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Preface

This book is the Final Action Publication of COST Action IC0702:
“Combining Soft Computing Techniques and Statistical Methods to Improve
Data Analysis Solutions” (SoftStat).

The main objective of this Action was to strengthen the dialog between the
statistics and soft computing research communities in order to cross-pollinate
both fields and generate mutual improvement activities.

Soft computing, as an engineering science, and statistics, as a branch of
mathematics, emphasize different aspects of data analysis. Soft computing fo-
cuses on obtaining working solutions quickly, accepting approximations and
unconventional approaches. Its strength lies in its flexibility to create models
that suit the needs arising in applications (context of discovery, model gen-
eration). In addition, it emphasizes the need for intuitive and interpretable
models, which are tolerant to imprecision and uncertainty.

Statistics is more rigorous and focuses on establishing objective conclu-
sions based on experimental data by analyzing the possible situations and
their (relative) likelihood (context of justification, model validation). It em-
phasizes the need for mathematical methods and tools to assess solutions and
guarantee performance.

Bringing the two fields closer together enhances the robustness and gener-
alizability of data analysis methods, while preserving the flexibility to solve
real-world problems efficiently and intuitively.

This book contains 28 contributions from various members of COST Ac-
tion IC0702, many of which are the outcome of short-term scientific missions
(STSMs), that is, of visits that a (preferably early-stage) researcher paid to
researcher in another country. In this way it is demonstrated that the Action
made good use of this tool and nourished significant scientific collaborations
that can be expected to continue beyond the end of the Action.

The financial support provided by the COST Office and the European
Science Foundation (ESF) for both the Action as a whole and this Final
Action Publication in particular is gratefully acknowledged.

March 2012 Christian Borgelt (Mieres, Spain)
Maŕıa Ángeles Gil (Oviedo, Spain)

João M.C. Sousa (Lisbon, Portugal)
Michel Verleysen (Louvain, Belgium)
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Contents IX

The Hubness Phenomenon: Fact or Artifact? . . . . . . . . . . . . . . . . 267
Thomas Low, Christian Borgelt, Sebastian Stober,
Andreas Nürnberger

Proximity-Based Reference Resolution to Improve Text
Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Shima Gerani, Mostafa Keikha, Fabio Crestani

Derivation of Linguistic Summaries is Inherently Difficult:
Can Association Rule Mining Help? . . . . . . . . . . . . . . . . . . . . . . . . . 291
Janusz Kacprzyk, S�lawomir Zadrożny
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Arithmetic and Distance-Based
Approach to the Statistical Analysis
of Imprecisely Valued Data

Angela Blanco-Fernández1, Maŕıa Rosa Casals1, Ana Colubi1,
Renato Coppi3, Norberto Corral1, Sara de la Rosa de Sáa1,
Pierpaolo D’Urso3, Maria Brigida Ferraro3, Marta Garćıa-Bárzana1,
Maŕıa Ángeles Gil1, Paolo Giordani3, Gil González-Rodŕıguez1,
Maŕıa Teresa López1, Maŕıa Asunción Lubiano1, Manuel Montenegro1,
Takehiko Nakama2, Ana Belén Ramos-Guajardo1,2, Beatriz Sinova1, and
Wolfgang Trutschnig2

Abstract Most of the research developed in the last years by the SMIRE Re-
search Group concerns the statistical analysis of imprecisely (set- and fuzzy
set)-valued experimental data. This analysis has been based on an approach
considering the usual arithmetic for these data as well as suitable metrics
between them. The research perfectly fits into the research directions of the
COST Action IC0702, which has been particularly helpful for scientific activ-
ities, discussions and exchanges associated with group members. The main
objective of this paper is to summarize some of the main recent advances of
the SMIRE Research Group.

1 Introduction

Traditionally, Statistical Data Analysis assumes that experimental data are
either quantitative or qualitative. Most of the statistical techniques have been
developed to deal with quantitative data. They allow us to exploit the wealth
of information concerning the diversity and variability of these data.

Nevertheless, qualitative experimental data are also present in real-life
situations, and there is a rather limited class of statistical procedures to
analyze these data. Furthermore, most of these procedures do not exploit all
the information contained in the data.

In this respect, when we consider random experiments in which the at-
tribute to be ‘measured’ is a range, a fluctuation, a grouping, etc., instead
of using a qualitative scale we can employ the scales of interval or set val-

1 Departamento de Estad́ıstica e I.O. y D.M., Universidad de Oviedo, E-33007 Oviedo,
Spain, smire@uniovi.es
2 European Centre for Soft Computing, E-33600 Mieres, Spain
3 Sapienza Università di Roma, I-00185 Roma, Italy

C. Borgelt et al. (Eds.): Towards Advanced Data Analysis, STUDFUZZ 285, pp. 1–18.
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2 A. Blanco-Fernández et al.

ues. On the other hand, when we consider random experiments in which the
attribute to be ‘measured’ is intrinsically imprecise but gradual (see Dubois
and Prade [20]), as often happens with ratings, valuations, etc, then instead
of using a qualitative scale we can employ the expressive and flexible scale of
fuzzy numbers or values.

Although set- and fuzzy set-valued data cannot be statistically analyzed
as easily as real/vectorial valued data, many methods for this purpose have
been developed in the last years. In general, these methods exploit all the in-
formation available in the analyzed data, so that the diversity and variability
(due to the randomness associated with the generating data mechanisms) is
not lost, and the imprecision (due to data’s nature) is well-captured.

Two key tools in formalizing and developing the problems, models and
techniques to analyze set/fuzzy set-valued experimental data are: the choice
of suitable metrics between data, and the choice of an appropriate model for
the random mechanism generating them.

The latter model will be that of set/fuzzy set-valued random elements
(REs, for short), i.e., Borel-measurable mappings w.r.t. topologies associated
with suitable metrics on the spaces of set/fuzzy set values, leading to the
concepts of random compact convex set (RS, for short) and random fuzzy set
(RFS, for short). It should be emphasized and clarified that the choice of these
notions were intended to model random mechanisms generating ‘existing’
set/fuzzy set-valued data. Coherently, the statistical methods handling data
obtained from REs aim to draw statistical conclusions on these elements.

In this paper RSs and RFSs are treated from an ‘ontic’ perspective (see
Dubois and Prade [20]). From a theoretical point of view the related tech-
niques could be applied to the ‘epistemic’ perspective, in accordance with
which data are imprecise perceptions of existing real/vectorial-valued data
which cannot be measured exactly. However, RSs and RFSs as considered in
this paper, although formally applicable, would not really capture the essence
of the situation to be modeled and the corresponding statistical techniques
wouldn’t allow practitioners to draw conclusions on the relevant random ele-
ment: the underlying unobservable random variable/vector. From the “ontic”
perspective the expression “imprecise data” (and “imprecisely-valued” ran-
dom elements) is used in opposition to “precise data”, to express that the
considered experimental values cannot be described by a single (precise) real
number or vector.

In previous papers (those published before the COST Action IC0702
started), the SMIRE RG presented statistical developments concerning: the
‘point’ estimation of some parameters of the distribution of an RE (like
the population mean, for which ‘point’ estimation should be understood as
set/fuzzy set-valued one, the population Fréchet-type variance, the popula-
tion inequality, and so on); the one- and two-sample cases of testing hypothe-
ses about means of REs; some rather introductory studies on other problems.

This paper aims to present a summary of several recent developments (in
fact, initiated after the COST Action IC0702 started) of the SMIRE RG on
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the topic of the Statistical Analysis of set/fuzzy set-valued experimental data.
Details and discussions concerning the particular approaches can be found in
the referred works. Although other, more or less related, problems have been
investigated along the last years by the RG, we will focus on the following
ones: in Section 2, we will recall some basic tools concerning metrics between
imprecisely-valued data and simulations of these data; in Section 3, the de-
velopments on statistical methods to analyze the means (multi-sample case),
and Fréchet-type variances for general REs will be mentioned, and a recent
approach to define a robust centrality measure for an RE will be described
for the one-dimensional case; in Section 4, some approaches will be discussed
in connection with the regression analysis between data by assuming that
either all of them or just the response ones are imprecisely-valued; in Section
5, an overview on clustering/classification methods to classify imprecisely-
valued data is given. Finally, in Section 6 comments will be given on SAFD
(Statistical Analysis of Fuzzy Data), an R package for statistical analysis of
one dimensional fuzzy data.

2 Summary of Recent Results on Metrics and
Simulations Concerning Imprecisely-valued Data

Metrics between imprecise (either set or fuzzy set)-valued data play a crucial
role in their statistical analysis, along with the elementary arithmetic oper-
ations between these data. To properly recall some recent metrics, we first
present some preliminary concepts, notations and results.

Let Kc(Rp) (with p ∈ N) be the space of nonempty compact convex subsets
of Rp. Kc(R) denotes the space of closed and bounded nonempty intervals.

The most usual and natural arithmetic on Kc(Rp) is the one extending
(through the image) the classical crisp operations. Thus, the two elementary
operations, sum and product by a scalar, are defined so that for K,K ′ ∈
Kc(Rp) and γ ∈ R

K +K ′ = {k + k′ : k ∈ K, k′ ∈ K ′}, γ ·K = {γ k : k ∈ K}.

It is well-known that (Kc(R
p),+, ·) does not have a linear but only a semi-

linear structure, since K + (−1) ·K �= {0} (neutral element for +) unless K
reduces to a singleton (in other words, K is ‘degenerated’ at a real/vectorial
value).

Let F∗
c (R

p) (with p ∈ N) be the space of fuzzy set values in Rp such that

any Ũ ∈ F∗
c (R

p) satisfies that for each α ∈ [0, 1] the α-level set Ũα ∈ Kc(Rp)

(where Ũα = {x ∈ Rp : Ũ(x)≥α} if α>0, and Ũ0 = cl{x ∈ Rp : Ũ(x)>0}).
F∗

c (R) denotes the space of the so-called (bounded) fuzzy numbers.
The most usual arithmetic on F∗

c (R
p) is the one based on Zadeh’s extension

principle [64], which is levelwise equivalent to the usual set-valued arithmetic,
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that is, for each α ∈ [0, 1] if Ũ , Ũ ′ ∈ F∗
c (R

p) and γ ∈ R

(Ũ + Ũ ′)α = Ũα + Ũ ′
α, (γ · Ũ)α = γ · Ũα.

Also (F∗
c (R

p),+, ·) does not have a linear but only a semilinear structure,

since Ũ + (−1) · Ũ �= 1{0} (neutral element for +) unless Ũ reduces to the

indicator function of a singleton (in other words, Ũ is ‘degenerated’ at a
real/vectorial value).

For the one-dimensional case many different (mostly L2 and some L1)
distances can be found in the literature (see, for instance, [2], [18], [40], [62]).
A metric which has been considered in several developments was introduced
by Yang and Ko [63] to deal with LR fuzzy numbers Ũ ∈ FLR(R) ⊂ F∗

c (R),

denoted by Ũ = (Ũm, Ũ l, Ũ r) with

Ũ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L
(

Ũm−x

Ũl

)
if x ≤ Ũm, Ũ l > 0

1{Ũm}(x) if x ≤ Ũm, Ũ l = 0

R
(

x−Ũm

Ũr

)
if x > Ũm, Ũ r > 0

0 if x > Ũm, Ũ r = 0

where Ũm ∈ Ũ1, Ũ
l = Ũm − inf Ũ0, Ũ

r = sup Ũ0 − Ũm, and L,R : R→ [0, 1]
are fixed convex upper semicontinuous functions so that L(0) = R(0) = 1,
L(z) = R(z) = 0 for all z ∈ R\ [0, 1] (see Dubois & Prade, 1978). This metric
has been ‘generalized’ in R3 by Ferraro et al. [29] and has been widely applied
afterwards papers as we will indicate later.

If Ũ , Ũ ′ ∈ FLR(R), then Yang and Ko’s metric is given by

Dlr(Ũ , Ũ
′) =

√[
Ũm − Ũ ′m

]2
+
[
[l]Ũ − [l]Ũ ′

]2
+
[
Ũ [r] − Ũ ′[r]

]2
,

where [l]Ũ = (Ũm−l Ũ l), Ũ [r] = (Ũm+ r Ũ r), and l, r ∈ (0,+∞). In Yang and

Ko [63], l and r have been usually chosen to be given by l =
∫ 1

0 L
−1(α) dα,

r =
∫ 1

0 R
−1(α) dα taking the shape of the involved LR fuzzy numbers into

account. In particular, for K,K ′ ∈ Kc(R) if l = r (which happens for Yang
and Ko’s usual choice) and Km = midK = (infK + supK)/2 = centre of
K, then if we set sprK = (supK − infK)/2 = radius of K:

Dll(K,K
′) =

√
3[midK −midK ′]2 + 2l2[sprK − sprK ′]2.

In the p-dimensional case (p ∈ N) several distances can be found in the
literature (see, for instance, [18], [40], [41], [62]). Some new metrics have been
introduced and discussed by Trutschnig et al. [60] and Trutschnig [59].

The first one is a multivariate version of Bertoluzza et al.’s metric [2]
between intervals or between fuzzy numbers and is inspired on the equivalent
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expression stated in the interval-valued case [33]. Let θ ∈ (0,+∞) (often θ
is supposed to be in (0, 1]) and let ϕ be an absolutely continuous probability
measure on ([0, 1],B[0,1]) with the mass function being positive in (0, 1). Then,

the metric by Trutschnig et al. assigns Ũ , Ũ ′ ∈ F∗
c (R

p) the value

Dϕ
θ (Ũ , Ũ

′) =

√∫
[0,1]

[
dθ(Ũα, Ũ ′

α)
]2

dϕ(α)

=

√∫
[0,1]

∫
Sp−1

[
midΠ Ũα(u)−midΠ Ũ ′

α(u)
]2
dλp(u) dϕ(α)

+ θ

∫
[0,1]

∫
Sp−1

[
sprΠ Ũα(u)− sprΠ Ũ ′

α(u)
]2
dλp(u) dϕ(α),

where Sp−1 = unit sphere in Rp, λp = normalized Lebesgue measure on Sp−1,

and Π Ũα(u) = projection of Ũα in the direction u ∈ Sp−1.
The choice of θ allows us to weight the effect of the deviation in ‘shape’/

‘imprecision’ in contrast to the effect of the deviation in ‘location’, and ϕ
enables to weight the importance of different α-levels. The metric above is
intuitive, versatile and easy-to-handle and has been the one most frequently
used in the statistical developments of the SMIRE RG.

The metric by Trutschnig [59] has been defined by considering certain
distances between the sendographs of the fuzzy values. Several convergence
and characterization results have been stated on the basis of this metric,
although it has not yet been employed for statistical purposes.

Metrics between imprecisely-valued data will be relevant in quantifying
errors in approximating some imprecise values by other ones, or to classify
imprecise data in groups on the basis of their ‘closeness’. They will also
be useful to translate equalities between imprecise values into equalities of
real numbers (more concretely, equalities of the distances between imprecise
values to 0), which allows to overcome some of the drawbacks associated
with the above-mentioned lack of linearity of the spaces (Kc(Rp),+, ·) and
(F∗

c (R
p),+, ·).

The metrics above exhibit interesting properties, some topological equiv-
alences, and they allow us to establish different R̊adstrom-type isometries
embedding the spaces Kc(Rp) and F∗

c (R
p) (actually, some wider ones) into

cones of certain Hilbert spaces of functions or vectors (see Blanco-Fernández
et al. [5], Ferraro et al. [29], and González-Rodŕıguez et al. [37], etc.).

The methodological developments to develop statistics with imprecisely-
valued data have been based on the model for the random mechanisms gen-
erating imprecise data, namely, random sets and random fuzzy sets. The
empirical developments have been based on the simulation of values from
them.
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Given a random experiment which is modeled by means of a probability
space (Ω,A, P ), by a random compact convex set we mean (see, for instance,
Puri and Ralescu [50], or Molchanov [46]) a mapping X : Ω → Kc(R

p) which
is Borel-measurable w.r.t. A and the Borel σ-field generated by the topology
induced by the well-known Hausdorff metric on Kc(Rp).

Given a random experiment which is modeled by means of a probability
space (Ω,A, P ), by a random fuzzy set we mean (see, Puri and Ralescu [51])
a mapping X : Ω → F∗

c (R
p) (or even more general spaces) for which the α-

level mappings Xα : Ω → Kc(Rp) are random compact convex sets, whatever
α ∈ [0, 1] may be. The original definition by Puri and Ralescu has been proved
(see, for instance, Colubi et al. [10],[11], González-Rodŕıguez et al. [37]) to
be equivalent to (or, at least, to imply) a certain Borel-measurability of the
fuzzy set-valued mapping, which guarantees one can properly refer to notions
like the independence of RFSs, or the (induced) distribution of an RFS.
RFSs were originally coined by Puri and Ralescu as fuzzy random variables.
Nevertheless, and to avoid misunderstanding with other concepts using the
same name and to ease the interpretability of the notion we are using the
term random fuzzy sets previously employed by some authors.

One of the main drawbacks in simulating RFSs is caused by the lack of
realistic models for their distributions. In Colubi et al. [12] some ideas consid-
ering RFSs with values in some restrictive classes (like the class of trapezoidal
fuzzy numbers in the one-dimensional fuzzy case, etc.) in combination with
some classical real distributions have been outlined (say normal, chi-square,
etc.). Recently, González-Rodŕıguez et al. [38] have suggested two different
approaches following the usual ideas in Hilbert spaces. In this way, one of
the suggested methods is based on the embedding allowing to identify fuzzy
values with functional ones (see González-Rodŕıguez et al. [37]), the use of
simulation techniques for Hilbert spaces and the posterior projection; some
practical constraints are outlined. Another useful and easy-to-handle sug-
gested method is the one making use of an extended orthonormal basis such
that every fuzzy value can be approximated in terms of elements of the basis.

3 Summary of Recent Results on Inferences
about Means and Fréchet’s Variances, and
on a More Robust Central Tendency Measure
for Imprecisely-valued Data

Most of the statistical methods to analyze imprecisely-valued data generated
from REs concern ‘point’ estimation or testing ‘two-sided’ hypotheses (i.e.,
null hypotheses consisting of equalities involving population characteristics
of the distribution of the REs).
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An approach to the ‘region’ estimation of the fuzzy-valued mean of a one-
dimensional RFS has been stated in González-Rodŕıguez et al. [39]. Given a
probability space (Ω,A, P ), if X : Ω → Kc(R

p) is an RS, the Aumann mean
of X is defined [1] as the set EA(X) ∈ Kc(Rp) such that

EA(X) =

{∫
Ω

f(ω) dP (ω) : f : Ω → Rp, f ∈ L1(Ω,A, P ), f ∈ X a.s. [P ]

}
.

If X : Ω → F∗
c (R

p) is an RFS, the Aumann-type mean of X is defined [51]

to be given as the fuzzy set Ẽ(X ) ∈ F∗
c (R

p) such that for all α ∈ [0, 1](
Ẽ(X )

)
α
= EA(Xα).

In case p = 1,
(
Ẽ(X )

)
α
= [E(inf Xα), E(supXα)] for all α ∈ [0, 1].

To estimate Ẽ(X ), a ‘confidence region’ is suggested on the basis of
the sample mean of a simple random sample from X , (X1, . . . ,Xn) (i.e.,
X1, . . . ,Xn are independent and identically distributed as X ), which is
given by

Xn =
1

n
· (X1 + . . . ,+Xn)

by looking for a value δ > 0 such that for an arbitrarily fixed confidence level
τ ∈ (0, 1)

P
(
Dϕ

θ

(
Ẽ(X ),Xn

)
≤ δ
)
= τ,

where δ is chosen to be the τ -quantile of the distribution of Dϕ
θ

(
Ẽ(X ),Xn

)
which could be approximated by the corresponding boostrap quantile. The
confidence region (fuzzy ball) for Ẽ(X ) will then be given by{

Ũ ∈ F∗
c (R

p) : Dϕ
θ

(
Ũ ,Xn

)
≤ δ
}
.

In González-Rodŕıguez et al. [39] the approach is illustrated in the one-
dimensional case by means of empirical studies based on the simulation ideas
from Section 2.

In connection with two-sided hypothesis testing, the k-sample case pro-
cedure in [34] has been improved and generalized to test the equality of
Aumann-type means of k independent RFSs (González-Rodŕıguez et al. [37]).
A technique has also been sketched for k dependent RFSs (Montenegro et
al. [47]), and a deeper study is forthcoming. The generalized one-way ANOVA
(ANanlysis Of, VAriance) for independent samples in [39] has been formal-
ized on the basis of the isometrical identification of fuzzy and functional data.
Actually, the improved-generalized method is applicable to one-way ANOVA
for functional data.
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A two-way ANOVA for set-valued data has been stated by considering:
two factors, Xijk denoting the k-th response RS (k ∈ {1, . . . , nij}) under the
i-th level of the first factor (i ∈ {1, . . . , I}) and the j-th level of the second
factor (j ∈ {1, . . . , J}), and the ‘linear’ model

Xijk = μ+ αi + βj + δij + εijk,

where μ, αi, βj, δij ∈ Kc(Rp), and εijk are independent RSs. Then, given the

null hypothesis of ‘no effect of the first factor’, that is, H
(1)
0 : α1 = . . . = αI ,

one can consider the statistic

T (1)
n =

I∑
i=1

⎛⎝ J∑
j=1

nij

⎞⎠[dθ(X i··, X ···)
]2

I∑
i=1

J∑
j=1

nij∑
k=1

[
dθ(Xijk, Xij·)

]2 ,

with (if n =
∑I

i=1

∑J
j=1 nij)

X ··· =
1

n

I∑
i=1

J∑
j=1

nij∑
k=1

Xijk, Xi·· =
1

J∑
j=1

nij

J∑
j=1

nij∑
k=1

Xijk, Xij· =
1

nij

nij∑
k=1

Xijk.

A bootstrap approximation of the distribution of the statistic is described

in Nakama et al. [48] to test H
(1)
0 at (approximately) an arbitrarily given

nominal significance level. Analogous statistics and procedures are established

to test the null hypotheses H
(2)
0 : β1 = . . . = βJ and H

(1,2)
0 : δ11 = . . . = δIJ .

A factorial ANOVA for fuzzy set-valued data has been presented in Nakama
et al. [49].

Asymptotic and bootstrap techniques have been developed to test two-
sided hypotheses about the Fréchet variances of RFSs by extending classical
tests. Given a probability space (Ω,A, P ) and an RFS X : Ω → F∗

c (R
p), the

Fréchet variance (more precisely, the θ, ϕ-Fréchet variance) ofX is defined [37]
(extending the definition from the one-dimensional case in Lubiano et al. [42]
and particularizing to some extent that in [41]) as

σ2
X = E

([
Dϕ

θ (X , Ẽ(X ))
]2)

.

In Ramos-Guajardo et al. [52] one-sample asymptotic and bootstrap tests for
the Fréchet variance are introduced, and the power function of the asymp-
totic approach is discussed through local alternatives. The last discussion
is extended in Ramos-Guajardo et al. [53] to test the homocedasticity of k
RFSs. The k-sample case is also analyzed in depth (see Ramos-Guajardo and
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Lubiano [54]) by extending Levene’s classical procedure, this extension be-
ing empirically compared with a Bartlett-type test by considering simulation
developments based on the ideas outlined in Section 2.

As an instance of the studies for k = 2, in [54], if X and Y are two
independent RFSs and simple random samples from them, (X1, . . . ,Xn) and
(Y1, . . . ,Ym), are available to test the null hypothesis H0 : σ2

X = σ2
Y , one can

consider the statistic

Tn,m =
√
n

⎛⎜⎜⎜⎜⎝
n∑

i=1

[
Dϕ

θ (Xi,Xn)
]2

n− 1
−

m∑
j=1

[
Dϕ

θ (Yj ,Ym)
]2

m− 1

⎞⎟⎟⎟⎟⎠
·
(
1

n

n∑
i=1

([
Dϕ

θ (Xi,Xn)
]2 − 1

n

n∑
i=1

[
Dϕ

θ (Xi,Xn)
]2)

+
1

m

m∑
j=1

([
Dϕ

θ (Yj ,Ym)
]2 − 1

m

m∑
j=1

[
Dϕ

θ (Yj ,Ym)
]2))−1/2

.

Under quite general assumptions the asymptotic distribution of the statistic
is standard normal.

Another statistical problem for which an approach has been recently pro-
posed in the one-dimensional imprecisely-valued case is that of defining a
robust summary measure of the central tendency of an RE by extending the
notion of median. Because of the lack of a universally acceptable ranking
between set (fuzzy set) values, one way to extend this notion is to define
the median as a set (fuzzy set) value minimizing a certain mean L1-distance
w.r.t. the RE. In the interval-valued case, two convenient choices have been
given by considering the Hausdorff metric (or a generalized version), lead-
ing to the interval value(s) Me(X) = [Me(midX)−Me(sprX),Me(midX)+
Me(sprX)] (see Sinova et al. [55]), or the 1-norm one (introduced in Sinova
et al. [57] for RFSs with p = 1) leading to the interval values(s) Me(X) =
[Me(inf X),Me(supX)]. An empirical comparison between the two medians
is included in this book [58]. As we have just mentioned, the second approach
has been recently extended to RFSs for p = 1 leading to a fuzzy number co-

inciding levelwise with
(
M̃e(X )

)
α
= [Me(inf Xα),Me(supXα)]. However, the

first approach cannot be trivially extended because whereas one can trivially
state sufficient and necessary conditions for the mid and spr to determine
an interval value, one cannot state separately sufficient and necessary condi-
tions for the mid and spr to allow constructing a fuzzy number (see Sinova
et al. [56]).
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4 Summary of Recent Results on Regression Analysis
with Imprecisely-valued Data

The SMIRE RG has developed several studies related to regression analysis
involving imprecisely-valued data. Some of the most recent research develop-
ments of the Group have also addressed this problem.

On one hand, studies have been carried out to analyze a flexible simple
linear model in which both output (response) and input (explanatory) data
are assumed to be interval-valued. This flexible model (referred to as Model
M) is formalized by means of the linear relationship

Y = amidX + b · [−sprX, sprX ] + c+ ε,

where Y is the interval-valued dependent (i.e., the response) RS, X is the
interval-valued independent (i.e., the explanatory or regressor) RS, a and b
are the real-valued regression coefficients associated with X , c is the real-
valued intercept term affecting midY , and ε is an interval-valued random
error satisfying EA(ε|X) = [−δ, δ] with δ ≥ 0. The definition of the model
implies that the errors can be expressed as the Hukuhara distance between
the response and the regression function.

In Blanco-Fernández et al. [8], arguments supporting the practical interest
of model M have been given. Furthermore, Model M has been estimated by
using the least squares (LS) approach involving the metric dθ, which for a
given a simple random sample

(
(X1, Y1), . . . , (Xn, Yn)

)
from (X,Y ) can be

stated as follows:

min
a,b

1

n

n∑
i=1

[
dθ
(
Yi − Y ◦

i (a, b), Yn − Y ◦(a, b)n
)]2

subject to Yi − Y ◦
i (a, b) existing for all i = 1, . . . , n

⎫⎪⎪⎪⎬⎪⎪⎪⎭
with Y ◦

i (a, b) = amidXi+ b·[−sprXi, sprXi], whence Y ◦(a, b)n = a (midX)n
+ b · [−(sprX)n, (sprX)n]. The constraints in the LS problem are related to
the existence of the residuals which, from the definition of the model, should
be the Hukuhara distances between the responses and the estimated values
from the regression function.

The solutions can be expressed in terms of the models for the real-valued
random variables mid and spr of the dependent and independent RSs as
follows:

â =
̂σmidX,midY

σ̂2
midX

, b̂ = min

⎧⎨⎩ŝ0,max

⎧⎨⎩0,
̂σsprX,sprY

σ̂2
sprX

⎫⎬⎭
⎫⎬⎭
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(ŝ0 = min
i
{sprYi/sprXi : sprXi �= 0}) and, hence ĉ = midY − âmidX ,

δ̂ = sprY − b̂ sprX. These estimators were proven to be strongly consistent.
In Blanco-Fernández et al. [6, 9] confidence sets for the parameters of

Model M have been stated, and their performance has been empirically inves-
tigated. In this book [7] several linear regression techniques for interval-valued
data have been revised by comparing their performance under different condi-
tions. In Garćıa-Bárzana et al. [31], [32] introductory studies on the multiple
regression problem for interval-valued data have been developed.

The fuzzy set-valued case has also been examined. The simple linear regres-
sion problem between RFSs based on the usual fuzzy arithmetic and the met-
ric Dϕ

θ (actually, a more general one introduced by Körner and Näther [41])
has been discussed. The model is not as flexible as model M for interval-valued
data, in the sense that the considered model is given by

Y = a · X + E

where Y, X and E are RFSs. In González-Rodŕıguez et al. [35] solutions for
the least-squares estimation of the model are given. The advantage of this
approach is that it is applicable for general fuzzy data in F∗

c (R
p). However, in

the particular case of LR fuzzy numbered data, more flexible models has been
considered and the associated least squares approaches have been carried out
by the SMIRE RG. In fact, Ferraro et al. have examined the simple [27] and
multiple [29] linear regression model when the response is assumed to be LR
fuzzy-valued and the explanatory terms are supposed to be real-valued. In
the simple case, the considered model is formalized (in accordance with the
notations for LR fuzzy numbers) by means of the (classical) linear relation-
ships ⎧⎨⎩Y

m = amX + bm + εm
g(Y l) = alX + bl + εl
h(Yr) = arX + br + εr

where Y is the response RFS, X is the real-valued explanatory random vari-
able, g and h are real-valued invertible functions defined on (0,+∞), the
a’s and b’s are real-valued regression coefficients, and the ε’s are real-valued
random errors satisfying E(εm|X) = E(εl|X) = E(εr|X) = 0.

In [27] and [29] the involved parameters have been estimated by considering
the least squares approach using the metricDlr, so that given a simple random
sample

(
(X1,Y1), . . . , (Xn,Yn)

)
from (X,Y) the solutions are as follows:

âm =
σ̂X,Ym

σ̂2
X

, âl =
̂σX,g(Yl)

σ̂2
X

, âr =
̂σX,h(Yr)

σ̂2
X

,

b̂m = Ym − âmX, b̂l = g(Y l)− âlX, b̂r = h(Yr)− âmX.
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Asymptotic properties of the estimators have been analyzed, and confidence
regions and tests about the regression parameters and for the linearity have
also been established.

In Ferraro et al. [28] a determination coefficient, and an associated test
for linear independence based on the preceding model, have been introduced.
These studies have also been extended to cases with fuzzy-valued explana-
tory data by Ferraro and Giordani [30]. In Ferraro et al. [27] a linearity test
between an LR fuzzy-valued response and a real-valued predictor is stated.

A recent approach to robust fuzzy regression analysis has been developed
by D’Urso et al. [26]. The study considers an extension of a previous model
by Coppi et al. [17] consisting of the (classical) linear relationships⎧⎨⎩

Ym = a1 f1(X1) + . . .+ ak fk(Xk) + ε
inf Y1 = b(a1 f1(X1) + . . .+ ak fk(Xk)) + c+ εinf
supY1 = d(a1 f1(X1) + . . .+ ak fk(Xk)) + e+ εsup

where Y is the response RFS, X1, . . . , Xk are the real-valued explanatory
random variables, fj is a real-valued function representing the regression
‘profile’ of the observation in terms of a suitably chosen function of Xj ,
(a1, . . . , ak) is the vector of coefficients of the regression model for Ym, b, c, d
and e are real-valued regression coefficients, and the ε’s are the residuals of
the models. It should be noted that the linear models for the inf and sup
of the 1-level of the response RFS are constructed on the basis of the linear
model for Ym, allowing for possible (classical) linear relationships between the
magnitude of the estimated left and right deviations, Y l and Yr , and that
of the estimated Ym. To estimate the model a robust procedure (avoiding
the concerns related to possible outliers) has been suggested by replacing the
least squares criterion by either the least median squares (i.e., the median of
the squared residuals) or the weighted least squares (assigning low weights
to data identified as outliers) on the basis of the Dlr metric. After explaining
how to estimate the parameters in the model with each of the two approaches,
a determination coefficient is introduced, and simulations show empirically
that in the presence of outliers the robust method outperforms the least
squares approach.

In D’Urso et al. [25] a method has been suggested to cluster data into
rather homogeneous groups to subsequently fit separate least squares regres-
sion analysis (i.e., a different regression model) within each cluster.

5 Summary of Recent Results on
Clustering/Classification of Imprecisely-valued Data

Another problem which the SMIRE RG has tried to tackle during the last
years is that of clustering imprecisely-valued data into groups or providing
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criteria to classify a given imprecisely-valued datum into one category of a
set of pre-established ones.

For the case of interval-valued data D’Urso and De Giovanni [21] have
introduced a method to cluster units which are identified with ‘vectors’ of
interval-valued data, by using an unsupervised neural network approach.
For this purpose, a distance between units introduced by D’Urso and Gior-
dani [22] is exploited through the so-called midpoint radius self-organizing
maps. The effectiveness of the new method is discussed and some applica-
tions are shown.

In case of fuzzy-valued data a clustering method has been suggested by
González-Rodŕıguez et al. [36]. The goal has been to group k independent
RFSs by focusing on their fuzzy means. The procedure is iterative and it
has been based on the multi-sample (ANOVA) bootstrap tests in [34] and
[37]. For an arbitrarily fixed significance level the method determines groups
as follows: for any two different clusters there exist elements in them for
which the fuzzy means are significantly different; and for all RFSs in the
same cluster their fuzzy means could be considered to coincide (i.e., there is
not enough sampling evidence to conclude rejection of the null hypothesis of
equality of the means) at the given significance level. An objective stopping
criterion leading to statistically equal groups different from each other has
also been presented, and simulations have been carried out (following ideas
at the end of Section 2) to show the performance of the suggested procedure.

In Coppi et al. [16] the well-known fuzzy k-means clustering model has
been, on one hand, adapted to deal with LR fuzzy numbered data and, on the
other hand, relaxed by removing an orthogonality assumption. The models
and methods (called, respectively, fuzzy k-means and possibilistic k-means
for fuzzy data) are based on a new metric strongly related to Dlr. They allow
us to detect k homogeneous clusters on the basis of n objects described by
means of several RFSs (with p = 1) with LR fuzzy numbered values. By
means of empirical and practical developments, some first conclusions have
been drawn in connection with the advantages of the use of the possibilistic
approach.

In connection with the classification of fuzzy-valued data into one of a set
of categories, a discriminant approach based on nonparametric kernel den-
sity estimation is introduced in Colubi et al. [13, 14]. Since the procedure is
shown not to be optimal in general and to require large sample sizes, a sim-
pler approach eluding the density estimation is proposed in Colubi et al. [13].
Assume that individuals to be classified may belong to one of k different
categories G1, . . . , Gk, and as learning sample (a supervised classification ap-
proach is followed) we have a group of n independent individuals and the
corresponding fuzzy data corresponding to an RFS X . The goal is to find a
rule allowing us to classify a new individual in one of the k groups on the
basis of the associated fuzzy datum, say x̃ ∈ F∗

c (R
p).

Formally, let (X , G) : Ω → F∗
c (R

p) × {1, . . . , k} be a random element in
such a way that X (ω) is a fuzzy datum and G(ω) is the group individual
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ω ∈ Ω belongs to (i.e., G(ω) ∈ {G1, . . . , Gk}). Assume that we have n inde-
pendent copies of (X , G) as training sample, that is, we have a simple random
sample of size n, {Xi,g}i,g (i ∈ {1, . . . , ng}, g ∈ {1, . . . , k}, n1+ . . .+nk = n).
The so-called ball-based classification criterion for fuzzy data consists of com-
puting first the distances between x̃ and the training fuzzy data by using the
metric Dϕ

θ , that is,
di,g = Dϕ

θ (x̃,Xi,g).

Later, for a chosen value δ > 0 and for each group one computes nδ,g

=
∑ng

i=1 1[0,δ](di,g). Then, one should estimate the probabilities of belonging
to each group by means of the numbers

P̂
(
G = Gg

∣∣∣X ∈ {Ũ ∈ F∗
c (R

p) : Dϕ
θ (Ũ , x̃) ≤ δ

})
=

nδ,g

k∑
h=1

nδ,h

.

Finally, x̃ will be assigned to the group associated with the highest estimated
probability. Some comparative developments have been carried out in [13], in
which the new methods have been compared with linear discriminant analysis
and random K-fold cross validation.

Although they do not correspond to clustering or classification of impre-
cisely-valued data, but to crisp ones, it can be remarked in this context that
several fuzzy techniques (i.e., leading to fuzzy clusters or categories) have
been recently introduced by SMIRE RG members. In this respect one can
mention, as related to the COST Action IC0702, the contributions by Coppi
et al. [15], D’Urso and Maharaj [23, 24], Maharaj and D’Urso [44] and Ma-
haraj et al.[45].

6 SAFD (Statistical Analysis of Fuzzy Data) R Package

Recently, an R package has been designed (see, for instance, Lubiano and
Trutschnig [43] and Trutschnig and Lubiano in this book [61]) to provide
some basic functions for doing statistics with one-dimensional fuzzy data. In
particular, the package contains functions for the basic operations on the class
of fuzzy numbers (sum, scalar product, mean, Hukuhara difference, Aumman-
type mean, 1-norm median, etc.) as well as for calculating some distances,
sample Fréchet variance, sample covariance, sample correlation, and so on.
Moreover a function to simulate fuzzy random variables, bootstrap tests for
the equality of means, and a function to do linear regression given trapezoidal
fuzzy data is included. The package is being almost permanently updated by
incorporating most of the new developed methods, and ease substantially the
computing process in the applications of these methods and in the empirical
studies.
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7 Concluding Remarks

A summary of recent statistical developments for imprecise data from the
ontic point of view has been done. Imprecise data are here formalized through
intervals and fuzzy sets. The common points of the different approaches are
that they are based on the (fuzzy) set-arithmetic and a scalar distances,
since the aim is to handle each data as an entity. Many of the statistics
are connected with estimation and testing procedures about parameters and
can be applied by using a freely available R package. Further details and
discussions can be found in the referred works.

From a technical point of view, it should be underlined that the procedures
in this paper concerning fuzzy-valued data have been presented (for the sake
of simplicity) for the space F∗

c (R
p), although they are valid for a wider space

allowing us to identify each fuzzy value with a function within a Hilbert space
(as pointed out in [5] and [37]).

SMIRE researchers have also been involved in research directions that do
not fit the scope of this review which, however, are strongly related to the
COST Action IC0702 too. The webpage of the RG references these works
(see http://bellman.ciencias.uniovi.es/SMIRE/Publications.html).

Acknowledgements This research has been partially supported by/benefited from sev-
eral Short-Term Scientific Missions (Blanco-Fernández, Colubi, De la Rosa de Sáa, Ferraro,
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Linear Regression Analysis
for Interval-valued Data
Based on Set Arithmetic: A Review
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Abstract When working with real-valued data regression analysis allows
to model and forecast the values of a random variable in terms of the val-
ues of either another one or several other random variables defined on the
same probability space. When data are not real-valued, regression techniques
should be extended and adapted to model simply relationships in an effec-
tive way. Different kinds of imprecision may appear in experimental data:
uncertainty in the quantification of the data, subjective measurements, per-
ceptions, to name but a few. Compact intervals can be effectively used to
represent these imprecise data. Set- and fuzzy-valued elements are also em-
ployed for representing different kinds of imprecise data. In this paper several
linear regression estimation techniques for interval-valued data are revised.
Both the practical applicability and the empirical behaviour of the estimation
methods is studied by comparing the performance of the techniques under
different population conditions.

1 Introduction

Over the last years, the consideration of different sources of imprecision in
generating and modeling experimental data have implied the development of
advanced statistical and soft computing techniques capable of dealing with
these kinds of data. Interval-valued data are considered as a first attempt
to extend the treatment of characteristics for which values are real numbers
to more flexible scenarios. For instance, when the characteristic has a great
uncertainty in the quantification of its values, it may be suitable to formalize
these values as intervals instead of real numbers, in order to take into account
this uncertainty in the statistical process (see, for instance, [11]). Grouped or
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censored data are also usually represented by means of intervals (see [10]).
Furthermore, intervals can also correspond to the values of attributes which
are essentially interval-valued; this is the case when considering measurements
of the fluctuation of a certain characteristic during a period of time, ranges
of a certain variable, and so on; see, for instance, [4], [5].

Regression analysis problems with interval-valued data have been deeply
investigated. In particular, several linear models for relating two or more
experimental measurements with interval values have been proposed in the
literature over the last years. Some works develop interval techniques on
the basis of the so-called Symbolic Data Analysis (see [2]). Symbolic interval
variables are mainly used for modelling aggregated data or interval descrip-
tions of technical specifications. The Symbolic regression problems are usually
solved separately for real-valued variables associated with the intervals, such
as the lower and upper limits, or the midpoints and ranges (see [12] and
references therein). The resolution of the regression estimation by means of
classical techniques does not forbid the possibility of anomalous results such
as forecast intervals whose lower bounds are larger than their upper ones.
In [12] non-negativity conditions for the regression parameters that forbid
such anomalies are included in the estimation process. However, in this case
the estimation is solved by means of numerical optimization methods, and
no analytical expressions for the regression estimators are obtained. Since no
probabilistic assumptions for the regression model are considered, and numer-
ical techniques are employed, the estimation process is just a fitting problem,
so the study of statistical properties of the estimators and inferential stud-
ies about the model make no sense in this setting. An alternative approach
for interval regression is based on the formalization of a linear relationship
between interval-valued variables, as a natural generalization of the classical
linear models between real-valued variables. Some works in this domain are
[3], [4], [5], [6], [7], among others. In this case, regression models between
two or more interval-valued variables are formalized in terms of the interval
arithmetic. This is the approach we focus on hereafter. The extension of these
interval regression models to other kinds of imprecise-valued variables, when
working with set- or fuzzy-valued data, can be formalized in a direct way by
considering set- or fuzzy- arithmetic (see [8]).

In this paper, the main properties of several interval linear models based
on the set arithmetic which have been introduced recently are analyzed; dif-
ferences among them are also examined. The rest of the paper is organized as
follows: in Section 2 some preliminary concepts about the interval framework
are presented. In Section 3 different linear models between interval-valued
data based on set arithmetic are revised. Their theoretical features and the
estimation of their parameters are shown. Results comparing the empiri-
cal performance and the practical applicability of the considered models by
means of some simulation studies and several practical data sets are gathered
in Section 4. Finally, Section 5 states some conclusions and future research.
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2 Preliminaries

The statistical treatment of interval-valued experimental data is developed
by considering them as elements belonging to the space Kc(R) = {[a, b] :
a, b ∈ R, a ≤ b}. Each compact interval A ∈ Kc(R) can be expressed by
means of its (inf, sup)-representation, i.e. A = [inf A, supA], with inf A ≤
supA. Alternatively, the notation [midA ± sprA] with sprA ≥ 0, where
midA = (supA+inf A)/2 is themidpoint of the interval, and sprA = (supA−
inf A)/2 denotes the spread or radius of A, can be considered. The interval A
and [midA ± sprA] are obviously equivalent. Statistical developments with
interval-valued data are generally based on the (mid,spr)-parametrization,
since the non-negativity condition for the spr component is usually easier to
handle than the order condition for the inf and sup components of the (inf,
sup)-characterization.

In order to manage intervals a natural arithmetic is defined on Kc(R) by
means of the Minkowski addition A + B = {a + b : a ∈ A, b ∈ B} and
the product by scalars λA = {λa : a ∈ A}, for any A,B ∈ Kc(R) and
λ ∈ R. The space (Kc(R),+, ·) is not linear but semilinear due to the lack
of symmetric element with respect to the addition; the operation A+(−1)B
does not satisfy, in general, the property that B + (A + (−1)B) = A. For
example, [0, 2] + (−1)[1, 5] = [−5, 1] and [1, 5] + [−5, 1] = [−4, 6] �= [0, 2].
Moreover, in many cases there exists no interval C such that B+C = A (and
so A−B = C); for instance, for A = [1, 2] and B = [0, 4], the unique way to
get B + C = A is being C = [1,−2] /∈ Kc(R). Thus, the difference A − B is
not an inner operation in the space Kc(R). When an element C ∈ Kc(R) such
that B + C = A exists, then it is the so-called Hukuhara difference between
intervals A and B. The existence of C is assured if sprB ≤ sprA. In that
case, it is denoted C = A−H B.

In order to measure distances between two intervals, there are several
metrics defined on Kc(R) (see, for instance, [1], [13]) . For regression problems,
and in particular for least squares methods, in which distances are employed
for error measurements, an L2-type metric has been exhaustively used and
shown to be suitable. The so-called dθ-distance defined in [13] as

dθ(A,B) =
√
(midA−midB)2 + θ(sprA− sprB)2 , (1)

for an arbitrarily chosen θ > 0, generalizes all the metrics employed in the
estimation process of the linear models examined in Section 3.

2.1 Random Intervals

In the probabilistic setting, the modeling of random elements with experi-
mental interval values is based on the notion of a compact random interval (or
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interval-valued random set). The concept of a random interval is formalized
as follows:

Definition 1. Let (Ω,A, P ) be a probability space. A mappingX:Ω→Kc(R)
is said to be a random interval (or, more precisely, a compact random interval)
if it is Bdθ

|A-measurable, Bdθ
denoting the σ-field generated by the topology

induced by the metric dθ on Kc(R).

Equivalently, the definition of random interval for the mapping X can be
formalized through the associated real-valued mappings (see [14]):

(i) inf X, supX : Ω → R, being random variables and inf X ≤ supX a.s.-[P]1

(ii) midX, sprX : Ω → R, being random variables and sprX ≥ 0 a.s.-[P]

Remark 1. As mentioned already, the non-negativity condition for the second
component of the real random vector (midX, sprX) in (ii) is usually easier to
handle in statistical processing than the order condition in (i), so the second
characterization for X will be used.

Analogously to the classical scenario, some summary measures and pa-
rameters can be defined for a random interval X . The most commonly used
definition for the expected value of X is based on the well-known Aumann
expectation of imprecise random elements. In case of X being a random in-
terval, it can be expressed as

E(X) = [E(midX)± E(sprX)], (2)

whenever the involved expected values exist, i.e. midX, sprX ∈ L1. This
concept satisfies the usual properties of linearity, and it is the Fréchet ex-
pectation w.r.t. dθ (see [9]). This allows to define the variance of X as the
usual Fréchet variance associated with the Aumann expectation in the metric
space (Kc(R), dθ), i.e.,

σ2
X = d2θ(X,E(X)) , (3)

whenever E(|X |2) <∞ (where |X | = sup{|x| : x ∈ X}). This concept verifies
also the usual properties for a variance of a random variable. Moreover, it
can be expressed in terms of classical variances as σ2

X = σ2
midX + θσ2

sprX .
The semilinearity of the space Kc(R) entails some difficulties to extend the
classical concept of covariance for two random intervals X and Y . Thus, σX,Y

is often defined as the corresponding dθ-covariance in R2 through the (mid,
spr)-parametrization of the intervals, leading to the expression

σX,Y = σmidX,midY + θσsprX,sprY , (4)

whenever the corresponding moments for the involved random variables mid
and spr exist. Although this concept preserves many of the properties of

1 The notation a.s.-[P] corresponds to almost sure with respect to probability P.
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classical covariance, the ones related to linear transformations of the random
intervals may fail; for instance, σaX,Y �= aσX,Y in general.

The corresponding sample moments for X and Y can be defined in the
usual way when a simple random sample {Xi, Yi}ni=1 is obtained from (X,Y ).

Namely, X =
1

n
(X1+ . . .+Xn), σ̂

2
X =

1

n
(
∑n

i=1 d
2
θ(Xi, X)) = σ̂2

midX+θσ̂2
sprX

(analogously for Y ) and σ̂X,Y = σ̂midX,midY + θσ̂sprX,sprY .

3 Simple Interval Linear Models
Based on Set Arithmetic

The formalization of a model for linearly relating two random intervals has
been introduced in different ways in the recent literature. In this section some
of the main models in this context are examined, showing the advantages and
drawbacks of each of them.

One of the first studies on the estimation of a simple linear model for
interval-valued data has been developed by Diamond in 1990 (see [4]). This
study consists of a linear fitting problem for a given sample interval data set,
without probabilistic assumptions for the data. Moreover, the solution for
the problem is assured only if the interval data set satisfies some particular
conditions which become very restrictive in most of the practical situations
(see [5] for details). For this reason, this approach will not be included in the
comparative study in Section 4. However, it is worthy to present it as one
of the first attempts to address the linear regression fitting for intervals and
being an inspiration for the following studies in other works.

3.1 Simple Basic Linear Model without Constraints:
Gil et al. (2002)

The linear model introduced in [5] was formalized in a probabilistic context.
The aim is to determine the best approximation of a random interval Y by an
affine function of another random interval X . A least squares method based
on the well-known Bertoluzza metric introduced in [1] (which is equivalent to
dθ with θ ≤ 1) is developed.

The regression problem is formalized as follows: let X,Y : Ω → Kc(R)
be two random intervals associated with (Ω,A, P ), and let {Xi, Yi}ni=1 be
a random sample obtained from (X,Y ). The objective is to minimize the
function φ : R×Kc(R)→ [0,∞) given by

φ(b, C) =
1

n

n∑
i=1

d2W (Yi, bXi + C), (5)



24 A. Blanco-Fernández, A. Colubi, and G. González-Rodŕıguez

where dW denotes the Bertoluzza metric for intervals.
The optimal solutions for this minimization problem are obtained in [5]

by means of an algorithm, leading to different expressions depending on the
combination of different possible sample situations. Thus, unified analytical
expressions for the optimal values of b and C in (5) are not given. Moreover,
although the regression problem is established in a probabilistic setting, in
the resolution of (5) no information about the probabilistic model from which
the sample data are generated is considered. It can be shown that, contrary
to what happens in the real-valued case, the fitting model addressed in [5]
can be unsuitable for estimating the linear theoretical relationship between X
and Y (see [7]). This is due to the special features of the interval arithmetic.
A simple example to illustrate this fact is described below.

Example 1. Let X , ε be random intervals characterized through the real vari-
ables midX,mid ε ∼ N(0, 1), independent of each other, and sprX, spr ε
independent χ2

1 variables. If Y is defined as Y = X + ε, then E(Y |x) = x+
[−1, 1], for all x ∈ Im(X) ⊂ Kc(R). Table 1 contains simulated data of n = 3
individuals from this situation. The solution to the fitting problem (5) pro-
posed in [5] from this sample data is b∗ = 2.2644 and C∗ = [−0.3282, 0.4041].
Since spr (b∗X1) = b∗sprX1 = 0.6483 > spr Y1 = 0.3756, the Hukuhara dif-
ference Y1 −H (b∗sprX1) is not defined, i.e. there exists no ε∗1 ∈ Kc(R) such
that Y1 = b∗X1 + ε∗1. Thus, it is not possible to reproduce the theoretical
linear model from which the data came through the optimal affine function.

Table 1 Sample data set from the linear model E(Y |x) = x+ [−1, 1]

midXi sprXi midYi spr Yi

0.6561 0.2863 0.7799 0.3756
-0.0334 0.0653 1.0602 0.8987
-0.2719 0.5166 -2.0318 1.9041

3.2 Simple Basic Linear Model with Constraints:
González-Rodŕıguez et al. (2007)

To overcome the difficulties of the optimal affine function obtained in [5], in
[6] a restricted least squares method to estimate the linear relation between
two random intervals has been proposed. Afterwards, the estimation problem
associated with this regression model has been solved in [7].

Let X,Y : Ω → Kc(R) be two random intervals related by means of a
simple basic linear model as

Y = aX + ε , (6)
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where ε is an interval random error such that E(ε|X) = B ∈ Kc(R). Given a
simple random sample {Xi, Yi}ni=1 from (X,Y ), any pair of intervals (Xi, Yi)
fulfills the linear model (6), so Yi = aXi + εi for a certain εi. Thus, εi =
Yi −H aXi for all i = 1, . . . , n.

Remark 2. The interval linear model (6) tries to mimic the classical simple
linear model between two real-valued random variables, with some particular-
ities in order to keep the coherency with the interval arithmetic. The (interval-
valued) independent term B is included as the expectation of the error in
order to allow the error to be an interval-valued random set. It is straightfor-
ward to show that if the alternative interval linear model Y = aX+B+ε such
that E(ε|X) = 0 is considered, then ε degenerates to a real-valued random
variable. Thus, in order to consider interval-valued errors, the independent
term is included in the formalization of the possible errors.

Analogously to the process in [5], the estimation of the regression param-
eters (a,B) is addressed by means of a least squares criterion with respect to
Bertoluzza metric, i.e. minimizing the function φ(b, C) in (5) for b ∈ R and
C ∈ Kc(R). Moreover, the optimum values are expected to satisfy the linear
model (6) at least for the sample intervals. Thus, the minimization problem
associated with the estimation of (6) is formalized as follows:

min
b∈R,C∈Kc(R)

1

n

n∑
i=1

d2W (Yi, bXi + C)

subject to
Yi −H bXi exists, for all i = 1, . . . , n

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7)

In [7] this contrained minimization problem has been solved, and the fol-
lowing analytical expressions for the estimates of the regression parameters
(a,B) have been obtained:

a∗ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if σ̂X,Y ≤ 0 and σ̂−X,Y ≤ 0

min
{
ŝ0,

σ̂X,Y

σ̂2
X

}
if σ̂X,Y ≥ 0 and σ̂−X,Y ≤ σ̂X,Y

−min
{
ŝ0,

σ̂−X,Y

σ̂2
X

}
if σ̂−X,Y ≥ 0 and σ̂X,Y ≤ σ̂−X,Y

and (8)

B∗ = Y −H a∗X

where

ŝ0 =

⎧⎪⎨⎪⎩
∞ if spr Xi = 0 for all i = 1, . . . , n

min
{

spr Yi

sprXi
: sprXi �= 0

}
otherwise
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The basic interval linear model (6) has been criticized in some respects
due to its lack of flexibility. It is straightforward to show that from (6) the
following linear relationships for the mid and spr components of the intervals
X and Y are transferred:

midY = amidX +mid ε and sprY = |a| sprX + spr ε (9)

Since both equations involve the same (in absolute value) regression coeffi-
cient, the model is somehow restrictive for many real-life applications. With
the aim of allowing more versatility in the relationship between X and Y , a
new linear regression model for random intervals based on set arithmetic has
been introduced in [3].

3.3 Simple Flexible Linear Model M:
Blanco-Fernández et al. (2011)

The interval linear model introduced in [3] is based on the so-called canon-
ical decomposition of intervals. Each A ∈ Kc(R) can be written as A =
midA[1 ± 0]+sprA[0±1]. This expression allows us to work separately with
the mid and spr components of A, but keeping the interval arithmetic con-
nection. Obviously, the (inf, sup)-representation of the intervals [1 ± 0] and
[0± 1] is [1, 1] and [−1, 1], respectively.

The so-called Model M between two random intervals X and Y is formal-
ized as follows:

Y = αmidX [1± 0] + β sprX [0± 1] + γ [1± 0] + ε , (10)

where α and β are the regression coefficients, γ is an intercept term affecting
the mid component of Y, and ε is a random interval-valued error such that
E(ε|X) = [−δ, δ] ∈ Kc(R) (with δ ≥ 0). To simplify notation we can define
B = [γ − δ, γ + δ] ∈ Kc(R) and express the regression function associated
with Model (10) as

E(Y |X) = αXM + βXS +B, (11)

where XM = midX [1± 0] and XS = sprX [0± 1].
It is easy to show that from (10) the subsequent linear relationships for

mid and spr variables follow:

mid Y = αmidX + γ +mid ε and sprY = |β|sprX + spr ε .

Since α and β are different in general, Model M is more flexible than the
basic linear model in (6).
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Remark 3. The particular definition of XS allows us to assume without loss
of generality that β ≥ 0 (see [3]).

In [3] the LS estimation of the model (10) has been analitycally solved.
Analogously to the estimation process in [7], the regression estimates are
searched over a suitable feasible set which assures their coherency with the
theoretical model. Thus, given a random sample {Xi, Yi}ni=1 from (X,Y ), the
estimators for the parameters of the model (10) have the following expres-
sions:

α̂ =
σ̂XM ,Y

σ̂2
XM

,

β̂ = min

{
ŝ0 , max

{
0 ,

σ̂XS ,Y

σ̂2
XS

}}
,

γ̂ = midB̂ (12)

and
δ̂ = spr B̂ ,

where B̂ = Y −H

(
α̂XM + β̂ XS

)
.

4 Comparative Study

The practical applicability of the interval regression models revised in Section
3 is tested over the same sample data obtained from a real-life example.
Moreover, the empirical behaviour of the estimated models is investigated by
means of some simulation studies.

4.1 Real-life Example

The sample data set in Table 2 corresponds to a real-life case study which
has been previously considered in other works to illustrate different aspects
regarding regression problems for interval-valued data (see, for instance, [3],
[5], [7]). Data have been supplied in 1997 by the Nephrology Unit of the Hos-
pital Valle del Nalón in Asturias, Spain, to members of the SMIRE Research
Group (http://bellman.ciencias.uniovi.es/SMIRE). They correspond to the
fluctuations over a day of the systolic and the diastolic blood pressure for a
sample of patients who were hospitalized in that hospital. For some purposes,
physicians focus the interest on the range of variation (minimum-maximum)
of these magnitudes for a patient in a day, so only the lowest and the high-
est values on the set of daily registers for the pressures of each patient are
recorded. Therefore, these characteristics can be modelled by means of the
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random intervals X =‘fluctuation of the systolic blood pressure of a patient
over a day’ and Y =‘fluctuation of the diastolic blood pressure of the patient
over the same day’. If we are interested on analyzing the linear relationship
between the pressure fluctuations, an interval linear model between X and
Y can be estimated. From the sample data in Table 2, the estimation of the
linear models presented in Sections 3.1, 3.2 and 3.3 are, respectively

Ŷ = 0.4384X + [0.9644, 2.7586] , (13)

Ŷ = 0.4285X + [1.0695, 3.0223] , (14)

Ŷ = 0.4527XM + 0.2641XS + 1.6920[1± 0] + [−1.5502, 1.5502] . (15)

Table 2 Daily systolic (X) and diastolic (Y ) blood pressure fluctuations of 59 patients

X Y X Y X Y

[11.8,17.3] [6.3,10.2] [11.9,21.2] [4.7,9.3] [9.8,16.0] [4.7,10.8]
[10.4,16.1] [7.1,10.8] [12.2,17.8] [7.3,10.5] [9.7,15.4] [6.0,10.7]
[13.1,18.6] [5.8,11.3] [12.7,18.9] [7.4,12.5] [8.7,15.0] [4.7,8.6]
[10.5,15.7] [6.2,11.8] [11.3,21.3] [5.2,11.2] [14.1,25.6] [7.7,15.8]
[12.0,17.9] [5.9,9.4] [14.1,20.5] [6.9,13.3] [10.8,14.7] [6.2,10.7]
[10.1,19.4] [4.8,11.6] [9.9,16.9] [5.3,10.9] [11.5,19.6] [6.5,11.7]
[10.9,17.4] [6.0,11.9] [12.6,19.7] [6.0,9.8] [9.9,17.2] [4.2,8.6]
[12.8,21.0] [7.6,12.5] [9.9,20.1] [5.5,12.1] [11.3,17.6] [5.7,9.5]
[9.4,14.5] [4.7,10.4] [8.8,22.1] [3.7,9.4] [11.4,18.6] [4.6,10.3]
[14.8,20.1] [8.8,13.0] [11.3,18.3] [5.5,8.5] [14.5,21.0] [10.0,13.6]
[11.1,19.2] [5.2,9.6] [9.4,17.6] [5.6,12.1] [12.0,18.0] [5.9,9.0]
[11.6,20.1] [7.4,13.3] [10.2,15.6] [5.0,9.4] [10.0,16.1] [5.4,10.4]
[10.2,16.7] [3.9,8.4] [10.3,15.9] [5.2,9.5] [15.9,21.4] [9.9,12.7]
[10.4,16.1] [5.5,9.8] [10.2,18.5] [6.3,11.8] [13.8,22.1] [7.0,11.8]
[10.6,16.7] [4.5,9.5] [11.1,19.9] [5.7,11.3] [8.7,15.2] [5.0,9.5]
[11.2,16.2] [6.2,11.6] [13.0,18.0] [6.4,12.1] [12.0,18.8] [5.3,10.5]
[13.6,20.1] [6.7,12.2] [10.3,16.1] [5.5,9.7] [9.5,16.6] [5.4,10.0]
[9.0,17.7] [5.2,10.4] [12.5,19.2] [5.9,10.1] [9.2,17.3] [4.5,10.7]
[11.6,16.8] [5.8,10.9] [9.7,18.2] [5.4,10.4] [8.3,14.0] [4.5,9.1]
[9.8,15.7] [5.0,11.1] [12.7,22.6] [5.7,10.1]

The estimation of the regression parameter a in (13) entails that some sam-
ple intervals do not keep the coherency of the interval arithmetic. For in-
stance, for the 29-th individual (X29, Y29) = ([8.8, 22.1], [3.7, 9.4]) it is easy
to verify that sprY29 = 2.85 < 0.4384 sprX29 = 2.9154, so it would be
impossible that sprY29 = 0.4384 sprX29 + e29 with e29 ≥ 0. The estimate
of a in (14) guarantees the existence of all the residuals and, consequently,
the coherency of the estimation with the theoretical model (6). Finally, the
estimated model (15) allows more flexibility to predict the mid and spr com-
ponents of the diastolic blood pressure of a patient from the corresponding
values of his/her systolic pressure, since they are forecasted by means of dif-

ferent regression parameter estimates; namely, mid Ŷ = 0.4527midX+1.692
and spr Ŷ = 0.2641 sprX + 1.5502. The value of MSE = 1

n

∑n
i=1 d

2
θ(Yi, Ŷi)

of the estimated models (14) and (15) is 0.9577 and 0.9489 respectively.



Linear Regression Analysis for Intervals: A Review 29

4.2 Simulation Studies

The empirical behaviour of the estimation methods presented in Section 3 is
checked by means of the Monte Carlo method. Let midX,mid ε ∼ N(0, 1),
sprX, spr ε ∼ χ2

1 be independent random variables. Two different theoretical
linear models will be investigated in order to cover all the existing linear
structures being examined. Firstly, we define Y1 by means of a linear model
in terms of X with the basic structure based on interval arithmetic:

Y1 = X + ε , (16)

where a = 1 and B = E(ε|X) = [−1, 1]. The regression problems developed
in [5] (see Section 3.1) and [7] (see Section 3.2) solve the LS estimation of
(16) by means of different techniques. Let us denote these estimation methods
by M(3.1) and M(3.2), respectively. In order to compare both estimation ap-
proaches, k = 100000 samples of different sample sizes were simulated from
the theoretical situation; in each iteration the models were estimated and,
finally, the mean value and the mean square error for each estimator (de-
noted in general by ν̂) were computed. In Table 3 the results are gathered.
It is shown that the regression estimate of a obtained with method M(3.1)

seems to be unbiased, whereas the estimate fromM(3.2) is asymptotically un-
biased. However, the mean square error of the regression estimator is greater
for M(3.1) in all the cases. The estimation of B is similar in both methods,
although it depends on the results for a.

Table 3 Comparison between the estimation methods M(3.1) and M(3.2)

Parameter n Ê(ν̂) Ratio
M(3.1) M(3.2) MSE(3.1)/MSE(3.2)

10 0.9913 0.9047 1.6696
a = 1 30 0.9978 0.9472 2.0499

100 0.9998 0.9710 2.0599

10 [-1.0013,1.0017] [-1.0816,1.0824] 1.0657
B = [−1, 1] 30 [-0.9995,0.9996] [-1.0508,1.0509] 1.0501

100 [-1.0007,0.9998] [-1.0294,1.0285] 1.0476

It is easy to check that (16) is equivalently expressed as Y1 = XM +XS + ε,
so the estimation of Model M proposed in [3] and revised in Section 3.3
can be also applied to estimate (16). Since in this case different regression
parameters are estimated, they cannot be directly compared with coefficient
a estimated in M(3.1) and M(3.2). The mean value and mean square error for
the estimates of Model M are shown in Table 4. The estimates seem to be
asymptotically unbiased, and MSE values tend to 0 as n increases.
Let Y2 now be defined in terms of X by means of the flexible model

Y2 = 3XM +XS + ε . (17)
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Table 4 Estimation of the Model M for Y1 = XM +XS + ε

Parameter n Ê(ν̂) MSE(ν̂)

10 1.0005 0.1441
α = 1 30 0.9978 0.0377

100 0.9995 0.0102

10 0.8584 0.0910
β = 1 30 0.9213 0.0199

100 0.9594 0.0048

10 [-1.1135,1.1127] 0.2167
B = [−1, 1] 30 [-1.0747,1.0697] 0.0648

100 [-1.0401,1.0400] 0.0188

In this case, the estimation methodsM(3.1) andM(3.2) are not able to capture
the theoretical information about the different regression parameters relating
the mid and spr values of the intervals, α = 3 and β = 1, respectively. They
provide a unique value for both estimates. Consequently, the estimation of
Model M is the best (of the presented ones) technique to solve the estimation
of (17). In Table 5 the empirical results for the estimation of (17) by means
of M(3.2) and Model M are shown. In this case, the computation of MSE(ν̂)
for M(3.2) makes no sense (since there is not a unique theoretical parameter
to compare with). Thus, the mean square errors of the estimated models,

computed by MSE = 1
k

∑k
j=1

1
n

∑n
i=1 d

2
θ(Y

(k)
i , Ŷ

(k)
i ) have been calculated.

Obviously, Model M estimates the regression parameters differently, and it
provides a lower mean square error in the estimation.

Table 5 Estimation methods M(3.2) and Model M for Y2 = 3XM +XS + ε

Model M(3.2) n Ê(ν̂)

10 1.0435
a 30 1.0050

100 1.0005

10 [-0.9559,0.9683]
B = [−1, 1] 30 [-1.0030,0.9938]

100 [-0.9938,1.0030]

10 4.9470
MSE 30 5.4524

100 5.6233

Model M n Ê(ν̂)

10 3.0002
α = 3 30 2.9977

100 2.9999

10 0.8587
β = 1 30 0.9220

100 0.9594

10 [-1.1128,1.1128]
B = [−1, 1] 30 [-1.0787,1.0722]

100 [-1.0411,1.0386]

10 1.3646
MSE 30 1.5681

100 1.6379

5 Conclusions

Linear regression problems for interval-valued data can be addressed by
means of different approaches. The natural extension from the classical real-
valued case consists on formalizing a linear model between two or more ran-
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dom intervals based on set arithmetic. Various models have been proposed
following this idea. In this paper, several interval simple linear models based
on interval arithmetic are revised, highlighting the main characteristics and
the estimation process associated with each of them. From the existing mod-
els, the extension to the multivariate case may be addressed by consider-
ing several independent random intervals. Moreover, alternative models for
interval-valued data based on the usual set arithmetic could be formalized.
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Bootstrap Confidence Intervals for the
Parameters of a Linear Regression
Model with Fuzzy Random Variables

Maria Brigida Ferraro1, Renato Coppi1, and Gil González-Rodŕıguez2

Abstract Confidence intervals for the parameters of a linear regression model
with a fuzzy response variable and a set of real and/or fuzzy explanatory vari-
ables are investigated. The family of LR fuzzy random variables is considered
and an appropriate metric is suggested for coping with this type of variables.
A class of linear regression models is then proposed for the center and for
suitable transformations of the spreads in order to satisfy the non-negativity
conditions for the latter ones. Confidence intervals for the regression param-
eters are introduced and discussed. Since there are no suitable parametric
sampling models for the imprecise variables, a bootstrap approach has been
used. The empirical behavior of the procedure is analyzed by means of sim-
ulated data and a real-case study.

1 Introduction

The study of relationships between variables is a crucial issue in the inves-
tigation of natural and social phenomena. Of particular relevance, in this
respect, is the analysis of the link between a “response” variable, say Y , and
a set of “explanatory” variables, say X1, X2,...,Xp.

When approaching this problem from a statistical viewpoint, we realize
that several sources of uncertainty may affect the analysis. These concern:
a) sampling variability; b) partial or total ignorance about the kind of re-
lationship between Y and (X1, ..., Xp); c) imprecision/vagueness in the way
statistical data concerning these variables are measured (see, for instance, [2]
for a detailed examination of the various sources of uncertainty in Regression
Analysis).
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In the present paper we focus our attention on sources a) and c). To this
purpose, the notion of Fuzzy Random Variable (FRV) is utilized [11]. By
means of it, we simultaneously take into account the uncertainty due to the
randomness and that pertaining to the imprecision/vagueness of the observed
data. A regressionmodel, in this context, aims at establishing a link between a
random fuzzy response variable, say Ỹ , and a set of random fuzzy explanatory
variables, say X̃1,...,X̃p. When this link is expressed in functional terms, the
model may be written in the following way:

Ẽ
(
Ỹ
)
= f̃

(
X̃1, ..., X̃p

)
,

where both Ẽ (·) and f̃ (·) are fuzzy sets.
A complete treatment of the above model in the framework of parametric

inference would require the explicitation of the family of joint densities

p
(
Ỹ , X̃1, ..., X̃p/θ

)
,

where θ is a vector of parameters, or at least of the conditional densities

p
(
Ỹ /X̃1, ..., X̃p, θ

)
.

An attempt in this direction has been made by Näther and co-authors [9,
10, 12]. Unfortunately, several limitations have been found when trying to
extend a complete inferential fully parametric theory of linear models to the
case of fuzzy variables. One of the causes of these limitations consists in
the lack of an appropriate family of sampling models for FRVs supporting
the development of a complete inferential theory (consider, for example, the
difficulty in defining a suitable notion of Normal FRVs).

In the present paper a different approach is adopted. First, the member-
ship functions of the involved variables are formalized in terms of LR fuzzy
numbers (in particular triangular fuzzy numbers characterized by three quan-
tities: center, left spread, right spread). Then an appropriate distance between
triangular fuzzy numbers is introduced and an isometry is found between the
space of triangular fuzzy numbers and R3. This allows the construction of a
parametric regression model linking respectively the center, left spread and
right spread of the response variable to the centers and spreads of the ex-
planatory variables. Suitable transformations of the spreads of the response
variable are utilized in order to ensure the non-negativity of the estimated
spreads.

While the point estimation problem concerning this model has been dealt
with in previous works (see [6, 7, 8], the main objective of the present paper
consists in the evaluation of the sampling variation of the estimated regression
parameters. This is achieved by means of confidence intervals, which are
constructed by applying an appropriate bootstrap procedure.
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The work is organized as follows. In Section 2 some preliminary notions
concerning fuzzy sets, LR fuzzy numbers and their distance, the definition
of FRVs and their properties are briefly recalled. In Section 3 the linear re-
gression model for LR fuzzy variables is introduced along with the procedure
for estimating its parameters. The construction of bootstrap confidence in-
tervals is illustrated in Section 4. A simulation study and a real-case analysis
are described in Section 5, while concluding remarks are made in Section 6.

2 Preliminaries

Given a universe U of elements, a fuzzy set Ã is defined through the so-called
membership function μÃ : U → [0, 1]. For a generic x ∈ U , the membership

function expresses the extent to which x belongs to Ã. Such a degree ranges
from 0 (complete non-membership) to 1 (complete membership).

A particular class of fuzzy sets is the LR family, whose members are
the so-called LR fuzzy numbers. The space of the LR fuzzy numbers is
denoted by FLR. A nice property of the LR family is that its elements
can be determined uniquely in terms of the mapping s : FLR → R3, i.e.,
s(Ã) = sÃ = (Am, Al, Ar). This implies that Ã can be expressed by means of
three real-valued parameters, namely, the center (Am) and the (non-negative)
left and right spreads (Al and Ar, respectively). In what follows we indis-

tinctly use Ã ∈ FLR or (Am, Al, Ar). The membership function of Ã ∈ FLR

can be written as

μÃ(x) =

⎧⎪⎪⎨⎪⎪⎩
L
(
Am−x

Al

)
x ≤ Am, Al > 0,

1{Am}(x) x ≤ Am, Al = 0,

R
(
x−Am

Ar

)
x > Am, Ar > 0,

0 x > Am, Ar = 0,

(1)

where the functions L and R are particular decreasing shape functions from
R+ to [0, 1] such that L(0) = R(0) = 1 and L(x) = R(x) = 0, ∀x ∈ R \ [0, 1],
and 1I is the indicator function of a set I. Ã is a triangular fuzzy number if
L(z) = R(z) = 1− z, for 0 ≤ z ≤ 1.

The operations considered in FLR are the natural extensions of the
Minkowski sum and the product by a positive scalar for intervals. In detail,
the sum of Ã and B̃ in FLR is the LR fuzzy number Ã+ B̃ so that

(Am, Al, Ar) + (Bm, Bl, Br) = (Am +Bm, Al +Bl, Ar +Br),

and the product of Ã ∈ FLR by a positive scalar γ is

γ(Am, Al, Ar) = (γAm, γAl, γAr).
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Yang & Ko [13] defined a distance between two LR fuzzy numbers X̃ and

Ỹ as follows

D2
LR(X̃, Ỹ ) = (Xm − Y m)2 + [(Xm − λX l)− (Y m − λY l)]2

+ [(Xm + ρXr)− (Y m + ρY r)]2,

where the parameters λ =
∫ 1

0
L−1(ω)dω and ρ =

∫ 1

0
R−1(ω)dω take into

account the shape of the membership function. For instance, in the triangular
case, we have that λ = ρ = 1

2 . In what follows it is necessary to embed the
space FLR into R3 by preserving the metric. For this reason a generalization
of the Yang and Ko metric can be derived [6]. For a = (a1, a2, a3) and b =
(b1, b2, b3) ∈ R3, it is

D2
λρ(a, b) =(a1 − b1)

2+((a1 − λa2)−(b1 − λb2))
2+((a1 + ρa3)−(b1 + ρb3))

2,

where λ, ρ ∈ R+. D2
λρ will be used in the sequel as a tool for quantifying

errors in the regression models we are going to introduce.
Let (Ω,A, P ) be a probability space. In this context, a mapping X̃ : Ω →

FLR is an LR FRV if the s-representation of X̃, (Xm, X l, Xr) : Ω → R ×
R+ × R+ is a random vector [11]. As for non-fuzzy random variables, it is
possible to determine the moments for an LR FRV. The expectation of an LR
FRV X̃ is the unique fuzzy set E(X̃) (∈ FLR) such that (E(X̃))α = E(Xα)

provided that E‖X̃‖2DLR
= E(Xm)2+E(Xm−λX l)2+E(Xm+ρXr)2 <∞,

where Xα is the α-level of fuzzy set X̃, that is, Xα =
{
x ∈ R|μX̃(x) ≥ α

}
,

for α ∈ (0, 1], and X0 = cl(
{
x ∈ R|μX̃ ≥ 0

}
). Moreover, on the basis of the

mapping s, we can observe that sE(X̃) = (E(Xm), E(X l), E(Xr)).

3 A Linear Regression Model with LR Fuzzy Variables

In our previous works, [6, 7, 8], we introduced a linear regression model for
imprecise information.
In the general case, an LR fuzzy response variable Ỹ and p LR fuzzy ex-
planatory variables X̃1, X̃2, ..., X̃p observed on a simple random sample of n

statistical units, {Ỹi, X̃1i, X̃2i, ..., X̃pi}i=1,...,n, have been taken into account.
We consider the shape of the membership functions as fixed, so the fuzzy re-
sponse and the fuzzy explanatory variables are determined only by means of
three parameters, namely the center and the left and right spreads. We faced
the non-negativity constraints of the spreads of the response variable by in-
troducing two invertible functions g : (0,+∞) −→ R and h : (0,+∞) −→ R,
in order to make the spreads assuming all the real values. In that way we
didn’t solve a numerical procedure, we formalized a theoretical model and we
got a complete solution for the model parameters. The model is formalized as
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Y m = X a

′
m + bm + εm,

g(Y l) = X a
′
l + bl + εl,

h(Y r) = X a
′
r + br + εr,

(2)

where X = (Xm
1 , X

l
1, X

r
1 , ..., X

m
p , X

l
p, X

r
p) is the row-vector of length 3p

of all the components of the explanatory variables, εm, εl and εr are
real-valued random variables with E(εm|X) = E(εl|X) = E(εr|X) = 0,
am = (a1mm, a

1
ml, a

1
mr, ..., a

p
mm, a

p
ml, a

p
mr), al = (a1lm, a

1
ll, a

1
lr, ..., a

p
lm, a

p
ll, a

p
lr)

and ar = (a1rm, a
1
rl, a

1
rr, ..., a

p
rm, a

p
rl, a

p
rr) are row-vectors of length 3p of the

parameters related to X . The generic atjj′ is the regression coefficient between

the component j ∈ {m, l, r} of Ỹ (where m, l and r refer to the center Y m

and the transformations of the spreads g(Y l) and h(Y r), respectively) and

the component j′ ∈ {m, l, r} of the explanatory variables X̃t, t = 1, ..., p,
(where m, l and r refer to the corresponding center, left spread and right
spread). For example, a2ml represents the relationship between the center of

the response, Y m, and the left spread of the explanatory variable X̃2 (X l
2).

Finally, bm, bl, br denote the intercepts. Therefore, by means of (2), we aim
at studying the relationship between the response and the explanatory vari-
ables taking into account not only the randomness due to the data generation
process, but also the information provided by the spreads of the explanatory
variables (the imprecision of the data), which are usually arbitrarily ignored.
The covariance matrix of X is denoted by ΣX = E[(X − EX)

′
(X − EX)]

and Σ stands for the covariance matrix of (εm, εl, εr), with variances, σ2
εm ,

σ2
εl and σ

2
εr , strictly positive and finite.

3.1 Estimation Problem

The estimation problem of the regression parameters is faced by means of the
Least Squares (LS) criterion. Accordingly, parameters of model (2) are esti-
mated by minimizing the sum of the squared distances between the observed
and theoretical values of the response variable. However, as already noted,
suitable transformations of the spreads are considered in (2). This allows us
to use the generalized metric D2

λρ in the objective function of the problem.

Therefore, the LS problem consists in looking for âm, âl, âr, b̂m, b̂l and b̂r
which minimize

Δ2
λρ = D2

λρ((Y
m, g(Y l), h(Y r)), ((Y m)∗, g(Y l)∗, h(Y r)∗))

=
n∑

i=1

D2
λρ((Y

m
i , g(Y l

i ), h(Y
r
i )), ((Y

m
i )∗, g(Y l

i )
∗, h(Y r

i )
∗)),

(3)

where Y m, g(Y l) and h(Y r) are the n × 1 vectors of the observed values
and (Y m)∗ = Xa

′
m + 1bm, g(Y l)∗ = Xa

′
l + 1bl and h(Y r)∗ = Xa

′
r + 1br are
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the theoretical ones being X = (X1, X2, ..., Xn)
′
the n × 3p matrix of the

explanatory variables. When estimating the regression parameters using this
least squares criterion we obtain the following solution

â
′
m = (Xc

′
Xc)−1Xc

′
Y mc, b̂m = Y m −X â

′
m,

â
′
l = (Xc

′
Xc)−1Xc

′
g(Y l)c, b̂l = g(Y l)−X â

′
l,

â
′
r = (Xc′Xc)−1Xc′h(Y r)c, b̂r = h(Y r)−X â

′
r,

where

Y mc = Y m − 1Y m,

g(Y l)c = g(Y l)− 1g(Y l),

h(Y r)c = h(Y r)− 1h(Y r)

are the centered values of the response variables,

Xc = X− 1X

is the centered matrix of the explanatory variables and, Y m, g(Y l), h(Y r)
and X denote, respectively, the sample means of Y m, g(Y l), h(Y r) and X.
The Yang and Ko metric involves differences between re-scaled intervals.
Since the same parameters λ and ρ are considered for both the observed
and the predicted values, the solution of the minimization problem does not
depend on the values of these parameters.

4 Bootstrap Confidence Intervals

As in classical Statistics, in this case it is useful to estimate the regression
parameters not only by a single value but by a confidence interval too. These
intervals represent the reliability of the estimates. How likely the interval is
to contain the parameter is determined by the confidence level 1− α.
Since there are no realistic models in the context of FRVs, we introduce a
bootstrap approach. In literature, there exist different bootstrap approaches
to construct confidence intervals in a real-valued variables context. In this
work, we consider confidence intervals based on bootstrap percentiles (for
more details, see [5, 1]).
We consider B bootstrap samples drawn with replacement from the observed
sample {Ỹi, X̃1i, X̃2i, ..., X̃pi}i=1,...,n. For each sample we compute the esti-
mators of the regression parameters. In this way we obtain sequences of B
bootstrap estimators, that represent the empirical distributions of the esti-
mators. Let F̂ be the cumulative distribution function of the bootstrap repli-
cations of each estimator. The 1 − α percentile interval is defined by means
of the percentiles of F̂ . For example, for the estimator of a1ml, F̂

−1(α/2) is
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equal to â1
∗(α/2)

ml , that is, the 100 · (α/2)th percentile of the bootstrap distri-

bution. In details, â1
∗(α/2)

ml is the B · (α/2)th value in the ordered list of the

B bootstrap estimators
(
â1

∗(1)
ml , â1

∗(2)
ml , . . . , â1

∗(B)

ml

)
. The bootstrap percentile

interval for a1ml is defined as:

CIP (a
1
ml) =

[
F̂−1(α/2), F̂−1(1− α/2)

]
=
[
â1

∗(α/2)

ml , â1
∗(1−α/2)

ml

]
The bootstrap percentile confidence interval for a1ml is obtained by means of
the following algorithm

Algorithm

Step 1: Draw a sample of size n with replacement{
(X∗

i , Y
m
i

∗, Y l
i

∗
, Y r

i
∗)
}
i=1,...,n

,

from the original sample
{
(X i, Y

m
i , Y l

i , Y
r
i )
}
i=1,...,n

.

Step 2: Compute the bootstrap estimate â1
∗

ml.

Step 3: Repeat Steps 1 and 2 B times to get different sets of estimators for
the regression parameter.

Step 4: Approximate the lower and upper limits of the interval by the quan-
tiles of the empirical distribution obtained at Step3. That is, the val-
ues in position [(α/2)B]+1 and [(1−α/2)B] of the ordered empirical
distribution. We indicate those values as â1

∗
mlL

and â1
∗

mlU
. Thus the

percentile confidence interval for a1ml at the confidence level 1−α is

CIP (a
1
ml) =

[
â1

∗
mlL , â

1∗
mlU

]
An analogous algorithm could be used to construct the bootstrap
percentile confidence intervals for all the regression parameters.

5 Empirical Results

In order to check the empirical behaviour of the bootstrap approach to con-
struct confidence intervals for the regression parameters, some simulation
studies and a real-case example have been developed.
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5.1 Simulation Studies

We consider a theoretical situation in which an LR fuzzy response Ỹ , an LR
fuzzy explanatory variable X̃1 and a real explanatory variable X2 are taken
into account. We deal with the following independent real random variables:
Xm

1 behaving as Norm(0, 1) random variable, X l
1 and Xr

1 as χ2
1 and χ2

2,
respectively, X2 as U(−2, 2), εm as Norm(0, 1), εl and εr as Norm(0, 0.5).
The response variables are constructed in the following way:⎧⎨⎩

Y m = 2Xm
1 + 0.5X l

1 + 0.4Xr
1 +X2 + εm,

Y 2 = g(Y l) = −1Xm
1 + 0.3X l

1 − 0.4Xr
1 + 2X2 ++εl,

Y 3 = h(Y r) = 1.2Xm
1 +X l

1 − 0.7Xr
1 −X2 ++εr,

During the experiment we employ B = 1000 replications of the bootstrap
estimator and we carry out N = 10.000 simulations with the confidence level
1−α = 0.95 for different sample sizes (n = 30, 50, 100, 200, 300).We compute
the empirical confidence levels as the proportion of bootstrap confidence in-
tervals that include the theoretical parameter (on N). The empirical values
are reported in Table 1. Since the values gathered in Table 1 tend to the
nominal confidence level, as n increases, we can conclude that the bootstrap
algorithm perform well in this context.

Table 1 Empirical confidence level of the bootstrap CIs for the regression parameters.

n 30 50 100 200 300

CI(a1mm) .9440 .9352 .9410 .9390 .9475
CI(a1ml) .9381 .9378 .9351 .9382 .9443
CI(a1mr) .9384 .9392 .9410 .9408 .9463
CI(a2m) .9408 .9411 .9431 .9469 .9464
CI(a1lm) .9427 .9348 .9407 .9429 .9484

CI(a1ll) .9363 .9377 .9330 .9394 .9444
CI(a1lr) .9361 .9341 .9400 .9410 .9413
CI(a2l ) .9357 .9397 .9551 .9485 .9489
CI(a1rm) .9401 .9364 .9383 .9466 .9466
CI(a1rl) .9371 .9324 .9344 .9405 .9404
CI(a1rr) .9375 .9383 .9403 .9425 .9430
CI(a2r) .9365 .9479 .9450 .9456 .9457
CI(bm) .9444 .9405 .9467 .9450 .9517
CI(bl) .9424 .9421 .9475 .9479 .9486
CI(br) .9409 .9435 .9471 .9469 .9453
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5.2 A Real-case Study

We consider the students’ satisfaction of a course. In order to evaluate it,
their subjective judgments/ perceptions are observed on a sample of n = 64
students (see, for more details, [8]). For any student, four characteristics are
observed: the overall assessment of the course, the assessment of the teaching
staff, the assessment of the course content and the average mark (single-
valued variable). We managed them in terms of fuzzy variables, in particular
of triangular type (hence λ = ρ = 1/2). For analyzing the linear dependence

of the overall assessment of the course (Ỹ ) on the assessment of the teaching

staff (X̃1), the assessment of the course contents (X̃2) and the average mark
(X3), the proposed linear regression model is employed based on a sample of
64 students. In order to overcome the problem about the non-negativity of
spread estimates, we fix the logarithmic transformation (that is, g = h = ln).
Through the LS procedure we obtain the following estimated model⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ŷ m = 1.08Xm
1 + 0.13X l

1 − 0.07Xr
1

−0.17Xm
2 − 0.89X l

2 + 0.66Xr
2 − 1.12X3 + 34.06

Ŷ l = exp(0.01Xm
1 + 0.02X l

1 + 0.02Xr
1

+0.00Xm
2 + 0.03X l

2 + 0.01Xr
2 − 0.00X3 + 0.67)

Ŷ r = exp(0.00Xm
1 + 0.03X l

1 − 0.02Xr
1

−0.01Xm
2 + 0.03X l

2 + 0.01Xr
2 + 0.04X3 + 1.01)

For each one of the regression parameters we obtain the bootstrap percentile
confidence intervals reported in Table 2.

