from one it-
eration to another or by the percentage of pixels that have changed between itera-
tions. 

9.3.1.2 ISODATA Algorithm 

ISODATA stands for Iterative Self-Organizing Data Analysis Techniques  (Hall 
and Ball 1965). This is a more sophisticated algorithm which allows the number of 
clusters to be automatically adjusted during the iteration by merging similar clus-
ters and splitting clusters with large standard deviations. Clusters are merged if ei-
ther the number of pixel in a cluster is less than a certain threshold or if the centers 
of two clusters are closer than a certain threshold. Clusters are split into two dif-
ferent clusters if the cluster standard deviation exceeds a predefined value and the 
number of pixels is twice the threshold for the minimum number of members 
(Jensen 2005).  

The ISODATA algorithm is similar to the K-means algorithm with the distinct 
difference that the ISODATA algorithm allows for different number of clusters 
while the K-means assumes that the number of cluster is known a priori. So, the 
ISODATA algorithm is more flexible than the K-means method. But the user has 
to choose empirically many more parameters. 

9.3.1.3 Fuzzy K-Means Algorithm 

Fuzzy K-means is an extension of K-means, which is the popular simple clus-
tering technique (Campbell 2002). While K-means discovers hard clusters (a pixel 
belong to only one cluster), Fuzzy K-means is a more statistically formalized 
method and discovers soft clusters where a particular pixel can belong to more 
than one cluster with certain probability. It has the advantage that it more naturally 
handles situations in which subclasses are formed by mixing or interpolating be-
tween extreme examples and the mixing phenomenon is often happening in re-
mote sensing because of the spatial resolution. So it is fitter for remote sensing 
image clustering. The fuzzy K-means algorithm attempts to find a solution for pa-
rameters jiy ( ;,,1 ni L� gj ,,1 L� ) for which (Webb 2002) 
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is minimized subject to the constraints 
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07jiy  ni ,,1L� ; gj ,,1L�                       (9.16) 

The parameter jiy  represents the degree of association or membership func-

tion of the i-th pattern or object with j-th group. r  ( 17 ) is a scalar termed the 
weighting exponent which controls the ‘fuzziness’ of the resulting clusters. As 

1;r , this algorithm tends to the basic k-means algorithm. jm  is the ‘centroid’ 
of the j-th group 
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The basic algorithm is iterative and can be stated as follows (Bezdek 1981). 
Step 1. Select r  ( Q)) r1 ); initialize the membership function values 

jiy , ni ,,1L� ; gj ,,1L� . 

Step 2. Compute the cluster centers jm , gj ,,1 L� , according to (9.17) 

Step 3. Compute the distance ijd , where || jiij mxd �� . 

Step 4. Compute the membership function: if 0�ild  for some l , 1�liy , 
and 0�jiy , for all lj 9 ; otherwise 
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Step 5. If not converged, go to step 2. 
 

FCM is much more sensitive to the initialization, and easily falls into a local 
optimum (Jensen 2005). 
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9.3.2 An Unsupervised Artificial Immune Classifier 

In addition to the above clustering algorithms, Bayesian classifiers (Storvik et 
al. 2005) and Markov Random Field (Yamazaki and Gingras 1999) have also been 
employed to obtain better unsupervised classification results. Recently, there has 
been considerable interest in applying unsupervised neural networks (Bagan et al. 
2005) and Genetic Algorithm (GA) (Bandyopadhyay et al. 2007), to 
multi/hyperspectral remote sensing image classification.  

In contrast to the above classifiers, a novel Unsupervised Artificial Immune 
Classifier (UAIC) has proposed to perform hyperspectral remote sensing image 
classification. Artificial Immune Systems (AIS), which are inspired by the im-
mune systems, use the immunological properties in order to develop adaptive sys-
tems to accomplish a wide range of tasks in various areas of research including 
pattern recognition, intrusion detection, clustering, optimization, and intelligence 
control (Dasgupta 1999,  De Castro and Timmis 2002). In contrast to the conven-
tional statistical classifiers, UAIC is a self-learning algorithm utilizing immu-
nological properties, such as memory property and clonal selection.  

The clonal selection followed by the B-cells of the biological immune system 
is the fundamental mechanism on which UAIC is modeled. To better describe 
UAIC, the relationship between artificial immune systems and hyperspectral im-
age classificaiton were given as follows. Antigens in UAIC are simulated as fea-
ture vectors that are presented to the system during training and testing. In particu-
lar, UAIC has its specific representation in remote sensing image classification. 
The antibodies as candidate clustering centers experience a form of clonal expan-
sion after being presented with input image data (analogous to antigens). 

 

 
Fig. 9.10 The antibody population (denoted by AB) model of one class (? represents the AB’s 
scale/radius of influence). (© [2006] IEEE) 

With the above notations, the AB model can then be built. Fig. 9.10 shows a 
diagrammatic representation of the notion of Antibody (AB) set model of one 
class: there is a certain volume AB in the immune system that contains many anti-
bodies of the class (represented by the circles and denoted by ab) and memory 
cells (represented by the diamond and denoted by mc). In AB, there is a small sur-
rounding region called memory cell set contained all memory cells of the class, 
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denoted by MC. In remote sensing image classification, the memory set decides 
the recognizing ability of the whole AB. In Fig. 9.10, ?  represents the MC’s 
scale/radius of influence. Within the range of ? , the AB can recognize all anti-
gens. That is, the AB can represent a number of antigens. As can be seen from Fig. 
9.10, upon encountering an antigen, antibodies (ab in Fig. 9.10) are stimulated un-
dergoing cloning and mutation. The antigens are then attacked by antibodies and 
removed from the immune systems. The immune systems maintain and evolve the 
memory set (MC in Fig. 9.10) so that if ever exposed to the same antigen a 
quicker response can be elicited against the infection. The proposed algorithm is 
as follows (Zhong et al. 2006). 

9.3.2.1 Initialization 

UAIC applies the Kaufman approach (KA) (Kaufman and Rousseeuw 1990) to 
initial memory cell population MC. In this case, the initial memory cell population 
is obtained by the successive selection of representative instances until C memory 
cells have been found. 

In UAIC, the function ),( yxdis  represents the distance between vector x and y. 
Since UAIC is applied to multi/hyperspectral remote sensing image classification, 
the distance between x and y, ),( yxdis , is calculated using the Spectral Angle 
Mapping algorithm (SAM) (Yuhas et al. 1992). Let vector 

},,,{ 21 bNxxxx L� and },,,{ 21 bNyyyy L� , bN  is the band number of the re-
mote sensing image. Then the distance between x and y is given by Eq. (9.19): 
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Affinity is inversely proportional to distance in the feature space. In UAIC, af-
finity is defined as in Eq. (9.20) below according to the antibody population model 
(Fig. 9.10) so that the affinity between antigens and antibodies or between two an-
tibodies is in the range [0,1] and each AB has its radius of influence. 

                                              )
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��  (9.20) 

i?  is AB’s scale/radius of influence 

9.3.2.2 Classification Using UAIC 

Once initialization is over, the next step is the iteration of the algorithm. For 
each iteration, the algorithm performs the following steps to train each antigen ag 



Hyperspectral Image Analysis 251 

in the remote sensing image. 
Step 1: Assign ag to k-th class 
For each ag in the image, assign that antigen to one of nc classes, where 
the class is assumed to be the k-th class. Given a specific training antigen, 
ag, find the memory cell, mc, that has the maximal affinity as follows: 

                                    ),(maxarg mcagaffinitymc MCmc6�      (9.21) 

Then assign that ag to the class of mc, kcmccag TT ..  
}),,2,1{( ncCk L�6 . 

 
Step 2: Evolving the antibody population kAB  
After assigning the ag to the k-th class, evolving the antibody population 

kAB  and the memory cell pool kMC are accomplished as follows: 
1) Determine the vector kf  that contains the affinity of ag  to all 

the ABN  Abs in kAB , where ABN  is the number of the anti-

body set kAB . 
2) Select the n highest affinity Abs from kAB  to compose a new 

set k
nAB }{  of high affinity Abs in relation to ag , where n is the 

number of the cloned antibodies in kAB . 
3) The n selected Abs independently and proportional to their anti-

genic affinities, generating a clone set kC : the higher the anti-
genic affinity, the higher the number of clones generated for 
each of the n selected Abs. The number of clones generated for 
all these n selected antibodies is given by 

),()_(
1

i
n

i
abagaffinityrateClonalroundNumClones R� 8

�

 (9.22) 

where NumClones  is the total number of clones generated for 
ag. The clonal rate, denoted by rateClonal _ , is used to deter-
mine how many clones are produced by Abs and memory cells, a 
typical value is 10, and round() is the operator that rounds its ar-
gument toward the closest integer. 

4) Submit the clones set kC  to an affinity maturation process in-
versely proportionally to its antigenic affinity, generating a 
population kMU  of matured clones: the higher the affinity, the 
smaller the mutation rate. The mutation rate is determined by Eq. 
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(9.23) as follows: 

 ),(1_ iabagaffinityratemutate ��                    (9.23) 

 The mutation of the clones set kC  is performed according to the 
  following equation: 

)1,0(_ NratemutationCMU k
i

k
i R�� ],1[ NumClonesi 6   (9.24) 

 where N(0,1) is a Gaussian random variable of zero mean and 
 standard deviation of one. As k

iMU  represents a candidate solu
 tion, it must be within the range of the functions specified do
 main. If k

iMU  exceeds that, then it is rejected and removed 
 from the population. 

5) Redetermine the affinity *
kf  of the matured clones kMU in re-

lation to antigen ag . 
6) Select the highest affinity ab in relation to ag  to be a candidate 

memory cell, candidatemc , to enter the set of memory antibodies 
kMC . 

7) Replace the � lowest affinity ab from kAB  with d highest affin-
ity from kMU  in order to evolve the antibody population. � is 
the displace rate. 

Step 3: Updating memory cell pool kMC  
 The final stage in the training process is the potential introduction of the 

 just-developed candidate memory cell, candidatemc , into the set of existing 
 memory cells MC. 

1) Find the memory cell in kMC , matchmc , that has the following 
property. 

),(maxarg mcagaffinitymc
kMCmcmatch 6�           (9.25) 

2) Calculate the distance threshold(DT). 

8
�

��
bN

i
ii MINMAXDT

1
)(                                    (9.26) 

 where iMAX , iMIN  represent the maximum and minimum 
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 values of the i-th band of the remote sensing image, respectively. 
 bN  is the number of bands of the image. 

3) Promote candidate memory cell to memory cell pool kMC . 
 The candidate memory cell is added to the set of memory cells  
  only if it has higher affinity in relation to the training antigen, 
 ag, than matchmc , where affinity is defined as in Eq. (9.20).  If 

 this test is cleared, then if the distance between candidatemc  and 

 matchmc  is less than the product of the affinity threshold and the 

 user-defined distance threshold scalar (DTS), then candidatemc  

 replaces matchmc  in the set of memory cells. 
 Once the candidate memory cell has been evaluated for addition into the 

 set of established memory cells, training on this antigen is complete. The 
 next antigen in the multi/hyperspectral image is then selected and the 
 training process proceeds from step 1 to step 3. This process continues 
 until the system has been presented with all antigens in the image. 

  
 Step 4: Consolidating and controlling the memory cell pool MC  
 Subsequent to each iteration, memory cells with identical session data in

 formation should be merged to limit the memory cell population growth 
 according to their affinity. 

9.3.2.3 Stopping Condition 

A fixed threshold, i.e., the pixel change threshold, for the proportion of pixels in 
each class that change class is set as the stop condition. Finally, UAIC outputs the 
classification result for the remote sensing image. 

9.3.3 Experiments 

The aforementioned UAIC algorithm was coded in Visual C++6.0 and tested on 
different images. The experiment using MODIS Image was conducted to test its 
performance. (For other experiments, refer to the reference Zhong et al. 2006.) 
Consistent comparisons between UAIC and traditional unsupervised algorithms, 
K-means and ISODATA, were completed. The estimation of classification accu-
racy for the several classifiers is provided. 

In this experiment, the data is an airborne imaging spectrometer (PHI) data 
shown in Fig. 9.4, 80 bands taken from Xiaqiao test site which is a mixed agricul-
tural area in P.R.China. 80 bands of PHI image (340×390 pixels) were used in this 
experiment, and their spectral ranges were from 0.417 to 0.854�m.  

The chief running parameters that should be provided by users in the classifica-
tion calculation were as follows: the number of iterations (Ite), the number of 
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classes (C), the number of highest affinity ab (n), clonal rate Clonal_rate, displace 
rate, and distance threshold scalar (DTS). The values of parameters were set as 
follows: Ite=20, C=7, n=10, Clonal_rate=15, displace rate = 0.1, DTS=0.85. For a 
convenient comparison between UAIC and traditional unsupervised algorithms, 
the pixel change threshold as stop condition is kept at the same value, namely 3%. 
Fig. 9.11(a) illustrates the classification result using UAIC. Fig. 9.11(b)–(d) illus-
trate the classification results using K-means, ISODATA and Fuzzy K-means algo-
rithms.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
 water   corn1   corn2    road1    road2  
 soil      vegetable 

Fig. 9.11 Unsupervised Classification images for Xiaqiao PHI image. (a) UAIC (b) K-means (c) 
ISODATA (d) Fuzzy K-means (© [2006] IEEE) 

As shown in Fig. 9.11, the PHI image was expected to fall into seven classes by 
ground truth data: water (473 samples), corn1 (460 samples), corn2 (478 samples), 
road1 (442 samples), road2 (434 samples), soil (434 samples), and vegetable (449 
samples).  
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The visual comparisons of the five cluster classifications in Fig. 9.11 suggest 
varying degrees of accuracy of pixel assignment. It can be found from the classifi-
cation images (Fig. 9.11) that four classifiers have similar classification results in 
the water and road class. K-means and ISODATA create similar classification 
maps and it is hard to differentiate between corn1 and corn2. While being able to 
distinguish between corn1 and corn2, Fuzzy K-means fares the worst in soil clas-
sification because some soil pixels are misclassified to the road1 class. By contrast, 
UAIC achieves the best visual accuracy in the corn1 and corn2 class than other 
classifiers, and also performs satisfactorily to the soil classes. As a result, those us-
ing UAIC have better results for four classes.  

For a more detailed verification of the results, we compared ground truth data 
with the classified images and assess the accuracy of each classifier quantitatively 
using both the overall accuracy measure and the Kappa coefficient. Table 9.1 list 
the results of comparisons between the ground truth data and classified images ob-
tained by four classifier: UAIC, K-means, ISODATA and Fuzzy K-means. 

Table 9.1 Comparison of four classifier performances in the experiment 

 
 
It is seen from Table 9.1 that the UAIC classifier produces better classification 

results than traditional classifiers. The details are as follows: UAIC improves 
overall classification accuracy from 70.21% to 81.56%, an improvement of 
11.35% and Kappa coefficient from 0.6153 to 0.7535, an improvement of 0.1382. 
This is due to the conventional unsupervised multivariate classifiers requiring 
ideal conditions. However, because of the complexity of ground substances and 
the diversity of disturbance, the ideal conditions are not often met in real classifi-
cation calculations. As a result, these conventional classification methods may 
have a low precision. On the other hand, UAIC is a data driven self-adaptive 
method, which can adjust itself to the data without any explicit specification of 
functional or distributional form for the underlying model. UAIC can approximate 
any function with arbitrary accuracy by a universal functional approximator. In 
addition, UAIC is a nonlinear model, which makes it flexible in modeling real, 
complex relationships. Therefore, the UAIC classifier has the capacities of self-
learning and is robust. Based on the above, we can conclude that UAIC is a better 
classifier for multi-spectral remote sensing image classification. 
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9.3 Sub-Pixel Data Processing 

Hyperspectral imaging spectrometers collect image data reflected from surface 
materials in many contiguous spectral bands. Owing to the complexity of the land 
surface and the limited spatial resolution, a pixel in the remotely sensed hyper-
spectral imagery is typically a mixture of multiple electromagnetic radiances from 
assorted ground cover materials. Spectral unmixing is a quantitative analysis pro-
cedure used to recognize constituent ground cover materials (or endmembers) and 
obtain their mixing proportions (or abundances) from a mixed pixel. 

9.3.1 Linear Mixture Model 

A general approach for spectral unmixing is to first build a mathematical model 
of the spectral mixture and then apply this model to implement spectral unmixing. 
By modeling pixel signature in different ways, the unmixing methods can be gen-
erally grouped into two categories: linear mixture models (LMM) and non-linear 
mixture models (NLMM). LMM are based on the assumption that each ground 
cover material only produces a single radiance and the mixed spectrum is a linear 
combination of ground cover radiance spectra.  

In one band of the imagery, each pixel’s signal is the sum of the response of dif-
ferent endmembers. So the reflectance of i-th band is expressed as: 
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ijiji exa

1
)(1                                               (9.27) 

where i1 is the average reflectance of ith band of a pixel which contains one or 
several endmembers; 
      ija is the reflectance of the ith band of jth endmember; 

      jx is the abundance of jth endmember in the pixel; 

      m ( i = 1 , 2 , , m ) is the number of the bands in the imagery. 
And the pixel is assumed to contain n  endmembers ( 1,2,..., )j n� . Two con-
strained conditions are defined to (9.27): 
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   (9.27) can be rewritten as 
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eMx ��1                                                   (9.30) 

where M  is a m nR  matrix with its columns composed of endmembers’ spectral 
vectors. By the use of least square method, the abundances can be figured out as: 

1TT MMMx 1)( ��                                             (9.31) 

where x  is a n 1R  vector and its component is the percentage of each end-
member in the mixed pixel 1 . 

Hitherto, LMM have remained the dominant method for spectral unmixing 
analysis owing to their simplicity and generality (Settle and Campbell 1998, Hu et 
al. 1999, Settle 2002). LMM have been successfully applied to the abundances es-
timation problems in many areas, such as geology, forest and vegetation (Cross et 
al. 1991, Quarmby et al. 1992, Gong et al.1994, Adams et al. 1996). However, 
LMM may not be appropriate for the cases where multiple scattering results in a 
nonlinear mixture. Areas where multiple rock types are all visible on the region’s 
surface when viewing striated soils are typical examples of such cases. In these 
cases, the resultant mixture reflectance spectrum may best be described by assum-
ing that the source radiation is multiply scattered by the randomly distributed 
endmembers before being collected by the imaging spectrometer.  

9.3.2 Nonlinear Mixture Model 

Typically, it has been found that NLMM simulates the physical phenomena 
more accurately (Mustard et al. 1998, Zhang and Li 1998); however, the models 
are usually complicated and application dependent (Borel and Gerstl 1986, Mus-
tard and Pieters 1998). For instance, Mustard et al. (1998) showed that the NLMM 
produced a more accurate result after analyzing the mixture of materials on the lu-
nar surface using both the LMM and the NLMM. Mustard and Pieters (1998) also 
performed a quantitative analysis of mineral mixture spectra using a NLMM based 
on the bidirectional reflectance spectroscopy theory (Hapke 1981). In a nutshell, it 
could be stated that LMM has been widely employed for spectral unmixing analy-
sis as it allows the application of mature mathematical methods, such as least 
squares estimation (LSE). NLMM is popular for its higher accuracy although there 
does not exist a simple and generic NLMM that can be utilized in various spectral 
unmixing applications. A natural problem then turns out to be whether we can util-
ize the nonlinear characteristics of the spectral mixture to obtain the higher unmix-
ing accuracy whilst simultaneously maintaining the simplicity of LMM. 

In this section, we present a nonlinear kernel based least squares regressive al-
gorithm to unmix remote sensing images (Zhang et al. 2007b). A kernel-based 
least squares regressive algorithm performs spectral linear mixing model regres-
sion in the feature space induced by a Mercer kernel (Vapnik 1998) and can be 
used to recursively construct the minimum mean squared-error regressor. The al-
gorithm is formulated in terms of a dot product in order to reduce computation 
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complexity. It is implemented in two steps. The first step is to select the feature 
vectors by defining a global criterion to characterize the image data structure in 
the feature space and the second step is the projection of pixels on to the feature 
vectors and the application of the classical linear regressive algorithm. 

9.3.3 Kernel Least Squares Regression 

Let r be a 1RL column image pixel vector in a multispectral or hyperspectral 
image where L  is the number of spectral bands. Assume that M is a pLR signa-
ture matrix, denoted by ],...,[ 21 pmmmM � , where im is a column vector repre-
sented by the thi �  image endmember signature resident in the pixel vector r , 

and p is the number of signatures of interest. Let T
paaaa ),...,( 21� be 

an 1Rp abundance column vector associated with the fraction of the thi �  signa-
ture in the pixel vector r . A LMM assumes that the spectral signature of a pixel 
vector is linearly superimposed by spectral signatures of image endmembers 

pmmm ,..., 21  present in the pixel vector r  and can be described by: 

nmar
p

i
ii �� 8

�1
                                         (9.32) 

where n is a 1RL column additive noise vector representing a measurement or 
model error. Eq. (9.32) is a general LMM and can be solved by interpreting the 
noise as the error resulting from the goodness of fit in the least squares sense and 
then minimizing its least squares error. The model’s goodness-of-fit is assessed by 
the length of e , using the sum-of-squared errors (SSE): 

rPrrrrreaSSE M
TTT U���� ˆˆ)ˆ( 2                      (9.33) 

where TT
M MMMMIP 1)( �U �� .  

LMM has been widely used for spectral unmixing analysis and can generate sat-
isfactory results, i.e., meets the requirements in most applications (Gong et al. 
1994, Adams et al. 1996); however, it is difficult for the method to capture a 
nonlinear relationship with a linear procedure and hence to reduce the estimated 
proportional accuracy in most cases. In order to overcome such a limitation, we 
extended the LMM and LSE to a nonlinear version to keep the simplicity of LMM 
and also support LSE algorithms. One way for a nonlinear extension is to lift the 
input space to a higher dimensional feature space by a nonlinear feature mapping 
and then to find a linear dimension reduction in the feature space. The basic prin-
ciple behind kernel machines is that a Mercer kernel function, applied to pairs of 
input vectors, can be interpreted as an inner product in a high-dimensional Hilbert 
space (the feature space) rather than the data points themselves, thus allowing in-
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ner products in feature space to be computed without making direct reference to 
feature vectors. The great success of the support vector machine is an example of 
the effective use of the kernel functions to capture nonlinear data structure. The 
kernel principal component analysis (PCA) and the kernel linear discriminate 
analysis (LDA) (Schölkopf et al. 1999, Smola and Schölkopf 2000) have also 
been introduced as nonlinear generalizations of the PCA and the LDA by kernel 
functions, respectively, and some of their interesting experimental results have 
been presented. 

In order to establish a linear problem in the feature space that corresponds to the 
nonlinear problem in the input space, how to map input vectors LRr 6 into the 
feature space and how to handle its possible high dimensionality need to be speci-
fied. If an L-dimensional input pixel vector LRr 6 is mapped into a high dimen-
sional space 5  by a nonlinear mapping functionV , then 

)(,: rrRL VV ;5;                               (9.34) 

This high dimensional space 5  is often called feature space. Thus, LMM was 
rewritten in the following form in the feature space: 

 )()()(
1
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                        (9.35) 

where )(,),(),( 21 pmmm VVV L vectors are endmember spectral in the features, 

)(iV� is a coefficient vector that accounts for the abundances of each endmember 

spectrum in the feature space. Since the feature space 5  is usually very high, to 
employ the high dimension data, an inner product in a feature space is calculated 
by a positive definite kernel function k , which satisfies: 

),()(),( yxkyx �VV                                     (9.36) 

where .,. denotes the inner product. 

Consider ],,,[ 21 pp mmmM L� and define the kernel matrix K of dot prod-
ucts as: 

 pjpikK ij ====� 1,1),(                           (9.37) 

where )()( ji
T

ij mmk VV� . If the inner product .,. form of SSE in Eq. (9.33) 
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was replaced by ),( yxk , it becomes: 

),(),(),(ˆˆ)ˆ( 12
pp

TTTT MrkKMrkrrkrrrreSSE �������  (9.38) 

where )],(),...,,(),,([),( 21 pp mrkmrkmrkMrk � . 

As the dimension of 5 is higher than that of the original space, the selective 
)(),...,(),( 21 pmmm VVV  vectors cannot be used to form the basis for characteriz-

ing the image data structure in the feature space. Hence, using the kernel trick to 
obtain the value of )(iV� in Eq. (9.35) does not mean ‘the achievement of’ abun-
dances. In order to obtain the meaningful proportions from each pixel by Eq. 
(9.35), a feature vector selection and linear regression algorithm was proposed. 
This algorithm includes two steps. The first step is to select the feature vectors by 
defining a global criterion to characterize the image data structure in the feature 
space, and the second step is the projection on to the feature vectors and then ap-
plying the classical linear regressive algorithm.  

Above all, kernel methods belong to a pattern recognition theory, which focus 
on approaching the problem by mapping the original data into a higher 
dimensional feature space, where each co-ordinate corresponds to one feature of 
the data items. In this way, the data was transformed into a set of points in a 
Euclidean space. Support vector regression (SVR) refers to a regression 
application of support vector machine, and build a cost function by a subset of 
training data. Fig. 9.12 shows the architecture of the proposed algorithm using the 
feature vectors selection and linear regression. 

 

 
Fig. 9.12 Architecture of the proposed algorithm 

An unsupervised method has been developed for a iterative selection of feature 
vectors in the 5 space so as to capture the image data structure. Initially, a feature 
vector denoted by 1m is selected, for which there may be a priori knowledge; oth-
erwise, we choose a pixel vector with maximum length as the first feature vector. 
One reason for this selection is that the brightest pixel may correspond to a pixel 
containing a material with the largest radiance spectrum in the image scene on the 
condition of LSE measuring the Euclidean distance, and it is also the largest spec-
trum in kernel space in that the mapping function is monotone. Then the initial 
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target signature is applied with an orthogonal subspace projector specified by Eq. 
(9.38) with 1mM s � to all image pixel vectors. A spectral feature signature is then 

found, which is denoted by 2m with the maximum projection in the orthogonal 

complement space, denoted by U
1m that is orthogonal to the space, linearly 

spanned by 1m . A third spectral feature signature 3m can be found by applying 

an orthogonal subspace projector U
],[ 21 mmP  with ],[ 21 mmM s �  to the original im-

age and a spectral signature that has the maximum projection is selected as 3m . 
The above procedure is repeated until all the spectral feature signatures are found 
or a stopping rule is met. A similar algorithm is proposed by Ren and Chang 
(2000), which performs on the pixel vector rather than on on kernel feature vector 
as in the procedure above. 

Let E be the prescribed error threshold; the corresponding algorithm is de-
scribed as follows (Zhang et al. 2007b): 

1) Initial condition: select the pixel vector with maximum length denoted 
by 1m . Set 1�i and }{ 11 mM � . 

2) Apply U
1mP  via (9.38) to all image pixel vectors in the image. 

3) Find another signature, denoted by 2m , which has the maximum or-

thogonal projection )}arg{max( 2
2 em � , and set 2�i and 

},{ 212 mmM � . 

4) If E)U
1]2,1[1 mPm mm

T , stop iterations; otherwise 1�� ii . 

5) Find the thi �  target generated at the ith stage by )}arg{max( 2emi � , 
where ],...,[ 1211 �� � ii mmmM is the target signature set generated at the 

thi �  stage. 
6) The above procedure repeats until the error threshold is met or a prede-

fined number of feature vectors are obtained. 
 

Once the feature vectors sM  are selected, they define a subspace sM in 5 , 
)( ps 7 . For any pixel vector ir in the scene, a suitable coefficient vector 

T
swwww ),...,,( 21� can be found to satisfy the following approximate linear de-

pendence condition: 

 EVV =�8
�

s

i
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Note that the smaller E was, the more feature vectors were selected, which 
means that E is an important parameter determining the level of sparsity. Sparsity 
is related to generalization ability and is considered a desirable property in learn-
ing algorithms (Schölkopf and Smola 2002, Vincent and Bengio 2002), as well as 
in signal processing (Duda et al. 2001). The ability of a kernel machine to cor-
rectly generalize from its learned experience to new data can be shown to improve 
as the number of its free variables decreases, which means that sparsification may 
be used as a regularization instrument. The feature vector selection can also be 
viewed as the definition of the hidden layer of a multi-layer neural network (John-
son et al. 1992). The number of hidden neurons where the data are projected cor-
responds to the number of feature vectors selected in 5 . However, the feature vec-
tors selection (FVS) has the advantage of providing a number of hidden neurons 
for a given kernel. The kernel trick makes it possible to proceed to select data in 
the feature space 5 .For a neural network, the feature space remains hidden and is 
never explored. 

Moreover, sM being basis implies that the matrix s
T
s MM  is full rank and its 

inverse matrix exists. Hence, an orthogonal basis can be defined: 

                                                2
1

)(
�

T� s
T
ss MMM  (9.40) 

We then apply the dot product projection to obtain the parameter space of origi-
nal pixels: 
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Since Srank �)( V
  and the parameter space is linear, this suggests that a linear 

blind source separation on )(rV
 based on simultaneous digitalization techniques 
can be performed to obtain S linear directions of separated nonlinear components 
in the input space (Harmeling et al. 2003). However, the solutions with the highest 
eigen values may not correspond to the source, but to some function of these 
sources (Dominique and Alistair 2003).  Owing to the complexity of remote 
sensed data, our experiment did not generate acceptable results by performing lin-
ear blind source separation on parameter space. Hence we resorted to regression 
on iw  to obtain the proportional value: 

  bAwa ii ��ˆ                                           (9.42) 

Given a set of training data )ˆ,( ii aw where is projection (9.36) onto V
 of the 

sample ir , the goal of the algorithm is to estimate the vector iâ , the output of the 
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function. The mean square error is minimized using the classic LSE technique. It 
has been shown that Eq. (9.37) leads to the posterior probability estimation and 
gives the best approximation of the Bayesian decision function (Duda at al. 2001). 

9.3.4 Experiments 

To evaluate the performance of the proposed algorithm, a dataset was used. It is 
a simulated dataset based on Hapke’s bidirectional approximating reflectance 
model (Hapke 1981), which is used to test the nonlinear approximating ability of 
the proposed algorithm. LSE was also implemented for comparison purposes. It 
has been demonstrated above that LSE is the widely used algorithm for sub-pixel 
proportion estimation, so it is an important comparison. SVR has been popular for 
regression problems in the past decade (Smola and Schölkopf 2004). It differs 
from conventional regressions in that it maps input data into a high-dimensional 
reproducing kernel Hilbert space and uses an insensitive loss function. As a result, 
SVR also has a sparse representation of solutions, which lends itself for compari-
sons. RBF was introduced into the neural network literature in the late 1980s. The 
RBF has been studied in multivariate approximation theory, particularly in the 
field of function interpolation, and recently received considerable interest in hy-
perspectral classification (Du and Chang 1999, Kerri et al. 2001) and RBF has 
been reported to be a useful tool to perform proportion estimation of hyperspectral 
imagery. Therefore, it was also selected as a comparison algorithm. Root mean 
square errors (RMSE) is the quadratic sum of the subtraction between estimated 
value and the real value. It was used as performance measure. (Li et al. 2002, Liu 
and Wu 2005), which is usually used for evaluating total accuracies.  

Hyperspectral reflectance spectra were selected from the original push-broom 
hyperspectral imager image with 80 bands, which was acquired on  September 9, 
1999 over Xiaqiao Town, Jiangsu Province, China. The wavelength of this image 
ranges from 0.42 mC  to 0.85 mC . The main ground materials in the area are roads, 
water and vegetation. Their spectra are distinguishable from each other and hence 
selected as endmembers for simulating data. For each of the three groundcover 
materials, 15 spectra were chosen to keep the spectral variety. For each class, 
these spectra were separated into two groups, from which five spectra were se-
lected randomly for system training and the other ten spectra were utilized for sys-
tem testing. As such, the testing data do not include any information from the 
training data, which ensures a fair and reliable testing. Fig. 9.13 shows the 45 hy-
perspectral signals that are utilized for the simulated dataset.  

Given three endmember spectra, 1r , 2r and 3r , and their abundances, 1a , 2a and 

3a , the nonlinear mixed pixel spectra are synthesized based on Hapke’s bidirec-
tional approximating reflectance model. 
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where ),( eiR is bidirectional reflectance, w is single scattering albedo, icos�C , 
isin0 �C , i is angle of emergence, )(CH  is multi-scattering function. 
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Fig. 9.13 The pushbroom hyperspectral imager reflectance signals of road, water and vegetation 
utilized for the simulated nonlinear mixture spectra 

Table 9.2 The relationship between threshold E  and the number of selected feature vectors. 

 
 FVS= feature vector selection 

 
In all of the following experiments, the approximation to )(CH should not 

greatly affect the abundance estimation. According to Johnson et al. (1992), the 
albedo of a mixture is a linear combination of the single-scattering albedos of its 
endmember constituents. Thus, if we can convert all of the pixels in an image to 
albedo, the popular linear unmixing methods for estimating abundance should 
provide more accurate results (Kerri et al. 2001). A mixed pixel spectrum R~ can be 
synthesized as follows: 

 
1. Transfer 21, rr  and 3r  to the single scattering albedo iw  using Eq. (9.38). 

2. Generate three stochastic values within [0, 1] as 21,aa  and 3a satisfy-

ing 1321 ��� aaa ; hence, the mixture albedo turns out to be 8
�

�
k

i
iiwa

1
1 . 

3. Inverse the mixture albedo 1  to the mixture reflectance R, and add addi-
tional Gaussian noise N(0, 1). 

4. A mixed pixel spectrum, R~ , can be synthesized as ))1,0(1(~
SNR

NRR ��  , where 

SNR is the signal to noise ratio. 
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With the simulated data, the kernel function was chosen as the Polynomial ker-
nel with parameter 2�d . It can be inferred from Table 9.2 that with the threshold 
E decreasing, the number of selected feature vectors increases. Thus, E is an im-
portant parameter to determine the level of sparsity. 

A total of 2,500 simulated data points are generated with 1:20�SNR . Among 
them, 500 samples were selected randomly for training and the rest for testing. 
Since SNR equals to 1:20 , the threshold e is defined as 0.05, to exclude the effect 
of noise. It can be found from Fig. 9.14(a) that the RMSE of the three materials is 
0.016, 0.062, and 0.074, respectively. Points along a 1:1 line on the BDF graph 
indicate that a prediction matches exactly the real proportion. The smaller the dif-
ference between the predicted and the real proportion, the closer the point to the 
diagonal 1:1 line. Fig. 9.14(a) illustrates that almost all points within the 10% er-
ror bound reach the accuracies of 98.8%, 93.6% and 89.2% respectively. The 
same data were used for traditional linear regression. It can be found from Fig. 
9.14(b) that the linear unmixing results are worse than the former, with the RMSE 
of the three materials being 0.1051, 0.2940, and 0.2589, respectively. Points along 
a 1:1 line on the BDF graph indicate that a prediction is tremendously partial to 
the real proportion. The main reason for the partiality is that the simulated data 
have strong nonlinear properties. This experiment shows that classical linear re-
gression is not suitable for nonlinear data, but our algorithm can perform rather 
well. 

 

 
(a) kernel based least square estimation 

 
(b) classic least square estimation 

Fig. 9.14 BDF of the simulated test data for road, water and vegetation with the RMSE of each 
material listed on each chart  
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9.5 Conclusions 

Hughes phenomenon is a challenging problem in hyperspectral remote sensing 
image processing. Feature selection is an effective method to solve the problem by 
selecting a subset from a larger number of features or variables used in classifica-
tion while maintaining an acceptable classification accuracy. Section 2 presents 
three feature selection algorithms (SFS, SFFS and CSFS) for hyperspectral remote 
sensing imagery. Specially, a feature subset search algorithm, Clonal Selection 
Feature Selection Algorithm (CSFS) inspired by the clonal selection theory in Ar-
tificial Immune System (AIS) is described. In this new strategy, feature selection 
is formulated as an optimization problem that searches for an optimum with a 
fewer number of features in a feature space. In the CSFS, each solution is evolved 
in binary space and the value of each bit is 0 or 1 indicating that the corresponding 
feature is selected or removed. Three algorithms are used to feature selection us-
ing hyperspectral remote sensing imagery acquired by the Pushbroom Hyperspec-
tral Imager (PHI). Experimental results demonstrate that the accuracy of CSFS 
outperforms other two algorithms. However, compared with SFS and SFFS in 
terms of computational costs, CSFS is lowest, and SFS is fastest. So, if time per-
mits, CSFS may provide effective new options for feature selection of hyperspec-
tral remote sensing imagery.  

In Section 3, three traditional unsupervised classification algorithms (K-means, 
ISODATA, Fuzzy K-means and UAIC) for hyperspectral remote sensing imagery 
have been presented. In addition, a novel algorithm based on the paradigm of na-
ture’s immune systems, UAIC, was designed and implemented. The UAIC was 
successfully applied for classifications of multi/hyperspectral remote sensing im-
ages. UAIC was capable of performing data clustering by generating a representa-
tive set of memory cells for classification. When compared with three other unsu-
pervised classifiers, K-means, ISODATA, and Fuzzy K-means, the performance of 
UAIC is better. This evinces that UAIC is applicable for processing of hyperspec-
tral remote sensing images and has high classification precision. 

Section 4 has presented sub-pixel processing of hyperspectral imagery by ex-
ample of a kernel based least squares mixture model. It uses the nonlinear charac-
teristics of spectral mixture to obtain the higher unmixing accuracies. With the 
simulated data, the proposed method accomplishes perfect results for all the three 
materials with RMSEs of less than 0.08, while the traditional linear regression is 
not suitable for estimation of this nonlinear dataset with the maximal RMSE being 
more than 0.25.  
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Chapter 10 

EFFECTS OF AGGREGATION METHODS ON 
IMAGE CLASSIFICATION 

Peng Han, Zhilin Li, Jianya Gong 

10.1 Introduction 

A major concern in scale- and resolution-related issues is to develop methods 
for determining the most appropriate scale and resolution of study and assessing 
their effects (Cao and Lam 1997). The choice of an appropriate scale, or spatial 
resolution, for a particular application depends on several factors. These include 
the desired information about the ground scene, the analysis methods to be used to 
extract the information, and the spatial structure of the scene itself (Woodcock and 
Strahler 1987). When an appropriate scale or resolution is determined, the next 
step is to get the corresponding images. Unfortunately, the resolutions of existing 
remote sensing satellite images are discrete and one may not be able to obtain an 
image with desired resolution (e.g. 7m).  In this case, resampling techniques are 
often used to interpolate an image into desired resolution and aggregation is a par-
ticular resampling technique widely practiced for “up-scaling” image data from 
high resolution to low resolution (Bian and Butler 1999).  It can be visualized that 
different aggregation methods may introduce different kinds of noise, create dif-
ferent kinds of mixed pixels and thus lead to different results.  Therefore, inferring 
spatial data across scales is an important challenge faced by scientists (Wang et al. 
2004). 

Scientists have long noted the effect of aggregation or scaling on image classi-
fication (Marceau et al. 1994, Niemann et al. 1997, He et al. 2002, Narayanan et 
al. 2002). Marceau et al. (1994) evaluated the impact of the measurement scale 
and the aggregation level on the information content and the classification accu-
racy of airborne Multi-detector Electro-optical Imaging Scanner $ (MEIS-$) 
images acquired over a mid-latitude temperate forested environment. The original 
MEIS-$image data were progressively averaged to coarser spatial resolutions, 
namely 5m, 10m, 20m and 30m. The Bayesian multi-spectral classifier was em-
ployed to classify these up-scaled images. The general effects of aggregation on 
classification has been found but the results indicate that there is no unique spatial 
resolution appropriate for the detection and discrimination of all geographical enti-
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ties composing a complex natural scene such as a forested environment.  He et al. 
(2002) examined random rule-based aggregation and its effect on cover type 
abundance and landscape patterns, in comparison with the majority rule-based ag-
gregation. They aggregated a classified TM imagery (about 1.5 million ha.) from 
30m ( 37174231R pixels) incrementally to 990m resolution ( 116132R pixels). 
Cover type proportion, mean patch size ratio, aggregation index, and fractal di-
mension were used to assess the effects of aggregation. Their study indicated that 
these two spatial aggregation techniques led to different results in cover type pro-
portions, making spatial pattern altered in opposite ways. However, their study 
was restricted only to the effect of two aggregation methods on the cover type 
proportion and spatial pattern of classified imagery. 

In summary, it can be noted here that there is no systematic investigation into 
the effect of various aggregation methods on image classification. Indeed, the ob-
jective of this paper is to do such a study through experimental testing.  

Following this introduction is a theoretical analysis of aggregation on classifi-
cation accuracy (Section 10.2). In this section, five aggregation methods are de-
scribed and their effects analyzed. Section 10.3 outlines the design of experimen-
tal testing on the effect of aggregation methods on classification. Two 
experimental tests are then reported in Sections 10.4 and 10.5. Finally some con-
clusions are made in Section 10.6. 

10.2 Effect of Aggregation Methods on Classification Accuracy: 
A Theoretical Analysis 

In this section, the aggregation methods used in this study are briefly described 
and a theoretical analysis of their effect on image classification is made. 

10.2.1 Aggregation Methods 

Several types of methods are available for image aggregation, such as simple 
arithmetic, geo-statistical, and transform-based aggregation methods. The simple 
arithmetic aggregation methods include averaging, central-pixel, median, nearest 
neighbor, bilinear, bicubic, etc. All these methods extract a value from a nn R  
window in the original image as the pixel value in the new image. Geo-statistical 
methods consider the spatial properties in the operation of aggregation, including 
variance-weighted, geo-statistical variance estimation, spatial variability-weighted 
and simulation methods (Hay et al. 1997, Collins and Woodcock 1999, Wang et 
al. 2004). Transform-based methods decompose the original image into compo-
nents with different frequencies and the low-frequency components together com-
pose a smoothed image. Wavelet is a transform widely used for this purpose. 
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In this study, five aggregation methods:,Arithmetic Average Variability-
Weighted (AAVW), Averaging (AV), Bilinear (BL), Bicubic (BC), and Nearest 
neighbor (NN),,were selected for comparative analysis. The averaging method 
uses the average value over a nn R  window. The nearest neighbor method simply 
selects the value of the nearest pixel but does not at all consider the values of other 
neighboring pixels. In bilinear method, a value is assigned to an output pixel by 
linear interpolation of four pixel values in two orthogonal directions within the in-
put image. Bicubic method is similar to bilinear method. In bicubic method, cubic 
interpolation (instead of linear interpolation) is used in two orthogonal directions. 
Images resampled with bicubic interpolation are smooth and have fewer interpola-
tion artifacts. Thus, bicubic method is often preferred to the bilinear or nearest 
neighbor method in image resampling when processing speed is not an issue. The 
AAVW method (Wang et al. 2004) is one of the spatial variability-weighted 
methods. The idea behind the spatial variability-weighted methods is that the local 
spatial autocorrelation can be measured by square differences between the pixel 
values and a measure of the dominant spatial feature within a window. The larger 
the square difference, the further the pixel value is deviated from the dominant 
feature, and less weight should be given for this pixel in aggregation from a finer 
to a coarser resolution. The weight can be defined as the reciprocal of the square 
difference. 

10.2.2 Theoretical Analysis of Aggregation Effect  

In early 1980s, Markham and Townshend (1981) pointed out that the effect of 
spatial resolution on the classification accuracy of remotely sensed images was re-
lated to two factors. One is the change in the number of mixed pixels which are 
located near the boundaries among classes and the other is the change of the spec-
tral variations within classes. While the spatial resolution of remotely sensed data 
becomes finer, the number of mixed pixels will decrease, which is positive for 
classification accuracy. However, the spectral variation within classes will in-
crease, which is negative for classification accuracy. The net effect of these two 
factors is a function of the environment of the image scene. 

In the aggregation process, some mixed pixels are created. Due to the differ-
ences in selection of a value for each pixel of the new image, there must be differ-
ences between the effects of the aggregation methods on the increase in mixed 
pixels. It is noticeable that mixed pixels result from both the boundary and inner 
region of image objects. For the classes with stable spectral variation, the mixed 
pixels mainly increase on the boundary of objects. In the case of the classes with 
relatively unstable spectral variation, the mixed pixels induced by aggregation 
emerge not only on the boundary, but also in the inner region. Homogeneity is 
usually used to reflect the spectral variation of classes. The larger the spectral 
variation, the lower the homogeneity in a class. 
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That is, for the classes with high homogeneity, the mixed pixels mainly fall on 
the boundary of objects in the aggregation operation. On the up-scaled images of 
the NN method,  pixel values are directly derived from the original image, thus re-
sulting in a minimal number of mixed pixels. Fig. 10.1 demonstrates the NN inter-
polation on the classes with high homogeneity. In the case of BC, BL, AV and 
AAVW, boundary pixels in the aggregated image have a mix of different land sur-
face elements, increasing the confusion in the classification process. For this rea-
son, the NN method is suitable for the land cover types with high homogeneity, 
like “water” and “concrete”. 

 

 
Fig. 10.1 The Nearest Neighbor (NN) aggregation process on class with high homogeneity 

For the classes with low homogeneity, due to the unstable spectral variation, 
the NN method is very likely to result in misleading resample, leading to a de-
crease in the classification accuracy. Fig.10.2 demonstrates the NN aggregation on 
the classes with low homogeneity. On the other hand, the BC and BL methods 
partly overcome these problems because they capture the dominant land cover 
type within a window. The key to accurately inferring spatial information across 
scales lies in the capture of dominant spatial features, patterns, and processes of a 
variable (Wang et al. 2004). An inappropriate resample will result in false pixel 
value which may be far away from the dominant land cover type. For this reason, 
the BC, BL, AV and AAVW methods should perform better than NN for the land 
cover types with unstable spectral variation or low homogeneity. 

 

 
Fig. 10.2 The nearest aggregation process on class with low homogeneity 
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The overall accuracy of image classification is determined by the accuracies of 
all land cover types together, especially that of the dominant classes. Therefore, 
before evaluating the effect of aggregation methods on overall classification accu-
racy, it is necessary to analyze the spatial distribution pattern of all land cover 
types in the image so as to identify the dominant classes. It seems reasonable to 
make the following hypothesis: 

If the dominant classes are with high homogeneity, it would be better to em-
ploy the NN method for aggregation; otherwise, other methods such as AV, BL, 
BC and AAVW could be considered. 

In this study, two experimental tests on this hypothesis have been conducted 
and will be reported in the following sections.  

10.3 Effect of Aggregation Methods on Classification Accuracy: 
Experimental Design 

To conduct experiments effectively, it is essential to select a set of appropriate 
image data and make proper design of the experiments. 

10.3.1 Selection of Study Area and Test Images 

As explained previously, the homogeneity of the dominant land cover types 
should be considered in the selection of an aggregation method. However, the ho-
mogeneity of a type may depend on the resolution of images. For example, in an 
area, the homogeneity of the “forest” type is high on medium resolution images 
but may appear to be low on high resolution images. This makes the authors select 
two types of images, i.e. TM with medium resolution and SPOT with relatively 
high resolution. The reason for selection of a SPOT image instead of high-
resolution images such as the IKONOS image is due to the fact that conventional 
classification methods may not work well for high-resolution images and thus dif-
ferent classification methods may need to be employed for classification. In such a 
case, the results might not be directly compared. It is also believed that the images 
should cover these common types of land covers such as water, forest, farmland, 
built-up area, and grassland. With these in mind, two images with both urban and 
rural areas are selected. 

The TM image covers Guangzhou and its surrounding areas (Fig.10.3a) and 
was acquired on 20 November 2001 with spatial resolution of 30m. The image 
size is 24003200R pixels. This TM image was colleted with six bands. Six main 
classes of land covers are present, i.e., water, forest, farmland, built-up area, grass-
land and bare soil. Among these, water, forest and farmland are the dominant 
classes, occupying 68% of the area. An analysis shows that these three classes are 
all of high homogeneity. 
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Fig. 10.3 The test images 

The SPOT5 image, acquired in October 2002, covers an area in Wuhan, China 
(Fig.10.3b). The image consists of three multi-spectral bands with 2.5m resolu-
tion. The image size is 19351671R pixels. This SPOT image was the result of fus-
ing the SPOT5 multi-spectral (10m resolution) and SPOT5 panchromatic (PAN, 
2.5m resolution) images. In this area, forest and farmland are the dominant classes 
and these two classes occupy a proportion of about 70%. Investigation indicates 
that these two classes are of low homogeneity, possibly due to the relatively high 
resolution. 

10.3.2 Strategies for the Experiments 

A number of strategies need to be considered such as the proper selection of 
classification methods, aggregation of images, and the use of ground truth. 

All the five aggregation methods are used for aggregation of the images from 
their original resolution to new images with a range of resolutions. For the TM 
image, a total of 9 sets of new images are generated with aggregation with differ-
ent window sizes, i.e. 22 R , 33R , 44R , 55R , 66R , 77R , 88R , 99R , 1010R . 
That is, the resolutions of new images are 60m, 90m, …, 300m. In total, including 
the original TM image, 510R  images are prepared for classification. Due to the 
limited space, only the five new images with 300m resolution are shown in 
Fig.10.4. For the SPOT5 image, only five different window sizes, i.e. 22R , 44R , 

66R , 88R , 1010R , are used for aggregation so as to obtain a total of 55R  new 
images. As a result, the resolution ranges from 5 m to 25 m. Also only the five 
new SPOT images with 25m resolution are shown in Fig.10.5. 

It was decided to use the maximum likelihood (ML) classifier for image classi-
fication because this is the most commonly used classifier. Six classes are de-

(a) TM image     (b) SPOT5 image 
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signed for classification, i.e. water, forest, farmland, built-up area, grassland and 
bare soil. 

For accuracy assessment, 728 ground truth points were used as benchmark in 
the TM experiment. In the case of SPOT5 image, a land cover map in the same re-
gion was used as the reference data, which was produced by Land and Resources 
Bureau of Wuhan. Both overall accuracy and accuracies of individual classes are 
obtained for analysis. The results of these two experimental tests are reported in 
the following two sections, respectively. 

 

 
Fig. 10.4 The up-scaled TM images at 300m resolution by different aggregation methods 

(a) (b) 

(c) (d) 

(a) by AAVW,  
(b) by AV,  
(c) by BL,  
(d) by BC,  
(e) by NN 

(e)



278  Effects of Aggregation Methods 

 

Fig. 10.5 The up-scaled SPOT-5 images at 25m resolution by different aggregation methods 

(a) (b)

(c) (d)

(e) 

(a) by AAVW,  
(b) by AV,  
(c) by BL,  
(d) by BC,  
(e) by NN 
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10.4 Effect of Aggregation Methods on Classification Accuracy: 
Experiment with TM Image 

In this section, the test on the effect of aggregation methods on classification accu-
racy with a TM image will be reported.  

10.4.1 Results of Experiment with TM Image 

 
Fig. 10.6 The classified results of TM images at 300m aggregated by 5 methods. (a) by AAVW, 
(b) by AV, (c) by BL, (d) by BC, (e) by NN 

All the 59R  new images aggregated by 5 methods are classified by using the 
maximum likelihood (ML) classifier. The original TM image was also classified 
with a ML classifier. Due to the limitation of space, only the 5 classified results at 
300 m resolution are shown in Fig.10.6. 
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The overall accuracy is shown in Fig. 10.7. From this figure, not much infor-
mation could be obtained, except a general trend, i.e. a decrease in accuracy after 
90m. To make more meaningful analysis possible, the classification accuracies of 
different types of land cover are also computed and shown in Figs. 10.8-10.13. 
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Fig. 10.7 The overall classification accuracy of aggregated TM images at different resolution 
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Fig. 10.8 Classification accuracy of water on aggregated TM images at different resolution 
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Fig. 10.9 Classification accuracy of forest on aggregated TM images at different resolution 
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Fig. 10.10 Classification accuracy of farmland on aggregated TM images at different resolutions 
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Fig. 10.11 Classification accuracy of built-up area on aggregated TM images at different resolu-
tion 
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Fig. 10.12 Classification accuracy of grassland on aggregated TM images at different resolution 
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10.4.2 Effect of Aggregation Methods on the Overall Accuracy 

Fig.10.7 shows the impact of the five methods on the overall classification ac-
curacy. Results reveal that in general there is a decrease in accuracy when the 
resolution of aggregated images is over 90m. It is also observed that the NN 
method achieves a higher overall accuracy at all resolutions than the other meth-
ods, although the increase is not much. The AAVW produces the worst results 
(i.e. lowest accuracy) at almost all resolutions. The BC and BL methods perform 
better than AV method at most resolutions. 
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Fig. 10.13 Classification accuracy of bare soil on aggregated TM images at different resolution 

The phenomenon that NN produces most impressive results might be explained 
by the fact that the dominant classes of this area, “water,” “forest” and “farmland”, 
are of high homogeneity and these classes occupies a proportion of 68%. The ho-
mogeneity of the TM band 1 image is 0.8352 (supported by ENVI 4.4). 

10.4.3 Effect of Aggregation Methods on Classification Accuracy  

It would be more appropriate to have an analysis of the individual class results. 
On the whole, there is a decrease in accuracy when resolution is coarser than a 
certain value. But this value varies with the type of land cover and the trend of de-
crease is also different. In particular, the rate of decrease for the type “built-up 
area” is rather slow. 

For the class “water”, the accuracy of classified images aggregated by NN 
method is almost higher than the others at each resolution (Fig.10.8). This trend 
becomes clearer when the resolution becomes coarser. On the other hand, the ac-
curacy of classified images aggregated by AAVW method is the lowest at each 
resolution. This trend also becomes clearer when the resolution becomes coarser. 
Similar trends can also be observed from “forest” and “farmland” classes 
(Fig.10.9 and Fig.10.10). 
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Fig. 10.14 The classified results of SPOT-5 images at 25m, aggregated by different methods. (a) 
by AAVW, (b) by AV, (c) by BL, (d) by BC, (e) by NN 

The results for “built-up area” and “grassland” show another trend (Fig.10.11 
and Fig.10.12). That is, the classification accuracies of images aggregated by BC 
and BL are generally higher than the others, especially when the resolution is very 
coarse. But occasionally, AV and AAVW prevail. 

(e) 

(c) (d)

(a) (b)
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It is worth noting that the accuracy trend in class “bare soil” (Fig.10.13). It can 
be found that BC and BL perform better than others at the higher resolutions (60m 
to 210m), however, the NN outperforms at the coarser resolutions (240m to 
300m). 

10.5 Effect of Aggregation Methods on Classification Accuracy: 
Experiment with SPOT Image 

In this section, the test on the effect of aggregation methods on classification 
accuracy with a SPOT image will be reported.  

