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Preface

Even if our statistical appetite is far from keen, we all of us should
like to know enough to understand, or to withstand, the statistics
that are constantly being thrown at us in print or conversation—
much of it pretty bad statistics. The only cure for bad statistics is
apparently more and better statistics. All in all, it certainly appears
that the rudiments of sound statistical sense are coming to be an
essential of a liberal education.

—Robert Sessions Woodworth

Basic Statistics: Tales of Distributions, Tenth Edition, is a textbook for a one-term
statistics course in the social or behavioral sciences, education, or the allied health/
nursing field. Its focus is conceptualization, understanding, and interpretation, rather
than computation. Although designed to be comprehensible and complete for students
who take only one statistics course, it includes many elements that prepare students for
additional statistics courses. Basic experimental design terms such as independent and
dependent variables are explained and used in examples so that students can be
expected to write fairly complete interpretations of their analyses. In many places, the
student is invited to stop and think or stop and do an exercise. Some problems simply
ask the student to decide which statistical technique is appropriate. In sum, this book’s
approach reinforces instructors who emphasize critical thinking in their course.

This textbook has been remarkably successful for 35 years, at times being a
Wadsworth “best-seller” among statistics texts. Reviewers have praised the book as
have students and professors. A common refrain is that the book has a distinctive,
androgynous voice and a conversational style that is engaging, encouraging, and even
endearing. Other features that distinguish this textbook from others include:

■ Problems are interspersed throughout the chapter rather than grouped at 
the end

■ Answers to problems are extensive; there are more than 50 pages of 
detailed answers

■ Examples and problems come from a variety of disciplines and everyday life
■ Most problems are based on actual studies rather than fabricated scenarios

xvii
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■ Interpretation is emphasized; interpretation headings in the answers are
highlighted

■ Empirical explanations are provided for theoretical concepts
■ The effect size index is treated as a descriptive statistic and not just an add-on

to hypothesis-testing problems
■ Computer software analyses are illustrated with SPSS printouts
■ Important words and phrases are defined in the margin when they first

occur
■ Objectives at the beginning of each chapter serve first as an orientation list

and later as a review list
■ Clues to the Future alert students to concepts that will be repeated
■ Error Detection boxes tell ways to detect or prevent mistakes
■ Transition Passages alert students to changes in focus that are part of the

chapters that follow
■ Comprehensive Problems encompass all (or most) of the techniques in a

chapter
■ What Would You Recommend? problems require choices from among the

techniques in several chapters
■ A final chapter, Choosing Tests and Writing Interpretations provides

consolidation activities
■ The Book Companion website has a variety of student aids for each chapter

For this tenth edition, I amplified my earlier emphasis that data sets should be
approached with an attitude of exploration. To reflect this increased emphasis, the
titles of three of the descriptive statistics chapters include the phrase “Exploring Data.”
As for other changes, the chapter that covered central tendency and variability is now
two separate chapters, which reflects how many instructors assign that material. All of
the problems and examples based on contemporary data (height, family income, tennis
rankings, and such) are updated. Several scenarios and their hypothetical data have
been replaced with data based on actual studies. Words, sentences, paragraphs, and
examples were revised to improve clarity or reflect current practice. The 360 problems
and their sometimes extensive answers were given special attention to be sure they
matched the text. Digital object identifiers (doi numbers), when available, were added
to references to make their electronic retrieval easier.

For students, the book companion website (www.cengage.com/psychology/ spatz)
has multiple-choice questions and definition flashcards for each chapter. For
professors, the Instructor’s Manual with Test Bank, which is available in print and
electronically, has teaching suggestions and almost 2000 test items, most of which
have been classroom tested.

Students who engage themselves in this book and in their course can expect to

■ Understand and explain statistical reasoning
■ Choose correct statistical techniques for the data from simple experiments
■ Solve statistical problems
■ Write explanations that are congruent with statistical analyses

A gentle revolution is going on in the practice of statistics. In the past, statistics
moved toward more sophisticated ways to test a null hypothesis. Recently, the
direction shifted to an emphasis on descriptive statistics and graphs, simpler

xviii ■ Preface
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analyses, and less reliance on null hypothesis statistical testing (NHST). (See the
initial report and the follow-up report of the APA Task Force on Statistical
Inference at www.apa.org/science/bsaweb-tfsi.html.) This book reflects many of
those changes.
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Introduction
C H A P T E R

1

O B J E C T I V E S  F O R  C H A P T E R  1

After studying the text and working the problems in this chapter, you should be
able to:

1. Distinguish between descriptive and inferential statistics

2. Define the words population, sample, parameter, statistic, and variable as
these terms are used in statistics

3. Distinguish between quantitative and qualitative variables

4. Identify the lower and upper limits of a quantitative measurement

5. Identify four scales of measurement and distinguish among them

6. Distinguish between statistics and experimental design

7. Define some experimental-design terms—independent variable, dependent
variable, and extraneous variable—and identify these variables in the
description of an experiment

8. Describe the relationship of statistics to epistemology

9. Describe actions to take to analyze a data set

10. Identify a few events in the history of statistics

THE REPORTER PACED back and forth outside the yellow tape trying to catch the
eye of any police officer who might talk about what happened inside the large house
beyond the tape barrier. As a dark, unmarked sedan pulled up, the reporter watched and
then smiled as a woman carrying a bag emerged from the vehicle.

“Hello, Detective Drew, I’m glad you are here. Can you tell me what’s going on?”
“Well, George, I don’t have anything for you officially except that I’m here to

gather evidence and tell the story of what happened in there. I’m keen to explore the
situation and see what I can determine.”

Lifting the yellow tape, the detective walked quickly toward the mansion.

1
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I think Detective Drew would probably be a good statistician. Her approach
strategy, exploration, is the best attitude to have when you inspect data. Her goal, a
story supported by evidence, is the statistician’s goal as well. The only other thing she
needs is a mental collection of statistical tools (which she could get by studying this
textbook and taking a college course in statistics). With an attitude of exploration and a
story supported by a statistical analysis, Ms. Drew could contribute to any project that
depends on quantitative data.

What projects and disciplines depend on quantitative data? The list is long and
variable; the disciplines include psychology, biology, sociology, education, medicine,
politics, business, economics, forestry, and others. Examples and problems in this textbook
come from all these disciplines. Statistics is a powerful method for getting answers from
data, and that makes it popular with investigators in a wide variety of endeavors.

Statistics is used in areas that might surprise you. As examples, statistics has been
used to determine the effect of cigarette taxes on smoking among teenagers, the safety of a
new surgical anesthetic, and the memory of young school-age children for pictures (which
is as good as that of college students). Statistics show what diseases have an inheritance
factor, how to improve short-term weather forecasts, and why giving intentional walks in
baseball is a poor strategy. All these examples come from Statistics: A Guide to the
Unknown, a book edited by Judith M. Tanur and others (1989). Written for those “without
special knowledge of statistics,” this book has 29 essays on topics as varied as those above.

The importance of statistical literacy is becoming more and more apparent. As one bit
of evidence, Gigerenzer, et al. (2007), in their public interest article on health statistics,
point out that statistical illiteracy among both patients and physicians undermines the
information exchange necessary for informed consent and shared decision making. The
result is anxiety, confusion, and undue enthusiasm for testing and treatment.

Whatever your current interests or thoughts about your future as a statistician,
I believe you will benefit from this course. When a statistics course is successful,
students learn to identify the questions that a set of data can answer, determine the
statistical procedures that will provide the answers, carry out the procedures, and then,
using plain English and graphs, tell the story the data reveal. Also, they find statistical
thinking helpful in other arenas of their lives.

The best way for you to acquire all these skills (especially the part about telling the
story) is to engage statistics. Engaged students are easily recognized; they are prepared
for exams, not easily distracted while studying, and generally finish assignments on
time. Becoming an engaged student may not be so easy, but many have achieved it.
Here are my recommendations. Read with the goal of understanding. Attend class. Do
all the assignments (on time). Write down questions. Ask for explanations. Expect to
understand. (Disclaimer: I’m not suggesting that you marry statistics, but just engage
for this one course.)

Are you uncertain about your arithmetic and algebra skills? Appendix A in the
back of this book may help. It consists of a pretest (to see if you need to refresh your
memory) and a review (to provide that refresher).

What Do You Mean, “Statistics”?

The Oxford English Dictionary says that the word statistics came into use more than
200 years ago. At that time, statistics referred to a country’s quantifiable political
characteristics—characteristics such as population, taxes, and area. Statistics meant

2 n Chapter 1
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“state numbers.” Tables and charts of those numbers turned out to be a
very satisfactory way to compare different countries and to make projections
about the future. Later, tables and charts proved useful to people studying
trade (economics) and natural phenomena (science). Statistical thinking
spread because it helped.

Today two different techniques are called statistics. One technique,
descriptive statistics,1 produces a number or a figure that summarizes or
describes a set of data. You are already familiar with some descriptive
statistics. For example, you know about the arithmetic average, called the
mean. You have probably known how to compute a mean since elementary
school—just add up the numbers and divide the total by the number of
entries. As you already know, the mean describes the central tendency of a
set of numbers. The basic idea is simple: A descriptive statistic summarizes a set of data
with one number or graph. This book will cover about a dozen descriptive statistics.

The other statistical technique is inferential statistics. With inferential statistics, you
use measurements from a sample to reach conclusions about a larger, unmeasured
population. There is, of course, a problem with samples. Samples always depend partly on
the luck of the draw; chance helps determine the particular measurements you get. If you
have the measurements for the entire population, chance doesn’t play a part—all the
variation in the numbers is “true” variation. But with samples, some of the variation is the
true variation in the population and some is just the chance ups and downs that go with a
sample. Inferential statistics was developed as a way to account for the effects of chance that
come with sampling. This book will cover about a dozen and a half inferential statistics.

Here is a textbook definition: Inferential statistics is a method that takes chance
factors into account when samples are used to reach conclusions about populations.
Like most textbook definitions, this one condenses many elements into a short
sentence. Because the idea of using samples to understand populations is perhaps the
most important concept in this course, please pay careful attention when elements of
inferential statistics are explained.

Inferential statistics has proved to be a very useful method in scientific disciplines.
Many other fields use inferential statistics, too, so I selected examples and problems
from a variety of disciplines for this text and its auxiliary materials such as the book
companion website, www.cengage.com/psychology/spatz. 

Here is an example of inferential statistics from psychology. Today there is a lot of
evidence that people remember the tasks they fail to complete better than the tasks they
complete. This is known as the Zeigarnik effect. Bluma Zeigarnik asked the participants in
her experiment to do about 20 tasks, such as work a puzzle, make a clay figure, and
construct a box from cardboard.2 For each participant, half the tasks were interrupted
before completion. Later, when the participants were asked to recall the tasks they worked
on, they listed more of the interrupted tasks (about 7) than the completed tasks (about 4).

So, should you conclude that interruption improves memory? Not yet. It might be
that interruption actually has no effect but that several chance factors happened to
favor the interrupted tasks in Zeigarnik’s particular experiment. One way to meet this
objection is to conduct the experiment again. Similar results would lend support to the

Introduction n 3

descriptive statistic
A number that conveys a particular
characteristic of a set of data.

mean
Arithmetic average; sum of scores
divided by number of scores.

inferential statistics
Method that uses sample
evidence and probability to reach
conclusions about unmeasurable
populations.

1 Boldface words and phrases are defined in the margin and also in Appendix D, Glossary of Words.
2 A summary of this study can be found in Ellis (1938). The complete reference and all others in the text are
listed in the References section at the back of the book.
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conclusion that interruption improves memory. A less expensive way to meet the
objection is to use an inferential statistics test.

An inferential statistics test begins with the actual data from the experiment. It
ends with a probability—the probability of obtaining data like those actually obtained
if it is true that interruption does not affect memory. If the probability is very small,
then you can conclude that interruption does affect memory.3

For the Zeigarnik memory experiment, the conclusion might be written as: “The
greater recall of the interrupted tasks, compared to those that were completed, is most
likely due to interruption because chance by itself would rarely produce this large a
difference between two samples.” The words chance and rarely tell you that probability
is an important element of inferential statistics.

My more complete answer to what I mean by “statistics” is Chapter 6 in 21st
Century Psychology: A Reference Handbook (Spatz, 2008). This 8-page chapter
summarizes in words (no formulas) the statistical concepts usually covered in statistics
courses. The chapter can orient you as you begin your study of statistics and later
provide a review after you finish your course.

Statistics: A Dynamic Discipline

Many people continue to think of statistics as a collection of techniques that were
developed long ago, that have not changed, and that will be the same in the future. That
view is mistaken. Statistics is a dynamic discipline characterized by more than a little
controversy. New techniques in both descriptive and inferential statistics have been
developed in recent years. As for controversy, a number of statisticians recently made a
strong case for banning the use of a very popular inferential statistics technique (null
hypothesis significance tests). Other statisticians disagreed, although they acknowledged
that the tests are sometimes misused and that other techniques yield more information.
For fairly nontechnical summaries of this issue see Dillon (1999) or Spatz (2000).
For a more technical summary, see Nickerson (2000) or go to www.apa.org/science/
bsaweb-tfsi.html for a report from the American Psychological Association. For
alternatives; see Erceg-Hurn and Mirosevich, 2008.

In addition to out-and-out controversy over techniques, attitudes toward data
analysis have shifted in recent years. The shift has been toward the idea of exploring
data to see what it reveals and away from using statistical analyses to nail down a
conclusion. This shift owes much of its impetus to John Tukey (1915–2000), who
promoted Exploratory Data Analysis (Lovie, 2005). Tukey invented techniques such as
the boxplot (Chapter 5) that reveal several characteristics of a data set simultaneously.

Today, statistics is used in a wide variety of fields. Researchers start with a
phenomenon, event, or process that they want to understand better. They make
measurements that produce numbers. The numbers are manipulated according to the
rules and conventions of statistics. Based on the outcome of the statistical analysis,
researchers draw conclusions and then write the story of their new understanding of the
phenomenon, event, or process. Statistics is just one tool that researchers use, but it is
often an essential tool.

4 n Chapter 1

3 If it really is the case that interruption doesn’t affect memory, then differences between the samples are the
result of chance.
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clue to the future
The first part of this book is devoted to descriptive statistics (Chapters 2–6) and the
second part to inferential statistics (Chapters 7–15). Inferential statistics is the more
comprehensive of the two because it combines descriptive statistics, probability, and
logic.

Introduction n 5

What’s in It for Me?

What’s in it for me? is a reasonable question. Decide which of the following answers
apply to you and then pencil in others that are true for you.

One thing that is in it for you is that, when you have successfully completed this
course, you will understand how statistical analyses are used to make decisions.You will
understand both the elegant beauty and the ugly warts of the process. H. G. Wells, a
novelist who wrote about the future, said, “Statistical thinking will one day be as
necessary for efficient citizenship as the ability to read and write.” So chalk this course up
under the heading “general education about decision making, to be used throughout life.”

Another result of successfully completing this course is that you will be able to use
a tool employed in many disciplines. Although the people involved in these disciplines
are interested in different phenomena, they all use statistics. Lawyers, for example,
sometimes use statistics to provide evidence for their clients. I have assisted lawyers at
times, occasionally testifying in court about the proper interpretation of data. (You will
analyze and interpret some of these data in later chapters.)

In American history the authorship of 12 of The Federalist papers was disputed for
a number of years. (The Federalist papers were 85 short essays written under the
pseudonym “Publius” and published in New York City newspapers in 1787 and 1788.
Written by James Madison, Alexander Hamilton, and John Jay, the essays were
designed to persuade the people of the state of New York to ratify the Constitution of
the United States.) To determine authorship of the 12 disputed papers, each was graded
with a quantitative value analysis in which the importance of such values as national
security, a comfortable life, justice, and equality was assessed. The value analysis
scores were compared with value analyses of papers known to have been written by
Madison and Hamilton (Rokeach, Homant, and Penner, 1970). Another study, by
Mosteller and Wallace, analyzed The Federalist papers using the frequency of words
such as by and to (reported in Tanur et al., 1989). Both studies concluded that Madison
wrote all 12 essays.

Here is another example from law. Rodrigo Partida was convicted of burglary in
Hidalgo County, a border county in southern Texas. A grand jury rejected his motion
for a new trial. Partida’s attorney filed suit, claiming that the grand jury selection
process discriminated against Mexican-Americans. In the end (Castaneda v. Partida,
430 U.S. 482 [1976]), Justice Harry Blackmun of the U.S. Supreme Court wrote,
regarding the number of Mexican-Americans on grand juries, “If the difference
between the expected and the observed number is greater than two or three standard
deviations, then the hypothesis that the jury drawing was random (is) suspect.” In
Partida’s case the difference was approximately 12 standard deviations, and the
Supreme Court ruled that Partida’s attorney had presented prima facie evidence. (Prima
facie evidence is so good that one side wins the case unless the other side rebuts the
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evidence, which in this case did not happen.) Statistics: A Guide to the Unknown
includes two essays on the use of statistics by lawyers.

I hope that this course will encourage you or even teach you to ask questions about
the statistics you hear and read. Consider the questions, one good and one better, asked
of a restaurateur in Paris who served delicious rabbit pie. He served rabbit pie even
when other restaurateurs could not obtain rabbits. A suspicious customer asked this
restaurateur if he was stretching the rabbit supply by adding horse meat.

“Yes, a little,” he replied.
“How much horse meat?”
“Oh, it’s about 50–50,” the restaurateur replied.
The suspicious customer, satisfied, began eating his pie. Another customer, who

had learned to be more thorough in asking questions about statistics, said, “50–50?
What does that mean?”

“One rabbit and one horse” was the reply.
This section began with a question from you: What’s in it for me? My answer is that

when you learn the basics of statistics, you will understand data better. You will be able
to communicate with others who use statistics, and you’ll be better able to persuade
others. But what about your answer? What do you expect of yourself and of this course?
(Writing your answers in the margin is an example of engagement.)

Some Terminology

Like most courses, statistics introduces you to many new words. In statistics, most of
the terms are used over and over again. Your best move, when introduced to a new
term, is to stop, read the definition carefully, and memorize it. As the term continues
to be used, you will become more and more comfortable with it. Making notes is
helpful.

Populations and Samples

A population consists of all the scores of some specified group. A sample
is a subset of a population. The population is the thing of interest, is
defined by the investigator, and includes all cases. The following are some
populations:

Family incomes of college students in the fall of 2008

Weights of crackers eaten by obese male students

Depression scores of Alaskans

Errors in maze running by rats with brain damage

Gestation times for human beings

Memory scores of human beings4

6 n Chapter 1

population
All measurements of a specified
group.

sample
Measurements of a subset of a
population.

4 I didn’t pull these populations out of thin air; they are all populations that researchers have gathered data
on. Studies of these populations will be described in this book.

08911_01_Ch01_01-23 pp2.qxd  12/15/09  1:33 PM  Page 6



Investigators are always interested in populations. However, as you can determine
from these examples, populations can be so large that not all the members can be
studied. The investigator must often resort to measuring a sample that is small enough
to be manageable. A sample taken from the population of incomes of families of
college students might include only 40 students. From the last population on the list,
Zeigarnik used a sample of 164.

Most authors of research articles carefully explain the characteristics of the
samples they use. Often, however, they do not identify the population, leaving that task
to the reader. For example, consider a study of a drug therapy program based on a
sample of 14 men who were acute schizophrenics at Hospital A. Suppose the report of
the study doesn’t identify the population. What is the population? Among the
possibilities are: all male acute schizophrenics at Hospital A, all male acute
schizophrenics, all acute schizophrenics, and all schizophrenics. The answer to 
the question, What is the population? depends on the specifics of a research area, but
many researchers generalize generously. For example, for some topics it is reasonable
to generalize from the results of a study on rats to “all mammals.” In all cases, the
reason for gathering data from a sample is to generalize the results to a larger
population even though sampling introduces some uncertainty into the conclusions.

Parameters and Statistics

A parameter is some numerical (number) or nominal (name) characteristic
of a population. An example is the mean reading readiness score of all
first-grade pupils in the United States. A statistic is some numerical or
nominal characteristic of a sample. The mean reading readiness score of 50
first-graders is a statistic and so is the observation that 45 percent are girls.

A parameter is constant; it does not change unless the population
itself changes. The mean of a population is exactly one number.
Unfortunately, the parameter often cannot be computed because the population is
unmeasurable. So, a statistic is used as an estimate of the parameter, although, as
suggested before, statistics tend to differ from one sample to another. If you have five
samples from the same population, you will probably have five different sample means.
In sum, parameters are constant; statistics are variable.

Variables

A variable is something that exists in more than one amount or in
more than one form. Height and gender are both variables. The variable
height is measured using a standard scale of feet and inches. For
example, the notation 5�7� is a numerical way to identify a group of
persons who are similar in height. Of course, there are many other
groups, each with an identifying number. Gender is also a variable. With gender,
there are (usually) only two groups of people. Again, we may identify each group by
assigning a number to it. All participants represented by 0 have the same gender.
I will often refer to numbers like 5�7� and 0 as scores or test scores. A score is
simply the result of a measurement.

Introduction n 7

parameter
Numerical or nominal
characteristic of a population.

statistic
A numerical or nominal
characteristic of a sample.

variable
Something that exists in more
than one amount or in more than
one form.
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Quantitative Variables

Many of the variables you will work with in this text are quantitative
variables. When a quantitative variable is measured, the scores tell you
something about the amount or degree of the variable. At the very least, a
larger score indicates more of the variable than a smaller score does.

Take a closer look at the quantitative memory scores in Zeigarnik’s experiment.
Number of tasks recalled comes in whole numbers such as 4 or 7. However, it is
reasonable to think that of two persons who scored 7, one just barely got 7 and another

almost scored 8. Picture the quantitative variable, recall, as Figure 1.1.
Figure 1.1 shows that a score of 7 is used for a range of possible

recall values—the range from 6.5 to 7.5. The number 6.5 is the lower
limit and 7.5 is the upper limit of the score of 7. The idea is that recall
can be any value between 6.5 and 7.5 but that all the recall values in this
range are expressed as 7. In a similar way, a score of 42 seconds stands
for all the values between 41.5 and 42.5; 41.5 is the lower limit and 42.5
is the upper limit of 42 seconds.

Sometimes scores are expressed in tenths, hundredths, or thousandths.
Like integers, these scores have lower and upper limits that extend halfway to the next
value on the quantitative scale.

Qualitative Variables

Qualitative variables do not have the continuous nature that quantitative
variables have. For example, gender is a qualitative variable. The two
measurements on this variable, female and male, are different in a
qualitative way. Using a 0 and a 1 instead of names doesn’t change this

fact. Another example of a qualitative variable is political affiliation, which has
measurements such as Democrat, Republican, Independent, and Other.

Some qualitative variables have the characteristic of order. College year
classification is a qualitative variable with ordered measurements of senior, junior,
sophomore, and freshman. Another qualitative variable is military rank, which has
measurements such as sergeant, corporal, and private.

Problems and Answers

At the beginning of this chapter, I urged you to engage statistics. Have you? For
example, did you read the footnotes? Have you looked up any words you weren’t sure
of? (How near are you to dictionary definitions when you study?) Have you read a
paragraph a second time, wrinkled your brow in concentration, made notes in the book

8 n Chapter 1

lower limit
Bottom of the range of possible
values that a measurement on a
quantitative variable can have.

upper limit
The top of the range of possible
values that a measurement on a
quantitative variable can have.

qualitative variable
Variable whose levels are different
kinds, not different amounts.

quantitative variable
Variable whose levels indicate 
different amounts.

6 7 8

8.57.56.55.5Lower and upper limits

scores

F I G U R E  1 . 1 The lower and upper limits of recall scores of 6, 7, and 8
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margin, or promised yourself to ask your instructor or another student about something
you aren’t sure of? Engagement shows up as activity. Best of all, the activity at times is
a nod to yourself and a satisfied, “Now, I understand.”

From time to time, I will use my best engagement tactic: I’ll give you a set of
problems so that you can practice what you have just been reading about. Working
these problems correctly is additional evidence that you have been engaged. You will
find the answers at the end of the book in Appendix G. Here are some suggestions for
efficient learning.

1. Buy yourself a notebook for statistics. Work all the problems for this course in
it because I sometimes refer back to a problem you worked previously. When
you make an error, don’t erase it—put anμthrough it and work the problem
correctly below. Seeing your error later serves as a reminder of what not to do
on a test. If you find that I have made an error, write to me with a reminder of
what not to do in the next edition.

2. Never, never look at an answer before you have worked the problem (or at
least tried twice to work the problem).

3. For each set of problems, work the first one and then immediately check your
answer against the answer in the book. If you make an error, find out why you
made it—faulty understanding, arithmetic error, or whatever.

4. Don’t be satisfied with just doing the math. If a problem asks for an
interpretation, write out your interpretation.

5. When you finish a chapter, go back over the problems immediately, reminding
yourself of the various techniques you have learned.

6. Use any blank spaces near the end of the book for your special notes and
insights.

Now, here is an opportunity to see how actively you have been reading.

Introduction n 9

P R O B L E M S

1.1. For the quantitative variables that follow, give the lower and upper limits. For
the qualitative variables, write “qualitative.”
a. Seconds required to work puzzle—65
b. Identification number for mild mental retardation in the American

Psychiatric Association manual—317
c. Category of daffodils in a flower show—5
d. High School Advanced Placement Examination score—4
e. Milligrams of aspirin—81

1.2. Write a paragraph that gives the definitions of population, sample, parameter,
and statistic and the relationships among them.

1.3. Two different techniques are called statistics today. Fill in the blank with one
of them.
a. To reach a conclusion about an unmeasured population, use 

statistics.
b. statistics take chance into account to reach a conclusion.
c. statistics are numbers or graphs that summarize a set of data.
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Scales of Measurement

Numbers mean different things in different situations. Consider three answers that
appear to be identical but are not:

What number were you wearing in the race? “5”

What place did you finish in? “5”

How many minutes did it take you to finish? “5”

The three 5s all look the same. However, the three variables (identification number,
finish place, and time) are quite different. Because of the differences, each 5 has a
different interpretation.

To illustrate this difference, consider another person whose answers to the same
three questions were 10, 10, and 10. If you take the first question by itself and know
that the two people had scores of 5 and 10, what can you say? You can say that the first
runner was different from the second, but that is all. (Think about this until you agree.)
On the second question, with scores of 5 and 10, what can you say? You can say that
the first runner was faster than the second and, of course, that they are different.
Comparing the 5 and 10 on the third question, you can say that the first runner was
twice as fast as the second runner (and, of course, was faster and different).

The point of this discussion is to draw the distinction between the thing you are
interested in and the number that stands for the thing. Much of your experience with
numbers has been with pure numbers or with measurements such as time, length, and
amount. “Four is twice as much as two” is true for the pure numbers themselves and
for time, length, and amount, but it is not true for finish places in a race. Fourth place is
not twice anything in relation to second place—not twice as slow or twice as far behind
the second runner.

S. S. Stevens’s 1946 article is probably the most widely referenced effort to focus
attention on these distinctions. He identified four different scales of measurement, each
of which carries a different set of information. Each scale uses numbers, but the
information that can be inferred from the numbers differs. The four scales are nominal,
ordinal, interval, and ratio.

The information in the nominal scale is quite simple. In the nominal
scale, numbers are used simply as names and have no real quantitative
value. Numerals on sports uniforms are an example. Thus, 45 is different
from 32, but that is all you can say. The person represented by 45 is not
“more than” the person represented by 32, and certainly it would be
meaningless to calculate a mean from the two scores. Examples of nominal

variables include psychological diagnoses, personality types, and political parties.
Psychological diagnoses, like other nominal variables, consist of a set of categories.
People are assessed and then classified into one of the categories. The categories have

both a name (such as posttraumatic stress disorder or autistic disorder) and
a number (309.81 and 299.00, respectively). On a nominal scale, the
numbers mean only that the categories are different. In fact, for a nominal
scale variable, the numbers could be assigned to categories at random. Of
course, all things that are alike must have the same number.

A second kind of scale, the ordinal scale, has the characteristic of
the nominal scale (different numbers mean different things) plus the

10 n Chapter 1

nominal scale
Measurement scale in which
numbers serve only as labels and
do not indicate any quantitative
relationship.

ordinal scale
Measurement scale in which
numbers are ranks; equal
differences between numbers do
not represent equal differences
between the things measured.
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characteristic of indicating greater than or less than. In the ordinal scale, the object
with the number 3 has less or more of something than the object with the number 5.
Finish places in a race are an example of an ordinal scale. The runners finish in rank
order, with 1 assigned to the winner, 2 to the runner-up, and so on. Here, 1 means less
time than 2. Judgments about anxiety, quality, and recovery often correspond to an
ordinal scale. “Much improved,” “improved,” “no change,” and “worse” are levels of
an ordinal recovery variable. Ordinal scales are characterized by rank order.

The third kind of scale is the interval scale, which has the properties
of both the nominal and ordinal scales plus the additional property that
intervals between the numbers are equal. “Equal interval” means that the
distance between the things represented by 2 and 3 is the same as the
distance between the things represented by 3 and 4. Temperature is
measured on an interval scale. The difference in temperature between
10°C and 20°C is the same as the difference between 40°C and 50°C. The
Celsius thermometer, like all interval scales, has an arbitrary zero point. On the Celsius
thermometer, this zero point is the freezing point of water at sea level. Zero degrees on
this scale does not mean the complete absence of heat; it is simply a convenient starting
point. With interval data, there is one restriction: You may not make simple ratio
statements. You may not say that 100° is twice as hot as 50° or that a person with an IQ
of 60 is half as intelligent as a person with an IQ of 120.5

The fourth kind of scale, the ratio scale, has all the characteristics of
the nominal, ordinal, and interval scales plus one other: It has a true zero
point, which indicates a complete absence of the thing measured. On a
ratio scale, zero means “none.” Height, weight, and time are measured
with ratio scales. Zero height, zero weight, and zero time mean that no
amount of these variables is present. With a true zero point, you can make ratio
statements such as 16 kilograms is four times heavier than 4 kilograms.6 Table 1.1
summarizes the major differences among the four scales of measurement.

Knowing the distinctions among the four scales of measurement will help you in
two tasks in this course. The kind of descriptive statistics you can compute from numbers

Introduction n 11

interval scale
Measurement scale in which equal
differences between numbers
represent equal differences in the
thing measured. The zero point is
arbitrarily defined.

ratio scale
Measurement scale with
characteristics of interval scale;
also, zero means that none of the
things measured is present.

5 Convert 100°C and 50°C to Fahrenheit (F � 1.8C � 32) and suddenly the “twice as much” relationship
disappears.
6 Convert 16 kilograms and 4 kilograms to pounds (1 kg � 2.2 pounds) and the “four times heavier”
relationship is maintained.

TABLE 1.1 Characteristics of the four scales of measurement

Scale characteristics

Different
numbers Numbers convey Equal differences Zero means none of

Scale of for different greater than mean equal what was measured
measurement things and less than amounts was detected

Nominal Yes No No No
Ordinal Yes Yes No No
Interval Yes Yes Yes No
Ratio Yes Yes Yes Yes
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depends, in part, on the scale of measurement the numbers represent. For example, it is
senseless to compute a mean of numbers on a nominal scale. Calculating a mean Social
Security number, a mean telephone number, or a mean psychological diagnosis is either
a joke or evidence of misunderstanding numbers.

Understanding scales of measurement is sometimes important in choosing the kind
of inferential statistic that is appropriate for a set of data. If the dependent variable (see
next section) is a nominal variable, then a chi square analysis is appropriate (Chapter 14).
If the dependent variable is a set of ranks (ordinal data), then a nonparametric statistic
is required (Chapter 15). Most of the data analyzed with the techniques described in
Chapters 7–13 are interval and ratio scale data.

The topic of scales of measurement is controversial among statisticians. Part of the
controversy involves viewpoints about the underlying thing you are interested in and the
number that represents the thing (Wuensch, 2005). In addition, it is sometimes difficult
to classify some of the variables used in the social and behavioral sciences. Often they
appear to fall between the ordinal scale and the interval scale. For example, a score may
provide more information than simply rank, but equal intervals cannot be proved.
Examples include aptitude and ability tests, personality measures, and intelligence tests.
In such cases, researchers generally treat the scores as if they were interval scale data.

Statistics and Experimental Design

Here is a story that will help you distinguish between statistics (applying straight logic)
and experimental design (observing what actually happens). This is an excerpt from a
delightful book by E. B. White, The Trumpet of the Swan (1970, pp. 63–64).

The fifth-graders were having a lesson in arithmetic, and their teacher, Miss Annie Snug,
greeted Sam with a question.

“Sam, if a man can walk three miles in one hour, how many miles can he walk in four
hours?”

“It would depend on how tired he got after the first hour,” replied Sam. The other pupils
roared. Miss Snug rapped for order.

“Sam is quite right,” she said. “I never looked at the problem that way before. I always
supposed that man could walk twelve miles in four hours, but Sam may be right: that man
may not feel so spunky after the first hour. He may drag his feet. He may slow up.”