Table 2 Bootstrap percentile CIs for the regression parameters at a confidence level equal
to 0.95.

CI(a1mm) [.7888, 1.3403] CI(a1lm) [−.0018, .0199] CI(a1rm) [−.0086, .0142]
CI(a1ml) [−.6060, .8087] CI(a1ll) [−.0314, .0556] CI(a1rl) [−.0161, .0633]
CI(a1mr) [−.4848, .5013] CI(a1lr) [−.0052, .0358] CI(a1rr) [−.0487, .0101]
CI(a2mm) [−.2878, .0324] CI(a2lm) [−.0069, .0071] CI(a2rm) [−.0154,−.0004]
CI(a2ml) [−1.4890,−.4884] CI(a2ll) [.0092, .0579] CI(a2rl) [.0021, .0688]
CI(a2mr) [.3474, .9626] CI(a2lr) [−.0021, .0249] CI(a2rr) [−.0002, .0330]
CI(a3m) [−4.3814, .4688] CI(a3l ) [−.0962, .0953] CI(a3r) [−.0473, .1964]
CI(bm) [5.1405, 121.9076] CI(bl) [−2.0829, 3.16179] CI(br) [−3.7414, 3.5874]

It could be noted from Table 2 that the parameters that are significant are
the same as those obtained by means of a bootstrap test on the regression
parameters in [8]. In detail, these are: a1mm, a2ml, a

2
mr, a

2
ll, a

2
rm and a2rl.
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6 Concluding Remarks

In this paper a linear regression model for LR fuzzy variables has been ad-
dressed. Along with the least squares estimators, confidence intervals have
been introduced and discussed. The results obtained by means of a boot-
strap approach are those expected in this context. In detail, a bootstrap
algorithm to approximate the bootstrap percentile confidence intervals of the
parameters has been described and employed to simulated and real data.
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On the Estimation of the
Regression Model M for Interval Data

Marta Garćıa-Bárzana1, Ana Colubi1, and Erricos J. Kontoghiorghes2

Abstract A linear regression model for interval data based on the natural
interval-arithmetic has recently been proposed. Interval data can be identi-
fied with 2-dimensional points in R×R+, since they can be parametrized by
its mid-point and its semi-amplitude or spread, which is non-negative. The
model accounts separately for the contribution of the mid-points and the
spreads through a single equation. The least squares estimation becomes a
quadratic optimization problem subject to linear constraints, which guaran-
tee the existence of the residuals. Several estimators are discussed. Namely,
a closed-form estimator, the restricted least-squares estimator, an empirical
estimator and an estimator based on separate models for mids and spreads
have been investigated. Real-life examples are considered. Simulations are
performed in order to assess the consistency and the bias of the estimators.
Results indicate that the numerical and the closed-form estimator are appro-
priate in most of cases, while the empirical estimator and the one based on
separate models are not always suitable.

1 Introduction

Often experimental researches involves non-perfect data, as missing data, or
censored data. In particular, closed and bounded real-valued sets in Rp are
useful to model information which also representing linguistic descriptions,
fluctuations, grouped data images, to name but a few. Interval data are a spe-
cific case of this kind of elements. The study of linear regression models work-
ing with interval-valued variables has been addressed mainly by two ways:
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(a) in terms of the separate models involving some interval components (as
the midpoint and the range or the minimum and the maximun) (see Billard
and Diday, 2003; Lima Neto et al., 2005 and references therein) which most
of the times work with symbolic interval variables; and (b) in terms of arith-
metic set-based unified models (as in Diamond 1990, Gil et al. 2001, 2002,
2007, González-Rodŕıguez et al. 2007, Blanco-Fernández et al. 2011, among
others). The main difference between both views is that the first approach
usually fits the separate models by numerical or classical tools, but without
the usual probabilistic assumptions for the regression model. This provides
good fittings but non-obvious easy ways of making inferences. On the other
hand, the second approach provides a natural framework to develop infer-
ences, although the least squares approach becomes a minimization problem
with strong constraints.

In Blanco-Fernández et al. (2011) a flexible simple linear regression model
was introduced, the so-called Model M . This model is flexible in the sense
that it accounts for relationship between mid points and the radius of the
involved random intervals. A comparison of several regression estimators of
Model M will be addressed.

The rest of the paper is organized as follows: in Section 2 some prelim-
inary about the Model M will be introduced. In Section 3 four estimation
approaches of Model M will be described. In Section 4 a real-life example
is analyzed to compare the behaviour of the estimators. Finally, Section 5
cointains some conclusions.

2 The Model M for Random Intervals

Hereafter, the intervals that will be considered are elements in the space
Kc(R) = {[a1, a2] : a1, a2 ∈ R, a1 ≤ a2}. An interval A ∈ Kc(R) can be
expressed in terms of its minimun and maximun or in terms or its middle
point (mid ) and the radius (spr ). The second characterization is more usual
in regression studies, as it involves non-negativity constraints which are easier
to handle than the order contraints involved in the first characterization.
There is another representation for the intervals which will be used, namely,
the canonical decomposition, defined as A = midA [1± 0] + sprA [0± 1] (see
Blanco-Fernández et al., 2011).

The arithmetics which will be used are the Minkowski addition A + B =
{a + b : a ∈ A, b ∈ B} and the product by scalars λA = {λa : a ∈ A},
with A,B ∈ Kc(R) and λ ∈ R. The space (Kc(R),+, ·) is not linear as
the existence of the symmetric element with respect to the addition is
not guaranteed in general, in the sense that A + (−A) �= {0} unless A
is a singleton. A new concept of difference agreeing with the natural dif-
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ference, the so-called Hukuhara difference, is introduced. It is defined as
A−H B = [inf A− inf B, supA− supB] if and only if sprB ≤ sprA.

Remark: If sprB > sprA, then the Hukuhara difference does not exist.

The distance used is the so-called dτ (see Trutschnig et al., 2009) defined
as

dτ (A,B) =
√
(1 − τ)(midA−midB)2 + τ (sprA− sprB)2

for all A,B ∈ Kc(R).
Random intervals emerged as a generalization of the real-valued random vari-
ables. Then, y is a random interval if it is Bdτ |A measurable, being Bdτ the
Borel σ-algebra and A the σ-algebra of the probabilistic space (Ω,A, P ).

Notation: Random intervals will be denoted with boldlowercase letters
(x), vectors with lowercase letters (x) and matrices with uppercase letters
(X). The (Aumann) expect value is defined as E(x) = [E(midx)±E(sprx)],
whenever midx and sprx ∈ L1(Ω,A, P ). The Aumann expectation fulfils
Fréchet principle and the Fréchet variance associated with this expectation
is defined as

V arτ (x) = σ2
x,τ = E(dτ (x, E(x))) = (1− τ)σ2

mid x
+ τ σ2

sprx

whenever midx and sprx are integrably bounded.
As (Kc(R),+, ·) is not a linear space, the covariance cannot be defined by
mimiching the usual expression involving the arithmetic in Kc(R). However,
it can be defined in R2 and we get the following expression

Covτ (x,y) = σx,y = (1− τ)σmid x,mid y + τ σsprx,spry

whenever ‖midx‖2τ , ‖midy‖2τ , ‖sprx‖2τ , ‖spry‖2τ ∈ L1(Ω,A, P ).

Model M will relate a response random interval y : Ω −→ Kc(R) with an
explanatory random interval x : Ω −→ Kc(R) as follows

y = xM α1 + xS α2 + ε (1)

where xM = midx[1±0] = [midx,midx], xS = sprx[0±1] = [−sprx, sprx],
α1, α2 and ε ∈ Kc(R) (see Blanco-Fernández et al, 2011).
The Model can be written in the matricial way as

y = xBl bα + ε (2)

with xBl = (xM |xS) ∈ Kc(R)1×2, bα = (α1 |α2)
t ∈ R2×1 and

ε : Ω −→ Kc(R) being a random interval such that E(ε|x) = Δ ∈ Kc(R).

Remark: A property of this model is that it is not identifiable due to the
fact that xS = −xS . However, the coefficient α2 can be considered, with-
out loss of generality, a non-negative vector in R and the space in which the



46 M. Garćıa-Bárzana, A. Colubi, and E.J. Kontoghiorghes

solutions to the estimation problem are, can be restricted to R+. In this way,
the model is identifiable.

Model M entails the following separate models

midy = α1 (midx) + mid ε

spry = |α2| (sprx) + spr ε. (3)

Remark: By the assumption that α2 can be considered non-negative, the
second expression can be written as

spry = α2(sprx) + spr ε.

Thus, it is feasible to consider the estimation of α1 and α2 through the
estimation of the separate models.

3 Estimation of the Model M

Four estimators of the regression coefficients will be considered. The first one
based on the fitting of the separate models introduced in (3). Separate models
have already considered to relate interval-valued variables (see Lima Neto &
Carvalho 2010 among others). In this case the proposed separate models are:

midy = xc bm + εm (4)

spry = xs bs + εs, (5)

where xc = (1,midx) and xs = (1, sprx) ∈ Kc(R)1×2, bm and bs ∈ R2×1,
y ∈ Kc(R) and εm, εs ∈ R. Lima Neto & Carvalho impose the condition
that bs ≥ 0 to avoid spreads ill-defined. However, bm has no constraint to be
fulfilled.
Then, let {yi,xi}i=1,...,n be a random simple sample of intervals, the estima-
tor of bm will be:

b̂m = [(xc)t (xc)]−1 (xc)t mid y (6)

where mid y ∈ Rn×1 and

xc =

(
1 1 . . . 1

midx1 midx2 . . . midxn

)
∈ Rn×2.

Parameter bs is estimated according to Lawson and Hanson algorithm (see
Lawson and Hanson, 1974) for constrained LS problems. Then the estimator

of both parameters will be denoted by b̂sep = (b̂m, b̂s).
Remark: The main drawback of using the separate models to estimate

the coefficients is that (5) is not a linear model, due to the non-negativity
constraint of the variables. Additionally, the linear independence between
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the residuals and the independent variables implies further restrictions on
the residuals. Thus, inferences are not straight-forward deduced.

It is possible to obtain another estimator of bα by using sample moments.
Hence, it is introduced the following proposition:

Proposition 1. Given the random interval y and the vector of random in-
tervals xbl in the conditions of the Model M , the coefficients’ vector bα can
be expressed by:

bα = Covτ (y, x
bl)Covτ (x

bl, xbl)−1.

According to Proposition 1, an empirical estimator could be proposed based
on the sample moments, namely:

b̂emp = Covτ (y,X
bl)Covτ (X

bl, Xbl)−1 (7)

with Xbl ∈ Kc(R)2×n and y ∈ Kc(R)1×n.

The least squares estimation of bα and the parameter Δ will be carried
out from the information provided by the simple random sample of random
intervals {yi,xi}i=1,...,n obtained from the model:

y = Xbl b̂α + ε̂ (8)

being
Xbl = (xM |xS) ∈ Kc(R)

n×2

and
b̂α = (α̂1 | α̂2)

t ∈ R2×1.

It is neccesary to assure the existence of the residuals, or in other words, that
the Hukuhara’s difference y −H (Xbl b̂α) exists. Then the expression of the
constraints is:

spr (α̂1 x
M + α̂2 x

S) ≤ spr y

which is equivalent to

sign(α̂2) ◦ |α2| sprx ≤ spr y ≡ α̂2 sprx ≤ spr y.

In order to assure the existance of the residuals, the least squares problem
will be written as a minimization problem with linear constraints. Specifically,
the aim will be to find feasible estimates of bα and Δ minimizing the not
explained variability, that is,

min
c2∈Γ

d2τ (y,X
bl c+ 1Δ) (9)

where c = (c1, c2)
t ∈ R2×1 and Γ = {c2 ∈ [0,∞)/c2 spr x ≤ spr y}.

Introducing the following notation, the minimization problem (9) will be
transcribed into another one with some useful properties.
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vm = mid y −midy1 ; Fm = midXbl − (midXbl)1 (10)

vs = spr y − spry1 ; Fs = sprXbl − (sprXbl)1,

where vm, vs ∈ Rn×1 and Fm, Fs ∈ Rn×2. Then, the minimization problem
can be written as:

min
c2∈Γ

(1 − τ)(vm − Fm c)t(vm − Fm c) + τ (vs − Fs c)
t(vs − Fs c). (11)

Two possible ways of solving the problem have been proposed. The first one
results in a numerical estimator and the second one in an exact expression.
Concerning the first approach, as the objective function is a quadratic func-
tion and Γ is a set of linear constraints, Karush-Kuhn-Tucker (KKT) Theo-
rem assures the existence of solution and by means of the numerical estimator,

which will be denoted in the sequel by b̂kkt, an estimation of the solution will
be obtained.
On the other hand, a closed expression to estimate the regression coefficients
has been obtained in Blanco-Fernández et al. (2011). It is given in the fol-
lowing proposition and will be the last one to be compared later on.

Proposition 2. Under the conditions of Model M , the LS regression coeffi-

cients estimator is b̂exact = (α̂1, α̂2), where:

α̂1 =
Cov(xM ,y)

V ar(xM )

α̂2 = min
{
â0,max

{
0,
Cov(xS ,y)

V ar(xS)

}}
being â0 = min

{
spr yi

sprxi

}
∀i ∈ {1, . . . , n}.

According to Blanco-Fernández et al. (2011), given b̂α any estimator of bα,
it can be proved that the estimator for the residual, Δ, is:

Δ̂ = y −H XBl b̂α,

or alternatively as

Δ̂ = y −H (xM α̂1 + xS α̂2).

Indeed, as the existence of Hukuhara’s difference y−H XBl b̂α is guaranteed,
d2τ (y,X

Bl b̂α+1Δ) = d2τ (y−H XBl b̂α, 1Δ) and applying Fréchet principle, it
is obtained

Δ̂ = y −H (xM α̂1 + xS α̂2) = y −H (xM α̂1 + xS α̂2).
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4 Applications: A Comparative Study

The first example is concerned with the relationship between the systolic
and diastolic pressures in some patients in the hospital Valle del Nalón, in
Asturias. The pulse rate as well as both pressure ranges along a day will
be modelled by random intervals, where the endpoints of the interval are
the minimum and maximum respectively. The mathematical structure will
be given by Ω = {3000 patients of the hospital}, the Borel σ-algebra and a
probability P which is uniformly distributed.

Table 1 represents the data of the sample of 56 patients. For this example
the constraint sprx bα ≤ spry is fulfilled for the 56 patients. Table 2 sum-
marizes the estimates for α1 and α2. For the separate models approach, bm0
and bs0 refer to the real-valued intercepts while for the rest of the procedures
Δ denotes the interval-valued intercept.

Table 1 y: diastolic blood preassure (mmHg) and x: systolic blood pressure (mmHg)

x y x y x y

118-173 63-102 119-212 47-93 98-160 47-108
104-161 71-118 122-178 73-105 138-221 70-118
131-186 58-113 127-189 74-125 97-154 60-107
105-157 62-118 113-213 52-112 87-152 50-95
120-179 59-94 141-205 69-133 87-150 47-86
101-194 48-116 99-169 53-109 120-188 53-105
109-174 60-119 126-191 60-98 141-256 77-158
128-210 76-125 99-201 55-121 95-166 54-100
94-145 47-104 88-221 37-94 108-147 62-107
148-201 88-130 94-176 56-121 92-172 45-107
111-192 52-96 102-156 50-94 115-196 65-117
116-201 74-133 103-159 52-95 83-140 45-91
102-167 39-84 102-185 63-118 99-172 42-86
104-161 55-98 111-199 57-113 113-176 57-95
106-167 45-95 130-180 64-121 114-186 46-103
112-162 62-116 103-161 55-97 145-210 100-136
136-201 67-122 125-192 59-101
90-177 52-104 97-182 54-104
116-168 58-109 100-161 54-104
98-157 50-111 159-214 90-127

All the estimates for α1 are equal. However, the situation for α2 is different.

Focussing on b̂emp and b̂exact, it can be seen that they are equal because the
sample values fulfil the constraints to assure the existence of the residuals.
However, in general, they do not need to be the same value (as shown in

next example, due to the fact that b̂exact was defined to fulfil the constraint,

whereas b̂emp was not). The estimate obtained from the KKT approach is the
same as well, but this one was obtained by a numerical approximation. Then
we can conclude that the numerical approximation is really close to the exact
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Table 2 Estimations of the parameters α1, α2,Δ and bm0 , bs0

Estimator α1 α2 Δ/bm
0 − bs

0

b̂exact 0.4539 0.2570 [1.0164,32.7000]

b̂kkt 0.4539 0.2570 [1.0164,32.7000]

b̂emp 0.4539 0.2570 [1.0164,32.7000]

b̂sep 0.4539 0.6842 16.8582-0.9443

one. b̂sep reaches a really high value in the estimation of α2, which seem to
denote that this estimator is not a good one, when it is applied to Model M .

The second example is concerned with the relationship between the famil-
iar average income (y) and the percentage of people with higher education
(x) in EEUU in 2006 (http://fact?nder.census.gov). The difference between
this example and the previous one is that not all the values of the sample ful-
fil the constraint sprx bα ≤ spry. Table 3 displays the data of the sample of
50 people. Then, Table 4 summarizes the values of the different estimates for
α1 and α2. Again, estimates of α1 are equal for all the approaches. However,
the estimate of α2 is different for all the approaches excepting the exact and
the KKT-based methods.

5 Conclusions

Some approaches to estimate the regression coefficients have been proposed
and the comparison between them have been made by means of some exam-

ples. According to the empirical results, estimator b̂sep does not provide good
results, which is natural, as they do not account for the specific features of

the unified model that has been considered. Thus, b̂sep will often divert from

the b̂exact.
The performance of the empirical estimator depends on the data which

has been used. If the data satisfies the constraint to assure the existence of
the residuals, then the estimator is similar to the exact one. Otherwise, it is
an erroneous estimator, as it provides wrong estimates for α2, the coefficient
accompanying the spreads. In any case, the estimator could be used for large
samples, as it approaches to the populational parameter consistenly.

Finally, the numerical estimator b̂kkt is an adequate, as it reaches values which
are really close to the exact ones.
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Table 3 y: familiar average income, x: percentage of people with higher education

State y x State y x

Alabama 48.460-49.954 7.5-7.9 Alaska 67.501-72.243 8.8-10.2
Arizona 55.063-56.355 8.9-9.5 Arkansas 44.28-45.906 5.9-6.5
California 64.150-64.976 10.3-10.5 Colorado 63.639-65.589 12.1-12.7
Connect. 77.203-79.105 14.0-14.8 Delaware 60.406-64.84 9.9-11.1
Columbia 57.076-65.134 24.4-26.4 Florida 54.043-54.847 8.8-9.0
Georgia 55.503-56.721 9.0-9.4 Hawaii 68.823-71.731 9.3-10.3
Idaho 50.612-52.668 6.8-7.4 Illinois 62.592-63.650 10.6-11.0
Indiana 55.322-56.240 7.8-8.2 Iowa 55.158-56.312 7.1-7.7
Kansas 56.159-57.555 9.5-10.1 Kentucky 48.044-49.408 8.0-8.4

Louisiana 47.467-49.055 6.6-7.0 Maine 51.820-53.766 8.5-9.3
Maryland 76.988-78.690 15.4-16.0 Massach. 73.710-75.216 15.4-15.8
Michigan 57.461-58.531 9.0-9.4 Minnesota 66.324-67.294 9.4-9.8
Mississippi 41.797-43.813 5.8-6.4 Missouri 52.465-53.587 8.5-8.9
Montana 50.177-51.835 7.8-9.0 Nebraska 56.291-57.589 8.0-8.8
Nevada 60.629-62.303 6.9-7.5 N.Hampshire 70.065-72.287 10.6-11.8
N.Jersey 77.226-78.524 12.2-12.6 N.Mexico 46.84749.551 10.5-11.3
N.York 61.774-62.502 13.2-13.4 N.Carolina 51.855-52.817 8.1-8.5

N.Dakota 53.918-56.852 5.9-7.1 Ohio 55.760-56.536 8.1-8.5
Oklahoma 47.179-48.731 7.0-7.4 Oregon 55.166-56.680 9.7-10.3
Pennsylv. 57.787-58.509 9.4-9.8 R.Island 62.762-66.704 10.7-11.9
S.Carolina 49.677-50.991 7.7-8.1 S.Dakota 52.870-54.742 6.7-7.7
Tennes. 49.240-50.368 7.3-7.7 Texas 52.080-52.630 7.9-8.1
Utah 57.306-58.976 9.0-9.8 Vermont 56.752-59.574 12.1-13.5

Virginia 66.263-67.509 12.9-13.5 Washington 63.055-64.355 10.5-10.9
W.Virginia 43.189-44.835 6.3-6.9 Wisconsin 60.172-61.096 8.2-8.6
Wyoming 55.797-59.213 6.8-8.0

Table 4 Estimates of the parameters

Estimator α̂1 α̂2 Δ̂/b̂m
0 − b̂s

0

b̂exact 2.9767 1.3817 [29.7003,30.5269]

b̂kkt 2.9767 1.3817 [29.7003,30.5269]

b̂emp 2.9767 2.3947 [30.0204,30.2068]

b̂sep 2.9767 2.6276 30.1136-0.0196
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Hybrid Least-Squares Regression
Modelling Using Confidence Bounds

Bülent Tütmez1 and Uzay Kaymak2

Abstract One of the questions regarding bridging of soft computing and sta-
tistical methods is the (re-)use of information between the two approaches. In
this context, we consider in this paper whether statistical confidence bounds
can be used in the hybrid fuzzy least squares regression problem. By using the
confidence limits as the spreads of the fuzzy numbers, uncertainty estimates
for the fuzzy model can be provided. Experiments have been conducted in the
paper, both on regression coefficients and the predicted responses of regres-
sion models. The findings show that the use of the confidence intervals as the
widths of memberships gives successful results and opens new possibilities in
system modeling and analysis.

1 Introduction

Regression is a wide-range statistical methodology used in data analysis.
There are many regression methodologies in the literature, such as conven-
tional (ordinary) regression, fuzzy regression and hybrid regression [7, 17].
One of these methods, the hybrid fuzzy regression, is a novel procedure,
which combines randomness and fuzziness into a regression model, and can
be used in data analysis and system modeling.

The hybrid (fuzzy) regression models proposed in literature are developed
based on minimizing fuzziness or the least-squares of errors as the fitting
criterion [15, 14]. In addition, some models employ interval analysis [10, 2].
The error term in the regression structures is the main source of the dif-
ference between conventional regression and fuzzy regression. In contrast to
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randomness in conventional regression, the error term is considered as fuzzy
variables in fuzzy regression. Recently, fuzzy arithmetic based solutions have
also been considered [9]. A novel approach of hybrid least-squares regression,
which uses the definition of weighted fuzzy arithmetic and the well-accepted
least squares fitting criterion, has been proposed by [4].

Both fuzzy set models and statistical models have their specific set of pa-
rameters that need to be identified given a data set. For instance, the spreads
of fuzzy sets must be determined when applying hybrid regression modeling.
An interesting question in this regard is whether information that is defined
in the context of statistical models could be useful for developing fuzzy mod-
els and vice versa. In this paper, we address one such question, whether the
hybrid regression problem can be handled beneficially by using (statistical)
confidence intervals. The model uses the hybrid fuzzy least-squares proce-
dure and provides the spreads (widths) of the memberships from confidence
bounds. In this manner, integration of statistics and fuzzy analysis is provided
in a very specific way. The applicability of confidence interval-based analysis
are presented both on linear regression coefficients and predicted values by
using numerical examples.

The rest of the paper is organized as follows. Section 2 states the basics of
weighted fuzzy arithmetic and the hybrid fuzzy least-squares regression. Con-
fidence interval-based approach for coefficients and predictions is described
in Section 3. Section 4 presents the applications of the proposed approach.
Finally, Section 5 gives the conclusions.

2 A Review on Hybrid Fuzzy Linear Least-squares
Regression

The hybrid fuzzy regression has been developed based on fuzzy arithmetic
and least-squares fitting approach. In this section, we give an overview of
hybrid regression modeling as formulated in [5, 4].

2.1 Weighted Fuzzy Arithmetic

The approach for hybrid fuzzy linear least-squares regression (LS) is based
on the concept of weighted fuzzy arithmetic [4]. Fuzzy arithmetic is a well-
known tool used in determining levels of uncertainty [1, 11]. Due to some
drawbacks of conventional fuzzy arithmetic, new approaches such as weighted
fuzzy arithmetic have been proposed. The weighted fuzzy arithmetic com-
bines each level of operation weighted via the membership level for the entire
fuzzy set, and divides the weighted combination using the total integral of the
membership function [12]. The method employs the theory of defuzzification
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to convert the operation of fuzzy sets into a crisp real number and determines
suitable crisp numbers representative (in some sense) of fuzzy sets. The de-
termination of fuzzy widths is the corner stone of the arithmetic operations,
since the width controls the fuzziness level of the parameters.

Let Ã and B̃ be triangular fuzzy numbers which can be denoted as Ã =
(ma, ca,L, ca,R), B̃ = (mb, cb,L, cb,R), respectively, wherem is the fuzzy center,
cL is the left fuzzy width, and cR is the right fuzzy width. At h membership
level (i.e. taking the α-cut with α = h), the intervals of Ã and B̃ can be
presented as follows [5]:

Ãh =
[
AL

h , A
R
h

]
= [ma − (1− h)ca,L,ma + (1− h)ca,R] , (1)

and
B̃h =

[
BL

h , B
R
h

]
= [mb − (1− h)cb,L,mb + (1− h)cb,R] . (2)

Based on the intervals above, weighted form of fuzzy addition, fuzzy sub-
traction, fuzzy multiplication and fuzzy division can be obtained as follows.

Ã+ B̃ = (ma +mb) +
1

6
[(ca,R + cb,R)− (ca,L + cb,L)] . (3)

Ã− B̃ = (ma −mb) +
1

6
[(ca,R − cb,R)− (ca,L − cb,L)] . (4)

ÃB̃ = mamb + [(mbca,R −macb,R)− (mbca,L −macb,L)] + (5)

+
1

12
(ca,Lcb,L + ca,Rcb,R).

Ã/B̃ =

∫ 1

0

[ma − (1− h)ca,L]

[mb − (1− h)cb,L]
h dh+

∫ 1

0

[ma + (1− h)ca,R]

[mb + (1− h)cb,R]
h dh. (6)

In the system (3) – (6), the coefficients like 1/6 were obtained from the
weighted integrations [4].

2.2 Hybrid Multiple Fuzzy Least Squares Regression

Hybrid least-squares system covers fuzzy arithmetic and sum of the squares.
By using triangular membership form, the following regression structures can
be obtained:

Ŷi = Ã0 +

p∑
p′=1

ÃiX̃p′,i

= (a0, c0,L, c0,R) + (a1, c1,L, c1,R)X1,i + · · ·+ (ap, cp,L, cp,R)Xp,i, (7)

where p denotes the number of independent variables, (ap, cp,L, cp,R) is the
p-th fuzzy slope coefficient, and (a0, c0,L, c0,R) is the fuzzy intercept co-



56 B. Tütmez and U. Kaymak

efficient. In the same way, each measured value Ỹi can be presented as
Ỹi = (Yi, ei,L, ei,R). To formulate the summation of squares of errors between
predicted and observed values, minimization of the following E function can
be applied [12]:

E =
n∑

i=1

(
Ŷi − Ỹi

)2
(8)

=

n∑
i=1

{
(a0 + a1Xi − Yi)

2
+

1

3
(a0 + a1Xi − Yi) [(c0,R + c1,RXi − ei,R)−

− (c0,L + c1,LXi − ei,L)] +

+
1

12

[
(c0,L + c1,LXi − ei,L)

2
+ (c0,R + c1,RXi − ei,R)

2
]}

.

The solution procedure, which is similar to the solution of ordinary regres-
sion problem, consists of three components: normal equations for fuzzy cen-
ters, normal equations for left fuzzy spreads, and normal equations for right
fuzzy spreads. For a given set of data (X1,i, X2,i, . . . , Xp,i : (Yi, ei,L, ei,R) ,
i = 1, . . . , n), the following normal equations for fuzzy centers can be con-
structed [4]:

n a0 +

n∑
i=1

X1,ia1 +

n∑
i=1

X2,ia2 + · · ·+
n∑

i=1

Xp,iap =

n∑
i=1

Yi,

n∑
i=1

X1,ia0 +

n∑
i=1

X2
1,ia1 +

n∑
i=1

X1,iX2,ia2 + · · ·+
n∑

i=1

X1,iXp,iap =

n∑
i=1

X1,iYi, (9)

.

.. +
.
.. +

.

.. + · · · +
.
..

.

..
n∑

i=1

Xp,ia0 +

n∑
i=1

Xp,iX1,ia1 +

n∑
i=1

Xp,iX2,ia2 + · · ·+
n∑

i=1

X2
p,iap =

n∑
i=1

Xp,iYi.

The normal equations for the left spread can be presented as follows:

n c0,L +

n∑
i=1

X1,ic1,L +

n∑
i=1

X2,ic2,L + · · ·+
n∑

i=1

Xp,icp,L =

n∑
i=1

ei,L, (10)

n∑
i=1

X1,ic0,L +

n∑
i=1

X2
1,ic1,L +

n∑
i=1

X1,iX2,ic2,L + · · ·+
n∑

i=1

X1,iXp,icp,L =

n∑
i=1

X1,iei,L,

... +
... +

... + · · · +
...

...
n∑

i=1

Xp,ic0,L +

n∑
i=1

Xp,iX1,ic1,L +

n∑
i=1

Xp,iX2,ic2,L + · · ·+
n∑

i=1

X2
p,icp,L =

n∑
i=1

Xp,iei,L.

The normal equations for the right spread can be presented as follows:
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n c0,R +

n∑
i=1

X1,ic1,R +

n∑
i=1

X2,ic2,R + · · ·+
n∑

i=1

Xp,icp,R =

n∑
i=1

ei,R, (11)

n∑
i=1

X1,ic0,R +

n∑
i=1

X2
1,ic1,R +

n∑
i=1

X1,iX2,ic2,R + · · ·+
n∑

i=1

X1,iXp,icp,R =

n∑
i=1

X1,iei,R,

... +
... +

... + · · · +
...

...
n∑

i=1

Xp,ic0,R +

n∑
i=1

Xp,iX1,ic1,R +

n∑
i=1

Xp,iX2,ic2,R + · · ·+
n∑

i=1

X2
p,icp,R =

n∑
i=1

Xp,iei,R.

3 Confidence Interval-based Approach

In the procedures given in (9) – (11), the fuzzy centers of fuzzy regression
coefficients are provided by the fuzzy center of observed data. The left fuzzy
spreads and the right fuzzy spreads of the fuzzy regression coefficients are
obtained separately from the corresponding fuzzy spreads of the observed
data [5].

In the above system, determining fuzzy widths has crucial importance on
the solution. In this paper, we investigate the use of confidence intervals as a
tool to determine the spreads of fuzzy sets. For the hybrid regression system,
two types of confidence intervals can be considered.

• Confidence intervals on the parameters β0, β1, . . . , βp of the general multi-
linear model.

• Prediction interval on Y |x1, x2, . . . , xp, an individual response for a given
set of values of the predictor variables.

3.1 Confidence Interval on Coefficients

As discussed in [6], to provide the regression coefficients, the fuzzy regres-
sion methods can use various parameters such as maximum compatibility
criterion, minimum fuzziness criterion, or interval analysis. Similarly, the use
of confidence-bounds for computing the coefficients in hybrid linear system
could be an alternative way to be able to extend a point estimate for a pa-
rameter to an interval estimate in the way of appraisal of its accuracy [3].

In a general linear model, the estimators β0, β1, . . . , βp can be taken as
follows:

β̂ = (X′X)−1X′Y. (12)

The variance-covariance matrix for β̂ is (X′X)−1σ2. The variances of β0, β1,
. . ., βp can be stated by c00σ

2, c11σ
2, cppσ

2, where cii represents the element
on the main diagonal in row i + 1 of the matrix (X′X)−1. From this point,
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the standard normal form of the random variable can be presented as follows:

Z =
β̂i − βi
σ
√
cii

, (13)

where σ is unknown. We can replace it with its estimator S =
√

SSE/(n− p − 1)

to form the Tn−p−1 random variable

Tn−p−1 =
β̂i − βi
S
√
cii

. (14)

The residual or error sum of squares, SSE , may be large either because Y
exhibits a high variability naturally or because the assumed model is inap-
propriate. Based on the equations above, the confidence bound for βi, which
is the ith model parameter in the general linear model, can be expressed as
follows [13]:

β̂i ± tα/2S
√
cii, (15)

where the point tα/2 is the appropriate point based on the Tn−p−1 distribu-
tion.

3.2 Prediction Interval on a Single Predicted Response

From hybrid regression perspective, one of the most useful types of confidence
intervals is those on single predicted responses. The confidence bounds for
an individual response for a given set of values of predictor variables can be
considered in the hybrid-least squares problem. From this point of view, the
prediction bounds for Ŷ |x10, x20, . . . , xp0, an individual response for a given
set of values of the predictor variables, can be stated as follows [13]:

Ŷ |x10, x20, . . . , xp0 ± tα/2S
√
1 + x0

′(X′X)−1x0, (16)

where the point tα/2 is the appropriate point based on the Tn−p−1 distribu-
tion. The expression given in (16) can provide the spreads of the fuzzy num-
bers like triangular numbers, directly. Therefore, the error values employed
in the hybrid least squares system can be obtained using the prediction in-
tervals on a different confidence levels such as 90% or 95%, depending on the
user preference and problem type.
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4 Experimental Studies

The experimental studies were conducted for both regression coefficients and
prediction values. The studies performed by real data sets derived from geo-
environmental science and reliability measures of the developed models have
been conducted.

4.1 Experiments on Regression Coefficients

The methodology proposed for evaluating the regression coefficients is close
to the fuzzy least-squares approach by minimum fuzziness criterion. Two
stages were applied in computing regression coefficients. In the first stage, the
fuzzy centers have been provided from the ordinary least-squares regression.
After that, by using (15), the widths of memberships (coefficients) have been
obtained.

The application has been shown using a basic regression data [10]. This
data set was preferred, because some experiments were carried out on this
data in the literature, so that we can conduct a comparison. In the following,
data for symmetrical triangular fuzzy numbers are considered. It covers the
following crisp X and crisp Y values:

[(Xi : Yi)] = [(2 : 14), (4 : 16), (6 : 14), (8 : 18),

(10 : 18), (12 : 22), (14 : 18), (16 : 22)].

By the fuzziness using confidence bounds, the regression expressions have
been provided at different levels of confidence which are 80%, 90% and 95%.
Table 1 gives the regression equations together with the results from former
works that were presented in [6]. The equations consist of the resulting mean
and width values. It can be seen that the solutions from hybrid LS regression
(first number in the brackets) are centered around the ordinary LS regression
solutions, but the uncertainty associated with the solution (second number
in the brackets) has been reduced compared to solutions from fuzzy LS re-
gression with the minimum fuzziness criterion. Furthermore, the associated
fuzziness increases with increasing confidence levels, as expected. Therefore,
more uncertainty must be accepted in order to have larger confidence.

4.2 Experiments on Predicted Values

To illustrate the prediction bounds on predicted observations, two experi-
ments have been conducted by real data sets. The performance assessments
of the models have been carried out using reliability measures. The hybrid



60 B. Tütmez and U. Kaymak

Table 1 Regression coefficients obtained from different models.

Regression method Hybrid regression equation

Ordinary LS regression Ŷ = 12.93 + 0.54X
Fuzzy LS regression using

maximum compatibility criterion Ŷ = 12.55+0.59X±√
229.86X+3.08X2

Fuzzy LS regression using

minimum fuzziness criterion Ŷ = (12.93, 5.83) + (0.54, 0.23)X
Hybrid LS regression using

95% confidence-bounds Ŷ = (12.93, 3.43) + (0.54, 0.34)X
Hybrid LS regression using

90% confidence-bounds Ŷ = (12.93, 2.73) + (0.54, 0.27)X
Hybrid LS regression using

80% confidence-bounds Ŷ = (12.93, 2.02) + (0.54, 0.20)X

correlation coefficient (HR), which shows the linearity assumption of the
hybrid model, is employed for reliability evaluation. In addition, a hybrid
standard error of estimates (HS e) is employed to measure the goodness of
fit between the hybrid regression model and measured data. In particular,
the smaller HSe indicates the better goodness of fit and better accuracy of
predictions. Authors of [5] formulated the HR and HSe using the weighted
fuzzy arithmetic as follows:

HR2 =

∑n
i=1

(
Ŷi − Ȳ

)2
∑n

i=1

(
Ỹi − Ȳ

)2 , (17)

HS e =

√√√√ 1

n− p− 1

n∑
i=1

(
Ŷi − Ỹi

)2
, (18)

in which n−p−1 is the degrees of freedom. Ỹ and Ŷ represent measured and
predicted values, respectively. Ȳ denotes the mean of the measured values.
Note that the open forms of the expressions above include the fuzzy terms [4].

4.2.1 Application 1

In the first experimental work, Oasis Valley data set has been used. The U.S.
government has exploded a large number of nuclear devices underground at
the Nevada Test Site, many at or below the water table. The data set provides
a table for 19 trace elements in water collected from 22 wells and springs in
the Nevada Test Site and adjacent Oasis Valley [8].

The data covers the locations of the wells and springs in arbitrary Cartesian
coordinates. Because the relationships between the coordinates and trace



Hybrid Least-Squares Regression Modelling Using Confidence Bounds 61

elements are important for geo-environmental appraisal, the locations have
been considered as predictors and trace elements Lithium (Li), Rubidium
(Rb) and Selenium (Se) have been determined as response variables for three
different experiments, respectively. The applications have been conducted at
95% level of confidence. To perform the reliability analysis, both conventional
reliability measures and hybrid reliability measures were computed. Both the
results are summarized in Table 2 for each trace element.

Table 2 Reliability measures for trace element models.

Conventional reliability measure Hybrid reliability measure
Trace element R2 Se HR2 HSe

Li 0.500 38.886 0.547 38.529
Rb 0.477 4.590 0.667 4.535
Se 0.113 0.324 0.485 0.316

4.2.2 Application 2

In the second application, a coal site has been considered. Sivas-Kalburçayırı
field is one of the most important lignite reserves in Turkey. Lignite seams in
this field are utilized to feed coal to a power plant. The data set comprises of
67 records of the field [16]. Lignite quality (calorific value) is mainly controlled
by four factors which are moisture content, ash content, volatile matter or
sulphur content. Therefore a multi-linear structure has been designed using
these variables. The application has been performed at the 90% level of con-
fidence. As a result of the calculations, the parameters for reliability measure
have been obtained as in Table 3.

Table 3 Reliability measures for lignite quality.

Conventional reliability measure Hybrid reliability measure
Response R2 Se HR2 HSe

Calorific value 0.809 128.500 0.835 129.455

4.2.3 Discussion

The experiments on the confidence interval-based model suggest that the
procedure obtains a convenient tool for dealing with crisp measured data by
analyzing the random errors based on a widely accepted statistical ground. In
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addition, the method enables an opportunity to analyze a system on differ-
ent levels of confidence and also provides a transparent way for uncertainty
evaluation.

If HSe is greater than the standard deviation of measured values of re-
sponse variable Sỹ, the regression analysis can not be accepted as successful.
Because the Sỹ is a constant and is independent from the method, the ra-
tio HS e/Sỹ is a normalized measure of the goodness of fit [4]. Thus, HSe,
HSe/Sỹ and HR measures can be employed in performance evaluations.

As can be seen in Tables 2 and 3, HR2 values of hybrid model is better than
conventional regression for both models. This finding can be confirmed for
the second case study using HS e. The confidence-based analysis leads to im-
proved HSe values in the first case study. HSe/Sỹ ratios have been obtained
as 0.888, 0.791 and 1.0 for ordinary regression of each trace element, respec-
tively. The values for confidence-bound based approach have been recorded
as 0.880, 0.782 and 0.975, respectively. A small ratio is preferred in modelling
works, and most of the applications satisfy this condition. In the second study,
the ratio has been obtained as 0.951 and 0.956 for ordinary regression and
hybrid regression, respectively. Due to the close values recorded in the appli-
cation, no meaningful difference between the methods based on HSe/Sỹ can
be mentioned.

Two drawbacks of the study should be mentioned. First, the experiments
have been conducted using crisp input and outputs. Therefore, the perfor-
mances on the fuzzy inputs and outputs have not been evaluated. Second,
the data was limited and very heterogeneous (natural field data), because of
which there was no consistent performance improvement owing to the model.
However, the approach given in this study and the former works in liter-
ature may provide some possibilities for future investigations on large and
conditioned data sets.

5 Conclusions

Hybrid fuzzy least squares regression problem was handled using confidence
bound, which is a well-known statistical procedure. Instead of the errors pro-
vided by some formulations, the error based confidence-intervals have been
suggested in hybrid least squares regression formulation. The experimental
works with real data sets have been performed, both with regression coeffi-
cients and with predicted responses. The results showed that the confidence
interval-based approach can provide successful results and also possibilities
for future works in depth.
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simple linear model for interval data based on set arithmetic. Computational Statistics
& Data Analysis 55(9):2568–2578

3. Bowermann BL, O’Connell R (2000) Linear Statistical Models: an applied approach.
Duxbury Press, Boston, USA

4. Chang YHO (2001) Hybrid fuzzy least-squares regression analysis and its reliability
measures. Fuzzy Sets and Systems 119:225–246

5. Chang YHO, Ayyub BM (1998) Hybrid least-squares regression analysis. In: Ayyub
BM, Gupta MM (eds.) Uncertainty Analysis in Engineering and Sciences, Interna-
tional Series in Intelligent Technologies, vol 11, chap 12. Kluwer Academic Publish-
ers, Boston

6. Chang YHO, Ayyub BM (2001) Fuzzy regression methods — a comparative assess-
ment. Fuzzy Sets and Systems 119:187–203

7. Draper N, Smith H (1998) Applied Regression Analysis. Wiley, New York
8. Farnham IM, Stetzenbach KJ, Singh AK, Johannesson KH (2000) Deciphering

groundwater flow systems in Oasis Valley, Nevada, using trace element chemistry,
multivariate statistics, and geographical system. Mathematical Geology 32(8):943–
968

9. González-Rodŕıguez G, Blanco A, Colubi A, Lubiano A (2009) Estimation of a
simple linear regression model for fuzzy random variables. Fuzzy Sets and Systems
160(3):357–370

10. Ishibuchi H (1992) Fuzzy regression analysis. Japan Journal of Fuzzy Theory and
Systems 4:137–148

11. Kaufmann A, Gupta MM (1991) Introduction to Fuzzy Arithmetic — theory and
applications. Van Nostrand Reinhold Company, New York

12. Kwong CK, Chen Y, Chan KY, Wong H (2008) The hybrid fuzzy least-squares
regression approach to modeling manufacturing processes. IEEE Trans. on Fuzzy
Systems 16(3):644–651

13. Milton JS, Arnold JC (1995) Introduction to Probability and Statistics. McGraw-Hill,
Singapore

14. Savic D, Pedrycz W (1991) Evaluation of fuzzy regression models. Fuzzy Sets and
Systems 39:51–63

15. Tanaka H, Uejima S, Asai K (1982) Linear regression analysis with fuzzy model.
IEEE Trans. on Systems, Man and Cybernetics 12(6):903–907
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Testing the Variability of Interval
Data: An Application to Tidal
Fluctuation

Ana Belén Ramos-Guajardo1 and Gil González-Rodŕıguez1

Abstract A methodology for analyzing the variability of the tidal fluctuation
in a specific area is proposed in this work. The idea is to consider intervals de-
termined by the minimum and maximum height reached by the tides in a day.
Thus, the theoretical aim is to develop hypothesis tests about the variance of
one or more interval-valued random elements (i.e., random intervals). Some
simulations showing the empirical behavior and consistency of the proposed
tests are carried out by considering different models. Finally, the procedure
is applied to a real-life study concerning the fluctuation of tides in the port
of Gijón (Asturias).

1 Introduction

Tides refer to the vertical motion of water caused by the gravitational effects
of the sun and moon. They vary on timescales ranging from hours to years
due to numerous influences, called tidal constituents, such as rotation of
the Earth, the positions of the moon and the sun relative to Earth, moon
altitude (elevation) above the Earth equator, bathymetry, etc. From ancient
times, tidal observation and discussion has increased in sophistication, first
marking the daily recurrence, then the relationship with the sun and moon.
Some studies concerning the tidal fluctuation have been developed in the
literature along the last years (see, for instance, [4, 8, 21]).

One of the most important applications of tidal fluctuation is tidal power,
which is a form of hydropower that converts the energy of tides into useful
forms of power (mainly electricity). Thus, the energy of tidal flows is con-
verted into electricity by using a tidal generator. Some studies about this
topic can be found in [3, 9, 7]. In this context, it is interesting to analyze, for
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instance, if there has been a big variation of the tidal fluctuation in a specific
year with respect to the previous year, in order to determine the quantity of
electricity that can be generated by the energy of tidal flows.

It is well-known that two high tides and two low tides are usually observed
each day. Thus, experimental data regarding tidal fluctuations is usually given
by the heights reached in the two high tides as well as the heights reached
in the two low tides. To sum up these observations in an unique value would
entail a loss of information that can be avoided by using compact intervals
determined by the minimum and the maximum heights that the tides reach in
a day at a specific place. Some studies regarding interval data can be found,
for instance, in [6, 11, 22].

Random intervals have been shown to be useful in handling this kind of
random elements (see, for instance, [17, 12, 15]), when the interest is focussed
on the associated random element for which values are intervals instead of
on the real-valued random variables determining either the extremes of the
intervals or inner points within them. They were introduced to formalize im-
precise experimental data which can be described by means of intervals. Thus,
random intervals associate compact intervals with experimental outcomes.

The aim of this paper is to test whether or not the variance of a random
interval is equal to, greater than or lower than a given value. One-sample
tests for a Fréchet-type variance in the fuzzy context have been previously
developed by taking into account different situations in Lubiano et al. [18]
and in Ramos-Guajardo et al. [23]. Here, the idea is to derive from the these
studies the corresponding results for the interval case by considering a gen-
eralized metric introduced in [24], in order to apply them to the proposed
real-life situation.

Some preliminaries are first recalled in Section 2. A brief review of statisti-
cal hypothesis tests about the variance of a random interval is then presented
in Section 3. In Section 4 some simulations of the proposed tests are reported.
Section 5 shows an application to a real life study about the variability of
tidal fluctuations in the port of Gijón (Asturias). Finally, some conclusions
and current lines of research are gathered in Section 6.

2 Preliminaries

Let Kc(R) be the class of the nonempty convex compact subsets of R. An in-
terval A ∈ Kc(R) can be expressed in two different ways. The first one is based
on the infimum and the supremum of the interval (A = [inf A, supA]) satis-
fying the order constraint inf A ≤ supA. Due to the difficulties arising with
order restrictions, it is often more convenient to work with the mid/spread
parametrization of A, (mid , spr ) ∈ R× R+, which is defined as

midA = (supA+ infA)/2 and sprA = (supA− infA)/2.
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The class Kc(R) can be naturally endowed with an inner composition law
and an external one which are, respectively, the Minkowski addition and the
product by a scalar, so that for all intervals A,B ∈ Kc(R) and λ ∈ R,

• A+B = [midA+midB−(sprA+sprB),midA+midB−(sprA+sprB)],
• λ ·A = [λmidA− |λ|sprA, λmidA+ |λ| sprA].

The space (Kc(R),+, ·) is not linear due to the lack of a symmetric element
with respect to the Minkowski addition. To overcome this problem it is useful
to consider the so-called Hukuhara difference A−HB, which is defined as the
set difference C, provided that C ∈ Kc(R), so that A = B+C. Nevertheless,
such a difference is not generally well-defined; in fact, given A,B ∈ Kc(R), it
is is easy to show that A−H B exists if and only if sprB ≤ sprA.

Formally, if (Ω,A, P ) is a probability space, a random interval can be
defined as a Borel measurable mapping X : Ω −→ Kc(R) with respect to
the σ-field generated by the topology induced by the well-known Hausdorff
metric dH on Kc(R). Equivalently,X is a random interval if and only if midX
and sprX are real-valued random variables.

Now some summarizing measures concerning random intervals are intro-
duced. The first one concerns a central tendency measure and it is the ex-
pected value of a random interval (which is also an interval). Thus, if X is a
random interval verifying that E(|X |) < ∞ (with |X |(w) = sup{|x| s.t. x ∈
X(w) for ω ∈ Ω}), then the expected value of X in Kudo-Aumann’s sense
(see, e.g., [2]) is given by

E(X) =
{
E(f) | f : Ω → R , f ∈ L1((Ω,A, P )) , f ∈ X a.s.[P ]

}
.

Equivalently, E(X) can be expressed as

E(X) = [E(midX)− E(sprX), E(midX) + E(sprX)].

Some good properties of the expected value of a random interval are that it is
linear and it is coherent with the arithmetic considered for finite populations
and in the sense of the Strong Law of Large Numbers (see [1]).

The second one concerns the dispersion of the random intervals, which is
measured by means of a real-valued variance quantified in terms of mean
‘error’. To define this variance we have considered before a generalized dis-
tance which was firstly proposed in [12] (see also [24]), and such that, for
A,B ∈ Kc(R), its square has the following expression:

d2θ(A,B) = (midA−midB)2 + θ(sprA− sprB)2,

where θ > 0 determines the relative weight of the distance between the
spreads against the distance between the mids. Thus, the choice of θ will
assign less, equal or more weight to the distances between the spreads (con-
nected with the imprecision of the intervals) than to the distances between
the mids (connected with the location of the intervals). Then, provided that
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E(|X |2) < ∞, the variance of a random interval X is defined in a Fréchet
sense (see [10, 16]) as

σ2
X = E

(
d2θ(X,E(X))

)
.

Finally, the corresponding sample moments are defined as in the classical
case. Consider a simple random sample of size n from the random inter-
val X , {X1, . . . , Xn} (i.e., X1, . . . , Xn are independent random intervals and
identically distributed as X). Then,

• The interval-valued sample mean of {Xi}ni=1

is given by Xn= (X1 + . . .+Xn)/n.
• The real-valued Fréchet sample variance of {Xi}ni=1

is given by σ̂2
X =

n∑
i=1

d2θ(Xi, Xn)/n, although considering

the real-valued sample quasi-variance of {Xi}ni=1,

Ŝ2
X =

n∑
i=1

d2θ(Xi, Xn)/(n − 1), would be even preferable because it is an

unbiased and consistent estimator of the population variance (see [20]).

3 One-sample Tests for the Variance
of a Random Interval

Let X1, . . . , Xn be n independent and identically distributed random inter-
vals. Given σ0 ∈ R+, the aim of this work is to solve the following tests:

HA
0 : σ2

X = σ2
0 vs. H

A
1 : σ2

X �= σ2
0 (Problem 1); (1)

HB
0 : σ2

X ≤ σ2
0 vs. H

B
1 : σ2

X > σ2
0 (Problem 2); (2)

HC
0 : σ2

X ≥ σ2
0 vs. H

C
1 : σ2

X < σ2
0 (Problem 3). (3)

To design tests for these problems, the following statistic can be considered
by taking into account the results provided in [23]:

Tn =

√
n
(
Ŝ2
X − σ2

0

)
√
σ̂2
d2
θ(X,Xn)

. (4)

It is straightforward to prove that Ŝ2
X = Ŝ2

midX + θŜ2
sprX and σ2

X =

σ2
midX + θσ2

sprX . Thus, the Central Limit Theorem for real-valued variables
shows that

T 1
n =

√
n
(
Ŝ2
X − σ2

0

)
=
√
n
((
Ŝ2
midX − σ2

midX

)
+ θ

(
Ŝ2
sprX − σ2

sprX

))
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converges in law to a N
(
0, σd2

θ(X,E(X))

)
whenever the condition E(|X |4) <∞

is fulfilled.
In addition, it is easy to show that σ̂2

d2
θ(X,Xn)

c.s.−→ σ2
d2
θ(X,E(X))

by consid-

ering Proposition 3 provided in [23]. Therefore,

Tn
L−→ N (0, 1).

Given α ∈ [0, 1], the following asymptotic testing procedure is provided.

• Let z1−α/2 be the (1− α/2)-quantile of the distribution N (0, 1). If H0 in

Problem 1 is true, then limn→∞ P
(|Tn| > z1−α/2

)
= α. Thus, the test that

consist in rejecting H0 in Problem 1 when Tn > z1−α/2 is asymptotically
correct.

• Let z1−α be the (1− α)-quantile of the distribution N (0, 1). If H0 in Prob-
lem 2 is true, then lim supn→∞ P (Tn > z1−α) ≤ α, and the equality is
reached for σ2

X = σ2
0 . Thus, the test that consist in rejecting H0 in Prob-

lem 2 when Tn > z1−α is asymptotically correct.
• Let zα be the α-quantile of the distribution N (0, 1). If H0 in Problem 3

is true, then lim supn→∞ P (Tn < zα) ≤ α, and the equality is reached for
σ2
X = σ2

0 . Thus, the test that consist in rejecting H0 in Problem 3 when
Tn < zα is asymptotically correct.

On the other hand, the application of bootstrap techniques to solve hy-
pothesis tests has been shown to provide better results than the asymptotic
ones when imprecise data are involved (see, for instance, [19, 13, 14]).

Suppose that X is a random interval and that {Xi}ni=1 is a simple random
sample drawn from X . Let {X∗

i }ni=1 be a bootstrap sample from {Xi}ni=1.
Then, by considering analogous developments than the ones in [23], the fol-
lowing bootstrap statistic can be considered:

T ∗
n =

√
n
(
Ŝ2
X∗ − Ŝ2

X

)
√√√√ 1

n

n∑
i=1

(
d2θ
(
X∗

i , X
∗
n

)− σ̂2
X∗

)2 . (5)

The previous statistic is an approximation of the distribution of Tn in the
worst situation under H0. Finally, the Monte Carlo method is used in order
to approximate the unknown distribution of T ∗

n .

4 Simulation Studies

To show the performance of the proposed tests, some simulations are car-
ried out. Specifically, Problems 1, 2 and 3 are analyzed. Given two random
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intervals X and Y , two different situations are considered depending on the
distributions chosen for the mid and the spread of X and Y , namely,

• Case1: midX ≡ U(0, 15) and sprX ≡ U(0, 15).
• Case2: mid Y ≡ U(0, 10) and sprY ≡ mid Y + β(1, 5).

It is easy to show that σ2
X = 25 and σ2

Y = 11.18, so that σ2
0 = 25 in Case

1 and σ2
0 = 11.18 in Case 2. Simple random samples of different sizes were

drawn from X and Y , respectively. In all the cases, the value chosen for θ
was 1/3 which is the weight associated with the Lebesgue measure λ on [0, 1]
when the equivalence of Bertoluzza metric and dθ is considered (see [24]).

Firstly, the results for the asymptotic case are presented. 10,000 simula-
tions of the asymptotic testing procedures have been carried out and the
results for different sample sizes n and the usual significance levels are re-
ported in Tables 1 and 2.

Table 1: Empirical percentage of rejections under H0 (asymptotic tests, Case 1)

H0 : σ2
X = 25 H0 : σ2

X ≥ 25 H0 : σ2
X ≤ 25

n \ 100 β 1 5 10 1 5 10 1 5 10

50 1.55 6.05 11.92 2.44 9.05 15.11 .47 2.66 6.73

100 1.33 5.76 10.49 1.81 7.78 13.27 .57 3.88 7.68

500 .97 5.22 9.96 1.5 5.69 11.05 .71 3.97 8.7

1,000 1.07 5.15 10.34 1.01 5.66 10.46 .89 4.41 9.32

5,000 1.09 4.83 9.88 1.11 5.19 9.96 .98 4.92 9.86

Table 2: Empirical percentage of rejections under H0 (asymptotic tests, Case 2)

H0 : σ2
Y = 11.18 H0 : σ2

Y ≥ 11.18 H0 : σ2
Y ≤ 11.18

n \ 100β 1 5 10 1 5 10 1 5 10

50 2.03 6.69 11.69 3.17 8.6 15 .58 3.16 6.78

100 1.3 5.56 10.8 1.96 7.25 13.25 .73 3.78 7.62

500 .99 5.1 10.08 1.3 5.19 11.13 .89 4.54 9.49

1,000 1.12 4.97 10.17 1.16 5.16 10.64 .91 4.87 9.72

5,000 1.03 5.05 9.95 1.06 5.15 10.17 .98 4.95 9.92

On the other hand, 10,000 simulations of the bootstrap tests have been
performed at the usual significance levels and different sample sizes n, with
1,000 bootstrap replications. The results are shown in Tables 3 and 4.

Tables 1 and 2 show that the asymptotic procedure requires large sample
sizes, since only when n ≥ 1000 the empirical percentage of rejections is
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Table 3: Empirical percentage of rejections under H0 (bootstrap tests, Case 1)

H0 : σ2
Y = 11.18 H0 : σ2

Y ≥ 11.18 H0 : σ2
Y ≤ 11.18

n \ 100β 1 5 10 1 5 10 1 5 10

10 .66 3.54 7.4 1.84 10.64 18.72 2.16 9.66 19.18

30 .92 4.12 8.1 1.6 7.34 14.06 1.86 7.58 14.6

50 .93 4.8 9.64 1.26 6.58 12.6 1.52 6.58 12.82

100 1.02 5.04 9.92 1.18 5.84 11.5 1.4 5.78 11.08

200 1.06 4.92 9.98 1.09 5.42 10.8 1.14 5.32 10.5

Table 4: Empirical percentage of rejections under H0 (bootstrap tests, Case 2)

H0 : σ2
Y = 11.18 H0 : σ2

Y ≥ 11.18 H0 : σ2
Y ≤ 11.18

n \ 100β 1 5 10 1 5 10 1 5 10

10 .62 3.72 7.74 1.22 8.78 15.92 1.16 8.48 16.58

30 .86 4.02 9.06 1.58 7.01 13.8 1.46 7.08 13.14

50 .92 4.88 9.62 1.2 6.12 12.02 1.28 6.02 11.65

100 .94 4.92 9.78 1.12 5.6 10.84 1.13 5.65 10.35

200 .1 4.96 9.96 1.08 5.28 10.42 1.03 5.25 10.21

quite close to the nominal significance level. Nevertheless, the results of both
bootstrap tests are quite good from n ≥ 100 as shown in Tables 3 and 4, since
the empirical percentage of rejections is quite close to the nominal significance
level in both cases from a sample size of 100. In addition, in the two-sample
case the bootstrap approach behaves “quite good” when a sample size of 50
individuals is considered.

5 Application to Tidal Fluctuations

To illustrate in practice the procedure proposed in previous sections, its ap-
plication is shown in a real-life situation regarding the tidal fluctuations ob-
tained along 2010 in the port of Gijón (Asturias, Spain). Data can be found in
<http://lapescasubmarina.com/universal-viewid239.html>. They con-
sist in the heights reached in the two high tides as well as the heights reached
in the two low tides. We have considered interval-valued tidal fluctuations
determined by the minimum and the maximum heights that the tides reach
in a day.

The purpose of the study is to determine if the variability of the tidal
fluctuation in Gijón has changed in 2010 with respect to the one of the year
2009. We have information about the variability corresponding to the tides
fluctuation in 2009 (given by interval data) taking into account the value
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θ = 1/3 (where θ = 1/3 is the weight associated with the Lebesgue measure
λ on [0, 1] when the equivalence of Bertoluzza’s metric and dθ is considered,
see [5, 24]). This choice of θ assigns less weight to the distances between
the spreads (connected with the imprecision) than to the distances between
the mids (connected with the location). The variability of the interval data
provided in 2009 is σ2

0 = .0593.
Note that in this case we are working with interval data and for this reason

we are not going to use the old-fashioned real values’ methodology but the
intervals’ methodology proposed in this work. Thus, if we consider the random
interval X ≡ tidal fluctuation in Gijón in a day of 2010, the idea is to solve
the following test problem:

H0 : σ2
X = .0593 vs. H1 : σ2

X �= .0593.

A simple random sample of size 50 has been drawn from X (since the
bootstrap approach seems to have a good behaviour for a sample size equals
to 50 in the two-sided test, as it is shown in Tables 3 and 4). These data
are gathered in Table 5, and their sample variance is given by σ̂2

X = .0663.
The asymptotic and bootstrap approaches proposed in this work have been
applied (although the asymptotic approach is not really useful in this case
due to the size of the sample considered), leading to p-values of p = .4523
in the asymptotic case and .4793 in the bootstrap one. Therefore, we can
conclude that, at the most usually chosen significance levels, the variability
of the tidal fluctuations in Gijón in 2010 cannot be considered to be different
to the one in 2009, so there has not been big changes in the variability of the
tides movement in 2010 with respect to the year 2009. As a consequence, we
can consider that the tidal fluctuations in the Port of Gijón have more or less
the same behaviour in the year 2010 than in the year 2009.

6 Conclusions

In this work, a methodology for analyzing the variability of the tidal fluctua-
tions in a specific area has been proposed. This methodology is based on the
use of intervals instead of real values for describing these fluctuations. In this
context, some hypotheses tests concerning the variance of interval data have
been presented which have been shown to be useful when moderate sample
sizes (that is, sample sizes greater than or equal to 100) are involved.

It could be interesting to extend the proposed results to the case in which
the variabilities in different areas are to be compared as well as some studies
regarding the mean of the random intervals. In addition, a deeper sensitivity
analysis can be carried out taking into account different choices for θ, as well
as the distributions chosen to determine the intervals. Thus, the proposed
methodology can be viewed as a starting point of a deeper analysis of the
tidal fluctuations.



Testing the Variability of Interval Data 73

Table 5: Tidal fluctuations in Gijón in 2010

Day Fluctuation Day Fluctuation Day Fluctuation Day Fluctuation

1 [.5,4.95] 14 [1, 4.41] 27 [.37, 5.03] 40 [.64, 4.87]

2 [1.62,3.86] 15 [1.86, 3.56] 28 [1.85, 3.56] 41 [.75, 4.74]

3 [1.15, 4.44] 16 [.94, 4.69] 29 [1.45, 4.08] 42 [1.14, 4.24]

4 [1.71, 3.58] 17 [1.79, 3.67] 30 [1.28, 4.09] 43 [1.24, 4.16]

5 [1.1, 4.31] 18 [1.21, 4.32] 31 [.39, 4.96] 44 [.63, 4.92]

6 [1.16, 4.4] 19 [1.46, 3.9] 32 [ .85, 4.45] 45 [1.75, 3.72]

7 [.56, 4.75] 20 [1.46, 4.07] 33 [.97, 4.43] 46 [1.6, 3.91]

8 [1.6, 3.91] 21 [1.66, 3.71] 34 [1.38, 4.14] 47 [.73, 4.86]

9 [1.95, 3.3] 22 [1.15, 4.39] 35 [1.83, 3.46] 48 [.89, 4.41]

10 [1.32, 4.22] 23 [.96, 4.45] 36 [1.21, 4.04] 49 [1.74, 3.76]

11 [1.45, 3.82] 24 [1.33, 4.23] 37 [1.22, 4.34] 50 [1.88, 3.53]

12 [1.55, 3.67] 25 [1.83, 3.61] 38 [ 1.15, 4.11]

13 [1.03, 4.36] 26 [1.13, 4.41] 39 [.78, 4.71]
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Comparing the Medians
of a Random Interval Defined
by Means of Two Different L1 Metrics

Beatriz Sinova1 and Stefan Van Aelst2

Abstract The standard central tendency measure for interval-valued data
is the Aumann-type expected value, but as in real settings it is not always
convenient because of the big influence that small changes in the data as well
as the existence of great magnitude data have on its estimate. The aim of this
paper is to explore other summary measures with a more robust behavior. The
real-valued case has served as inspiration to define the median of a random
interval. The definition of the median as a ‘middle position’ value is not
possible here because of the lack of a universally accepted total order in the
space of interval data, so the median is defined as the element which minimizes
the mean distance, in terms of an L1 metric (extension of the Euclidean
distance in R), to the values the random interval can take. The two metrics
that we consider are the generalized Hausdorff metric (like the well-known
Hausdorff metric, but including a positive parameter which determines the
relative importance given to the difference in imprecision with respect to the
difference in location) and the 1-norm metric introduced by Vitale. The aim
of this paper is to compare these two approaches for the median of a random
interval, both theoretically based on concepts commonly used in robustness
and empirically by simulation.

1 Introduction and Motivation

Statistical data obtained from random experiments can be of a very dif-
ferent nature. Interval data frequently appear when intrinsically imprecise
measurements (like fluctuations, ranges, censoring times, etc.) or values as-
sociated with some imprecise knowledge on numerical values (when dealing
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with grouped data for instance) are involved. Many examples can be found
in real life, such as the intervals describing the age range covered by each
class when individuals in surveys are split into age groups, the fluctuation
of quotations on the stock exchange or the temperature range for the daily
forecast in a certain location. Similarly, many interval data sets are obtained
in research studies in different fields such as Medicine, Engineering, Empirical
and Social Sciences in which the information about the range of values the
variable takes along a period is even more relevant than the detailed records.

Random intervals are interval-valued random elements, that is, they for-
malize mathematically the random mechanism of producing interval data
associated with a random experiment. To analyze this type of data, some
central tendency measures based on the interval arithmetic (globally consid-
ering intervals as elements and not as sets of elements) have been proposed.
The most often used measure is the Aumann-type expected value. It inherits
very good probabilistic and statistical properties from the mean of a real-
valued random variable, but that is also the reason why it can be highly
influenced by the existence of great magnitude data or data changes.

In real settings, the solution is to consider more robust central tendency
measures, like the median. Inspired by this, we define the median of a random
interval. Taking into account that there is no universally accepted total order
criterion in the space of non-empty compact intervals (so the median cannot
be defined as a ‘middle’ position value), an L1 metric, generalization of the
Euclidean metric in R, is required to define the median as the element of the
space minimizing the mean distance to all the values the random interval can
take. The first choice for the L1 metric was the generalized Hausdorff metric
(see Sinova et al [5]): a new distance based on the well-known Hausdorff
metric expressed in terms of the mid/spr characterization of intervals (that
is, their mid-point and their spread or radius). However, there are obstacles to
generalize the median defined by means of the generalized Hausdorff metric to
random fuzzy numbers due to the fact that, although the generalized mid and
spread (see Trutschnig et al. [7]) characterize a fuzzy number, the sufficient
and necessary conditions a function must fulfill to be a generalized mid or
spread are not known yet and it is not possible to guarantee that the median
defined in that way is indeed a fuzzy number. These difficulties prompted
the use of another distance (suitable for the definition of the median of a
random fuzzy number as shown in Sinova et al. [6]), based on the 1-norm,
as introduced by Vitale [8], and which considers the characterization of an
interval in terms of infima and suprema. Of course, a second definition of
median of random intervals is obtained as a particular case of the median for
random fuzzy numbers. The definition of both medians and their immediate
properties are studied in Section 3, after recalling in Section 2 the notation
and basic operations and concepts in the space of interval data. In Section
4, the two proposed definitions of median of a random interval are compared
by means of the finite sample breakdown point and some simulation studies.
Finally, Section 5 presents some conclusions and open problems.
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2 The Space of Intervals Kc(R): Preliminaries

First of all, some notation is established, starting with Kc(R), the class of
nonempty compact intervals. Each one of the intervals K ∈ Kc(R) can be
characterized in terms of its infimum and supremum, K = [infK, supK] or
in terms of its mid-point and spread or radius, K = [midK − sprK,midK+
sprK], where

midK =
infK + supK

2
, sprK =

supK − infK

2
.

To analyze this kind of data, the two most relevant operations from a statis-
tical point of view are the addition and the product by a scalar. In this paper,
we use the usual interval arithmetic (the particular case of set arithmetic).
That is:

• The sum of two nonempty compact intervals, K,K ′ ∈ Kc(R), is defined
as the Minkowski sum of K and K ′, i.e., as the interval

K +K ′ = [infK + infK ′, supK + supK ′] =

[(midK+midK ′)−(sprK+sprK ′), (midK+midK ′)+(sprK+sprK ′)].

• The product of an interval K ∈ Kc(R) by a scalar γ ∈ R is defined as the
element of Kc(R) such that

γ ·K =

{
[γ · infK, γ · supK] if γ ≥ 0

[γ · supK, γ · infK] otherwise

= [γ ·midK − |γ| · sprK, γ ·midK + |γ| · sprK].

A very important remark is that with these two operations the space is
not linear, but only semilinear (with a conical structure) because of the lack
of an opposite element for the Minkowski addition. Therefore, there is no
generally applicable definition for the difference of intervals that preserves
the connection with the sum in the real case. Hence, distances play a crucial
role in statistical developments. Although L2 metrics are very convenient in
many statistical developments like least squares approaches, an L1 distance
is now needed in order to define the median. In this paper, the two following
L1 metrics will be used:

• The generalized Hausdorff metric (Sinova et al. [5]), which is partially
inspired by the Hausdorff metric for intervals and the L2 metrics in
Trutschnig et al. [7]. It includes a positive parameter to weight the rel-
ative importance of the distance between the spreads relative to the dis-
tance between the mid-points (allocating the same weight to the deviation
in location as to the deviation in imprecision is often viewed as a con-
cern in the Hausdorff metric). Given two intervals K,K ′ ∈ Kc(R) and any
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θ ∈ (0,∞), the generalized Hausdorff metric between them is defined as:

dH,θ(K,K
′) = |midK −midK ′|+ θ · |sprK − sprK ′|.

• The 1-norm metric, introduced by Vitale [8]. Given any two intervals
K,K ′ ∈ Kc(R), the 1-norm distance between them is:

ρ1(K,K
′) =

1

2
| infK − infK ′|+ 1

2
| supK − supK ′|.

As mentioned before, this corresponds to the particular case (for intervals)
of the metric used to define the median of random fuzzy numbers (Sinova
et al. [5]).

A random interval is usually defined (following the random set-based ap-
proach to introduce this notion) as a Borel measurable mapping X : Ω →
Kc(R), starting from a probability space (Ω,A, P ), with respect to A and the
Borel σ-field generated by the topology induced by the Hausdorff metric. The
generalized Hausdorff metric and the 1-norm metric are topologically equiv-
alent to each other and to the Hausdorff metric. Therefore, the definition
of random interval can be rewritten in terms of either of these two metrics
instead of the Hausdorff metric. This Borel measurability guarantees that
concepts like the distribution induced by a random interval or the stochastic
independence of random intervals, crucial for inferential developments, are
well-defined by trivial induction. A random interval can also be defined in
terms of real-valued random variables: X is a random interval if, and only
if, both functions inf X : Ω → Kc(R) and supX : Ω → Kc(R) (or equiva-
lently, midX : Ω → Kc(R) and sprX : Ω → [0,∞)) are real-valued random
variables.

The Aumann expectation is the standard central tendency measure for
random intervals. This mean value is indeed the Fréchet expectation with
respect to the dθ metric, which corresponds to the Bertoluzza et al. [1] dis-
tance (see Gil et al. [3]) for the particular case of interval-valued data, and is
defined as:

dθ(K,K
′) =

√
(midK −midK ′)2 + θ · (sprK − sprK ′)2,

where K,K ′ ∈ Kc(R) and θ ∈ (0,∞). This means that the Aumann expec-
tation is the unique interval which minimizes, over K ∈ Kc(R), the expected
squared distance E[(dθ(X,K))2]. Furthermore, it can be expressed explicitly
as the interval whose mid-point equals the expected value of midX and whose
spread equals the expected value of sprX . The Aumann expectation inherits
many very good probabilistic and statistical properties from the expectation
of a real-valued random variable, like the linearity and invariance under lin-
ear transformations, and it also fulfills the Strong Law of Large Numbers
for almost all the metrics we can consider. However, its high sensitivity to
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data changes or extreme data makes this value not always convenient when
summarizing the information given by interval-valued data sets.

3 The Median of a Random Interval Defined Through
an L1 Metric

The Aumann expectation of a random interval is not robust enough which is
the motivation for extending the concept of median. Nevertheless, the non-
existence of a universally accepted total order in the space Kc(R) does not
allow us to define it as a ‘middle position’ value. In real settings another ap-
proach is to define the median as the value with the smallest mean Euclidean
distance to the values of the real-valued random variable. Then, an L1 metric
between intervals which extends the Euclidean distance is required in order
to define the median as the interval with the smallest mean distance to the
values of the random interval. The two L1 metrics between intervals intro-
duced before satisfy this condition, so the definition of the median through
both distances is now formalized.

Definition 1. The dH,θ-median (or medians) of a random interval X : Ω →
Kc(R) is (are) defined as the interval(s) Me[X ] ∈ Kc(R) such that:

E(dH,θ(X,Me[X ])) = min
K∈Kc(R)

E(dH,θ(X,K)), (1)

if these expected values exist.

A very practical result that guarantees the existence of the median and
allows to compute it is the following. Given a probability space (Ω,A, P ) and
an associated random interval X, the minimization problem (1) has at least
one solution, given by any nonempty compact interval such that:

mid Me[X ] = Me(midX), spr Me[X ] = Me(sprX).

It can immediately be noticed that the dH,θ-median is not unique if either
Me(midX) or Me(sprX) (which are medians of real-valued random variables)
are not unique. It should be pointed out that the chosen solution does not
depend on the value chosen for theta, although the mean error does.

Analogously, the median can be defined by means of the 1-norm metric:

Definition 2. The ρ1-median (or medians) of a random interval X : Ω →
Kc(R) is (are) defined as the interval(s) Med[X ] ∈ Kc(R) such that:

E(ρ1(X,Med[X ])) = min
K∈Kc(R)

E(ρ1(X,K)), (2)

if these expected values exist.
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In this situation, the practical choice (one of the solutions of minimization
problem (2)) is the interval Med[X ] ∈ Kc(R) which satisfies:

inf Med[X ] = Me(inf X), supMed[X ] = Me(supX).

If any of these two medians of real-valued random variables are not unique,
the usual criterion of choosing the mid-point of the interval of possible me-
dians is used to guarantee that Med(X) is nonempty.

Both medians preserve most of the elementary operational properties of
the median in real settings. Namely,

Proposition 1. Suppose that X is a random interval associated with a prob-
ability space. Then,

• if the distribution of X is degenerate at an interval value K ∈ Kc(R),

Me[X ] = K,

Med[X ] = K.

• for any K ∈ Kc(R) and γ ∈ R,

Me[γ ·X +K] = γ ·Me[X ] +K,

Med[γ ·X +K] = γ ·Med[X ] +K.

One remark about a distinctive feature in contrast to the real-valued case
is that neither the dH,θ-median nor the ρ1-median of a random interval is
necessarily a value taken by the random interval as can be noticed from the
following example: let X be a random interval taking the values [0, 4], [1, 3]
and [2, 5] with probability 1

3 . In this situation, the dH,θ-median is the interval
Me[X ] = [Me(midX)−Me(sprX),Me(midX)+Me(sprX)] = [2− 3

2 , 2+
3
2 ] =

[ 12 ,
7
2 ] and the ρ1-median is Med[X ] = [Me(inf X),Me(supX)] = [1, 4], neither

of them being values the random interval takes.
As mentioned before, there is no universally accepted total order in the

space Kc(R), so it is not possible to define the median as a ‘middle position’
value. However, both medians are a measure of ‘middle position’ with a cer-
tain partial ordering, when applicable. For the dH,θ-median, it can be proven
that it is coherent with the Ishibuchi and Tanaka [4] partial ordering:

K ≤CW K ′ if, and only if, midK ≤ midK ′ and sprK ≥ sprK ′.

Hence, K ′ is considered to be CW -larger than K if, and only if, its location
is greater and its imprecision is lower than for K:

Proposition 2. For any sample of individuals (ω1, . . . , ωn) such that

X(ω1) ≤CW . . . ≤CW X(ωn)

we have that

• if n is an odd number, then Me[X ] = X(ω(n+1)/2),
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• if n is an even number, then Me[X ] = any interval value ‘between’ X(ωn/2)
and X(ω(n/2)+1), the ‘between’ being intended in the ≤CW sense, that is,

midMe[X ] can be any value in
[
midX(ωn/2),midX(ω(n/2)+1)

]
, whereas

sprMe[X ] can be any value in
[
sprX(ω(n/2)+1), spr (ωn/2)

]
.

On the other hand, the ρ1-median is coherent with the well-known product
order for the inf/sup vector, which is the partial ordering given by:

K � K ′ if, and only if, infK ≤ infK ′ and supK ≥ supK ′

or, equivalently, for all λ ∈ [0, 1] we have that K [λ] ≤ K ′[λ], where K [λ] =
λ supK + (1− λ) inf K.

Proposition 3. For any sample of individuals (ω1, . . . , ωn) such that

X(ω1) � . . . � X(ωn)

we have that

• if n is an odd number, then Med[X ] = X(ω(n+1)/2),

• if n is an even number, then Med[X ] =
X(ωn/2) +X(ω(n/2)+1)

2
.

Finally, the strong consistency of both the sample dH,θ-median and the
sample ρ1-median as estimators of the corresponding population quantities
can be proven under very mild conditions as shown in the following results.

Proposition 4. Suppose that X is a random interval associated with a prob-

ability space (Ω,A, P ) and Me[X ] is unique. If M̂e[X ]n denotes the sample
median associated with a simple random sample (X1, . . . , Xn) from X, then

lim
n→∞ dH,θ

(
M̂e[X ]n,Me[X ]

)
= 0 a.s.[P ].

Proposition 5. Suppose that X is a random interval associated with a prob-
ability space (Ω,A, P ) and Med[X ] is unique without applying any conven-

tion. If M̂ed[X ]n denotes the sample median associated with a simple random
sample (X1, . . . , Xn) from X, then

lim
n→∞ ρ1

(
M̂ed[X ]n,Med[X ]

)
= 0 a.s.[P ].

4 The Comparison between the dH,θ-median
and the ρ1-median of a Random Interval

The first result compares the dH,θ-median and the ρ1-median by means of
the computation of the finite sample breakdown point. Recall that the finite
sample breakdown point is a measure of the robustness, since it gives the
minimum proportion of sample data which should be arbitrarily increased or
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decreased to make the estimate arbitrarily large or small. Following Donoho
and Huber [2], the finite sample breakdown point (fsbp) of the sample dH,θ-
median in a sample of size n from a random interval X is given by:

fsbp(M̂e[X ]n, xn, dH,θ)

=
1

n
min

{
k ∈ {1, . . . , n} : sup

yn,k

dH,θ(M̂e[X ]n, M̂e[Yk]n) =∞
}
,

where xn denotes the considered sample of n data from the metric space
(Kc(R), dH,θ) in which supK,K′∈Kc(R) dH,θ(K,K

′) = ∞ and Me[Yk]n is the
sample median of the sample yn,k obtained from the original sample xn by
perturbing at most k observations.

Analogously, the finite sample breakdown point of the sample ρ1-median
in a sample of size n from a random interval X is, with the same notation:

fsbp(M̂ed[X ]n, xn, ρ1)

=
1

n
min

{
k ∈ {1, . . . , n} : sup

yn,k

ρ1( ̂Med[X ]n, ̂Med[Yk]n) =∞
}
,

Then, it can be proven that

Proposition 6. The finite sample breakdown point of both the sample dH,θ-
median and the ρ1-median from a random interval X, equal

fsbp(M̂e[X ]n, xn, dH,θ) = fsbp(M̂ed[X ]n, xn, ρ1) =
1

n
· �n+ 1

2
�,

where �·� denotes the floor function.

Proof. First note that the conditions supK,K′∈Kc(R) dH,θ(K,K
′) = ∞ and

supK,K′∈Kc(R) ρ1(K,K
′) =∞ are fulfilled in the corresponding metric spaces

because dH,θ(1[n−1,n+1],1[−n−1,−n+1]) = ρ1(1[n−1,n+1],1[−n−1,−n+1]) = 2n.
Since the fsbp for the sample median of a real-valued random variable equals
�n+1

2 �, we immediately have that:

min

{
k ∈ {1, . . . , n} : sup

yn,k

| ̂Me(mid [X ]n)− ̂Me(mid [Yk]n)| =∞
}

= �n+ 1

2
�

min

{
k ∈ {1, . . . , n} : sup

yn,k

| ̂Me(spr [X ]n)− ̂Me(spr [Yk]n)| =∞
}

= �n+ 1

2
�

min

{
k ∈ {1, . . . , n} : sup

yn,k

| ̂Me(inf[X ]n)− ̂Me(inf[Yk]n)| =∞
}

= �n+ 1

2
�

min

{
k ∈ {1, . . . , n} : sup

yn,k

| ̂Me(sup[X ]n)− ̂Me(sup[Yk]n)| =∞
}

= �n+ 1

2
�
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Therefore,

sup
y
n,�n+1

2
�

dH,θ(M̂e[X ]n, ̂Me[Y�n+1
2 	]n) ≥

sup
y
n,�n+1

2
�

|mid (M̂e[X ]n)−mid ( ̂Me[Y�n+1
2 	]n)| =

sup
y
n,�n+1

2
�

| ̂Me(mid[X]n)− ̂Me(mid[Y� n+1
2 	]n)| =∞

and
sup

y
n,�n+1

2
�

ρ1( ̂Med[X ]n, ̂Med[Y�n+1
2 	]n) ≥

sup
y
n,�n+1

2
�

1

2
| inf( ̂Med[X ]n)− inf( ̂Med[Y�n+1

2 	]n)|

=
1

2
sup

y
n,�n+1

2
�

| ̂Me(inf[X ]n)− ̂Me(inf[Y�n+1
2 	]n)| =∞

On the other hand,

supy
n,�n+1

2
�−1

| ̂Me(mid [X ]n)− ̂Me(mid [Y�n+1
2 	−1]n)| = M1 <∞

supy
n,�n+1

2
�−1

| ̂Me(spr [X ]n)− ̂Me(spr [Y�n+1
2 	−1]n)| = M2 <∞

supy
n,�n+1

2
�−1

| ̂Me(inf[X ]n)− ̂Me(inf[Y�n+1
2 	−1]n)| = M3 <∞

supy
n,�n+1

2
�−1

| ̂Me(sup[X ]n)− ̂Me(sup[Y�n+1
2 	−1]n)| = M4 <∞

Consequently,

sup
y
n,�n+1

2
�−1

dH,θ(M̂e[X ]n, ̂Me[Y�n+1
2 	−1]n)

= sup
Y�n+1

2
�−1

[
| ̂Me(mid[X ]n)− ̂Me(mid[Y�n+1

2 	−1]n)|

+ θ · | ̂Me(spr[X ]n)− ̂Me(spr[Y�n+1
2 	−1]n)|

]
≤M1 + θ ·M2 <∞

and
sup

y
n,�n+1

2
�−1

ρ1( ̂Med[X ]n, ̂Med[Y�n+1
2 	−1]n)

= sup
y
n,�n+1

2
�−1

[
1

2
· | ̂Me(inf[X ]n)− ̂Me(inf[Y�n+1

2 	−1]n)|
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+
1

2
· | ̂Me(sup[X ]n)− ̂Me(sup[Y�n+1

2 	−1]n)|
]
≤ M3 +M4

2
<∞

�

Furthermore, the fsbp of both medians can also be compared with the Au-
mann expectation:

Theorem 1. The finite sample breakdown point of the sample Aumann ex-
pectation from a random interval X, fsbp(Xn), is lower than the ones for the
sample dH,θ-median and the sample ρ1-median for samples of size n > 2.

Proof. Following the same reasoning used in the previous proposition, it can
be proven that

fsbp(Xn, xn, dH,θ) = fsbp(Xn, xn, ρ1) =
1

n
,

so, consequently,

fsbp(M̂e[X ]n, xn, dH,θ) ≥ n/2

n
=

1

2
>

1

n
= fsbp(Xn, xn, dH,θ)

fsbp(M̂ed[X ]n, xn, ρ1) ≥
n/2

n
=

1

2
>

1

n
= fsbp(Xn, xn, ρ1)

�

In order to corroborate these results, some empirical studies have been
developed. A sample of n = 10000 interval-valued data has been randomly
generated from a random interval characterized by the distribution of two
real-valued random variables, midX and sprX . Two cases have been consid-
ered: one in which the two random variables are independent (Case 1) and
another one in which they are dependent (Case 2). In both situations, the
sample has been split into two subsamples, one of size n · cp associated with
a contaminated distribution (hence cp represents the proportion of contami-
nation) and the other one, of size n · (1 − cp), without any perturbation. A
second parameter, CD, has also been included to measure the relative dis-
tance between the distribution of the contaminated and non contaminated
subsamples. In detail, for different values of cp and CD the data for Case 1
are generated according to

• midX � N (0, 1) and sprX � χ2
1 for the non contaminated subsample,

• midX � N (0, 3) + CD and sprX � χ2
4 + CD for the contaminated sub-

sample,

while for Case 2 we use

• midX � N (0, 1) and sprX �
(

1

(midX)2+1

)2
+ .1 · χ2

1 for the non con-

taminated subsample,
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• midX � N (0, 3)+CD and sprX �
(

1

(midX)2+1

)2
+ .1 ·χ2

1 +CD for the

contaminated subsample.