10.5.1 Results of Experiment with SPOT Image 

All the 55R  new images aggregated by 5 methods and the original SPOT5 im-
age are classified by using the maximum likelihood (ML) classifier. Due to the 
limitation in space, only the 5 classified results at 25m resolution are shown in 
Fig.10.14. The overall classification accuracy is shown in Fig.10.15, and the clas-
sification accuracies of the six classes are shown from Fig.10.16 to Fig.10.21. 
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Fig. 10.15 Overall classification accuracy of aggregated SPOT-5 images at different resolutions 

10.5.2 Effect of Aggregation Methods on the Overall Accuracy 

Fig.10.15 demonstrates the impact of the five aggregation methods on the over-
all classification accuracy. In general, the classification accuracy is low. This 
might be because the commonly used ML classifier is not very suitable for the im-
age of such resolution. Indeed, it is found that the homogeneity of the dominant 
classes in this area (“forest” and “farmland”), which occupies 70% of the area, is 
low (i.e. 0.6168 compared with 0.8325 for the TM image). Therefore, the NN 
method produces the worst results at all resolutions and the BC and BL achieve 
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higher accuracies at most resolutions than the other methods. The AV method also 
performs very well. 
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Fig. 10.16 Classification accuracy of water on aggregated SPOT-5 images at different resolu-
tions 
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Fig. 10.17 Classification accuracy of forest on aggregated SPOT-5 images at different resolu-
tions 
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Fig.10.18 Classification accuracy of farmland on aggregated SPOT-5 images at different resolu-
tions 
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Fig. 10.19 Classification accuracy of built-up area on aggregated SPOT-5 images at different 
resolutions 
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Fig. 10.20 Classification accuracy of grassland on aggregated SPOT-5 images at different resolu-
tions 
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Fig. 10.21 Classification accuracy of bare soil on aggregated SPOT-5 images at different resolu-
tions. 
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10.5.3 Effect of Aggregation Methods on Classification Accuracy  

For individual classes, it is found that the classification accuracy might be im-
proved with aggregation, especially the case for grassland. This also supports the 
argument that the ML classifier might be not suitable for classifying high-
resolution images. Although the results are not very good, we still find out some 
interesting results from the data. 

For the class “water,” the NN has the best performance, especially when the 
resolution becomes coarser. The AAVW method produces worst results 
(Fig.10.16). The classes “forest” and “farmland” show another trend (Fig.10.17 
and Fig.10.18). In these cases, BC and BL produce steady results over the resolu-
tion range. For “forest,” BC and BL perform better than others except at 25m at 
which AV outperforms these two methods. In the case of “farmland,” BC and BL 
show steady performance at all resolutions except 15m. Similar trends are shown 
in “built-up area” and “grassland” classes (Fig.10.19 and Fig.10.20). 

The experimental results indicate that the NN method is compatible with the 
class “water.” For “forest,” “farmland,” “built-up area” and “grassland,” the BC 
and BL have excellent performance. This is because, comparing with “water,” the 
spectral variations in the classes “forest,” “farmland,” “built-up area” and “grass-
land” are relatively unstable in the SPOT5 image. 

It is also worth noting that the trend in accuracy for class “bare soil” in this ex-
periment (Fig.10.21) is not clear. That is, no single aggregation has consistent per-
formance over the whole range of resolution. 

10.6 Conclusions 

In this study, the effect of five aggregation methods (AAVW, AV, BL, BC and 
NN) on the image classification are investigated through experimental testing. 
Two images with different resolutions (i.e. a TM image and a SPOT-5 image) are 
used for evaluation. The effect of different aggregation methods on overall classi-
fication accuracy and classification accuracies of different land cover types are 
analyzed and compared. The results indicate that it is sound to avoid the genera-
tion of mixed pixels during the selection of aggregation method. Some conclu-
sions can be made from the results: 

1) It is not possible to recommend a best aggregation method for common 
use, as an image may comprise of different types of land cover and each land 
cover may appear quite differently at images with different resolutions. 

2) To achieve relatively higher overall classification accuracy, the spatial 
distribution patterns of the land cover types on the image should be analyzed when 
selecting the aggregation method. The homogeneity of the dominant classes de-
termines the aggregation method to be used. If the dominant classes are of high 



288  Effects of Aggregation Methods 

homogeneity, then the Nearest Neighbour method is the best choice. Otherwise, 
Bicubic or Bilinear methods could be considered. 

These conclusions in this study can provide a foundation for selecting the up-
scaling method in the study on the choice of a optimal scale in image classifica-
tion. However, more investigations are desirable to make these conclusions gener-
alized. 
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Chapter 11 

TOWARDS AUTOMATION OF INFORMATION 
EXTRACTION FROM AERIAL AND SATELLITE 
IMAGES 

John Trinder, Arcot Sowmya 

11.1 Background to Automation in Digital Photogrammetry  

Since photogrammetry was developed more than 100 years ago as a technology 
for map production and the measurement of objects on images, photogrammetrists 
have attempted to improve the efficiency and accuracy of the process. These 
attempts commenced with the development of analogue approaches to solving the 
major computations in converting image coordinates on photographs to 
coordinates in a ground or object system.  Subsequent developments included 
computer driven instruments, the ‘analytical stereoplotter’ and in the early 1990s, 
purely digital systems based on digital image acquisition and processing. The 
precision of all components of the photogrammetric process was continually 
improved so that smaller image scales could be taken to achieve the required 
accuracy on the object, thus improving efficiency and reducing costs of the 
mapping process. Digital image processing in photogrammetry currently enables 
the determination of elevations and the production of digital orthophotos more 
rapidly and with greater efficiency than could be achieved with analogue 
instruments. However, while a certain level of automation has been achieved in 
the presentation of roads, buildings and other cultural features for the production 
of digital map data, the automatic extraction of these features from images has not 
been achieved. The availability of high resolution digital satellite and multi-
spectral aerial images, coupled with the community’s increasing need for more 
detailed, timely and lower cost spatial information for the production of digital 
maps and GIS (Geographic Information System) databases, has driven research on 
feature extraction over recent decades. While this research continues to develop 
new approaches to the extraction of features from images, no system has been so 
far demonstrated that enables extraction of features reliably under a range of 
image conditions and scales.  

Before progressing, some terms will be defined. In the context of this chapter, 
‘information’ is a general term that refers to knowledge about the content of 
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images. Since Earth observation images are recorded over the terrain surface, the 
details that require interpretation and that represent the ‘information’ contained in 
the image are objects such as roads, buildings, terrain cover types, and landscape 
characteristics. The term ‘feature’ refers to the individual objects that occur in the 
images, which are described by various ‘attributes’, such as color, size and so on.  
This is at variance with typical terminology used by many researchers in computer 
science where ‘features’ are equivalent to ‘attributes’ used in this chapter.  

Levels of automation may vary from relatively simple semi-automatic to fully 
automatic methods. Semi-automatic methods typically take advantage, in varying 
degrees, of an observer’s ability to interpret images, and the ability of a computer 
to process information rapidly. A number of semi-automatic methods has been 
demonstrated for extracting particular features in aerial and satellite images, such 
as roads and buildings, but few of them have been introduced into production 
mapping software. Examples of semi-automatic approaches using snakes and 
simulated annealing are given in Trinder and Li (1995), Gruen and Li (1996), 
Gruen and Li (1997) and Trinder et al. (2000).  

Fully automatic methods for extraction of features from aerial and satellite 
images in principle should not require input from an observer and would extract 
features reliably and accurately, but they may not be achieved for some time.  For 
complex images over urban areas, fully automated feature extraction may never be 
achieved. However, research continues to improve the level of understanding of 
the processes involved in the automation of information extraction from images.  
This chapter will review some recent approaches that have been taken in the 
development of automatic procedures for the extraction of features for digital 
mapping and compilation of GIS databases.   

11.2 Issues in Information Extraction from Aerial and Satellite 
Images  

Aerial and satellite images contain a complex array of features, which are 
characteristic of specific locations. Identification of these features by humans on 
aerial or satellite images often requires significant levels of training and/or 
experience. Replacing this training of humans by automatic computer based 
methods requires a new approach to understanding the content of images and how 
features may be extracted automatically from them. There is still no single 
approach or algorithm that outperforms all other competing methods in all 
locations and for all image characteristics; each has its own strengths and 
weaknesses for different tasks in the extraction process and tends to be application 
specific. A major challenge then, lies in selecting the best data sources and 
algorithms for a given task, and by extension, selecting the right combination of 
data and algorithms at the different stages of feature extraction. 
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Early research on extraction of features for digital mapping and GIS was based 
on the geometric and radiometric content of images using panchromatic images, 
due to the limited availability of color or multi-spectral images.  However, recent 
research has incorporated color and multi-spectral images as well as multi-source 
data, and this trend will continue as the availability and range of image data 
increases.  Given the complexity of aerial and satellite images, it is not surprising 
that feature extraction has proved to be a difficult process requiring more 
intelligent methods, many of which are available from the field of computer 
vision.  This has led to an increasing collaboration between photogrammetrists and 
computer vision scientists to develop more effective methods of feature extraction, 
including those based on machine learning.  

Computer vision techniques apply automation and integration of processes for 
image interpretation and understanding for object and scene recognition.  They 
employ attribute and relation extraction in an image for interpretation of features 
by matching models of objects with representations of features derived from 
images, usually incorporating artificial intelligence methods. Control strategies 
may include elements of both bottom-up or data driven, as well as top-down or 
model driven approaches. Low level processes, such as those for extraction of 
edges of objects generally require little knowledge about the image, while high 
level processes, such as those for object recognition, will be based on prior 
knowledge of the scene and the application.  A combination of low level and high 
level processes will usually be required in a feature recognition system.  

In computer vision, shape and appearance of objects have been traditional 
attributes considered for recognition of objects from images. However, for the 
extraction of features from remotely sensed images, different cues are usually 
necessary.  Features vary in appearance according to the scale of the image, levels 
of illumination, shadows, terrain slopes, geometric distortions due to perspective 
projection, camera tilts and elevation differences, changes in direction of 
observation of the imaging system, atmospheric conditions, occlusions as well as 
ground cover types.   

The ‘context’ of the images is also an important issue for feature identification 
(Strat 1995).  It is a function of the location of the features imaged and parameters 
of the image acquisition process, and hence should be described in terms of 
sufficient descriptors to support the feature identification and extraction.  
Baumgartner et al. (1999) and Gerke et al. (2003) in extracting roads have defined 
global context as a general description of the types of regions being studied, 
urban, forest or rural, while local context describes relations between features such 
as roads, sidewalks, driveways and even neighboring features being occluded by 
trees. Gerke et al. (2003) also include information on global context in the 
databases used to assist in information extraction. There are no definitive 
descriptions of context, but global context may also include the overall 
characteristics of the scale and type of imaging since these factors will influence 
the approach to extraction of features. The method of including context in a 
feature extraction process will depend on the strategy used. For example, rule 
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based systems will need to specifically define context, while systems based on 
machine learning may derive context as part of the learning process, by the 
provision of sufficient training samples which incorporate the context.  

Future approaches for extracting features from digital images are likely to 
include: 

� All available image information, including multi-spectral, hyperspectral, 
multi-resolution and multi-sensor data, as well as other relevant 
information, such as digital map and GIS databases 

� Adequate definition of context of the images and features within the 
images 

� Appropriate methods of modeling objects and matching them with 
extracted features in images based on artificial intelligence approaches 

� 3D coordinate descriptions of features if they can be derived from 
overlapping images 

11.3  Review of Road Extraction Techniques  

Recently, advances in remote sensing technology and efforts to fuse data have 
led to the inclusion of prior knowledge from existing GIS databases and 
elevations, as well as multi-scale and multi-resolution, multi-temporal, multi-
spectral and hyperspectral analyses (Mena 2003). Tests on several methods of 
road extraction have been described in Mayer et al. (2006), in which completeness 
(‘percentage of the reference data which is explained by the extracted data’) and 
correctness (‘percentage of correctly extracted road data’) of extraction of roads 
from aerial and satellite images vary from high values of about 80% to less than 
30%, depending on the method and the data used. Current road extraction 
techniques can be categorized and summarized in the following sections. 

11.3.1 Image Processing Approaches   

Morphological methods to detect features utilize geometric shape information, 
based on set operations such as union, intersection and complementation, as well 
as dilation, erosion, thinning and other derived operations. They have been applied 
to noise removal (Zhang et al. 1999) and grey-scale image simplification (Amini 
and Sarahjian 2000). Model-based methods for the automatic extraction of linear 
features from aerial images (Chanussot and Lambert 1998, Katartzis et al. 2001) 
and road extraction methods based on edge detection and filters (Chiang et al. 
2001) have also been proposed.  
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11.3.2 Tracking and Growing Approach  

Tracking and growing methods utilize automatically detected or manually 
selected road seeds. Road tracking methods trace a road network from 
predetermined seeds (Dal Poz et al. 2000, Nevatia and Babu 1980, Sakoda et al. 
1993) or profiles perpendicular to the road axis (Quam 1978, Vosselman and 
Knecht, 1995). Several techniques may also be combined (McKeown and 
Denlinger 1988). Recent work appearing in (Baumgartner et al. 2002, Zhao et al. 
2002, Bonnefon et al. 2002) incorporates automatic searching for seed points in 
(Zlotnick and Carnine 1993, Wufeng and Qiming 1998) and fully automatic road 
extraction in (Tesser and Pavlidis 2000, Yoon et al. 2002, Dial et al. 2001).  
Region growing methods start from preselected seeds and agglomerate points 
around the seeds that satisfy certain homogeneity criteria. Deformable contour 
models or snakes (Kass et al. 1988) have been employed as a boundary detector 
and object extractor (Cohen 1991, Trinder and Li 1995, Gruen and Li 1997, Mayer 
et al. 1998, Ferraro et al. 1999, Jeon et al. 2000, Chiang et al. 2001) and also in 
multispectral datasets (Zafiropoulos and Schenk 1998, Laptev et al. 2000).  
Recently a new region growing approach called the fast marching method (Keaton 
and Brokish 2003) that has the ability for smart handling of propagating contours, 
has been used.  

11.3.3  Grouping and Clustering Approach  

This approach mainly employs supervised machine learning and unsupervised 
clustering algorithms in order to extract road networks, on the assumption that 
road regions form a separate cluster in feature space. The main problem with 
clustering is determining the number of clusters, also known as cluster validity.  
Chen et al. (2002) utilized unsupervised segmentation based on edge grouping and 
model selection for automatic road extraction in grey scale images. Maximum 
likelihood decision techniques on infrared images (Benjamin and Gaydos 1990) 
and pattern classification methods on airborne images (Roggero 2002) have been 
applied. These techniques have also been introduced to multispectral images 
(Faber and Förstner 1999, Agouris et al. 2001). 

Ziems et al. (2007) have used knowledge of road classifications from prior 
information together with a statistical analysis of color space of roads to train the 
extraction of additional roads. Training is also based on the homogeneity of the 
road surface and its contrast with respect to its background, using a histogram 
analysis to build up clusters in feature space. Ravanbakhsh et al. (2008) have used 
level sets to extract road islands in road junctions with significant success.  Level 
sets are described later in this chapter. 
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11.3.4 Data Fusion and Learning Approach  

This approach attempts to learn to optimize road extraction and to take 
advantage of complementary classifiers and characteristics of objects recorded by 
a variety of sensors. Neural networks have been used to optimize road extraction 
(Doucette et al. 1999) and to improve the performance of a junction extraction 
system (Barsi et al. 2002). Genetic algorithms have been used by (Shanahan et al. 
2000, Bandyopadhyay et al. 2000, Jeon et al. 2000) to generate probabilistic 
models for high level road classification. A data fusion approach uses two road 
detectors, one of which is edge based and the other pixel correlation based, and 
their results are then combined by a mechanism called associative symmetrical 
summation (Tupin and Maitre 1998).  

More recently, a multi-detector method for road extraction in SAR data has 
been proposed (Dell'Acqua et al. 2003), where the results are drawn from the 
fusion of three fuzzy algorithms. Multi-view aerial image data sources have been 
fused (Hinz and Baumgartner 2003) and complementary algorithms for road 
centerline extraction have been presented (Haverkamp and Poulsen 2002).  
Information streaming from three different sources has been fused for GIS 
updating using texture analysis and data fusion in a Dempster-Shafer evidence 
theory framework (Mena and Malpica 2004).  A demonstration of the application 
of the Dempster-Shafer algorithm is given later in this chapter.   

An integrated road extraction system based on multi-detector fusion has been 
proposed (Jin and Davis 2004).  Data fusion, a decade-old nascent field, studies 
methods to handle data from multiple distinct data sources in order to achieve 
refined and improved decision-making (Kessler et al. 1992). It deals with fusion at 
three levels, namely the sensor, feature and decision levels. Recent advances in the 
machine learning field have given rise to powerful techniques for combining 
different learning algorithms and classifiers to obtain optimal performance, 
including ensemble learning (Dzeroski and Zenko 2002) and model selection 
(Caruana et al. 2004).  The idea of combining the results of several algorithms is 
also known within pattern recognition (Kittler et al. 1998).  Applying data fusion 
on the traditional methods to combine the information from different sources and 
developing machine learning techniques to adapt the fusion models will lead to 
more accurate and robust extraction of road networks from remotely sensed 
images, and has been the goal of research at The University of New South Wales. 

11.4 RAIL: Road Extraction by Inductive Learning  

We now present RAIL, a road extraction system that combines cluster analysis 
with inductive learning in a novel fashion (Singh and Sowmya 1998, Chen et al. 
2002, Lai et al. 2005, Cai et al. 2005).   
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11.4.1 RAIL Framework  

RAIL is an adaptive and trainable multi-level edge-based road extraction 
system. Instead of using prior rules, RAIL uses multi-level learning to derive rules 
that can be applied during segmentation. This approach makes few assumptions 
and therefore is applicable to images of different scale, content, complexity and 
quality. Starting with low-level objects (edges), RAIL incrementally builds 
higher-level objects (road network) at multiple levels defined as follows: 

Level 1: Road Edge Pairs - pairs of edges that enclose a segment of road. 
Level 2: Linked Road Edge Pairs - adjacent road edge pairs that form 

continuous roads. 
Level 3: Intersections - road edge pairs that meet to form junctions. 
Level 4: Road Network- linked roads and intersections. 

11.4.2 RAIL Levels 1 and 2 

RAIL utilizes a set of classifiers that can be applied to recognize the road 
structures in Levels 1 and 2. After preprocessing, edge extraction and heuristic 
filtering, features of potential road edge pairs are extracted and feature subset 
selection performed. The edge pairs are then clustered in feature space using 
different clustering techniques. The goal is to identify clusters of road edge pairs 
at Level 1, and adjacent road edge pairs in Level 2. This goal is achieved using a 
specially designed inductive technique called Inductive Clustering (IC) that can 
automatically select parameters for clustering algorithms by learning from 
clustering examples, as well as select a good algorithm that best fits the data. 
Reference images are extensively used for training the IC algorithm.  These steps 
are now described.  

11.4.2.1 Image Preprocessing  

The low-level processing in RAIL aims to extract raw edges from an image 
with minimal intervention. Since remotely sensed images are inherently noisy, the 
Canny operator was chosen for its known performance on noisy images. RAIL 
uses Vista's1 implementation of the Canny operator as well as other functions. The 
process is split into four steps: 

 
1. Canny edge detector: edge pixels are detected between two regions with 

relatively distinct intensity values. 
2. Edge linking: edge object is formed by tracking edge pixels using eight-

connectivity. 

                                                 
1 Software available at http://www.cs.ubc.ca/nest/lci/vista/vista.html 
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3. Edge straightening: straight edge objects are formed by dividing linked 
edge objects at the point where it deviates most from a straight line 
joining its endpoints. 

4. Edge splitting: edges longer than a threshold are split recursively into 
shorter straight edges. 

 
The parameters used in the Canny edge detector were manually tuned to 

produce outputs with less noise. This was accomplished by adding noise to the 
original image prior to Gaussian smoothing with a large standard deviation.  
Adding artificial noise to the images before blurring removes noise that is 
inherently present in high resolution images. Specifically, edge orientation as well 
as edge magnitude maps were produced  (orientation = `true’), standard deviation 
of the Gaussian filter was set to 2.4, and the fraction of edge pixels considered to 
be edge noise was set to 0.75.  This resulted in a dramatic decrease in the number 
of extracted edges. Removing noisy edges is advantageous because machine 
learning algorithms may otherwise be distracted by them, and it makes the data 
size more manageable. 

11.4.2.2 Reference Image   

In the IC learning pipeline, the results of clustering at each stage must be 
evaluated by comparison to a reference image that provides ground truth. For road 
networks in remotely sensed images, such ground truth must come from a 
geographic information system, or manual generation. RAIL has an operator 
assisted centerline reference image acquisition function based on (Wiedemann et 
al. 1998), which can assess the learned outputs more correctly by checking if the 
extracted pairs have edges that do in fact lie opposite each other near the reference 
model. The operator is provided with interactive drawing tools to help create the 
reference images.  

11.4.2.3 Feature Extraction for Levels 1 and 2 

The features that are extracted at Levels 1 and 2 of RAIL are described in detail 
below. In Level 1, edge pairs are formed by joining two edges.  The properties of a 
road edge pair are listed in Table 11.1, together with the corresponding attributes 
that measure it. The highlighted attributes are those selected for segmentation 
using feature subset selection techniques, which are described later.  

Pair width, enclosed intensity (mean), bearing and projection form an intuitive 
feature subset that describes road segments, i.e. roads have similar width and 
intensity and their opposite sides are almost parallel. Pair length is a good feature 
because during the preprocessing stage a maximum length for edges was set to 50 
pixels. Generally, road sides are long and continuous and are split into smaller 
segments after preprocessing. When road pairs are formed, their lengths do not 
vary too much. This is because non-road edges are usually of shorter length. 
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Enclosed intensity variance did not prove to be a good feature since the area 
enclosed by an edge pair is small and the intensity is fairly uniform.  Length 
difference between edges was also discarded.  Road pairs are expected to have 
similar edge length but non-road pairs may also have similar edge lengths, thus it 
does not convey much information.  Intensity gradient differences between the 
two edges do not show consistencies between road pairs and non-road pairs.  The 
assumption that the intensity levels are the same on both the external sides of the 
roads also proved invalid. 

Table 11.1 RAIL Level 1 features (bolded attributes were used for the segmentation.) 

Attribute Description Road Property 
Addressed 

Width (mean) Average distance between edges Roads generally have 
constant widths 

Enclosed Intensity (mean) Average intensity between edge 
pair 

Roads generally have 
intensities that differ 
from the intensity of 
their  surrounding 

Enclosed Intensity (var.) Intensity variance between edge 
pair 

Roads generally have 
constant intensity values 

Pair Length (centerline) Length of edge pair measured 
by an imaginary centreline 

Roads are generally long 
objects 

Length Difference Length difference between edges Road segments are usually 
of constant length 

Bearing Difference Direction difference between the 
two edges 

Road pairs are generally 
parallel 

Intensity Gradient Difference Image gradient of the edges 
should be parallel 

Road boundaries have 
opposite gradient 
directions 

Projection Binary value that defines if  
edges of an edge pair are 
opposite to each other 

Road segments generally 
project onto each other 
since they are opposite 
to each other 

 
In Level 2, the short road segments extracted in Level 1 are joined together into 

longer road segments. Therefore, the attributes at Level 2 are designed to generate 
all possible twin-linked road pairs, which are chained together after segmentation. 
The properties of road edge pairs and the corresponding attributes are listed in 
Table 11.2.  The highlighted entries are the attributes used for segmentation.  

Linked road pairs should have similar enclosed intensity with little difference.  
Ideally linked pairs should be minimally separated and have no gap, thus gap 
intensity and gap separation are excellent features to distinguish between linked 
road pairs and other linked edge pairs. Roads generally have smooth curves except 
at intersections; therefore, the bearing difference between linked road pairs should 
not be very large.  

Width features are not good attributes for Level 2 because Level 1 outputs all 
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have similar widths. The same argument applies to length attributes. Enclosed 
intensity variance and gap intensity variance are not very good features for the 
same reasons discussed earlier, i.e. intensity levels do not change much in an 
enclosed edge pair or in a road gap.  Again, intensity levels across edges cannot be 
assumed to be the same on both sides of the linked edge pairs. 

Table 11.2 Level 2 features (bolded attributes were used for the segmentation.) 

Attribute Description Road Property Addressed 

Width (mean) Average distance between  
the edge pairs 

Roads generally have constant 
widths 

Width (var.) Distance variance of the 
edge pairs 

Roads generally have constant 
widths 

Width Difference Width difference of the 
edge pairs, the average 
values are used 

Linked pairs should have similar 
widths 

Enclosed Intensity (mean) Average intensity of the 
edge pairs 

Roads generally have intensities 
which differ from intensity of 
their  surroundings 

Enclosed Intensity (var.) Intensity variance of the 
edge pairs 

Roads generally have constant 
intensity values 

Enclosed Intensity 
Difference 

Intensity difference of the 
edge pairs 

Linked pairs should have 
similar enclosed intensity values 

Gap Intensity (mean) Average intensity of the 
gap bridging the two 
road pairs 

Road gaps should have similar 
intensity values to edge pair 
intensities 

Gap Intensity (var.) Intensity variance of the 
gap bridging the two 
road pairs 

Road gaps usually have constant 
intensity values 

Length Combined Length as measured by a 
centerline expanding from 
one edge pair to the other 

Roads are generally long objects 

Length Difference Length difference of the 
edge pairs 

Linked pairs should be similar in 
length 

Minimum Gap Separation Minimum separation of 
the edge pairs 

Linked pairs should be close in 
proximity 

Maximum Gap Separation Maximum separation of 
the edge pairs 

Linked pairs should be close in 
proximity 

Gap Separation (mean) Average separation of the 
edge pairs 

Linked pairs should be close in 
proximity 

Bearing Difference Direction difference of the 
edge pairs measured 
from their centerlines 

Roads are generally straight or 
have smooth curves 

Intensity Gradient Difference 
(left) 

Image gradient difference 
of the left edges 

Linked road boundaries should 
have the same gradient direction 

Intensity Gradient Difference 
(right) 

Image gradient difference 
of the right edges 

Linked road boundaries should 
have the same gradient direction 

11.4.2.4 Feature versus Heuristic Preprocessing  

Although RAIL attempts to produce less noisy attributes, fairly large datasets 
for Level 1 and Level 2 are still created. Therefore, RAIL uses additional heuristic 
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preprocessing to reduce the data to a more manageable size. The heuristic rules 
throw away cases where an expert would agree that a positive classification is 
impossible.  For example, in Level 1 if edges in an edge pair do not project onto 
each other, they cannot be classified as an edge pair, as they are not opposite each 
other. This feature has a binary value, therefore using this attribute as a heuristic 
filter, effectively removes the projection attribute from the feature space. Another 
heuristic discards any edge pairs that are wider than twice the maximum road 
width in the images, as road pairs should not be too distant from each other.  In 
Level 2, the heuristic rules involving mean gap separation and bearing difference 
are applied. Road pairs that are separated by more than twice the maximum road 
width are unlikely to be linked. A bearing difference of greater than 45° between 
two road pairs will also mean that the road pairs are unlikely to be next to each 
other.  When a bearing difference heuristic rule is applied, possible junctions will 
be broken up; junctions are dealt with at Level 3 of RAIL. 

11.4.2.5 Feature Subset Selection  

In many machine learning problems, using all available features, relevant or 
not, causes detrimental effects on accuracy. This is because some features may be 
dependent on other features or features may be noisy. Removing such attributes 
that may distract a machine learning algorithm will improve accuracy and give a 
better description of the learned concepts. It will also enable learning to take to 
place with fewer examples.  

The general approach used for feature subset selection (FSS) is analogous to 
supervised learning - sample data from the classes of interest are used either to 
derive the best subset or to rank the attributes. Several hundred positive and 
negative examples from road and non-road classes were selected from different 
images so that the results were not biased towards the most frequent road type.  

The WEKA2 data mining suite (version 3.4) was used to conduct the FSS 
experiments. WEKA contains a suite of machine learning algorithms for data 
mining tasks, and may be run directly or called from Java code.  The inputs to 
WEKA are a collection of instances (dataset) and algorithm specific parameters, 
which may be set by default or tuned.  Each instance must consist of a number of 
attributes, which may be of different types. The FSS algorithms in WEKA may be 
grouped into two types: feature subset-based (Type I) and feature-based (Type II).  

Type I algorithms were run using three different search methods, namely best 
first, rank and genetic search based on Goldberg (1989). Default parameter values 
in WEKA were used, and no attempt at any parameter tuning was made at this 
stage. For the genetic search, the population size is set to 20, number of 
generations to 5, probability of crossover to 0.5 and frequency of reporting equal 
to the number of generations. A total of 21 algorithm-search combinations, arising 
from the 7 methods of Type I and the 3 search methods, were used. Type I 

                                                 
2 Software available at http://www.cs.waikato.ac.nz/ml/weka 
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algorithms select the best subset of features, based on the performance on the 
labeled examples, and the frequency of each was recorded and averaged to 
produce a frequency score. Type II algorithms rank the individual attributes by 
assigning them a relative weight. These were normalized and averaged. The 
desired subset of features should have a high frequency score in Type I and a high 
relative weight in Type II. The Type I and Type II results were ranked and the 
smallest subset in which the features are identical for each type was picked. This 
has produced good results. 

11.4.3 Inductive Clustering Framework  

The Inductive Clustering (IC) framework has been designed to perform the 
following functions: 

Algorithm Learning: learn a clustering algorithm most suited to an image type. 
Parameter Learning: learn the parameter values that give the best results for 

that algorithm and image type. 
Cluster Learning: identify a cluster of interest. 

 

Clustering

Algorithm Learning

Cluster Learning

Rules for algorithm

Processed and  
Reference Images

Test Image 

Rules for parameter 

Rules for good cluster 

Training Phase 

Testing/Application Phase

Parameter Learning

 
Fig. 11.1 IC framework 

Of the above, algorithm and parameter learning address cluster validity and 
model selection problems, while cluster learning is specific to the application, and 
may be modified to identify more than one cluster, if appropriate. The goal of IC 
is to generate a set of rules, based on comparison of competing clustering 
algorithms on images of different characteristics, which may then drive the 
automatic choice of an appropriate algorithm and its parameters for a new image, 
and also identification of the cluster of interest to the application.  
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Meta information on which algorithm or parameter values to use, and which 
cluster to select, are learned; this process is termed as ‘meta-learning’.  At each 
learning stage of IC, an inductive learning algorithm called C4.5 (Quinlan 1993) 
that generalizes from positive and negative examples is utilized as the meta-
learning algorithm, as it has been found to be good for meta learning (Brazdil and 
Henery 1994). A multi-level learning strategy is employed, as shown in Fig. 11.1.   

IC consists of training and testing phases. In the training phase, a collection of 
processed images, together with their reference images are input into the learning 
pipeline.  At each stage of the pipeline, rules to select the best algorithm/parameter 
values/cluster are learned and stored. Parameter learning also utilizes the 
algorithm learning rules in addition to the image and reference data. In the testing 
phase, the learned rules may be applied to any other test image, without reference 
information, to perform road segmentation. 

The general learning strategy employed at each stage of the IC learning 
pipeline is illustrated in Fig. 11.2.  In the training phase, each training image is 
processed and the extracted attributes for all the images are clustered. The 
resulting clusters are evaluated against the corresponding reference images which 
provide `ground truth’ and the evaluations, together with image attributes and any 
other relevant data, sent to the meta-learning algorithm.   The rules learned may 
then be applied to test images at the testing phase, to obtain the best algorithm, 
parameter values or cluster of interest.  
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Fig. 11.2 Learning strategy at each stage of IC pipeline 
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11.4.3.1 IC Setup  

Four different clustering algorithms were used in the experiments. They are K-
Means (KM), Expectation Maximization (EM), Farthest First (FF) and Self 
Organizing Map (SOM). C4.5 (release 8)3 is used as a meta-learner to automate 
the process of selecting clustering algorithms, tuning their parameters and 
selecting a cluster of interest. 

The measures used for empirical evaluation of the results are based on 
(Wiedemann et al. 1998). They address two questions: firstly, how complete is the 
extracted road network, and secondly, how correct is the classification. They are 
calculated as: 

 %100R�
lengthreference

referencematchedoflength
sscompletene   (11.1) 

 %100R�
extractionoflength

extractionmatchedoflength
scorrectnes    (11.2) 

Completeness measures the percentage of the road reference image that has 
been segmented correctly in the training/test image, known otherwise as ‘recall’. 
Correctness measures the percentage of the segments that are actual road objects, 
known otherwise as ‘precision’. A high completeness means that a segmenter has 
extracted most of the road network, whereas high correctness implies that not too 
many incorrect road objects have been segmented. 

The two measures above are combined into a more general measure of quality, 
called cxc, which is expressed as:  

 scorrectnessscompletenecxc R� 2   (11.3) 

Clearly, this measure is biased towards correctness, and may be varied for 
specific applications. It is used to compare road clusters extracted by different 
algorithm-parameter combinations for the first two stages of the learning pipeline 
in IC, with higher values being more desirable.  

For the third stage of cluster learning, a set of thresholds was determined by 
empirical observation of what a ‘good’ road cluster should evaluate to, and is 
expressed as:   

  25.085.0 77 scorrectnesandsscompletene  (11.4) 

                                                 
3 Software available at http://www.rulequest.com/Personal/ 
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Although one goal of IC is to automate the process of parameter tuning, these 
parameters are still used for cluster definition; however, the number of parameters 
set manually has been reduced to only 2 overall, compared to a few for each base 
algorithm. 

The three stages of learning in the IC pipeline are now described in detail.  

11.4.3.2 Algorithm Learning  

The purpose of algorithm learning is to learn which algorithm works best for a 
given image. The learning attributes are the image characteristics and the 
algorithms used for clustering (see Table 11.3). The current image characteristic 
used is the number of edges extracted during low-level processing of the images. 

  

Table 11.3 Algorithm learning attributes 

Attribute Description Value 

Size Number of edges Continuous 
Algorithm Clustering algorithm used KM, EM, FF, SOM 
Class Whether the algorithm 

produces the best 
road cluster 

Good, Bad 

 

Best Algorithm
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Image 

Clustering Evaluate
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New Image 

Level
Attributes 

Good/Bad 

Training Phase 

Testing/Application Phase 

Reference Model

Cluster

Pick Algorithm

Rules

Image attributes 

Attributes 

Compare Performance

Best cluster  
performance 

Algorithm 

 
Fig. 11.3 Algorithm learning 
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The two phases of algorithm learning are shown in Fig. 11.3. In the training 
phase, RAIL attributes are calculated for each level and clustering performed for 
each algorithm-parameter combination. The clusters generated are evaluated using 
the reference image for each image, from which the completeness, correctness and 
cxc values are obtained. For each algorithm, the highest cxc cluster is selected for 
comparison. The algorithm with the highest cxc overall is classified as ‘Good’. 
The other algorithms are labeled ‘Bad’.  Then, using the attributes in Table 11.3, 
C4.5 is employed to generate a decision tree and the rules for algorithm selection.  
In the testing phase the learned rules are applied to a new image after extracting 
the required image attributes.  
 

11.4.3.3 Parameter Learning  

The goal of parameter learning is to deduce rules for the required number of 
clusters, given an image and an algorithm. The learning attributes are the image 
characteristics, the algorithm used and the number of clusters produced (see Table 
11.4). The current image characteristic used is the number of edges extracted 
during low-level processing of the images. 

Table 11.4 Parameter learning attributes 

Attribute Description Value 

Size Number of edges Continuous 
Algorithm Clustering algorithm used KM, EM, FF, 

SOM 
ncluster Number of clusters [2,29] 
Class Whether the parameter produces 

a good road cluster 
Good, Bad 

 
The two phases of parameter learning shown in Fig. 11.4 are similar to 

algorithm learning. In the training phase, RAIL attributes are calculated for each 
level and clustered with each algorithm-parameter combination. The clusters 
generated are evaluated using the reference image. Each parameter value that 
defines a cluster satisfying Eq. 11.3 is labeled a ‘Good’ parameter.  Otherwise, the 
parameter is labeled ‘Bad’. An alternative is to label the highest cxc valued cluster 
as `Good’ and all others as `Bad’. C4.5 is used to deduce rules using attributes in 
Table 11.4, which are then applied on a new image. The image attribute extracted 
and the learned algorithm (from the algorithm learning stage) for that image, are 
used to determine the ‘Good’ parameters to cluster with. As in the previous steps, 
in the testing phase the learned rules are applied to a new image after extracting 
the required image attributes.  
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Fig. 11.4 Parameter learning 

11.4.3.4 Cluster Learning  

The objective of cluster learning is to distinguish the road cluster from the non-
road clusters, when given an image, the algorithm and the number of clusters 
required.  The learning attributes are the image characteristics, the algorithm used, 
the number of clusters and the cluster centroids (see Table 11.5). The current 
image characteristic used is the number of edges extracted during low-level 
processing of the images. The cluster centroids are based on the level attributes 
used for clustering the data. 

Table 11.5 Cluster learning attributes 

Attribute Description Value 

Size Number of edges Continuous 
Algorithm Clustering algorithm used KM, EM, FF, 

SOM 
Centroid Cluster centre (RAIL Level 

Attributes) 
Continuous 

Class Whether the clusters satisfies (3) Good, Bad 

 
The two phases of cluster learning are shown in Fig. 11.5. In the training phase, 

RAIL attributes are calculated for each level and clustered with each algorithm-
parameter combination. The clusters generated are evaluated using the reference 
model for that image. Each cluster that satisfies Eq. 11.4 is labeled a ‘Good’ 
cluster, and other clusters are labeled as ‘Bad’. C4.5 is used to deduce rules using 
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attributes in Table 11.5, which are then applied on a new image. The image 
attribute extracted along with the learned algorithm and learned parameter (from 
the previous learning stages) for that image are used to determine the ‘Good’ road 
cluster and used in the testing phase on other images.  
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Fig. 11.5 Cluster learning 

11.4.4   Results and Evaluation  

IC was implemented for Levels 1 and 2 of RAIL and tested on several high 
resolution aerial images. In this section the results obtained on the images are 
presented in the following ways: 

(i)   rules learned at each stage of the IC pipeline for Levels 1 and 2 of RAIL 
(ii) leave-one-out cross validation results at each stage of the IC pipeline for 

Levels 1 and 2 of RAIL 
(iii) test results illustrating IC in practice. 

 
This is then followed by an evaluation of results. Fifteen grey-scale images 

from a rural area in Canberra, Australia were used, named from A to O.  The size 
of each image is 1024*1024 pixels, having been cropped from a larger image of 
ground resolution 1.3 meters per pixel. The image characteristics are shown in 
Table 11.6. Although only 15 images were used, each image contains thousands of 
samples at the edge pair and road pair levels. Leave-one-out cross validation was 
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used, to learn from the largest available dataset and obtain effective test sets. 

Table 11.6 Image characteristics 

Image No. of edges 

A 3039 
B 3769 
C 12482 
D 9150 
E 12855 
F 6055 
G 6103 
H 7056 
I 5797 
J 5231 
K 4761 
L 9513 
M 3045 
N 4014 
O 5559 

11.4.4.1  Inductive Learning Rules  

At each stage in the Inductive Clustering framework, C4.5 learns rules that are 
used to automate clustering of unseen images. Some examples of the learned rules 
for the 3 stages of Level 1 are listed below. The rules can only be applied to 
images with similar properties (e.g. resolution, complexity, etc.) as the training 
images. Level 2 rules are similar to Level 1 except that their attributes are 
different, and they are not shown. 

Each rule identifies a partition of data via its learning attribute and gives a 
classification for that partition. The percentage after the classification indicates the 
accuracy of the rule when applied on the training data, which might not be the 
same when applied to test data.  

11.4.4.2  Algorithm Learning  

The following rules were derived from learning on images A-N, and tested on 
image O. Rule 1 selects KM as the best algorithm to use regardless of the image 
attribute (number of edges).   

Rule 1:   algorithm = KM     ->  class good  [51.5%] 
Rule 2:   algorithm = SOM   ->  class bad  [90.6%] 
Default class:   bad 

11.4.4.3  Parameter Learning  

The following rules were derived from learning on images A-N, and tested on 
image O. The algorithm was learned at the previous stage. Rule 39 selects the 
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number of clusters to be between 8 and 15, when the number of edges is fewer 
than or equal to 6103, and the clustering algorithm is KM. 

  
Rule 39:  size <= 6103, algorithm = KM,  ncluster > 7,  ncluster <= 15    
  ->  class good [86.8%] 
Default class: bad 
 
Cluster Learning:  The following rules were derived from learning on images 

A-N, and tested on image O. Rule 43 selects a cluster as a road cluster if the 
width, internal intensity, length centre and bearing are within the learnt ranges. An 
additional condition it must also satisfy is on the number of edges on the image. 

 
Rule 43: size > 3039, size <= 9513, width > 10.13, width <= 21.93, 

internal_intensity > 112.08, internal_intensity <= 167.52, length_center > 23.16, 
bearing > 2.16, bearing <= 15. 87 ->  class good  [71.8%] 

Default class: bad 

Table 11.7 Level 1 cross validation (%)* 

Learning 
stage Error rate Completeness Correctness 

Algorithm 16.7 (16.7) 66.7 (66.7) 66.7 (66.7) 
Parameter 38.1 (6.8) 56.0 (92.0) 54.1 (91.9) 
Cluster 2.6 (0.7) 45.0 (82.7) 52.1 (91.3) 

Table 11.8 Level 2 cross validation (%)* 

Learning 
stage Error Rate Completeness Correctness 

Algorithm 21.7 (21.7) 0.0 (0.0) - (-)** 

Parameter 34.3 (0.8) 72.3 (99.2) 77.0 (99.7) 
Cluster 6.9 (1.0) 65.1 (86.9) 39.5 (94.2) 

*The results are averaged over 15 cross validation experiments. The results for test images are given 
first and those for training images in brackets. 
** Undefined since no positive classification 

11.4.4.4  Cross Validation Results   

The rules learned during the training phase of IC were applied to the test 
images, in order to pick the appropriate clustering algorithm for the test image, set 
its parameters automatically and finally pick out the road cluster in the image.  
Tables 11.7 and 11.8 present leave-one-out cross validation results for IC at 
Levels 1 and 2, which are summarized from the confusion matrix calculated by 
C4.5. The results for the 15 images have been averaged. The rules were also 
applied back on the training images and the training image results are shown 
within the brackets. 
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11.4.5  IC in Practice  

The system is able to automatically select the clustering algorithm and 
parameter values and pick the road cluster. The results are shown in Table 11.9 for 
Level 1. The procedure starts by using the learned algorithm to find the good 
parameters.  Usually the learned parameter is not a single number; rather it ranges 
between 2 and 29, and clustering starts from the smallest parameter found.  The 
clustered data are used as input to cluster learning and if a road cluster is selected, 
the process is complete and the completeness and correctness values of the road 
cluster are evaluated. If cluster learning does not select a road cluster, the next 
available parameter is used.  The parameter column in Table 11.9 shows the 
parameter range learned, and the number after the dash is the parameter value 
which selected a road cluster. If a parameter cannot be found (labeled Non), IC 
was set up to randomly select a parameter from the given range. Only 2 selected 
road clusters (for Image C and M) are false positives, as confirmed by examining 
each cluster visually, otherwise every image output has high completeness values. 

Image B has a completeness value of over 100% in Table 11.9, which is due to 
the buffered zones in the centerline reference that was employed.  When road 
sections are very noisy and there are many edges near the road but within the 
buffer zone, they may be counted as positive objects, but this only happens 
infrequently as the buffer zone is relatively small (3 pixels on each side of the 
reference). 

Table 11.9 Level 1 inductive clustering 

Image Algorithm Parameter Completeness Correctness 

A KM [8,21] - 13 98.4 27.8 
B KM [6,29] - 12 102.0 31.6 
C KM Non - 14 90.6 18.0 
D KM [10,29] - 11 92.6 41.3 
E KM Non - 25 90.4 25.1 
F KM [6,29] - 8 96.6 41.9 
G KM [11,13] - 11 94.8 46.3 
H KM [6,15] - 11 85.2 25.2 
I KM [13,25] - 13 94.8 32.3 
J KM [6,25] - 8 94.2 35.1 
K KM [8,14] - 9 95.2 47.3 
L KM Non - 17 94.8 27.7 
M KM [6,21] - 7 99.6 22.1 
N KM [11,13] - 11 93.6 52.98 
O KM [8,15] - 8 94.2 63.6 

 
The Level 2 error rates in Table 11.8 are similar to the Level 1 rates, but the 

completeness and correctness values are higher, with the exception of algorithm 
learning.  Table 11.10 shows the Inductive Clustering results for Level 2. Three 
out of the 15 images did not have classified parameters (Images E, G and L), and 
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the parameters for these images were randomly selected.  6 out of the 15 images 
did not have classified road clusters for the given algorithm and parameters. For 
those images where road clusters were selected automatically, they have a slightly 
lower completeness than Level 1 but higher correctness values as expected.  

Two sets of images (E and O) are shown from Fig. 11.6 to Fig. 11.13. Each set 
contains the reference image, the input edge image, the Level 1 output (in grey-
scale and color) and Level 2 output (in grey-scale and color) from IC. The grey-
scale images are provided for better viewing on print. Image E shows the 
performance of the system even when the learned results are poor, i.e. when 
parameter learning finds no solutions. Image O has been cropped since the lower 
portion of the image is totally black as it was near the bottom edge of a larger 
image. 

11.4.6 Evaluation of Results  

The accuracy of algorithm learning in Tables 11.7 and 11.8 is fairly low and 
may be attributed to several factors. Firstly and most importantly, the current 
image characteristic used is the number of edges, which is used to differentiate 
between images. This is probably inadequate to characterize an image type fully; 
other image attributes such as land coverage and texture measures may solve this 
problem.  Another reason for the low accuracy of algorithm learning is that the 
clustering algorithms used perform almost equally well. Selecting the ‘best’ 
algorithm by their best cxc cluster which only differ by approximately 1% could 
be misleading at best. In Level 2 when algorithms were randomly used, more than 
half of the images were able to obtain good results via IC, which means that the 
algorithm used is not so important.   

Table 11.10 Level 2 inductive clustering 

Image Algorithm Parameter Completeness Correctness 

A KM (3,18] - 3 89.6 41.4 
B FF [2,18] - Non - - 
C EM [2,4] - Non - - 
D SOM [2,10] - Non - - 
E KM Non - 4 87.8 30.2 
F FF [2,9] - 4 93.3 64.7 
G EM Non - 5 92.4 66.7 
H SOM [2,29] - 14 70.6 32.3 
I KM [2,29] - 2 94.8 35.1 
J FF [2,9] - Non - - 
K EM [2,17] - 5 92.0 70.2 
L SOM Non - 6 - - 
M KM [2,4] - Non - - 
N FF [2,18] - 3 85.9 60.1 
O SOM [2,17] - 2 92.4 65.1 
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Determining the best algorithm using a single cluster might itself be 
problematic. For example, Algorithm A might have the highest cxc value but only 
very few parameters for that algorithm are good.  On the other hand, Algorithm B 
might have a slightly lower cxc value but many good road parameters. Although 
Algorithm A is the ‘best’ algorithm in terms of cxc, Algorithm B could also be 
considered if the parameters learned using the algorithm are weighted. This would 
require feedback by cross-level learning and will determine a more realistic 
algorithm since parameter learning has higher error rates. 

The goal of IC is to automatically learn the algorithm-parameter combination 
that will produce a good road cluster, and parameter learning addresses this 
problem.  In the experiments, the cross validation error rate for parameter learning 
was low and completeness and correctness were high in the training phase, but 
they were poor when applied to test images (see Tables 11.7 and 11.8).  The 
problem stems from the paucity of training images and the fact that the current 
image characterization is probably inadequate. The inductive approach typically 
classifies false positives when it determines good parameters that are greater than 
18 clusters.  This is due to the nature of clustering algorithms.  When the data is 
represented by fewer clusters, fine detail is lost, but simplification is achieved in 
that there is one cluster which contains all the road objects, plus other similar non-
road objects.  These road clusters typically have higher completeness but lower 
correctness compared to road clusters using a higher parameter value.  If the data 
were represented by more and more clusters, the cluster details can be learned but 
road objects may be split into several clusters, with each being a different type of 
road.  This is the reason why IC begins with the lowest parameter value learned 
and then works its way up the parameter range as it looks for a good road cluster.  
From Tables 11.7 and 11.8, cluster learning has the lowest error rate among the 3 
learning stages, but its completeness and correctness values are still relatively low.  

The problems that cause the false positive segmentations are due to the limited 
level attributes (cluster centroids) that are used for cluster learning.  When the 
number of clusters is higher than 18, there may be multiple clusters that contain 
different types of road objects.  Therefore the assumption that all the road objects 
are contained in one cluster may need to be relaxed.  The randomness of cluster 
centroids is dependent on the initial centroid position and the ordering of data 
presented to the algorithm. Typically, when IC erroneously classifies a road 
cluster, there is usually another cluster with very similar attributes except for one 
attribute. To avoid these problems, inter-cluster attributes may need to be included 
as part of the cluster learning process.  These could be distance to nearest cluster, 
relative spatial position to k-nearest clusters, shape and compactness.  
Furthermore, multiple road clusters may allow be permitted. 
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11.4.7 RAIL Levels 3 and 4 
From the edge pairs identified in Level 2 of RAIL, junction information is 

extracted and has been described elsewhere (Teoh and Sowmya 2000). A junction 
contains three edge pairs. The edge pair and junction information are then fused at 
the feature level and the fused features then provide support to an extended fast 
marching level set method by providing confident road seeds and helping to refine 
road centerline extraction (Cai et al. 2005). Machine learning is utilized to learn 
the seeds selection rules and stopping criterion parameter rules. A set of seeds is 
selected according to the learned rules, which determines the initial location for 
the fast marching level set method. At the same time, a texture based parameter is 
used to reduce the speed function to zero. Then, a fast marching level set method 
is applied on the image again to extract the road contour and road centerline 
network. The results of fast marching and the road segments are then combined to 
improve road recognition. Figure 11.14 shows the extracted centerlines of one 
whole image on the left and its ground truth on the right.  

 

                 
   Fig. 11.6 Image E reference model   Fig. 11.7 Image E input 

 
Fig. 11.8 Image E Level 1 output (left: gray scale; right: color, highlighted) 
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Fig. 11.9 Image E  Level 2 output  (left: gray scale; right: color, highlighted) 

  
 

Fig. 11.10 Image O reference model   Fig. 11.11 Image O input 

  
Fig. 11.12 Image O Level 1 output (left: gray scale; right: color, highlighted) 

  
Fig. 11.13 Image O Level 2 output (left: gray scale; right: color, highlighted) 
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Fig. 11.14 Extracted centerlines (left) and ground truth (right) 

11.5 Fusion of Multi-source Data Based on Dempster-Shafer  
Approach   

We now turn to a problem of building extraction from multi-source data, based 
on a probabilistic approach of feature extraction based on the Dempster-Shafer 
algorithm. Two examples of this application have been undertaken by Lu et al. 
(2003) and Lu et al. (2006) for multispectral images and Rottensteiner et al. 
(2007) for images and LiDAR (Light Detection And Radar). Only the first 
example will be briefly described, since the latter research has been presented in 
Rottensteiner and Clode (2008).   

Lu et al. (2003) described a system for extracting buildings and trees from 
digital aerial images in order to derive bare earth elevations. The system consists 
of three main parts: the first part derived a digital surface model (DSM) by image 
matching of the stereo image pair on a digital photogrammetric workstation 
(DPW). A multi-band classification of multispectral images using K-Means 
unsupervised clustering of the area and a NDVI (Normalized Difference 
Vegetation Index) was then used to transform the multispectral data into a single 
image band representing vegetation. While multispectral images supply abundant 
information for land cover classification, the NDVI and DSM are two key 
parameters, which define the difference between vegetated and non-vegetated 
objects. Simplistically, the areas which have heights above a certain limit are 
likely to be either trees or buildings.  Areas with low NDVI and above the general 
terrain surface are likely to be buildings, whereas areas with high NDVI and are 
above that surface are likely to be trees. Areas with high NDVI, with heights 
similar to the terrain surface are likely to be grassland or cultivated areas. 
Therefore, based on the above hypotheses, so-called ‘building interest areas’, i.e. 
areas likely to be buildings, were derived in Part 1, and processed further in Parts 
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2 and 3. Part 2 defines building outlines based on the level set formulation of 
curve and surface motion, driven by an image-dependent speed function. Part 3 
uses the Dempster-Shafer fusion theory, to combine three different data sources, 
namely the classified image, referred to hereinafter as the ‘clustered image’, DSM, 
and the building outlines, to extract the estimated correct building areas.   

11.5.1 Shape Modeling and Image Segmentation with Level Set 
Method  

The level set method for curve propagating interfaces was introduced by Osher 
and Sethian (1988), and Sethian (1999). It is based on mathematical and numerical 
definitions of curve and surface motion by Sethian (1985), and offers a highly 
robust and accurate method for tracking interfaces moving under complex 
motions.  

Consider a closed curve moving in a plane. Let )0(� be a smooth, closed initial 

curve in a Euclidean plane 2R , and let )(t�  be the one-parameter family of curves 
generated by moving )0(�  along its normal vector field with speed )(KF , K is a 
given scalar function of the curvature. Let ),(x ts  be the position vector which 
parameterizes )(t�  by s, Ss ==0 .  

The level set method represents the front )(t�  enclosing curve, as the level set 
{ 0�I } of a function I . Thus, given a moving closed hypersurface )0(� , we 
wish to produce a formulation for the motion of the hypersurface propagating 
along its normal direction with speed F.  F can be a function of various arguments, 
including the curvature, normal direction, etc. The main idea is to embed this 
propagating interface as the zero level set of a higher dimensional function I .  
Let )0,( �I tx , where NR6x  in N dimensional space, is defined by    

 dtt F��I ),( 1x   (11.5) 

where d is the distance from x to )0( �t� , and the plus sign is chosen if the point 
x is outside the initial hypersurface )0( �t� , the minus sign is chosen if the point 

x is inside the initial hypersurface. Thus, the initial function NRt 6�I xx :)0,(  
can be defined as follows: 

 )0)0,(()0( ��I�� tt x|x�  (11.6) 

Now, we need to produce an equation for the evolving function ),( txI , which 
contains the embedded motion of )(t�  as the level set { 0�I }.  
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Using the chain rule in Sethian (1995, 1999), the evolution equation for I  can 
be a type of Hamilton-Jacobi equation.  Based on the advantages of the Hamilton-
Jacobi equation, in two space dimensions, a numerical approximation for the 
evolving function can be obtained.  Using the forward and backward difference 
approximations in I , the evolving function can be described as Equation (11.7) 
and n defines iterations. 
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where   
 �

xD  computes the new values at  j using information at  j and  j+1; 
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The speed function can be as follows: 
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where K is the curvature of  level set. LOG is Laplacian of Gaussian operator. 
The intrinsic geometric properties of the front curve may be determined from 

the level function I  because 1F  is related to curvature K.  The above level set 
approach can be used in high spatial dimensions.  