Albert Bigelow raised his hand. “My father knew a man who tried to walk twelve miles,
and he died of heart failure,” said Albert.

“Goodness!” said the teacher. “I suppose that could happen, too.”
“Anything can happen in four hours,” said Sam. “A man might develop a blister on his

heel. Or he might find some berries growing along the road and stop to pick them. That
would slow him up even if he wasn’t tired or didn’t have a blister.”

“It would indeed,” agreed the teacher. “Well, children, I think we have all learned a great
deal about arithmetic this morning, thanks to Sam Beaver.”

Everyone had learned how careful you have to be when dealing with figures.

Statistics involves the manipulation of numbers and the conclusions based on those
manipulations (Miss Snug). Experimental design (also called research methods) deals
with all the things that influence the numbers you get (Sam and Albert). Figure 1.2
illustrates these two approaches to getting an answer. This text could have been a
“pure” statistics book, from which you would learn to analyze numbers without knowing

12 n Chapter 1
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where they came from or what they referred to. You would learn about statistics, but
such a book would be dull, dull, dull. On the other hand, to describe procedures for
collecting numbers is to teach experimental design—and this book is for a statistics
course. My solution to this conflict is generally to side with Miss Snug but to include
some aspects of experimental design throughout the book. Knowing experimental
design issues is especially important when it comes time to interpret a statistical
analysis. Here’s a start on experimental design.

Experimental Design Variables

The overall task of an experimenter is to discover relationships among variables.
Variables are things that vary, and researchers have studied personality, health, gender,
anger, caffeine, memory, beliefs, age, skill…. (I’m sure you get the picture—almost
anything can be a variable.)

Independent and Dependent Variables

A simple experiment has two major variables, the independent variable and
the dependent variable. In the simplest experiment, the researcher selects
two values of the independent variable for investigation. Values of the
independent variable are usually called levels and sometimes called
treatments.

The basic idea is that the researcher finds or creates two groups of
participants that are similar except for the independent variable. These
individuals are measured on the dependent variable. The question is
whether the data will allow the experimenter to claim that the values on
the dependent variable depend on the level of the independent variable.

The values of the dependent variable are found by measuring or
observing the participants in the investigation. The dependent variable
might be scores on a personality test, the number of items remembered,
or whether or not a passerby offered assistance. For the independent
variable, the two groups might have been selected because they were
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Experimental design viewpoint

Start
(mile 0)

Statistical viewpoint

12 miles
3 mph

� 4 hours

Finish
(mile 12)

First aid

Mortuary

BerriesSteep
hillLevel path

F I G U R E  1 . 2 Travel time from an experimental design viewpoint and a statisti-
cal viewpoint

independent variable
Variable controlled by the
researcher; changes in this
variable may produce changes 
in the dependent variable.

dependent variable
The observed variable that is 
expected to change as a result 
of changes in the independent
variable in an experiment.

level
One value of the independent
variable.

treatment
One value (or level) of the
independent variable.
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already different—in age, gender, personality, and so forth. Alternatively, the
experimenter might have produced the difference in the two groups by an experimental
manipulation such as creating different amounts of anxiety or providing different levels
of practice.

An example might help. Suppose for a moment that as a budding gourmet cook
you want to improve your spaghetti sauce. One of your buddies suggests adding
marjoram. To investigate, you serve spaghetti sauce at two different gatherings. For one
group of guests the sauce is spiced with marjoram; for the other it is not. At both
gatherings you count the number of favorable comments about the spaghetti sauce.
Stop reading; identify the independent and the dependent variables.7

The dependent variable is the number of favorable comments, which is a measure
of the taste of the sauce. The independent variable is marjoram, which has two levels:
present and absent.

Extraneous Variables

One of the pitfalls of experiments is that every situation has other variables besides the
independent variable that might possibly be responsible for the changes
in the dependent variable. These other variables are called extraneous
variables. In the story, Sam and Albert noted several extraneous variables
that could influence the time to walk 12 miles.

Are there any extraneous variables in the spaghetti sauce example?
Oh yes, there are many, and just one is enough to raise a suspicion about a conclusion
that relates spaghetti sauce taste to marjoram. Extraneous variables include the amount
and quality of the other ingredients in the sauce, the spaghetti itself, the “party moods”
of the two groups, and how hungry everybody was. If any of these extraneous variables
was actually operating, it weakens the claim that a difference in the comments about
the sauce is the result of the presence or absence of marjoram.

The simplest way to remove an extraneous variable is to be sure that all
participants are equal on that variable. For example, you can ensure that the sauces are
the same except for marjoram by mixing up one pot of ingredients, dividing it into two
batches, adding marjoram to one batch but not the other, and then cooking. The “party
moods” variable can be controlled (equalized) by conducting the taste test in a
laboratory. Controlling extraneous variables is a complex topic that is covered in
courses that focus on research methods and experimental design.

In many experiments it is impossible or impractical to control all the extraneous
variables. Sometimes researchers think they have controlled them all, only to find that
they did not. The effect of an uncontrolled extraneous variable is to prevent a simple
cause-and-effect conclusion. Even so, if the dependent variable changes when the
independent variable changes, something is going on. In this case, researchers can say
that the two variables are related but that other variables may play a part, too.

At this point you can test your understanding by engaging yourself with these
questions: What were the independent and dependent variables in the Zeigarnik
experiment? How many levels of the independent variable were there?

14 n Chapter 1

7 Try for answers. Then, if need be, here’s a hint: First, identify the dependent variable; for the dependent
variable, you don’t know values until data are gathered. Next, identify the independent variable; you can tell
what the values of the independent variable are just from the description of the design.

extraneous variable
Variable other than the
independent variable that may
affect the dependent variable.
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How well did Zeigarnik control extraneous variables? For one thing, each participant
was tested at both levels of the independent variable. That is, the recall of each participant
was measured for interrupted tasks and for uninterrupted tasks. One advantage of this
technique is that it naturally controls many extraneous variables. Thus, extraneous
variables such as age and motivation were exactly the same for tasks that were interrupted
as for tasks that were not because the same people contributed scores to both levels.

At various places in the following chapters, I will explain experiments and the
statistical analyses using the terms independent and dependent variables. These
explanations usually assume that all extraneous variables were controlled; that is, you
may assume that the experimenter knew how to design the experiment so that changes in
the dependent variable could be attributed correctly to changes in the independent
variable. However, I present a few investigations (like the spaghetti sauce example) that I
hope you recognize as being so poorly designed that conclusions cannot be drawn about
the relationship between the independent variable and dependent variable. Be alert.

Here’s my summary of the relationship between statistics and experimental design.
Researchers suspect that there is a relationship between two variables. They design and
conduct an experiment; that is, they choose the levels of the independent variable
(treatments), control the extraneous variables, and then measure the participants on the
dependent variable. The measurements (data) are analyzed using statistical procedures.
Finally, the researcher tells a story that is consistent with the results obtained and the
procedures used.

Statistics and Philosophy

The two previous sections directed your attention to the relationship between statistics
and experimental design; this section will direct your thoughts to the place of statistics
in the grand scheme of things.

Explaining the grand scheme of things is the task of philosophy
and, over the years many schemes have been advanced. For a scheme to 
be considered a grand one, it has to propose answers to questions of
epistemology—that is, answers to questions about the nature of knowledge.

One of the big questions in epistemology is: How do we acquire knowledge? The
answer reason and the answer experience have gotten a lot of attention.8 For those who
emphasize the importance of reason, mathematics has been a continuing source of
inspiration. Classical mathematics starts with a set of axioms that are assumed to be
true. Theorems are thought up and are then proved by giving axioms as reasons. Once
a theorem is proved, it can be used as a reason in a proof of other theorems.

Statistics has its foundations in mathematics. Statistics, therefore, is based on reason.
As you go about the task of memorizing definitions of terms such as , s, and �X,
calculating their values from data, and telling the story of what they mean, know deep
down that you are using a technique in logical reasoning. Using logical reasoning is
called rationalism, which is one approach to questions of epistemology. (Experimental
design is more complex; it includes experience and observation as well as reasoning.)

During the 20th century, statistical methods of analyzing data revolutionized the
philosophy of science. The 19th century was characterized by observation and

X�
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epistemology
The study or theory of the nature
of knowledge.

8 In philosophy, those who emphasize reason are rationalists and those who emphasize experience are empiricists.

08911_01_Ch01_01-23 pp2.qxd  12/15/09  1:33 PM  Page 15



description. The underlying philosophy was that natural phenomena had an objective
reality and the variation that always accompanied a set of observations was the result of
imprecise observing or imprecise instruments. In the 20th century, science used a newly
developed set of techniques called statistics to analyze the variation that was always
present. The result was that particular amounts of variation could be associated with
particular causes. Many philosophers of science adopted the belief that the underlying
reality was variation rather than some static, Platonic ideal (Salsburg, 2001).

Let’s move from these formal descriptions of philosophy to a more informal one.
A very common task of most human beings can be described as trying to understand.
Statistics has helped many in their search for better understanding, and it is such people
who have recommended (or demanded) that statistics be taught in school. A reasonable
expectation is that you, too, will find statistics useful in your future efforts to
understand and persuade.

Speaking of persuasion, you have probably heard it said, “You can prove anything
with statistics.” The implied message is that a conclusion based on statistics is suspect
because statistical methods are unreliable. Well, it just isn’t true that statistical methods
are unreliable, but it is true that people can misuse statistics (just as any tool can be
misused). One of the great advantages of studying statistics is that you get better at
recognizing statistics that are used improperly.

Statistics: Then and Now

Statistics began with counting. The beginning of counting, of course, was prehistory.
The origin of the mean is almost as obscure. That statistic was in use by the early 1700s,
but no one is credited with its discovery. Graphs, however, began when J. H. Lambert, a
Swiss-German scientist and mathematician, and William Playfair, an English political
economist, invented and improved graphs in the period 1765 to 1800 (Tufte, 2001).

In 1834, a group of Englishmen in London formed the Royal Statistical Society.
Just 5 years later, on November 27, 1839, at 15 Cornhill in Boston, a group of
Americans founded the American Statistical Society. Less than 3 months later, for a
reason that you can probably figure out, the group changed its name to the American
Statistical Association, which continues today (www.amstat.org).

According to Walker (1929), the first university course in statistics in the United
States was probably “Social Science and Statistics,” taught at Columbia University in
1880. The professor was a political scientist, and the course was offered in the
economics department. In 1887, at the University of Pennsylvania, separate courses in
statistics were offered by the departments of psychology and economics. By 1891,
Clark University, the University of Michigan, and Yale had been added to the list of
schools that taught statistics, and anthropology had been added to the list of
departments. Biology was added in 1899 (Harvard) and education in 1900 (Columbia).

You might be interested in when statistics was first taught at your school and in what
department. College catalogs are probably your most accessible source of information.

This course provides you with the opportunity to improve your ability to understand
and use statistics. Kirk (2008) identifies four levels of statistical sophistication:

Category 1—those who understand statistical presentations

Category 2—those who understand, select, and apply statistical procedures

16 n Chapter 1
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Category 3—applied statisticians who help others use statistics

Category 4—mathematical statisticians who develop new statistical techniques
and discover new characteristics of old techniques

I hope that by the end of your statistics course, you will be well along the path to
becoming a category 2 statistician.

How to Analyze a Data Set

The end point of analyzing a data set is a story that explains the relationships among
the variables in the data set. I recommend that you analyze a data set in three steps. The
first step is exploratory. Read all the information and examine the data. Calculate
descriptive statistics and focus on the differences that are revealed. In this textbook,
descriptive statistics are emphasized in Chapters 2 through 6 and include graphs,
percentages, and means. Calculating descriptive statistics helps you develop
preliminary ideas for your story (step 3). The second step is to answer the question,
Could the differences observed be due to chance?9 Often, an inferential statistic such as
a null hypothesis statistical test will provide an answer. Inferential statistics are covered
in Chapters 7 through 15. The third step is to write the story the data reveal. Incorporate
the descriptive and inferential statistics to support the conclusions in the story. Of
course, the skills you’ve learned and taught yourself about composition will be helpful
as you compose and write your story. Don’t worry about length; most good statistical
stories about simple data sets can be told in one paragraph.

Write your story using journal style, which is quite different from textbook style.
Textbook style, at least this textbook, is chatty, redundant, and laced with footnotes.10

Journal style, on the other hand, is terse, formal, and devoid of footnotes. For examples
of journal style, see Appendix G, which has answers to the textbook problems. Look at
paragraphs that have Interpretation highlighted.

Helpful Features of This Book

At various points in the chapter, I have encouraged your engagement in statistics. Your
active participation is necessary if you are to learn statistics. For my part, I worked to
organize this book and write it in a way that encourages active participation. Here are
some of the features you should find helpful.

Objectives

Each chapter begins with a list of skills the chapter is designed to help you acquire.
Read this list of objectives first to find out what you are to learn to do. Then thumb
through the chapter and read the headings. Next, study the chapter, working all the
problems as you come to them. Finally, reread the objectives. Can you meet each one?
If so, put a check mark beside that objective.

Introduction n 17

9 The question is whether the difference could be due to chance, not whether the data are due to chance.
10 You are reading the footnotes, aren’t you? Your answer — “Well, yes, it seems I am.”
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Problems and Answers

The problems in this text are in small groups within the chapter rather than clumped
together at the end. This encourages you to read a little and work problems, followed by
more reading and problems. Psychologists call this pattern spaced practice. Spaced
practice patterns lead to better performance than massed practice patterns.

Because working problems and writing answers are necessary to learn statistics,
I have used interesting problems and have sometimes written interesting answers for
the problems; in some cases, I even put new information in the answers. The problems
come from a variety of disciplines; the answers are in Appendix G. 

Many of the problems are conceptual questions that do not require any arithmetic.
Think these through and write your answers. Being able to calculate a statistic is almost
worthless if you cannot explain in English what it means. Writing reveals how
thoroughly you understand. To emphasize the importance of explanation, I’ve
highlighted the portion of each answer in Appendix G.

On several occasions, problems or data sets are used more than once, either later in
the chapter or even in another chapter. If you do not work the problem when it is first
presented, you are likely to be frustrated when it appears again. To alert you, I have put
an asterisk (*) beside problems that are used again.

At the end of many chapters, comprehensive problems are marked with a .
Working these problems requires knowing most of the material in the chapter. For most
students, it is best to work all the problems, but be sure you can work those marked
with a .

Sometimes you may find a minor difference between your answer and mine (in the
last decimal place, for example). This discrepancy will probably be the result of
rounding errors and does not deserve further attention.

Interpretation

18 n Chapter 1

clues to the future
Often a concept is presented that will be used again in later chapters. These ideas
are separated from the rest of the text in a box labeled “Clue to the Future.” You have
already seen one of these “Clues” in this chapter. Attention to these concepts will
pay dividends later in the course.

error detection
I have boxed in, at various points in the book, ways to detect errors. Some of these
“Error Detection” tips will also help you better understand the concept. Because
many of these checks can be made early, they can prevent the frustrating experience
of getting an impossible answer when the error could have been caught in step 2.

Figure and Table References

Sometimes the words Figure and Table are in boldface print. This means that you
should examine the figure or table at that point. Afterward, it will be easy for you to
return to your place in the text—just find the boldface type.
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Transition Passages

At six places in this book, there are major differences between the material you just
finished and the material in the next section. “Transition Passages,” which describe the
differences, separate these sections.

Glossaries

This book has three separate glossaries of words, symbols, and formulas.

1. Words. The first time an important word is used in the text, it appears in
boldface type accompanied by a definition in the margin. In later chapters, the
word may be boldfaced again, but margin definitions are not repeated.
Appendix D is complete glossary of words (page 405). I suggest you mark this
appendix.

2. Symbols. Statistical symbols are defined in Appendix E (page 409). Mark it too.
3. Formulas. Formulas for all the statistical techniques used in the text are printed

in Appendix F (page 411), in alphabetical order according to the name of the
technique.

Computers, Calculators, and Pencils

Computer programs, calculators, and pencils with erasers are all tools used at one time
or another by statisticians. Any or all of these devices may be part of the course you are
taking. Regardless of the calculating aids that you use, however, your task is the same:

• Read a problem.
• Decide what statistical procedure to use.
• Apply that procedure using the tools available to you.
• Write an interpretation of the results.

In addition, you should be able to detect gross errors by comparing your statistical
computations to the raw data.

Pencils, calculators, and computers represent, in ascending order, tools that are
more and more error-free. People who routinely do statistics use computers to
calculate answers. You may or may not use one at this point. Remember, though,
whether you are using computer programs or not, your principal task is to understand
and describe.

For many of the worked examples in this book, I included the output of a popular
statistical software program, SPSS.11 If your course includes SPSS, these tables should
help familiarize you with the program. VassarStats, a user-friendly program maintained
by Richard Lowry, is available free on the web at http://faculty.vassar.edu/lowry/
VassarStats.html.
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11 The original name of the program was Statistical Package for Social Sciences.
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Concluding Thoughts for This Introductory Chapter

Most students find that this book works well for them as a textbook in their statistics
course. Those who keep their book often find it a very useful reference book after the
course is over. In courses that follow statistics and even after leaving school, they find
themselves looking up a definition or reviewing a procedure.12 I hope that you not only
learn from this book but also join those students who keep the book as part of their
personal library.

This book is a fairly complete introduction to elementary statistics. There is more to
the study of statistics—lots, lots more—but there is a limit to what you can do in one
term. Some of you, however, will learn the material in this book and want to know more.
If you are such a student, I suggest that you “forage for yourself.” Encyclopedias, both
general and specialized, are good places to forage. Try the International Encyclopedia of
the Social and Behavioral Sciences (2001) or the Encyclopedia of Statistics in
Behavioral Science (2005).

I also recommend that when you finish this course (but before any final examination),
you study and work the problems in Chapter 16, the last chapter in the book. It is designed
to be an overview/integrative chapter.

For me, studying statistics and using them to understand the world around me has
been both helpful and satisfying. I hope you come to a similar conclusion. 
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P R O B L E M S

1.4. Name the four scales of measurement identified by S. S. Stevens.
1.5. Give the properties of each of the scales of measurement.
1.6. Identify the scale of measurement in each of the following cases.

a. Geologists have a “hardness scale” for identifying different rocks, called
Mohs’scale. The hardest rock (diamond) has a value of 10 and will scratch
all others. The second hardest will scratch all but the diamond, and so on.
Talc, with a value of 1, can be scratched by every other rock. (A fingernail, a
truly handy field-test instrument, has a value between 2 and 3.)

b. The volumes of three different cubes are 40, 64, and 65 cubic inches.
c. Three different highways are identified by their numbers: 40, 64, and 65.
d. Republicans, Democrats, Independents, and Others are identified on the

voters’ list with the numbers 1, 2, 3, and 4, respectively.
e. The winner of the Miss America contest was Miss California; the four

runners-up were Miss Ohio, Miss Illinois, Miss Pennsylvania, and
Miss Michigan.13

f. The prices of the three items are $3.00, $10.00, and $12.00.
g. She earned three degrees: B.A., M.S., and Ph.D.

12 This text’s index is unusually extensive. If you make margin notes, they will help, too.
13 Contest winners have come most frequently from these states, which have had six, six, five, five, and five 
winners, respectively.
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1.7. Undergraduate students conducted the three studies that follow. For each
study identify the dependent variable, the independent variable, the number
of levels of the independent variable, and the names of the levels of the
independent variable.
a. Becca had students in a statistics class rate a resume, telling them that the

person had applied for a position that included teaching statistics at their
college. The students rated the resume on a scale of 1 (not qualified) to
10 (extremely qualified). All the students received identical resumes,
except that the candidate’s first name was Jane on half the resumes and
John on the other half.

b. Michael’s participants filled out the Selfism scale, which measures
narcissism. (Narcissism is neurotic self-love.) In addition, students were
classified as first-born, second-born, and later-born.

c. Johanna had participants read a description of a crime and “Mr. Anderson,”
the person convicted of the crime. For some participants, Mr. Anderson
was described as a janitor. For others, he was described as a vice president
of a large corporation. For still others, no occupation was given. After
reading the description, participants recommended a jail sentence (in
months) for Mr. Anderson.

1.8. Researchers who are now well known conducted the three classic studies
that follow. For each study, identify the dependent variable, the independent
variable, and the number and names of the levels of the independent
variable. Complete items i and ii.
a. Theodore Barber hypnotized 25 different people, giving each a series

of suggestions. The suggestions included arm rigidity, hallucinations,
color blindness, and enhanced memory. Barber counted the number of
suggestions that the hypnotized participants complied with (the mean
was 4.8). For another 25 people, he simply asked them to achieve the
best score they could (but no hypnosis was used). This second group was
given the same suggestions, and the number complied with was counted
(the mean was 5.1). (See Barber, 1976.)
i. Identify a nominal variable and a statistic.
ii. In a sentence, describe what Barber’s study shows.

b. Elizabeth Loftus had participants view a film clip of a car accident.
Afterward, some were asked, How fast was the car going? and others
were asked, How fast was the car going when it passed the barn? (There
was no barn in the film.) A week later, Loftus asked the participants, Did
you see a barn? If the barn had been mentioned earlier, 17 percent said
yes; if it had not been mentioned, 3 percent said yes. (See Loftus, 1979.)
i. Identify a population and a parameter.
ii. In a sentence, describe what Loftus’s study shows.

c. Stanley Schachter and Larry Gross gathered data from obese male students
for about an hour in the afternoon. At the end of this time, a clock on the wall
was correct (5:30 p.m.) for 20 participants, slow (5:00 p.m.) for 20 others, and
fast (6:00 p.m.) for 20 more. The actual time, 5:30, was the usual dinnertime
for these students. While participants filled out a final questionnaire, Wheat
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Thins® were freely available. The weight of the crackers each student
consumed was measured. The means were: 5:00 group—20 grams; 5:30
group—30 grams; 6:00 group—40 grams. (See Schachter and Gross, 1968.)
i. Identify a ratio scale variable.
ii. In a sentence, describe what this study shows.

1.9. There are uncontrolled extraneous variables in the study described here.
Name as many as you can. Begin by identifying the dependent and
independent variables. An investigator concluded that statistics Textbook A
was better than Textbook B, after comparing two statistics classes. One
class, which met MWF at 10:00 A.M., used Textbook A and was taught by
Professor X. The other class, which met for 3 hours on Wednesday evening,
used Textbook B and was taught by Professor Y. At the end of the term, all
students took the same comprehensive test. The mean score for the Textbook
A students was higher than the mean score for the Textbook B students.

1.10. In philosophy, the study of the nature of knowledge is called .
1.11. a. The two approaches to epistemology identified in the text are

and .
b. Statistics has its roots in .

1.12. Your textbook recommends a three-step approach to analyzing a data set.
Summarize the steps.

1.13. Read the nine objectives at the beginning of this chapter. Responding to
them will help you consolidate what you have learned.
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ADDITIONAL HELP FOR CHAPTER 1

Visit cengage.com/psychology/spatz. At the Student Companion Site, you’ll
find multiple-choice tutorial quizzes flashcards with definitions, and
workshops. For this chapter, there is a Statistical Workshop on Scale of
Measurement and a Research Methods Workshop on Experimental Methods
(dependent and independent variables).

KEY TERMS

Dependent variable (p. 13)
Descriptive statistics (p. 3)
Epistemology (p. 15)
Extraneous variable (p. 14)
Independent variable (p. 13)
Inferential statistics (p. 3)
Interval scale (p. 11)
Level (p. 13)
Lower limit (p. 8)
Mean (p. 3)
Nominal scale (p. 10)

Ordinal scale (p. 10)
Parameter (p. 7)
Population (p. 6)
Qualitative variable (p. 8)
Quantitative variable (p. 8)
Ratio scale (p. 11)
Sample (p. 6)
Statistic (p. 7)
Treatment (p. 13)
Upper limit (p. 8)
Variable (p. 7)
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transition passage
to descriptive statistics

23

THE MOST COMMON way to divide the statistics pie is into descriptive statistics

and inferential statistics. The next five chapters are about descriptive statistics.

You are already familiar with some of these descriptive statistics, such as the

mean, range, and bar graphs. Others may be less familiar—the standard

deviation, correlation coefficient, and boxplot. All of these and others that you

will study will be helpful in your efforts to understand data. 

The phrase: Exploring Data appears in three of the chapter titles that follow.

The phrase is a reminder to approach a data set with the attitude of an explorer,

an attitude of What can I find here? Descriptive statistics are especially valuable in

the early stages of an analysis as you explore what the data have to say. Later,

descriptive statistics are essential when you convey your story of the data to

others. In addition, many descriptive statistics have important roles in the

inferential statistical techniques that are covered in later chapters. Let’s get

started.
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24

Exploring Data:
Frequency Distributions
and Graphs

C H A P T E R

2

O B J E C T I V E S  F O R  C H A P T E R  2

After studying the text and working the problems in this chapter, you should
be able to:

1. Arrange a set of scores into simple and grouped frequency distributions

2. Describe the characteristics of frequency polygons, histograms, and bar
graphs and explain the information provided in each one

3. Name certain distributions by looking at their shapes

4. Describe the characteristics of a line graph

5. Comment on the recent use of graphics

YOU HAVE NOW invested some time and effort learning the preliminaries of
elementary statistics. Concepts have been introduced and you have an overview of
the course. The chapters that follow immediately are about descriptive statistics. To
get an idea of the specific topics, read this chapter title and the next four chapter titles
thoughtfully.

You’ll begin your study of descriptive statistics with a group of raw
scores. Raw scores, or raw data, can be obtained in many ways. For
example, if you administer a questionnaire to a group of college students,
the scores from the questionnaire are raw scores. I will illustrate several

of the concepts in this chapter and the next three by using raw scores that are
representative of 100 college students.

If you would like to engage fully in this chapter, take 3 minutes to complete the
five-item questionnaire in Figure 2.1, and calculate your score. Score yourself now,
before you read further. (If you read the five chapter titles, I’ll bet that you answered
the five questions. Engagement always helps.)

The investigation of subjective well-being is an increasingly hot topic in psychology.
Subjective well-being is a person’s evaluation of his or her life. Recently, Diener and
Seligman (2004) marshaled evidence that governments would be better served to focus

24

raw score
Score obtained by observation 
or from an experiment.
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on policies that increase subjective well-being rather than continuing with their traditional
concern, which is policies of economic well-being.

As a concept, subjective well-being consists of emotional components and
cognitive components. An important cognitive component is satisfaction with life.
To measure this cognitive component, Ed Diener and his colleagues (Diener et al.,
1985) developed the Satisfaction With Life Scale (SWLS). The SWLS is the short,
five-item questionnaire in Figure 2.1. It is a reliable, valid measure of a person’s
global satisfaction with life. Table 2.1 is an unorganized collection of SWLS scores
of 100 representative college students.

TABLE 2.1 Representative scores of 100 college students 
on the Satisfaction With Life Scale

15 31 22 26 19 27 33 24 27 25
20 26 29 32 21 13 35 9 25 25
28 23 17 27 30 16 11 29 26 20
23 30 16 24 27 29 26 10 23 34
5 19 28 29 27 30 32 22 17 13

35 28 27 25 26 25 23 21 29 28
20 27 30 22 22 12 32 25 24 23
20 24 26 26 29 33 29 24 20 25
19 25 9 21 32 30 27 24 10 5
22 26 26 28 23 27 25 28 27 31

F I G U R E  2 . 1 Questionnaire

Instructions: Five statements with which you may agree or disagree are shown below.
Using the scale that follows, indicate your agreement with each item by placing the
appropriate number on the line preceding that item. Please be open and honest in
your responding.

Strongly disagree Slightly agree
Disagree Agree
Slightly disagree Strongly agree
Neither agree nor disagree

1. In most ways my life is close to my ideal.

2. The conditions of my life are excellent.

3. I am satisfied with my life.

4. So far I have gotten the important things I want in life.

5. If I could live my life over, I would change almost nothing.

Scoring instructions: Add the numbers in the blanks to determine your score.

4 �

7 �3 �

6 �2 �

5 �1 �
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TABLE 2.2 Rough draft of a simple frequency distribution of Satisfaction 
With Life Scale scores for a representative sample of 100 college students

SWLS score Tally Frequency SWLS score Tally Frequency
(X) marks ( f ) (X) marks ( f )

35 2 19 3
34 1 18 0
33 2 17 2
32 4 16 2
31 2 15 1
30 5 14 0
29 7 13 2
28 6 12 1
27 10 11 1
26 9 10 2
25 9 9 2
24 6 8 0
23 6 7 0
22 5 6 0
21 3 5 2
20 5 N � 100

(continued above)
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Simple Frequency Distributions

Table 2.1, which is just a jumble of numbers, is not very interesting or informative.
(My guess is that you glanced at it and went quickly on.) A much more informative
presentation of the 100 scores is an arrangement called a simple frequency

distribution. Table 2.2 is a simple frequency distribution—an ordered
arrangement that shows the frequency of each score. Look at Table
2.2. (I would guess that you spent more time on Table 2.2 than on
Table 2.1 and that you got more information from it.)

Look again at Table 2.2. The SWLS score column tells the name of
the variable that is being measured. The generic name for any variable is

X, which is the symbol used in formulas. The Frequency ( f ) column shows how
frequently a score occurred. The tally marks are used when you construct a rough-draft
version and are not usually included in the final form. N is the number of scores and is
found by summing the numbers in the f column. You will have a lot of opportunities to
construct simple frequency distributions, so here are the steps. General instructions are
given first, followed by their application to the data in Table 2.1 (italics).

1. Find the highest and lowest scores. Highest score is 35; lowest is 5.
2. In column form, write in descending order all the numbers. 35 to 5.
3. At the top of the column, name the variable being measured. Satisfaction With

Life Scale scores.
4. Start with the number in the upper left-hand corner of the scores, draw a line

under it, and place a tally mark beside that number in the column of numbers.
Underline 15 in Table 2.1, and place a tally mark beside 15 in Table 2.2.

simple frequency
distribution
Scores arranged from highest to
lowest, with the frequency shown
for each score.
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5. Continue underlining and tallying for all the unorganized scores.
6. Add a column labeled f (frequency).
7. Count the number of tallies by each score and enter the count in the f column.

8. Add the numbers in the f column. If the sum is equal to N, you haven’t left out
any scores. Sum � 100.

2, 1, 2, 4, p , 0, 2.

TABLE 2.3 Formal simple frequency
distribution of Satisfaction With Life Scale
scores for a representative sample of 100
college students

SWLS Frequency SWLS Frequency 
score (X ) ( f ) score (X ) ( f )

35 2 22 5
34 1 21 3
33 2 20 5
32 4 19 3
31 2 17 2
30 5 16 2
29 7 15 1
28 6 13 2
27 10 12 1
26 9 11 1
25 9 10 2
24 6 9 2
23 6 5 2
(continued above) N � 100

error detection
Underlining numbers is much better than crossing them out. Easy-to-read numbers
are appreciated later when you check your work or do an additional analysis.

A simple frequency distribution is a useful way to explore a set of data because
you pick up valuable information with just a glance. For example, the highest and
lowest scores are readily apparent in any frequency distribution. In addition, after
some practice with frequency distributions, you can ascertain the general shape of
the distribution and make an informed guess about measures of central tendency and
variability.

Table 2.3 shows a formal presentation of the data in Table 2.1. Formal presentations
are used to present data to colleagues, professors, supervisors, editors, and others.
Formal presentations usually do not include tally marks and often do not include
zero-frequency scores.
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Grouped Frequency Distributions

Many researchers would condense Table 2.3 even more. The result is a grouped
frequency distribution. Table 2.4 is a rough-draft example of such a distribution.1

Raw data are usually condensed into a grouped frequency distribution
when researchers want to present the data as a graph or as a table.

In a grouped frequency distribution, scores are grouped into 
equal-sized ranges called class intervals. In Table 2.4, the entire range
of scores, from 35 to 5, is reduced to 11 class intervals. Each interval
covers three scores; the symbol i indicates the size of the interval. In
Table 2.4, The midpoint of each interval represents all the scores
in that interval. For example, five students had scores of 15, 16, or 17.
The midpoint of the class interval 15–17 is 16.2 The midpoint, 16,

represents all 5 scores. There are no scores in the interval 6–8, but zero-frequency
intervals are included in formal grouped frequency distributions if they are within the
range of the distribution.

Class intervals have lower and upper limits, much like simple scores obtained by
measuring a quantitative variable. A class interval of 15–17 has a lower limit of 14.5
and an upper limit of 17.5.

The only difference between grouped frequency distributions and simple
frequency distributions is class intervals. The details of establishing class intervals are
described in Appendix B. For problems in this chapter, I will give you the class
intervals to use.

i � 3.

grouped frequency
distribution
Scores compiled into equal-sized
intervals. Includes the frequency
of scores in each interval.

class interval
A range of scores in a grouped
frequency distribution.

1 A formal grouped frequency distribution, much like a formal simple frequency distribution, does not
include tally marks.
2 When the scores are whole numbers, make i an odd number. With i odd, the midpoint of the class interval is
a whole number.