Both the population dH,θ-median and the population ρ1-median are approx-
imated by the Monte Carlo approach from this sample and the expected
distance between the non contaminated distribution, Xnc, and the approxi-
mated medians, considering the dH,θ and the ρ1 distances, were computed.

cp cD Ratioρ Ratioθ=1/3 Ratio
θ=

√
1/3

Ratioθ=1 Ratioρ Ratioθ=1/3 Ratio
θ=

√
1/3

Ratioθ=1

.0 0 1.019406 1.010211 1.014805 1.020016 1.090363 1.071163 1.113693 1.173596

.0 1 1.019391 1.010212 1.014806 1.020017 1.090412 1.071170 1.113704 1.173612

.0 5 1.019393 1.010221 1.014805 1.020014 1.090448 1.071139 1.113654 1.173533

.0 10 1.019410 1.010209 1.014802 1.020012 1.090442 1.071171 1.113705 1.173613

.1 0 1.016934 1.008394 1.012000 1.015977 1.081155 1.066063 1.106141 1.163368

.1 1 1.017550 1.008663 1.012288 1.016226 1.072844 1.053439 1.085163 1.129607

.1 5 1.015010 1.007975 1.011077 1.014365 1.065343 1.046932 1.071485 1.102874

.1 10 1.011805 1.006462 1.008901 1.011478 1.046427 1.036585 1.054048 1.075179

.2 0 1.014011 1.006560 1.009286 1.012245 1.073723 1.061916 1.099925 1.154805

.2 1 1.014893 1.006741 1.009424 1.012272 1.056341 1.037449 1.059556 1.090469

.2 5 1.012616 1.006605 1.008862 1.011194 1.047532 1.028887 1.041835 1.057560

.2 10 1.009017 1.004951 1.006547 1.008209 1.029309 1.020252 1.028132 1.037146

.4 0 1.008012 1.003628 1.005115 1.006738 1.062304 1.055413 1.090023 1.140840

.4 1 1.006726 1.003075 1.004202 1.005429 1.024528 1.014247 1.022384 1.033863

.4 5 1.009291 1.007752 1.008795 1.009980 1.022742 1.014213 1.018332 1.022988

.4 10 1.006831 1.007307 1.008008 1.008899 1.012734 1.009485 1.011648 1.013964

.4 100 1.000904 1.000999 1.001095 1.001233 1.001385 1.001161 1.001371 1.001585

Table 1. Ratios of the mean distances of the mixed (partially contaminated and
non-contaminated) sample dH,θ and ρ1-medians to the non-contaminated

distribution of a random interval in Case 1 (left columns) and Case 2 (right columns)

In Table 1, the ratios Ratioρ = E(ρ1(Xnc,Me[X ]))/E(ρ1(Xnc,Med[X ]))
and Ratioθ = E(dH,θ(Xnc,Med[X ]))/E(dH,θ(Xnc,Me[X ])) are shown. They
show us how the mean distance increases (w.r.t. each metric) when the chosen
median is not the one defined by means of the corresponding metric.

As Table 1 shows, the bigger the error proportion, the smaller the ratios.
It can be also noticed that the smaller the θ, the smaller the corresponding
ratio. As all the ratios are very close to 1, it can be concluded that both
the dH,θ-median (with different choices for θ) and ρ1-median have a quite
similar behavior since there are no big differences between choosing one of
the two measures in order to summarize the information given by the sample
(independently from the distance used).
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5 Concluding Remarks

In this study, two different definitions for the median of a random interval
have been compared. Both definitions preserve important properties of the
median in real settings and are coherent with the interpretation of the median
as a ‘middle position’ value for certain partial orderings between intervals. By
calculating the finite sample breakdown point and some simulation studies,
the robustness of the two medians has been shown to be similar.

Future directions to be considered could be the extension of this compar-
ison to the fuzzy-valued case and the definition of other central tendency
measures. For instance, trimmed means or medians defined through depth
functions could be adapted to this situation and compared with the current
results.
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Comparing the Representativeness
of the 1-norm Median for Likert
and Free-response Fuzzy Scales

Sara de la Rosa de Sáa1 and Stefan Van Aelst2

Abstract Many questionnaires related to Social Sciences, Medical Diagnosis,
Control Engineering, etc. are based on the well-known Likert scales. For its
statistical data analysis each categorical response is usually encoded by an
integer number. In this paper the convenience of allowing respondents to
reply by using a free-response format based on the scale of fuzzy numbers is
discussed by developing a comparative study through the mean 1-norm error
on the representativeness of the corresponding median for the fuzzy and the
integer-encoded Likert scales cases.

1 Introduction

Likert scales are widely employed in opinion/valuation/rating/... question-
naires which are usually associated with Social Sciences, Medical Diagnosis,
Control Engineering, etc. They are often used for questionnaires with a pre-
specified response format, and the scale is easy to explain and to understand.
Likert scale-based questionnaires involve several items on a topic and respon-
dents should express their agreement/satisfaction/etc. by choosing one of k
possible answers; k usually is in the range 3 to 10, although as argued by
Lozano et al. [14] the most convenient choices from the psychometric and
statistical viewpoint are in the range 4 to 7.

For the statistical analysis of the data, each of the responses is usually
encoded by means of an integer number.

Several drawbacks of the statistical analysis of Likert responses have been
pointed out in the literature. Among them we can outline the following:
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• Likert scales discretize the variable associated with the response to a ques-
tion into a small number of potential values;

• available techniques for the analysis of Likert scale data are rather limited
and not very informative;

• integer encoding usually does not reflect the real differences between dis-
tinct ‘values’ (for instance, most of people consider the ‘difference’ between
the responses encoded by 1 and 2 to be not the same as the difference be-
tween the responses encoded by 2 and 3).

To overcome these drawbacks some alternatives for the use of Likert scales
have been suggested.

One of them, often referred to as the simple visual analogue scale, consists
of choosing the single point within a concrete bounded interval/bar that ‘best
expresses’ the response to the given question (cf. [1], [10], [15], [21]). This al-
ternative involves a continuous scale that captures properly the diversity and
relative variability in the response, and fits very well the statistical analysis.
However, the choice of the point representing each response is not easy to
make, and it does not seem realistic to demand such a level of accuracy in
response to questions which are frequently intrinsically imprecise.

Another alternative is that of performing a fuzzification of the pre-specified
Likert responses (cf. [9], [11], [12], [13], [20], [2, 3]). This alternative would
involve a continuous scale as far as the support of the image is concerned,
and a discrete one as far as the number of possible different values/responses
is concerned. Although available data do not fit directly the best known
statistical techniques, along the last decade a methodology for the statistical
analysis of fuzzy data is being developed and many techniques have already
been proposed and can be applied. Although the scale allows us to reflect
the intrinsic imprecision of the Likert categories, the diversity and relative
variability of the responses are not well-captured.

A third alternative is that of considering a tandem questionnaire format-
scale integrating the positive features of the two first ones. In this respect,
the scale of fuzzy numbers can be used in opinion, valuation, rating, etc.
questionnaires to ‘express’ the responses, and these questionnaires could be
designed with a free fuzzy response format. Advantages for this tandem are
the following:

• the scale of fuzzy numbers is continuous as far as both the support of the
image and the space of potential values are concerned;

• it is friendly-to-use and friendly-to-understand, and handling the scale
does not require a very high expertise;

• it captures very well the diversity, relative variability and subjectivity in
the response;

• it expresses very well the inherent imprecision of the categorical data;
• there are several well-developed techniques to analyze the responses from

a statistical perspective.
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Actually, the only critical point for this third alternative is shared with the
two previous ones. This drawback concerns the practical conduction of these
questionnaires in situations requiring a quick response (say on the street, at
the door, by telephone, online, ...) without the required little time to explain
respondents the ‘fuzzy way’ to reply.

This paper aims to discuss the interest of using the scale of fuzzy numbers-
based questionnaires with a free response format versus the Likert scales
questionnaires. In the paper this discussion is performed by developing a
comparative study of the representativeness of the recently introduced 1-
norm median (see Sinova et al. [17]) for the fuzzy data with the median of
the integer-encoded Likert data.

Remark 1. It should be pointed out that the motivation for the study in this
paper can be mostly found in the work by Hesketh and Hesketh along with
collaborators (cf. [5, 6, 7, 8]). By combining the expertise in computing with
that in psychometric evaluation, they have introduced the so-called fuzzy
rating scale (and its computerized graphic version) as an extension of the se-
mantic differential. This scale provides us with a common method of rating a
variety of stimuli and analyzing/comparing the responses meaningfully across
the stimuli. To ease the posterior analysis, Hesketh and Hesketh have asked
the respondents to elicit their responses by using triangular fuzzy numbers
for which the “∨” pointer (upper vertex) means the preferred point and the
left and right spreads indicate how far to the left or the right a particular
rating can be possible/compatible (or, as Hesketh and Hesketh referred to,
they determine the tolerable range of preferences). Fuzzy rating scales have
been applied or considered to be potentially applicable to many areas such as
job analysis, rating of selection interviews, performance ratings in customer
services, and so on.

Hesketh and Hesketh outlined reasons for the interest of the statistical
analysis of the collected responses. In fact, they have already performed
some descriptive statistics with them, by analyzing separately the real-valued
random variables associated with the three values characterizing triangular
fuzzy numbers. Nowadays, the concept of random fuzzy set, and the devel-
oped statistical methodology would be certainly useful to draw much more
conclusions from these responses and treat each datum as a whole. This
methodology involves an added value: the possibility of drawing not only
descriptive but also inferential conclusions. For this methodology responses
don’t need to be triangular, so that the preferred point in the fuzzy rating
scale can be extended to be the class of values which are considered to be
fully compatible with the respondent rating. The apparent computational
complexity to develop statistics with the fuzzy responses can be substan-
tially reduced by considering the R package SAFD (see [19] in this book and
http://cran.r-project.org/web/packages/SAFD/index.html).

Remark 2. We would also like to remark that there is an essential difference
between the approach for the fuzzy rating in this paper and the approaches
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consisting of translating linguistic terms into fuzzy numbers. A noteworthy
recent approach in the last respect has been developed by Bocklisch [3] and
Bocklisch et al. [2]. This approach, motivated by the limitations of tradi-
tional statistics to deal with verbal response data, is based on a two-step
procedure leading to an aggregate of the ‘fuzzy translation’ supplied by sev-
eral participants in an empirical study. Unlike this approach, the one in this
paper does not mean at all a translation converting the ordinal scale into
a fuzzy numbered one, but it tries to take advantage of the richness of the
fuzzy scale to avoid being constrained to a reduced number of different la-
bels/values/ratings. In this way, each respondent draws (either by hand or
computationally) his/her fuzzy numbered response specifically for each ques-
tion posed and responses can be deeply refined (it is up to the respondent
instead of up to a prefixed list).

2 Preliminaries

A Likert scale-based questionnaire corresponds to a survey in which for each
question, the respondent is allowed to choose, among k answers, the one that
best represents his/her opinion/valuation/rating/etc. Questionnaires based
on Likert scales have (ordinal and frequently the same for each question) pre-
specified responses. Often, and especially for statistical purposes, responses
are encoded by means of consecutive integer numbers (1-4, 1-5, 1-6, etc.). An
example of a Likert scale-based question is given in Figure 1.

Fig. 1 Typical responses for a question concerning the variety of items in the menu of a
restaurant

A (bounded) fuzzy number is an ill-defined quantity or value which can

be formally characterized by means of a mapping Ũ : R → [0, 1] such that
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for all α ∈ [0, 1], the α-level set, Ũα = {x ∈ R | Ũ(x) ≥ α} (for α > 0) and

Ũ0 = cl{x ∈ R | Ũ(x) > 0}, is a nonempty compact interval. For each x ∈ R,

Ũ(x) can be interpreted as the ‘degree of compatibility’ of x with Ũ . The
space of bounded fuzzy numbers will be denoted by F∗

c (R).
In ‘measuring’ opinion, valuation, rating, etc., some strengths of the scale

F∗
c (R) should be stressed, namely,

• it is much more expressive than an (ordinal) categorical scale and more
realistic than its integer encoding;

• the transition from one value to another is gradual rather than abrupt;
• numerical/interval-valued data are special instances of fuzzy data;
• the usual arithmetic and distances between values in this scale pay atten-

tion either explicitly or implicitly to the ‘location’ and ‘shape/imprecision’
of values (which are crucial for their meaning and application).

Furthermore, an F∗
c (R)-based questionnaire designed in accordance with a

free response format allows us to capture appropriately the diversity, vari-
ability and subjectivity of the responses.

An example of an F∗
c (R)-based response to the question in Figure 1 is

displayed in Figure 2.

Fig. 2 Fuzzy (trapezoidal) response for a question concerning the variety of items in the
menu of a restaurant

Concerning the statistical analysis of the collected responses, one can state
that the analysis of Likert responses is usually performed by employing ei-
ther techniques for categorical data or techniques for numerical data from
variables with a small number of different integer values. In both approaches
the number of applicable techniques is rather limited and relevant informa-
tion associated with the diversity, relative variability and subjectivity, and
even with the imprecise nature of the responses, is often lost or not enough
exploited.

The analysis of fuzzy number valued responses is based on several key
tools with specific features, such as the basic arithmetic, the measurement
of the distance, and the probabilistic model for the random mechanism that
generates the fuzzy responses along with the related summary measures.

In connection with the arithmetic of fuzzy numbers, the operations we
should take into account are the sum and the product by scalars. These
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operations are based on Zadeh’s extension principle [22] which is equivalent

to level-wise interval arithmetic. Thus, for Ũ , Ṽ ∈ F∗
c (R) and γ ∈ R, Ũ + Ṽ

is the fuzzy number such that for each α ∈ [0, 1]

(Ũ + Ṽ )α =
[
inf Ũα + inf Ṽα, sup Ũα + sup Ṽα

]
),

whereas γ · Ũ is the fuzzy number such that for each α ∈ [0, 1]

(γ · Ũ)α =

⎧⎪⎪⎨⎪⎪⎩
[
γ · inf Ũα, γ · sup Ũα

]
if γ ≥ 0

[
γ · sup Ũα, γ · inf Ũα

]
if γ < 0

A first distinctive feature in contrast to the real-valued case lies in the fact
that (F∗

c (R),+, ·) does not have a linear structure (actually, it has a conical

semilinear structure), since Ũ + (−1) · Ũ �= 1{0}, the neutral element for the
fuzzy sum. The semilinearity entails that one cannot establish a definition for
the difference between fuzzy numbers that is well-defined and simultaneously
preserves the properties of the difference between real numbers (the only way
for these properties to be fulfilled is to consider the Hukuhara difference,
which is not well-defined for most of the fuzzy numbers).

This inconvenience can often be overcome by using metrics between fuzzy
numbers which are versatile and easy-to-use. Since the comparative analysis
we present in this paper is based on the representativeness of the median,
we consider the 1-norm metric by Diamond and Kloeden [4] which is an L1

metric extending the Euclidean metric. For Ũ , Ṽ ∈ F∗
c (R) the 1-norm metric

is defined as

ρ1(Ũ , Ṽ ) =
1

2

∫
(0,1]

(∣∣∣inf Ũα − inf Ṽα

∣∣∣+ ∣∣∣sup Ũα − sup Ṽα

∣∣∣) dα.
The probabilistic model we consider to formalize the random mechanism

generating the fuzzy numbered responses is that of random fuzzy numbers
(RFNs, Puri and Ralescu [16], also called fuzzy random variables). Given
a probability space (Ω,A, P ), a mapping X : Ω → F∗

c (R) is said to be a
random fuzzy number (RFN) if for all α ∈ [0, 1] the mapping Xα : Ω → P(R)
(with Xα(ω) =

(X (ω)
)
α
) is a compact random interval. Equivalently, an

RFN can be formalized as a Borel-measurable mapping w.r.t. the Borel σ-
field generated on F∗

c (R) by the topology associated with ρ1. The Borel-
measurability implies that one can properly refer to the distribution induced
by an RFN, the statistical independence of RFNs, and so on. Hence we can
refer adequately to a simple random sample from an RFN.

In Sinova et al. [17] the 1-norm median of an RFN has been introduced

as the fuzzy number M̃e(X ) ∈ F∗
c (R) such that
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M̃e(X )

)
α
=
[
Me
(
inf Xα

)
,Me

(
supXα

)]
,

where in case Me
(
inf Xα

)
or Me

(
supXα

)
are nonunique we follow the most

usual convention, i.e., we use the midpoint of the interval of medians. It can
be proved that M̃e satisfies many interesting properties such as

E
(
ρ1
(X , M̃e(X )

))
= min

Ũ∈F∗
c (R)

E
(
ρ1
(X , Ũ)) .

3 Empirical Comparative Study between Likert and
Fuzzy Numbers Scales: The Mean (Absolute) Error
Associated with the Median

To compare Likert and fuzzy scales from a statistical point of view, we ex-
amine the situation in which a person is simultaneously allowed to give a
free response in the fuzzy scale, and to choose one of the possible responses
in a Likert scale. Actually, we use a simulation design that mimics the hu-
man behavior. To generate the two types of responses, we first simulate fuzzy
responses and then we ‘Likertize’ them by considering a plausible criterion.

Once data are simulated a crucial issue to think about is what we wish
to compare. Many features can be chosen as suitable tools for statistical
comparison. In this paper we consider the representativeness of the median of
the involved random element through the corresponding mean absolute error.

The general simulation process is structured as follows: 1000 iterations
of samples containing n trapezoidal fuzzy numbers are simulated (n ∈
{30, 50, 100, 300}); a trapezoidal fuzzy number Ũ can be characterized as

Tra(inf Ũ0, inf Ũ1, sup Ũ1, sup Ũ0). To generate each trapezoidal fuzzy re-
sponse, we have followed the steps in Sinova et al. [18]. That is,

• A value k ∈ {4, 5, 6, 7} is fixed.
• One value of the nonstandard (i.e., re-scaled and translated standard)

beta distribution (k − 1) · β(p, q) + 1 is generated at random, with (p, q)
varying to cover four different situations of distributions with values in
[1, k], namely, uniform, symmetrical weighting central values, symmetrical
weighting extreme values, and an asymmetric one. The generated value is
the mid-point of the 1-level, mid Ũ1 = (inf Ũ1 + sup Ũ1)/2.

• To avoid unusually ‘wide’ (and hence unrealistic) fuzzy responses, some

constraints on the values for the deviations mid Ũ1 − inf Ũ1 = sup Ũ1 −
mid Ũ1, inf Ũ1 − inf Ũ0 and sup Ũ0 − sup Ũ1 have been imposed, so that
they have been generated from uniform distributions on the intervals[
0,min{(k− 1)/10,mid Ũ1− 1, k−mid Ũ1}

]
,
[
0,min{k/5, inf Ũ1− 1}], and[

0,min{k/5, k − sup Ũ1}
]
, respectively; the trapezoidal fuzzy number is

finally built from the generated mid-point and deviations.
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Once the fuzzy responses are generated, they are ‘Likertized’. It should be
pointed out that the choice of the Likertization criterion seems not to be very
relevant in this respect, although further research is needed to confirm this.

The chosen Likertization criterion is based on the metric ρ1. If Ũ is the
generated fuzzy number, the criterion associates with it the integer number

ı(Ũ) = arg min
j∈{1,...,k}

ρ1(Ũ ,1{j}).

As an illustration for this Likertization, we consider the fuzzy number
in Figure 2 translated and re-scaled to interval [1,5] (i.e., we consider the

trapezoidal fuzzy number Ũ = Tra(3.6, 4, 4.4, 6)) and k = 5. We obtain that

ρ1(Ũ ,1{1}) = 3.15, ρ1(Ũ ,1{2}) = 2.15, ρ1(Ũ ,1{3}) = 1.15,

ρ1(Ũ ,1{4}) = 0.35, ρ1(Ũ ,1{5}) = 0.85,

whence ı(Ũ) = 4.

The comparative analysis is based on examining the representativeness of
the median in the encoded Likert and fuzzy scales. The mean absolute error
(MAE) is considered to quantify this representativeness, where in the fuzzy
case the metric ρ1 is used to measure absolute errors.

The study has been performed for 4 different distributions for each of the 4
analyzed values of k. In each of these 4× 4 cases 1000 samples of trapezoidal
fuzzy numbers have been simulated for each considered sample of size n. For
each sample we have computed:

- the FMAE(sample). If x̃1, . . . , x̃n are the values of X in the sample, then

FMAE(sample) =
1

n

n∑
i=1

ρ1

(
x̃i,
̂̃
Me(x̃1, . . . , x̃n)

)
,

where
̂̃
Me(x̃1, . . . , x̃n) is the sample 1-normmedian of x̃1, . . . , x̃n (or, equiv-

alently, the 1-norm median of an RFN taking on values x̃1, . . . , x̃n with
probabilities 1/n),

- the LMAE(Lsample) (with Lsample = Likertized sample), that is,

LMAE(Lsample) =
1

n

n∑
i=1

(
ı(x̃i)− M̂e(ı(x̃1), . . . , ı(x̃n))

)
.

Moreover, along the 1000 samples we have computed the percentage of sam-
ples for which the FMAE(sample) was lower than the LMAE(Lsample).

Simulation results have been gathered in the following tables:
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Table (k = 4). Simulations from 3 · β(p, q) + 1

(p, q) n %FMAE < LMAE

30 70.7
(p, q) = (1, 1) 50 77.5

100 90.3
300 99.6

30 77.0
(p, q) = (.75, .75) 50 86.0

100 93.9
300 99.9

30 66.8
(p, q) = (1.1, 1.1) 50 77.9

100 87.6
300 98.7

30 97.7
(p, q) = (6, 1) 50 99.1

100 99.9
300 100

Table (k = 5). Simulations from 4 · β(p, q) + 1

(p, q) n %FMAE < LMAE

30 60.5
(p, q) = (1, 1) 50 56.8

100 56.1
300 50.0
30 73.0

(p, q) = (.75, .75) 50 77.1
100 80.5
300 88.6

30 56.5
(p, q) = (1.1, 1.1) 50 52.8

100 47.6
300 32.8

30 98.6
(p, q) = (6, 1) 50 99.8

100 100
300 100
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Table (k = 6). Simulations from 5 · β(p, q) + 1

(p, q) n %FMAE < LMAE

30 60.5
(p, q) = (1, 1) 50 63.7

100 73.6
300 91.6

30 69.1
(p, q) = (.75, .75) 50 76.1

100 86.5
300 96.4

30 57.3
(p, q) = (1.1, 1.1) 50 59.8

100 68.8
300 87.6

30 87.9
(p, q) = (6, 1) 50 94.6

100 99.0
300 100

Table (k = 7). Simulations from 6 · β(p, q) + 1

(p, q) n %FMAE < LMAE

30 62.0
(p, q) = (1, 1) 50 61.4

100 64.6
300 64.5
30 70.7

(p, q) = (.75, .75) 50 79.3
100 83.9
300 93.7

30 58.1
(p, q) = (1.1, 1.1) 50 62.3

100 58.9
300 55.9

30 71.3
(p, q) = (6, 1) 50 75.9

100 83.3
300 94.3
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4 Concluding Remarks

The study in this paper is just an introductory one. The first empirical de-
velopments allow us to conclude that the use of the fuzzy versus Likert scales
captures more diversity (this could be trivially and generally proved by using
any diversity/entropy measure) and relative variability (this can be empiri-
cally proved by using some inequality indices). The simulations in the paper
show that the median is in many, and often in most of the, situations more
representative in fuzzy-free format than in the Likert scale questionnaire.
This representativeness has been measured in terms of the error associated
with ‘estimating’ each data by means of the median of all available ones.
However, conclusions are not general enough in the last respect.

To enlarge and complement the study in the paper, immediate develop-
ments would be those formalizing by means of appropriate measures the fact
that diversity and relative variability are much higher with fuzzy number
free-format responses than with Likert ones. Also a deeper study should be
performed for the representativeness of the Aumann-type mean value of an
RFN, as well as to discuss some measures concerning the difference between
the errors in both cases.

Furthermore, a sensitivity analysis should be carried out in connection
with the choice of k, which is also a key term in psychometric studies on the
use of Likert scales.
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Fuzzy Probability Distributions
in Reliability Analysis,
Fuzzy HPD-regions, and
Fuzzy Predictive Distributions

Reinhard Viertl1 and Shohreh Mirzaei Yeganeh1

Abstract In reliability analysis there are different kinds of uncertainty
present: variability, imprecision of lifetimes, model uncertainty concerning
probability distributions, and uncertainty of a-priori information in Bayesian
analysis. For the description of imprecise lifetimes so-called fuzzy numbers
are suitable. In order to model the uncertainty of a-priori information fuzzy
probability distributions are the most up-to-date mathematical structure.

1 Introduction

The variability of lifetimes of similar units is usually described by random
variables T and related probability distributions. More recently imprecise
lifetime data, like lifetimes of trees in environmental statistics, recreation
times after diseases, but also other data like amounts of toxic materials re-
leased to the environment, are modeled by so-called fuzzy numbers [1, 2].
These fuzzy numbers are special fuzzy subsets of the set of real numbers R
whose membership functions ξ(·) sarisfy the following:

1. ξ : R→ [0; 1];
2. ∀δ ∈ (0; 1] the so-called δ-cut Cδ[ξ(·)] defined by Cδ[ξ(·)] := {x ∈ R :

ξ(x) ≥ δ} �= ∅, and all δ-cuts are finite unions of compact intervals;
3. supp[ξ(·)] is contained in a compact interval.

Functions ξ(·) fulfilling 1. - 3. are called characterizing functions. If all δ-cuts
of a fuzzy number are compact intervals, then this fuzzy number is called
fuzzy interval. The set of all fuzzy intervals is denoted by FI(R).
A generalization of probability densities which is necessary in connection with
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A-1040 Vienna, Austria, r.viertl@tuwien.ac.at · shohreh.mir@gmail.com

C. Borgelt et al. (Eds.): Towards Advanced Data Analysis, STUDFUZZ 285, pp. 99–106.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013
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Bayesian inference for fuzzy data, are so-called fuzzy probability densities on
measure spaces (M,A, μ).
A fuzzy probability density f∗(·) is a function f∗ : M → FI([0;∞)), i.e., a
function whose values f∗(x) are fuzzy intervals whose supports are subsets
of the non-negative numbers [0;∞) for which all so-called δ-level functions
f
δ
(.) and fδ(.) are integrable. These δ-level functions are defined by their

values f
δ
(x) and f δ(x) by Cδ[f

∗(x)] = [f
δ
(x); f δ(x)] for all δ ∈ (0; 1] and all

x ∈M. This means all integrals∫
M
f
δ
(x)dμ(x) and

∫
M
f δ(x)dμ(x)

exist and are finite. Based on fuzzy probability densities so-called fuzzy prob-
abilities of events A ∈ A are determined as following.

The definition of fuzzy probabilities is based on a generating family of subsets
of R to define a fuzzy interval via the so-called generation lemma for char-
acterizing functions [3]. The generating intervals [aδ; bδ] are defined using
families Dδ of classical probability densities f(·) on (M,A):

Dδ := {f : f
δ
(x) ≤ f(x) ≤ fδ(x) ∀x ∈ M}, (1)

where aδ and bδ are defined by

aδ := inf{
∫
A

f(x)dμ(x) : f ∈ Dδ} (2)

and

bδ := sup{
∫
A

f(x)dμ(x) : f ∈ Dδ} ∀δ ∈ (0; 1]. (3)

The fuzzy probability p∗(A) is the fuzzy interval whose characterizing func-
tion η(·) is given by

η(x) := sup{δ ·1[aδ;bδ ](x) : δ ∈ [0; 1]} ∀x ∈ R, (4)

where 1[aδ;bδ ](·) is the indicator function of the interval [aδ; bδ], and
[a0; b0] = R.

2 Fuzzy Lifetimes

In applied reliability analysis observed lifetimes as observations of time which
is a continuous quantity are more or less fuzzy. Therefore a sample consists
of n fuzzy numbers t∗1, . . . , t

∗
n. The corresponding characterizing functions

are denoted by ξ1(·), . . . , ξn(·). Based on this kind of samples the reliability
function R(·) can be estimated by a generalization of the empirical reliability
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function (ERF) R̂n(·). For precise lifetimes t1, . . . , tn the ERF R̂n(·) is defined
by its values

R̂n(t) :=
1

n

n∑
i=1

1(t;∞)(ti) ∀t ≥ 0. (5)

In case of fuzzy lifetimes there are two possibilities to generalize R̂n(·).
First a smoothed version of the ERF is obtained by

R̂sm
n (t) :=

1

n

n∑
i=1

∫∞
t ξi(x)dx∫∞
0 ξi(x)dx

∀t ≥ 0. (6)

The characterizing functions of four fuzzy lifetimes and the corresponding
function R̂sm

n (·) are depicted in Figure 1. Alternatively a fuzzy valued gen-
eralization of the ERF, called fuzzy empirical reliability function (FERF), is
obtained in the following way. Let the following functions R̂δ,L(·) and R̂δ,U (·)
be defined for all δ ∈ (0; 1] by

R̂δ,U :=
#{t∗i : Cδ(t

∗
i )∩(t;∞) �=∅}
n

R̂δ,L :=
#{t∗i : Cδ(t

∗
i )⊆(t;∞)}
n

}
∀t ≥ 0. (7)

From this definition the above functions are step functions fulfilling

R̂δ,L(t) ≤ R̂δ,U (t) ∀t ≥ 0. (8)

Moreover R̂δ,L(0) = 1 and R̂δ,U (0) = 1, ∀δ ∈ (0; 1] as well as

lim
t→∞ R̂δ,L(t) = lim

t→∞ R̂δ,U (t) = 0, ∀δ ∈ (0; 1]. (9)

The FERF for the lifetime data in Figure 1 is depicted in Figure 2. For
δ1 < δ2 the following holds true:

R̂δ1,U (t) ≥ R̂δ2,U (t) ∀t ≥ 0, (10)

R̂δ1,L(t) ≤ R̂δ2,L(t) ∀t ≥ 0. (11)

3 Bayesian Reliability Analysis

For parametric lifetime models T ∼ f(·|θ); θ ∈ Θ in Bayesian analysis also
the parameter θ is described by a stochastic quantity θ̃, whose probability
distribution - before data are given - is called a-priori distribution. In case of
continuous parameter space Θ the a-priori distribution is usually given by a
probability density π(·) on Θ, called a-priori density. In case of precise data
t1, . . . , tn the updating of the information concerning the distribution of the
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Fig. 1 Fuzzy lifetimes and smoothed empirical reliability function.

parameter is the so-called Bayes’ theorem, i.e.,

π(θ|t1, . . . , tn) = π(θ)·l(θ; t1, . . . , tn)∫
Θ
π(θ)·l(θ; t1, . . . , tn)dθ , ∀θ ∈ Θ. (12)

The conditional density π(·|t1, . . . , tn) is called a-posteriori density of θ̃.
Based on the a-posteriori density Bayesian confidence regions, especially
HPD-regions, as well as predictive distributions for lifetimes can be obtained.
For fuzzy observed lifetimes t∗1, . . . , t

∗
n as described in Section 1, Bayes’ the-

orem can be generalized in the following way.
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Fig. 2 Fuzzy sample and FERF for δ = 0.3.

For continuous stochastic models X ∼ f(·|θ), θ ∈ Θ with continuous pa-
rameter space Θ in general a-priori distributions as well as observations are
fuzzy. Therefore it is necessary to generalize Bayes’ theorem to this situation.

3.1 Likelihood Function for Fuzzy Data

In case of fuzzy data t∗1, . . . , t
∗
n the likelihood function l(θ; t1, . . . , tn) has to

be generalized to the situation of fuzzy numbers t∗1, . . . , t∗n. The basis for that
is the combined fuzzy sample element t∗ [3]. Then the generalized likelihood



104 R. Viertl and S.M. Yeganeh

function l∗(θ; t∗) is represented by its δ-level functions lδ(·; t∗) and lδ(·; t∗)
for all δ ∈ (0; 1]. For the δ-cuts of the fuzzy value l∗(θ; t∗) we have

Cδ(l
∗(θ; t∗)) = [lδ(θ; t

∗), lδ(θ; t∗)]. (13)

Using this and the construction from [3] in order to keep the sequential prop-
erty of the updating procedure in Bayes’ theorem, the generalization of Bayes’
theorem to the situation of fuzzy a-priori distribution and fuzzy data is pos-
sible.

Remark 1. The generalized likelihood function l∗(·; t∗) is a fuzzy valued func-
tion, i.e., l∗ : Θ → FI([0,∞)).

3.2 Bayes’ Theorem for Fuzzy A-priori Distribution
and Fuzzy Data

Using the averaging procedure of δ-level curves of the a-priori density and
combining it with the generalized likelihood function from Section 3.1, the
generalization of Bayes’ theorem is possible. The construction is based on
δ-level functions.
Based on a fuzzy a-priori density π∗(·) on Θ with δ-level functions πδ(·)
and πδ(·), and a fuzzy sample t∗1, . . . , t

∗
n with combined fuzzy sample t∗

whose vector-characterizing function is ζ(·, . . . , ·), the characterizing function
ψl∗(θ;x∗)(·) of l∗(θ; t∗) is obtained by the extension principle, i.e.,

ψl∗(θ;x∗)(y) =

{
sup{ζ(t) : l(θ; t) = y} if ∃t : l(θ; t) = y
0 if �x : l(θ; t) = y

}
∀y ∈ R. (14)

The δ-level curves of the fuzzy a-posteriori density π∗(·|t∗1, . . . , t∗n) = π∗(·|t∗)
are defined in the following way:

πδ(θ|t∗) := πδ(θ)·lδ(θ; t∗)∫
Θ

1
2 [πδ(θ)·lδ(θ; t∗) + πδ(θ)·lδ(θ; t∗)]dθ

(15)

and

πδ(θ|t∗) :=
πδ(θ)·lδ(θ; t∗)∫

Θ
1
2 [πδ(θ)·lδ(θ; t∗) + πδ(θ)·lδ(θ; t∗)]dθ

(16)

for all δ ∈ (0; 1].
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3.3 Generalized Fuzzy HPD-regions

From the a-posteriori density a generalization of confidence regions, especially
highest a-posteriori density regions (HPD-regions) can be constructed.
Let π∗(·|t∗1, . . . , t∗n) be the fuzzy a-posteriori density of θ̃, and Θ ⊆ Rk, δ ∈
(0; 1], α ∈ (0; 1), α� 1 and 1−α the coverage probability. Moreover, defining
Dδ to be the set of classical probability densities g on Θ for which πδ(θ) ≤
g(θ) ≤ πδ(θ) ∀θ ∈ Θ, we define the generating system of subsets of Θ from
which the generalized HPD-region, denoted as HPD*-region is obtained.
For g ∈ Dδ let δHPD1−α(g) be the standard HPD-region for θ with coverage
probability 1 − α. Then the family of generating subsets of Θ, denoted by
(Aδ; δ ∈ (0; 1]), is defined by

Aδ :=
⋃

g∈Dδ

δHPD1−α(g) ∀δ ∈ (0; 1]. (17)

The membership function ϕ(·) of the HPD*-region is given by the so-called
construction lemma, i.e.,

ϕ(θ) := sup{δ ·1Aδ
(θ) : δ ∈ [0; 1]} ∀θ ∈ Θ. (18)

Remark 2. In case of classical a-posteriori density π(·|t1, . . . , tn), the mem-
bership function ϕ(·) coincides with the indicator function 1HPD1−α (·) of the
classical HPD-region. This is seen by Dδ = {π(·)} ∀δ ∈ (0; 1] and therefore
δHPD1−α = HPD1−α ∀δ ∈ (0; 1] which yields⋃

g∈Dδ

δHPD1−α(g) = HPD1−α ∀δ ∈ (0; 1]. (19)

Therefore Aδ = HPD1−α ∀δ ∈ (0; 1], and ϕ(·) = 1HPD1−α (·).

3.4 Fuzzy Predictive Densities

Another application of fuzzy a-posteriori densities is the construction of gen-
eralized predictive densities p(·|t∗1, . . . , t∗n) for lifetimes. In the classical case
the predictive density is defined as the marginal density of the joint density
of (θ̃, T ), i.e.,

p(t|t1, . . . , tn) =
∫
Θ

f(t|θ)π(θ|t1, . . . , tn)dθ ∀t ≥ 0. (20)

In case of fuzzy a-posteriori densities π∗(·|t∗1, . . . , t∗n) the above integral has
to be generalized. This can be done in different ways [4]. The most suitable
generalization seems to be the following: Again we look at Dδ from above
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and define for every δ ∈ (0; 1] the closed interval [aδ; bδ] by

bδ := sup{
∫
Θ

f(x|θ)g(θ)dθ : g ∈ Dδ} (21)

aδ := inf{
∫
Θ

f(x|θ)g(θ)dθ : g ∈ Dδ}. (22)

The characterizing function ψt(·) of the value p∗(t|t∗1, . . . , t∗n) ∀t ≥ 0 of the
generalized fuzzy predictive density p∗(·|t∗1, . . . , t∗n) is defined by the construc-
tion lemma:

ψt(y) := sup{δ ·1[aδ ;bδ](y) : δ ∈ [0; 1]} ∀y ∈ R (23)

Remark 3. For precise a-posteriori density the result coincides with the result
from standard Bayesian inference.

4 Conclusion

Fuzzy observed lifetimes make it necessary to generalize the methods of relia-
bility analysis to this kind of data. In Bayesian reliability analysis, the corre-
sponding a-posteriori distributions become fuzzy. Therefore the consideration
of fuzzy probability distributions is necessary. Based on that a generalization
of the concept of highest a-posteriori density regions for parameters is given
in this paper as well as a generalization of predictive densities for lifetimes
based on fuzzy data.
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SAFD — An R Package for
Statistical Analysis of Fuzzy Data

Wolfgang Trutschnig1, Maŕıa Asunción Lubiano2, and Julia Lastra1

Abstract The R package SAFD (Statistical Analysis of Fuzzy Data) pro-
vides basic tools for elementary statistics with one dimensional Fuzzy Data
in the form of polygonal fuzzy numbers. In particular, the package contains
functions for the standard operations on the class of fuzzy numbers (sum,
scalar product, mean, Hukuhara difference, quantiles) as well as for calcula-
ting (Bertoluzza) distance, sample variance, sample covariance, sample cor-
relation, and the Dempster-Shafer (levelwise) histogram. Moreover SAFD fa-
cilitates functions for the simulation of fuzzy random variables, for bootstrap
tests for the equality of means as well as a function for linear regression given
trapezoidal fuzzy data. The aim of this paper is to explain the functionality
of the package and to illustrate its usage by various examples.

1 Introduction

During the last decades the concept of fuzzy sets going back to L. Zadeh
(see [13]) has become more and more popular, particularly in order to model
imprecision that typically arises in the context of collecting or processing dif-
ferent kinds of realistic data. Firstly, as a matter of fact, all measurements
of continuous physical quantities are imprecise - the imprecision may, for
instance, be caused by the fact that the measurement device rounds to a
certain number of digits or may be due to physical conditions (Heisenberg
uncertainty in the microscopic level, etc.). And secondly, humans typically
quantify and classify using linguistic labels, which only in very rare cases
can properly be modelled by exact (crisp) real values. It is therefore not sur-
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2 Departamento de Estad́ıstica e I.O. y D.M., Universidad de Oviedo, 33007 Oviedo (As-
turias), Spain, lubiano@uniovi.es

C. Borgelt et al. (Eds.): Towards Advanced Data Analysis, STUDFUZZ 285, pp. 107–118.
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prising that fuzzy set theory has been applied in data analysis problems in
various areas like forestry, structural analysis, hydrology and economics (see
[2, 3, 5, 7]). Combining probabilistic uncertainty with (one-dimensional) im-
precision naturally leads to the concept of so-called fuzzy random variables,
which are random elements X on a probability space (Ω,A,P) with values
in the family Fc(R) of all fuzzy numbers (see [8]). Even from the purely de-
scriptive point of view one needs some software that allows to analyze and
plot samples of fuzzy numbers (from whatever source they may come). From
the inferential point of view this software certainly should also be able to
generate fuzzy samples, i.e. to simulate fuzzy random variables.
Since it seemed most natural to write this software not as a stand-alone
product but as add-on to an already existing, world wide used, state-of-the
art and sufficiently broad software environment we have decided to write an
R package entitled SAFD (Statistical Analysis of Fuzzy Data). R is a free
software environment for statistical computing and graphics. It compiles and
runs on a wide variety of UNIX platforms, Windows and MacOS and is avail-
able under http://www.r-project.org/. Currently, SAFD is one of more than
3.000 packages on CRAN, see http://cran.r-project.org/web/packages/.
In its current version 0.3 the package contains functions that allow to ex-
ecute standard operations on the class Fc(R) (sum, scalar product, mean,
Hukuhara difference, quantiles) as well as functions calculating (Bertoluzza)
distance, sample variance, sample covariance, sample correlation, and the
Dempster-Shafer (levelwise) histogram. Moreover SAFD facilitates functions
to simulate fuzzy random variables, bootstrap tests for the equality of means
as well as a function for linear regression given trapezoidal fuzzy data.
The aim of this contribution is to explain the functionality of the package
and to illustrate its usage by various examples - hence the rest of the paper
is organized as follows: Firstly some preliminaries and notations concerning
fuzzy numbers and fuzzy random variables are gathered in Section 2. Section
3 explains the most important functions with the help of various examples.
Finally, Section 4 presents some possible future extensions for SAFD.

Remark: In its current version 0.3 SAFD is still a quite small package that
should be extended in the near future. Any recommendations, comments and
complaints are welcome.

2 Notation and Preliminaries

Throughout the whole paper Kc(R) denotes the family of all non-empty com-
pact intervals. The family of all fuzzy numbers Fc(R) considered throughout
this paper is defined by

Fc(R) =
{
A : R→ [0, 1]

∣∣ Aα ∈ Kc(R) for every α ∈ [0, 1]
}
, (1)
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whereby the α-cut Aα is defined by

Aα := [aα, aα] := {x ∈ R |A(x) ≥ α}

for every α ∈ (0, 1] and the 0-cut A0 := [a0, a0], called the support of A, is
defined as the topological closure of

⋃
α>0Aα. For every pair A,B ∈ Fc(R)

and b ∈ R the Minkowski sum S = A⊕B ∈ Fc(R) of A and B and the scalar
product P = b�A ∈ Fc(R) are levelwise defined by

[sα, sα] = [aα + bα, aα + bα] ∀α ∈ [0, 1]

and
[p

α
, pα] = [b aα, b aα] ∀α ∈ [0, 1]

if b ≥ 0 and
[p

α
, pα] = [b aα, b aα] ∀α ∈ [0, 1]

if b ≤ 0. If, for given A,B ∈ Fc(R) there is a fuzzy number D ∈ Fc(R) such
that A = B ⊕D then D will be called Hukuhara difference of A and B and
denoted by A �H B. Note that, in case it exists, the Hukuhara difference is
the inverse operation to ⊕.

In order to measure distances between elements in Fc(R) we will consider
the simplest form of the so-called Bertoluzza metric dθ with θ > 0 (see [1]
and [11]), which is defined by

d2θ(A,B) :=

∫
[0,1]

(mid(Aα)−mid(Bα))
2 dα+θ

∫
[0,1]

(spr(Aα)−spr(Bα))
2 dα,

(2)

whereby mid(Aα) :=
1
2 (aα + aα) denotes the midpoint of Aα and spr(aα) :=

1
2 (aα − aα) the spread (or radius) of Aα for every α ∈ [0, 1].

Throughout this paper a fuzzy random variable is a Borel measurable map-
ping X from a probability space (Ω,A,P) into the metric space (Fc(R), dθ).
Note that Borel measurability does not depend on the concrete choice of θ
in the definition of dθ as long as θ > 0 since all metrics dθ induce the same
topology on Fc(R).
Given a sample of a fuzzy random variable X , X = (X1, · · · , Xn), the sample
mean Xn and sample variance σ2

θ,n are defined by

Xn :=
1

n
(X1 ⊕X2 ⊕ · · · ⊕Xn) (3)

and

σ2
θ,n :=

1

n

n∑
i=1

d2θ(Xi, Xn). (4)
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Furthermore, if X = (X1, · · · , Xn) and Y = (Y1, · · · , Yn) are samples of the
fuzzy random variables X and Y , their (Bertoluzza) covariance (see [3]) is
defined by

covθ(X,Y) := covmid(X,Y) + θ covspr(X,Y),

whereby covmid(X,Y) is the (integral) mean sample covariance of the corre-
sponding mids and covspr(X,Y) the (integral) mean sample covariance of the
corresponding spreads, i.e.

covmid(X,Y) =

∫
[0,1]

1

n

n∑
i=1

mid((Xi)α)mid((Yi)α)dα

−
∫
[0,1]

mid((Xn)α)mid((Y n)α)dα

covspr(X,Y) =

∫
[0,1]

1

n

n∑
i=1

spr((Xi)α) spr((Yi)α)dα

−
∫
[0,1]

spr((Xn)α) spr((Y n)α)dα.

For every sample X = (X1, X2 . . . , Xn) of fuzzy numbers we will consider
levelwise quantiles, so, for instance, the median med(X) is defined as the
unique element of Fc(R) such that for all α ∈ [0, 1] we have

med(X)α =
[
F

−1

n,α(0.5), F
−1
n,α(0.5)

]
, (5)

whereby the functions F
−1

n,α and F−1
n,α denote the (pseudo-) inverse of the em-

pirical distribution function of the sample (x1α, x2α, · · ·xnα
) and the sample

(x1α, x2α, · · ·xnα) respectively (also see [9] for a slightly different definition).

Suppose that I ∈ Kc(R) and that A1, A2 . . . , An ∈ Fc(R), then the fuzzy
relative frequency of I is defined as the unique fuzzy number Hn(I) ∈
Fc(R) such that all but at most countably many α-cuts (Hn(I))α :=
[hn,α(I), hn,α(I)] fulfil

hn,α(I) =
1

n
#
{
i ∈ {1, . . . , n} : (Ai)α ⊆ I

}
(6)

hn,α(I) =
1

n
#
{
i ∈ {1, . . . , n} : (Ai)α ∩ I �= ∅

}
.

In other words, all but at most countably many α-cuts of Hn(I) coincide
with Dempster’s interval-valued frequency of the corresponding α-cuts of the
sample. For a more detailed and more general description of fuzzy frequencies
please see [10] and [12].
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3 Functionality of the SAFD Package

The SAFD package works with polygonal fuzzy numbers in the form of
dataframes having two columns, x and alpha, and arbitrary many α-levels.
The following is an example with only three equidistant levels:

> A

x alpha

1 -2.2000 0.0

2 -1.2000 0.5

3 -0.2000 1.0

4 0.2000 1.0

5 1.1375 0.5

6 3.2000 0.0

Thereby the x-values of the dataframe have to be increasing and the alpha-
values have to increase from 0 to 1 and then decrease from 1 to 0 in the
same manner (non necessarily equidistant). The package contains two internal
functions called checking and checking2 to check if the data is in the correct
format. Furthermore it contains a function called translator to convert
input data fulfilling the above conditions into a dataframe in the correct
format and with a chosen number nl of equidistant alpha levels, see Figure 1.

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

al
ph

a

Fig. 1 Illustration of the functionality of the translator function via the following com-
mands (the XX data set is included in the package):

data(XX); E3<-translator(XX[[3]],3); E6<-translator(XX[[3]],6)
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Samples of polygonal fuzzy numbers are handled as lists of dataframes in the
above format, i.e. XX[[3]] is the third fuzzy number of the sample XX.
In the following we start with some very simple examples illustrating how to
use the most basic functions contained in the package. These basic functions
are also used by the other functions in the package like Bvar, btest*.mean
or lrmodel. Further examples for these functions are given in the html help
files included in SAFD. Afterwards we take a look to some more interesting
examples involving the generation of samples and the calculating and plotting
of frequencies/histograms for the generated samples in Section 3.2.

3.1 Basic Functions

Given polygonal fuzzy numbers X1, · · · , Xn contained in a list AA their
Minkowski mean Xn can be calculated as illustrated in the following ex-
ample, which also shows how to define polygonal fuzzy numbers by hand.
Additionally we can easily calculate the Bertoluzza distance d1/3(X,Y ) for
X,Y from Example 11. The results produced by Example 1 are depicted in
Figure 2.

Example 1:

X<-translator(XX[[3]],10)

E<-data.frame(cbind(x=c(2,3,3.5,4),alpha=c(0,1,1,0)))

Y<-translator(E,10)

AA<-list(X,Y)

M<-Mmean(AA, pic=1)

bertoluzza(X,Y,theta=1/3,pic=1)

For examples concerning the functions Msum and sc mult (which are also
very basic functions) we refer to the html help of the SAFD package and
only remark here that most functions in the package operate on families
of polygonal fuzzy numbers having identical α-levels in order to allow the
operations to be executed as quickly as possible2. Using the translator

function this is, however, no real restriction since all elements of interest can
easily be transformed in the correct form.

3.2 Sample Generation, Frequency and Histogram

The SAFD package contains a function called generator that allows to si-
mulating fuzzy random variables. This function is an implementation of the

1 1/3 is the default value for θ for all functions involving the Bertoluzza distance
2 identical α-levels allow, for instance, to calculate the sum of polygonal fuzzy numbers
via elementary vector arithmetic
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Fig. 2 The two fuzzy numbers (gray), their mean (black), and their Bertoluzza distance
d1/3(X, Y ) in Example 1

approach described in [4] which essentially imitates the Fourier series repre-
sentation of every element in a separable Hilbert space w.r.t. an orthonormal
basis. More precisely, given an input dataframe V in the correct format (which
will be the expectation of the simulated FRV) first decomposer(V) is called
and the resulting dataframe contains the ’coordinates’ of V with respect to a
certain ’basis’ (see [4]). These ’coordinates’ are perturbated stochastically in
order to generate a new polygonal fuzzy number. The distributions used for
these perturbations can be selected in the call of the function, however, in
the current version 0.3 only a few choices are possible: (1) The perturbation
of the centre of the 1-cut pertV has to be of the form N (0, σ) or U(−a, a)
with σ, a > 0. (2) The perturbation of the left part of the fuzzy set pertL has
to be χ1, Exp(1) or lnN (a, b) with expectation one. (3) The perturbation of
the right part of the fuzzy set pertR has to be of the same form as that for
the left part. A precise description of the procedure can be found in [4].

The code in the following example generates samples X1, X2, · · · , Xn (n =
10, 100, 1.000, 10.000) of a fuzzy random variable X with given expecta-
tion V=translator(XX[[3]],101) by using the default perturbations in the
generator function, calculates d1/3(V,Xn) and plots the first ten sample

elements and An. The resulting plot is depicted in Figure 3.

Example 2:

nf <- layout(matrix(c(1,2,3,4), 2, 2, byrow=TRUE), respect=TRUE)

V<-translator(XX[[3]],101)

ss<-c(10,100,1000,10000)

for (j in 1:4){

YY<-vector("list",length=ss[j])

for(i in 1:ss[j]){

YY[[i]]<-generator(V,,,)
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}

M<-Mmean(YY)

dis<-round(bertoluzza(M,V,1/3,0),4)

plot(M,type="l",xlim=c(-4,4),main=paste("sample_size: ", ss[j],", D=",

dis,sep=""), lwd=2, cex.main=1)

lines(V,type="l",col="red",lwd=2)

for (k in 1:10){

lines (YY[[k]],type="l",col="gray")

}

}
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Fig. 3 Output of Example 2; the black line depicts the theoretical expectation, the dashed
black line the sample mean

Figure 4 depicts the corresponding results for the case of choosing the fol-
lowing perturbations in Example 2:

pertV<-list(dist="unif",par=c(-2,2))

pertL<-list(dist="lnorm",par=c(-2,2))

Given a sample X = (A1, A2 . . . , An) of polygonal fuzzy numbers like YY,
in Example 2 one can apply DSfrequency and DShistogram to calculate the
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Fig. 4 Output of the modified version of Example 2

(Dempster-Shafer) frequency Hn(I) of an interval I and a (Dempster-Shafer)
histogram of A respectively. The code in the following example generates data
like in Example 2 and then calculates the frequency of [1, 3] (201 different α-
levels) - first with sample size n = 3 and afterwards with sample size n = 50.
Figure 5 depicts the results (after gathering the individual plots produced by
the functions in a joint one).

Example 3:

SS<-vector("list",length=3)

for (j in 1:3){

SS[[j]]<-generator(V,)

}

A<-DSfrequency(SS,c(1,3),1,201)

SS<-vector("list",length=50)

for (j in 1:50){

SS[[j]]<-generator(V,)

}

A<-DSfrequency(SS,c(1,3),1,201)

The code in Example 4 generates a sample of n = 2.000 fuzzy numbers
and calculates the Dempster-Shafer histogram for the interval [−4, 4] with
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Fig. 5 Results of the code in Example 3

20 partition elements. By default DShistogram produces two plots, a 3d-plot
of the histogram as well as an image plot with the same colour scale, see
Figure 6.

Example 4:

V<-translator(XX[[3]],51)

V$x<-V$x/10

SS<-vector("list",length=2000)

for (j in 1:2000){

SS[[j]]<-generator(V,)

}

A<-DShistogram(SS,c(-4,4),npart=20,nl=51,pdf=TRUE)
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Fig. 6 Results of the code in Example 4

3.3 Further Functions in SAFD

As mentioned in the introduction SAFD also contains functions for bootstrap
tests for the equality of means of fuzzy random variables and a function
for calculating quantiles of samples of fuzzy numbers. Concerning these two
functions we refer to [6, 9].
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4 Future Work

In its next version the SAFD package will also contain functions for calculat-
ing the empirical lower and upper α-level distribution functions (defined anal-
ogously to the frequencies in (6)) and some robust version of basic functions.
Furthermore the generator function will allow for more flexibility. Apart
from that we plan to improve the speed both of the implemented bootstrap
tests for the equality of means and of the DSfrequency and DShistogram

functions, and allow more flexible plotting.
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Statistical Reasoning with Set-Valued
Information: Ontic vs. Epistemic Views

Didier Dubois1

Abstract Sets, hence fuzzy sets, may have a conjunctive or a disjunctive
reading. In the conjunctive reading a (fuzzy) set represents an object of in-
terest for which a (gradual rather than Boolean) composite description makes
sense. In contrast disjunctive (fuzzy) sets refer to the use of sets as a repre-
sentation of incomplete knowledge. They do not model objects or quantities,
but partial information about an underlying object or a precise quantity. In
this case the fuzzy set captures uncertainty, and its membership function is a
possibility distribution. We call epistemic such fuzzy sets, since they represent
states of incomplete knowledge. Distinguishing between ontic and epistemic
fuzzy sets is important in information-processing tasks because there is a
risk of misusing basic notions and tools, such as distance between fuzzy sets,
variance of a fuzzy random variable, fuzzy regression, etc. We discuss sev-
eral examples where the ontic and epistemic points of view yield different
approaches to these concepts.

1 Introduction

Traditional views of engineering sciences aim at building a mathematical
model of a real phenomenon, via a data set containing observations of the
concerned phenomenon. This mathematical model is approximate in the sense
that it is an imperfect copy of the reality it intends to account for, but it is
often precise, namely it typically takes the form of a real-valued function that
represents, for instance, the evolution of a quantity over time. Approaches
vary according to the class of functions used. The oldest and most common
class is the one of linear functions, but a lot of works dealing with non-linear
models have appeared, for instance and prominently, using neural networks

1 IRIT, CNRS and Université de Toulouse, France, dubois@irit.fr

C. Borgelt et al. (Eds.): Towards Advanced Data Analysis, STUDFUZZ 285, pp. 119–136.
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and fuzzy systems. These two techniques for constructing precise models
have been merged to some extent due to the great similarity between the
mathematical account of fuzzy rules and neurons, and their possible synergy
due to the joint use of linguistic interpretability of fuzzy rules and learning
capabilities of neural nets. While innovative with respect to older modeling
techniques, these methods remain in the traditional school of producing a
simplified and imperfect substitute of reality as observed via precise data.

Besides, there also exists a strong tradition of accounting for the non-
deterministic aspect of many real phenomena subject to randomness in re-
peated experiments, including the noisy environment of measurement pro-
cesses. Stochastic models enable to capture the general trends of populations
of observed events through the use of probability distributions having a fre-
quentist flavor. The probability measure attached to a quantity then reflects
its variability through observed statistical data. Again in this approach, a
stochastic model is a precise description of variability in physical phenom-
ena.

More recently, with the emergence of Artificial Intelligence, but also in con-
nection with more traditional human-centered research areas like Economics,
Decision Analysis and Cognitive Psychology, the concern of reasoning about
knowledge has emerged as a major paradigm [29]. While this topic has been
mainly developed in the framework of classical or modal logic, due to the
long philosophical tradition in this area, it has strongly affected the develop-
ment of new uncertainty theories [20], and has led to a critique of probability
theory as a unique framework for the representation of variability and belief.
These developments question traditional views of modeling as representing
reality independently of perception. They suggest a different approach that
should also account for the cognitive limitations of our observations of real-
ity. In other words, one might think of developing the epistemic approach to
modeling. We call ontic model a precise representation of reality (however
inaccurate it may be), and epistemic model a mathematical representation
both of reality and the knowledge of reality, that explicitly accounts for the
limited precision of our measurement capabilities. Typically, while the output
of an ontic model is precise (but possibly wrong), an epistemic model delivers
an imprecise output (hopefully consistent with the reality it accounts for).
An epistemic model should of course be as precise as possible, given the avail-
able incomplete information, but it should also be as plausible as possible,
avoiding unsupported arbitrary precision.

This paper discusses epistemic modeling in the context of set-based repre-
sentations, and the mixing of variability and incomplete knowledge as present
in recent works in fuzzy set-valued statistics.
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2 Ontic vs. Epistemic Sets

A set S defined in extension, is often denoted by listing its elements, say,
in the finite case {s1, s2, . . . , sn}. As pointed out in a recent paper [21] this
representation, when it must be used in applications, is ambiguous. In some
cases, a set represents a real complex lumped entity. It is then a conjunction of
its elements. It is a precisely described entity made of subparts. For instance,
a region in a digital image is a conjunction of adjacent pixels; a time interval
spanned by an activity is the collection of instants where this activity takes
place. In other cases, sets are mental constructions that represent incomplete
information about an object or a quantity. In this case, a set is used as a
disjunction of possible items, or of values of this underlying quantity, one of
which is the right one. For instance I may only have a rough idea of the birth
date of the president of some country, and provide an interval as containing
this birth date. Such an interval is the disjunction of mutually exclusive
elements. It is clear that the interval itself is subjective (it is my knowledge),
has no intrinsic existence, even if it refers to a real fact. The use of sets
representing imprecise values can be found for instance in interval analysis
[39]. Another example is the set of models of a propositional knowledge base:
only one of them reflects the real situation. Moreover this set is likely to
change by acquiring more information.

Sets representing collections C of elements forming composite objects will
be called conjunctive; sets E representing incomplete information states will
be called disjunctive. A conjunctive set is the precise representation of an
objective entity (philosophically it is a de re notion), while a disjunctive set
only represents incomplete information (it is de dicto). We also shall speak of
ontic sets, versus epistemic sets, in analogy with ontic vs. epistemic actions in
cognitive robotics [30]. An ontic set C is the value of a set-valued variable X
(and we can write X = C). An epistemic set E contains the ill-known actual
value of a point-valued quantity x and we can write x ∈ E. A disjunctive
set E represents the epistemic state of an agent, hence does not exist per se.
In fact, when reasoning about an epistemic set it is better to handle a pair
(x,E) made of a quantity and the available knowledge about it.

A value s inside a disjunctive set E is a possible candidate value for x,
while elements outside E are considered impossible. Its characteristic func-
tion can be interpreted as a possibility distribution [56]. This distinction
between conjunctive and disjunctive sets was made by Zadeh himself [57]
distinguishing between set-valued attributes (like the set of sisters of some
person) from ill-known single-valued attributes (like the unknown single sister
of some person). This issue has been extensively discussed by Yager [53] and
Dubois and Prade [17] for the study of incomplete conjunctive information
(whose representation requires a disjunctive set of conjunctive sets).

An epistemic set (x,E) does not necessarily accounts for an ill-known de-
terministic value. An ill-known quantity may be deterministic or stochastic.
For instance, the birth date of a specific individual is not a random variable
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even if it can be ill-known. On the other hand the daily rainfall in a specific
place is a stochastic variable, since it can be modelled by a probability dis-
tribution. An epistemic set then captures in a rough way information about
a population via observations. For instance, there is a sample space Ω, and x
can be a random variable taking values on S, but the probability distribution
on Ω is unknown. All that is known is that x(ω) ∈ E, that is Px(E) = 1 where
Px is the probability measure of x. In that case, E represents the family PE

of objective probability measures on Ω such that P ({ω : x(ω) ∈ E}) = 1,
one of which being the proper representation of the random phenomenon.
In this case, the object to which E refers is not a precise value of x, but a
probability measure Px describing the variability of x.

Note that in the probabilistic literature, an epistemic set is more often than
not modelled by a probability distribution. In the early 19th century, Laplace
proposed to use a uniform probability on E, based on the insufficient reason
principle, according to which what is equipossible must be equiprobable. This
is a default choice in PE that coincides with the probability distribution
having maximal entropy. However, this approach makes sense if x is a random
variable. In case x is an ill-known deterministic value, Bayesians [35] propose
to use a subjective probability P b

x in place of set E. In that case, where
the occurrence of x is not a matter of repetitions, P b

x(A) is the price of a
lottery ticket chosen by an agent who agrees to earn $1 if A turns out to be
true, in an exchangeable bet scenario where the bookmaker exchanges roles
with the buyer if the proposed price is found unfair. It forces the agent to
propose prices pb(s) that sum exactly to 1 over E. Then P b

x(A) measures
the degree of belief of the (non-repeatable) event x ∈ E, and this degree is
agent-dependent.

However clever it may be, this view is debatable (see [20] for a summary
of critiques). Especially, this representation is unstable: if P b

x is uniform on
E, then P b

f(x) may fail to be so if E is finite and the image f(E) does not
contain the same number of elements as E, or if E is an interval and f is not
a linear transformation. Moreover, the use of unique probability distributions
to represent belief is challenged by experimental results (like Ellsberg paradox
[4]), which show that individuals do not make decisions based on expected
utility in front of partial ignorance.

3 Random Sets vs. Ill-known Random Variables

As opposed to the case of an epistemic set representing an ill-known prob-
ability distribution, another situation is when the probability space (Ω,P )
is available1, but each realisation of the random variable is represented as a
set. This case covers two situations:

1 In this paper, we assume Ω is finite to avoid mathematical difficulties.



Statistical Reasoning with Set-Valued Information 123

1. Random conjunctive sets: The random variable X(ω) is multi-valued
and takes values on the power set of a set S. For instance, S is a set of
spoken languages, and X(ω) is the set of languages spoken by an individ-
ual ω. Or X(ω) is an ill-known area of interest in some spatial domain,
and ω is the outcome of an experiment to locate it. Then a probability
distribution pX is obtained over 2S , such that pX(C) = P (X = C). It is
known in the literature as a random set (Kendall [31], Matheron [38]). In
our terminology this is a random conjunctive (or ontic) set.

2. Ill-known random variables: The random variable x(ω) takes values
on S but its realisations are incompletely observed. It means that ∀ω ∈ Ω,
all that is known is that x(ω) ∈ E = X(ω) where X is a multiple-valued
mapping Ω → 2S representing the disjunctive set of mappings (called
selections) {x : Ω → S, ∀ω, x(ω) ∈ X(ω)} = {x ∈ X} for short. In other
words the triple (Ω,P,X) is an epistemic model of the random variable x.
This is the approach of Dempster [11] to imprecise probabilities. He uses
this setting to account for a parametric probabilistic model Pθ on a set U
of observables, where θ ∈ Θ is an ill-known parameter but the probability
distribution of a function φ(u, θ) ∈ Ω is known. Then S = Θ × U and
X(ω) = {(θ, u), ∃θ, φ(u, θ) = ω}. It is clear that for each ω, X(ω) is an
epistemic set restricting, for each observation u the actual (deterministic)
value θ.

Shafer [46] has proposed a non-statistical view of the epistemic random set
setting, based on a subjective probabilitym over 2S , formally identical to pX .
In this setting called the theory of evidence, m(E) represents the subjective
probability that all that is known of a deterministic quantity x is of the form
x ∈ E. This is the case when an unreliable witness testifies that x ∈ E
and p is the degree of confidence of the receiver agent in the validity of the
testimony. Then with probability m(E) = p, x ∈ E is a reliable information.
It means that the testimony is useless with probability m(S) = 1−p assigned
to the empty information S. This view of probability was popular until the
end of the 18th century (see [41] for details and a general model of unreliable
witness). More generally the witness can be replaced by a measurement device
or a message-passing entity with state space U , such that if the device is in
state u then the available information is of the form x ∈ E(u) ⊆ S, and p(u)
is the subjective probability that the device is in state u [47].

The above discussions lay bare the difference between random conjunctive
and disjunctive sets, even if they share the same mathematical model. In the
first case one may compute precise probabilities that a set-valued variable X
takes value in a family A of subsets:

PX(A) =
∑

X(ω)∈A
p(ω) =

∑
C∈A

pX(C). (1)

For instance, in the language example, and S = {English, French, Spanish},
one may compute the probability that someone speaks English by summing
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the proportions of people in Ω that respectively speak English only, English
and French, English and Spanish, and the three languages.

In the second scenario, the random set X(ω) represents knowledge about
a point-valued random variable x(ω). For instance, suppose S is an ordered
height scale, x(ω) represents the height of individual ω and X(ω) = [a, b] ⊆ S
is an imprecise measurement of x(ω). Here one can compute a probability
range containing the probability Px(A) =

∑
x(ω)∈A p(ω) that the height of

individuals in Ω lies in A, namely lower and upper probabilities proposed by
Dempster [11]:

PX(A) =
∑

X(ω)⊆A

p(ω) =
∑
E⊆A

pX(E); (2)

PX(A) =
∑

X(ω)∩A �=∅
p(ω) =

∑
E∩A �=∅

pX(E) (3)

such that PX(A) = 1− PX(Ā), where Ā is the complement of A. Note that
the set of probabilities PX on S induced by this process is finite: since Ω and
S are finite, the number of selections x ∈ X is finite too. In particular, PX

is not convex. Its convex hull is P̃X = {PS; ∀A ∈ S, PS(A) ≥ PX(A)}. It is
well-known that probability measures in this convex set are of the form

PS(A) =
∑
E⊆S

pX(E)PE(A)

where PE , a probability measure such that PE(E) = 1, defines a sharing
strategy of probability weight pX(E) among elements of E. As explained by
Couso and Dubois [7], it corresponds to a scenario where when ω ∈ Ω occurs,
x(ω) is tainted with variability (due to the measurement device) that can be
described by a conditional probability P (·|ω) on S. Hence the probability
Px(A) is now of the form:

Px(A) =
∑
ω∈Ω

P (A|ω)P (ω).

However, all we know is that P (X(ω)|ω) = 1 for some maximally specific
epistemic subset X(ω). This is clearly a third (epistemic) view of the random
set X . It is easy to see that the choice of PX vs. its convex hull is immaterial
in the computation of upper and lower probabilities, so that

PX(A) = inf{
∑
ω∈Ω

P (A|ω)P (ω) : P (X(ω)|ω) = 1, ∀ω ∈ Ω} (4)

= inf{
∑
E⊆S

pX(E)PE(A) : PE(E) = 1}. (5)

where PE(A) = P (A|ω) if E = X(ω).
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In the evidence theory setting, Dempster upper and lower probabilities of
an event are directly interpreted as degrees of belief Bel(A) = PX(A) and
plausibility Pl(A) = PX(A), without reference to an ill-known probability on
S (since the information is not frequentist here). This is the view of Smets [49].
The mathematical similarity between belief functions and random sets was
quite early pointed out by Nguyen [40]. But they gave rise to quite distinct
streams of literature that tend to ignore or misunderstand each other.

4 When the Meaning of the Model Affects Results

The reader may consider that the three above interpretations of random sets
are just a philosophical issue, but do not impact on computations that can
be carried out with this model. For instance the mean interval of a random
interval has the same definition (interval arithmetics or Aumann integral)
independently of the approach. However this is not true for other concepts.
Two examples are given: conditioning and variance.

4.1 Conditioning Random Sets

Given a random set in the form of a probability distribution on the power
set S, and an event A ⊂ S, the proper method for conditioning the random
set on A depends on the adopted scenario.

Conditioning a conjunctive random set In this case the problem
comes down to restricting the set-valued realisations X(ω) so as to account
for the information that the set-valued outcome lies inside A. Then the ob-
tained conditional random set is defined by means of the standard Bayes rule
in the form of its weight distribution pX(·|A) such that:

pX(C|A) =
{

pX (C)∑
B⊆A pX(B) if C ⊆ A;

0 otherwise.
(6)

Conditioning an ill-known random variable Suppose the epistemic ran-
dom set X(ω) relies on a population Ω, and is represented by the convex set
of probabilities P̃X on S, one of which is the proper frequentist distribution
of the underlying random variable x. Suppose we study a case for which
all we know is that x ∈ A, and the problem is to predict the value of x.
Each probability pX(E) should be altered in order to restrict to the subset
ΩA = {ω : x(ω) ∈ A} of population Ω. However, because x(ω) is only known
to lie in X(ω), the set ΩA is itself ill-known. There are three situations:
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1. Either A∩E = ∅: then ΩA∩{ω : X(ω) = E} = ∅ and we can drop pX(E).
2. Or E ⊆ A and then {ω : X(ω) = E} ⊆ ΩA and pX(E) should remain

assigned to E;
3. Or E overlaps both A and its complement: then let αA(E) be the propor-

tion of the population for which all we know is x(ω) ∈ E and that lies
inside ΩA. The weight αA(E)pX(E) should be assigned to E ∩A.

One may then define the conditional probability distribution over 2S as fol-
lows:

pαA

X (B|A) =
{∑

B=E∩A αA(E)pX (E)∑
E∩A�=∅ αA(E)pX (E) if B ⊆ A;

0 otherwise.
(7)

This mass assignment leads to computing lower and upper probabilities
PαA(·|A) and P

αA
(·|A) when the vector of weights αA is fixed. But this

proportion αA(E) is unknown in the third situation, while it is respectively 0
and 1 in the previous ones. Varying this unknown vector leads to upper and
lower conditional probabilities as follows:

PX(B|A) = sup
αA

P
αA

(B|A); PX(B|A) = inf
αA

PαA(B|A). (8)

and likewise for the lower conditional probability. In fact, it has been proved
that these bounds can be obtained by applying Bayesian conditioning to all
probabilities in P̃X with Px(A) > 0 and that they take an attractive closed
form [9, 23]:

PX(B|A) = sup{Px(B|A) : Px ∈ P̃X} =
PX(B ∩A)

PX(B ∩ A) + PX(B̄ ∩ A) , (9)

PX(B|A) = inf{Px(B|A) : Px ∈ P̃X} =
PX(B ∩A)

PX(B ∩ A) + PX(B̄ ∩ A) , (10)

where PX(B|A) = 1− PX(B̄|A) and B̄ is the complement of B.

Conditioning a belief function In this case, there is no longer any pop-
ulation, and the probability distribution m = pX on 2S represents subjective
knowledge about a deterministic value x. Conditioning on A means that we
come to hear that the actual value of x lies in A for sure. Then we perform
an information fusion process (a special case of Dempster rule of combination
[11]). It yields yet another type of conditioning, called Dempster condition-
ing, that systematically transfers masses m(E) to E ∩ A when not empty,
eliminates m(E) otherwise, then normalises the conditional mass function,
dividing by

∑
E∩A �=∅m(E) = Pl(A). It leads to the conditioning rule

Pl(B|A) = Pl(A ∩B)

Pl(A)
=
PX(A ∩B)

PX(A)
, (11)
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and Bel(B|A) = 1 − Pl(B̄|A). Note that it comes down to the previous
conditioning rule (7) with αA(E) = 1 if E ∩ A �= ∅, and 0 otherwise (an
optimistic assignment, justified by the claim that A contains the actual value
of x). Interestingly the conditioning rule for conjunctive random sets comes
down to the previous conditioning rule (7) with αA(E) = 1 if E ⊆ A, and
0 otherwise, that could, in the belief function terminology, be written as

Bel(B|A) = Bel(A∩B)
Bel(A) . It is known as the geometric rule of conditioning.

Such a pessimistic weight reassignment can hardly be justified for disjunctive
random sets.

4.2 Empirical Variance for Random Interval Data

Interval data sets provide a more concrete view of a random set. Again the
distinction between the case where such intervals represent precise actual
objects and when they express incomplete knowledge of precise ill-observed
point values is crucial in computing a statistical parameter such as variance
[7]. Consider a data set consisting of a bunch of intervals D = {Ii = [ai, ai], i =
1, ...n}. The main question is: are we interested by the joint variation of the
size and location of the intervals ? or are we interested in the variation of the
underlying precise quantity as imperfectly accounted for by the variation of
the interval data?

1. Ontic interval data: In this case we consider intervals are precise lumped
entities. For instance, one may imagine the interval data set to contain
sections of a piece of land according to coordinate x in the plane: Ii =
Y (xi) for a multimapping Y , where Y (xi) is the extent of the piece of
land at abscissa xi, along coordinate y. The ontic view suggests the use of
a scalar variance:

ScalV ar(D) =

∑
i=1,...,n d(M, Ii)

2

n
, (12)

where M = [
∑n

i=1 ai/n,
∑n

i=1 ai/n] is the interval mean value, and d is
a scalar distance between intervals (e.g. Euclidean distance between pairs
of values representing the endpoints of the intervals, but more refined
distances have been proposed [2]). ScalV ar(D) measures the variability of
the intervals in D, both in terms of location and width and evaluates the
spatial regularity of the piece of land, varying coordinate x. This variance
is 0 for a rectangular piece of land parallel to the coordinate axes.

2. Epistemic interval data: Under the epistemic view, each interval Ii
stands for an ill-known precise value xi that is the result of measuring
a deterministic value x several times. Here, the measurement process is
subject to randomness and is imprecise. Then we are more interested by
sensitivity analysis describing what we know about the variance we would
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have computed, had the data been precise. Then, we should compute the
interval

EV ar1(D) = {var({xi, i = 1, ...n}) : xi ∈ Ii, ∀i}. (13)

Computing this interval is a non-trivial task [25, 48]
3. Epistemic interval random data Alternatively one may consider that

the quantity x that we wish to describe is intrinsically random. Each mea-
surement process is an information source providing incomplete informa-
tion on the variability of x. Then each interval Ii can be viewed as con-
taining the support SUPP (Pi) of an ill-known probability distribution Pi:
then we get a wider variance interval than previously. It is defined by

EV ar2(D) = {var(
n∑

i=1

Pi/n) : SUPP (Pi) ⊆ Ii, ∀i = 1, ...n} (14)

and it is easy to see that EV ar1(D) ⊂ EV ar2(D).

In the extreme case of a single epistemic interval (x, [a, b]), if x is a deter-
ministic ill-known quantity, it has a unique true value. Then EV ar1([a, b]) =
var(x) = 0 (since even if ill-known, x is not supposed to vary: the set of vari-
ances of a bunch of Dirac functions is {0}). In the second case, x is tainted
with variability, var(x) is ill-known and lies in the interval EV ar2([a, b]) =
[0, v∗] where v∗ = sup{var(x), SUPP (Px) ⊆ [a, b]} = (b − a)2. The distinc-
tion between deterministic and stochastic variables known via intervals thus
has important impact on the computation of dispersion indices, like variance.

Note that in the epistemic view, the scalar distance between intervals can
be useful. It is then a kind of informational distance between pieces of knowl-
edge, whose role can be similar to relative entropy for probability distribu-
tions. Namely one may use it in revision processes, for instance. Moreover one
may be interested by the scalar variance of the imprecision of the intervals,
or by an estimate of the actual variance of the underlying quantity, by com-
puting the variance of say the mid-points of the intervals. Recently suggested
scalar variances [44] between intervals come down a mixture of such a scalar
variability estimation and the variance of imprecision.

5 Different Interpretations of a Fuzzy Set

A fuzzy set on a universe S is mathematically modelled by a mapping from
S to a totally ordered set L that is usually the unit interval. As highlighted
by Dubois and Prade [19], a membership function is an abstract object that
needs to be interpreted in practical settings in order to be used meaningfully.
They proposed three interpretations of membership grades in terms of degrees
of similarity, of plausibility and preference. An early and important use of
fuzzy sets, proposed by Zadeh [55] is the representation of symbolic categories
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on numerical universes. A linguistic variable is a variable that takes values on
a set of linguistic terms modelled by fuzzy sets of the real line. In this case,
degrees of membership express similarity or distance to prototypical values
covered by a term.

As already acknowledged a long time ago, fuzzy sets, like sets, may have
a conjunctive or a disjunctive reading [57, 53, 17]. In the conjunctive read-
ing, ontic fuzzy sets represent objects originally construed as sets but for
which a fuzzy representation is more expressive due to gradual boundaries.
Degrees of membership evaluate to what extent components participate to
the global entity. For instance, this is the case when modeling linguistic la-
bels by convex fuzzy sets on a measurable scale, like tall, medium-sized, short
achieving a fuzzy partition of the human height scale. In this case, the fuzzy
sets have a conjunctive reading because they are understood as the set of
heights compatible with a given label. Other examples of ontic fuzzy sets are
non-Boolean classes stemming from a clustering process, fuzzy constraints
representing preference, a fuzzy region in an image, a fuzzy rating profile ac-
cording to various attributes. As a concrete example, consider the fuzzy set
of languages more or less well spoken by a person.

In contrast, Zadeh [56] also proposed to interpret membership functions
as possibility distributions, paving the way to a representation of incomplete
information along a line followed thirty years earlier by Shackle [45]. In that
case, a degree of membership refers to the idea of plausibility. A possibility
distribution, denoted by π is the membership function of a fuzzy set of mu-
tually exclusive values in S. A possibility distribution is supposedly attached
to an ill-known quantity x. Namely π(s) > 0 expresses that s is a possible
value of x, all the more plausible as π(s) is greater. In particular it is assumed
that π(s) = 1 for some value s, which is then considered as normal, totally
unsurprizing. A possibility distribution thus extends the set-valued represen-
tation of incomplete information to account for degrees of plausibility. It is
well-known that a possibility distribution π induces a possibility measure Π
on 2S such that Π(A) = sups∈A π(s) for all events A and a necessity measure
N(A) = 1−Π(Ā) [16].

Now, if the information about a quantity x is expressed by means of a
fuzzy set, the above distinction between the deterministic and the stochastic
case is again at work. If x is deterministic, then this information must be
interpreted in terms of “confidence sets” as follows. Let Eα = {s, π(x) ≥ α}
be the α-cut of π:

For each α ∈ [0, 1], x ∈ Eα with probability greater than or equal to 1− α.

If an expert provides this kind information, the word “probability” refers to
subjective probability. Following Walley [52], 1 − α is the maximal price at
which this expert would buy the gamble that wins $1 if the real value of x
actually lies in Eα (the minimal selling price for this gamble is $1). Note that
there is no “real probability distribution” underlying π, but Dirac functions
as x is deterministic. The consonance of the family of sets Eα makes sense
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if this is the opinion of a single expert who tends to be imprecise but self-
consistent.

If x is stochastic then there are two possible ways of interpreting the pos-
sibility distribution π.

• Mathematically speaking, a possibility measure is a coherent upper prob-
ability [52], namely Π(A) = supP∈Pπ

P (A) where Pπ = {P, ∀A,P (A) ≤
Π(A)}. So, π encodes the set of probabilities Pπ [18, 14]. This set is sup-
posed to contain the real probability measure Px that governs the vari-
ability of x. It is a set-based representation of a stochastic variable repre-
senting incomplete information about a frequentist probability. An expert
providing distribution π claims that

For each α ∈ [0, 1], the event x ∈ Eα has objective probability greater
than or equal to 1− α.

• Another option is to consider π as encoding a higher-order (subjective)
possibility distribution on a set of objective probabilities. Namely, it can
be understood as follows:

For each α ∈ [0, 1], Px has support in Eα with subjective probability
greater than or equal to 1− α.

So the domain of π can be canonically extended to the set of probability
measures on S as follows: π(P ) = sup{α, P has support in Eα}. The pos-
sibility measure Π is a “second-order possibility” formally equivalent to
those considered in [10]. It is so called, because it is a possibility distribu-
tion defined over a set of probability measures. The deterministic case is
a special case of this framework, restricting probability measures to Dirac
measures. It would be interesting to investigate the relationship between
the set of probabilities Pπ and the higher order possibility model.

The above setting does not make it clear where the objective probability
distribution comes from, i.e. the underlying sample space. Moreover, it does
not account for the measurement process of x. Namely, regardless of whether
x is deterministic or stochastic, there may be a stochastic measurement pro-
cess yielding with more or less accuracy information on the possible values of
x. The setting of fuzzy random variables extends the above distinctions by
taking the measurement process into account explicitly.

6 Various Notions of Random Fuzzy Sets

The history of fuzzy random variables is not simple as it was started by two
separate groups with respectively epistemic and ontic views in mind. The first
papers are those of Kwakernaak [33, 34] in the late seventies, clearly under-
lying an epistemic view of fuzzy sets, a line followed up by Kruse and Meyer
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[32]. They view a fuzzy random variable as a (disjunctive) fuzzy set of clas-
sical random variables (those induced by selection functions compatible with
the random fuzzy set). It represents what is known about the variability of
the underlying ill-known random variable. These works can thus be viewed as
extending the framework of Dempster’s upper and lower probabilities based
on the triple (Ω,P,X) to fuzzy set-valued mappings X̃, where X̃(ω) defines
a possibility distribution restricting the possible values of x(ω). The degree
of possibility that x is the random variable underlain by (Ω,P, X̃) is

π(x) = inf
ω∈Ω

μX̃(ω)(x(ω)) (15)

For each level α ∈ (0, 1], X̃α(ω) = {s ∈ S : μX̃(ω)(s) ≥ α} is a multiple

valued mapping such that (Ω,P, X̃α) is an epistemic random set according
to Dempster framework. Kruse and Meyer [32] clearly define the variance of a
fuzzy random variable as a fuzzy set of positive reals induced by applying the
extension principle to the variance formula. Likewise, the probability of an
event becomes restricted by a fuzzy interval in the real line [1]. The evidence
theory counterpart of this view deals with belief functions having fuzzy focal
elements [54]. An alternative epistemic view of fuzzy random variables was
more recently proposed in the spirit of Walley [52], in terms of a convex set
of probabilites induced on S[8].

In contrast, the line initiated in the mid-1980’s by Puri and Ralescu [43] is
in agreement with conjunctive random set theory. A fuzzy random variable
is then viewed as a random conjunctive fuzzy set, i.e. a classical random
variable ranging in a set of (membership) functions. This line of research
has been considerably extended so as to adapt classical statistical methods
to functional data [5, 27]. The main issue is to define a space of functions
equipped with a suitable metric structure [13, 51]. In this theory of random
fuzzy sets, a scalar distance between fuzzy sets is instrumental when defining
variance viewed as a mean squared deviation from the fuzzy mean value
[28], in the spirit of Fréchet. A scalar variance can be established on this
basis and it reflects the variability of membership functions. It makes sense if
for instance, membership functions are models of linguistic terms and some
“term variability” must be evaluated given a set of responses provided by a
set of people in natural language. See [7] for an extensive comparison of the
three views of fuzzy random variables.

The ontic view is advocated by Colubi et al. [6] in the statistical analysis
of linguistic data. The authors argue that they are interested in the statistics
of perceptions. One of their experiments deals with the visual perception of
the length of a line segment expressed on fuzzy scale using a linguistic label
among very small, small, medium, large, very large. The alleged goal is to
predict the category that a person considers correct for the segment. The
precise length of the segment exists but it is irrelevant for the classification
goal. They agree that to predict the real length from the fuzzy perceptions
requires a different approach.
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The case of Likert scaling is more problematic. This is a method of as-
cribing quantitative values to qualitative data, to make them amenable to
statistical analysis. For instance, an ordered set of linguistic labels referring
to some abstract concept (like beauty) is encoded by successive integers. A
typical scale might be strongly agree, agree, not sure/undecided, disagree,
strongly disagree. Opinions are collected on such a scale and a mean figure
for all the responses is computed at the end of the evaluation or survey. A
number of authors have proposed to model such linguistic terms by means
of a predefined fuzzy partition made of fuzzy intervals (trapezoids) on a real
interval. In some other approaches the format of the fuzzy response can be
any fuzzy interval. The idea is to cope with the arbitrariness of encoding
qualitative value by precise numbers. In that case the result of an opinion
poll is clearly a random fuzzy set.

However this kind of approach is not convincing from a measurement point
of view[15]. First, it is not clear why the underlying real interval can be
equipped with addition at all. It is rather an ordinal scale, and trapezoidal
fuzzy sets then make no sense. Next, this continuous scale is totally fictitious
and it is patent that the real data are the linguistic terms provided by people:
there is no underlying real value behind such linguistic terms. If the response
has a free format (whereby any fuzzy interval can do), one may again see
this fuzzy response as being the evaluation in itself. The latter point would
plea for an ontic view of the random fuzzy sets. However the arbitrariness
of the numerical encoding casts doubts on the cogency of the sophisticated
functional analysis framework needed to apply fuzzy random set methods. It
may be that ordinal statistical methods devoted to finite qualitative scales
would be more appropriate in this case.