Based on the ‘building interest areas’ derived from image analysis step, the 
level set algorithm is used to process all ‘building interest areas’ to delineate their 
boundaries. Figure 11.15 gives an example to show how the level set method 
works. The example demonstrates that when the evolving curve reaches the 
boundaries of the building, all the points on the curve stop evolving further and 
the computation is ended.  
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(a)   (b)       (c) 

     
     (d)                          (e)     (f)   

Fig. 11.15  Example of delineation the boundary of the ‘building interest areas’ 

Figure 11.15(a) shows the zero crossings over the building areas, which are 
obtained by convolving the image with a LOG operator. Figure 11.15(b) shows 
the zero crossings overlaid on the original image. Figure 11.15(c) and 11.15(d) are 
the intermediate curves of the level set modeling. Figure 11.15(e) shows the final 
curve from the level set modeling.  Only the building boundary shown in blue is 
extracted because the points on the boundary stop the curve from evolving further. 
The final boundary of the building overlaid on the original image is shown in 
Figure 11.15(f). 
 

11.5.2  Data Fusion  

In this step several sets of data are combined to provide a more reliable 
estimate of the buildings and trees, by the process of data fusion using the 
Dempster-Shafer algorithm.  In this case there are 3 sources of data, the ‘clustered 
image’, the ‘DSM’, and the ‘building outlines’ derived by the level set.   
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As described in (Lu et al. 2006), the Dempster-Shafer approach is a statistically 
based classification algorithm which can be used to combine the knowledge from 
several data sources of the same region, to find the intersection of propositions on 
extracted information, derived from these datasets, together with the associated 
probabilities. This theory allows the representation of both imprecision and 
uncertainty and appears as a more flexible and general approach. 

Assume a set of n propositions making up the hypothesis space as denoted 
by W . W2  are the subsets of W .  Based on the information from the data sources, 
a probability mass m can be assigned to any proposition or union of propositions.  
For W6M 2A . m is defined for every element A and the mass value )(Am is in 
the interval [0,1]. The following mass equations can be obtained: 

 0)( �Xm  (11.9) 

 1)(m)(
2

��W 8
WS

A
A

m  (11.10) 

 where  X  is the empty set. 
 

In image classification, W  is the set of hypotheses about a pixel class.  The 
Dempster-Shafer theory permits the consideration of any subset of W .  Applied to 
image classification problems, it means that single classes, as well as any union of 
classes can be represented. The number of classes (including all possible unions, 
but excluding the null set) is called the power set and is equal to 12 �n . For 
example, if n=3, 7123 �� , classes are given by  C1, C2, C3, C1 Y C2, C1 Y  C3, 
C2 Y C3, and C1 Y  C2 Y  C3 (Shafer 1976), Hegarat-Mascle et al. (1997), Klein 
(1999).  

The Dempster-Shafer theory provides a representation of both imprecision and 
uncertainty through the definition of two parameters: support (Sup) and 
plausibility (Pls), which are obtained from the probability mass function m.  
Support for a given proposition means that all masses assigned directly by the data 
sources are summed. Plausibility for a given proposition means all masses not 
assigned to its negation are summed. For W6M 2Ai , the two parameters are 
defined respectively as follows: 
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An uncertainty interval is defined by [Sup(A), Pls(A)]  where 
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with W�Y AA  , X�Z AA . 
The support value of hypothesis A may be interpreted as the minimum 

uncertainty value about A. Its plausibility may be interpreted as the maximum 
uncertainty value of A. The uncertainty interval gives a measurement of the 
imprecision about the uncertainty values.  For several data sources, the Dempster-
Shafer method allows compatible propositions to combine the probability masses 
from these sources to obtain a single value for the probability of the intersection 
(union) of the propositions.  

As shown in Lu et al (2006) for multiple data sources, tm  is the basic 
probability mass provided by source t ( 3,1 7== ppt ), the combination of all the 
data sources is defined as follows: 
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In the Dempster-Shafter theory, the hypotheses about single classes and 

hypotheses about unions of classes are called simple hypotheses and compound 
hypotheses, respectively.  When the probability mass of simple hypotheses are not 
null, a decision rule must be determined that best suits the application, such as the 
maximum support over simple hypotheses. The formula is as follows:   
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The evaluation procedure by Dempster-Shafer approach to data fusion is based 
on spatial features. This means that the determination of probability masses and 
their combination is based on the frequencies of the features.  For each ‘building 
outline’, there are corresponding areas obtained from the ‘DSM’ and ‘clustered 
image’.  The ‘DSM’, the ‘clustered image’, and the ‘building outlines’  are 
therefore assigned as data sets 1,2, and 3 respectively (Lu et al 2006). Classes C1, 
C2 and C3 represent trees, buildings and ground respectively. 
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Lu et al. (2006) have described the derivation of Table 11.11, which shows the 
origin of the computed probability mass, plausibility and support values for each 
simple and compound hypothesis based on three data sources. For the ‘clustered 
image’, the probabilities for all the simple and compound classes are represented 
by probability t, as an example. Similarly, the probabilities for ‘building outlines’ 
and ‘DSM’ are represented by u and s respectively.  

For the data fusion process, the probability masses are based on information 
provided by each image. For the clustered image, )(1 Am   there are no null values 

assigned to C1, C2, C3 and C2 Y C3 as shown in Table 11.11. Since C2 for 
buildings and C3 for the ground may have the same texture in the image, there are 
ambiguities between these two classes in ‘clustered image’. In Table 11.11, C2, 
C3 and C2 Y C3 are assigned the same probability, t.  
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For each extracted region defined by the ‘building outlines’, the numbers of 
pixels representing as trees, ground, glasses and building can be calculated 
respectively. The probability u can be defined based on the number of pixels 
assigned to each building region.  For data set 2, ‘building outlines’, since they are 
extracted from low-level image analysis and interpretation and the level set 
modeling based image segmentation, they are assigned higher probabilities.   
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For data set 3, ‘DSM’, since buildings and trees are above the ground in the 
DSM, if they have about the same height, these two classes of areas are easily 
confused. As shown in the Table 11.11, class C1 representing trees, C2 of 
buildings and C1 Y C2 are therefore assigned the same probabilities, s.  

In Rottensteiner et al. (2007), which involved both images and LiDAR a 
different approach was taken for the definition of mass probabilities for each of 
the classes. In this case, emphasis was placed on the union of classes, and mass 
probabilities were modeled by a cubic parabola between 2 extreme values and 
constant values outside these 2 extremes.   

11.5.3 Results of Experiments 

While a number of test areas have been investigated with this approach, the 
results4 of processing an area shown in (Lu et al. 2006) will be given in the 
following. Figure 11.16 illustrates a left image of a pair of color aerial images with 
522 R 584 pixels in the row and column directions respectively, with GSD of 0.3 
meter. The flying height is 3070 meters and the original scale of the images was 
1:20,000. The scale of the images is smaller than desired, but larger scale images 
of the area were not available.  The majority of buildings have white or red roofs, 
but there are some dark roof buildings as well. Based on the classification, a 
segmented image can be created to show the areas classified.  Most of the building 
areas have been detected, but the dark roofed buildings are completely missed and 
will not be recovered. Some red roofed buildings are partly detected. Also, one car 
is assigned as a building in the top of image. 

 

     
Fig. 11.16 Left image of stereo                        Fig. 11.17  Building interest areas after 

                             clustering image analysis 

                                                 
4 The results of these tests have been presented with the permission of the 
American Society for Photogrammetry and Remote Sensing (ASPRS). 
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        Fig. 11.18 Building outlines overlaid on           Fig. 11.19   Result of Dempster-Shafer based 
          ortho image             on 3 datasets overlaid on ortho image 
        

Since only the color image was available, the results of processing by Visible 
Vegetation Index (VVI) were obtained using only the 3 color images.  These areas 
with high VVI represent the vegetation and the areas with low VVI represent the 
ground and building areas. The four information layers of DSM, classification, 
post classification segmentation and VVI are input into the ArcView®, using the 
Map Queries operation, and the possible building areas are extracted. Using the 
region growing algorithm, small spots which do not belong to buildings can be 
deleted from the Map Queries result. The derived ‘building interest areas’ are 
overlaid on the ortho image as shown in Figure 11.17.  Some road areas wrongly 
assigned as buildings have been deleted and the correct building areas derived 
from classification have been successfully maintained.  For every small building 
area, shape modeling with level set method was then implemented.  Some regions 
in the left of the image, which belong to road areas, are still assigned as building 
areas after this step as shown in Fig. 11.18.  Thus, it is necessary to use Dempster-
Shafer data fusion method to evaluate the regions. 

The Dempster-Shafer method provides a single value for the probability of the 
intersection (union) of the propositions.  Based on the decision rule given in 
Equation 11.14 , the three data sources, ‘clustered  image’,  ‘building outlines’ and 
‘DSM’ were combined to produce more reliable building areas shown overlaid on 
orthoimage  in Figure 11.19. 

The consequence of the data fusion is that three incorrect building areas have 
been detected and deleted in the final result, while the correct building areas 
remain unchanged. There are 50 buildings in the image and 40 building are 
detected. The detection rate is 80%. The DSM extraction and low-level image 
analysis and interpretation are important, since they supply ‘building interest 
areas’ and the level set modeling and data fusion are based on these areas.  Since 
some dark roof buildings were missed in Part 1 of the process, they will never be 
recovered.  The results of building extraction could be improved by refining Part 1 



Automated Information Extraction 323 

and using larger scale images.  The improvement in building extraction by using 
the data fusion approach is 3 out of 50.  This is important processing step because 
it makes the system to supply more reliable extracted buildings. 

In Lu et al. (2006) 5 test areas have been presented in which 80% or more 
buildings have been detected in all tests as shown in Table 11.12.  The Dempster-
Shafer data fusion technique provides the theoretical basis for evaluating the 
reliability of the extracted buildings from the combination of the different data 
sources by a statistically-based classification. Based on the test areas shown, the 
results are encouraging, but further research is needed to refine these methods, in 
order to extract a greater number of the buildings with different textured roofs. 

Table 11.12   Results of all tests in this study 

 Test No Total 
buildings 

Regions 
derived by 
level set 

Detected  
buildings 

Deleted 
wrong 
buildings 

False 
evaluation 

Detection 
rates 

Test1 96 91 85 5 1 88.5% 
Test2 32 39 31 8 0 96.8% 
Test3 61 65 50 11 4 81.9% 
Test4 50 43 40 3 0 80% 
Test5 26 24 21 2 1 80.8% 

11.6 Conclusion  

This chapter has described several methods that have been developed to extract 
features from digital satellite and aerial images.  The chapter commenced with a 
description of some of the issues that impact on a developer’s ability to 
automatically extract features from images, and typical approaches taken in 
computer science.  A review is then given of current methods that have been used 
to extract roads from digital images.  A method based on machine learning has 
been described in detail for the extraction of roads at four levels: road edge pairs 
that enclose a segment of road; linked road edge pairs that form continuous roads; 
intersections to form junctions; and road networks. The approach uses a specially 
designed inductive learning technique called Inductive Clustering (IC) that can 
automatically select parameters for clustering algorithms by learning from 
clustering examples in the images, in three steps: algorithm learning that derives 
the clustering algorithm most suited to an image type; parameter learning that 
finds the most appropriate parameter values that give the best results for the 
learned algorithm and image type; and cluster learning that identifies a cluster of 
interest.   Tests of the approach on a number of images have been presented. 

 A description is then given of a method of detecting buildings from multiple 
data sources based on the Dempster-Shafer algorithm where the evidence used to 
identify buildings includes a digital surface model, NDVI derived from 
multispectral images, image analysis based on clustering and building outlines 



324 Automated Information Extraction 

extracted using the level set approach. The section gave an introduction to level 
set theory and its implementation, followed by a description of the principles of 
the Dempster-Shafer algorithm and the approach used to determine the mass 
probabilities for each data source. Examples of tests on the method have also been 
given which demonstrate accuracies for extracting buildings higher than 80%. 
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Chapter 12   

EFFICIENT GEOSPATIAL ANALYSIS OF 
REMOTELY SENSED IMAGES BY MEANS OF 
LINEAR FEATURE EXTRACTION AND 
COMBINATION 

Gianni Lisini, Fabio Dell’Acqua, Paolo Gamba  

12.1 Introduction 

An efficient and valid interpretation of very high resolution images, either SAR 
or optical, must take into account the spatial details of the scene. As a result, there 
are many options to the very simple pixel-by-pixel classification scheme which 
applies to coarse resolution remote sensing data sets. One option is the exploita-
tion of spatial features, like for example textures, that connect each pixel with its 
neighborhood (Dekker 2003). Another option is multi-scale analysis, where scales, 
and thus contexts with different size, are jointly considered to capture details at 
various levels (Benediktsson et al. 2003). A third option, explored in this chapter, 
is to extract significant yet simple geometrical features and use them (possibly in 
combination with spectral features) to improve the understanding of the scene 
(Xin et al. 2007). It is a separate approach, other than standard classification, but it 
can be used also for classification and change detection (which is essentially 
multitemporal classification). 

One of the simplest yet efficient geometrical features that one can exploit in 
human settlements or, generally speaking, when artificial structures are of concern 
are linear features. They can be used as a basis for higher-level feature extraction, 
such as parallel pairs or junctions, and combined to obtain even more complex 
elements, like geometric shapes. They are very flexible elements of the scene, and 
can be used for a variety of applications, provided an efficient methodology for 
their extraction is considered, capable of dealing with different VHR images, such 
as SAR and optical ones. After this step, higher-level feature extraction needs to 
be at the same time fast and reliable, building over the feature extraction in an ap-
plication-driven manner. Finally, the ability to manage these spatial features in 
conjunction with spectral ones must be taken into account, and an eye must be 
kept on pixel-based measures related to spatial information. 
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The choice of focusing on “segments” -as we will call the linear features ex-
tracted from a VHR scene- in our research work is a result of balancing between 
advantages and disadvantages. The most important advantage of segments is the 
(relative) simplicity of the extraction routine, as well as the high flexibility in 
combining them into various and very different scene elements. The disadvantages 
are related to problems in discriminating segments belonging to geometrically 
very similar yet semantically completely different elements of the scene, and the 
high level of false positives and/or false negatives that any segment extractor pro-
duces. 

Although the single steps of this approach are not novel, this chapter attempts 
to describe the methodology in a framework that allows recognizing many differ-
ent applications as instances of the same idea. To this aim, the structure of this 
chapter is devoted first to describe the state of the art in technical literature for ap-
proaches based on linear feature extraction and combination for VHR image 
analysis. Then, a general framework is described and proposed. Following this 
general assessment of the problem, the following section of this chapter is con-
ceived as the presentation of a simple yet flexible routine for segment extraction in 
VHR remotely sensed imagery. Section 5 explains how segments can be combined 
to extract higher-level geometrical elements of the scene, such as junctions and 
parallel pairs. Eventually, applications of the framework and the specific steps 
proposed in this chapter are discussed in the final section, which introduces a few 
applicative examples, showing how it is possible to exploit linear and higher-level 
features for very different purposes. 

12.2 Linear Feature Extraction in VHR Image Analysis 

Although there are many ways to interpret an image, remotely sensed data in-
terpretation approaches are constrained by the nature of the data and its geo-
graphical meaning. As a result, the general trend in this specific area of image 
processing is on the one hand toward more refined classification algorithms, ex-
ploiting at their best the measurement vectors coming from multi- or hyper-
spectral sensors or from multi-scale analysis of the scene. On the other hand, the 
research is moving towards more and more object-based scene analysis. With re-
spect to both these issues, more feature extraction and feature fusion methodolo-
gies are continuously seeked, tested and compared. One specific feature that has 
been always considered as useful is the linear one, which may be considered, ac-
cording to the approach, an edge, a portion of a road, a texture element.  

Although not limited to VHR images, the use of linear features has been often 
associated with the finest spatial resolution, because linear features are increas-
ingly visible and meaningful when more and more scene details are available. Ex-
amples date back from the use of the first panchromatic aerial images, where lin-
ear features have been considered as the basis for the interpretation of the 
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structures in the scene, mainly because they are mostly associated with artificial 
manufacts. In Nevatia and Babu (1980), for instance, the general system for ex-
tracting edges by means of image filtering, followed by aggregation of the ele-
ments into higher level feature based on specific rules has been introduced. The 
same ideas has been used by the authors in many paper devoted to object extrac-
tion and image interpretation (Lee et al. 2002), considering also multiple images 
to solve from complex topologies for the edges in building rooftops (Kim et al. 
2002). Similarly, in Krishnamachari and Chellappa (1996), Markov Random 
Fields instead of Perceptual Grouping rules are used to provide a system able to 
detect and delineate buildings starting from edges. Finally, and without any inten-
tion to provide a complete list but just to give an idea of the numerous ideas de-
veloped in this field, another methodology, based on graphs to connect edges and 
eventually recognize buildings have been presented in Kim and Muller (1999). 

On a different subject, linear feature are naturally part of any road extraction 
approach, and they are also instrumental for many road element detection tech-
niques (e.g. Tavakoli and Rosenfeld 1982). As a result, basic road element extrac-
tion methods are usually considering linear features as components or seeds for 
the characterization of the whole network (Netenyahu et al. 1997, Netanyahu et al. 
1996, Merlet and Zerubia 1996, Agouris et al. 2001, Kozaitis and Cofer 2005, Shi 
and Zhou 2002). To enhance the suitability of “standard” image processing rou-
tines to different linear element exploitation techniques, extraction algorithms 
suited to optical (Groch 1982) or SAR (Onana et al. 2001) remotely sensed data 
have been developed, each one with its own peculiar advantages. Fusion of the re-
sults by these extraction routines has been also proposed (Dell’’Acqua et al. 2002) 
in order to improve and refine the output product of the interpretation process. Be-
sides extracting, recognizing and joining linear elements, more advanced refer-
ences in technical literature propose to combine linear features extracted from 
VHR images in order to detect roadsides (Amini et al. 2002), road intersections 
(Mackaness and Mackchnie 1999), zebra crossings and other similar scene ele-
ments (Jung and Paparoditis 2003). For instance in Zlotnick and Carnine (1993) 
antiparallel edge pairs, are used as clues to road hypotheses, and the longer the 
pair, the more reliable the seed for further road network processing. 

Finally, a different way to exploit the information provided by linear features, 
more related to their being a texture component, has been used in HR and VHR 
images for classification purposes. The very recent example discussed in Huang et 
al. (2009) shows that linear element density and orientation can be used to dis-
criminate among different blocks in urban areas, or as a hint to different land uses. 
Another interesting reference is Price (1999), where a model-based approach is 
used to detect urban grid patterns and classify them.  
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12.3 A General Framework 

The examples discussed in the previous section highlight the large amount of 
work proposed with respect to linear feature extraction and their use for VHR 
scene interpretation. In order to try and provide a general framework where these 
examples could fit in, we introduce the procedure whose building blocks are 
shown in Fig. 12.1. 
 

 
Fig. 12.1 General framework for VHR scene interpretation procedure based on feature extraction 
and combination, and specifically, for what concerns this chapter, on linear features 

The procedure is aimed at VHR scene interpretation and includes two steps, 
running sequentially and able to provide eventually a full scene interpretation 
product: the “top-down” and the “bottom-up” steps. 

The top-down step is aimed at extracting via basic scene description the most 
important areas (hotspots) in the scene. One way to achieve this is by means of an 
object-based segmentation or by a supervise/unsupervised classification. Usually 
this step does not require the full spatial resolution of the VHR data and should 
consider textural information, ancillary data and other non remotely sensed data 
(e.g. in situ measurements). 

The bottom-up step is instead devoted to focus within the hotspots extracted 
during the first part of the procedure and extract basic geometrical elements of the 
scene, e.g. the linear segments as in this chapter. The extraction, combination 
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and/or joint analysis of these geometrical features and the information they carry 
will provide in the end a refined description of the scene. 

The advantage of this framework is that on the one hand it generalizes usual 
scene interpretation methodologies base on geometric feature alone. On the other 
hand, it exploits as much as possible the spectral and textural characteristics of the 
remote sensing data, by means of the top-down segmentation and hotspot recogni-
tion. The main idea behind this framework is therefore that the combination of 
these two steps is able to improve the final interpretation results of each of them 
by means of an “information fusion” approach. For instance, it is likely that the 
joint use of a map of the objects in the scene (with knowledge of their meaning) 
together with the geometrical features extracted from the same scene will reduce 
false detections (e.g. linear elements within the boundaries of areas recognized as 
water bodies due to their spectral signature) and it will also provide a measure of 
the reliability of the geometric feature extraction results (e.g. a high density of 
straight lines is more likely within a human settlement than in open rural regions).  

According to this framework, the linear feature extraction and combination 
techniques described in the following two sections can be understood as a part of a 
procedure whose practical applications are the examples proposed and discussed 
in Section 6. 

12.4 Linear Feature Extraction 

One of the fundamental elements of the second part of the framework discussed 
in the previous section is therefore the extraction of all the linear features in the 
scene under consideration. Among them, some will represent portions of road and 
railway networks, river banks, others portions of building perimeters (houses, 
walls, embankments), as well as vegetation contours. These objects will be recog-
nized starting from these linear elements, based on their relationship and patterns, 
i.e. using geometrical characteristics together with spectral characteristics. For the 
moment, however, the focus is on their extraction without any attempt of interpret-
ing them.  

In technical literature several examples are found of techniques designed to ex-
tract linear features (Henderson and Xia 1997, Dell’Acqua and Gamba 2001, 
Gruen and Li 1997, Airailu et al. 1994, Barzohar and Cooper 1996, German and 
Jedynak 1996, Park and Kim, 2001) from EO data. Each one has its own advan-
tages and drawbacks, and no all-purpose approach has been designed so far. More-
over, the extraction procedure is highly dependent on the data and specific atten-
tion shall be given to the spatial resolution and the noise level of the image under 
test. As a matter of fact, the sensor (SAR, optical, multispectral, etc.) plays a role, 
binding on the choice of the extraction parameters as well as of the extractors.  
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Fig. 12.2  General processing chain for linear feature extraction from EO data 

As a general statement, extraction routines depend on the characteristics of the 
input data, and need some pre-processing before ingesting data from different sen-
sors. The general processing chain for linear feature extraction is thus composed 
of a filter (or a set of filters, as further specified in the following section), the 
proper linear feature extraction routine, and a post-extraction refinement. The gen-
eral structure of the linear feature processing chain is thus as in Fig. 12.2.  

12.4.1 Adaptive Filtering 

As mentioned, the image to be analyzed often requires an enhancement step, 
and almost always an adaptation step. The first step is aimed at emphasizing as 
much as possible the features to be extracted. The second step is aimed at reducing 
noise, at pixel level or in a more sophisticated manner considering spatial patterns. 
In any case, a filtering chain is needed, composed of different elements aimed at 
reducing the useless part of the image information content.  
 

 
Fig. 12. 3  Simulated SAR urban scene 

Extractor

Filter  

 

Original data set 
Post 

processing 
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The most common implementation of this chain for linear feature detection is a 
set of directional filters. For example, Figure 12.3 depicts a simulated 
COSMO/SkyMed VHR SAR urban scene, and it is clear that some kind of filter-
ing is required to extract, for instance, the road network. Even more filtering is re-
quired for building extraction via their footprint identification. In this type of im-
age a simple extraction after thresholding would not identify anything interesting. 
This effect is due to the huge number of possible linear features on the one side 
and to the large amount of noise affecting the image on the other side. 

Performances can be greatly improved by applying a suitable sequence of fil-
ters, optimized according to the resolution of the data and the linear feature direc-
tions. In particular, with simulated SAR images at a resolution of 3 m/pixel and 1 
m/pixel respectively, the filter sequence shown in Table 1 has proved to work best 
(Dell’Acqua et al. 2003).  

Table 1 Optimized directional filter sequence for the simulated SAR image in Fig. 12.3 accord-
ing to Dell’Acqua et al. (2003). 

Horizontal filtering Vertical filtering  
Window      

Resol. 1m/p 
Window      

Resol. 3m/p 
Window      

Resol. 1m/p 
Window      

Resol. 3m/p 
Closing 1 x 7 1 x 3 7 x 1 3 x 1 
Directional Filtering 5 x 5 at 90° 5 x 5 at 90° 5 x 5 at 0° 5 x 5 at 0° 
Opening 11 x 1 5 x 1 1 x 11 1 x 5 
Opening 1 x 3 1 x 2 3 x 1 2 x 1 

 
The chain uses morphological filters (opening and closing) designed to empha-

size structures with horizontal or vertical orientation. Corresponding results are 
shown in Fig. 12.4.  
 

   
Fig. 12.4 Results of the directional filtering applied to the image SAR image in Fig. 12.3 

As noted, in Fig. 12.3 roads appear with only two orientations (horizontal and 
vertical), but this can’t be considered as a general statement. There could be por-
tions of a city where the predominant orientations differ greatly by moving a few 
kilometers away and then change again in another area and so on. Generally 
speaking, this calls for a further adaptive filtering procedure. As a matter of fact, 
we don’t need only a flexible filtering chain capable of adapting to different sen-
sors and spatial resolutions, as suggested above, but also a chain capable of taking 
into account different orientations for the features to be extracted. The technique 
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we briefly outline in the following paragraph is better explained in Dell’Acqua et 
al. (2005).  

The first step is simply the extraction of the linear features using a coarse ver-
sion of the image and no filtering at all. In case of a road network, that would for 
instance result into the extraction of the major roads leaving out the rest of the de-
tails. Then, for each histogram of feature orientations the two dominant directions 
are extracted. Please note that only two directions are considered on the basis of 
the assumption that in urban areas roads are locally oriented following two main 
directions, because of the building outlines, which tends to be rectangular. The 
whole approach for the adaptive directional filtering is outlined in Fig. 12.5.  

One critical parameter of the above procedure is the size of the window used to 
compute orientation histograms, which naturally depends in a critical manner on 
the resolution. The rule of thumb is that it must be large enough to accommodate a 
significant number of segments, but not too much to be still able to discern the two 
predominant directions.  
 

 
Fig. 12.5  An example of input and outputs to the adaptive directional filtering routine 

Once the map of the dominant directions is computed, the entire image can be 
filtered, locally adapting the directional filter according to this map. Of course, 
since two directions are considered, two separate images are obtained, whose fur-
ther analysis results still have to be somehow fused and combined.  

12.4.2 Extraction Routine 

The step following filtering is the linear feature extraction. In this work we rely 
on a simple yet efficient extraction method proposed in Lisini (2002) and used in 
Dell’Acqua et al. (2003), Dell’Acqua et al. (2005), Dell’Acqua et al. (2002), 
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% 

Filtered at  135° 

Filtered at  45° 

Histogram 



Linear Feature Analysis 337 

Dell’Acqua et al. (2003b), Dell’Acqua et al. (2004). Again, in the following we 
summarize very briefly the approach, pointing the interested readers to the above-
mentioned references.  

This method was originally designed to provide a spatially pre-filtered version 
of the original data, where groups of pixels that can represent (portion of) roads 
were selected, while those with very different geometrical characteristics were 
discarded. The aim was to increase the reliability of a subsequent skeletonization 
routine and at the same time to reduce significantly the computational time. But 
beyond this role, this routine can be also considered as an extractor of linear fea-
tures by itself. Basically, the approach compares groups of interconnected pixels 
with a set of linear prototypes. To avoid memory storage problems, the algorithm 
scales the area of analysis according to the pattern to be analyzed, choosing an op-
timal window (both in width and location) to characterize the part of the data set 
under test. The overall structure of the routine is proposed in Fig. 12.6, while a 
more specific explanation of the method is proposed in next paragraphs. 
 

 
Fig. 12.6 Graphical representation of the main processing steps of the linear feature extraction 
procedure 

More specifically, the first step of the routine is aimed at the identification of 
the regions of interest, where linear features (segments) may be present. To this 
end, the image is partitioned into squared zones, and the initial size of these zones 
is chosen in an arbitrary manner. Each window is then moved to achieve a higher 
concentration of black (segment) pixel at the centre and less on the edges so as to 
place the hypothetical linear feature as close as possible to the centre of the float-
ing window. Subsequently, each of these regions is widened to reach the best 
scale, which is when there is a low percentage of black pixels within the window. 
The idea is that linear features are elongated and narrow, and are surrounded by 
many non-segment pixels. If in the area under test it is not possible to lower the 

differences 
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segment pixel percentage below a certain threshold, the window is discarded along 
with the region contained therein.  

To further reduce the set of regions to be considered for the subsequent analy-
sis, we recall that a segment is made by a group of pixels surrounded by both sides 
by non-segment pixels. Regions that do not match this definition are discarded. 
Such verification consists of a double diagonal window scan while counting the 
number of switch between segment and non-segment areas.  

Finally, when a candidate segment area has been identified, it is compared with 
a set of 16 basic prototypes (see again Fig. 12.6). The prototype is shifted from left 
to right and the maximum correlation value is used to obtain the best prototype 
and its location within the window under test.  

Then, for each extracted segment the routine tries and explores if the segment 
is longer than what has been extracted, by moving the analysis window in the di-
rection identified by the previous analysis. This movement continues until the end 
of the linear feature is reached or when the shape changes in a way that it does not 
fulfill the requirements of the above mentioned test. As a consequence, curvilinear 
features are tracked as a series of linear elements, and the tolerance to which the 
curve is tracked is a function of the parameters of the extraction routine (Fig. 
12.7). 

 

 
(a)                        (b) 

Fig. 12.7  Linear approximation of a curvilinear feature 

12.4.3 Post-Extraction Refinement   

The last step of the generalized linear feature extraction procedure described in 
Fig. 12.2 is a post-extraction refinement, which can be based for instance on tech-
niques known as perceptual grouping. The procedure we recall here, proposed and 
more detailed in Dell’Acqua et al. (2005), has two purposes: on the one hand it 
removes partially or fully overlapping features, replacing them with a single seg-
ment; on the other hand it tries and connect segments whose extremes are close to 
each other. There are six steps to the final result, exemplified in the following fig-
ures.  

The first step performs a search on 
pairs of segments that are side by 
side. If their distance is shorter than a 
given percentage of the longer seg-
ment the shorter one is discarded.  

tolerance tolerance 
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If a pair of segments has similar ori-
entations and the segments lie close 
enough, they are joined together to 
form the chain in green.  

 
The third step requires a search in-
volving isolated segments located 
side-by-side with a segment chain as 
the one created by the previous step. 
If the distance of an isolated segment 
from the chain is small enough, the 
former is removed.  

 
Chains of segments can then be ap-
proximated by a single segment 
where they meet a standard tolerance 
set by the user. The maximum dis-
tance between chain segments and 
the new segment should not exceed 
that tolerance.  

 
This step tests the proximity between 
one extreme of a segment and the 
point of intersection with a second 
one. If this distance is below a 
threshold, then the two segments are 
connected.  

 
As a final step, small isolated seg-
ments, which do not exceed a prede-
termined length are removed.  

 
 

In summary, it is useful to note that the parameters involved in this process are:  
 
� maximum distance between two extremes of segments that can be inter-

connected;  
� gap length between the closest extreme of a segment and the point of in-

tersection with a second one;  
� maximum difference in orientation between segments candidates to be 

interconnected;  
� maximum distance between a segment in a chain of segments and the 

segment candidate to replace the chain;  
� minimum length below which segments are removed. 
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Fig. 12.8 Results of the linear feature extraction chain before and after the post-extraction align-
ment processing step 

In Fig. 12.8 two sets of segments before and after the post-extraction alignment 
are showed. It is clear that this procedure has a significant effect on the visual clar-
ity of the results.  

12.5 Higher-Level Feature Extraction 

In the process of visual interpretation of aerial or satellite imagery, the usual 
approach is a top-bottom procedure. Starting from the scene, the operator parti-
tions it into different subscenes, and focuses his/her attention on the elements of 
these subscenes, for a more reliable and faster data analysis. Instead, automatic 
and semi-automatic approaches, such as usual classification algorithms, are based 
on the extraction of elementary features that they use to achieve, in a bottom-up 
approach, the interpretation of the scene.  

Linear feature extraction somehow pertains to this second class, since it is as-
sumed that these elements of the scene are extracted earlier than any attempt to in-
terpret them or to assign them to a class. Linear features are just elements of the 
scene, and their spatial relationships or clustering might indicate something about 
the different parts of the scene, but this is not captured by the linear features alone. 
As a consequence, a data interpretation approach based on linear features must 
consider other processing steps after the segment extraction procedure which has 
been proposed in the previous section. It is mandatory to try and combine these 
segments into more meaningful features, that we call here “higher-level” features 
on the basis of the assumption that this is a bottom-up approach. Usually, these 
new features still do not provide enough information to interpret the data, and fur-
ther steps will be required. They are however a very interesting intermediate re-
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sult, and they will be therefore discussed in this section, while applications will be 
the topic for section 4 of this chapter. 

12.5.1 Junction Extractor 

According to the above discussion, a first algorithm for the extraction of more 
significant spatial features may be one devoted to characterizing segment junc-
tions, i.e. groups of two or more segments with specific spatial relationships based 
on proximity and geometrical constraints. 

The first idea to look for segment junction is to start from any pair of linear fea-
tures and check their actual or possible intersection points. Then, points falling 
within or close enough to the extracted segments are retained. Of course, in order 
to correctly evaluate the junctions, it is mandatory to define a number of thresh-
olds and values, as follows: 
 

 
 

Fig. 12.9 Graphical definition of the parameters introduced in the text 

1. angle threshold: the minimum angle between two roads to consider them as 
separate and not belonging to a single segment. If the angle � (see Fig. 12.9) 
is smaller than this threshold, the two lines are considered as a single one. If it 
is greater than or equal to the threshold, the point P is a junction.  

2. minimum stem: maximum possible length of the part of a segment that 
“passes beyond” the junction, i.e. the distance between the junction point and 
the extreme of a segment that after crossing the junction continues for a 
while.  

max gap 

                  max stem 

angle 
tolerance 

� 
P angle threshold 

P 



342   Linear Feature Analysis 

3. maximum gap: maximum possible distance between the end of a segment not 
intersecting the junction and computed junction point, i.e. the distance be-
tween the junction point and the closest extreme of a segment that does not 
“hit” the junction.  

4. minimum junction distance: minimum distance between two junctions;  
5. angle tolerance: minimum possible angle between two non-overlapping seg-

ments (see again Fig. 12.9). If this angle is less than the threshold the seg-
ments are considered as overlapping, if the angle is greater than or equal to 
the threshold P is considered a junction.  

6. max # of segments: maximum number of segments forming a junction. 

According to these definitions, a few classes of junction may be considered. 
For instance, L-shaped junctions are made up of two connected (within the max 
gap tolerance) segments. The angle formed by these segments is 90 degrees plus 
or minus the angle tolerance. The outer portion of the intersecting segments 
should be less than the max stem parameter. Similarly, and limiting ourselves to 
constraints on segment relationships, X-shaped junctions are those where the in-
tersection point falls within both segments, and the outer portions are longer than 
the max stem for both segments; T-shaped junctions are formed by two segments 
and only for one of them the outer portion is less then the max stem threshold;  fi-
nally, Y-shaped junctions are formed by three segments. Some synthetic examples 
of different junctions which can be recognized and classified by this approach are 
shown in Fig. 12.10. 

 
 

 
Fig. 12.10  Examples of L-, X-, T- and Y-shaped junctions. 

12.5.2 Pairs of Parallel Segments 

Another particularly significant combination of linear features is a pair of paral-
lel segments. A very simple algorithm to detect these pairs involves again the 
search for candidate pairs that, to some extent, resemble perfectly parallel pairs of 
equal length segments.  

As a matter of fact, to match this ideal situation with real segment pair there 
should be a tolerance on the orientation of the two segments and a minimum su-
perposition between them to allow calling them a “parallel pair”. Figure 12.11 
graphically depicts these quantities and how they are computed and compared 
with the tolerances, i.e. d/D as the percentage of the shorter segment that the 
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longer one overlaps, and the angle between the two segment orientations, that 
must be equal to zero within the above mentioned angle tolerance. 
 

 
Fig. 12.11 Graphical definition of the parameters required for parallel segment pairs’ identifica-
tion 

12.6 Application Examples 

Once the higher-level features have been extracted, the only remaining step is 
truly image interpretation. Of course, a priori information about the scene (or the 
portion of the scene) under test is required at this point, and should be injected into 
the procedure. In the following, three different examples of smart use of the higher 
level features are proposed. They show a very small sample of the possibilities of-
fered by these techniques, but can hopefully provide some sort of guidelines to 
apply the same idea to different problems and interpretation tasks. 

12.6.1 Example 1: Building Characterization 

A first example of higher-level feature extraction starting from linear features is 
the recognition of man-made (artificial) objects in urban areas. To this aim, the 
idea is to design an algorithm to find, within a segment set, specific combinations 
suggesting the existence of rectangular structures. The routine (presented in more 
detail in Lisini et al. 2005) is divided into two parts: the first one performs a 
search for rectangles as combinations of parallel segment pairs, the second one 
performs the same search looking for combinations of “L-shaped” junctions.  

The parameters of the first part of the routine are basically only two: a toler-
ance on the orthogonality and the proximity between the two parallel segment 
pairs. The first one is computed as the difference between 90° and the angles ob-
tained by assembling using two parallel pairs a quadrilateral figure, while the tol-
erance about distances is computed as the maximum distance between all the ex-

d 
D 

tolerance angle 
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tremes of the four segments involved. Fig. 12.12 explains some of these concepts, 
and serves as an example for the description of the procedure, which is as follows:  

� for each pair of parallel segments the mean direction is computed;  
� then, according to the required tolerances, candidate couples of parallel pairs 

are analyzed to check for those with higher similarity to orthogonal pairs;  
� for each combination that matches the orthogonality requirements, the distance 

tolerance is checked and, in case, the set of pairs is validated. 
 

 

Fig. 12.12 Tolerances used for the evaluation of parallelogram instances starting from pairs of 
(quasi)parallel segments 

The second procedure for identifying rectangles is based on junctions. First of 
all, each junction that is not an “L-shaped” one is transformed into one or more of 
them, simply by separating the contributions as exemplified in Fig. 12.13.  

The complete procedure is as follows:  
� for each L-shaped junction the edge orientations is analyzed;  
� each junction is considered as a “promoter” of a group of 2, 3 or possibly 

4 corners, but only some specific patterns are considered valid, as shown 
in Fig. 12.14;  

� only corners that verify the alignment between their edges are considered 
as useful;  

� each group is finally checked for proximity and an overall proximity 
value for each group is computed; 

19° 

190° 

distance tolerance 

110° 

Angle difference: 110° - 90° = 20°  
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� finally, each junction is assigned to the group (if any) with the lowest 
proximity value. 

 
Fig. 12.13  Separation of more complex junctions into “L-shaped” ones 

 

 
Fig. 12.14  L-shaped junctions’ patterns accepted or discarded for rectangle recognition 
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Fig. 12.15  Example of successful rectangle extraction from synthetic data 

 

 
Fig. 12.16 Examples of building extraction from LIDAR imagery based on L-shaped junction 
combination. 

original DEM data Sobel filtered 

segments extrac-
i

final result after rectangle extraction  
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In Fig. 12.15 a synthetic data example is provided, while in Fig. 12.16 an ex-
ample of rectangle extraction from a LIDAR data set is shown. From the example 
it is clear that only a few of the building shapes can be obtained using this method,  
because it greatly relies on the previous feature extraction and corner recognition 
steps. Indeed, as mentioned above, the quantity and reliability of extracted rectan-
gles is largely due to the inputs, and these in turn depends on the linear features 
provided by the extractors. The proposed procedure is robust to orientation prob-
lems and partially also to mismatches, but needs a certain extracted information to 
elaborate on.  

12.6.2 Example 2: Automatic Coregistration of SAR Images 

A further application of the geometric structures explored in the preceding 
paragraphs is automatic coregistration of multiple SAR images of urban area. It is 
well-known that one of the biggest problems encountered in SAR images of urban 
areas is determined by a strong layover effect that significantly changes distances 
between buildings in data sets acquired with different viewing angles. To compare 
these data, it is therefore needed a coregistration approach for these images which 
takes into account the huge distortions due to the fine spatial resolution. The basic 
methodologies used for optical images, i.e. correlation techniques, even when im-
proved to be robust to misregistration noise (Bruzzone and Fernandez-Prieto 2000, 
Billimgsley 1982, Townshend et al. 1992, Dai and Khorram 1998), cannot be used 
to identify corresponding points since the same object on the scene may give rise 
to different responses in terms of backscattered field.  

The approach explored in this section is therefore to derive junction from all 
images to be coregistered (see next figure). It will be through the comparison of 
these features in different images of the same area that the routine will try and find 
the points (ground control points, GCPs) to be used for coregistration.  
 

 
Fig. 12.17 Example of junctions extracted from the VHR SAR image in Fig. 12.3 and useful as 
input to the coregistration procedure 
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To this aim, after applying the procedure proposed in the previous sections and 
extracting all the junctions in the images to be coregistered, a methodology to find 
matches between junctions in different images has to be developed. One possibil-
ity is the approach proposed in Dell’Acqua et al. (2004), which is briefly recalled 
here. The first step in that algorithm is to look into the same location of a junction 
extracted from one image to seek if one or more junctions are present in the sec-
ond one. This search is performed in a circle of radius R around the original posi-
tion in order to take into account misalignments, in VHR SAR images largely due 
to the layover effects. Once all the junctions in this area have been identified, their 
orientation and type (L-, X-, T- shaped, ....) is considered. This is done in order to 
reduce the number of candidates. In fact, it is to be noted that the mutual segment 
orientations in a junction are invariant with respect to the point of view and so is 
the type of the junction.  

To better identify corresponding junctions, they are identified by means of the 
list of angles between segments, reordered from the largest to the smallest one. 
Lists representing different junctions are easily compared, immediately discarding 
junctions with different number of segments (and therefore angles) and very dif-
ferent angle distributions. The degree of similarity between two junctions is ob-
tained by comparing one by one the elements of the lists and increasing the simi-
larity value if they are found equal or very similar according to the angle tolerance 
in use. In case of more junctions with the same similarity a further refinement is 
computed, looking for the lowest absolute difference between corresponding an-
gles in the list. Another element for discrimination is the closeness of the candi-
date junction to the position of the one we are trying to match. 

Fig. 12.18 shows a graphical example of the circle of validity, the ordering pro-
cedure for the list of angles corresponding to a junction and the final result of the 
matching procedure. 
 

 
Fig. 12.18 Graphical representation of the junction matching procedure 
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As stated above, this approach has been discussed in Dell’Acqua et al. (2004) 
and applied to multiple SAR image coregistration with satisfying results. It has 
been proven that the RMS positional error using the GCPs established by this al-
gorithm has decreased to 6.51 pixels with respect to manual extraction of GCPs 
through visual interpretation of an expert operator, i.e. slightly more than 8 pixels. 

12.6.3 Example 3: Change Detection 

A different scenario for using linear features as well as higher-level features is 
related to change detection, i.e. the interpretation of multitemporal data, as pro-
posed in Dell’Acqua et al. (2006). According to this reference, linear features may 
be used to focus the analysis on the relevant changes occurred in the area under 
test. In Fig. 12.19 the general outline of a possible procedure is shown. This tech-
nique is designed to validate a pixel-based map through the use of the linear fea-
tures that are in the image sequence, composed at least by two images.  

The routine starts form the extraction of linear features from these images and 
then continues with a comparison of the features extracted in order to match them 
or to detect changes. A change map based on linear feature is thus obtained, and 
used to validate and improve the one achieved by more common pixel-based an-
alysis. 

 

 
Fig. 12.19 Overall scheme of a joint pixel-based and feature-based change detection algorithm 
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Two main problems are encountered in this process. First of all, changes in lin-
ear features should reflect real changes, which in turn demands high reliability of 
the linear feature extraction routine.  

The second problem is the location mismatch between linear features, due to 
misregistration between pre and post images and/or to different viewing points.  
Linear features have to be matched using a robust approach, which can be imple-
mented, for instance, by means of spatial buffers. More specifically, once a seg-
ment has been extracted, the corresponding one in the second (or third) image is 
searched in a buffer around its position, in order to accommodate for the above-
mentioned misregistrations. Moreover, since slight differences in orientations may 
be present due to residual rotational mismatches and extraction errors, the match is 
considered valid if the percentage of the second segment falling within the buffer 
around the first one is higher than a given threshold (e.g. 80%). Using segment 
match, a segment-based change detection can be set up. Although it refers only to 
the areas where reliable segments were extracted (which might correspond only to 
a small part of the whole scene), in these areas there is a possibility to fuse the 
changes obtained by directly comparing linear features and those, independently 
obtained, coming from a per-pixel analysis of the pre and post imagery. As a mat-
ter of fact, the above-mentioned linear feature matching procedure can output an 
image formed by all the unmatched segments, i.e. those corresponding to a 
change. The feature-based change map will be therefore the area covered by these 
segments plus the buffer around them, already exploited to find if a match was 
possible. 

Finally, in order to merge together the two change maps a logical AND is used, 
which basically means that the final change map will present areas of change only 
if both inputs (pixels and linear features) detect such change. The approach is 
graphically shown in Fig. 12.20. 
 

 
Fig. 12.20  Fusion procedure for the pixel-based and feature-based change maps. 
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              (a)                                   (b)                                 (c)  
Fig. 12.21 Example of pre- and post-event SAR images over the Bam (Iran) area and the ex-
tracted change area validated using linear features (from Tsin et al., 2006.). 

As an example of the results of the procedure, Fig. 12.21 shows two SAR im-
ages of the area surrounding the city of Bam (Iran) before (a) and after (b) the 
2003 earthquake. The images have been processed in order to extract relevant lin-
ear features and match those appearing on both images. Then, a very simple pixel-
based change detection has been performed by computing pixel-wise the ratio of 
the two images, followed by a threshold to detect areas where strong changes took 
place. The feature-based and the pixel-based change map have been then com-
bined to obtain the improved change map shown in Fig. 12.21(c). 

12.7 Conclusions 

Linear features are a very simple but really interesting way of interpreting a 
scene. They have been used for long time in photogrammetry and in automatic 
scene analysis for VHR optical images. They have however a more general use-
fulness in the context of remotely sensed data, even in situations where they have 
not been considered useful, like for SAR images. From the researches summarized 
in this chapter it can derived a certain ability to exploit SAR data using tools tradi-
tionally considered for optical images by means of improved extraction routines 
and modified radar data characterization. 

However, the main aim of this chapter, after a brief survey of the technical lit-
erature on this subject, was to provide the interested reader with a general frame-
work, with a wide applicability to different input data sets and enough flexibility 
to offer (partial) solutions to different problems, from classification to co-
registration to change detection. None of the techniques shown in the previous 
sections is considered as “the best one” in absolute meaning. They all offer, how-
ever, some insight on the usability of linear features in many different application 
fields. Moreover, they all fit into the general framework introduced and discussed 
in Section 3.  
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Of course each of them can be improved, and the framework can be more pre-
cisely specified. For example, most of the processing steps proposed in sections 4 
and 5 can be replaced by other, possibly improved, ones, and we do hope that 
someone in the research community will be able to do so. In that case, the proce-
dures introduced to solve practical situations in section 6 might be more effective 
and provide even better results.  
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Chapter 13     

GEOSPATIAL SERVICE WEB 

Jianya Gong, Huayi Wu, Wenxiu Gao, Peng Yue, Xinyan Zhu 

13.1 Introduction 

13.1.1 Web and Services 

The Web has become a platform where data, information and knowledge can 
be published, discovered and retrieved. The growth of the Web has resulted in the 
Web-based sharing of distributed resources. The trend to enhance the collabora-
tion, creativity and rich user experiences has led the evolution of Web to the so-
called Web 2.0, which is represented by a set of typical applications including 
blog, wiki, social networking (O'Reilly 2005). Another trend to increase the intel-
ligence of the Web is the effort to move the Web to a universal medium for data, 
information and knowledge exchange, i.e. the Semantic Web, in which the seman-
tics of information on the Web are defined, making it possible for the Web to un-
derstand (Berners et al. 2001). Grid computing, a blueprint for the computing in-
frastructure (Foster and Kesselman 2004), provides a set of middleware to back up 
the processing capabilities of Web. 

New information architecture, such as Service-Oriented Architecture (SOA), 
affects the way that those trends of Web involvement are implemented. The in-
formation tools and applications are encapsulated as services which are accessible 
through standard interfaces and protocols. Through the standards for Web Service, 
multiple services can be discovered and integrated automatically on the Web. The 
process and results of integration can be even accessible as new services. The ser-
vice-oriented applications and their potentials have been claimed to increase indi-
vidual and collective scientific productivity by making powerful information tools 
available to scientists, and thus enables the widespread automation of data analysis 
and computation (Forster 2005). 
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13.1.2 Geospatial Domain 

 With the advancement of Earth Observation (EO) and information technolo-
gies, the capabilities for collecting, transferring, processing and sharing geospatial 
data has dramatically increased in recent years. For example, NASA’s Earth Ob-
serving System (EOS) alone is generating about 3.5 terabytes of data each day 
(Yue et al. 2007). Geospatial data are collected by different organizations and ar-
chived at globally distributed locations. The exploding number of distributed sen-
sors can also provide real-time or near real-time data. An integrated and distrib-
uted Space-Earth information system, therefore, is needed to cover the lifecycle of 
geospatial application, i.e. from the collection of geospatial data to the end user-
oriented applications, thus significantly enhancing the efficient and effective shar-
ing of geospatial data, information and knowledge. 

The distinguished features of the Web such as distribution and openness make 
the Web a promising platform for supporting an integrated and distributed Space-
Earth system. There has been lots of Web-based geospatial information sharing 
and applications. Web Service technologies are already being widely used in geo-
spatial domain for distributed geospatial data sharing, such as the U.S. Department 
of Energy’s Earth System Grid (ESG) (Bernholdt et al. 2005), the U.S. National 
Science Foundation (NSF) funded GEONGrid (GEON 2003) and the UK e-
science program (Hey and Trefethen 2005). The geospatial data obtained from the 
diverse sources are often incompatible in terms of the temporal and spatial cover-
age, resolution, format, and map projections. Processing distributed geospatial 
data for information and knowledge requires interoperability among diverse data 
resources. This necessity led to the development of a set of standard interfaces for 
geospatial Web services, and a number of interoperable services have been avail-
able in the geospatial community. Most of the services are compliant with the 
Open Geospatial Consortium (OGC) standards. 

13.1.3 Objective of this Chapter 

This Chapter is to propose a new concept, Geospatial Service Web (GSW), to 
umbrella and envision the ultimately seamless integration of all types of distrib-
uted geospatial resources, which are currently or will be in the future Web discov-
erable, accessible, integratible, and “plug-and-play”. It provides a framework to-
wards an integrated Space-Earth system through the Web and service 
technologies. From this perspective, it will also contribute to the implementation 
of Global Earth Observation System of Systems (GEOSS). The following sections 
describe the concept and framework of GSW. Major service components in GSW 
are also introduced. Finally, we address the implementation of GSW. 
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13.2 Concepts of Geospatial Service Web 

Geospatial Service Web (GSW) is a virtual geospatial infrastructure which in-
tegrates various geospatial-related resources. GSW unifies the functions of geo-
spatial acquisition system, data transformation system, distributed spatial data col-
lection, high-capability server system, large volume storage system, remote 
sensing and GIS system. These functions are implemented by web services and 
communicated through the standardized protocols of the Internet. Fig. 13.1 shows 
the logical components and structures of GSW. With GSW, it is able to effectively 
describes, organizes, manages, manipulates, interchanges, searches and releases 
the geospatial-related resources. 

 

 
Fig. 13.1 The procedure of geospatial service from sensor to knowledge 
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handheld sensors. The original Earth Observation data acquired by sensor re-
sources constructs huge geospatial data resources. Processing resources are the 
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spatial data for a specific application context. In many cases, these models can be 
composed orderly into an integrated model to implement a complex function and 
further to derive potential information and knowledge in datasets. Finally, all of 
the resources are combined by associated web services and provide services as a 
whole for geospatial-related applications. In addition to the resources of geospatial 
domain, the general resources, including computing resources, network resources 
and storage resources, are also indispensable for GSW, but they are beyond the 
theme of this chapter.  

In conclusion, the mission of GSW is to: 

� acquire global geospatial data for all season, all day and all directions by 
all kinds of sensors on satellite, aircraft and surface. 

� chain the whole process seamlessly from sensors to application services 
by unified information networks, including satellite communicate, data re-
lay network and wired or wireless computer communication networks.  

� register sensors, computing resources, storage resources, internet re-
sources, geospatial data and manipulate software, geospatial knowledge 
on the Internet, and process geospatial data online quantitatively, auto-
matically, intelligently and real-timely. 

� provide geospatial services, compose virtual service chains and transmit 
user-required information with the most effective and efficient ways. 

13.3 Framework of Geospatial Service Web 

Based on the concept of geospatial service web described in the previous sec-
tion, Fig. 13.2 illustrates the corresponding framework including five basic com-
ponents: geospatial resource component, geospatial service component, geospatial 
service application component, geospatial service security component, and geo-
spatial service standard component.  

Geospatial resource components are the cornerstone which involves almost all 
applicable resources in digital environment. Geospatial service component is the 
bridge between geospatial resources and geospatial service applications, which 
provides the functions with service like accessing, processing, transporting, and 
visualizing data. Some geospatial services can be combined into a specific appli-
cation system, or be developed into individual application tools, or be used to 
build a visualization environment for geospatial data. Geospatial standards are 
fundamental supports for communications and data sharing between heterogene-
ous components in the framework. Geospatial service security component protects 
geospatial data and services from illegal usage or attack. 
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Fig. 13.2 Framework of Geospatial Service Web 
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Sensor resources include satellite sensors, laser scanners, CCD cameras, bio-
logic detectors, radiation sensors, geodetic sensors etc. Their responsibilities are to 
collect real-time geospatial data. 

13.3.2 Geospatial Service 

Geospatial service is the core component in the framework. The objective of 
the framework is to decompose the whole geospatial processes into appropriate 
single steps or functions, and further wrap these steps and functions into geospa-
tial services, and finally the geospatial services will be invoked to implement the 
behaviors required by clients.  