TABLE 2.4 Rough draft of a grouped frequency distribution 
of Satisfaction With Life Scale scores (i � 3)

SWLS scores
(class Midpoint

interval) (X ) Tally marks f

33–35 34 5
30–32 31 11
27–29 28 23
24–26 25 24
21–23 22 14
18–20 19 8
15–17 16 5
12–14 13 3
9–11 10 5
6–8 7 0
3–5 4 2

N � 100

> >

> > > >

> > >

> > > >

> > >> > > >
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P R O B L E M S

*2.1. (This is the first of many problems with an asterisk. See the footnote.) The
following numbers are the heights in inches of two groups of Americans in their
20s. Choose the group that interests you more, and organize the 50 numbers
into a simple frequency distribution using the rough-draft form. For the group
you choose, your result will be fairly representative of the whole population of
20- to 29-year-olds (Statistical Abstract of the United States: 2009, 2008).

Women Men

64 67 63 65 59 72 65 72 68 70
66 66 62 65 65 69 73 71 69 67
60 72 64 61 65 77 67 72 73 70
69 64 64 66 60 73 64 72 69 69
65 67 65 62 68 70 71 71 70 75
60 65 63 64 60 72 68 62 68 74
66 64 59 63 65 66 70 72 66 75
63 63 66 64 65 69 71 68 73 69
66 67 62 62 63 71 69 69 65 76
64 70 64 63 65 71 72 65 70 70

*2.2. (The frequency distribution you will construct for this problem is a little
different. The “scores” are names and thus nominal data.) A political science
student traveled on every street in a voting precinct on election day morning,
recording the yard signs (by initial) for the five candidates. The five candidates
were Attila (A), Bolivar (B), Gandhi (G), Lenin (L), and Mao (M). Construct
an appropriate frequency distribution from her observations. (She hoped to find
the relationship between yard signs and actual votes.) 

G A M M M G G L A G B A A G G B L M M

A G G B G L M A A L M G G M G L G A A

B L G G A G A M L M G B A G L G M A

*2.3. You may have heard or read that the normal body temperature (oral) is
98.6°F. The numbers that follow are temperature readings from healthy
adults, aged 18–40. Arrange the data into a grouped frequency distribution,
using 99.3–99.5 as the highest class interval and 96.3–96.5 as the lowest.
(Based on Mackowiak, Wasserman, and Levine, 1992.)

98.1 97.5 97.8 96.4 96.9 98.9 99.5 98.6 98.2 98.3

97.9 98.0 97.2 99.1 98.4 98.5 97.4 98.0 97.9 98.3

98.8 99.5 98.7 97.9 97.7 99.2 98.0 98.2 98.3 97.0

99.4 98.9 97.9 97.4 97.8 98.6 98.7 97.9 98.4 98.8

*2.4. An experimenter read 60 related statements to a class. He then asked the
students to indicate which of the next 20 statements were among the first 60.

* An asterisk means that the information in the problem will be used in other problems later in the book.
If you do all the problems in a notebook, you will have a handy reference when a problem turns up again.
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Due to the relationships among the concepts in the sentences, many seemed
familiar but, in fact, none of the 20 had been read before. The following
scores indicate the number (out of 20) that each student had “heard earlier.”
(See Bransford and Franks, 1971.) Arrange the scores into a simple
frequency distribution. Based on this description and your frequency
distribution, write a sentence of interpretation.

14 11 10 8 12 13 11 10 16 11

11 9 9 7 14 12 9 10 11 6

13 8 11 11 9 8 13 16 10 11

9 9 8 12 11 10 9 7 10

Graphs of Frequency Distributions

You have no doubt heard the saying A picture is worth a thousand words. When it
comes to numbers, a not-yet-well-known saying is A graph is better than a thousand
numbers. Actually, as long as I am rewriting sayings, I would also like to say The more
numbers you have, the more valuable graphics are. Graphics are becoming more and
more important in data analysis and persuasion.

Pictures that present statistical data are called graphics. The most
common graphic is a graph composed of a horizontal axis (variously
called the baseline, X axis, or abscissa) and a vertical axis (called the 
Y axis, or ordinate). To the right and upward are both positive directions;
to the left and downward are both negative directions. The axes cross at
the origin. Figure 2.2 is a picture of these words.

This section presents three kinds of graphs that are used to present
frequency distributions—frequency polygons, histograms, and bar graphs. Frequency
distribution graphs present an entire set of observations from a sample or a population.
If the variable being graphed is a quantitative variable, use a frequency polygon or a

abscissa
The horizontal axis of a graph; 
X axis.

ordinate
The vertical axis of a graph; 
Y axis.

��

�

�

X axis
(baseline, abscissa)

Y axis
(ordinate)

Origin

F I G U R E  2 . 2 The elements of a graph
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histogram; if the variable is qualitative, use a bar graph. (Think about the SWLS scores
in Table 2.4 and the yard sign data in problem 2.2. Which variable is quantitative and
which is qualitative?)

Frequency Polygon

A frequency polygon is used to graph quantitative variables. The SWLS
scores in Table 2.4 are quantitative data, so a frequency polygon is
appropriate. The result is Figure 2.3. An explanation of Figure 2.3 will
serve as your introduction to constructing polygons.

Each point of the frequency polygon represents two numbers: the
class midpoint directly below it on the X axis and the frequency of that
class directly across from it on the Y axis. By looking at the data points in Figure 2.3,
you can see that five students are represented by the midpoint 34, zero students by 7,
and so on.

The name of the variable being graphed goes on the X axis (Satisfaction With Life
Scale scores). The X axis is marked off in equal intervals, with each tick mark
indicating the midpoint of a class interval. Low scores are on the left. The lowest class
interval midpoint, 1, and the highest, 37, have zero frequencies. Frequency polygons
are closed at both ends. In cases where the lowest score in the distribution is well
above zero, it is conventional to replace numbers smaller than the lowest score on the
X axis with a slash mark, which indicates that the scale to the origin is not continuous.

Histogram

A histogram is another graphing technique that is appropriate for
quantitative variables. Figure 2.4 shows the SWLS data of Table 2.4
graphed as a histogram. A histogram is constructed by raising bars from
the X axis to the appropriate frequencies. The lines that separate the bars
intersect the X axis at the lower and upper limits of the class intervals.

frequency polygon
Frequency distribution graph 
of a quantitative variable;
frequency points are connected 
by lines.

histogram
Frequency distribution graph 
of a quantitative variable with fre-
quencies indicated by contiguous
vertical bars.
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F I G U R E  2 . 3 Frequency polygon of Satisfaction With Life Scale scores of 100
college students
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Here are some considerations for deciding whether to use a frequency polygon or a
histogram. On the one hand, if you are displaying two overlapping distributions on the
same axes, a frequency polygon is less cluttered than a histogram. On the other hand, it
is easier to read frequencies from a histogram, and histograms are the better choice
when you are presenting discrete data. (Discrete data are quantitative data that do not
have intermediate values; the number of children in a family is an example.)

Bar Graph

A bar graph is used to present the frequencies of the categories of a qualitative
variable. A conventional bar graph looks exactly like a histogram except for the wider

spaces between the bars. The space is usually a signal that a qualitative
variable is being graphed. Conventionally, bar graphs also have the name
of the variable being graphed on the X axis and frequency on the Y axis.

If an ordinal scale variable is being graphed, the order of the values
on the X axis follows the order of the variable. If, however, the variable is

a nominal scale variable, then any order on the X axis is permissible. Alphabetizing
might be best. Other considerations may lead to some other order.

Figure 2.5 is a bar graph of the six most common liberal arts majors among U.S.
college graduates in 2006–2007. The majors are listed on the X axis; the number of
graduates is on the Y axis. I ordered the majors from most to fewest graduates, but other
orders would be more appropriate in other circumstances. For example, moving the bar for
English majors to the first position would be better for a presentation about English majors.

P R O B L E M S

2.5. Answer the following questions for Figure 2.3.
a. What is the meaning of the number 25 on the X axis?
b. What is the meaning of the number 5 on the Y axis?
c. How many students had scores in the class interval 6–8?

1 4 7 10 13 16 19 22 25 28 31 34 37
0
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Satisfaction With Life Scale scores
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eq

ue
nc
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F I G U R E  2 . 4 Histogram of Satisfaction With Life Scale scores of 100 college
students

bar graph
Graph of the frequency
distribution of nominal or
qualitative data.
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2.6. For the height data in problem 2.1 you constructed a frequency distribution.
Graph it, being careful to include the zero-frequency scores.

2.7. The average hourly workweek varies from country to country for industrial
workers. In 2009 the most recent figures available were: Brazil, 43.9; Canada,
38.5; Finland, 37.7; India, 46.8; Japan, 38.7; Korea, 45.4; Mexico, 45.5;
United Kingdom, 40.9; United States, 41.2. What kind of graph is appropriate
for these data? Create a graph and execute it.

*2.8. Decide whether the following distributions should be graphed as frequency
polygons or as bar graphs. Graph both distributions.

X. Class interval f Y. Class interval f

48–52 1 54–56 3
43–47 1 51–53 7
38–42 2 48–50 15
33–37 4 45–47 14
28–32 5 42–44 11
23–27 7 39–41 8
18–22 10 36–38 7
13–17 12 33–35 4
8–12 6 30–32 5
3–7 2 27–29 2

24–26 0
21–23 0
18–20 1

Psychology Biology English Political
science
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F I G U R E  2 . 5 The six most common liberal arts majors among college
graduates for the academic year 2006–2007
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Normal distribution Rectangular distribution

F I G U R E  2 . 6 A normal distribution and a rectangular distribution

2.9. Look at the frequency distribution that you constructed for the yard-sign
observations in problem 2.2. Which kind of graph should be used to display
these data? Compose and graph the distribution.

Describing Distributions

There are three ways to describe the form or shape of a distribution: words, pictures,
and mathematics. In this section you will use the first two ways. The only mathematical
method I cover is in Chapter 14 on chi square.

Symmetrical Distributions

Symmetrical distributions have two halves that more or less mirror each other; the left
half looks pretty much like the right half. In many cases symmetrical distributions are

bell-shaped; the highest frequencies are in the middle of the distribution,
and scores on either side occur less and less frequently. The distribution
of heights in problem 2.6 is an example.

There is a special case of a bell-shaped distribution that you will
soon come to know very well. It is the normal distribution (or
normal curve). The left panel in Figure 2.6 is an illustration of a
normal distribution.

A rectangular distribution (also called a uniform distribution) is a symmetrical
distribution that occurs when the frequency of each value on the X axis is the same.
The right panel of Figure 2.6 is an example. You will see these distributions again in
Chapter 7.

Skewed Distributions

In some distributions, the scores that occur most frequently are near
one end of the scale, which leaves few scores at the other end. Such
distributions are skewed. Skewed distributions, like a skewer, have one
end that is thin and narrow. On a graph, if the thin point is to the
right—the positive direction—the curve has a positive skew. If the thin

normal distribution 
(normal curve)
A mathematically defined,
theoretical distribution or a graph
of scores with a particular bell
shape.

skewed distribution
Asymmetrical distribution; may be
positive or negative.

positive skew
Graph with a great
preponderance of low scores.
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point is to the left, the curve is negatively skewed. Figure 2.7 shows a
negatively skewed curve on the left and a positively skewed curve on the
right. The data in Table 2.4 are negatively skewed.

Bimodal Distributions

A graph with two distinct humps is called a bimodal distribution.3

Both distributions in Figure 2.8 would be referred to as bimodal even
though the humps aren’t the same height in the distribution on the right. For both
distributions and graphs, if two high-frequency scores are separated by scores with
lower frequencies, the name bimodal is appropriate.

Any set of measurements of a phenomenon can be arranged into a distribution;
scientists and others find them most helpful. Sometimes measurements are presented
in a frequency distribution table and sometimes in a graph (and sometimes both ways).

negative skew
Graph with a great
preponderance of large scores.

bimodal distribution
Distribution with two modes.
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F I G U R E  2 . 7 A negatively skewed curve and a positively skewed curve

Bimodal Bimodal

F I G U R E  2 . 8 Two bimodal curves

3 The mode of a distribution is the score that occurs most frequently.
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In the first chapter I said that by learning statistics you could become more persuasive.
Frequency distributions and graphs (but especially graphs) will be valuable to you as
you face audiences large and small over the years.

The Line Graph

Perhaps the graph most frequently used by scientists is the line graph. A line graph is
a picture of the relationship between two variables. A point on a line graph represents

the value on the Y variable that goes with the corresponding value on the
X variable. The point might represent two scores by one person or the
mean score of a group of people.

Line graphs are very popular with those who convey information.
Peden and Hausmann (2000) found that two-thirds of the graphs in psychology
textbooks were line graphs. Likewise, Boehner and Howe (1996) report that line
graphs accounted for two-thirds of the data graphs in a random selection of
psychology-related journal articles.

Figure 2.9 is an example of a line graph. It shows the serial position effect. If you
practice an ordered list of words until you can repeat it without error, you’ll find that
you make the most errors on the words just past the middle. The serial position effect
applies to any sequence of material that is learned in order. Knowing about the serial
position effect, you should devote extra study time to items in the middle of a list.

More on Graphics

Almost 100 graphs and figures appear in the chapters, problems, and answers that follow.
Some graphs are frequency distributions; others are line graphs. In addition, you will
find boxplots and scatterplots (with explanations). Group means and the variability of
the scores about those means are pictured with bar graphs. Although this chapter is the
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F I G U R E  2 . 9 The serial position effect

line graph
Graph that shows the relationship
between two variables with lines.
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only one with graphs in the title, this textbook and scientific research in general are full
of graphs. New designs are being created regularly.

Recognition of the importance of graphs has been emerging in the past two
decades or so. L. D. Smith et al. (2002) described psychologists’ use of graphs in their
work, pointing out that researchers use graphs throughout a project. Even before data
are collected, graphs provide a way to convey expected results and compare them to
previous results. Wainer and Velleman (2001) show that graphs serve as a guide to the
future in addition to their traditional role as a picture of past discoveries. Certainly, a
scene of several scientists scribbling a graph on a paper napkin or a blackboard is
almost a stereotype of how scientists work.

Graphs are one of our most powerful ways of persuading others. When a person
is confused or is of the opposite opinion, a graph can be convincing. One particular
champion of graphics is Edward Tufte, an emeritus professor at Yale University.
His book, The Visual Display of Quantitative Information (2nd edition, 2001),
celebrates and demonstrates the power of graphs, and also includes a reprint of
“(perhaps) the best statistical graphic ever drawn.”4 Tufte says that regardless of
your field, when you construct a quality graphic, it improves your understanding of
the phenomenon you are studying. So, if you find yourself somewhere on that path
between confusion and understanding, you should try to construct a graph. A graph
communicates information with the simultaneous presentation of words, numbers,
and pictures. In the heartfelt words of a sophomore engineering student I know,
“Graphs sure do help.”

Designing an effective and pleasing graph requires planning and rough drafts.
Sometimes conventional advice is helpful and sometimes not. For example, “Make the
height 60 to 75 percent of the width” works for some data sets and not for others.
Graphic designers should heed Tufte’s admonition (2001, epilogue), “It is better to
violate any principle than to place graceless or inelegant marks on paper.”

So, how can you learn to put graceful, elegant marks on paper? Here are some
books that can help. Statistical Graphics for Univariate and Bivariate Data (Jacoby,
1997) is an 88-page primer with examples from many disciplines. Nicol and Pexman
(2003) provide a detailed guide that illustrates a wide variety of graphs and figures; it
also covers poster presentations. The Elements of Graphing Data (Cleveland, 1994) is
a thorough textbook that includes some theory about graphs.

A Moment to Reflect

At this point in your statistics course, I have a question for you: How are you doing?
I know that questions like this are better asked by a personable human than by an
impersonal textbook. Nevertheless, please give your answer. I hope you can say OK or
perhaps something better. If your answer isn’t OK or better, now is the time to make
changes. Take paper and pen and write down changes that you think (or know!) will
help. Develop a plan. Share it with someone who will support you. Implement your plan.

4 I’ll give you just a hint about this graphic. A French engineer drew it well over a century ago to illustrate a
disastrous military campaign by Napoleon against Russia in 1812–13. This graphic was nominated by Wainer
(1984) as the “World’s Champion Graph.”
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P R O B L E M S

*2.10. Determine the direction of the skew for the two curves in problem 2.8 by
examining the curves or the frequency distributions (or both).

2.11. Describe how a line graph is different from a frequency polygon.
2.12. From the data for the five U.S. cities that follow, construct a line graph 

that shows the relationship between elevation above sea level and mean
January temperature. The latitudes of the five cities are almost equal; 
all are within 1 degree of 35°N latitude. Write a sentence of interpretation.

City Elevation (feet) Mean January temperature (°F)

Albuquerque, NM 5000 34
Amarillo, TX 3700 35
Flagstaff, AZ 6900 29
Little Rock, AR 350 39
Oklahoma City, OK 1200 36

2.13. Without looking at Figures 2.6 and 2.8, sketch a normal distribution, a
rectangular distribution, and a bimodal distribution.

2.14. Is the narrow point of a positively skewed distribution directed toward the
right or the left?

2.15. For each frequency distribution listed, tell whether it is positively skewed,
negatively skewed, or approximately symmetrical (bell-shaped 
or rectangular).
a. Age of all people alive today
b. Age in months of all first-graders
c. Number of children in families
d. Wages in a large manufacturing plant
e. Age at death of everyone who died last year
f. Shoe size

2.16. Write a paragraph on graphs.
*2.17. a. Problem 2.3 presented data on oral body temperature. Use those data to

construct a simple frequency distribution.
b. Using the grouped frequency distribution you created for your answer to

problem 2.3, construct an appropriate graph, and describe its form.
2.18. Read and respond to the five objectives at the beginning of the chapter.

Engaged responding will help you remember what you learned.

ADDITIONAL HELP FOR CHAPTER 2

Visit cengage.com/psychology/spatz. At the Student Companion Site, you’ll
find multiple-choice tutorial quizzes and flashcards with definitions. 
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Abscissa (p. 30)
Bar graph (p. 32)
Bimodal distribution (p. 35)
Class intervals (p. 28)
Frequency (p. 26)
Frequency polygon (p. 31)
Grouped frequency distribution (p. 28)
Histogram (p. 31)
Line graph (p. 36)
Negative skew (p. 35)

Normal distribution 
(normal curve) (p. 34)

Ordinate (p. 30)
Positive skew (p. 34)
Raw scores (p. 24)
Rectangular distribution (p. 34)
Simple frequency distribution (p. 26)
Skewed distribution (p. 34)
Symmetrical distribution (p. 34)

KEY TERMS
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Exploring Data:
Central Tendency

C H A P T E R

3 

O B J E C T I V E S  F O R  C H A P T E R  3

After studying the text and working the problems in this chapter, you should be
able to:

1. Find the mean, median, and mode of a simple frequency distribution

2. Determine whether a measure of central tendency is a statistic or a parameter

3. Detect bimodal distributions

4. Determine the central tendency measure that is most appropriate for a 
set of data

5. Estimate the direction of skew of a frequency distribution from the
relationship of the mean to the median

6. Calculate a weighted mean

IN THE PREVIOUS chapter, you learned to present a distribution of scores using
frequency distributions and graphs. These two descriptive methods show the form of a

distribution. This chapter covers measures of central tendency, which
are the most common way to describe a set of data. Measures of central
tendency give you one number or descriptor that represents, or is typical
of, a distribution.

Recall from Chapter 1 that when you have a population of scores, parameters can
be calculated. In most research situations, however, only samples are available, so the
calculations produce statistics. Naturally, a good statistic is one that mimics its
parameter. Fortunately, the common formula for the sample mean produces the best
estimate of its corresponding population parameter. For measures of variability, the
topic of the next chapter, the situation is not so straightforward.

40

central tendency
Descriptive statistics that indicate
a typical or representative score.
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1 Many scientific journals use a capital M to represent the mean.

clue to the future
The distributions you work with in this chapter are empirical distributions based on
observed scores. This chapter and the next three are about these empirical frequency
distributions. Starting with Chapter 7 and throughout the rest of the book, you will
also use theoretical distributions—distributions based on mathematical formulas
and logic rather than on actual observations.

Measures of Central Tendency

There are a number of measures of central tendency; the most popular are the mean,
median, and mode.

The Mean

The symbol for the mean of a sample is X� (pronounced “mean” or
“X-bar”). The symbol for the mean of a population is m (a Greek letter,
pronounced “mew”). Of course, an X� is only one of many possible means
from a population. Because other samples from that same population
produce somewhat different X�’s, a degree of uncertainty goes with X�.

Of course, if you had an entire population of scores, you could calculate m and it
would carry no uncertainty with it. Most of the time, however, the population is not
available and you must make do with a sample. Fortunately, mathematical statisticians
have shown that the formula for X� produces a value that is the best estimator of m. It
also turns out that this formula for X� is the same as the formula for m. The difference in
X� and m, then, is in the interpretation. X� carries some uncertainty with it; m does not.

Here’s a very simple example of a sample mean. Suppose a college freshman
arrives at school in the fall with a promise of a monthly allowance for spending money.
Sure enough, on the first of each month, there is money to spend. However, 3 months
into the school term, our student discovers a recurring problem: too much month left at
the end of the money.

Rather quickly, our student zeros in on money spent at the Student Center. So, for a 
2-week period, he records everything bought at the center, a record that includes coffee,
both regular and cappuccino Grande, bagels (with cream cheese), chips, soft drinks, ice
cream, and the occasional banana. His data are presented in Table 3.1. You already know
how to compute the mean of these numbers, but before you do, eyeball the data and then
write down your estimate of the mean in the space provided. The formula for the mean is

where X� � the mean1

� � an instruction to add (� is uppercase Greek sigma)
X � a score or observation; �X means to add all the X’s
N � number of scores or observations

X� �
©X

N

mean
The arithmetic average; the sum
of the scores divided by the
number of scores.
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TABLE 3.1 Expenditures at 
the Student Center during 
a 2-week period 

Day Money spent

1 $4.25
2 2.50
3 5.25
4 0.00
5 4.90
6 0.85
7 0.00
8 0.00
9 5.70

10 3.00
11 0.00
12 0.00
13 8.90
14 5.25

� � $40.60
Your estimate of the mean _______

For the data in Table 3.1,

These data are for a 2-week period, but our freshman is interested in his
expenditures for at least 1 month and, more likely, for many months. Thus, the result is a
sample mean and the X� symbol is appropriate. The amount, $2.90, is an estimate of the
amount that our friend spends at the Student Center each day. $2.90 may seem
unrealistic to you. If so, go back and explore the data; you can find an explanation.

Now we come to an important part of any statistical analysis, which is to answer
the question, So what? Calculating numbers or drawing graphs is a part of almost every
statistical problem, but unless you can tell the story of what the numbers and pictures
mean, you won’t find statistics worthwhile.

The first use you can make of Table 3.1 is to estimate the student’s monthly Student
Center expenses. This is easy to do. Thirty days times $2.90 is $87.00. Now, let’s
suppose our student decides that this $87.00 is an important part of the “monthly money
problem.” The student has three apparent options. The first is to get more money. The
second is to spend less at the Student Center. The third is to justify leaving things as they
are. For this third option, our student might perform an economic analysis to determine
what he gets in return for his almost $90 a month. His list might be pretty impressive:
lots of visits with friends, information about classes, courses, and professors, a borrowed
book that was just super, thousands of calories, and more.

The point of all this is that part of the attack on the student’s money problem
involved calculating a mean. However, an answer of $2.90 doesn’t have much meaning
by itself. Interpretations and comparisons are called for.

X �
©X

N
�

$40.60

14
� $2.90
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Characteristics of the mean Two characteristics of the mean are important for
you to know. Both characteristics will come up again later.

First, if the mean of a distribution is subtracted from each score in that distribution
and the differences are added, the sum will be zero; that is, �(X � X�) � 0. The statistic,
X � X�, is called a deviation score. To demonstrate to yourself that �(X � XX�) � 0, you
might pick a few numbers to play with (numbers 1, 2, 3, 4, and 5 are easy to work
with). In addition, if you know the rules that govern algebraic operations of summation
(�) notation, you can prove the relationship �(X � X�) � 0. (See Kirk, 2008, p. 81.)

Second, the mean is the point about which the sum of the squared deviations is
minimized. If we subtract the mean from each score, square each deviation, and add
the squared deviations together, the resulting sum will be smaller than if any number
other than the mean had been used; that is, �(X � X�)2 is a minimum. You can
demonstrate this relationship for yourself by playing with some numbers. 

The Median

The median is the point that divides a distribution of scores into two parts
that are equal in size. To find the median of the Student Center expense
data, begin by arranging the daily expenditures from highest to lowest.
The result is Table 3.2, which is called an array. Because there are 
14 scores, the halfway point, or median, will have 7 scores above it and 7 scores below
it. The seventh score from the bottom is $2.50. The seventh score from the top is $3.00.
The median, then, is halfway between these two scores, or $2.75.2 Remember, the
median is a hypothetical point in the distribution; it may or may not be an actual score.

2 The halfway point between two numbers is the mean of the two numbers. Thus, ($3.00 � $2.50)/2 � $2.75.

TABLE 3.2 Data of Table 3.1
arrayed in descending order

X

$8.90
5.70
5.25
5.25 7 scores
4.90
4.25
3.00

Median � $2.75
2.50
0.85
0.00
0.00 7 scores
0.00
0.00
0.00

v

v

median
Point that divides a distribution 
of scores into equal halves.
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What is the interpretation of a median of $2.75? The simplest interpretation is that
on half the days our student spends less than $2.75 in the Student Center and on the
other half he spends more.

What if there had been an odd number of days in the sample? Suppose the student
chose to sample half a month, or 15 days. Then the median would be the eighth score.
The eighth score has seven scores above and seven below. For example, if an additional
day was included, during which $5.00 was spent, the median would be $3.00. If the
additional day’s expenditure was zero, the median would be $2.50.

The reasoning you just went through can be facilitated using a formula that locates
the median in a distribution. The formula is:

The location may be at an actual score (as in the second example) or a point between
two scores (the first example).

The Mode

The third central tendency statistic is the mode. As mentioned earlier, the
mode is the most frequently occurring score—the score with the highest
frequency. For the Student Center expense data, the mode is $0.00.
Table 3.2 shows the mode most clearly. The zero amount occurred five

times, and all other amounts occurred only once.
When a mode is given, it is often helpful to tell the percentage of times it occurred.

You will probably agree that “The mode was $0.00, which occured on 36 percent of the
days” is more informative than “The mode was $0.00.”

Finding Central Tendency of Simple 
Frequency Distributions

Mean

Table 3.3 is an expanded version of Table 2.3, the frequency distribution of Satisfaction
With Life Scale (SWLS) scores in Chapter 2. The steps for finding the mean from a
simple frequency distribution follow, but first (looking only at the data and not at the
summary statistics at the bottom) estimate the mean of the SWLS scores in the space at
the bottom of Table 3.3.3

The first step in calculating the mean from a simple frequency distribution is to
multiply each score in the X column by its corresponding f value, so that all the people
who make a particular score are included. Next, sum the f X values and divide the total
by N. (N is the sum of the f values.) The result is the mean.4 In terms of a formula,

m or X� �
©f X

N

Median location �
N � 1

2

3 If the data are arranged in a frequency distribution, you can estimate the mean by selecting the most
frequent score (the mode) or by selecting the score in the middle of the list.
4 When you work with whole numbers, calculating a mean to two decimal places is usually sufficient.

mode
Score that occurs most frequently
in a distribution.
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For the data in Table 3.3,

How did 24.00 compare to your estimate?
To answer the question of whether 24.00 is X� or m, you need more information.

Here’s the question to ask: Is there any interest in a group larger than these 100? If the
answer is no, the 100 scores are a population and 24.00 � m. If the answer is yes, the
100 scores are a sample and 24.00 � X�.

Median

The formula for finding the location of the median that you used earlier works for a
simple frequency distribution, too.

Thus, for the scores in Table 3.3,

To find the 50.5th position, begin adding the frequencies in Table 3.3 from the
bottom (2 � 2 � 2 � 1 � . . .). The total is 43 by the time you include the score of 24.
Including 25 would make the total 52—more than you need. So the 50.5th score is
among those nine scores of 25. The median is 25.

Suppose you start the quest for the median at the top of the distribution rather than at
the bottom.Again, the location of the median is at the 50.5th position in the distribution. To
get to 50.5, add the frequencies from the top (2 � 1 � 2 � . . .). The sum of the frequencies

Median location �
N � 1

2
�

100 � 1

2
� 50.5

Median location �
N � 1

2

m or X �
©f X

N
�

2400

100
� 24.00
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TABLE 3.3 Calculating the mean of the simple frequency
distribution of the Satisfaction With Life Scale scores

SWLS SWLS 
score (X) f fX score (X) f fX

35 2 70 22 5 110
34 1 34 21 3 63
33 2 66 20 5 100
32 4 128 19 3 57
31 2 62 17 2 34
30 5 150 16 2 32
29 7 203 15 1 15
28 6 168 13 2 26
27 10 270 12 1 12
26 9 234 11 1 11
25 9 225 10 2 20
24 6 144 9 2 18
23 6 138 5 2 10

(continued above) 2400
Your estimate of the mean _______

© � 100
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of the scores from 35 down to and including 26 is 48. The next score, 25, had a frequency
of 9. Thus, the 50.5th position is among the scores of 25. The median is 25.

* An asterisk indicates that later problems are based on this one. Your answer and your understanding of an
asterisked problem will help when the data set is presented again.

error detection
Calculating the median by starting from the top of the distribution produces the
same result as calculating the median by starting from the bottom.

Mode

It is easy to find the mode from a simple frequency distribution. In Table 3.3, the score
with the highest frequency, 10, is the mode. So 27 is the mode.

In Chapter 2 (page 35) you learned to recognize curves with two distinct humps as
bimodal. Such curves mirror distributions that have two high-frequency scores (modes)
separated by one or more low-frequency scores.

P R O B L E M S

3.1. Find the median for the following sets of scores.
a. 2, 5, 15, 3, 9
b. 9, 13, 16, 20, 12, 11
c. 8, 11, 11, 8, 11, 8

3.2. Which of the following distributions is bimodal?
a. 10, 12, 9, 11, 14, 9, 16, 9, 13, 20
b. 21, 17, 6, 19, 23, 19, 12, 19, 16, 7
c. 14, 18, 16, 28, 14, 14, 17, 18, 18, 6

*3.3. Refer to problem 2.2, the political scientist’s yard-sign data.
a. Decide which measure of central tendency is appropriate and find it.
b. Is this central tendency measure a statistic or a parameter?
c. Write a sentence of interpretation.

*3.4. Refer to problem 2.1. Find the mean, median, and mode of the heights of
both groups of Americans in their 20s. Work from the Appendix G answers
to problem 2.1.

3.5. For distribution a, find the median starting from the bottom. For distribution
b, find the median starting from the top. The median of distribution
c can probably be solved by inspection.

a. X f b. 4, 0, �1, 2, 1, 0, 3, 1, �2, �2, �1, 2, 1, 3, 0, �2, 1, 2, 0, 1

15 4 c. 28, 27, 26, 21, 18, 10
14 3
13 5
12 4
11 2
10 1

3.6. What two mathematical characteristics of the mean were covered in this section?
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When to Use the Mean, Median, and Mode

A common question is: Which measure of central tendency should I use? The general
answer is, given a choice, use the mean. Sometimes, however, the data limit your
choice. Here are three considerations.

Scale of Measurement

A mean is appropriate for ratio or interval scale data, but not for ordinal or
nominal distributions. A median is appropriate for ratio, interval, and ordinal scale data, but
not for nominal data. The mode is appropriate for any of the four scales of measurement.

You have already thought through part of this issue in working problem 3.3. In it
you found that the yard-sign names (very literally, a nominal variable) could be
characterized with a mode, but it would be impossible to try to add up the names and
divide by N or to find the median of the names.

For an ordinal scale such as class standing in college, either median or mode makes
sense. The median would probably be sophomore, and the mode would be freshman.

Skewed Distributions

Even if you have interval or ratio data, the mean may be a misleading choice if the
distribution is severely skewed. Here’s a story to illustrate.

The developer of Swampy Acres Retirement Homesites is attempting to sell
building lots in a southern “paradise” to out-of-state buyers. The marks express concern
about flooding. The developer reassures them: “The average elevation of the lots is 78.5
feet and the water level in this area has never ever exceeded 25 feet.” The developer
tells the truth, but this average truth is misleading. The actual lay of the land is shown in
Figure 3.1. Now look at Table 3.4, which shows the elevations of the 100 lots arranged
in a grouped frequency distribution. (Grouped frequency distributions are explained in
Appendix B.)