7 Epistemic vs. Ontic Interval Data Processing

Consider a set of bidimensional interval data D = {(xi, Yi = [y
i
, yi]), i =

1, ...n} or its fuzzy counterpart (if the Yi’s become fuzzy sets). The issue
of devising an extension of data processing methods to such a situation has
been studied in many papers in the last 20 years or so. But it seems that
the question how the reading of the set-valued data has impact on the cho-
sen method is seldom discussed. Here we provide some hints on this issue,
restricting ourselves to linear regression and some of its fuzzy extensions.

A first approach that is widely known is Diamond’s fuzzy least squares
method [12]. It is based on a scalar distance between set-valued data. The
problem is to find a best fit interval model of the form y = A∗x + B∗,
where intervals A∗, B∗ minimize

∑n
i=1 d(Axi + B, Yi)

2, typically a sum of
squares of differences between upper and lower bounds of intervals. The fuzzy
least squares regression is similar but it presupposes the Ỹ ′

i s are triangu-
lar fuzzy intervals (ymi ; y−i , y

+
i ), with modal value ymi and support [y−i , y

+
i ].
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Diamond proposes to work with a scalar distance of the form d2(Ã, B̃) =
(am − bm)2 + (a− − b−)2 + (a+ − b+)2 making the space of triangular fuzzy
intervals complete. The problem is then to find a best fit fuzzy interval model
Ỹ = Ã∗x + B̃∗, where fuzzy triangular intervals Ã∗, B̃∗ minimize a squared
error

∑n
i=1 d

2(Ãxi + B̃, Ỹi). Some comments are in order:

• This approach treats fuzzy data as ontic entities.
• If the (fuzzy) interval data-set is epistemic, we get a linear description of

the trend of the knowledge as x increases.
• This approach does not correspond to studying the impact of data uncer-

tainty on the result of regression.

Many variants of this method, based on conjunctive fuzzy random sets
and scalar distances exist (see [24] for a recent one) including extensions to
fuzzy-valued inputs [26]. These approaches all adopt the ontic view.

Another classical approach was proposed by Tanaka et al. in the early
1980’s (see [50] for an overview). One way of posing the interval regression
problem is to find a set-valued function Y (x) (generally again of the form of
an interval-valued linear function Y (x) = Ax+B) with maximal informative
content such that Yi ⊂ Y (xi), i = 1, ...n. Some comments help situate this
method:

• It does not presuppose an ontic or epistemic reading of the data. If data
are ontic, the result models an interval-valued phenomenon. If epistemic,
it tries to cover both the evolution of the variable y and the evolution of
knowledge of this phenomenon.

• It does not clearly extend the basic concepts of linear regression.

Both approaches rely on the interval extension of a linear model y(x) =
ax+b. But, in the epistemic reading, this choice imposes unnatural constraints
on the relation between the epistemic output Y (x) and the objective input x
(e.g., Y (x) becomes wider as x increases). The fact that the real phenomenon
is affine does not imply that the knowledge about it in each point should
be also of the form Y (x) = Ax + B. In an ontic reading, one may wish
to interpolate the interval data more closely (see Boukezzoula et al. [3] for
improvements of Tanaka’s methods that cope with such defects).

Another view of interval regression, that has a clear epistemic flavor uses
possibility theory to define a kind of quantile regression. Even when applied
to precise data sets it gives an epistemic interval-valued representation of
objective data, likely to contain the actual model [42]. The idea is to find, for
each input value x, a confidence interval containing y(x) with confidence level
1−α. This is done via probability possibility transformations [22]. Varying α
leads to a bunch of nested intervals that can be modelled by fuzzy intervals
faithful to the dispersion of the yi’s in the vicinity of each input data xi.

The last approach we can think of is sensitivity analysis yielding all re-
gression results one would obtain from all precise datasets d consistent with
D. Strangely enough this technique is seldom proposed. The aim is to find
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the range of results one would have obtained with linear regression, had the
data been precise. Formally it can be posed as follows: Find

Y (x) = {â(d)x+ b̂(d) : d ∈ D}
={âx+ b̂, ∀â, b̂ that minimize

∑n
i=1(axi + b− yi)

2, ∀yi ∈ [y
i
, yi], i = 1, ...n}

It is clear that the envelope of the results is a set-valued function Y (x) that
has little chance of being defined by affine upper and lower bounds. This ap-
proach, which can genuinely be called epistemic regression has been recently
applied to kriging in geostatistics [36, 37].

8 Conclusion

This position paper has argued that the use of set-valued and fuzzy mathe-
matics in information processing tasks gives the opportunity to reason about
knowledge, an issue not so popular in data-driven studies. However, one
should distinguish between genuine set-valued problems where sets stand for
existing entities and epistemic data analysis problems where sets represent
incomplete information. This distinction impacts the very way new problems
can be posed so as to be meaningful in practice. Adding knowledge represen-
tation and reasoning to the modeling paradigm seems to be a good way to
reconcile Artificial Intelligence and numerical engineering methods.

Strangely enough fuzzy set-based information processing techniques gath-
ered under the Soft Computing flag are not set-valued methods, as they aim
most of the time at computing standard numerical functions using fuzzy rules
and neural networks, exploiting stochastic metaheuristics to optimise the fit.
A fuzzy system is then seldom viewed as an epistemic fuzzy set of systems.
Adopting the latter view could lead to fruitful developments of fuzzy sets
methods in a direction not yet much considered in the engineering sciences,
beyond rehashing good old fuzzy rule-based systems further.
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6. Colubi A, González-Rodŕıguez G, Gil MA, Trutschnig W (2011) Nonparametric cri-
teria for supervised classification of fuzzy data. Int. J. Approx Reas 52:1272–1282

7. Couso I, Dubois D (2009) On the Variability of the Concept of Variance for Fuzzy
Random Variables. IEEE Trans Fuzzy Syst 17:1070–1080

8. Couso I, Sánchez L (2011) Upper and lower probabilities induced by a fuzzy random
variable. Fuzzy Sets Syst 165:1–23

9. De Campos LM, Lamata MT, Moral S (1990) The concept of conditional fuzzy
measure. Int. J. of Intell Syst 5:237–246

10. De Cooman G, Walley P (2002) An imprecise hierarchical model for behaviour under
uncertainty. Theory and Decision 52:327–374

11. Dempster AP (1967) Upper and lower probabilities induced by a multivalued map-
ping. Ann Math Stat 38:325–339

12. Diamond P (1988) Fuzzy least squares. Inform Sci 46:141–157
13. Diamond P, Kloeden P (1994) Metric spaces of fuzzy sets. World Scientific, Singapore
14. Dubois D (2006) Possibility theory and statistical reasoning. Comp Stat & Data Anal

51:47–69
15. Dubois D (2011) The role of fuzzy sets in decision sciences: Old techniques and new

directions. Fuzzy Sets Syst 184:3–28
16. Dubois D, Prade H (1988) Possibility Theory. Plenum Press, New York
17. Dubois D, Prade H (1988) Incomplete conjunctive information. Comp & Math Appl

15:797–810
18. Dubois D, Prade H (1992) When upper probabilities are possibility measures. Fuzzy

Sets Syst 49:65–74
19. Dubois D, Prade H (1997) The three semantics of fuzzy sets. Fuzzy Sets Syst 90:141–

150
20. Dubois D, Prade H (2009) Formal representations of uncertainty. Chap. 3 in [4],

85–156
21. Dubois D, Prade H (2012) Gradualness, uncertainty and bipolarity: Making sense of

fuzzy sets. Fuzzy Sets Syst 192:3–24
22. Dubois D, Foulloy L, Mauris G, Prade H (2004) Probability-possibility transfor-

mations, triangular fuzzy sets, and probabilistic inequalities. Reliable Computing
10:273–297

23. Fagin R, Halpern JY (1991) A new approach to updating beliefs. In: Bonissone
PP, Henrion M, Kanal LN, Lemmer JF (eds.) Uncertainty in Articial Intelligence
(UAI’91), 347–374. Elsevier, New York
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Pricing of Catastrophe Bond
in Fuzzy Framework

Piotr Nowak1 and Maciej Romaniuk1

Abstract In the paper we consider catastrophe bonds with a stepwise payoff
structure. We use the martingale method to price it under the condition of no
arbitrage. We assume a stochastic form of the spot interest rate, replicability
of interest rate changes by financial instruments existing in the market as
well as independence between a catastrophe occurrence and behaviour of the
financial market. The fuzzy sets approach, presented in the paper, may incor-
porate expertise knowledge to overcome lack of precise data in the discussed
case.

1 Introduction

During last years, the insurance industry faced overwhelming risks caused by
natural catastrophes. Losses from a single catastrophic event could reach tens
of billions $ (see e.g. [14]). The classical insurance mechanisms are not ade-
quate to deal with extreme losses caused by natural catastrophes, because the
sources of such losses are strongly dependent in terms of time and localiza-
tion. Additionally, losses from such events are extremely huge. In contrary,
classical insurance approach assumes that losses are modelled by indepen-
dent and identically distributed (iid) random variables. Additionally, it is
commonly assumed that the value of each claim is small comparing to the
whole portfolio of insurer. Therefore it may be useful to use new kinds of
insurance instruments.

Because daily fluctuations on worldwide financial markets reach also the
same scale as losses from natural catastrophes, securitization of losses (i.e.
“packaging” losses into form of tradable assets) may be helpful for dealing
with results of extreme natural catastrophes (see e.g. [4, 10]). One possible
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instruments of this type is known as catastrophe bond (Act-of-God bond, cat
bond, see e.g. [7]).

Pricing of catastrophe bonds is not a widely discussed subject in mathe-
matical finance. However, many authors emphasize advantages of cat bonds.
In financial literature one can find simplified pricing methods (see [1, 8]) or
other approaches, which also have their limitations (see e.g. [8]) or are not
strictly mathematically oriented (see e.g. [23]). There are several advanced
stochastic pricing models in discrete and continuous time. In some of them
a utility function is incorporated to the pricing model (see [3, 5, 21]). How-
ever, choosing a well-suited utility function can be an additional problem
in practice. An interesting approach was presented by Vaugirard in [22]. The
author applied the martingale method for cat bonds pricing. He overcame the
problem of non completeness of the market and non-traded insurance-linked
underlyings in Merton’s manner (see [13]).

This paper is dedicated to the problem of catastrophe bond pricing with a
stepwise payoff function. We continue and extend the Vaugirard’s approach.
Analogously to the author, we use the martingale method. We find pricing
formulas, considering the Vasicek and the Merton risk-free spot interest rate
dynamics. We assume no arbitrage, replicability of interest rate changes by
financial instruments existing in the market as well as independence between
catastrophe occurrence and behaviour of the financial market. There is a need
to take into account possible errors and uncertainties which arise from esti-
mation of the financial market parameters. In order to price catastrophe bond
in case of lack of precise data, we apply fuzzy parameters of the spot inter-
est rate processes. Then the Monte Carlo simulations based on the obtained
fuzzy pricing formulas are carried out. In the case of the Vasicek interest rate
model, we continue our considerations from [16]. However, in this paper, real
world data describing catastrophic events are used.

This paper is organized as follows. In Section 2 we present some prelimi-
naries. In Section 3 we discuss features of catastrophe bonds, especially with
a stepwise payoff function. In Section 4 we present the general cat bond pric-
ing formula and we price the considered type of catastrophe bond. In Section
5 we conduct simulations in order to find appropriate prices for the fuzzy
approach. We conclude the paper in Section 6.

2 Preliminaries

2.1 Fuzzy and Interval Arithmetic

In this section we recall some basic facts about fuzzy sets and numbers.
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Let Ã be a fuzzy subset of R. We denote by μÃ its membership function

μÃ : R→ [0, 1], and by Ãα = {x : μÃ ≥ α} the α-level set of Ã, where Ã0 is
the closure of the set {x : μÃ > 0}.

Let ã be a fuzzy number (in particular let μã be upper semicontinuous).
Then the α-level set ãα is a closed interval by definition, which can be denoted
by ãα = [ãLα, ã

U
α ] (see e.g. [26]).

We recall the arithmetic of fuzzy numbers. Let � be a binary operator
⊕, �, ⊗ or � between fuzzy numbers ã and b̃, where the binary operators
correspond to ◦: +, −, × or /, according to the “Extension Principle” (see
[26]). Let �int be a binary operator ⊕int, �int, ⊗int or �int between two
closed intervals [a, b] and [c, d].

Then [a, b]�int [c, d] = {z ∈ R : z = x ◦ y, x ∈ [a, b], y ∈ [c, d]}, where ◦ is
usual operation +,−,× and /, if the interval [c, d] does not contain zero in
the latter case. Therefore, if ã, b̃ are fuzzy numbers, then ã� b̃ is also a fuzzy
number and defined via its α-level sets by

(ã⊕ b̃)α = ãα ⊕int b̃α = [ãLα + b̃Lα, ã
U
α + b̃Uα ] ,

(ã� b̃)α = ãα �int b̃α = [ãLα − b̃Uα , ã
U
α − b̃Lα] ,

(ã⊗ b̃)α = ãα ⊗int b̃α =

= [min{ãLα b̃Lα, ãLα b̃Uα , ãUα b̃Lα, ãUα b̃Uα },max{ãLα b̃Lα, ãLα b̃Uα , ãUα b̃Lα, ãUα b̃Uα}] ,
(ã� b̃)α = ãα �int b̃α =

= [min{ãLα/b̃Lα, ãLα/b̃Uα , ãUα /b̃Lα, ãUα/b̃Uα},max{ãLα/b̃Lα, ãLα/b̃Uα , ãUα/b̃Lα, ãUα/b̃Uα}] ,
if α-level set b̃α does not contain zero for all α ∈ [0, 1] in the case of �.

2.2 Stochastic and Financial Preliminaries

We begin with notations and basic definitions concerning catastrophe bonds
and their pricing.

We apply stochastic models with continuous time and time horizon of the
form [0, T ′], where T ′ > 0. Date T of maturity of catastrophe bonds is not
later than T ′, i.e. T ≤ T ′. We consider two probability measures, P and Q,
and we denote by EP and EQ the expectations with respect to them. We
define stochastic processes and random variables with respect to P .

Let (Wt)t∈[0,T ′] be a Brownian motion. It will be used in the stochastic

model of the risk-free interest rate. Let (Ui)
∞
i=1 be a sequence of identically

distributed random variables. We treat Ui as total loss caused by the i-th
catastrophic event. We also define compound Poisson process by formula
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Ñt =

Nt∑
i=1

Ui, t ∈ [0, T ′] ,

where Nt is a Poisson process with an intensity κ > 0.
For each t ∈ [0, T ′] the integer Nt is equal to the number of catastrophic

events till the moment t. Moments of jumps of process (Nt)t∈[0,T ′] are inter-
preted as moments of catastrophic events.

For each t ∈ [0, T ′] process Ñt describes the aggregated catastrophe losses

till the moment t.
(
Ñt

)
t∈[0,T ′]

is a nondecreasing stochastic process, with

right–continuous trajectories of a stepwise form. Heights of its jumps are
equal to values of losses during catastrophic events.

All the above processes and random variables are defined on a filtered

probability space
(
Ω,F, (Ft)t∈[0,T ′] , P

)
. The filtration (Ft)t∈[0,T ′] is given

by formula

Ft = σ
(
F 0
t ∪ F 1

t

)
, F 0

t = σ (Ws, s ≤ t) , F 1
t = σ

(
Ñs, s ≤ t

)
, t ∈ [0, T ′] .

We assume that F0 = σ({A ∈ F : P (A) = 0}) and that (Wt)t∈[0,T ′],

(Nt)t∈[0,T ′] and (Ui)
∞
i=1 are independent. Then the probability space with

filtration satisfies standard assumptions, i.e. σ-algebra F is P -complete, fil-
tration (Ft)t∈[0,T ′] is right–continuous and F0 contains all the sets from F
of P -probability zero. Moreover, we assume that the random variables Ui,
i = 1, 2, ... have bounded second moment.

We denote by (Bt)t∈[0,T ′] the banking account satisfying equation dBt =

rtBtdt, B0 = 1, where r = (rt)t∈[0,T ′] is a risk-free spot interest rate.
Let us assume that zero-coupon bonds are traded in the market. We denote

by B (t, T ) the price of a zero-coupon bond with maturity T at time t and
with the face value (principal) equal to 1.

We price catastrophe bonds under the assumption of no possibility of ar-
bitrage in the market. Let us make two additional assumptions. We first
assume that investors are neutral toward nature jump risk. This assumption
has practical confirmations in the market (see e.g. [1, 22]). Secondly, we as-
sume that changes in interest rate r can be replicated by existing financial
instruments (especially zero-coupon bonds).

3 Catastrophe Bonds

As it was mentioned before, there are many problems with classical insur-
ance mechanisms and alternative financial or insurance instruments may be
useful by insurers. One of the most popular catastrophe-linked security is the
catastrophe bond, known also as cat bond or Act-of-God bond (see [7, 9, 17]).
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There is one important difference among cat bonds and more classical types
of bonds. The payment function of a cat bond depends on some additional
random variable, i.e. occurrence of some natural catastrophe in the specified
region and the fixed time interval. Such an event is called triggering point.
Catastrophe bonds may be related to various kinds of triggering points — e.g.
to magnitudes of earthquakes, the losses from flood, the insurance industry
index of losses, some parameters of catastrophe events, etc. The structure of
payments for cat bonds depends also on some primary underlying asset, like
LIBOR (London Interbank Offered Rate).

3.1 Catastrophe Bond with Stepwise Payoff Function

Let 0 < K1 < ... < Kn, n > 1, be a sequence of constants and τi : Ω →
[0, T ′] , 1 ≤ i ≤ n be a sequence of stopping times defined as follows

τi (ω) = inf
t∈[0,T ′]

{
Ñt (ω) > Ki

}
∧ T ′, 1 ≤ i ≤ n.

Let w1 < w2 < ... < wn be a sequence of nonnegative constants, for which∑n
i=1 wi ≤ 1. Let Φ =

∑n
i=1 wiΦi, where Φi are cumulative distribution

functions of τi.

Definition 1. We denote by IBs (T, FV ) a catastrophe bond satisfying the
following assumptions:

a) If the catastrophe does not occur in the period [0, T ], i.e. τ1 > T , the
bondholder is paid the face value FV ;

b) If τn ≤ T , the bondholder receives the face value minus the sum of write-
down coefficients in percentage

∑n
i=1 wi.

c) If τk−1 ≤ T < τk, 1 < k ≤ n, the bondholder receives the face value minus

the sum of write-down coefficients in percentage
∑k−1

i=1 wi.
d) Cash payments are done at date of maturity T.

4 Pricing of Catastrophe Bonds

4.1 General Formula

The first step in our considerations is to obtain the valuation formula for
IBs (T, FV ). We denote by νIBcat(T,FV ) a general payoff function which de-

pends on T, FV and the compound Poisson process Ñ . The following theorem
from [18] for a general form of catastrophe bond IBcat (T, FV ) with a payoff
function νIBcat(T,FV ) is applied.
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Theorem 1. Let IB (t) be the price of a IBcat (T, FV ) at time t. Then

IB (t) = EQ

(
exp

(
−
∫ T

t

rudu

)
νIBcat(T,FV )|Ft

)
. (1)

In particular,

IB (0) = EQ

(
exp

(
−
∫ T

0

rudu

))
EQνIBcat(T,FV ). (2)

In the above theorem measure Q is defined by the Radon-Nikodym deriva-
tive:

dQ

dP
= exp

(
−
∫ T

0

λudWu − 1

2

∫ T

0

λ2udu

)
P -a.s.

for a predictable process λu, connected with risk premium for risk-free bonds.
For Q the family B (t, T ) , t ≤ T ≤ T ′, is an arbitrage-free family of zero-
coupon bond prices with respect to r, i.e. for each T ∈ [0, T ′] B (T, T ) = 1
and the process of discounted zero-coupon bond price B (t, T ) /Bt, t ∈ [0, T ] ,
is a martingale with respect to Q.

4.2 The Vasicek Interest Rate Model

We show crisp and fuzzy pricing formulas, introduced and proved by us in
[16, 18], for cat bonds with the stepwise form of payoff function and the
Vasicek risk-free spot interest rate model, described by the following equation

dr (t) = a (b− r (t)) dt+ σdWt (3)

for positive constants a, b and σ. The Vasicek model is very popular and
often used for modeling the risk-free interest rate in the market.

The following theorem (proved in [18]) gives the pricing formula for
IBs (T, FV ).

Theorem 2. Let IB (0) be the price of an IBs (T, FV ) at time 0.

IB (0) = FV · e−T ·R(T,r(0)) {1− Φ (T )} , (4)

where R (θ, r) = R∞ − 1
aθ

{
(R∞ − r)

(
1− e−aθ

)− σ2

4a2

(
1− e−aθ

)2}
and R∞ = b− λσ

a − σ2

2a2 .

We introduce fuzzy numbers ã, b̃, σ̃ and r̃0 in place of a, b, σ and r0 to
model the uncertainty in the market. We treat market price of risk parameter
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as a fuzzy number λ̃. We have the following theorem (proved in [16] using
Theorem 2 and then extended via the extension principle).

Theorem 3.

˜IB (0) = FV ⊗ e−T⊗R̃(T ) ⊗ {1− Φ (T )} , (5)

where

R̃ (T ) = R̃∞ �
{(

R̃∞ � r̃0

)
⊗ (1� e−ã⊗T

)� σ̃⊗σ̃ ⊗ (1� e−ã⊗T
)

(6)

⊗ (1� e−ã⊗T
)� (4⊗ ã⊗ã)}� (ã⊗ T )

and R̃∞ = b̃� λ̃⊗σ̃ � ã� σ̃⊗σ̃ � (2⊗ã⊗ã).
It is possible to calculate the α-level sets of ˜IB (0). However, since their

form is relatively complex in the considered case, we replace their calculation
by Monte Carlo simulations, conducted in Section 5.

4.3 The Merton Interest Rate Model

We consider the Merton dynamics of risk-free spot interest rate (rt)t∈[0,T ′].
The interest rate behaviour is described by the following equation

drt = μdt+ σdWt, t ∈ [0, T ′] ,

for constants μ and σ > 0. Its solution is of the form

rt = r0 + μt+ σWt, t ∈ [0, T ′] ,

where r0 ≥ 0. This model, introduced by Merton in 1973, was one of the first
widely used stochastic models of the interest rate. Our aim is to introduce and
prove the valuation formula for catastrophe bond IBs (T, FV ), analogous to
before, assuming the Merton interest rate dynamics. The following theorem
gives the pricing formula in the crisp case.

Theorem 4. Let IBs (0) be the price at the moment zero 0 of the cat bond
IBs (T, FV ) for the Merton model of the spot interest rate. Then

IBs (0) = FV · eR(T ) {1− Φ (T )} , (7)

where

R(T ) = −r0T − (μ− λσ) T 2

2
+
σ2T 3

6
. (8)

Sketch of the proof. From Theorem 1 it follows that
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IB (0) = EQ

(
exp

(
−
∫ T

0

rudu

))
FV ·EQ

{
1−

n∑
i=1

wiIτi≤T

}
.

From the zero-coupon bond pricing formula for the Merton interest rate
model (see e.g. [15]) it follows that

EQ

(
exp

(
−
∫ T

0

rudu

))
= eR(T ).

Since τ and W are independent, Iτi≤T and dQ
dP are independent. Therefore

EQ

{
1−

n∑
i=1

wiIτi≤T

}
= 1−

n∑
i=1

wiE
P (Iτi≤T ) = 1− Φ (T ) .

Finally, the pricing formula at time t = 0 has the form (7). ��
Let F (R) be the set of all fuzzy numbers. The proposition below was

proved in [24].

Proposition 1. Let f : R→ R be a function and {x : r = f(x)} is a compact
set for all r. Then f induces a fuzzy-valued function f̃ : F (R) → F (R) via
the extension principle and for each Λ̃ ∈ F (R) the α-level set of f̃(Λ̃) is
f̃(Λ̃)α = {f(x) : x ∈ Λ̃α}.

In this proposition the assumption of continuity is not necessary, however
in this paper it will be applied only for the exponential function (i.e. in proof
of Theorem 5).

Our aim is to price catastrophe bond in case when the parameters of the
spot interest rate are not precisely known. To model this uncertainty we
introduce fuzzy numbers μ̃, σ̃ and r̃0 in place of μ, σ and r0. We also treat
the market price of risk parameter as a fuzzy number. Therefore we replace
the parameter λ by its fuzzy counterpart λ̃. We assume that σ̃ and r̃0 are
non-negative fuzzy numbers, i.e. their membership funcions are equal to 0
for all negative arguments. The following theorem is the fuzzy version of the
pricing formula.

Theorem 5. The price of the catastrophe bond is given by

˜IBs (0) = FV ⊗ eR̃(T ) ⊗ {1− Φ (T )} , (9)

where

R̃ (T ) = r̃0 ⊗ (−T )⊕
(
μ̃� λ̃⊗ σ̃

)
⊗ −T

2

2
⊕ σ̃ ⊗ σ̃ ⊗ T 3

6
. (10)

Moreover, for α ∈ [0, 1]
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˜IBs (0)

)
α
=

[
FV {1− Φ (T )} e(R̃(T ))

L

α , FV {1− Φ (T )} e(R̃(T ))
U

α

]
, (11)

where(
R̃ (T )

)L
α
= − (r̃0)

U
α T −

(
μ̃U
α −

(
λ̃α ⊗int σ̃α

)L) T 2

2
+
(
σ̃L
α

)2 T 3

6
(12)

and(
R̃ (T )

)U
α
= − (r̃0)

L
α T −

(
μ̃L
α −

(
λ̃α ⊗int σ̃α

)U) T 2

2
+
(
σ̃U
α

)2 T 3

6
. (13)

Proof. Replacing crisp parameters by their fuzzy counterparts and arithmetic
operators +,−, . by ⊕, �, ⊗ in (7) and (8), we obtain formulas (9) and (10).
Let α ∈ [0, 1]. For a given fuzzy number Ã its α-level set is denoted similarly as

in Section 2.1. Then (r̃0 ⊗ (−T ))α =
[
− (r̃0)

U
α T,− (r̃0)

L
α T
]
. Since σ̃ is non-

negative,
(
λ̃⊗ σ̃

)
α

=

[(
λ̃α ⊗int σ̃α

)L
,
(
λ̃α ⊗int σ̃α

)U]
,
(
μ̃� λ̃⊗ σ̃

)
α

=[
μ̃L
α −

(
λ̃α ⊗int σ̃α

)U
, μ̃U

α −
(
λ̃α ⊗int σ̃α

)L]
,
((
μ̃� λ̃⊗ σ̃

)
⊗ −T 2

2

)
α
=[

−
(
μ̃U
α −

(
λ̃α ⊗int σ̃α

)L)
T 2

2 ,−
(
μ̃L
α −

(
λ̃α ⊗int σ̃α

)U)
T 2

2

]
.

Furthermore,
(
σ̃ ⊗ σ̃ ⊗ T 3

6

)
α

=
[(
σ̃L
α

)2 T 3

6 ,
(
σ̃U
α

)2 T 3

6

]
. From the above

equalities it follows that (12) and (13) hold. Since function exp satisfies the as-

sumptions of Proposition 1 and is increasing,
(
eR̃(T )

)
α
=

[
e(R̃(T ))

L

α , e(R̃(T ))
U

α

]
and finally, we obtain (11). ��

The α-level set (e.g. α = 0.95) of fuzzy price ˜IBs (0) can be treated by
a financial analyst as an interval of the cat bond prices. Then the financial
analyst can pick any value from this interval as the catastrophe bond price
with an acceptable membership degree. For example, if the real market price
is outside of such the interval, an appropriate course of action (i.e. selling
or buying of the asset) may be taken by the decision-maker. Therefore the
α-level set can be a comfortable tool for his (her) latter use.

5 Numerical Examples of Fuzzy Approach

In order to find the price of the model of the catastrophe bond described in
Section 3.1 according to Theorem 3, the appropriate Monte Carlo simulations
are conducted.

First set of parameters is used for modelling of losses. In this case we as-
sume that the quantity of losses is modelled by homogeneous Poisson process
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(HPP) with the intensity κ and the value of each loss is given by a random
variable from lognormal distribution with parameters μLN and σLN which
are commonly used in simulation of values of risk events in insurance (see [2]).
Also other types of complex probabilistic distributions or simulations based
on historical records are possible. We assume that parameters of the value
of each loss are the same as described in [2] for natural catastrophic events
in the United States provided by ISO’s (Insurance Service Office Inc.) Prop-
erty Claim Services (PCS), therefore μLN = 17.3570, σLN = 1.7643. Also
intensity of HPP is given by parameter fitted in [2], therefore κ = 31.7143.

Let us denote by QHPP-LN(x) the x-th quantile of cumulated value of losses
for HPP process (the number of losses) and lognormal distribution (the value
of each loss) with the parameters described above.

The second set of parameters is used for modelling of the risk-free spot
interest rate trajectories for the Vasicek model. In this case we use fuzzy
parameters, i.e. we assume that parameters are described by α-sets which
may be derived e.g. from triangular fuzzy numbers or L-R numbers (i.e. Left-
Right numbers). We apply parameters specified in [6] for 1-month interbank
rate in case of the UK, then a = 0.0263, b = 0.0988593, σ = 0.01, r0 = 0.1039.
The actual transformation of real market values to the α-sets may be based on
expert knowledge. The expert knowing the data, issue an imprecise opinion
in the form of L-R numbers instead of one exact estimate. Other approaches
like consensus among experts and aggregation of opinions of decision-makers
are also possible (see e.g. [11, 12])

In our paper we assume that α-set for each parameter is the appropriate
interval containing value of this parameter. Therefore possible uncertainties
of behaviour of some market parameters in future may be incorporated.

For each considered example of catastrophe bond the trading horizon is
set on 1 year, face value is equal to 1, and we generate 1000 interest rate
trajectories for 10000 simulations of the Poisson process.

In case of Example I – III we analyse the estimators of the cat bond price
if the limits of α-sets are wider for each experiment (i.e. the appropriate α-
level is lower). The triggering points are connected with surpassing the limits
given by K1 = QHPP-LN(0.75),K2 = QHPP-LN(0.85),K3 = QHPP-LN(0.95).
The values of losses coefficients for bond’s holder are equal to w1 = 0.1,
w2 = 0.2, w3 = 0.3.

Then based on equation (5) we obtain estimators for the price of catastro-
phe bond presented in Table 1. The average, maximum, 95% quantile, 99%
quantile and third quartile increase. Minimum, first quartile, 1% quantile and
5% quantile decrease. In case of fuzzy numbers, minimum and maximum may
be seen as the most important estimators of the boundaries of the α-level sets.

Then in Example IV – VI we analyse the estimators of catastrophe bond
price if the values of μLN and σLN are increased, i.e. the expected value of
single catastrophe and its variance are higher. We assume that for the given
α-level (e.g. 0.95 in our expert’s opinion), the α-set are described by intervals
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Table 1 Numerical estimators for price of catastrophe bond in Example I, II, III

Example I Example II Example III

ãα [0.02,0.03] [0.018,0.032] [0.016,0.34 ]

b̃α [0.09,0.1] [0.088,0.12] [0.086,0.14]
σ̃α [0.005,0.015] [0.003,0.017] [0.001,0.019]
(r̃0)α [0.1,0.11 ] [0.08,0.12 ] [0.06,0.14 ]
Average 0.837184 0.841602 0.841436
First quartile 0.834994 0.833033 0.825564
Median 0.837136 0.841477 0.841171
Third quartile 0.839285 0.849581 0.857395
Standard deviation 0.0027443 0.00968603 0.018983
Minimum 0.829741 0.821644 0.807056
1% quantile 0.831457 0.824369 0.80876
5% quantile 0.832883 0.826635 0.812306
95% quantile 0.841669 0.857042 0.871743
99% quantile 0.842963 0.859555 0.875402
Maximum 0.844653 0.861277 0.876863

ãα = [0.022, 0.03] , b̃α = [0.094, 0.102] ,

σ̃α = [0.008, 0.012] , (r̃0)α = [0.08, 0.12] (14)

and the catastrophe bond is the same as in Example I. The obtained esti-
mators may be found in Table 2. As we can see, estimators for higher values
of μLN and σLN are lower and the differences in obtained estimators are
significant.

Table 2 Numerical estimators for the price of the catastrophe bond in Example IV, V,
VI

Example IV Example V Example VI

μLN 17.357 17.5 17.7
σLN 1.7643 1.9 2.1
Average 0.841024 0.760878 0.611699
First quartile 0.832836 0.753238 0.606067
Median 0.84049 0.760881 0.611439
Third quartile 0.849353 0.767846 0.617257
Standard deviation 0.00974711 0.0088759 0.00711116
Minimum 0.822918 0.741471 0.594264
1% quantile 0.82414 0.744771 0.598208
5% quantile 0.826309 0.747187 0.600847
95% quantile 0.856755 0.774917 0.62333
99% quantile 0.858714 0.777923 0.625703
Maximum 0.860313 0.780128 0.628003

In case of Example VII – VIII we analyse the estimators of the cat
bond price for decreasing values of triggering points K1,K2,K3 measured
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in QHPP-LN(x). We compare results with the Example IV mentioned above.
We assume that the α-set are described by intervals (14) and the parame-
ters of the catastrophe bond are the same as in Experiment I. The obtained
estimators may be found in Table 3. As we can see, all of the estimators,
including average, are lower for lower values of the triggering points.

Table 3 Numerical estimators for price of catastrophe bond in Example IV, VII, VIII

Example IV Example VII Example VIII

K1 0.75 0.7 0.65
K2 0.85 0.8 0.75
K3 0.95 0.9 0.85
Average 0.841024 0.814571 0.787311

First quartile 0.832836 0.806363 0.779829
Median 0.84049 0.814705 0.78694
Third quartile 0.849353 0.822169 0.79477
Standard deviation 0.00974711 0.00944488 0.0090465
Minimum 0.822918 0.794895 0.768637
1% quantile 0.82414 0.797305 0.770891
5% quantile 0.826309 0.800064 0.773088
95% quantile 0.856755 0.82971 0.801741
99% quantile 0.858714 0.832138 0.80403
Maximum 0.860313 0.834588 0.806175

In Example IX we find the exact price of the cat bond for the Mer-
ton interest rate model according to the formula (11) (see Section 4.3).
Monte Carlo method is used only for simulations of catastrophic events
losses (“first set of parameters” mentioned earlier) and to calculate the
value of function Φ (T ). We apply parameters similar to values from [20]
for UK bonds, therefore (r̃0)α = [0.105, 0.115], μ̃α = [−0.0003,−0.0001],
σ̃α = [0.005, 0.015]. Additionally,K1 = QHPP-LN(0.75),K2 = QHPP-LN(0.95),
w1 = 0.2, w2 = 0.3. Other parameters are the same as in Experiment
I. In such case, the price calculated according to formula (11) is equal to(

˜IBs (0)
)
α
= [0.833472, 0.841961].

6 Conclusions

In this paper we price catastrophe bond with a stepwise payoff function. The
stochastic approach based on hte martingale method is applied. We consider
the Vasicek and the Merton interest rate models. Because of possible errors
and uncertainties the fuzzy set approach is applied. Then we analyse the
output of some numerical experiments for various sets of parameters.
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Convergence of Heuristic-based
Estimators of the GARCH Model

Alexandru Mandes1, Cristian Gatu1, and Peter Winker2

Abstract The GARCH econometric model is able to describe the volatil-
ity of financial data under realistic assumptions and the convergence of its
theoretical estimators has been proven. However, when data is “unfriendly”
maximum likelihood estimators need to be computed by stochastic optimiza-
tion algorithms in order to avoid local optima attraction basins, and thus, a
new source of uncertainty is introduced. A formal framework for joint conver-
gence analysis of both, the estimators and the heuristic, has been previously
described within the context of the GARCH(1,1) model. The aim of this con-
tribution is to adapt and extend this research to asymmetric and multiple
lagged GARCH models. Aspects of subset model selection are also investi-
gated.

1 Introduction

Volatility is a way of measuring risk, and therefore it represents a fundamental
concept of the financial theory with various applications (e.g., value-at-risk
simulations, portfolio risk and management, option pricing models). Volatil-
ity is an unobservable phenomenon which can be measured and forecast only
within the context of a defined statistical model. Specifically, standard volatil-
ity estimation is based on variance or standard deviation. These statistics are
sufficient risk measures when the observations are normal, identically and in-
dependently distributed. Unfortunately, these assumptions are not realistic
for most of the financial data, which usually exhibit features such as: lep-
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tokurtosis, heteroskedasticity, volatility clustering and leverage effects. Under
these conditions, classical volatility indicators have been substituted by more
complex econometric models, such as Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) or Stochastic Volatility Models.

The GARCH model was introduced by Engle (1982) and generalized by
Bollerslev (1986). The model consists of two linked equations. The first cap-
tures the dynamics of returns under the form of an AR process, assum-
ing the possibility of autocorrelation between returns. The second expresses
the current variance based on relevant past information: long-term medium
value, unexpected return (ARCH factor) and previous value of the variance
(GARCH factor). The symmetric normal GARCH(1,1) is the plain vanilla
version of the GARCH model and is given by:

rt = c+ εt where εt|It−1 ∼ N(0, σ2
t ), (1)

σ2
t = ω + αε2t−1 + βσ2

t−1. (2)

The GARCH parameters are estimated by means of Maximum Likelihood
Estimation (MLE). The MLE process is based on the construction of a Log-
Likelihood Function (LLF) which depends on the parametric model that is
assumed for the distribution, and on the sample data. It has the following
analytical expression:

logL(ψ) = −T
2
log(2π)− 1

2

T∑
t=1

(
log(σ2

t ) +

(
εt
σt

)2
)
, (3)

where ψ represents the set of model parameters. In the case of the symmet-
ric GARCH(1,1), ψ = (c, ω, α, β). The LLF is usually maximized through
numerical procedures, as there is no analytical solution for the parameters
in equation (2) in a heteroskedastic context. In practice, when the assumed
model is complex and the data is “unfriendly”, these iterative search meth-
ods in the solution space are prone to encounter difficulties in identifying the
global optimum.

The optimization problem of maximizing (3) can be naturally tackled with
heuristic methods, which are designed to avoid the attraction basins of the
local optima that occur in a multi-modal hyperspace. Threshold Accepting
(TA), introduced by Dueck and Scheuer (1990), implements a stochastic
search in the neighborhood solution space, represented by vectors of deci-
sion variables. The current solution is gradually improved with a decreasing
accepted tolerance for worse solutions, which regulates the transition from
the exploring to the exploitation phase. Details and the TA pseudocode can
be found in [13, 15]. A potential drawback of these heuristic methods is that
their stochastic component provides a new source of uncertainty, besides the
deviation of the theoretical estimators due to the finiteness of the observation
samples. In order to analyze this additional uncertainty, a formal framework
for joint convergence analysis of the estimators and the heuristics has been
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introduced [15]. TA has been applied to the ML estimates of a GARCH(1,1)
model, and the joint convergence property of the optimization algorithm and
of the theoretical estimator — when setting the number of iterations of the
heuristic as a function of the sample size — has been proven.

The aim of this contribution is to adapt and investigate this previous
research to various GARCH extensions. The first, GJR-GARCH, is able to
capture market asymmetries by the introduction of an extra parameter which
depends on the sign of the previous return. The second one, GARCH(p,q),
enables multiple lags for the ARCH and GARCH factors and also allows for
holes in the model structure. In the latter case, the optimization problem
consists not only in the estimation of the parameters, but also in model
selection [11].

2 Convergence of Heuristic-based Estimators

There are two aspects that need to be addressed when analyzing the conver-
gence of the heuristic-based estimators towards the true values of the data
generating process (DGP). First, the convergence in probability of the ML
theoretical estimators, represented by the vector ΨML,T ∈ Rn, towards their
true values ΨTR ∈ Rn, in relation with the sample size T , should be estab-
lished. For a consistent estimator it holds: for any δ > 0, ε > 0 fixed, there
is a sample size T (δ, ε) such that for any T > T (δ, ε)

P
(|ΨML,T − ΨTR| < ε

)
> 1− δ.

Second, the heuristic can be interpreted as a stochastic mapping of the search
space on a random variable. Thus, based on the distribution of approxima-
tions ΨT,I,r recorded after a number of R restarts (1 ≤ r ≤ R) with I
iterations, the asymptotic convergence of the heuristic results towards the
theoretical estimator has to be proven. This means that the heuristic can be
tuned to approximate the global optimum with an arbitrary accuracy ε > 0
and a fixed probability 1 − δ by increasing the number of iterations I(δ, ε).
Put in other words, for any ε > 0 and δ > 0 , there exists a number of
iterations Imin = I(δ, ε) such that for each I ≥ Imin we find

P
(|ΨT,I,r − ΨML,T | < ε

)
> 1− δ.

Finally, the two partial results can be combined to obtain the expression of
joint convergence of the heuristic-based estimators towards the true values
when T goes to infinity and I goes to infinity as a function of T . That is,

P
(|ΨT,I,R − ΨTR| < ε

)
> 1− δ,

where ΨT,I,R represents the best result out of the R restarts.
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In order to test these relations, Winker and Maringer have considered
the GARCH(1,1) model [15]. A number of 100 artificial time series, seeded
with the Bollerslev and Ghysels (1996) solution for the DEM/GBP daily
exchange rate, from 3rd of January 1984 to 31st of December 1991 have been
generated. There were considered six different values for both T and I and,
for each of the settings, the heuristic was run for approximately R ≈ 1700
times. For each time series d and each component of the solution vector p, the
mean square deviations between the recorded results and the true parameters
(MSDTR), as well as the maximum likelihood parameters (MSDML), have
been computed. These are, respectively,

MSDTR,d,T,I
p =

1

R

R∑
r=1

(
Ψd,T,I,r
p − ΨTR

p

)2
, and (4)

MSDML,d,T,I
p =

1

R

R∑
r=1

(
Ψd,T,I,r
p − ΨML,d,t

p

)2
. (5)

The convergence properties have been evaluated by estimating the linear
relationship between the natural logarithms of these dispersion measures and
the natural logarithms of the two explaining variables, sample size T and
number of iterations I. In order to isolate the estimator and the heuristic
effects, the results have been previously grouped by I and respectively by T :

ln
(
MSDTR,d,T,I

p

)
= ad,Ip + bd,Ip ln(T ), and (6)

ln
(
MSDML,d,T,I

p

)
= ad,Tp + bd,Tp ln(I). (7)

3 GARCH Extensions

Although simple and restrictive, the symmetric GARCH(1,1) model is widely
used in the econometric literature. Brooks (2008) admits that GARCH(1,1)
is strong enough to model the volatility bursts in financial data, without the
need of additional parameters. Thus, from a parsimonious point of view, it is
not always wise to increase the complexity of the model. Even so, theoreti-
cians have suggested over time many variations of the GARCH model with
the purpose of including additional features. Two such extensions considered
inhere are asymmetric GARCH and generalized GARCH(p,q).
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3.1 Asymmetric GARCH

One of the limitations of the GARCH model described in the equations (1)–
(2) is the enforcement of a symmetric response to negative and positive mar-
ket shocks, with the magnitude of the shock as the only input. In practice, it
has been noticed that for equities and equity indexes a negative return has
a bigger impact on volatility than a positive return of the same size. This
asymmetry was explained by the leverage effect based on the debt-equity
ratio. The opposite asymmetry occurs in the commodity markets. Asymme-
tries are also common for most types of high frequency financial data which
are sensitive to the current state of the market. Various GARCH extensions
that include market asymmetries have been previously proposed: A-GARCH
(1990) (Engle), exponential GARCH (1991) (Nelson), GJR-GARCH (1993)
(Glosten, Jagannathan, Runkle) and Threshold GARCH (1993) (Rabemana-
jara, Zakoian). A review of these extensions can be found in [1].

Here, GJR-GARCH has been considered as being one of the most complex
alternatives. It captures the asymmetry through an extra parameter λ that
depends on an indicator function: 1{εt<0} = 1 if εt < 0, and 0 otherwise. The
conditional volatility equation (2) is rewritten as follows:

σ2
t = ω + αε2t−1 + λ1{εt−1<0}ε2t−1 + βσ2

t−1.

Parameter estimation is based on the usual normal GARCH likelihood func-
tion (3), but σt now depends on the additional parameter λ. The TA solution
is competitive with the results obtained with commercial software packages
such as Matlab and EViews1. A comparison of the results obtained on the
Bollerslev and Ghysels data is reported in Table 1.

The convergence of the estimator is empirically established using the
framework described in section 2. The simulation is based on 50 artificial
time series, with the TA solution for the Bollerslev and Ghysels time se-
ries in (8) as DGP seed, six different values for sample size T , four different
values for the number of iterations I, and 10 restarts for each of the 1,200
combination settings. The true parameter vector is given by:

ΨTR = [ΨTR
0 . . . ΨTR

4 ] = [−0.007864, 0.011786, 0.029426, 0.144650, 0.794912]. (8)

Figure 1 illustrates the convergence of the maximum likelihood estima-
tors towards the true values when the sample size increases. For evaluation
purposes, the regression parameters in equation (6) have been estimated.

The results are summarized in Table 2(a), where the individual impact of
the sample size T is identified by fixing the number of iterations I at different
values, as described on the first column. The results imply there is an inverse

1 The ARMAX/GARCHmodel parameters have been estimated using the garchfit function
from Matlab R2008a Econometrics Toolbox, and the EViews 5 built-in GARCH/TARCH
equation estimation feature with both, Marquardt and Berndt-Hall-Hall-Hausman, opti-
mization algorithms. The proposed TA has been implemented in Java.
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Table 1: GJR-GARCH(1,1) estimators with different implementations and
different number of iterations for TA.

Estimators Implementations
EViews Matlab Threshold Accepting

Marquardt BHHH I=1,000 I=25,000 I=100,000

ψ0 - - -0.0079 -0.0072 -0.0078 -0.0079
ψ1 0.0099 0.0099 0.0112 0.0178 0.0121 0.0118
ψ2(λ) 0.0204 0.0203 0.0283 0.0439 0.0304 0.0294
ψ3 0.1338 0.1339 0.1405 0.1782 0.1462 0.1446
ψ4 0.8172 0.8170 0.8014 0.7302 0.7914 0.7949

Conv. rate 0.9510 0.9509 0.9419 0.9083 0.9376 0.9395
LLF -1106.62a -1106.62a -1106.08a -1107.79 -1106.12 -1106.10

a The LLF values of the EViews and Matlab solutions are computed with the TA
implementation.
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Fig. 1: The convergence of the estimators of 50 time series in relation with T :
true values (horizontal dashed line), median (solid line), 25 and 75% quantiles
(dashed lines with filled diamonds), minimum and maximum (dotted lines
with empty circles).

relation between the dispersion of the estimators measured by MSDTR and
the available number of observations T . The asymmetry parameter λ shows
some inconsistency, the order of the signed returns playing an important
role, besides the sample size. The heuristic optimization convergence can be
established by testing the linear relation defined in (7), between ln(MSDML)
computed as in (5) and ln(I). The estimators and relevant statistics presented
in Table 2(b) show that I has a negative influence on MSDML. The high
values ofR2 prove I to be significant in explaining the convergence of heuristic
estimators, including λ, towards the maximum likelihood values.

Figure 2 shows that when the number of iterations is small, the heuristic
does not converge for any available sample size. On the other hand, when
the number of observations is too small, the heuristic encounters convergence
difficulties even for a high number of iterations. The joint convergence of
heuristic based estimators towards the true values is assured when the number
of iterations I is chosen proportional to the sample size T .
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Table 2: Statistics of the regression results for the GJR-GARCH λ estimator
convergence.

(a) The influence of T on MSDTR(λ) for fixed I and over d time series.

I bp averaged over d standard deviation of bp R2 averaged over d

1000 -0.267 0.482 0.28
5000 -1.777 10.87 0.45

10000 4.519 110.9 0.44
25000 10.71 170.5 0.43

(b) The influence of I on MSDML(λ) for fixed T and over d time series.

T bp averaged over d standard deviation of bp R2 averaged over d

50 -0.547 1.079 0.65
100 -0.374 0.340 0.78
200 -0.314 0.610 0.83
400 -0.271 0.118 0.86

1000 -0.260 0.117 0.87
2000 -0.247 0.067 0.89
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Fig. 2: The convergence of the λ estimator in relation with T for one
time series: true values (horizontal dashed line), maximum likelihood
(solid line), 10 and 90% quantiles (dashed lines with filled diamonds), for
I = {1000, 5000, 10000, 25000} (from left to right).

3.2 GARCH(p,q)

GARCH(p,q) allows for additional lags both for the ARCH(p) and for the
GARCH(q) factor. The ARCH factor measures the reaction to market shocks,
while the GARCH factor measures the persistence of volatility. Engle (2001)
recommends this extended version for very long time series, tens of years of
daily data or years of intra-day data. In this case, the standard conditional
volatility equation (2) becomes:
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σ2
t = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j . (9)

The EViews and Matlab implementations require for the number of lags
specified as input and then estimate the parameters of the user-selected
model. The objective function is the standard LLF in (3) and the algorithm
exhibits an overfitting tendency, by making use of almost all the available
lags. The constraints imposed on the parameters that assure the positivity
of variance are the only reason why the algorithm is not able to fit the maxi-
mum number of lags. This phenomenon is illustrated in Table 3. Comparative
results obtained with different implementations for GARCH(3,3) model on
Bollerslev and Ghysels data are presented in Table 4. Unlike Matlab, the
EViews solution does not respect the GARCH constraints as some of the
parameters are negative. According to Alexander (2008), this would imply
that the model is inappropriate for the available data. It can also be noticed
that, for an adequate number of iterations I, the TA overall best estimates
in terms of LLF are better than the ones found with Matlab and EViews.

Table 3: GARCH(p,q) estimators with TA optimization (I = 50,000) and LLF
objective function.

maximum(p,q) (3,3) (5,5) (8,8)

fitted(p,q) (2,3) (3,5) (5,8)

ψ0 -0.0037 -0.0029 -0.0038

ψ1 0.0116 0.0142 0.0187

ψ2,i, i = 1 : p 0.1804, 0.0243 0.1930, 0.0666, 0.1978, 0.0824,
0.0051 0.0230, 0.0256,

0.0440

ψ3,j , j = 1 : q 0.2892, 9.06E-7, 0.0106, 8.79E-4, 2.46E-6, 5.08E-5,
0.4606 0.3422, 0.2870, 0.0910, 5.71E-5,

0.0390 3.97E-7, 0.1169,
0.1336, 0.2112

Conv. rate 0.955 0.944 0.926
Log-likelihood -1096.10 -1092.49 -1088.68

The first conclusion is that LLF in (3) does not allow for an effective model
selection algorithm. As the complexity of the model grows, the goodness-of-fit
expressed by the value of LLF gets better, on the expense of the fitted model’s
power to generalize. We suggest the replacement of LLF with an objective
function that satisfies the Law of Parsimony and penalizes additional lags,
such as Bayesian Information Criterion (BIC):
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Table 4: GARCH(3,3) estimators with different implementations with LLF
as objective function.

Estimators Implementations
EViews Matlab Threshold Accepting

I=1,000 I=25,000 I=100,000

ψ0 0.00 -0.0037 -0.0053 -0.0039 -0.0035
ψ1 0.0006 0.0113 0.0795 0.0129 0.0112
ψ2,1 0.2182 0.1915 0.1042 0.1761 0.1825
ψ2,2 -0.1788 0.00 0.0418 0.0459 0.0152
ψ2,3 -0.0235 0.00 0.2359 3.63E-6 6.87E-7
ψ3,1 1.2634 0.3880 5.44E-6 0.2185 0.3186
ψ3,2 -0.1350 0.00 0.3280 0.0122 2.38E-6
ψ3,3 -0.1466 0.3763 3.02E-5 0.4969 0.4399

Conv. rate 0.998 0.956 0.710 0.949 0.956
LLF -1097.47a -1096.23a -1160.60 -1096.41 -1096.07

a The LLF values of the EViews and Matlab solutions are computed with the TA imple-
mentation.

BIC = − 2

T
L+

n

T
logT,

where n represents the number of model parameters, L the LLF value and T
the sample size.

The implementation also has to be modified according to the new opti-
mization problem, which consists not only in parameter estimation, but also
in model structure identification. Model selection deals both with finding the
number of necessary lags and with identifying the holes in the structure.
The modification consists mainly in adapting the heuristic for a new data
structure representing a solution in the search space:

Ψ = {[p1 . . . pmax(p)], [q1 . . . qmax(q)], ψ0, ψ1, [ψ2,1 . . . ψ2,max(p)], [ψ3,1 . . . ψ3,max(q)]},

where max(p) and max(q) represent the maximum number of ARCH and
GARCH lags, the vectors [p1 . . . pmax(p)] and [q1 . . . qmax(q)] are boolean and
allow the management of structure holes, ψ0 is the conditional mean equation
parameter, ψ1 is the constant GARCH parameter, and finally ψ2,i and ψ3,j

are the ARCH (αi) and respectively the GARCH (βj) lag parameters.
After randomly initializing the lags, the first tendency of the heuristic is

towards the reduction of the number of non-zero lags as this is the fastest
way of decreasing the rate of convergence. When higher than one, this rate is
responsible for explosive variance. After reaching a “stable” solution, adding
of new lags with random initial values, as well as altering the current values
of the existing lags are considered. In an artificial DGP experiment, it is
unlikely to rediscover the true model structure because of the small and
finite sample size. Minimizing the information criterion results in solutions
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with fewer lags than the original seed, because of the objective function’s
bias towards parsimonious solutions (sometimes even entirely missing the
GARCH factor). Thereby, even if the BIC values of the estimated solutions
are very close to the originals’, their LLF values are sometimes significantly
different.

For Monte Carlo simulation purposes, we have generated 50 time series
starting with the GARCH(3,3) solution below computed for the Bollerslev
and Ghysels time series:

ΨTR = [−0.003436, 0.010574, 0.186631,Hole,Hole, 0.364402,Hole, 0.407439].

The heuristic was run ten times for all combinations between six different
values of sample size T and five different values of the number of iterations I,
summing up to 15, 000 runs. The convergence of the estimators towards their
true values in dependence on the number of observations and for a fixed
number of 100, 000 iterations is depicted in Figure 3.
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Fig. 3: The convergence of ψ0, ψ1, ψ2,i, ψ3,j estimators, (from left to right and
top to bottom) of 50 time series in relation with T : true values (horizontal
dashed line), median (solid line), 25 and 75% quantiles (dashed lines with
filled diamonds), minimum and maximum (dotted lines with empty circles).

As we are not able to rediscover the true model structure, it is futile to
test the convergence of the estimators towards their true values. The constant
parameter in (1) constitutes an exception from this statement, because the
conditional mean equation has a fixed structure and influences the LLF value
through εt. On the other side, the GARCH factor lags ψ3,1—ψ3,3 are included
in less than 10% of the optimized models, while the second and third lags
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of the ARCH factor, ψ2,2 and ψ2,3, are non-zero in less than 50%. This zero
inflation of the estimators in (9), as well as the non-normal distribution of
their values, are the reason why the OLS estimation of the linear regression
described in (6) fails for most parameters, as pointed out with ’NA’ in Ta-
bles 5 and 6. The evaluation results of the convergence relation with respect
to the sample size are summarized in Table 5. It can be noticed that the
minimum lag size, corresponding to the biggest values of the zero-inflation
indicator, is found when the heuristic number of iterations is maximum, i.e.,
100, 000. When the percent of non-zero estimators is less than 50%, which
is true only for ψ0, ψ1 and ψ2,1, the inverse relation between MSDTR,I and
the available number of observations holds. On the other side, the evaluation
of the convergence property relating the heuristic results to the theoretical
ML estimator with regard to the number of iterations is described in Table 6.
For small sample sizes, the standard deviation exhibits huge volatility as the
heuristic fails to converge. However, even for bigger samples, the regression
analysis is weakened by the fact that as the number of iterations increases,
also does the number of null model lags.

Table 5: The influence of sample size T for fixed number of iterations
I = 5000, 10000, 25000, 50000, 100000.

MSDTR,I of
I Ψ0 Ψ1 Ψ2,1 Ψ2,2 Ψ2,3 Ψ3,1 Ψ3,2 Ψ3,3

“Zero-inflation” of ψi (%)
5000 0.00 0.00 47.60 60.37 67.07 95.27 94.73 92.10
10000 0.00 0.00 46.37 58.70 68.53 94.43 94.77 90.40
25000 0.00 0.00 43.40 60.10 68.90 95.00 94.23 88.17
50000 0.00 0.00 44.23 59.20 69.17 94.80 94.17 87.53
100000 0.00 0.00 52.29 69.54 72.86 99.06 99.11 99.06

bp, averaged over d
5000 -0.577 -0.634 -1.162 0.206 0.110 NA NA NA
10000 -0.547 -0.778 -1.216 0.218 0.093 NA NA NA
25000 -0.599 -0.685 -1.109 0.346 0.062 NA NA NA
50000 -0.580 -0.899 -1.003 0.189 0.030 NA NA NA
100000 -0.744 -1.911 -2.411 -0.012 -0.090 NA NA NA

standard deviation of bp
5000 0.335 1.555 0.835 0.555 0.198 NA NA NA

10000 0.296 1.450 0.548 0.624 0.214 NA NA NA
25000 0.476 1.369 0.599 0.684 0.215 NA NA NA
50000 0.404 1.357 0.407 0.505 0.255 NA NA NA
100000 0.179 1.498 3.971 0.364 0.299 NA NA NA

R2, averaged over d
5000 0.56 0.47 0.58 0.42 0.30 0.21 0.29 0.42
10000 0.54 0.48 0.58 0.40 0.34 0.17 0.26 0.43
25000 0.56 0.51 0.62 0.39 0.32 0.18 0.37 0.45
50000 0.56 0.49 0.66 0.38 0.31 0.30 0.36 0.52
100000 0.65 0.36 0.26 0.21 0.23 0.06 0.05 0.05
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Table 6: The influence of the number of iterations I for fixed sample size
T = {50, 100, 200, 400, 1000, 2000}.

MSDML,T of
T Ψ0 Ψ1 Ψ2,1 Ψ2,2 Ψ2,3 Ψ3,1 Ψ3,2 Ψ3,3

bp, averaged over d
50 -2.155 -2.032 -837.27 -1013.76 -197.97 NA NA NA
100 0.058 0.246 -1020 -1260 -283 NA NA NA
200 -0.185 0.261 -24.15 -447.85 0.222 NA NA NA
400 0.086 -0.094 0.043 -4.0512 -3.223 NA NA NA
1000 -0.251 -0.162 0.069 NA NA NA NA NA
2000 -0.404 0.123 -0.125 -0.292 NA 0.175 NA NA

standard deviation of bp
50 8.248 10.40 5636.52 3025.90 5748.83 NA NA NA
100 4.377 1.277 7105.25 6412.81 2441.05 NA NA NA
200 2.092 1.229 172.00 3071.33 365.02 NA NA NA
400 1.984 1.087 1.781 30.918 20.84 NA NA NA
1000 1.376 1.145 0.796 NA NA NA NA NA
2000 1.343 0.975 0.863 1.015 NA 1.127 NA NA

R2, averaged over d
50 0.29 0.27 0.33 0.34 0.39 0.18 0.04 0.05
100 0.41 0.37 0.34 0.42 0.37 0.24 0.12 0.09
200 0.37 0.27 0.37 0.32 0.35 0.15 0.21 0.19
400 0.31 0.30 0.28 0.34 0.28 0.25 0.23 0.25
1000 0.39 0.37 0.36 0.33 0.34 0.27 0.27 0.31
2000 0.32 0.39 0.38 0.36 0.38 0.36 0.29 0.42

4 Conclusions

Threshold Accepting has been successfully implemented for the parameter
estimation of GARCH familiy models: GARCH(1,1), GJR-GARCH(1,1) and
GARCH(p,q) with fixed number of lags. Furthermore, the convergence of the
heuristic-based estimators towards their true values has been proven when the
number of heuristic iterations is set up proportional to the sample size. In the
case of generalized GARCH(p,q), which consists in a variable number of lags
and also accepts holes in the lag structure, the standard log-likelihood func-
tion does not allow for an effective model selection algorithm and has been
substituted with a Bayesian Information Criterion, replacing thus the overfit-
ting tendency with a bias towards parsimonious solutions. Experimentally, it
has been proven that the standard or normalized-standard BIC are appropri-
ate within a heteroskedastic environment. Even so, Monte Carlo simulations
and the results evaluating the relations between the mean square deviations
of the estimators from their true values and from their maximum likelihood
values, on one side, and the size of observations and the number of heuristic
iterations, on the other side, show the complexity of the search space, as well
as the convergence difficulties. The main reason is that the heuristic is able
to find better fitted solutions (with fewer lags) than the original DGP seeds,
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due to the finite sample sizes. However, rather than identifying the “cor-
rect” model structure, it would be of more interest to obtain good forecasts.
With this goal in sight, a comparison of the relative forecasting performance
exhibited by different methods is left for future research.
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Lasso–type and Heuristic Strategies
in Model Selection and Forecasting

Ivan Savin1 and Peter Winker2

Abstract Several approaches for subset recovery and improved forecasting
accuracy have been proposed and studied. One way is to apply a regulariza-
tion strategy and solve the model selection task as a continuous optimization
problem. One of the most popular approaches in this research field is given
by Lasso–type methods. An alternative approach is based on information
criteria. In contrast to the Lasso, these methods also work well in the case
of highly correlated predictors. However, this performance can be impaired
by the only asymptotic consistency of the information criteria. The result-
ing discrete optimization problems exhibit a high computational complexity.
Therefore, a heuristic optimization approach (Genetic Algorithm) is applied.
The two strategies are compared by means of a Monte–Carlo simulation study
together with an empirical application to leading business cycle indicators in
Russia and Germany.

1 Introduction

The model selection process is crucial for the further analysis of any multi-
ple regression model and its forecasting performance. Picking up too many
regressors increases the variance of the constructed model, and taking fewer
regressors than needed might result in biased and even inconsistent estimates.
Both of these problems can also have negative effects on the quality of fore-
casts based on the models obtained through the application of these methods.

1 DFG Research Training Program ‘The Economics of Innovative Change’, Friedrich
Schiller University Jena and Max Planck Institute of Economics, Bachstrasse 18k Room
216, D-07743 Jena, Germany, Ivan.Savin@uni-jena.de
2 Justus Liebig University Giessen, Licher Strasse 64, D-35394 Giessen, and Centre for
European Economic Research, Mannheim, Germany,
Peter.Winker@wirtschaft.uni-giessen.de

C. Borgelt et al. (Eds.): Towards Advanced Data Analysis, STUDFUZZ 285, pp. 165–176.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013
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During the last years, the least absolute shrinkage and selection operator
(Lasso) [16] has become a very popular approach for simultaneous model
selection and parameter estimation. Its main advantage is seen in obtaining
both a high prediction accuracy and a parsimonious model, which is due
to the regularization parameter which results in shrinking the coefficients of
insignificant regressors towards zero. Hence, the resulting models concentrate
on the strongest effects which tends to increase the total accuracy of the model
forecast. Furthermore, the Lasso is very computationally efficient (hardly
exceeding the complexity of one linear regression [3]).

However, the Lasso has some limitations. In particular, inconsistent esti-
mates are obtained for highly correlated regressors. Numerous modifications
have been suggested revising and improving the initial Lasso concept (e.g.,
the elastic net, the adaptive lasso), which can improve its performance un-
der certain conditions, but do not represent a universal remedy from the
limitation stated.

An alternative to the shrinkage operator is offered by model selection ap-
proaches based on information criteria (IC) which tend to provide a consis-
tent model choice also for correlated predictors. However, even for a mod-
erate number of predictors, these methods might result in substantial com-
putational cost when considering a full enumeration of all alternatives. For-
tunately, thanks to advances in heuristic optimization methods mimicking
some evolution processes [6], there are efficient algorithms able to identify
at least a good approximation to the IC’s global optimum even for larger
problem instances. Furthermore, IC’s performance is naturally impaired by
small sample sizes due to their only asymptotic consistency.

To the best of our knowledge, this study is the first1 comparing the Lasso–
type and heuristic methods both for model selection and forecasting, and
contributing to the literature by demonstrating that in certain situations
(e.g., if regressors in a given data set are pairwise highly correlated and for
large data sets) heuristic algorithms can outperform the Lasso–type solutions.

The rest of this chapter is structured as follows. Section 2 introduces both
the Lasso–type and the heuristic methods. Section 3 provides results of a
Monte–Carlo analysis, and Section 4 illustrates an application to leading
business cycle indicators. Finally, Section 5 concludes.

2 Model Selection Methods

The least absolute shrinkage and selection operator (Lasso), introduced by
Tibshirani ([16]), is a constrained version of the ordinary least squares estima-
tor, but has also been applied to GMM–estimators. Numerous applications

1 An exception, however, only with regard to the comparison of the two strategies for
model selection can be found in [13].
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of this technique can be found in medicine, economics and other scientific
fields [7] including also time series forecasting (see, among others, [1]).

Consider the model selection problem for the following regression function:

y = α+Xoptβ + ε, (1)

where α is an n-vector with all elements equal, X is an n × k matrix of k
regressors and their values for n observations, β is a k × 1 vector of their
coefficients and ε is an n × 1 vector of residuals. In (1) Xopt refers either
to the ’true’ model in a Monte–Carlo simulation set–up or to an optimal
approximation to the unknown real data generating process. Standardizing
the predictors so that they have mean 0 and standard deviation equaling 1,
and the response having mean 0, one can omit α without loss of generality.

2.1 Lasso–type Strategies

For (1) the Lasso objective function can be presented as follows:

β̂Lasso = argmin
β

[
‖y −Xβ̂ ‖22 +λ ‖ β̂ ‖1

]
. (2)

While the first term in the right part of equation (2) measures the fit of
the model by the residual sum of squares (RSS), the second one with λ > 0
is the shrinkage applied to the sum of the absolute values of the coefficients.
Hence, the Lasso can be referred to as a special case of the Bridge regression
approach [4] imposing an upper bound on the Lq-norm of the parameters
(0 < q <∞) with q = 1:

‖ β̂ ‖q=
⎡⎣ k∑
j=1

|βj |q
⎤⎦1/q

. (3)

There are different approaches to solve (2) including quadratic program-
ming, coordinate–wise optimization and gradient projection (see, e.g., [5]).
For the sake of brevity we do not discuss any of those methods, so that the
interested reader is advised to consult the literature. In this study we use
a modification of the LARS algorithm suggested by Efron et al. ([3]) and
popularized among practitioners.2 The algorithm provides a piecewise–linear
solution path in the tuning parameter λ ∈ [0,∞) with all β̂’s set to zero at
λ = ∞ and equal to the OLS estimate at λ = 0. To select a single solution,
λ is chosen by tenfold cross–validation minimizing the prediction error (PE)
of the model.
2 Related code is available at http://www.stanford.edu/~hastie/Papers/LARS for R and
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3897 for Matlab.

http://www.stanford.edu/~hastie/Papers/LARS
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3897
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Setting λ > 0 by cross–validation one insures the Lasso solution to have a
parsimony property, i.e. only a subset of resulting predictors in (2) has non–
zero coefficients. This feature of the Lasso might increase the total accuracy
of the model forecast and improves the interpretability of the selected model.

However, the Lasso has substantial limitations. First, it cannot identify all
’true’ predictors in a data set with pairwise highly correlated regressors [21].
The latter can be referred to as the ’irrepresentable condition’ [19, p. 2544].
Thus, Lasso is consistent in low correlation settings only, when

max
j>r

‖cov(Xj , X
true)cov(Xtrue)−1 ‖1< 1, (4)

while in presence of high correlations between ’true’ and irrelevant variables,
the Lasso cannot recover the correct sparsity pattern (β̂Lasso � βtrue).

However, as Meinshausen and Yu ([10]) show, even failing to discover the
correct sparsity pattern (when (4) does not hold), the Lasso can provide good
approximations of the ’true’ model for large sample sizes (‖ β − β̂Lasso ‖2→
0 as n→∞). In other words, Lasso selects ’true’ variables with high probabil-
ity and irrelevant ones have only marginal coefficients (L2-norm consistency).

Second, Lasso is inconsistent for k ! n (underdetermined linear system),
where (2) can identify not more than n− 1 (standardized) predictors [3].

Lasso Modifications

Many proposals have been made on how to improve the Lasso concept. Due
to space restrictions, we concentrate only on two such modifications. For a
more complete overview, the interested reader is referred, e.g., to [7] and [5].

We consider two extensions of the Lasso: the elastic net (EN) using a
combination of the Lasso (λ1) and the ridge regression (λ2) penalty [21]:

β̂EN = argmin
β

[
‖y −Xβ̂ ‖22 +λ1 ‖ β̂ ‖1 +λ2 ‖ β̂ ‖22

]
, (5)

and the adaptive Lasso (aLasso) applying different amounts of shrinkage for
each regression coefficient [20]:3

β̂aLasso = argmin
β

⎡⎣‖y −Xβ̂ ‖22 +λ
k∑

j=1

ω̂j |βj |
⎤⎦ . (6)

Thus, the selected extensions are particularly designed to deal with the
limitations stated and operate in a continuous space remaining computa-
tionally efficient. Furthermore, in line with [2] we also perform unregularized
restricted estimation (i.e. OLS estimation on the selected set of regressors)

3 For more details the reader is referred to the literature. See also [13].
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for all Lasso–type methods tested to alleviate a potential bias that results
from the regularized estimation (λ > 0).

2.2 Heuristic Optimization Methods

Alternatively, information criteria (IC) can be used to identify Xopt in (1).
IC rank different models according to their fitness, while penalizing model
complexity. Hence, they can be interpreted as a L0-constraint, penalizing not
the coefficients’ values, but only their number:

β̂IC = argmin
β

[
‖y −Xβ̂‖22 +λ ‖ β̂ ‖0

]
. (7)

IC have become a standard instrument in model selection ranging from
lag order selection in multivariate linear and nonlinear autoregression models
to selection between rival nonnested models [18]. In this study, the Bayesian
IC (BIC) and the Hannan-Quinn IC (HQIC) are employed. For infinitely
large sample sizes these IC are consistent model selection instruments and,
as noted by Hastie et al. ([19, p. 2553]), the solution of (7) remains consistent
even for data sets with correlated regressors.

Given that the search space of candidate models in (7) is discrete, standard
gradient methods cannot be applied. Also the full enumeration of all possible
solutions is only feasible for a moderate k. Consequently, in the last decade
many studies have been devoted to the problem in (1): sequential bottom–
up (top–down) inclusion (deletion) of individual regressors [12, 8]; usage of
certain prior probabilities shrinking the parameter search space and resulting
in model averaging [9]. However, these methods investigate only a specific
fraction of all submodels, whereas there is no guarantee to find the ’true’
model in this way.

In order to tackle the highly complex integer optimization problem, one
can take advantage of optimization heuristics that mimic natural evolution
processes. These methods are called ’heuristic’ or ‘meta-heuristics’ because
of their stochastic nature that helps them to converge to a model which at
least represents a good approximation to the IC optimum. For an overview
of these optimization techniques see [6]. In [15] a similar subset selection
problem was handled by two algorithms: Threshold Accepting and Genetic
Algorithms (GA). Since GA provided slightly better results in terms of both
CPU time and solution quality, only GA are considered in the following.

GA are population–based heuristics that investigate the search space in
many directions simultaneously, performing jumps in the search space by
means of crossover and mutation mechanisms. Thereby, the probability of
getting stuck in a local optimum is reduced. The members in the population
are represented as bit strings of ones and zeros corresponding to the pre-
dictor variables included and not included in the candidate model. In each
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generation GA replace parts of a population with new solutions aimed to be
better for a given problem. The GA algorithm implemented is very similar
to the one in [15].4 The only difference is that 1000 generations are found to
be sufficient in this study for GA to converge.

3 Monte–Carlo Study

The goal of this section is to determine in what set–ups which of the two
strategies, Lasso–type methods (Lasso, EN, aLasso) or GA tined by IC, pro-
vide superior results (in terms of correctly recovered subsets, forecasting and
estimation accuracy) and what is the corresponding CPU-time required.

Data Generating Process

To this end, different artificial data sets are generated varying the sample size
(n) from 100 (frequent in macroeconomics) to 1000 (which is mostly avail-
able only in finance and natural sciences) and fixing the number of potential
regressors to 50. First, we generate 4 predictors with a joint Gaussian distri-
bution and covariance matrix Σ. We choose either Σi,j = 0.5|i−j| or 0.75|i−j|

with 1 ≤ i, j ≤ k, corresponding to a ’low’ and ’high’ correlation setting, re-
spectively. Second, the data matrix consisting of lags 1 to 10 of these predic-
tors is formed (Xmc). Third, we select a small number of elements ktrue = 5 of
the coefficient vector βmc, which are set to non–zero values.5 These non–zero
coefficient values are randomly distributed between -1 and 1, and divided by
the respectively chosen lag order so that lags of higher order are (on average)
assigned with smaller coefficients.6 Fourth, the initial value of the response
variable (ymc

0 ) is set to zero, and based on βmc
j , one recursively generates ymc

t

and adds an i.i.d. normal random error term:7

ymc
t =

10∑
i=1

βmc
0,i y

mc
t−i +

4∑
j=1

10∑
i=1

βmc
j,i x

mc
j,t−i + εt, ε ∼ N(0, σ2

ε). (8)

In (8) one chooses σε such that the corresponding noise–to–signal ratio (NSR,
for details see [4, p. 125]) equals either 1/5 (’low noise’) or 2 (’high noise’).
Obviously, (8) represents an Autoregressive Distributed Lag model with 10

4 Thus, a population of 500 solutions, the uniform crossover mechanism and a mutation
operator applied to 5 randomly chosen genes with 50% probability are employed.
5 One ensures that one lag of each variable (including the dependent one) is included.
6 This appears reasonable since in empirical studies lags of lower order are found to be
more important.
7 Finally, the first 11 observations in ymc and Xmc are discarded.
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lags for both, one dependent and four explanatory variables, where no cur-
rent values of the explanatory variables are involved. Thus, for a general
ADL(p1, p2, p3) we consider ADL(10,4,10).

Simulation Results

The quality of the results in terms of model identification is assessed by the
True Positive Rate (TPR) and the False Negative Rate (FNR)8, whereas
mean–squared error (MSE = E[(β̂−βmc)′Σ(β̂− βmc)]) is used as a measure
of the estimation accuracy.9 For this purpose, 90% of the observations are
used as a training set. The CPU time corresponding to a single restart using
Matlab 7.11 on a Pentium IV 3.3 GHz is reported.10

Furthermore, the remaining 10% of observations are left for an out–of–
sample forecast, where root mean–squared forecast error, and its standard
deviation computed over 50 replications (in parentheses),

RMSFE =

√√√√ 1

T2 − T1 + 1

T2∑
t=T1

(ymc
t − ŷt)2, (9)

is used to assess the forecast quality. Thereby, T1 and T2 indicating the first
and the last period of the forecasting period.

Simulation results obtained for different set–ups are reported in Table 1.11
For medium–sized samples (n = 500) heuristics clearly outperform Lasso–
type methods in subset recovery and estimation accuracy,12 which eventually
results in a better forecasting performance. However, the difference in RMS-
FEs is not that large. Among the Lasso methods considered, aLasso provides
in general superior results, and this dominance holds for different correla-
tion and noise settings. For ’high correlation’ some marginal improvements
as compared to classical Lasso are obtained via EN, which is due to the more
robust ridge penalties.

It can be observed that heuristics improve in performance relative to the
Lasso methods in low noise settings and for larger sample sizes. The former
is due to a more restrictive selection performed by the shrinkage strategies,
which for ’low noise’ translates in substantially more type II errors, i.e., ignor-

8 TPR is the percentage of ’true’ regressors from all variables selected and FNR is the
portion of rejected ’true’ regressors among correctly selected and correctly rejected ones.
9 Standard deviations computed over 50 replications are given in parenthes in Table 1.
Unregularized restricted estimations for Lasso–type methods are reported as MSE2.
10 For each method, averages over 50 replications of the procedure are reported.
11 Due to space constraints, here we report only results for the BIC, but qualitatively
similar findings based on HQIC are available on request.
12 Even accounting for MSE2 an improvement for all scenarios is depicted in Table 1.
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ing too many relevant predictors, whereas the latter results from the asymp-
totic consistency of IC allowing to identify the correct sparsity pattern. In
contrast, for n = 100 the difference between shrinkage and heuristic methods
becomes less evident. Furthermore, for ’high noise’ and small n Lasso–type
strategies indisputably beat heuristics both in estimation and forecasting.

Table 1 Monte–Carlo simulation results
Lasso EN aLasso BIC Lasso EN aLasso BIC

Low correlation High correlation

R
es

u
lt
s

fo
r

n
=

1
0
0

L
o
w

n
o
is

e

TPR 72.7% 71.2% 70.9% 56.0% 73.9% 73.5% 60.7% 53.8%
FNR 2.6% 2.5% 2.3% 1.0% 3.0% 2.9% 3.0% 1.6%
MSE .0212 .0209 .0102 .0035 .0235 .0233 .0104 .0076

(.0413) (.0408) (.0160) (.0033) (.0431) (.0422) (.0140) (.0166)
CPU .4s 1.0s 1.0s 32s .3s .7s 1.0s 31s
MSE2 .0166 .0165 .0076 .0189 .0188 .0083

(.0374) (.0373) (.0135) (.0374) (.0372) (.0143)
RMSFE .0114 .0113 .0112 .0113 .0119 .0117 .0126 .0122

(.0053) (.0051) (.0048) (.0039) (.0049) (.0049) (.0052) (.0053)

H
ig

h
n
o
is

e

TPR 79.3% 79.3% 62.7% 36.6% 71.2% 70.2% 50.0% 31.9%
FNR 7.1% 7.1% 7.1% 6.1% 7.2% 7.3% 7.0% 6.6%
MSE .0339 .0336 .0247 .0529 .0363 .0359 .0286 .0521

(.0718) (.0719) (.0447) (.0542) (.0856) (.0857) (.0527) (.0518)
CPU .3s .7s 1.1s 28s .3s .7s .7s 29s
MSE2 .0234 .0234 .0224 .0338 .0338 .0234

(.0451) (.0451) (.0413) (.0844) (.0844) (.0421)
RMSFE .1078 .1078 .1107 .1191 .1088 .1089 .1123 .1234

(.0402) (.0402) (.0424) (.0496) (.0415) (.0413) (.0449) (.0547)

R
es
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s
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r

n
=

5
0
0

L
o
w

n
o
is

e

TPR 68.5% 71.5% 68.3% 84.5% 66.1% 67.0% 74.6% 87.1%
FNR 2.1% 2.1% 1.6% .7% 2.3% 2.1% 1.6% .7%
MSE .0187 .0187 .0069 3.0×10−4 .0209 .0208 .0063 2.3×10−4

(.0299) (.0299) (.0158) (4.7×10−4) (.0376) (.0376) (.0196) (3.1×10−4)
CPU .3s .8s .8s 88s .3s 1.0s .9s 93s
MSE2 .0120 .0120 .0023 .0154 .0151 .0042

(.0235) (.0235) (.0052) (.0328) (.0329) (.0182)
RMSFE .0102 .0102 .0102 .0098 .0107 .0107 .0107 .0103

(.0041) (.0041) (.0042) (.0041) (.0043) (.0043) (.0046) (.0041)

H
ig

h
n
o
is

e

TPR 95.6% 95.6% 75.4% 81.8% 91.7% 91.7% 78.4% 79.7%
FNR 6.3% 6.3% 5.0% 3.5% 6.4% 6.4% 5.7% 4.1%
MSE .0269 .0266 .0214 .0054 .0270 .0266 .0225 .0060

(.0420) (.0413) (.0488) (.0056) (.0426) (.0415) (.0432) (.0063)
CPU .3s .8s .8s 78s .3s .8s .8s 81s
MSE2 .0166 .0166 .0087 .0167 .0167 .0108

(.0276) (.0276) (.0105) (.0277) (.0277) (.0191)
RMSFE .0985 .0985 .0962 .0957 .1007 .1006 .0992 .0981

(.0407) (.0407) (.0392) (.0397) (.0421) (.0421) (.0407) (.0413)

R
es

u
lt
s

fo
r

n
=

1
0
0
0

L
o
w

n
o
is

e

TPR 54.2% 54.3% 80.8% 90.8% 60.1% 60.1% 72.2% 88.7%
FNR 1.4% 1.4% .9% .4% 1.7% 1.7% .9% .3%
MSE .0107 .0107 .0041 6.9×10−5 .0122 .0122 .0030 1.3×10−4

(.0181) (.0181) (.0077) (1.1×10−4) (.0171) (.0172) (.0048) (2.6×10−4)
CPU .4s 1.0s 1.7s 157s .5s 1.5s 1.8s 156s
MSE2 .0044 .0044 6.7×10−4 .0080 .0080 .0010

(.0097) (.0097) (.0019) (.0132) (.0132) (.0033)
RMSFE .0103 .0103 .0102 .0101 .0095 .0095 .0098 .0092

(.0038) (.0038) (.0037) (.0037) (.0040) (.0040) (.0067) (.0039)

H
ig

h
n
o
is

e

TPR 93.7% 93.9% 75.7% 85.9% 92.9% 93.0% 76.3% 83.2%
FNR 5.2% 5.2% 3.6% 2.3% 5.3% 5.4% 4.4% 2.7%
MSE .0199 .0199 .0089 .0029 .0199 .0198 .0153 .0030

(.0247) (.0247) (.0115) (.0042) (.0245) (.0245) (.0248) (.0043)
CPU .5s 1.5s 1.4s 147s .5s 1.4s 1.3s 153s
MSE2 .0132 .0133 .0063 .0133 .0132 .0086

(.0178) (.0178) (.0109) (.0178) (.0178) (.0145)
RMSFE .0925 .0927 .0912 .0902 .0951 .0949 .0944 .0926

(.0378) (.0386) (.0375) (.0372) (.0403) (.0397) (.0403) (.0395)
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4 Application to Leading Business Cycle Indicators
in Germany and Russia

Being particularly interested in the usefulness of the strategies from the fore-
casting point of view, we also show their application to real economic data.

Leading indicators (LI) are nowadays a standard tool for the analysis and
forecasting of business cycles due to the publication delay of data on real
production. While for Germany (as for other industrial countries) there is a
large body of empirical evidence that models forecasting industrial produc-
tion (IP), which include LI, outperform forecasts of univariate time series
models [17, 11], there is less such evidence for developing countries.

For the empirical application we use two LI (business expectations and
business climate) and IP for Germany and Russia for the period 02/1999–
09/2009. More information on the properties of the data can be found in [14].
Important is that the German LI are seasonally adjusted, while for Russia
they are not. Furthermore, a potential structural break in Russian data must
be accounted. Hence, we consider the IP indices for both countries also as
unadjusted and introduce seasonal and shift dummies, and their interaction
terms (for details see [14]) to account for these data features.

Similar to Section 3, ADL models (augmented with seasonal and shift
dummies) are our modelling framework to identify predictors and construct
forecasts, while an AR(2) process serves as benchmark. The latter is found
to be a hard competitor in business cycle forecasting for small data sets [14].

We only employ 1–step–ahead forecasts of IP growth rates (log differences)
for periods of one and two years length between 11/2006 and 09/2009 (this
also allows one to consider the forecasting performance both prior and during
the crisis) and increasing estimation windows (IEW). Furthermore, in con-
trast to [14], we allow for lags from both LI and both countries to be included
in (9) for each IP, so that a selection out of 65 predictors (5 variables and
13 lags) has to be made. As a result, two data sets with highly correlated
potential predictors are generated (see Figure 1).13

Results for the two model selection strategies are exhibited in Table 2. As
one can see, for the final forecasting period the shrinkage strategies mostly
dominate the benchmark for both 12– and 24–month period forecasts, while
heuristics fail do so. The main reason for this performance is seen to be
the small estimation sample available: there are merely 128 observations for
estimation and forecasting in total, which is most comparable with the upper
panel in Table 1. Furthermore, since the IP growth rates can be to a large
extent (R2 ≈ 70− 80%) explained by the set of lags selected (together with
the seasonal and shift dummies), which corresponds to the low noise setting,
EN and Lasso outperform aLasso. Finally, since particularly for small noise
and high correlation among predictors in small samples Lasso–type methods

13 The main diagonal in the correlation matrix is removed.
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Fig. 1 Pairwise correlations in the empirical data sets

Table 2 Forecasting performance of the ADL models

Model specification Germany Russia Germany Russia
10/2007–09/2009 10/2008–09/2009

Lasso 0.9064 0.8296 0.7479 0.7800

RMSFE EN 0.9469 0.8296 0.7479 0.7748
aLasso 0.9849 0.9744 1.1355 0.8422

in relation to AR(2) Genetic Algorithms BIC 1.1763 0.9629 1.1832 0.9322

HQIC 1.1558 1.1191 1.2473 1.1169

provide some better forecasts than heuristics, the advantage of the shrinkage
methods could be expected from the Monte–Carlo results.

We also consider the performance of the two strategies over a set of fore-
casting periods shifting by one month (rolling windows). The results are pro-
vided in Figure 2 (upper panel for 12– and lower for 24–month forecasts).

5 Conclusions

Since the correct dynamic specification of time series models is often un-
known, the use of model selection strategies is required. We consider two
classes of model selection approaches, one based on shrinkage estimators
such as Lasso and the other one – a subset selection method making use of
optimization heuristics, to solve the corresponding highly complex discrete
optimization problem.