Geospatial data service and geospatial processing service are two basic and 
core types of geospatial service. The former is used to access different types of 
geospatial data, while the latter provides various functions for data manipulation. 
Besides the two basic geospatial services, more services are included to provide 
extensive geospatial functions like resources registration, composing, searching, 
knowledge, visualization, and data transmission. These services can be imple-
mented in various platforms and by technologies based on standards. Therefore, 
the evaluation of the quality of geospatial services is indispensable before they are 
invoked. 

13.3.3 Geospatial Service Applications 

 Geospatial service application is the top layer of the framework, which directly 
communicates with clients of geospatial services. According to its purpose, geo-
spatial application can be created at one of these different levels: visualization of 
geospatial data, geospatial application tool or application system.  

For visualization of geospatial data, geospatial services are just invoked to dis-
play geospatial data provided by data resources, which is the most general and 
simplest application of geospatial services.  

For the second type, clients compose the geospatial services into a scalable 
web-based geospatial application tool according to the requirements of their appli-
cation. This tool can be further deployed in this framework as a usual service, 
which provides a way of self-growing of Geospatial Service Web.  

The third type, development of an application system, is an advanced integra-
tion of geospatial services. By combining existing geospatial services, clients can 
develop application system for their specific application domain. 

13.3.4 Geospatial Service Standard 

Acquisition, transmission, storage, representation, management and sharing of 
geospatial data are main tasks of geospatial services. By following geospatial ser-
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vice standards, all of the components involved in the framework of Geospatial 
Service Web can work together in harmony. Geospatial service standard is a col-
lection of the standards related to geospatial data, data services, data processing 
services and other services in the framework. More details will be introduced in 
section 5. 

13.3.5 Geospatial Service Security 

As a result of the development of geospatial service, huge amount of geospatial 
information are published over the Internet. The information should not only be 
utilized but also be protected from illegal or wrong usage. Basically geospatial 
service security needs to consider geospatial information regarding privacy, confi-
dentiality of nondisclosure geospatial information, integrity and authenticity of 
geospatial information, the access privilege of geospatial information, copyright of 
geospatial information and availability of geospatial information service. In order 
to make geospatial services on the Internet secure, security policy, analysis of po-
tential threats and risks, and a reasonable and logical security system are essential. 

13.4 Geospatial Services 

The geospatial service components are functional building blocks in GSW. 
These components cover a large extent of geospatial services. This section dis-
cusses some main geospatial services. 

13.4.1 Geospatial Sensor Service 

Geospatial sensor service is a set of services focusing on discovery and access 
of sensor observations for all sensors including remote, in-situ, fixed and mobile 
sensors, as well as receiving alerts and planning sensors tasks to acquire observa-
tions of interest. Since various sensors exist around different communities, a stan-
dard common conceptual model for representing observation results is necessary 
to easily discover, access and utilize their observations without the need to support 
sensor-specific data formats. The Observation and Measurements (O&M) specifi-
cation (Cox, 2007) from OGC has addressed this issue and provided GML encod-
ings for this model. Depending on the requirements, the observation result may be 
delivered to the user in its elemental form (i.e. the initial measurement), or value-
added data and its derived form after a series of processes. The latter one is com-
monly available in the intelligent applications of on-board processing of observa-
tions. The capabilities of sensors and sensor systems can be modeled through the 
functional descriptions of these processes, including the measurement and post-
measurement processing. OGC has developed the Sensor Model Language (Sen-
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sorML) specification to define and encode these processes. Therefore, these stan-
dards for modeling and encoding sensor observations, sensors and sensor systems 
are the first step to provide the geospatial sensor service.  

In the context of GSW, geospatial sensor service will provide the standard Web 
Service interface to access sensors and sensor observations. Based on evaluation 
of the capability descriptions for sensors discovered from a sensor registry (e.g., 
an OGC Catalogue Service implementation based on the ebRIM profile), geospa-
tial sensor service can determine the feasibility of collecting data from those sen-
sors, decompose the data request for managing the planning, deploy mobile sen-
sors where applicable, make observation schedules, assign tasks to sensors, collect 
observation data, process the data if necessary, archive them and disseminate them 
to requestors. In case of the accidental failure of a sensor, geospatial sensor ser-
vice can support the in-orbit repairing and recovery, or rescheduling the plan with 
the dynamic constellation. In emergency response applications, through the sub-
scription and publish mechanism, geospatial sensor service can also deliver alerts 
from sensors or sensor systems to notification receivers. As such, a set of standard 
interface specifications, such as OGC Sensor Observation Service (SOS), Sensor 
Planning Service (SPS), Sensor Alert Service (SAS), Web Notification Service 
(WNS), can work together to discover, access and control sensors.  

13.4.2 Geospatial Transmission Service 

Geospatial transmission service implements protocols used to transfer geospa-
tial data between distributed information systems through Space-Earth network. 
The protocols can support the transmission of large volume of data provided by 
space-based high-resolution Earth observation sensors. Together with the im-
provement in the data compression rate and algorithm, geospatial transmission 
service will deliver the coordinated transmission service through combining mul-
tiple communication channels and optimized encodings. Different wire or wireless 
networks, including fiber optic, microwave and satellite-based networks are inte-
grated, equipped with standard transfer protocols to provide a seamless communi-
cation network. 

13.4.3 Geospatial Data Service 

Geospatial data service provides a common data environment supported by a 
set of standard interfaces for finding and accessing distributed data. It allows geo-
spatial services and value-added applications to access diverse data provided by 
various providers in a uniform manner. The interface specifications can follow the 
OGC and ISO standards that are widely used by geospatial communities for shar-
ing data and resources. The most significant types of data concerned in geospatial 
domain are feature, coverage and observation. Existing data collections, including 
different formats of high-resolution EOS data and various sensor data can be sup-
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ported, and when provided on the fly, may often go through necessary query proc-
essing and data transformation and reduction, such as georectification, subsetting 
or resampling. Transaction operation can also be supported when needed, includ-
ing create, update, and delete operations on geographic features.  

13.4.4 Geospatial Processing Service 

Generally speaking, a geospatial processing service is a wrap of a specific geo-
processing algorithm. The data required by a geospatial processing service and its 
output can be delivered over the Web. The geo-processing algorithm provided by 
a geospatial service may handle only a tiny part of the overall geo-processing 
(such as coordinate transformation) or a large aggregated processing (e.g., Earth 
system prediction models). In both situations, the service should be well defined 
externally, have clear input and output requirements, and can be independently 
executable. Therefore, taxonomy of geospatial processing services should be de-
fined scientifically, as well as the interfaces are standardized. As such, services 
developed by different organizations can be chained to fulfill users’ requests. In-
ternally, geospatial processing service acquires the data across the Web, initiate 
the execution of the algorithm, and manage the output for being accessed over the 
Web. The algorithms can be executed using high performance computing utilities, 
thus achieve a good efficiency through parallel execution.  

Both OGC and ISO standards define taxonomies to categorize geospatial ser-
vices. Geospatial processing service is one of the six categories in the geospatial 
service taxonomy. The establishment of sub-categories in geospatial processing 
service, i.e. geospatial processing service - spatial, geospatial processing service - 
thematic, geospatial processing service - temporal and geospatial processing ser-
vice - metadata, is based on the General Feature Model specified in ISO 19109 
(ISO19119:2005). The interface for all these geospatial processing services needs 
to be standardized. There is a promising standard in OGC, namely the Web Proc-
essing Service (WPS), which specifies how to describe, advertise, discover and 
bind Web-enabled geo-processing processes, as well as the standardization of data 
inputs and outputs for these processes. Thus it provides a general mechanism to al-
low client to perform distributed geospatial processing in GSW. 

13.4.5 Geospatial Chaining Service 

Individual services can be reused to construct different geo-processing work-
flows for geospatial knowledge discovery, geospatial information visualization 
and value-added data production. In a distributed data and information environ-
ment, such as the World Wide Web, there are many independent data and service 
providers. A complex geo-processing workflow may include services come from 
multiple service providers. Therefore, service chaining is important for geospatial 
processing and services integration. Service chaining is defined as a sequence of 
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services where, for each adjacent pair of services, occurrence of the first action is 
necessary for the occurrence of the second action (ISO/TC 211, 2005). When ser-
vices are chained, they are combined in a dependent series to achieve larger tasks. 
The WfMC Terminology and Glossary document (WfMC, 1999) defines the 
Workflow as “the automation of a business process, in whole or part, during 
which documents, information or tasks are passed from one participant to another 
for action, according to a set of procedural rules”. Workflow is a key technology 
for automating business processes that involve access to several applications. 
From the point of this view, the geospatial service chaining is indeed a construc-
tion of workflows, and it specifically deals with Web-based applications. 

Three types of chaining are defined in ISO 19119 (ISO/TC 211, 2005): user-
defined (transparent) – a human user defines and manages the chain; workflow-
managed (translucent) – a human user invokes a service that manages and controls 
the chain and is aware of the individual services in the chain; aggregate (opaque) – 
a human user invokes a service that carries out the chain, and has no awareness of 
the individual services in the chain. The transparent chaining and the translucent 
chaining involve human interactions. The opaque chaining performs without hu-
man interactions, thus Artificial Intelligence (AI) approaches are needed. The 
logical and semantic representation of geospatial services plays an important role 
when applying AI approaches. Geospatial chaining service in GSW will support 
all three types of service chaining through providing approaches from manual con-
struction of service chain to automatic or semi-automatic chaining of geospatial 
services. 

13.4.6 Geospatial Searching Service 

Geospatial searching service provides functionalities of search, discovery and 
organization of geospatial data, service and even knowledge over the Web. There 
are two prominent ways to support the distributed geospatial information search: 
one is to search through a Web search engine, and the other is to query a metadata 
catalogue service which works as a central registry of Web-based geospatial re-
sources. For the previous one, search functions that can effectively dig out infor-
mation from unorganized and unstructured Web data are the basis to the extraction 
and classification of geospatial information. The latter one is more related to the 
current effort of OGC on CSW, a specification for Web-based geospatial cata-
logue service. The search can also be more than the keyword match. Geospatial 
ontologies can be incorporated into the search so that semantic information of 
keywords can be used (Yang 2008). These two approaches can also be combined 
together, e.g., the search result from the Web search engine can be catalogued into 
the registry service for later cost-effective discovery. No matter which approach is 
selected, recall and precision are important evaluation criteria for geospatial 
searching services. 
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13.4.7 Geospatial Knowledge Service 

The Web can be a platform for exchanging not only data and information but 
also knowledge. The solid geospatial data and information foundation on the Web 
is now supporting the emerging applications of knowledge management that ana-
lyzes and integrates diverse information sources to support geospatial knowledge 
discovery and reuse. GSW can support the sharing of geospatial knowledge in the 
distributed environment through the geospatial knowledge service. A geospatial 
knowledge service can provide access to a knowledge base in a distributed envi-
ronment. Its interface specification can support the publishing, querying and up-
dating of geospatial knowledge. Geospatial knowledge will be formalized, stored 
in a knowledge base, retrieved by a query language, and applied into geospatial 
problem solving and decision making. The approaches for formal representation 
of geospatial knowledge such as ontologies and rules are important towards the 
sharing of geospatial knowledge. Typical geospatial knowledge includes spectral 
library for featured crops, geo-processing models, and geospatial taxonomies. The 
knowledge would allow geospatial resources to be annotated, discovered, and in-
tegrated intelligently within GSW.  

13.4.8 Geospatial Visualization Service 

Geospatial visualization service presents geospatial information in a human 
perceptual format such as 2D maps and 3D globes. Portrayal services such as fea-
ture portrayal services and coverage portrayal services can produce rendered out-
puts for the visualization of 2D map (e.g., cartographically portrayed maps or an-
notated images). Distributing and visualizing 3D geospatial information over the 
Web requires a set of technologies and integrated tools, which can enable interop-
erable fusion of multi-source data, network-based on-the-fly 3D visualization, and 
interactive local-to-global multi-resolution visualization. Heterogeneous data in-
cluding terrain, image, 3D models and vector can be delivered to a wide variety of 
multi-user clients over the Web. 

13.4.9 Geospatial Registration Service 

Geospatial registration service is the interface of a network-based meta-
information repository (e.g., a registry, catalog or clearinghouse). This service 
contains information about information (meta-information) available over the 
Internet or in the holdings of digital libraries but not the information itself. The 
registration services help requestor find the right geospatial information with well-
organized clues. Geospatial data and services are cataloged in a registry with their 
properties and capabilities. The underlying registry information model should also 
support the registration of sensor and knowledge resources. Thus, it is necessary to 
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provide a unifying interface in registration service to find different information 
sources according to their organization structures. In case of multiple registration 
services, they can be federated to provide a comprehensive query for geospatial 
information (Yang et al 2008).  

13.4.10 Geospatial Dissemination Service 

Geospatial dissemination service provides personalized, on-demand geospatial 
data dissemination within GSW. It is supported by distributed geospatial data ar-
chives and data pools. From an engineering perspective, it is an application which 
integrates geospatial data service, geospatial registration service, and geospatial 
transmission service to deliver rich geospatial content effectively and efficiently 
over the Web. In addition, custom or semi-custom spatial clients are parts of the 
dissemination service. Therefore, geospatial dissemination service is a solution 
and service to meet the geospatial needs of customers. 

13.4.11 Quality of Geospatial Service 

A complete description of the quality of geospatial service (QoGS) could en-
courage the sharing and using of geospatial services. The contents, elements and 
measurements of QoGS should be established to facilitate the evaluation of geo-
spatial services. A QoGS-aware GSW application schema is needed and incorpo-
rated into various aspects of GSW applications, such as geospatial service descrip-
tion, discovery and composition. 

13.5 Geospatial Service Standards 

13.5.1 Overview  

Geospatial data is the core ofthe GSW. The acquisition, transmission, storage, 
representation, management and share of geospatial data are main tasks of geospa-
tial services. In order to integrate physically distributed geospatial services pro-
vided by different developers, it is important to standardize general characteristics 
and behaviors related to geospatial services. Many organizations, such as 
ISO/TC211, OGC and FGDC, have proposed a series of geographic information 
standards.  

Fig. 13.3 shows the standards in five groups, general standards for geospatial 
data, general standards for geospatial data acquisition, standards for geospatial 
data service, standards for geospatial processing service and standards for geospa-
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tial applications. The standards in each group are not exhaustive enumerations but 
a few examples. ISO/TC211 and OGC have published many standards for geospa-
tial data, data services, geospatial processing services and geospatial data acquisi-
tion. However, there still remains very large space for developing necessary stan-
dards for geospatial applications such as knowledge service, service composition, 
and visualization service.  

This section mainly introduces three groups of standards: the general standards 
for geospatial data, standards for geospatial data service and standards for geospa-
tial processing service issued by ISO/TC211 and OGC. The first group includes 
the standards defining the basic elements of geospatial data. This group plays a 
fundamental role in the whole geospatial service web. The standards in the second 
group are used in geospatial data access and sharing in distributed environment. 
The third group focuses on geospatial processing. 

 

 
Fig. 13.3 Geospatial service standards 
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13.5.2 General Standards for Geospatial Data 

General standards for geospatial data define the basic elements related to geo-
spatial features and phenomena like spatial and temporal schema, portrayal and 
encoding rules, reference model, and metadata. This standard group plays a fun-
damental role in the whole geospatial service web.  

ISO 19107:2003 - Spatial Schema specifies conceptual schemas for describing 
the spatial characteristics of geographic features, and a set of spatial operations 
consistent with these schemas. It treats vector geometry and topology up to three 
dimensions. It defines standard spatial operations for use in access, query, man-
agement, processing, and data exchange of geographic information for spatial 
(geometric and topological) objects of up to three topological dimensions embed-
ded in coordinate spaces of up to three axes. 

ISO 19108:2002 - Temporal Schema defines concepts for describing temporal 
characteristics of geographic information. It depends upon existing information 
technology standards for the interchange of temporal information. It provides a 
basis for defining temporal feature attributes, feature operations, and feature asso-
ciations, and for defining the temporal aspects of metadata about geographic in-
formation. Since this International Standard is concerned with the temporal char-
acteristics of geographic information as they are abstracted from the real world, it 
emphasizes valid time rather than transaction time. 

ISO 19110:2005 - Methodology for Feature Cataloguing (Nebert and White-
side 2005) defines the methodology for cataloguing feature types and specifies 
how the classification of feature types is organized into a feature catalogue and 
presented to the users of a set of geographic data. ISO 19910:2005 may be used as 
a basis for defining the universe of discourse being modeled in a particular appli-
cation, or to standardize general aspects of real world features being modeled in 
more than one application. 

ISO 19111:2007 - Spatial Referencing by Coordinates defines the conceptual 
schema for the description of spatial referencing by coordinates, optionally ex-
tended to spatio-temporal referencing. It describes the minimum data required to 
define one-, two- and three-dimensional spatial coordinate reference systems with 
an extension to merged spatial-temporal reference systems. It allows additional 
descriptive information to be provided. It also describes the information required 
to change coordinates from one coordinate reference system to another. 

ISO 19113:2002 - Quality Principles establishes the principles for describing 
the quality of geographic data and specifies components for reporting quality in-
formation. It also provides an approach to organizing information about data qual-
ity. 

ISO 19115:2003 - Metadata defines the schema required for describing geo-
graphic information and services. It provides information about the identification, 
the extent, the quality, the spatial and temporal schema, spatial reference, and dis-
tribution of digital geographic data. 
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ISO 19117:2005 - Portrayal defines a schema describing the portrayal of geo-
graphic information in a form understandable by humans. It includes the method-
ology for describing symbols and mapping of the schema to an application 
schema. It does not include standardization of cartographic symbols, and their 
geometric and functional description. 

ISO 19118:2005 - Encoding specifies the requirements for defining encoding 
rules to be used for interchange of geographic data within the ISO 19100 series of 
International Standards. 

ISO 19131:2007 - Data product specifications specifies requirements for the 
specification of geographic data products, based upon the concepts of other ISO 
19100 International Standards. It also provides help in the creation of data product 
specifications, so that they are easily understood and fit for their intended purpose. 

ISO 19134:2007 -Location-based services - Multimodal Routing and Naviga-
tion specifies the data types and their associated operations for the implementation 
of multimodal location-based services for routing and navigation. It is designed to 
specify web services that may be made available to wireless devices through web-
resident proxy applications, but is not limited to that environment. 

ISO 19136:2007 - Geography Markup Language (GML, Cox 2004) is an XML 
encoding in compliance with ISO 19118 for the transport and storage of geo-
graphic information modeled in accordance with the conceptual modeling frame-
work used in the ISO 19100 series of International Standards and including both 
the spatial and non-spatial properties of geographic features. 

13.5.3 Standards for Geospatial Data Service 

The standards for geospatial data service are used in geospatial data access and 
sharing in distributed environment. 

ISO 19119:2005 - Services identifies and defines the architecture patterns for 
service interfaces used for geographic information, defines its relationship to the 
Open Systems Environment model, presents a geographic service taxonomy and a 
list of example geographic services placed in the services taxonomy. It also pre-
scribes how to create a platform-neutral service specification, how to derive con-
formant platform-specific service specifications, and provides guidelines for the 
selection and specification of geographic services from both platform-neutral and 
platform-specific perspectives. 

ISO 19125-1:2004 - Simple Feature Access -- Part 1: Common Architecture 
establishes a common architecture for geographic information and defines terms to 
use within the architecture. It also standardizes names and geometric definitions 
for types for geometry. Part 2: SQL Option specifies an SQL schema that supports 
storage, retrieval, query and update of simple geospatial feature collections via the 
SQL Call Level Interface (SQL/CLI) and establishes architecture for the imple-
mentation of feature tables. 
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ISO 19116:2004 - Positioning Service specifies the data structure and content 
of an interface that permits communication between position-providing device(s) 
and position-using device(s) so that the position-using device(s) can obtain and 
unambiguously interpret position information and determine whether the results 
meet the requirements of the use. A standardized interface of geographic informa-
tion with position allows the integration of positional information from a variety 
of positioning technologies into a variety of geographic information applications, 
such as surveying, navigation and intelligent transportation systems. ISO 
19116:2004 will benefit a wide range of applications for which positional infor-
mation is important. 

ISO 19128:2005 - Web Map Server Interface (WMS, DLB 2004) specifies the 
behavior of a service that produces spatially referenced maps dynamically from 
geographic information. It specifies operations to retrieve a description of the 
maps offered by a server, to retrieve a map, and to query a server about features 
displayed on a map. ISO 19128:2005 is applicable to pictorial renderings of maps 
in a graphical format; it is not applicable to retrieval of actual feature data or cov-
erage data values. 

The OpenGIS Web Coverage Service Interface Standard (WCS) defines a stan-
dard interface and operations that enables interoperable access to geospatial "cov-
erages" [http://www.opengeospatial.org/ogc/glossary/c]. The term "grid cover-
ages" typically refers to content such as satellite images, digital aerial photos, 
digital elevation data, and other phenomena represented by values at each meas-
urement point. 

The OpenGIS Web Feature Service Interface Standard (WFS, Vretanos 2002) 
defines an interface [http://www.opengeospatial.org/ogc/glossary/i] for specifying 
requests for retrieving geographic features [http://www.opengeospatial.org/ogc/ 
glossary/g] across the Web using platform-independent calls. The WFS standard 
defines interfaces and operations for data access and manipulation on a set of geo-
graphic features. 

13.5.4 Standards for Geospatial Processing Service 

Enabling geospatial processing on the Internet requires the development of a 
wide variety web services to support atomic geospatial operations as well as so-
phisticated modeling capabilities. It is important to standardize the way that these 
processes are called, in order to reduce amount of programming required, and to 
facilitate the implementation and adoption of new services (OGC 05007r7).  

Therefore, OGC issued the OpenGIS® Web Processing Service (WPS) to pro-
vide rules for standardizing how inputs and outputs (requests and responses) for 
geospatial processing services, such as polygon overlay. The standard also defines 
how a client can request the execution of a process, and how the output from the 
process is handled. It defines an interface that facilitates the publishing of geospa-
tial processes and clients’ discovery of and binding to those processes.  
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The OpenGIS® Coordinate Transformation Service Standard (CT) provides a 
standard way for software to specify and access coordinate transformation services 
for use on specified spatial data. This standard addresses a key requirement for 
overlaying views of geodata (“maps”) from diverse sources: the ability to perform 
coordinate transformation in such a way that all spatial data are defined relative to 
the same spatial reference system. 

Besides the two formal standards, OGC also proposed some discussion papers 
as candidate implementation specification about web processing, like Web Cover-
age Processing Service (WCPS) and Web Image Classification Service (WICS). 

The Web Coverage Processing Service (WCPS, Lansing 2002) supports re-
trieval and processing of geo-spatial coverage data. WCPS grounds on the cover-
age model of the OGC Web Coverage Service (WCS, Evans 2003) Implementa-
tion Specification where coverages are defined as "digital geospatial information 
representing space-varying phenomena", currently constrained to equally spaced 
grids. 

The Web Image Classification Service (WICS) supports classification of digital 
images. A digital image is composed of pixel values organized into one or more 
two-dimensional arrays. The two dimensions of an image represent two axes in 
space based on a spatial coordinate reference system. The dimensions of the dif-
ferent 2-D arrays comprising an image must be the same and represent exactly the 
same spatial locations. 

In addition to the above standards and discussion, other kinds of web process-
ing service also need the support of associate standards. Moreover, according to 
the framework of GSW proposed in Section 3, more standards and specifications 
are expected to be developed to support geospatial knowledge service, dissemina-
tion service and searching service. 

13.6. Implementation of Geospatial Service Web 

13.6.1 Overview 

A framework of GSW is designed to enable the sharing and processing of geo-
spatial information over the Web. More generally defined Web Service can sup-
port many capabilities of GSW. The implementation of a GSW can use existing 
Web Service technologies. Geospatial standards will ensure the interoperability of 
GSW implementation. For standards that are not available at geospatial domain, 
the implementation will adopt W3C Web Services standards which are widely 
used in general information domain. The standard-based interoperable architecture 
allows the “plug-and-play” of community-developed, standard-compliant Web 
service. The development of both consensus-based standards and the standard-



372 Geospatial Service Web 

compliant, interoperable, distributed service components will ensure the openness, 
growth and evolution of GSW. 

The implementation will also leverage the new and ongoing development in the 
Semantic Web, Artificial Intelligence (AI), Grid Computing technology and Sen-
sor Web etc. Semantic Web technologies, which give machine-processable mean-
ings to the documents, allow the semantics of data and services machine-
understandable and thus can be processed by machines (reasoning) for more effec-
tive discovery, automation, integration and reuse of geospatial data and services. 
The Semantic Web community works closely with AI community. The Semantic 
Web community applies ontology ideas developed in the AI community to various 
aspects of Web Services and Web information search and manipulation. Thus, 
these technologies show considerable promise, and would allow representation 
and sharing of geospatial knowledge in a Web-based distributed environment. 

Grid Computing technology, a rapid developing technology focusing on dis-
tributed resources sharing and coordinated problem solving among dynamic vir-
tual organizations, provides a scalable secured sharing of distributed computa-
tional resources. The distributed environment supported by the Grid technology, 
i.e. Grid environment, carries with it various functional components including se-
curity, scheduling, data transfer and monitoring. Therefore, it provides a promis-
ing prospect to the effective sharing of distributed geospatial resources (e.g. geo-
spatial data, geospatial analysis functions) and supports the integrated analysis of 
geospatial data.  

Sensor Web refers to Web accessible sensor networks and archives sensor data 
that can be discovered and accessed using standard protocols and application pro-
gram interfaces (APIs) (Botts et al. 2007). The goal of the Sensor Web is to pro-
vide mechanisms to integrate space-airborne and in-situ sensors and enable the 
Web-based sharing, discovery, exchange and processing of sensor observations, as 
well as the task planning of sensor systems. So, the implementation of GSW 
should incorporate the achievement of the Sensor Web. The approach to the Sen-
sor Web is to establish the standards foundation for plug-in-sensor-and-play Web-
based sensor networks through harmonizing the existing standards for geospatial 
data sharing and processing. OGC has developed several encoding and service in-
terface specifications for the enablement of Sensor Web. 

13.6.2 System Architecture for the Implementation of GSW 

Fig. 13.4 shows the system architecture towards the implementation of GSW. 
The implementation of GSW will integrate and communicate different types of 
space-earth data acquired by using various earth observation technologies such as 
satellite, airplane and in-situ observation. The application areas of GSW are di-
verse, such as meteorology, agriculture, forestry, transportation and digital city. 
The GSW is built upon the open, consensus-based standards (i.e. specifications for 
geospatial information resources in Fig. 13.4) that will allow the “plug-and-play” 
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of community-developed, standard-compliant components and services. The fol-
lowing paragraphs provide detail descriptions of the major components for the 
implementation of GSW. 

 

 
Fig. 13.4 System architecture towards the implementation of GSW 
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The sensor planning mechanism enables the dynamic and live operations on the 
sensor resources.  

Geospatial Service Center is an application software designed to register, 
search, locate, bind, schedule, and allocate geospatial resources over the Web. The 
users’ requests are generally decomposed into programmatic requests with filter-
ing conditions to Web-based metadata catalogue services or Internet search en-
gines to answer users’ request. The decomposition requires the semantic informa-
tion in the requests to be correctly understood and processed. Technologies and 
tools for natural languages understanding by machines and semantic information 
processing including Semantic Web technologies will be used. In addition, the re-
sponses from metadata catalogue services or internet search engines will be proc-
essed and integrated based on the correct understanding of users’ requests. 

Spatial Database Management Platform provides the interfaces to access and 
manipulate various geospatial data. The data management components in a grid 
environment help to index the data replicas and manage the reliable file transfer. 
The information services and execution scheduler help to employ high-
performance computing (HPC) resources in a coordinated manner to achieve a 
computationally hard geospatial task, thus moving the grid-computing from con-
cept to operation. Spatial database management technology is mature. However, 
some new technologies such as P2P and distributed database management will be 
used. 

Geospatial Data Service Platform provides the discovery and access of hetero-
geneous data in diverse data archives, ranging from small data providers to multi-
ple-petabyte Earth Observation System (EOS) data pools. With the enablement of 
Sensor Web, it can further acquire real-time or near real-time data in all-weather, 
all-wave, all-time conditions. The most promising approach for this platform im-
plementation is to use OGC Web Data Services Specifications including WFS, 
WCS, WFS, SOS and CSW, since these specifications are widely accepted and al-
low seamless access to geospatial data in a distributed environment, regardless of 
the format, projection, resolution, and the archive location.  

Geospatial Processing Service Platform includes two major components: Geo-
spatial Processing Service Middleware and Services Integration Environment.  

� GeoSpatial Processing Service Middleware is a type of software ware-
house. Various geospatial processing components are developed accord-
ing to the interface specification of Web service and registered in Geospa-
tial Service Center. Some geo-processing tasks are complex and time-
consuming. Geospatial Processing Service Middleware will provide HPC 
power for intensive geo-processing tasks while at the same time hide the 
underlying complexity as much as possible from the users. Geo-
processing tasks, such as geospatial buffer operation, overlay analysis, 
network analysis, terrain analysis, statistical analysis, image processing 
and data mining, involve large volumes of data and require high perform-
ance computational resources. Thus the middleware needs to work with 
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the Geospatial Service Center to support data-intensive and computer-
intensive geospatial applications, for example, running a large number of 
parallel jobs on a computer cluster. 

� Services Integration Environment in GSW follows the publish-find-bind 
paradigm in the SOA. Individual geospatial Web Services are published 
though external registries so that they also can be found through the regis-
tries. In a Web-based distributed environment, the sites and applications 
are changing frequently. This paradigm can allow the dynamic binding 
between service providers and requestors, thus adapting the changing 
Web environment well. Individual services also act as the building blocks 
for dynamically constructing complex geo-processing models which can 
perform larger tasks. The construction of geo-processing models is a ser-
vice chaining process. The result of service chaining can be encoded in a 
workflow language. A promising candidate is the Web Services Business 
Process Execution Language (WSBPEL), shortly known as BPEL, an in-
dustry-wide standard provided by Organization for the Advancement of 
Structured Information Standards (OASIS).  

Geospatial Knowledge Service Platform provides some toolkits for describing 
and modeling geospatial knowledge, managing and accessing knowledge base, 
and registering and searching geospatial knowledge in a Web service environ-
ment. The design of geospatial knowledge services is highly related with the cur-
rent progress of knowledge management, AI and Semantic Web technologies. For 
example, geospatial ontology represented using the Web Ontology Language 
(OWL) from the Semantic Web are organized in the knowledge base using ele-
ments following the Resource Description Framework (RDF) triple form: subject-
predicate-object, because RDF, the basis of OWL, provides a flexible model for 
describing Web resources and relations among these resources. Different ontology 
can be aggregated into distributed triple store, backed up by inference engines, 
shared and accessed using SPARQL Protocol And RDF Query Language 
(SPARQL), a standard query language for RDF.  

Geospatial Application Toolkits provide tools, library and APIs that can be 
used to develop GSW architecture and applications. It brings the power of distrib-
uted data and other computational resources to end users’ desktops, manipulates 
the resources as if they are local resources, and allows users to conveniently put 
the resources together. The users can plug-in any geospatial data resources and 
processing functionalities as they want. For example, a geospatial service module 
development environment is included in the toolkit which includes a set of librar-
ies for handling the interface protocols, data encoding and decoding, and general 
utility functions. By using those libraries, Web Service modules developed by us-
ers will be standard-complaint, interoperable and easily plugged into GSW.  

Application-Oriented User Interfaces are a set of user interfaces to perform 
various tasks, such as a client to allow users to develop and test the service chain 
visually, or to “drill-down” into subchains, to animate service chain execution, to 
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check intermediate results, etc. Since geospatial services in GSW are standard-
compliant and different standards exist, e.g., WFS, WCS, WMS, an integrated, 
multiple-protocols client is also needed to provide access to all geospatial data and 
other resources in GSW. 

13.6.3 Prototype for Geospatial Service Web 

The above section designs a comprehensive framework of GSW which in-
volves various components. Geospatial Service Center is one of the key compo-
nents, which acts as a bridge to connect the other components of GSW. Fig.13.5 
shows the user interface of a prototype for Geospatial Service Center of the archi-
tecture described in the above section. The left tree lists the available services reg-
istered in the center, e.g. geospatial data services, processing services, and map 
portrayal services. This center accepts the registration of data type, data instance, 
service type, service instance and map symbols. Users can view the information of 
a service by clicking it on the tree.  

 

 
Fig.13.5 The user interface of a prototype for Geospatial Service Center 

The prototype provides an environment for composing service chains as appli-
cation-specific workflows. Fig. 13.6 illustrates an example of a service chain 
composed for flood submergence analysis. From the palette on the left column, the 
useful services are chosen and dragged to the right area, then these services are 
chained with a logical order according to the specific requirements of flood sub-
mergence analysis. Finally, an abstract chain will be built and stored as an expert 
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workflow. The abstract chain will be transformed into a BPEL service chain and 
executed by the engine of service chain. This kind of abstract chains can be reused 
and adjusted for different applications. Fig. 13.7 presents the result of the service 
chain for flood submergence analysis. The dark part in the center of the map is the 
area submerged by flood. 

 

 
Fig. 13.6 A service chain for flood submergence analysis 

 
Fig. 13.7 The result of the service chain for flood submergence analysis 
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13.7 Conclusion 

With the Web Service technology advancing, the services deployed and dis-
tributed in the Internet are not only services of data, implied information and static 
knowledge, but also geospatial processing services, other related geospatial ser-
vices and their combinations, which are generating user-induced information and 
dynamically growing knowledge. Meanwhile, semantic tools are helping the inter-
action between service and service, and between users and services. Thus, a new 
concept, Geospatial Service Web (GSW), to umbrella the basic framework of the 
future of geospatial information technology, is proposed in this chapter. While 
data, information and knowledge services are still essential bricks of this web, the 
focus of this web is on atom processing and processing combination services that 
collaborate to simulate, deduce and predict geographic phenomena, processes and 
results. This new concept will also expand the reach of geospatial connection from 
both spatial and temporal dimensions. In the data source rim, this web extends its 
antenna from static database to all data collecting sensors from satellite-based, air-
borne to ground and mobile. In the application end, the web supports from visuali-
zation until real-time automatic decision support application. What is more, this 
web will have a mechanism of rule-based self-growing. New combinations of geo-
spatial processing services can be deployed, registered and included in the reposi-
tory geographic models. As a pioneer effort, this chapter systematically preaches 
this new thought, outlines the concepts, framework, technologies and standards of 
GSW.  
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Chapter 14 

OPTIMAL COMPOSITION ALGORITHM 
CONCERNED WITH RESPONSE TIME FOR 
REMOTELY SENSED IMAGE PROCESSING 
SERVICES 

Qing Zhu, Xiaoxia Yang, Haifeng Li 

14.1 Introduction  

As remote sensing technologies have become ever more powerful due to the in-
troduction of multi-platforms and multi-sensors, hundreds of terabytes of image 
data can be made available daily. But in many cases, raw remotely sensed images 
are not directly useful without further processing. There are more and more needs 
to aggregate remotely sensed image processing to satisfy the increasing demands 
of various applications. Remotely sensed image processing services are modular 
components that are self-contained, self-describing and can be published, located, 
and invoked across a network to access and process remote sensing data (Onchaga 
2004). Remotely sensed image processing services encapsulate all processing 
functions into services and combine them into a service chain to provide a value-
added service. The various requirements of users can be achieved by combining 
different existing data and services into a value-added service chain.  

For remotely sensed image processing service chaining, an important problem 
is finding suitable services and to select the most suitable one according the task 
requirements. Quality of service(QoS) is an important factor that should be con-
sidered in the process of service composition. In general, there would be many in-
dividual processing services offering similar functionality but with different quali-
ties. Different QoS metrics, such as time, cost, reputation and availability, and so 
on, have been discussed in (Zeng et al. 2004). Several QoS metrics to geospatial 
information service have been given, including performance, reliability, availabil-
ity, security and reputation (Onchaga et al. 2008). Among these QoS metrics, re-
sponse time is always the most important factor for two reasons because response 
time is the key, and prevalent, problem in the design and management of a service 
chain (Eder et al. 1999, Gillmann et al. 2002). As to remotely sensed image proc-
essing services, it is difficult to estimate and manage response time for two addi-
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tional reasons: in most remotely sensed image applications such as in case of 
emergency, the requirement for response time of the service chain is very rigor-
ous; to allow for a dynamic network environment and the uncertainty of process-
ing service QoS, response time will vary within a range rather than being a spe-
cific value. 

In current QoS-based service research, the response time is commonly consid-
ered as a certain value (Zeng et al. 2004). However, it is better to estimate re-
sponse time in a probability manner for remotely sensed image processing ser-
vices. The response time of a service chain contains two factors: expected value 
and variance. The variance represents the stability of the response time of a ser-
vice, which is an important consideration in the service selection. Unfortunately, 
the variance is always ignored by researchers (Pozewaunig and Eder 1997). Based 
on the probability theory, this paper constructs the constraint between the expected 
value, the variance, and the user’s requirement of response time. By using the 
critical path method (CPM), some critical services which have direct and crucial 
effects on the response time guarantee are picked out. To satisfy the constraint, an 
optimal algorithm of service composition is proposed to reselect appropriate re-
motely sensed image processing services. Thus, the optimized service chain can 
meet the response time requirement of the user with higher probability than be-
fore. 

The rest of this chapter is arranged as follows. Some related works are intro-
duced in the next section. The third section describes an example of remotely 
sensed image processing service chain. The probability response time estimation 
model is introduced in section 4. The fifth section describes the optimal composi-
tion algorithm of remotely sensed image processing services with response time. 
The experimental results are illustrated in section 6. Finally, a few concluding re-
marks are presented. 

14.2 Related Work  

There are already several methods to specify and estimate the QoS of a service 
chain based on the aggregations of the QoS of the component services (Zeng et al. 
2004, Cardoso et al. 2004). A quality-aware service chain was presented and a 
QoS model was defined to describe non-functional quality characteristics of spa-
tial information services and service chains (Onchaga 2004, Onchaga 2006). The 
QoS model mainly includes response time, cost, reliability, availability, security, 
reputation, interactivity support, location, and health of the GI service. But almost 
all the existing researches have focused only on the static case by assuming that 
each service has deterministic QoS metrics. 

Crossflow Project uses the Continue Time Markov Chain (CTMC) to calculate 
and forecast the execute time of workflow (Klingemann and Wäsch 1999, Damen 
and Derks 2000, Grefen 2000). Continue Time Markov Chain and Markov reward 
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models are used to estimate the transmission time and resource waiting time 
(Gillmann and Weikum 2000, Gillmann et al. 2002), which is similar to Cross-
flow’s. The ADEPT Project assigns the least continuous time and the longest con-
tinuous time to the tasks in the workflow, and model the longest continuous time 
constraint (Dadam et al. 2000). However, the system only supports the manage-
ment and monitoring of the longest continuous time constraint. A temporal model 
for workflow was proposed and describes two concepts, the duration space and the 
instantiation space, which are used to model the absolute and relative deadline 
constraints and dynamic verification of their temporal consistency (Marjanovic et 
al. 2000). However, temporal model is only useful to manage the change of work-
flow rather than the analysis, estimation, and management of response time. The 
prominent impact of slow services in parallel on the overall response time was ad-
dressed, and the performance can be improved significantly by reducing the time 
spent at the slow services (Menasce 2004). 

14.3 Remotely Sensed Image Processing Service Chain  

Remotely sensed image processing service chain is defined as a composition of 
services, the remote sensing data and the precedence relation between them. In 
this chapter, a directed acyclic graph (DAG) is used to represent a remotely sensed 
image processing service chain. In DAG, nodes represent services, and an arrow 
from service node Si to service node Sj if and only if Sj is a direct successor to Si. 
And Si is a direct predecessor of Sj. For each Sj, there is a set of predecessor ser-
vices that must be completed before Si begins.  

Typical remotely sensed image-based change detection examples are employed 
throughout this paper. Change detection is the process of identifying differences in 
the state of an object or phenomenon by images in a certain time interval. Re-
motely sensed image has been the most important data source for change detec-
tion, and the large collection of past and present remotely sensed images makes it 
possible to analyze spatio-temporal pattern of environmental elements and impact 
of human activities. As a key element for many applications of earth observation, 
such as disaster relief, loss estimate, and forest fire monitoring, change detection 
technique is of great potential and urgent demands. Figure 14.1 illustrates the 
process of change detection with remotely sensed image, which generally consists 
of such steps as image acquirement, pre-processing, image registration, and 
change detection. Node Start represents the beginning of the service chain, and 
node End represents the terminal of the service chain. This example defines ser-
vice S1 as the first service. Its successor services, S2 and S5, are parallel services, 
which can be executed concurrently. Services S4 and S7 are direct predecessors of 
S8, only if services S4 and S7 are both finished, is service S8 allowed to execute. 
After completion of S8, the service S9 can be executed sequentially. 
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Fig. 14.1 Change detection service chain 

14.4 The Probability Response Time Estimation Models  

Given a remotely sensed image processing services, the response time t  meas-
ures the expected delay between the moment when a request is sent and the mo-
ment when the results are received. The total response time can be computed as 
follow: 

 ontransmissiprocesswait tttt ���  (14.1) 

Equation 4.1 means that the total response time is the sum of the service waiting 
time twait, the processing time tprocess and the transmission time ttransmission. 

14.4.1 The Estimation for a Single Service’s Response Time  

Before the service chain is executed, the response time of a service is unknown 
exactly. From previous research, it is assumed that the duration of each service is 
known with certainty. Because of its rich data types, huge data volumes, and com-
plex data processing, remotely sensed image processing usually involves large and 
heterogeneous data and multiple computation steps and service providers. There 
usually is considerable uncertainty about what the response time will be. But al-
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most all the existing researches assumed that service has a deterministic response 
time. In fact, considering only the single or mean response time value is not accu-
rate enough when uncertainties are taken into account. To correct this shortcom-
ing, three different types of estimation of response time are used to assess its 
probability distribution in this paper. The classic three time estimation is adapted 
to estimate the response time (Pozewaunig and Eder 1997): 

 
The optimistic time a – the shortest time that the service can be completed. 
The pessimistic time b  –  the longest time that a service might need. 
The most likely time m – the completion time having the highest probability.  
 
Two equations (Pozewaunig and Eder 1997) are made to convert a, b and m 

into estimations of the expected value T and variance 	2 of the response time re-
quired by the service. 

 1 ( 4 )
6

T a m b� � �  (14.2) 

 � �22 1
36

b a? � �  (14.3) 

Two assumptions are required to enable the calculation of the probability of the 
remotely sensed image processing service response time, namely: 

1. The response times of all remotely sensed image processing services are sta-
tistically independent; 

2. The response time has normal distribution (Hwang et al. 2007). 

14.4.2 Service Path  

A service path is a service sequence from the Start node to the End node in 
which the head node of each arrow is identical to the tail node of the next arrow. 
In Fig.14.1, there are two service paths in the service chain, Start� S1� S2� 
S3� S4� S8� S9� End and Start� S1� S5� S6� S7� S8� S9� End. For 
each path pi in the service chain, the total response time is decided by the time of 
its component services at each step. Then, the service chain is considered to be 
completed when all its service paths have been completed. The response time ex-
pected value T(pi) and variance 	2(pi) of pi are given by: 

 
1

1( ) ( 4 )
6

m

i i i i
i

T p a m b
�

� � �8  (14.4) 
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The variance of service path completion time can be calculated by summing the 
variances of the completion times of the services in the path. Given this variance, 
one can calculate the probability that the service path will be completed within a 
certain time assuming a normal probability distribution for the service path. The 
normal distribution assumption holds if the number of services in the path is large 
enough for the central limit theorem to be applied. Applying the assumption that 
the service chain is normally distributed, questions such as the following can be 
answered: What is the probability that the path will be completed within the re-
quired time? Equations 14.6 and 14.7 can be used to estimate the probability 
Pr(:) that the service chain will be completed by a given time Tk. Equation 14.6 
gives the relation between the expected value TE, variance ;E, requirement time 
Tk , and probability coefficient:�of response time. The probability Pr(:) is 
given by 14.7, which is function of :: 

 K E

E

T T
C

?
�

�  (14.6) 
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The uncertain response time of services for Fig. 14.1 are given in Table 14.1. 

Table 14.1 a, b and m of services in Fig 14.1 

si a b m T ;2 

s1 272 310 300 297 44.44 
s2 15 100 30 39 200.69 
s3 16 62 30 33 56.25 
s4 30 50 40 40 11.11 
s5 10 75 30 34 117.36 
s6 10 70 35 37 100 
s7 15 45 25 27 25 
s8 20 200 60 77 900 
s9 30 300 100 122 2025 

 
According to the standard normal distribution, the probability of the service 

chain completing within [TE-;E, TE+;E] is 68�; the probability of completing 
within [TE-2;E, TE+2;E] is 95�; and the probability of completing within [TE-3
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;E, TE+3;E] is 99�. There is a map from : to Pr(:), which is shown in Fig. 
14.2. According to Table 14.1, the expected value TE, variance ;E, probability 
coefficient :, and probability Pr(:) can be calculated, which are shown in Table 
14.2. Since the minimal probability of the service path decides the probability of 
the total service chain, the probability of the service chain completing within 800 
seconds is less than 99.97%, within 700 seconds is less than 94.74%, and within 
600 seconds is less than 44.43% respectively. 

Table 14.2 Service paths with Tk=800, Tk=700 and Tk=600 

Tk=800 Tk =700 Tk =600 path component services TE ;E
2 
: Pr(:) : Pr(:) : Pr(:) 

P1 Start� S1� S2� S3� 
S4� S8� S9� End 

608 3237 3.370.9997 1.62 0.9474 -0.140.4443 

P2 Start� S1� S5� S6� 
S7� S8� S9� End 

594 3213 3.630.9998 1.87 0.9693 0.11 0.5438 

 

 
Fig. 14.2 The probability of function about � of Path 1 in Fig. 14.1 

14.4.3 The Critical Path of Service Chain 

CPM is a well known project planning method that is frequently used in project 
management software (Philipose 1986). It can be used to manage the length of 
time required to complete the service chain. 

The response time of a remotely sensed image processing service chain is de-
cided by the longest service path, which is called the critical path. Note that the 
longest services path does not mean the one including most services, but the one 
that has the longest response time. The critical path of a service chain always re-
quires longer total response time than any other path. The critical path determines 
the shortest possible execution time required for the service chain. 
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All service chain structures do have a critical path. If the critical path is not 
immediately obvious, it may be helpful to determine the following four quantities 
for each service. 

The earliest start time, represented by TES(si), is the best time point at which the 
service si can start to ensure minimal response time of the service chain. 

 / 0
0,                                             =   

( )
max ( ) , ,   

B
i

ES i B B
ES j i j i i

p
T s

T s t s P p

� X�� �
� M 6 9 X��

 (14.8) 

where pi
B is the set of direct predecessors of si, and ti is the response time of si. 

The earliest finish time, represented by TEF(si), is the best time point at which 
the service si can finish to ensure minimal response time of the service chain. 

 ( ) ( )EF i ES i iT s T s t� �  (14.9) 

The latest start time, represented by TLS(si), is the worst time point at which the 
service si must start without delaying the response time of the service chain. 

 ( ) ( )LS i LF i iT s T s t� �  (14.10) 

The latest finish time, represented by TLF(si), is the worst time point at which the 
service si must finish without delaying the response time of the service chain. 

 / 0
( ),                                    =  
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min ( ) , ,    
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where TLF(sN) is the response time of service chain, and Pi
A is the set of direct suc-

cessors of si. 
For service si, the slack represented by TF(si) is the amount by which the start-

ing time of service si could be delayed beyond its earliest possible starting time 
without delaying the completion of the service chain (assuming no other services 
are delayed). TF(si) can easily be expressed in terms of TES(si) and TEF(si), or 
TLS(si) and TLF(si) as follow: 

 ( ) ( ) ( )i LS i ES iTF s T s T s� �  or ( ) ( ) ( )i LF i EF iTF s T s T s� �  (14.12) 

The slack can be used as a measure of how important it is to keep each ser-
vice’s response time from greatly exceeding our estimate for it. The slack infor-
mation can also be used to control the remotely sensed image processing services’ 
start times and execution durations, to avoid time failures at run time and to use 
time information for optimizing service chain execution. 
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Any service with a total slack of zero is critical service. The critical path is the 
path in which none of the services have slack. Every delay of a critical service also 
causes a delay of the overall remotely sensed image processing service chain. If 
the non-critical services speed up or slow down within slacks, the response time of 
the service chain does not change. The amount of time that a non-critical service 
can be delayed without delaying the service chain is referred to as slack time. 

Fig. 14.4 is essentially the same as the service chain in Fig. 14.1. However, 
each service node is labelled with three time values that represent the response 
time and the earliest and the latest finish time for service executions as show in 
Fig. 14.3. 

 
Fig. 14.3 Service node with 3 time values 

 
Fig. 14.4 Remotely sensed image-based change detection service chain with time information 

Since the critical path determines the response time of the service chain, the 
service chain can be accelerated by configuring the quicker remotely sensed image 
processing services to decrease the response time of the remotely sensed image 
processing service chain. 

14.5 Design of an Optimal Composition Algorithm 

Since remotely sensed image processing is data intensive and computing inten-
sive, its processing time depends on the skill and the hardware resource heavily. In 
general, there always exists more than one service to perform the similar function 
but with different qualities. These services are functionally equivalent and thus 
can be replaceable by each other, which are called candidate services. Considered 
a service path composed of n steps S1,…,Sn. Each step Si can be bound to m candi-
date services si1,…,sim which are functionally equivalent. So, it is an essential 
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problem of remotely sensed image processing service application to optimize the 
selection of suitable service from these candidates. 

The optimal strategy of our algorithm is that if the response time of the critical 
path cannot meet the requirements (both time and probability), a faster candidate 
service is picked out to replace the current one. Given the response time threshold, 
Time, and probability threshold, Probability, the flow chart of the algorithm is as 
follows. 

 

 
Fig. 14.5 The flow chart of optimal composition algorithm of remotely sensed image processing 
service with response time 
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Table 14.3 Candidate services for the service chain in Fig. 14.1 

si si1 si2 si3 si4 si5 si6 si7 si8 si9 si10 
T 297 200 310 254 196 405 360 228 400 305 

s1 
;2 44 64 576 225 361 484 289 117 484 256 

T 39 15 20 27 45 40 38 25 36 35 s2 
;2 201 144 56 117 49 36 11 16 84 100 

T 33 30 34 20 15 18 40 37 30 35 s3 
;2 56 49 44 121 36 81 169 117 100 324 

T 40 35 30 45 40 37 20 33 46 30 s4 
;2 11 36 81 225 256 201 144 169 81 56 

T 34 21 18 23 35 30 26 17 35 40 s5 
;2 117 289 121 225 117 361 201 44 36 36 

T 37 32 19 25 30 42 30 22 20 28 s6 
;2 100 81 49 56 64 529 400 225 256 44 

T 27 20 18 30 32 24 15 31 25 34 s7 
;2 25 100 49 64 121 100 11 36 225 289 

T 77 180 270 60 35 70 105 300 190 100 s8 
;2 900 289 529 324 121 441 256 576 400 529 

T 122 180 300 80 60 50 120 200 240 155 s9 
;2 2025 576 900 117 361 121 117 289 324 441 

 
This algorithm involves the following steps: 
 

(1). According to the remotely sensed image process, generate an initial ser-
vice chain X=(s1, s2,…, sn) randomly. 

(2). Using the three time estimation, calculate the response time required for 
each service. 

(3). Compute the expected value of response time of each services path. 
(4). Determine the longest path of the remotely sensed image processing 

service chain as critical path, which has the expected value of E(X). 
(5). If E(X)�Time, then go to step 7, else go to step 6. 
(6). For every critical service si, ti is the expected response time of si�Si* is 

the set of candidates of si. And the services in Si* have the equivalent function 
but a faster response time. If Si* is not empty, select the slowest candidate si* 
to replace si, else keep si. Turn to step 3. 

(7). Compute the probability Pri(X) of completion of each service path 
within Time. 

(8). Determine the minimal probability as Pr(X). 
(9). If Pr(X)�Probability, then turn to step 11, else turn to step 10. 
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(10). For every service si in the above path, ti is the expected response time 
of si, vi is the variance of si, Si’ is the set of candidates of si. And the services in 
Si’ have the equivalent function but a faster response time or a smaller vari-
ance. If Si’ is not empty, select the slowest candidate si’ to replace si, else keep 
si. Turn to step 7. 

(11). Output X=(s1, s2,…, sn). 
  

 
Fig. 14.6 The process of optimal composition of remotely sensed image-based change detection 
service chain 

14.6 Experimental Results 

In order to evaluate the proposed probability model and optimal composition 
algorithm, we developed the remotely sensed image-based change detection appli-
cation with experiments, and the service chain is shown in Fig. 14.1. Five scenar-
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ios were designed to test the effect and efficiency of our probability model and op-
timal composition algorithm under different scales. 

� Scenario 1: each step has 10 candidate services. 
� Scenario 2: each step has 20 candidate services. 
� Scenario 3: each step has 30 candidate services. 
� Scenario 4: each step has 40 candidate services. 
� Scenario5: each step has 50 candidate services. 

Exhaustive search and local optimization were developed to compare with 
our algorithm in experiments. The time of composing services was recorded to 
measure the efficiency of different composition algorithms. For the purpose of 
soundness, the optimal composition is executed 100 times in each scenario to get 
average computing time. The comparison of average computation time between 
these three algorithms is shown in Table 14.4. 

Table 14.4 Comparison results of computing time 

Scenario 1 2 3 4 5 
Number of candidate services 10 20 30 40 50 

Local optimization mean computing time (second) 0.17 0.17 0.17 0.17 0.17 
Exhaustive search time 0.38 1.23 3.83 7.70 16.38 

Our algorithm time 0.23 0.38 0.52 0.82 1.39 
 
The comparison of computing times among these three algorithms is shown 

in Fig. 14.7. In all algorithms, the computation time increased when the number of 
candidate services increased. The computation time of exhaustive searching is the 
highest of these three algorithms. Although the computation time of our algorithm 
is higher than that of local optimization, it is still acceptable when the number of 
candidate services is large. 

 

 
Fig. 14.7 The computing time of experience 
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A successful remotely sensed image processing service chain satisfies the re-
sponse time requirement with a certain probability. The service chain has been 
composed N times in each scenario, among which M service chains are successful 
service chains. In order to evaluate the effect of our algorithm, let Response Time 
Success Rate(RTSR) be the function of M and N (Equation 14.13). The compari-
son of RTSR among these three algorithms is show in Table 14.5 and Fig. 14.8. 