To calculate the mean of a grouped frequency distribution, multiply the midpoint
of each interval by its frequency, add the products, and divide by the total frequency.
Thus, in Table 3.4 the mean is 78.5 feet, exactly as the developer said. However, only
the 20 lots on the bluff are out of the flood zone; the other 80 lots are, on the average,
under water. The mean, in this case, is misleading. What about the median? The median
of the distribution in Table 3.4 is 12.5 feet, well under the high-water mark, and a better
overall descriptor of Swampy Acres Retirement Homesites.

The distribution in Table 3.4 is severely skewed. For distributions that are
moderately or severely skewed, the median is often preferred over the mean because
the median is unaffected by extreme scores.

Exploring Data: Central Tendency ■ 47

error detection
Estimating (also called eyeballing) is a valuable way to avoid big mistakes. Begin
work by quickly making an estimate of the answers. If your calculated answers
differ from your estimates, wisdom dictates that you reconcile the difference. You
have either overlooked something when estimating or made a computation mistake.
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Open-Ended Class Intervals

Even if you have interval or ratio data and the distribution is fairly symmetrical, there
is a situation for which you cannot calculate a mean. If the highest interval or the
lowest interval of a grouped frequency distribution is open-ended, it has no midpoint
and so you cannot calculate a mean. Age data are sometimes reported with the oldest
being “75 and over.” The Statistical Abstract of the United States reports household
income with the largest category as $200,000 and over. Because there is no midpoint to
“75 and over” or to “$200,000 or more,” you cannot calculate a mean. Medians and
modes are appropriate measures of central tendency when one or both of the extreme
class intervals are open-ended.

In summary, use the mean if it is appropriate. To follow this advice you must
recognize data for which the mean is not appropriate. Perhaps Table 3.5 will help.

SWAMPY

ACRES 20 Lots

E
le

va
tio

n 
(f

ee
t)

80 Lots

25

350

F I G U R E  3 . 1 Elevation of Swampy Acres

TABLE 3.4 Frequency distribution of lot elevations
at Swampy Acres

Elevation, Midpoint Number of 
in feet (X) lots ( f ) f X

348–352 350 20 7000
13–17 15 30 450
8–12 10 30 300
3–7 5 20 100

7850

m �
©fX

N
�

7850

100
� 78.5 feet

© � 100
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TABLE 3.5 Data characteristics and recommended 
central tendency statistic 

Recommended statistic

Data characteristic Mean Median Mode

Nominal scale data No No Yes
Ordinal scale data No Yes Yes
Interval scale data Yes Yes Yes
Ratio scale data Yes Yes Yes
Open-ended category(ies) No Yes Yes
Skewed distribution No Yes Yes

Determining Skewness from the Mean 
and Median

There is a rule of thumb that uses the relationship of the mean to the median to help
determine skewness. This rule works most of the time. It usually works for continuous
data such as SWLS scores but is less trustworthy for discrete data such as the number
of adult residents in U.S. households (von Hippel, 2005).

The rule is that when the mean is larger than the median, you can expect the
distribution to be positively skewed. If the mean is smaller than the median, expect
negative skew. Figure 3.2 shows the relationship of the mean to the median for a
positively skewed and a negatively skewed distribution of continuous data.

I’ll illustrate by changing the slightly skewed data in Table 3.1 into more severely
skewed data. The original expenditures in Table 3.1 have a mean of $2.90 and a median
of $2.50, a difference of $0.40. If I add an expenditure of $100.00 to the 14 scores, the
mean jumps to $9.37; the median moves up to $3.00. The difference now is $6.37. This
example follows the general rule that the greater the difference between the mean and
median, the greater the skew.5 Note also that the mean of the new distribution ($9.37)
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Median
Mean smaller than

median—skew
is negativeMean

Median
Mean larger than

median—skew
is positiveMean

Low High

F I G U R E  3 . 2 The effect of skewness on the relative position of the mean and
median for continuous data

5 For a mathematical measure of skewness, see Kirk, 2008, p. 112.
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is greater than every score in the distribution except for $100.00. For severely skewed
distributions, the mean is not a typical score; the median is usually a better measure of
central tendency.

The Weighted Mean

Sometimes several sample means are available from the same or similar
populations. In such cases, a weighted mean, X�W, is the best estimate of
the population parameter, m. If every sample has the same N, you can
compute a weighted mean by adding the means and dividing by the

number of means. If the sample means are based on N’s of different sizes, however,
you cannot use this procedure. Here is a story that illustrates the right way and the
wrong way to calculate a weighted mean.

At my undergraduate college, a student with a cumulative grade point average
(GPA) of 3.25 in the middle of the junior year was eligible to enter a program to
“graduate with honors.” [In those days (1960) usually fewer than 10 percent of a class
had GPAs greater than 3.25.] Discovering this rule after my sophomore year, I decided
to figure out if I had a chance to qualify. Calculating a cumulative GPA seemed easy
enough to do: Four semesters had produced GPAs of 3.41, 3.63, 3.37, and 2.16. Given
another GPA of 3.80, the sum of the five semesters would be 16.37, and dividing by
5 gave an average of 3.27, well above the required 3.25.

Graduating with honors seemed like a great ending for college, so I embarked on a
goal-oriented semester—a GPA of 3.80 (a B in German and an A in everything else).
And, at the end of the semester I had accomplished the goal. Unfortunately, “graduating
with honors” was not to be.

There was a flaw in my method of calculating my cumulative GPA. My method
assumed that all of the semesters were equal in weight, that they had all been based on
the same number of credit hours. My calculations based on this assumption are shown
on the left side of Table 3.6.

Unfortunately, all five semesters were not the same; the semester with the GPA of
2.16 was based on 19 hours, rather than the usual 16 or so.6 Thus, that semester should
have been weighted more heavily than semesters with fewer hours.

The formula for a weighted mean is

where

  K �  number of samples

 N1, N2, NK �  sample sizes

 X�1, X�2, X�K �  sample means

X�W �  the weighted mean

X�W �  
N1X�1 �  N2X�2 � p �  NK X�K

N1 �  N2 � p �  NK

6 That semester was more educational than a GPA of 2.16 would indicate. I read a great deal of American
literature that spring, but unfortunately, I was not registered for any courses in American literature!

weighted mean
Overall mean calculated from two
or more samples with different N’s.
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The right side of Table 3.6 shows the steps for a weighted mean, which is required
to correctly calculate a cumulative GPA. Each semester’s GPA is multiplied by its
number of credit hours. These products are summed and that total is divided by the
sum of the hours. As you can see from the numbers on the right, the actual cumulative
GPA was 3.24, not high enough to qualify for the honors program.

More generally, to find the mean of a set of means, multiply each separate mean
by its N, add these products together, and divide the total by the sum of the N’s. As an
example, three means of 2.0, 3.0, and 4.0, calculated from the scores of samples with
N’s of 6, 3, and 2, produce a weighted mean (X�W) of 2.64. Do you agree?

Estimating Answers

You may have noticed that I have (subtly?) worked in the advice: As your first step,
estimate an answer. Here’s why I think you should begin a problem by estimating the
answer: (1) Taking a few seconds to estimate keeps you from plunging into the
numbers before you fully understand the problem. (2) An estimate is especially helpful
when a calculator or a computer does the bulk of your number crunching. Although
these wonderful machines don’t make errors, the people who enter the numbers or give
instructions do, occasionally. Your initial estimate helps you catch these mistakes. 
(3) Noticing that an estimate differs from a calculated value gives you a chance to
correct an error before anyone else sees it.

It can be exciting to look at an answer, whether it is on paper, a calculator display,
or a computer screen, and say, “That can’t be right!” and then to find out that, sure
enough, the displayed answer is wrong. If you develop your ability to estimate answers,
I promise that you will sometimes experience this excitement.
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TABLE 3.6 Two methods of calculating a mean from five
semesters’ GPAs; the method on the left is correct only if
all semesters have the same number of credit hours

Flawed method Correct method

Semester Semester Credit GPA �
GPA GPA hours hours

3.41 3.41 17 58
3.63 3.63 16 58
3.37 3.37 19 64
2.16 2.16 19 41
3.80 3.80 16 61

X�W �
282

87
� 3.24X� �

16.37

5
� 3.27

© � 282© � 87© � 16.37
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P R O B L E M S

3.7. For each of the following situations, tell which measure of central tendency
is appropriate and why.
a. As part of a study on prestige, an investigator sat on a corner in a

high-income residential area and classified passing automobiles
according to color: black, gray, white, silver, green, and other.

b. In a study of helping behavior, an investigator pretended to have locked
himself out of his car. Passersby who stopped were classified on a scale
of 1 to 5 as (1) very helpful, (2) helpful, (3) slightly helpful, (4) neutral,
and (5) discourteous.

c. In a study of household income in a city, the following income categories
were established: $0–$20,000, $20,001–$40,000, $40,001–$60,000,
$60,001–$80,000, $80,001–$100,000, and $100,001 and more.

d. In a study of per capita income in a city, the following income 
categories were established: $0–$20,000, $20,001–$40,000, $40,001–
$60,000, $60,001–$80,000, $80,001–$100,000, $100,001–$120,000,
$120,001–$140,000, $140,001–$160,000, $160,001–$180,000, and
$180,001–$200,000.

e. First admissions to a state mental hospital for 5 years were classified by
disorder: schizophrenic, delusional, anxiety, dissociative, and other.

f . A teacher gave her class an arithmetic test; most of the children 
scored in the range 70–79. A few scores were above this, and a few
were below.

3.8. A senior psychology major performed the same experiment on three groups
and obtained means of 74, 69, and 75 percent correct. The groups consisted
of 12, 31, and 17 participants, respectively. What is the overall mean for all
participants?

3.9. a. By inspection, determine the direction of skew of the expenditure data
in Table 3.2 and the elevation data in Table 3.4. Verify your judgment
by comparing the means and medians.

b. For problem 2.10, you determined by inspection the direction of skew
of two distributions (X and Y). To verify your judgment, calculate and
compare the mean and median of each distribution. The data are in
problem 2.8.

3.10. A 3-year veteran of the local baseball team was calculating his lifetime
batting average. The first year he played for half the season and batted
.350 (28 hits in 80 at-bats). The second year he had about twice the number
of at-bats and his average was .325. The third year, although he played even
more regularly, he was in a slump and batted only .275. Adding the three
season averages and dividing the total by 3, he found his lifetime batting
average to be .317. Is this correct? Explain.

3.11. The data in Table 3.1 (money spent at the Student Center) were created
so I could illustrate characteristics of central tendency statistics. 
The data that follow are based on a study of actual expenditures for food by
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freshmen students at Central Michigan University. (See http://www.westga.
edu/~bquest/2008/local08.pdf). The scores are for a two week period and
are from students who reported positive expenditures. Find the mean,
median, and mode and determine the direction of skew from the
relationship of the mean to the median.

$20, $30, $9, $22 $18, $54, $24, $2
$81, $24, $20, $33, $13, $28, $20

3.12. This chapter begins with a list of objectives. Read each one and judge yourself.

ADDITIONAL HELP FOR CHAPTER 3

Visit cengage.com/psychology/spatz. At the Student Companion Site, you’ll
find multiple-choice tutorial quizzes and flashcards with definitions. 

KEY TERMS

Array (p. 43)
Bimodal (p. 46)
Central tendency (p. 40)
Empirical distribution (p. 41)
Estimating (p. 47, 51)
Mean (p. 41)
Median (p. 43)

Mode (p. 44)
Open-ended class intervals (p. 48)
Scale of measurement (p. 47)
Skewed distributions (pp. 47, 49)
Theoretical distribution (p. 41)
Weighted mean (p. 50) 
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Exploring Data: 
Variability

C H A P T E R

4

O B J E C T I V E S  F O R  C H A P T E R  4

After studying the text and working the problems in this chapter, you should be
able to:

1. Explain the concept of variability

2. Find and interpret the range of a distribution

3. Find and interpret the interquartile range of a distribution

4. Distinguish among the standard deviation of a population, the standard
deviation of a sample used to estimate a population standard deviation, and
the standard deviation used to describe a sample

5. Know the meaning of s, ŝ, and S

6. For grouped and ungrouped data, calculate a standard deviation and
interpret it

7. Calculate the variance of a distribution

A DISTRIBUTION OF scores has three features that are independent of
each other—form, central tendency, and variability. Knowledge of all
three features leads you to a fairly complete understanding of a

distribution. You studied form (frequency distributions and graphs) in Chapter 2 and
central tendency in Chapter 3. Measures of variability (this chapter) tell separate story
and deserve more attention than they get.

The value of knowing about variability is illustrated by a story of two brothers
who, on a dare, water skied on Christmas Day (the temperature was about 35°F). On
the average each skier finished his turn 5 feet from the shoreline (where one may step
off the ski into only 1 foot of very cold water). This bland central tendency of the two
actual stopping places, however, does not convey the excitement of the day.

The first brother, determined to avoid the cold water, held onto the towrope too
long. Scraped and bruised, he finally stopped rolling at a spot 35 feet up on the rocky
shore. The second brother, determined not to share the same fate, released the towrope

54

variability
Having more than one value.
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too soon. Although he swam the 45 feet to shore very quickly, his lips were very blue.
No, to hear that the average stopping place was 5 feet from the shoreline doesn’t
capture the excitement of the day. To get the full story, you should ask about variability.
Here are some other situations in which knowing the variability is important.

1. You are an elementary school teacher preparing for your first year teaching
the fourth grade. Looking over the summary material for your students, you are
delighted to discover that the class average for reading is the 71st percentile on the
Stanford 10 Achievement Test. You begin thinking up some sophisticated reading
projects for the year.

Caution: If the variability around that average of 71st percentile is low, your
projects with the class will probably succeed. However, if the variability is great, the
projects will be too complicated for some, but for others, even these projects will not
be challenging enough.

2. Suppose that your temperature, taken with a thermometer under your tongue, is
97.5°F. You begin to worry. This is below even the average of 98.2°F that you learned
in the previous chapter (based on Mackowiak, Wasserman, and Levine, 1992).

Caution: There is variability around that mean of 98.2°F. Is 97.5°F below the
mean by just a little or by a lot? Measuring variability is necessary if you are to answer
this question.

3. Having graduated from college, you are considering two offers of employment,
one in sales and the other in management. The pay is about the same for both. Using
the library to check out the statistics for salespeople and managers, you find that those
who have been working for 5 years in each type of job also have similar averages. You
conclude that the pay for the two occupations is equal.

Caution: Pay is more variable for those in sales than for those in management.
Some in sales make much more than the average and some make much less, whereas
the pay of those in management is clustered together. Your reaction to this difference in
variability might help you choose.

The information that measures of variability provide is completely independent of
that provided by the mean, median, and mode. Table 4.1 shows three distributions,
each with a mean of 15. As you can see, however, the actual scores are quite different.

TABLE 4.1 Illustration of three
different distributions that have
equal means

X1 X2 X3

25 17 90
20 16 30
15 15 15
10 14 0
5 13 �60

Mean 15 15 15
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Fortunately, measures of variability reveal the differences in the three distributions,
giving you information that the mean does not.

This chapter is about statistics and parameters that measure the variability of
a distribution. The range is the first measure I will describe; the second is the interquartile
range. The third, the standard deviation, is the most important. Most of this chapter is
about the standard deviation. A fourth way to measure variability is the variance.

The Range

The range of a quantitative variable is the highest score minus the lowest
score.

where XH � highest score
XL � lowest score

The range of the Satisfaction With Life Scale scores you worked with in previous
chapters (see Table 2.2) was 30. The highest score was 35; the lowest was 5. Thus, the
range is 35 � 5 � 30. In Chapter 2 you worked with oral body temperatures. 
(See problem 2.3 and its answer.) The highest temperature was 99.5°F; the lowest was
96.4°F. The range is 3.1°F. Knowing that the range of normal body temperature is
more than 3 degrees tends to soften a strict interpretation of a particular temperature.
In manufacturing, the range is used in some quality-control procedures. From a small
sample of whatever is being manufactured, inspectors calculate a range and compare it
to an expected figure. A large range means there is too much variability in the process
and adjustments are called for.

The range is a quickly calculated, easy-to-understand statistic that is just fine in
some situations. However, you can probably imagine two distributions of scores that
have the same mean and the same range but are very different. (Go ahead, imagine
them.) If you are able to dream up two such distributions, it follows that some other
measures of variability are needed if you are to distinguish among different
distributions using just one measure of central tendency and one measure of variability.

Interquartile Range

The next measure of variability, the interquartile range, tells the
range of scores that enclose the middle 50 percent of the distribution. It
is an important element of boxplots, which you will study in Chapter 5.
(A boxplot is a graphic that conveys the data of a distribution and some
of its statistical characteristics with one picture.)

To find the interquartile range, you must have the 25th percentile
score and the 75th percentile score. You may already be familiar with the
concept of percentile scores. The 10th percentile score has 10 percent of
the distribution below it; it is near the bottom. The 95th percentile score

is near the top; 95 percent of the scores in the distribution are smaller. The 50th
percentile divides the distribution into equal halves.

Range �  XH � XL

56 n Chapter 4

range
Highest score minus the lowest
score.

interquartile range
Range of scores that contain 
the middle 50 percent of a
distribution.

percentile
Point below which a specified
percentage of the distribution
falls.
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Determining percentiles is something you practiced when you calculated medians.
The median is the point that divides a distribution into equal halves. Thus, the median
is the 50th percentile. Finding the 25th and 75th percentile scores involves the same
kind of reasoning that you used to find the median.

The 25th percentile score is the one that has 25 percent of the scores below it. Look
at Table 4.2, which shows a frequency distribution of 40 scores. To find the 25th
percentile score, multiply 0.25 times N. Thus, 0.25 � 40 � 10. When N � 40, the 10th
score up from the bottom is the 25th percentile score. You can see in Table 4.2 that there
are 5 scores of 23 or lower. The 10th score is among the 7 scores of 24. Thus, the 25th
percentile is a score of 24.

The 75th percentile score has 75 percent of the scores below it. The easiest way to
find it is to work from the top, using the same multiplication procedure, 0.25 times
N (0.25 � 40 � 10). The 75th percentile score is the 10th score down from the top of
the distribution. In Table 4.2 there are 9 scores of 29 or higher. The 10th score is among
the 4 scores of 28, so the 75th percentile score is 28.

The interquartile range (IQR) is the 75th percentile minus the 25th percentile:

Thus, for the distribution in Table 4.2, IQR � 28 � 24 � 4. The interpretation is that
the middle 50 percent of the scores have values from 24 to 28.

P R O B L E M S

4.1. Find the range for the two distributions.
a. 17, 5, 1, 1
b. 0.45, 0.30, 0.30

*4.2. Find the interquartile range of the Satisfaction With Life Scale scores in
Table 3.3. Write a sentence of interpretation.

IQR � 75th percentile � 25th percentile

TABLE 4.2 Finding the 25th and
75th percentiles

Score f

31 1
30 3 9 scores
29 5
28 4
27 5
26 4
25 6
24 7
23 3

5 scores
22 2

N � 40

r
r
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*4.3. Find the interquartile range of the heights of both groups of those 20- to 
29-year-old Americans. Use the frequency distributions you constructed for
problem 2.1. (These distributions may be in your notebook of answers; they
are also in Appendix G.)

The Standard Deviation

The most widely used measure of variability is the standard deviation.
It is popular because it is very reliable and it provides information about
the proportions within a distribution if you know the distribution’s form.
Once you understand standard deviations, you can express quantitatively
the difference between the two distributions you imagined previously in

the section on the range. (You did do the imagining, didn’t you?)
The standard deviation (or its close relatives) turn up in every chapter after this

one. Of course, in order to understand, you’ll have to read all the material, work the
problems, and do the interpretations. But what you get for all this work is a lifetime of
understanding the most popular yardstick of variability.

Your principal task in this section is to learn the distinctions among three different
standard deviations. Which standard deviation you use in a particular situation will be
determined by your purpose. Table 4.3 lists symbols, purposes, and descriptions. It will
be worth your time to study Table 4.3 thoroughly now.

Distinguishing among these three standard deviations is sometimes a problem for
beginning students. Be alert in situations where a standard deviation is used. With each
situation, you will acquire more understanding. I will first discuss the calculation of 
s and S and then deal with ŝ.

The Standard Deviation as a 
Descriptive Index of Variability

Both s and S are used to describe the variability of a set of data. s is a parameter of a
population; S is a statistic of a sample. Both are calculated with similar formulas. I will
show you two ways to arrange the arithmetic for these formulas, the deviation-score
formula and the raw-score formula.

58 n Chapter 4

TABLE 4.3 Symbols, purposes, and descriptions of three standard deviations

Symbol Purpose Description

s Measure a population’s Lowercase Greek sigma. A parameter. Describes 
variability variability when a population of data is available.

ŝ Estimate a population’s Lowercase ŝ (s-hat). A statistic. An estimate of s (in the 
variability same way that is an estimate of m). The variability

statistic you will use most often in this book.

S Measure a sample’s Capital S. A statistic. Describes the variability of a 
variability sample when there is no interest in estimating s.

X�

standard deviation
Descriptive measure of the
dispersion of scores around
the mean.
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You can best learn what a standard deviation is actually measuring by working
through the steps of the deviation-score formula. The raw-score formula, however, is
quicker (and sometimes more accurate, depending on rounding). Algebraically, the
two formulas are identical. My suggestion is that you learn both methods. By the
time you get to the end of the chapter, you should have both the understanding that
the deviation-score formula produces and the efficiency that the raw-score formula
gives. After that, you may want to use a calculator or computer to do all the
arithmetic for you.

Deviation Scores

A deviation score is a raw score minus the mean of the distribution,
whether the distribution is a sample or a population.

or

Raw scores that are greater than the mean have positive deviation scores, raw
scores that are less than the mean have negative deviation scores, and raw scores that
are equal to the mean have a deviation score of zero.

Table 4.4 provides an illustration of how to compute deviation scores for a
small sample of data. In Table 4.4, I first computed the mean, 8, and then subtracted it
from each score. The result is deviation scores, which appear in the right-hand
column.

A deviation score tells you the number of points that a particular score deviates
from, or differs from, the mean. In Table 4.4, the X � X� value for Alex, 6, tells you that
he scored six points above the mean. Luke, 0, scored at the mean, and Stephen, �5,
scored five points below the mean.

X � mDeviation score �  X � X�

Exploring Data: Variability n 59

TABLE 4.4 The computation of deviation scores 
from raw scores

Name Score Deviation score

Alex 14 14 � 8 6
Ian 10 10 � 8 2
Luke 8 8 � 8 0
Zachary 5 5 � 8 �3
Stephen 3 3 � 8 �5

X� �
©X

N
�

40

5
� 8

©1X � X� 2 � 0©X � 40

X � X�

error detection
Notice that the sum of the deviation scores is always zero. Add the deviation scores;
if the sum is not zero, you have made an error. You have studied this concept before.
In chapter 3 you learned that �(X � X�) � 0.

deviation score
Raw score minus the mean 
of its distribution.
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Computing S and S Using Deviation Scores

The deviation-score formula for computing the standard deviation as a descriptive 
index is

or

where S � standard deviation of a sample
s � standard deviation of a population
N � number of scores (same as the number of deviations)

The numerator of standard deviation formulas, �(X � X�)2, is shorthand notation
that tells you to find the deviation score for each raw score, square the deviation score,
and then add all the squares together. This sequence illustrates one of the rules for
working with summation notation: Perform the operations within the parentheses first.

How can a standard deviation add to your understanding of a phenomenon?
Let’s take the sales of Girl Scout cookies. Table 4.5 presents some imaginary (but
true-to-life) data on boxes of cookies sold by six Girl Scouts. I’ll use these data to
illustrate the calculation of the standard deviation, S. If these data were a population,
the value of s would be identical.

The numbers of boxes sold are listed in the X column of Table 4.5. The rest of the
arithmetic needed for calculating S is also given. To compute S by the deviation-score
formula, first find the mean.1 Obtain a deviation score for each raw score by subtracting
the mean from the raw score. Square each deviation score and sum the squares to obtain
�(X � X�)2. Divide �(X � X�)2 by N. Take the square root. The result is S � 8.66 boxes.

Now, what does S � 8.66 boxes mean? How does it help your understanding? The
8.66 boxes is a measure of the variability in the number of boxes the six Girl Scouts

s �B © 1X � m 2 2

N
S �B

© 1X � X� 2 2

N

60 n Chapter 4

1 For convenience I arranged the data so the mean is an integer. If you are confronted with decimals,
it usually works to carry three decimals in the problem and then round the final answer to two decimal places.

TABLE 4.5 Using the deviation-score formula to compute S
for cookie sales by a sample of six Girl Scouts

Boxes of cookies Deviation scores

28 18 324
11 1 1
10 0 0

5 –5 25
4 –6 36
2 –8 64

boxes

S � B
� 1X � X� 2 2

N
� B

450

6
� 275 � 8.66 boxes

X� �
©X

N
�

60

6
� 10

© 1X � X� 2 2 � 450© 1X � X� 2 � 0©X � 60

1X � X� 2 2X � X�X
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sold. If S was zero, you would know that each girl sold the same number of boxes. The
closer S is to zero, the more confidence you can have in predicting that the number of
boxes any girl sold was equal to the mean of the group. Conversely, the further S is
from zero, the less confidence you have. With S � 8.66 and X� � 10, you know that the
girls varied a great deal in cookie sales.

I realize that, so far, my interpretation of the standard deviation has not given you
any more information than the range does. (A range of zero means that each girl sold
the same number of boxes, and so forth.) The range, however, has no additional
information to give you—the standard deviation does, as you will see in Chapter 7.

Now look again at Table 4.5 and the formula for S. Notice what is happening. The
mean is subtracted from each score. This difference, whether positive or negative, is
squared and these squared differences are added together. This sum is divided by N and
the square root is found. Every score in the distribution contributes to the final answer,
but they don’t all contribute equally.

Notice the contribution made by a score such as 28, which is far from the mean; its
contribution to �(X � X�)2 is large. This makes sense because the standard deviation is
a yardstick of variability. Scores that are far from the mean cause the standard deviation
to be greater. Take a moment to think through the contribution to the standard deviation
made by a score near the mean.2

Exploring Data: Variability n 61

error detection
All standard deviations are positive numbers. If you find yourself trying to take the
square root of a negative number, you’ve made an error.

P R O B L E M S

4.4. Give the symbol and purpose of each of the three standard deviations.
4.5. Using the deviation-score method, compute S for the three sets of 

scores.
*a. 7, 6, 5, 2
b. 14, 11, 10, 8, 8

*c. 107, 106, 105, 102
4.6. Compare the standard deviation of problem 4.5a with that of problem 4.5c.

What conclusion can you draw about the effect of the size of the scores on
the following?
a. standard deviation
b. mean

*4.7. The temperatures listed are averages for March, June, September, and
December. Calculate the mean and standard deviation for each city.
Summarize your results in a sentence.

San Francisco, CA 54°F 59°F 62°F 52°F

Albuquerque, NM 46°F 75°F 70°F 36°F

2 If you play with a formula, you will become more comfortable with it and understand it better. Make up a
small set of numbers and calculate a standard deviation. Change one of the numbers, or add a number, or
leave out a number. See what happens. Besides teaching yourself about standard deviations, you may learn
more efficient ways to use your calculator.
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4.8. No computation is needed here; just eyeball the scores in set I and set II and
determine which set is more variable or whether the two sets are equally variable.
a. set I: 1, 2, 4, 1, 3 set II: 9, 7, 3, 1, 0
b. set I: 9, 10, 12, 11 set II: 4, 5, 7, 6
c. set I: 1, 3, 9, 6, 7 set II: 14, 15, 14, 13, 14
d. set I: 8, 4, 6, 3, 5 set II: 4, 5, 7, 6, 15
e. set I: 114, 113, 114, 112, 113 set II: 14, 13, 14, 12, 13

Computing S and with the Raw-Score Formula

The deviation-score formula helps you understand what is actually going on when you
calculate a standard deviation. It is the formula to use until you do understand.
Unfortunately, except in textbook examples, the deviation-score formula almost always
has you working with decimal values. The raw-score formula, which is algebraically
equivalent, involves far fewer decimals. It also produces answers more quickly,
especially if you are working with a calculator.

The raw-score formula is

where �X2 � sum of the squared scores
(�X)2 � square of the sum of the raw scores

N � number of scores

Although the raw-score formula may appear more forbidding, it is actually easier to
use than the deviation-score formula because you don’t have to compute deviation
scores. The numbers you work with will be larger, but your calculator won’t mind.

Table 4.6 shows the steps for calculating S or s by the raw-score formula. The data
are for boxes of cookies sold by the six Girl Scouts. The arithmetic of Table 4.6 can be

S or s �R
©X 2 �

1©X 2 2

N

N

S

TABLE 4.6 Using the raw-score formula to compute S for cookie sales by a sample
of six Girl Scouts

Boxes of cookies
X X2

28 784
11 121
10 100
5 25
4 16
2 4

Note:

S �R
©X 2 �

1©X 2 2

N

N
�R

1050 �
160 2 2

6

6
� B

1050 � 600

6
� B

450

6
� 275 � 8.66 boxes

1©X 2 2 � 160 2 2 � 3600©X 2 � 1050©X � 60
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expressed in words: Square the sum of the values in the X column and divide the total
by N. Subtract this result from the sum of the values in the X2 column. Divide this
difference by N and find the square root. The result is S or s. Notice that the value of S
in Table 4.6 is the same as the one you calculated in Table 4.5. In this case, the mean is
an integer, so the deviation scores introduced no rounding errors.3

�X2 and (�X)2: Did you notice the difference in these two terms when you were
working with the data in Table 4.6? If so, congratulations. You cannot calculate a
standard deviation correctly unless you understand the difference. Reexamine
Table 4.6 if you aren’t sure of the difference between �X2 and (�X)2. Be alert for
these two sums in the problems that are coming up.

Exploring Data: Variability n 63

3 Some textbooks and statisticians prefer the algebraically equivalent formula

I am using the formula in the text because the same form, or parts of it, will be used in other procedures.
Yet another formula is often used in the field of testing. To use this formula, you must first calculate the
mean:

All these arrangements of the arithmetic are algebraically equivalent.

S � B
©X2

N
� X� 2    and    s � B

©X2

N
� m2

S or s � B
N©X 2 � 1©X 2 2

N 2

error detection
The range is usually two to five times greater than the standard deviation when 
N � 100 or less. The range (which can be calculated quickly) will tell you if you
made any large errors in calculating a standard deviation.

P R O B L E M S

*4.9. Look at the following two distributions. Without calculating (just look at
the data), decide which one has the larger standard deviation and estimate
its size. (You may wish to calculate the range before you estimate.) Finally,
make a choice between the deviation-score and the raw-score formulas and
compute S for each distribution. Compare your computation with your
estimate.
a. 5, 4, 3, 2, 1, 0 b. 5, 5, 5, 0, 0, 0

4.10. For each of the distributions in problem 4.9, divide the range by the standard
deviation. Is the result between 2 and 5?

4.11. By now you can look at the following two distributions and see that a is
more variable than b. The difference in the two distributions is in the lowest
score (2 and 6). Calculate s for each distribution, using the raw-score
formula. Notice the difference in s that is produced by the change of just
one score.
a. 9, 8, 8, 7, 2 b. 9, 8, 8, 7, 6.
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This issue of dividing by N or by N � 1 sometimes leaves students shrugging their
shoulders and muttering, “OK, I’ll memorize it and do it however you want.” I would
like to explain, however, why you use N � 1 in the denominator when you have sample
data and want to estimate s.

Because the formula for s is

it would seem logical just to calculate X� from the sample data, substitute X� for m
in the numerator of the formula, and calculate an answer. This solution will, more 
often than not, produce a numerator that is too small [as compared to the value of
�(X � m)2].

To explain this surprising state of affairs, remember (page 43) a characteristic
of the mean: For any set of scores, the expression �(X � X�)2 is minimized. That is,
for any set of scores, this sum is smaller when X� is used than it is if some other
number (either larger or smaller) is used in place of X�. Thus, for a sample of
scores, substituting X� for m gives you a numerator that is minimized. However,
what you want is a value that is the same as �(X � m)2. Now, if the value of X� is at
all different from m, then the minimized value you get using �(X � X�)2 will be too
small.

The solution that statisticians have adopted for this underestimation problem is to
use X� and then to divide the too-small numerator by a smaller denominator—namely,
N � 1. This results in a statistic that is a much better estimator of s.4

s � B
© 1X � m 2 2

N

64 n Chapter 4

4 To illustrate this issue for yourself, use a small population of scores and do some calculations. For a
population with scores of 1, 2, and 3, s � 0.82. Three different samples with N � 2 are possible in the
population. For each sample, calculate the standard deviation using X� and N in the denominator. Find the
mean of these three standard deviations. Now, for each of the three samples, calculate the standard deviation
using N � 1 in the denominator and find the mean of these three. Compare the two means to the s that you
want to estimate.