A Monte–Carlo simulation is used to assess the merits of the different
methods in the context of univariate autoregressive distributed lag models.
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Fig. 2 Forecast accuracy in relation to AR(2) with IEW (RMSFE in relation to AR(2))

The simulation setting is chosen to mimic realistic situations found in the
framework of forecasting business cycles. In particular, the number of avail-
able observations is often small compared to the number of potentially rel-
evant predictors. Due to the high persistence in many economic variables,
different lags of these predictors might be highly correlated rendering the
model selection problem more challenging. The results from the Monte–Carlo
simulation suggest that the use of information criteria in the subset selection
approach is impaired by the small number of observations, while the shrink-
age estimators still perform remarkably well despite of the high correlation
of potential predictors.

Furthermore, we consider to what extent a proper model selection might
help to improve forecasts of business cycle indicators for Russia and Ger-
many. While the improvements compared to a simple autoregressive process
are small in all settings, we find again slight advantages of the shrinkage
estimators.

Based on these findings, several questions emerge naturally which we will
consider in future research. In particular, we will test whether larger sample
sizes improve the relative performance of information criteria based selection
as these criteria are asymptotically consistent. Furthermore, we will study a
situation with a larger number of relevant regressors in the model. Finally,
further real applications will be studied to learn about performance gains to
be expected when moving away from simplistic univariate time series models.
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Streaming-Data Selection for
Gaussian-Process Modelling

Dejan Petelin1 and Juš Kocijan1,2

Abstract The Gaussian-process (GP) model is an example of a probabilis-
tic, non-parametric model with uncertainty predictions. It can be used for
the modelling of complex, non-linear systems and also for the identification
of dynamic systems. The output of the GP model is a normal distribution,
expressed in terms of the mean and the variance. One of the noticeable draw-
backs of a system identification with GP models is the computation time
necessary for the modelling. The modelling procedure involves the inverse of
the covariance matrix, which has the dimension as large as the length of the
input samples vector. The computation time for this inverse, regardless of the
use of an efficient algorithm, is increasing with the third power of the number
of input data. In this chapter we propose a method for the sequential selec-
tion of streaming data so that the size of the active set remains constrained.
Furthermore, for better adjustment of the model to the system the hyperpa-
rameter values are optimised as well. The viability of the proposed method
is tested on data obtained from two, nonlinear, dynamic systems.

1 Introduction

Gaussian-process (GP) models [11] form a new, emerging ,complementary
method for non-linear, dynamic, system identification. The GP model is a
probabilistic, non-parametric, black-box model. It differs from most other
frequently used black-box identification approaches in that it does not ap-
proximate the modelled system by fitting the parameters of the selected ba-
sis functions, but rather it searches for the relationship among the measured
data. GP models are closely related to approaches such as support vector ma-
chines and, in particular, relevance vector machines. Because the GP model
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is a Bayesian model, its output is a normal distribution, expressed in terms of
the mean and the variance. The mean value represents the most likely output,
and the variance can be viewed as a measure of its confidence. The obtained
variance, which depends on the amount of available identification data, is
important information that distinguishes the GP models from other non-
Bayesian methods. GP models can be used for model identification when the
data are noisy and when there are outliers or gaps in the input data. Another
useful attribute of GP models is the possibility to include various kinds of
prior knowledge into the model, e.g., local models, static characteristics, etc.

A noticeable drawback of any system identification with GP models is
the computation time necessary for the modelling. Regression based on GP
models involves several matrix computations in which the load increases with
the third power of the number of input data, such as the matrix inversion
and the calculation of the log-determinant of the used covariance matrix.
This computational greed restricts the amount of training data to at most
a few thousand cases. To overcome the computational-limitation issues and
also to make use of the method for large-scale dataset applications, numer-
ous authors have suggested various sparse approximations [2, 3]. A common
property of all sparse approximate methods is that they try to retain the
bulk of the information contained in the full training dataset, but reduce
the size of the resultant covariance matrix so as to facilitate a less com-
putationally demanding implementation of the GP model. Special kinds of
sparse approximate methods are the on-line modelling methods, e.g., Sparse
On-line Gaussian Processes [4], Fast Forward Selection to Speed Up Sparse
Gaussian Process Regression [12] and Online Sparse Matrix Gaussian Pro-
cess Regression and Vision Applications [10]. All these on-line methods try
to incorporate all the information about the data by projecting to a reduced
covariance matrix.

The problem we focus on in this chapter is the on-line selection of particular
data with rich information content from streaming data to be used afterwards
for the modelling of a dynamic system. This kind of modelling is of interest,
for example, in the case of changing a system’s dynamics with a change
of the system’s operating conditions. For this purpose the current sparse
methods for GP models are not appropriate as they need all the training
data available at once or cannot adjust the hyperparameter values in on-
line mode. Therefore, we propose a streaming-data selection method for GP
modelling that sequentially gains the bulk of the information contained in
the streaming data and adjusts with the incoming data. To keep the subset
of the most informative data small enough to process the current data before
new data arrive, the maximum length of the subset is fixed. The information
that each piece of data in the subset contains regarding the other data in
the subset is estimated with the log-marginal likelihood. To test the viability
of the proposed method it is compared to the full GP model trained on the
entire training dataset and the Sparse On-line Gaussian Processes method
(OGP) [4].
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The outline of the chapter is as follows. Section 2 introduces GP models.
Section 3 describes the proposed method for streaming-data selection for
modelling with Gaussian processes. The results of the experiments are given
in Section 4. Section 5 concludes the paper with a summary of the work and
indicates the direction for future work.

2 Modelling with Gaussian Processes

A GP model is a flexible, probabilistic, non-parametric model for the predic-
tion of output-variable distributions. Its properties and application potentials
are reviewed in [11].

A Gaussian process is a collection of random variables that have a joint
multivariate Gaussian distribution (Fig. 1). Assuming a relationship of the
form y = f(x) between the input x and the output y, we have y1, . . . , yN ∼
N (0,Σ), where Σpq = Cov(yp, yq) = C(xp,xq) gives the covariance between
the output points corresponding to the input points xp and xq. Thus, the
mean μ(x) and the covariance function C(xp,xq) fully specify the Gaussian
process.
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Fig. 1 Modelling with GP: Gaussian distribution of predictions at new points x1 and x2,
conditioned on the training points (*).

The value of the covariance function C(xp,xq) expresses the correlation
between the individual outputs f(xp) and f(xq) with respect to the inputs
xp and xq . Note that the covariance function C(·, ·) can be any function that
generates a positive semi-definite covariance matrix. It is usually composed
of two parts,
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C(xp,xq) = Cf(xp,xq) + Cn(xp,xq), (1)

where Cf represents the functional part and describes the unknown system
we are modelling, and Cn represents the noise part and describes the model
of the noise.

For the noise part it is most common to use the constant covariance func-
tion, presuming white noise. The choice of the covariance function for the
functional part also depends on the stationarity of the process. Assuming
stationary data the most commonly used covariance function is the square
exponential covariance function. The composite covariance function is there-
fore

C(xp,xq) = v1 exp

[
−1

2

D∑
d=1

wd(xdp − xdq)
2

]
+ δpqv0, (2)

where wd, v1 and v0 are the ’hyperparameters’ of the covariance function, D
is the input dimension, and δpq = 1 if p = q and 0 otherwise. In contrast,
assuming non-stationary data the polynomial or its special case, the linear
covariance function, can be used. Other forms and combinations of covari-
ance functions suitable for various applications can be found in [11]. The
hyperparameters can be written as a vector Θ = [w1, . . . , wD, v1, v0]

T . The
parameters wd indicate the importance of the individual inputs: if wd is zero
or near zero, it means the inputs in dimension d contain little information
and could possibly be neglected.

To accurately reflect the correlations present in the training data, the hy-
perparameters of the covariance function need to be optimised. Due to the
probabilistic nature of the GP models, the common model optimisation ap-
proach, where model parameters and possibly also the model structure are
optimised through the minimization of a cost function defined in terms of
model error (e.g., mean square error), is not readily applicable. A probabilis-
tic approach to the optimisation of the model is more appropriate. Actually,
instead of minimizing the model error, the probability of the model is max-
imised.

GP models can be easily utilized for a regression calculation. Consider a
matrix X of N D-dimensional input vectors where X = [x1,x2, . . . ,xN ]T and
a vector of the output data y = [y1, y2, . . . , yN ]. Based on the data (X,y), and
given a new input vector x∗, we wish to find the predictive distribution of the
corresponding output y∗. Based on the training set X, a covariance matrix
K of size N ×N is determined. The overall problem of learning unknown pa-
rameters from data corresponds to the predictive distribution p(y∗|y,X,x∗)
of the new target y, given the training data (y,X) and a new input x∗. In
order to calculate this posterior distribution, a prior distribution over the
hyperparameters p(Θ|y,X) can first be defined, followed by the integration
of the model over the hyperparameters

p(y∗|y,X,x∗) =
∫
p(y∗|Θ,y,X,x∗)p(Θ|y,X)dΘ. (3)
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The computation of such integrals can be difficult due to the intractable
nature of the non-linear functions. A solution to the problem of intractable
integrals is to adopt numerical integration methods such as the Monte-Carlo
approach. Unfortunately, significant computational efforts may be required
to achieve a sufficiently accurate approximation.

In addition to the Monte-Carlo approach, another standard and general
practice for estimating hyperparameters is the maximum-likelihood estima-
tion, i.e., to minimise the following negative log-likelihood function:

L(Θ) = −1

2
log(| K |)− 1

2
yTK−1y − N

2
log(2π) (4)

As the likelihood is, in general, non-linear and multi-modal, efficient opti-
misation routines usually entail the gradient information. The computation
of the derivative of L with respect to each of the parameters is as follows

∂L(Θ)

∂θi
= −1

2
trace

(
K−1∂K

∂θi

)
+

1

2
yTK−1 ∂K

∂θi
K−1y. (5)

For performing a regression, the availability of the training set X and
the corresponding output set y is assumed. Based on the training set X,
a covariance matrix K of size N × N is determined. The aim is to find
the distribution of the corresponding output y∗ for some new input vector
x∗ = [x1(N + 1), x2(N + 1), . . . , xD(N + 1)]T .

For the collection of random variables [y1, . . . , yN , y
∗] we can write:

[y, y∗] ∼ N (0,K∗) (6)

with the covariance matrix

K∗ =

⎡⎢⎢⎢⎢⎢⎢⎣
K k(x∗)

kT (x∗) κ(x∗)

⎤⎥⎥⎥⎥⎥⎥⎦ (7)

where y = [y1, . . . , yN ] is a 1 × N vector of training targets. The predictive
distribution of the output for a new test input has a normal probability
distribution with a mean and variance

μ(y∗) = k(x∗)TK−1y, (8)

σ2(y∗) = κ(x∗)− k(x∗)TK−1k(x∗), (9)

where k(x∗) = [C(x1,x
∗), . . . , C(xN ,x

∗)]T is the N × 1 vector of covariances
between the test and training cases, and κ(x∗) = C(x∗,x∗) is the covariance
between the test input itself.
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The obtained model, in addition to the mean value, provides information
about the confidence in the prediction by the variance. Usually, the confi-
dence of the prediction is depicted with a 2σ interval, which is an about 95%
confidence interval. This confidence region can be seen in the example in Fig.
2 as a grey band. It highlights the areas of the input space where the pre-
diction quality is poor, due to the lack of data or noisy data, by indicating a
wider confidence band around the predicted mean.
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Fig. 2 Using GP models: in addition to the prediction mean value (full line), we obtain a
95% confidence region (gray band) for the underlying function f .

GP models can, like neural networks, be used to model static non-
linearities and can therefore be used for the modelling of dynamic systems
[1, 7, 8] as well as time series, if lagged samples of the output signals are
fed back and used as regressors. A retrospective review of modelling dynamic
systems using GP models can be found in [6].

A dynamic GP model is trained as the nonlinear autoregressive model with
an exogenous input (NARX) representation, where the output at time step
k depends on the delayed outputs y and the exogenous control inputs u:

y(k) = f(y(k − 1), . . . , y(k − n),

u(k − 1), . . . , u(k − n)) + ε(k) (10)

where f denotes a function, ε(k) is white noise and the output y(k) depends
on the state vector x(k) = [y(k − 1), y(k − 2), . . . , y(k − n), u(k − 1), u(k −
2), . . . , u(k − n)] at step k.

One of the main limitation of the system identification with GP models
is that the computational requirements scales with the third power of the
number of training data. In practice this limits the applicability of exact
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GP implementation to datasets not exceeding a few thousand data sam-
ples. A various computationally efficient approximations to GP models have
been proposed as well as on-line modelling [4, 12, 10]. In the next section a
streaming-data selection method for GP modelling is proposed that sequen-
tially gains the bulk of the information contained in the streaming data and
adjusts with in-coming data. The idea of the selecting data in the proposed
method is similar as the idea in Sparse swap algorithm in [5] but used and
implemented differently.

3 Streaming-data Selection

In many real-world systems the system’s model is, due to its complexity, split
into less complex models that are different according to the operating condi-
tions at that moment. Such local models need to be updated on-line, based on
incoming information, i.e., streaming data from signal measurements. A pos-
sible method for Streaming-Data Selection for GP modelling (SDS-GP) is
proposed as follows.

The GP models depend on the training data and the covariance function.
In other words, the training data is defined with various regressors and basis
functions, while the covariance function is defined with the type and the
hyperparameter values. As it is described in Section 2, a GP model’s training
for a large amount of data is very time consuming. To overcome this greed,
only a subset of the most informative data is proposed to be used. Such a
subset is, in the literature, called the active set or the basis vectors set [4]
and its elements are basis vectors [4], inducing variables [2] or basis functions
[9]. With a type or a combination of various types of covariance function, a
prior knowledge of the system is included in the model. Nevertheless, with
optimisation of the hyperparameter values the model is even better adjusted
to the real system. However, in dynamic, non-linear, system identification
the squared exponential covariance function is frequently used, presuming
the smoothness and stationarity of the system.

The approach we propose processes every new piece of streaming data
sequentially, following the Algorithm 1. The main idea of the proposed al-
gorithm is to sequentially gain the bulk of the information contained in the
streaming data and to adjust to the dynamic system’s characteristic changes.
To keep the active set small enough to process the data before new data ar-
rives, the maximum length of the active set should be set with the parameter
max. Therefore, the parameter max is a design parameter. In addition, two
more design parameters should be set that determine the ”sensitivity” of the
algorithm. That means they determine whether new data will be processed
or not. The new, incoming data is only processed if the error or the variance
of the prediction for new data is higher than the pre-setted thresholds, thMu
and thVar, for the error of the mean value and the variance, respectively.
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In other words, the incoming data is only processed if the current model
cannot predict the output for the incoming input well enough; otherwise the
new data does not contain any new information regarding the current model.
Both thresholds can be set heuristically.

Algorithm 1. processData(x∗, y∗)
data: X ,Y ,Q
init : max, thMu, thV ar

1 (mu, var) = pred(x∗) // get prediction for new data

2 if abs(mu − y∗) > thMu or var > thV ar then // if prediction is not good

enough in mean of mean value and variance

3 X = X ∪ x∗ // add new input to the active set

4 Y = Y ∪ y∗ // add new target to the active set

5 Q = update(Q, x∗) // update inversion

6 l = length(X)

7 if l > max then // if the active set exceeded maximum size

8 for i = 1 to l do // foreach basis function in the active set

9 QT = downdate(QT , Xj) // downdate inversion

10 XT = X \ Xj // temporary remove i-th basis input

11 YT = Y \ Yj // temporary remove i-th basis target

12 s(i) = nlml(QT , XT , YT ) // calculate neg. log-marginal

likelihood

13 end

14 imin = argMin(s) // get index of the worst basis function

15 X = X \ Ximin
// remove the worst basis input

16 Y = Y \ Yimin // remove the worst basis target

17 Q = downdate(Q, Ximin
) // downdate inversion

18 end

19 hyp = minimise(X , Y, hyp) // optimise hyperparameter values

20 Q = inv(X , Y, hyp) // calculate inversion for new hyperparameter

values

21 end

In the case of ”unknown” data regarding the current model, it is added to
the active set. This set actually consists of two sets: the set of inputs X and
the set of targets Y. Furthermore, the inversion of the covariance matrix Q
that is constructed from the X is extended using a rank-1 update.

If the maximum size of the active set is exceeded, the less informative basis
function is removed. The less informative basis function in the active set is
found by temporarily eliminating each basis function from the set and calcu-
lating the negative log-marginal likelihood for the rest of the basis functions.
The rank-1 downdate of the covariance matrix inversion Q is used, as it is
needed to calculate the log-marginal likelihood. The subset with the lowest
negative log-likelihood is retained, the corresponding eliminated basis func-
tion is removed from the active set and the covariance matrix inversion Q is
appropriately downdated.
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For a better adjustment of the model to the real system the hyperparam-
eter values are optimised by maximizing the marginal log-likelihood. This
can be done with any suitable optimisation method. In our case it is done
with the conjugate gradients optimisation method proposed in [11]. If the hy-
perparameter values are changed, the covariance matrix has to be updated.
In this case the inversion Q cannot just be updated, but a calculation from
scratch is necessary.

It is advisable that the optimisation of the hyperparameter values starts
executing after the first few incoming data when the active set contains
enough information. Furthermore, the optimisation of the hyperparameter
values could be limited to execute only when the difference between the neg-
ative log-marginal likelihood of the current and previous step is large enough.
In this way some computational load can be preserved.

It should be noted that for the scoring of the incoming data and for the
calculating of the hyperparameter values other methods can be used as well.

4 Experiments and Results

To test the viability of the proposed SDS-GP method we performed two
experiments where the method is used for sequentially selecting data for the
GP modelling from the validation dataset and afterwards used for predicting
the validation dataset of the two, non-linear, dynamic systems: pumadyn-
8nm and elevators. Both datasets are publicly available1 on the web and are
often used as benchmarks. The pumadyn-8nm dataset is artificially generated
using a robot-arm simulator that is highly non-linear and has very low noise.
The dataset contains 8192 data samples consisting of 8 regressors each. The
first 4096 data samples are used for the training and the other 4096 are used
for the validation. The elevators dataset relates to controlling the elevators
of an F-16 aircraft. It contains two datasets: the first one contains 8752 data
samples that are used for the training and 7847 data samples that are used
for the validation. Each data sample consists of 18 regressors. It should be
noted that all the regressors in both datasets are normalised and that each
regressor’s values are in the interval [−1, 1].

To test the performance of the SDS-GP method two additional tests were
performed on both experiments. In the first test the full GP trained on the
entire training dataset is performed. It is used as an indicator of whether or
not and how fast the SDS-GP method converges to the full GP model. In the
second test the proposed method is compared with an on-line GP modelling
method. Among the Sparse On-line Gaussian process (OGP) method [4],
the Fast Forward Selection to Speed Up Sparse Gaussian Process Regression

1 Dataset pumadyn-8nm is available at: http://www.cs.toronto.edu/~delve/data/

pumadyn/desc.html and dataset elevators is available at: http://www.liaad.up.pt/

~ltorgo/Regression/elevators.html

http://www.cs.toronto.edu/~delve/data/pumadyn/desc.html
http://www.cs.toronto.edu/~delve/data/pumadyn/desc.html
http://www.liaad.up.pt/~ltorgo/Regression/elevators.html
http://www.liaad.up.pt/~ltorgo/Regression/elevators.html
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method [12] and the Online Sparse Matrix Gaussian Process Regression and
Vision Applications [10] method, the OGP method was chosen as the source
code is publicly available2. As the OGP method does not optimise the hy-
perparameter values on-line, it is performed in two modes. In the first mode
the OGPdef default hyperparameter values are initialised as

wd = −2 log(max(xd)−min(y)/2),

v0 = log(var(y)), (11)

v1 = log(var(y)/4),

where d is the number of regressors. As all the input regressors are normalised,
the default values of all wd equal 0. Therefore, these default hyperparameter
values should not be treated as poor values, but rather as neutral values. In
the second mode the OGPopt optimises the hyperparameter values for the
entire training dataset. It should be noted that the SDS-GP hyperparame-
ter values are also initialised using (11) and therefore equal to the OGPdef

hyperparameter values. In this way the importance of the hyperparameter
values’ optimisation is exposed.

All the tests are compared by the quality of the prediction mean value,
which is assessed by computing the mean relative squared error (MRSE)

MRSE =

√√√√∑N
i=1(yi − ŷi)2∑N

i=1 y
2
i

(12)

where yi and ŷi are the measurement and the prediction in the i-th step.
Additionally, the quality of the prediction variance of all the approaches is
compared with the logarithm of the predictive density error (LPD)

LPD =
1

2N

N∑
i=1

(
log(2π) + log(σ) +

(yi − ŷi)
2

σ2
i

)
(13)

where σ2
i is the prediction variance in the i-th step. While MRSE calculates

only the error of the prediction mean value, the LPD also penalises the pre-
diction whose 2nd standard deviation does not cover the real output value.

Discussion

The error measures the MRSE and LPD, depending on the number of basis
functions of all the approaches for both experiments, are depicted in Fig. 3
and Fig. 4. It is clear that in both experiments the MRSE of the SDS-GP
and OGPopt converge to the MRSE of the full GP model quite quickly, while

2 http://www.tuebingen.mpg.de/~csatol/ogp/index.html

http://www.tuebingen.mpg.de/~csatol/ogp/index.html
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the MRSE of the OGPdef converge more slowly. It should be noted that even
though the SDS-GP’s initial hyperparameter values are not optimal, with
on-line optimisation the MRSE of SDS-GP converge to the MRSE of the
full GP.
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Fig. 3 Case pumadyn-8nm: Two error measures depending on the number of basis func-
tions. MRSE is depicted on the left plot and LPD on the right plot.
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Fig. 4 Case elevators: Two error measures depending on the number of basis functions.
MRSE is depicted on the left plot and LPD on the right plot.

On the other hand, the LPD of OGPopt converge faster than the LPD of
SDS-GP and OGPdef, but only for smaller active sets. In the pumadyn-8nm
case this margin is at about 100 basis functions, while in the elevators case
it is about 250 basis functions. For larger active sets the LPD of SDS-GP
and OGPdef further converge to the LPD of the full GP, while the LPD of
the OGPopt starts to diverge. To expose the reason for this occurrence the
real output and predictions in the selected region of all the approaches for
both experiments are depicted in Fig. 5 and Fig. 6, respectively. For the
experiment pumadyn-8nm the region from 5457 to 5467 data samples and
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models with 750 basis functions are selected and the region from 1925 to 1945
data samples and models with 2000 basis functions for the case elevators. It
can be seen that the OGPopt is over-confident in both cases, while the OGPdef

is only in the elevators case. That means it is too self-confident, especially
for predictions whose error of the mean value is large and the real output is
not inside the 95% confidence region. Such a case can be seen in Fig. 5 for
the OGPopt and Fig. 6 for both OGP modes, while all the other approaches
keep the real output inside the 95% confidence region. Therefore, the LPD
of the OGP is higher than the LPD of the other methods.

Fig. 5 Case pumadyn-8nm: Real output and predictions of all the approaches with 750
basis functions in the region from 5457 to 5467 data samples.

It can be concluded from the presented tests that the SDS-GP method
is more suitable for the intended purpose, which is the selection of the in-
coming data with a rich information content. The selected data is to be used
afterwards used for the streaming-data-based modelling of dynamic systems.



Streaming-Data Selection for Gaussian-Process Modelling 189

Fig. 6 Case elevators: Real output and predictions of all the approaches with 2000 basis
functions in the region from 1925 to 1945 data samples.

5 Conclusion

We introduced the Streaming-Data Selection method for GP modelling so
that the size of the active set remains constrained. Furthermore, for better
model adjustment to the system the hyperparameter values are optimised as
well. To test the viability of the proposed method it is tested on two datasets
obtained from nonlinear dynamic systems: pumadyn-8nm and elevators.

The results from the experimental work indicate that the proposed SDS-
GP method is viable. That means its error converges towards the error of
the full GP, even though the initial hyperparameter values are not optimal.
The error of SDS-GP converges, as expected, more slowly, as it contains
information only from selected data samples, while the OGP incorporates
information from all the data samples. On the other hand, the SDS-GP is
not over-confident in the case of a larger active set, as is the case for the OGP.

In the performed experiments only the prediction is used for the compar-
ison of the validated models. A more thorough validation of the obtained
dynamic systems’ models with simulation tests in addition to the predic-
tion tests are envisaged as the future tasks to confirm the usefulness of the
proposed SDS-GP method.
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1. Ažman K, Kocijan J (2007) Application of Gaussian processes for black-box modelling
of biosystems. ISA transactions 46(4):443–457
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Change Detection Based on the
Distribution of p-Values

Katharina Tschumitschew1 and Frank Klawonn1,2

Abstract Non-stationarity is an important aspect of data stream mining.
Change detection and on-line adaptation of statistical estimators is required
for non-stationary data streams. Statistical hypothesis tests may also be used
for change detection. The advantage of using statistical tests compared to
heuristic adaptation strategies is that we can distinguish between fluctua-
tions due to the randomness inherent in the underlying distribution while it
remains stationary and real changes of the distribution from which we sam-
ple. However, the problem of multiple testing should be taken into account
when a test is carried out more than once. Even if the underlying distribution
does not change over time, any test will erroneously reject the null hypothesis
of no change in the long run if we only carry out the test often enough. In this
work, we propose methods which account for the multiple testing issue and
consequently improve reliability of change detection. A new method based on
the information about the distribution of p-values is presented and discussed
in this article as well as classical methods such as Bonferroni correction and
the Bonferroni-Holm method.

1 Introduction

One of the most important aspects in data stream analysis is that in most
applications the underlying data generating process does not remain static,
i.e. the underlying probabilistic model cannot be assumed to be stationary.
The changes in the data structure may occur over time. Dealing with non-
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stationary data requires change detection and on-line adaptation. Different
kinds of non-stationarity have been classified in [1]:

• Changes in the data distribution: the change occurs in the data distribution
in general. For instance, the mean or the variance of the data distribution
may change over time.

• Changes in concept: here concept change refers to changes of a target
variable. A target variable is a variable whose values we try to predict based
on the model estimated from the data, for instance, for linear regression
concept drift refers to the change of the coefficients of the linear model
which is used to predict the target variable. Concept change can be further
distinguished in the following way:

– Concept drift: concept drift describes gradual changes of the concept.
In statistics, this is usually called structural drift.

– Concept shift: concept shift refers to an abrupt change which is also
referred to as structural break.

In the following, we do not differentiate between concept drift and shift for
two reasons. First of all, in both cases the relation between the predictor
attributes and the target variable will be changed anyway. Secondly, we can
only observe or sample the data at discrete time points, so that it does not
matter whether we interpret the changes between two time points as a dis-
continuous jump in terms of concept shift or as a smooth transition between
two time points which we cannot describe or observe in detail, because we
have data between two discrete time points.

Real world applications for non-stationary data can be found for instance
in stock market or weather prediction, change of protein structures through
mutation or the buying behaviour of customers of an on-line store. Since
non-stationary data models significantly affect the accuracy of prediction,
the fact of concept drift should be taken into account by on-line learning.
Hence the effective treatment of non-stationarity is an important problem
in machine learning. Therefore change detection and on-line adaptation for
data stream mining techniques are required for non-stationary data streams.
Various strategies to handle non-stationarity are proposed, see for instance
[6] for a detailed survey of change detection methods. Statistical hypothesis
tests may also be used for change detection. Since we are working with data
streams, it is required that either the calculations for the hypothesis tests can
be carried out in an incremental way or time window techniques should be
used. Hypothesis tests could be applied to change detection in two different
ways (for detailed survey see [12]):

• Change detection through incremental computation of the tests: by this
approach the test is computed in an incremental fashion. For instance,
the χ2-test and the t-test (for precise definitions see for example [10])
render themselves easily to incremental computations (on-line adaptation
of these tests is described in [12]). A low p-value for the comparison of the
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data distributions at different time points – in the case of the χ2-test – or
comparison of the mean values – in the case of the t-test – would indicate
a change in the data stream.

• Time window techniques: by this approach the data stream is divided into
time windows. A sliding window can be used as well as non-overlapping
windows. In order to detect potential changes, we need either to compare
data from an earlier window with data from newer one or to test only
the new data (for instance, whether the data follow a known or assumed
distribution).

However, the problem of multiple testing should be taken into account
when more than one hypothesis is tested simultaneously. The more hypothe-
ses are tested, the more likely the null hypothesis of no change will be er-
roneously rejected, even if the underlying distribution does not change over
time. In this work we present different approaches to solve this problem. One
way is the application methods that account for multiple testing like the well
known Bonferroni correction and the Bonferroni-Holm method. Furthermore,
we propose a new approach based on the information about the distribution
of p-values.

This paper is organised as follows. The problem of multiple testing is ex-
plained in Section 2. Two classical methods to handle the problem of multiple
testing are also described in this section. In Section 3 the theoretical back-
ground on p-values is given and a new approach based on the distribution of
p-values under the null hypothesis is introduced. Examples are discussed in
the experimental section 4.

2 Multiple Testing

Multiple testing refers to the application of a number of tests simultaneously.
Instead of a single null hypothesis, tests for a set of null hypotheses H0,
H1, . . . , Hn are considered. These null hypotheses do not have to exclude
each other.

An example for multiple testing is a test whether m random variables
X1, . . . Xm are pairwise independent. This means the null hypotheses are
H1,2, . . . , H1,m, . . . , Hm−1,m where Hi,j states that Xi and Xj are indepen-
dent. Multiple testing leads to the undesired effect of cumulating the α-error.

Definition 1. The α-error α is the probability to reject the null hypothesis
erroneously, given it is true.

Choosing α = 0.05 means that in 5% of the cases the null hypothesis would
be rejected, although it is true. When k tests are applied to the same sample,
then the error probability for each test is α. Under the assumption that the
null hypotheses are all true and the tests are independent, the probability
that at least one test will reject its null hypothesis erroneously is
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P (" ≥ 1) = 1− P (" = 0)

= 1− (1− α) · (1− α) . . . · (1 − α)

= 1− (1− α)k. (1)

" is the number of tests rejecting the null hypothesis.
A variety of approaches have been proposed to handle the problem of

cumulating the α-error. In the following, two common methods will be intro-
duced shortly.

The simplest and most conservative method is Bonferroni correction [9].
When k null hypotheses are tested simultaneously and α is the desired over-
all α-error for all tests together, then the corrected α-error for each single
test should be chosen as α̃ = α

k . The justification for this correction is the
inequality

P

(⋃
i

Ai

)
≤
∑
i

P (Ai) . (2)

For Bonferroni correction, Ai is the event that the null hypothesis Hi is
rejected, although it is true. In this way, the probability that one or more of
the tests rejects its corresponding null hypothesis is at most α. In order to
guarantee the significance level α, each single test must be carried out with
the corrected level α̃.

Bonferroni correction is a very rough and conservative approximation for
the true α-error. One of its disadvantages is that the corrected significance
level α̃ becomes very low, so that it becomes almost impossible to reject any
of the null hypotheses.

The simple single step Bonferroni correction has been improved by Holm
[7]. The Bonferroni-Holm method is a multi-step procedure in which the
necessary corrections are carried out stepwise. This method usually yields
larger corrected α-values than the simple Bonferroni correction.

When k hypotheses are tested simultaneously and the overall α-error for
all tests is α, for each of the tests the corresponding p-value is computed
based on the sample x and the p-values are sorted in ascending order.

p[1](x) ≤ p[2](x) ≤ . . . ≤ p[k](x) (3)

The null hypotheses Hi are ordered in the same way.

H[1], H[2], . . . , H[k] (4)

In the first step H[1] is tested by comparing p[1] with
α
k . If p[1] >

α
k holds,

then H[1] and the other null hypotheses H[2], . . . , H[k] are not rejected. The
method terminates in this case. However, if p[1] ≤ α

k holds, H[1] is rejected
and the next null hypothesis H[2] is tested by comparing the p-value p[2] and
the corrected α-value α

k−1 . If p[2] >
α

k−1 holds, H[2] and the remaining null
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hypotheses H[3], . . . , H[k] are not rejected. If p[2] ≤ α
k−1 holds, H[2] is rejected

and the procedure continues with H[3] in the same way.
The Bonferroni-Holm method tests the hypotheses in the order of their

p-values, starting with H[1]. The corrected αi-values
α
k ,

α
k−1 , . . . α are increas-

ing. Therefore, the Bonferroni-Holm method rejects at least those hypotheses
that are also rejected by simple Bonferroni correction, but in general more
hypotheses can be rejected.

During change detection instead of the common significance level α, the
Bonferroni correction or Bonferroni-Holm method should be used in order
to avoid the multiple testing problem. However, the streaming nature of the
data should be taken into account and it is therefore impossible to hold all
the obtained p-values in the memory. Furthermore, the number of tests to
be carried out is not known in advance. Thus, a time window technique-
based approach should be used, such for instance as a sliding window or
non-overlapping time windows.

3 Meta p-values

Another possibility to solve the problem of multiple testing during change
detection is to study the behaviour of the obtained p-values. Several authors
have analysed properties of p-values. For instance, Gibson and Pratt (see [5])
provided an interpretation and methodology for p-values, Sackrowitz and
Samuel-Cahn [8] analysed the stochastic behaviour of p-values. Donahue in
[4] studied the distribution of p-values under the alternative hypothesis. In
[2], the authors focus on the median of the p-value under the alternative
hypothesis.

Definition 2. The p-value is the probability to obtain a value of the test
statistic as extreme as, or more extreme than (depending on the alternative
hypothesis) the observed value of the test statistic given the null hypothesis
is true.

Hence, in the case of continuous test statistics for a right tailed test the
p-value is calculated as

p = Pr (T ≥ t|H0) = 1− FT (t) (5)

and for a left tailed test as

p = Pr (T ≤ t|H0) = FT (t) (6)

where FT (t) is the cumulative distribution function for the test statistic T
under the assumption that the null hypothesis H0 is true.

In the case of a two tailed test, the p-value is the total area under both
tails with an area of p

2 in each tail. Therefore, if the observed value falls into
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the one-tailed area, the area of this tail has to be doubled and the other tail
can be ignored.

p =

{
2 · Pr (T ≤ t|H0) , if t ≤ qT0.5
2 · Pr (T ≥ t|H0) , otherwise.

(7)

As the Equations (5), (6) and (7) show, the p-value is a function of a
random variable and hence a random variable itself. An obvious question is:
how are the p-values distributed under the null hypothesis and how under the
alternative hypothesis? First, the distribution of p-values is analysed when
H0 is true (see [4, 8]).

Theorem 1. Given the null hypothesis is true, the p-values of a continuous
test statistic T follow a uniform distribution on the unit interval [0, 1].

Proof. Let p be the achieved p-value and t the calculated test statistic with
FP (p|H0) and FT (t) being the corresponding cumulative distribution func-
tions under H0. Also, let F

−1
T (γ) be the inverse function of FT (t), so that

FT

(
F−1
T (γ)

)
= γ for all γ ∈ [0, 1]. Then, for a right tailed test the following

holds

FP (p|H0) = Pr (P ≤ p|H0)

= Pr (1− FT (t) ≤ p|H0)

= Pr (FT (t) ≥ (1− p) |H0)

= 1− Pr (FT (t) ≤ (1− p) |H0)

= 1− FT

(
F−1
T (1− p)

)
= 1− (1− p) = p (8)

For a left tailed test corresponding to Equation (6) the distribution function
of the p-value is as follows

FP (p|H0) = Pr (P ≤ p|H0)

= Pr (FT (t) ≤ p|H0)

= FT

(
F−1
T (p)

)
= p (9)

for all p ∈ [0, 1].
According to Equations (7), (8) and (9), we obtain for the distribution of

P in case of a two tailed test: FP (p|H0) = 2 · p
2 = p. Note that we divide

the probability p to equal parts between both tails. Therefore, the random
variable P is uniformly distributed on the interval [0, 1] when H0 is true. ��

Figures 1 and 2 show the histograms for simulated p-values under the
null hypothesis and the alternative hypothesis respectively. The p-values are
generated by the Kolmogorov-Smirnov test which is carried out over and over
again for the problem of testing test whether or not data are coming from a
standard normal distribution.
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In the case when alternative hypothesis is true, the data are generated
by a normal distribution with expected value 0.05 and standard deviation
1. Altogether, 100 different runs are made for data samples of length 1000.
Figure 1 confirms that the p-values follow a uniform distribution on the unit
interval [0, 1] when the null hypothesis is true.

Fig. 1 Histogram for p-values under the null hypothesis.

The histogram in Figure 2 for the alternative hypothesis shows a different
situation. The sampling distribution here is clearly not uniform anymore, the
majority of values is close to zero and the amount of values decreases towards
the p-value one.

Thus, we are interested in the question: how are p-values distributed when
the alternative hypothesis holds? The distribution is given by Equation (10)
(see [4]).

FP (p|H1) = Pr (P ≤ p|H1)

= Pr (1− FT (t) ≤ p|H1)

= Pr (FT (t) ≥ (1− p) |H1)

= 1− Pr (FT (t) ≤ (1− p) |H1)

= 1−GT

(
F−1
T (1− p)

)
(10)



198 K. Tschumitschew and F. Klawonn

Fig. 2 Histogram for p-values under the alternative hypothesis.

where GT is the distribution of the test statistic T under the alternative
hypothesis. Here we only consider upper-tailed one-sided tests. As Equation
(10) shows, the distribution of the p-values in this case depends on the test
statistic distribution under H0 as well as under H1 hypothesis.

Hence, knowing the distribution of p-values under both hypotheses, a meta
analysis can be performed. Since for each alternative hypothesis – in most
cases the alternative is a composite hypothesis representing not a single but
a set of distributions – and therefore for each GT the distribution of p-values
under H1 is different (see Equation (10)) we restrict further considerations
to the uniformity of p-values under H0.

The most obvious way to carry out a meta analysis is to perform a good-
ness of fit test on the obtained p-values during multiple testing. For instance,
the Kolmogorov-Smirnov test (an implementation is available in the R statis-
tics library [3]) can be used for that purpose. However, the following problem
should be taken into account: in order to carry out a meta analysis of p-
values, neither a sliding window nor an incremental computation can be used
for change detection. Indeed, the general assumption for hypothesis tests that
the considered random variables are independent and identically distributed
(i.i.d.) does not hold for overlapping sliding windows. By the application of
sliding windows or incremental computation the next p-value is highly de-
pendent on the previous ones. The reason for this problem is that almost
the same values are used by the hypothesis test, correspondingly the com-
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puted neighbouring p-values would be approximately equal. Therefore, for
this approach only non-overlapping windows should be used during change
detection. As a consequence, we can not use the comparison between data
from an earlier window with data from newer one when an abrupt change
occurs, since in such a case H0 would be false only once and therefore only
one p-value would not come from a uniform distribution. Nevertheless, this
approach shows good results when a test is used in order to proof whether
the data follow a known or assumed distribution or to detect drift in the data
generating process.

4 Experimental Results

Our approach has been implemented in Java using R-libraries and has been
tested with artificial data. For the data generation process the following model
was used: first n1 time points data are generated from a standard normal
distribution, i.e. Xi ∼ N (0, 1) for i ∈ {1, . . . , n1}. At time point n1 + 1
a change occurs and the data are normally distributed with the following
settings: μ = 0.1 and σ = 1, i.e. N (0.1, 1).

Our meta analysis of p-values has been applied to this data set. The
Kolmogorov-Smirnov test for standard normality of the data was carried out
for non-overlapping time windows. The size of the window for the change de-
tection was chosen to be 500. Afterwards, the sliding window of size 100 was
used for the meta analysis of the obtained p-values. In order to test the dis-
tribution of the p-values a Kolmogorov-Smirnov test for uniformity is used.
A meta p-value is consequently the result of this test. Figure 3 illustrates
described technique.

� � � � � �

�

� � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � ��

	 � 
 � � � � � � � �	 � 
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Fig. 3 Two windows for change detection.

The change occurred at the time point 59489. The computed p-values for
this part of the data are as follows:

After the change occurs, the null hypothesis can be rejected (depending
on the chosen α). However, from time to time H0 cannot be rejected. Fur-
thermore, for some parts without change H0 is erroneously rejected, even
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Table 1 p-values obtained during change detection.

time window p-value

[57000; 57499] 0.07486618716777954

[57500; 57999] 0.1401818038913014

[58000; 58499] 0.9941898244705528

[58500; 58999] 0.9291249862216258

[59000; 59499] 0.5020298421810007

[59500; 59999] 0.01168733233091191

[60000; 60499] 0.05625967117647695

[60500; 60999] 0.6789664978854166

[61000; 61499] 0.394486208210243

[61500; 61999] 0.05360718854238174

[62000; 62499] 0.7747463214977733

though the underlying distribution did not change at that time. For instance
for the interval [45500; 45999] the p-value is 0.018673 and consequently H0

can be rejected for all α ≥ 0.020. Whereas as Table 2 shows, all meta p-values
are smaller than 0.05 starting from the window [41000; 65999] and all meta
p-values before are larger than 0.05.

Table 2 Meta p-values obtained during change detection.

time window meta p-value

[40000; 64999] 0.1599219

[40500; 65499] 0.0809654

[41000; 65999] 0.0377086

[41500; 66499] 0.0161466

[42000; 66999] 0.0063506

[42500; 67499] 0.0022917

For the next example the data were generated as follows:

Yt =

t∑
i=1

|Xi| . (11)

We assume the random variablesXi to be normally distributed with expected
value μ = 0 and variance σ2

1 , i.e. Xi ∼ N
(
0, σ2

1

)
. To make the situation more

realistic, we consider the following model:
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Zt ∼ N
(
yt, σ

2
2

)
. (12)

The process (12) can be understood as a constant model with drift and noise.
The noise follows a normal distribution whose expected value equals the
actual value of the random walk and whose variance is σ2

2 . The data were
generated with the following parameters: σ1 = 0.00000008,σ2 = 0.002. Figure
4 shows the generated data.

Fig. 4 Two windows for change detection.

In order to detect changes, the two sample t-test was applied to this data
set. In such a way we can test whether the data from the old and new windows
have the same mean. Two non-overlapping windows of size 500 are used. For
the meta analysis, similar as before, the Kolmogorov-Smirnov test for unifor-
mity is applied to a sliding window of size 50. Since the mean changes very
slightly, sometimes H0 can not be rejected (depending on the chosen α), as
can be seen from Table 3, whereas all meta p-values provide the strong evi-
dence that the data is non-stationary (all obtained meta p-values are smaller
than 10−9).

As Tables 1, 2 and 3 show, the meta p-values are more reliable than p-
values. However, it should be taken into account that more time is needed
until a change can be detected. Therefore, this approach is not suitable when
very fast reaction to the occurred change is required. Whereas when more
attention is paid to the accuracy of change detection, meta p-values provide
a good solution to the problem of multiple testing for non-stationarity of the
data. For instance such kind of change detection can be used for changes
caused by slow wear and abrasion of materials, here the fast reaction is not
required but the information about the speed of wear.
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Table 3 p-values obtained during change detection.

time window t time window t+ 1 p-value

[0; 499] [500; 999] 0.04019542802527917

[500; 999] [1000; 1499] 0.01835982391226245

[1000; 1499] [1500; 1999] 0.02694198995888841

[1500; 1999] [2000; 2499] 0.00590771301502357

[2000; 2499] [2500; 2999] 0.00000051742252253

[2500; 2999] [3000; 3499] 0.21019670543166669

[3000; 3499] [3500; 3999] 0.02610004716763162

[3500; 3999] [4000; 4499] 0.01388767893804595

[4000; 4499] [4500; 4999] 0.02986063639554551

[4500; 4999] [5000; 5499] 0.00174724618341983

[5000; 5499] [5500; 5999] 0.21651140022620408

[5500; 5999] [6000; 6499] 0.00180512145155431

5 Conclusion

Change detection is a crucial aspect for non-stationary data streams or
“evolving systems”. It has been demonstrated in [11] that näıve adaption
without taking any effort to distinguish between noise and true changes of
the underlying sample distribution can lead to very undesired results. Statis-
tical measures and tests can help to discover true changes in the distribution
and to distinguish them from random noise. However, the following problem
arises: when a test is carried out over and over again, the probability to er-
roneously rejecting the null hypothesis increases with the amount of applied
tests. In this work, we have discussed the problem of multiple testing during
change detection and proposed classical methods as well as a new approach
to cope with the multiple testing issue.

Bonferroni correction and the Bonferroni-Holm method adjust the signifi-
cance level α in order to correct the occurrence of incorrect rejections of H0

leading to a very conservative approach that will seldom indicate a change
in the data stream. Our proposed approach is based on the uniformity of the
p-values under the null hypothesis. In such a way, not only the p-values but
also the meta p-values are taken into account by the change detection. This
approach shows good results even in cases where Bonferroni correction and
the Bonferroni-Holm method could not achieve any improvement. Although
we have only considered the distribution of the p-values under the null hy-
pothesis, it could be useful to study the distribution of p-values under the
alternative hypothesis, too.
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Advanced Analysis of Dynamic Graphs
in Social and Neural Networks
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Abstract Dynamic graphs are ubiquitous in real world applications. They
can be found, e.g. in biology, neuroscience, computer science, medicine, so-
cial networks, the World Wide Web. There is a great necessity and interest in
analyzing these dynamic graphs efficiently. Typically, analysis methods from
classical data mining and network theory have been studied separately in
different fields of research. Dealing with complex networks in real world ap-
plications, there is a need to perform interdisciplinary research by combining
techniques of different fields. In this paper, we analyze dynamic graphs from
two different applications, i.e. social science and neuroscience. We exploit
the edge weights in both types of networks to answer distinct questions in
the respective fields of science. First, for the representation of edge weights
in a social network graph we propose a method to efficiently represent the
strength of a relation between two entities based on events involving both
entities. Second, we correlate graph measures of electroencephalographic ac-
tivity networks with clinical variables to find good predictors for patients
with visual field damages.

1 Introduction

Complex dynamic networks are ubiquitous. They can be found, e.g. in biol-
ogy [11], neuroscience [28], computer science [10], medicine [24], social net-
works [16], and the World Wide Web [14]. There is a great necessity and
interest in analyzing these dynamic graphs efficiently as patterns inside of
1 Working Group on Computational Intelligence, Faculty of Computer Science, Otto-
von-Guericke University, Magdeburg, Germany, {pheld,cmoewes,kruse}@ovgu.de,
christian.braune@st.ovgu.de
2 Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University,
Magdeburg, Germany, bernhard.sabel@med.ovgu.de

C. Borgelt et al. (Eds.): Towards Advanced Data Analysis, STUDFUZZ 285, pp. 205–222.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013



206 P. Held et al.

these structures might reveal knowledge about the underlying system. Clas-
sically, analysis methods from both network theory and knowledge discovery
in databases have been studied separately in different fields of research. The
analysis of complex networks as they occur in real world applications can be
supported by combining techniques of these two fields [38, 17]. In this paper,
we present two real-world problems of dynamic graphs from distinct appli-
cations, i.e. social science and neuroscience. We exploit the edge weights in
both types of networks to answer distinct questions in the respective fields
of science. For the social science problem we propose a method to efficiently
represent the strength of a relation between two entities based on events in-
volving both entities. For the neuroscience problem we show how electroen-
cephalographic (EEG) activity networks of patients suffering from visual field
defects can be correlated with clinical variables for feature selection. Parts of
the latter study have already been orally presented at a workshop [19].

2 Social Network Analysis

Social network analysis has already been popular long before websites like
Facebook, XING or Google+ — now commonly understood/known as social
networks — were launched. In [33] a comprehensive approach of modeling
social network data as (un)directed graphs has been proposed and has been
widely accepted. Over the years a lot of research has been performed on e.g.
cohesiveness of groups of members in social graphs [36] or segmentation of
social networks [16]. All these methods have in common that they use a static
representation of the social graph underlying the respective social network.

Attempts have been made to infer information from dynamic graphs (e.g.
in [1]) but they either restrict themselves to fairly simple questions like con-
nectivity or to path finding problems in order to cope with the changing
structure of the graph. These approaches suffer from being discretized images
of an originally continuously changing structure. Such discretization results
from some kind of binning operation performed on the data, thus leading to
a loss of information, namely the exact time when an event has happened.
Such an approach does not take into account the frequency with which events
occur but rather lists their absolute number.

The Butterworth filter [3] is one of the best-known infinite impulse response
filters. One of its most interesting features is its flat frequency response,
i.e. it does not generate rippling effects, when the signal strength changes.
Interpreting the binned events of a social graph as a time- and strength-
discretized signal the filter response of such a Butterworth filter should have
the desired properties that events (dirac pulses) can be binned while keeping
some information on the frequency.
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2.1 Butterworth Filtering

Representing the structure of a social network not only by the friendship
relation (i.e. nodes represent persons, edge if they befriended each other),
which results in a more or less static description of the graph, but also by
adding weights to such edges where the weight reflects the amount of activity
between the two corresponding nodes, requires a way to describe this activ-
ity. Event-based weighting of edges in a social graph could be accomplished
by simply storing all the timestamps at which events between two nodes oc-
curred. Obviously this approach would become unfeasible very soon due to
the amount of memory required for such a procedure. An additional disad-
vantage of such an approach would be that, while we can make statements
about the point in time when an event occurred. If possible at all, we can
roughly estimate the current weight that should be assigned to an edge at a
given point in time. Operations like a sliding average would be able to adapt
to such a problem with the major drawback, that only a small time frame
can be used to determine the current average due to memory restrictions —
no further information about the past is available if only such a value is used.

From electronic signal processing the Butterworth filter is a well-known
variant of an infinite impulse response filter that produces an output signal
as response to its input signal without causing the rippling effects from which
other filters suffer. In general such a filter is defined by two sets of coefficients
B and A and the filter’s response y for a signal x at the bin n can be obtained
by computing

yn =
nb∑

i=1
(bi · xn−(i−1)) −

na∑

j=2
(aj · yn−(j−1)), where

{b1, . . . , bnb
} = B and {a1 = 1, a2, . . . , ana} = A.

This recursive representation makes it possible to avoid enumerating all signal
values from negative to positive infinity.

Other parameters that either influence the shape of the resulting curve or
the set of possible edges that are considered are:

• Step width: Amount of milliseconds falling into one time bin
• Grade: The grade of the filter determines the two sets B, A of coefficients

responsible for the shape of the resulting filter response. The number of
coefficients depends directly on the grade and describes how many past
signal (and response) values are considered for the calculation.

• Minimum messages: During preprocessing of the data only certain edges
were included in the graph depending on how many messages were sent in
total.
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2.2 Data Sets

For the analysis and validation of our method we used the well-known Enron
data set1. We removed both external contacts from the data (Enron employ-
ees sending mails to non-Enron employees) and all mail contacts with mail-
ing lists. Duplicates (firstname.lastname vs. firstnamelastname) have been
reduced to one single node and mails that were sent to several users at once
were treated as separate events (such that a mail sent from A to B and C
was considered as two identical mails that were sent from A to B and from
A to C).

2.3 Applying the Filter to the Data

As the Butterworth filter produces a continuous signal we want the filter
response to be 1/l for a time step of length l to give a better generalization.
This restriction and the fact that it produces an equal sum of values over
a continuous time span directly lead to two adversing goals in finding an
optimal frequency to describe the filter:

1. Minimize the difference between the discretely binned signal and the filter
response.

2. Find a frequency f ∈ (0, 1) that produces a continuous, smooth and nearly
linear approximation of the signal (i.e. has only a few local extrema).

While the number of extrema can be reduced by lowering the passband
frequency (which at some point will result in a nearly constant response),
the error can be reduced by increasing it. This interrelation is illustrated by
Fig. 1, which shows the filter response for three different passband frequencies
when applied to event data from the Enron data set (for simplicity, the data
were treated as if belonging to a single edge). Of course the data should be
split up into the real edges for any further analysis.

To evaluate the total complexity of the resulting model depending on the
frequency we adapted Akaike and Bayesian Information Criterion (AIC /
BIC) [2, p. 110] to include the parameters we want to optimize on. For any
given frequency f we can compute the mean squared error (MSE) for the
resulting signal and count the number of extrema. The number ne of extrema
can be used as a measure for the complexity of the resulting curve by assuming
we have to store this curve as a polynomial with a degree of ne + 1.

Thus, the objective functions we need to minimize are

AIC (f) = 2k − 2 · ln (L) and BIC (f) = k · ln (ne) − 2 · ln (L),
1 Obtained from http://www.cs.cmu.edu/~enron/.

http://www.cs.cmu.edu/~enron/
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Fig. 1 Filter response for different passband frequencies for Enron data set, time bin-
ning: 10’000 ms/bin.
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Fig. 2 Left: AIC and BIC for the Enron data set, plotted against different passband
frequencies (filter grade = 4). Right: Development of the two information criteria used
over a larger interval. The interval (0.9, 1] has been left out as the MSE heads towards
zero in these cases which in turn leads to a term in AIC becoming negative.

respectively, where k is the number of parameters and L is the likelihood
of the model. Assuming the error in the model is normally distributed both
functions can be simplified to

AIC(f) = 2k + n · ln (MSE) and BIC (f) = k · ln (n) + n · (MSE).

The MSE for a frequency f can be computed from the signal X and the filter
response y as

MSE(f, X) = 1
‖X‖

‖X‖∑

i=1
(xi − yi)2,

the number of parameters equals ne + 2.
These functions can then be optimized using standard optimization tech-

niques like simulated annealing [13] or gradient descent [27] techniques. Ac-
cording to the resulting shape of the curves for both objective functions (see
Fig. 2) the optimal passband frequency for the depicted example data set lies
near f = 0.0075, when limited to (0, 0.2]. Higher frequencies result in a filter
response that does never fulfill the smoothness requirement although they
might lead to lower values of the objective functions (see also Sect. 2.4).
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For the purpose of storing event information in a coherent way across
multiple edges in the interaction graph it is useful to only use one global
frequency to apply the same filter on all edges. This removes the need to
store the individual filter parameters, and results in only storing the last few
signal and filter response values to be able to calculate the new filter response
with the given, global parameter set.

Such a multi signal optimization can be performed if not only the MSE
of an individual signal is calculated for each frequency but the MSE over
all edges of the graph. The number of local extrema kavg is equally easy to
obtain as the average number of extrema contained over all edges. With this
the multi signal objective functions are

AIC (f) = 2kavg + n · ln (MSEglobal) and
BIC (f) = kavg · ln (n) + n · (MSEglobal),

respectively, where the

MSEglobal(f, X) =
1∑

x∈X ‖x‖ ·
∑

x∈X

‖x‖∑

i=1
(xi − y(i))2

can be considered a MSE over all considered bins.

2.4 Evaluation

Naturally, when compared to a moving average filter, the MSE of our ap-
proach as compared to the original signal will be significantly higher (see
Tbl. 1). As we never aimed at solely minimizing the error but also the com-
plexity of the response signal, our method outperforms the moving average
when using the BIC as optimization criterion. Though it may seem that the
moving average performs better when considering AIC this is owed to this
measure being biased toward models with very high complexity. This effect
can be seen on the right-hand side in Fig. 2. Here can be seen clearly, that
the AIC has its true minimum for a frequency above 0.8. Hence we restricted
optimization already to find an optimum only in the interval (0, 0.2] where
desirable (in terms of local extrema) results are achieved.

Moving Average Butterworth Filter
MSE 19.3163 33.3691
AIC 31068 33445
BIC 3.8814 3.4367

Table 1 Different evaluation measures to compare the moving average with the But-
terworth Filter for the Enron data set.
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frequency of Butterworth filter ob-
tained by all experiments.

As already described above, we observed during the evaluation of the error
measures, that depending on the passband frequency the filter response shows
some offset (see Fig. 2.4a), which decreases with increasing frequency. We
tried to find a best offset which could be applied to the filter response in
order to reduce the overall error that occurs simply due to the offset. Plotting
these offsets against the frequency they correspond to leads to Fig. 2.4b.

Simple curve fitting yields that the optimal offset o(f) can be calcu-
lated directly from the passband frequency used by the filter with the fol-
lowing formula: o(f) =

⌈
a
f + b

⌉
, where a = 0.8347 [0.8341, 0.8352] and

b = 0.3388 [0.2085, 0.4691], (in brackets 95% confidence bounds). Actually
the exponent for the factor f is not −1 but it is so close that we fixed it
at −1 for simplicity. As we only have discrete bins, such a simplification
seems reasonable as the following discretization of the result will obliterate
most imprecisions. All of our experiments show that this formula seems to
be independent from the given data set. That led us to the assumption to
introduce this as a correction term into the objective function. This may
be an important step for scenarios where the behavior of a user abruptly
changes (increases or decreases). The filter will only adapt to this change af-
ter a certain amount of time. During adaption it will naturally deviate from
the current process.

The resulting formula that needs to be minimized considering the offset of
the filter response are then

AIC(f) = 2kavg + n · ln (MSEo,global) and

BIC (f) = kavg · ln (n) + n · (MSEo,global)

with respect to
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Fig. 5 Artifacts resulting from change in set of coefficients.

MSEo,global(f, X) = 1∑
x∈X

‖x‖ ·
∑

x∈X

‖x‖−o(f)∑

i=1
(xi − y(i + o(f)))2.

2.5 Improvements

The problems arising from drastically changing user behavior were already
discussed before and led to the offset being incorporated into the objective
function. Another approach here could be an adaptive filter, that changes
its passband frequency according to the history of latest events to lower the
overall error even further. The problem arising from this approach occurs
when using a high resolution for the time scale. Ultimately, almost all bins
will be empty with only a few bins containing a single event. If a filter were
to adapt to only a short history (e.g. five time bins) it would result in a
constant filter response, namely a constant 0 signal, which reduces the MSE
to almost 0.

But even using a lower resolution on the time scale produces artifacts
arising from the fact, that changes in the passband filter may change single
coefficients by orders of magnitude, leading to a totally different interpreta-
tion of the stored historical values in y. The resulting artifacts are shown in
Fig. 5. Here the best fitting frequency for the first few weeks was calculated
and then recalculated based on the whole previous signal every time the error
value exceeded a given threshold (compared to the previous error). The fol-
lowing filter responses were calculated based on the new coefficients and the
old signal, thus imitating a system, where new events are fed into the graph
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and only previous information can be accessed. The red-circled points show
some extreme cases where the change of coefficients led an abrupt change in
the filter response without any evidence in the original data that supports
these changes. Especially in the 120th week the filter response drops to nearly
zero although there is a drastic increase in activity in the original signal. Be-
tween week 50 and week 70 the filter response is almost constantly zero due
to the poor parameters chosen at week 40.

A system that continuously changes the frequency on a low-to-medium
time resolution, i.e. larger bins, in only small steps, thus gradually adapting
the frequency, may lead to better results here.

2.6 Summary

Applying a Butterworth filter can be used to describe event frequencies in
event-based graphs as continuous signal as opposed to the inherent discrete
nature of the signal. The resulting curve is continuous, smooth and without
overfitting it gives a generally good approximation of the original signal. The
filter itself can be described only by its coefficients and a few historical entries
for each edge based on the grade of the filter, leading to an overall efficient
memory usage. Still this approach leaves enough space for adjustments, e.g.
by weighting the extrema or the MSE differently in the objective functions
and thus leading to curves being smoother or closer to the discrete signal.
When changing the grade of the filter an even better approximation of the
original curve is possible, decreasing the overall error at the cost of memory
efficiency.

3 Analysis of Functional Connectivity Networks

In the last decade, a new trend in neuroscience emerged which focuses on
the analysis of complex brain networks (see e.g. [31, 28]). These networks
are commonly obtained from neuroimaging data coming from, e.g. electroen-
cephalography (EEG), electrocorticography (ECoG), magnetoencephalogra-
phy (MEG), functional magnetic resonance imaging (fMRI). They measure
some kind of brain activity of a certain region (e.g. on the skull, on the brain
meninges, inside of the brain). We will call the brain regions that are to be
measured variables.

Whenever two brain regions are co-active in some sense, we say that these
regions are connected with each other. These connections induce a complex
brain network that serves as some high-level representation of the underlying
neural connectivity patterns. Certainly, it seems natural to analyze the func-
tional brain connectivity using graph-based approaches. However, there are
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many challenging research problems that have been and will be tackled when
converting neuroimages to networks [4, 32]. Two fundamental questions which
we are not going to address here relate to the definitions of both vertices and
edges in the brain network.

In this paper the choice of vertices and edges is answered explicitly by
the application we consider. Vertices are EEG channel positions on the skull.
Edges correspond to the pairwise signal similarity between verticies. To be
precise, we deal with the analysis of dynamic brain networks induced by
patients’ EEG. These patients have some special kind of visual field deficit,
i.e. optic nerve damages [37]. We want to find network features that correlate
with certain clinically relevant variables. Since we deal with (partly) blind
subjects, we assume that their impairment has a major effect on the whole
functional connectivity of each subject. Furthermore we hypothesize that
there might be a correspondence between the degree of the visual loss and
certain network metrics.

It has been shown already that brain damages include significant and lon-
glasting neurological deficits [28]. So, a structural network disorder causes a
functional network damage that might be observable by neuroimaging meth-
ods. The first study related to this was performed by the group of Cornelius
Stam in 2007 [29]. This group analyzed the differences in EEG data between
15 patients with Alzheimer’s disease (AD) and 13 control subjects. Func-
tional connectivity was computed using synchronization likelihood (SL) [30].
The obtained brain networks have been measured by small-world network
criteria [34]. Correlating these measures with clinical variables, they could
show that AD might be characterized by a loss of small-world network char-
acteristics. Based on these findings, we want to apply this idea to patients
suffering from vision loss.

3.1 Functional Connectivity

As we already mentioned, it is necessary to define and measure functional
connectivity between brain regions in order to obtain a complex brain net-
work from neuroimaging data. Note that estimating functional connectivity
does not necessarily mean finding the causal connections of the human brain.
Functional connectivity can thus be only interpreted as a statistical relation-
ship between brain regions. There might not be any causal coherence [23].
Nevertheless, a huge variety of different functional connectivity methods can
been found in the literature. Here, we only want to mention a couple of them
which are either related to or used in our work. For a deeper overview, see
for instance [35].

A very common approach for EEG data is to use multivariate autoregres-
sive (MVAR) models, e.g. directed transfer function (DTF) [12], Granger
causality [8, 26]. MVAR models have been exhaustively used in the men-
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tioned studies to find the signal frequencies of two brain regions that linearly
correlate with each other. Since MVAR models measure the similarities of
time series linearly, non-linear relations cannot be detected but might still be
present in brain activity [30]. MVAR models are not well-suited to cope with
spontaneous brain activity since they assume that the underlying process is
stationary at any point in time[21, 22].

Therefore different non-linear methods have been proposed to measure the
synchronization of two time series [35]. We just mention the synchronization
likelihood (SL) [30, 20]. Consider a multivariate time series such as a multi-
channel EEG recording of length N with n channels (the variables). We say
that the measurement xi,k has been observed at timestamp i in channel k.
First, a time-delay embedding is computed by

Xi,k =
(
xi,k, xi+L,k, xi+2·L,k, . . . , xi+(m−1)·L,k

)

where L is the lag and m the dimension of the embedding. These state vectors
Xi,k shall capture the relevant patterns of the signal. If we now consider only
two channels A, B, then we can define a probability that Xi,k are closer to
each other than ε

P ε
i,k = 1

2(W2 − W1)

N∑

j

W1<|i−j|<W2

θ(ε − d(Xi,k, Xj,k))

where d is typically the Euclidean distance. For each k and i the so-called crit-
ical distance εi,k can be computed such that P

εi,k

i,k = pref whereas pref � 1 is
some user-defined threshold. Then for each pair of points in time (i, j) within
W1 < |i−j| < W2, the number of channels Hi,j for which d(Xi,k, Xj,k) < εi,k

is computed by

Hi,j = θ(εi,A − d(Xi,A, Xj,A)) + θ(εi,B − d(Xi,B , Xj,B))

where θ is the Heaviside step function, θ(x) = 0 if x ≤ 0 and θ(x) = 1 for
x > 0. The synchronization likelihood is then given by

SLi = 1
2pref(W2 − W 1)

N∑

j

W1<|i−j|<W2

(Hi,j − 1) (1)

Note the large set of free SL parameters, i.e. lag L, dimension m of the embed-
ding, Theiler correction window W1, window length W2, reference probability
pref with 0.01 ≤ pref � 1. Using prior information about the frequency range
and temporal resolution of the signal [20], these 5 parameters can be reduced
to pref only. When low-pass and/or band-pass filtering EEG, this information
is given before computing SL.
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Fig. 6 Two visualizations of averaged functional EEG connectivity from one subject

3.2 Brain Graphs

A brain graph is created when computing functional connectivity, e.g. using
SL, for each pair of variables at a given point in time. Such a network simply
serves as graphical representation of pairwise statistical dependencies among
all variables. For simplicity we demand that brain graphs are simple, i.e. they
do not have any loops or multiple edges. Furthermore, since dealing with SL,
we know that SL brain graphs must be symmetric.

Fig. 6 shows such a brain graph. Here, the averaged functional EEG con-
nectivity from one subject has been computed by pairwise evaluation of SL.
On the left hand side, only the lower half of the adjacency matrix is shown
which is due to SL’s symmetry. This matrix has been thresholded to contruct
the graph on the right hand side. The threshold of 0.15 has been chosen care-
fully to diminish very weak connections while still preserving many of them.
The size of each vertex corresponds to its weighted degree δ. With regard to
reproducibility, the brain graphs can look completely different from patient
to patient. This unfortunate fact is due to both corrupted EEG that has been
drastically filtered and patients’ differences in resting-state EEG.

3.2.1 The Meaning of Edges

An edge represents some kind of statistical dependency between two brain
regions, i.e. the functional connectivity as explained in Sect. 3.1. The edge
weight corresponds to the strength of the respective functional connectiv-
ity. Most similarity measures are normed to [0, 1] or [−1, 1] which enables
a straightforward interpretation of the value of an edge weight. Commonly,
researchers do not use weighted edges for graph analysis. Instead a (most of-
ten arbitrarily) chosen threshold is used to binarize the brain graph. Despite
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the loss of information, some researchers argue that one can show different
effects with a binary graph [25].

3.3 Experiments

In our experiments we used EEG data from 24 visually impaired subjects
suffering from optic nerve damages [37]. In order to be able to relate EEG
graph measures to clinical variables, so-called visual field charts were obtained
from every patient. They indicate the location and size of the optic nerve
damage. An expert defined 6 clinical measures based on the visual field charts.

To preprocess the EEG data we applied the following steps in EEGLAB [7]:

• manually removal of noisy time frames at beginning/end of each recording,
• removal of uncommon EEG channels across all subjects (28 were used),
• high-pass filtering with cutoff frequency at 1 Hz to remove slow movements,
• notch filtering 50 Hz and its harmonics up to 250 Hz to cope with European

power line frequency,
• re-referencing by the average electrode,
• down-sampling to 250 Hz to reduce the costs of SL computation,
• linear trend removal,
• removal of biological artifacts using independent component analysis [18].

These artifacts that stem from electromyographic (EMG) or electrocar-
diograph (EKG) signal appear as noise in the recorded EEG signal in all
variations. For EMG/ECG removal, ICA was applied to very carefully re-
move noisy components.

We used filters to obtain the conventional separation of frequency bands,
since they are typically associated with different brain states [15, 9]. These
frequency bands are δ: f ∈ (1, 4] Hz, θ: f ∈ (4, 8) Hz, α: f ∈ [8, 13] Hz,
β: f ∈ (13, 30] Hz, γ: f ∈ (30, 100] Hz. Furthermore we applied a broadband
lowpass filter, i.e. f ∈ (1, 30]. Functional connectivity was established by
SL [30]. The problem of choosing the SL parameters W1, W2, L, m, nrec, pref
has been reduced [20] to two parameters, i.e. nrec = 10, pref = 0.01. Every
10th point in time (corresponding to a frequency of 25 Hz), a new SL matrix
was computed. We averaged the resulting series of graphs.

After obtaining the mean graphs for each subject and frequency band, we
computed the following graph measures: average shell index, average path
length, assortativity, average Kleinberg’s authority, number of motifs of size
4, independence number, average eigenvector centralities, number of edges,
density, average closeness centrality, local efficiency, number of motifs of size
3, clique number, average geodesic length in components, vertex connectiv-
ity, global efficiency, average betweenness centrality, average clustering coeffi-
cient, edge connectivity, diameter or longest geodesic, average eccentricity [5].
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Fig. 7 Linear regression coefficients of weighted networks in the δ band related to the
proportion of absolutely defected sensors using CMF.

3.4 Correlation Analysis

In order to test the strength of the above mentioned measures applied to the
computed graphs, we correlated each clinical variable by computing the linear
correlation coefficient. Two-sided p-values have been computed for hypothesis
tests. Here, the null hypothesis is that the slope of the linear regression line is
zero. This correlation analysis was applied to both the collection of weighted
graphs and for the set of binary graphs by thresholding edge weights. Due to
mostly weak edge weights close to zero, thresholds of 0.1 and 0.2 were applied.
In the following we assume that a correlation is significant if its coefficient
is equal to or higher than 0.6. Furthermore we marked correlations with an
asterisk whenever the probability to reject the null hypothesis less than 5
percent.

For the weighted networks we have found only very few significant corre-
lations. Some of them are situated in the δ-band when looking at the propor-
tion of absolutely defected sensors using the Cortical Magnification Factor
(CMF) [6] (see Fig. 7). Especially the density-based measures (i.e. number of
motifs of size 4, number of edges, density, local efficiency, number of motifs
of size 3, global efficiency, edge connectivity) correlate negatively with this
clinical variable. This meets the intuition as a bigger visual deficit should
have a negative effect on functional connectivity [28, 29].

All other significant correlations from the weighted networks have been
found in the γ band for the reaction time. This is shown in Fig. 8. The basic
hypothesis here is that a higher reaction time corresponds to a less efficient
network due to higher path lengths.

For the simple graphs (i.e. binarized and thus without weights), we could
only find some rather weak correlations for both thresholds in the γ band.
Fig. 9 states that the higher the proportion of relatively defected sectors,
the smaller the clustering coefficient. So, these networks show more random
connectivity than the ones from subjects with smaller proportion of relatively
defected sectors.
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Fig. 8 Linear regression coefficients of weighted networks in the γ band showing less
efficiency with increasing reaction time.

Fig. 9 Linear regression coefficients of simple networks in the γ band showing smaller
clustering coefficients with a higher proportion of relatively defected sectors.

3.5 Summary

Until now, it is still unknown whether EEG features can properly describe
damages of the human visual system. The goal of this study was to find both
suitable network measures and useful clinical features that can be used for
further patients analyses.

We therefore studied dynamic functional networks from patients with vi-
sual field defects. Based on typical frequency bands, the networks have been
created by applying synchronization likelihood to several EEG time series
from the subjects. We averaged the resulting series of graphs. Every aver-
aged graph was described by several graph measures. The measures have
finally been correlated to certain clinical variables describing each patient. In
only some frequency bands we have found few significant correlations for a
couple of variables and network measures. The correlations show that most
prominently the γ band seems to be a fair marker for the effects of optic
nerve damages. Also, the proportion of relatively defected sectors turned out
to be the most informative clinical variable in this analysis.
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4 Conclusions

We investigated two complex network problems demanding hybrid analysis
methods from both intelligent data analysis and network theory. We dealt
with the analysis of dynamic graphs from social science and neuroscience.
Edge weights have been used in both types of networks to answer distinct
questions. Firstly, we proposed a method to efficiently represent the strength
of a relation between two entities based on events involving both entities.
Using the Butterworth filter we were able to establish a continuous series of
edge weights and thus graphs. Secondly, we analyzed EEG data of patients
suffering from optic nerve damage. We showed how functional brain networks
can be obtained and measured. The new measures have been correlated with
clinical variables to find features describing the vision loss based on EEG.
These features will be used in future work to guide the way to a clinical
decision support system.
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Fuzzy Hyperinference-Based
Pattern Recognition

Mario Rosario Guarracino1, Raimundas Jasinevicius2,
Radvile Krusinskiene2, and Vytautas Petrauskas2

Abstract The paper presents a new approach to the problem of pattern
recognition. First of all, here is emphasized that the problem itself is fuzzy
enough. Later three following novelties of the approach are disclosed: 1) the
rule-based fuzzy inference, concerning the measure of patterns’ similarity, is
enriched by an idea of hyperinference; 2) a description of the main pattern
recognition process is based on Takagi-Sugeno (T-S) reasoning procedure and
3) rule weights in T-S procedure are defined, solving special linear or piece-
wise linear programming problem (LPP or PWLPP), constructed according
to the certain fuzzy experts’ information. The proposed approach was used
successfully for recognition of healthy people and those who suffer from cer-
tain illness (for example, an atherosclerosis). The classification was performed
according to person’s clinical posturograms (stabilograms). At the end of this
paper experimental results are presented as well as acknowledgement to all
anonymous participants of the experiments.

1 Introduction

All theoretical and practical activity of human individuals and their commu-
nities is based on data analysis, information mining, defining and extraction
of certain features, which describe various characters, images, patterns, pro-
cesses and even laws, followed by their grouping, clustering and recognition.
And only the act of recognition serves as a base for certain decision making
and action. The pattern recognition problem is old enough, very well-known
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and perfectly described in scientific literature. The [1-3] may be named as the
highly recommended texts concerning this topic and including an extremely
good list of references. In general, a formulation of this problem itself implies
a pretty good amount of fuzziness. According to [2], pattern recognition is de-
fined as a search for structure in data, which is performed in three steps: data
acquisition, pattern feature extraction from data by dimensionality reduction
and mapping of extracted features to pattern classes. The [4] represents the
newest approach and technique to the same problem based on the regular-
ization of a generalized eigenvalue classification. The mapping process can
be realized mainly, using two types of paradigms. The first one (a paradigm
of determinism) is based on an existence of a set of crisp and perfectly stan-
dardized instructions, describing each pattern. It means that a decision maker
(human being or machine) knows in advance presence (or absence) of which
features determines belonging of a set of features under consideration to a
certain pattern. The second paradigm (a paradigm of uncertainty) is based
on a fact that a decision maker knows in advance for sure only several sets of
features (examples) belonging to this or that pattern. So say, these sets are
labeled by patterns’ names, and it is supposed that some fuzzy descriptions of
each pattern (generalized pattern) can be constructed using different teach-
ing or training procedures. This paper is constructed around the paradigm
of uncertainty using the fuzzy inference approach. The approach is enriched
by mechanism of hyperinference [5, 6], which is included into widely spread
Takagi-Sugeno (T-S) reasoning procedure [2]. The main teaching or train-
ing process for parameters and weights determination in the T-S scheme is
substituted by solving an adequate mathematical programming problem for-
mulated according to the fuzzily described expert requirements [7, 8]. The
paper consists of four main sections. Section 1 presents an idea of fuzzy rule-
based hyperinference in pattern recognition. Section 2 - describes the main
pattern recognition process based on Takagi-Sugeno (T-S) reasoning proce-
dure. Section 3 is dedicated to special linear or piece-wise linear programming
problems (LPP or PWLPP), constructed according to certain fuzzy experts’
information to define all necessary rule weights in T-S procedure. Section
4 contains results of real experiments on the use of the proposed approach
for recognition of healthy people and those who suffer from certain illness
(in our case - an atherosclerosis). The paper ends with special thanks and
acknowledges to all anonymous participants of those experiments as well as
to all supporters of this research.

2 Fuzzy Rule-based Hyperinference
for Pattern Recognition

Ordinary fuzzy systems inference is based: 1) on a deriving verbal (linguistic)
or parametric consequents by preprocessing lists of fuzzy rules, containing
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Fig. 1 A block diagram of an ordinary fuzzy system

verbal or parametric antecedents connected by certain fuzzy logic operations
and 2) on a defuzzification process using some compositional rule or formula
[2, 7]. Types of rules can be presented as follows:

IF x is A AND y is B THEN z is C (for Mamdani fuzzy models) (1)

IF x is A AND y is B THEN z = F (x, y) (for Takagi-Sugeno fuzzy models)

Defuzzification procedures for the two cases mentioned above can be de-
scribed as a reasoning on the base of a set of consequents C using the CoG
(center of gravity), or MoM (mean of maximum) methods for Mamdani type
systems [2, 7], and MF (fuzzy mean) method as a reasoning by evaluation of
all results z included and processed according to the certain formula Φ(z) for
Takagi-Sugeno systems. A block-diagram of an ordinary fuzzy system corre-
sponding to both cases is presented in Fig. 1. As it is emphasized in different
references, and especially in [5] and [6], all ordinary fuzzy systems process
so-called positive rules which for cases expressed by (1) have general form:

IF <condition> THEN <action or rating> RECOMMENDED (2)

But the real life often requires taking into account various factors and condi-
tions which have a meaning of warning, precaution and even prohibition. In
such a case fuzzy system must process so-called negative rules :

IF <condition> THEN <action or rating> NOT RECOMMENDED (3)

(WARNED AGAINST/ PROHIBITED)

Almost each more complex and sophisticated real case under investigation
is described by experts and decision makers using some set or mixture of
positive and negative rules. The drawback of the ordinary fuzzy systems is
their impossibility to cope with the mentioned mix of rules, which can be
circumvent by fuzzy hyperinference process [5]. The hyperinference performs
an evaluation of the influence of fuzzy consequents z derived from positive as
well as negative rules. It requires different and more sophisticated fuzzy logic
formulae and new and two-way fuzzy system structure (Fig. 2) described and
delivered in [5].

As a matter of fact, a pattern recognition task, as presented in the in-
troduction, belongs to the class of fuzzily described problems and looking
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Fig. 2 A block diagram of two-way fuzzy hyperinference system

for a defuzzified answer. According to the paradigm of uncertainty, a deci-
sion maker knows in advance several sets of features (examples) belonging to
one or another pattern. And a task is to use those feature sets, and to use
some sets of fuzzy rules for Takagi-Sugeno reasoning procedure to construct
a generalized pattern for each possible class. It is worth of mentioning that
in [6] an idea of reasoning by using something similar to two types of rules
(positive and negative ones) for pattern recognition was firstly proposed. Ac-
tually, the construction of generalized patterns was based on extraction and
emphasizing of two types of features: those which are most common for the
given pattern (“positive similarities” inside the class), and those which dis-
tinguish the pattern under investigation from all possible competing classes
(dissimilarities between certain pattern and all other classes, or “negative
similarities”). Such an approach requires some extension of the fuzzy logic
inference procedure, which is called hyperinference. The next section of this
paper is dedicated to elaborate the application of fuzzy hyperinference-based
Takagi-Sugeno reasoning procedure for pattern recognition.

3 Pattern Recognition based on Takagi-Sugeno (T-S)
Reasoning Procedure

If a pattern of a certain class is considered as a physical or abstract struc-
ture of class’ objects, described by a set of distinctive features [1, 2], then
a simplified pattern recognition problem can be formulated in the following
way. Let us imagine our world under investigation as consisting of S classes
of objects, where each class p has its own pattern. So, p = 1, 2, . . . , r, . . . , S.
Each object is described by N features numbered as n = 1, 2, . . . , j, . . . , N .
In a case when certain feature extraction, measurement and normalization
procedures are performed [6], the i-th feature of an object, belonging to the
p-th class (corresponding to the p-th pattern) can be represented by a real
number αpi which expresses a degree of intensity of this particular feature.
It is convenient to use a vector-row notation to describe the whole object
αp = (αp1, . . . , αp2, . . . , αpi, . . . , αpN ). If we have several objects (their num-
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bers are l = 1, 2, · · · , k, · · · , L) and know in advance that they belong to class
p (they are originated by the p-th pattern), than we can say that the class p is
represented by a set of vectors αl

p (l = 1, 2, · · · , k, · · · , L). The main task of
pattern recognition procedure consists in developing several Takagi-Sugeno
type rules and defuzzification instruments. This must be done: a) using whole
available information about the patterns, which is hidden in the set of αl

p, ∀p;
and b) using whole available experts’ experience, which is presented in verbal
form and was collected working with objects’ and patterns’ features. A com-
plex of such actions enables to construct a pattern recognition instrument
capable to assign any unknown but properly described object x to one of the
possible patterns (or classes): 1, 2, . . . , r, . . . , S. The accuracy of this assign-
ment depends on the instrument’s decision making efficiency to process this
fuzzy information. Usually better reasoning results are achieved when features
of objects are not only normalized but centred as well [8, 9]. It means that the

whole object is represented as a vector αol

p = (αol

p1, . . . , α
ol

p2, . . . , α
ol

pi, . . . , α
ol

pN )
with components calculated according to the following formula:

αol

pi = αl
pi −

1

N

N∑
j=1

αl
pj (4)

In such a situation, the Takagi-Sugeno (T-S) reasoning procedure combined
with the hyperinference process can be built using concepts represented by
(1)-(3). It means that a set of “positive rules” for (T-S) pattern recognition
procedure consists of a list of statements such as:

IF <degree of certainty, that feature i with intensity xoi belongs to the pat-
tern p, is Kpi > THEN < z+i = Kpix

o
i > RECOMMENDED

The latter can be written as:

IF < μ+(xoi ) = Kpi > THEN z+i = Kpix
o
i ∀p, i (5)

Similarly, a set of “negative rules” for (T-S) a pattern recognition proce-
dure consists of a list of statements:

IF < degree of certainty, that feature i with intensity xoi belongs to any
other pattern except p, is Kpi > THEN < z−i = −Kpix

o
i > NOT RECOM-

MENDED

Equivalently:

IF < μ−(xoi ) = Kpi > THEN z−i = −Kpix
o
i ∀p, i (6)

According to the concept of hyperinference [5]:
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Fig. 3 Decision making act for T-S reasoning procedure

μ(xoi ) = max{μ+(xoi ), (1− μ−(xoi ))} (7)

and
zi = max(z+i , z

−
i ) = Kpix

o
i , ∀p, i (8)

When the whole unknown object xo is under consideration, its degree of
belonging to the pattern p can be evaluated by

Φp(x
o) =

N∑
i=1

Kpi ∀p (9)

This defuzzification method for (T-S) procedure is called the fuzzy mean
(FM) and can be expressed in the vector notation form as

Φp(x
o) = xoKT

p ∀p (10)

Here T is the transposition to row vector of:

Kp = (Kp1,Kp2, . . . ,Kpi, . . . ,KpN). (11)

A block diagram, representing a final decision making act in the case of fuzzy
pattern recognition based on Takagi-Sugeno (T-S) reasoning procedure, is
shown in Fig. 3.

In practice, the possibility to verbally formulate understandable lists of
rules for sets presented by (5) and (6) often does not exist. Usually neural-
type training procedures based on gradient methods are used [1, 7]. In the
next section of this paper a special linear or piece-wise linear programming
problem (LPP or PWLPP) is proposed to find optimal values of those degrees
of certainties Kpi for (5)-(8) and ∀p, i. LPP and PWLPP problems are for-
mulated and constructed according to the certain fuzzy experts’ information
enabling us to define all necessary rule weights in the T-S pattern recognition
procedure.
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4 Linear and Piece-wise Linear Programming Problems
for T-S Procedure Rule Weights

To avoid a comparatively unpredictable and very clumsy neural-type training
procedures for determination of Kpi values ∀p, i in the Takagi-Sugeno (T-
S) reasoning procedure for pattern recognition, we formulate an objective
function maximization problem subjected to a set of constrains, constructed
according to a certain fuzzy experts’ information. The structure of (9) and
(10) implies a very simple (linear) form of a function to be maximized as well
as linearity of constraints.