 /RTSR M N�   (14.13) 

Table 14.5 Comparison results of RTSR 

Scenario 1 2 3 4 5 
Number of candidate services 10 20 30 40 50 

Local opti-
mization 

RTSR (successful ser-
vice chains / total ser-

vice chain) 
66/100 78/100 80/100 85/100 89/100 

Exhaustive 
search RTSR 100/100 100/100 100/100 100/100 100/100 

Our algo-
rithm RTSR 94/100 98/100 100/100 100/100 100/100 

 

 
Fig. 14.8 The RTSR of experience results 

RTSR is the radio of successful service chains to total service chains in sce-
nario. The higher the RTSR is, the more effective the composition algorithm is. 
Since exhaustive search tries all possible composition, it will get a successful ser-
vice chain when the user requirement is satisfied. Therefore, exhaustive search has 
a highest RTSR value. The RTSR of our algorithm indicates that our algorithm is 
effective, since it is similar to that of exhaustive search and better than local opti-
mization.  
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14.7 Conclusion 

The selection and optimization of services with a response time guarantee are 
essential problems in QoS-aware remotely sensed image processing service com-
position. Considering dynamic network environment and the uncertainty in QoS 
of service, response time usually varies within a range rather than being a specific 
value. In this paper, the probability response time estimation model is established, 
which can be used to estimate the probability that the service chain will be com-
pleted by a given time. In general, there always exists more than one service to 
perform the similar function but with different qualities. In order to ensure that the 
response time of service chains meet the users’ requirements, an optimal composi-
tion algorithm with CPM response time guarantee is proposed to optimize the ser-
vice chain. A distinguishing feature of our algorithm is its ability to deal with un-
certainty in service response time, which makes the remotely sensed image 
processing service chain more reliable. Experimental results show that our algo-
rithm play well in complex remotely sensed image processing service chains with 
multi-path structure in dynamic network environment.  
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Chapter 15   

CADASTRAL MAPPING WITH EARTH 
OBSERVATION TECHNOLOGY 

Gottfried Konecny 

15.1 Introduction 

The International Federation of Surveyors (FIG) has recently stated that about 
30 to 50 countries in the world have cadastral systems in operation. Another 50 
countries are in the process of establishing one. The remainder of 90 countries do 
not have a land registry system and they do not have the funds to establish one. 

Hernando de Soto has been a primary promoter of land registration systems. 
(de Soto 2000). His philosophy was adopted by the World Bank and by interna-
tional donors in support of land registration because secure rights to land not only 
avoid conflicts, but they also permit to use land as a collateral in a widened capital 
market.  

During the last 10 years US $1.2 billions have been spent on the introduction 
and the renewal of land registration and cadastral systems. Most of the problem 
areas are institutional and political. These issues are not the topic of this chapter. 
But after legal and institutional issues have been solved, technological issues are 
important to be in a position to rapidly and cost-effectively implement cadastral 
registration systems. Purpose of this work is therefore to discuss the technical al-
ternatives which have been brought about by the recent rapid advances of technol-
ogy. 

15.2 Definitions 

A cadastre in general is a systematic collection of (spatial) data, which can be 
queried and maintained. A (land) cadastre in particular is a systematic collection 
of data on land on a land parcel basis. Such a cadastre consists of two parts: “the 
book”, which contains non-spatial data associated with the parcel and “the map” 
describing the parcel spatially. 
 

© Springer Science + Business Media, LLC 2009
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15.3 History and Diverse Approaches 

The “cadastral book” and the “cadastral map” has been introduced by Napo-
leon in the early 19th century in Europe as a “tax cadastre”. The recording of 
property rights was obligatory and the description of the property was assured by 
the map geometry with 1 m ground accuracy.  

Starting from the tax cadastre an “ownership protection” cadastre has evolved 
by about 1900 rendering a service to land owners, in which parcel boundaries 
were monumented and surveyed to cm accuracy. This became practice in Switzer-
land and Germany.  

During the 20th century it was realized that the cm accuracy was only desirable 
for private purposes, since the public only had an interest in a “spatial data infra-
structure” for integrating cadastral with topographic and infrastructure data in 
form of a “multipurpose cadastre”.  

The original establishment of a cadastre required an adjudication process, in 
which the owners of land rights had to state or prove their claims to legal and the 
survey authorities for a land holding. The maintenance of the cadastral system re-
quired obligatory registration procedures for the transfer of rights on land, which 
had to be recorded in books, with copies of the book entries in form of land titles.  

The ability to maintain a cadastral register depends on the legal practices in use 
in different countries of the world. “Private Conveyancing” is used in parts of 
North America, when land transactions are privately arranged by sales contracts 
with no security to the purchaser unless he is able to purchase an expensive “title 
insurance”. Somewhat more secure is a “deed registration”, also practiced in 
North America, where the transfer of land in form of a sales contract is registered 
at the courthouse and attested by a lawyer or a notary public. “Title registration” 
requires the existence of an obligatory registration. The proof of the registration is 
the title granted to the owner. In Central European countries there is no need to is-
sue a title, since all valid property rights are registered in the “cadastral book” 
with the guarantee of the state. The owner can, if needed, request a copy of the 
book entry. 

15.4 Requirements for Cadastral Registration 

� There must be a unique description of the right (e.g. ownership, lease, 
encumbrance) 

� The parcel must be characterized by a unique parcel identifier 
� The person holding the land right must also be uniquely identified (e.g. 

birthplace and date, or social security number) 
� Every land transaction must be updated in “near real time” (e.g. at the 

end of a working day). 
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15.5 Cadastral Maps 

In some countries cadastral maps may be useful, but they are not required. In 
these countries the maps are helpful in identifying the general location of a parcel, 
but the relative location of the boundaries is described in relative field survey 
measurements without the need for georeferencing. The map then only serves to 
identify the parcel, but not its accuracy. Such a map is called an “Index Cadastral 
Map”. Nevertheless, an accurate cadastral map is an asset to a multipurpose Geo-
graphic Information Systems (GIS), in which cadastre, topography and utilities 
can be overlaid.  

Some cadastral maps also have the disadvantage that they only show the 
boundaries and the parcels of private owners, but not of the public lands (roads 
etc.) which lie between them. A multipurpose cadastre must include all land par-
cels, including those of street sections. 

15.6 Cadastre 2014 

In 1994 the FIG Commission 7 on the Cadastre has drafted a “road map” where 
the development of the cadastre is developing, under the title “Cadastre 2014” (20 
years from then, Kaufmann et al. 1998). Six requirements for the creation and 
maintenance of a modern cadastre were stated: 
 

� The cadastre should cover all lands (public and private) including all 
rights and restrictions. Geocoding and a topological boundary structure is 
a requirement to assure, that parcels do not overlap. 

� In a data system there should be no separation between (analogue) maps 
and (analogue) registers. 

� The use of paper and pen shall be replaced by computer systems to per-
mit automation. 

� Cadastral mapping as a standalone activity shall be abolished. 

� The public and the private sectors will closely work together in establish-
ing and in maintaining a cadastral system. 

� The cadastre will be cost recovering. 
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15. 7 Cadastral Surveys  

15.7.1 Geocoding of Parcels 

With today’s capabilities geocoding of images, digital maps and survey data 
should solely be done based on Global Navigation Satellite Systems (GNSS) tech-
nology, such as Global Positioning System (GPS) and Differential Global Posi-
tioning System (DGPS). Simple code receivers can only assure accuracies of 
about 5 m; with corrections transmitted by a service to 0.5 to 2 m. This is suffi-
cient for attribute data collection for an area already mapped for high resolution 
satellite image data or for orthophoto data.  

The geocoding may simply consist of determining the coordinates of a point 
within a land parcel (a pointer, a “centroid”, or a “TOID” as it is called in the 
Ordnance Survey of Great Britain). The point permits to specify a geo-location de-
fined on a datum within the bounds of a parcel. This permits to relate alphanu-
meric attribute data contained in a land parcel register in form of a relational data-
base. Such an attribute can be the name of the owner or right holder for the parcel.  
Fig. 15.1 depicts the use of pointers shown as dots on a digital map. To these dots 
attributes are geographically attached in a relational database. 
 

 
Fig. 15.1 Pointers located in the digital map or image as dots to attach attributes in the database 

The process of adjudication, to be discussed later, then merely consists of iden-
tifying the rightful owner or right holder of the land. He is asked to provide docu-
mentation certified by a notary (a deed), that the rights belong to the identified 
person. This can be done without the description of the property boundaries. Even 
during this simple process the use of aerial photos or satellite images, as well as of 
updated topographic maps, may help to identify the existence of a parcel in a 
unique way. 
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15.7.2 Survey of Parcel Boundaries 

Obviously it is better, if the interrelationship of all existing parcels in the 
neighbourhood is described by the tracing of the parcel boundaries from boundary 
point to boundary point, determined by its coordinates. In this way the topology of 
the boundary points and boundary lines determines the parcel fabric, and assures, 
that the land area is totally covered without gaps, particularly if the parcels are not 
only restricted to land parcels but also to adjacent road sections. A parcel may 
then be treated as a uniquely identifiable object, to which sub-objects, such as 
buildings erected on the parcel may be linked. Objects and sub-objects may have 
their own attributes attached.  

The topology of the parcel fabric describes the geometric neighbourhood rela-
tionship between adjacent parcels, even though the coordinates of the boundary 
points may not be of the highest accuracy. While for a more precise geocoding to 
dm or even cm level with a survey on the ground by more expensive phase receiv-
ers used in Real Time Kinematic (RTK) mode or in conjunction with Continu-
ously Operating Reference Stations (CORS) systems are required may be possible. 
In areas where GNSS surveys suffer from disturbances (urban canyons and power 
lines) such surveys are supplemented by local total station surveys. In any case 
such surveys are the most time consuming and costly.  

 

 
Fig. 15.2 GPS Corrections 

Only few countries, such as Germany, Austria and Switzerland have been able 
to maintain cadastral data bases, which contain object oriented cadastral informa-
tion with coordinates of boundary points at cm accuracy and the topology formed 
by boundary lines for all parcels and buildings. The accuracy of boundary points is 
reached by GPS CORS at distances of about 50km, which correct the GPS-GNSS 
phase signals for the atmospheric disturbances at cm level. But other areas in the 
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world may benefit from a similar technology that corrects inexpensive GPS code 
receiver signals by worldwide networks, such as Fugro-Omnistar to dm level. The 
corrections are transmitted by special communication satellites, such as European 
Geostationary Navigation Overlay Service (EGNOS) shown in Fig. 15.2. 

15.7.3 Use of Images for Cadastral Mapping 

A much more rapid and cost effective procedure is to use aerial photos, satellite 
images and even updated topographic maps for the purpose of interpreting parcel 
boundaries from the grey level contrasts of the photographic or satellite images, or 
the mapped topographic objects. There is no guarantee, however, that the images 
or maps permit to identify the actual legal boundaries unless they are legally es-
tablished as so called “un-sharp boundaries”, or unless they are accepted by the 
adjacent owners in a “photo-adjudication process”.  

In many countries index cadastral maps are used (e.g. Sweden and Australia) in 
which the approximate boundaries are described on a map containing the unique 
parcel numbers and the graphic location of the boundaries. This can be done at a 
rather small scale, e.g. 1:5000 or 1:10 000. The accurate survey measurements are 
then separately contained in survey plans at larger scale (e.g. 1:1000) for each par-
cel by relative survey measurements or by a plan showing the coordinates of the 
boundary points. These survey plans may be drawn in analogue form and raster 
scanned to be part of the parcel database, or they may be issued as computer 
graphic outputs. 

15.7.4 Image Scale 

The ground resolution of an analogue photograph or an orthophoto depends on 
the image scale. The image should be observable by the human eye at a resolution 
of 5 lp/mm. At that resolution a physical object on the ground should be recogniz-
able (e.g. field corner, house corner). This ground resolution naturally depends on 
the physical parcel size. In rural areas with field size dimensions of greater than 
100m an orthophoto scale of 1:10 000 is appropriate, and for the settlements a 
scale of 1:2000 is recommended. For example the Ukraine is being covered en-
tirely by orthophotos 1:10 000 and the villages and cities with orthophotos 1:2000. 
In more densely settled areas, such as Thailand the orthophoto scales should be 
1:5000 for rural areas and 1:1000 for settlements. But as the production of ortho-
photos from analogue images has become an automated process, which depends 
on generating digital images by a scanning process, the required resolution is also 
determined by the required pixel size. This orthophoto generation process is at 
least 5 times faster and more cost effective than manual plotting operations.  

The resolution of digital images is determined by pixel size. It should be related 
to ground sampling distance (GSD) and not to image scale. When compared  to 
image scale 5lp/mm corresponds to 10 lines/mm. This corresponds to a GSD of 
1m for the scale 1:10 000 and of 20cm for the scale 1:2000. In the Ukraine GSD´s 
of 40 to 60cm are being used for the smaller orthophoto scale covering the entire 
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country and of 10 to 15 cm for the larger scale orthophoto coverage of the settle-
ments.  

The satellite images, orthophotos (or maps) to be geocoded need to be con-
tained in digital raster (or vector) form and they need to be geometrically trans-
formed by shifts, affine, polynomial or least square fitting models to control in a 
digital workstation.  

The images or maps can be loaded in sections (tiles) into a tablet PC or a PDA 
(Personal Digital Assistant) for use in conjunction with GPS/DGPS) or total sta-
tion ground surveys. The image or map helps in identification of a point, the sur-
vey in the precise coordinate determination. This is not only of advantage in sur-
veys for the first establishment of a cadastre (as it was done in Georgia or 
Cambodia). But is particularly recommended in update surveys, which have to be 
done on a transaction basis, when a parcel boundary is to change. 

If a cadastral database consists of a correct topologically closed parcel fabric, 
which has been established at lower accuracies of 0.5m by photo adjudication or 
of 1 to 5m by satellite image adjudication, then there is the possibility, that spo-
radic surveys done on a transaction bases will gradually improve the accuracy of 
the parcel fabric for a cadastral registration system. 

Fig. 15.3 illustrates the relationship between resolution of images from satel-
lites and aircraft versus the repeatability to be able to obtain images. Only mete-
orological satellites with 1 to 5 km resolution systematically permit imaging sev-
eral times per day, an aerial photographic coverage at dm to m resolution is 
practically not affordable except at intervals of a few years, and the original sur-
vey at cm to dm accuracy took historically in Europe more than 50 years on the 
ground. 

 
Fig. 15.3 Resolution versus repeatability  
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15.7.5 Adjudication 

The adjudication is a process in which the owners of a land parcel present their 
contracts, deeds or titles to the adjudication team. These documents, if not other-
wise available to the authorities, are photographed on site. Then owners and 
neighbours identify the boundaries of their parcel. They confirm by signature the 
location of eventually marked and DGPS surveyed boundaries or boundary 
monuments.  

Modern technology permits to send the signed and photographed documents 
via mobile technology to the field office. Such an adjudication is possible in case 
of actual field surveys on the ground, when the neighbouring owners agree to the 
surveyed and eventually even monumented boundary points. The involved owners 
confirm this in an adjudication protocol.  

When the adjudication is carried out on the basis of images, the neighbouring 
parties agree to the identified locations in the images and attest this by signature, 

15.7.6 Monumentation 

While monumentation of parcel boundaries was an issue around 1900 (in Ger-
many it was made obligatory at that time), coordinate surveys to control via total 
stations or by DGPS have made reconstruction of a point inexpensive and fast. 
Monuments are often lost due to construction after a short time. Therefore, 
monumentation now becomes optional, if the client wishes to pay for it. 

15.7.7 Surveyed Objects 

The basic objects of a cadastral survey are boundary points. Some countries 
(Germany) do not accept curved boundaries. Curves are realized as chords with 
the line connecting the boundary points as the actual property limit.  

Important are furthermore “permanent” buildings, which in most countries are 
considered part of the cadastre (e.g. Germany and the Netherlands). In some coun-
tries building outlines even refer to separate parcels (e.g. Serbia).  

Topographic features are, however, not part of the cadastre. In Germany, ca-
dastral maps are at the scale 1:1000. At that scale topography is a value added sur-
vey, which is not part of the base data provided by the cadastral administration. 
Municipalities may contract inclusion of topographic features as value added data 
to the private sector. This is done for street furniture (parking lots), utilities and 
trees (tree cadastre). The basic German topographic map is not at the scale 1:1000 
but at the scale 1:5000. The AAA concept (AFIS = control monuments; ATKIS = 
topographic dataset 1:5000; ALKIS = Cadastral basemap 1:1000) attempts to inte-
grate topography with respect to the cadastral base map.  

In Britain, the opposite approach is taken. There a basic topographic map is 
maintained at the scale 1:1200 by the Ordnance Survey, and the Land Register 
only adds a cadastral layer for its own use. Maps at smaller scales should use the 
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base map via generalization. The Ordnance Survey in Britain has committed itself 
to have an update goal of topography of not more than 6 months.  

In Germany the updating of the cadastral basemap is in near real time with the 
update of the 1:5000 topographic maps every 5 years. Due to changes of topogra-
phy (new construction) this is not fully acceptable, but a remedy is possible by 
producing digital orthophotos every 2 to 2 ½ years at the scale 1:5000.  Orthopho-
tos may thus be considered as a map substitute which only cost 1/5 of a line map 
and are producible in 1/5 of the time. An added advantage is that such orthophotos 
may be inserted into browsers, such as Google Earth for urban areas, for which 
Google has an interest and will purchase the products.  

15.8 Cadastral Data Bases 

A modern cadastral system only makes sense, if it is organized in a digital data 
base. 

15.8.1 Data Models 

The basic cadastral data model shall be simple; a land object (parcel) is linked 
to a certain type of right, such as 

- ownership for a private parcel 
- encumbrance for access of an object 
- building located on a parcel 
- land use for a parcel or a group of parcels 
- environmental restrictions for a defined area 
- informal status of an object (tribal land). 

All objects must be continuously maintained. 
 

The object is geometrically defined in a “map”. Preferably this is done in form 
of shapefiles with topology. The attributes are linked either directly to the object 
or they are attached to the defined area via label point. Otherwise, it is also possi-
ble to use CAD geometry without topology. The label point is again the link to the 
attributes.  

Attributes for land objects are stored in a relational database. They contain: 
a) - an application ID for the transaction 

- the application status 
- the status of the workflow (start) 
- the date of registration (end) 

b) – the unique parcel ID 
c) – the type of right (ownership, encumbrance, lease, building, land use, 

environmental zone) 
d) – the claimant (name, personal ID, % of ownership) 
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15.8.2 Software Needs 

Relational Database 
 

Depending on the size of the database may be used 
- Access (personal database) 
- SQL Server (enterprise database) 
- Oracle (enterprise database) 
- Open Source databases 

 
GIS tools 
 

The most widespread use is with ESRI tools, such as ArcGIS (with Arc-
View for personal database), ArcEditor or ArcInfo via ArcSDE or 
ArcServer for enterprise database. 

 
Other usable tools 
 

- Oracle Spatial 
- Intergraph Geomedia 
- Bentley’s Microstation and Geographics 
- Autodesk’s AutoCAD 

15.8.3 Specialized Cadastral Software 

A number of specialized cadastral software products have been developed: 
- Arc Cadastre (Swedesurvey) which is not entirely up to date technology 
- LM by AED SICAD for European workflows 
- ESRI Cadastral Parcel Manager for US and Australian workflows. 

 
Another option is the customization to ArcGIS or other products using local 

expertise. This approach has been followed in 
- Serbia 
- the UK 
- Germany  

In Germany this customization is being done by dedicated software companies 
(ConTerra) for the Government. 

15. 9 Fast, Low Cost Realization of Cadastral Systems 

It has been the experience, that large operating cadastral systems in Central and 
Northern Europe place their emphasis on maintenance of the records. In the trans-
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formation countries some old cadastral information may exist from the 1940’s. In 
former Soviet areas such information is not available. In Serbia, Bulgaria, Poland, 
Albania the task is therefore to superimpose the existing situation contained in sat-
ellite images or orthophotos with outdated, not properly geodetically referenced 
and perhaps not yet digitized or scanned cadastral maps for an updating process.  

Fig. 15.4 illustrates, how in Tirana, Albania at least the buildings of a not main-
tained cadastral database could be digitized to 2m accuracy from a geocoded 
QuickBird satellite image with 60cm ground sample distance. The orthophoto and 
buildings could be visualized by ArcView from an ArcGIS database. 

Fig. 15.5 demonstrates, how the ArcGIS capabilities are also able to display at-
tributes derived from the pointers, such as land use. 

 

 
Fig. 15.4 Digitized buildings  

 
Fig. 15.5  GIS use of parcels; the attributes from the relational database permit to display the 
parcels in different colors (dark blue = building; red = shops; orange = commercial building; 
dark green = garden; light green = meadow; light blue = gravel surface)   
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In former Soviet controlled areas a new cadastral fabric needs to be created. 
Particularly in these areas it can be done without the existence of a survey profes-
sion, if a group of talented young individuals are trained on new technology, as 
was done in Georgia.  

The trained individuals were able to use the KFW (Kreditanstalt füt Wied-
eraufbau = German International Development Bank) donated equipment forming 
competing companies managing to establish a cadastral survey system by high-
tech adjudication in a 5 year period. In the first year the survey and adjudication 
cost per parcel was around US $10. It diminished in the 5th year of operation to 
US $2 per parcel. This shows that the establishment of a cadastral system is possi-
ble in the shortest possible time at low cost. It is now the government’s task to 
show that maintenance of the system can be done in a sporadic manner. 

Fig. 15.6 illustrates the components of the technology used in the project: a 
GPS base station, a DGPS rover, a bluetooth connected field pen computer.  

Fig. 15.7 shows the adjudication process in the field combined with the ground 
survey (images of the orthophoto are used in the field pen computer for better ori-
entation in the field). 

Fig. 15.8 shows how legal documents of the owners are copied during the ad-
judication process. The copies may directly be transmitted via bluetooth to the 
field office. 

 

 
          Fig. 15.6 Georgia KFW project   Fig. 15.7 Field survey and field adjudication 

 
Fig. 15.8 Copying of legal documents of the owners by digital photography 
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There are a number of possibilities to reduce the cost of a cadastral system: 
 

1. If there is only one administration in charge of land registration and 
cadastral mapping (as this is the case in Serbia) duplications of data 
and mismatches of information can be avoided reducing administra-
tive costs. 

2. The adjudication does not have to be done by survey measurements, 
as long as the parcel boundaries are identified in satellite images or or-
thophotos on which they are marked. If there is a need for a more pre-
cise survey due to construction activities (e.g. urban renewal or rural 
reallocation of parcels) then this could be done on sporadic ad hoc ba-
sis. 

3. For the maintenance of the cadastre there are basically 3 scenarios: 
Already build-up areas, for which very little changes are anticipated. 
In these areas sporadic surveys would be used. Modern technology for 
survey and data base design permit the possibility to improve the 
originally entered coarse accuracy of 2 m from satellite images or 0.5 
m from orthophotos for boundary points to DGPS accuracy of a few 
centimetres in a sporadic way.  
 
Areas in which new settlements are planned and computer designed 
on geocoded maps or orthoimages. The computer planned boundary 
points can directly be staked out by survey instruments in the field us-
ing DGPS and total stations. The record of these plans and stakeouts 
can immediately be used for the content of the cadastral geodatabase.  
 
Rural areas, in which accurate surveys are lacking, and in which com-
bined adjudication – survey procedures are recommended.  

 
4. No cadastral adjudication and surveys should be undertaken, unless 

there is a firm commitment by the authorities to maintain the system. 
5. This commitment will also generated trust in the cadastral system, so 

that it will be used for mortgaging. A secure cadastral system will al-
low to use up to 90 % of the value of the land as mortgage collateral, 
while unsecure systems may only lend 10 % of the value. 

6. The main requirement is to create a rapid and low cost cadastral sys-
tem, which should be designed in such a way, that it can be improved 
by subsequent transactions. 
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Chapter 16  

SPATIO-TEMPORAL PATTERN ANALYSIS OF 
LAND COVER CHANGE: A CASE STUDY IN 
ARIDZONE 

Qiming Zhou 

16.1 Introduction 

Remotely sensed data have been widely used for environment change study in 
the past decades and large collections of remote sensing imagery have made it 
possible to analyze long-term change of environmental elements and impact of 
human activities. Research has been widely reported on methodology of remote 
sensing change detection and monitoring (e.g. Singh 1989, MacLeod and Congal-
ton 1998, Mas 1999, Lu et al. 2004).  

Change detection approaches can be characterized into two broad groups, 
namely, bi-temporal change detection and temporal trajectory analysis (Coppin et 
al. 2004). The former measures land cover changes based on a ‘two-epoch’ time-
scale, i.e. the comparison between two dates. Even if land cover information 
sometimes is acquired for more than two epochs, the changes are still measured on 
the basis of pairs of dates. The latter analyses the changes based on a ‘continuous’ 
timescale, i.e. the focus of the analysis is not only on what has changed between 
dates, but also on the progress of the change over the period. At present, most 
change detection methods belong to bi-temporal change detection approach in-
cluding, for example, image differencing (Weismiller et al. 1977, Maktav and Er-
bek 2005), vegetation index differencing (Muttitanon and Tripathi 2005), change 
vector analysis (CVA) (Malila, 1980, Lunetta et al. 2004), principal component 
analysis (PCA) (Byrne et al. 1980, Liu et al. 2004), post-classification comparison 
(Weismiller et al. 1977, Dewidar 2004), multi-temporal composite and classifica-
tion (Zhao et al. 2004), and artificial neural network (ANN) (Dai and Khorram 
1999, Liu and Lathrop Jr. 2002). 

In general, the aim of bi-temporal change detection is to obtain details of 
‘change/no change’ or ‘from-to’ information in between the detection dates. These 
methods are often based on medium and high resolution remotely sensed images 
(e.g. Landsat TM, ETM, SPOT, IRS and AVIRIS), as its applications often require 
more accurate measurements on, for example, the area ratio changes (Harris 2003, 
Weber et al. 2005), the conversion matrix of land cover change (Zhao et al. 2004, 
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Muttitanon and Tripathi 2005), and the spatial pattern changes characterized by 
land cover metrics changes (Narumalani et al. 2004, McConnell et al. 2004).  

The temporal trajectory analysis is to discover the trend of the land cover 
change by constructing the ‘curves’ or ‘profiles’ of multi-temporal data. In con-
trast to bi-temporal change detection, the temporal trajectory analysis is typically 
based on low spatial resolution images such as AVHRR and MODIS, which are 
characterized as low-cost with a high temporal resolution. The trade-off of using 
these images, however, is the lost of spatial details that makes auto-classification 
very difficult with low accuracy, so that the temporal trajectory analysis is com-
monly restricted in, for example, vegetation dynamics in large areas (Lambin and 
Ehrlich 1997, Myneni et al. 1997, Kawabata et al. 2001, Dessay 2004, Herrmann 
et al. 2005, Olsson et al. 2005), or change trajectories of individual land cover 
classes (Mertens and Lambin 2000, Petit et al. 2001, Crews-Meyer 2001, South-
worth et al. 2002). Quantitative parameters such as normalized difference vegeta-
tion index (NDVI) or area of given land cover class are often used as the depend-
ent variables for the establishment of change trajectories. 

To study the human impact on the natural environment, it is often required to 
recover the history of land cover change and relate the spatio-temporal pattern of 
such change to other environmental and human factors, rather than merely relying 
on the change of areas or indices. With the accumulation of remotely sensed im-
ages over the past 40 years, it is now possible to analyze the categorical changes 
of land cover types using higher resolution imagery. Attempts have been made 
and reported on applications of bi-temporal change detection methods to multiple 
epochs (Masek et al. 2000, Herold et al. 2003, Liu and Zhou 2004, 2005, Lunetta 
et al. 2004, Tang et al. 2005, Zhou et al. 2008a). 

In a landscape perspective, land cover change will cause the landscape modi-
fied. To measure and distinguish landscape patterns (e.g. fragmentation and con-
nectivity) various landscape metrics have been proposed to describe landscapes at 
levels of patch, class and landscape (McGarigal et al. 2002, Leitao et al. 2006). 
For modelling land cover change in space and time, the trajectory analysis by re-
mote sensing and pattern metrics have been integrated to quantify patterns of land-
scape changes (Croissant 2004, Crews-Meyer 2006). However, to better under-
stand the spatio-temporal pattern of land cover change, the landscape metrics on 
change trajectories need to be further investigated and interpreted (Zhou et al. 
2008b). The connection between the change of landscape patterns and the impacts 
by human activities and natural forces can then be further explored (Zhou et al. 
2008c, Zhou and Sun 2008). 

This study seeks an efficient and practical methodology to integrate multi-
temporal and multi-scale remotely sensed data from various sources with a time 
frame of 13 years. Based on this, the spatio-temporal pattern of environmental 
change, which is largely represented by the land cover (e.g. vegetation and water) 
change, has been analyzed. The history of land cover change for every location in 
the study area is traced, and the specific nature of such change related to human 
activities can also be identified. 

A practical approach has been proposed to quantify spatial pattern of land 
cover change for the establishment of a model on change dynamics in an aridzone 
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of western China. The major factors (or driving forces) of these changes and their 
spatio-temporal patterns are also addressed in order to seek a balance between 
natural resources and human activities. To simplify the research issues, the spatio-
temporal change of the farmland cover type is used as the indicator of the human 
impacts on the landscape. 

16.2 Methodology 

The methodology of this study is based on the classifications of multi-temporal 
images. Firstly, the multi-temporal images were classified to extract the farmland 
land cover type on different observation dates. Farmland change trajectories, or 
‘pixel history’, were then established to create categorical shift patterns between 
farmland and other land cover types in the dimension of time. Finally, selected 
landscape metrics of the farmland cover type and trajectories were derived and 
analysed. 

 
Fig.16.1 The study area 
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16.2.1 Study Area and Data 

The study area is centered at Yuli County in Xinjiang Uygur Autonomous Re-
gion of China (Figure 16.1). It is located at the lower reach of the Tarim River – 
the longest inland river of China. At the fringe of the Taklimakan Desert, the oases 
along the ‘green corridor’ of the Tarim River and other rivers are considered to be 
the most important habitation areas in the arid zone of China with a population 
density greater than that of cities in the eastern part of the nation. The environment 
is generally dry with a harsh condition and the ecosystem is fragile by keeping the 
delicate balance among various environmental factors. As the evaporation is far 
greater than rainfall, the human survival and vegetation growth heavily rely on 
water supplement from the rivers. 

In this fragile environment, the land cover has shown frequent changes, espe-
cially in the last decade. This seems largely due to the human impacts correspond-
ing to the government policies that encouraged large-scale commercial operations 
for agriculture, particularly the cotton cultivation. According to the local bureau of 
statistics, more than 97% of the local farmland was for the production of cotton in 
2005 and this ratio continued to grow in the following two years (BSY 2006, 
2007). Natural factors, however, also played an important role, particularly the 
change of water resources caused by natural processes such as flood and drought. 

To investigate the farmland change in the past decade, we have used five mid-
resolution multi-temporal remote sensing images, including multispectral images 
from Landsat-5, Landsat-7, China-Brazil Environment and Resource Satellite 
(CBERS-02), and Beijing-1 micro-satellite (BJ-1) (Table 16.1). The 2005 
CBERS-2 image was registered and geo-referenced to a topographic map at a 
scale of 1:50,000. The other images were then geometrically rectified and regis-
tered using image-to-image registration based on this master image. Efforts were 
made to control registration errors within half a pixel of the correspondent image. 
In addition, the images were subset to fit the study area, so as to be comparable to 
detect land cover changes. 

Table 16.1 Multi-temporal satellite images used in this study 

Satellite Sensor Spatial-resolution (m) Acquisition date 
Landsat 5 TM 30 Sept. 25, 1994 
Landsat 7 ETM+ 30 Sept. 17, 2000 
CBERS-02 CCD 19.5 Sept. 15, 2005 
BJ-1 CCD 32 Aug. 10, 2006 
BJ-1 CCD 32 Aug. 31, 2007 

 

16.2.2 Land Cover Classification 

In order to minimize the seasonal impacts of multi-temporal and multi-sensor 
images, the post-classification comparison method is employed. This method is 
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considered to be effective in minimizing the problem of radiometric calibrations 
between dates and caused by different sensors (Coppin et al. 2004). A supervised 
classification approach using the Maximum Likelihood Classifier (MLC) is 
adopted to classify images. Five or six land cover types were classified for each 
image and then they were merged into only two targeted classes, namely, “farm-
land” and the “others”. 

The spatial scale which represents the level of landscape is an important issue 
in ecological spatial pattern analysis (McGarigal et al. 2002, Leitao et al. 2006). A 
large scale may provide a detailed land cover spatial pattern. However, sometimes 
when a broader perspective in landscape is considered, a smaller scale is more ap-
propriate. In this study, the analytical scale depends on the spatial resolution of 
images as pixel-based classifications were undertaken. The multi-resolution im-
ages were accordingly resampled into 30m (approximately the lowest spatial reso-
lution of all used images) using the nearest neighbour method to preserve the 
original spectral information (Lillesand et al. 2004) and to minimize the impacts 
of resampling on classified images. After classification, a 3×3 majority filter was 
applied to remove isolated patches. 

Due to the difficulty of acquiring historical ground data over a long period of 
time, collecting reference data for accuracy assessment on multi-temporal images 
always presents a serious constraint (Zhou et al. 2008b). In this study, the accu-
racy assessment on classified images was based on a random sampling scheme 
and image interpretation. For each classified image, over 200 sample points were 
randomly selected on the original images with the reference to some supplemen-
tary data sets such as historical aerial photos, thematic maps and ground GPS 
samples. 

16.2.3 Establishment of Land Cover Change Trajectories 

Temporal trajectory analysis based on a time series of imagery has proven to be 
a good way to understand the spatio-temporal pattern of ecosystem dynamics 
(Coppin et al. 2004, Crews-Meyer 2004, Kennedy et al. 2004). Although numer-
ous quantitative indictors (such as vegetation index and temperature) can be used 
for trajectory analysis, methods have also been proposed to create cover type shift 
patterns or categorical trajectories (Zhou et al. 2008a). The focus of this study is 
the change of farmland in the study area, so that the change between different 
crops and between other cover types is not concerned. Thus, the land cover trajec-
tory in this research is simply defined as the situation of changes between farm-
land and the other land cover types. A trajectory may be specified as “farmland – 
others – farmland – others – others”, meaning that the land was once periodically 
cultivated, but finally abandoned. For the five-epoch, two-class scenario, the total 
number of possible trajectories is 32 (25). Figure 16.2 shows all possible land 
cover change trajectories and the meaning of changes based on this classification 
scheme. 
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Fig. 16.2 Trajectories of changes between farmland and the other land cover types 

It should be noted that a farmland is categorised as “abandoned” when it shifted 
to and remained as the “others” cover type. However, some of such changes might 
be the result of construction such as roads and built-up areas. To minimize this 
kind of uncertainty, the road network and built-up areas were interpreted, mapped 
and integrated into GIS to create a mask, which was then overlaid with the classi-
fied images to exclude built-up areas from the trajectory computation. 

To establish the change trajectories, all classified images are integrated into a 
GIS with the raster format. After assigning value “1” (for farmland) or “0” (for 
others) to a corresponding bit position in a binary number for each pixel of each 
classified image, the multi-temporal images were merged together to identify 
every possible change trajectory with a unique number. Figure 16.3 demonstrates 
the process. 
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Fig. 16.3 Establishing trajectories in GIS 



Spatio-Temporal Pattern Analysis 417 

16.2.4 Landscape Metrics Analysis of Change Pattern 

Metrics calculation for quantifying land cover change trajectories are con-
ducted using FRAGSTATS 3.3, a program that can compute most metric indices 
for landscape pattern analysis (McGarigal et al. 2002). In this study, the farmland 
change trajectories are reclassified into classes according to the change scenarios. 
The primary focus of this study is on the spatial pattern of trajectories instead of 
each patch (or pixel), thus only class-level metrics are meaningful and can be used 
to explain change patterns. What is more, since the extent and fragmentation of a 
particular class is the principal concern (Leitao et al. 2006), the class-level charac-
teristics are common in various studies so that comparison between results of dif-
ferent works is possible. In this study, four class-level metrics supported by 
FRAGSTATS have been selected, namely, Percentage of Landscape (PLAND), 
Normalized Landscape Shape Index (NLSI), Interspersion and Juxtaposition Index 
(IJI) and Area Weighted Fractal Dimension Index (AWFDI). 

Table 16.2 Selected metrics for spatial pattern analysis of change trajectories (retrieved and 
modified from McGarigal et al. (2002) and McGarigal and Marks (1995)) 

Metrics Equation Interpretation 
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IJI ; 0 when the patch adja-
cencies becomes uneven, and 
IJI ; 100 when all patch 
classes are equally adjacent. 
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 (16.4) 
AWFDI ; 1 for shapes with 
very simple perimeters such as 
squares, and AWFDI ; 2 for 
shapes with highly convoluted, 
plane-filling perimeters. 

 (1) Pi = proportion of the landscape occupied by class i; aij = area (m2) of patch 
ij; A = total landscape area (m2). 

(2) ei = total length of edge of class i in terms of number of cell surface includ-
ing all landscape boundary and background edge segments involving class i. 

(3) eik = total length (m) of edge in landscape between classes i and k; m = 
number of classes. 

(4) pij = perimeter (m) of patch ij; aij = area (m2) of patch ij. 
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PLAND is selected to show the domination of farmland in the landscape so that 
the overall impact of farmland can be assessed. NLSI specifies the degree of ag-
gregation of farmland. The greater degree of aggregation usually implies a larger 
scale of agricultural operations. IJI illustrates the state of adjacency between farm-
land trajectories. This to some extent explains how the new farmland expansion or 
abandonment occurred in relation to the existing farmland. AWFDI measures the 
complexity of farmland patches. A complex patch shape is often regarded as the 
indicator of poorly planned (random) or uncontrolled farmland expansion. The 
definitions and interpretations of these selected metrics are listed in Table 16.2. 

16.3 Results 

16.3.1 Classification Accuracy 

The spatial registration accuracy for the images is adequate for this study with 
RMSE less than 0.2 pixels. On the basis of the assessment on only two combined 
classes, the classifications have shown high accuracy between farmland and the 
others. The overall accuracies of classifications range from 88.9% to 95.2%, with 
Kappa coefficients ranging from 0.762 to 0.896 (Table 16.3). 

Table 16.3 The overall accuracies and kappa of the classifications of individual images 

Images 1994 2000 2005 2006 2007 

Overall accuracy (%) 93.8 95.2 88.9 90.7 92.5 

Kappa coefficient 0.877 0.896 0.762 0.799 0.837 
 

16.3.2 Farmland Change Trajectories 

Table 16.4 lists trajectories of farmland expansion and abandonment. Table 
16.5 shows the change of farmland area and the proportion of permanent, ephem-
eral and abandoned farmlands. The dominant trajectories are the expansion of sta-
ble farmland (i.e. the land has remained as farmland since cultivation and never 
been abandoned). In terms of area, the trajectories of permanently abandoned 
farmland (i.e. farmland that was abandoned and has never been re-cultivated 
since) are not significant. It should also be noted that there have been a large area 
of ephemeral farmlands accounting for 22.7% of total farmland area in 2007. 
These ephemeral farmlands are only periodically cultivated and usually do not 
have adequate infrastructure and water resource to support sustainable agricultural 
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landuse. Therefore, they are prone to the farmland abandonment and most likely to 
be where land degradation occurs. 

Table 16.4 Trajectories of farmland expansion and abandonment 

Trajectory* Description Area (kha) % Stable 
Farmland 

Annual 
Growth (%) 

XXXXX Old farmland 6.76 20.1 - 
OXXXX Cultivated since 2000 7.17 21.3 12.8 
OOXXX Cultivated since 2005 8.55 25.4 10.0 
OOOXX Cultivated since 2006 3.27 9.7 14.5 
OOOOX Cultivated since 2007 7.88 23.4 30.6 
XOOOO Abandoned since 2000 0.32 2.6 - 
XXOOO Abandoned since 2005 0.20 0.8 10.1 
XXXOO Abandoned since 2006 0.13 0.4 25.6 
XXXXO Abandoned since 2007 1.08 3.0 165.8 
OXOXO 
XXOOX 
… 

Ephemeral farmland - - - 

* the cover type “X” stands for the “farmland” class, “O” stands for the “others” class (or-
dered as 1994-2000-2005-2006-2007). 

Table 16.5 Change of farmland area and the proportion of permanent, ephemeral and abandoned 
farmlands 

 Farmland 
(kha) 

Stable 
(kha) % Abandoned 

(kha) % Ephemeral 
(kha) % 

1994 12.2 6.76 55.4 - - 5.44 44.6 
2000 23.5 13.93 59.3 0.32 2.6 9.57 40.7 
2005 34.4 22.48 65.3 0.52 2.2 11.92 34.7 
2006 36.1 25.75 71.3 0.65 1.9 10.35 28.7 
2007 43.5 33.63 77.3 1.73 4.8 9.87 22.7 

 
Figure 16.4 illustrates the farmland change trajectories. Since the land cover 

changes are mainly caused by increased farmland in the past decade, the farmland 
expansion trajectories are highlighted, representing the old farmland since 1994 
and the expansions since 2000, 2005, 2006 and 2007. 

Figure 16.5 highlights the spatial distribution of the trajectories of abandoned 
and ephemeral farmlands. Generally speaking, the abandoned and ephemeral 
farmlands were mostly distributed in the marginal area, particularly at the fringe 
of water bodies and wetlands. This suggests that the flood and salinity caused by 
the change of water level and inappropriate irrigation could  be the main reason 
for farmland abandonment. 
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Fig. 16.4 Farmland expansion trajectories in Yuli County 

 
Fig. 16.5 Abandoned and ephemeral farmland trajectories in Yuli County 
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16.3.3 Metrics of Farmland Trajectories 

The selected metrics have been calculated for the trajectory classes. Table 16.6 
shows PLAND and IJI of the farmland expansion/abandonment trajectories. 

Table 16.6 The class-level landscape metrics of farmland expansion/abandonment trajectories 

Trajectory Description PLAND (%) IJI 
XXXXX Old farmland 2.02 62.70 
OXXXX Cultivated since 2000 2.14 61.10 
OOXXX Cultivated since 2005 2.55 59.30 
OOOXX Cultivated since 2006 0.98 53.20 
OOOOX Cultivated since 2007 2.35 51.10 
XOOOO Abandoned since 2000 0.10 49.20 
XXOOO Abandoned since 2005 0.07 72.70 
XXXOO Abandoned since 2006 0.05 71.00 
XXXXO Abandoned since 2007 0.33 54.30 
OXOXO 
XXOOX 
… 

Ephemeral 3.26 85.03 

 
While considering the spatial patterns of farmlands that were kept cultivated or 

abandoned at a given time point, the farmland expansion/abandonment trajectories 
have been merged. For example, the stable farmlands in 2005 include trajectories 
of “old farmland”, “cultivated since 2000” and “cultivated since 2005”, while 
permanently abandoned farmlands in 2005 are composed of trajectories of “aban-
doned since 2000” and “abandoned since 2005”. Table 16.7 summarises the class-
level metrics on the merged trajectories classes. 

Table 16.7 The class-level landscape metrics of permanently cultivated/abandoned farmland tra-
jectories 

Year Description Area (kha) PLAND (%) NLSI AWFDI 
1994 6.76 2.02 0.172 1.170 
2000 13.93 4.16 0.161 1.200 
2005 22.48 6.71 0.145 1.224 
2006 25.75 7.69 0.134 1.240 
2007 

Stable farmland 

33.63 10.04 0.145 1.305 
2000 0.32 0.10 0.545 1.066 
2005 0.52 0.18 0.484 1.091 
2006 0.65 0.23 0.454 1.099 
2007 

Permanently 
abandoned 

1.73 0.56 0.376 1.132 
 Ephemeral 9.87 3.26 0.421 1.157 
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16.4 Discussion 

16.4.1 Spatio-Temporal Patterns Shown by Trajectory Metrics 

Usually, landscape metrics are based on land cover types, which are used to de-
scribe spatial patterns of landscapes. In this study, we have employed the land-
scape metrics to describe the nature of change trajectories. Through this approach, 
attempts have been made to link the trajectory metrics to the environmental im-
pacts of human activities in the study area. 

PLAND is a widely used parameter which can determinate the majority land 
cover type in a landscape. In this study, since the farmland is the only land cover 
type of interest, PLAND on farmland expansion/abandonment is shown as the in-
dicator of the farmland change rate. 

The results show that during the 13-year period from 1994 to 2007, the area of 
stable farmland has expanded from 6.76 to 33.63 kha (Table 16.7), increasing by 
nearly 400%. More significantly, the growth has been accelerated recently. During 
the period of 11 years from 1994 to 2005, the annual growth of stable farmland 
was about 10-13%. This annual growth rate increased to 14.5% in 2006 and 
reached an alarming level of 30.6% in 2007. Meanwhile, the area of permanently 
abandoned farmland has increased from 0.32 to 1.73 kha, accounting for about 
4.8% of total farmland area in 2007. Although in terms of area the farmland aban-
donment has not been significant compared to the expansion of stable farmland, 
its annual increasing rate has surged from 10.1% before 2005 to 25.6% in 2006 
and 165.8% in 2007. The change of farmland expansion/abandonment can be well 
illustrated by corresponding change in PLAND of the farmland cover type, as 
shown in Figure 16.6. 
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Fig. 16.6 PLAND of permanent farmland expansion/abandonment from 1994 to 2007 
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IJI measures the adjacency of a patch type to the others. A higher value means 
the patch type is well interspersed among the others (i.e., equally adjacent to each 
other), whereas lower value shows a poorly interspersed situation (e.g., a circular 
distribution of patch types). In this study, the IJI of expanding farmland tends to 
decrease over time (Table 16.6 and Figure 16.7), while it shows generally higher 
values for abandoned farmlands. The decreasing IJI indicates that the expansion of 
farmland was largely located at the outskirt of the existing farmland, thus the new 
farmland was more likely to intersperse with those just cultivated. This is particu-
larly the case in the recent development since 2006, suggesting that the spatial pat-
tern of farmland expansion was largely dependent upon the agricultural infrastruc-
ture (e.g. the irrigation system) in the study area, where the old farmland started in 
close proximity to water resources while spreading away with the development of 
infrastructure and increasing investment. The higher IJI values for abandoned 
farmland suggest that the farmland abandonment seems to occur randomly and 
does not yet follow a specific spatial pattern. 
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Fig. 16.7 IJI of farmland expansion from 1994 to 2007 

NLSI is a measure of the aggregation of a class. As shown in Table 16.7 and 
Figure 16.8, both stable and permanently abandoned farmlands present the ten-
dency of decreasing NLSI, illustrating the increasing degree of patch aggregation. 
This implies that the previously sparse patches of stable farmlands tend to be 
merged into larger farmland patches, suggesting that a larger scale of agricultural 
operation is in place. Correspondingly, the farmland abandonment also becomes 
more aggregated considering the increasing abandoned farmland area as indicated 
by PLAND. It should be noted that abandoned farmlands still have much higher 
NLSI values than those of stable farmlands, suggesting that farmland abandon-
ment was still rare and random. However, the rapidly decreasing rate of NLSI of 
permanently abandoned farmlands in recently years certainly shows a warning 
trend of larger, more aggregated farmland abandonment. 
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Fig. 16.8 NLSI of permanent farmland expansion/abandonment from 1994 to 2007 

AWFDI is the measurement of the complexity of a shape. While the stable or 
permanently abandoned farmlands have merged together, the patch sizes increased 
with more complicated shapes. This trend is shown in Table 16.7 and Figure 16.9 
where both stable and permanently abandoned farmlands show increasing AWFDI 
values over time. Similarly to NLSI, the permanently abandoned farmland has 
shown less complication in shape compared to the stable farmland, but also a rapid 
increase of complexity over time in the similar way as shown by NLSI. 
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Fig. 16.9 AWFDI of permanent farmland expansion/abandonment from 1994 to 2007 



Spatio-Temporal Pattern Analysis 425 

16.4.2 Limitation of the Study 

With the constraint of image data acquisition, it is impossible to acquire multi-
temporal images of same kind over the 13 year study period. Post-classification 
comparison method has therefore been employed to cope with the multi-sensor 
multi-temporal images. The principal advantage of the post-classification com-
parison method is that the images acquired on different dates by different sensors 
are independently classified, so that the problems of radiometric calibration 
among images of different dates by different sensors are minimized. However, it 
has been argued that the post-classification comparison method may overestimate 
land cover change due to uncertainties in data (Vanoort 2005), including those by 
errors in image registration and classification, and misunderstanding of trajecto-
ries. The final accuracy of the post-classification comparison and trajectory analy-
sis is largely dependent upon the accuracy of the initial classifications (Coppin et 
al. 2004). 

In this study, farmland cover types have been delineated through image classi-
fication. When assessing the accuracy of classification, reference data sets have 
been acquired through visual interpretation of images with the assistance of field 
data. Ideally, error assessment when using post-classification comparison method 
should follow the traditional error assessment method using simultaneous ground 
reference data (Liu and Zhou 2004). Nevertheless it is argued that sampling on 
typical visual interpretation keys for general classes such as farmland and others 
would be sufficient for obtaining high-quality reference data sets for classification 
accuracy assessment. 

16.4.3 Comparison of Metrics-based Methods 

Most metrics analyses are based on land cover types and focused on the pattern 
or structure of landscapes. A change detection based on that was only a numeric 
comparison. The results cannot reveal the spatial pattern of the change. This study 
takes the approach that the class-level landscape metrics are applied to the land 
cover change trajectories, rather than land cover types at a given point of time. 
The results reflect not only the pattern of land cover type distributions but also the 
spatial pattern of the change. The latter can further be analysed to disclose the rea-
son why a change happened and the trend of how the change will develop. 

16.5 Conclusion 

This study has demonstrated a method to quantify spatial pattern for analyzing 
land cover changes effectively by calculating class-level landscape metrics of 
change trajectories. Different from the traditional landscape metrics on land cover 
types, the metrics based on change trajectories that can better reveal spatial pattern 
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of changes. In the environment, the supply of arable land has been considered to 
be unlimited but use of such land is severely limited by the supply of water. Our 
approach does not only consider the spatial pattern of expanding farmland, but 
also takes care of the situation of the process of land cover change (or temporal 
patterns of farmland expansion). Through using multi-temporal images, the causes 
and consequences of farmland expansion can be better monitored and analyzed, so 
as to provide better clues for the solution of sustainable development in such frag-
ile ecosystem. 

The results show that farmland has rapidly increased in the study area during 
the 13 year study period. In contrast, signs have shown that the lack of water sup-
ply has resulted in farmland abandonment that could cause severe land degrada-
tion due to salinity and wind erosion. Large-scale commercial agricultural practice 
has obviously increased demand on natural resources, particularly the water re-
source. When the shortage of water supply happens, newly cultivated farmland is 
more likely to be abandoned. In the year of 2007, the highest expansion rate of 
new cultivation was observed, while the area of abandoned farmland also reached 
the largest. It is therefore fearful that the rapid expansion of agricultural land may 
not be sustainable and may lead to the rapid farmland abandonment in unfavour-
able environmental conditions. 

Although challenges remain with numerous research questions unanswered, the 
study nevertheless encourages further effort to develop more advanced methodol-
ogy for establishing more robust and reliable spatial pattern indicators, so that the 
spatio-temporal pattern of land cover change can be better understood. Attempts 
will be made to establish a regression model between water resources and spatio-
temporal pattern of farmland change trajectories. The aim of further studies is also 
on the regional balance of water resources, corresponding to the dynamic change 
of landuse and crop cover. 
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Chapter 17 

REMOTE SENSING OF WATER ENVIRONMENT 

Xiaoling Chen, Zhifeng Yu 

17.1 Introduction 

Water, the hydrosphere, covers approximately 71% percent of the earth. It con-
sists of ocean, river, lake, marsh, glacier, snow, groundwater, air moisture, and so 
on. Water environment, closely linked with human being’s life, is facing serious 
problems of pollution and eutrophication. Water resource’s protection and man-
agement has become more and more important in the world.  

Water has been traditionally monitored by in situ measurement, to take point 
samples at regular intervals. But point samples are not adequate to observe spatial 
and temporal variations in a large area. Remote sensing has provided a new way to 
obtain water quality data over large areas simultaneously. Various kinds of re-
motely sensed images, including air-borne and space-borne optical (passive visible 
and infrared, laser), and passive and active microwave (e.g., Synthetic Aperture 
Radar, SAR) images, have become important information source for monitoring 
and detecting water quality. Satellite sensors such as CZCS (Coastal Zone Color 
Scanner), SeaWiFS (Sea-viewing Wide Field-of-view Sensor), MODIS (Moderate 
Resolution Imaging Spectroradiometer), MERIS (Medium Resolution Imaging 
Spectrometer) and Landsat series with various spatio-temporal and spectral reso-
lutions can provide more timely synoptic water quality data (Chen et al. 2004). 
Therefore, remote sensing could be used as an independent measurement tool by 
water management authorities (Dekker et al. 2001, 2002).  

When remote sensing became the irreplaceable advanced approach in the field 
of Earth observation, water remote sensing has also been adopted as one of the 
key technologies in ocean science in the late 20th century. In recent years, along 
with the aggravation of the ecological environment problem, coastal and inland 
water quality has deteriorated in varying degrees, giving the remote sensing tech-
nique an opportunity in water monitoring, study and exploitation. With the help of 
the remote sensing technique, we can realize oil spill detection, red tide detection 
and so on. Further more, as an important branch of water remote sensing, water 
color remote sensing from airborne or space-borne sensors can observe the con-
cerned parameters related to chlorophyll, Suspended Sediments (SS), Colored 
Dissolved Organic Matter (CDOM), etc. based on the absorbing and scattering 
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properties of water body in the range of visible wavelength. This makes water 
color remote sensing a useful tool to retrieve information about the water envi-
ronment. Two issues are very important for water color remote sensing: atmos-
pheric correction and the quantitative retrieval of water quality parameters. This 
chapter will discuss how remote sensing technique is used in water environment 
analysis. 

17.2 Optical Characteristics of Water Body 

17.2.1 Constituents of Water Body 

From an optical perspective, in addition to pure water itself, the optical proper-
ties of natural bodies of water are mainly influenced by three constituents: phyto-
plankton, suspended sediment, and colored dissolved organic matter (CDOM) that 
is also called yellow substance or gelbstoff. Pure water is defined as a chemical 
pure substance composed of a mixture of several water isotopes, each of different 
molecular mass (Pozdnyakov et al. 2003). 