Mathematical statisticians use the term unbiased estimator for statistics whose average value (based
on many samples) is exactly equal to the parameter of the population the samples came from.
Unfortunately, even with N � 1 in the denominator, ŝ is not a unbiased estimator of s, although the bias
is not very serious. There is, however, an unbiased measure of variability called the variance. The sample
variance, ŝ 2, is an unbiased estimator of the population variance, s2. (See the Variance section that
follows.)

s^as an Estimate of S

Remember that ŝ (ess-hat) is the principal statistic you will learn in this chapter; it will
be used again and again throughout the rest of this text. Statisticians often add a “hat”
to a symbol to indicate that something is being estimated. If you have sample data and
you want to calculate an estimate of s, use the statistic ŝ:

Note that the difference between ŝ and s is that ŝ has N � 1 in the denominator,
whereas s has N.

ŝ � B © 1X � X� 2 2

N � 1
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You just finished three dense paragraphs and a long footnote—lots of ideas per
square inch. You may understand it already, but if you don’t, take 10 or 15 minutes to
reread, do the exercise in footnote 4, and think.

Note also that as N gets larger, the subtraction of 1 from N has less and less effect
on the size of the estimate of variability. This makes sense because the larger the
sample size is, the closer X� will be to m, on average.

One other task comes with the introduction of ŝ: the decision whether to calculate
s, S, or ŝ for a given set of data. Your choice will be based on your purpose. If your
purpose is to estimate the variability of a population using data from a sample,
calculate ŝ. (This purpose is common in inferential statistics.) If your purpose is to
describe the variability of a sample or a population, use S or s, respectively.

Calculating ŝ

To calculate ŝ from raw scores, I recommend this formula:

This formula is the same as the raw-score formula for s except for N � 1 in the
denominator. This raw-score formula is the one you will probably use for your
own data.5

Sometimes you may need to calculate a standard deviation for data already
arranged in a frequency distribution. For a simple frequency distribution or a grouped
frequency distribution, the formula is

where f is the frequency of scores in an interval.
Here are some data to illustrate the calculation of ŝ both for ungrouped raw scores

and for a frequency distribution. Consider puberty. As you know, females reach
puberty earlier than males (about 2 years earlier on the average). Is there any
difference between the genders in the variability of reaching this developmental
milestone? Comparing standard deviations will give you an answer.

If you have only a sample of ages for each sex and your interest is in all females
and all males, ŝ is the appropriate standard deviation. Table 4.7 shows the
calculation of ŝ for the females. Work through the calculations. The standard
deviation is 2.19 years.

Data for the ages at which males reach puberty are presented in a simple frequency
distribution in Table 4.8. Work through these calculations, noting that grouping causes
two additional columns of calculations. For males, ŝ is 1.44 years.

ŝ �R
©f X2 �

1©f X22

N

N � 1

ŝ �R
©X2 �

1©X22

N

N � 1
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5 Calculators with standard deviation functions differ. Some use N in the denominator, some use N � 1, and
some have both standard deviations. You will have to check yours to see how it is programmed.
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TABLE 4.8 Calculation of ŝ for age at which males reach puberty 
(simple frequency distribution)

Age (X) f fX fX 2

18 1 18 324
17 1 17 289
16 2 32 512
15 4 60 900
14 5 70 980
13 3 39 507

N � 16

 ŝ �R
©fX 2 �

1©fX 2 2

N

N � 1
�R

3512 �
1236 2 2

16

15
� B

3512 � 3481

15
� 1.44 years

 X� � 14.75 years
©f X 2 � 3512©f X � 236

TABLE 4.7 Calculation of ŝ for age at which females reach puberty
ungrouped raw scores

Age (X) X2

17 289
15 225
13 169
12 144
12 144
11 121
11 121
11 121

 ŝ �R
©X 2 �

1©X 2 2

N

N � 1
�R

1334 �
1102 2 2

8

7
� B

1334 � 1300.50

7
� 2.19 years

 X� � 12.75 years
1©X 2 2 � 10,404©X 2 � 1334©X � 102

Thus, based on sample data, you can conclude that there is more variability among
females in the age of reaching puberty than there is among males. (Incidentally, you
would be correct in your conclusion—I chose the numbers so they would produce
results that are similar to population figures.)

Here are three final points about simple and grouped frequency distributions.

• �f X2 is found by squaring X, multiplying by f, and then summing.
• (�f X)2 is found by multiplying f by X, summing, and then squaring.
• For grouped frequency distributions, X is the midpoint of a class interval.
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Graphing Standard Deviations

The information on variability that a standard deviation conveys can often be added to
a graph. Figure 4.1 is a double-duty bar graph of the puberty data that shows standard
deviations as well as means. The lines extend 1 standard deviation above and below
the mean.6 From this graph you can see at a glance that the mean age of puberty for
females is younger than for males and that they are more variable in reaching puberty.

For both grouped and simple frequency distributions, most calculators give 
you �f X and �f X 2 if you properly key in X and f for each line of the distribution.
Procedures differ depending on the brand. The time you invest in learning will be
repaid several times over in future chapters (not to mention the satisfying feeling you
will get).

Exploring Data: Variability n 67

error detection
�f X 2 and (�f X)2 are similar in appearance, but they tell you to do different 
operations. The different operations produce different results.

Females Males

10

12

11

13

15

14

16

17
A

ge
 (

ye
ar

s)

F I G U R E  4 . 1 Bar graph of mean age of onset of puberty for females 
and males (error bars � I standard deviation)

clue to the future
You will be glad to know that in your efforts to calculate a standard deviation, you
have produced two other useful statistics along the way. Each has a name, and they
turn up again in future chapters. The number that you took the square root of to get
the standard deviation is called the variance (also called a mean square). The
expression in the numerator of the standard deviation, �(X � X�)2, is called the sum
of squares, which is an important concept in Chapters 11–13.

6 Other measures of variability besides standard deviations are also presented as an extended line. The caption
or the legend of the graph tells you the measure.
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The Variance

The last step in calculating a standard deviation is to find a square root. The number you
take the square root of is the variance. The symbols for the variance are s2 (population

variance) and ŝ2 (sample variance used to estimate the population
variance). By formula,

68 n Chapter 4

TABLE 4.9 SPSS output of descriptive
statistics for the SWLS scores

Statistics

SWLSscores

N Valid 100
Missing 0

Mean 24.0000
Median 25.0000
Mode 27.00
Std. Deviation 6.41809
Variance 41.192
Range 30.00
Percentiles 25 21.0000

50 25.0000
75 28.0000

variance
Square of the standard deviation.

and or ŝ2 �

©X2 �
1©X 2 2

N

N � 1
ŝ 2 �

© 1X � X� 2 2

N � 1
s2 �

© 1X � m 22

N

The difference between s2 and ŝ2 is the term in the denominator. The
population variance uses N and the sample variance uses N � 1. The variance is not
very useful as a descriptive statistic. It is, however, of enormous importance in
inferential statistics, especially in a technique called the analysis of variance (Chapters
11, 12, and 13).

Statistical Software Programs

There are many computer software programs that calculate statistics. One of the most
widely used is called SPSS. At several places in this book, I have included look-alike
tables from SPSS. Table 4.9 has SPSS output of measures of central tendency and
variability of the SWLS scores you have been working with since Chapter 2.
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4.12. Make a rough-sketch bar graph that shows the means and standard
deviations of the problem 4.7 temperature data for San Francisco and
Albuquerque. Include a caption.

4.13. Here is an interpretation problem. Remember the student who recorded money
spent at the Student Center every day for 14 days? The mean was $2.90 per
day. Suppose the student wanted to reduce his Student Center spending. Write
a sentence of advice if ŝ � $0.02 and a second sentence if ŝ � $2.50.

4.14. Describe in words the relationship between the variance and the standard
deviation.

4.15. A researcher had a sample of scores from the freshman class on a test that
measured attitudes toward authority. She wished to estimate the standard
deviation of the scores of the entire freshman class. (She had data from
20 years ago and she believed that current students were more homogeneous
than students in the past.) �X and �X2 have already been determined.
Calculate the proper standard deviation and variance.

4.16. Here are those data on the heights of the Americans in their 20s that you
have been working with. For each group, calculate ŝ. Write a sentence of
interpretation.

N � 21    ©X � 304    ©X2 � 5064

Exploring Data: Variability n 69

Women Men

Height (in.) f Height (in.) f

72 1 77 1
70 1 76 1
69 1 75 2
68 1 74 1
67 3 73 4
66 6 72 7
65 10 71 6
64 9 70 7
63 7 69 8
62 4 68 4
61 1 67 2
60 4 66 2
59 2 65 3

64 1
62 1

4.17. A high school English teacher measured the attitudes of 11th-grade students
toward poetry. After a 9-week unit on poetry, she measured the students’
attitudes again. She was disappointed to find that the mean change was zero.
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Following are some representative scores. (High scores represent more
favorable attitudes.) Calculate ŝ for both before and after scores, and write a
conclusion based on the standard deviations.

Before 7 5 3 5 5 4 5 6

After 9 8 2 1 8 9 1 2

4.18. In manufacturing, engineers strive for consistency. The following data are
the errors, in millimeters, in giant gizmos manufactured by two different
processes. Choose S or ŝ and determine which process produces the more
consistent gizmos.

Process A 0 1 �2 0 �2 3

Process B 1 �2 �1 1 �1 2

*4.19. Find the interquartile range for normal oral body temperature and write a
sentence of interpretation. For data, use your answer to problem 2.17a.

4.20. Estimate the population standard deviation for oral body temperature using
data you worked with in problem 2.17a. You may find �f X and �f X2 by
working from the answer to problem 2.17a, or, if you understand what you
need to do to find these values from that table, you can use
�f X � 3928.0 and �f X2 � 385,749.24.

4.21. Reread the description of the classic study by Bransford and Franks
(problem 2.4). Using the frequency distribution you compiled for that
question (or the answer in Appendix G), calculate the mean, median, and
mode. Find the range and the interquartile range. After considering why
Bransford and Franks would gather such data, calculate an appropriate
standard deviation and variance. Write a paragraph explaining what your
calculations show.

4.22. Return to the objectives at the beginning of the chapter. Can you do each one?

70 n Chapter 4

ADDITIONAL HELP FOR CHAPTER 4

Visit cengage.com/psychology/spatz. At the Student Companion Site, you’ll
find multiple-choice tutorial quizzes, flashcards with definitions, and
workshops. For this chapter, there is a Statistical Workshop on Central
Tendency and Variability.

KEY TERMS

Deviation score (p. 59)
Estimate (p. 58)
Interquartile range (p. 56)
Percentile (p. 56)
Range (p. 56)

Standard deviation (p. 58)
Variability (p. 54)
Variance (p. 68)
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Other Descriptive
Statistics

C H A P T E R

5

O B J E C T I V E S  F O R  C H A P T E R  5

After studying the text and working the problems in this chapter, you should be
able to:

1. Use z scores to compare two scores in one distribution

2. Use z scores to compare scores in one distribution with scores in a second
distribution

3. Construct and interpret boxplots

4. Identify outliers in a distribution

5. Calculate an effect size index and interpret it

6. Compile descriptive statistics and an explanation into a Descriptive Statistics
Report

THIS CHAPTER INTRODUCES statistical techniques that have two things in
common. First, all are descriptive statistics. Second, each one combines two or more
statistical components. Fortunately, the components are ones you studied in the
preceding two chapters. These statistical techniques should prove quite helpful as you
improve your own ability to explore and understand data.

The first statistic, the z score, tells you the relative standing of a raw score in its
distribution. The formula for a z score combines a raw score with its distribution’s
mean and standard deviation. A z-score description of a raw score works regardless of
the kind of raw scores or the shape of the distribution. This section also defines
outliers, which are extreme scores in a distribution, and offers suggestions of what to
do about them.

The second section of this chapter covers boxplots. A boxplot is a graphic with
information on one variable, much like a frequency polygon, but it conveys lots more
about a distribution. With just one picture, a boxplot gives you the median, range,
interquartile range, and skew of a distribution. Often, it provides additional
information as well.

71
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This chapter introduces d, the effect size index. An effect size index allows you to
describe the size of the difference between two distributions as small, medium, or
large. If you know that an independent variable makes a difference in the scores on the
dependent variable, then d indicates how much of a difference the independent
variable makes.

The final section of this chapter has no new statistics. It shows you how to put
together the ones you have learned into a Descriptive Statistics Report, which is an
organized collection of descriptive statistics that helps a reader understand the data
that were gathered.

Probably all college graduates are familiar with measures of central tendency;
most are familiar with measures of variability. However, only those with a good
education in quantitative thinking are familiar with all the techniques presented in this
chapter. So, learn this material. You will then understand more than most and you will
be better equipped to help others.

Describing Individual Scores

Suppose one of your friends says he got a 95 on a math exam. What does that tell you
about his mathematical ability? From your previous experience with tests, 95 may
seem like a pretty good score. This conclusion, however, depends on a couple of
assumptions, and unless those assumptions are correct, a score of 95 is meaningless.
Let’s return to the conversation with your friend.

After you say, “95! Congratulations,” suppose he tells you that 200 points were
possible. Now a score of 95 seems like something to hide. “My condolences,” you say.
But then he tells you that the highest score on that difficult exam was 105. Now 95 has
regained respectability and you chortle, “Well, all right!” In response, he shakes his
head and tells you that the mean score was 100. The 95 takes a nose dive. As a final
blow, you find out that 95 was the lowest score, that nobody scored worse than your
friend. With your hand on his shoulder, you cut off further discussion of the test with,
“Come on, I’ll buy you an ice cream cone.”

This example illustrates that the meaning of a score of 95 depends on the rest of the
test scores. Fortunately, there are several ways to convert a raw score into a measure
that signals its relationship to other scores. Percentiles are one well-known example. I’ll
explain two others that are important for statistical analyses, z scores and outliers.

The z score

The z score is a widely used technique. It modifies an individual score so
that it conveys the score’s relationship to both the mean and the standard
deviation of its fellow scores. The formula is

Remember that the numerator, X – X�, is an acquaintance of yours, the deviation
score. A z score describes the relation of X to X� with respect to the variability of the

z �
X � X�

S

72 ■ Chapter 5

z score
Score expressed in standard
deviation units.
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distribution. For example, if you know that a score (X) is 5 units from the mean—that
is, X – X� � 5—you know only that the score is better than average, but you have no
idea how far above average it is. If the distribution has a range of 10 units and X� � 50,
then an X of 55 is a very high score. On the other hand, if the distribution has a range
of 100 units, an X of 55 is barely above average. Look at Figure 5.1, which is a picture
of the ideas in this paragraph.

Thus, to know a score’s position in a distribution, the variability of
the distribution must be taken into account. The way to do this is to divide
X – X� by a unit that measures variability, the standard deviation. The
result is a deviation score per unit of standard deviation.1 A z score is
often referred to as a standard score because it is a deviation score expressed in
standard deviation units.

Any distribution of raw scores can be converted into a distribution of z scores; for
each raw score, there is one z score. Positive z scores represent raw scores that are
greater than the mean; negative z scores go with raw scores that are less than the mean.
In both cases, the absolute value of the z score tells the number of standard deviations
the score is from the mean. The mean of the z scores is 0; its standard deviation is 1.

When one raw score is converted into a z score, the z score gives the raw score’s
position in the distribution. If two raw scores are converted, the two z scores tell you
their positions relative to each other as well as to the distribution. Finally, z scores are
also used to compare two scores from different distributions, even when the scores are
measuring different things. (If this seems like trying to compare apples and oranges,
see problem 5.5.)

In the general psychology course I took as a freshman, the professor returned tests
with a z score rather than a percentage score. This z score was the key to figuring out
your grade. A z score of �1.50 or higher was an A, and �1.50 or lower was an F.
(z scores between �.50 and �1.50 received B’s. If you assume the professor practiced
symmetry, you can figure out the rest of the grading scale.)

Other Descriptive Statistics n 73

45 50 55

XX
�

0 50 100

X
�

55

X

X � X � 5
�

X � X � 5
�

F I G U R E  5 . 1 A comparison of X � X� � 5 for a distribution with a small 
standard deviation (left) and a large standard deviation (right)

1 This technique is based on the same idea that percents are based on. For example, 24 events at one time
and 24 events a second time appear to be the same. But don’t stop with appearances. Ask for the additional
information that you need, which is, “24 events out of how many chances?” An answer of “50 chances the
first time and 200 chances the second” allows you to convert both 24s to “per centum” (per one hundred).
Clearly, 48 percent and 12 percent are different, even though both are based on 24 events. Other examples of
this technique of dividing to make raw scores comparable include miles per gallon, per capita income,
bushels per acre, and points per game.

standard score
Score expressed in standard
deviation units; z is one example.
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Table 5.1 lists the raw scores (percentage correct) and z scores for four of the many
students who took two of the tests in that class. Begin by noting that for test 1, X� � 54
and S � 10. For test 2, X� � 86, S � 6. Well, so what? To answer this question, examine
the scores of the four individuals. Consider the first student, Kris, who scored 76 on both
tests. The two 76s appear to be the same, but the z scores show that they are not. The first
76 was a high A and the second 76 was an F. The second student, Robin, appears to have
improved on the second test, going from 54 to 86, but in fact, the scores were the test
averages both times (a grade of C). Robin was the same on both tests. Marty also appears
to have improved if you examine only the raw scores. However, the z scores reveal that
Marty did worse on the second test. Finally, comparing Terry’s and Robin’s raw scores,
you can see that although Terry scored 4 points higher than Robin on each test, the 
z scores show that Terry’s improvement was greater than Robin’s on the second test.

The reason for these surprising comparisons is that the means and standard
deviations are so different for the two tests. Perhaps the second test was easier, or the
material was more motivating to students, or the students studied more. Maybe the
teacher prepared better. Perhaps all of these reasons were true.

To summarize, z scores give you a way to compare raw scores. The basis of the
comparison is the distribution itself rather than some external standard (such as a
grading scale of 90–80–70–60 percent for As, Bs, and so on).

A word of caution: z is used as both a descriptive statistic and an inferential
statistic. As a descriptive statistic, its range is limited. For a distribution of 100 or so
scores, the z scores might range from approximately �3 to �3. For many distributions,
especially when N is small, the range is less.

As an inferential statistic, however, z values are not limited to �3. To illustrate,
z score texts are used in Chapter 15 to help decide whether two populations are different.
The value of z depends heavily on how different the two populations actually are.
When z is used as an inferential statistic, values much greater than 3 can occur.

74 n Chapter 5

TABLE 5.1 The z scores of selected students on two 100-point
tests in general psychology

Test 1 Test 2

Student Raw score z score Raw score z score

Kris 76 �2.20 76 �1.67
Robin 54 .00 86 .00
Marty 58 �.40 82 �.67
Terry 58 �.40 90 �.67

Test 1: Test 2:
S � 10 S � 6

 X � 86 X � 54

clue to the future
z scores will turn up often as you study statistics. They are prominent in this book in
Chapters 5, 7, 8, and 15.
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Outliers

Outliers are scores in a distribution that are unusually small or unusually
large. An outlier has a disproportionate influence, compared to any of the
others scores, on the mean, standard deviation, and other statistical
measures. They can certainly affect the outcome of a statistical analysis and they
appear to be common (Wilcox, 2005a).
Although there is no general agreement on how to identify outliers, Hogan and
Evalenko (2006) found that the most common definition in statistics textbooks is

Lower outlier � 25th percentile � (1.5 � IQR)

Upper outlier � 75th percentile � (1.5 � IQR)

Using these definitions and the heights of 20–29-year-old women and men, we can
determine heights that qualify as outliers. For women,

Lower outlier � 25th percentile � (1.5 � IQR) � 63 � 1.5(3) � 58.5 inches or
shorter 

Upper outlier � 75th percentile � (1.5 � IQR) � 66 � 1.5(3) � 70.5 inches or
taller

For men,

Lower outlier � 25th percentile � (1.5 � IQR) � 68 � 1.5(4) � 62 inches or
shorter 

Upper outlier � 75th percentile � (1.5 � IQR) � 72 � 1.5(4) � 78 inches or
taller

What should you do if you detect an outlier in your data? The answer is to think.
Could the outlier score be a recording error? Is there a way to check? The outlier score
may not be an error, of course. Each of us probably knows someone who is taller or
shorter than the outlier heights identified above. Still outliers distort means, standard
deviations, and other statistics. Fortunately, mathematical statisticians have developed
statistical techniques for data with outliers (Wilcox, 2005b), but these are typically
covered only in advanced courses.

P R O B L E M S

5.1. The mean of any distribution has a z score equal to what value?
5.2. What conclusion can you reach about �z?
5.3. Under what conditions would you prefer that your personal z score be

negative rather than positive?
5.4. Harriett and Heslope, twin sisters, were intense competitors, but they never

competed against each other. Harriett specialized in long-distance running
and Heslope was an excellent sprint swimmer. As you can see from the
distributions in the accompanying table, each was the best in her event. Take
the analysis one step further and use z scores to determine who is the more
outstanding twin.You might start by looking at the data and making an
estimate.

Outlier
An extreme score separated from
the others and 1.5 � IQR or more
beyond the 25th or 75th percentile.
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10k runners Time (min) 50m swimmers Time (sec)

Harriett 37 Heslope 24
Dott 39 Ta-Li 26
Liz 40 Deb 27
Marette 42 Betty 28

5.5. Tobe grows apples and Zeke grows oranges. In the local orchards the mean
weight of apples is 5 ounces, with S � 1.0 ounce. For oranges the mean
weight is 6 ounces, with S � 1.2 ounces. At harvest time, each entered 
his largest specimen in the Warwick County Fair. Tobe’s apple weighed 
9 ounces and Zeke’s orange weighed 10 ounces. This particular year Tobe
was ill on the day of judgment, so he sent his friend Hamlet to inquire who
had won. Adopt the role of judge and use z scores to determine the winner.
Hamlet’s query to you is: “Tobe, or not Tobe; that is the question.”

5.6. Ableson’s anthropology professor announced that the poorest exam grade
for each student would be dropped. Ableson scored 79 on the first
anthropology exam. The mean was 67 and the standard deviation 4. On the
second exam, he made 125. The class mean was 105 and the standard
deviation 15. On the third exam, the mean was 45 and the standard
deviation 3. Ableson got 51. Which test should be dropped?

5.7. Using your answer to problem 4.19, determine which of the following
temperatures qualifies as an outlier.
a. 98.6�F d. 96.6�F
b. 99.9�F e. 100.5�F
c. 96.0�F

Boxplots

So far you have studied three different characteristics of distributions:
central tendency, variability, and form. A boxplot is a way to present all
three characteristics with one graphic.2 What information does a boxplot
provide? You get two measures of central tendency, two measures of
variability, and a way to estimate skewness. Skewness, of course, is a
description of the form of the distribution.

Figure 5.2 is a boxplot of the Satisfaction With Life Scale scores you first
encountered in Chapter 2. The older name for this graphic is a “box-and-whisker plot,”

76 n Chapter 5

2 Boxplots were dreamed up by John Tukey (1915–2000), who invented several statistical techniques that
facilitate the exploration of data. See Lovie’s (2005) entry on Exploratory Data Analysis.

5 10 15 20 25 30 35

Satisfaction With Life Scale

F I G U R E  5 . 2 Boxplot of Satisfaction With Life Scale scores

boxplot
Graph that shows a distribution’s
range, interquartile range, skew,
median, and sometimes other
statistics.
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and as you can see, it consists of a box and whiskers (and a line and a dot within the
box). The horizontal axis shows the variable that was measured and its values.

Interpreting Boxplots

Central tendency A boxplot gives two measures of central tendency. The vertical
line inside the box is at the median. The dot is the mean. In Figure 5.2 you can estimate
the median as 25 and the mean as slightly less (it is actually 24).

Variability Both the box and the whiskers in Figure 5.2 tell you about variability.
The box covers the interquartile range, which you studied in Chapter 4. The left end of
the box is the 25th percentile score, and the right end is the 75th percentile score. You
can estimate these scores from the horizontal axis. The horizontal width of the box is
the interquartile range.

The whiskers extend to the extreme scores in the distribution. Thus, the whiskers
give you a picture of the range. Again, reading from the scale in Figure 5.2, you can
see that the highest score is 35 and the lowest is 5.

Skew Finally, both the relationship of the mean to the median and any difference in
the lengths of the whiskers help you determine the skew of the distribution. You already
know that, in general, when the mean is less than the median, the skew is negative;
when the mean is greater than the median, the skew is positive. The relationship of the
mean to the median is readily apparent in a boxplot.

Skew is also usually indicated by whiskers of different length. The longer whisker
tells you the direction of the skew. Thus, if the longer whisker is over the lower scores,
the skew is negative; if the longer whisker is over the higher scores, the skew is
positive. Given these two rules of thumb to determine skew, you can conclude that the
distribution of SWLS scores in Figure 5.2 is negatively skewed.

Variations in boxplots Boxplots are useful during the initial exploratory stages of
data analysis and also later for presentation of data to others. Fortunately, the boxplot
format can be varied to suit the needs of the researcher. For example, at times the mean
is not included in a boxplot. Outliers can be indicated on a boxplot with dots or
asterisks beyond the end of a whisker. Also, boxplots are sometimes oriented vertically
instead of horizontally.

Boxplot questions Look at Figure 5.3, which shows the boxplots of four
distributions. Seven questions follow. See how many you get right. If you get all of
them right, consider skipping the explanations that follow the answers.

Other Descriptive Statistics n 77
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5.8. Tell the story (mean, median, range, interquartile range, and form) of each
of the three boxplots in the figure.

78 n Chapter 5

Questions

1. Which distribution has the greatest positive skew?
2. Which distribution is the most compact?
3. Which distribution has a mean closest to 40?
4. Which distribution is most symmetrical?
5. Which distribution has a median closest to 50?
6. Which distribution is most negatively skewed?
7. Which distribution has the largest range?

Answers

1. Positive skew: Distribution D. The mean is greater than the median, and the
high-score whisker is longer than the low-score whisker.

2. Most compact: Distribution C. The range is smaller than other distributions.
3. Mean closest to 40: Distribution D.
4. Most symmetrical: Distribution A. The mean and median are about the same,

and the whiskers are about the same length.
5. Median closest to 50: Distribution B.
6. Most negative skew: Distribution B. The difference between the mean and

median is greater in B than in C, and the difference in whisker length is greater
in B than in C.

7. Largest range: Distribution A.

30 40 50 60 7020 80

A

B

C

D

Distribution

Scores

F I G U R E  5 . 3 Boxplots of four distributions

error detection
Gross errors from misrecording data are often apparent from a boxplot. Detecting
errors is easiest when you use a computer program to generate the boxplot and you
are familiar with boxplot interpretation.
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Scores

0 4 6 8 10

Distribution

X

Y

Z

975321

5.9. You have already found the elements needed for boxplots of the heights of
20- to 29-year-old women and men. (See problems 2.1, 3.4, and 4.3.) Draw
boxplots of the two groups using one horizontal axis.

*5.10. Create a boxplot (but without the mean) of the oral body temperature data
based on Mackowiak, Wasserman, and Levine (1992). Find the statistics you
need from your answer to problems 2.17a and 4.19 (Appendix G).

Effect Size Index

n Men are taller than women.
n First-born children score higher than second-born children on tests of cognitive

ability.
n Interrupted tasks are remembered better than uninterrupted tasks.

These three statements follow a pattern that is common when quantitative
variables are compared. The pattern is, “The average X is greater than the average Y.”
It happens that the three statements are true on average, but they leave an important
question unanswered. How much taller, higher, or better is the first group than the
second? For the heights of men and women, a satisfactory answer is that men, on the
average, are almost 6 inches taller than women.

But how satisfactory is it to know that the mean difference in cognitive ability
scores of first-born and second-born children is 13 points or that the difference in
recall of interrupted and uninterrupted tasks is 3 tasks? Something
else is needed. An effect size index is the statistician’s way to answer the
question, How much difference is there?

An effect size index gives you a mathematical way to answer the
question, How much taller, higher, or better? It works whether you are already familiar
with the scale of measurement (such as inches) or you have never heard of the scale
before (cognitive ability and recall scores).

The Effect Size Index, d

There are several ways to measure effect size (Kirk, 2005). Probably the most common
measure is symbolized by d, where 

Thus, d is the difference between means per standard deviation unit.

d �
m1 � m2

s

effect size index
Amount or degree of separation
between two distributions.
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3 For an easily accessible source of Cohen’s reasoning in proposing these conventions, see Cohen (1992, p. 99).

To calculate d, you must estimate the parameters with statistics. Samples from the m1

population and from the m2 population produce X�1 and X�2. Calculating an estimate of
s requires knowing about degrees of freedom, a concept that is better introduced in
connection with hypothesis testing (Chapter 9 and chapters that follow). So, at this
point you will have to be content to have s given to you.

You can easily see that if the difference between means is zero, then d � 0. Also,
depending on s, a given difference between two means might produce a small d or a
large d. Whether d is positive or negative depends on which group is assigned 1 and
which is given 2. Often this decision is arbitrary, which makes the sign of d
unimportant. However, in an experiment with an experimental group and a control
group, it is conventional to designate the experimental group as group 1.

The Interpretation of d

A widely accepted convention of what constitutes small, medium, and large effect sizes
was proposed by Jacob Cohen 

Small effect d � 0.20

Medium effect d � 0.50

Large effect d � 0.80

Researchers often use standard deviation language to describe d values. For example,
“The independent variable had a large effect, increasing scores on the dependent
variable by eight tenths of a standard deviation.”

To get a visual idea of these d values, look at Figure 5.4. The three components
illustrate small, medium, and large values of d for both frequency polygons and
boxplots. In the top panel the mean of distribution B is two-tenths of a standard
deviation unit greater than the mean of distribution A (d � 0.20). You can see that
there is a great deal of overlap between the two distributions. Study the other two
panels of Figure 5.4, examining the amount of overlap for d � 0.50, and d � 0.80.

To illustrate further, let’s take the heights of women and men. Just intuitively, what
adjective would you use to describe the difference in the heights of women and men?
A small difference? A large difference?

Well, it certainly is an obvious difference, one that everyone sees. Let’s find the
effect size index for the difference in heights of women and men. You already have
estimates of mwomen and mmen from your work on problem 3.4: X�women � 64.2 inches
and X�men � 70.0 inches. For this problem, s � 2.8 inches. Thus,

The interpretation of d � 2.07 is that the difference in heights of women and men
is just huge, more than twice the size of a difference that would be judged “large.” So,
here is a reference point for you for effect size indexes. If a difference is so great that
everyone is aware of it, then the effect size index, d, will be greater than large.

Let’s take another example. Women, on average, have higher verbal scores than
men do. What is the effect size index for this difference? To answer this question,

d �
m1 � m2

s
�

X�1 � X�2

s
�

64.2 � 70.0

2.8
� �2.07

11969 2 .3

08911_05_Ch05_71-86 pp2.qxd  12/15/09  10:24 AM  Page 80



Other Descriptive Statistics n 81

d � 0.20

d � 0.50

d � 0.80

mA mB

A B

mA mB

A B

B

A

B

A

B

A

mA mB

A B

F I G U R E  5 . 4 Frequency polygons and boxplots of two populations that differ
by small (d � 0.20), medium (d � 0.50), and large (d � 0.80) amounts 
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I consulted Hedges and Nowell (1995). Their analysis of six studies with very large
representative samples and a total N � 150,000 revealed that X�women � 513, X�men �
503, and s � 110.4 Thus,

A d value of 0.09 is less than half the size of a value considered “small.” Thus, you
can say that although the average verbal ability of women is better than that of men, the
difference is very small.

Figure 5.5 shows overlapping frequency polygons with d values of 2.07 and 0.09,
the d values found in the two examples in this section.

A common question is: How do you interpret d values that are intermediate
between 0.20, 0.50, and 0.80? The answer is to use modifiers. So far, I’ve used the
terms “huge” and “half the size of small.” Phrases such as “somewhat larger than” and
“intermediate between” are often useful.

The Descriptive Statistics Report

Techniques from this chapter and the previous two can be used to compile a
Descriptive Statistics Report, which gives you a fairly complete story for a set of data.5

The most interesting Descriptive Statistics Reports are those that compare two or more
distributions of scores. To compile a Descriptive Statistics Report for two groups,
(1) construct boxplots, (2) find the effect size index, and (3) tell the story that the data
reveal. As for telling the story, cover the following points, arranging them so that your
story is told well.

n Form of the distributions
n Central tendency
n Overlap of the two distributions
n Interpretation of the effect size index

d �
m1 � m2

s
�

X 1 � X 2

s
�

513 � 503

110
� 0.09

d � 2.07 d � 0.09

F I G U R E  5 . 5 Frequency polygons that show effect size indexes of 2.07
(heights of men and women) and 0.09 (verbal scores of men and women)

4 I generated these means and standard deviation so the numbers would mimic SAT Critical Reading scores
and the outcome would mirror the conclusions of Hedges and Nowell (1995).
5 A more complete report contains inferential statistics and their interpretation.
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To illustrate a Descriptive Statistics Report, let’s return to the heights of the men and
women that you began working with in Chapter 2. The first steps are to assemble the
statistics needed for boxplots and to calculate an effect size index. Look at Table 5.2, which
shows these statistics. The next step is to construct boxplots (your answer to problem 5.9).
The final step is to write a paragraph of interpretation. To write a paragraph, I recommend
that you make notes and then organize your points, selecting the most important one to lead
with. Write a rough draft. Revise the draft until you are satisfied with it.6 My version is
Table 5.3, a Descriptive Statistics Report of the heights of women and men.