According to the pattern recognition problem’s description described in
the sections 2 and 3 of this paper, whole available information about the

patterns is hidden in the set of αol

p , ∀p, where p = 1, 2, . . . , r, . . . , S and
l = 1, 2, . . . , k, . . . , L. In spite of its fuzziness, a wise enough formulation of a
problem for the determination of degrees of certainties Kpi, ∀i in the Takagi-
Sugeno (T-S) reasoning for recognition of a pattern for objects belonging to
the pattern p can be constructed as follows. Let us select at random one

representative of the class p , for example αok

p (and call it “central” only
for a simplicity of understanding), and require to find such Kpi, ∀i that the
measure of degree of a certainty Φp(α

ok

p ) of belonging of the selected object
k to the pattern p would be maximum:

Φp(α
ok

p ) =

N∑
i=1

αok

piKpi → max (12)

and it must be reached under following constrains:

N∑
i=1

αol

piKpi ≥ γ
N∑
i=1

αok

piKpi ∀l. (13)

and
N∑
i=1

αol

riKpi ≤ κ

N∑
i=1

αok

piKpi ∀r �= p, ∀l. (14)

Optimal values of γ and κ are recommended from the interval [0 − 1], and
γ > κ [8]. Concrete values of those coefficients depend on the experts’ knowl-
edge or guess concerning the patterns (or classes) structure (internal connec-
tions and dispersion of patterns’ features). Physical meaning of the (13) is
tightly connected with the understanding of “positive similarities” inside the
class, and extracting of those similarities using the set of “positive rules”, as
it was mentioned in the section 2. Physical meaning of (14) corresponds to
the concept of dissimilarities between certain pattern (in our case pattern of
a class p) and all other classes r �= p (or “negative similarities”), and to the
process of extracting of those dissimilarities by the set of “negative rules”.
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Coefficients γ and κ permit us to control the fuzzy level of those similari-
ties and dissimilarities, and the solution of (12)-(14) implements the concept
of fuzzy hyperinference. By the way, even fast investigation of the problem
described above shows that the problem belongs to the class of linear pro-
gramming problem (LPP) where inequalities (13) and (14) need additional
constrains:

0 ≤ Kp ≤ A, (15)

where A is any practically convenient real number. Naturally, a solution of
the LPP (12)-(15) for the pattern (class) p consists of the obtained value for

maxΦp(α
k
p) = Φmax and Kp = (Kp1,Kp2, . . . ,Kpi, . . . ,KpN ). (16)

The procedure must be repeated for all patterns p. In this way, the set of S
solutions will be obtained, and the recognition procedure must be performed
according to Fig. 3, taking into account the need of fulfilling proportionality
condition:

c1Φ1 max = · · · = cpΦp max = · · · = cSΦS max = B; (17)

where B and cp are real numbers. This condition plays a role in the normaliza-
tion procedure, and it means that the fuzzy (verbal) term “VERY SIMILAR”
must be evaluated by the same number B, whichever pattern we are taking
into consideration. Sometimes experts and decision makers have in advance
an additional information concerning the internal structure of classes under
consideration (for example, they guess an existence of certain subclasses in
each pattern or so on). Let us assume that the pattern p consists of wp
subclasses numbered as w = w1, w2, . . . , wp. Then, the classical linear pro-
gramming problem (LPP) for determination of weights in the Takagi-Sugeno
(T-S) reasoning procedure for pattern recognition can be substituted by a
piece-wise linear programming problem (PWLPP) similar to the (12)-(15)
[8]. The requirement is to maximize:

Φp(α
ok

p ) = max
w

(
N∑
i=1

αok

piK
w
pi

)
→ max, (18)

where w = w1, w2, . . . , wp, under the constrains:

max
w

(
N∑
i=1

αol

piK
w
pi

)
≥ γmax

w

(
N∑
i=1

αok

piK
w
pi

)
∀l (19)

max
w

(
N∑
i=1

αol

riK
w
pi

)
≤ κmax

w

(
N∑
i=1

αok

piK
w
pi

)
∀r �= p, ∀l (20)

0 ≤ Kw
p ≤ A ∀w (21)
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Fig. 4 Recommended certainty that object belongs to class p

The procedure must be repeated for all patterns p, and the condition
(17) must be fulfilled as well. The PWLPP approach enables us to use more
sophisticated Takagi-Sugeno (T-S) hyperinferrence reasoning procedure for
pattern recognition problems solution based on MoM (mean of maximum)
defuzzification method. Worth of mentioning the fact that in some cases
the general PWLPP can be divided into several simple LPP according to
the information about the patterns available in advance. It is clear that a
maximal number of simple LPPs is v =

∑S
p=1 wp. All intermediate cases

between PWLPP and LPP correspond to different fuzzy logic operations
involved in Takagi-Sugeno (T-S) hyperinference procedures. Some of them
are demonstrated in the next section of this paper. As it was delivered earlier,
the Takagi-Sugeno (T-S) hyperinference reasoning procedure supplies us with
the degrees of certainty, that the description of an unknown object belongs to
the pattern p for ∀p, as depicted in Fig. 3. If we want to use this information
as a recommendation for decision maker, the value

up =
Φp(x

o)

maxr Φr(xo)

must be determined. In practice, an interval for up is [0 − 1], with some
zone of accuracy as it is shown in Fig. 4, where the degree of truth μp(x

o) is
presented.

In case when up is in this zone, special additional investigations of the ob-
ject’s properties are strongly recommended before the final decision is taken.
In Fig. 5 an extended block diagram is shown where both stages for pattern
recognition process are represented. The first stage of this process corresponds
to the (T-S) hyperinference reasoning procedure, and the second one - to the
procedure of decision making recommendations.
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Fig. 5 (T-S) hyperinference and decision making recommendations procedure

5 Application of Hyperinference-based Pattern
Recognition Procedures for Classification of Human
Posture

The proposed approach was successfully used for recognition of strong
(healthy) people and those who suffer from certain illness (for example, an
arthrosclerosis). The classification was performed according to person’s clin-
ical posturograms (stabilograms). In this case, a data acquisition, pattern
feature extraction from data and a dimensionality reduction were performed
as described in the following.

5.1 Visualization of Human Posture Stability

One of the most popular ways to visualize standing stability is to register
movements of centre of pressure (COP) of a human body on the base of the
support [10, 11]. The resulting digitalized trajectory of the COP is referred to
as a stabilogram. In general, the stabilogram is a collective outcome or result
of activities of all systems that are responsible for maintaining the body in
upright position. The typical stabilogram of a healthy subject on the base of
support is presented in Fig. 6. All stabilograms were recorded during physical
experiments.
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Fig. 6 Trajectory of COP movement on a base of support

Fig. 7 Set up for clinical experiment

5.2 Protocol of Physical Experiments

Fifteen healthy (HL) and fifteen suffering from multiple sclerosis disability
(MSD) subjects (all female) age 32±2 years (average standard deviation)
took part in physical experiments. Subjects who suffer from multiple sclerosis
were chosen to take part in experiments since this disease affects central
neural system (CNS) of an individual and causes difficulties to maintain the
stable bipedal posture [12]. The diagnosis of each participant was known in
advance before the real experiments took place. The stabilogramwas recorded
for each subject. Participants were asked to stand on a base of support in
a bipedal comfortable posture. The duration of the experiments was 60 sec.
with a sampling rate of 100 Hz. Stabilograms were recorded using Kistler
9287B force platform (Fig. 7). All signals were centralized in space and in
magnitude, i.e. the average position of COP signal has coordinates (0, 0). The
planar (2D) histograms of stabilograms were calculated. Typical histograms
of HL andMSD subject consisting of 25 bins (5 in Medio-Lateral multiplied by
5 in Anterio-Posteriori direction) are presented in Fig. 8. Bins are numbered
as shown in the Fig. 8. The darker box represents more time of COP signal
spent in the bin, i.e. the higher intensity of a feature.
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Fig. 8 Histogram of stabilogram: left - HL subject No. 15; right - MSD subject No. 22

5.3 Hyperinference-based Pattern Recognition Problem
Formulation for Classification of Histograms of
Human Posture

According to the hyperinference-based pattern recognition problem formula-
tion presented in section 2, two classes of objects α - histograms of HL indi-
viduals and histograms of MSD individuals - are investigated. It means that
S = 2. Each object α to be classified has N = 25 features - histogram bins.
Order of their placing into object’s description vector α is shown in Fig. 8
(right histogram). Every object is centered according to (4). For those ex-
periments “positive similarity” of objects was evaluated by constant γ = 0.8,
and a degree of “negative similarity” was evaluated by constant κ = 0.3. The
difference (γ−κ) determines experts’ fuzzy assumption concerning a possible
structure of classes under investigation and was selected on the base of some
experience [8].

All calculations of degrees of certainties Kpi ∀p, i using experimental data
were conducted with Matlab software, and LPPs (or PWLPP) were solved
using its linprog function. Three experimental cases are delivered here.

A. All histograms were assigned to the HL or MSD class prior to experiment
according to protocol of medical diagnosis and results of physical experi-
ment. The aim of those calculations and experiment is to show that it is
possible to identify hyperplane as a hypersurface distinguishing HL and
MSD objects.

B. Several representatives were selected arbitrary to represent HL and MSD
classes. Calculations of degrees of certainties Kpi for were conducted using
LPP method.

C. The same as experiment B., but calculations were performed by means of
PWLPP solving method.

In a numerical experiments’ performance the procedure “arbitrary se-
lected” was implemented by means of Matlab software function rand.
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Table 1 Degrees of certainties Kpi for HL and MSD classes.

KHL KMSD

23.38 0.00 0.00 6.87 25.00 0.00 25.00 25.00 25.00 1.05
25.00 0.00 17.12 13.00 18.55 0.00 25.00 11.34 14.70 0.00
0.00 21.05 10.59 19.66 1.90 18.07 9.19 17.94 9.38 18.11
0.00 21.70 12.01 25.00 0.00 25.00 5.32 12.91 5.35 25.00
25.00 25.00 25.00 25.00 25.00 8.84 5.72 0.00 0.00 0.00

5.4 Results of A, B, C Experiments

Identification of a distinguishing hyperplane. As it was mentioned
before in this experiment all histograms were assigned to HL or MSD class
respectively. The aim of this experiment is to show that it is possible to
classify these objects to two separate classes using (T-S) reasoning procedure
when KHL and KMSD are determined as a LPP solution. As the “central”
object representing HL class was selected object No. 14, and a “central”
object No. 30 was selected for the MSD class. As a result of LPP, constructed
according (12)-(15) for the first experiment (A.), the and vectors for HL and
MSD classes were calculated, and they are presented in Table 1. For the
(12)-(15) LPP an upper bound A = 25 (15) was selected only for practical
convenience as a certain scale factor, and constants γ = 0.8 and κ = 0.3 were
selected as fuzzy experts’ recommendations enabling to evaluate positive and
negative similarities between competing classes.

Results shown in Table 2 confirm that LPP was successfully solved and
all histograms were correctly classified according to the decision making act
for T-S reasoning procedure presented in Fig. 3. Results of experiment A
confirmed the hypothesis, that subjects suffering form MSD have their own
posture pattern and different than subjects from the HL class, and that this
pattern may be: a) identified by means of (T-S) fuzzy inference and decision
making procedure, and b) used for classification of posture patterns.

Arbitrary selected representatives for the LPP. As the “central” ob-
ject representing HL class was arbitrary selected object No. 14, and together
with other arbitrary selected objects (No. 3, 4, 7, 9 and 13) it constitutes
a set of representatives for HL class. Similarly the MSD class has its own
“central” object No. 30, and together with object No. 20 constitutes a set of
representatives for MSD class. All other objects were set as “from unknown
class and need to be classified”. Vectors of features’ significance KHL and
KMSD of HL and MSD classes obtained after solving of the LPP (12)-(15)
for this case are presented in Table 3. Table 4 shows the classification results.
As it may be noticed classification procedure did come to wrong outcome in
case of objects No. 2, 5, 6, 19, 21, 25 and 29.
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Table 2 Classification of histograms according to T-S reasoning, when the class of all
histograms was known in advance (experiment A.)

Similarity Function Φ ΦHL = 10087.43 ΦMSD = 8803.17 Decision results

Normalization coefficient ci 1 1.14 Decision rule

c1ΦHL c2ΦMSD max(c1ΦHL, c2ΦMSD)

Histograms:

HL class

1 8069.94 3026.23 HL
2 12096.70 3026.23 HL
3 8069.94 3026.23 HL
4 17592.51 -13124.55 HL
5 11540.22 3026.23 HL
6 8069.94 3026.23 HL
7 19043.45 -9515.65 HL
8 8069.94 3026.23 HL
9 8069.94 3026.23 HL
10 13628.49 -7193.49 HL
11 21215.48 -11388.51 HL
12 35124.71 -26205.48 HL

13 8069.94 3026.23 HL
14 10087.43 -3463.13 HL
15 17779.39 -10462.85 HL

MSD class

16 -12466.47 22391.81 MSD
17 -314.97 10602.41 MSD
18 3026.23 8069.94 MSD
19 -15149.95 24467.82 MSD
20 -2780.15 15780.06 MSD
21 3026.23 8069.94 MSD
22 1079.17 8069.94 MSD
23 -3892.17 19627.50 MSD
24 3026.23 9512.49 MSD
25 3026.23 8069.94 MSD
26 -9373.07 19614.88 MSD
27 -2244.26 11263.74 MSD
28 3026.23 8069.94 MSD
29 -2914.59 12705.14 MSD
30 2915.28 10087.43 MSD

Arbitrary selected representatives for the PWLPP. In this experi-
ment objects representing HL class was arbitrary divided in three subclasses
w = w1, w2, w3 and were represented respectively:

• Subclass HL1 was represented by objects No. 3 and 4 (object No. 4 was
chosen as a “central” object of a given subclass);

• Subclass HL2 was represented by objects No. 9 and 13 (object No. 13 was
chosen as a “central” object of a given subclass);

• Subclass HL3 was represented by objects No. 7 and 14 (object No. 14 was
chosen as a “central” object of a given subclass).
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Table 3 Degrees of certainties KHL and KHL for HL and MSD classes in case when HL
class is represented by objects No. 3, 4, 7, 9, 13, 14 and MSD class is represented by objects
No. 20, 30.

KHL KMSD

0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.74 0.00 25.00
0.00 17.73 0.00 13.56 0.00 25.00 25.00 25.00 25.00 25.00
0.00 0.00 17.56 7.84 0.00 0.00 25.00 12.99 25.00 0.00
0.00 25.00 25.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 25.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MSD class was represented by a “central” object No. 30 together with ob-
ject No. 20; they constituted a set of objects describing the MSD class. The
PWLPP (18)-(21) was formulated and solved. As a solution the features’ sig-
nificance vectors KHL for HL subclasses HL1, HL2, HL3 and KMSD for the
class MSD class are presented in Table 5.

During the decision making stage the rest of objects was considered as
“being from the unknown in advance class and needing to be classified.”
Table 6 shows the similarity functions and classification results received by
the means of (T-S) fuzzy inference and decision making procedure according
to the Fig. 5. It may be noticed that in this case the classification procedure
gave nine wrong answers.

6 Concluding Remarks

In the theoretical part of this paper, a new approach to the problem of fuzzy
pattern recognition was delivered. First of all the rule-based fuzzy inference,
concerning the measure of patterns’ similarity, was connected with the idea
of hyperinference. Secondly a description of the main pattern recognition
process was based on Takagi-Sugeno (T-S) reasoning procedure, enhanced by
specific decision making recommendations. Rules’ weights in (T-S) procedure
are defined, solving special linear or piece-wise linear programming problem
(LPP or PWLPP), constructed according to the certain fuzzy experts’ in-
formation delivered or guessed in advance. The practical significance of the
proposed approach was experimentally confirmed by using the proposed in-
strument for recognition and diagnostics of healthy people and those who
suffer from an atherosclerosis. The classification was performed according to
persons’ clinical investigations data and real posturograms. According to au-
thors knowledge such an approach was used for the first time in the clinical
practice, and it opens a new chapter for further research in this field.
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Table 4 Histograms’ classification according T-S reasoning, when HL class is represented
by objects No. 3, 4, 7, 9, 13, 14 and MSD class is represented by objects No. 20, 30.

Similarity Function Φ ΦHL = 55405.14 ΦMSD = 67496.77 Decision results

Normalization coefficient ci 1 0.82 Decision rule

c1ΦHL c2ΦMSD max(c1ΦHL, c2ΦMSD)

Histograms:

HL class

1 44323.69 16153.97 HL
2 15091.79 34814.82 MSD
3 44324.11 10938.26 HL
4 64094.18 3306.91 HL
5 -13217.47 54909.70 MSD
6 13170.49 54903.00 MSD
7 44324.11 16621.54 HL
8 34581.95 21986.19 HL
9 44324.11 7.68 HL
10 71746.21 -17248.80 HL
11 61086.85 -7648.34 HL
12 77497.88 -31443.36 HL
13 47943.41 16621.54 HL
14 55405.14 15.17 HL
15 62818.73 -9062.90 HL

MSD class

16 3982.39 61184.81 MSD
17 31842.19 33519.37 MSD
18 28285.70 42313.67 MSD
19 40802.43 27715.89 HL
20 16621.54 52156.22 MSD
21 41255.05 28846.41 HL
22 14097.35 42526.12 MSD
23 754.36 56923.29 MSD
24 21122.40 48521.64 MSD
25 29314.99 20582.00 HL
26 20960.50 42191.91 MSD
27 17689.01 24905.22 MSD
28 18298.49 33782.13 MSD
29 49431.68 11767.80 HL

30 11516.27 55405.14 MSD

Number of errors 7
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Table 5 Degrees of certainties Kpi vectors of subclasses for HL and MSD classes, when
HL class was arbitrary divided to three subclasses.

KHL KMSD

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 25.00 0.00 0.00 25.00 25.00 22.59 0.00
0.00 0.00 13.23 25.00 0.00 0.00 25.00 25.00 25.00 0.00
0.00 25.00 25.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 22.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

KHL KMSD

0.00 1.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 25.00 25.00 25.00 0.00
0.00 0.00 25.00 25.00 0.00 0.00 25.00 6.17 25.00 0.00
0.00 0.00 25.00 25.00 25.00 0.00 25.00 0.00 0.00 0.00
0.00 0.00 13.41 25.00 0.00 0.00 0.00 0.00 0.00 0.00

KHL KMSD

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 9.44 25.00 25.00 25.00 25.00
0.00 25.00 25.00 0.00 0.00 0.00 25.00 25.00 25.00 25.00
22.03 25.00 25.00 0.00 0.00 0.00 0.00 0.00 25.00 0.00

0.00 25.00 25.00 0.00 0.00 0.00 0.00 0.00 9.39 0.00
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Dynamic Data-Driven Fuzzy Modeling
of Software Reliability Growth

Olga Georgieva1

Abstract The paper deals with a new model description of software reli-
ability growth dynamics. The model is applicable to multi-stage reliability
growth that covers the complex defect detection rate and is based on Takagi-
Sugeno fuzzy inference engine. The identification procedure determines model
structure in real time based on evolving clustering algorithm. The clusters
are discovered according to Gustafson-Kessel distance metric that copes with
clusters of different shape and orientation. The developed model is validated
through a case-study data set.

1 Introduction

Continuous availability of designed functionalities is a crucial qualitative
characteristic of the software product. This quality is expressed by software
reliability. The complexity of the contemporary software systems often does
not guarantee full reliability at least for the reasonable time period of de-
velopment and testing. Usually, the product is shipped if an acceptable low
number of software failures could be discovered during the system operation.
The effective assessment of the failure number is provided by a software re-
liability growth model. The model is built based on defect detecting data
collected during the software testing process and enables to predict the num-
ber of defects remaining in the software. The goal is to reach an acceptably
low defect discovery rate, which will guarantee software suitable for delivery.

The standard solution of this task statistically interpolates defect detec-
tion data to a mathematical function. As the phenomenon presents expo-
nential character, different variations of the exponential function have been
intensively explored [14], [6]. In order to account certain uncertainties this
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approach supposes normal distribution of the model parameters’ values. How-
ever, statistics does not cover inexplicit information due to the subjectivity
of the human behavior, which has large impact on the processes of software
development, testing and system operation. We should take into account that
software failures are result of designers, developers and/or testers’ mistakes.

Seeking effective modeling techniques investigations have been directed to
approaches able to grasp the uncertainty of fuzzy type [5], [10], [15]. Re-
cently, fuzzy logic approach was explored as a powerful framework for soft-
ware reliability growth description [12]. In order to account for the existing
deterministic information Takagi-Sugeno (TS) fuzzy rule base scheme [3],
[13] was successfully applied. This modeling approach tries to decompose
the input-output data space into subspaces having vague boundaries and to
approximate the system behavior in every subspace by a linear model. The
proposed fuzzy model of software growth consists of a collection of linear sub-
models that represent the expected software faults as a function of historical
measured data [1], [8].

Improvement of the reliability growth model could be search in a solution
that accepts fuzzy clustering as an efficient approach for recognition of the TS
model structure. Examples of clustering algorithms that has been explored in
TS model identification procedure are Mountain clustering algorithm and its
modification - Subtractive clustering algorithm as well as objective function
clustering [3].

On the other hand the reliability has to be predicted using the data col-
lected till the current moment. Thus, the proper task is to model software
reliability in real time. In order to solve this problem on-line version of TS
modeling algorithm should be investigated. Some authors solve this task by
applying on-line extension of the Mountain/Subtractive clustering. They uti-
lize recursive and noniterative technique for calculating the potential of the
new data point in order to update the existing clusters or to discover new
ones [2]. However, this solution reduces the model accuracy as it does not
consider the clusters shape.

In this paper we propose new modeling approach for software reliability
growth description based on TS model. The identification algorithm is real-
ized through evolving clustering procedure [7] that copes the advantages of
the objective function clustering enabling to identify clusters with a generic
shape and orientation. It uses Gustafson-Kessel (GK) distance measure [9]
to find elliptic clusters with different shape and orientation adapted to cover
the individual character of the clustered data.

The TS fuzzy rule base system of software reliability growth model is
introduced in the second section. Identification procedure is revealed in the
third section. Real time identification algorithm is described in detail in the
fourth section. The model efficiency is evaluated using a case study data set
(fifth section). Concluding remarks are given in the sixth section.
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2 Takagi-Sugeno Fuzzy Rule Base
of Software Reliability Growth

General description of TS fuzzy model consists in a rule base that has a fuzzy
antecedent part and a functional-type consequent of the following form:

If xk belongs to cluster Cli

then yik = ai1xk1 + ai2xk2 + ...+ ainxkn + bi, (1)

where xk = [xk1, xk2, . . . , xkn] is the value of the input vector at the current
time instant k, yik is the output of the i-th linear subsystem function that
has coefficient vector Qi = [ai1, ai2, . . . , ain, bi] and c is the number of rules
of the model rule base. By Cli, i = 1, . . . , c we denote the i-th cluster defined
in the data space. Every cluster defines a rule and every rule corresponds to
a certain subsystem.

The global process output yik is obtained by the following sum:

yk =

c∑
i=1

βi(xk)yik. (2)

The parameter βi(xk) is estimated as

βi(xk) =
wi(xk)∑c
i=1 wi(xk)

, (3)

under constraints
c∑

i=1

βi(xk) = 1 and βi(xk) ≥ 0, (4)

where wi(xk) is the degree of fulfilment (DOF) of the i-th rule to the whole
rule system output calculated for the input vector xk. The estimation of
wi(xk) is accomplished by multidimensional antecedent membership func-
tion method [3]. DOF is computed directly for the entire antecedent vector
without decomposition. The distance between the antecedent vector and clus-
ter centers is defined by recalling the cluster covariance matrix that includes
all but not the last column of the cluster covariance matrix i.e. using only
the antecedent covariance matrix.

The description given by the equations (1)-(4) provides gradual and
smooth switching between distinct subsystems, which suits well to the real
transition between different regions of the whole system behaviour.
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2.1 TS Model Description
of Software Reliability Growth

Software reliability growth has been grouped into two classes of models —
concave (exponential type) that are continually bending downward and S -
shaped. Both types of models have the same asymptotic behavior as the
total number of defects detected asymptotically approaches a finite value
[14]. Theoretical considerations given in the present section are provided for
both model types. However, further on practical investigations are focused
on the concave dynamics. The concave model type is of real practical interest
as most data sets accumulated during the test process exhibit this behavior.

Concave behavior of the reliability growth expresses exponential growth
which passes through two phases. In the beginning the process operation
detects failures relatively frequently, which forms the phase of fast growth.
In the second process phase the rate of failure detection decreases and the
dynamics appears to be in (or close to) the steady-state. Within each phase
the reliability growth could be linearly approximated. According to this pre-
liminary information we construct dynamic TS fuzzy if-then rule base in the
following regression form:

If xk = [xk, xk−1] belongs to cluster Cli

then xik+1 = ai1xk + ai2xk−1 + bi, (5)

where xk is the number of failures in the k-th moment, i = 1, 2 and cluster
vector is Cl=[Cl1,Cl2]=[Exponential, SteadyState].

In case of S -shaped growth the model has three rules that correspond
to the respective three phases of the reliability growth dynamics namely
lag, exponential and steady-state phases. In this case cluster term set is
Cl=[Cl1,Cl2,Cl3]=[Lag, Exponential, SteadyState].

The global model output predicts the failure number:

xk+1 =

∑c
i=1 wi(xk)xik+1∑c

i=1 wi(xk)
, (6)

where c = 2 for the concave model and c = 3 for the S -shaped model, wi(xk),
i = 1, c is the DOF of the i-th rule output.

The model predicts the failure amount that would be accumulated in the
next time instant. The obtained value is a non integer one. In order to get a
usable result we suggest to assume the closest integer value.
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2.2 Multi-stage Model Description
of Software Reliability Growth

The model described by equations (5)-(6) assumes that the defect detection
rate decreases as the testing process prolongs. In fact if each defect is fixed
as it has been discovered the defect amount in the code should decrease and
revealed dependence will follow asymptotical dynamic of concave or S -shape
form. However, more realistic consideration of the testing process should take
into account the repairing effects. For instance, if a significant amount of new
code is added in order to fix the failure, the number of rest defects could
increase. In this case we can accept a new model of the defect detection rate.
We also could suggest that the defect detection rate has the same nature and
the new model has the same structure as the current one. Main obstacle in
this assumption is how to define appropriate model switching. Real practi-
cal concern is to decide whether new dynamics (model) is appeared and to
identify the coefficients of the new model.

The idea we are realizing here is to identify the repairing phenomenon on-
line by increasing the number of rules of the basic growth description model
(5) in real time mode. It is accomplished by on-line identification procedure
that automatically detects the new phases in the software reliability growth
occurred if a certain amount of new code is added.

3 Model Identification

Identification of the model (5)-(6) needs interdependent procedures of struc-
ture and parameter identification that are revealed in the next subsections
3.1 and 3.2, respectivly.

3.1 Structure Identification

The structure identification of the model aims to determine the number and
types of the fuzzy subsystems. A widely applied method is based on fuzzy
clustering procedure [3].

Let raw data are provided in a matrix form ZN×(n+1) = [zk], k = 1, . . . , N
with zk = [xk1, xk2, . . . , xkn, yk] = [xk, yk] being n + 1 dimensional vector
and N — the number of data points. The dimensionality of the introduced
basic model of software reliability growth is n = 3, where the output vector
equals to the predicted number of failures yk = xk+1.

Fuzzy clustering is based on iterative optimization of the objective func-
tional [4]:
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J =

c∑
i=1

N∑
k=1

μm
ikd

2
ik. (7)

Here μik is the membership degree of k-th data to the i-th cluster. The
clustering obtains a vector v = [v1, v2, . . . , vc] of cluster centers. The scalar
parameterm determines the fuzziness of the resulting clusters. Usuallym = 2
[3], [4].

Oblong clusters with different orientation in the space typically character-
ize the phases of the reliability growth. Most appropriate distance norm in
this case is Gustafson–Kessel [9]:

d2ik = (zk − vi)Ai(zk − vi)
T , (8)

where the norm inducing matrix Ai is symmetric and positive:

Ai = [det(Fi)]
1/nF−1

i . (9)

Main feature of the obtained partition is the local adaptation of the distance
metric to the shape of the cluster according to the covariance matrix Fi:

Fi =

∑N
k=1 μ

m
ik(zk − vi)

T (zk − vi)∑N
k=1 μ

m
ik

. (10)

Batch application of the clustering procedure i.e. when data are off-line avail-
able, alternatively iterates to determine the membership degree

μik =
1∑c

j=1 (
d2
ik

d2
jk
)

1
m−1

(11)

and the cluster center

vi =

∑N
k=1 μ

m
ikzk∑N

k=1 μ
m
ik

. (12)

3.2 Parameter Estimation

As model structure is recognized the model coefficients have to be estimated
interdependently on the clustering parameters (11) and (12). The vector of
consequent coefficients Q = [Q1, . . . , Qc] appears linearly in the matrix model
output description. Its value could be easily defined by applying the linear
least square method (LLSM). For instance, the authors of [3] accepted LLSM
to solve the off-line modeling task. Recursive version of LLSM is accepted in
case of adaptive model implementation [2].
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4 Real Time Model Identification

The structure identification of software reliability growth description needs
clustering that deals with streams of data and recognizes the system struc-
ture in real time. Evolving clustering intends to deal with this task. Let us
underline that the evolving clustering algorithm works with the currently
available data xk.

The introduced evolving clustering algorithm [7] assumes that the bound-
ary of each cluster is defined by a cluster radius. The radius ri of the i-th
cluster is equal to the maximal distance between the cluster centre vi and
the points belonging to this cluster with a membership degree larger or equal
to a given threshold membership degree μh:

ri = max ‖vi − xj‖Ai
for ∀xj ∈ ith cluster and μij ≥ μh, (13)

where ‖.‖Ai
is the GK distance norm determined according to equation (8)

for which the data xj belongs to the i-th cluster with membership degree μij

such that μij ≥ μh.
Three possibilities should be evaluated if a new data xk has been currently

measured. First, the data belongs to an existing cluster if it is within the
cluster boundary. This case imposes just clusters’ update. If the data point is
not within the boundary of any existing cluster a new cluster is a subject of
assessment. Alternatively, xk is an outlier, which does not affect neither the
data structure neither clusters’ parameters. In order to assess a new cluster
we serve the following considerations.

The minimal distance dpk determines cluster p closest to the current data:

p = arg mini=1,...,c(dik). (14)

The data xk is assigned to the cluster p if the distance dpk is less or equal to
the radius rp

dpk ≤ rp. (15)

The Kohonen rule [11] to update the p-th cluster parameters’ values is ap-
plicable:

vp,new = vp,old + α(xk − vp,old) (16)

Fp,new = Fp,old + α((xk − vp,old)
T (xk − vp,old)− Fp,old). (17)

If condition (15) fails a new potential cluster is assessed. For this the number
of clusters is incremented

c = c+ 1 (18)

and the incoming data xk is accepted as a center of the new cluster vnew with
a covariance matrix Fnew initialized by the covariance matrix of the closest
cluster:

vnew = xk,Fnew = Fp. (19)
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In order to quantify the credibility of the estimated cluster a parameter Pi

is introduced to assess the number of points belonging to the i-th cluster.
Its lower bound could be estimated from the minimal number of data points
necessary to learn the parameters of the covariance matrix as:

Pmin = n(n+ 1)/2. (20)

Alternatively, it could be context defined but the value should not be less
than Pmin.

Appropriate choice of the membership threshold μh, coefficient α and cred-
ibility parameter Pmin depends on the density of the data set and level of
cluster overlapping. Their value is of a real concern for the model identifi-
cation. We assume default value of the membership threshold μh=0.5 that
balances between having crisp cluster separation and most tolerant fuzzy clus-
ter separation. For a stricter identification of proper clusters the predefined
threshold membership degree should be chosen larger. For more tolerant iden-
tification it should be chosen smaller. The learning rate α determines the step
of searching. A large value guarantees sparsely selected clusters, which could
ignore a valuable cluster and the recognized rules may not cover accurately
the data space.

5 Benchmark Model Development

The developed software reliability growth model was evaluated on a bench
mark data set provided by a case study investigation of TANDEM Computers
company [14]. The data base consists of data sets of four separate software
releases in which for every test week the number of failures was counted.

Release 2 and Release 3 present certain overlapping. Release 2 was a pre-
liminary release used by very few customers. It was tested for nineteen weeks.
Release 3 was very similar to Release 2 with some functionality and perfor-
mance enhancements due to a new functionality being added in the test week
17 of Release 2. Thus, in order to examine predicting abilities of the model,
Release 2 was treated separately. Then data of both releases were merged
suitably in one release data set named Release 23. This data set forms a
multi-stage reliability growth dynamics that passes through consequently two
concave processes.

In order to initialize the identification algorithm first cluster was defined
off-line over data of the fast growth phase of each release. Default value
μh = 0.5 was accepted. The learning rate was fixed at α = 0.05 and minimal
cluster credibility was set to Pmin = 5. In order to increase the algorithm
sensitivity in some of the simulations the parameter value was decreased to
the minimal acceptable value Pmin = 3.
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Simulation of Single Release Models

TS type models in the form of the rule system (5)-(6) have been identified
separately for respective release data sets. Simulation curves present concave
behavior (Fig. 1). Due to the specificity of the task the overestimation of
the data is preferred than the underestimation. It can be noticed that the
model accuracy is acceptable in the beginning of the process when high de-
tecting rate occurs. In the phase of asymptotical behavior of each model the
process is better fitted than in the first process stage. It is explained by the
increased number of data, that benefit the accuracy of the identified model.
The increased predictability in the second phase is of a large benefit as we
are interested in the number of remaining failures after certain test time.

The model performance was evaluated through model performance indexes
as detected maximal absolute error (Max error) and root mean square error
(RMSE) presented in Table 1. Cluster centers values defined off-line as well
as their final values at the real time simulation are both presented.

Table 1 Performance indexes and obtained cluster centers

Indexes Release 1 Release 2 Release 4 Release 23

Max error 3.5846 4.0482 3.2948 4.0727
RMSE 1.51 1.72 1.32 1.92

v1 off line [33.80 39.91 46.19] [28.62 36.31 45.28] [16.77 18.40 22.40] [28.75 36.48 45.44]
v2 off line [86.99 90.53 93.21] [98.24 102.95 106.8] [28.06 31.13 32.32] [98.36 103.0 106.9]
v2 on line [93.99 96.61 98.33] [102.7 106.4 111.5] [30.90 33.66 33.84] [98.76 104.9 110.4]
v3 on line - - - [174.4 177.3 179.2]

Simulation of Multi-stage Model

Identification of TS model of the merged release Release 23 was investigated
as a case of multi-stage software reliability growth modeling. The real time
algorithm recognizes the second cluster which copes the steady state phase
of Release 2 (Fig. 2). By continuing the simulation, an additional cluster has
been identified. It comprises data of Release 3. Thus, exponential and steady
state phases of the second release were defined as well. Performance indexes
(Table 1) show the model accuracy relevant to the single release models.
Maximal error of Release 23 simulation is commensurable with the maximal
error of Release 2 simulation. The value of variance account for index is
VAF=99.84, which illustrates very high model fitting.



250 O. Georgieva

0 2 4 6 8 10 12 14 16 18
20

30

40

50

60

70

80

90

100

110

Test week

N
um

be
r 

of
 fa

ilu
re

s 

Rlease 1

 

 

raw data
model data

0 2 4 6 8 10 12 14 16 18
20

40

60

80

100

120

140

Test week

N
um

be
r 

of
 fa

ilu
re

s 

Rlease 2

 

 

raw data
model data

0 2 4 6 8 10 12 14 16 18
5

10

15

20

25

30

35

40

45

Test week

N
um

be
r 

of
 fa

ilu
re

s 

Rlease 4

 

 

raw data
model data

Fig. 1 Single stage model simulation
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Fig. 2 Multi-stage model simulation

6 Conclusion

The paper introduces a new model description of the software reliability
growth dynamics. It is based on fuzzy logic mathematical frame realized by
Takagi–Sugeno fuzzy inference engine. The model combines both vague and
deterministic information.

The model is able to cover complex growth dynamics result of repairing
process when significant amount of new code is added during the test period.
The proposed modeling scheme implements evolving clustering technique that
recognizes the model structure in a real time mode. The model accuracy is
reached for GK distance norm that was applied for cluster identification.
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Dynamic Texture Recognition
Based on Compression Artifacts

Dubravko Ćulibrk1, Matei Mancas2, and Vladimir Ćrnojevic1

Abstract The paper proposes a novel approach to the classification of com-
pressed videos containing dynamic textures. The term dynamic texture is
usually used with reference to image sequences of various natural processes
that exhibit stochastic dynamics (e.g., water, fire and windblown vegetation).
Description and recognition of dynamic textures have attracted growing at-
tention.

Although one of the most important prospective applications of the tech-
nology is content-based video retrieval, recognition of dynamic textures for
compressed video has not been considered. The content of video and dynamic
textures in particular, profoundly affect the performance of video compression
algorithms. The prominence of compression artifacts can, therefore, be used
to recognize dynamic textures in compressed videos. In the paper, we show
how features, previously proposed for quality assessment, statistical analysis
and a soft computing technique (neural networks) can be used to discern
23 different classes of dynamic textures in a standard video database, with
99.5% accuracy.

1 Introduction

Dynamic textures represent a set of phenomena occurring in nature, where
the perceived changes in the appearance of a system of large number ele-
ments are consistent, although the individual elements undergo stochastic
changes in theirs. Typically the changes are due to motion (e.g. turbulent
water water, smoke, vegetation in the wind, insect swarms), but may be the
result of the changing intensity of light emitted (e.g. fire). In the computer vi-
sion literature, such patterns have appeared collectively under various names,
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including, turbulent flow/motion, temporal textures, time-varying textures,
dynamic textures, and textured motion [6]; the term dynamic texture will be
used herein. Zhao and Pietikinen consider such phenomena extensions of the
static texture to the temporal domain [26], since the effect is that of a tex-
tured object undergoing transformations. Derpanis and Wildes [6], however,
point out that the term can apply equally well to simpler phenomena when
analyzed in terms of aggregate regional properties (e.g., orderly pedestrian
crowds and vehicular traffic).

The ability to recognize dynamic textures based on visual processing is of
significance to a number of applications, including, video indexing/retrieval,
surveillance and environmental monitoring where they can serve as keys, iso-
late background clutter (e.g., fluttering vegetation) from activities of interest
and detect various critical conditions (e.g., fires), respectively. It comes as no
surprise that a significant amount of research effort has been directed toward
solving this problem [4] [26] [12] [6]. However, to the best of our knowledge,
no one has dealt with the possibility of recognizing dynamic textures in com-
pressed (coded) videos, although this is the ’natural’ state of the material in
applications such as content-based video retrieval and the preferred way of
storing and transmitting visual data in all other.

The quality of coded video sequences depends on the video codec, bit-rates
required and the content of video material [5]. Clearly, if the bit-rate and the
codec are the same over a range of sequences - a reasonable assumption for
multimedia databases - the quality of compressed videos is dependent only
on the content. We propose a video classification approach that exploits this
relationship. Using the compressed videos available in a standard database
used for dynamic texture recognition [12], we show that the measures of the
level of artifacts introduced by the coding algorithm can be used as basis for
efficient dynamic texture recognition.

Based on video quality measures, content-dependent features are extracted
for the frames of the video. These are then aggregated so that each video
sequence is represented by a fixed-length signature derived from the feature-
values obtained for single frames. Video Signatures (VS) are subsequently
used to train a boosted soft computing (neural network) classifier [2]. Exper-
imental results obtained through cross-validation show that the classifier is
able to achieve perfect (99.5% accurate) classification for the data set used.

The paper makes several contributions. Dynamic texture classification
from compressed video is considered for the first time. To the best of our
knowledge, no one has attempted to use the correlation between coding arti-
facts, video quality and content to classify dynamic textures. The proposed
methodology relies on a state-of-the-art Video Quality Assessment (VQA) ap-
proach and exploits visual saliency due to motion to extract dynamic-texture
related changes. Finally we propose the use of boosting Multi Layer Percep-
tron (MLP) neural networks to classify dynamic textures - another novelty-
and show that such a classifier, combined with the proposed features, can
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(a) water (b) tentacle (c) smoke

(d) vegetative (e) fire (f) insects

Fig. 1 Sample frames from DynTex sequences

achieve 99.5% accurate classification for 23 classes of dynamic textures rep-
resented in a standard video data set.

The rest of the paper is organized as follows: Section 2 deals with the rele-
vant published work. Section 3 describes the methodology proposed. Section 4
discusses experiments performed and results achieved. Section 5 is dedicated
to our conclusions.

2 Related Work

2.1 Dynamic Texture Classification

The research into the classification and recognition of dynamic textures con-
tinues unabated [6][26]. A large number of approaches have been proposed
over the last ten years. In their 2005 survey Chetverikov and Péteri [4] divided
the existing approaches into five classes: methods based on optic flow, meth-
ods computing geometric properties in the spatiotemporal domain, methods
based on local spatiotemporal filtering, methods using global spatiotemporal
transforms and model-based methods that use estimated model parameters as
features. Regardless of the type of the approach, they attempt to extract fea-
tures descriptive of the dynamic texture and classify them by either defining
a suitable distance measure and creating a simple distance-based algorithm
for comparison or training a machine learning algorithm to achieve the task.

In their 2007 paper [26], Zhao and Pietikinen proposed volume local binary
patterns (VLBP) as features to describe dynamic textures. The VLBPs are an
extension of the LBP operator widely used in ordinary texture analysis, that
combine motion and appearance. They tested their approach using videos
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generated by extracting parts of the sequences in the DynTex database [12],
creating a data set that had 10 examples of a certain class derived from single
DynTex sequences. Their classifier is a simple nearest neighbor classifier,
based on the log-likelihood statistic that allows them to compare VLBPs, and
they used leave-one-group-out (i.e. n/m fold cross-validation [22]) to measure
performance, where m corresponds to the number of examples extracted for
a single dynamic texture and n is the total number of examples. Various
classification rates were achieved depending of whether or not the features
used were shift-invariant and how long the feature vector was. Their best
result is an accurate classification rate of 95.71%, achieved for a shift-invariant
VLBP and a fairly large feature vector (4, 176 bins) .

Chan and Vasconcelos [3] model the dynamic texture as a linear dynamic
system (LDS) and achieve good classification using Martin distance to com-
pare the models. They evaluated both nearest neighbor and support vector
machine (SVM) classifiers and showed that the use of a machine learning
algorithm such as SVM can improve the classification significantly. Through
the use of the SVM classifier they achieved accurate classification rate of
97.5% on the UCLA database [15]. More recently (2009) their work has been
extended by Ravichandran et al. [13] to use bags of LDSs to achieve im-
proved view-invariant texture classification, when eight classes of textures
are concerned.

Recently (2010), Derpanis and Wildes [6] proposed new features based
on spatiotemporal oriented energy filters to describe dynamic textures and
classify them. They identified 7 semantic categories in the UCLA database
(flames, fountain, smoke, turbulence, waves, waterfall, vegetation) and
achieved a comparatively low classification rate of 92.3%, on sequences de-
rived from this database. However, they specifically considered shift-invariant
recognition, and report improved performance under this conditions.

To the best of our knowledge no one has considered the problem of classi-
fying dynamic texture in compressed videos nor the use of features used to
measure different artifacts introduced by coding, as basis for dynamic texture
classification/recognition.

2.2 Video Quality Assessment

The quality of coded video sequences depends on the video codec, bit-rates
required and the content of video material [5]. If the bit-rate and the codec
are the same over the range of sequences the quality of compressed videos
is dependent only on the content, allowing for the use of features related to
quality to discern content. This is not an unrealistic constraint, e.g. a quick
calculation reveals that environ 290 million videos have been uploaded to
YouTube in 2010 [24], all using the same codec and a significant subset with
default parameter settings.
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Overall degradation in the quality of the sequence, due to encoder/decoder
implementations as part of transport stream at various bit rates, is a com-
pound effect of different coding artifacts [21]. Three types of artifacts are typi-
cally considered pertinent to block coded data: blocking, ringing and blurring.
Blocking appears in all block-based compression techniques, which include all
contemporary codecs [14] [8], due to coarse quantization of frequency com-
ponents [19] [20]. It can be observed as surface discontinuity (edge) at block
boundaries. These edges are perceived as abnormal high frequency compo-
nents in the spectrum. Blocking is usually masked by the presence of strong
texture in the background and blockiness measures are designed to estimate
what part of the discontinuity on the block edges is due to the blocking ef-
fect vs. the texture in the content [1]. In the setup proposed in this paper,
blockiness measures are related to the texture in the background. Ringing
is observed as periodic pseudo edges around original edges [11]. It is due to
improper truncation of high frequency components. In the worst case, the
edges can be shifted far away from the original edge locations, observed as
false edge. Blurring, which appears as edge smoothness or texture blur, is due
to the loss of high frequency components when compared with the original
image. Blurring causes the received image to be smoother than the original
one [7] and the measures of blurring try to estimate the difference in activity
of the original content with respect to coded version. They are profoundly
influenced by the textures in the video content.

A large number of published papers exist that propose different measures
of prominent artifacts which appear in coded images and video sequences [19]
[5]. In this study we limit ourselves to no-reference approaches, where only
compressed video is available. This is a harder problem, but more realistic in
applications such as video-retrieval.

Several published approaches to measuring video quality are of interest
for the discussion in the following sections. Wang et al.[19] proposed a no-
reference approach to quality assessment in JPEG coded images. Their final
measure is derived as a non-linear combination of a blockiness, local activity
and a so-called zero-crossing measure. The combination is supposed to pro-
vide information regarding both blockiness and blurring (via the two latter
measures) in JPEG coded images. More recently, Babu et al. [1] proposed a
blockiness measure for use in VQA, which takes effects along each edge of
the block into account separately.

Measures related to various artifacts are usually evaluated for each frame
of the sequence and collapsed temporally to arrive at a quality measure for
the whole sequence [23] [18] [10] [5].

Recently, Culibrk et al. [5] proposed a VQA approach that improves qual-
ity estimation by separately considering the regions of the frame in which
salient-motion is present and the rest of the frame. Using a simple multi-
scale foreground-background segmentation approach, they detect the salient
regions and calculate a number of features related to the observed temporal
changes. In addition, they calculate the blockiness and blurring measures pro-
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posed by Babu et al. [1] and Wang et al. [19] for the salient and non-salient
parts of the frame. Using these features they train a neural-network and a
decision tree classifier that are able to achieve state-of-the art quality esti-
mation on a per-frame basis. The final estimate of the quality is the median
value obtained for the frames of the sequence.

The approach of Culibrk et al. has been selected as a state-of-the art
approach for measuring video quality that is used in the study presented here.
Since dynamic textures are by their very nature salient due to motion, this
approach enables us to capture the features related to the dynamic-texture
part of the sequence frames and filter out the rest of the sequence.

2.3 Classification

Once descriptive features are extracted the preferred approaches to classifi-
cation of dynamic textures seem to be the Nearest Neighbor (NN) classifier
and Support Vector Machines (SVM) [26] [3] [13] [6].

Culibrk et al. [5], in the other hand, proposed using either a decision tree
classifier or a Multi Layer Perceptron (MLP) [9] neural network to estimate
the quality of video based on their features. In addition, they performed
automatic feature selection to evaluate the impact of saliency and showed
that an MLP estimator can achieve good results using a subset of just 5
features.

Here we propose using an MLP based classifier to discern different texture
classes. Neural networks represent a class of machine learning algorithms de-
signed to follow the basic principles of biological neural cells and as such fall
into the domain of soft computing. They consist of a number of intercon-
nected nodes that receive signals through their input connections, do simple
processing and pass the output to other neurons. The connections between
the neurons emulate the synapses between the neurons in biological systems
and are assigned weights that code the relative influence between the con-
nected nodes. In artificial neural networks the weights are learned from data
in order to create classifiers or estimators with the desired behavior.

To enhance the performance of the MLP classifier we propose using a meta-
learning algorithm Adaptive Boosting [16]. The effect of such an approach
is analogous to creating a cascade of neural network classifiers, each trained
on the set of examples that are incorrectly classified by the preceding stages.
Schwenk and Bengio [17] discuss the merits of such an approach in detail.
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3 Proposed Approach

A block diagram of the proposed dynamic texture classification approach is
shown in Fig 2. The input data are compressed videos of dynamic textures. If
the video is not compressed it can easily be coded with any lossy compression
algorithm. Each video in the data set is initially processed to extract measures
related to motion, salient changes, blurring and blockiness. A total of 17
measures is extracted for half of the frames of video, distributed uniformly
- once the measures have been calculated for a frame, the next frame is
skipped. This increases the efficiency and has no impact on the effectiveness.
The values of measures for all frames of a single video are clustered into 10
clusters using k-means clustering [25]. The process yields 10 cluster centroids
that represent each video. The set of centroids is a fixed-size representation
of a video, regardless of the number of frames it has. This is referred to as a
Video Signature (VS).

Once the signatures for all the videos are computed they are used to train
and test a neural-network-based meta classifier. Each centroid is used as a
separate input the classifier and each video is represented by 10 centroids
comprising the signature. This is done to make the approach less sensitive to
the measurement error introduced by the saliency-detection module, which
takes approximately 50 frames to adapt to sudden scene changes and to learn
the background model when presented with a new sequence.

The classifier is used to discern the semantic class for each of the 10 cen-
troids comprising a VS. The mode (most common value) of the 10 class labels
obtained in this manner is used the final classification of the video.

3.1 Extracting Features

detect salient 
changes

extract VQA
features 

per frame

VQA approach

Video 
signature

AdaBoost 
MLP

model

Video
signatures

Labelled
videos

cluster frame 
features

Fig. 2 Proposed video description approach: A video signature is extracted for each video,
the signatures used to train a boosted MLP classifier that can be used to classify other
videos
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3.2 Basic Features for Video Classification

Set of features related to video quality was adopted from the work of Culibrk
et al. [5].

The approach proposed in [5] attempts to estimate salient motion in each
frame of the sequence by performing background subtraction at several dif-
ferent scales. The scaled frames are obtained from a frame of the sequence
by performing spatial Gaussian filtering and decimating the frame to get
the next scale. This yields a representation of each frame of the sequence in
the form of a Gaussian pyramid. The same process is applied to background
frames. The results of background subtraction at each scale are thresholded
to eliminate small changes and summed up to form a single saliency map.
Outlier detection is then used to determine which parts of the map are salient
and which are not. Even with a small number of scales (3-5), the approach is
able the achieve meaningful, if somewhat coarse, segmentation of interesting
moving objects in the scene. In the case of the DynTex database, this corre-
sponds to the dynamic-texture regions of the frame. The process is illustrated
in Figure 3.

Once the salient parts of the frame have been determined several basic
features are used to describe the salient motion in a frame: number of salient
regions, their average size, and first moments (mean and standard deviation)
of the difference between the current frame and background frames, calcu-
lated separately for salient and non-salient regions.

Fig. 3 Salient-motion region segmentation.

Also, to account for blurring and blockiness, Z-score measures proposed
by Wang et al. [19] and the blockiness measure proposed by Babu et al. [1]
are calculated separately for salient, non-salient and (in the case of the last
feature) border regions. This should provide a good description of the texture
within the different regions of the frame.

The blockiness measures proposed by Wang et al. and Babu et al. are
profoundly different. Babu et al. focus on the effects that can be observed
along the edges of a single block. Their measure is designed to detect blocks
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with low spatial activity along the edges, but significant differences across
them.

To characterize the activity on the inside of the block edge they calculate
the standard deviation of pixel values for 6-pixel long stretches along he
border of the block, since they observed that blockiness that spans less than
6 pixels is not perceived as significant. For each edge of the block they try
to detect if there is significant activity that could mask the blockiness effect.
Let {Ik,j |k ∈ [1, 4], j ∈ [1, 8]} be the edges of a block and {Ok,j , k ∈ [1, 4], j ∈
[1, 8]} the corresponding pixels across the edge of the block. We first consider
the standard deviation of pixel values on the inside of block edges:

σk,j = stddev(Ik,j), k ∈ [1, 3], j ∈ [k, k + 5] (1)

Then we compute the gradient across block edges for each subsegment of
the edge:

Δk,j = mean(|Ik,j −Ok,j |), k ∈ [1, 3], j ∈ [k, k + 5] (2)

If any of σk,i is below an empirically selected threshold ε, than that edge
can contribute to the blockiness, but it will do so only if the gradient is larger
than a different threshold τ . For a block i of a frame, we define

Wi =

{
1, (∃σk,j , Δk,j)(σk,j < ε ∧Δk,j > τ)
0, otherwise.

(3)

Finally, we calculate the proportion of blocks that contributes to the block-
iness effect as the measure of blockiness:

BB =

∑NB
i=1 Wi

NB
(4)

where NB is the number of blocks in the region considered.
The authors of the approach [1] suggest ε = 0.1 and τ = 2.0, which are

also the values used in the study presented here.
The approach of Wang et al. is based on the observation that the artifacts

can be detected if the image is transformed to the frequency domain and
its power spectrum examined. They design their measures of blurring and
blockiness in an attempt to achieve a less computationally intensive approach
than that of computing the full power spectrum. Let x(m,n) m ∈ [1,M ] and
n ∈ [1, N ], be the pixel values (signal) for a frame. First a differencing signal
is calculated along the horizontal lines:

dh(m,n) = x(m,n+ 1)− x(m,n), n ∈ [1, N − 1] (5)

The blockiness measure proposed by Wang et al. tries to take into account
the differences between a whole line of blocks, rather than looking at a single
block:



262 D. Ćulibrk, M. Mancas, and V. Ćrnojevic

Bh =
1

M(�N/8� − 1)

M∑
i=1

�N/8	−1∑
j=1

dh(i, 8j) (6)

Thus, the Wang et al. provides a more wider-range measure of blockiness,
when compared to the basic Babu et al. metric.

Wang et al. proposed two measures in an attempt to characterize the
spatial activity of the signal. Their motivation lies in the fact that activity is
reduced by blurring. The activity is related to how pronounced the texture is
in a particular region of the frame. The first measure is the average absolute
difference between in-block image samples:

Ah =
1

7

⎡⎣ 8

M(N − 1)

M∑
i=1

N−1∑
j=1

|dh(i, j)−Bh|
⎤⎦ (7)

The second measure is the zero-crossing (ZC) rate. They define for n ∈
[1, N − 2]:

zh(m,n) =

{
1, horizontal ZC at dh(m,n)
0, otherwise

(8)

the horizontal ZC rate can then be estimated as:

Zh =
1

M(N − 2)

M∑
i=1

N−2∑
j=1

zh(m,n) (9)

The vertical features (Bv,Av and Zv) are then calculated in a similar fash-
ion. The overall blockiness, activity and ZC rate are calculated as:

B =
Bh +Bv

2
, A =

Ah +Av

2
, Z =

Zh + Zv

2
(10)

Finally the formulate an empirical model for the quality score:

Zscore = α+ βBγ1Aγ2Zγ3 (11)

They used the non-linear regression routine available in the Matlab statis-
tics toolbox to find the best value of parameters (α,β,γ1,γ2,γ3) for Eq. 11.
The values they calculated are used in the study presented here: α = −245.9,
β = 261.9, γ1 = −0.0024, γ2 = 0.016, γ3 = 0.0064.

Blockiness is masked by the texture(spatial activity) in the region for which
it is calculated. Activity measures are directly related to texture properties
within blocks. The final Z-score is a nonlinear combination of these measures,
that emulates the properties of the human visual system.

All the quality related features used are listed in Table 1. In the scope of
the study presented here, they are good features to describe two regions of
interest in test videos. Dynamic texture, which forms the salient part of the
frame and the background which is non-salient.
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It should be noted that both Wang et al. and Babu et al. measures were
originally designed for 8 × 8 block size, which is the only size available in
MPEG-2 [8], but not in MPEG-4/H.264/AVC [14]. However, since the size
of the blocks in the latter case is constrained to 16 × 16, 8 × 8 or 4 × 4,
the measures should be able detect blockiness and blurring along a subset
of edges and within part of the blocks, and therefore can be used for any
block-based codec.

Table 1 List of used quality features.

Salient reg. count Zscore non-salient

Avg. reg. size A salient
Mean change non-salient B salient
Change Std.Dev. non-salient Z salient
Mean Change salient Zscore salient
Change Std.Dev. salient BB non-salient
A non-salient BB salient
B non-salient BB border
Z non-salient

4 Experiments and Results

4.1 Data Set

Videos from the DynTex data set [12] were used to evaluate the approach.
The DynTex data set contains more than 650 varied dynamic texture videos,
but the information about the type of textures shown in the sequences is not
provided for all the videos in the set. Figure 1 shows example textures from
this data set. The image size is 352×288 and the compressed videos provided
were coded using DivX codec, i.e. an MPEG-4 Part 2 codec.

A subset of 202 sequences, spanning some 23 classes of very varied dynamic
textures has been selected to evaluate the proposed approach. The subset
is comprised of those DynTex sequences that were labelled as containing
a single class of dynamic texture including those labelled NA for which the
class information is not available. We treat the NA sequences as an additional
class, increasing the diversity of the test set. The texture classes contained
in our data set are: textile, vegetation, grass, NA, streaks, water, steam, fire,
smoke, branch, cloud, leaf, car, flower, needle, fur, fish, tentacle, insects, CD,
foam, light and paper. Sample frames from some of the sequences are shown
in Figure 1.
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4.2 Classification

Once the video signatures have been extracted, we used the Wakaito Envi-
ronment for Knowledge Discovery (WEKA) tool [22] to train and test our
classifiers. WEKA is an open source data mining and machine learning envi-
ronment, which allows for different machine learning algorithms to be tested
on a data set. The evaluation procedure conducted in two phases.

In the first phase we experimented with various algorithms, including the
MLP suggested by Culibrk et al., various decision trees and AdaBoost based
on different algorithms. To determine the most suitable classifier, they were
tested using the 10 fold stratified cross-validation methodology, i.e. 10% of
data was withheld during training and used for testing. The data was selected
randomly, but care was taken to preserve the distribution of the classes that
exists in the original data set, since not all of the classes were represented
with the same number of sequences.

In the second phase the best algorithm identified during the first stage
was tested by withholding the VS of a single sequence for testing. The rest
of the data was used for training. Once the classification for each part of the
test VS was done, the mode of the VS was used to assign a class label to the
sequence itself.

In our experiments, AdaBoost-ing the MLP classifier achieved the best
result. In the first phase of the experiments, the classifier achieved 96.4%
correct classification of each video signature part when tested on the train-
ing set and a 87.87% accuracy when cross-validated. The confusion matrix
obtained for VS-part classification is shown in Figure 4 In our experiment
we used AdaBoost M1 method, with 10 iterations. The MLPs contained 100
neurons, were trained using back-propagation with the learning rate of 0.3,
moment 0.2 and 500 epochs.

In the second phase, since we used the mode of 10 classification values
obtained per VS as the final label of the video, the cross-validated perfor-
mance was nearly perfect (99.5% accurate) at the video-sequence level. The
classifier failed to classify a single sequence accurately, out of 202 sequences
in the data set. It should be noted that the sequence that the classifier failed
to classify was one of 15 sequences in the database that are missing class
information and is therefore quite possible that the training set contained no
information that would enable the classifier to learn that particular case.

5 Conclusion

Although content-based video retrieval and indexing are usually stated as
important potential applications of dynamic texture classification and recog-
nition methodologies, there has so far been no attempt to address the problem
of classifying dynamic textures based on compression artifacts.
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a b c d e f g h i j k l m n o p q r s t u v w ← classified as

195 0 0 3 0 13 1 0 1 0 3 0 0 0 0 0 0 6 0 1 1 6 0 a = textile

1 98 1 0 0 2 0 0 1 0 0 1 0 0 1 0 0 4 0 0 0 1 0 b = vegetation

0 0 53 0 0 6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 c = grass

4 1 0 128 0 6 0 0 0 1 1 0 1 0 0 0 0 7 0 0 0 1 0 d = ?

0 0 0 0 19 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e = streaks

6 2 5 2 0 583 1 0 2 1 6 0 2 1 0 0 6 5 0 0 7 1 0 f = water

2 0 0 0 0 1 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g = steam

6 0 0 0 0 1 1 10 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 h = fire

2 0 0 0 0 2 0 0 31 0 1 1 0 1 0 0 2 0 0 0 0 0 0 i = smoke

1 0 0 1 0 1 0 0 0 97 0 0 0 0 0 0 0 0 0 0 0 0 0 j = branch

0 0 0 0 0 5 1 0 0 0 54 0 0 0 0 0 0 0 0 0 0 0 0 k = cloud

0 0 0 0 0 1 0 0 0 0 0 8 0 0 0 0 0 1 0 0 0 0 0 l = leaf

1 0 0 1 0 2 0 0 2 0 0 0 44 0 0 0 0 0 0 0 0 0 0 m = car

2 1 0 0 0 7 0 1 0 1 0 0 0 33 0 0 0 4 0 0 0 0 1 n = flower

0 0 0 0 0 2 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 o = needle

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8 0 1 0 0 0 0 0 p = fur

0 3 0 1 0 3 0 0 1 0 0 0 0 1 0 0 35 6 0 0 0 0 0 q = fish

4 3 3 0 1 7 0 0 0 1 0 0 0 0 0 1 1 149 0 0 0 0 0 r = tentacle

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 7 0 0 0 0 s = insects

0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 27 0 0 0 t = CD

0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 u = foam

3 1 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 102 0 v = light

1 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 15 w = paper

Fig. 4 Confusion matrix for the proposed classifier.

Since the performance of coding algorithms in terms of resulting video
quality is profoundly dependent on the content of video, a novel approach
to dynamic texture classification, which exploits this link is proposed in the
paper. Specifically we showed that features commonly used for video qual-
ity assessment can be used, efficiently, to discern between different dynamic
textures. The assumption made is that the videos are coded using the same
codec and same bit-rates, which is not unreasonable in case of large multi-
media databases.

An MLP-based AdaBoost classifier has been trained and evaluated using
video quality features obtained through a state-of-the-art video quality as-
sessment approach. A standard set of compressed dynamic texture videos
has been used to test the approach. The approach achieves nearly perfect
classification (99.5%) when cross-validated.

Several venues should be explored for further studies. The approach should
be tested using other available databases, such as the UCLA database [15].
More importantly, the approach should be tested for different codecs. The
blockiness and blurring measures designed may have to be adapted to handle
the variable block-size of state-of-the art codecs explicitly.
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The Hubness Phenomenon:
Fact or Artifact?

Thomas Low1, Christian Borgelt2, Sebastian Stober1, and
Andreas Nürnberger1

Abstract The hubness phenomenon, as it was recently described, consists
in the observation that for increasing dimensionality of a data set the dis-
tribution of the number of times a data point occurs among the k nearest
neighbors of other data points becomes increasingly skewed to the right. As
a consequence, so-called hubs emerge, that is, data points that appear in the
lists of the k nearest neighbors of other data points much more often than oth-
ers. In this paper we challenge the hypothesis that the hubness phenomenon
is an effect of the dimensionality of the data set and provide evidence that it
is rather a boundary effect or, more generally, an effect of a density gradient.
As such, it may be seen as an artifact that results from the process in which
the data is generated that is used to demonstrate this phenomenon. We re-
port experiments showing that the hubness phenomenon need not occur in
high-dimensional data and can be made to occur in low-dimensional data.

1 Introduction

That working with high-dimensional data is difficult has been known for quite
some time now, although not all of the effects of a large number of dimensions
are completely understood yet. In 1961, R.E. Bellman was among the first
who recognized the various problems that arise in high-dimensional spaces,
for which he coined the term curse of dimensionality [1]. One property of this
“curse” is the fact that with an increasing number of dimensions the volume
of a unit hyperball grows considerably less quickly than the volume of a
unit hypercube. As a consequence, most distance metrics, like the Euclidean
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distance, suffer from a loss of relative contrast. This effect is also known as
distance concentration [2] and causes the relative difference in the distance of
a given query point to its nearest and its farthest neighbor to vanish.

Another (alleged) property of the curse of dimensionality is the emergence
of hubs, which was first described as a general problem in [10]. Here hubs
are defined as data points that appear unusually often among the k nearest
neighbors of other data points. Described in statistical terms, the distribution
of the number of times a data point occurs in the nearest neighbor lists
of other data points becomes skewed to the right. This phenomenon has
been examined and demonstrated to be present in many real-world data sets
in [11], where it was also analyzed how it affects a broad spectrum of machine
learning tasks and dimensionality reduction techniques. The core claim of
both papers, [10] and [11], is that the emergence of hubs is an intrinsic effect
of the dimensionality of the data—a view we dare to challenge here.

Our core claim in this paper is that the hubness phenomenon is an effect
of a density gradient, not an effect of the dimensionality of the data space.
Note, however, that if the data points are sampled from a region that is
bounded, there is necessarily a density gradient at the boundary of the re-
gion. Since the ratio of the size of the (hyper-)surface (i.e. the boundary) of a
region to its (hyper-)volume increases exponentially with the dimensionality
of the data space, the density gradient at the boundary is emphasized (in the
sense that it influences more data points) and thus makes the hubness phe-
nomenon more notable. This explains the observations of [11]. However, high
dimensionality alone is not sufficient to produce the hubness phenomenon as
we demonstrate by sampling from a boundary-less high-dimensional space,
for which the hubness phenomenon is essentially nonexistent. We also show
that the strength of the hubness phenomenon depends on the relative size of
the boundary of the sampling region. In addition, we show that introducing
sufficiently many boundaries (and thus many places with a density gradient)
in a low-dimensional sampling region creates the hubness phenomenon.

The remainder of this paper is organized as follows: in Section 2 we define
the hubness phenomenon and several measures by which we try to capture
its strength, thus obtaining proper means to quantify and compare this phe-
nomenon over different data sets. In Section 3 we describe our data generator,
that is, the procedures we employed to generate high-dimensional data sets
as well as the structure of these data sets. In Section 4 we describe the exper-
iments (on artificial data) we conducted and report and interpret our results.
Finally, in Section 5 we draw conclusions from our discussion.

2 Measuring Hubness

Before we can define measures for the strength of the hubness phenomenon,
we have to introduce the notions on which it is based. Let X = {x1, . . . ,xn}
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be an m-dimensional data set with n data points xi = (xi1, . . . , xim) for
i ∈ {1, . . . , n}. Furthermore, let Nk(x) ⊆ X−{x} be the set of the k nearest
neighbors (k < n) of x in X. That is, ∀y ∈ Nk(x) : ∀z ∈ X−Nk(x)− {x} :
d(x,y) ≤ d(x, z) and |Nk(x)| = k (assuming that ties are broken arbitrarily).

We consider mainly the Euclidean distance d(x,y) = (
∑n

j=1(xj−yj)2)
1
2 , but

in principle other distance measures may also be studied (cf. [11]).
The quantity ok(x) =

∑
y∈X 1INk(y)(x), where 1INk(y) is the indicator func-

tion of Nk(y) w.r.t. X (that is, 1INk(y)(x) = 1 if x ∈ Nk(y) and 0 otherwise),
counts the number of times the data point x occurs in the sets of nearest
neighbors of other data points.1 We call ok(x) the k-occurrence of the data
point x ∈ X. The hubness phenomenon can now be described as the obser-
vation that the distribution of the values ok(x) for x ∈ X is (considerably)
skewed to the right or that some data points have unusually high k-occurrence
values (i.e., considerably larger than the mean value, which is obviously k).

In order to obtain an objective evaluation of the strength of the hubness
phenomenon, we rely on a few very simple measures. The most straightfor-
ward approach is obviously to compute the skewness (or simply skew) of the
distribution of the ok(xi), i ∈ {1, . . . , n}, which is defined as

γ =
1
n

∑n
i=1(ok(xi)− ok)

3(
1
n

∑n
i=1(ok(xi)− ok)2

)3/2 ,
where ok = k is the mean of the k-occurrence values (see [4] for a general defi-
nition of skewness). If γ > 0, the distribution is skewed to the right. However,
usually only (very) few of the points in a data set are hubs, that is, exhibit
high k-occurrence. Thus the skewness may not always be sensitive enough
to measure the phenomenon properly. On the other hand, the skewness is
computed from all data points and thus large values may result even if there
are no sizable hubs, namely if there is an asymmetry close to the mean.

An alternative approach that immediately suggests itself is to use the
largest k-occurrence in the data set. However, this measure has the disadvan-
tage that it is strongly affected by the randomness of the sampling process.
Thus it is only sufficiently expressive if averaged over a certain number of
runs. To obtain a better measure we average the k-occurrence of the fraction
q of data points with the highest k-occurrences, where q should be small.
The averaging makes the measure more robust, yet allows us to properly
capture the value of the highest k-occurrences.2 In our experiments we tried
q = 0.1%, q = 0.5% and q = 1%. Since this measure depends directly on the
number k of nearest neighbors that are considered, we finally divide by k:

1 Note that the sum need not exclude the data point x, because x /∈ Nk(x) by definition.
2 We refrained from using the (1 − q)-quantile (which would be a an even more robust
choice) because of the integer nature of the k-occurrences, which limits the number of
possible values, especially for small k (that is, for few nearest neighbors). In addition, the
(1− q)-quantile does not capture the distribution of values at and beyond it.
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h1(q) =
1

k|Ok(q)|
∑

x∈Ok(q)

ok(x),

where Ok(q) contains the �qn� data points with the highest k-occurrences.
Note that this measure captures the maximum k-occurrence for q = 1/n.

As an alternative, we consider what percentage of the data points have a
k-occurrence value at least β times the mean value k, that is, the percentage
of data points x ∈ X with ok(x) ≥ βk. Formally we have

h2(β) =
|{x ∈ X | ok(x) ≥ βk}|

|X| · 100%.

In particular, we experimented with β = 2, β = 3 and β = 4. That is, if we
consider, for example, the 10 nearest neighbors, we compute what percentage
of the data points occurs in at least 20, 30, and 40 nearest neighbor lists. Note
that h2 highlights the number of hubs, while h1 focuses on their size.

3 Data Generation

The design of a data generator starts with the choice of a (pseudo-)random
number generator (RNG), usually for a uniform distribution. Here we rely on
a simple and very fast RNG producing 32 bit unsigned integer numbers, which
was suggested by G. Marsaglia [6]. This RNG computes the next (pseudo-)
random number from the previous five numbers, has a period of about 2160,
and seems to pass all standard quality tests for RNGs. We prefer this RNG
over the more fashionable Mersenne Twister [8] due to its simplicity and much
higher speed. We use this RNG to generate uniformly distributed (pseudo-)
random floating point numbers in the interval [0, 1) by generating two 32 bit
unsigned integers i1 and i2 and then computing r = i1 · 2−32 + i2 · 2−64, thus
filling all bits of the mantissa of a double precision floating point number. We
ensure that r ∈ [0, 1) by rejecting r and generating a new random number
should the (highly unlikely) event occur that (due to rounding) r = 1.

In order to obtain normally distributed (pseudo-)random numbers (which
we also need for sampling from (hyper-)spheres and (hyper-)balls, see below),
we employ the so-called polar method [7, 5], which consists in generating two
(pseudo-)random numbers x and y that are uniformly distributed in [−1, 1)
until s = x2 + y2 < 1, that is, until the point (x, y) lies inside a unit circle.
Then the transformed numbers x′ = ξx and y′ = ξy, where ξ =

√−2 ln(s)/s,
are normally distributed with mean 0 and variance 1.

Our data generator can sample from a multivariate standard normal dis-
tribution as well as uniformly from a (hyper-)cube, a (hyper-)ball, and a
(hyper-)sphere (i.e., the surface of a (hyper-)ball). Sampling uniformly from
an m-dimensional (hyper-)cube [−1, 1)m (also called an m-cube) is trivial:
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–1 0 1
–1

0

1

Fig. 1 A data set with 2000 points
that were sampled uniformly from a
grid of small squares described by the
parameters η = 5 and α = 0.5 (see
the explanations in the main text).

simply generate m random coordinates x1, . . . , xm that are uniformly dis-
tributed in [0, 1) and transform them with x′i = 2xi − 1 for i = 1, . . . ,m.
Sampling from an m-dimensional standard normal distribution is equally
simple: use the polar method (see above) to generate m normally distributed
coordinates. The coordinates are combined in a vector x = (x1, . . . , xm).

For sampling uniformly from an m-dimensional (hyper-)sphere (also called
an m-sphere) we exploit the insight that a multivariate standard normal
distribution is spherically symmetrical. Therefore, if x1, . . . , xm are sampled
independently from a standard normal distribution, the vector x′ = x/||x||,
where x = (x1, . . . , xm) and ||x|| = (

∑m
i=1 x

2
i )

1
2 , is uniformly distributed on

anm-sphere [12]. In order to obtain points that are uniformly distributed over
an m-dimensional (hyper-)ball (also called an m-ball), we start by sampling
a vector x′ uniformly from an m-sphere (see above) and in addition generate
a (pseudo-)random number u that is uniformly distributed in [0, 1). Since
the radius r of a random vector that is uniformly distributed over an m-ball
satisfies P (r ≤ z) = zm, we can write r = u1/m. Therefore the vector x′′ = rx′

is uniformly distributed over an m-ball [12].
In addition to these basic data generation modes, our implementation sup-

ports sampling uniformly from a regular grid of small (hyper-)cubes with a
user-specified size. With this method we try to obtain a low-dimensional
space with a large boundary in order to show that the hubness phenomenon
can be produced in this way as well. The procedure is essentially the same as
for sampling uniformly from a hypercube, only that the hypercube is cut into
the requested number of small cubes and gaps are introduced by an appro-
priate transformation of the coordinates. To be precise: given a number η of
(hyper-)cubes per dimension and a fraction α, which specifies how much (per
dimension) of a grid cell is covered by the small (hyper-)cubes, we sample
m coordinates x1, . . . , xm uniformly from [0, 1) and transform them accord-
ing to x′i = 2(�ηxi� + α(ηxi − �ηxi�))/(η − 1 + α) − 1 for i = 1, . . . ,m. An
example of such a 2-dimensional grid-structured data set with 2000 points,
which was generated with η = 5 and α = 0.5, is shown in Figure 1.

Finally, our implementation supports jolting points that were sampled uni-
formly from a (hyper-)cube into a (hyper-)ball. Intuitively, this can be seen
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as “pushing in” the corners of the hypercube. Technically, this is achieved as
follows: let x = (x1, . . . , xm) be a data point in a (hyper-)cube. We deter-

mine z = maxi=1,...,m |xi| as well as ||x|| = (
∑m

i=1 x
2
i )

1
2 . Then x′ = zx/||x||

lies inside a (hyper-)sphere with radius 1. Of course, the distribution of the
resulting points is not uniform in the (hyper-)sphere, but denser near the
axes from the center towards the corners of the original (hyper-)cube. How-
ever, it is very interesting to see how this transformation affects the hubness
phenomenon, as the result is not quite what one might expect.

4 Experimental Results

With the four experiments we describe in the following we try to clarify the
inherent properties of the hubness phenomenon. In the first experiment we
show that hubness need not occur in high-dimensional spaces by sampling
from a finite, but boundary-less space. We demonstrate that it is rather di-
rectly related to a density gradient. In the second experiment we show that
hubs also occur in low-dimensional spaces and reveal the true cause of the
hubness phenomenon. The third experiment demonstrates the dependence
of the hubness phenomenon on artificially introduced density gradients, es-
pecially the size of the surface of the sampling region. Finally, the fourth
experiment examines the effect of jolting a (hyper-)cube into a (hyper-)ball.

Experiment 1: As already reported in [11], the distribution of the k-
occurrences becomes skewed to the right if a data set is sampled uniformly
from a high-dimensional hypercube, and even more so if the data set is sam-
pled from a high-dimensional normal distribution. Our experiments confirm
this observation, as can be seen from the curves labeled “cube” and “normal”
in Figure 2.3 For m ≥ 15, and certainly for m ≥ 20, all three hubness mea-
sures (skewness γ, h1(1%), i.e. the average k-occurrence, divided by k, of the
data points with the 1% highest k-occurrences, and h2(3), i.e. the percentage
of data points occurring in a least 3k = 30 nearest neighbor lists) clearly
indicate a strongly skewed distribution and the existence of sizable hubs.

It is remarkable that data sampled from a normal distribution exhibit a
much stronger hubness phenomenon than data sampled uniformly from a hy-
percube. This finding already provides a hint that the hubness phenomenon
is caused by a density gradient, because a normal distribution possesses a
strong density gradient everywhere, while data sampled from a hypercube
possess such a gradient only at its hyperfaces. As these faces cover a consid-
erable hyperarea for high-dimensional data, many data points are influenced
by the gradient they cause, but still fewer than in a normal distribution.

3 All such diagrams in this paper have been obtained by averaging over 200 runs in order
to reduce the effects of randomness and to achieve representative results.
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Fig. 2 The hubness phenomenon for different sampling distributions (multivariate normal
and uniformly from a (hyper-)cube, (hyper-)ball and (hyper-)sphere) and two data set sizes,
assessed by different hubness measures (as defined in Section 2).

A further hint is provided by the fact that data sampled uniformly from a
hyperball (see curves labeled “ball” in Figure 2) exhibit a much lesser hubness
phenomenon, which even is reduced again beyond m ≈ 30−40. Since the sam-
ple is still drawn uniformly, the different strength of the hubness phenomenon
must be due to the different shape of the sampling region. We believe that the
absence of “corners” (at which the density gradient is particularly high) and
the much smaller hypersurface relative to the enclosed hypervolume are the
reason for this effect. Since the hypersurface of a hyperball is much smaller
compared to that of a hypercube, fewer data points are affected.

However, the strongest argument that high dimensionality alone does not
cause a hubness effect is provided by the following consideration: an (m+1)-
dimensional hypersphere is essentially anm-dimensional space, but finite and
boundary-less. As a consequence, there is no density gradient anywhere, at
least if we confine ourselves to the topology of the hypersphere (which is
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Fig. 3 The 12 largest hubs collected
from 250 sets of 1000 points each,
sampled uniformly from a square
[−1, 1)2. For each point the 30 near-
est neighbors were considered. The

darkness of a circle encodes a hub’s
k-occurrence.

equivalent to using an elliptic geometry). Although this does not pose any
problems (the shortest path between two points follows the meridian through
them and thus, for a unit hypersphere, its length is equal to the angle between
the points, measured in radians), we rely on the Euclidean distance in the
(m + 1)-dimensional space, which yields essentially the same result. As can
be seen from the curves labeled “sphere” in Figure 2, none of the measures
detects a hubness phenomenon, regardless of the number of dimensions.

Note that this finding explains why a (hyper-)ball exhibits a much less
pronounced hubness effect: for increasing dimensionality the mean Euclidean
norm of points sampled uniformly from a unit (hyper-)ball converges to 1 (see
Section 3: P (r ≤ z) = zm). Thus we may say that in high-dimensional spaces
almost all points in a (hyper-)ball lie close to its surface and thus almost on
a (hyper-)sphere. With this regard it is no longer surprising that the hubness
phenomenon reduces again for very high-dimensional (hyper-)balls.

Experiment 2: In our second experiment we show that the hubness phe-
nomenon also occurs in low dimensional spaces, although not as pronounced,
and reveal its true cause. In the diagram in Figure 3 the twelve largest hubs
have been collected from 250 data sets that were sampled uniformly from a
square. The darkness of the hubs encodes their k-occurrence, which shows
that there are not only more hubs close to the corners, but that these hubs
also tend to be larger (that is, they tend to have higher k-occurrences).

This effect is clearly due to the boundaries of the square and can be seen
as a kind of mirroring effect. Points close to the sides and corners do not have
as many options to choose their nearest neighbors compared to points in the
interior of the square. Therefore points that lie near points that are close to
the sides and corners are more likely to be chosen as nearest neighbors and
thus become hubs. Hubs are more frequent close to the corners, because here
up to 3/4 of the space (for a point exactly at the corner of square) are void
of points, while in the middle of a side only up to 1/2 of the space is void of
points. If one extrapolates this finding to more dimensions, it becomes clear
why hypercubes exhibit such a strong hubness phenomenon.
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Fig. 4 Hubness in 3-dimensional data sets sampled uniformly from a grid of cubes:
dependence on the number of cubes/grid cells per dimension (gap size α = 50%).
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Fig. 5 Hubness in 3-dimensional data sets sampled uniformly from a grid of cubes
(η = 8 cubes per dimension): dependence on the size of the gaps (measured per dimension).

Experiment 3: Our third experiment expands on our view that the size
(and shape) of the (hyper-)surface (and the density gradient it causes) pro-
duces the hubness phenomenon. If this view is correct, it should be possible to
create a hubness phenomenon in a low-dimensional space by sampling from a
region with a large boundary. Our core idea is to sample data from a grid of
squares or cubes. If the gaps between these squares or cubes are big enough,
so that a nearest neighbor is almost surely found in the same cube, there
should also be a certain, though weaker hubness phenomenon.

This effect is demonstrated in Figure 4, which shows how a grid of cubes
(gap size α = 50%) leads to a hubness effect with an increasing number of
cubes. The effect is weak, though, but can be detected with the skewness γ or
with the measure h2(2) used in the diagrams. Note that the effect is generally
bounded due to the topology of a 3-dimensional space, as can be seen from
the relation of the hubness phenomenon to the kissing number problem [3, 9].
A kissing number is the number of non-overlapping unit spheres that touch
another given unit sphere. As was already noticed in [11], this problem is
relevant for the hubness phenomenon, because a data point cannot be the
nearest neighbor of more data points than the kissing number of the space it
resides in. Since the kissing number for three dimensions is 12, sizable hubs
are extremely unlikely as they require highly symmetric point arrangements.
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Fig. 6 The hubness phenomenon for data that was sampled uniformly from a (hyper-)cube
and then jolted into a (hyper-)ball, as compared to sampling uniformly from a (hyper-)cube
or (hyper-)ball, assessed with the same measures as in Figure 2.

Note that for 10000 points the hubness phenomenon disappears again for
10 cubes per dimension. The reason for this effect is simply that under these
circumstances the average number of points per cube is 10 (as there are
10× 10× 10 = 1000 cubes). If 8 nearest neighbors are considered, almost all
points in a cube are the nearest neighbors of all other points in the same cube.
As a consequence, the location of the points relative to the boundary, which
is responsible for the hubness effect (see Experiment 2), becomes irrelevant.

Note also that the gaps between the cubes have to be large enough, as can
be seen in Figure 5: for small gaps there is basically no hubness effect, because
nearest neighbors may still be found in neighboring cubes, thus reducing or
even eliminating the effect of the cube surfaces/boundaries.

Experiment 4: Our last experiment reveals a somewhat unexpected behav-
ior that we discovered during our analysis. As we have seen in Experiment 1,
the skewness of the distribution of k-occurrences for data sampled uniformly
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from a (hyper-)cube is much stronger than for data sampled uniformly from a
(hyper-)ball. This led to the idea to “jolt” a (hyper-)cube into a (hyper-)ball
in order to check whether this operation reduces the hubness phenomenon.
Given our view of the causes of the hubness phenomenon, we certainly ex-
pected it to be reduced (because this operation significantly reduces the sur-
face of the sampling region), but that it was even reduced slightly below the
level of data that was sampled uniformly from a (hyper-)ball was somewhat
surprising (see Figure 6, curve labeled “jolted”). We rather expected it to lie
between a (hyper-)cube and a (hyper-)ball based on the argument that the
jolting introduces density gradients inside the (hyper-)ball.

However, on second thought, the effect becomes understandable. The jolt-
ing operation, even though it causes density gradients inside the (hyper-)ball,
also reduces the effect of the (remaining) (hyper-)surface, because it pushes
more data points into the interior of the (hyper-)ball, thus leaving less at the
surface that cause the hubness effect (cf. Experiment 2).

5 Conclusions

In this paper we demonstrated that the hubness phenomenon is not an effect
of the (high) dimensionality of a data set, but an effect of a density gradient.
However, a density gradient may be intrinsic to the data set (if the data is
not uniformly distributed) or it may be a boundary effect. Since a boundary
necessarily introduces a density gradient and the ratio of the size of the
boundary to the size of the enclosed space grows exponentially with the
dimensionality of the data space, high-dimensional bounded data is prone to
exhibit the hubness phenomenon. However, it is important to note that this
phenomenon can also be produced, though much weaker, in a low-dimensional
space by artificially increasing the size of the boundary. Another factor is the
shape of the boundary: “corners” intensify the effect, as can be seen from the
pronounced hubness phenomenon exhibited by (hyper-)cubes.

Software
Our implementation of the data generator and evaluation routines, which we
used for the experiments in this paper as well as the corresponding Python
scripts automating the experiments will soon be available for download at:
http://www.borgelt.net/hubness.html
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Proximity-Based Reference Resolution
to Improve Text Retrieval

Shima Gerani1, Mostafa Keikha1, and Fabio Crestani1

Abstract Queries that contain named entities are very common especially
in the blog retrieval. Current approaches for document retrieval are based
on the frequency of query terms in documents. These methods may under-
estimate the query frequency due to the fact that named entities are usually
referenced using anaphoric expressions. In this paper we focus on pronouns
as anaphoric expressions and propose a method for finding query-entity types
including female, male and non-person which helps to identify the proper set
of pronouns that can refer to each query. We also propose a proximity-based
method for estimating the frequency of the anaphoric expressions which are
referring to a query-entity in a document. Experimental results on a stan-
dard blog collection show that the proposed method is effective and provides
significant improvement over the term-frequency-based baseline.

1 Introduction

Queries that contain named entities are very popular in search applications,
especially in the context of Blog retrieval. One of the drawbacks of current
approaches for entity retrieval is the underestimation of query-entity (i. e. the
entity referred by the query). Frequency in the documents. This is due to the
fact that named entities are usually referenced using anaphoric expressions
such as pronouns. For instance, if a document contains a person entity, pro-
nouns such as he, him, his, etc., may be used instead of repeating the person’s
name. Considering anaphoric expressions that refer to the query-entity can
help to better estimate the query occurrence in the documents and improve
retrieval performance. The key problems are: 1) identifying a feasible set of
anaphoric expressions for the query-entity since different pronouns are used
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to refer to person (female, male) or non-person entities, and 2) estimating
the frequency of anaphoric expressions that are referring to the query-entity.
A recent study [4] has highlighted this problem and proposed estimating Co-
referentially Enhanced Entity Frequency (CEEF), to include the frequency of
anaphoric expressions in the frequency count of query entities in documents.
CEEF learns a Support Vector Machine(SVM) classifier with two features
based on the standard frequency of anaphoric expressions in the top M rel-
evant documents, in order to classify query entities to person/non-person
types. The CEEF model assumes the presence of K non query-entities in
every document and estimate the probability that all anaphoric expressions
in a document are referring to the query-entity rather than other K enti-
ties. A 2-Poisson model is used to estimate this probability. The standard
frequency of anaphoric expressions is then weighted by this probability and
is added to the query-entity frequency. CEEF is based on the query-entity
frequency rather than individual query term frequencies and involves manual
identification of parts of the query which reflects the query-entity. CEEF also
assumes the presence of a single entity in every query. For instance in queries
such as March Warner for president, Mark Warner is the entity and the rest
is removed manually. Another problem with entity phrase-based retrieval is
that, they underestimate the query entity frequency in cases where the query
entity is referred using a part of the phrase. For instance Cindy Sheehan may
occur once at the beginning and be referred by just Cindy through the rest
of the document.

In order to avoid problems such as preprocessing of a query to identify a
query-entity phrase and also underestimation of the query entity, in this paper
we do not limit ourselves to the entity phrase and follow the standard ap-
proach of term-based retrieval. In [4] after identifying the query entity phrase
and counting it through the document, the entity frequency is enhanced by
adding the weighted frequency of its feasible anaphoric expressions in the
document as we explain in the following: First, all occurrences of the feasi-
ble anaphoric expressions in the document are counted. Then this anaphoric
frequency is weighted by the probability that they are referring to the query
entity and is added to the query-entity frequency. The probability that the
anaphoric expressions are referring to the query-entity is the same for all
feasible pronouns and is calculated based on the eliteness of query in the
document using a 2-poisson model.