The principal drifting organic matter in natural water consists of phytoplankton 
and other microscopic organisms. For convenience, it is often called the “phyto-
plankton” component, in recognition of its major influence on optical properties. 
The phytoplankton component is the single-celled plants that form the base of the 
aquatic food web, and plays an important role in the global carbon cycle. Chloro-
phyll mainly exists in phytoplankton and other animalcule. The concentration of 
Chlorophyll-a, the main phytoplankton pigment, is often used to estimate phyto-
plankton biomass (IOCCG, 2000). 

Suspended sediment refers to the suspended microscopic solid particular matter 
that is not included in the phytoplankton component and commonly has a diameter 
of less than 2 millimeters. The presence of terrigenous suspended particles is a re-
sult of coastal erosion, catchment runoff, river discharge, and long- and 
short-range transport of atmospheric particulates followed by dry and wet deposi-
tion (Pozdnyakov et al. 2003). As a result, suspended particles brought into sus-
pension can significantly modify the color of oceans and play an important role in 
determining the optical properties of the water. 

CDOM is a collective term for a vast array of chemically complex organic 
compounds dissolved in natural water, consisting of humic and fulvic acids. 
CDOM usually has two origins: one is degradation of biological organism on the 
spot, and the other is direct inputs of terrestrial matter. It can absorb not only 
blue–green visible light but also light in the UV-A and UV-B. This absorption by 
CDOM can significantly influence the light field in the water and subsequently 
affect marine ecosystems (Chen et al. 2004). 
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17.2.2 Impact of Water Body on Electromagnetic Radiation 

When the sun light arrives at water surface, the solar radiance can be divided 
into following parts: 

1) Radiance reflected by water surface: a small proportion of incident light 
(about 3.5%) is reflected directly to the sky, and form the reflected radiance; 

2) Solar radiance absorbed by the water: except for specular reflection of sun 
light, the maximal part of radiance is absorbed by water; 

3) Scattered radiance: a part of incident light is scattered by the suspended 
material and organism, forming the scattering light below water surface, the light 
of which goes out of water surface and form back scattered light. 

4) Radiance reflected from the bottom: In shallow and clear waters, a sig-
nificant part of the light from the sun may get to the bottom, and be reflected from 
it. Some of the scattered and reflected photons eventually find their way to the 
remote sensor. 

Because the effect of atmospheric scattering, water constituents absorbance and 
some other influence factors, the water-leaving radiance received by the sensor at 
the top of atmosphere has suffered from attenuation and departure (Fig. 17.1). 

 

 

Fig. 17.1 Factors that influence upwelling light leaving the sea surface<(a) Upward scattering by 
inorganic suspended material; (b) Upward scattering from water molecules; (c) Absorption by 
the yellow-substances component; (d) Reflection off the bottom; and (e) Upward scattering from 
the phytoplankton component (Reprinted with permission from IOCCG).  

Below water surface, the attenuation of water-leaving radiance is caused by the 
absorbance and scattering of the suspended microscopic particles and water itself. 
The water-leaving radiance detected by the sensor has a function relationship with 
the concentration of each material. The absorbance and scattering coefficient can 
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be expressed as the function of the concentration of each material below water 
surface.  

In order to detect the concentration of every constituent of waters, the effect of 
absorbance and scattering that every constituent has on light and the properties of 
absorbance and scattering of every constituent must be known firstly, and then the 
relationship between water-leaving radiance and the concentration can be built. 

As the basic component of waters, the strong reflection of pure water lies in 
blue and green wavelength. Both the chlorophyll and suspended sediment have 
prominent effect of absorbance and scattering on visible light that penetrate into 
the waters. The impact of CDOM on the optical properties of water is more easily 
retrieved than chlorophyll and suspended sediment, because only the absorbance 
contribution of CDOM towards water will be taken into account, ignoring its scat-
tering properties. 

17.2.3 Optical Classification 

Waters can be divided into inland waters, costal waters, and open sea according 
to their geographical locations and optical properties. 

According to the influence of water constituents on the optical properties, wa-
ters can be partitioned into Case I waters and Case II waters using the bipartite 
classification scheme (Morel and Prieur 1977, Gordon and Morel 1983). The wa-
ter classification is based on the relative contributions of the three types of sub-
stance: phytoplankton, suspended material, and yellow substances. Classification 
does not depend on the magnitude of individual contribution (IOCCG, 2000). In-
ternational Ocean Color Coordinating Group (IOCCG) has given a pictorial rep-
resentation in Fig. 17.2 (IOCCG, 2000). 

 

 

Fig. 17.2 Diagrammatic representation of Case I and Case II waters (Reprinted with permission 
from IOCCG) 
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Case II waters mainly distribute in coastal area and estuary regions which are 
affected by the inputs of terrestrial matter while the open sea is usually Case I wa-
ters. The optical properties of Case I waters are mainly influenced by phytoplank-
ton and their accompanying and co-varying retinue of material of biological ori-
gin, and can be modeled as a function of phytoplankton concentration. The 
variations in optical properties of Case II waters rely on not only phytoplankton 
and related particles, but also inorganic suspended sediment and colored dissolved 
organic matter that vary independently of phytoplankton (IOCCG, 2000). 

17.2.4 Inherent Optical Properties and Apparent Optical 
Properties of Waters 

Remote sensing is an important way to observe the optical properties of waters 
and the research of optical properties of waters is especially important. Two rea-
sons can account for it. On one hand, the contribution made by the water-leaving 
signals to the total signal detected by the sensor is very small; on the other hand, 
the retrieval algorithm of water color remote sensing is sensitive to the error of 
water-leaving radiance. 

The optical properties of waters can be divided into apparent optical properties 
(AOPs) and inherent optical properties (IOPs). Apparent optical properties, mainly 
consisting of upwelling irradiance, downwelling irradiance, water-leaving irradi-
ance, remote-sensing reflectance, ratio of irradiance, diffuse attenuation coeffi-
cient for downwelling irradiance (Kd), and diffuse attenuation coefficient for up-
welling irradiance (Ku) are optical properties that are influenced by the angular 
distribution of the light field, as well as by the nature and quality of substances 
present in the medium (IOCCG, 2000). Since apparent optical properties will be 
changed with the incident light field, the measurements at different time and place 
must be normalized so as to compare with each other.  

Inherent optical properties, mainly consisting of absorbance coefficient, scat-
tering coefficient, attenuation coefficient, and volume scattering function are in-
dependent of variations in the angular distribution of incident light field and are 
solely determined by the type and concentration of substance present in the me-
dium. Since inherent optical properties are not influenced by the illumination con-
ditions in a multi-component medium, the total inherent optical properties can be 
derived by a simple addition of the contributions of the individual components, 
which may not hold for apparent optical properties (IOCCG, 2000). 

17.3 Data Acquisition 

There are two major ways, in situ / field observation and space / air borne re-
mote sensing, to acquire data for water environment analysis. In order to retrieve 
quantitative values of water quality parameters from remote sensed image, in situ 
data should be measured to validate the retrieval algorithms or models. 
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17.3.1 In Situ Measurement 

At the time of overpass of satellites, simultaneously measured in situ data will 
be desired to support the validation of algorithms for atmospheric correction, re-
trieval of water quality parameters, including chlorophyll, suspended sediments, 
and colored dissolved organic matter. We can directly obtain absorption coeffi-
cient ( a ), beam attenuation coefficient ( c ), remote-sensing reflectance, atmos-
pheric parameters and water quality parameters by in situ measurement and labo-
ratory analysis. The total scattering coefficient ( b ) can be indirectly derived by 
subtracting a  from c  in the same waveband: b c a� � . 

In order to retrieve water quality parameters from remote sensed image, we 
need not only to measure absorption coefficient, but also to determine how the 
absorption is distributed among different components, CDOM, phytoplankton, and 
inorganic particulates. There are three ways to achieve these measurements. The 
first way is combination of the filter technique for absorption measurements for 
the particulate absorption and a spectrophotometer method for measuring absorp-
tion by yellow substances. The second way is to use an in situ absorption meter. 
The third way is to use an integrating cavity meter. Each way has their own ad-
vantages and disadvantages for particular waters (IOCCG, 2000). 

The measurement of ‘remote-sensing reflectance’ just above the water surface 
(spectral upwelling radiance divided by downwelling irradiance, i.e. Lu(�)/Ed(�)) 
is an essential work that must be carried out by any water color remote sensing 
algorithm. The standard method for estimating this value is to measure profiles of 
Lu(�) and Ed(�) and use values of Ku and Kd calculated from these profiles to ex-
trapolate the profiles back up to the surface. It is a difficult measurement and cal-
culation because of wind-roughened water surfaces, partly cloudy skies, ship 
shadows, and other common difficulties. The second approach is to measure re-
mote-sensing reflectance using a hand-held spectrometer pointed down at the wa-
ter surface. The third approach to estimating remote-sensing reflectance at the 
surface is to use the measured values of absorption a  and back-scattering coeffi-
cient bb  and a radiative transfer model to compute remote-sensing reflectance 
from the inherent optical properties of water (IOCCG, 2000).  

There are some atmospheric and hydrological parameters, including wind 
speed, relative humidity, barometric pressure, water depth, and water temperature, 
which can be obtained by in situ observation. 

17.3.2 Remote Sensing Measurement 

The development of remote sensing technique has provided us a new way to 
obtain earth observation data. Some launched satellites have special sensors for 
water color. The Nimbus-7 satellite containing the Coastal Zone Color Scanner 
(CZCS), the first generation of ocean color sensors, was launched in America in 
1978. This satellite ran on-orbit for more than 8 years, and colleted much useful 
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oceanic data for investigation. CZCS is a scanning radiometer viewing the ocean 
in six co-registered spectral bands, five in the visible and near IR (443, 520, 550, 
670, and 750 nm, labeled Bands 1, 2, 3, 4, and 5, respectively), and one in the 
thermal IR band (10.5-12.5 �m, labeled Band 6). The goal of the CZCS is to pro-
vide evaluation of the near-surface concentration of phytoplankton pigments (the 
sum of the concentrations of chlorophyll a plus phaeophytin a) and total sus-
pended particles by measuring the spectral radiance backscattered out of the ocean 
(Gordon et al. 1987). 

The Seastar satellite loaded with Sea-viewing Wide Field-of-view Sensor 
(SeaWiFS) launched in America in August 1997. As a second generation of ocean 
color scanners, SeaWiFS is superior to its predecessor CZCS in terms of radio-
metric sensitivity, Signal-to-Noise Ratio (SNR), and spectral resolution. In addi-
tion, SeaWiFS has an additional 4 spectral bands for bio-optical applications (band 
1 and band 3 centered at 412 nm and 490 nm respectively) and atmospheric cor-
rection (band 7 and band 8 centered at 765 nm and 865 nm respectively). The goal 
of SeaWiFS is to help the oceanographic society to get better understand to the 
biological and biogeochemical processes of the ocean (Chen et al. 2003). 

As the forerunners of water color satellite sensors, CZCS and SeaWiFS have 
led to a series of increasingly-sophisticated sensors, such as MODIS, MISR, 
OCM, GLI, OCI, OSMI, MERIS, and so on. These new sensors have better ra-
diometric performances and an increased number of spectral channels (from 5 for 
CZCS up to 36 for MODIS and GLI). In addition to the sensors mentioned previ-
ously, some other optical (passive visible and infrared, active laser), and air-borne 
and space-borne passive and active microwave (e.g., Synthetic Aperture Radar, 
SAR) sensors can also be used to serve for water environment analysis. 

17.4 Atmospheric Correction  

More than 90% of the signal measured by an ocean color satellite sensor is due 
to the confounding influence of the atmosphere. The atmospheric and ocean sur-
face effects must be removed before ocean radiance signals can be analyzed for 
the purposes of understanding the ocean biosphere. This step of processing satel-
lite ocean color imagery is referred to as the atmospheric correction procedure 
(Antoine et al. 2003, Gordon 1997). In this part, the atmospheric radiative transfer 
model and atmospheric correction model of Case = and Case $ waters in the 
field of water color remote sensing will be introduced. 

17.4.1 Ocean-Atmospheric Radiative Transfer Model 

Radiative transfer theory is distinguished by the fact that it is one of the 
branches of physics that can be made to rest on a single principle from which all 
the salient structures of the theory can be systematically deduced (Mobley 1994). 
Before any interpretation of the marine signals can be made, the crucial problem 
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in detecting ocean color from space is to make an accurate “atmospheric correc-
tion” (IOCCG, 1998). The backscattered radiation by air molecules and aerosols is 
predominant in forming the radiance detected by the sensors at the top of the at-
mosphere (TOA) in the visible part of the spectrum (IOCCG, 1998). The incident 
radiant energy arriving at ocean surface can be mainly divided into two parts, one 
part entries into the water, and the other part is reflected into the sky. As shown in 
Fig. 17.3, (a) water-leaving radiance, (b) attenuating water-leaving radiance, (c) 
water-leaving radiance scattered out of the instantaneous field of view (IFOV), (d) 
specular reflection of direct sunlight at the sea surface, (e) specular reflection of 
scattered sky light at the sea surface, (f) reflected radiance scattered out of the in-
stantaneous field of view (IFOV), (g) attenuating reflected radiance, (h) scattered 
solar light, (i) scattered sky light by atmosphere, (j) water-leaving radiance scat-
tered out of the instantaneous filed of view (IFOV) of the sensor and traveling in 
the direction of the sensor, (k) specular reflection of direct sunlight scattered out 
of the instantaneous field of view (IFOV) and traveling in the direction of the 
sensor, (Lw) total water-leaving radiance, (Lr) total specular reflection at water 
surface within the instantaneous filed of view (IFOV) of the sensor, (Lp) atmos-
pheric radiance, the radiant energy received by a remote sensed sensor includes: b, 
d, e, h, i, j, k. It is only the upwelling light from the sea surface (about 10% of the 
total signal at the top of atmosphere) that carries useful information of the water 
body. The atmospheric contributions and specular reflections at the sea surface 
constitute noise that has to be removed. Thereby, atmospheric correction of water 
color remote sensing is a course to extract a small signal from a large signal, and it 
is a crucial point desiderating resolution of water color remote sensing. 

 

 

Fig. 17.3 Radiative transfer process of ocean-atmosphere 

According to the typical ocean-atmosphere radiative transfer model, the radi-
ance received by the water color sensor consists of three parts: water-leaving ra-
diance from water surface, specular reflection of radiance from water surface, and 
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scattered radiance by the atmosphere. The atmospheric correction equation can be 
depicted as follows: 
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where ( )tL 2  is the total radiance received by the sensor of water color remote 
sensing; ( )rL 2  is the Rayleigh scattering radiance; ( )aL 2  is the aerosol scatter-
ing radiance; ( )raL 2  is the multiple scattering between Rayleigh and aerosol ra-
diances; ( )gL 2  is the contribution arising from specular reflection of direct 
sunlight from the sea surface (sun glitter); ( )T 2  is the direct transmittance of the 
atmosphere or Beam Transmittance; ( )bL 2  is the radiance from the bottom of the 
waters; ( )fL 2  is the contribution arising from sunlight and skylight reflecting 
from individual whitecaps on the sea surface; ( )t 2  is diffuse transmittance, that 
is the attenuation coefficient of the atmospheric transmission between satellite and 
water surface; w  is covering rate of whitecaps; ( )wL 2  is the desired wa-
ter-leaving radiance. 

According to the different weights and influences of all the radiance, the factors 
having impact on atmospheric correction can be divided into three grades: Ray-
leigh scattering has the largest impact on atmospheric correction, occupying about 
80% of the radiance generated along the optical path by scattering in the atmos-
phere and by specular reflection of atmospherically scattered light (skylight) from 
the sea surface; aerosol scattering is in the next place; and small impact coming 
from other factors including multiple scattering, polarization, roughness of the 
water surface, reflectance of whitecaps, water-leaving radiance, air pressure and 
spatio-temporal diversification of ozonic concentration is the last. In the process of 
dealing with the data of water color remote sensing, some parameters with little 
impact on atmospheric correction are usually ignored. 

17.4.2 Atmospheric Correction Algorithms  

In term of atmospheric correction, several techniques exist for the ocean color 
bands, such as Coastal Zone Color Scanner (CZCS), Sea-Viewing Wide 
Field-of-View Sensor (SeaWiFS), and Moderate-resolution Imaging Spectrora-
diometer (MODIS), based on their ability to gain information about the spectral 
dependency of aerosol scattering through measurements at near-infrared bands for 
extrapolating the atmospheric radiance into the visible bands (Gordon and Wang 
1994). 

For Case I waters (clear water), based on the black pixel assumption, the values 
of water-leaving radiance in the near-infrared (NIR) bands are negligible, so in the 
atmospheric correction of ocean color data, the aerosol radiative properties and 
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water-leaving radiance values at various bands are to be easily determined (Gor-
don and Wang 1994). 

For Case II waters (turbid water), the assumption that the water-leaving radi-
ance is zero at near-infrared bands does not hold, because turbid water constitu-
ents (suspended sediments, bubbles, etc) can contribute significant amounts of ra-
diance to the atmospheric correction bands (765nm and 865nm for SeaWiFS, 
748nm and 869nm for MODIS ocean color data), which make it difficult to sepa-
rate the aerosol information from the total recorded signal exactly. As a result, the 
current standard atmospheric correction algorithms frequently overestimates the 
radiance from aerosol scattering and aerosol-Rayleigh interaction, and underesti-
mates water-leaving radiance at some visible bands, even yielding negative values 
at the green and blue spectra. 

17.4.2.1 Atmospheric Correction Algorithm over Case I Waters 

Gordon CZCS Algorithm for Single Scattering Effects over Clear Waters 

The purpose of atmospheric correction is to obtain water-leaving radiance wL  
that contains useful information about water constituent. The radiance backscat-
tered from the atmosphere and sea surface should be removed from the total radi-
ance tL . In the process of atmospheric correction of CZCS imagery, Gordon firstly 
put up with approximate atmosphere correction algorithm suitable for Case I wa-
ters assuming single scattering over clear water (Gordon 1978, Gordon et al. 1981, 
Gordon et al. 1987). 

On the basis of assuming single scattering theory, ignoring direct sun glint and 
assuming that the sea surface is flat, the total sensor radiance ( )tL 2  consists of 
three components: ( )rL 2 , Rayleigh scattering; ( )aL 2 , aerosol scattering; and 

( ) ( )t L	2 2 , the water-leaving radiance diffusely transmitted to the top of the at-
mosphere. The atmospheric correction equation can be simplified as follows: 

 ( ) ( ) ( ) ( ) ( )t r a wL L L t L2 2 2 2 2� � �  (17.2) 

where ( )t 2  is the diffuse transmittance of the atmosphere between the sea surface 
and the sensor. 

Atmospheric Correction Algorithm for the Second-generation Ocean Color 
Scanners 

The atmospheric correction algorithm of Gordon CZCS algorithm for Single 
Scattering effects over clear waters is not suitable for the second generation of 
ocean color scanners. In 1994, based on the research of CZCS atmospheric correc-
tion algorithm, Gordon and Menghua Wang put up with a new atmospheric cor-
rection algorithm by use of two near infrared bands of SeaWiFS sensors (Gordon 
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and Wang 1994), which was launched in August 1997. The new algorithm takes 
the assumption that the water-leaving radiance of atmospheric-correction bands at 
765 nm and 865 nm approaches zero, according to which the radiance by aerosol 
scattering can be estimated. And then the aerosol scattering radiance at near infra-
red band can be extrapolated into visible bands. After that, water-leaving radiance 
can be ultimately extracted. Because this algorithm needs the least in situ meas-
urement data and can be regularly operated, it has been applied in the SeaWiFS 
Data Analysis System (SeaDAS) software as a standard atmospheric-correction 
algorithm for SeaWiFS and MODIS imageries by NASA. 

The critical point of the atmospheric correction algorithm of the second genera-
tion ocean color scanner is to achieve optical characteristic of all the aerosol ex-
isting in the study area. Because of the high spatio-temporal variation of aerosol 
property and limitations of aerosol understanding, it is not possible to thoroughly 
resolve atmospheric correction of ocean color remote sensing by use of aerosol 
models embedded in SeaDAS software, especially for Case II waters. 

17.4.2.2 Atmospheric Correction Algorithm over Case II Waters 

For Case II waters, a number of improvements were introduced to correct the 
effect of the near-Infrared (NIR) contribution on water-leaving radiance and re-
trieve the aerosol scattering and aerosol-Rayleigh interaction term properly in at-
mospheric correction procedure (Arnone et al. 1998, Chen et al. 2003, He et al. 
2004, Hu et al. 2000, Land and Haigh 1996, Lavender and Nagur 2002, Liao et al. 
2005, Pan and Mao 2001, Ruddick et al. 2000, Siegel et al. 2000, Shanmugam and 
Ahn 2007, Shutler et al. 2007). There are several approaches commonly used: (1) 
assuming that the backscattering or absorption coefficients of the water constitu-
ents are available, take an iterative or spectral optimization approach to obtain 
both the oceanic and atmospheric parameters simultaneously (Arnone et al. 1998, 
Chomko et al. 2003, Gao et al. 2007, Hoyningen-Huene et al. 2006, Land and 
Haigh 1996, Zhao and Nakajima 1997); (2) assuming that the type of aerosol or 
some water properties does not vary much over a relatively small spatial scale 
(50-100km), and there are some relationships can be expressed by an approximate 
model, apply the optical properties observed over adjacent areas to the turbid wa-
ter pixels (Hu et al. 1998, 2000, Ruddick et al. 2000, Sturm and Zibordi 2002, 
Zagolski et al. 2007); (3) use the multi-platform vicarious inter-calibration ap-
proach to correct the satellite data for ocean color remote sensing (Hu et al. 2001, 
Wang and Franz 2000). The first method generally works well, but some parame-
ters should be known prior to use and generally, it is very difficult to use. The 
second one uses the hypothesis of homogenous aerosol type or water optical prop-
erties to correct satellite imagery over turbid waters, however, the assumption al-
ways does not hold well (Hu et al. 2000). The third approach may improve the re-
sults of atmospheric correction, but the high variation of the atmospheric condition 
have not been taken into account during the images obtained by multi-sensors, 
furthermore, all the passive sensors have limit abilities to separate the wa-
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ter-leaving signals from the total radiance measured by satellite at the NIR bands 
over turbid waters. In addition, many ground-based aerosol observations have 
been taken over or near coastal water area (Behnert et al. 2007, Bryant et al. 2006, 
Knobelspiesse et al. 2004, Sakerin and Kabanov 1997, Vergaz et al. 2005), but 
there is just a little improvement in ocean color remote sensing over turbid waters, 
because the aerosol data and satellite images generally are not simultaneous in 
spatial and temporal space. In order to find a better algorithm over Case $ wa-
ters, we have tried the atmospheric correction method using active and passive 
remote sensing over turbid coastal waters, which will be depicted in Section 
17.4.3.2 (Tian et al. 2009).  

17.4.3 Case Studies of Atmospheric Correction over South China 
Coastal Turbid Waters (Case II Waters) 

In China, some studies were done with atmospheric correction over Case $ 
waters along the China Seas. The issue of the atmospheric correction results hav-
ing negative values in some complicated water areas using standard atmospheric 
correction algorithm has been discussed. Two case studies related to atmospheric 
correction over the turbid coastal waters of South China will be discussed. 

17.4.3.1 Atmospheric correction of SeaWiFS imagery for turbid waters in 
South China coastal waters 

In 2003, a practical approach for atmospheric correction of SeaWiFS imagery 
for turbid waters in the Pearl River Estuary and its adjacent areas locating in 
Southern China coastal areas was proposed (Chen et al. 2003).  

We define: 
 ( )t r tL L L2� � �  (17.3) 
In this approach, it has been found that there is a prominent linear relationship 
between (765)t rL �  and (865)t rL �  from normal coastal water area to very turbid 
coastal water area. According to this approach, a result of atmospheric correction 
of SeaWIFS imagery acquired on March 1st, 2001 was achieved, as shown in Fig-
ure 17.4 (band: 490nm and 555nm). 

 
Fig. 17.4 Water-leaving radiance: (left) (490)wL ; (right) (555)wL  
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17.4.3.2 Atmospheric Correction of MODIS/Aqua Ocean Color Imagery 
Based on CALIOP Aerosol Data 

In 2009, we proposed an atmospheric correction approach for ocean color im-
agery over turbid coastal waters using active and passive remote sensing (Tian et 
al. 2009). 

As is known, Aqua, CloudSat, CALIPSO, PARASOL and Aura satellites form 
the “A-Train” constellation (Anderson et al. 2005). In the constellation, CALIPSO 
(Cloud-Aerosol LIDAR, Infrared Pathfinder Satellite Observation) satellite lags 
Aqua by only 1 to 2 minutes in the afternoon, and CALIOP (Cloud-Aerosol Lidar 
with Orthogonal Polarization) is the primary instrument onboard CALIPSO satel-
lite, so CALIOP data and MODIS/Aqua imagery can be approximately considered 
to be obtained simultaneously. Furthermore, CALIOP monitors aerosol informa-
tion by an active way. The signals from sea surface have little effects on CALIOP 
measurements, so CALIOP aerosol data can be easily adopted to avoid the turbid 
water signal disturbance in the retrieval of the atmospheric effects at NIR bands in 
ocean color remote sensing atmospheric correction study. 

The method to retrieve the water leaving radiance from MODIS/Aqua imagery 
over Chinese turbid costal waters using CALIOP aerosol data is described in detail 
in Figure 17.5. 

 
Fig. 17.5 Framework of the atmospheric correction method by combining MODIS and CALIOP 
data. Lturbid(�i) is the preliminary atmospheric correction results that the effects of Rayleigh scat-
tering, sunglitter, whitecaps have been removed.  

To test the modified atmospheric correction method, we have applied the pro-
posed scheme to the MODIS/Aqua scene acquired on 5 October 2006 over the 
South China Sea and its coastal waters, including the Pearl River Estuary and its 
adjacent turbid waters. Fig. 17.6 shows the AOD distributions at 531nm before 
and after the adjustment for the MODIS/Aqua imagery on 5 October 2006. From 
Fig. 17.6a, we can find that there are many extremely high values over turbid wa-
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ters. The modified AOD distribution in Fig. 17.6b seems to be reasonable, and the 
modified AOD values are lower than those by SeaDAS over turbid waters (in the 
rectangular box). From the comparison with the water-leaving radiance products 
at 412nm processed by SeaDAS (see Fig. 17.7a), we can find that the extremely 
high AOD values in Fig. 17.6a are corresponding to the Pearl River Estuary and 
its adjacent turbid coastal water, where the standard atmospheric correction can 
not give satisfied results. The overestimation of aerosol optical properties should 
partially result in the underestimation of water-leaving radiance and the failure of 
atmospheric correction.  

 
Fig. 17.6 MODIS/Aqua AOD distributions at 531nm ( (531)a� ) on 5 October 2006 before and 

after incorporating CALIOP data (straight black line): (a) (531)a�  cal-culated by SeaDAS. 
Values in red area are abnormal (note the large values in the rectangular box over the Pearl River 
Estuary); (b) (531)a�  modified by CALIOP data (note the large values in the rectangular box 
over the Pearl River Estuary decrease significantly).  

The water-leaving reflectance derived from MODIS image at 412nm by Sea-
DAS and our proposed atmospheric correction are shown in Fig. 17.7a and Fig. 
17.7b, respectively. In the yellow color area shown in Fig. 17.7a, there are hun-
dreds of pixels with “negative water-leaving reflectance” flags. The number of 
negative (412)w1 \  pixels drops significantly by using our improved atmospheric 
correction method based on CALIOP aerosol data (Fig. 17.7b). The result is ob-
viously improved with our proposed atmospheric correction method. Similar im-
proved results can be found for MODIS bands at 443nm, 488nm, 531nm, 551nm 
and 667nm. 
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Fig. 17.7 Comparison of the water-leaving reflectance at MODIS/Aqua 412nm band on 5 Octo-
ber 2006 (unit: Sr-1). (a) Result derived with the MODIS operational atmospheric correction al-
gorithm. The yellow area is caused by negative water-leaving reflectance. (b) Result derived with 
our proposed atmospheric correction algorithm. Land is marked in brown color. White color re-
fers to failure areas caused by cloud or other reasons.  

17.5 Water Environment Information Retrieval and Analysis 

17.5.1 Introduction 

Because of its prominent advantage of synchronous observation in a large area 
coverage compared with the traditional water quality measurements, the remote 
sensing technique has currently been widely used for water environment analysis. 
The remote sensing imageries can be used for Information extraction and change 
detection, such as chlorophyll-a (Chl-a) and suspended sediment concentration re-
trieval, oil spill detection, and red tide detection.  

Some water quality parameters, Chl-a, suspended sediment (SS), colored dis-
solved organic matter (CDOM), water depth, and water temperature can be quan-
titatively retrieved to understand the spatio-temporal variation of water environ-
ment after atmospheric correction is implemented over a remote sensing image to 
remove the effect of atmosphere and water surface from total radiance received by 
the sensor at the top of atmosphere. Nowadays, the retrieval of water constituents 
is relatively successful in Case I waters (open sea), because Case I waters is 
mainly influenced by phytoplankton and related particles. Although a lot of ap-
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proaches including theoretical, semi-analytical, and empirical models have been 
proposed, it is very difficult to retrieve the concentration of the surface constitu-
ents in the Case II waters. The main reason is that the optical properties of the 
constituents (Chl-a, SS, and CDOM) are complicated in the Case II complex wa-
ters. 

Recent years, harmful algal blooms have become a serious environmental 
problem in coastal areas on a worldwide scale (Anderson and Garrison 1997). 
Hence, it is of great importance to mitigate the impacts of such harmful algal 
blooms and therefore there is a need to monitor the blooms and to forecast their 
development and movement (Stumpf 2001). Because phytoplankton blooms are 
sporadic in time and isolated in space, they are hard to monitor by conventional 
methods (Gower et al. 2005). Thus, because of the synoptic and repeat coverage, 
it is an effective way to monitor such blooms through remote sensing technology. 

As a major environmental threat, ocean oil pollution has been a subject of in-
creasing public concern. In this background, particular attention is paid to the 
enormous environmental damage caused by oil-tanker accidents or by the illegal 
cleaning of tankers (Fiscella et al. 2000). According to the European Space Agen-
cy (1998), operative discharges from ships account for 45% of the oil pollution, 
and observed oil spills correlate very well with the major shipping routes (Lu 
2003, Lu et al. 1999), such a large amount of oil is deliberately pumped into the 
marine environment every day. Since oil spills can cause substantial damage to the 
marine environment, monitoring illegal ship discharges is thus an important com-
ponent in ensuring compliance with the marine protection legislation and the gen-
eral protection of coastal environments.  

17.5.2 Oil Spill Detection  

The traditional survey of oil spills can not provide sufficient spatial or temporal 
coverage to assess the magnitude, area coverage, or duration of the spills (Hu et 
al. 2003), however, the techniques for remote sensing of aquatic oil spills includ-
ing optical (passive visible and infrared, and laser fluorosensors), microwave, and 
radar (e.g., Synthetic Aperture Radar) approaches using aircraft or satellites are 
considered to be an effective way to monitor oceanic oil spill.  

With the all-weather and all-day capabilities, microwaves are commonly used 
for ocean oil pollution monitoring by remote sensing. As is known, space-borne 
synthetic aperture radar (SAR) has particularly become a very popular tool for 
ocean oil slick monitoring due to its wide area coverage, and cloud-free, day and 
night operation (Lu et al. 2003). Under certain conditions, an oil slick will dampen 
capillaries and short gravity waves, reduce the radar backscatter coefficient, and 
appear as a dark slick in a SAR or SLAR (Side-Looking Airborne Radar) image of 
the ocean surface (Espedal et al. 1999). A major part of the oil spill detection 
problem is distinguishing oil spills from other natural phenomena (look-alikes) 
that dampen the short waves and create dark patches on the surface, such as natu-
ral films/slicks, algae, grease ice, threshold wind speed areas, wind sheltering by 
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land, rain cells, shear zones, internal waves, etc. (Solberg et al. 2007). In the be-
ginning, an oil slick in a SAR image is usually visually detected by a trained hu-
man interpreter based on experience and other relevant information. In order to 
speed up the detection process, algorithms for automatic detection that can help in 
screening the images and prioritizing the alarms have been gradually proposed. 
Solberg et al. (1999) developed a semi-automatic oil slick detection system, in 
which high probability oil slicks were first automatically identified, but with other 
possible slicks to be manually inspected. Solberg et al. (2007) proposed algo-
rithms for automatic detection of oil spills in synthetic aperture radar (SAR) im-
ages, which consist of three main parts, namely: 1) detection of dark spots; 2) fea-
ture extraction from the dark spot candidates; and 3) classification of dark spots as 
oil spills or look-alikes. Although a SAR sensor is the most efficient satellite sen-
sor for oil spill detection (Solberg et al. 2007), it also has some limitations (Hu et 
al. 2003). Firstly, it does not have capabilities for oil spill thickness estimation and 
oil type recognition. Secondly, SAR data are expensive, are not available daily, 
and are limited by sea state (Liu et al. 2000). In addition, the optimal wind speed 
to effectively detect oil spill slicks by SAR is about 1.5 to 6 m/s. Other features, 
such as phytoplankton slicks and fresh water slicks, may present interference and 
cause false detection (Lin et al. 2002). 

In addition to SAR, other space-borne remote sensing devices also have some 
potential for oil spill monitoring. An example from Lake Maracaibo, Venezuela, 
Hu et al. (2003) proved the possibility of oil spill monitoring by MODIS instru-
ment. What’s more, hyperspectral sensors used for oil spill monitoring have a po-
tential for detailed identification of materials (e.g crude oil or light oil) and better 
estimation of their abundance (Brekke et al. 2005). Since oil absorbs solar radia-
tion and re-emits a portion of this energy as thermal energy, IR (infrared) sensors 
observe thick oil slicks as hot, intermediate thickness of oil as cool, and thin oil is 
not possible to be detected (Fingas and Brown 1997). UV technology can be used 
to detect oil spills as the spill displays high reflectivity of UV radiation even at 
thin layers, but the UV instrument is not usable at night and wind slicks, sun 
glints, and biogenic material can cause false alarms in the UV data (Brekke et al. 
2005).  

17.5.3 Retrieval of Water Depth 

It is very useful to obtain bathymetric information in many remote areas. For 
example, Coral reefs, by their nature, strongly influence the physical structure of 
their environment, and water depth information is fundamental to discriminate and 
characterize the coral reef habitat, such as patch reef, spur-and-groove, and sea-
grass beds (Stumpf et al. 2003). In addition, knowledge of water depth also allows 
estimation of bottom albedo, which can improve habitat mapping (Mumby et al. 
1998). However, traditional in situ surveys are time consuming and labor inten-
sive, generally lack the spatial resolution and precision required to detect subtle 
changes before they become catastrophic, and can be difficult to maintain from 
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year to year (Orth and Moore 1983, Peterson and Fourqurean 2001). With the de-
velopment of geospatial technology, the feasibility of mapping bathymetry from 
satellite or aircraft imagery has been demonstrated by several researchers, with 
techniques ranging from photointerpretation and photogrammetry using 
black-and-white photography to computer analysis of multispectral satellite im-
agery (Philpot 1989). The interpretation of this photography is impeded by the fact 
that water depth variations are not easily distinguished from bottom color differ-
ences, but the use of digitally recorded multispectral scanner data permits correc-
tions to be made for surface reflection effects and also allows the possibility of 
automatic recognition of bottom features and water depth using radiometric tech-
niques (Lyzenga 1978). 

Legleiter et al. (2004) summed up two popular models developed for bathy-
metric mapping in shallow coastal waters: (1) the linear transform introduced by 
Lyzenga (1978) and extended by Philpot (1989) and (2) a ratio-based technique 
used more recently by Dierssen et al. (2003) and Stumpf et al. (2003). 

17.5.4 Retrieval of Water Temperature 

The water surface temperature is a very important parameter of the water envi-
ronment. Jessup et al. (1997) pointed out that applications of thermal infrared 
(TIR) remote sensing have been important in obtaining sea surface temperature 
measurements for oceanographic and meteorological applications. Applications of 
TIR remote sensing have been conducted to map surface temperature and circula-
tion patterns in lakes, since water density is a complex function of temperature, 
and any investigation of lake dynamics is incomplete without measurements of the 
thermal behavior of the water body (Anderson et al. 1995). In addition, water 
temperature in rivers and streams has been identified as a critical element in the 
restoration of freshwater aquatic ecosystems and fishery managements. Torgersen 
et al. (2001) developed an airborne remote sensing method to measure spatial con-
tinuous patterns of stream temperature and evaluated the physical factors that in-
fluence the accuracy of thermal remote sensing of flowing waters.  

Remote measuring water temperature is made with a sensor that detects thermal 
radiation (3~5 and 8~14 �m wavebands) emitted from the upper 0.1 mm of the 
water surface (Anderson et al. 1984, Atwell et al. 1971, Robinson et al. 1984). 
The temperature of the water surface measured remotely with a thermal sensor as 
the radiant water temperature ( rN ) is different from the kinetic water temperature 
( kN ) measured 10 cm below the surface with a thermometer (Torgersen et al. 
2001). Emissivity, atmospheric absorption, TIR reflection, and surface character-
istics are the factors that influence measurements of rN  (Smith et al. 1996). 
Emissivity describes the actual absorption and emission properties of the water 
surface and is expressed as a ratio of the emittance from the water surface at a 
given temperature to that from a black body at the same temperature (Avery and 
Berlin 1992, Avery and Berlin 1992). Water has an emissivity very close to 1.0 
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and a high thermal inertia, so it is relatively easy to obtain measurements of rN , 
while atmospheric effects can be corrected based on water vapor content and 
transmission along the target sensor path (Torgersen et al. 2001).  

17.5.5 Retrieval of Total Suspended Sediment Concentration 

Using empirical statistics, the key to the quantitative retrieval of suspended se-
diment (SS) is the establishment of the relationship between spectral reflectance 
and the concentration of suspended sediment. That is: 

 ( )rsSSC f R�  (17.4) 

where rsR  is spectral reflectance, and SSC  stands for suspended sediment con-
centration. 

According to much in situ measurement result, the function relationship be-
tween spectral reflectance rsR  and suspended sediment concentration SSC  can 
be analyzed as follows:  

1) The remote-sensing reflectance increases with the increase of the concen-
tration of suspended sediment ( SSC ), and that is / 0rsdR dSSC " ; 

2) The variance ratio /rsdR dSSC  is not constant, and it decreases with the 
increase of the concentration of SS, that is 2 2/ 0rsd R dSSC ) ; 

3) When 0SSC � , rsR  is a constant that is greater than zero; rsR  will ap-
proach the extreme 1 with the increase of SSC . 

In general, the retrieval algorithm can be portioned into the theoretical algo-
rithm and empirical algorithm. 

17.5.5.1 Theoretical Algorithms 

On the basis of marine optics and the radiative transfer model, through simula-
tion experiment, we can explore the correlation between electromagnetic radiation 
and SSC , and then a series of semi-analytical algorithms can be derived which 
combine the radiative transfer model with the empirical equation and is the ap-
proximate solution of the radiative transfer equation. The common semi-analytical 
retrieval models of SSC  mainly include Gordon model and negative exponent 
model. 

 
1) Gordon model 
According to the approximate formula of quasi single scattering of reflectance 

proposed by Gordon et al., Munday got the approximate model of remote-sensing 
reflectance of the water (Munday et al. 1979): 
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where a  is the total absorption coefficient of water; bb  is the total 
back-scattering coefficient of water, f is the functional relation.  

The retrieval accuracy is not high using Gordon formula in practical calcula-
tion. It has two reasons: firstly, Gordon formula is derived by approximation, 
while Whitlock (1976) showed that there is an obvious non-linear relation be-
tween rsR and ( )

( ) ( )
b

b

b
a b

2
2 2�

. Secondly, Gordon formula is obtained on the hypothesis 

that the optical properties of water is homogeneous, which is not tenable for the 
water containing suspended sediment. In fact, the concentration of suspended 
sediment varies prominently in vertical direction, so does the optical properties of 
water. 

 
2) Negative exponent model 
In the process of simplifying the radiative transfer equation, Li (1986) took the 

vertical variation of optical properties of water into account and proposed a plane 
layered model. Provide that the optical property is the function of water depth z. 
The negative exponent model is got: 

 (1 )D SSC
rsR A B e� �� � �  (17.6) 

where A , B , D are all dimensionless constants. Negative exponent mode over-
comes the weakness of other relation expressions which are only suitable for low 
concentration of suspended sediment and is closer to the trend how the reflectance 
varies with the variety of SSC . 

Semi-analytical mode, as the approximation and simplification of theoretical 
mode, is simple and beneficial to operational application. However, when the 
mode is being established, some hypothesis is used in order to reduce the un-
known quantities; what’s more, semi-analytical mode relies on the accuracy of in 
situ measurement data to some extent. All the factors will bring inevitable error in 
retrieval result using semi-analytical model. 

17.5.5.2 Empirical Algorithms  

Empirical algorithm is used to establish the correlation between the re-
mote-sensing data and simultaneously in situ measured data. The simultaneously 
in situ measured data is necessary for empirical algorithm, especially in estuary or 
regions affected greatly by tide, weather and hydrological condition. The existing 
empirical algorithms mainly include linear model and logarithm model. 

 
1) Linear model 
Weisblatt firstly found that there was a linear relation between suspended 

sediment concentrations and irradiance (Weisblatt 1973). The general expression 
of linear relation is: 
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 ( 0)rsR A B SSC B� � � "  (17.7) 

where rsR  is remote-sensing reflectance at a certain wavelength; SSC  is the 
concentration of suspended sediment; A , B  are constants. This expression can 
not satisfy the above-mentioned relation characteristics between SSC  and wa-
ter-leaving radiance (See Fig. 5.1), so it can only be applied in lower concentration 
of suspended sediment water. 

 
2) Logarithm model 

The general expression of logarithm is: 

 � �ln( ) 0rsR A B SSC B� � � "  (17.8) 

where A , B  are constants. Klemas et al. (1974) found that logarithm relation 
model is better than linear relation model in describing the relationship between 
suspended sediment concentration and irradiance in term of Landsat MSS images 
in Delaware Bay. 

For the moment, the common retrieval models just suitable for specific region 
are semi-analytical models or empirical models and it is time consuming to obtain 
sufficient simultaneously in situ measured data. Furthermore, the retrieval models 
can not be effectively transplanted to different water regions in the spa-
tio-temporal scale. 

17.5.6 Retrieval of CDOM Concentration 

The retrieval of CDOM (colored dissolved organic matter) concentration by 
remote sensing can be partitioned into two aspects: firstly, it is required to remove 
the influence of CDOM before retrieving other water color parameters (Tassan 
1988, Carder et al. 1989); secondly, we need to study how to retrieve the CDOM 
concentration. 

At present, the modes of retrieval of CDOM concentration mainly include two 
categories: one is to extract the CDOM concentration directly; the other is to cal-
culate the absorption coefficient at the characteristic wavebands of CDOM and 
use absorption coefficient to represent the CDOM concentration, which is indirect 
extracting mode of CDOM. 

17.5.6.1 Direct Extracting Mode 

CDOM is the colored fraction of the dissolved organic carbon (DOC), and 
commonly DOC can be used to represent CDOM. According to the in situ meas-
ured spectrum and the concentration of DOC at Pearl River Estuary of southern 
China, Chen et al. (2003) established the retrieval mode of regression analysis 
between DOC concentration and optimal wavebands combination as follows: 
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where R refers to simulated spectral reflectance.  
According to in situ measured spectrum and the concentration of DOC  of 

eight reservoirs in Colorado, Arenz et al. (1996) established the regression rela-
tional expression as follows: 
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where iR  refers to spectral reflectance. 

17.5.6.2 Indirect Extracting Mode 

According to the relevant material about Golfo di Napoli, S.Tassan proposed a 
model to extract the absorption coefficient of CDOM at the wavelength of 440nm 
using SeaWiFS data (Tassan, 1994): 
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where 1R , 2R , 3R are the reflectance of 1st, 2nd, 3rd bands of SeaWiFS respec-
tively; ga is the absorption coefficient of CDOM. 

17.5.7 Retrieval of Chlorophyll-a Concentration 

Most early studies concerning the remote sensing of ocean color were directed 
toward the extraction of the surface chlorophyll-a concentration from the spectral 
radiance upwelling above the sea surface (Gordon et al. 1983). Chlorophyll-a, re-
sponsible for photosynthesis, is the pigment present in living plants. Accurate es-
timate of chlorophyll-a concentration is essential for estimating primary produc-
tivity, biomass, and so on. 

Since CZCS was launched in 1978, many methods of retrieving chlorophyll-a 
concentration were proposed. Inverse modeling of remotely sensed radiance spec-
tra, which has been applied to data of the Coastal Zone Color Scanner (CZCS) 
(Doerffer and Fischer 1994), has turned out to be a useful method for estimating 
concentrations of chlorophyll-a, which uses an iteration technique. O’Reilly et al. 
(1998) put forward the OC2 algorithm that was initially used by NASA in the op-
erational processing of SeaWiFS data. OC2 estimates chlorophyll-a concentration 
for Case 1 waters as the function of the ratio between remote sensing reflectance 
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at the wavebands of 490 and 555 nm, using coefficients derived by a statistical fit 
with SeaBASS (SeaWiFS Bio-optical Archive and Storage System) data (O’Reilly 
et al. 1998). Later on, Kahru and Mitchell (1999) showed that OC2 overestimates 
chlorophyll-a at high concentration in the California Current area. Using a larger 
data set, O’Reilly et al. (2000) proposed an updated version of the ocean chloro-
phyll-a two- (OC2v4) and four-band (OC4v4) algorithms, with a suggestion that 
the OC4v4 is expected to perform better than OC2v4 when applied to satel-
lite-derived water leaving radiances both in oligotrophic and eutrophic conditions. 
Subsequently, NASA adopted OC4v4 algorithm to process the global SeaWiFS 
data. Through analysis, D’Ortenzio et al. (2002) found a systematic overestima-
tion of chlorophyll-a concentration by National Aeronautics and Space Admini-
stration (NASA) global algorithms (OC2v4 and OC4v4) in the Mediterranean Sea. 
Differences in the performance of regional and global algorithms might be en-
hanced by peculiarities in the atmospheric term (Dierssen and Smith 2000, Jor-
gensen 1999, Kahru and Mitchell 1999, Le'on et al. 1999), which indeed affect ra-
diances and the result is important in a misfit of the algorithm (D'Ortenzio et al. 
2002). In terms of the ocean-color remote sensing, the inverse method using the 
NN (Neural Network) was first tested for SeaWiFS by Schiller and Doerffer 
(1993) and adopted as a standard algorithm for the coastal region for MERIS by 
Buckton et al. (1999), and Doerffer and Schiller (1997). Tanaka et al. (2004) 
demonstrated the inverse NN method by using ADEOS/OCTS data. For 
high-spatial resolution data, the inverse NN method was tested by Keiner and Yan 
(1998) for estimating sea-surface chlorophyll-a and sediments, and by Zhang et al. 
(2002) for estimating chlorophyll-a, suspended sediments, turbidity, and Secchi 
disk depth. By using ASTER (Advanced Spaceborne Thermal Emission and Re-
flectance Radiometer) data with 15-m spatial resolutions, Kishino et al. (2005) 
used the Neural Network (NN) method to estimate chlorophyll-a, suspended mat-
ter and CDOM.  

All the algorithms for retrieving chlorophyll-a concentration can be partitioned 
to empirical model, theoretical model, and fluorescence line height ( FLH ) model. 
On the basis of in situ measured data, the empirical algorithm is to establish the 
relationship between the spectral radiance above water surface and in situ meas-
ured concentration. The common expression is as follows: 
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where C is the chlorophyll-a concentration; iR  is the reflectance at certain wave-
band; a �  and r is constant, which can be induced by regression equation. 
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Theoretical algorithm is used to describe the relationship between the concen-
tration of in-water constituents and water-leaving radiance or remote-sensing re-
flectance using the bio-optical model. In order to simplify the calculation, some 
assumptions are introduced, and then semi-analytical algorithms are generated, 
such as the algebraic method, which is the easiest algorithm. There is the follow-
ing relation between inherent optical properties (IOPs) and remote-sensing reflec-
tance: 
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where 1 0.0949g I] ; 2 0.0794g I] ; a  is the total absorption coefficient; bb  is 
back-scattering coefficient; ba b�  is attenuation coefficient. 

Fluorescence line height ( FLH ) method is one of the common fluorescence 
height methods. Its calculation formula is as follows: 

 ( )C a FLH b� �  (17.15) 

where the unit of FLH  is 2( ) /( )mW cm sr nm�� � ; C  is the chlorophyll-a concen-
tration, and its unit is 3( )mg m�� ; a  and b  are the coefficients obtained by re-
gression analysis. 

Although the bio-optical algorithms have been successfully used for estimating 
water constituents of open sea water from remotely sensed ocean color data (Gor-
don et al. 1980, Kishino et al. 1998, O’Reilly et al. 1998), it is difficult to be ap-
plied in the turbid coastal waters because the constituents of seawater mainly con-
sist of phytoplankton pigments, while coastal areas are optically characterized by 
high concentrations of phytoplankton pigments, suspended sediment, and colored 
dissolved organic matter (CDOM) (IOCCG, 2000). Hence, further research is 
needed for a better retrieval algorithm of chlorophyll-a concentration. 

17.5.8 Primary Productivity Estimation 

Primary productivity (PP) is the amount of carbon fixed by plants over time 
through photosynthesis and forms a fundamental basis for both the terrestrial and 
marine food webs (Smyth et al. 2005). The amount of carbon fixed by phyto-
plankton is estimated to be between 45 and 50 1Gt C yr�� �  accounting for 48% of 
the total carbon uptake (Field et al. 1998). Since ocean PP represents a critical 
process for the oceanic carbon cycle (Antoine et al. 1996), it is of great sense to 
establish the model of estimating ocean PP. Previously, thousands of measure-
ments of marine phytoplankton productivity have been made at discrete locations 
throughout the world’s oceans since the introduction of the radiolabelled carbon 
uptake method (i.e. 14C  method) in 1952 (Steemann Nielsen 1952).With the de-
velopment of geospatial technology, satellite water color remote sensing data pro-



Water Remote Sensing  455

vides a convenient way of estimating chlorophyll-a concentration. The mathe-
matical models for estimating primary production from satellite data are known as 
primary productivity algorithms (Campbell et al. 2002). In the early days of the 
Coastal Zone Color Scanner (CZCS), simple statistical relationships, which esti-
mate time- and depth-integrated primary production as a function of sea surface 
chlorophyll-a, were proposed for calculating primary production from the surface 
chlorophyll-a concentration (e.g., Smith and Baker 1978, Eppley et al. 1985). 
Over the past 2 decades, scientists have sought to improve algorithms by combin-
ing the satellite-derived chlorophyll-a data with other remotely sensed fields, such 
as sea surface temperature (SST) and photosynthetic available radiation (PAR) 
(Campbell et al. 2002). Based on this, several models of estimating marine pri-
mary productivity have been proposed.  

Behrenfeld and Falkowski (1997) proposed the vertically generalized produc-
tion model (VGPM) belonging to the complicated depth-integrated models 
(DIMs). This model combines the physiological process of phytoplankton photo-
synthesis with empirical relationship. All the important parameters in VGPM 
model can be obtained by satellite remote sensing data, and VGPM model has a 
high accuracy, so it is widely used to estimate marine primary productivity. In 
China, Li et al. (2003) calculated the monthly average primary productivity of 
China East Ocean in 1998 using the VGPM (See Table 17.1). 

Table 17.1 Monthly average primary productivity ( 2 1mg m d� �� � ) of China East Ocean in 1998 
using VGPM (Reprinted with permission from Acta Geographica Sinica) 

Month Average Month Average Month Average Month Average 
January 440.10 April 610.54 July 607.57 October 543.30 
February 519.26 May 681.84 August 534.58 November 522.46 
March 583.87 June 696.06 September 516.04 December 464.70 

17.5.9 Red Tide Detection 

Red tide is the common name for what scientists now prefer to call “harmful 
algae blooms (HABs)”. HABs are a phenomenon caused by marine micro-algae, 
bacteria, and protozoa, which bloom or aggregate and cause discoloration of the 
water and threaten the marine environment and human health. Some phytoplank-
ton blooms are caused by the toxic species that can produce brevetoxins which 
accumulate in shellfish (e.g., oyster and clam) and cause deaths of fish, bird, and 
marine mammals, and can irritate the eye and respiratory systems of animals in-
cluding humans (Hu et al. 2005). The term "red tide" is often used colloquially to 
describe these phenomena, which is the change of the ocean color caused by an 
algal bloom. It is known that not all algal blooms are harmful, not all algal blooms 
cause discoloration of water, and not all algal blooms are associated with tides. 
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As the first generation of ocean color remote sensing sensors, Coastal Zone 
Color Scanner (CZCS) was demonstrated to have the potential to detect a major 
Karenia brevis bloom in the western Florida waters (Steidinger et al. 1981). Simi-
larly, the second generation ocean color remote sensing sensor, SeaWiFS (Sea 
viewing Wide Field of view Sensor), imagery is used to monitor the birth, devel-
opment, and termination of phytoplankton blooms in the north-east Atlantic (Zei-
chen et al. 2000). Hu et al. (2005) used near real-time fluorescence data from the 
MODIS satellite sensor to detect and trace a harmful algal bloom (HAB), or red 
tide, in SW Florida coastal waters from October to December 2004, and found that 
MODIS fluorescence line height (FLH in 2 1 1W m m srC� � �� � � ) data showed the 
highest correlation with near-concurrent in situ chlorophyll-a concentration (Chl-a 
in 3mg m�� ), which demonstrated that the MODIS FLH  data provide an un-
precedented tool for research and managers to study and monitor algal blooms in 
coastal environments.  

Although much work has been done about red tide which explored some evi-
dence that various HABs species may have distinguishable optical properties, the 
satellite chlorophyll concentrations suffer from uncertainties in the atmospheric 
correction and interference of other colored compounds and/or shallow bottom, 
further researches are being conducted (Hu et al. 2005). 