I will stop with just one example of a Descriptive Statistics Report. The best way
to learn and understand is to create reports of your own. Thus, problems follow shortly.

For the first (but not the last) time, I want to call your attention to the subtitle
of this book: Tales of Distributions. A Descriptive Statistics Report is a tale of
distributions of scores. What on earth would be the purpose of such stories?

Other Descriptive Statistics n 83

TABLE 5.2 Descriptive statistics for a Descriptive Statistics
Report of the heights of women and men

Heights of 20- to 29-year-old Americans

Women Men
(in.) (in.)

Mean 64.2 70.0
Median 64 70
Minimum 59 62
Maximum 72 77
25th percentile score 63 68
75th percentile score 66 72
Effect size index 2.07

6 For me, several revisions are needed. This paragraph got nine.

TABLE 5.3 A Descriptive Statistics Report on the heights of women and men

The graph shows boxplots of heights of American women and men, aged 20–29. The difference
in means produces an effect size index of 2.07.

The mean height of women is 64.2 inches; the median is 64 inches. The mean height 
of men is 70.0 inches; the median is also 70 inches. Men are almost 6 inches taller than women,
on average. Although the two distributions overlap, more than 75 percent of the men are taller
than 66 inches, a height exceeded by less than 25 percent of the women. This difference in the
two distributions is reflected by an effect size index of 2.07, a very large value. (A value of
0.80 is traditionally considered large.) The heights for both women and men are distributed
fairly symmetrically.

58 60 62 64 66 68 70 72 74 76 78

Height (in.)

Women

Men
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The purpose might be to better understand a scientific phenomenon that you are
intensely interested in. The purpose might be to explain to your boss the changes that
are taking place in your industry; perhaps it is to convince a quantitative-minded
customer to place a big order with you. Your purpose might be to better understand a
set of reports on a troubled child (perhaps your own). At this point in your efforts to
educate yourself in statistics, you have a good start toward being able to tell the tale of
a distribution of data. Congratulations! And, oh yes, here are some more problems so
you can get better.

P R O B L E M S

5.11. Find the effect size indexes for the three sets of data in the table. Write an
interpretation for each d value.

Group 1 mean Group 2 mean Standard deviation

a. 14 12 4
b. 10 19 10
c. 10 19 30

5.12. In hundreds of studies with many thousands of participants, first-born
children scored better than second-born children on tests of cognitive
ability. Data based on Zajonc (2001) and Zajonc and Bargh (1980)
provide mean scores of 469 for first-born and 456 for second-born. For
this measure of cognitive ability, s � 110. Find d and write a sentence 
of interpretation.

5.13. Having the biggest is a game played far and wide for fun, fortune, and fame
(such as being listed in Guinness World Records). For example, the biggest
cabbage was grown in 1989 by Bernard Lavery of Rhonnda, Wales. It
weighed 124 pounds. The biggest pumpkin (1689 pounds) was grown in 2007
by Joseph Jutras of Rhode Island, USA (Guinness World Records, 2009,
2008). Calculate and S from the scores below, which are representative of
contest cabbages and pumpkins. Use z scores to determine the BIG winner
between Lavery and Jutras.

Cabbages Pumpkins

110 1400
100 1200
90 1000

5.14. For the Satisfaction With Life Score data, determine the highest score and
lowest score that qualify as outliers. What scores (if any) in Table 2.3 are
outliers? See problem 4.2 for percentiles.

5.15. Is psychotherapy effective? This first-class question has been investigated
by many researchers. The data that follow were constructed to mirror the
classic findings of Smith and Glass (1977), who analyzed 375 studies.

The psychotherapy group received treatment during the study; the
control group did not.A participant’s psychological health score at the

X
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beginning of the study was subtracted from the same participant’s score at the
end of the study, giving the score listed in the table. Thus, each score provides
a measure of the change in psychological health for an individual. (A negative
score means that the person was worse at the end of the study.) For these
change scores,s� 10. Create a Descriptive Statistics Report.

Psychotherapy Control Psychotherapy Control

7 9 13 �3
11 3 �15 22

0 13 10 �7
13 1 5 10

�5 4 9 �12
25 3 15 21

�10 18 10 �2
34 �22 28 5
7 0 �2 2

18 �9 23 4

5.16. It’s time to check yourself. Turn back to the beginning of this chapter and
read the objectives. Can you meet each one?
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ADDITIONAL HELP FOR CHAPTER 5

Visit cengage.com/psychology/spatz. At the Student Companion Site, you’ll
find multiple-choice tutorial quizzes and flashcards with definitions.

KEY TERMS

Boxplot (p. 76)
Descriptive Statistics Report (p. 82)
Effect size index (p. 79)
Interquartile range (p. 77)

Outliers (p. 75)
Skew (p. 77)
Standard score (p. 73)
z score (p. 71)
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SO FAR IN this exposition of the wonders of statistics, the examples and problems

have been about a single distribution of scores; that is, about one variable.

Heights, dollars, satisfaction with life scores, and number of boxes of Girls Scout

cookies were all analyzed, but in every case the statistics calculated were on just

the one variable. Such one-variable  data are called univariate distributions.

Another kind of statistical analysis is about two variables (bivariate

distributions). The analysis of bivariate distributions reveals answers to questions

about the relationship between the two variables. For example, the questions

might be

What is the relationship between a person’s verbal ability and  mathematical

ability?

or

Knowing a person’s verbal aptitude score, what should we predict as his or

her freshman grade point average?

Other pairs of variables that might be related include:

Height of daughters and height of their fathers

Wealth and violent crime

Size of groups taking college entrance examinations and scores obtained

Stress and infectious diseases

By the time you finish Chapter6, you will know whether or not these pairs of

variables are related and to what degree. You will also know how to predict a

score on one variable given a score on the other variable.

Chapter 6, “Correlation and Regression,” explains two statistical methods.

Correlation is a method that is used to determine the degree of relationship

between two variables when you have bivariate data. Regression is a method

that is used to predict scores for one variable when you have measurements 

on a second variable.
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Correlation
and Regression

C H A P T E R

6

O B J E C T I V E S  F O R  C H A P T E R  6

After studying the text and working the problems in this chapter, you should
be able to:

1. Explain the difference between univariate and bivariate distributions

2. Explain the concept of correlation and the difference between positive 
and negative correlation

3. Draw scatterplots

4. Compute a Pearson product-moment correlation coefficient (r)

5. Use correlation coefficients to assess reliability, common variance,
and effect size

6. Identify situations in which the Pearson r does not accurately reflect the
degree of relationship

7. Name and explain the elements of the regression equation

8. Compute regression coefficients and fit a regression line to a set of data

9. Interpret the appearance of a regression line

10. Predict scores on one variable based on scores from another variable

CORRELATION AND REGRESSION: My guess is that you have some understanding
of the concept of correlation and that you are not as comfortable with the word
regression. Speculation aside, correlation is simpler. Correlation is a statistical technique
that describes the degree of relationship between two variables.

Regression is more complex. In this chapter you will use the regression technique to
accomplish two tasks, drawing the line that best fits the data and predicting a person’s
score on one variable when you know that person’s score on a second, correlated
variable. Regression has other, more sophisticated uses, but you will have to put those off
until you study more advanced statistics.

The ideas identified by the terms correlation and regression were developed by
Sir Francis Galton in England more than 100 years ago. Galton was a genius (he could

87
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read at age 3) who had an amazing variety of interests, many of which he actively
pursued during his 89 years. He once listed his occupation as “private gentleman,”
which meant that he had inherited money and did not have to work at a job. Lazy,
however, he was not. Galton traveled widely and wrote prodigiously (17 books and
more than 200 articles).

From an early age, Galton was enchanted with counting and quantification. Among
the many things he tried to quantify were weather, individuals, beauty, characteristics of
criminals, boringness of lectures, and effectiveness of prayers. Often he was successful.

For example, it was Galton who discovered that atmospheric pressure highs
produce clockwise winds around a calm center, and his efforts at quantifying
individuals resulted in ways to classify fingerprints that are in use today.
Because it worked so well for him, Galton actively promoted the philosophy
of quantification, the idea that you can understand a phenomenon much
better if you translate its essential parts into numbers.

Many of the variables that interested Galton were in the field of heredity.
Although it was common in the 19th century to comment on physical similarities
within a family (height and facial characteristics, for example), Galton thought that
psychological characteristics, too, tended to run in families. Specifically, he thought
that characteristics such as genius, musical talent, sensory acuity, and quickness had a
hereditary basis. Galton’s 1869 book, Hereditary Genius, listed many families and
their famous members, including Charles Darwin, his cousin.1

Galton wasn’t satisfied with the list in that early book; he wanted to express the
relationships in quantitative terms. To get quantitative data, he established an anthropometric
(people-measuring) laboratory at a health exposition (a fair) and later at a museum in
London. Approximately 17,000 people who stopped at a booth paid 3 pence to be
measured. They left with self-knowledge; Galton left with quantitative data and a
pocketful of coins. For one summary of Galton’s results, see Johnson et al., 1985.

Galton’s most important legacy is probably his invention of the concepts of
correlation and regression. Correlation permits you to express the degree of relationship
between any two paired variables. (The relationship between the height of fathers and
the height of their adult sons was Galton’s classic example.)

Galton was not enough of a mathematician to work out the theory and formulas
for his concepts. This task fell to Galton’s friend and protégé, Karl Pearson, Professor
of Applied Mathematics and Mechanics at University College in London.2 Pearson’s
1896 product-moment correlation coefficient and other correlation coefficients that he
and his students developed were quickly adopted by researchers in many fields and are
widely used today in psychology, sociology, education, political science, the biological
sciences, and other areas.

Finally, although Galton and Pearson’s fame is for their statistical concepts, their
principal goal was to develop recommendations that would improve the human
condition. Making recommendations required a better understanding of heredity and
evolution, and they saw statistics as the best way to arrive at this better understanding.

quantification
Concept that translating a
phenomenon into numbers
promotes a better understanding
of the phenomenon.

1 Galton and Darwin had the same famous grandfather, Erasmus Darwin, but not the same grandmother. For
both the personal and intellectual relationships between the famous cousins, see Fancher, 2009.
2 I have some biographical information on Pearson in Chapter 14, the chapter on chi square. Chi square is
another statistical invention of Karl Pearson.
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3 For a short biography of Galton, I recommend Thomas (2005) or Waller (2001).

TABLE 6.1 A bivariate distribution of
scores on two tests taken by the same
individuals

Humor test Intelligence test
X variable Y variable

Larry 50 8
Shep 40 9
Curly 30 5
Moe 20 4

In 1889, Galton described how valuable statistics are (and also let us in on his
emotional feelings about statistics):

Some people hate the very name of statistics, but I find them full of beauty and
interest. . . . Their power of dealing with complicated phenomena is extraordinary. They are
the only tools by which an opening can be cut through the formidable thicket of difficulties
that bars the path of those who pursue the Science of [Humankind].3

My plan in this chapter is for you to read about bivariate distributions (necessary
for both correlation and regression), to learn to compute and interpret Pearson
product-moment correlation coefficients, and to use the regression technique to draw
a best-fitting straight line and predict outcomes.

Bivariate Distributions

In the chapters on central tendency and variability, you worked with one variable at a
time (univariate distributions). Height, time, test scores, and errors all
received your attention. If you look back at those problems, you’ll find a
string of numbers under one heading (see, for example, Table 3.2).
Compare those distributions with the one in Table 6.1. In Table 6.1, there
are scores under the variable Humor test and other scores under a second
variable, Intelligence test. You could find the mean and standard
deviation of either of these variables. The characteristic of the data in this
table that makes it a bivariate distribution is that the scores on the two
variables are paired. The 50 and the 8 go together; the 20 and the 4 go together. They
are paired, of course, because the same person made the two scores. As you will see,
there are also other reasons for pairing scores. All in all, bivariate distributions are
fairly common.

The essential idea of a bivariate distribution (which is required for correlation and
regression techniques) is that two variables have values that are paired for some logical
reason. A bivariate distribution may show positive correlation, negative correlation, or
zero correlation.

univariate distribution
Frequency distribution of one
variable.

bivariate distribution
Joint distribution of two variables;
scores are paired.
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Positive Correlation

In the case of a positive correlation between two variables, high measurements on
one variable tend to be associated with high measurements on the other variable,
and low measurements on one variable with low measurements on the other. For
example, tall fathers tend to have sons who grow up to be tall men. Short fathers
tend to have sons who grow up to be short men.

In the case of the manufactured data in Table 6.2, fathers have sons who grow 
up to be exactly their height. The data in Table 6.2 represent an extreme case in 
which the correlation coefficient is 1.00, which is referred to as perfect correlation.
(Table 6.2 is ridiculous of course; mothers and environments have their say, too.)

Figure 6.1 is a graph of the bivariate data in Table 6.2. One variable (height of
father) is plotted on the X axis; the other variable (height of son) is on the Y axis. Each
data point in the graph represents a pair of scores, the height of a father and the height

of his son. The points in the graph constitute a scatterplot. Incidentally,
it was when Galton cast his data as a scatterplot graph that the idea of a
co-relationship began to become clear to him.

The line that runs through the points in Figure 6.1 (and in Figures 6.2,
6.3, and 6.5) is called a regression line. It is a “line of best fit.” When there is
perfect correlation (r � 1.00), all points fall exactly on the regression line. It
is Galton’s use of the term regression that gives the symbol r for correlation.4

90 ■ Chapter 6

TABLE 6.2 Manufactured data on two variables: 
heights of fathers and their sons*

Height (in.) Height (in.)
Father X Son Y

Michael Smith 74 Mike, Jr. 74
Christopher Johnson 72 Chris, Jr. 72
Matthew Williams 70 Matt, Jr. 70
Joshua Jones 68 Josh, Jr. 68
Daniel Brown 66 Dan, Jr. 66
David Davis 64 Dave, Jr. 64

* The first names are, in order, the six most common for baby boys born in 1990 in
the United States. Rounding out the top ten are Andrew, James, Justin, and Joseph
(www.ssa.gov/cgi-bin/popularnames.cgi). The surnames are also the six most
common in the 1990 U.S. census. Completing the top ten are Miller, Wilson,
Moore, and Taylor (www.census.gov/genealogy/names/dist.all.last).

4 The term regression can be confusing because it has two separate meanings. As you already know,
regression is a statistical method that allows you to draw the line of best fit and to make predictions with
bivariate data. Regression also refers to a phenomenon that occurs when a select group is tested a second
time. The phenomenon occurs when those with extreme scores in a distribution (those who did very well
or very poorly) are tested a second time. Those who scored high will, on average, score lower on the retest.
The mean of those who scored low the first time will increase on the second test.

Galton found that the mean height of sons of extremely tall men was less than the mean height of their fathers
and also that the mean height of sons of extremely short men was greater than the mean height of their fathers. In
both cases, the sons’ mean is closer to the population mean. Because the mean of an extreme group, when
measured a second time, tended to regress toward the population mean, Galton named this phenomenon regression.
The statistical technique he developed to assess regression toward the mean was called regression as well.

scatterplot
Graph of the scores of a bivariate
frequency distribution.

regression line
A line of best fit for a scatterplot.
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In recent generations, changes in nongenetic factors such as nutrition resulted in
sons who tend to be somewhat taller than their fathers, except for extremely tall
fathers. If every son grew to be exactly 2 inches taller than his father (or 1 inch or 
6 inches, or even 5 inches shorter), the correlation would still be perfect, and the
coefficient would still be 1.00. Figure 6.2 demonstrates this point: You can have a
perfect correlation even if the paired numbers aren’t the same. The only requirement
for perfect correlation is that the differences between pairs of scores all be the same. If
they are the same, then all the points of a scatterplot lie on the regression line,
correlation is perfect, and an exact prediction can be made.

Of course, people cannot predict their sons’ heights precisely. The correlation is
not perfect and the points do not all fall on the regression line. As Galton found,
however, there is a positive relationship; the correlation coefficient is about .50. The
points do tend to cluster around the regression line.

In your academic career you have taken an untold number of aptitude and
achievement tests. For several of these tests, separate scores were computed for verbal
aptitude and mathematics aptitude. Here is a question for you. In the general case,
what is the relationship between verbal aptitude and math aptitude? That is, are people
who are good in one also good in the other, or are they poor in the other, or is there no
relationship? Stop for a moment and compose an answer.
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F I G U R E  6 . 1 A scatterplot and regression line for a perfect positive 
correlation (r � 1.00)
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As you may have suspected, the next graph shows data that begin to answer the
question. Figure 6.3 shows the scores of eight high school seniors who took the SAT
college admissions test. The scores are for the critical reading portion of the SAT (CR
SAT) and the mathematics portion of the test (Math SAT). As you can see in Figure 6.3,
there is a positive relationship, though not a perfect one. As the critical reading scores
vary upward, mathematics scores tend to vary upward. If the score on one is high, the
other score tends to be high, and if one is low, the other tends to be low. Later in this
chapter you’ll learn to calculate the precise degree of relationship, and because there is
a relationship, you can use a regression equation to predict students’ math scores if
you know their verbal score.

(Examining Figure 6.3, you might complain that the graph is out of balance; all
the data points are stuck up in one corner. It looks ungainly, but I was in a dilemma,
which I’ll explain later in the chapter.)

Negative Correlation

Here is a scenario that leads to another bivariate distribution. Recall a time when
you sat for a college entrance examination (SAT and ACT are the two most common
ones.) How many others took the exam at the same testing center that day? Next,
imagine your motivation that day. Did you feel motivated to be in the top 10 percent,

92 ■ Chapter 6
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F I G U R E  6 . 2 A scatterplot and regression line with every son 2 inches taller
than his father (r � 1.00)

08911_06_Ch06_87-123 pp2.qxd  12/17/09  4:55 PM  Page 92



Correlation and Regression ■ 93

5 The correlation coefficient is �.68. When Garcia and Tor (2009) statistically removed the effects of
confounding variables such as state percentage of high school students who took the SAT, state population
density, and other variables, the correlation coefficient was .35.�
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F I G U R E  6 . 3 Scatterplot and regression line for CR SAT and Math SAT scores
for eight high school seniors (r ). Data derived from 2008 College-Bound
Seniors. Copyright © 2008, the College Board. www.collegeboard.com.
Reproduced with permission.

� .72

top 50 percent, top 90 percent? With these two numbers in mind (number of fellow test
takers and your motivation), you have the ingredients of a bivariate distribution.

Do you think that the relationship between the two variables is positive, like that
of critical reading scores and math scores, or that there is no relationship, or that the
relationship is negative?

As you probably figured out from this section heading, the answer to the
preceding question is—negative. Figure 6.4 is a scatterplot of SAT scores and density
of test-takers (state averages for 50 U.S. states). High SAT scores are associated with
low densities of test-takers and low SAT scores are associated with high densities of
test-takers.5 This phenomenon is an illustration of the N-Effect, the finding that increase
in number of competitors goes with a decrease in competitive motivation and thus, test
scores (Garcia and Tor, 2009). The cartoon illustrates the N-Effect.

When a correlation is negative, increases in one variable are accompanied by
decreases in the other variable (an inverse relationship). With negative correlation, the
regression line goes from the upper left corner of the graph to the lower right corner.
As you may recall from algebra, such lines have a negative slope. Some other
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examples of variables with negative correlation are highway driving speed and gas
mileage, daily rain and daily sunshine, and grouchiness and friendships. As was the
case with perfect positive correlation, there is such a thing as perfect negative
correlation (r � �1.00). In cases of perfect negative correlation also, all the data
points of the scatterplot fall on the regression line.

Although some correlation coefficients are positive and some are negative, one is
not more valuable than the other. The algebraic sign simply tells you the direction of
the relationship (which is important when you are describing how the variables are
related). The absolute size of r, however, tells you the degree of the relationship. A
strong relationship (either positive or negative) is usually more informative than a
weaker one.
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Zero Correlation

A zero correlation means there is no linear relationship between two variables. High
and low scores on the two variables are not associated in any predictable manner.

The 50 American states differ in personal wealth; these differences are expressed
as per capita income, which ranged from $28,845 (Mississippi) to $54,117 (Connecticut)
in 2007 (Statistical Abstract of the United States: 2009, 2008). The states also differ in
violent crime per capita. Is there a relationship between wealth and violent crime? The
correlation coefficient between per capita income and violent crime rate is .03. There
is no relationship between the two variables.

Figure 6.5 shows a scatterplot that produces a zero correlation coefficient. When 
r � 0, the regression line is a horizontal line at a height of Y�. This makes sense; if 
r � 0, then your best estimate of Y for any value of X is Y�.

clue to the future
Correlation comes up again in future chapters. The correlation coefficient between
two variables whose scores are ranks is explained in Chapter 15. In part of Chapter 10
and in all of Chapter 12, correlation ideas are involved.

Variable  X

Y�

V
ar

ia
bl

e 
 Y

F I G U R E  6 . 5 Scatterplot and regression line for a zero correlation

P R O B L E M S

6.1. What are the characteristics of a bivariate distribution?
6.2. What is meant by the statement “Variable X and variable Y are correlated”?
6.3. Tell how X and Y vary in a positive correlation. Tell how they vary in a

negative correlation.
6.4. Can the following variables be correlated and, if so, would you expect the

correlation to be positive or negative?
a. Height and weight of adults
b. Weight of first graders and weight of fifth graders
c. Average daily temperature and cost of heating a home
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d. IQ and reading comprehension
e. The first and second quiz scores of students in two sections of 

General Biology
f. The section 1 scores and the section 2 scores of students in General

Biology on the first quiz

The Correlation Coefficient

A correlation coefficient provides a quantitative way to express the degree
of relationship that exists between two variables. The definition formula is

where r � Pearson product-moment correlation coefficient
zX � a z score for variable X
zY � the corresponding z score for variable Y
N � number of pairs of scores

Think through the z-score formula to discover what happens when high scores on
one variable are paired with high scores on the other variable (positive correlation).
The large positive z scores are paired and the large negative z scores are paired. In each
case, the multiplication produces large positive products, which, when added together,
make a large positive numerator. The result is a large positive value of r. Think
through for yourself what happens in the formula when there is a negative correlation
and when there is a zero correlation.

Though valuable for understanding r, the z-score formula is difficult if you
are calculating a value for r by hand. Fortunately, however, there are many equivalent
formulas for r. I’ll describe two and give you some guidance on when to use each.

Computational Formulas for r

One formula for computing r is referred to as the blanched formula; a second one is
called the raw-score formula. The blanched formula requires that you first partially
“cook” the data to yield means and standard deviations that give you a better feel for
the data. For the raw-score formula, you enter the scores directly into the formula. The
raw-score formula doesn’t have intermediate steps. If all you want is r, then the raw-score
formula is the quicker method.

Blanched formula Because researchers often use means and standard deviations
when telling the story of the data, this formula is used by many:

r �

©XY

N
� 1X� 2 1Y� 2

1SX 2 1SY 2

r �
© 1zXzY 2

N

correlation coefficient
Descriptive statistic that expresses
the degree of relationship
between two variables.
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where X and Y are paired observations
XY � product of each X value multiplied by its paired Y value
X� � mean of variable X
Y� � mean of variable Y

SX � standard deviation of variable X (use N in the denominator)
SY � standard deviation of variable Y (use N in the denominator)
N � number of pairs of observations

The expression �XY is called the “sum of the cross-products.” All formulas for
Pearson r include �XY. To find �XY, multiply each X value by its paired Y value, and
then sum those products. Note that one of the terms in the formula has a new meaning.
In correlation problems, N is the number of pairs of scores.

error detection
�XY is not (�X)(�Y). To find �XY, you do as many multiplications as you have
pairs. Afterward, sum the products that you calculated.

As for which variable to call X and which to call Y, it doesn’t make any difference
for a correlation coefficient. It may, however, make a big difference in the regression
problems you will work later in this chapter.

Table 6.3 illustrates the steps you use to compute r by the blanched procedure.
The data are those that were used to draw Figure 6.3, the scatterplot of the CR SAT
and Math SAT scores for the eight students. I made up the numbers so that they would
produce the same correlation coefficient as reported by the College Board Seniors
Report. Work through the numbers in Table 6.3, paying careful attention to the
calculation of �XY.

Raw-score formula With the raw-score formula, you calculate r from the raw
scores without computing means and standard deviations. The formula is

You have already learned what all the terms of this formula mean. A reminder: N is the
number of pairs of values.

Calculators with two or more memory storage registers—and some with one—
allow you to accumulate simultaneously the values for �X and �X 2. After doing so,
compute values for �Y and �Y2 simultaneously. This leaves only �XY to compute.

Many calculators have a built-in function for r. When you enter X and Y values
and press the r key, the coefficient is displayed. If you have such a calculator,
I recommend that you use this labor-saving device after you have used the
computation formulas a number of times. Working directly with terms like �XY leads
to an understanding of what goes into r.

If you calculate sums that reach above the millions, your calculator may switch into
scientific notation. A display such as 3.234234 08 might appear. To convert this number
back to familiar notation, just move the decimal point to the right the number of places

r �
N©XY � 1©X 2 1©Y 2

2 3N©X 2 � 1©X 2 2 4 3N©Y 2 � 1©Y 2 2 4

Correlation and Regression ■ 97

08911_06_Ch06_87-123 pp2.qxd  12/17/09  4:55 PM  Page 97



98 ■ Chapter 6

TABLE 6.4 Calculation of r for critical reading SAT and math SAT aptitude 
scores by the raw-score formula

 �
392,000

541,287
� .724 � .72

 �
18 2 12,109,000 2 � 14000 2 14120 2

2 3 18 2 12,070,000 2 � 14000 2 2 4 3 18 2 12,187,200 2 � 14120 2 2 4
 

 r �
N©XY � 1©X2 1©Y 2

2 3N©X2 � 1©X2 2 4 3N©Y 2 � 1©Y 2 2 4
 

©XY � 2,109,000©Y 2 � 2,187,200©X 2 � 2,070,000©Y � 4120©X � 4000

TABLE 6.3 Calculation of r between critical reading SAT and mathematics
SAT aptitude scores by the blanched formula

CR Math 
SAT SAT

Student X Y X2 Y2 XY

1 350 400 122,500 160,000 140,000
2 500 420 250,000 176,400 210,000
3 400 470 160,000 220,900 188,000
4 500 450 250,000 202,500 225,000
5 450 520 202,500 270,400 234,000
6 650 590 422,500 348,100 383,500
7 600 600 360,000 360,000 360,000
8 550 670 302,500 448,900 368,500

4000 4120 2,070,000 2,187,200 2,109,000

 r �

�XY

N
� 1X 2 1Y 2

SX SY

�

2,109,000

8
� 1500 2 1515 2

193.54 2 190.42 2
� .724 � .72

 SY � R
�Y 2 �

1�Y 2 2

N

N
�R

2,187,200 �
14120 2 2

8

8
� 90.42

 SX � R
�X 2 �

1�X 2 2

N

N
�R

2,070,000 �
14000 2 2

8

8
� 93.54

Y �
�Y

N
�

4120

8
� 515 X �

�X

N
�

4000

8
� 500

©

Data derived from 2008 College-Bound Seniors. Copyright © 2008, the College Board.
www.collegeboard.com. Reproduced with permission.

Data derived from 2008 College-Bound Seniors. Copyright © 2008, the College Board.
www.collegeboard.com. Reproduced with permission.

indicated by the number on the right. Thus, 3.234234 08 becomes 323,423,400. The
display 1.23456789 12 becomes 1,234,567,890,000.

Table 6.4 illustrates the raw-score procedure for computing r. The data are the
same as those in Table 6.3. Note that the value of r is the same with both methods. 
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Table 6.5 shows the SPSS output for a Pearson correlation of the two variables.
Again, r � .72. The designation Sig. (2-tailed) means “the significance level for a
two-tailed test,” a concept explained in Chapter 9.

The final step in any statistics problem is interpretation. What story goes with a
correlation coefficient of .72 between CR SAT verbal scores and Math SAT scores?
An r of .72 is a fairly substantial correlation coefficient. Students who have high SAT
critical reading scores certainly tend to have high SAT math scores. Note, however,
that if the correlation had been near zero, you could say that the two abilities are
unrelated. If the coefficient had been strong and negative, you could say, “Good in
one, poor in the other.”

Correlation coefficients should be based on an “adequate” number of pairs of
observations. As a general rule of thumb, “adequate” means 30 or more. My SAT
example, however, had an N of 8, and most of the problems in the text have fewer than
30 pairs. Small-N problems allow you to spend your time on interpretation and
understanding rather than on “number crunching.” In Chapter 9, you will learn the
reasoning behind my admonition that N be adequate.

The correlation coefficient, r, is a sample statistic. The corresponding population
parameter is symbolized by r (the Greek letter rho). The formula for r is the same as
the formula for r (except that parameters such as s and m are substituted for the
statistics, S and X�). One of the “rules” for statistical names is that parameters are
symbolized with Greek letters (m, s, r) and statistics are symbolized with Latin letters
(X�, ŝ, r). Like many rules, there are exceptions to this one.

clue to the future
The population correlation coefficient, r, is important in Chapter 9, where the issue
of the reliability of r is addressed. Also, besides the Pearson product-moment
correlation coefficient, r, there are other correlation coefficients. I have verbal
descriptions of several of these later in this chapter. Chapter 15 explains the
Spearman coefficient rs, which is appropriate for scores that are ranks.
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TABLE 6.5 SPSS output of Pearson r for CR SAT verbal 
and math SAT scores

Correlations

CR.SAT Math.SAT

CR.SAT Pearson Correlation 1 .724*
Sig. (2-tailed) .042
N 8 8

Math.SAT Pearson Correlation .724* 1
Sig. (2-tailed) .042
N 8 8

* Correlation is significant at the 0.05 level 
(2-tailed)..
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*6.5. This problem is based on data published in 1903 by Karl Pearson and
Alice Lee. In the original article, 1376 pairs of father–daughter heights
were analyzed. The scores here produce the same means and the same
correlation coefficient that Pearson and Lee obtained. For these data,
draw a scatterplot and calculate r by both the raw-score formula and 
the blanched formula.

Father’s height, X (in.) 69 68 67 65 63 73

Daughter’s height, Y (in.) 62 65 64 63 58 63

*6.6. The Wechsler Adult Intelligence Scale (WAIS) is an individually
administered test that takes over an hour. The Wonderlic Personnel 
Test can be administered to groups of any size in 15 minutes. X and 
Y represent scores on the two tests. Summary statistics from a representative
sample of 21 adults were �X � 2205, �Y � 2163, �X2 � 235,800,
�Y2 � 227,200, �XY � 231,100. Compute r and write an interpretation
about using the Wonderlic rather than the WAIS.

*6.7. Is the relationship between stress and infectious disease a strong one or a
weak one? Summary values that will produce a correlation coefficient similar
to that found by Cohen and Williamson (1991) are: �X � 190, �Y � 444,
�X2 � 3940, �Y2 � 20,096, �XY � 8524, N � 10. Calculate r using either
method (blanched or raw score).

Scatterplots

You already know something about scatterplots—what their elements are and what
they look like when r � 1.00, r � .00, and r � �1.00. In this section I illustrate some
intermediate cases and reiterate my philosophy about the value of pictures.

Figure 6.6 shows scatterplots of data with positive correlation coefficients
(.20, .40, .80, .90) and negative correlation coefficients (�.60, �.95). If you
draw an envelope around the points in a scatterplot, the picture becomes clearer.
The thinner the envelope, the larger the correlation. To say this in more
mathematical language, the closer the points are to the regression line, the greater
the correlation.

Pictures help you understand, and scatterplots are easy to construct. Although
the plots require some time, the benefits are worth it. Peden (2001) constructed four
data sets that all produce a correlation coefficient of .82. Scatterplots of the data,
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error detection
The Pearson correlation coefficient ranges between �1.00 and �1.00. Values less
than �1.00 or greater than �1.00 indicate that you have made an error.
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r � .20

r � .90

r � .40

r � �.60 r � .80

r � �.95

F I G U R E 6 . 6 Scatterplots of data in which r � .20, .40, �.60, .80, .90, and �.95

however, show four different patterns that lead to four quite different interpretations.
So this is a paragraph that encourages you to construct scatterplots—pictures help
you understand data.

Interpretations of r

The basic interpretation of r is probably familiar to you at this point. A correlation
coefficient measures the degree of linear relationship between two variables of a
bivariate distribution. Fortunately, additional information about the relationship can be
obtained from a correlation coefficient. Over the next few pages, I’ll cover some of
this additional information. However, a warning is in order—the interpretation of r
can be a tricky business. I’ll alert you to some of the common errors.
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Effect Size Index for r

What qualifies as a large correlation coefficient? What is small? You will remember
that you dealt with similar questions in Chapter 5 when you studied the effect size
index. In that situation, you had two sample means that were different. The question
was: Is the difference big? Jacob Cohen (1969) proposed that the question be
answered by calculating an effect size index (d ) and that d values of .20, .50, and .80
be considered small, medium, and large effect sizes, respectively. In a similar way,
Cohen addressed the question of calculating an effect size index for the correlation
coefficient.