In this paper, we propose a method for finding query-entity types includ-
ing female, male and non-person which helps us in identifying the proper set
of pronouns for each query. We also propose a proximity-based method for
estimating the frequency of the anaphoric expressions which coreference the
query terms. Unlike CEEF, our proposed method does not consider all feasi-
ble pronoun sets equally and count them differently based on their proximity
to the query terms. The proximity information has been used previously
to find opinion terms relevant to the topic in the context of blog retrieval
[2, 7, 10]. Here we use the proximity information to estimate the probability
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that the pronoun is referring to the same entity as the query does. Experi-
mental results on the BLOG06 collection of the TREC Blog Track show that
the proposed method is effective and provides significant improvement over
the raw term frequency baseline. Thus, our contributions are:

• Presenting a novel method for identifying the query entity type.

• Presenting a proximity-based method for estimating the probability that
a specific anaphoric expression refers to the query-entity.

• Evaluating the method on a large collection and investigating the impact
of the different components of the proposed model.

The remainder of this paper is organized as follows: In section 2 we explain
and motivate the problem. Section 3 introduces our proposed method for
estimating the real frequency of query in a document. Section 4 describes the
retrieval method and section 5 reports on the experiments we conducted in
order to evaluate the usefulness of the proposed model. Finally in Section 6,
we conclude the paper and describe the future work.

2 Beyond Observed Term Frequency

The most important component of an information retrieval system for es-
timating the relevance of a document to a query is the query term fre-
quency in the document. However, the query entity is usually referred to using
anaphoric expressions instead of the exact query-entity name. Therefore, the
exact counting of query terms underestimates the relevance of documents to
the query entities. A better estimation of query term frequency in a docu-
ment can be obtained by including the frequency of anaphoric expressions
that coreference with the query term. Assume w to be a term in query Q.
The real frequency of w can be calculated as follows:

tf (w; d) = tf observed(w; d) + tf anaphoric(w; d) (1)

where tf observed(w; d) is the standard frequency of query term w in document
d and tf anaphoric(w; d) is the amount of w occurrences evidenced by anaphoric
expressions in d. If we assume that all anaphoric expressions are coreferential
with the query terms, standard term frequency can be applied to calculate
the frequency of anaphoric expressions as well. However, this assumption is
very simplistic and it is quite possible that one or more entities of the same
type as the query-entity exist in a document, and that some or all of the
anaphoric expressions in the document refer to non-query entities. One may
think of using coreference resolution systems [8] to identify the pronouns
that are referring to the query entity. However, the accuracy of even state-
of-the-art coreference resolution systems is less than 70%. The other issue is
the efficiency of such systems. They are usually based on Natural Language
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This is what I know about the events of January 31, 2006 involving 
Cindy Sheehan. Cindy not only didn’t protest at the SotU, she didn’t 
even plan - or want - to attend it. Cindy was set to... (omitted).
I was with Cindy, her sister Didi, and her friends Ann Wright and 
Bill Mitchell immediately before she went to the Capitol Building to 
watch the State of the Union address. I saw Cindy pass the ticket for 
the SotU to her friend Gael Murphy to give to Iraq War vet John 
Bruhns. We protested together outside the White House, where Cindy 
took several cell phone calls telling her the media were playing up 
Rep. Lynn Woolsey’s invitation. Then she drank hot chocolate and ate 
baby carrots while we discussed whether or not she should change her 
mind and attend the speech....(omitted).

Fig. 1 An excerpt from blog post BLOG06-20060216-032-0006921029

Processing modules which take a lot of time and are not very efficient [4]. An
example that has been discussed in previous studies is BART [9] which takes
about 24 hours to perform coreference resolution of only 1,000 documents
in the TREC Blog Track on an Intel 2.83GHz CPU. Considering the huge
amount of documents in our applications (e. g. 3.2 million documents in
Blog06 collection) exact coreference resolution is not practical.

In this paper we propose a method to approximate the frequency of
anaphoric expressions that coreference an entity with a query term. Be-
fore explaining our model for estimating tf anaphoric(w; d), we need to in-
troduce some notations and settings. We denote a document as a vector
d = (t1, ..., ti, ..., tj , ..., t|d|) where the subscripts i and j indicate positions
in the document and ti indicates the term occurring at the position i. Ac-
cordingly, we denote a query with vector Q = (w1, ..., w|Q|). In this study,
we limit the set of anaphoric expressions to pronouns. Assuming three types
of query entity, female person, male person and non-person, we consider the
following set of pronouns as possible references to each entity type:

• Male person: Amp = {he, his, him, himself}
• Female person: Afp = {she, her, herself}
• Non-person: Anp = {it, its}

An excerpt from a blog post in the BLOG06 collection is shown in Figure 1.
As we can see, there are a lot of references to Cindy Sheehan using pronouns
such as her or she which are ignored in case of using standard term frequency.
This causes the underestimation of the query term frequency in the document.
In the next section, we explain a proximity-based model for estimating the
frequency of pronouns that coreference a set of query terms. We then use
this model for estimating the anaphoric frequency of a single query term in
section 3.2 and for classifying the query-entity type in section 3.1.
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3 Proximity-based Coreference Resolution

The frequency of pronouns that are co-referenced with a set of query terms
(X ⊆ Q) in document d, can be estimated based on the following three
assumptions:

Assumption 1: Pronoun occurrences in a document d are counted, if all
query terms occur at least once in d.

Assumption 2:A pronoun at position i in d can not refer to X that has
not occurred yet in d (∀j ∈ pos(X), j > i).

Assumption 3: A pronoun is more probable to be co-referenced with X
if it occurs in close proximity after an occurrence of X in d.

If we consider Ak as the feasible set of pronouns for query Q, the anaphoric
frequency of X can be estimated as follows:

atf X(Ak; d) =

|d|∑
i=firstPos(X)+1

p(rX |i)c(Ak; i, d), (2)

where, “firstPos(X)” indicates the first position of any element of X in d.
The value of c(Ak; i, d) is 1 if the term at position i is a pronoun from set Ak

and is 0 otherwise. p(rX |i) is the probability that an anaphoric expression
at position i, coreferences X . We estimate this probability using a Gaussian
function [1] as follows:

p(rX |i) = exp

[−(j − i)2

2σ2

]
where j = argmin

j∈pos(X)<i

(i− j). (3)

Gaussian function has a sigma parameter,σ, that here identifies the distance
in which an anaphoric expression and a query term can be coreferential.
This probability slowly decreases with the distance of the pronoun from the
occurrence of w and is maximum (close to 1) at positions immediately after
an occurrence of w. Note that according to our first assumption, the sum in
Equation (2) starts from the first position of w in d, therefore, if X does not
occur in d, none of the pronouns can be considered as coreferential with X
and so atf X(Ak; d) remains zero.

Note that in the above formulas X can be a single or multiple terms from
the query, which as a whole refer to an entity. Since identifying the set of
entity-referring terms of a query, in an automatic way, may be challenging,
we propose considering every term of the query separately, asX , and estimate
its anaphoric counts which can then be added to the standard query term
count and be used in the retrieval models. In the rest of this section we first
explain how we use p(rX |i) in estimating the anaphoric-enhanced query term
frequency and then we explain the usage of p(rX |i) for feasible pronoun set
identification.
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3.1 Query Type Identification

As a first step in our model we need to identify the query-entity type(s).
We propose a feedback-based method, to rank pronoun sets based on the
probability of being feasible for the query-entity. We calculate the average
probability of each pronoun set in the top M relevant documents as follows:

fk(Q) =
1

|F (Q)|
∑

d∈F (Q)

atf Q(Ak; d)

len(d)
,

where F (Q) is the set of top M relevant documents to the query Q and k
indicates the query type which can be one of: mp, fp or np. The frequency
of pronoun set Ak, which are coreferenced with Q, can be estimated using
Equation 2. The probability that the anaphoric set Ak is feasible for query
Q can then be calculated as follows:

P (Ak|Q) =
fk(Q)∑

k∈{mp,fp,np} fk(Q)
(4)

3.2 Anaphoric Frequency of Query Terms

The anaphoric frequency of a query term can be estimated as follows:

tf anaphoric(w; d) =
∑

Ak∈A

P (Ak|Q)atf w(Ak; d) (5)

where A is the set of pronoun categories that are feasible for the query, that
is A = {Amp, Afp, Anp}. P (Ak|Q) is the probability that Ak is a feasible
pronoun set for the query entities. Some queries may contain more than one
entity type. For instance, queryQ1009 from BLOG06 collection, “Frank Gehry
architecture”, contains Frank Gehry as a person entity, but the whole query
can refer to the architecture by Frank Gehry. Ideally we want to consider this
ambiguity in the query-entity type and reflect it in the probability P (Ak|Q)
as follows: P (Ak|Q1009) is 0.57, 0.41 and 0.02 for pronoun sets Anp, Amp

and Afp respectively. These probabilities indicate that it is more probable
that the query refers to a male entity and It is also highly probable that
the query-entity is a non-person entity, but it is unlikely that the query is
referring to a female entity. After ranking pronoun sets based on P (Ak|Q),
we may choose to use the top one, two or all pronoun sets. In the next section,
we describe a feedback proximity-based method to calculate this probability
for every pronoun set in relation to the query.
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atfw(Ak; d) is an estimation of the number of times that a pronoun from
Ak is coreferential with query term w in document d and can be estimated
using Equation 2 where X = {w}.

Once we obtain the new query term frequency, using Equation (1), esti-
mated based on observed and anaphoric frequencies, we can apply any re-
trieval model to rank documents according to their relevance to the query.

4 Experiments

In this section we first explain the experimental setup used for evaluating our
methods. We then evaluate our proposed method for identifying the query
type such as male, female or object in Section 4.2. We report and discuss the
result of evaluating our method on test queries in Section 4.3.

4.1 Experimental Setup

Our experiments are based on the BLOG06 collection [3] which contains
more than 3 million blog posts. We used the set of 150 topics in TREC 2006
through 2008 and their corresponding relevance assessments.

Each permalink was preprocessed by removing boiler templates (i. e. non-
relevant parts such as menu, banner, site description, etc) using DiffPost
algorithm [5] and then indexed as a retrieval unit. The preprocessing of
the collection was minimal and involved only stopword removal with pro-
nouns removed from the stop list. To set the parameters of the model (i.e., σ,
okapi parameters, and the number of feedback documents), we used TREC06
(Q851 − Q900) topics as our training set and TREC07 (Q901 − Q950) and
TREC08 (Q1001 −Q1050) topics for our test set.

We used the topical relevance judgements provided by TREC for evalua-
tion. We report the MAP as well as R-Precision (R-Prec), binary Preference
(bPref), and Precision at 10 documents (P@10). Throughout our experiments
we used the paired t-test with significance level of 0.001 to test the significance
of our method. The symbols − and + show statistical significant decreases
and increases compared to the standard term frequency (STF ) baseline.

In this paper we use Okapi BM25 to score documents [6]. The BM25 model
is explained as:

BM25 =
∑
w∈Q

idf(w)
(k1 + 1))tf(w; d)

k1((1− b) + b(ld/Lave)) + tf(w; d)

Here, k1 and b are normalization parameters. Lave indicates the average doc-
ument length in the collection and idf(w) is the inverse document frequency
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QNo Query Query type weighting Evaluation

864 muhammad cartoon P (Amp|Q):0.57, P (Afp|Q): 0.07, P (Anp|Q): 0.36 Correct
869 colbert report P (Amp|Q):0.55, P (Afp|Q): 0.03, P (Anp|Q): 0.42 Correct
935 Mozart P (Amp|Q):0.74, P (Afp|Q): 0.01, P (Anp|Q): 0.25 Correct
1006 Mark Warner P (Amp|Q):0.68, P (Afp|Q): 0.15, P (Anp|Q): 0.17 Correct

for President
1019 China one child law P (Amp|Q): 0.07, P (Afp|Q): 0.20,P (Anp|Q):0.73 Correct
1049 Aperto Networks P (Amp|Q): 0.00, P (Afp|Q):0.00,P (Anp|Q):1.0 Correct

905 king funeral P (Amp|Q):0.61, P (Afp|Q): 0.29, P (Anp|Q): 0.1 Incorrect
1034 Ruth Rendell P (Amp|Q):0.59, P (Afp|Q): 0.21, P (Anp|Q): 0.20 Incorrect

Table 1 Example of pronoun set weighting for queries

of w:

idf(w) = log(
N − n+ 0.5

n+ 0.5
)

4.2 Evaluation of Query Type Identification

To evaluate the accuracy of our query type identification method, we man-
ually classify the queries to the three categories of male, female and non-
person. We then compare the manually assigned type to the first category of
pronouns assigned to every query of test set. The comparison shows that the
proposed method has classification accuracy of 0.98. Out of 100 test queries,
just two queries, Q905 and Q1034, were assigned an incorrect primary pro-
noun set. Table 1 shows examples of correct and incorrect entity-query type
weighting. The weights and rankings of pronoun sets, perfectly reflects the
ambiguity of some queries such as Q1019, China One Child Law, where we can
consider the whole query phrase as a non-person entity or we can consider
child as a person entity. As we can see from Table 1, the probability assigned
to the non-person entity is more than the probability of female or male type,
which makes sense. On the other hand, in cases such as Q1049, Aperto Net-
works, the query is non-person with no ambiguity and it is reflected in the
weighting clearly.

4.3 Retrieval Performance on the Test Queries

Table 2 shows the evaluation result of our proposed method on the test set
of queries. PW indicates the proposed method for estimating anaphoric fre-
quency of query terms using Equation 5. We should remind that the anaphoric
frequency is then added to the standard term frequency of the query term
using Equation (1).
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method MAP R-prec bPref p@10

STF 0.4152 0.4606 0.4933 0.6710

T1 0.3109− 0.3665− 0.4526 0.4170−
T2 0.2908− 0.3470− 0.4339− 0.3720−
T3 0.2812− 0.3390− 0.4267− 0.3350−

W1 0.3269− 0.3804− 0.4632 0.4590−
W2 0.3211− 0.3728− 0.4572 0.4450−
W3 0.3194− 0.3717− 0.4555 0.4450−

P1 0.4319+ 0.4683 0.5230+ 0.7070
P2 0.4282+ 0.4703 0.5243+ 0.7330+

P3 0.4283+ 0.4709 0.5207+ 0.7270+

PW1 0.4365+ 0.4685+ 0.5206+ 0.7140+

PW2 0.4397+ 0.4731+ 0.5228+ 0.7180+

PW3 0.4402+ 0.4727+ 0.5233+ 0.7240+

Table 2 Results on TREC07-08 query sets.

In order to see the effect of different components, we consider the following
variations of the model:

Variation T

Variation T estimates tf anaphoric(w; d) using the standard frequency of pro-
nouns:

tf anaphoric(w; d) =
∑

Ak∈A

tf(Ak; d)

Comparing this variation to the full model PW , helps us to understand the
effect of using proximity information for weighting the pronoun occurrence
as well as the effect of weighting pronoun sets based on their relevance to
the query. In fact, we aim to see how the performance changes when we turn
off these two weighting features and just add the pronoun frequencies to the
query term frequency.

Variation W

VariationW also uses standard term frequency to calculate tf anaphoric(w; d).
However, it uses p(Ak|Q) to weight the pronouns sets’ frequency:

tf anaphoric(w; d) =
∑

Ak∈A

P (Ak|Q)tf(Ak; d),

In this variation, we just turn off the proximity weighting but keep the
pronoun weighting component. Here, for every pronoun set, we count the
occurrences of all pronouns in that set, even when they are far away from any
query term, however, the frequency of every pronoun (e. g. she) is weighted by
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the probability of its associated pronoun set given the query (e. g. P (Af |Q)).
Section 3.1 explains how to estimate this probability.

Variation P

In variation P , we turn off the pronoun type weighting and investigate the
effect of using the proximity information to estimate the probability that
a pronoun is coreferential with the query term. We therefore estimate the
pronoun count as follows:

tf anaphoric(w; d) =
∑

Ak∈A

atf w(Ak; d),

In all variations we consider a ranking of pronoun sets based on the
P (Ak|Q). In Table 2, we report the result of different variations of the model.
For each variation, we report the result of using all pronoun sets with sub-
script 3 (i. e. T3 or W2, P2 and PW2 ). The result of using only the most
probable pronoun set is also reported using subscript 1(i. e. T1 orW1, P1 and
PW1 )

Table 2 shows that the best results are achieved using the full setting and
all pronoun sets (PW3 ). It is interesting that in setting PW , using all pro-
nouns does not degrade the performance compared to using just the highest
relevant set of pronouns. The reason is that the pronoun-set weighting of
the model along with the proximity method help the system in using more
than one set of pronouns for ambiguous queries without adding noise for the
non-ambiguous ones (for non-ambiguous queries, just one pronoun sets has a
weight close to 1 while the rest are close to zero).

Analysis of different components is conducted by trying variations T , W
and P . As we can see in the results of variation T , using all counts of the se-
lected pronoun sets without weighting by proximity information or by feasibil-
ity probability leads to statistically significant decreases in the performance.
The same result is obtained in variation W , where we weight pronoun-set
counts by their feasibility probability but we ignore the proximity informa-
tion. This way, we may count a pronoun which occurs so far from the query
and so may not be referring to the query as a query occurrence. However,
compared to T , in W , we ignore or weight less pronouns that are not feasible
for the query and this leads to improvement in settingW compared to setting
T . We also try the effect of using proximity information without using the
feasibility weight, in setting P . We aim to see if the proximity information is
enough for capturing the relevance of a pronoun to the query without both-
ering to weight the pronoun sets. This setting may lead to count a pronoun
of male category for a female query entity, if it occurs in close proximity to
the query. As we can see from the result, using just proximity information in
weighting the pronoun counts leads to statistically significant improvements
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compared to STF method which ignores the pronoun counts. Although the
proximity information alone is enough for improving the performance, adding
the feasibility weighting component leads to higher performance. Comparing
the performance of Pi with PWi reveals the importance of considering the
feasibility weights specially in case of using more pronoun sets. In fact, when
using the most feasible pronoun set (P1), adding feasibility weight (PW1)
improves the performance, but the improvement is not a lot. However, when
we consider two or more set of pronouns, considering the feasibility weight is
more effective (e. g. compare Pi with PWi where i > 1).

The proposed proximity-based models have a σ parameter (equation 3)
which reflects how far a pronoun and query term can be and still be core-
frential. Figure 2 shows the sensitivity (in terms of MAP) of PW 3 and P3

settings to the different values of σ parameter. We can see that PW 3 has
higher MAP and is more stable across different values of σ.

4.3.1 Comparison with Related Work

To the best of our knowledge, the only previous work that considered the
counting of pronouns in the query occurrence statistics is the CEEF model
in [4]. CEEF is based on the query-entity phrase frequency rather than in-
dividual query term frequencies and involves manual identification of part
of the query which reflects the query-entity. Therefore the direct comparison
of our model with CEEF is not reasonable. Authors in [4] report the MAP
value of 0.4139 in case of using CEEF in comparison with ignoring the pro-
noun counts and using the raw entity frequency which leads to MAP value
of 0.3929. Our method PW3 with MAP 0.4402 also improve over the stan-
dard query term frequency with MAP 0.4152. This indicates the advantage
of considering pronoun counts even when working at term level instead of en-
tity level. Authors in [4] report further improvement by combing the ranking
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of a standard term based retrieval model such as language model with the
entity based model. Our model is not comparable with that variation since
our model is not based on entity phrase and there is no point in combining
it with another term level model.

5 Conclusion and Future Work

In this paper we proposed a proximity-based method for estimating the count
of pronouns that can be coreference with the query terms. We incorporated
this anaphoric count in the frequency of query terms and used it for retrieval.
The proposed model was shown to be effective over the large and standard
BLOG06 collection. For future work we plan to investigate the effect of using
more complete sets of anaphoric expressions which goes beyond pronouns.
For instance, documentary or movie may be used to refer to a movie instead
of repeating its name. We also plan to apply the same method over the entity
frequency instead of individual term frequencies and compare the results with
the previous work [4].
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Derivation of Linguistic Summaries
is Inherently Difficult:
Can Association Rule Mining Help?

Janusz Kacprzyk1 and S�lawomir Zadrożny1,2

Abstract We present first the essence of fuzzy linguistic summaries, indi-
cate their relation to fuzzy queries with linguistic quantifiers, and show a
taxonomy of protoforms of linguistic summaries indicating that a general
protoform, which corresponds to some type of an IF-THEN rule, parallels
the structure and form of an association rule. We show that the use of our
fuzzy querying interface makes it possible to operationalize the process of def-
inition, updating and processing of fuzzy terms in linguistic data summaries
(fuzzy values, fuzzy relations, fuzzy linguistic quantifiers, etc.) and their cor-
responding fuzzy association rules of a special type. We develop for them
a mining algorithm based on AprioriTID. This is clearly a step towards an
effective and efficient method for the generation of linguistic data summaries
which is badly needed for their proliferation in practice.

1 Introduction

We deal with linguistic data(base) summaries which try to grasp the very
meaning of a (usually huge) set of (numeric, in our case) data via a simple
and short statement in natural language. For instance, for a (possibly huge)
personnel database a short yet informative linguistic summary may be “most
young and highly qualified people have high salaries.” The need for data
summarization, one of the basic capabilities to be possessed by any intelligent
system, is a direct result of an abundance of data that is beyond human
cognition and comprehension, and that for a human being the only fully
natural means of communication is natural language.
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We consider the use of linguistic data(base) summaries introduced by
Yager [24, 26], then advanced by Kacprzyk and Yager [8], and Kacprzyk,
Yager and Zadrożny [9], and implemented in Kacprzyk and Zadrożny [12, 14,
16, 17], which are linguistically quantified propositions. It is worth to mention
some other approaches to the linguistic summarization of databases, cf. Bosc
et al. [4], Dubois and Prade [5], Raschia and Mouaddib [22] or Rasmussen
and Yager [23].

Though the concept of linguistic summaries is simple and intuitively ap-
pealing, their derivation (mining) is difficult since the linguistic summaries
make sense for large sets of data, and may involve a considerable number of
linguistic values. Moreover, at a conceptual level, an automatic expression
of the real human interest and intention with respect to a linguistic sum-
mary is questionable. We will adopt our general approach (cf. Kacprzyk and
Zadrożny [12, 13]) of an interactive approach via the use of our FQUERY for
Access, a fuzzy querying add-on (see Kacprzyk and Zadrożny’s [10, 11, 15]
and also Zadrożny et al. [31]).

First, we show that by relating various types of linguistic summaries to
fuzzy queries, with various known and sought elements, we end up with a
hierarchy of Zadeh’s [29] protoforms of linguistic data summaries. We mention
some ways for an automatic generation of linguistic summaries for various
protoforms, and indicate that the most general one closely resembles some
special types of IF-THEN rules. We show that the mining of such general
protoforms of linguistic data summaries can be implemented via the mining
of traditional association rules for which many quite well known and powerful
algorithms are known.

2 Linguistic Summaries via Fuzzy Logic
with Linguistic Quantifiers

In the basic Yager’s [24] approach, in its constructive form by Kacprzyk
and Yager [8], and Kacprzyk, Yager and Zadrożny [9], and implemented in
Kacprzyk and Zadrożny [12, 15, 16], we have: (1) V , a quality (attribute) of
interest, e.g. salary in a database of workers, (2) a set of objects (records) yi
that manifest quality V , e.g. the set of workers; hence V (yi) are values of
quality V for objects yi, and (3) Y = {V (y1), . . . , V (ym)} is a set of m pieces
of data (the “database” in question). A linguistic summary of a data set
consists of:

• a summarizer S (e.g. young, extendable to young and well paid, etc.),
• a quantity in agreement Q given as a fuzzy linguistic quantifier (e.g. most),
• truth degree T — e.g. 0.7, as, e.g., “T (most employees are young) = 0.7”.

The calculation of the truth degree is equivalent to the calculation of the truth
value (from [0, 1]) of a linguistically quantified statement which may be done
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by using Zadeh’s [28] calculus of linguistically quantified propositions (cf.
Zadeh and Kacprzyk [30]) which will be used here; cf. also Yager’s [25] OWA
operators (cf. also Yager and Kacprzyk [27]). Zadeh’s calculus of linguistically
quantified propositions makes it possible to calculate the truth value of the
propositions:

Qy∈Y S(y) (e.g. “Most elements of Y possess property S”) (1)

Qy∈Y K S(y) (e.g. “Most elements of Y with property K (2)
possess also property S”)

using the following formulas, respectively:

truth(QS(y)) = μQ

(∑
Count(S)∑
Count(Y )

)
= μQ

(
1

m

m∑
i=1

μS(yi)

)
(3)

truth(QK S(y)) = μQ

(∑
Count(S ∪K)∑
Count(K)

)
= μQ

(∑m
i=1 μS(yi) ∧ μk(yi)∑m

i=1 μK(yi)

)
(4)

where m = card(Y ),
∑

Count(A) =
∑

yi∈Y μA(yi),
∑m

i=1 μk(yi) �= 0, and
∧ is a t-norm.

Formula (2) represents a richer form of a linguistic summary which covers
a fuzzy subset of a “database” Y , defined by a fuzzy predicate K, a qualifier.

The basic validity criterion, i.e. the truth degree T , calculated using (3)
or (4) is certainly the most important but does not grasp all aspects of a
linguistic summary. As to some other quality (validity) criteria, e,g., Yager
[24] proposed a measure of informativeness, and then five additional mea-
sures have been proposed by Kacprzyk and Yager [8] and Kacprzyk, Yager
and Zadrożny [9]: truth, degrees of imprecision, covering and appropriateness,
and a length of a summary. For more measures, see Kacprzyk, Wilbik and
Zadrożny [7]. The problem is how to generate the best summary (or sum-
maries). An exhaustive search can obviously be computationally prohibitive,
and some implicit enumeration type schemes should be used to be dealt with
in the next section.

3 A Natural Relation between Linguistic Summaries
and Fuzzy Querying – A Protoform based Analysis

Since it is difficult to automatically detect what (in the sense of a linguis-
tic summary) is interesting, intended, useful, etc. to the user, Kacprzyk and
Zadrożny [13] proposed an interactive approach for the definition of elements
of an intended linguistic summary via a user interface of a fuzzy querying
add-on. The roots are our previous papers on the use of fuzzy logic in query-
ing databases (cf. Kacprzyk and Zió�lkowski [19], Kacprzyk, Zadrożny and
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QKYs are S

QKYs are earning Svalue salary

QKYs are earning low salary

Q young Ys are S
������

������

Fig. 1 An example of a part of a hierarchy of protoforms

Zió�lkowski [18]) via imprecise requests which led to our FQUERY for Access,
an add-in to Microsoft Access R© that makes it possible to use fuzzy linguistic
terms in database queries such as numerical fuzzy values, exemplified by low
in “profitability is low”, fuzzy relations, exemplified by much greater than in
“income is much greater than spending”, and linguistic quantifiers, exempli-
fied by most in “most conditions have to be met”.

These fuzzy linguistic terms are building blocks of fuzzy queries in our ap-
proach and are represented as fuzzy sets. Notably, linguistic quantifiers pro-
vide for a more flexible aggregation of simple conditions in queries. For exam-
ple, instead of requiring that all simple conditions are met, one may indicate
that most of them are to be met. Clearly, linguistic terms have to be defined
and stored internally. This was implemented in our FQUERY for Access pack-
age, an add-in to Microsoft Access (cf. Kacprzyk and Zadrożny [10, 11, 15]).

Obviously, fuzzy queries directly correspond to linguistic summaries. Thus,
the derivation of a linguistic summary may proceed as: (1) the user formulates
a set of linguistic summaries of interest (relevance) using the fuzzy querying
add-on, (2) the system retrieves records from the database and calculates
the validity of each summary adopted, and (3) a most appropriate linguis-
tic summary is chosen. Operationally, to derive linguistic summaries, some
standardized forms of linguistic summaries would be desirable, and this is
provided by Zadeh’s protoform viewed as an abstract prototype of a linguis-
tic summary given by (1) or (2).

For the generation of linguistic summaries it is convenient to consider the
summarizer (and the qualifier) as an abstract fuzzy logic statement “X IS A”,
where X is a placeholder for an attribute of objects in Y and A is a place-
holder for a fuzzy set (linguistic term) determining its value as, e.g., “age
IS young” or also “salary IS A”. Two former summarizers are fully instanti-
ated, while the latter still contains an abstract form of the attribute value (A).

Since the protoforms may form a hierarchy, we can define lower level (less
abstract) protoforms, for instance replacing Q by a specific linguistic quan-
tifier, “most”, and we get: “Most Y s are S” for (1) and “Most KY s are S”
for (2). Zadeh’s protoforms may conveniently be used as a fundamental ele-
ment of the user interface in that the user selects a protoform of a linguistic
summary from that hierarchy and then the system instantiates the selected
protoform in all possible ways, replacing abstract symbols by chosen fuzzy
values and linguistic quantifiers stored in a dictionary. A part of such a hi-
erarchy of protoforms is shown in Figure 1. At the top we have a completely
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Table 1 A taxonomy of linguistic summaries

Type Given Sought Remarks

1 S Q Simple summaries through ad-hoc queries

2 S K Q Conditional summaries through ad-hoc queries

3 Q Sstructure Svalue Simple value oriented summaries

4 Q Sstructure B Svalue Conditional value oriented summaries

5 Nothing S K Q General fuzzy rules

abstract protoform; in a protoform to the right, the qualifierK is instantiated
to “age IS young”; in the one to the left, summarizer S is first instantiated
to “salary IS Svalue”, i.e., the attribute of the summarizer is selected to be
“salary” but its value is not determined; then this protoform is further instan-
tiated to fully specify the summarizer using “low” as the value of “salary”.

Thus, the more abstract forms of protoforms correspond to cases in which
we assume less about the summaries sought. At the one extreme, we: (1) as-
sume a totally abstract top protoform, or (2) assume that all elements of
a protoform are given, i.e., all attributes and all linguistic terms express-
ing their values are fixed. In case 1 data summarization by a “brute force”
full search would be extremely time-consuming, but might produce interest-
ing, unexpected views on data, and in case 2 the user is in fact guessing a
good candidate summary but the evaluation is simple, by answering a (fuzzy)
query; this is related to ad hoc queries.

This classification may be shown as in Table 1 in which 5 basic types
of linguistic summaries are shown, corresponding to protoforms of a more
and more abstract form; Sstructure denotes that attributes and their con-
nection in a summary are known, while Svalue denotes the values of the
attributes sought.

Type 1 summaries may be easily obtained by a simple extension of fuzzy
querying. The user has to construct a query, a candidate summary, and it
has to be determined what is the fraction of rows matching this query and
what linguistic quantifier best denotes this fraction. A Type 2 summary is a
straightforward extension of Type 1. Type 3 summaries require much more
effort as their primary goal is to determine typical or exceptional, depending
on the quantifier, values of an attribute. A Type 4 summary is meant to find
typical (exceptional) values for some, possibly fuzzy, subset of rows. Com-
putationally, Type 5 summaries represent the most general form considered
here: fuzzy rules describing dependencies between specific values of particular
attributes. Type 1 and 3 summaries have been implemented as an extension
to Kacprzyk and Zadrożny’s [12] FQUERY for Access. Two approaches to
Type 5 summaries generation have been proposed. First, a subset of such
summaries may be obtained by analogy with association rules concept and
employing their efficient algorithms. Second, genetic algorithms may be used
to search the space of summaries (cf. George and Srikant [6]. In the next
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section we discuss in a more detailed way one more special case of Type 5
summary, for which computationally efficient algorithms are known.

4 Linguistic Summaries and Association Rules:
An Intrinsic Relationship

In this section, we will follow another path by investigating the similarity
of our Type 5 summaries to association rules [1]. Originally, the association
rules were defined for transactional data and binary valued attributes in the
following form:

A1 ∧A2 ∧ . . . ∧ An → An+1 (5)

An association rule states that if in a database row all the attributes from
{A1, A2, . . . , An} take on value 1, then also attribute An+1 is expected to
take on value 1.

A row in a database (table) is said to support a set of attributes {Ai}i∈I

if all attributes from the set take on in this row value 1. There are two
main quality measures for the association rule (5): the support which is
the fraction of the number of rows supporting the set of attributes {Ai},
i ∈ {1, . . . , n+ 1}, in a database (table), and the confidence which is the frac-
tion of the rows supporting {Ai}, i ∈ {1, . . . , n+1} among all rows supporting
{Ai}, i ∈ {1, . . . , n}. While the support determines a statistical significance
of a rule, the confidence measures its strength. Usually, we are interested
in rules having values of the support above some minimal threshold and a
high value of the confidence. Many algorithms for finding all association rules
possessing a required support measure were devised, see, e.g. Agrawal and
Srikant [1], Borgelt and Kruse [3].

As to most obvious extensions of the initial form of the association rule,
one can mention the following ones: (1) the right-hand side, like the left-
hand side, may contain a conjunction of the attributes instead of just one
attribute, (2) many-valued scalar values and their hierarchies may be used,
(3) numerical, real-valued attributes may be used leading to the quantitative
association rules, and (4) some constraints may be imposed on combinations
of attributes in rules. In view of (1) and (3) the initial scheme of an association
rule may be rewritten as:

A1 = a1 ∧ A2 = a2 ∧ . . . ∧ An = an → An+1 ∧ . . . ∧ An+m = an+m (6)

Clearly, the association rules may be interpreted as a special case of the lin-
guistic summaries. Namely, the antecedent and consequent of (5) correspond
to qualifier K and summarizer S of (2), respectively. The confidence of a rule
is related to the combination of the linguistic quantifier and truth degree of
(2). The general form a linguistic summary assumes a summarizer S to be a
formula, atomic or complex. It is easy to see that the structure of the quali-
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fier and the summarizer available in the case of association rules is somehow
limited but this simplicity should increase a chance of existence of efficient
algorithms for rule generation.

In our previous work (cf. Kacprzyk and Zadrożny [14]) we implemented
the mining of linguistic summaries corresponding to the association rule (6)
within the framework of our fuzzy querying package FQUERY for Access.
For that purpose we generalized (6) to:

A1 IS f1 ∧ . . . ∧ An IS fn → An+1 IS fn+1 ∧ . . . ∧ An+m IS fn+m (7)

This boils down to the use of fuzzy values fi instead of crisp values which
clearly implies that a fuzzy association rule is obtained.

Here we propose two extensions to this form of fuzzy association rule. First,
we enrich the structure of an atomic condition: Ai IS fi, (an item meant in the
terminology of the association rules), by allowing it to take the following form:

Ai IS (fj1 ∨ . . . ∨ fjk) (8)

where fjl are some fuzzy values defined over the domain of the attribute Ai.
Thus, we propose to make it possible to use a range of fuzzy values which
corresponds to the case of quantitative crisp association rule (cf., for instance,
[21]). The second extension of (6) is to use a flexible aggregation operator in
the summarizer and/or qualifier formula. This leads to the following form of
the atomic condition:

Q of (A1 IS f1, A2 IS f2, . . . , An IS fn) (9)

In practical cases this will be most often the only atomic formula in an
antecedent or consequent of an association rule. However, it may be just a
part of a compound formula.

Such a simple, yet intuitively appealing and highly constructive extension
of the fuzzy association rules is to a large extent implied by the capabilities
of our FQUERY for Access. This will be briefly presented in the next section.

5 Mining Fuzzy Association Rules
by using a Fuzzy Querying Interface

Now, we present how FQUERY for Access can be used to find the fuzzy asso-
ciation rules corresponding to the Type 5 protoforms of linguistic summaries.

Basically, FQUERY for Access supports various linguistic terms, as men-
tioned: numerical fuzzy values (“low”), scalar fuzzy values (“Central Eu-
rope”), fuzzy relations (“much greater than”), and linguistic quantifiers
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(“most”) handled using Zadeh’s [28] calculus of linguistically quantified
propositions.

First, notice that our fuzzy querying interface offers a practical solution
to some problems faced by the “classical” [21] search for the association.
Namely, the quantitative association rules usually require discretization of the
attributes obtained via a partition of its domain into a number of intervals.
Then, each interval is treated as an additional binary attribute and then
many known algorithms for the generation of classical association rules may
be employed. It is not obvious how to do such a partition but having a
domain covered by a number of overlapping fuzzy values (defined and tested
for the purposes of fuzzy querying on many former cases of applications) the
partition is readily available.

The combination of fuzzy querying and mining within the same interface
seems to yield a synergetic effect, and from the viewpoint of software engi-
neering it is advantageous to employ some of the modules to support both
functions. The user interface is the same as for fuzzy querying. However, for
computational efficiency reasons, the very algorithm of fuzzy association rules
mining is implemented as a separate executable.

Our implementation of association rules is based on the Agrawal and
Srikant’s AprioriTID algorithm [1] (cf. Borgelt and Kruse [3]) which works
in two steps: first it finds frequent itemsets and then produces rules from
each itemset. The second step is relatively easy, hence we will focus on the
first one.

An itemset is a conjunction of the items of the form (8) or (9). A row in the
database (table) is said to support an itemset if the corresponding conjunction
“is true” (the degree of satisfaction exceed some threshold) for this row.
An itemset containing k items is called a k-itemset. The algorithm starts
with the evaluation of 1-itemsets. These itemsets which are not supported
by sufficient number (minsup) of rows are deleted. Previously, we assumed
1-itemsets only in the form (7). In order to implement items of the form (8)
or (9) we have to extend this step. We treat as the 1-itemsets also the items
like Ai IS (fj1 ∨ . . .∨ fjk) and Q of (A1 IS f1, A2 IS f2, . . . , An IS fn). More
precisely, first, only the “regular” 1-itemsets (7) are counted, i.e., a full scan
of the database (table) is done and the frequency of appearance of all items
is calculated. Then, the 1-itemsets of type (8) are constructed but only such
fij are taken into account that have the support greater than some value (a
parameter of the method, in addition to minsup and minconf ) higher than
0 and less than minsup. For example, if a regular 1-itemset “salary IS high”
gets a very low support, then we will not construct either “salary IS medium
or high” or “salary IS low or high” 1-itemsets. This helps reduce the time
and memory complexity of the algorithm.

Such a reduction is even more important in case of the implementation of
the 1-itemsets of type (9). Basically, we should take into account all subsets of
the regular 1-itemsets and all possible quantifiers Q. This would be computa-
tionally intractable and in fact require a kind of a recursive use of AprioriTID
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in the first step. Thus, in our implementation we limit ourselves to just one,
fixed quantifier. Moreover, for obvious reasons, we take into account only
such subsets of regular items that: all refer to different attributes, and there
is enough number of them to make quantification meaningful. Thus, we will,
e.g., neither construct a 1-itemset of the form “most (salary IS high, salary
IS low, . . . )” nor “most (salary IS high, age IS high).

Having the 1-itemsets of type (8) constructed we calculate their support.
We assume that no row supports two different fuzzy values for the same
attribute. Then, the support for Ai IS (fj1 ∨ . . . ∨ fjk) is just the sum of
supports for Ai IS fjl, l = 1, . . . , k; that we calculated earlier. Now the 1-
itemsets of type (9) are constructed. They may use both the regular 1-itemsets
as well as the 1-itemsets of type (8), e.g., “Most (A1 IS (f11 ∨ . . . ∨ f1k),
A2 IS f2, . . . )” are allowed. The support for the 1-itemsets of type (9) is
then calculated. However, due to the use of AprioriTID another full scan
of the database is not needed. During the first scan we have recorded in
some data structures the IDs of rows supporting the particular regular 1-
itemsets and now it is enough to operate on these structures. Obviously,
it does increase memory complexity of the algorithm. Then, the algorithm
proceeds as usual [1] generating and evaluating the k-itemsets for k = 2, 3, . . ..
The only additional effort is needed to guarantee that no itemset produced
twice refers to the same attribute, e.g., the 2-itemset “salary IS high AND
salary IS medium” has to be excluded. Finally, all frequent itemsets found
are taken into account when producing association rules of the confidence at
least equal to the required value (minconf ).

We deal with the real valued attributes so that for each such an attribute
and each fuzzy value defined for it we introduce a new items which may
be treated as binary, i.e., appearing in a row or not. In this respect, prac-
tically only a limited number of fuzzy values per attribute (say 3) leads to
computationally tractable mining tasks.

The implementation of the algorithm for the mining of linguistic summaries
via extended fuzzy association rules may be presented as follows:

Step 1: Selection of the attributes and fuzzy values
The user chooses the attributes to be used, i.e. builds a query re-
ferring to the attributes to be taken into account. Then, the user
initiates the data summarization process, sets the parameters (min-
sup, minconf, minimum support, . . . ) and the system automatically
performs the rest of the steps.

Step 2: Construction of the items
For each pair – of the selected attributes and fuzzy values — the
system creates an item, as described earlier.

Step 3: Forming the data set and starting external application for fuzzy
linguistic rules mining
The items constructed are numbered. Then, the data set is produced
describing each row with numbers of items supported by it. The
calculations proceed by the fuzzy querying module. When the data
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set is ready, an external application is started with this data set
given on input.

Step 4: Calculation of the support for the regular 1-itemsets
An external application reads the input data set and immediately
calculates support for the regular 1-itemsets. It also records for each
1-itemset numbers (IDs) of rows supporting it.

Step 5: Construction of the 1-itemsets of type (8) and calculation of their
support
Only the regular 1-itemsets of the support higher than a user-
specified threshold are taken into account. The number of 1-itemsets
of this type produced for a given attribute depends on the number
of fuzzy values defined for it. The support is obtained by summing
up the support of the constituent regular 1-itemsets. All new 1-
itemsets are numbered.

Step 6: Pruning of the set of 1-itemsets
All itemsets with the support lower than the support threshold
(minsup) are discarded. Additionally, also itemsets with the sup-
port higher than another threshold, an item omit threshold, are
discarded since the items present in almost all records contribute
nothing interesting to the rules produced.

Step 7: Construction of the 1-itemsets of type (9), calculation of their sup-
port and pruning
Both the regular and 1-itemsets added in Step 5 are considered;
we refer to them jointly as simple 1-itemsets. The 1-itemsets con-
structed are identified with lists of the constituent simple 1-itemsets.
The lists are ordered lexicographically which makes the process of
generation more efficient. The support is computed for the itemsets
generated and those below the minsup threshold are discarded.
All itemsets produced so far and passing the pruning constitute the
collection of 1-itemsets.
SET k = 2

Step 8: Generate the k-itemsets
They are generated from the frequent (k − 1)-itemsets as in Apri-
oriTID. Pairs of the frequent (k − 1)-itemsets of the form A1 ∧
A2 ∧ . . . ∧ Ak−1 and B1 ∧ B2 ∧ . . . ∧ Bk−1, where Ai = Bi for
i = 1, . . . , k − 2, are sought. Then, a new k-itemset of the form
A1 ∧A2 ∧ . . .∧Ak−1 ∧Bk−1 is generated. In the original algorithm,
the rules generated in such a way are additionally tested and pos-
sibly eliminated before Step 7. On the other hand, we add another
k-itemset generation limitation, namely the items Ak−1 and Bk−1

have to correspond to different original attributes. This is obvious
if the items Ak−1 and Bk−1 are regular. Otherwise, by identifying
an item of type (8) or (9) with a list (set) of attributes referred to
within it, we require the intersection of these sets to be empty.
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Step 9: Calculate the support for all the k-itemsets
The calculation is based on the recorded numbers (IDs) of rows
supporting the particular (k− 1)-itemsets. The similar data on the
supporting rows is produced for the k-itemsets.

Step 10: Pruning of the set of k-itemsets (as in Step 6)
As a result we obtain the frequent k-itemsets.
IF the set of k-itemsets is void THEN GOTO Step 11.
SET k = k + 1; GOTO Step 8.

Step 11: Generate rules from the frequent l-itemsets, l = 1, . . . , k − 1 and
output them to the file which is done by an external application

Step 12: Display the results

The number of the rules produced is usually huge. Some counter-measures
have to be undertaken as, e.g., approaches to the representation of concise
association rules [20]. We adopt a simple yet efficient pruning scheme. A
rule R1 is pruned if there exists another rule R2 such that the 3 conditions
are met simultaneously: (1) the antecedent of R2 is a subset of that of R1,
(2) the consequent of R1 is a subset of that of R2, (3) the confidence of R2 is
not less than that of R1. This leads to asubstantial, lossless reduction of the
number of rules.

6 Remarks on an Implementation

Elements of the method for generating linguistic data summaries through
association rule mining have been used by us in a number of applications,
and we have employed therein the AprioriTID in Borgelt’s implementation
(cf. http://www.borgelt.net/apriori.html). One of the most intuitively
appealing examples was related to the use of linguistic data summaries to
a human consistent analysis of data related to the innovativeness of Polish
companies (cf. Baczko, Kacprzyk and Zadrożny [2]). The values of each at-
tribute were described by three linguistic terms: low, medium and high, and
if needed, the original values of selected numerical attributes were replaced
by their best matching linguistic terms. The definition of linguistic terms was
supported by FQUERY for Access. The linguistic quantifier “most” was used
in the generated summaries. The set of transformed data was processed by
AprioriTID in Borgelt’s implementation. We obtained a lot of very interest-
ing linguistic summaries exemplified by: “Most companies having high net
revenues from sales and equivalent in 2004 had high total assets in 2004”,
“Most of the companies having at least a few points (scores) for their RTD
related activities in 2006 had also some points for that in 2005”, “Most com-
panies having some points related to patents registered in 2006 AND some
points for their RTD related activities in 2005 had also some points for RTD
related activities in 2006”, etc. Thus, in general, companies being active in
the RTD field in 2005 did not necessarily continue to do so in 2006. However,

http://www.borgelt.net/apriori.html
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those with some patents in 2006 usually also had RTD related activities in
2006”.

7 Concluding Remarks

The use of our fuzzy querying interface has made it possible to operationalize
the process of definition, updating and processing of fuzzy terms which are
meant to exist in linguistic data summaries (fuzzy values, fuzzy, relations,
fuzzy linguistic quantifiers, etc.) and, if we limit our attention to linguistic
summaries following a special, very general protoform, which are meant to be
in fuzzy association rules which correspond to those special linguistic sum-
maries. And, for those association rules we have developed a mining algorithm
based on the idea of AprioriTID. This is clearly a step towards an effective
and efficient method for the generation of linguistic data summaries which is
badly needed for their proliferation in practice. Both the use of association
rule mining, in which much software and experience exists, and our practical
experience outlined clearly indicate that this approach to the derivation of
linguistic summaries may be effective and efficient.
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Mining Local Connectivity Patterns
in fMRI Data

Kristian Loewe1, Marcus Grueschow2, and Christian Borgelt3

Abstract A core task in the analysis of functional magnetic resonance imag-
ing (fMRI) data is to detect groups of voxels that exhibit synchronous activity
while the subject is performing a certain task. Synchronous activity is typi-
cally interpreted as functional connectivity between brain regions. We com-
pare classical approaches like statistical parametric mapping (SPM) and some
new approaches that are loosely based on frequent pattern mining principles,
but restricted to the local neighborhood of a voxel. In particular, we exam-
ine how a soft notion of activity (rather than a binary one) can be modeled
and exploited in the analysis process. In addition, we explore a fault-tolerant
notion of synchronous activity of groups of voxels in both the binary and the
soft/fuzzy activity setting. We apply the methods to fMRI data from a visual
stimulus experiment to demonstrate their usefulness.

1 Introduction

The localization and analysis of brain activity is a major objective in cog-
nitive neuroscience. Functional magnetic resonance imaging (fMRI) provides
an indirect, but non-invasive means to measure brain activity in vivo. Es-
sentially, time series of three-dimensional (3D) brain-images are acquired,
in which each volumetric pixel (or voxel for short) represents a cuboid of
tissue. Inferences about brain activity rest on the following principle: neu-
ronal activity entails the consumption of oxygen and thus the supply of the
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relevant area with oxygenated blood. The different magnetic properties of
oxygenated blood in comparison to deoxygenated blood result in observable
signal changes in the time series of the relevant voxels, which are exploited as
an indirect indicator of neuronal activity. This is known as the blood oxygen
level dependent (BOLD) effect [9]. For an excellent review of neurovascular
coupling and its effect on the BOLD signal see [8].

Typical task-related fMRI experiments are designed and conducted on the
grounds of certain hypotheses about brain functions which are subsequently
tested using regression-based statistics. To this end, most often general linear
models (GLM) based on canonical hemodynamic response functions (cHRF)
are fitted to each individual voxel time series in order to obtain statistical
maps highlighting brain activity related to experimental conditions. In that
regard, several apriori assumptions are widely accepted by the neuroimaging
community. For example, to facilitate comparison between voxels, GLMs are
generated and fitted using the same cHRF for all time series, even though
hemodynamic responses differ widely across the brain [1, 5]. As a conse-
quence, such an analysis is limited to the testing of a priori hypotheses and
frequently makes use of a priori assumptions, which—in case they are not
met—may constrain the significance of the obtained results.

In contrast to this, data-driven approaches might reveal unexpected pat-
terns that in turn could give rise to new hypotheses, while at the same time a
priori assumptions are avoided as far as possible. For example, recent stud-
ies made use of graph-theory in order to derive network characteristics of the
brain from interregional functional connectivity matrices, where functional
connectivity means the temporal dependence between brain regions [4]. In
both, task-related and resting-state settings (where in a resting state no task
and no explicit external stimulus is presented) studies indicated that the
brain network is organized in a highly clustered way [3, 13]. Recently, this
was exploited to compute locally restricted correlations (based on spatial
proximity) in order to rapidly identify potential hub regions in the brain [11].

Building in a similar fashion on the strongly clustered brain organization,
we present a new, noise-robust, and purely data-driven method targeting
local functional connectivity patterns. The proposed approach is applicable
to any type of fMRI data (task-related, resting-state etc.) and allows for
time-efficient and model-free generation of meaningful brain maps (without
making a priori assumptions or presuming hypotheses to test).

2 Notions of Activity

FMRI data are series of periodically acquired 3D intensity images. We denote
one such series by i = (i1, i2, . . . , iT ), where T is the number of points in
time at which the intensity images ik, k ∈ {1, . . . , T }, are recorded. The
individual images are organized in a regular 3D voxel grid of size X×Y ×Z.
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In order to simplify the processing, the voxel coordinates (x, y, z) can be
mapped (in an essentially arbitrary, but fixed fashion) to a linear index v
with 1 ≤ v ≤ V = X · Y · Z. In this way a data set can be represented by a
data matrix SV×T = (sv,t). By sv = sv,∗ = (sv,1, sv,2, . . . , sv,T ), that is, the
v-th row of S, we denote the time series of voxel v.

As the data are arbitrarily scaled, a meaningful and comparable notion of
activity (magnitude) arises only from a relative interpretation. In the follow-
ing, we derive a binary and a soft notion of voxel activity by considering at
any given time the deviation from its temporal average intensity. The binary
notion can be seen as a limiting case of the soft notion.

Binary Notion of Activity. We use a simple binary discretization in
order to assign to each value in a time series one of the two qualitative states
active and inactive. Formally, the dichotomized time series dv of a voxel v is
given by dv = (d(sv,1), d(sv,2), . . . , d(sv,T )) ∈ {0, 1}T induced by the function
d(sv,t) = H(sv,t − s̃v), t ∈ {1, . . . , T }, where s̃v denotes the median of the
values in sv and H is the Heaviside step function, defined as H(x) = 0 if x < 0
and H(x) = 1 otherwise. In other words, a voxel is regarded as active at a
point in time if the corresponding signal intensity value amounts at least to
the median of the respective time series. The median was chosen over the
mean because it is less sensitive to outliers.

Note that this very simple scheme is naturally open to many points of
criticism. For example, it enforces that a voxel is active half of the time,
which is clearly debatable. However, it already leads to useful results and
thus we defer finding better discretization schemes to future work.

Note also that the concise binary time series representation dv can be ex-
ploited in order to speed up subsequent analysis through a highly efficient
implementation using bit vectors. However, this advantage comes at the ex-
pense of the inevitable loss of information due to the discretization.

Soft Notion of Activity. The above discretization implies an extreme
sharpening of the signal: whereas the actual signal rises gradually over time,
the discretization enforces a sharp instantaneous signal change once the me-
dian is exceeded. Effectively, the signal is transformed into a square-wave
signal, thus increasing the contrast at the transition sites.

By replacing the Heaviside step function with a sigmoid function (for in-
stance, a logistic function), we introduce a soft notion of activity, which en-
ables a parameterized sharpening of the signal (thus also limiting the infor-
mation loss). Formally, we transform the time series according to the linear
scaling and logistic activation function

f
(β)
act (sv,t) =

(
1 + exp

(
− sv,t − s̃v
β(Q0.95(sv)−Q0.05(sv))

))−1

,

where Q0.05(sv) and Q0.95(sv) denote the 5% and the 95% quantile, respec-
tively, of the time series sv. Their difference can be seen as an estimate of the
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Fig. 1 Application of logistic activation functions differing in their slope β to a time
series s. For β → 1

∞ this is equivalent to the discretization approach.

range of intensity values, which is more robust than simply using min and
max and thus is in line with our choice of the median over the mean.

The strength of the sharpening effect is governed by the slope parameter β.
Obviously the binary discretization is obtained as a limiting case of this
scheme for β → 1

∞ . An illustration is shown in Figure 1.
Note that we use the normalization by an estimate of the range of values in

order to keep the meaning of the slope parameter independent of the range of
values of the time series. Of course, this is also open to criticism, as it removes
all information related to the amount of signal change, which may contain
valuable information. However, as with the choice of the median as the tran-
sition point between inactive and active, we leave further improvements of
the activation scheme for future work.

3 Local Connectivity Measures

Recent voxelwise functional connectivity analyses showed a highly clustered
organization of the brain in both task-related as well as resting-state set-
tings [3, 13]. Aiming to characterize local connectivity patterns by quantify-
ing the local cohesion strength, we propose new local connectivity measures
(LCM) operating on the time series of the enclosing 3× 3× 3 cuboid of each
voxel. In this scheme each center voxel serves as an identifier of its enclosing
cuboid, allowing for the data to be traversed in a sliding 3D window fashion.
For this purpose, we denote by

N26(v) = {w | v �= w ∧max{|xv − xw|, |yv − yw|, |zv − zw|} ≤ 1}

the 26 neighbors of a voxel v = (xv, yv, zv) (formed by the 6 voxels sharing a
face, the 12 sharing an edge and the 8 sharing a vertex with it). The whole
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cuboid of a voxel v is then denoted by C27(v) = {v ∪ N26(v)} and we only
consider voxels with a complete cuboid neighborhood.

A natural approach would be to calculate the average of Pearson’s corre-
lation coefficient of all 27·26

2 = 351 voxel pairs within an enclosing cuboid.
However, each individual correlation—and thus also their mean—might be
considerably prone to noise. Especially if there are some voxels that do not
participate in the joint activity and thus have low correlations with the other
voxels, an existing co-activity pattern may not be discernible.

Therefore, instead of combining pairwise correlations by averaging, we try
to obtain a more robust measure by integrating the values of all 27 voxels at
each point in time. To be more precise, our idea is to find for each voxel’s
enclosing cuboid C27(v) those points in time that exhibit synchronous activity
of at least a certain (user-specified) number of voxels. Formally, we have

LCMB
α (v) =

1

T

T∑
t=1

H
(( ∑

w∈C27(v)

dw,t

)
− α

)
,

where H is the Heaviside step function. “LCM” stands for “local connectivity
measure” and the upper index B indicates that it is based on the binary
time series dv. The measure is normalized w.r.t. T , the length of the time
series, in order to facilitate comparison between data sets of different length.
The parameter α ∈ {1, . . . , 27} captures the fault-tolerant aspect of this
measure: Given a cuboid and a point in time, α active voxels suffice for
the corresponding addend to become equal to one (and thus to contribute
positively to the co-activity measure).

For functionally independent adjacent voxels we expect to see around
13–14 active voxels at each point in time, because with our discretization
scheme (active above and inactive below the median) each voxel is active at
half of the points in time and therefore about half of the voxels in a cuboid
should be active on average. As a consequence, α should be chosen greater
than 14. However, what choice of α is best depends on the level of noise
present in the data and the desired contrast between functionally connected
and functionally independent 27-cuboids.

Clearly, the number of active voxels can be expected to be significantly
higher than 14 at points in time actually showing co-activity. As this co-
activity “uses up” some of the active states of the participating voxels, the
remaining points in time must possess a lower average number of co-active
voxels. In addition, it is plausible to assume that functionally connected voxels
also exhibit co-inactivity, that is, possess points in time at which only a
relatively low number of voxels are active. This can be exploited to enhance
the contrast of the measure by defining

LCMdBα (v) = LCMB
α (v) + (1− LCMB

28−α(v)).
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Since LCMB
α (v) is the higher, the more co-activity the voxels in a cuboid

show, while (1 − LCMB
28−α(v)) is the higher, the more co-inactivity they

show, this measure can be expected to be more sensitive.
Using our soft notions of activity, we now define soft analogues of the above

measures. In order to handle the activity degrees, we rely on the following
reasoning: in a perfect situation, in which all voxels are active at a point in
time (α = 27), the terms summed over can also be seen as conjunctions of
the activity values (active — 1, inactive — 0). In a soft setting this conjunc-
tion could be expressed, using a standard fuzzification of conjunctions, by a
minimum. The fault-tolerant aspect can then be incorporated by replacing
the minimum with a quantile, thus allowing a few activations to be low. This
leads to the following measure:

LCMS
α,β(v) =

1

T

T∑
t=1

Q
1−α−1/2

27

([
f
(β)
act (sw,t)

∣∣∣ w ∈ C27(v)
])

,

where Qp([x1, . . . , xk]) denotes the p-quantile of the data set [x1, . . . , x27]
(which we do not write as a set in order to allow for multiple voxels having

the same activation) such that 1− α−1/2
27 selects the α-smallest value. “LCM”

again stands for “local connectivity measure” and the upper index S indicates
that it is based on a soft notion of activity.

Arguing in the same way as for the binary measure, we can increase the
contrast and thus the sensitivity for detecting co-activity by defining

LCMdSα,β(v) = LCMS
α,β(v) + (1 − LCMS

28−α,β(v)).

4 Data and Preprocessing

We applied the proposed methods to both artificial data and real fMRI
recordings from a task-related experiment.

Artificial Data. In order to analyze the characteristics of the new measures,
we generated synthetic data sets of co-active and independent voxels. One
sample of a data set consisted of 27 voxel time series corresponding to one
3 × 3 × 3 cuboid of voxels. The co-active samples were created using zero
vectors (of length 300) into which blocks of ones were inserted at random
locations. The vectors were then convolved with the cHRF included in the
software package SPM81 for Matlab2. Finally, white Gaussian noise (WGN)
of given signal-to-noise ratio (SNR) was added. In this way, three data sets
of co-active samples were created, corresponding to SNRs of +10, 0 and

1 SPM8. Wellcome Trust Centre for Neuroimaging, London, UK.
Available at http://www.fil.ion.ucl.ac.uk/spm/.
2 MATLABR©. The MathWorks Inc., Natick, Massachusetts, USA.

http://www.fil.ion.ucl.ac.uk/spm/
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−10 decibel (dB). In addition, we created one data set containing samples of
independent voxels using WGN time series.

Real Data. The usefulness of the proposed methods as applied to real
data was assessed using task-related fMRI data, acquired using a 7 Tesla
MR-scanner (Siemens, Erlangen, Germany) in the context of a study of the
visual pathway. Subjects were instructed to focus on a central fixation point,
while being exposed to alternating left and right visual hemifield stimulation
of different luminance contrasts. Meanwhile, functional data were acquired in
volumes of 192× 192× 27 voxels at isotropic resolution of 1.1mm edge length
using a time resolution of 2s. Details can be found in [12].

The analysis of fMRI data is susceptible to manifold artifacts arising from
both physiological and hardware-related sources. It was therefore essential
to account for them prior to the actual analysis. Using an online image-
reconstruction procedure, all data were motion- and distortion-corrected
based on a reference measurement of the local point spread function [14].
As interpolation causes local correlations not originally present in the data,
we refrained from spatial smoothing and normalization to a standard brain.

Frequencies below 0.01Hz were removed from the individual voxel time se-
ries accounting for low frequency signal intensity drifts caused e.g. by scanner
instabilities [10] and physiological artifacts. Non-brain voxels were excluded
from further analysis by defining a brain mask using a thresholding proce-
dure based on the means of the voxel time series. For comparative purposes
in further analyses the remaining brain voxels were also partitioned into gray
matter and non-gray matter voxels by thresholding of a gray matter proba-
bility map generated using SPM8 segmentation routines.

GLM Analysis. For comparisons, a conventional GLM analysis of the
task-related fMRI data was carried out using SPM8. We applied a statistical
model containing boxcar waveforms convolved with a cHRF, representing
the left and right visual hemifield stimulation, respectively. Multiple linear
regression was then used to generate parameter estimates for each regressor
at every voxel. Visual field biased regions in each subject were identified using
a contrast of contralateral greater than ipsilateral visual stimulation resulting
in a statistical parametric map of t-statistics (SPMt).

5 Results for Test Data

Three variants of LCM and LCMd were calculated for the four test data
sets (see Section 4): LCMB

α , LCMdBα , LCM
S
α,0.05, LCMdSα,0.05, LCM

S
α,0.1, and

LCMdSα,0.1 (Figure 2). As anticipated, the LCM is higher for the co-active
voxels than for the noise voxels for α > 14 while the opposite is true for
α ≤ 14. LCMd exploits both complementary contrasts and thus exhibits an
increased sensitivity compared to LCM.
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Fig. 2 The generated test data (Section 4) were subject to LCMB
α (top left), LCMdBα

(top right), LCMS
α,0.05 (mid left), LCMdSα,0.05 (mid right), LCMS

α,0.1 (bottom left), and

LCMdSα,0.1 (bottom right). Sample means corresponding to the three data sets consisting of
co-active 27-cuboids (circles) and to the WGN 27-cuboids (asterisks) were plotted against
α. For the former, the darkness of the gray decreases with the SNR used when adding
WGN to the time series. The absolute differences between the results corresponding to the
WGN data and those corresponding to the three co-active data sets were plotted adopting
the respective gray levels (triangles). The same holds for the horizontal dashed lines rep-
resenting the mean of the average correlation coefficient (of the 351 pairwise correlations
per sample) distribution of the respective co-active data set.
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Fig. 3 Distribution of local connectivity measure LCMd for three signal-to-noise ratios.

The average correlation coefficient yields higher contrast between co-active
and WGN samples (as estimated by the difference of their respective results)
if the strength of the noise is low, that is, for higher SNRs. The opposite is
true for lower SNRs: here LCM/LCMd outperforms the average correlation
coefficient in the course of decreasing SNR. Unavoidably, however, the higher
the strength of the additive WGN, the more the LCM/LCMd of the co-active
samples resemble those of the WGN data.

As illustrated by Figure 3, the variance (and range) of LCMd—and there-
fore its sensitivity—is lowest for the most extreme values of α. Accordingly,
also the difference between the co-active and the WGN voxels is minimal for
α = 14 and α = 27 (Figure 2, right column). As explained in Section 3, the
best choice of α depends on the level of noise present in the data and the de-
sired contrast between functionally connected and functionally independent
27-cuboids. While a smaller α provides higher noise robustness (fault toler-
ance), a too small choice will impair the contrast between co-active voxels
and WGN voxels, as the expected value under the assumption of independent
voxels comes closers. Then again, some fault tolerance needs to be ensured,
as due to noise a large α will result in a low range and similar LCMd for both
co-active and noise voxels, all the same.

The attainable noise robustness of LCM seems to increase with the sharp-
ening effect, that is, with decreasing slope β. The smaller β is, the farther
each value in a time series gets shifted towards minimum or maximum, that
is, towards 0 or 1. Thus, with β decreasing, LCM values tend to increase for
α > 14 and to decrease for α ≤ 14. In other words, the soft approach seems to
keep more noise than actual information. However, this behavior may be due
to our scheme of transforming the time series (using a median and quantile
normalization) and further investigations are needed in order to clarify this.
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6 Results for Real Data

The model-driven approach using a GLM yielded robust activation in cor-
tical and subcortical visual regions mostly confined to gray matter. As ex-
pected, highest activity differences were found in the left and right calcarine
sulcus respectively, the location of retinotopically organized primary visual
cortex (V1). Additional regions representing the left and right visual field,
respectively, could be localized such as the secondary and mid-level visual re-
gions V2 adjacent to the dorsal and ventral part of V1 as well as area MT+,
located bilaterally in the temporal parts of occipital cortex. Subcortical re-
gions such as the lateral geniculate nucleus (LGN) as well as the superior
colliculus showed statistically significant differences between their left and
right visual field representation, albeit much lower than V1 (see Section 4).

We now set out to adress the question whether it is possible to generate
meaningful brain maps without any a priori assumptions with respect to
experimental design or hemodynamic properties across the brain. The LCM
analysis generally yielded higher values for gray matter regions than for non-
gray matter regions. As for SPMt, the highest values were found in left and
right V1 and adjacent visual regions. Visual inspection of the results indicated
that high SPMt values are most often accompanied by high LCM values (3rd

and 4th row of Figure 4). The two-dimensional histogram of SPMt and LCM
confirmed this observation (5th row of Figure 4). Conversely, many voxels
were exhibiting no considerable activation associated with the visual exper-
iment, while at the same time showing a high LCM. For both hemispheres,
two regions of interest (ROI) of 100 voxels each were defined in the center
of GLM activation, i.e., in V1, and in a white matter (WM) region in the
temporal lobe, where no coherent—let alone visually driven—activity was to
be expected. Highly active voxels in both V1 ROIs, identified with GLM and
indicated by high SPMt deviations from zero, were also identified by LCM,
while both approaches identified the WM regions as non-responsive. Voxels
identified as highly active by SPMt also show high LCM values, suggesting
local connectivity increases as the cortex is active (5th row of Figure 4).

7 Discussion, Conclusions and Future Work

We presented noise-robust and data-driven measures that characterize lo-
cal functional connectivity patterns in fMRI data. Specifically, the proposed
LCMs are designed in order to capture the proportion of synchronous activity
(LCM, α > 14), synchronous inactivity (1− LCM, α < 14) or both (LCMd)
as exhibited by adjacent voxels during a fixed period of time.

Using fMRI data from a study of the visual path, we compared stimulus-
related activity as detected by conventional regression-based GLM analysis
with local functional connectivity as estimated by LCMd. While increased
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stimulus-related activity was most often accompanied by increased local func-
tional connectivity, we also detected functionally connected clusters that ex-
hibited no considerable task-related activity. These clusters may have been
affected by locally coherent noise patterns or they may have been engaged
in neuronal activity unrelated (or at least not linearly related) to the visual
stimuli. In the latter case, further inspection of these clusters might give rise
to new hypotheses, subsequently testable in a conventional fashion.

Beyond the initial proof of concept, the proposed approach may be uti-
lized in future neuroscientific research as well as possible therapeutical im-
plementations. As the method is entirely data-driven, it is applicable to any
fMRI data (task- or stimulus-induced, resting-state, etc.). As such, LCM-
based analyses may be especially suited to the analysis of resting-state fMRI
data, as in this case no experimental task or stimulus onsets exist on which
regressors for GLM and fitting of cHRFs could be based.

With a properly adjusted implementation, the LCM-versions based on di-
chotomous time series (that is, with a binary notion of activity) allow for time-
efficient analysis of very large and very many data sets. This aspect might
be exploitable for real-time fMRI (rtfMRI). The rtfMRI methodology aims
at efficiently analyzing neuroimaging data in an online fashion (that is, con-
currently with the data acquisition by the scanner), the results of which may
govern the adaptation of experimental stimulation and the interaction with
the subject. The feasibility of online analysis of complex emotional and cogni-
tive states has recently been shown [7], while the future aim of such methods
lies in therapeutic neurofeedback-based training after traumatic brain injury,
cognitive stress or neurological pathology and will potentially culminate in
brain machine interfaces [6]. In this application domain, changes in local func-
tional connectivity could serve as an indicator of changing activity patterns,
as suggested by the comparison of GLM/SPMt and LCM results.

In addition, LCM might serve as a filter in order to constrain the brain
voxels to be analyzed further based on the functional images only or in addi-
tion to a T1-based gray matter segmentation. In favor of this idea it can be
said that the LCM maps and the GM probability maps seemed to be highly
conform (which is not surprising, though, since no neuronal activity is to be
expected in non-GM areas). In fact, an initial and general reduction to infor-
mative parts of fMRI data before the actual analysis (whether assumption
free or not) may constitute an interesting field of potential applications.

Future work includes finding a better way of mapping the intensity signal
as picked up by the scanner to an activation degree, since the shortcomings
of our current mapping do not allow us to fully exploit the advantages of
a soft approach, which inherently is better suited to maintain all relevant
information. Secondly, we are working on pertubation schemes to generate
surrogate data that can be used to derive p-values for the detected local
connectivity. Finally, we are in the process of extending our approach to a
time-efficient analysis of spatially unconstrained connectivity, which is made
possible by bit-vector representations of a binary notion of activity.
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Fuzzy Clustering based on Coverings

Didier Dubois1 and Daniel Sánchez2,3

Abstract In this paper we propose fuzzy coverings as a way to perform fuzzy
clustering of data on the basis of a fuzzy proximity relation. Remarkably, the
proposal does not require any kind of fuzzy transitivity.

1 Introduction

Clustering consists in finding a partition of a set of objects comprised of
a collection of subsets of objects called clusters. It is expected that i) all
elements in a cluster are similar, ii) every object belongs to a cluster, and iii)
objects are in one cluster only or, equivalently, objects in different clusters
are not similar.

The starting point for a clustering process is a similarity relation verifying
the reflexivity, symmetry, and transitivity properties. If such a relation is
available, clustering is just a matter of calculating the quotient set of the
relation. However, several authors have pointed out that binary relations
built in terms of natural concepts are not transitive most of the time, but
reflexive and symmetric indistinguishability relations, also called resemblance
relations. The situation is even worse in the case of fuzzy similarity relations
[15, 12, 13], since any kind of fuzzy transitivity consists of transitivity at
level 1 plus some additional requirements on the pairs of objects related to
degrees in (0,1).

A natural consequence for the problem of clustering is that, in the crisp
case, it is not always possible to obtain a partition of data according to the
binary relation that represents the natural indistinguishability between ob-
jects. When indistinguishability is represented by a reflexive and symmetric,
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but not transitive relation, what can be reasonably expected is to obtain not
a partition, but a covering of the set of objects, in which an object may ap-
pear in more than one cluster. This is also the case in fuzzy clustering, though
objects may appear in different clusters to a certain degree, and the result of
the clustering process is called fuzzy partition and not fuzzy covering.

It is not the objective of this paper to discuss the notion of fuzzy partition,
for which there is no unique definition, and how it might be different from
the notion of fuzzy covering existing in the literature [5]. Our objective is to
propose a new fuzzy clustering algorithm based on obtaining crisp coverings
from crisp binary relations satisfying reflexivity and symmetry properties
only.

The paper is organized as follows: we propose crisp coverings for clustering
with crisp relations in Section 2. This procedure is extended to obtain fuzzy
clusters as fuzzy coverings in Section 3, and we study the relationship to the
work by Bezdek and Harris [2] in Section 4. Section 5 is devoted to briefly
putting forward complexity issues of the proposal. Finally, Section 6 contains
our conclusions and ideas for future work.

2 Coverings for Non-transitive Crisp Relations

When the indistinguishability relation between objects is not transitive, we
can only expect to obtain a collection of clusters that form a covering of
the data. However, this does not mean at all that any covering is a good
clustering of the objects according to the relation R. We want a set of clusters
{C1, . . . , Cm} satisfying:

1. Ci × Ci ⊆ R ∀Ci

2. The covering reflects all the information given by R in the following sense:
let O′ ⊆ O such that O′×O′ ⊆ R. Then, there is at least one Ci such that
O′ ⊆ Ci, i.e., every group of objects that are completely related appear
together in at least one cluster. This requirement also implies

⋃m
i=1(Ci ×

Ci) = R.
3. There is no other clustering verifying 1 and 2 with less clusters.

It is easy to show the following proposition:

Proposition 1. Let R be a reflexive and symmetric relation defined on a set
O and let GR = (O,D) be a graph in which objects are the vertices and there
is an edge in D between vertices x and y iff xRy. There is a single covering
of O that yields a clustering satisfying criteria 1-3, comprised of the clusters
corresponding to the sets of vertices of all the maximal cliques in GR.

Proof. Let C be a cluster, then C×C ⊆ R and there is a clique in GR whose
vertices are C. If the clique associated to C is a maximal clique of GR then
it is in the optimum covering. Otherwise, there is a maximal clique in GR
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with vertices C′ so that C ⊂ C′ and C′ is a cluster of the optimum covering.
Hence, cluster C can be discarded since cluster C′ is enough in order to satisfy
criterion 2.

This proposition provides a procedure to obtain the best clustering by cov-
ering: we just need to calculate all the maximal cliques in the graph GR. We
shall consider this approach in the rest of this paper. This idea has been also
proposed and employed before in the literature, like for example in [1, 9], and
is also similar to finding concepts from Boolean matrices in Formal Concept
Analysis [7]. The resulting covering is obviously biunivocally related to the
relation R. The main difficulty with this approach is that the computation of
all maximal cliques of a graph is an NP-complete problem. Hence, when the
set of objects is very large, it may be the case that only approximate results
can be achieved. We will come back to this problem in Section 5.

For instance, consider the non-transitive relation R represented in Table 1.
The optimum clustering, formed by all the maximal cliques in the correspond-
ing graph, is {{a, b}, {b, c, d}, {c, d, e}}.

a b c d e
a 1 1 0 0 0
b 1 1 1 1 0
c 0 1 1 1 1
d 0 1 1 1 1
e 0 0 1 1 1

Table 1 Example of a crisp, reflexive, symmetric, and non-transitive relation R.

3 Coverings for Fuzzy Clustering

In this section we consider the problem of clustering objects on the basis of
a fuzzy indistinguishability relation satisfying the reflexive and symmetric
properties, i.e., a fuzzy relation R on O satisfying:

• R(x, x) = 1 ∀x ∈ O
• R(x, y) = R(y, x) ∀x, y ∈ O

3.1 Gradual Coverings

Our approach consists in solving the corresponding crisp clustering problem
for each α-cut of R, obtaining a crisp covering at each level. This is possible
since, as it is easy to show, α-cuts of fuzzy reflexive and transitive relations
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are reflexive and symmetric crisp relations, so we are in the case discussed in
the previous section.

Let ΛR be the collection of significant levels in [0, 1] considered and let ρCR

be a function assigning to every value α ∈ ΛR the optimum covering of O
following the crisp relation Rα. We call the pair (ΛR, ρCR) a gradual covering
(or RL-covering, following the notion of representation by levels of member-
ship introduced in [10] and akin to the gradual entities proposed in [6]). The
idea of representation by levels is that of assigning crisp representatives to
membership levels, without imposing any restriction on the relationship be-
tween representatives on different levels, and then operating on each level
independently.

For example, consider the fuzzy relation E in Table 2, proposed in [2]:

a b c d
a 1 0.3 0.6 0
b 0.3 1 0.7 0
c 0.6 0.7 1 0.3
d 0 0 0.3 1

Table 2 Fuzzy relation E introduced in [2].

Then ΛE = {1, 0.7, 0.6, 0.3}. Table 3 shows the crisp relations correspond-
ing to the α-cuts Eα with degrees α ∈ ΛE and the corresponding optimum
coverings on each level. The result is a gradual covering for E.

α Crisp relation Eα Covering ρCE
(α)

1

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ {a}, {b}, {c}, {d}

0.7

⎡
⎢⎢⎣
1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

⎤
⎥⎥⎦ {a}, {b, c}, {d}

0.6

⎡
⎢⎢⎣
1 0 1 0
0 1 1 0
1 1 1 0
0 0 0 1

⎤
⎥⎥⎦ {a, c}, {b, c}, {d}

0.3

⎡
⎢⎢⎣
1 1 1 0
1 1 1 0
1 1 1 1
0 0 1 1

⎤
⎥⎥⎦ {a, b, c}, {c, d}

Table 3 Gradual covering for fuzzy relation E of Table 2

Notice that, on each level αi, the crisp covering ρCR(αi) and the crisp
relation Rαi corresponding to the αi-cut of R are biunivocally related and
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can be obtained one from the other, as we saw in the previous section. In
addition, the fuzzy relation R and its level representation by α-cuts are also
biunivocally related by the representation theorem of fuzzy sets. Hence, so
are R and the gradual covering (ΛR, ρCR).

3.2 Fuzzy Clustering

Fuzzy clustering algorithms yield a so-called fuzzy partition as a result, con-
sisting of a collection of fuzzy subsets of O verifying certain properties. There
is no unique definition of the concept of fuzzy partition, but something com-
mon to all approaches is that the cores of the different fuzzy clusters are
pairwise disjoint. This idea implies that the 1-cut of the fuzzy relation is a
crisp relation verifying transitivity.

In our case, we are not assuming transitivity at all in our fuzzy relation,
so it may be the case that the cores of the fuzzy clusters form a covering of
O, but not a partition. Hence, fuzzy clustering based on a non-transitive (in
any sense) fuzzy relation in general yields a fuzzy covering, i.e., a collection
of fuzzy clusters {C1, . . . , Cm} verifying O =

⋃m
i=1 Ci via some t-conorm

[5]. Our objective in this section is to show that it is possible to derive a
fuzzy covering from a gradual covering so that the former describes all the
information in the latter, and they are biunivocally related. For that purpose,
let us first introduce the notion of gradual cluster as follows:

Definition 1. Let (ΛR, ρCR) be a gradual covering for a fuzzy relation R. Let
ΛR = {α1, . . . , αk} with 1 = α1 > α2 > · · · > αk > αk+1 = 0. Let ρCR(αi) =
{Ci1, · · · , Cini} be the set of clusters forming the optimum covering of Rαi .
A gradual cluster of (ΛR, ρCR) is a pair Z = (ΛZ , ρZ) defined by:

• ΛZ = ΛR

• ρZ(αi) = Cipi with 1 ≤ pi ≤ ni satisfying ρZ(αi) ⊆ ρZ(αi+1) ∀1 ≤ i ≤
k − 1

That is, a gradual cluster can be obtained from a gradual covering by
picking up one single crisp cluster from each level under the restriction that
the clusters are nested according to the levels like α-cuts of fuzzy sets. Notice
that, given a cluster in level αi, it is always possible to find a cluster in level
αi+1 such that the former is a subset of the latter since Rαi ⊂ Rαi+1 and
hence a maximal clique of Rαi is either a maximal clique of Rαi+1 , or it is
strictly included in a maximal clique of Rαi+1 . By construction consecutive
families ρCR(αi) and ρCR(αi+1) satisfy a generalised containment property
in the sense that

• ∀Cil ∈ ρCR(αi), ∃Ci+1,j ∈ ρCR(αi+1) such that Cil ⊆ Ci+1,j

• ∀Ci+1,j ∈ ρCR(αi+1), ∃Cil ∈ ρCR(αi) such that Cil ⊆ Ci+1,j
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So we can consider the graph made of all clusters at all levels, with arcs
joining all Cil ∈ ρCR(αi) to all Cij ⊆ Ci+1,j whenever Cil ⊆ Ci+1,j . This
graph is a directed acyclic graph which is unique since the set of clusters
at each level is uniquely defined. Gradual clusters are then in one-to-one
correspondence with paths of nested clusters from level 1 to level k in the
graph. When the fuzzy relation is an equivalence relation this graph becomes
a standard Hasse diagram.

As an example, the set of gradual clusters for the gradual covering in
Table 3 is shown in Table 4.

α RL-Cluster 1 RL-Cluster 2 RL-Cluster 3 RL-Cluster 4
1 {a} {b} {c} {d}

0.7 {a} {b, c} {b, c} {d}
0.6 {a, c} {b, c} {b, c} {d}
0.3 {a, b, c} {a, b, c} {a, b, c} {c, d}

Table 4 Gradual clusters (RL-clusters) for the gradual covering in Table 3

In this particular case, the number of clusters coincides with the number
of objects, but this is not true in general, as we shall see later with another
example.

Proposition 2. There is a one-to-one relation between a gradual covering
(ΛR, ρCR) and the set Z(R) containing all the possible gradual clusters that
can be obtained from (ΛR, ρCR) according to definition 1.

Proof. Given a gradual covering (ΛR, ρCR) there is obviously a single set Z(R)
formed by all possible gradual clusters that can be obtained from (ΛR, ρCR)
according to definition 1. On the other hand, for every pair (αi, Cij) with
αi ∈ ΛR and Cij ∈ ρCR(αi) a crisp cluster, there is at least one gradual
cluster Z ∈ Z(R) such that Cij ∈ ρZ(αi) since there is at least one cluster
C ∈ ρCR(1) such that C ⊆ Cij . Hence,

⋃
Z∈Z(R) ρZ(αi) = ρCR(αi), and

hence
⋃

Z∈Z(R)(ΛR, ρZ) = (ΛR, ρCR) with the union restricted to levels with
the same α proposed in [10].

Now, obtaining a fuzzy covering F (R) from the set of gradual clusters
Z(R) is straightforward: each gradual cluster Z ∈ Z(R) corresponds to the
representation by levels of a fuzzy subset of O, which is a fuzzy cluster that
we shall denote μZ ∈ F (R). It is easy to show that:

• Since level 1 is a covering of O, every object in O appears with degree 1
in at least one fuzzy cluster.

• All fuzzy clusters μZ ∈ F (R) are normalized fuzzy subsets of O
• For every μZ �= μ′

Z ∈ F (R) it is neither μZ ⊂ μ′
Z nor μ′

Z ⊂ μZ

• The set of fuzzy clusters forms a fuzzy covering of O that is our fuzzy
clustering on the basis of R. Particularly, for any t-conorm
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F (R)

μZ = O

• μZ is biunivocally related to Z, hence F (R) is biunivocally related to Z(R)
and as a consequence, as we saw before, also to (ΛR, ρCR) and R.

In our example, the fuzzy clusters corresponding to the gradual clusters in
Table 4 are the following:

1. 1/a+ 0.3/b+ 0.6/c 2. 0.3/a+ 1/b+ 0.7/c
3. 0.3/a+ 0.7/b+ 1/c 4. 0.3/c+ 1/d

Notice also that, though rather similar in this example, these fuzzy clusters
do not correspond exactly to the columns of the matrix defining the fuzzy
relation E. In particular, the fuzzy cluster 3 differs from the third column/row
in the mentioned matrix since the membership for a is 0.3, whilst in the third
column of the matrix it is 0.6. In the general case, this difference can be even
more significant since the number of fuzzy clusters can be larger than the
number of columns, as we shall see later with another example.

4 Relation to the Study by Bezdek and Harris

In [2], Bezdek and Harris study fuzzy partitions and relations with special
emphasis on the role of different notions of transitivity, and the possibility of
finding crisp partitions from a fuzzy relation by means of convex decomposi-
tions. In this section we discuss these issues in relation to our proposal.

4.1 Transitivity

Transitivity is not uniquely defined for fuzzy relations. Existing definitions
are based on considering a t-norm ∧ and a t-conorm ∨ as follows: a fuzzy
relation R is ∧−∨ transitive iff ∀x, y ∈ O, R(x, y) ≥ ∨z∈O(R(x, z)∧R(z, y)).
It is usual to consider ∨ = max, and common types of fuzzy transitivity are
max-min, max-prod, and max-Lukasiewicz (called max-" in [2]). As t-norms
are ordered, the different types of transitivity induce an ordering of the classes
of fuzzy relations satisfying them in terms of inclusion, e.g., a fuzzy relation
satisfying max-min transitivity verifies any other kind of transitivity, etc.

About the role of fuzzy transitivity in fuzzy clustering, it is well known that
max-min transitive relations allow us to obtain a crisp hierarchical clustering
comprised of nested partitions, since every α-cut of the relation is a crisp
equivalence relation. This does not hold for other types of transitivity. In
addition, let R be a fuzzy relation which is max-∧ transitive with ∧ any t-
norm. Then, the kernel R1 of R is a crisp equivalence relation. This is the
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case for instance with relation E of Table 2, which verifies max-Lukasiewicz
transitivity [2].

With respect to our approach to fuzzy clustering in relation to transitivity,
we can say that:

• We do not require any kind of transitivity to hold for R.
• If any kind of transitivity holds, then it is guaranteed that i) the level 1 of

the gradual covering is a crisp partition of O, and ii) the columns/rows for
objects that are similar with degree 1 are equal, so they can be considered
as a single element; in this case, we can eliminate redundant elements by
a change in granularity of the problem.

• The relation R is max-min transitive iff our procedure (equivalent in this
case to the usual procedure employed with this kind of relations) yields
crisp partitions on each level, these partitions being nested in the usual
way. The resulting gradual covering is then in fact a gradual partition (or
RL-partition, see [10] for a definition).

• We conjecture: the more strict the transitivity that holds for R, the less
the amount of overlap between clusters in the covering.

Let us now consider another example: relation S in Table 5, that does not
satisfy any kind of transitivity.

a b c d e
a 1 1 0 0.8 0.3
b 1 1 0.8 1 0.3
c 0 0.8 1 0.8 0.8
d 0.8 1 0.8 1 0.5
e 0.3 0.3 0.8 0.5 1

Table 5 Example of a reflexive, symmetric, and non-transitive fuzzy relation S.

Then ΛS = {1, 0.8, 0.5, 0.3}. Table 6 shows the crisp relations correspond-
ing to the α-cuts Sα with degrees α ∈ ΛS and the corresponding optimum
coverings on each level. The result is the gradual covering (ΛS , ρCS).

Table 7 shows all the gradual clusters for the gradual covering (ΛS , ρCS )
in Table 6. Notice that there are six gradual clusters whilst there are only
four crisp clusters in the covering at level 1, and only five objects, that is, the
number of clusters is related neither to the number of objects nor the number
of clusters in the covering at level 1. As indicated in Section 3.2, the gradual
clusters correspond to every possible choice of one set from each level that
respect the usual set inclusion of α-cuts with respect to α.