17.6 Water Environment Management - A Case Study of the 
Pearl River Estuary and the Adjacent Coastal Waters of Hong 
Kong 

17.6.1 Introduction 

Water quality has gradually experienced degradation in many areas of the 
world because of pollution and heavy use resulting from expansion of human ac-
tivities. The anthropogenic effects on the Pearl River estuary and the adjacent 
coastal waters of Hong Kong have become increasingly marked since 1980’s 
when rapid industrialization and urbanization occurred in Guangdong Province of 
South China. Hong Kong has a population of over 6,000,000 people and relies 
heavily on its coastal waters for recreation and aquaculture, cooling water for 
air-conditioning plants, disposal of treated waste water, shipping, and navigation. 
In order to preserve the water quality and to assess the effectiveness of control 
measures, Hong Kong’s coastal waters have been delineated into 10 Water Con-
trol Zones (WCZs) according to the locations and characteristics of water quality 
and a comprehensive monitoring program has been run by the Environmental 
Protection Department of Hong Kong Government (EPDHK) since April 1986 
which covers 79 water monitoring stations in the open sea and semi-enclosed 
bays, but excluding the typhoon shelters (EPDHK, 1998). The earliest records 
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could be as early as 1982 when the monitoring had been made by the agriculture, 
Fisheries and Conservation Department of Hong Kong Government before 
EPDHK was established. The monitoring stations that are near the coast or heavily 
influenced by human activities have been sampled monthly or bi-weekly and the 
monitoring stations located in the open sea or less anthropogenically affected re-
gion are monitored either in odd or even months since 1988. Twenty-four water 
quality parameters indicating the oceanographic conditions, the transparency and 
light penetration, the organic pollution, the faecal pollution, and the eutrophic 
condition, were collected for every monitoring station, respectively. Although 
Hong Kong’s coastal waters have been regularly monitored since the 1980’s 
(Chen et. al., 2002), the point data sampled at long intervals are not adequate to 
catch the spatial and temporal variations. It is not easy to obtain the water quality 
over large areas simultaneously. Various kinds of remote sensed images have be-
come an important information source for monitoring and detecting coastal water 
quality. Satellite sensors such as CZCS, SeaWiFS, MODIS and Landsat series 
with various spatio-temporal and spectral resolutions can provide more timely 
synoptic data of water quality. So remote sensing could be taken as an independ-
ent measurement tool for water management authorities (Dekker et al. 2001, 
2002). The high spatial resolution of the Landsat TM image is useful for monitor-
ing the aquatic systems in a small turbid water body, and it has been reported to be 
able to effectively analyze the ocean color parameters in estuarine and coastal wa-
ters by various authors (e.g. Munday and Alföldi 1979, Lathrop and Lillesand 
1986, Doerffer et al. 1989, Ritchie et al. 1990, Richard and Lathrop 1992, Lavery 
et al. 1993, Tassan 1987, 1992, 1993, Dekker et al. 2001, 2002). 

17.6.2 Spatio-temporal Monitoring Data Organization and 
Analysis System Construction 

All the monitoring data used in this study area can be divided into two types: 
spatial data with definite geographical location and measurements of monitoring 
water quality parameters. The combination of above two types of data provides 
with the spatio-temporal characteristics of water quality parameters. In this study, 
water quality monitoring data was organized by Geodatabase. In this case, the 
water quality monitoring stations can be zoned by distance, and the water quality 
data can be more directly analyzed in the spatial domain. 

For a water quality sample, there exists 4 types of data, location, monitoring 
depth, monitoring date and water quality parameters, which corresponds to a point 
in a 4 dimensional space. It was abstracted as follows: 

 ( , , , )x y z tV V�  (17.16) 

where>is a sample of water quality parameters, x, y, z represent 3 dimensional 
coordinates of monitoring location, re t is monitoring date in this study. Above 
equation can be expressed as follows: respectively, and  
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 ( , , )s z tV V�  (17.17) 

where s stands for monitoring location (monitoring station here), s= s(x, y), and 
corresponds to a pair of coordinates (x, y). 

Taking the study area as a continuous region,?, which can be divided into n 
sub-regions, ?1, ?2, @@, ?n, through spatial analysis such as buffering with 
the aid of GIS. Every sub-region has a 1:1 relation with a monitoring location 
(monitoring station), and a number of monitoring stations will be included in each 
region, taking as, S1, S2, @@, Sn. 

According to above description, a related-data model can be described as fol-
lows: 
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In this model, for a given sample, (s, z, t,>(s, z, t) ), if sASn, then the sample 
can be expressed as (s, z, t,>(s, z, t), n), where, n stands for sub-region ?n. It 
clearly shows that the spatial location and water quality parameters can be com-
bined for an integrated analysis in this way. 

Based on the proposed related-data model, a GIS software tool, ArcGIS Desk-
top, and statistical software tool, SPSS, were selected to manage and analyze the 
spatial relations, and water quality’s statistical characteristics. In our spa-
tio-temporal analysis, ArcMap and SPSS were linked by dbf file. Data can be 
freely communicated in the two systems by using the proposed data-related model. 
The spatial relation of monitoring stations could be explored by spatial analysis in 
the ArcMAP, and the water quality parameters related to spatial relationship could 
be extracted based on the proposed related-data model, and sent to SPSS through 
DBF for further statistical analysis. 

17.6.3 Statistical Characteristics of Chlorophyll-a Level and its 
Impact Factors 

The level of chlorophyll-a, which indicated the scale of algal biomass (Yung et 
al. 1997), is mostly correlated with the number of red tide incidents in Hong 
Kong’s coastal waters. The result shows an obviously positive correlation between 
the average chlorophyll-a concentration and frequency of red tide occurrence. So 
the chlorophyll-a concentration which has been used as an indication of the inten-
sity of algal growth and hence the degree of eutrophication was selected as the in-
dicator to study the temporal and spatial variations associated with red tide. The 
distribution pattern identifies the impacts of eutrophication in various areas. Gen-
erally, for unpolluted offshore oceanic waters, the chlorophyll-a level is below 2 
μg/l. A mean chlorophyll-a level above 10μg/l can be regarded as unacceptably 
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high and such a level indicates eutrophication. An algal bloom was defined as an 
incident with the chlorophyll-a concentration above 40μg/l for a lake environment 
(James and Havens 1996). 

The characteristics of monthly chlorophyll-a level and its correlated parameters 
from 1988 to 1999 in the 37 monitoring stations had two kinds of distinct differ-
ences in the temporal and spatial domains. One type is in the eastern part of Hong 
Kong’s coastal waters mainly consisting of semi-enclosed bays, which was more 
influenced by the tidal flushing characteristics, and had been heavily attacked by 
red tides since the 1980s. Another type is in the west of Hong Kong’s coastal wa-
ters. As it is influenced by the interaction between the Pearl River waters and the 
ebb and flood of tides, there were less red tide incidents because of the influence 
of the Pearl River discharge, monsoon-affected currents and the mixed and mainly 
semi-diurnal tidal currents that made the waters more turbid and turbulent.  

Statistical analysis shows that the chlorophyll-a concentration was influenced 
by the nutrients, physical and aggregate properties, and organic contents of marine 
water in the Pearl River estuary and its adjacent Hong Kong’s coastal waters. The 
indicator of organic contents, BOD5, was the common influencing factor. The 
primary significant factors of nutrients and physical and aggregate properties had 
different combinations from place to place. It can be classified into two types in 
terms of flow conditions. In the east waters where the general water circulations 
were very weak, the condition was favorable to the occurrence of red tides. The 
most significant nutrients were nitrogen and phosphorus. In the west waters, 
oceanographic conditions were the most significant influencing factors of chloro-
phyll-a level. Nutrients also played an important role, and phosphorus was the 
most significant factor. Parameters related to transparency and light penetration 
were more important to the chlorophyll-a concentration in the east waters than that 
in the west waters. However, the oceanographic conditions had a more significant 
impact in the west waters than that in the east waters.  

17.6.4 Water Quality Spatial Pattern Identification 

It is much more difficult for the quantitative use of optical satellite data for 
synoptic monitoring of surface water quality in the coastal waters because of the 
complex characteristics and absence of in situ field water quality data measured 
simultaneously with the satellite overpass. When the time difference between im-
age acquisition and water quality sample collection is not substantial, the spatial 
patterns of coastal water quality could be indirectly detected by ocean color classi-
fication through establishing the relationships between spectral reflectance and 
water quality characteristics. The ocean color related to the reflectance spectra is 
affected by the nature and the quantity of the main optically active constituents. So 
the ocean color data will give information on the existence and concentration of 
optically active constituents, thus, indicating the water quality status of the coastal 
waters. This would then provide a very useful tool for water quality management 
and dynamic detection. In order to do above analyses, 5 optically active water 
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quality parameters, namely turbidity (TURB), suspended solids (SS), total volatile 
solids (TVS), chlorophyll-a (Chl-a), and phaeo-pigment (PHAE) were selected. 
TURB is a qualitative measurement of water clarity. It measures the amount of 
light scattered from a sample and can be caused by organic suspended solids, in-
organic particulates, and the effect of colored dissolved matter (Han and Rund-
quist 1998). SS and TVS both measure actual weights of material per volume of 
water. Generally, more solids cause greater scattering. Chl-a and PHAE are pa-
rameters related to phytoplankton. The absorption of Chl-a in the visible spectral 
domains makes it behave as a negative correlation with spectral reflectance. 

The spatial variations of coastal water quality were studied by using the remote 
sensed image and water quality measurements not simultaneous with the satellite 
overpass in the Pearl River estuary and the adjacent coastal waters of Hong Kong. 
The Landsat TM bands 1-4 acquired on Dec. 22, 1998 were selected for color 
classification. The COST method was employed to derive the spectral reflectance 
from the TM image bands 1-4. After a geometric processing, the reflectance of the 
88 sample sites was estimated from the TM image. A clustering analysis of the 88 
samples showed that the reflectance could be divided into 5 classes. The reflec-
tance in each band showed a consistent decrease from class 1 to class 5. The re-
flectance of TM bands 2 and 3 had the largest difference between classes, and the 
maximum reflectance clearly shifted towards shorter wavelength from class 1 to 
class 5. These trends showed a close relationship between reflectance and particu-
lates in the study area, which was verified by a correlation analysis of the optically 
active water quality parameters and reflectance for the same sample sites.  

In order to study the spatial patterns of ocean color related to water quality, 88 
samples were randomly divided into two sets: a training set with 65 samples and a 
testing set with 23 samples. As the data sets for training and testing were small, 
we selected three classifiers to compare the classification results. Through a com-
parison of 3 classification methods, the SVM was proven the best method for the 
condition of small sample population. Although the three methods had different 
accuracies with 78.3%, 82.6% and 91.3% for MLH, NN and SVM, respectively, 
all the results provided similar spatial patterns. In order to examine whether the 
five classes classified by spectral reflectance could be well interpreted by the wa-
ter quality characteristics, five optically active water quality parameters, namely 
TURB, SS, TVS, Chl-a, and PHAE, were selected to do the analysis of variance 
(ANOVA). The analysis results showed that the difference of water quality pa-
rameters in different classes was statistically significant at 0.01 at the significant 
level. It clearly indicated that the study area could be divided into five categories 
of water quality characterized by different spectral reflectance and optically active 
substances in the water. Class 1 appeared in the west part of the study area be-
longing to the Pearl River estuary, and was characterized by the highest levels of 
TURB, SS, TVS and PHAE and the lowest level of Chl-a concentration. Class 5 
was located in the east part of the study area mostly enclosed by land and the wa-
ter exchange was not strong, so the Chl-a was at the highest level and TURB and 
SS at the lowest level. As for the other three classes, they were in the middle part 
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of the study area and were influenced by tidal flushing. There was a consistent de-
crease of TURB, SS, TVS and PHAE from classes 2 to 4 and a minor fluctuation 
in Chl-a. Therefore, we could identify a type of turbid water body characterized as 
‘sediment dominated’ coastal waters in the west part of the study area, and a type 
of water body with the most nutrients characterized as ‘phytoplankton dominated’ 
coastal waters in the east part of study area. An intermediate type appeared be-
tween these two types of water bodies in the middle part of study area. It provides 
a basis to discriminate different areas in the estuary and coastal waters when a 
dynamic monitoring of the spatial patterns of water quality is required. The results 
clearly showed that the ocean color categories classified by spectral reflectance 
could indicate the spatial distribution of water quality. By establishing a relation-
ship between reflectance and optically active water quality parameters, ocean col-
or classification could be a scientific and economical tool for coastal water quality 
management and dynamic monitoring through integrating remote sensing obser-
vation with a regular water quality monitoring program. 

17.6.5 Spatio-temporal Analysis of Coastal Water Environment 
based on RS/GIS Technology and Statistical Software 

RS/GIS technology combined with statistical analysis is the basis for scientific 
management and decision making to coastal water environment, and therefore 
plays a key role in the coastal water environmental information system. In this 
paper, two water environmental parameters, suspended sediment and dissolved 
oxygen, were selected to analyze their spatio-temporal regime based on RS/GIS 
technology and statistical software. 

17.6.5.1 RS based Spatio-temporal Analysis of Suspended Sediment in the 
Coastal Waters 

Suspended sediment, as an important carrier of land source pollution, brings a 
large number of nutrients and pollutants to the coastal waters. Its concentration 
changed according to the dynamics of watershed’s environment and human activi-
ties, and has become a natural tracer of pollutant diffusion. It is difficult to get 
enough spatio-temporal information of suspended sediment concentration using 
the conventional measurement. Remote sensing provides with a possibility to rap-
idly and periodically monitor the distribution and variation of suspended solids 
simultaneously in a large area (Chen 2003, Pan et al. 2003, Zhu et al. 2001). In 
this study, the Pearl River estuary and its adjacent coastal waters were selected as 
a case to study the spatio-temporal dynamics of suspended sediment, and 152 
suspended sediment concentration resultant maps reversed from NOAA/AVHRR 
images acquired from 1995 to 20000 were used. An algorithm using an analytical 
model based on the difference of the NOAA/AVHRR Channels 1 and 2 reflec-
tance data is developed for the retrieval of the suspended sediment in coastal and 
shelf waters. The algorithm was tested using the data from seven transects, and the 
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retrieved results for the Pearl River Estuary were compared with the sea-truth data 
with good agreement (Li et al. 1998, Huang 2001, Deng et al. 2002) . 

Three time scales, month, season, and hydrologic period were selected to ana-
lyze the suspended sediment concentration resultant maps, and 13 levels of sus-
pended sediment concentration with an interval of 10 mg/l were divided in this 
paper (Fig. 17.12).  

 

 
Fig. 17.8 Average distribution of suspended sediment concentration in different time scales in 
the Pearl River estuary and its adjacent Hong Kong’s coastal waters 

The results showed that the highest concentration of suspended sediment was 
near the five diversion mouths of Pearl River. The concentration of suspended se-
diment decreased towards the ocean from every mouth of the Pearl River, and the 
shape and gradient of concentration contour reflected the impact of land runoff on 
the suspended sediment. The flood period was characterized by the high sus-
pended sediment concentration in the wholly estuary, which revealed a positive 
correlation between the suspended sediment concentration and the watershed’s 
rainfall.  

17.6.5.2 Spatio-temporal Analysis of Dissolved Oxygen (DO) in the Coastal 
Waters in the Aid of GIS and Statistical Software 

As the coastal water environment is mainly influenced by land source pollu-
tion, a buffer function was used to divide the study waters into three zones from 
land to ocean, 0-1 km, 1-4 km and 4-20 km (Fig. 17.13). The monitoring stations 
were retrieved through spatial operation, and the related attribute data would be 
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correspondently selected to write to dbf files. The dbf files were loaded in SPSS to 
do statistical analysis after adding regional identifications. The distribution and 
variation of water environment in different buffer zones were received through 
analyzing the sampling measurements falling in different spatial units. 

 

 

Fig. 17.9 Buffer zones (0-1 km in pink, 1-4 km in green, 4-20 km in blue) and monitoring sta-
tions in Hong Kong’s coastal waters  

 

Fig. 17.10 Water quality analysis for different buffer zones in Hong Kong’s coastal waters in 
2001 
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In this study, dissolved oxygen (DO) was selected to analyze the coastal water 
environment. DO is an indicator of measuring the water polluted degree caused by 
organic and non-organic pollutants. Low DO concentration usually corresponds to 
serious pollution. The analytical results of DO in Hong Kong’s coastal waters in 
2001 in Fig. 17.14 showed that DO had an obvious increase towards ocean, and 
the DO levels within 1 km were obviously lower than other two spatial areas in 
most time periods, which reflected that the effective impact of biochemical proc-
esses related to land source pollution mainly occurred within 1 km in the coastal 
waters. This conclusion can provide a guide for coastal water environment man-
agement. 

17.7 Conclusions  

Most of streams, lakes, estuary, and costal waters all over the world have been 
contaminated by human activities and shown various degrees of degradation, 
which has seriously threatened the social development, and therefore, has been 
paid more attention by governments and scientists. In order to mitigate the water 
environmental problems, a long term water quality monitoring is needed for help-
ing policy makers, researchers, and the public to understand the status of water 
quality conditions and the complexity of factors involved, identify specific exist-
ing or emerging water quality problems, and catch changes or trends in water 
quality over time. Many countries have developed water quality observing sys-
tems to measure water quality dynamically. In order to mine much more useful 
information from the monitoring data, suitable tools for analysis and result visu-
alization are required. Water environmental management needs effective tools for 
scientific analysis. In this chapter, a study case in the Pearl River estuary and 
Hong Kong’s coastal waters was taken for a spatio-temporal pattern identification 
and detection of water environment based on remote sensing and in situ measure-
ments. Managing and preserving water resources is a formidable challenge given 
the rapid pace of change affecting water environment, so the remote sensing tech-
nique, as a fast, accurate, and quantitative tool, has been widely used for water en-
vironment analysis. The seriously polluted areas would be shown by spatial analy-
sis, which would provide a scientific basis for water pollution control and other 
environmental decision making. The spatio-temporal analysis based on remote 
sensing would be sure to provide an effective technical tool in a coastal water en-
vironment management. 
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Chapter 18 

FLOOD MAPPING AND DAMAGE ASSESSMENT – 
A CASE STUDY IN THE STATE OF INDIANA  

Jie Shan, Ejaz Hussain, KyoHyouk Kim, Larry Biehl 

18.1 Introduction  

Flood mapping, damage assessment, and disaster remediation involve activities 
and efforts from a number of governmental agencies. Under the National Flood 
Insurance Act 1968, the Federal Emergency Management Agency (FEMA) is re-
sponsible for identifying flood hazards nationwide, publishing and updating flood 
hazard information in support of the National Flood Insurance Program (NFIP). 
Over a period of two decades, FEMA has produced over 90,000 flood hazard 
maps covering approximately 150,000 square miles of floodplain. Recently, about 
75% of the flood hazard maps inventory became over 10 years old. In 2003, a 
program was initiated for flood hazard map modernization including the conver-
sion of paper maps to digital format. Since flood hazard mapping is part of the 
NFIP, a variety of maps indicating various degrees of insurance risk and premium 
rating are produced. However, the basic hazard maps, indicating the 1 in 100 years 
(1%) floodplain and the 1 in 500 years flood (0.2%) outlines, are normally pro-
duced based on detailed hydraulic modeling of river reaches at the community 
scale. All flood maps are made available to the public through the FEMA Map 
Service Center. These maps can be purchased in paper or CD format and can be 
viewed online (http://msc.fema.gov/).  Beginning on October 1, 2009, FEMA will 
provide only one paper flood map and the Flood Insurance Study (FIS) report to 
each mapped community. All other distribution of maps and Flood Insurance 
Study reports will be converted to digital delivery. FEMA will continue to provide 
free digital map products and data to federal, state, tribal, and local NFIP stake-
holders. In addition to the FEMA mapping effort, which is specifically linked to 
the NFIP, some states have their own flood mapping programs. They produce 
flood “awareness” maps that simply show flood prone areas without specific depth 
or other flood hazard data for a particular flood event.  

US Geological Survey (USGS) regularly records and ensures the provision of 
real time water level data from its gauging stations on rivers and streams to the 
National Weather Service (NWS) for flood forecast and flood warning to monitor 
the frequent changing flood situations. USGS teams visit the affected fields to set 
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high-water marks to document the severity of the floods in areas with no stream 
gauges, which helps emergency managers to estimate damages and to validate 
floodplain maps.  

Take Indiana as an example, its Department of Natural Resources (DNR) in 
partnership with FEMA is completing and issuing county-wide preliminary Digi-
tal Flood Insurance Rate Maps (DFIRMs) and Flood Insurance Study reports 
throughout Indiana. The new digital floodplain maps will be based on updated to-
pographic and orthophoto data. The mapping initiative will depict new or revised 
Base Flood Elevations (BFEs), which the flooding water may reach during the 1 
percent annual chance flood (also known as the 100-Year Frequency Flood). The 
initial phase should be completed by 2011. In addition to DFIRMs, the State 
launched the Indiana Floodplain Mapping Initiative in 2004 to revise outdated 
maps for all 92 Indiana counties (http://www.in.gov/dnr/water/). These updated 
maps will help the communities see the revised floodplain boundaries for their fu-
ture planning. However, until then, they will continue to use current Flood Insur-
ance Rate Maps for permitting development, which are made available through the 
“Indiana Map”, a public GIS data resource (http://inmap.indiana.edu/).  

Despite the organized federal and state level activities for flood mapping de-
scribed above, they are mostly focused on precaution or prediction. The produced 
maps are based on models and simulation, which may not fit to a specific flood 
event. Therefore, such maps are not sufficient for coping with a realistic flooding 
event. Quick assessment of the actual flood extent over a vast area by field visit is 
unrealistic, whereas satellite remote sensing can meet this need due to its large 
coverage and relatively short revisit time. It is one of the most effective and accu-
rate technologies for mapping such natural hazards as floods over broad areas 
(Campbell 2002). The timely provision of such disaster related information and 
products for the local and state governments, the residents, and the disaster rescue 
and relief teams can help them quickly make response strategies, take rescue ac-
tions, and develop mitigation plans. It can help the authorities in rescue and relief 
efforts, damage assessment, mitigation and future planning to take remedial meas-
ures and to safe-guard such events effectively. The timely acquisition of satellite 
data over the flooded areas for pre-, during, and post-events is extremely valuable 
for assessing flood damages at a large scale. Evaluation of the collected satellite 
images, along with other ancillary data, can help us understand the flood situation 
and its dynamic development, identify designated floodplain boundaries, and fur-
ther estimate the flood damages to the major standing crops, residents, roads and 
streets, and other infrastructure. The mapping results of the flood extent can then 
be published immediately on the Internet through a Web mapping tool or service, 
such as the Google Earth Application Programming Interface (API). They can also 
be regularly updated with the most-recent flood development, analysis and as-
sessment results, relief and rescue activities.   

This chapter utilizes remote sensing images to map the floods that occurred in 
southern Indiana in June 2008. First, the flood development is described and the 
importance and availability of remote sensing data is discussed. Second, damages 
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to crops, roads, and residential areas are estimated, followed by the changes to the 
existing estimated floodplains. The final results are published on the Web through 
the Google Earth plug-in as a resource for damage assessment, planning and exe-
cuting of disaster related rescue, relief and rehabilitation activities. 

18.2 The Southern Indiana Floods 

Southern Indiana experienced heavy rainfalls from the end of May to early 
June, 2008. A rainfall of 1 to 3 inches on the night of May 30 caused flooding to 
portions of the Wabash River (see Figure 18.4) in western Indiana. Additional 
rainfalls of 1 to 5 inches on June 4 and 5 developed into flooding in central and 
southern parts of Indiana. On June 6, central Indiana and eastern Illinois received 
another cycle of rainfall which created flooding in the creeks, streams and rivers in 
western central Indiana. On June 7, the highest official rainfall of 9.5 inches was 
recorded from the city of Center Point in Clay County. As a result of this week-
long rainfall, both the Wabash and White rivers were near historic flood levels on 
June 8 as documented by USGS operated gauge stations distributed over the State. 
The rainfall cycle that started early in the first week and intermittently continued 
until the second week of June, made and kept all the streams and rivers in the 
flooding situation. The average rainfall for this month was 8.00 inches, 3.87 
inches above the normal conditions. Figure 18.1 is the precipitation map for June 
7 and for the first week of June (June 1-7), which demonstrates the severity of this 
rainfall in southern Indiana.  

 

  
Fig. 18.1 Precipitation maps for June 7, 2008 (left) and June 1- 7, 2008 (right) in western central 
Indiana (courtesy National Weather Service) 

These high rainfalls caused severe flooding in the rivers flowing through 
southern central and southern Indiana and caused heavy destructions to both urban 
areas and agricultural lands. River water levels were almost twice as high as the 
flood stage level as recorded by the National Weather Service/USGS operated 
gauging stations. These water levels were much higher than many previous years. 
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Although such data did help USGS predict floods downstream, the flow of exces-
sive rainfall over the plain areas added more severity than predicted. Flowing 
through these areas are the Wabash, White and East Fork White rivers and a num-
ber of streams. The heavy flooding situation in these water channels remained for 
about 6 days, from June 8 to 13. In addition to the rivers and streams, vast areas 
away from them were also flooded due to heavy surface runoff, which added more 
severity than predicted from the gauge data. The situation of this heavy flooding 
can be seen from the comparison of the water levels recorded at various locations 
for the Wabash and White rivers for year 2007, 2008 and the preset flood stage 
levels, given below in Figure 18.2 and 18.3.   

 

Fig. 18.2 USGS water gauge station data for the Wabash River of Indiana 

 

Fig. 18.3 USGS water gauge station data for the White River of Indiana 
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18.3 Remote Sensing Data Portals and Images 

18.3.1 Data Portals 

There are a number of portals and repositories, from which we can acquire sat-
ellite images along with other geographic data for this study. Indiana View 
(http://www.indianaview.org/) is a state-wide consortium of a total of 14 universi-
ties and institutions in Indiana. The vision for Indiana View is to facilitate and 
promote the sharing and use of public domain remote sensing image data by Indi-
ana universities, four-year colleges, community colleges, K-12 (from kindergarten 
to high school) institutions, libraries, museums, government agencies, and private 
sectors. Indiana View was accepted to the national America View 
(http://www.americaview.org/) consortium in 2004 with Purdue University as the 
lead institution. The America View consortium is administered through the USGS 
Land Remote Sensing Program. The objectives of Indiana View are to: 

� Create and maintain an online portal to provide easy access to remote 
sensing data holdings of the member institutions. 

� Promote the use of remote sensing data from kindergarten to college edu-
cation through tutorials and training. 

� Facilitate the use of remote sensing data to monitor statewide issues, such 
as urban development, forestry, water quality, air pollution, flooding and 
other natural disasters, crop development, resource management, and 
homeland security. 

� Disseminate real-time satellite data utilizing the Purdue Terrestrial Ob-
servatory (PTO). 

An online portal (http://www.indianaview.org/glovis/) has been created using 
the USGS provided GeoVis software. The portal currently provides access to more 
than 250 Landsat TM (Thematic Mapper) scenes (1984 to 2008), 350 ASTER 
(Advanced Spaceborne Thermal Emission and Reflection Radiometer) scenes 
(2000 to 2007), 25 Landsat MSS (Multispectral Scanner) scenes (1972 to 1992), 2 
Corona scenes (1965), and the National Agricultural Statistics Service (NASS) 
Indiana Cropland Data. A link is also provided to the Indiana University Spatial 
Data Portal that contains over 14 terabytes of 6-inch to 1-meter ortho image data 
for Indiana (1998 to 2008). Indiana View received the Landsat data for pre-and 
post-event scenes of the flooded areas from the USGS Earth Resources Observa-
tion and Science (EROS) Data Center and other commercial satellite images as a 
result of the activation of the International Charter: Space and Major Disasters 
(http://www.disastercharter.org)1. Indiana View made the Landsat scenes avail-
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1 All Landsat images have been available for free since December 2008. 



478  Flood Mapping  

able for Indiana state government agencies and universities for their analysis and 
monitoring of the flooding.  

Another portal for access to the near real-time data, Purdue Real-time Satellite 
Information Gateway (PRESTIGE) (http://www.purdue.teragrid.org/prestige), al-
lows users to subscribe to basic MODIS (Moderate Resolution Imaging Spectro-
radiometer) and GOES (Geostationary Operational Environmental Satellites) sen-
sor data products. The basic products include MODIS Level 1B calibrated and 
geo-referenced (MOD02) data, reflectance, true color, NDVI (Normalized Differ-
ence Vegetation Index) and EVI (Enhanced Vegetation Index) vegetation indices, 
NDVI composites, sea surface temperature, and fire detection image files. Users 
can request the time period that they wish to obtain the data for, the data file for-
mat and coverage areas. Users will receive an email message, if desired, to notify 
them once the data products are ready. Daily MODIS image data were made 
available to the researchers and users around the State one (1) hour after the data 
were collected for a period of 7 days after the flood event. 

18.3.2 Satellite Images 

Through Indiana View we can obtain medium resolution satellite images, in-
cluding MODIS and Landsat, at no cost. However, higher resolution satellite im-
ages, such as SPOT, IKONOS, and QuickBird, are only available from the Inter-
national Charter program through USGS for this specific flood study. The 
selection of a particular data source depends mainly on its timely coverage, avail-
ability, spatial, spectral and temporal resolutions, cloud cover, and costs.  

June 11, 2008 had clear sky in southern Indiana, which provided a good oppor-
tunity to record the flood extent with Landsat satellite imagery. The large cover-
age of Landsat images provides the primary data source for studying the extent 
and damages caused by the flood. The Landsat imagery of June 11, 2008 acquired 
between 09:30 -10:00 AM was the best data for mapping the flood extent as the 
peak flooding in these areas was observed on June 10 and 11. By this time, the 
water from northern (upper stream) parts and the adjoining areas subsequently 
surged along central and western areas leading to the southern areas. The real time 
data reported by the NWS hydrologic prediction services and the readings from 
the gauge stations indicated that the Wabash and White Rivers along with smaller 
rivers and streams experienced heavy surges. Visual observation of the imagery 
revealed that nine (9) counties in southern Indiana were severely affected, and 
thus were selected as the study area. The county boundaries with gauge station lo-
cations, rivers, and the available Landsat images are shown in Figure 18.4.  

For comparison purposes, the Landsat image collected between 09:30 -10:00 
AM on June 9, 2007 over the same area is also acquired from USGS as a result of 
the declaration of International Charter through the Indiana View archive. This 
image is shown in Figure 18.4. This data covers most of the southern areas of Illi-
nois and Indiana States. The availability of the temporal datasets helps greatly in 
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observing the changes caused by the flooding. The June 2007 image clearly shows 
the normal situation of water bodies like rivers, streams, lakes and ponds in this 
area. The image also helps visualize the extent of the flood plains along the river 
courses.  

 
Fig. 18.4 County map with rivers and gauge stations (left), Landsat images of year 2007 (middle) 
and 2008 (right) for the study area. Landsat bands 5, 4, 3 were displayed as red, green and blue 
channels, respectively. 

In total, we used two (2) scenes of Landsat TM images, one from 2007 and one 
from 2008, at 30 m resolution with six (6) bands. The thermal band was excluded 
from image classification due to its coarser spatial resolution. Each scene consists 
of 6,167 x 6,167 pixels and covers an area of about 34,225 square kilometers.  

MODIS data are available for free on a daily basis. MODIS imagery collected 
at 15:00 on June 11, 2008 over the flood area was acquired through Indiana View 
from the Purdue Terrestrial Observatory. The data consists of seven (7) bands at 
the resolution of 500 m. Each MODIS scene has 950 x 620 pixels and covers an 
area of about 147,250 square kilometers. We used only one MODIS scene in this 
study. 

18.4 Image Classification 

 For the assessment of the flood extent and damages of the heavily flooded nine 
(9) counties, the Landsat images are classified using an object-based classification 
method (Blaschke and Lang 2005). This method uses fuzzy rules-based techniques 
to classify image objects or segments rather than individual pixels. The object-
based image analysis is often carried out in two steps: image segmentation, and 
classification of the segmented objects. The first step, image segmentation, is the 
division of an image into contiguous, disjoint, and homogeneous regions. It is the 
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prerequisite for the object-based classification, in which an object or segment is 
used for classification. The aim of the segmentation step is to create meaningful 
objects by using appropriate methods and using scale, shape and color parameters 
of the objects to maintain the geometry of the segmented objects as closely as pos-
sible to actual objects (Blaschke and Strobl 2001). With a careful selection of 
segmentation parameters, object primitives being very similar to the original ob-
ject’s geometry can be achieved (Baatz and Schape 2000). At the second step, 
these objects are classified using their spectral, contextual, and textural features. 
The selection of these features is based on the object’s physical characteristics and 
their spectral responses. A proper selection of features with well-defined fuzzy 
membership functions for every class would allow for a good classification and 
produce a homogenous thematic map (Benz et al. 2004). The classification results 
depend on these input features and the degree of membership value of a class. The 
closer the membership value of a class to 1, with less or no alternative assignment 
membership value to other classes, the more stable the classification results (De-
finiens 2000).   

For this study, the Landsat images are first segmented to create image segments 
and then classified into five (5) major classes, i.e., Water, Wet Area, Vegetation, 
Open Area, and Urban Area. The Water class includes the areas with sufficient 
visible flowing or standing water. Because the flood waters are turbid, its reflec-
tion increases especially in the NIR (Near Infrared) and MIR (Mid Infrared) re-
gion (Campbell 2002). The means respectively from the NIR and MIR bands 
within a segment are used for classification. Means of the blue band within a seg-
ment are used for the Wet Area class, which appears in light blue color showing 
the high moisture soil. The Vegetation class includes all types of crops, shrubs and 
forests. The Open Area 1 class shows no plausible land cover, however, some ar-
eas with light cloud patches have been classified as Open Area 2, because the area 
underneath the clouds consists of open land and light vegetation. For Water classi-
fication, only spectral object features, such as NDVI and band means, are used.  
The detailed object features used for classification are listed in Table 18.1. 

Table 18.1 Object features used in Landsat image classification 

Class Object features 
Water Mean NIR (Band 4) and Mean MIR (Band 5) 

Wet Area Mean  Blue (Band 1) 
Vegetation NDVI and Mean NIR (Band 4) 
Urban Area Mean Blue (Band 1), Mean MIR( Band 7) 

Open Area 1 & 2 Mean MIR (Band 5) 
 
The resultant quality metrics in Table 18.2 show the mean, standard deviation, 

minimum and maximum membership values for image classification. The urban 
areas are mostly misclassified with open area and vegetation area due to the pres-
ence of intense tree canopies and grassy areas within the urban areas.  A patch of 
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light cloud in the upper part of the image is classified as urban area, but some of 
urban area is misclassified as open area. The final classification map is shown in 
Figure 18.5. The higher mean, lower standard deviation and the membership val-
ues closer to 1 indicate the high classification accuracy of the classes (Syed et al. 
2005). These results indicate that the Water and Wet Area classes are very accu-
rately determined; the other four (4) classes have some degrees of misclassifica-
tion among each other.  

Table 18.2  Object-based fuzzy classification quality metrics 

 

 

Class Mean Std. Dev. Min Max 

Water 1 0 1 1 
Vegetation 0.88 0.21 0.10 1 
Open Area1 0.71 0.29 0.10 1 
Open Area2 0.83 0.15 0.15 0.98 

Wet Area 1 0 1 1 
Urban Area 0.73 0.29 0.10 1 

20 0 20 40 Miles

Vegetation
Open area
Wet area
Urban area

Water 

 

Fig. 18.5 Classification results of the Landsat image of June 11, 2008 

Since the objective of this study is to map the flood extent, assess damages, and 
map floodplain boundaries, further analysis will be based on only two composite 
classes, Water and No Water, which is a combination all but water classes. We 
first repeat the above classification process to obtain the water distribution in year 
2007. By comparing the pre- (2007) and post- (2008) flooding classification re-
sults, a flood map is produced. Figure 18.6 shows the classification results for both 
years (left and middle) and the flood map (right). It shows the pre- and post-flood 
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water body extent and the most flood prone areas. The red (darker) color in the 
flood map is the water area exceeding that of year 2007. Visual analysis of the 
flood image reveals that the most serious flooding is along the river courses. This 
flood map helps quantify the areas subject to flooding. The classification results 
are converted to vector data for further analysis and assessment through a GIS 
(Geographic Information System). The comparison of the Water class for the two 
years and related statistical results show an increase of about 93,369 hectares or, 
about 9% of the area was flooded in June 2008. The most affected counties are 
Knox, Daviess, Greene, and Vigo, mainly because of the overflowing rivers. Knox 
County is mostly affected by the White river as it flows all along the County’s 
eastern and southern boundary. The Wabash River on its western border did not 
affect Knox County as badly as it did near the Illinois counties to the west. Davi-
ess County experienced flooding mainly from the White River and the East Fork 
White River. The summary and comparison of each county’s flooded area are 
shown in Table 18.3. The change detection to assess flooding in urban areas is 
limited by the relatively low resolution (30 m) of the images.  
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Fig. 18.6 Water of year 2007 (left), 2008 (middle) and the flooded area (right) 

In addition to the Landsat images, MODIS data are also used to map the extent 
of the flood. For this purpose, the MODIS image is classified to water and no-
water classes based on the same process applied to the Landsat images. To esti-
mate the MODIS flood water extent, Landsat 2007 water class from the Landsat 
image is used as the reference of normal water body extent. The flood extent de-
rived from MODIS is then compared with the one from the Landsat 2008 image to 
analyze the effect of resolution variation on the mapping .The resultant MODIS 
classification yields 97,507 hectares as flood area, about 4% more as compared to 
93,369 hectares from the Landsat 2008 image. This inconsistence is partially due 
to the large pixel size, which resolves the areas adjacent to rivers as the Water 
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class (Corina et al. 2006). The MODIS large pixel size resolves the high moisture 
wetlands as water, which occurs in close proximity along waterways and at the 
edges of flood extents. Besides, in the southern part of the study area where the 
three rivers join, the gauge station data showed increasing flood water levels on 
the night (at 23:00) of June 11, 2008, close to the time (15:00) the MODIS image 
was collected. The MODIS image and its flood extent with reference to the Land-
sat 2007 image are shown in Figure 18.7. 

Table 18.3 Overall county areas and the flooded areas 

County Area 
(Hectare) 

Flooded area 
(Hectare) 

% Flooded 
area 

Vigo 106224 10209 10 
Clay 93237 8272 9 
Owen 100317 4360 4 

Sullivan 117465 6715 6 
Greene 141291 14534 10 
Knox 135653 20638 15 

Daviess 113004 12709 11 
Pike 88302 5994 7 

Gibson 129159 9940 8 
Total 1024652 93371 9 
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Fig. 18.7 MODIS June 11, 2008 image (left) and its flood extent (right) 
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18.5 Damage Assessment 

The above classification results are used to estimate the damages to the stand-
ing crops, the roads submerged by flood waters, and the areas out of the desig-
nated floodplains. The details of the analysis process and results are described be-
low. 

18.5.1 Crop Damages   

Every year the National Agricultural Statistics Service of the United States De-
partment of Agriculture, along with the Farm Service Agency (FSA) and the par-
ticipating State governments, record and produce a digital data layer named 
“Cropland Data Layer” (CDL) for major crops (http://www.nass.usda.gov). The 
CDL program annually focuses on corn, soybean, and cotton agricultural regions 
in the participating states to produce digitally categorized, geo-referenced output 
products for crop acreage estimation. To produce such CDL data, the Resource-
Sat-1 (AWiFS, 56 m resolution) imagery and FSA registered grower’s reported 
field data are used. This data layer is suitable for use in GIS applications for 
analysis purpose.  

For this study, the latest available crop data layer for the year 2008 released by 
USDA in the first week of March 2009 is used. Corn and soybeans had been 100% 
planted before the occurrence of the flood in June 2008. Therefore, these data 
were used to estimate the crop areas and types affected by the June 2008 floods. 
The authors realized that the flood affected areas based on the 2008 crops layer 
may not be totally accurate as some of the flood affected croplands may have been 
replanted after the floods. However, these results show the crops as damaged or 
flood affected within the flood water extent. The CDL data consists of a quite de-
tailed number of crops, however, for this assessment only the major crops grown 
in the study area are used. It includes corn, soybean, wheat (spring and winter 
wheat), pasture (including grass, grassland herbaceous, and hay), and woods (in-
cluding woodland; deciduous, evergreen and mixed forests; shrub lands; woody 
wetlands). All the crops damage estimation is made by comparing each crop area 
with the flood extent layer and summarized by county. As most of the agricultural 
areas in these counties are under corn and soybean other than wheat, the resultant 
high percentage damages are also to these crops. Mostly the crop areas along the 
river courses and floodplains are affected. The CDL 2008 data (left) and the 2008 
flood extent overlay (middle) are shown in Figure 18.8.  

The crops damage statistics show that an average of 6% of corn, 22% of soy-
beans, and 12.5% of wheat are damaged in these counties. The crops in Greene 
County were severely hit with the highest percentage damages of 11.7% of corn, 
35.4% of soybean, and 28% of wheat. Other highest percentage damages to corn 
and soybean were in Daviess followed by Knox, Pike and Vigo counties. The least 
crop damages were in Sullivan County because the flood water in the Wabash 
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River flowing along Sullivan County’s western boundary caused more inundation 
in Illinois rather than in Indiana. It should be noted that the crop damage estimates 
only show the crop areas affected by the floods rather than a measure of complete 
damage since some of these affected crops may eventually survive. The degree of 
final damage would depend on factors such as ponding time, soil erosion, partial 
or total submerge, saturation time period of fields, formation of dense surface 
crust, and deposition of mud over the plants. Figure 18.8 (right) illustrates the spa-
tial distribution of damaged crop areas for each county in the study area. Table 
18.4 and Figure 18.9 show the crop areas under the flood and the summary of per-
centage crop damages for each county, respectively.  
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Fig. 18.8 2008 crop data layer without (left) and with (middle) flood extent overlay, and dam-
aged crops (right)  

Table 18.4 Areas of crops under flood (hectare) 

County Corn Soybean Wheat 
Pasture,  

Hay, Grass 
Forest, 
Shrub 

Vigo 1823 3911 49 680 1675 

Clay 1586 4058 23 208 1025 

Owen 393 1336 31 510 1539 

Sullivan 752 1994 18 647 1633 

Greene 1607 7315 118 652 2061 

Knox 1852 10496 63 526 2604 

Daviess 1682 6544 38 297 1359 

Pike 252 3265 2 249 1071 

Gibson 780 2543 5 293 1362 

Total Area 10728 41462 347 4062 14329 
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Fig. 18.9 Crop damage (in percentage) in the nine counties of Indiana 

18.5.2 Road Damages 

To assess the road damages, the Indiana Department of Transportation 
(INDOT) roads and streets 2005 data layer is used. First, the length of the roads 
within each county is calculated from the INDOT layer and then these roads are 
compared and checked with the flood water classification layer. Some of the roads 
observed under the flood waters may not be accurate as their width may not com-
mensurate with the image pixel size. Even if a road is higher than the adjacent 
land, it is counted as flood category since its width is small and its adjacent land 
area is under the flood. Figure 18.10 shows the INDOT 2005 roads (left) and the 
flooded roads (right). 

The evaluation of these results reveals that the roads passing through the flood-
plains were mostly affected. A large number of streets and small roads were also 
affected. In addition, a number of State Highways and US Highways passing 
through these counties were subject to the flood. State Road 57 and State Road 
157 were most affected, with a total 13 km of road segments being under water at 
different locations, followed by the State Road 59, which had 6.8 km under water. 
Overall, about 37 km of different State Roads were affected. Of the US Highways, 
US-231 was the most affected with a total of about 12 km road segments being 
subject to the flood. This evaluation shows that the most affected were the county 
roads. A total of about 1,082 km of road segments were affected by the flood wa-
ters in these nine counties. The percentage of the roads in Knox, Greene and Davi-
ess counties that were under flood waters of the White River were 10%, 6% and 
8%, respectively. Gibson County had about 7% of the roads under flood water due 
to flooding along both the Wabash and White Rivers. Figure 18.11 and Table 18.5 
show the statistics of these flood affected roads in each of these nine counties. 
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Fig. 18.10 INDOT 2005 roads and streets (left) and the flooded ones (right) 

�
Fig. 18.11 Roads in counties and roads submerged under the flood water 

Table 18.5 Statistics of the INDOT roads and flooded roads  

County Roads 2005 (km) Roads flooded (km) % Flooded 

Vigo 2684 110 4.10 
Clay 1825 78 4.32 
Owen 1776 34 1.91 

Sullivan 2207 74 3.35 
Greene 2471 147 5.95 
Knox 2481 238 9.59 

Daviess 1914 147 7.68 
Gibson 2565 174 6.78 

Pike 1586 80 5.04 

Total 19509 1082 5.5 
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18.5.3 Floodplain Changes  

Floodplains are the land areas situated adjacent to rivers and streams that are 
subject to recurring inundation. The extent of these floodplains are marked and 
designated based on the analysis of occurrence of floods into the rivers and 
streams and the overflow of the water to the adjacent land over a long period of 
time. Usually, the water on the floodplain drains back to the water course as its 
flow recedes. However, for places where the water course has higher banks as 
compared to floodplain levels, the water may not drain back and cause inundation 
or ponding over a long period of time, thus making the area unusable for any ac-
tivity. The analysis of every flood through remote sensing data acquired during the 
peak time can greatly help examine, inventory, and incorporate changes to the ex-
tents of these floodplains and other flood prone areas. The analysis and compari-
son of the 2008 flood extent to the designated floodplains show that most of the 
actual flood water remains within the floodplains; however, it did overflow the 
boundaries of the floodplains at a few places (Figure 18.12, dark red areas) due to 
high water levels in the rivers. It mostly happened in the White River floodplains 
in Greene and Daviess counties and in the Wabash River floodplains in Knox 
County. These general pre-designated floodplains and the 2008 flood water over-
lay are shown in Figure 18.12. The light red color shows the designated floodplain 
extents, blue the actual 2008 flood extents, and the dark red the actual flood extent 
beyond the designated floodplains. We found in this study that 30% of the area of 
the designated floodplains is subject to floods and about 6,000 hectares (2%) of 
lands are beyond the designated floodplain areas, which are mostly in Greene and 
Daviess counties. In these counties, flood water did flow beyond the floodplains 
by about 1-3 km as shown in Figure 18.13. 
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Fig. 18.12 General floodplains (left, light red) and the actual flood extents (right, blue for flood 
water within floodplains and dark red for flood water outside floodplains)  
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Fig. 18.13 Extent of flood water beyond designated floodplains (dark red) 

18.6 Web-based Map Service 

18.6.1 Web GIS 

Web GIS is currently an active research field in the information technology in-
dustry. Governments, universities, companies, and individuals are producing a 
large amount of information, which is delivered to the public through the Internet. 
Much the same is true in the Earth observation technology. Many leading vendors 
have developed Web GIS tools to effectively share and publish valuable geospa-
tial information. The main advantage of Web GIS is that it can visualize data more 
effectively with the help of digital maps such as remote sensing images and appli-
cation-specific data layers. Among the various software tools, Google Earth and 
Google Earth plug-in are widely used to share and publish geospatial information 
because of their powerful visualization functionalities, abundant available data, 
and easiness to use. 

18.6.2 Google Earth Plug-in 

Google released its Google Earth plug-in in June, 2008. The Google Earth 
plug-in is the Web version of Google Earth desktop and enables us to embed 
Google Earth functionalities into one’s own websites. Using this plug-in, one does 
not need to install Google Earth to use the virtual globe and can easily publish 
user specific geographic information onto the Internet along with other basic geo-
spatial data, such as background images, roads, and terrain provided by Google 
Earth. To customize the Google Earth plug-in, Google Earth provides a java script 
library, called Google Earth API (Application Programming Interface), which al-
lows users to add Google Earth plug-in objects into one’s own sites. Google Earth 
API also enables us to access Google Earth plug-in objects and their features. Us-
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ing Google Earth API, we can publish geographic information into a website, 
draw geometric objects (point, line and polygon), and add realistic 3D models. 
The current version of Google Earth plug-in operates on Microsoft Windows 
2000, XP, Vista, and Mac operating systems. To access a website developed based 
on the Google Earth plug-in, the Google Earth plug-in program should be installed 
on the local client computer. Using Google Earth API, one can incorporate many 
functionalities and data layers of Google Earth. The following is a brief list:  

 
� Display background satellite imagery and aerial photos provided by 

Google Earth 
� Display predefined layers (terrain, roads, boundaries, and 3D buildings) 
� Create and manipulate geometry objects (place marker, line and polygon) 
� Display KML (Keyhole Markup Language) or KMZ objects (parsing 

KML) 
� Manage mouse and keyboard events for user interface 

18.6.3 File Format and Conversion 

The basic file format of Google Earth plug-in is KML or KMZ format. KMZ is 
a zipped KML file with *.kmz extension and includes any icons and images refer-
enced in the KML file. KML is an XML-based language schema for displaying 
and visualizing geographic data. KML consists of many tags and nested structures 

http://code.google.com/apis/kml/
documentation/kmlreference.html. 

 

<?xml version="1.0" encoding="UTF-8"?> 
<kml xmlns="http://www.opengis.net/kml/2.2"> 
 <Placemark>     
  <name>Simple placemark</name>     
  <description>Attached to the ground. Intelligently places itself  
          at the height of the underlying terrain.</description>     
 <Point>       
  <coordinates>-
122.0822035425683,37.42228990140251,0</coordinates> 
 </Point>   
 </Placemark> 
</kml>�

To display the existing vector GIS data such as ESRI shapefile (*.shp) in 
Google Earth, one needs to convert these GIS data into KML format. The output 

interface whose name begins with ‘kml’ represents KML-related objects. The
to define various features (marker, icon, objects). In the Google Earth API, an

following is a simple kml example to display the place marker on the given
cordinates. The internal coordinate system of Google Earth is geographic coordi-
nates (latitude/longitude) based on the WGS 84 datum. More detailed information 
about KML can be found at the reference site 
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KML file from conversion software also follows the standard KML format, and 
one can modify the contents of the KML file by using text editor, if needed. 

18.6.4 Data Display in Google Earth 

A networklink in Google Earth API can be used to load and display geographic 
files in Google Earth. A networklink contains a link property that specifies files to 
be loaded in server or network. Using networklink, one can add the following data 
into Google Earth 

� Generic image files used by icons in icon styles, ground overlays and 
screen overlays 

� Model files used in the model object 
� KML or KMZ files converted from a shapefile 
 
Below is a sample code that adds 2008 flood map into Google Earth by the 

networkLink tag: 
 

 

var networkLink = ge.createNetworkLink(""); 
networkLink.setDescription("Flood June 2008 data"); 
networkLink.setName("Open NetworkLink"); 
networkLink.setFlyToView(true);   
var link = ge.createLink(""); 
link.setHref("https://engineering.purdue.edu/CE/floodmaps/Flood 2008.kmz"); 
networkLink.setLink(link); 
ge.getFeatures().appendChild(networkLink);

Similarly, a raster image can also be overlaid into Google Earth using ground 
overlay in Google Earth API. The following example shows how these functions 
are used to add 2008 crop data files into Google Earth plug-in by using the 
groundOverlay tag.  

 

 

var groundOverlay = ge.createGroundOverlay(''); 
groundOverlay.setIcon(ge.createIcon('')) 
groundOverlay.getIcon(). setH-
ref("https://engineering.purdue.edu/CE/floodmaps/cdl_9c_in_2007.jpg"); 
groundOverlay.setLatLonBox(ge.createLatLonBox('')); 
var center = 
ge.getView().copyAsLookAt(ge.ALTITUDE_RELATIVE_TO_GROUND); 
var north = 39.61; 
var south = 38.162; 
var east = -86.63 
var west = -87.997; 
var rotation = 0; 
var latLonBox = groundOverlay.getLatLonBox(); 
latLonBox.setBox(north, south, east, west, rotation); 
ge.getFeatures().appendChild(groundOverlay);
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18.6.5 The Flood Map Website  

Using the features and functions of the Google Earth plug-in and data provided 
by Google Earth, a Web-mapping service has been designed. One can access this 
site through Web browsers such as Internet Explorer or Firefox at 
https://engineering.purdue.edu/CE/floodmaps/2008_flood_map.htm. The main in-
terface is shown in Figure 18.14. The left region is an embedded Google Earth 
plug-in and some controls are placed on the right side of the page to control the 
Google Earth API. 

 

 
Fig. 18.14 Main interface of the flood map web page  

The developed Web service can display different group layers (water, crops, 
flood, damaged crops and roads data). All of these data are in KML/KMZ format 
converted from original ESRI shapefile except the crops data, which is a generic 
image data format. By selecting each load data button, one can load and display 
each layer in the Google Earth plug-in. The visibility property of each layer can 
also be turned on and off. The predefined Google Earth layers such as boundaries, 
roads and terrain can be displayed in the same way. As shown in Figure 18.15, one 
can easily check the influence of 2008 flood compared with 2007 water data using 
this website. 

Furthermore, Figure 18.16 shows a number of zoomed-in images to assess the 
local damages. Figure 18.16(a) shows the flooded area around Evansville. One can 
check which residential areas were affected by the flood. Figures 18.16(b) and 
18.16(c) show the areas with different damaged crop types. Figure 18.16(d) illus-
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trates how one can identify the specific damaged roads by overlaying the road 
layer with the flood layer. In summary, with the help of the abundant imagery data 
in Google Earth combined with the produced flood data, the developed Web map-
ping service provides an easy and effective way for the public and agencies to as-
sess flood damages. 

 
(a) 2007 Water                        (b) 2008 Flood 

Fig. 18.15�Comparison between 2007 water and 2008 flood 

�

 
(a)                                     (b) 

 
(c)                                     (d) 

Fig. 18.16�Zoom-in views to assess the local damages caused by the 2008 flood �
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18.7 Conclusions 

Rainfall data for the first week of June 2008 and the river gauge station read-
ings clearly showed the severity of this flood in southern Indiana. There was an 
average increase of roughly 12 feet in the Wabash and White River levels for al-
most five (5) days as compared to the flood stage. State of emergency was de-
clared in 23 counties by the State Governor and 39 counties were declared as ma-
jor disaster by the President. A total of 51 counties were affected by the flood 
causing damages of approximately $ 1 billion. This study is focused on the evalua-
tion of nine counties in this region where an area of about 93,369 hectares was af-
fected by floods. Southern Indiana had a variety of summer crops in the area, but 
corns and soybeans were the most affected, resulting in about 6-22% losses as 
compared to the 2008 crops data. Greene, Knox, Daviess and Vigo counties were 
among the severely affected ones by the overflowing Wabash, White, and East 
Fork White rivers, both for crops and road damages. A total of about 1,082 km 
roads were submerged by the flood, spreading in almost every county, including 
State highways, US roads, County roads and many other small roads, with the 
most affected being the county roads. The flood water did spill over the designated 
floodplains in a number of places along the river courses. A total of 6,000 hectares 
of land outside the floodplain areas, mostly in Greene and Daviess counties, was 
flooded, which suggests an underestimation in the flood modeling and simulation 
studies. The medium spatial resolution (30m) Landsat multispectral images proved 
to be a useful and suitable data source for mapping flood extent, evaluating the 
designated floodplains, and estimating damages to major crops and roads. The 
flood extent has been very effectively mapped using timely satellite image data 
collected over the flood peek period. The geospatial distributions of estimated 
damages show a high concentration of crop losses along the rivers and streams.  