You will be delighted with Cohen’s calculation of an effect size index for r;
the value is r itself. The remaining question is: What is small, medium, and large?
Now the story becomes more complicated because correlation coefficients are used
to measure many different kinds of relationships. However, Cohen proposed the
following:

Small r � .10

Medium r � .30

Large r � .50

These guidelines have not been as acceptable as those that Cohen proposed
for d. One of the complaints is that for some problems the guidelines are clearly not
appropriate. (See the later section on using r to measure reliability.) Another
complaint is that the guidelines do not correspond to the actual distribution of
empirical results. For example, Hemphill (2003) examined thousands of correlation
coefficients from hundreds of studies and then divided them into thirds. The results
were:

Lower third � .20

Middle third .20 to .30

Upper third � .30

I’ll have to leave the issue of “adjectives for correlation coefficients” without
being able to give you a simple rule of thumb, but the fact is that the proper adjective
to use for a particular r depends on the kind of research being conducted.

Coefficient of Determination

The correlation coefficient is the basis of the coefficient of determination,
which tells the proportion of variance that two variables in a bivariate
distribution have in common. The coefficient of determination is calculated
by squaring r; it is always a positive value between 0 and 1:

Coefficient of determination � r2

Look back at Table 6.2, the heights that produced r � 1.00. There is variation
among the fathers’ heights as well as among the sons’ heights. How much of the
variation among the sons’ heights is associated with the variation in the fathers’
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coefficient of
determination
Squared correlation coefficient, an
estimate of common variance.
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heights? All of it! That is, the variation among the sons’ heights (74, 72, 70, and
so on) is exactly the same variation that is seen among their fathers’ heights
(74, 72, 70, and so on). In the same way, the variation among the sons’ heights in
Figure 6.2 (76, 74, 72, and so on) is the same variation that is seen among their
fathers’ heights (74, 72, 70, and so on). For Table 6.2 and Figure 6.2, r � 1.00 and
r 2 � 1.00.

Now look at Table 6.3, the CR SAT and Math SAT scores. There is variation
among the CR SAT scores as well as among the Math SAT scores. How much of the
variation among the Math SAT scores is associated with the variation among the CR
SAT scores? Some of it. That is, the variation among the CR SAT scores (350, 500,
420, 400, and so on) is only partly reflected in the variation among the Math SAT
scores (470 and so on). The proportion of variance in the CR SAT scores that is
associated with the variance in the Math SAT is r2. In this case, (.72)2 � .52.

What a coefficient of determination of .52 tells you is that 52 percent of the
variance in the two sets of scores is common variance. However, 48 percent of the variance
is independent variance—that is, variance in one test that is not associated with
variance in the other test.

Think for a moment about the many factors that influence CR SAT scores and
Math SAT scores. Some factors influence both scores—factors such as motivation,
mental sharpness on test day, and, of course, the big one: general intellectual ability.
Other factors influence one test but not the other—factors such as anxiety about math
tests, chance successes and chance errors, and, of course, the big ones: specific verbal
knowledge and specific math knowledge.

Here is another example. The correlation of academic aptitude test scores with first-
term college grade point averages (GPAs) is about .50. The coefficient of determination
is .25. This means that of all that variation in GPAs (from flunking out to straight A’s),
25 percent is associated with aptitude scores. The rest of the variance (75 percent) is
related to other factors. Examples of other factors that influence GPA, for good or for
ill, include health, roommates, new relationships, and financial situation. Academic
aptitude tests cannot predict the variation that these factors produce.

Common variance is often illustrated with two overlapping circles, each of
which represents the total variance of one variable. The overlapping portion is the
amount of common variance. The left half of Figure 6.7 shows overlapping circles
for the GPA–college aptitude test scores and the right half shows the CR SAT Math
SAT data.

Note what a big difference there is between a correlation of .72 and one of
.50 when they are interpreted using the common variance terminology. Although .72
and .50 seem fairly close, an r of .72 predicts more than twice the amount of variance
that an r of .50 predicts: 52 percent to 25 percent. By the way, common variance is the
way professional statisticians interpret correlation coefficients.6
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6 If you are moderately skilled in algebra and would like to understand more about common variance,
I recommend that you finish the material in this chapter on regression and then work through the presentation
of Minium and King (2002).
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Uses of r

Reliability of Tests

Correlation coefficients are used to assess the reliability of measuring
devices such as tests, questionnaires, and instruments. Reliability refers
to consistency. Devices that are reliable produce consistent scores that
are not subject to chance fluctuations.

Think about measuring a number of individuals and then measuring them a
second time. If the measuring device is not influenced by chance, then you get
the same measurements both times. If the second measurement is exactly the same
as the first for every individual, it is easy to conclude that the measuring device
is perfectly reliable—that chance has nothing to do with the score you get.
However, if the measurements are not exactly the same, the disagreement leads to
uncertainty. Fortunately, a correlation coefficient tells you the degree of agreement
between the test and the retest scores. High correlation coefficients mean lots of
agreement and therefore high reliability; low coefficients mean lots of disagreement
and therefore low reliability. But what size r indicates reliability? The rule of
thumb is that an r of .80 or greater indicates reliability for social science
measurements.

Here is an example from Galton’s data. The heights of 435 adults were measured
twice. The correlation was .98. It is not surprising that Galton’s method of measuring
height was very reliable. The correlation, however, for “highest audible tone,” a
measure of pitch perception, was only .28 for 349 subjects whom Galton tested
a second time within a year (Johnson et al., 1985). One of two interpretations is
possible. Either people’s ability to hear high sounds changes up and down during a
year, or the test was not reliable. In Galton’s case, the test was not reliable. Two
possible explanations for this lack of reliability are (1) the test environment was not as
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reliability
Dependability or consistency 
of a measure.

.75 .25 .75

Variance of
GPA

Variance of
college aptitude

test scores

.52

Variance of
CR SAT
scores

Variance of
SAT

Math scores

.48 .52

F I G U R E  6 . 7 Two separate illustrations of common variance
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quiet from one time to the next and (2) the instruments the researchers used were not
calibrated exactly the same on both tests.

This section is concerned with the reliability of a measuring instrument, which
involves measuring one variable twice. The reliability of a relationship between
two different variables is a different question and will be covered in Chapter 9.
When the question is whether a relationship is reliable, the .80 rule of thumb does
not apply.

To Establish Causation—NOT

A high correlation coefficient does not give you the kind of evidence that allows you
to make cause-and-effect statements. Therefore, don’t do it. Ever.

Jumping to a cause-and-effect conclusion is a cognitively easy leap for humans.
For example, Shedler and Block (1990) found that among a sample of 18-year-olds
whose marijuana use ranged from abstinence to once a month, there was a positive
correlation between use and psychological health. Is this evidence that occasional drug
use promotes psychological health?

Because Shedler and Block had followed their participants from age 3 on, they
knew about a third variable, the quality of the parenting that the 18-year-olds had
received. Not surprisingly, parents who were responsive, accepting, and patient
and who valued originality had children who were psychologically healthy. In
addition, these same children as 18-year-olds had used marijuana on occasion.
Thus, two variables—drug use and parenting style—were each correlated with
psychological health. Shedler and Block concluded that psychological health and
adolescent drug use were both traceable to quality of parenting. (This research
also included a sample of frequent users who were not psychologically healthy
and who had been raised with a parenting style not characterized by the adjectives
above.)

Of course, if you have a sizable correlation coefficient, it may be the result of a
cause-and-effect relationship between the two variables. For example, early statements
about cigarette smoking causing lung cancer were based on simple correlational data.
Persons with lung cancer were often heavy smokers. Also, comparisons between
countries indicated a relationship (see problem 6.13). However, as careful thinkers—
and the cigarette companies—pointed out, both cancer and smoking might have
been caused by a third variable; stress was often suggested. That is, stress caused
cancer and stress also caused people to smoke. Thus, cancer rates and smoking rates
were related (a high correlation), but one did not cause the other; both were caused
by a third variable. What was required to establish a cause-and-effect relationship
was data from controlled experiments, not correlational data. Experimental data,
complete with control groups, finally established the cause-and-effect relationship
between cigarette smoking and lung cancer. (Controlled experiments are discussed in
Chapter 10, “Hypothesis Testing, Effect Size, and Confidence Intervals: Two-Sample
Designs.”)

To summarize this section using the language of logic: A sizable correlation is a
necessary but not a sufficient condition for establishing causality.
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6.8. Estimate the correlation coefficients for these scatterplots.

106 ■ Chapter 6

6.9. For the two measures of intelligence in problem 6.6, you found a correlation
of .92. What is the coefficient of determination, and what does it mean?

6.10. In problem 6.7, you found that the correlation coefficient between 
stress and infectious disease was .25. Calculate the coefficient of
determination and write an interpretation.

6.11. Examine the following summary statistics (which you have seen before).
Can you determine a correlation coefficient? Explain your reasoning.

Height of women (in.) Height of men (in.)

�X 3210 3500
�X2 206,428 245,470
N � 50 pairs

6.12. What percent of variance in common do two variables have if their
correlation is .10? What if the correlation is quadrupled to .40?

6.13. For each of 11 countries, the accompanying table gives the cigarette
consumption per capita in 1930 and the male death rate from lung cancer 

b.

d.

a.

c.
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20 years later in 1950 (Doll, 1955; reprinted in Tufte, 2001). Calculate a
Pearson r and write a statement telling what the data show.

Per capita cigarette Male death rate
Country consumption (per million)

Iceland 217 59
Norway 250 91
Sweden 308 113
Denmark 370 167
Australia 455 172
Holland 458 243
Canada 505 150
Switzerland 542 250
Finland 1112 352
Great Britain 1147 467
United States 1283 191

6.14. Interpret each of these statements.
a. The correlation between vocational-interest scores at age 20 and at age 40

for the 150 participants was .70
b. The correlation between intelligence test scores of identical twins raised

together is .86
c. A correlation of �.30 between IQ and family size
d. r � .22 between height and IQ for 20-year-old men
e. r � �.83 between income level and probability of diagnosis of

schizophrenia

Strong Relationships but Low 
Correlation Coefficients

One good thing about understanding something is that you come to know what’s going
on beneath the surface. Knowing the inner workings, you can judge whether the
surface appearance is to be trusted or not. You are about to learn two of the “inner
workings” of correlation. These will help you evaluate the meaning of low correlation
coefficients. Low correlations do not always mean there is no relationship between
two variables.7

Nonlinearity

For r to be a meaningful statistic, the best-fitting line through the scatterplot of points
must be a straight line. If a curved regression line fits the data better than a straight
line, r will be low, not reflecting the true relationship between the two variables.
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spuriously high.
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Figure 6.8 is an example of a situation in which r is inappropriate because the
best-fitting line is curved. The X variable is arousal and the Y variable is efficiency of
performance. At low levels of arousal (sleepy, for example), performance is not very
good. Likewise, at very high levels of arousal (agitation, for example), people don’t
perform well. In the middle range, however, there is a degree of arousal that is
optimum; performance is best at moderate levels of arousal.

In Figure 6.8 there is obviously a strong relationship between arousal and
performance, but r for the distribution is �.10, a value that indicates a very weak
relationship. The product-moment correlation coefficient is just not useful for
measuring the strength of curved relationships. For curved relationships, researchers
often measure the strength of association with the statistic eta (h) or by calculating the
formula for a curve that fits the data.
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8 The Graduate Record Examination (GRE) is used by many graduate schools to help select students for admission.

error detection
When a data set produces a low correlation coefficient, a scatterplot is especially
recommended. A scatterplot might reveal that a Pearson correlation coefficient is not
appropriate for the data set.

Truncated Range

Besides nonlinearity, a second situation gives low Pearson correlation
coefficients even though there is a strong relationship between the two
variables. Spuriously low r values can occur when the range of scores in
the sample is much smaller than the range of scores in the population 
(a truncated range).

I’ll illustrate with the relationship between GRE scores and grades in graduate
school.8 The relationship graphed in Figure 6.9 is based on a study by Sternberg and

truncated range
Range of the sample is smaller
than the range of its population.
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Williams (1997). These data look like a snowstorm; they lead to the conclusion that
there is little relationship between GRE scores and graduate school grades.

However, students in graduate school do not represent the full range of GRE
scores; those with low GRE scores are not included. What effect does this restriction
of the range have? You can get an answer to this question by looking at Figure 6.10,
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which shows a hypothetical scatterplot of data for the full range of GRE scores. This
scatterplot shows a moderate relationship. So, unless you recognized that your sample
of graduate students truncated the range of GRE scores, you might be tempted to
dismiss GRE scores as “worthless.” (A clue that Figure 6.9 illustrates a truncated
range is on the horizontal axis. It starts at medium and goes up.)

Other Kinds of Correlation Coefficients

The kind of correlation coefficient you have been learning about—the Pearson
product-moment correlation coefficient—is appropriate for measuring the degree of
the relationship between two linearly related, continuous variables. Sometimes,
however, the data do not consist of two linearly related, continuous variables. What
follows is a description of five other situations. In each case, you can express the
degree of relationship in the data with a correlation coefficient—but not a Pearson
product-moment correlation coefficient. Fortunately, these correlation coefficients can
be interpreted much like Pearson product-moment coefficients.

1. If one of the variables is dichotomous (has only two values), then 
a biserial correlation (rb) or a point-biserial correlation (rpb) is
appropriate. Variables such as height (recorded as simply tall or
short) and gender (male or female) are examples of dichotomous
variables.

2. Several variables can be combined, and the resulting combination can
be correlated with one variable. With this technique, called multiple
correlation, a more precise prediction can be made. Performance in
school can be predicted better by using several measures of a person
rather than one.

3. A technique called partial correlation allows you to separate or
partial out the effects of one variable from the correlation of two
variables. For example, if you want to know the true correlation
between achievement test scores in two school subjects, it is probably
necessary to partial out the effects of intelligence because cognitive
ability and achievement are correlated.

4. When the data are ranks rather than scores from a continuous variable,
researchers calculate Spearman rs , which is covered in Chapter 15.

5. If the relationship between two variables is curved rather than linear, then the
correlation ratio eta (h) gives the degree of association (Field, 2005a).

These and other correlational techniques are discussed in intermediate-level
textbooks such as Howell (2010).

P R O B L E M S

6.15. The correlation between scores on a humor test and a test of insight is .83.
Explain what this means. Continue your explanation by interpreting the effect
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dichotomous variable
A variable that has only two
values.

multiple correlation
Correlation coefficient that
expresses the degree of
relationship between one variable
and two or more other variables.

partial correlation
Technique that allows the
separation of the effect of one
variable from the correlation of
two other variables.
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size index and the coefficient of determination. End your explanation with
caveats9 appropriate for r.

6.16. The correlation between number of older siblings and degree of acceptance
of personal responsibility for one’s own successes and failures is �.37.
Interpret this correlation. Find the coefficient of determination and explain
what it means. What can you say about the cause of the correlation?

6.17. Examine the following data, make a scatterplot, and compute r if appropriate.

Serial position 1 2 3 4 5 6 7 8

Errors 2 5 6 9 13 10 6 4

Linear Regression

What you have learned about correlation will be most helpful as you learn
to make quantitative predictions. This technique is called linear regression.

A few sections ago I said that the correlation between college
entrance examination scores and first-semester grade point averages is
about .50. Knowing this correlation, you can predict that those who score
high on the entrance examination are more likely to succeed as freshmen than those who
score low. This statement is correct, but it is pretty general. Usually you want to predict a
specific grade point for a specific applicant. For example, if you were in charge of
admissions at Collegiate U., you want to know the entrance examination score that
predicts a GPA of 2.00, the minimum required for graduation. To make specific
predictions, you must calculate a regression equation.

Linear regression is a technique that uses the data to produce an equation for a
straight line. This equation is then used to make predictions. I’ll begin with some
background on making predictions from equations.

Making Predictions from a Linear Equation

You are used to making predictions; some you make with a great deal of confidence.
“If I get my average up to 80 percent, I’ll get a B in this course.” “If I spend $15 plus
tax on this DVD, I won’t have enough left from my $20 to go to a movie.”

Often, predictions are based on an assumption that the relationship between two
variables is linear, that a straight line will tell the story exactly. Frequently, this assumption
is quite justified. For the preceding short-term economics problem, imagine a set of
axes with “Amount spent” on the X axis ($0 to $20) and “Amount left” on the Y axis ($0
to $20). A straight line that connects the two $20 marks on the axes tells the whole
story. (This is a line with a negative slope that is inclined 45 degrees from horizontal.)
Draw this picture. Can you also write the equation for this graph?
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9 Warnings.

linear regression 
Method that produces a 
straight line that best fits a 
bivariate distribution.
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Part of your education in algebra was about straight lines. You may recall that the
slope-intercept formula for a straight line is

Y � mX � b

where Y and X are variables representing scores on the Y and X axes
m � slope of the line (a constant)
b � intercept (intersection) of the line with the Y axis (a constant)

Here are some reminders about the slopes of lines. The slope of a line is positive
if the highest point on the line is to the right of the lowest point. If the highest point is
to the left of the lowest point, the slope is negative. Horizontal lines have a slope equal
to zero. Lines that are almost vertical have slopes that are either large positive numbers
or large negative numbers.

Now, back to the slope-intercept formula. If you are given the two constants m � 3
and b � 6, the formula becomes Y � 3X � 6. Now, if you start with a value for X, you
can easily find the value of Y. If X � 4, then Y � _____?

The unsolved problem (so far) is how to go from the general formula Y � mX � b to
a specific formula like Y � 3X � 6—that is, how to find the values for m and b.

A common solution involves a rule and a little algebra. The rule is that if a point
lies on the line, then the coordinates of the point satisfy the equation of the line. To use
this rule to find an equation, you must know the coordinates for two points. Suppose
you are told that one point on the line is where X � 5 and Y � 8. This point, represented
as (5, 8), produces 8 � 5m � b when the coordinates are substituted into the general
equation. If you are given a second point that lies on the line, you will get another
equation with m and b as unknowns. Now you have two equations with two unknowns
and you can solve for each unknown in turn, giving you values for m and b. If you
would like to check your understanding of this on a simple problem, figure out the
formula for the line that tells the story of the $20 problem. For simplicity, use the two
points where the line crosses the axes, (0, 20) and (20, 0).

Once you have assumed or have satisfied yourself that a relationship is linear, any
two points will allow you to draw the line that tells the story of the relationship.

Least Squares—A Line of Best Fit

With this background in place, you are in a position to appreciate the problem Karl
Pearson faced at the end of the 19th century when he looked at father–daughter height
data (problem 6.5). Look at your scatterplot of those data. It is reasonable to assume
that the relationship is linear, but which two points should be used to write the
equation for the line? The equation will depend on which two particular points you
choose to plug into the formula. The two-point approach produces dozens of different
lines. Which one is the best line? What solutions come to your mind?

One solution is to find the mean Y value for each of the X values on
the abscissa. Connect those means with straight lines, and then choose
two points that make the regression line fall within this narrower range
of the means. Pearson’s solution, which statistics embraced, is to use a
more mathematically sophisticated version of this idea, a method called
least squares. Look at Figure 6.11, which is based on Pearson and Lee’s
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least squares
Fitting a regression line such 
that the sum of the squared 
deviations from the straight
regression line is a minimum.
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1903 data on the heights of fathers and their adult daughters. There is a least squares
regression line, which was calculated from all the data points, and two of the data
points. The two data points are for 5�6� Ann and her 5�9� father and 5�3� Beth and her
father, who is also 5�9�. As you can see from the regression line, 5�4� is the predicted
height for the daughter of a 5�9� father. (Predicted values are symbolized by Ŷ,
pronounced “Y-hat” or “Y-predicted.”) The data show, however, that Ann is 5�6� and
Beth is 5�3�. You can imagine that if the other daughters’ heights were plotted on the
graph, most of them would not fall on the regression line either. With all this error,
why use the least squares method for drawing the line?

The answer is that a least squares regression line minimizes error. Calculating
error is easy. For each prediction,

Error � Y � Ŷ

Look again at Figure 6.11. Using the two daughters in our example,

Ann: error � Y � Ŷ � 66 � 64 � 2

Beth: error � Y � Ŷ � 63 � 64 � �1

In a similar way, there is an error for each point in the scatterplot (though for
some, the error is zero). The least squares method creates a straight line such that the
sum of the squares of the errors is a minimum. In symbol form, �(Y � Ŷ )2 is a
minimum for a straight line calculated by the least squares method.

Not only does the least squares method minimize error, it also produces
numerical values for the slope and the intercept. With a slope and an intercept, you
can write the equation for a straight line; this regression line is the one that best fits
the data.

One more transitional point is necessary. In the language of algebra, the idea of a
straight line is expressed as Y � mX � b. In the language of statistics, exactly the
same idea is expressed as Y � a � bX. Y and X are the same in the two formulas, but
different letters are used for the slope and the intercept and the order of the terms is
different. Unfortunately, the terminology is well established in both fields. However,
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the mental translation required of students doesn’t cause many problems.
Thus, in statistics, b is the slope of the line and a is the intercept of the
line with the Y axis.

The Regression Equation

In statistics, the regression equation is

Ŷ � a � bX

where Ŷ � Y value predicted for a particular X value
a � point at which the regression line intersects the Y axis
b � slope of the regression line
X � value for which you wish to predict a Y value

For correlation problems, the symbol Y can be assigned to either variable, but in
regression equations, Y is assigned to the variable you wish to predict.

The Regression Coefficients

To use the equation Ŷ � a � bX you must have values for a and b, which are called
regression coefficients. Values for a and b can be calculated from any bivariate set of

data. The arithmetic for these calculations comes from the least squares
method of line fitting.

If you have already computed r and the standard deviations for both
X and Y, then the slope of the regression line, b, is

where r � correlation coefficient for X and Y
SY � standard deviation of the Y variable
SX � standard deviation of the X variable

Is it clear to you that for positive correlations, b will be a positive number? For negative
correlations, b will be negative. The value of b can also be obtained with the formula

To compute a, the regression line’s intercept with the Y axis, use the formula

where Y� � mean of the Y scores
b � regression coefficient computed previously
X� � mean of the X scores

Figure 6.12 is designed to generically illustrate the regression coefficients a and b. In
Figure 6.12, the regression line crosses the Y axis exactly at 4, so a � 4.00. The coefficient
b is the slope of the line. To independently determine the slope of a line from a graph,

a � Y� � bX�

b �
N©XY � 1©X 2 1©Y 2

N©X2 � 1©X 2 2

b � r 
SY

SX
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The constants a and b in a
regression equation.
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divide the vertical distance the line rises by the horizontal distance the line covers. In
Figure 6.12 the line DE (vertical rise of the line FD) is half the length of FE (the horizontal
distance of FD). Thus, the slope of the regression line is 0.50 (DE/FE � b � 0.50). Put
another way, the value of Y increases 1/2 point for every one-point increase in X.

Calculating a Regression Equation

I’ll illustrate calculating a regression equation with the critical reading SAT (CR SAT)
scores and first-year college grade point averages (FYGPA). The CR SAT scores come
from Table 6.3; the first-year college grade point statistics and the correlation
coefficient are from Korbrin, et at. (2008). The task is to predict FYGPA from SAT
scores, so I’ll designate FYGPA as the Y variable.

error detection
Step one in writing a regression equation is to identify the variable whose scores you
want to predict. Make that variable Y.

To calculate the regression coefficients for a regression equation, you need the
correlation coefficient and the mean and standard deviations of both variables.

Correlation coefficient 
X Y

CR SAT FYGPA

The formula for b gives

b � r 
SY

SX

� 1.48 2  
0.71

93.54
� 1.48 2 10.00759 2 � 0.00364

SY � 0.71SX � 93.54
Y � 2.97X � 500

r � .48
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The formula for a gives

a � Y� � bX� � 2.97 � (0.00364)(500) � 2.97 � 1.822 � 1.148

The b coefficient (0.0036) tells you that the slope of the regression line is almost
flat. The a coefficient tells you that the regression line intersects the Y axis at 1.148.
Entering these regression coefficients values into the regression equation produces a
formula that predicts first-year GPA from CR SAT scores:

Ŷ � a � bX � 1.148 � 0.00364X

Predicting a Y score–Finding Ŷ

With this regression equation in hand, you can predict a first-year GPA for any CR
SAT score.10 What GPA does the formula predict for a CR SAT score of 500, which
was the mean score for test takers in 2008? In some ways, this is a trick question (but
of the good variety). Think through the problem before you look at the arithmetic that
follows.

Ŷ � 1.148 � 0.00364X

Ŷ � 1.148 � (0.00364)(500)

Ŷ � 2.97

The “trick” to this problem is that 500 is the mean of the CR SAT scores. The
corresponding point for the FYGPA data is its mean, 2.97.

Several sections back I said that if you were in charge of admissions at Collegiate
U., you’d want to know the entrance exam score that predicts a graduation GPA of
2.00. With the regression equation above, you can approximate that knowledge by
finding the exam score that predicts a first-year GPA of 2.00.

Ŷ � 1.148 � 0.00364X

2.00 � 1.148 � 0.00364X

X � 234

SAT scores come in multiples of 10, I’ll have to chose between 230 and 240.
Because I want a score that predicts applicants who will achieve a FYGPA of at least
2.00, I would recommend 240.

To find Ŷ values from summary data without calculating a and b, use this formula:

Ŷ

For a CR SAT score of 240, the first year GPA is

Ŷ � (.48)(0.00759)(�260) � 2.97 � �0.947 � 2.02

� r 
Sy

SX
 1X � X 2 � Y
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10 You may know you own CR SAT score. Using this equation, you can predict your own first-year college
grade point average. In addition, you probably already have a first-year college grade point average. How do
the two compare?
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P R O B L E M S

*6.18. Using the statistics in Table 6.3, write the equation that predicts Math SAT
scores from CR SAT scores.

Now you know how to make predictions. Predictions, however, are
cheap; anyone can make them. Respect accrues only when your
predictions come true. So far, I have dealt with accuracy by simply
pointing out that when r is high, accuracy is high, and when r is low, you
cannot put much faith in your predicted values of Ŷ.

To actually measure the accuracy of predictions made from a regression analysis,
you need the standard error of estimate. This statistic is discussed in most
intermediate-level textbooks and in textbooks on testing. (See, for example, Howell,
2008, pp. 221–223.) The materials in Chapters 7 and 8 of this book provide the
background needed to understand the standard error of estimate.

Drawing a Regression Line on a Scatterplot

To illustrate drawing a regression line, I’ll return to the data in Table 6.3, the two
subtests of the SAT. To draw the line, you need a straightedge and two points on the
line. Any two points will do. One point that is always on the regression line is .
Thus, for the SAT data, the two means (500, 515) identify a point. This point is
marked on Figure 6.13 with an open circle.

The second point may take a little more work. For it you need the regression
equation. Fortunately, you have that equation from your work on problem 6.18.

Ŷ � 165 � 0.700X

1X, Y 2
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To find the second point, choose a value for X and solve for Y. Any value for X within
the range of your graph will do; I chose 400 because it made the product of 0.700X
easy to calculate. (0.700)(400) � 280. Thus, the second point is (400, 445), which is
marked on Figure 6.13 with an X. Finally, line up the straightedge on the two points
and extend the line in both directions. Notice that the line crosses the Y axis just under
400, which may surprise you because a � 165. (I’ll come back to this in the next
section.)

With a graph such as Figure 6.13, you can make predictions about Math SAT
scores from CR SAT scores. From a score on the X axis, draw a vertical line up to the
regression line. Then draw a horizontal line over to the vertical axis. That Y score is Ŷ,
the predicted Math SAT score. On Figure 6.13, the Math SAT score predicted for a
CR SAT score of 375 is between 400 and 450.

In SPSS, the linear regression program calculates several statistics and displays
them in different tables. For the SAT data, the SPSS table coefficients is reproduced as
Table 6.6. The regression coefficients are in the B column under Unstandardized
Coefficients. The intercept  coefficient, the a (165.00), is labeled (Constant) and the
slope coefficient, b (0.700), is labeled CR.SAT. The Pearson correlation coefficient
(.724) is in the Beta column.

The Appearance of Regression Lines

Now, I’ll return to the surprise I mentioned in the previous section: The regression
line in Figure 6.13 crosses the Y axis just below 400 but a � 165. The appearance of
regression lines depends not only on the calculated values of a and b also on the
units chosen for the X and Y axes and whether there are breaks in the axes. Look at
Figure 6.14. Although the two lines appear different, b � 1.00 for both. They appear
different because the space allotted to each Y unit in the right graph is half that
allotted to each Y unit in the left graph.

I can now explain the dilemma I faced when I composed the “out-of-balance”
Figure 6.3. The graph is ungainly because it is square (100 X units is the same length as
100 Y units) and because both axes start at zero, which forces the data points up into a
corner. I composed it the way I did because I wanted the regression line to cross the
Y axis at a (note that it does) and because I wanted its slope to appear equal to b (note
that it does).
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TABLE 6.6 SPSS output of regression coefficients and r for the CR SAT
and math SAT scores in Table 6.3

Coefficientsa

Unstandardized Standardized
Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 165.000 138.419 1.192 .278
CR.SAT .700 .272 .724 2.572 .042

a. Dependent Variable: M.SAT
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The more attractive Figure 6.13 is a scatterplot of the same data as those in 
Figure 6.3. The difference is that Figure 6.13 has breaks in the axes and 100 Y units is
about one half the length of 100 X units. I’m sure by this point you have the message—
you cannot necessarily determine a and b by looking at a graph.

Finally, a note of caution: Every scatterplot has two regression lines. One is called the
regression of Y onto X, which is what you did in this chapter. The other is the regression of
X onto Y. The difference between these two depends on which variable is designated Y. So,
in your calculations be sure you assign Y to the variable you want to predict.

P R O B L E M S

6.19. In problem 6.5, the father–daughter height data, you found r � .513.
a. Compute the regression coefficients a and b.
b. Use your scatterplot from problem 6.5 and draw the regression line.

6.20. In problem 6.6, the two different intelligence tests with the WAIS test as 
X and the Wonderlic as Y, you computed r.
a. Compute a and b.
b. What Wonderlic score would you predict for a person who scored 130 on

the WAIS?
6.21. Regression is a technique that economists and businesspeople rely on heavily.

Think about the relationship between advertising expenditures and sales. Use
the data in the accompanying table, which are based on national statistics.
a. Find r.
b. Write the regression equation.
c. Plot the regression line on the scatterplot.
d. Predict sales for an advertising expenditure of $10,000.
e. Explain whether any confidence at all can be put in the prediction you

made.

Correlation and Regression ■ 119

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

F I G U R E  6 . 1 4 Two regression lines with the same slope (b � 1.00) but with
different appearances. The difference is caused by different-sized units on the Y axis

08911_06_Ch06_87-123 pp2.qxd  12/17/09  4:55 PM  Page 119



120 ■ Chapter 6

Advertising, X Sales, Y
($ thousands) ($ thousands)

3 70
4 120
3 110
5 100
6 140
5 120
4 100

6.22. The correlation between Stanford–Binet IQ scores and Wechsler Adult
Intelligence Scale (WAIS) IQs is about .80. Both tests have a mean of 100.
The standard deviation on older versions of the Stanford–Binet was 16. For
the WAIS, S � 15. What WAIS IQ do you predict for a person who scores 65
on the Stanford–Binet? Write a sentence summarizing these results. (An IQ
score of 70 has been used by some schools as a cutoff point between regular
classes and special education classes.)

6.23. Many predictions about the future come from regression equations. Use the
following data from the Statistical Abstract of the United States to predict
the number of college graduates with bachelor’s degrees in the year 2011.
Use the time period numbers rather than years in your calculations and
carry four decimal places. Carefully choose which variable to call X and
which to call Y.

Time period 1 2 3 4 5

Year 2002 2003 2004 2005 2006

Graduates (millions) 1.29 1.35 1.40 1.44 1.49

6.24. Once again, look over the objectives at the beginning of the chapter. Can you
do them?

6.25. Now it is time for integrative work on the descriptive statistics you studied in
Chapters 2–6. Choose one of the two options that follow.
a. Write an essay on descriptive statistics. Start by jotting down from

memory things you could include. Review Chapters 2–6, adding to 
your list additional facts or other considerations. Draft the essay. Rest.
Revise it.

b. Construct a table that summarizes the descriptive statistics in Chapters 2–6.
List the techniques in the first column. Across the top of the table, list topics
that distinguish among the techniques—topics such as purpose, formula,
and so forth. Fill in the table.