The fuzzy clusters corresponding to the gradual clusters in Table 7 are the
following:

1. 1/a+ 1/b+ 0.8/d+ 0.3/e 2. 0.8/a+ 1/b+ 1/d+ 0.3/e
3. 1/b+ 0.8/c+ 1/d+ 0.3/e 4. 0.8/b+ 1/c+ 0.8/d+ 0.3/e
5. 0.3/b+ 1/c+ 0.5/d+ 0.8/e 6. 0.3/b+ 0.8/c+ 0.5/d+ 1/e
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α Crisp relation Sα Covering ρCS
(α)

1

⎡
⎢⎢⎢⎣
1 1 0 0 0
1 1 0 1 0
0 0 1 0 0
0 1 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦ {a, b}, {b, d}, {c}, {e}

0.8

⎡
⎢⎢⎢⎣
1 1 0 1 0
1 1 1 1 0
0 1 1 1 1
1 1 1 1 0
0 0 1 0 1

⎤
⎥⎥⎥⎦ {a, b, d}, {b, c, d}, {c, e}

0.5

⎡
⎢⎢⎢⎣
1 1 0 1 0
1 1 1 1 0
0 1 1 1 1
1 1 1 1 1
0 0 1 1 1

⎤
⎥⎥⎥⎦ {a, b, d}, {b, c, d}, {c, d, e}

0.3

⎡
⎢⎢⎢⎣
1 1 0 1 1
1 1 1 1 1

0 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤
⎥⎥⎥⎦ {a, b, d, e}, {b, c, d, e}

Table 6 Gradual covering for fuzzy relation S of Table 5

α RL-Clust. 1 RL-Clust. 2 RL-Clust. 3 RL-Clust. 4 RL-Clust. 5 RL-Clust. 6
1 {a, b} {b, d} {b, d} {c} {c} {e}

0.8 {a, b, d} {a, b, d} {b, c, d} {b, c, d} {c, e} {c, e}
0.5 {a, b, d} {a, b, d} {b, c, d} {b, c, d} {c, d, e} {c, d, e}
0.3 {a, b, d, e} {a, b, d, e} {b, c, d, e} {b, c, d, e} {b, c, d, e} {b, c, d, e}

Table 7 Gradual clusters (RL-clusters) for the gradual covering in Table 6

4.2 Convex Decompositions

In [2], Bezdek and Harris study convex decompositions of fuzzy relations as
a way to determine possible crisp partitions. They conclude that it is not
always possible to find a convex decomposition, even when the fuzzy relation
verifies certain kinds of transitivity like max-Lukasiewicz transitivity.

However, from our results in the previous section, it is immediate that it is
always possible to find a convex decomposition of a fuzzy indistinguishability
relation using crisp coverings, even when the fuzzy relation does not satisfy
any kind of transitivity.

Proposition 3. Consider a fuzzy relation R and let (ΛR, ρCR) be the opti-
mum gradual covering of R following our approach. Let ΛR = {α1, . . . , αk}
with 1 = α1 > α2 > · · · > αk > αk+1 = 0. Then

R =
∑

αi∈ΛR

(αi − αi+1)
⋃

C∈ρCR
(αi)

C × C (1)
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is a convex decomposition of R in terms of coverings.

The decomposition above is just a particular case of a well-known repre-
sentation theorem for fuzzy sets with a finite level-set, and is employed in
[10] as a way to obtain a fuzzy set from a representation by levels. This de-
composition can be interpreted as the possible crisp coverings representative
of the fuzzy relation, with associated importance degrees, that can be also
seen as a basic probability assignment in the space of possible coverings and,
hence, as a particular kind of random covering. Again, this decomposition is
in a one-to-one relationship to R.

As examples, the convex decomposition for relation E, obtained on the
basis of the gradual covering in Table 3 is (we show the relations, that are in
one-to-one correspondence with their optimum coverings)

E = 0.3×

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ + 0.1×

⎡
⎢⎢⎣
1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

⎤
⎥⎥⎦+ 0.3×

⎡
⎢⎢⎣
1 0 1 0
0 1 1 0
1 1 1 0
0 0 0 1

⎤
⎥⎥⎦+ 0.3×

⎡
⎢⎢⎣
1 1 1 0
1 1 1 0
1 1 1 1
0 0 1 1

⎤
⎥⎥⎦

and for relation S, the convex decomposition obtained on the basis of the
gradual covering in Table 6 is

S = 0.2×

⎡
⎢⎢⎢⎣
1 1 0 0 0
1 1 0 1 0
0 0 1 0 0

0 1 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦+ 0.3×

⎡
⎢⎢⎢⎣
1 1 0 1 0
1 1 1 1 0
0 1 1 1 1

1 1 1 1 0
0 0 1 0 1

⎤
⎥⎥⎥⎦+ 0.2×

⎡
⎢⎢⎢⎣
1 1 0 1 0
1 1 1 1 0
0 1 1 1 1

1 1 1 1 1
0 0 1 1 1

⎤
⎥⎥⎥⎦+ 0.3×

⎡
⎢⎢⎢⎣
1 1 0 1 1
1 1 1 1 1
0 1 1 1 1

1 1 1 1 1
1 1 1 1 1

⎤
⎥⎥⎥⎦

5 Complexity

The main difficulty with the presented approach to fuzzy clustering based
on coverings is that finding all the maximal cliques of a graph is an NP-
complete problem, that cannot be even approximated in polynomial time [8].
Hence, this procedure is feasible if the size of the set O allows to compute
the maximal cliques in acceptable time for the desired application.

There are a number of algorithms in the literature that try to compute
maximal cliques as efficiently as possible [11, 14, 3]. The fact that for our
purposes these algorithms have to be applied to every α-cut of the relation
may be alleviated since each maximal clique at one level always includes
maximal cliques in the previous level, and each clique at the latter level is
included in at least one clique at the former level, hence allowing for bounding
the subsequent search. Existing algorithms may be adapted in this sense. The
time efficiency of the algorithms described in [11, 14, 3] can be found in the
papers for a number of experiments. For instance, in [11], for a graph with
104 objects and different edge probabilities, finding all maximal cliques (up
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to 230 × 106) took less than one hour in a Pentium 4 2.2Ghz computer.
Further ideas about the kind of problems that may be approached using
exact solutions can be obtained from the abovementioned papers.

As we mentioned before, the problem of clustering by coverings from crisp
relations has been considered previously in the literature, and there are sev-
eral proposals that try to find a covering by relaxing the requirement that
clusters correspond to maximal cliques [1]. Applying these techniques to each
level in order to obtain crisp coverings is a possibility in order to have an ef-
ficient algorithm, though properties like the one-to-one relationship between
the fuzzy relation and the final clustering, and the idea of considering all
clusters put forward by the fuzzy relation, are lost. A possibly better solu-
tion may be not to compute all maximal cliques, but a collection of maximal
cliques such that they form a covering of the relation on each level. This way,
we may lose some information in the form of some fuzzy clusters in the final
solution, but we can obtain a subset of clusters that guarantee to cover the
set of objects, from which the original relation can be recovered (though there
is a one-to-many correspondence between the relation and such clusterings in
general). We will explore the feasibility of the different possibilities discussed
in this section in future works.

6 Conclusions and Future Work

When transitivity does not hold for a similarity relation, one cannot expect
a clustering of objects in the form of a partition, but as a covering. This is
also true in the case of fuzzy relations. We have proposed a way to obtain
an optimum covering from a crisp reflexive and symmetric relation, which is
unique and in a one-to-one correspondence with the original relation, based
on the calculus of all maximal cliques of the relation. We have extended
this procedure to the case of fuzzy relations, again without requiring any
kind of fuzzy transitivity. Both representation by levels of a fuzzy covering,
and a fuzzy clustering consisting in a fuzzy covering with fuzzy clusters, are
proposed which are again in one-to-one correspondence to the original fuzzy
relation. We have also studied the relation of the proposal to the study on
fuzzy transitivity and convex decompositions by Bezdek and Harris [2] and
we have shown that it is always possible to obtain a convex decomposition
of a fuzzy relation in terms of crisp reflexive and symmetric relations and,
therefore, in terms of the corresponding optimum coverings.

Calculating maximal cliques is NP-complete. Future work will be to study
the situations in which current algorithms can be applied, as well as algo-
rithms to obtain good approximations to the optimum solution in reasonable
time when the problem is too large. We shall also study the relation to clus-
tering with missing information, which has been studied previously by using
coverings for representing ill-known partitions [4].
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Decision and Regression Trees
in the Context of Attributes
with Different Granularity Levels

Kemal Ince1 and Frank Klawonn2,3

Abstract Most data mining algorithms assume that their input data are de-
scribed by a fixed number of attributes and each attribute has a pre-defined
domain of values. However, the latter assumption is often not realistic in the
case of categorical attributes. Such attributes are often available in different
levels of granurality. The coarsest level might just have two possible values
that are split into more values in refined levels of granularity. Before applying
a data mining algorithm, it is usually assumed that the domain expert for
the data must choose for each attribute the appropriate level of granularity
or that in tedious trial and error procedure the appropriate granularity levels
are adapted. The problem of choosing suitable granularity levels is related,
but not identical to feature selection, since the more refined granularity levels
increase the risk of overfitting. In this paper, we propose methods for deci-
sion and regression trees to handle the problem of different granularity levels
during the construction of the corresponding tree.

1 Introduction

Data mining algorithms usually assume that the data to be analysed are
encoded in a flat data table. Rows in the table correspond to data instances
and columns to attributes. It is assumed that categorical attributes have a
fixed range of possible values in such a table. This is, however, in many real
world applications not the case. One often has a choice of picking the level

1 Volkswagen AG, Komponenten-Werkzeugbau, Gifhornerstr. 180, D-38037 Braunschweig,
Germany, kemal.ince@volkswagen.de
2 Department of Computer Science, Ostfalia University of Applied Sciences, Salzdahlumer
Str. 46/48, D-38302 Wolfenbuettel, Germany, f.klawonn@ostfalia.de
3 Bioinformatics and Statistics, Helmholtz Centre for Infection Research, Inhoffenstr. 7,
D-38124 Braunschweig, Germany, frank.klawonn@helmholtz-hzi.de

C. Borgelt et al. (Eds.): Towards Advanced Data Analysis, STUDFUZZ 285, pp. 331–342.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013



332 K. Ince and F. Klawonn

of granularity for categorical attributes and only with the chosen level of
granularity the range of possible values for a categorical attribute becomes
fixed. An example for different levels of granularity is an attribute describing
the type of a product that has been produced or bought. A very coarse level
of granularity could be simply be the binary attribute food or non-food.
On a refined level, food could be further divided into drinks and edibles.
Drinks could be further distinguished into alcoholic and non-alcoholic drinks.
Dealing with attributes that have different levels of granularity is a routine
in data warehousing where OLAP (Online analytical processing) technologies
are extensively used [3]. But in other fields, the problem of handling different
levels of granularity of attributes [5] seems to have been neglected for quite
a while, especially in the area of data mining.

In this paper, we describe an approach how different levels of granularity
can be directly incorporated into the construction of regression trees based
on the minimum description length principle (MDL). Section 2 explains the
problem of different levels of granularity in the context of data mining and its
relation to feature selection in more detail. Section 3 provides the necessary
background on MDL, regression trees and granularity levels. Our regression
tree algorithm incorporating the selection of granularity levels is described in
Section 4. Section 5 briefly explains how granularity levels can be incorparated
in the construction decision trees.

2 Brute Force vs. an Integrated Approach to
Granularity Level Selection

As already mentioned in the introduction, choosing a suitable granularity
level for an attribute is related to feature selection. Feature selection refers
to choosing a subset of attributes which – in the ideal case – contains only the
relevant and no redundant attributes. Feature selection are usually classified
into two categories (see for instance [1]):

• Filter methods that carry out feature selection before the actual data min-
ing algorithm is run. Filter methods try to remove irrelevant and redundant
attributes without taking into account the specific data mining model to
applied in a later step.

• Wrapper methods select the attribute in connection with the data mining
algorithm. The result of the data mining algorithm with different subsets
of attributes is evaluated and the subset that yields the best result is
chosen. Often a greedy strategy like starting with only one attribute and
adding more attributes step by step is applied to find a suitable subset of
attributes.

Wrapper methods usually require a higher computational complexity, since
the data mining algorithmmust be carried out multiple times. Wrapper meth-
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ods also have to cope with two other problems connected to overfitting. First
of all, as long as there are not too many attributes, larger subsets of attributes
tend to give a better performance than smaller ones, although this might only
be an effect of overfitting. Secondly, the performance measure – for instance
the performance of the derived data mining model on a test data set – should
differ from the overall performance measure for the final model. Otherwise,
overfitting with respect to the test data set might happen.

One could apply feature selection techniques to granularity level selection.
This concept is illustrated in Figure 1. This would, however, lead to the
same problems mentioned above as for filter and wrapper methods. Even
worse, there is, of course, always a high correlation between different levels
of granularity of the same attribute.

Fig. 1 Applying feature selection to granularity level selection.

Some data mining techniques carry out – at least partially – their own
feature selection strategies while constructing the model. Decision and re-
gression trees are examples for such methods. Their on-line selection of the
attributes is based on the greedy strategy in which the tree is constructed.
At each node of the tree during the construction, the attribute is chosen that
leads to the best result with respect to a suitable performance measure.

In this paper, we focus on decision and regression trees to carry out gran-
ularity level selection during the construction of the tree. This integrated
approach to granularity level selection is illustrated in Figure 2.

However, if we would simply allow the tree to choose in each of its nodes
the attribute in connection with its level of granularity, there would be a
strong bias to the most refined levels of granularity and therefore a tendency
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Fig. 2 New approach of the data mining analysis phase

to complex models and overfitting. Therefore, we need measures to avoid this
bias.

3 Background on MDL, Regression Trees and
Granularity Levels

3.1 The Minimum Description Length Principle
(MDL)

Overfitting is a general problem in the context of fitting models1 to data.
Complex models tend to overfitting whereas too simple models will not be
able to reflect the structure inherent in the data. What makes the situation
complicated is that goodness of fit for models and model complexity are two
different notions and they are measured in different “units”. One way to try
to minimise overfitting is to use different data for training the model and
evaluating (or “testing”) the models. A very common technique for model
evaluation is cross-validation where models are trained and evaluated repeat-
edly with training and test data sets.

1 We use the term model in a very broad sense as in [1]. Any structure that somehow
describes some structure in the data is considered as a model: a single value like the mean,
a linear model, a Gaussian mixture, a neural network or a decision tree are all considered
as models.
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The minimum description length principle (MDL) (for an overview see
[4]) is an alternative approach to avoid overfitting. MDL is based on the
fundemental idea that any regularity in a data set can be used to compress
the data. Compression means to describe the data set with fewer symbols than
the number of symbols which are needed to describe the data set literally.
The description of the regularity is given by the model. The more regularities
in the data set exist, the more the data set can be compressed. In this sense,
MDL relates “learning” to “finding regularities” in the data.

Therefore, the MDL principle can be used in different ways of inductive
inference such as to choose a model with a good trades-off between goodness-
of-fit on the observed data set and the complexity of the model.

In this paper, we focus on supervised learning where the value of a target
attribute is to be predicted on the basis of other predictor attributes. The
compression of the data consists in this case of two parts.

• The coding of the model (here: the regression or decision tree) and
• the corrections for deviations of the value predicted by the model and the

target value.

A very complex model – a complex regression or decision tree – will need
a longer coding for the model itself, but no or little corrections for the pre-
dictions whereas a simple model has a short coding but requires a larger
number or larger corrections for wrong predictions. MDL favours the model
with the shortest coding of the model together with the corrections, so that
a compromise between an extremely simple model with little precision and
an overfitted complex model will be chosen.

3.2 Regression and Decision Trees

Regression and decision trees [2] are tree-based models for the prediction of
numerical and categorical attributes. Each node in the tree corresponds to
an attribute. Depending on the value of the attribute, the path is followed
along the corresponding successor node which either corresponds to another
attribute or to leave node which contains the predicted value.

Regression and decision trees are usually constructed by a greedy strategy.
The root of the tree is the attribute that gives the improvement in terms of
prediction. For decision trees, very often remaining entropy after splitting the
data with respect to the attribute in the node is used as a measure for the
predictive power of the attribute. The attribute with the smallest remaining
entropy should be chosen as a root node. Successor nodes are treated in the
same way until a unique prediction can be made, no attributes are left, not
enough data end up in the corresponding node or some stop criterion like the
maximum depth of the tree is reached. Regression trees are built in the same
way, except that not the entropy, but the sum of the absolute or squared
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errors in the successor nodes when the mean value is used as the predicted
value is taken as a measure to judge the predictive quality of the attribute.

3.3 The Meaning of Data Granularity

As mentioned in the introduction, nowadays data sets to be analysed often
contain attributes with different levels of granularity. Especially the multi-
dimensional way of storing data, for example in data warehouses or online
analytical processing systems, is one of the main reasons why handling data
with different granularities is of high importance. The meaning of data gran-
ularities is illustrated in Table 1 where a fictitious data set contains the
attributes A1 and A2 and consists of two granularity levels. For example the
value a1 of the attribute A1 can have the two different specifications a11 and
a12 in the refined attribute A2. Attribute A1 has a coarser level of granularity
than attribute A2. The target attribute Z contains of continuous numbers.
This simple data set will serve as an illustrative example in the following

Table 1 Fictitious dataset containing two data granularity levels

A1 A2 Z

a1 a11 2
a1 a11 3
a1 a12 6
a2 a21 99
a2 a21 101
a2 a21 100
a2 a22 123
a1 a12 7
a2 a22 124
a1 a11 1
a1 a12 5
a2 a22 125

section.

4 Constructing Regression Trees in the Context of
Attributes with Different Levels of Granularity

Essentially, we can generate three different regression trees based on the sim-
ple data set in Table 1. Case one without any split delivers the regression tree
shown in Figure 3. In this case there exists no splitting step, so that the root
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node contains all data objects in the dataset and predicts the mean value of
all data for the target attribute Z.

Fig. 3 Generated regression tree without splitting.

Case 1:
The prediction of the single node in terms of the mean value mc in Figure 3
and the sum of squared errors S of the generated tree are calculated as follows:

mc =
1

12
∗ (2+3+6+99+101+100+123+7+124+1+5+125) = 58 (1)

(2− 58)2 = 3136
+(3− 58)2 = 3025
+(6− 58)2 = 2074
+(99− 58)2 = 1681
+(101− 58)2 = 1849
+(100− 58)2 = 1764
+(123− 58)2 = 4225
+(7− 58)2 = 2601

+(124− 58)2 = 4356
+(1− 58)2 = 3249
+(5− 58)2 = 2809

+(125− 58)2 = 4489
−− > S = 35258

(2)

Case 2:
In the second case, the regression tree building step uses the predictor at-
tribute A1 to split the output values into two groups. Figure 4 shows the gen-
erated regression tree model. Therefore, the calculation of the prediction of
both leaves mc1, mc2 and the sum of squared errors with S = S1+S2 = 1004
is given by

mc1 =
1

6
∗ (2 + 3 + 6 + 7 + 1 + 5) = 4 (3)

mc2 =
1

6
∗ (99 + 101 + 100 + 123 + 124 + 125) = 112 (4)
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(2− 4)2 = 4
+(3− 4)2 = 1
+(6− 4)2 = 4
+(7− 4)2 = 9
+(1− 4)2 = 9
+(5− 4)2 = 1

−− > S1 = 28

| − −| (99− 112)2 = 169
| − −| +(101− 112)2 = 144
| − −| +(100− 112)2 = 121
| − −| +(123− 112)2 = 121
| − −| +(124− 112)2 = 196
| − −| +(125− 112)2 = 225
| − −| −− > S2 = 976

(5)

Fig. 4 Generated regression tree using A1 for splitting.

Case 3:
The third case describes the selection of the refined predictor attribute A2

for splitting delivers the regression tree with four leave nodes with predicted
values mc11,mc12,mc21 and mc22 as visualied in Figure 5. The calculations
are as folows.

mc11 =
1

3
∗ (2 + 3 + 1) = 2 (6)

mc12 =
1

3
∗ (6 + 7 + 5) = 6 (7)

mc21 =
1

3
∗ (99 + 101 + 100) = 100 (8)

mc22 =
1

3
∗ (123 + 124 + 125) = 124 (9)

The sum of squared errors S = S11 + S12 + S21 + S22 = 8 is calculated as
follows.

| − | (2 − 2)2 = 0
| − | +(3 − 2)2 = 1
| − | +(1 − 2)2 = 1

| − | − > S11 = 2

| − | (6 − 6)2 = 0
| − | +(7 − 6)2 = 1
| − | +(5 − 6)2 = 1

| − | − > S12 = 2

| − | (99 − 100)2 = 1
| − | +(101 − 100)2 = 1
| − | +(100 − 100)2 = 0

| − | − > S21 = 2

| − | +(123 − 124)2 = 1
| − | +(124 − 124)2 = 0
| − | +(125 − 124)2 = 1

| − | − > S22 = 2
(10)

We can imagine that apart from the two predictor attributes A1 and A2,
there are more predictor attributes. When we construct the regression tree,
we have decide which attribute and in the case attributes A1 and A2 which
level of granularity we choose for splitting in a node. If we only use the sum
of squared errors, then the refined attribute A2 will always be prefered over
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Fig. 5 Generated regression tree using A2 for splitting.

the coarser attribute A1, since the latter one can never yield a smaller sum
of squared errors than A2.

To avoid this effect, we apply the MDL principle during the splitting step to
decide whether a split refined makes sense or not. The MDL measureMDLRT

of the generated regression tree is a binary value and consists of the sum of
the number of digits NRT which have to be corrected and the binary coding
of the generated (partial) tree CRT at the corresponding splitting node. In
the following, both values are calculated for the three different cases. The
number of digits which have to be corrected is calculated as

NRT =

8∑
k=1

fi (11)

with k = 1, ..., 8 the positions of the binary digits of an 8 bit value2 and
f = 1, ..., 12 as the sum of digits to be corrected for data object i in the
data set visualised in Table 1. The binary coding of the tree depends on
the number of successor nodes. The splitting must be encoded and for each
successor node a predicted value is needed. In Table 2 the values of the target
attribute Z of Table 1 are shown as binary numbers. The following example
illustrates how the calculations for MDL are carried out. The value of the
third data object d3 is (6)10 with the binary coding (00000110)2 containing
8 digits. In the first case, the prediction of the regression tree is (58)10. In
binary coding this is (00111010)2. This means the number of digits which
have to be corrected is f3 = 8:

k = 87654321
00111010 = (6)10

− 00000110 = (58)10
11001100 = (52)10

(12)

Case 1:
In this case the regression tree consists of one node as shown in Figure 3.
Therefore, the prediction for every single data object in the data set is (58)10
and in binary code 00111010. The binary calculation of NRT1 delivers the

2 Here we choose a precision of 8 bits. Of course, depending on the application, a higher
or lower precision can be required.
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Table 2 Output parameter values in binary code

(z)10 (z)2

2 00000010
3 00000011
6 00000110
99 01100011
101 01100101
100 01100100
123 01111011
7 00000111
124 01111100
1 00000001
5 00000101
125 01111101

following result:

NRT1 = (8 + 8 + 8 + 6 + 6 + 6 + 7 + 8 + 7 + 8 + 8 + 7) = 87 (13)

The generated tree RT1 contains one single node with the binary coding
CRT1 = 00000001. The resulting MDL measure is MDLRT1 = NRT1 + CRT1

with MDLRT1 = 88.
Case 2:
The second case refers to the tree visualised in Figure 4 including 3 nodes.
Resulting from this tree, the binary coding is CRT2 = 00000011. NRT2 must
be calculated for two different leaves of the generated tree and delivers the
following result:

NRT2 = NRT2a
+NRT2b

= 58 (14)

NRT2a
represents the case predicting 4 and NRT2b

the case predicting 112.
Both values were calculated as shown in the following.

NRT2a
= (2 + 2 + 3 + 3 + 2 + 1) = 13 (15)

NRT2b
= (8 + 8 + 8 + 7 + 7 + 7) = 45 (16)

The MDLRT2 = 58 + 3 = 61 value is smaller for this tree.
Case 3:
The last and third case in the example is the regression tree shown in Figure 5
including 5 nodes. The binary coding resulting from these nodes is CRT3 =
(00000101)2. The sum of the number of digits which have to be corrected
NRT3 in this case must be calculated by considering the different prediction
values 2, 6, 100 and 124 of the tree.

NRT3 = NRT3a
+NRT3b

+NRT3c
+NRT3d

= 8 (17)
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NRT3a
= (0 + 1 + 1) = 2 (18)

NRT3b
= (0 + 1 + 1) = 2 (19)

NRT3c
= (1 + 1 + 0) = 2 (20)

NRT3d
= (1 + 0 + 1) = 2 (21)

The last tree visualised in Figure 5 yields an even smaller MDL-value of
MDLRT3 = 8+ 5 = 13. Considering the MDL value as measurement implies
that the regression tree in the third case delivers the best model for the
original data set.

5 Decision Trees

For decision trees, there is another option than MDL to incorporate the
selection of the most suitable attribute and its level of granularity at the
same time. If we only focus on the information gain, i.e. the reduction of the
entropy that is achieved by splitting with respect to a certain attribute, we
would also prefer the most refined level of an attribute, since the entropy
will always decrease with further splitting. However, for the construction of
ordinary decision trees, there is already a technique that we can exploit.
The gain ratio [6] was originally introduced to avoid the effect that predictor
attributes having more different values tend to be prefered over attributes
with few values by the simple information gain as a measure for deciding
which attribute to use for a split in a node. Although the gain ratio was
originally introduced to compare different attributes with a different number
of values, it can also be applied directly to a single attribute with different
levels of granularity.

6 Conclusions

In this paper we have addressed the problem of attributes with different
levels of granularity in the context of data mining which is often neglected
although it is a common challenge in real world applications. This problem is
often tackled in a way as illustrated in Figure 1, leading to high computational
costs when all combinations of granularity levels of different attributes are
considered. At least for decision and regression trees, the computational costs
can be reduced drastically by incorporating the selection of the granularity
levels directly in the construction of the model as it is done by the methods
described in this paper.

Further research work is needed to extend these ideas to other data mining
methods than decision and regression trees.
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Stochastic Convergence Analysis of
Metaheuristic Optimisation Techniques

Nikos S. Thomaidis1 and Vassilios Vassiliadis1

Abstract Commonly used metaheuristic optimisation techniques imbed
stochastic elements into the selection of the initial population or/and into
the solution-search strategy. Introducing randomness is often a means of es-
caping from local optima when searching for the global solution. However,
depending on the ruggedness of the optimisation landscape and the complex-
ity of the problem at hand, this practice leads to a dispersion of the reported
solutions. Instead of relying on the best solution found in a set of runs, as is
typical in many optimisation exercises, it is essential to get an indication of
the expected dispersion of results by estimating the probability of converging
to a “good” solution after a certain number of generations. We apply a range
of statistical techniques for estimating the success probability and the con-
vergence rate of popular evolutionary optimisation heuristics in the context
of portfolio management. We show how this information can be utilised by a
researcher to obtain a deeper understanding of algorithmic behaviour and to
evaluate the relative performance of competitive optimisation schemes.

1 Introduction

Metaheuristic optimisation techniques, such as genetic algorithms, particle
swarms and ant colonies, are constantly gaining attention in a variety of appli-
cation fields. Nowadays, they are considered by many researchers as a promis-
ing alternative to traditional gradient-search methods that is better suited to
the complexities of real-life applications (high-dimensional data, combinato-
rial explosion, non-differentiable functions, multiple local optima) [4, 12, 17].
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agement Engineering, University of the Aegean, 41 Kountouriotou Str., 82100 Chios,
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In all of the aforementioned metaheuristic paradigms, the exploration of
the solution space is guided by random elements. Introducing randomness
is a strategy to avoid premature convergence and local optima. Hence, even
though in some of the runs the algorithm might get stuck in suboptimal
regions, increasing the number of repetitions will boost a better exploration
of the solution space and, eventually, lead to the global optimum. A downside
of this practice is that it unavoidably leads to a higher dispersion of the
reported results. Even when the algorithm is initialised from exactly the
same population, it will most likely follow a different convergence path and
the reported optimal solution may change from run to run. The degree of
divergence in algorithmic behaviour depends, of course, on the morphology of
the optimisation landscape and the complexity of the problem at hand. Still,
the bottom-line is that we need a different approach to the evaluation and
execution of metaheuristic schemes. Since we are dealing with randomness,
statistical tools can play an important role to this end.

Statistical techniques are becoming increasingly popular in the area of
metaheuristic optimisation. In the early years, researchers would routinely
judge the relative superiority of each algorithm by comparing average scores
over a set of runs on a single data set. However, nowadays, many recommend
the use of statistical tests for pairwise or multi-wise comparisons of algo-
rithmic behaviour (see e.g. [5] for an overview of parametric/nonparametric
techniques). Still, on the application side, relatively little has been done in the
direction of using statistical techniques for fine-tuning algorithmic parameters
or determining the exploration/exploitation tradeoff. Gilli and Winker [6] set
forth a range of probabilistic tools for analysing the convergence properties of
heuristic techniques and the empirical distribution of algorithmic outcomes in
each generation. They additionally show how this stochastic analysis can set
the ground for determining an optimal allocation of CPU power between ex-
ploitation and exploration. Barrero et al. [1] investigate the convergence rate
of genetic programming through the concept of generation-to-success (i.e.
the number of generations guaranteeing convergence to the optimal region).
They propose various techniques for estimating the statistical distribution of
this random variable on a given optimisation task. In [13], we investigate the
success rates of three stochastic optimisation techniques (simulated anneal-
ing, genetic algorithms, particle swarms) in the task of designing portfolios
with certain enhancements over a benchmark financial index. [14] is a con-
tinuation of the study mentioned above, providing additional experimental
evidence on the synthesis of optimal asset allocations and the speed at which
each optimisation scheme converges to the optimum region.

The objective of this chapter is to picture the performance of common opti-
misation metaheuristics by means of an expanded set of statistical techniques.
Along the guidelines of [6], we attempt to provide a “cloud” of outcomes that
portray different aspects of the uncertainty associated with algorithmic be-
haviour in a portfolio optimisation task. Instead of following the common
practice of reporting the average solution or the best solution found in a set
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of runs, we analyse the dispersion of results by estimating the so-called cumu-
lative success probability. In our context, this is defined as the probability of
converging, in a given number of iterations, to a solution within the range of
the global optimum. Given that the success rate is estimated from a relatively
small number of independent runs, there is additional uncertainty as to the
reliability of this estimate beyond the experimental data set. To address this
issue, we propose a resampling technique for computing confidence intervals
on the cumulative success probability, which does not rest on a parametric
distribution (e.g. normal). We also derive a related measure of algorithmic
performance that provides an estimation of the worst expected outcome that
is likely to be observed in a single run. These concepts are applied to the
evaluation of two popular metaheuristics, genetic algorithm and artificial ant
colonies, in a portfolio optimisation context. As a case study, we consider the
problem of selecting an optimal capital allocation among a set of stocks by
placing an upper limit on the size of the portfolio (cardinality constraint).

The rest of the chapter is structured as follows: Sect. 2 discusses the for-
mulation of the optimisation problem examined in this study. Sect. 3 presents
the general architecture of the metaheuristic solvers, while Sect. 4 gives in-
formation on the sample data and the experimental setting. Different aspects
of the statistical performance of metaheuristic techniques are analysed in
Sect. 5-7. Sect. 8 concludes the chapter and discusses directions for further
research.

2 Problem Formulation

The objective of our portfolio optimisation problem is to maximise a com-
monly used performance criterion, the Sortino ratio (SoR) [11]. This measures
the excess expected return delivered by the portfolio (i.e. the expected return
minus the return on the risk-free asset) per unit of downside standard devi-
ation of returns. For a random variable X with probability density function

pX(x), the downside standard deviation is Vτ (X) ≡
√∫ τ

−∞(τ − x)2pX(x)dx,

where τ is a negative threshold defined by the fund manager. As seen, the
downside standard deviation is also a measure of dispersion but it only takes
into account returns that fall below τ . In our case, the threshold is set equal
to zero. So, the main interest of the portfolio manager is to maximise the
expected return and also minimise the probability of observing large losses.

Apart from the objective function, the portfolio selection problem is
equipped with several restrictions which are typical in this type of appli-
cation:

• Full investment constraint, i.e. the available capital is fully invested in
risky assets.
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• Floor and ceiling constraint. A portfolio has to be well-balanced i.e. no
single asset (or group of assets) must absorb a large proportion of the
initial installment. This requirement is fulfilled by imposing a lower and
upper limit on each asset weight in the final capital allocation.

Most fund managers select their holdings from a universe of assets belong-
ing to a popular market benchmark, such as the S&P 500 or the Russell 3000
stock indices. This is because their skill is often benchmarked against the
index. However, index constituents change from time to time and some of
the assets taken into account in the calculation of the index are held in very
small quantities. A fund manager may stray from investing in all member
stocks and instead focus on holding small and manageable bundles of assets,
with which he/she might be able to attain the investment goal. This practical
necessity translates into an upper limit on the number of assets included in
the portfolio, the so-called cardinality constraint.

A formulation of the portfolio optimisation problem encapsulating all the
requirements set above is the following:

maximise
ω∈RN b∈{0,1}N

SoR(ω,b) ≡ E[RP (ω,b)]−Rf

V0[RP (ω,b)]
(1a)

subject to

N∑
i=1

ωi = 1 (1b)

ωf ≤ ωi ≤ ωc, i = 1, ..., N (1c)

N∑
i=1

si ≤ K ≤ N (1d)

where ω ≡ (ω1, ω2, ..., ωN )′ is the vector of portfolio weights, showing the
fraction of capital invested in each asset; s = (s1, s2, ..., sN )′ is a vector of
indicator variables, taking the value 1 if money is put on the ith asset and
0 otherwise; N is the size of the investment universe; E[RP ] is the expected
portfolio return; Rf is the return on a risk-free bank account; V0[RP ] is the
downside standard deviation; ωf , ωc is the lower and upper limit on asset
weights andK is the portfolio cardinality. Note from (1b) that all wi’s sum up
to one, reflecting the requirement that the available capital be fully invested,
and the total number of assets with non-zero weight is less than K (constraint
(1d)).

The portfolio-selection formulation discussed above is a typical case of a
mixed-integer nonlinear programming problem, which is hard to solve even
for small values of N . In fact, the search for optimal solutions expands along
two dimensions:
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a) finding a suitable basket of K assets.
b) deciding the optimal capital allocation among these assets.

One could possibly simplify the solution-search strategy by making a com-
plete enumeration of all possible asset combinations of maximum size K and
deploy, for each combination, a gradient-search technique to detect optimal
portfolio weights. However, the computational time required for this solution
strategy increases exponentially with the size of the problem (i.e. the prob-
lem is NP -complete). Fig. 1 plots the number of possible ways with which
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Fig. 1 Combinatorial complexity vs cardinality.

30 assets could be assigned into classes of size K = 1, ..., 30, where K is read
on the horizontal axis. Note that even in such a relatively small investment
universe, the number of feasible portfolio allocations literally explodes as we
move towards medium-range cardinalities (i.e. when K ≈ N/2).

3 Description of Optimisation Metaheuristics

Two stochastic metaheuristics are applied to the solution of the proposed
portfolio-selection problem: a genetic algorithm (GA) and an ant colony op-
timisation (ACO) technique. We designed a hybrid solution-search strategy,
whereby the aforementioned metaheuristics are only directed towards detect-
ing promising combinations of K assets. For each step in the space of possible
combinations, a Levenberg-Marquardt algorithm (see e.g. [10]) was run to de-
termine optimal weights satisfying constraints (1b) and (1c). In what follows,
we provide a summary presentation of metaheuristic techniques; more imple-
mentation details are given in the references below, in Sect. 4 and are also
available form the authors upon request.

The genetic algorithm was firstly proposed by Holland [7] and draws on
concepts from the process of biological evolution. The idea is to reach a pop-
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ulation of “high-quality” solutions by applying the mechanisms of selection,
crossover and mutation. In our case, each member of the population cor-
responds to a unique combination of K assets (see also [16] for a similar
approach). The initial population is chosen randomly and, in each genera-
tion, the top-n members of the population are selected for reproduction. The
quality of an individual solution is measured by the value of the Sortino ra-
tio. Previous experiments have indicated that this elitist method of selection
yields quite good results. After the selection process is completed, a certain
percentage of elite members undergo the process of crossover, in which pairs
of “parent”-portfolios exchange their constituents, and then the process of
mutation, in which certain parts of a portfolio are randomly substituted by
other candidate assets.

The second hybrid scheme, implemented in this study, is an ant colony opti-
misation algorithm, inspired by the foraging behavior of real ant colonies [3].
In nature, ants randomly explore their surrounding environment for food
sources. When an individual ant is faced with a potential food source, it car-
ries some of it back to the nest. During the return trip, the ant deposits a cer-
tain amount of a chemical substance, called pheromone, which helps commu-
nicating with the rest of the population. Good-quality food sources are con-
tinuously visited by ants, thus enhancing the corresponding pheromone trails.
In our setting, each ant represents a “financial” agent whose aim is to select
assets for the portfolio. The food sources correspond to available assets and
a complete solution consists of a combination of K assets. At first, artificial
ants pick their solutions randomly. Then, for a number of generations, each
ant updates the solution, based on the pheromone values of each asset (food
source). Suppose that in some iteration of the algorithm, a portfolio Pk of
k = 1, ...,K−1 assets is selected. The probability of adding the asset j to the

existing portfolio is given by pk,j =
∑

i∈Pk
pheri,j/

(∑
i∈Pk

∑
h �∈Pk

pheri,h

)
,

where pheri,j is the pheromone value for the “path” connecting asset i with
asset j. This ratio essentially compares the total pheromone for the connec-
tions between each member of the portfolio and the candidate asset with the
sum of pheromone values for the paths connecting each selected asset with
any asset not included in the portfolio. At the last step of the algorithm,
the pheromone update process takes place, consisting of two parts: firstly, all
pheromone values decrease (evaporate) by a certain amount and, secondly,
pheromone values of the n-best solutions are reinforced.

4 Experimental Setting

In order to investigate the performance of optimisation metaheuristics, we
consider the case where the fund manager’s task is to ensemble baskets of
Dow Jones Industrial Average (DJIA) stocks. The DJIA index is a popular
benchmark of the North American equities market comprised of 30 large and
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well-established companies. Our sample data span a period of approximately
one trading year (16/11/2010 - 11/11/2011). Daily adjusted closing prices
for DJIA member stocks were downloaded from Yahoo!Finance service and
the associated returns were calculated as Rt = 1− Pt/Pt−1, where Pt is the
closing price of the trading day t and Rt is the close-to-close daily return. The
average portfolio return and the downside standard deviation of returns were
computed using the corresponding sample measures over the examined data
period. In all optimisation exercises, we assumed that admissible portfolio
weights take values between −0.901 and 0.90, thus allowing no more than
90% of the initial capital to be invested in a single company. The risk-free rate
is 3% per annual, which amounts to an equivalent daily rate of (1.03(1/360)−
1)× 360 = 2.96%.

Metaheuristic optimisation has only recently started to attract the atten-
tion of researchers and practitioners in portfolio management. Keber and
Maringer [8] present an empirical application of ant colony systems, genetic
algorithms and simulated annealing to the selection of size-constrained port-
folios of FTSE 100 stocks. Optimal portfolio allocations were determined
using a similar to ours return-to-risk ratio, though, in their case, the risk
measure is the ordinary standard deviation of portfolio returns. Maringer [9]
provides supplementary evidence on the performance of ant colony systems
in selecting cardinality-restricted allocations in three popular stock indices
(DAX, FTSE 100 and S&P 100). A review of other research works in meta-
heuristic portfolio optimisation with an upper limit on the total number of
investable assets can be found in [9, 15].

The problem setting assumed in this study differs in several aspects from
that reported in other similar applications of metaheuristic techniques. We
explicitly introduce floor/ceiling constraints in the formulation of the prob-
lem (allowing short-selling of stocks) and also use the downside standard
deviation to penalise excess portfolio returns. The latter is a non-quadratic
measure of risk which makes the optimisation problem more difficult to solve.
What is more, we put more emphasis on exploring the stochastic behaviour
of metaheuristic schemes. In the aforementioned research works, authors typ-
ically perform several independent runs of each stochastic optimiser and then
report the best solution found in all repetitions or some measure of dispersion
such as the standard deviation of final scores2. This only gives a rough in-
dication of the uncertainty associated with algorithmic performance. In this
study, we go deeper into analysing the convergence paths followed by indi-
vidual algorithms which further allows us to draw conclusions on the optimal
execution design.

Cardinality-constrained capital allocations were derived by solving the op-
timisation problem (1) assuming bundles of K = {5, 15, 20} stocks. We made
an effort to perform a fair comparison of optimisation techniques, using the

1 A negative weight means that the corresponding asset is sold short.
2 An exception is perhaps [9] who also reports intervals within which a certain percent of
algorithmic outcomes fall.
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same level of computational resources. The population size was set at 100
and all algorithms were terminated after T = 200 iterations. To analyse the
variability of results, we performed M = 100 independent executions from
random initial states. For choosing parameter values for each algorithm, we
mainly resorted to default values reported in the literature. In fact, we delib-
erately avoided looking long enough and hard enough for optimal parameter
values, as this would bias the results of our study towards specific optimisa-
tion techniques. For GA, 10 out of 100 portfolios in each generation were used
for reproduction, 95% of the population members were selected for crossover
and only a 15% was subject to mutation. For ACO, the number n of elite
members was also 10 and the evaporation rate was set to 0.7, thus enforcing
quick evaporation of weak pheromone trails.

The ability of metaheuristics to indicate good bundles of assets was evalu-
ated against a simple Monte-Carlo technique. We generated 10, 000 random
combinations of K stocks and, for each of them, we used the Levenberg-
Marquardt algorithm to solve the subproblem (b), i.e. detecting the capital
allocation with the maximum risk-penalised return. If the examined meta-
heuristics are of some value to the portfolio manager, they should detect
asset combinations that are statistically superior to a “blind” search over all
possible combinations.

5 Statistical Performance Analysis

Due to space limitations, we only present experimental results for portfo-
lios of size K = 15.3 Results for other cardinalities are available upon re-
quest.Amongst all optimisation techniques, GA was the one to detect the
portfolio with the maximum Sortino ratio (0.629). This value is taken as
the “global” optimum (GO) of the problem at hand and all other reported
solutions are evaluated against GO.

Our statistical performance analysis is centered around the concept of the
success or hit rate. This is defined as the percentage of algorithmic runs for
which the final best solution reported is at worse y% away from GO.4 This
may equivalently be interpreted as an extreme value probability derived from
the empirical distribution of algorithmic outcomes (see [6]). The relative fre-
quency of successful runs is, under proper conditions, a consistent estimate
of the actual probability of hitting the optimal region in a single run. How-
ever, due to the fact that the hybrid optimisation strategies examined in this
chapter are computationally demanding, one is confined to a relatively small
number of algorithmic restarts to obtain an estimate of this quantity. This
has a negative effect on the reliability of the derived values for the success

3 According to Fig. 1, this is the cardinality value for which the combinatorial complexity
reaches its maximum level.
4 The percentage deviation for a solution y is computed as 1− y/GO.
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rates. Therefore, it would be advisable to equip our point estimate with a
confidence interval showing how much the success rate is expected to vary
beyond our experimental data. Generally, an analytical formula for the con-
fidence interval is hard to derive, as the exact distribution of the rate is
unknown in finite samples. One could rest on asymptotic theory and assume
that the hit rate is approximately normally distributed. Despite the fact that
the hit rate is a non-negative quantity, extensive simulation experiments show
that this normality approximation is rather poor assuming few algorithmic
restarts.

In this chapter, we apply bootstrapping to estimate the finite-sample distri-
bution of the hit rate statistic. Bootstrapping is a relatively simple method for
deriving measures of variability for sample estimates. It relies on resampling
to reproduce the sample distribution of the estimated quantity (see e.g. [2]
for more information). The bootstrapping procedure applied in this study for
calculating confidence intervals on the hit rate is analytically described in the
sequel.

Let dm be a real-valued positive variable showing the percentage devi-
ation from the GO of the best solution reported in the mth run, where
m = 1, ...,M and M = 100 in our case. The empirical rate f(x) of
getting a solution in the optimum region [(1 − x)GO, GO] is defined as

f(x) ≡ (1/M)
∑M

m=1 1{dm≤x}, where x is the tolerance rate and 1{.} is the
indicator function. We draw B − 1 = 499 sets of hypothetically observed

deviations
{
d
(b)
m , m = 1, ...,M ; b = 1, ..., B

}
by randomly sampling with re-

placement from the original set of dm’s. For each bootstrapped sample b, we
compute the empirical success rate

f (b)(x) = (1/M)

M∑
m=1

1{
d

(b)
m ≤x

}

and thus form a new sample of success rate points
{
f (b)(x), b = 1, ..., B

}
.5 A

two-sided confidence interval on the hit rate with overall level of confidence
(1−α) is estimated by calculating the α/2- and (1−α/2)-cutoff points from
the empirical distribution of f (b)(x)’s.

Table 1 reports 95% confidence intervals on the hit rate of each meta-
heuristic for various levels of deviation from the global optimum solution.
For comparison purposes, we report the corresponding rates for the Monte-
Carlo portfolio-search method. Note that if we only permit small deviations
from the GO (where x is at the order of 1% or 2%), we have practically zero
chance of observing, at 95% confidence level, a successful outcome for ACO.
GA has a slightly higher probability of reaching the 1%- or 2%-optimum re-
gion, although this probability is not statistically different from zero at 5%
significance. As we increase the width of the optimum region, the success rate
quickly peaks up. Particularly poor convergence is observed for Monte-Carlo,

5 The last observation of this sample is taken equal to f(x), the actual hit rate.
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Table 1 Bootstrapped confidence intervals on algorithmic hit rates for a range of tolerance
values x.

Deviation (%) ACO GA Monte-Carlo

1 (0.000 0.000) (0.000 0.041) (0.000 0.000)
2 (0.000 0.000) (0.000 0.054) (0.000 0.000)
3 (0.000 0.036) (0.000 0.077) (0.000 0.000)
4 (0.000 0.060) (0.054 0.169) (0.000 0.000)
5 (0.033 0.131) (0.195 0.368) (0.000 0.000)
8 (0.534 0.716) (0.937 1.000) (0.000 0.000)
10 (1.000 1.000) (1.000 1.000) (0.000 0.000)
20 (1.000 1.000) (1.000 1.000) (0.000 0.001)
30 (1.000 1.000) (1.000 1.000) (0.015 0.020)
40 (1.000 1.000) (1.000 1.000) (0.186 0.201)

which fails to detect near-optimum allocations with significant probability.
Note that if we set x equal to 20%, we are almost 100% sure that a single
run of ACO and GO will converge to the optimal region. Still, the chances of
getting a near-optimum asset combination with a Monte-Carlo trial is almost
zero.

6 Worst Expected Outcome

Recognising the statistical variability of final outcomes, many researchers ap-
plying metaheuristic optimisation techniques tend to report deviations from
average algorithmic performance. However, in practical applications it might
be more useful to focus on the worst algorithmic outcome that is likely to
be observed with a certain probability. This safety-first approach to eval-
uating algorithmic performance can be implemented by calculating partial
moments and critical points associated with the tails of the distribution of
the performance metric of interest.

In Table 2, we report various percentiles of the empirical distribution of
solutions attained by each optimisation metaheuristic in 10, 100 or 200 iter-
ations. The numbers presented under the columns “ACO” and “GA” can be
interpreted as the maximum percentage deviation from the global optimum
that is expected with credibility 100×(1−α)%. The last three rows of Table 2
show, for comparison, the α-worst outcome from the Monte-Carlo search6. In-
stead of reporting single estimates, we compute confidence intervals on cutoff
points using a bootstrapping procedure similar to that described in Sect. 5.
Fig. 2 shows the evolution of the 5th percentile over a finer resolution of algo-
rithmic iterations (the grey-shaded region lying between the two neighboring

6 As Monte Carlo is not an iterative procedure, its results are only comparable with the
final outcomes of the metaheuristic optimisation schemes.
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Table 2 Confidence intervals on the worst expected deviation of reported solutions for
various significance levels and number of generations.

Significance (α) ACO GA Monte-Carlo

Number of generations: 10

0.10 (16.40 17.20) (11.33 12.90)
0.05 (16.70 17.68) (11.62 13.57)
0.01 (17.25 18.37) (12.98 14.18)

Number of generations: 100

0.10 (9.78 10.56) (7.71 8.15)
0.05 (10.16 11.24) (7.92 8.55)
0.01 (10.75 11.63) (8.24 8.71)

Number of generations: 200

0.10 (8.64 9.15) (7.29 7.87) (55.95 56.44)
0.05 (8.90 9.49) (7.62 8.26) (58.65 59.37)
0.01 (9.23 9.92) (7.91 8.71) (63.89 65.12)

curves corresponds to a 95% confidence region on the estimated cutoff point).

As observed from Table 2 and Fig. 2, if algorithms are allowed to iterate
only 10 times, the maximum deviation from the global optimum can be at the
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Fig. 2 The evolution of the worst expected outcome (as measured by the 5th percentile
of the empirical distribution of solutions) with the number of iterations.
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order of 17% for ACO and 12% for GA. Provided that we want to be 99%
confident that we have actually witnessed the worst algorithmic outcome,
these numbers climb up to 18.37% for ACO and 14.18% for GA. Note that at
all significance levels, the right-hand side of the GA confidence intervals lie
below the left-hand side of the ACO confidence intervals, meaning that GA
is statistically superior to ACO in terms of the worst expected outcome. The
relative ranking is also preserved even after more iterations have elapsed, al-
though maximum expected deviations in these cases are much lower. As seen
from Fig. 2, by running at least 20 iterations from GA and 160 from ACO,
the researcher can be quite confident that the Sortino ratio of the reported
optimal portfolio will not under-perform the best-ever solution (0.629) by
more than roughly 10%. Whether this deviation is acceptable or not has to
do with the portfolio manager’s aspiration levels. The point, however, is that
with the analysis presented we are able to quantify the risk of severe algo-
rithmic under-performance and, eventually, know what to expect from each
optimisation scheme.

7 Execution Design

An important issue in metaheuristic optimisation is the choice of values for
algorithmic parameters, especially the optimal trade-off between the explo-
ration and exploitation of the solution space. One the one extreme, the re-
searcher may fix a relatively small number of parallel agents and spend more
computational resources on locating the optimum region with higher accu-
racy. On the other edge, he/she might choose to cutdown on the number of
generations with the purpose of increasing the population size and thus per-
forming a more consistent exploration of the solution space. In this section,
we show how the statistical dispersion analysis presented in previous sections
could provide some guidance in this dilemma.

Assuming that enough independent runs can be executed for each algo-
rithm, one might ask for the minimal number of restarts such that at least
one successful outcome is observed with high confidence. Based on the theory
of Binomial distributions, we can design a procedure for calculating the re-
quired algorithmic repetitions [6] (see also [14] for a detailed discussion). The
idea is to see each run of the optimisation technique as a Bernoulli trial with
probability of success equal to f(y, t). Extending our previous notation, this
is the relative frequency by which the algorithm has detected in t = 1, ..., 200
iterations a solution that is at worse (100 × y)% inferior to the global opti-
mum portfolio. Fixing the value of t, we can estimate the minimal number of
trials such that the probability of observing at least one successful outcome
is no less than a certain threshold. The desired quantity can be computed by
inverting the Binomial cumulative probability function.
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Table 3 Stochastic convergence analysis and optimal operation of metaheuristic optimi-
sation techniques. Confidence intervals are shown in parentheses.

Number of
iterations

ACO GA

Hit rate (5%) Algorithmic restarts Hit rate (5%) Algorithmic restarts

1 (0.000, 0.000) (>104, >104) (0.000, 0.000) (>104, >104)
10 (0.000, 0.000) (>104, >104) (0.014, 0.096) (30, 211)
20 (0.000, 0.046) (64, >104) (0.029, 0.125) (23, 101)
50 (0.000, 0.046) (65, >104) (0.075, 0.198) (14, 39)
100 (0.000, 0.076) (39, >104) (0.138, 0.305) (9, 21)
150 (0.014, 0.093) (31, 208) (0.168, 0.335) (8, 17)
170 (0.031, 0.122) (24, 97) (0.188, 0.350) (7, 15)
200 (0.033, 0.131) (22, 96) (0.195, 0.368) (7, 14)

Table 3 reports, for each optimisation technique, interval estimates on
the probability of observing a solution in the 5%-optimal region as well as
on the number of repetitions required to detect the optimum region with
95% confidence.7 Note that in a few cases (particularly when the number of
iterations is quite small), the probability of a successful outcome is almost
zero (to three significant digits). This means that the algorithm has to be
redeployed quite many times (greater than 10, 000) on the same problem
instance, so that the portfolio manager can be confident that optimality has
been achieved. In the case of ACO, the empirical success rate is statistically
insignificant even after a considerable number of 100 iterations have elapsed.
On the contrary, for GA, the hit rate peaks up faster with the number of
generations, thus implying fewer algorithmic restarts. For example, with 211
initialisations from random states, the GA is 95% likely to detect close-to-
optimal solutions in only 10 iterations. If the algorithm is allowed to iterate
more times, optimality can be attained in less than 20 or 15 generations.

One can take the presented analysis one step further and derive the combi-
nation of restarts/iterations guaranteeing that the minimum amount of com-
putational resources is spent on the particular optimisation exercise. This
optimal trade-off can be easily computed for each metaheuristic by multi-
plying the right-hand side of the interval estimate of required independent
runs with the corresponding number of iterations shown at the first column
of Table 3. For the subset of values reported here, we can easily infer that
ACO is more efficiently executed by deploying 170 iterations from 97 random
initial states. The corresponding optimal trade-off for GA is 50 iterations and
39 independent runs.

7 Results for values of the tolerance rate other than 5% are available from the authors
upon request. Monte Carlo experiments are omitted from this Table, as the probability
of converging to a solution that is at most 5% away from the GO has not been found
statistically different from zero (see Table 1).
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8 Conclusions and Further Research

This chapter performed an empirical analysis of the convergence properties
of two hybrid computational schemes, based on genetic algorithms and ant
colonies, in the framework of cardinality-constrained portfolio optimisation.
We report several indicators of algorithmic performance picturing different
aspects of the statistical variability of outcomes. The information conveyed
by these performance metrics can be further utilised to derive the optimal
trade-off between the number of generations and restarts. This figure is very
important when it comes to deciding how to allocate the available computa-
tional resources given the complexity of the optimisation problem. We finally
proposed a technique for deriving confidence intervals on various sample es-
timates, showing how the value of each performance metric is expected to
vary on unseen data. Both metaheuristics examined in this study have been
proven quite effective in handling the complexities of the optimisation prob-
lem at hand. The subgroups of stocks suggested by GA or ACO consistently
deliver higher Sortino ratios than those reported by a Monte-Carlo search
over the space of feasible asset combinations.

The techniques presented in this study are general-purpose and can be
applied to a wider range of stochastic metaheuristics or optimisation problems
(see e.g. [6] for a discussion). However, at the current stage of development,
they mainly serve as an ex-post evaluation tool for measuring the convergence
rate of a metaheuristic or performing pairwise algorithmic comparisons on a
particular problem instance. The extent to which the results from such an
analysis provide useful information on how to operate each algorithm on a
similar problem setting is still an issue under investigation.
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10. Moré JJ (1978) The Levenberg-Marquardt algorithm: Implementation and theory.
Lecture Notes in Mathematics 630:104–116. Springer, Berlin

11. Sortino AF, Price NL (1994) Performance Measurement in a Downside Risk Frame-
work. The Journal of Investing 64:59–64

12. Talbi E-G (2009) Metaheuristics: From Design to Implementation. J. Wiley & Sons,
Chichester

13. Thomaidis NS (2010) Active Portfolio Management from a Fuzzy Multi-objective
Programming Perspective. In: Cecilia Di Chio et al. (eds) Lecture Notes in Computer
Science 6025:222–231. Springer, Berlin

14. Thomaidis NS (2011) A soft computing approach to enhanced indexation. In:
Brabazon A, O’Neill M, Maringer D (eds) Natural Computing in Computational
Finance (Volume IV). Springer, Berlin

15. Vassiliadis V, Thomaidis NS, Dounias G (2009) Active Portfolio Management under
a Downside Risk Framework: Comparison of a Hybrid Nature — Inspired Scheme. In:
Corchado E. et al. (eds.) HAIS 2009. Lecture Notes in Computer Science 5572:702–
712. Springer, Berlin

16. Vassiliadis V, Thomaidis NS, Dounias G (2011) On the Performance and Convergence
Properties of Hybrid Intelligent Schemes: Application on Portfolio Optimization Do-
main. In: Di Chio C et al. (eds.) EvoApplications 2011. Lecture Notes in Computer
Science 6625:131–140. Springer, Berlin

17. Weise T (2009) Global Optimization Algorithms: Theory and Application. E-book
available from http://www.it-weise.de/



Comparison of Multi-objective
Algorithms Applied to Feature
Selection
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Ayşen Apaydın1, and João M.C. Sousa2

Abstract The feature selection problem can be formulated as a multi-
objective optimization (MOO) problem, as it involves the minimization of
the feature subset cardinality and the misclassification error. In this chapter,
a comparison of MOO algorithms applied to feature selection is presented.
The used MOO methods are: Nondominated Sorting Genetic Algorithm II
(NSGA-II), Archived Multi Objective Simulated Annealing (AMOSA), and
Direct Multi Search (DMS). To test the feature subset solutions, Takagi-
Sugeno fuzzy models are used as classifiers. To solve the feature selection
problem, AMOSA was adapted to deal with discrete optimization. The multi-
objective methods are applied to four benchmark datasets used in the liter-
ature and the obtained results are compared and discussed.

1 Introduction

Generally, real-world data sets tend to be complex, very large, and normally
contain many irrelevant features. One of the most important steps in data
analysis for classification is feature selection, which has been an active re-
search area on many fields, such as data mining, pattern recognition, image
understanding, machine learning or statistics. The main idea of feature selec-
tion is to choose a subset of the available features, by eliminating redundant
features with little or no predictive information. There are two key decisions
involved in the feature subset selection problem: (i) the number of selected
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features and (ii) the best features to be selected [28]. An effective feature se-
lection method can minimize the classification error, improve the prediction
accuracy, and also discover the relevant features. From this point of view, it is
possible to say that feature subset selection is a multi-objective optimization
problem. Recently, the multi-objective feature selection (MOFS) problem was
addressed in many studies. In [14], the feature selection problem is seen as a
multi-objective problem and the Niched Pareto Genetic Algorithm (NPGA),
which uses a commonality-based crossover operator, is applied to solve the
MOFS problem, using neural models as classifiers. A variation of NPGA with
a one-nearest neighbor classifier is applied to the MOFS problem in [13]. In
[15], the application of the Multi Objective Genetic Algorithm (MOGA) is
proposed for feature subset selection on a number of neural and fuzzy models
together with fast subset evaluation techniques. Further, MOGA was used
with different classifiers, namely, fuzzy rule based classification [8], back-
propagation neural networks [19], and support vector machines [5], to solve
the MOFS problem. There are some studies on the use of the nondominated
sorting genetic algorithm (NSGA), firstly proposed in [26], for MOFS with
different wrapper methods, such as neural networks [23] and decision trees
[32], on different data sets. In [17, 22, 30, 12, 18, 24], the nondominated sort-
ing genetic algorithm II (NSGA-II), one of the most efficient multi-objective
algorithms, was used to solve the MOFS problem using different classification
methods.

Archived multi-objective simulated annealing (AMOSA), which was pro-
posed in [3], is an efficient multi-objective version of the simulated annealing
algorithm, based on Pareto dominance. AMOSA incorporates a novel con-
cept of the amount of dominance, in order to determine the acceptance of a
new solution, as in NSGA-II. AMOSA was mainly used for continuous multi-
objective problems, except in [31] where it was applied to gene selection. In
this chapter, AMOSA was adapted for the feature selection problem, and it
is called Modified AMOSA.

Direct multisearch (DMS) is a novel MOO algorithm proposed in [9]. This
method is inspired by the search/poll paradigm of direct-search methods of
the directional type and uses the concept of Pareto dominance to maintain
a list of non-dominated points (from which the new iterates or poll centers
are chosen). The aim of this method is to generate as many points in the
Pareto front as possible from the polling procedure itself, while keeping the
whole framework general enough to accommodate other disseminating strate-
gies. This chapter presents a comparison of derivative-free multi-objective
algorithms, which are NSGA-II, Modified AMOSA and DMS, for the feature
selection problem with two different objectives: minimizing the number of fea-
tures and minimizing the misclassification rate. The chapter is organized as
follows: the next section presents a multi-objective formulation of the feature
selection problem and a brief description of fuzzy modeling for classification.
The derivative-free multi-objective algorithms for MOFS, namely NSGA-II,
Modified AMOSA and DMS, are presented in Section 3. In Section 4, the
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results obtained for several benchmark databases are presented, and a com-
parison of the studied multi-objective algorithms is made. Some conclusions
are drawn in Section 5 and possible future work is discussed.

2 Feature Selection

Feature selection is the process of selecting a subset of the available features
to use in empirical modeling. A fundamental problem of feature selection
is to determine a minimal subset of n features from the complete set of the
features x = {x1, x2, . . . , xN}, with n < N , without sacrificing accuracy. This
means that there are 2N possible feature subsets, which makes a brute-force
approach (enumerating and testing all feature subsets) infeasible in most
cases. It can be said that the main goal of feature selection is to reduce
the number of features used in classification while maintaining an acceptable
classification accuracy. From this perspective, a feature selection problem can
be seen as a multi-objective problem with two objectives: minimization of the
number of features and of the error rate of the classifier. In this chapter, a
fuzzy classifier is built for each feature subset to evaluate the classification
error. The solutions are evaluated by using fuzzy models, as they are universal
approximators and can be interpretable under certain conditions.

2.1 Feature Selection as a Multi-objective Optimization
Problem

A multi-objective optimization problem can be mathematically formulated
as (see [21] for a more complete treatment):

min F (x) ≡ (f1(x), f2(x), . . . , fm(x))
T

subject to x ∈ Ω (1)

where x is the vector of decisions or design variables belonging to the feasible
region Ω ⊆ Rn and F (x) ∈ Rm is a vector of m objective functions. The
word “min” in (1) means that we want to minimize all objective functions
simultaneously. Note that this is a general formulation, which exploits that
maximizing an objective function fj is equivalent to minimizing −fj.

The solution of the problem given in (1) is a set of solutions that are
called Pareto optimal in the general framework of multi-objective optimiza-
tion. A solution is said to be Pareto optimal if it is not dominated by any
other solution available in the search space Ω (see [21] for a more complete
treatment).
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In feature selection it is common to encode a feature subset as a bi-
nary vector x ∈ {0, 1}N , where N is the number of available features.
This vector states for each feature whether it is selected (xi = 1) or not
(xi = 0), see Fig. 1. The MOO algorithm for the feature selection prob-
lem consists of finding the set of features that simultaneously minimize two
objectives: f1(x) =

∑N
k=1 xk which is the number of selected features and

f2(x) = (1− accuracy(x)) which is equivalent to maximize the accuracy.

2.2 Fuzzy Modeling for Feature Selection

Fuzzy models are suitable to deal with vague, imprecise and uncertain knowl-
edge and data. These models use rules and logical connectives to establish
relations between the features defined to derive the model. Three general
methods for fuzzy classifier design can be distinguished [4, 25]: the regression
method, the discriminant method and the maximum compatibility method.
In the discriminant method, the classification is based on the largest dis-
criminant function, which is associated with a certain class, regardless of the
values or definitions of other discriminant functions. Hence, the classification
decision does not change if the discriminant functions are transformed mono-
tonically. Since this is a useful property, the discriminant method is used in
this work for classification. The discriminant functions can be implemented
as fuzzy inference systems, which can be Takagi-Sugeno (TS) fuzzy models
[27]. When TS fuzzy systems are used, each discriminant function consists of
rules of the type

Rule Rc
i : If x1 is Ac

i1 and . . . and xn is Ac
in

then dci (x) = f c
i (x), i = 1, 2, . . . ,K,

where c is the number of classes, K is the number of fuzzy rules, and f c
i is the

consequent function for rule Rc
i . Please note that the antecedent parts of the

rules can be different for different discriminants, as well as the consequents.
Therefore, the output of each discriminant function dc(x) can be interpreted
as a score (or evidence) for the associated class c given the input feature vector
xn. The discriminant function for class c, with c = 1, . . . , C is computed by
aggregating the contributions of the individual rules:

feature 1

1 0 0 1 1 0 … 0 1 1

feature N

Fig. 1 Binary vector with N components.
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dc(x) =

∑K
i=1 βif

c
i (x)∑K

i=1 βi
. (2)

where βi =
∏n

j=1 μAc
ij
(x) is the degree of activation of rule i of class c and

μAc
ij
(x) : R → [0, 1].

The input data consists of tuples xi = [xi1, xi2, . . . , xiM , yi]
Twith i ∈

{1, . . . , N}, where the xij , j ∈ 1, ...M , are the values of the features and
yi is the class of the ith case. From this data and the number of rules K, the
antecedent fuzzy sets Aij , and the consequent parameters are determined by
means of fuzzy clustering [25]. Note that the class is used as an input to the
clustering algorithm. This paper uses the Gustafson-Kessel (GK) [16] cluster-
ing algorithm to compute the fuzzy partition matrix. Each identified cluster
provides a local characteristic behavior of the system and each cluster defines
a rule. The consequent parameters for each rule are obtained as a weighted
ordinary least-square estimate.

3 Multi-objective Algorithms for Feature Selection

Derivative-free multi-objective algorithms can be used for feature selection
problems, as most of these algorithms can deal with a set of possible solutions
simultaneously. This means that several members of the Pareto optimal set
can be found in a single run without any assumptions on continuity and differ-
entiability of functions [23]. A comprehensive review of multi-objective algo-
rithms can be found in [6, 10]. In this chapter, NSGA-II, Modified AMOSA,
and DMS, which are described in the following sections, are used for the
optimization of the MOFS problem.

3.1 NSGA-II for Multi-objective Feature Selection

NSGA-II has been successfully applied in many applications, such as image
processing, bioinformatics, etc. [11]. The main characteristic of this algorithm
is to use the fast non-dominated sorting technique and a crowding distance to
construct population fronts that dominate each other in a domination rank.
To implement NSGA-II in the MOFS problem, first a random population
representing different points in the search space is created with the size npop,
as in [18]. Each chromosome Ci, i = 1, 2, . . . , npop, is binary, and the encoding
of a chromosome was represented in Fig. 1, where a chromosome has n bits
equal to “1”. These features are the ones used to construct the fuzzy classifier.
The search process of NSGA-II continues until the number of generations
ngen is reached. Tournament selection is used based on two criteria: rank
and crowding distance, with rank taking precedence, see [11]. NSGA-II also
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incorporates an elitism scheme to maintain the best solutions; individuals
with higher crowding distances have higher fitness values. NSGA-II for MOFS
uses the single-point crossover method, which randomly chooses a crossing
site along the string and exchanges all bits on the right side of the crossing
site [10]. The mutation operator used in this work is the uniform mutation
operator [20], which operates on each bit separately and randomly changes
the bit’s. If the chromosome is filled with “0”s, i.e., the feature subset is
empty, a gene of the chromosome is selected randomly and replaced by “1”
to obtain a non-empty feature subset.

3.2 Modified AMOSA for Multi-objective Feature
Selection

AMOSA is a generalized version of simulated annealing for multi-objective
optimization problems, which was proposed in [3]. AMOSA, a Pareto dom-
inance based simulated annealing method, incorporates the concept of an
Archive where the nondominated solutions seen so far are stored. In con-
trast to the original suggestion [3], we use a fixed-sized Archive, AL, instead
of a soft and a hard limit. Similarly to the original AMOSA, initially a ran-
dom Archive is generated with β × AL solutions, where β is a constant,
0 < β ≤ 3. As in NSGA-II, the solutions are encoded as a binary vector.
The fitness evaluation is done for each Archive solution. The solutions in
the Archive are sorted by using a domination relation. Only the obtained
nondominated solutions are used to initialize the Archive. Here, the fast
nondominated sorting mechanism is used to rank the solutions [11]. During
the search, if the number of solutions in the Archive is higher than AL, the
first AL solutions in the rank order are chosen from the Archive. Eventually,
the ranked “1” solutions will constitute the Pareto front. Table 1 describes
the parameters that need to be set a priori.

The search is started with a solution that is chosen randomly from the so-
lutions in the Archive. This is taken as the current feature subset Fcurrent, or

Table 1 Definition of the parameters for Modified AMOSA

Parameter Description

Archive Set of nondominated solutions
AL Limit size of the Archive
β Constant for the initial size of the Archive
Tmax Maximum (initial) temperature
Tmin Minimum (final) temperature
α Cooling rate in simulated annealing
iter Number of iterations at each temperature
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Algorithm 1 Modified AMOSA for feature selection
Set AL, β, Tmax,Tmin, α, iter and T = Tmax.
Initialize the Archive.
Choose randomly a subset of features from the nondominated solutions in the Archive
and set it as Fcurrent

Compute the probability of being accepted Pcurrent using (4).
while T > Tmin do

for k = 0 to iter do
Create a new subset of features Fnew, using the perturbation scheme
Compute Pnew

Check the domination status of Fnew with respect to the Fcurrent and the present
solutions in the Archive
Select the next Fcurrent using the domination status of the original AMOSA [3].

end for
update T = α× T
if | Archive |≥ AL then

choose the first AL solutions from the Archive.
end if

end while

the initial solution, at temperature T = Tmax. To create a new solution, the
Fcurrent solution is perturbed and a new feature subset Fnew is generated
and the solution is evaluated using the objective function. The perturba-
tion is computed using a Laplace distribution to determine which decision
variables should be mutated. Thereafter, the domination status of Fnew is
checked with respect to Fcurrent and to the solutions in the Archive. The
nondominated solutions are defined using the acceptance concept from the
original AMOSA [3]. Given two solutions a and b, where a dominates b, the
amount of domination is defined as follows:

Δdoma,b =

m∏
i=1,fi(a) �=fi(b)

( | fi(a)− fi(b) |
Ri

)
(3)

where m is the number of objectives, fi(a) and fi(b) are the ith objective
values for the two different solutions and Ri is the range of the objective func-
tion. Ri is determined using the solutions in the Archive, in the current and
in the new feature subsets. Based on the domination status, a number of cases
can arise: (i) accept Fnew , (ii) accept Fcurrent or (iii) accept a solution from
the Archive. The acceptance is calculated based on the applicable case. The
Archive limit is maintained and the content is continuously updated during
the search. Whenever an unfavorable move is considered for acceptance, the
probability of acceptance is calculated as:

P =
1

1 + exp(Δdom× T )
(4)
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where T is the temperature, and Δdom is calculated as in (3) [31]. The
process is repeated iter times for each temperature, which is annealed with
a cooling rate of α < 1 until the minimum temperature Tmin is reached. The
process then stops, and the Archive contains the nondominated solutions.
The steps of the Modified AMOSA applied to the feature selection problem
are presented in Algorithm 1.

3.3 DMS for Multi-objective Feature Selection

Direct MultiSearch (DMS) is a novel derivative-free method for multi-
objective optimization, which does not aggregate any of the objective func-
tions [9]. DMS extends to MOO all types of direct-search methods that are
of a directional type such as pattern search and generalized pattern search,
generating set search, and mesh adaptive direct search [7]. This approach
is called direct multisearch since it naturally generalizes direct search (of
directional type) from single to multi-objective optimization.

The principles of DMS are extremely simple. Instead of updating a single
point per iteration, it updates a list of feasible nondominated points. For a
more detailed description of the algorithm please see [9]. The original DMS
was developed for real-valued variables in the search space. This algorithm
was adapted to cope with the discrete feature selection optimization problem.
Each DMS solution, xDMS = (x1, . . . , xN ) ∈ RN is converted into a binary
solution, x = (x1, . . . , xN ) , ∀i = 1, . . . , N : xi ∈ {0, 1}, using the threshold

δ = 0.5, i.e., xi =

{
1 if xi ≥ 0.5
0 if xi < 0.5

(5)

4 Experimental Results

The derivative-free multi-objective algorithms for feature selection are ap-
plied to data sets taken from some well known benchmarks in the UCI Ma-
chine Learning Repository [2].

4.1 Data Sets

Wisconsin breast cancer original (WBCO), Wisconsin diagnostic breast can-
cer (WDBC), Wisconsin prognostic breast cancer (WPBC) and Sonar, were
used to test the NSGA-II, Modified AMOSA, and DMS algorithms. Table 2
summarizes some general information regarding these datasets.
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Table 2 Description of the used data sets.

No data sets # features Classes # samples

1 WBCO 9 (integer) 2 699
2 WDBC 32 (real) 2 569
3 WPBC 34 (real) 2 198
4 Sonar 60 (real & integer) 2 208

TheMOO algorithms were implemented in Matlab. The parameter settings
of NSGA-II and modified AMOSA used in the experiments are presented in
Table 3 and Table 4, respectively.

Table 3 NSGA-II parameter values used in the experiments.

Data set npop Pcross Pmut ngen

WBCO 100 0.8 1/9 100
WDBC 100 0.8 1/30 200
WPBC 100 0.8 1/32 200
Sonar 100 0.8 1/60 500

Table 4 Modified AMOSA parameter values used in the experiments.

Data set AL β Tmax Tmin α iter

WBCO 100 1.5 200 0.001 0.81 50
WDBC 100 1.5 200 0.001 0.81 400
WPBC 100 1.5 200 0.001 0.81 400
Sonar 100 1.5 200 0.001 0.81 500

The default parameters of DMS were used (version 0.2, May 2011) with-
out cache. This DMS version is freely available for research, educational or
commercial use, under a GNU lesser general public license [1].

In this chapter, 10-fold cross validation is used. After the application of
multi-objective algorithms and selection of the features, the fuzzy classifica-
tion models are validated using the test subsets. The prediction performance
of the classifier is estimated by considering the average classification accuracy
of the 10-fold cross validation experiments.
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4.2 Results for Different Data Sets

The NSGA-II, Modified AMOSA, and DMS methods are applied to minimize
both the size of feature subsets and the average misclassification rates for all
data sets. The number of fuzzy rules is equal to 2 for WBCO and 3 for the
other databases used in this work.

4.2.1 Wisconsin Breast Cancer Original

The WBCO data is widely used to test the effectiveness of classification al-
gorithms. The aim of the classification is to distinguish between benign and
malignant cancers based on nine measurements (attributes): clump thickness,
uniformity of cell size, uniformity of cell shape, marginal adhesion, single ep-
ithelial cell size, bare nuclei, bland chromatin, normal nucleoli and mitoses.
The attributes have integer values in the range [1, 10]. The original database
contains 699 instances. However 16 of these are excluded as they are incom-
plete, which is common in data mining. The class distribution is 65.5% benign
and 34.5% malignant [29].

Table 5 Feature subsets for WBCO data set with 10 fold cross-validation.

Selected features Value of
NF NSGA-II Modified DMS 1-accuracy

AMOSA (%)

1 {2} {2} {2} 7.153
2 {2, 6} {2, 6} {2, 6} 4.721
3 {1, 2, 6} {1, 2, 6} - 4.435
3 - - {1, 3, 6} 3.720
4 - - {1, 3, 4, 6} 3.577

5 - - {1, 2, 3, 5, 6} 3.434

Table 5 shows the set of nondominated solutions obtained by NSGA-II,
Modified AMOSA, and DMS. The obtained feature subsets are similar for
the three algorithms.

In Figure 2, the nondominated solutions for each algorithm are presented,
and it is shown that DMS presents the best results.

4.2.2 Wisconsin Diagnostic Breast Cancer

In WDBC, features are computed from a digitized image of a fine needle aspi-
rate of a breast mass. They describe characteristics of the cell nuclei present
in the image. The attribute information for WDBC is as follows: ID numbers,
diagnosis (M = malignant, B = benign) and ten real-valued features are com-
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Fig. 2 Comparison of algorithms for WBCO data set.

puted for each cell: nucleus radius (mean of distances from center to points on
the perimeter), texture (standard deviation of gray-scale values), perimeter,
area, smoothness (local variation in radius lengths), compactness, concav-
ity (severity of concave portions of the contour), concave points (number of
concave portions of the contour), symmetry and fractal dimension [2].

Table 6 Feature subsets for WDBC data set with 10 fold cross validation.

Selected features Value of
NF NSGA-II Modified DMS 1-accuracy

AMOSA (%)

1 {24} - {24} 8.260
2 {24, 28} - - 6.151
2 - - {21, 25} 4.745
3 {22, 24, 28} - - 4.569
3 - - {2, 21, 25} 4.042
3 - - {2, 24, 28} 4.042
3 - - {22, 24, 29} 4.042
3 - - {24, 25, 29} 4.042
4 {8, 22, 24, 25} - - 4.394
4 - {21, 26, 29, 30} - 6.503
4 - - {2, 3, 24, 25} 3.339
4 - - {2, 21, 28, 29} 3.339
5 {8, 10, 22, 24, 25} - - 3.866
5 - {2, 3, 8, 21, 29} - 5.800

5 - - {2, 14, 21, 25, 28} 2.812
5 - - {14, 21, 22, 25, 28} 2.812
6 - - {2, 14, 21, 25, 28, 29} 2.636
6 - - {2, 14, 24, 25, 28, 29} 2.636
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The obtained nondominated solutions using NSGA-II, Modified AMOSA
and DMS are summarized in Table 6. Figure 3 presents the average misclas-
sification rates and feature subset cardinality of the three algorithms. DMS
is clearly the best, followed by NSGA-II and Modified AMOSA, which yields
quite poor results when compared to the other two algorithms.
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Fig. 3 Comparison of algorithms for WDBC data set.

4.2.3 Wisconsin Prognostic Breast Cancer

In this dataset, each record represents follow-up data for one breast cancer
case. These are consecutive patients and include only those cases exhibiting
invasive breast cancer and no evidence of distant metastases at the time of
diagnosis. The first 30 features of the WPBC data set are computed from
a digitized image of a fine needle aspirate of a breast mass. They describe
characteristics of the cell nuclei present in the image [2]. Table 7 shows the
feature subsets obtained by DMS, NSGA-II and Modified AMOSA. Figure 4
presents the results obtained by the three algorithms. DMS is the best of the
three algorithms, and can find much more points on the Pareto front. In this
case, NSGA-II and Modified AMOSA present similar results, both yielding
a small number of solutions.

4.2.4 Sonar Data Set

The sonar data set contains information of 208 objects and 60 attributes. The
objects are classified in two classes: “rock” and “mine”. A data frame with
208 observations and 61 variables is used. The first 60 represent the energy
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Table 7 Feature subsets for WPBC data set with 10 fold cross validation.

Selected features Value of
NF NSGA-II Modified DMS 1-accuracy

AMOSA (%)

1 {25} - - 23.74
1 - - {5} 22.73
2 {1, 25} - {1, 25} 19.70
2 - - {1, 22} 19.70
3 - {11, 23, 24} - 21.72
3 - - {1, 13, 25} 18.18
4 - {1, 3, 7, 22} - 18.69
4 - - {1, 13, 22, 32} 17.17
5 {1, 6, 8, 13, 25} - - 19.19
5 - - {1, 13, 20, 22, 32} 16.67
5 - - {1, 13, 24, 26, 32} 16.67
6 {1, 6, 8, 13, 19, 25} - - 18.18
6 - - {1, 6, 11, 13, 18, 32} 16.16
6 - - {1, 13, 22, 26, 27, 32} 16.16
7 - - {1, 13, 20, 22, 26, 27, 32} 15.66
10 - {1, 2, 5, 8, 13, 14, 15, - 18.18

17, 22, 24}
12 - - {1, 2, 6, 11, 12, 13, 14, 14.65

17, 18, 22, 24, 32}
14 - - {1, 2, 7, 9, 12, 13, 14, 17, 13.64

18, 20, 22, 24, 26, 29}
20 - - {1, 2, 5, 9, 12, 13, 14, 16, 17, 13.13

18, 20, 21, 22, 24, 25, 26, 27,
28, 29, 31}

within a particular frequency band, integrated over a certain period of time.
The last column contains the class labels. There are two classes “0” if the
object is a rock, and “1” if the object is a mine (metal cylinder) [2].

This data set is an interesting challenge for the proposed algorithm as
the number of features is bigger than the usual benchmark examples. The
obtained feature subsets are given in Table 8. Note that Modified AMOSA
cannot find models with less than 13 features. On the other hand, NSGA-II
has only results up to 7 features.

Figure 5 show the results obtained by the three algorithms. DMS presents
clearly the best results, also for a wider spread of number of features. NSGA-
II has good results for a small number of features. The results using Modified
AMOSA are far from the Pareto front.

4.2.5 Discussion

By analyzing and comparing the four datasets, it can be concluded that
Modified AMOSA was not able to deal with the feature cardinality in the
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Fig. 4 Comparison of algorithms for WPBC data set.
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Fig. 5 Comparison of algorithms for the sonar data set.

objective function. NSGA-II proved to be a good algorithm for MOO, as
expected. However, the very recent DMS algorithm is clearly the best of the
three tested algorithms.

5 Conclusions

In this chapter, the feature selection problem is approached as a multi-
objective problem. Two of the most important objectives for the feature
selection problem were addressed: the minimization of the feature subset
cardinality and the minimization of the classification error.
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Table 8 Feature subsets for sonar data set with 10 fold cross validation.

Selected features Value of
NF NSGA-II Modified DMS 1-accuracy

AMOSA (%)

1 {11} - {11} 25.48
2 {11, 16} - - 24.04
2 - - {11, 17} 23.56
3 {11, 16, 21} - - 23.08
3 - - {11, 18, 19} 19.71
4 {11, 15, 21, 46} - - 20.67
4 - - {11, 17, 19, 52} 16.83
5 {11, 15, 21, 38, 46} - - 20.19
5 - - {11, 17, 36, 45, 54} 16.35
6 - - {3, 9, 11, 18, 19, 54} 15.87
7 {3, 4, 11, 14, 21, 36, 46} - - 17.79
7 - - {3, 9, 11, 18, 19, 54, 60} 15.38
8 - - {5, 11, 17, 18, 36, 39, 46, 59} 14.90
9 - - {5, 11, 14, 17, 18, 36, 39, 46, 59} 14.42
10 - - {5, 11, 14, 17, 18, 36, 39, 41, 13.94

46, 59}
13 - {1, 4, 7, 12, 13, 15, 16, - 27.88

17, 23, 27, 36, 49, 59}
14 - - {7, 11, 17, 18, 23, 25, 30, 31, 13.46

35, 36, 44, 49, 50, 52}
15 - {3, 4, 11, 12, 13, 15, 17, 29, - 25.48

30, 34, 35, 40, 49, 59, 60}
16 - {1, 3, 4, 8, 9, 12, 13, 15, 24, - 24.04

25, 27, 33, 35, 36, 40, 47}
18 - {3, 11, 12, 13, 17, 21, 30, 34, - 22.21

35, 36, 40, 45, 49, 50, 55,
57, 58, 60}

18 - - {4, 7, 11, 13, 17, 18, 24, 29, 30, 31, 12.98
32, 34, 35, 36, 47, 49, 50, 51}

19 - {10, 11, 12, 15, 17, 18, 21, - 19.23
25, 29, 30, 34, 35, 45, 47, 49,
50, 52, 59, 60}

19 - - {4, 7, 11, 13, 17, 24, 29, 30, 31, 32, 12.50
34, 35, 36, 47, 49, 50, 51, 55, 58}

20 - - {4, 7, 11, 13, 17, 24, 29, 30, 31, 12.50
32, 34, 35, 36, 46, 47, 49, 50, 51,
55, 58}

21 - - {8, 11, 17, 18, 20, 21, 24, 27, 30, 11.54
31, 32, 35, 36, 39, 40, 43, 49, 50,
53, 60}

22 - - {8, 11, 17, 18, 19, 20, 21, 24, 27, 11.06
30, 31, 32, 35, 36, 39, 40, 43, 48,
49, 50, 53, 60}

26 - - {4, 8, 11, 17, 18, 19, 20, 21, 24, 10.10
27, 29, 30, 31, 32, 34, 35, 36, 39,
40, 43, 45, 47, 49, 50, 53, 55}

27 - - {4, 8, 11, 17, 18, 19, 20, 21, 24, 9.615
27, 29, 30, 31, 32, 34, 35, 36, 39,
40, 43, 45, 47, 49, 50, 53, 55, 60}

Archived multi-objective simulated annealing was adapted to cope with the
feature selection problem. The modified AMOSA is compared with two multi-
objective optimization algorithms: NSGA-II and DMS. In order to evaluate
the feature subsets, fuzzy models are used.

Both NSGA-II and DMS outperformed the proposed modified AMOSA.
NSGA-II is a population based multi-objective algorithm, which showed to be
more efficient in approximating the Pareto front. DMS also progresses with
the evolution of a set of nondominated solutions, and the greedy properties
of the search mechanism granted a better performance for approximating the
Pareto front. One of the key mechanisms in modified AMOSA is the creation
of a new solution by using the neighborhood of the current solution, which
is called perturbation. The results showed that this search mechanism is not
effective. Thus, the perturbation scheme should be improved.
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Casals, Maŕıa Rosa 1
Colubi, Ana 1, 19, 43
Coppi, Renato 1, 33
Corral, Norberto 1
Crestani, Fabio 279
Ćrnojevic, Vladimir 253
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