The primary objective of using remote sensing imagery for mapping wide-
spread disasters is to provide the planners and disaster management institutions 
with a quick view and assessment of the ground conditions and disaster impact. 
The timely availability of the remote sensing imagery and its derived products to 
the public and disaster management authorities helps to quickly understand the 
disaster impact and support disaster response activities during and after the flood. 
Web-mapping techniques have played an essential role in populating, visualizing, 
and evaluating the flooding situation and damages during and after the flood. This 
study demonstrates that the Google Earth plug-in can be quickly adopted to build 
specific applications and is easy to use and access through Web browsers for the 
public. It can help the agencies make a quick response plan and move swiftly to 
take appropriate remedial measures. It can also help people in or concerned with 
the flood affected areas to view and assess the amount of flooding and losses. 

 Although the use of satellite remote sensing image data proved very helpful 
for rapid flood mapping, the medium resolution Landsat imagery is unable to de-
tect damages at a finer level. The damage estimate was therefore mainly limited to 



Flood Mapping 495 

the broader categories. Higher resolution data are needed, along with other GIS 
data, to further estimate the damages in individual properties, farms, and owners. 
Such work can be enhanced in urban areas if city property data are made available. 
Combined with high resolution digital elevation models, the flood extent map 
would be a valuable data source for estimating the flood depth and calibrating 
flood models.  
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Chapter 19  

DECISION MAKING BASED ON EARTH 
OBSERVATION TECHNOLOGY 

Jixian Zhang, Yu Zeng, Wenhan Xie, Tao Wang  

19.1 Geo-Spatial Decision Support Systems  

Spatial data derived from earth observation are applied in domains as varied as 
agriculture, environmental resource management, territorial planning, etc. They 
are used to learn about the environment and to assist in making management deci-
sions. Earth observation has been widely used in China (Chen 1999). Disaster 
monitoring and evaluation based on remote sensing has played an increasingly 
important role in the government’s emergency management. In response of the 
Wenchuan Earthquake, high resolution imagery was used for geological hazard 
monitoring, influence evaluation and loss statistics. There are severe flood hazards 
in southern China each summer, leading to the establishment of the data exchange 
center for monitoring and evaluating the flood hazards in related governmental 
sectors. The remote sensing data and the monitoring results can be automatically 
uploaded to the information system for decision makers. Large scale management 
and dynamic monitoring of natural resources and ecosystems have been imple-
mented in China under the support of quantitative remote sensing and GIS tech-
niques. This chapter presents the working experiences of China in response to un-
expected disaster events, evaluation of seasonal hazards and dynamic monitoring 
of natural resources. 

In 1992, Spatial Decision Support System of China was established and put 
into operation as part of the e-Government. It provides quantitative, visual and 
model-based support for decision makers in central government. This section in-
troduces the structure and components of GIS platform which incorporates various 
remote sensing data of SDSS. Acquisition and application of earth observation 
data are discussed further in scenarios of monitoring and evaluating of water re-
sources, desertification and western development of China. Three typical informa-
tion systems running in some government agencies are described. 
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19.1.1 E-Government  

E-Government is an important application domain of spatial support decision-
making. It bases on government intranet networks and uses a variety of informa-
tion as static resource for government management purposes. The information re-
source consists of natural geography (mountains, rivers, climate, land cover, min-
eral resources), land-use conditions, distribution of enterprises, public facilities 
(roads, airports, docks, squares, parks, power facilities, gas facilities, water supply 
and drainage facilities), distribution of residential areas, and so on. Based on the 
management needs of governments, spatial and non-spatial (statistical) informa-
tion which are real-time or quasi-real-time data are integrated, then various meth-
ods of visualization and spatial analysis are provided to policy makers and assist 
government decision-making. The feedback information in the executive process 
should be collected timely so that the government can adjust the plan and proce-
dure promptly to reach the most reasonable and effective results. 

E-Government spatial assistant decision-making application is characterized by 
the following: 
 (1) Wide range of needs (various branches and industries), multi-source 
(spatial, non-spatial,) and heterogeneous data sources (different formats of spatial 
and non-spatial data).  
 (2) The government has a large number of communication facilities and 
information resources which can coordinate and collect all information resources 
from society, industries, and enterprises.  
 (3) E-government applications include both long-term municipal planning 
work and real-time tasks such as disasters and emergency management. Also they 
need both an extensive and long-lasting accumulation of information resources 
and a capacity of fast integrating of multi-source, heterogeneous information.  
 (4) Information resources in e-Government are mainly based on depart-
ment management; and departments take charge of the data resources. At the same 
time, the information resource is required to be sharing between different depart-
ments. So it has the feature of information resources sharing and self-government. 
 (5) Most information in e-Government applications is confidential.  So 
both access control and usage record have great significance. Furthermore, it is 
also important to identify the user's identity, manage access privileges and record 
the usage log of information 

19.1.2 Earth Observation Data   

Earth observation data and fundamental geo-spatial data are important for the 
framework of spatial decision making. The latter has been described in Section 
19.2, the acquisition of remote sensing data is necessary for monitoring and 
evaluation of land cover, water resource and desertification etc. Different thematic 
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applications need different data sources of remote sensing for the optimal results 
of information extraction.  

As a small satellite for disaster monitoring, Beijing-1 can obtain both panchro-
matic image with the resolution of 4m, swath of 24km, and multispectral image 
with the resolution of 32m and swath of 6000 km. The multispectral data, which 
include three bands of 0.52 - 0.62:m, 0.63 - 0.69:m, 0.76 - 0.90:m, can be 
applied for dynamic information extraction of desertification information. It can 
form temporal sequence dataset, and create national desertification remote sensing 
image and multi-scale vector database. Land desertification and land salinization 
are due to the changes of weather, land cover and land use that result in the mate-
rial (i.e. soil and alkali) composition enrichment and content increase in land sur-
face layer, which in turn causes the decrease of land biomass. In the monitoring 
cases, the remote sensing data such as NOAA-AVHRR and Terra-MODIS can 
achieve the annual and seasonal analysis with the precision of 1 km.  

Beijing-1 and Landsat TM data can be applied for the monitoring of water re-
sources, which need to acquire basic geographic properties of river, lake and res-
ervoir, such as the range and area etc. For example, from the former type of data 
one can extract water distribution vector data around Beijing city. Aiming to the 
areas, ranges, reserves of the important water sources and these daily, seasonal or 
annual changes, the national remote sensing water level monitoring database is 
created.  

In the 1980s, under the organization of the National Agricultural District 
Committee, State Bureau of Surveying and Mapping, Ministry of Forestry and re-
lated units took national land using status investigation for 15 land categories by 
using MSS satellite images, and then had the mapping at the scale of 1:500,000. 
That investigation macroscopically reflected the basic conditions of land resources 
in China. At present the main information updating sources are Landsat TM, 
Terra-ASTER with the resolution of 20-30m and land use data at the scale of 
1:100,000, where the update cycle is about 5 years. At the same time the field sur-
vey and other type of results are also necessary.  

In the west development application system, monitoring work using remote 
sensing was concentrated on land biomass. Using satellite image sequence with 
high temporal resolution (MODIS, NOAA and SPOT Vegetation etc), time series 
analysis and extraction of multiple cropping indices can be developed for monitor-
ing national agricultural multiple cropping index condition and its changes. Grass-
land biomass is an important index for the quality of the grassland ecosystem, 
which affects the development and degradation of grassland ecosystem. Combin-
ing normalized NDVI with the sampling of biomass data, the correlation mode be-
tween land biomass and NDVI can be created to estimate grassland biomass. The 
work provides support for national development strategies.  

The wetland ecosystem is closely related to weather and biodiversity. Remote 
sensing data of Landsat ETM+/ TM and ASTER have been widely used to the re-
source monitoring of wetland ecosystem change. In the typical wetland research 
areas of rivers and lakes, like the Northeast, Tibetan Plateau, and Yangtze and 
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Yellow Rivers, several remote sensing models of wetland category and wetland 
ecosystem vegetation retrieval have been formed with field surveying, and then 
the national geo-spatial database for wetland resources is created for management 
and research of wetland ecological evolution and its change.  

During the process of decision making, remote sensing monitoring information 
should be integrated or fused mutually with other types of information (such as 
field survey and statistic information etc) for achieving scientific and accurate re-
sults. 

19.1.3 Data Model and Organization 

E-Government in spatial support decision-making adopts a common spatial 
data model, (1) different scales (2) on the horizontal sub-regional and sheeting, (3) 
in structure, there are vector and raster. The spatial data model diagram is shown 
in Figure 19.1.  

 

 
Fig. 19.1 Data organization 

 (1) Hierarchical on the vertical grade: It is divided into different map li-
braries by the original resolution map (scale). According to the current Chinese 
National standard, the spatial databases are divided into 3 basic libraries which are 
1:1000000, 1:250000, and 1:50000. There exists some regions with 1:10000 or 
even larger-scale spatial data library. In the library, spatial data are divided into 
sub-vertical layers. The map layers can be divided into fundamental layers and 
thematic layers. Generally speaking, the foundation layers in each scale level have 
covered the whole region, and the theme layer can only be found in a layer scale, 
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covering a local area. Despite the thematic layers only exist in a particular scale, 
they should be displayed in all scale levels. 
 (2) Horizontal on the sub-area and sheet. That is, in the horizontal spatial 
data, it is divided into different regions which can be connected or disconnected. 
The map is further divided into small tile map sheets. The sheet dividing adopts 
the national standard GB/T13989-92. In order to improve the management and the 
efficiency of data scheduling, image, DEM, raster data are often classified in the 
sub-standard rate on the basis of another block; generally they are divided into 
1024x1024, 512x512 or 128x128.  

In e-Government applications, one important feature of the horizontal partition 
is the district administrative regions. District administrative regions of the system 
are independent of the standard topographic map of the sheeting, which is a typi-
cal structure as a tree. Administrative divisions of the region have regional codes 
of national unity, "the code of administrative divisions" to the provincial, county, 
and then the next level administrative divisions (townships and villages, small cit-
ies, plant, work area, etc.), should be expanded by national standards. 

 (3) It can be classified into vector data and raster data according to the 
geographical structure of the data. Vector data include four basic types: point, line, 
surface and annotation. Vector data express features as four-type elements of 
point, line, surface and annotation, presented by the sampling coordinate. A point 
feature is expressed by a coordinates (x, y); line by line elements of the elements 
on the string of data points (x1, y1), (x2, y2)… (xn, yn). The border of area element 
do not use coordinate string to express directly, but use the indirect coordinates, 
that is, recorded a number of elements of the code from the arc line of code related 
to the concentration of the corresponding elements of the arc. Vector data are gen-
erally layered management. For example, a regional of vector data can be divided 
into layers of district, rivers, railway and highway. 

Raster data is recorded in all geographic grids on the value of the geographical 
elements, such as integrated optical properties of value - the value of image, the 
value of the elevation - DEM, elements of the classification of value - such as 
land-use classification.  

Raster data can be classified into image, DEM and cover class. Image data are 
saved as a standard-general of the image files, such as BMP, GIF, JPG, and so on, 
with additional information as a plain text file format. DEM is a terrain elevation 
matrix. Coverage class is a classification for terrain coverage, such as soil type, 
land-use type or land covered type.  

Management of spatial data employs the commercial object-relational database, 
which supports Oracle and SQL Server. Vector data consists of map sheets. All 
area, line, point and annotation objects are organized as a binary large object exist-
ing in the image field. Similarly, images, DEM, and surface grid map data are 
stored in the block image field. 
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19.1.4 Software Architecture 

The spatial decision-making system used in e-Government applications is de-
signed as a multi-layer architecture which includes a system service layer, GIS 
and DSS-based functional layer, application service layer, and user service layer.  
 (1) System service layer: to provide spatial data, statistical data, multime-
dia data, metadata and other information management and services.  
 (2) GIS and DSS-based function layer: to provide various spatial analysis 
and operations, such as buffer analysis , overlay analysis, network analysis, and as 
the domain polyglot analysis, as well as some assistant decision-making analysis 
method, such as predictive analysis, Evaluation of comparison, the analysis of 
consumer behavior, population control and simulation analysis.  
 (3) Application service layer: to provide application services such as ap-
plication structure, query  service, analyze service, display services and Web ser-
vices. 
 (4) User service layer: to provide some functions such as individually tai-
lored, response to user’s operation, Graphic presentation, plotting, and printing  

19.1.5 Data Management and User Rights 

In e-Government applications, user rights and data management are very essen-
tial. They are based on two important principles: information sharing and man-
agement of user data. Government spatial support decision-making needs informa-
tion sharing in different departments. At the same time, each department has the 
right to decide the authority of access and also should update and maintain their 
own data. 
 (1) User management is based on Agent-Staff-Tree, so that users have the 
different access authority according to their positions.  
 (2) For public information resource, data access authority is distributed 
by different departments and positions. 
 (3) Various departments manage their own data. Each department can de-
cide what kind of data can be accessed by which department and the people at 
which level. The information resources that could be accessed by other depart-
ments are registered in a catalog center and marked with access right.  

All departments are required to provide shared information resource from other 
departments as much as possible. Meanwhile, the access log should be kept once 
any confidential information is accessed. 
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19.2 Monitoring and Management of Earthquake Hazards  

Earthquake is a recurrent natural disaster that has wide and destructive effects. 
Before people find an effective way for earthquake prediction, it is of great impor-
tance to obtain information on the earthquake and its secondary disasters, as well 
as to effectively monitor and evaluate the situation of the disaster promptly after 
the earthquake, which can reduce the loss of the lives and properties.  

On May 12, 2008, a large earthquake occurred with the Richter magnitude 
scale of 8.0 in Wenchuan County, Sichuan Province, China. Because the hazard-
affected areas are hilly and mountainous areas, landslides, which are the major 
secondary disasters of earthquakes, caused road blocking and burying of residen-
tial areas, and brought severe impacts on hazard rescue. This section firstly pre-
sents the method for spatial distribution information extraction of landslide using 
high-resolution imagery, and then discusses the method for hazard assessment and 
loss statistics. 

19.2.1 Landslide Determination Using High-Resolution Imagery 

19.2.1.1 Characteristics of Landslide in Image 

After image processing, landslides can be interpreted and their location, type, 
boundary, size, activity model and stability can be determined. Based on this, their 
influence on projects can be further predicted. The interpretation characters of 
landslides include shape, tone, shadow, texture, etc. Landslides usually have typi-
cal geomorphic features, as illustrated in Figure 19.2. 

 

 
Fig. 19.2 Sketch map of landslide structure (Adopted from: About.com: Geology) 
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Landslide hazard interpretation based on remote sensing is one of the most 
complicated information extractions of slope deformation. Slope has various 
shapes in the nature, particularly in those long-term deformations, which are usu-
ally syntheses of different deformation. It is difficult to interpret these kinds of 
landslides, especially for ancient landslides whose typical shapes are almost re-
moved, which in turn increases the difficulty of landslide interpretation. There-
fore, landslide elements, sliding characteristics, and image characteristics should 
be studied carefully before interpretation. In an aerial-photo, landslides usually 
have plane shapes of dust pans, landslide walls, landslide steps, landslide toes, and 
landslide cracks. Besides, the characteristics of landslides in a remote sensing im-
age include (Niu 2002, Xie 2007, Ma and Tian 2007): 
 (1) Average slope of landslide is flatter than surrounding mountainous ar-
eas, whereas some of landslide could be plane or depression. Because of different 
lithology, geologic structure, groundwater activity, and landslide volume, the 
landslide usually presents different shapes, such as tongue, pear, arc, etc. In addi-
tion, new landslide has similar color to rocks in true color images, and has a visi-
ble contrast with surrounding vegetation and water bodies. These characteristics of 
landslides are clear in remote sensing images, which help us recognize them. 
 (2) The crown, toe, two sides and middle of a landslide could generate 
cracks before and during sliding. These cracks will grow to gullies with different 
sizes under the effect of surface water and other stresses, which cause strip shad-
ows and tone differences in remote sensing images. 
 (3) Drunken forests or yataghan-like trees, as well as destroyed vegeta-
tion are all good signs for landslide interpretation, which differ from other plants 
in the image. 
 (4) In the place where landslides occur, usually, the river becomes dry or 
changes its route, roads get blocked or cracked, and there are displacements and 
fractures in mountains. 
 (5) In the place where there is water sharp downcut, lateral erosion, and 
ground water activity, landslides will occur if there is no protection of stable layer. 
 

Usually a landslide occurs along rivers or roads, thus road rupture or accumula-
tion can be used as a clue for landslide interpretation. Moreover, characteristics of 
landslides, such as toe and contrast of tone with the surroundings will help in 
landslide recognition. 

19.2.1.2 Landslide Interpretation in Beichuan County 

The Wenchuan earthquake, occurred on May 12, 2008 in Sichuan province of 
China, was destructive to Beichuan County (Figure 19.3). After the earthquake, 
relevant people were organized and sent to the disaster area for rescue by the Chi-
nese government. At the same time, the interpretation for geologic hazards was 
launched. The number of interpreted landslides in Beichuan was 435 with a total 
area of 27,199,327.6m2. For reconstruction purposes, most of the landslides dis-
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tributed along the Minjiang River and close to built-up areas were interpreted. The 
workflow for landslide hazard interpretation is shown in Figure 19.4. 

 

 
Fig. 19.3 Part of Beichuan after the earthquake (aerial-photo) 

 
Fig. 19.4 Interpretation flow chart of landslide hazard  

Interpretation Preparation 

Remote sensing images used for interpretation are aerial-photos with 0.3m 
ground spacing distance (GSD) taken on May 21, 2008. In areas where aerial-
photos can not cover, ALOS multispectral images (10 m GSD) are also used. The 
aerial-photos are clear and have good quality (Figure 19.5), whereas the cloud 
coverage of the ALOS image is about 20% (Figure 19.6). Beijing-1 satellite im-
ages (Figure 19.7) are used for interpretation assistance and result verification. 

 

      
Fig. 19.5 Coverage of aerial photos           Fig. 19.6 Coverage of ALOS images  
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(a) 2006                                       (b) May, 2008 
Fig. 19.7 Color composition image of Beijing-1 satellite 

 
Interpretation Requirements: 
 (1) ArcMap or ArcView is used in the interpretation. Transverse Merca-
tor projection, Krasovsky ellipsoid, and the Xi’an 1980 Geodetic Coordinate Sys-
tem are adopted; 
 (2) Attributes include: number of parcel (TBBH), code of hazards 
(CODE), coordinates X, coordinates Y, area of parcel (TBMJ), level of hazard, 
monitoring time (JCSJ), and annotation (BZ) (Figure 19.8). 

 

 
Fig. 19.8 Attributes of interpreted landslides 

 
Landslides should be interpreted properly. Some landslides may be covered by 

vegetation, and some new landslides may have the similar color to rocks. More at-
tentions should be paid to interpretation on these kinds of landslides (Figure 
19.9.).  

Interpretation of landslides 

There were many landslides in Beichuan after the earthquake, which threatened 
human lives and properties. These landslides can be identified using high-
resolution images. In the images, there are color differences between landslides 
and their surroundings, and this is noticeable at the plane and edge of the land-
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slides. Figure 9 and 10 demonstrate a number of landslides identified in aerial and 
satellite images, respectively.  

 

   
(a) one example 

   
(b) another example 

Fig. 19.9 Landslide interpretation in images. (left map is wrong interpretation; right one is cor-
rectly interpretation) 

  
 
 
 
 
 
 
  
 

 
Fig. 19.10 Landslides in aerial-photos                Fig. 19.11 Landslides in ALOS image 
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Related image signs like scarp, toe, crack and main body can be clearly identi-
fied from the image after an earthquake. The track of sliding can be seen easily, 
which looks like a broom, a sector or a pear with the small area at the beginning 
and larger area at the end of sliding. Boundary shape and texture characteristics of 
different land covers, such as boundary shape between water and bank, boundary 
shape between soil and vegetation, strip shadows vertical to water can be used for 
interpretation. Moreover, landslide accumulations, which lead to blocking of riv-
ers and roads, can be seen clearly in high-resolution aerial images (Figure 19.12). 

 

 
Fig. 19.12 Landslides and their accumulations 

In high-resolution images, if there are large volume landslides, a 2D image can 
be used for landslide interpretation, otherwise, 3D simulation using remote sens-
ing images can be used, especially for ancient landslide recognition (Figure 
19.13). Digital elevation model (DEM) presents terrain relief. Based on textures of 
remote sensing images, the environment of studied area and conditions of hazard 
can be analyzed by overlapping textures on DEM, which is derived by recon-
structing 3D scenes of the studied area. For the landslides which are difficult to in-
terpret directly in a 2D image, 3D simulation can be used for landslide interpreta-
tion. Field checking is necessary in order to verify the recognized landslides 
(Nichol et al. 2006). 
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Fig. 19.13 3D image simulation (SPOT5 image false color composition) 

19.2.2 Hazard Assessment and Loss Estimation  

Hazard assessment method includes analytical model of the hazard-affected 
body in geospatial distribution, analysis model of the hazards environment, hazard 
factors and vulnerability of hazard-affected body, etc. Using distribution model 
based on geospatial grid information, the quantitative spatial distribution of the 
hazard-affected body can be calculated, which is one of important factors for haz-
ard analysis and assessment. By analyzing the spatial and interactive relationship 
among the environment of developing hazards, hazard factors and the hazard-
affected body at a certain time, and by analyzing the hazard vulnerability, the haz-
ard alarm and real-time emergency response can be implemented. Through the re-
search on hazard assessment model, the common characteristics of hazard assess-
ment methods can be found. 

In earthquake hazard assessment and loss estimation, GIS can be used to ex-
tract the extent and level of earthquake damage. Using spatial analysis and statisti-
cal analysis, the damages on natural condition and socio-economic condition can 
be quickly assessed based on the earthquake emergency database. The assessment 

Based on textures of re-
mote sensing images, the en-
vironment of study area and 
conditions of hazard can be 
analyzed by reconstructing its 
3D scene. 
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results can provide scientific supports for governmental hazard relief management 
and decision-making. 

19.2.2.1 Spatial Analysis Methods 

GIS’ advantage in contrast with computer-aided mapping system is providing 
advanced tools for spatial analysis. Using spatial analysis technique, through the 
observation and experiments on the raw data, new experience and knowledge can 
be attained, which can be used as the supports for decision-making. Typical spatial 
analysis techniques include overlay analysis, network analysis, buffering, and so 
on.  

Overlay analysis is an operation that overlaps features in two or more maps and 
produces a new layer. It divides original elements into several new elements, and 
the new elements integrate all attributes of the original two or more layers. In 
other words, the overlay analysis not only generates new spatial relationships, but 
also generates new attributes and spatial relationships. Overlay analysis uses 
mathematical models to calculate attributes of new elements.   
 (1)Polygons overlay: The procedure overlays polygons in two layers, 
which results in a new polygon element of the output layer. At the same time, the 
new element links to their attributes to meet the needs of the establishment of 
model. For example, when census map is overlapped with campus map, the results 
for each school district and its corresponding survey can be acquired. 
  (2)Polygon overlay with point<Polygon overlay with point can be trans-
formed to point-in-polygon test. It produces a new property for each point. For ex-
ample, when the position of wells is overlaid with a planning area, a region that 
contains each of the wells can be found. 
 (3)Polygon overlay with line<The polygon where the line is partly or 
wholly located can be determined.  

19.2.2.2 Hazard Assessment Based on GIS 

 (1) Selection of the assessment indexes 
The background data of natural and socio-economic conditions is the founda-

tion for hazard assessment. Background information mainly includes terrain, water 
body, population, transportation, power, communication, urban and rural settle-
ments, economic output and important facilities. The population, settlement data 
and economic output are organized using the existing administrative division sys-
tem. The background data of natural and socio-economic conditions can be partly 
utilized by analyzing disasters, loss vulnerability and risks. 
 (2) Determination of assessment content  

According to the workflow of national emergency management, three-stage 
(before, during and after hazard) evaluation is adopted. The population in hazard 
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affected area, population that needs transfer and resettlement, the loss of crop, 
residential building and infrastructure should be assessed.  
 (3)Hazard assessment analysis 

Based on the geographical characteristics and statistics data of the hazard af-
fected area, the spatial analysis model on area of hazard influence can be deter-
mined by the integrated remote sensing image database, GIS database and the 
hazard image library. Then, the hazard assessment and analysis system can be es-
tablished to achieve rapid hazard assessment, and obtain the extent and level of 
population loss, crop loss, housing loss, etc., which will provide supports for plan-
ning and reconstruction after the hazard. 
  (4) Loss estimation  

Using the statistical analysis method to analyze the hazard loss data, users can 
mine the information behind the statistical data, and discover the distribution rule 
of the hazard.  

19.2.2.3 Visualization of the Hazard Affected Region 

Based on fundamental geographic information data, remote sensing images, 
and hazard assessment results, 2D or 3D maps and statistical charts can be pro-
duced. It reflects the spatial distribution characteristics and statistical characteris-
tics of the hazard statistical data and provides comprehensive hazard information 
for decision makers. 

 

  
 (a)Damage estimation      (b) Visualization of disaster situation 

Fig. 19.14 Geographic Information Service System of the Wenchuan earthquake 

For efficiency of data management, statistics and analysis, using remote sens-
ing images from different sensors, the interpreted information of the disaster situa-
tion, and the integrated fundamental geospatial data, we can establish the compre-
hensive geographic information database of the disaster situation. Based on the 
self-developed 2D/3D geospatial information service platform, we established the 
Geographic Information Service System of the Wenchuan Earthquake. This sys-
tem not only supports enquiry and statistics of disaster situations, but also pro-
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vides 3D visualization, measurement and analysis based on parcels of hazard-
affected counties. It can provide support to decision making for reconstruction af-
ter the earthquake (Figure 19.14).  

19.3 Monitoring and Assessment of Floods 

Each summer, floods and storms always severely threaten lives and properties 
of the populace in southern and coastal regions of China. Earth observation pro-
vides necessary data and powerful techniques for forecasting, monitoring and 
evaluating of flood hazards. An information system with user-friendly GUI and 
powerful functions can support the government in making decisions and reducing 
damages (Goodchild 2003). The following section discusses data content, data ex-
change center, data integration, and functions of the China Flood Disaster Moni-
toring and Evaluation System. 

19.3.1 Data Sources 

19.3.1.1 Fundamental Geospatial Database 

Fundamental geospatial data provides the analysis for different hazard thematic 
data. It is the product from all levels of surveying and mapping governmental or-
ganizations, including multi-scale geospatial databases covering the whole coun-
try. The massive data has a complex data structure and multi-resolutions under 
different taxonomy. The design of database structure is of great importance to ef-
fectively integrate the fundamental geospatial data and the hazard thematic data 
(Andreas 2001). It is crucial for the efficiency and quality of the hazard monitor-
ing and assessment system.  

The large scale relational database is used in managing fundamental geospatial 
data, where data manipulation language (DML) is extended to encapsulate spatial 
operations of geospatial data. At logic level, geospatial data is categorized accord-
ing to scales. For the sake of positioning efficiency and visualization quality, only 
one spatial reference framework is applied in each sub-geospatial database. Vector 
data and raster data (including image data) are stored in separate tables. Vector 
data and thematic raster data are further classified into different coverages accord-
ing to semantics. Vector layers consist of the administrative boundary, transporta-
tion system, residential area, and hydrological features according to elements of 
basic topographic maps, while raster layers consist of soil and vegetation types. In 
order to improve the efficiency of data operation, each feature layer is stored by 
map sheets where spatial objects are managed. Therefore, there are four levels in 
the logical model which include the spatial database, coverage, sheet and spatial 
objects (as indicated in Figure 19.15). Relational tables are employed to manipu-
late spatial objects and relations among them. 
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Fig. 19.15 Hierarchical Storage Structure of Spatial Data 

 
The fundamental geospatial database covers all features of the national topog-
raphic map series. The types of data are DLG, DEM, DRG, DOM, Geographic 
Name and metadata. The data volume in the database is about 7 GB. 

 

 
Fig. 19.16 Content of Fundamental Spatial Database 
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� Topographic database. Three scales, which are 1:4 million, 1:1 million 
and 1:250k are included in this database. 1:1 million data is updated in 
2000 and 1:250k data is updated from 2000 to 2002. 

� DEM database. Three scales, which are 1:1 million, 1:250k and 1:50k 
with the resolution 500 meters, 100 meters and 25 meters respectively, 
are included in this database.  

� Geographic name database. Two scales, which are 1:1 million and 1:250k 
are included in this database. The production date of the former scale is 
2001. 

� Orthorectified image database. This database consists of TM color im-
ages acquired at 2000. 

� Map product database. 1:50k scale DRGs of some important regions are 
stored in this database. 

19.3.1.2 Thematic Databases 

In order to effectively monitor and evaluate the flood hazard, not only informa-
tion of reservoir, weather forecast, satellite cloud map, and precipitation forecast 
and statistics, but also information related to flood hazard, such as geological haz-
ard, meteorological hazard, and earthquake hazard, should be considered and used. 
By relating all thematic data in one information system, decision makers can con-
sider all aspect information of the flood and determine the best strategy.  

The thematic databases include: 
  (1) Flood database, which includes situation of reservoir, hydrological 
information, historical cases of flood, river records and statistical data. 
 (2) Meteorologic database, which includes important weather forecast 
data, satellite cloud map, precipitation information and typhoon information. 
 (3) Earthquake database, which includes information of different levels of 
earthquakes. 
 (4) Geological disaster database, which includes information of landslide, 
land cracks, collapse, and debris flow. 
 (5) Remote sensing disaster monitoring database, which includes analysis 
report and disaster images. 
 (6) Historical statistics of disasters, which counted by year and region. 

19.3.2 Data Exchange 

The information system of flood monitoring and assessment is established 
based on a distributed network. The data exchange center of GIS is the central 
module of the system, whilst effectively integrating multi-level data sharing and 
data exchanging is the basis for data exchange centre. Generally there are four 
types of data sharing and exchanging (Henry 1997, Jia 2004, Longley 2005): 
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 1) File-based data exchanging is the most commonly used pattern in ex-
changing centre. GIS data is composed not only of spatial data, but also of attrib-
ute, symbol, topology and rules. Therefore, information must be kept during data 
exchanging. There are two solutions for this work. The first one is to use the con-
verting tool in GIS platform which can import and export different data formats. 
The other one is to use industrial standards such as OGC GML or Chinese Na-
tional Spatial Data Transforming Format (CNSDTF). 
 2) Database DML interface can also be used for data exchanging by de-
fining the public data operation interface. Client application can access GIS data 
under interface specifications. Traditional commercial databases extend the ab-
stract data type to accommodate complex spatial objects, such as DB2, Informix 
and Oracle. In order to represent various spatial data, most database management 
systems extend their data type based on OGC simple feature (examples are DB2 
and informix’s ST_Geometry and Oracle’s MDSYS.SDO_GEOMETRY) and de-
velop data management plugins (examples are Spatial Extender, DataBlade). The 
other type is independent spatial data middle ware developed by GIS vendors 
based on ordinary relational database management system. 
 3) Data exchanging based on function level can ensure openness of an in-
formation system. The client application system must be developed based on some 
GIS platform in order to access GIS data in the central database. The development 
platform of application systems should be compatible with the one of the central 
database, otherwise the platform should provide interface for data manipulation 
like ODBC. The system model can be Client/Server or Browser/Server. Most GIS 
vendors provide both types. The C/S model is fast and efficient, however it may 
need additional work such as deployment and update of client software. In B/S 
model, users only need an internet browser and most processing is finished on the 
server side, however it has the disadvantage of low efficiency. 
 4) Data sharing based on Web Services can hide most technical details in 
a distributed architecture, which is popular nowadays. By Web Services, functions 
of GIS data sharing can be integrated in various applications. Open Geospatial 
Consortium (OGC) has launched Web Services Initiative which proposes an evo-
lutional, interoperable-specification-based, and integrated seamless framework 
(OGC Web Services, OWS). The OWS is a loosely coupling deployment based on 
OGC abstract and implementation specifications of related GIS data sharing which 
include the Web Map Service (WMS) and Web Feature Service (WFS). 

In the National Flood Monitoring and Assessment System, the third type data 
sharing and exchanging is adopted. Thematic data from various governmental de-
partments have different taxonomy of their own data. Visualization, query and 
analysis of all data must be achieved in one application environment in order to 
provide an integrated service to the central government. So each governmental de-
partment should embed the data provision interface or convert data to predefined 
format. A special data interface and data exchange platform is required for those 
specialized departments which have wide applications. Aiming at the diversity of 
different thematic data, data exchange and integration are handled by foreground 
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and background, which are used for static data and dynamic data, respectively 
(Figure 19.17). 

Data exchanging centre is automatically connected with other related data 
nodes. It examines if there are new data available at any time and then converts 
them to the format needed by disaster monitoring and assessment system. Data 
exchanging system can adjust its checking frequency, data formats and configura-
tion of sub data nodes. Data to be transformed are satellite cloud maps, precipita-
tion forecast data and in-situ data, typhoon forecast data, etc., as indicated above.  
 

 
 

19.3.3 Integration of Multi-Source Information 

Flood disaster data with the feature of multi-source, complex structure cover 
the departments of the Ministry of Civil Affairs, the Ministry of Land and Re-
sources, the Ministry of Water Resources, the Ministry of Agriculture, the Minis-
try of Environment protection, etc. These data from different industries and de-
partments have the characteristics of multi-type, multi-scale, multi-resolution, 
multi-temporal, multi-coordinate system, and so on, which result in inconsistent 
and discontinuous data, accordingly it is difficult to apply the data directly in dis-
aster monitoring and assessment in emergency response (Abel et al. 1998).  

Emergency response and spatial decision supporting system are based on geo-
spatial data, so it needs to integrate various flood disaster information from differ-
ent departments. Through dynamic data exchange, integrated display, query, sta-
tistics and analysis, the system provides the integrated information services such 
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as the distribution of flood disaster, disaster, disaster relief and post-disaster re-
construction to the leaders of the State Council and the staffs of the General Office 
of the State Council.  

Integration of multi-source information can be realized by the methods of 
metadata, exclusive interface and XML, so as to assure that data matches the spa-
tial position; data organization is consistent with data storage. Multi-source data 
are integrated by thematic data conversion, theme-oriented data organization and 
spatial information link. The integrated data can be displayed, queried and ana-
lyzed under the unified application software environment. At present, the spatial 
data are integrated with water information, hydrology information, water quality 
data, weather cloud data, rainfall data, rainfall forecast data, remote sensing disas-
ter data, groundwater data, socio-economic data, and so on. Some of the integrated 
results are illustrated here: 

 
Fig. 19.18 Integration of weather information and population information. (Population statistics 
affected by Typhoon) 

 
Fig. 19.19 Integration of geographic information and hydrology information. (Dynamic monitor-
ing on gauge station of Yangtze River  

Affected popula-
tion by adminis-
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19.3.4 Services 

China is one of the countries that often suffered from flood hazards in the 
world. Defending and reducing the damage and loss caused by floods is extremely 
important and urgent to China. Along with a wide application of the non-
engineering measures in all aspects of flood prevention and disaster reduction, 
GIS technology can play a role in flood forecast, on-site command and post-
disaster evaluation. Multi-scale spatial data are not only the basis of all kinds of 
thematic data, but can also provide data support for retrieval and analysis.  

The services and contents on flood disaster monitoring and assessment are 
mainly used to solve the spatial data management (including spatial data input, 
output, conversion, transmission, storage, maintenance, etc.), data querying, flood 
information integration, flood information publication, and so on. 
  (1) Conversion of thematic data on-line. The new generated data will be 
dynamically (timing or on a regular basis) converted to the data format required 
by flood prevention and weather information services system. Its main functions 
include time setting, data format conversion, and so on. The converted data in-
clude weather cloud data, rainfall data, rainfall data, rainfall forecast data, and ty-
phoon forecast data. 
  (2) Scheduling and display of multi-scale basic geospatial data. Through 
the scheduling of multi-scale basic geospatial data, the corresponding thematic 
contents can be displayed and queried according to different needs from the users, 
so as to meet the business needs of different users and different levels. 
  (3) Loading, query and display of water information. It mainly includes 
the reservoir inquiries, the reservoir alarm inquiries, the reservoir flood inquiries, 
hydrological alarm inquiry, hydrological flood inquiries, river flood inquiries, res-
ervoir search, the hydrological station search, and so on. The spatial distribution of 
flood facilities (reservoirs, hydrological stations) can be showed based on the geo-
spatial data. The reservoir cross-section map with real-time water level informa-
tion can be shown by inquiring indicators of the reservoir. It can query the histori-
cal water information of the reservoir and water information of the hydrological 
stations to get the cross-section map of the major river's water level change. 
  (4) Query, display, and output of weather information. Query and display 
of the status and description of rainfall in terms of time periods (for example, from 
8 am to 8 pm) are available. Searching and displaying the distribution of rainfall 
forecast according to the time span (such as 24 hours or 48 hours) can be realized. 
Also, it is necessary to search and generate the cloud animations and weather 
cloud map description in terms of time. Moreover, it is possible that one can 
search and display the path of typhoon movement and its main technical parame-
ters. Flood weather information can be printed and outputted as PDF file. Mean-
while, it can be browsed and transmitted through the internet. 
  (5) Flood simulation and analysis. According to the comparison of the 
DEM data and the elevation data of the water level, flooded regions can be ac-
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quired. A fitted surface can be calculated based on the hydrological measuring sta-
tions records. Thus, the grid data sets lower than the water level can be obtained 
by the comparison of the DEM data and the tilted surface. It can calculate the 
submerged area and flood storage capacity. Furthermore, it can categorize the im-
portant facilities such as residential areas and traffic lines in the submerged areas. 
  (6) Web publishing of the flood weather information.  This publishes the 
flood weather information on web browser daily, including meteorological infor-
mation (for example, rainfall status from 8:00am to 8:00pm, the 24-hour or 48-
hour rainfall forecasting, the weather cloud map at 8 o'clock, the path of the ty-
phoon movement, the weather bulletin, important weather report, etc.) distributed 
at a specific electronic publication format (PDF format) , water level information 
(such as the chart of water level), remote sensing information (such as images, 
video information commentary), flood information (such as flood and drought in-
formation, the reservoir water level, etc.), and basic spatial information. 

 

 
Fig. 19.20 Query of reservoir alarms 

 

Fig. 19.21 Damage estimation of the flood 
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19.4 Water Resources and Desertification Monitoring System 

19.4.1 Background and Necessity 

China is a serious drought and water shortage country. Per capita water re-
source is only 2300 cubic meters, only 1/4 of the world average. Canada is 48 
times larger than China on this index, Brazil is 16 times, Indonesia is 9 times, the 
former Soviet Union is 7 Times, the United States is 5 times, and even Japan and 
Mexico have higher water per capita. Therefore, China is one of the poorest coun-
tries in  water per capita. But on the other hand, China is the largest water con-
sumption country in the world. Only in 2002, the fresh water consumption of the 
country reaches 549.7 billion cubic meters, which is about 13% of the world. It is 
about 1.2 times of the United States in 1995, whose fresh water supply was 470 
billion cubic meters. From the 1970s, the water shortage gradually spread from the 
locals to the whole country and became a more serious issue. China's agriculture 
and the national economy are seriously affected. The area under drought-hitting is 
2 million to 2.6 million square kilometers each year, which affect food production 
by 15 billion to 20 billion kg and industrial output value more than 2,000 billion 
Yuan. Moreover, 70 million people have difficulty in water drinking. The distrib-
uting of water resources is unequal severely from the North to the South in China. 
In Yangtze River watershed and its southern area, the population accounts for 
54% and water resources accounts for 81%. There is 46% of the population in the 
north, but only 19% of water resources. Due to the natural environment as well as 
the high intensity of human activities, the shortage of water resources is becoming 
more and more serious in the north of China. 

At the same time, China’s desert area is larger and becoming even wider. China 
is one of the countries which suffer from serious desertification. At the northwest 
region of China, there are 12 deserts which stretch into miles of sand line in the 
north. The area of the desert and desertification land in the country is 1,533,000 
square kilometers. It accounts for 15.9% of the land area. About 50 million people 
are affected directly by desertification. In the region of northwest, northern parts 
of north-China, and western parts of northeast ("Three North"), there are about 2 
million ha. of farmland affected sandstorm disasters each year. The food produc-
tion is low and instable. There are 1.5 billion ha. of grassland that are in serious 
degradation. As a result of sandstorms, thousands of water conservancy facilities 
are broken. Desertification and drought have a serious impact on industry and ag-
riculture in some area of China. 60% of poor counties in China are here. In the 
most serious region, problems of food and clothing have not yet been resolved. 

Over the years, the Chinese Government has been committed to the work of 
water resources protection, rational development and utilization, and land deserti-
fication prevention and control. 

Through using scientific methods, such as remote sensing to monitor and ana-
lyze national water resources and desertification land and establish water re-
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sources and desertification monitoring system, it can provide scientific basis and 
decision-making information for the government about water resource protection 
and desertification prevention and control.  

Combined with remote sensing (RS), geographic information systems (GIS) 
and global navigation satellite system (GNSS) have become common technologies 
of observing resources and environment. The resources and environment monitor-
ing supported by GIS can provide not only dynamic and friendly interfaces for 
displaying the status and historical change of resources and environment, but also 
simulate the future process of the development about resources and environment. 
As a result, based on spatial fundamental geographic data integrated with satellite 
remote sensing data, Chinese Academy Surveying and Mapping established the 
Water Resources and Desertification Monitoring Analysis System which provides 
related information services for the management and decision-making of govern-
ment. 

19.4.2 Data Content 

The data content of the Water Resources and Desertification Monitoring 
Analysis System includes:  
 Multi-scale fundamental spatial geographic data, including 1:4000000, 
1:1000000, 1:250000 and 1:50000 maps with many features, such as administra-
tive divisions, water, rivers, roads and ancillary facilities, residents places, geo-
graphical names, terrain, peak, and so on. They are all basic scale geographic in-
formation data of China;  
 Multi-temporal and multi-resolution satellite remote sensing monitoring 
data, including the Landsat TM remote sensing image data with 30 meter resolu-
tion, "Beijing-1" small satellite remote sensing monitoring image data with 32 me-
ter resolution and the national desertification image data;  
 Remote sensing interpretative information, including multi-scale national 
land desertification distribution vector data based on analysis and interpretation of 
remote sensing image, the main water-body distribution vector data in Beijing and 
its surrounding. 
 Statistical data, including various types of water bodies’ area in Beijing 
and its surrounding for many years, the statistical data of desertification land area 
of major provinces and typical cities, the statistical data of multi-year change 
about the area of desertification land. 

19.4.3 Service Themes 

The Water Resources and Desertification Monitoring Analysis System consists 
of two parts: Beijing and its surrounding water resources, the status of national 
land desertification. 
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(1) Water resources. The change of water bodies in Beijing and its surrounding re-
gion are monitored by using "Beijing-1" satellite multi-spectral data. In particular, 
monitoring results of important water sources of Beijing's reservoirs are made 
monthly, the change of water area is analyzed based on the monitoring image. 

� The distribution of water resources of Beijing and surrounding region (Figure 
19.22 left). This part mainly includes the surface water resources of the five 
major river basins, the surface water resources of the Chaobai River Basin, 
Yongding River basin, North Canal basin, Daqing River basin, and Jiyun River 
basin. Various visualization methods are provided to show the spatial distribu-
tion of the various water bodies in different river basins. 

    

Fig. 19.22 Distribution and statistics of water resources in Beijing 

� Statistics of Water resources in Beijing and its surrounding (Figure 19.22 
right). Using statistical maps and statistical charts, we achieve the water re-
sources statistics of the river basins, the water resources statistics of the admin-
istrative regions and the water resources statistics of all types of water bodies. 

� Analysis of the water bodies change and causes in typical region (Figure 
19.23). It includes all the important water bodies in Beijing and its surrounding, 
such as all the reservoirs of Beijing, Miyun reservoir and Guanting reservoir, 
the water sources of the South-North Water Transfer and Baiyangdian. Based 
on the fundamental geographic information, we achieved that the dynamic 
changes show of the water area and the scope of the important water bodies for 
many years, the comparison of water scope at different times and three-
dimensional visualization. At the same time, the system achieves statistics of 
the water area changes and analysis of the change causes. 
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Fig. 19.23 Water distribution in 2008 (left) and 1999 (right) of Beijing Miyun reservoir 

(2) Desertification. The condition of the national desertification is monitored by 
using the "Beijing-1" satellite multi-spectral data annually. Based on monitoring 
image data, the vector boundaries of the eight main deserts are extracted for state 
analysis of the national desertification land. Taking the counties and cities of seri-
ous desertification for example, the analysis about the changes trend and causes of 
desertification is performed. On the basis of the above work, we established the 
topic of desertification application based on spatial fundamental geography infor-
mation. 

 

 
Fig. 19.24 Distribution of deserts in China 
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� Distribution of the national desertification land. It includes the overall distribu-
tion of the National desertification, the provincial (autonomous regions) distri-
bution of desertification land and area statistics of desertification land by 
county (Figure 19.24). 

� Analysis on the status of national desertification land. It includes analysis of the 
provincial desertification extent in the Northern China and the distribution of 
desertification in Beijing and its surrounding (Figure 19.25). This processing 
includes extraction and statistical analysis of the desertification land on differ-
ent radius of the buffer zone in Beijing and its surrounding, the extent analysis 
of land desertification in provinces with severe desertification. 

  
Fig. 19.25 Statistics of desert around Beijing 

� Analysis of change trend and causes. Taking Yulin City and the Blue-Flag 
County in Inner Mongolia Autonomous Region with serious desertification as 
case areas, the analysis includes change trend and causes of land desertification 
at micro-scale. For example, Yulin City, the main functions include: the distri-
bution of land desertification in 2002, the distribution of land desertification in 
2006, the changes of desertification land from 2002 to 2006, the transfer matrix 
of desertification land and analysis of land changes trend from 2002 to 2006. 

   
Fig. 19.26 Analysis of trend and driving forces of Desertification 
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19.4.4 Benefits 

The Water Resources and Desertification Monitoring Analysis System has been 
deployed at government agencies and management department. It provides the 
real-time and historical change information of water resources and desertification 
for manager and decision-maker. It played an important role in analysis and deci-
sion-making for the rational development and utilization of water resources and 
land desertification control. 

19.5 West Development Information Service System 

19.5.1 Background and Necessity 

Western China is abundant in natural resources and has vast potential market 
with its important strategic location. Owing to some reasons of nature, history and 
society, the western region has comparatively laggard economic standard. Per cap-
ita GDP is only two thirds of average standard in China and less than 40 percents 
compared with the eastern region. Therefore, it is urgent for the western region to 
step forth and mend its pace to carry out reasonable exploitation.   

West development is very complicated and requires vast system engineering. 
Scientific decision-making is required to make the engineering run well. More-
over, scientific foundation is the basis of scientific decision-making, which must 
depend on application system construction. The West Development Information 
Service System is established by related departments of the State Council. The 
system can provide some important managing information on western economic 
development including strategic reports, planning and a great deal of west infor-
mation such as different levels of districts, societal and economic development, in-
frastructure, related contrast among Western, Eastern and Middle Regions, etc. It 
can be an effective aided tool for different levels of governments to carry out West 
development after incessant applications. Moreover, sub-information systems, 
which can be connected and interoperated over the computer network, have also 
established in the western region including Chongqing, Yunnan, Guizhou, Gansu, 
and other western provinces and municipalities. 

19.5.2 Data Contents  

Compared with the eastern region, the greatest competitiveness of the western 
region is its rich resources. In a certain sense, the western region of China is far 
from developed on natural resources, social and economic resources, information 
and resources, etc. Information (data) is a carrier of resources. A comprehensive 
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understanding and grasp of the resources in the western region development can 
be finished through information collection, collation and analysis to these re-
sources. Under the condition of the correct analysis of the characteristics and the 
potential advantages of the western region, scientific development programming, 
implementation plans and objectives of action measures can be worked out. 

With the characteristics of being authoritative and timely, the data of the West 
Development Information Service System roots in more than 10 authorized busi-
ness sectors such as the contents of national economy, social development, envi-
ronment, infrastructure and so on. These data can be broadly divided into two 
categories: spatial data (vector data, image data, DEM data, and raster data) and 
non-spatial data (statistical data, text data, and multimedia data). 

And all the data are stored and managed uniformly in the large-scale database 
of Oracle9i database or SQL Server 2000.Different kinds of data can be made to 
match by property keywords and achieve effective integration. 

19.5.3 Service Themes 

The West Development Information Service System and its provincial applica-
tion sub-systems are established to be a dynamic multi-purpose information sys-
tem under the condition of uniform technical regulations and platform support ac-
cording to the needs of governmental departments of all levels. The latter is 
divided into four components, i.e. Resources and Ecological Environment, Eco-
nomic and Social Development, Returning Farmland to Forests and Grassland, 
Free Trade Area. These sub-systems are mainly reflected in natural resources, na-
tional economic and social situation and sustainable development and can provide 
the leadership and departments aided decision-making information from macro-
structure, mesostructure to microstructure levels. 

Among them, Gansu Province has finished the deployment of Gansu Province 
Returning Farmland to Forest and Grassland Application System. Chongqing City 
has deployed the Chongqing Economic and Social Development Aided Decision-
making System. Guizhou Province has established the Guizhou Province Re-
sources and Entironment System. Meanwhile, Yunnan Province has carried out 
the deployment of Yunnan - the ASEAN Free Trade Area Application System. 

Gansu Province Returning Farmland to Forest and Grassland Application Sys-
tem is established based on the Zhuanglang County as a pilot according to the de-
mands of ‘detailed to the village to monitor the land, corresponds to the farmers’. 
By comparing remote sensing images with different time stamp the effectiveness 
of farmland can be checked and confirmed without too much field work. Gradu-
ally, combined with the application of global positioning system (GPS), the work 
can be done to achieve real-time access the data of check and acceptance provided 
by field investigators, supervision and inspection work in the indoor field. 

Chongqing Economic and Social Development Aided Decision-making System 
is constructed based on the requirement of Chongqing's current economic and so-
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cial development of e-Government to speed up the pace of development and finish 
the overall implementation put forward by the central government. In this system, 
population database, corporation database and basic spatial database can be made 
to realize effective integration. And the establishment of the Chongqing Munici-
pality level of urbanization evaluation index system and evaluation model can be 
reflected in the development of Chongqing's urbanization. Some good attempts 
have been made in the aspect of internal city and town evaluation and model ap-
plication in order to provide application services to the government in the field of 
aided decision-making about national economic and social development. 

Guizhou Province Resources and Environment System consists of the two parts 
of provincial and country levels and is becoming an information network covering 
country, provincial and county levels combining with e-government network of 
State Council. The purpose of establishing this system is used to carry out rational 
development and utilization of resources, environmental protection and promote 
sustainable economic and social development services for the leadership of the 
department in order to provide reasonable and scientific decision-making services 
and ultimately realize the goal of scientific use, rational development, effective 
protection and the use of scientific and rational development, effective protection 
so as to achieve sustainable development. 

The ASEAN Free Trade Area Application System provides macro-scale geo-
spatial data framework of Yunnan Province and ASEAN. This system can inte-
grate social, economic information resources based on B/S structure and reflect 
the geographical distribution of ASEAN countries, Yunnan's regional advantages 
in China-ASEAN Free Trade Area as well as construction information of interna-
tional channels to connect Southeast Asia.  
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Fig. 19.27 Western Development Information Service System and its provincial appli-
cation sub-systems 



528       Decision Making 
 

 

 

The distribution of the surface in the 
western provinces and cities 

Western provinces foreign trade in 2002-
2006  

Gansu Province Returning Farmland to For-
est and Grassland Application System 

Yunnan- the ASEAN Free  
Trade Area Application System 

Chongqing Economic and Social Devel-
opment 

Guizhou Province Resources and 
Environment System 

Fig. 19.28 West development information service system 
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� Supports integration of GIS and DSS. On the technical goals, it is the core for 
West Development Information Service System to adopt the technology of geo-
spatial information and decision-making support. And this system supports in-
tegration of GIS and DSS and is applied to construct the universal geo-spatial 
aided decision-making application platform oriented to e-Government. 

� Supports constructing unified, integrated resource database with coordinated 
services and adopt large-scale database to storage and manage uniformly spatial 
and non-spatial information of e-Government. 

� Supports integrating massive non-spatial thematic data based on the framework 
of geo-spatial data and establish the e-government integrated resources data-
base in order to build application system oriented to different government de-
partments and make it run well to deal with a variety of information resources 
development and applications, etc.  

� Supports industrial standards by using XML/GML as the standard and norm of 
data transmission and conversion, which can improve the level of standardiza-
tion and regularization effectively.  

19.5.4 Benefits 

 West Development Information Service System has been used in national 
planning of western China and helped policy makers on improving efficiency and 
avoiding bias. The development of the system also boosted the application of earth 
observation data in e-Government and facilitating information of the western re-
gion of China. 
 (1) Integration and sharing of information can be achieved among differ-
ent departments so as to provide services for decision-making to government and 
hence government decision-making can be more scientific and efficient. 
 (2) To promote the technical development of domestic copyright software 
and enhance their application level. 
 (3) The process of information sharing and standardization is promoted 
by integrating e-Government database of information resources. 
 (4) The fields of spatial data applications have been widened to a new 
height of distributed government network application and it can be extended to 
construct e-Government in the government agencies. 
 (5) This system can be applied not only for the policy makers in central 
government and the four western provinces, but also for all over the sub-
provincial local government departments. 
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19.6 Conclusions  

This chapter summarized the type of Earth observation data, data model and 
management (spatial databases), system architecture, key functional modules and 
roles in e-Government of spatial decision support systems. Furthermore, we de-
scribed application systems running in some Chinese governmental agencies, 
which concentrated on fast response of the disaster.  

During the Wenchuan earthquake, the rescue work has benefited greatly from 
Earth observation data and information system. Earth observation technology is 
becoming an indispensable means for spatial decision making. The acquisition and 
processing of Earth observation data and fundamental geospatial data is necessary 
for monitoring and management of earthquake hazards, monitoring and evaluation 
of land cover, water resource and desertification etc. 

With the fast development of economy and society, problems of environment 
and natural resource management pose new challenges to the government, such as 
deterioration of water, desertification and typical gradual disasters. This demands 
the exploiting of new Earth observation technology for decision making. 
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