Whether you choose option a or b, save your answer for that time in
the future when you are reviewing what you are learning in this course
(final exam time?).
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What Would You Recommend? Chapters 1–6

At this point in the text (and at two later points) there is a set of problems titled What
would you recommend? These problems help you review and integrate your knowledge.
For each problem that follows, recommend an appropriate statistic from among those
you learned in the first six chapters. Note why you recommend that statistic.

a. Registration figures for the American Kennel Club show which dog breeds are
common and which are uncommon. For a frequency distribution for all breeds,
what central tendency statistic is appropriate?

b. Among a group of friends, one person is the best golfer. Another person in the
group is the best at bowling. What statistical technique allows you to determine that
one of the two is better than the other?

c. Tuition at Almamater U. has gone up each of the past 5 years. How can I predict
what it will be in 25 years when my child enrolls?

d. Each of the American states has a certain number of miles of ocean coastline
(ranging from 0 to 6640 miles). Consider a frequency distribution of these 
50 scores. What central tendency statistic is appropriate for this distribution?
Explain your choice. What measure of variability do you recommend?

Correlation and Regression ■ 121

ADDITIONAL HELP FOR CHAPTER 6

Visit cengage.com/psychology/spatz. At the Student Companion Site, you’ll
find multiple-choice tutorial quizzes, flashcards with definitions and work-
shops. For this chapter there are Statistical Workshops on Bivariate Scatter
Plots and Correlation.

KEY TERMS

Bivariate distribution (p. 89)
Causation and correlation (p. 105)
Coefficient of determination (p. 102)
Common variance (p. 103–104)
Correlation coefficient (p. 96)
Dichotomous variable (p. 110)
Effect size index for r (p. 102)
Intercept (p. 114)
Least squares method (p. 112)
Linear regression (p. 111)
Multiple correlation (p. 110)
Negative correlation (p. 92)
Partial correlation (p. 110)

Positive correlation (p. 90)
Quantification (p. 88)
Regression coefficients (p. 114)
Regression equation (p. 114)
Regression line (p. 117)
Reliability (p. 104)
Scatterplot (p. 100)
Slope (p. 114)
Standard error of estimate (p. 117)
Truncated range (p. 108)
Univariate distribution (p. 89)
Zero correlation (p. 95)
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e. Jobs such as “appraiser” require judgments about the value of a unique item. Later,
a sale price establishes an actual value. Suppose two applicants for an appraiser’s
job made judgments about 30 items. After the items sold, an analysis revealed that
when each applicant’s errors were listed, the average was zero. What other analysis
of the data might provide an objective way to decide that one of the two applicants
was better?

f. Suppose you study some new, relatively meaningless material until you know it all.
If you are tested 40 minutes later, you recall 85 percent; 4 hours later, 70 percent; 
4 days later, 55 percent; and 4 weeks later, 40 percent. How can you express the
relationship between time and memory?

g. A table shows the ages and the number of voters in the year 2010. The age
categories start with “18–20” and end with “65 and over.” What statistic can be
calculated to describe the age of the typical voter?

h. For a class of 40 students, the study time for the first test ranged from 30 minutes to
6 hours. The grades ranged from a low of 48 to a high of 98. What statistic describes
how the variable Study time is related to the variable Grade?
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YOU ARE NOW through with the part of the book that is clearly about descriptive

statistics. You should be able to describe a set of data with a graph, a few choice

words, and numbers such as a mean, a standard deviation, and (if appropriate) 

a correlation coefficient.

The next chapter serves as a bridge between descriptive and inferential

statistics. All the problems you will work give you answers that describe

something about a person, score, or group of people or scores. However, the

ideas about probability and theoretical distributions that you use to work these

problems are essential elements of inferential statistics.

So, the transition this time is to concepts that prepare you to plunge into

material on inferential statistics. As you will see rather quickly, many of the

descriptive statistics that you have been studying are elements of inferential

statistics.

transition passage
to inferential statistics
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Theoretical 
Distributions Including
the Normal Distribution

C H A P T E R  

7

O B J E C T I V E S  F O R  C H A P T E R  7

After studying the text and working the problems in this chapter, you should be
able to:

1. Distinguish between theoretical and empirical distributions

2. Distinguish between theoretical and empirical probability

3. Predict the probability of certain events from knowledge of the theoretical
distribution of those events

4. List the characteristics of the normal distribution

5. Find the proportion of a normal distribution that lies between two scores

6. Find the scores between which a certain proportion of a normal distribution
falls

7. Find the number of scores associated with a particular proportion of a 
normal distribution

THIS CHAPTER HAS more figures than any other chapter, almost one per page. The
reason for all these figures is that they are the best way I know to convey to you ideas
about theoretical distributions and probability. So, please examine these figures
carefully, making sure you understand what each part means. When you are working
problems, drawing your own pictures is a big help.

I’ll begin by distinguishing between empirical distributions and theoretical
distributions. In Chapter 2 you learned to arrange scores in frequency distributions. The
scores you worked with were selected because they were representative of scores from

actual research. Distributions of such observed scores are empirical
distributions.

This chapter has a heavy emphasis on theoretical distributions. Like
the empirical distributions in Chapter 2, a theoretical distribution is a

124

empirical distribution 
Scores that come from
observations.
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Theoretical Distributions Including the Normal Distribution ■ 125

presentation of all the scores, usually presented as a graph. Theoretical
distributions, however, are based on mathematical formulas and logic
rather than on empirical observations.

Theoretical distributions are used in statistics to determine probabilities.
When there is a correspondence between an empirical distribution and a theoretical
distribution, you can use the theoretical distribution to arrive at probabilities about future
empirical events. Probabilities, as you know, are quite helpful in reaching decisions.

This chapter covers three theoretical distributions: rectangular, binomial, and normal.
Rectangular and binomial distributions are used to illustrate probability more fully and
to establish some points that are true for all theoretical distributions. The third
distribution, the normal distribution, will occupy the bulk of your time and attention in
this chapter.

Probability

You are already somewhat familiar with the concept of probability. You know, for
example, that probability values range from .00 (there is no possibility that an event
will occur) to 1.00 (the event is certain to happen).

In statistics, events are sometimes referred to as “successes” or “failures.” To
calculate the probability of a success using the theoretical approach, you first enumerate
all the ways a success can occur. Then you enumerate all the events that can occur
(whether successes or failures). Finally, you form a ratio with successes on top (the
numerator) and total events on the bottom (the denominator). This fraction, changed to
a decimal, is the theoretical probability of a success.

For example, with coin flipping, the theoretical probability of “head” is .50. A head
is a success and it can occur in only one way. The total number of possible outcomes is
two (head and tail), and the ratio is .50. In a similar way, the probability 
of rolling a six on a die is .167. For playing cards, the probability of drawing a jack
is 

The empirical approach to finding probability involves observing actual events,
some of which are successes and some of which are failures. The ratio of successes to
total events produces a probability, a decimal number between .00 and 1.00. To find an
empirical probability, you use observations rather than logic to get the numbers.1

What is the probability of particular college majors? Remember the data in Figure 2.5,
which showed college majors? The probability question can be answered by processing
numbers from that figure. Here’s how. Choose the major that you are interested in and
label the frequency of that major as “number of successes.” Divide that number by
1,524,000, which is the total number of baccalaureate degrees granted in 2006–2007. The
figure you get answers the probability question. If the major in question is sociology, then
29,000/1,524,000 � .02 is the answer. For English, 55,000/1,524,000 � .04 is the
answer.2 Now, here’s a question for you to answer for yourself. Were these probabilities
determined theoretically or empirically?

4
52 � .077.

1
6 �

1
2

1 The empirical probability approach is sometimes called the relative frequency approach.
2 If I missed doing the arithmetic for the major you are interested in, I hope you’ll do it for yourself.

theoretical distribution 
Hypothesized scores based on
mathematical formulas and logic.
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The rest of this chapter will emphasize theoretical distributions and theoretical
probability. You will work with coins and cards next, but before you are finished,
I promise you a much wider variety of applications.

A Rectangular Distribution

To show you the relationship between theoretical distributions and theoretical
probabilities, I’ll use an example of a theoretical distribution that you may be familiar
with. Figure 7.1 is a histogram that shows the distribution of types of cards in an

ordinary deck of playing cards. There are 13 kinds of cards, and the
frequency of each card is 4. This theoretical curve is a rectangular
distribution. (The line that encloses a histogram or frequency polygon
is called a curve, even if it is straight.) The number in the area above

each card is the probability of obtaining that card in a chance draw from the deck. That
theoretical probability (.077) was obtained by dividing the number of cards that
represent the event (4) by the total number of cards (52).

Probabilities are often stated as “chances in a hundred.” The expression p � .077
means that there are 7.7 chances in 100 of the event occurring. Thus, from Figure 7.1
you can tell at a glance that there are 7.7 chances in 100 of drawing an ace from a deck
of cards. This knowledge might be helpful in some card games.

With this theoretical distribution, you can determine other probabilities. Suppose
you want to know your chances of drawing a face card or a 10. These are the shaded
events in Figure 7.1. Simply add the probabilities associated with a 10, jack, queen, and
king. Thus, .077 � .077 � .077 � .077 � .308. This knowledge might be helpful in a
game of blackjack, in which a face card or a 10 is an important event (and may even
signal “success”).

In Figure 7.1 there are 13 kinds of events, each with a probability of .077. It is 
not surprising that when you add up all the events [(13)(.077)], the result is 1.00. 
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F I G U R E  7 . 1 Theoretical distribution of 52 draws from a deck of playing cards

rectangular distribution 
Distribution in which all scores
have the same frequency.
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In addition to the probabilities adding up to 1.00, the areas add up to 1.00. That is,
by conventional agreement, the area under the curve is taken to be 1.00. With 
this arrangement, any statement about area is also a statement about probability.
(If you like to verify things for yourself, you’ll find that each slender rectangle has an
area that is .077 of the area under the curve.) Of the total area under the curve, the
proportion that signifies ace is .077, and that is also the probability of drawing an ace
from the deck.3

3 In gambling situations, uncertainty is commonly expressed in odds. The expression “odds of 5:1” means
that there are five ways to fail and one way to succeed; 3:2 means three ways to fail and two ways to succeed.
The odds of drawing an ace are 12:1. To convert odds to a probability of success, divide the second number
by the sum of the two numbers.

clue to the future
The probability of an event or a group of events corresponds to the area of the
theoretical distribution associated with the event or group of events. This idea will
be used throughout this book.

P R O B L E M S

7.1. What is the probability of drawing a card that falls between 3 and jack,
excluding both?

7.2. If you drew a card at random, recorded the result, and replaced the card in
the deck, how many 7s would you expect in 52 draws?

7.3. What is the probability of drawing a card that is higher than a jack or lower
than a 3?

7.4. If you made 78 draws from a deck, replacing each card, how many 5s and 6s
would you expect?

A Binomial Distribution

The binomial distribution is another example of a theoretical distribution.
Suppose you take three new quarters and toss them into the air. What is
the probability that all three will come up heads? As you may know, the
answer is found by multiplying together the probabilities of each of
the independent events. For each coin, the probability of a head is so
the probability that all three will be heads is

Here are two other questions about tossing those three coins. What is the
probability of two heads? What is the probability of one head or zero heads? You
could answer these questions easily if you had a theoretical distribution of the
probabilities. Here’s how to construct one. Start by listing, as in Table 7.1, the eight
possible outcomes of tossing the three quarters into the air. Each of these eight

1
8 � .1250.112 2 1

1
2 2 1

1
2 2  �

1
2,

binomial distribution 
Distribution of the frequency of
events that can have only two
possible outcomes.
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TABLE 7.1 All possible outcomes when three coins are tossed

Outcomes Number of heads Probability of outcome

Heads, heads, heads 3 .1250
Heads, heads, tails 2 .1250
Heads, tails, heads 2 .1250
Tails, heads, heads 2 .1250
Heads, tails, tails 1 .1250
Tails, heads, tails 1 .1250
Tails, tails, heads 1 .1250
Tails, tails, tails 0 .1250

.1250

0

.3750

1

.3750

2

.1250

3

Number of heads

1

2

3
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eq
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y

F I G U R E  7 . 2 A theoretical binomial distribution showing the number of
heads when three coins are tossed

4 The binomial distribution is discussed more fully by Howell (2010) and Pagano (2010, Chap. 9).

outcomes is equally likely, so the probability for any one of them is
There are three outcomes in which two heads appear, so the probability of two
heads is .1250 � .1250 � .1250 � .3750. The probability .3750 is the answer
to the first question. Based on Table 7.1, I constructed Figure 7.2, which is the
theoretical distribution of probabilities you need. You can use it to answer
problems 7.5 and 7.6, which follow.4

P R O B L E M S

7.5. If you toss three coins into the air, what is the probability of a success if
success is (a) either one head or two heads? (b) all heads or all tails?

7.6. If you throw the three coins into the air 16 times, how many times would
you expect to find zero heads?

1
8 � .1250.

08911_07_Ch07_124-145 pp2.qxd  12/15/09  7:53 PM  Page 128



Theoretical Distributions Including the Normal Distribution ■ 129

Comparison of Theoretical 
and Empirical Distributions

I have carefully called Figures 7.1 and 7.2 theoretical distributions. A theoretical
distribution may not reflect exactly what would happen if you drew cards from an
actual deck of playing cards or tossed quarters into the air. Actual results could be
influenced by lost or sticky cards, sleight of hand, uneven surfaces, or chance deviations.
Now let’s turn to the empirical question of what a frequency distribution of actual
draws from a deck of playing cards looks like. Figure 7.3 is a histogram based on 52
draws from a used deck shuffled once before each draw.

As you can see, Figure 7.3 is not exactly like Figure 7.1. In this case, the differences
between the two distributions are due to chance or worn cards and not to lost cards or
sleight of hand (at least not conscious sleight of hand). Of course, if I made 52 more
draws from the deck and constructed a new histogram, the picture would probably be
different from both Figures 7.3 and 7.1. However, if I continued, drawing 520 or 5200 or
52,000 times,5 and only chance was at work, the curve would be practically flat on the
top; that is, the empirical curve would look like the theoretical curve.

The major point here is that a theoretical curve represents the “best estimate” of
how the events would actually occur. As with all estimates, a theoretical curve may
produce predictions that vary from actual observations, but in the world of real events,
it is better than any other estimate.

In summary, then, a theoretical distribution is one based on logic and mathematics
rather than on observations. It shows you the probability of each event that is part 
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F I G U R E  7 . 3 Empirical frequency distribution of 52 draws from a deck of
playing cards

5 Statisticians use the phrase the long run to describe extensive sampling.
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of the distribution. When it is similar to an empirical distribution, the probability figures
obtained from the theoretical distribution are accurate predictors of actual events.

The Normal Distribution

One theoretical distribution that has proved to be extremely valuable is the
normal distribution. With contributions from Abraham de Moivre
(1667–1754) and Pierre-Simon Laplace (1749–1827), Carl Friedrich
Gauss (1777–1855) worked out the mathematics of the curve and used it
to assign precise probabilities to errors in astronomy observations (Wight
and Gable, 2005). Because the Gaussian curve was such an accurate

picture of the effects of random variation, early writers referred to the curve as the law
of error.6 At the end of the 19th century, Francis Galton called the curve the normal
distribution (David, 1995). Perhaps Galton chose the word normal based on the Latin
adjective normalis, which means built with a carpenter’s square (and therefore exactly
right). Certainly there were statisticians during the 19th century who mistakenly
believed that if data were collected without any mistakes, the form of the distribution
would be what is today called the normal distribution.

One of the early promoters of the normal curve was Adolphe Quetelet (KA-tle)
(1796–1874), a Belgian who showed that many social and biological measurements are
distributed normally. Quetelet, who knew about the “law of error” from his work as an
astronomer, presented tables showing the correspondence between measurements such
as height and chest size and the normal curve. His measure of starvation and obesity was
weight divided by height. This index was a precursor of today’s BMI (body mass index).
During the 19th century Quetelet was widely influential (Porter, 1986). Florence
Nightingale, his friend and a pioneer in using statistical analyses to improve health care,
said that Quetelet was “the founder of the most important science in the whole world.”
(See Maindonald and Richardson, 2004, who also include an interview with Nightingale
reconstructed from her writings.) Quetelet’s work also gave Francis Galton the idea that
characteristics we label “genius” could be measured, an idea that led to the concept of
correlation.7

Although many measurements are distributed approximately normally, it is not the
case that data “should” be distributed normally. This unwarranted conclusion has been
reached by some scientists in the past.

Finally, the theoretical normal curve has an important place in statistical theory.
This importance is quite separate from the fact that empirical frequency distributions
often correspond closely to the normal curve.

Description of the Normal Distribution

Figure 7.4 is a normal distribution. It is a bell-shaped, symmetrical, theoretical
distribution based on a mathematical formula rather than on empirical observations.
(Even so, if you peek ahead to Figures 7.7, 7.8, and 7.9, you will see that empirical

6 In statistics, error means random variation.
7 Quetelet qualifies as a famous person: A statue was erected in his honor in Brussels, he was the first foreign
member of the American Statistical Association, and the Belgian government commemorated the centennial of
his death with a postage stamp (1974). For a short intellectual biography of Quetelet, see Faber (2005).

normal distribution 
A bell-shaped, theoretical
distribution that predicts the
frequency of occurrence of
chance events.
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curves often look similar to this theoretical distribution.) When the theoretical curve is
drawn, the Y axis is sometimes omitted. On the X axis, z scores are used as the unit of
measurement for the standardized normal curve, where

where X � a raw score
m � the mean of the distribution
s � the standard deviation of the distribution

There are several other things to note about the normal distribution. The mean,
the median, and the mode are the same score—the score on the X axis where the
curve peaks. If a line is drawn from the peak to the mean score on the X axis, the area
under the curve to the left of the line is half the total area—50 percent—leaving half
the area to the right of the line. The tails of the curve are asymptotic to
the X axis; that is, they never actually cross the axis but continue in both
directions indefinitely, with the distance between the curve and the X
axis becoming less and less. Although, in theory, the curve never ends, it
is convenient to think of (and to draw) the curve as extending from �3s
to �3s. (The table for the normal curve in Appendix C, however,
covers the area from �4s to �4s.)

Another point about the normal distribution is that the two
inflection points in the curve are at exactly �1s and �1s. The
inflection points are where the curve is the steepest—that is, where the
curve changes from bending upward to bending over. (See the points
above �1s and �1s in Figure 7.4 and think of walking up, over, and
down a bell-shaped hill.)

To end this introductory section, here’s a caution about the word normal. The
antonym for normal is abnormal. Curves that are not normal distributions, however,
are definitely not abnormal. There is nothing uniquely desirable about the normal

z �
X � m

s

m 1s 2s 3s1s�2s�3s�

0 1 2 31�2�3�z scores

F I G U R E  7 . 4 The normal distribution

z score 
Score expressed in standard
deviation units.

asymptotic 
Line that continually approaches
but never reaches a specified limit.

inflection point 
Point on a curve that separates 
a concave upward arc from a
concave downward arc, or vice
versa.
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distribution. Many nonnormal distributions are also useful to statisticians. Figure 7.1
is an example. It isn’t a normal distribution, but it can be very useful. Figure 7.5
shows what numbers were picked when an instructor asked introductory psychology
students to pick a number between 1 and 10. Figure 7.5 is a bimodal distribution with
modes at 3 and 7. It isn’t a normal distribution, but it will prove useful later in
this book.

The Normal Distribution Table

The theoretical normal distribution is used to determine the probability of an event, just
as Figure 7.1 was. Figure 7.6 is a picture of the normal curve, showing the probabilities
associated with certain areas. The figure shows that the probability of an event with a
z score between 0 and 1.00 is .3413. For events with z scores of 1.00 or larger, the
probability is .1587. These probability figures were obtained from Table C in Appendix C.
Turn to Table C now and insert a bookmark there. Table C is arranged so that you can
begin with a z score (column A) and find the following:

1. The area between the mean and the z score (column B)
2. The area from the z score to infinity (�) (column C)

In column A find the z score of 1.00. The proportion of the curve between the mean
and a z score of 1.00 is .3413. The proportion beyond the z score of 1.00 is .1587.
Because the normal curve is symmetrical and because the area under the entire curve is
1.00, the sum of .3413 and .1587 will make sense to you. Also, because the curve is
symmetrical, these same proportions hold for z � �1.00. Thus, all the proportions in
Figure 7.6 were derived by finding the proportions associated with a z value of 1.00 in
Table C. Don’t just read this paragraph; do it. Understanding the normal curve now will
pay you dividends throughout the book.
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F I G U R E  7 . 5 Frequency distribution of choices of numbers between 
1 and 10
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Notice that the proportions in Table C are carried to four decimal places and that I
used all of them. This is customary practice in dealing with the normal curve because you
often want two decimal places when a proportion is converted to a percentage.

P R O B L E M S

7.7. In Chapter 5 you read of a professor who gave A’s to students with z scores
of �1.50 or higher.
a. What proportion of a class would be expected to make A’s?
b. What assumption must you make to find the proportion in part a?

7.8. What proportion of the normal distribution is found in the following areas?
a. Between the mean and z � .21
b. Beyond z � .55
c. Between the mean and z � �2.01

7.9. Is the distribution in Figure 7.5 theoretical or empirical?

As I’ve already mentioned, many empirical distributions are approximately
normally distributed. Figure 7.7 shows a set of 261 IQ scores, Figure 7.8 shows the
diameter of 199 ponderosa pine trees, and Figure 7.9 shows the hourly wage rates of
185,822 union truck drivers in the middle of the last century (1944). As you can see,
these distributions from diverse fields are similar to Figure 7.4, the theoretical normal
distribution. Please note that all of these empirical distributions are based on a “large”
number of observations. More than 100 observations are usually required for the curve
to fill out nicely.

In this section I made two statistical points: first that Table C can be used to
determine areas (proportions) of a normal distribution, and second that many empirical
distributions are approximately normally distributed.

.1587

.3413 .3413

.1587

m 1s 2s 3s1s�2s�3s�

0 1 2 31�2�3�z scores

From column C

From column B

From column A

F I G U R E  7 . 6 The normal distribution showing the probabilities of certain 
z scores
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Converting Empirical Distributions 
to the Standard Normal Distribution

The point of this section is that any normally distributed empirical distribution can be
made to correspond to the theoretical distribution in Table C by using z scores. If the
raw scores of an empirical distribution are converted to z scores, the mean of the z scores
will be 0 and the standard deviation will be 1. Thus, the parameters of the theoretical
normal distribution (which is also called the standardized normal distribution) are:
mean � 0, standard deviation � 1.
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F I G U R E  7 . 7 Frequency distribution of IQ scores of 261 fifth-grade students 
(unpublished data from J. O. Johnston)
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F I G U R E  7 . 8 Frequency distribution of diameters of 100-year-old ponderosa
pine trees on 1 acre, N � 199 (Forbs and Meyer, 1955)
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Using z scores calculated from the raw scores of an empirical distribution, you can
determine the probabilities of empirical events such as IQ scores, tree diameters, and
hourly wages. In fact, with z scores, you can find the probabilities of any empirical events
that are distributed normally.

Human beings vary from one another in many ways, one of which is cognitive
ability. Careful crafted tests such as Wechsler intelligence scales, the Stanford-Binet, and
the Wonderlic Personnel Test produce scores (commonly called IQ scores) that are
reliable measures of general cognitive ability. These tests have a mean of 100 and a
standard deviation of 15.8 The scores on IQ tests are normally distributed (Micceri, 1989).

Ryan (2008) provides some history and a summary of theories of intelligence,
pointing out that ancient Greeks and Chinese used measures of cognitive ability for
important personnel decisions. As you have already experienced, college admissions
and other academic decisions today are based on tests that measure cognitive ability.

P R O B L E M

7.10. Calculate the z scores for IQ scores of 
a. 55 b. 110 c. 103 d.100

Proportion of a Population with Scores 
of a Particular Size or Greater

Suppose you are faced with finding out what proportion of the population has an IQ of
120 or higher. Begin by sketching a normal curve (either in the margin or on a separate
paper). Note on the baseline the positions of IQs of 100 and 120. What is your eyeball
estimate of the proportion with IQs of 120 or higher?
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F I G U R E  7 . 9 Frequency distribution of hourly wage rates of union truck drivers
on July 1, 1944, N � 185,822 (U.S. Bureau of Labor Statistics, December 1944)

8 Older versions of Stanford-Binet tests had a standard deviation of 16. Also, as first noted by Flynn (1987),
the actual population mean IQ in many countries is well above 100.
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Look at Figure 7.10. It is a more formal version of your sketch, giving additional
IQ scores on the X axis. The proportion of the population with IQs of 120 or higher is
shaded. The z score that corresponds with an IQ of 120 is

Table C shows that the proportion beyond z � 1.33 is .0918. Thus, you expect
a proportion of .0918, or 9.18 percent, of the population to have an IQ of 120 or
higher. Because the size of an area under the curve is also a probability statement
about the events in that area, there are 9.18 chances in 100 that any randomly
selected person will have an IQ of 120 or above. Figure 7.11 shows the proportions
just determined.

z �
120 � 100

15
�

20

15
� 1.33

m 1s 2s 3s1s�2s�3s�

100 115 130 145857055
120

?

F I G U R E  7 . 1 0 Theoretical distribution of IQ scores

100 120

.4082 .0918

F I G U R E  7 . 1 1 Proportion of the population with an IQ of 120 or higher
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Table C gives the proportions of the normal curve for positive z scores only.
However, because the distribution is symmetrical, knowing that .0918 of the population
has an IQ of 120 or higher tells you that .0918 has an IQ of 80 or lower. An IQ of 80
has a z score of �1.33.

Questions of “How Many?”

You can answer questions of “how many” as well as questions of proportions using the
normal distribution. Suppose 500 first-graders are entering school. How many would be
expected to have IQs of 120 or higher?You just found that 9.18 percent of the population
would have IQs of 120 or higher. If the population is 500, then calculating 9.18 percent
of 500 gives you the number of children. Thus, (.0918)(500) � 45.9. So 46 of the 500
first-graders would be expected to have an IQ of 120 or higher.

There are 19 more normal curve problems for you to do in the rest of this chapter. Do
you want to maximize your chances of working every one of them correctly the first time?
Here’s how. For each problem, start by sketching a normal curve. Read the problem and
write the givens and the unknowns on your curve. Estimate the answer. Apply the z-score
formula. Compare your answer with your estimate; if they don’t agree, decide which is in
error and make any changes that are appropriate. Confirm your answer by checking the
answer in the back of the book. (I hope you decide to go for 19 out of 19!)

error detection
Sketching a normal curve is the best way to understand a problem and avoid errors.
Draw vertical lines above the scores you are interested in. Write in proportions.

P R O B L E M S

7.11. For many school systems, an IQ of 70 indicates that the child may be
eligible for special education. What proportion of the general population
has an IQ of 70 or less?

7.12. In a school district of 4000 students, how many would be expected to have
IQs of 70 or less?

7.13. What proportion of the population would be expected to have IQs of 
110 or higher?

7.14. Answer the following questions for 250 first-grade students.
a. How many would you expect to have IQs of 110 or higher?
b. How many would you expect to have IQs lower than 110?
c. How many would you expect to have IQs lower than 100?

Separating a Population into Two Proportions

Instead of starting with an IQ score and calculating proportions, you can work backward
and answer questions about scores if you are given proportions. For example, what
IQ score is required to be in the top 10 percent of the population?

My picture of this problem is shown as Figure 7.12. I began by sketching a more
or less bell-shaped curve and writing in the mean (100). Next, I separated the “top
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10 percent” portion with a vertical line. Because I need to find a score, I put a question
mark on the score axis.

With a picture in place, you can finish the problem. The next step is to look in Table
C under the column “area beyond z” for .1000. It is not there. You have a choice between
.0985 and .1003. Because .1003 is closer to the desired .1000, use it.9 The z score that
corresponds to a proportion of .1003 is 1.28. Now you have all the information you need
to solve for X.

To begin, solve the basic z-score formula for X:

Multiplying both sides by s produces

Adding m to both sides isolates X. Thus, when you need to find a score (X) associated
with a particular proportion of the normal curve, the formula is

Returning to the 10 percent problem and substituting numbers for the mean, the
z score, and the standard deviation, you get

Therefore, the minimum IQ score required to be in the top 10 percent of the population
is 119.

 � 119   1IQs are usually expressed as whole numbers. 2

 � 119.2 

 � 100 � 19.20 

X � 100 � 11.28 2 115 2  

X � m � 1z 2 1s 2

1z 2 1s 2 � X � m

z �
X � m

s

F I G U R E  7 . 1 2 Sketch of a theoretical distribution of IQ scores divided into an
upper 10 percent and a lower 90 percent

9 You might use interpolation (a method to determine an intermediate score) to find a more accurate z score
for a proportion of .1000. This extra precision (and labor) is unnecessary because the final result is rounded
to the nearest whole number. For IQ scores, the extra precision does not make any difference in the final
answer.
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μ 1σ 2σ 3σ1σ–2σ–3σ–

58 70 82 94463422 ?

.3333 .6667

Lower
third

F I G U R E  7 . 1 3 Distribution of scores on a math achievement exam

Here is a similar problem. Suppose a mathematics department wants to restrict the
remedial math course to those who really need it. The department has the scores on the
math achievement exam taken by entering freshmen for the past 10 years. The scores
on this exam are distributed in an approximately normal fashion, with m � 58 and s�
12. The department wants to make the remedial course available to those students
whose mathematical achievement places them in the bottom third of the freshman
class. The question is: What score will divide the lower third from the upper 
two-thirds? Sketch your picture of the problem and check it against Figure 7.13.

With a picture in place, the next step is to look in column C of Table C to find
.3333. Again, such a proportion is not listed. The nearest proportion is .3336, which has
a z value of �.43. (This time you are dealing with a z score below the mean, where all
z scores are negative.) Applying z � �.43, you get

Using the theoretical normal curve to establish a cutoff score is efficient. All you
need are the mean, the standard deviation, and confidence in your assumption that the
scores are distributed normally. The empirical alternative for the mathematics department
is to sort physically through all scores for the past 10 years, arrange them in a
frequency distribution, and calculate the score that separates the bottom one-third.

P R O B L E M S

7.15. Mensa is an organization of people who have high IQs. To be eligible 
for membership, a person must have an IQ “higher than 98 percent of the
population.” What IQ is required to qualify?

 � 52.84 � 53 points 

 � 58 � 5.16 

 � 58 � 1�.43 2 112 2  

X � m � 1z 2 1s 2  
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7.16. The mean height of American women aged 20–29 is 64.2 inches, with a
standard deviation of 2.5 inches (Statistical Abstract of the United States:
2009, 2008).
a. What height divides the tallest 5 percent of the population from the rest?
b. The minimum height required for women to join the U.S. Army is 

58 inches. What proportion of the population is excluded?
*7.17. The mean height of American men aged 20–29 is 70.0 inches, with a

standard deviation of 3.0 inches (Statistical Abstract of the United States:
2009, 2008).
a. The minimum height required for men to join the U.S. Army is 60

inches. What proportion of the population is excluded?
b. What proportion of the population is taller than Napoleon Bonaparte,

who was 5�2�?
7.18. The weight of many manufactured items is approximately normally 

distributed. For new U.S. pennies, the mean is 3.11 grams and the standard
deviation is 0.05 gram (Youden, 1962).
a. What proportion of all new pennies would you expect to weigh more

than 3.20 grams?
b. What weights separate the middle 80 percent of the pennies from the

lightest 10 percent and the heaviest 10 percent?

Proportion of a Population 
between Two Scores

Table C in Appendix C can also be used to determine the proportion of the population
between two scores. For example, IQ scores that fall in the range from 90 to 110 are
often labeled “average.” What proportion of the population falls in this range? Figure
7.14 is a picture of the problem.

11090

?

F I G U R E  7 . 1 4 The normal distribution showing the IQ scores that define the
“average” range
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In this problem you must add an area on the left of the mean to an area on the right
of the mean. First you need z scores that correspond to the IQ scores of 90 and 110:

The proportion of the distribution between the mean and z � .67 is .2486, and, of
course, the same proportion is between the mean and z � �.67. Therefore, (2)(.2486) �
.4972, or 49.72 percent. So approximately 50 percent of the population is classified as
“average,” using the “IQ � 90 to 110” definition.

What proportion of the population would be expected to have IQs between 
70 and 90? Figure 7.15 illustrates this question. There are two approaches to this 
problem. One is to find the area from 100 to 70 and then subtract the area from 
90 to 100. The other way is to find the area beyond 90 and subtract from it the area
beyond 70. I’ll illustrate with the second approach. The corresponding z scores are

The area beyond z � �.67 is .2514, and the area beyond z � �2.00 is .0228.
Subtracting the second proportion from the first, you find that .2286 of the population
has an IQ in the range of 70 to 90.

P R O B L E M S

*7.19. The distribution of 800 test scores in an introduction to psychology course
was approximately normal, with m � 35 and s � 6.
a. What proportion of the students had scores between 30 and 40?
b. What is the probability that a randomly selected student would score 

between 30 and 40?

z �
90 � 100

15
� �.67   and   z �

70 � 100

15
� �2.00

z �
110 � 100

15
�

10

15
� .67

z �
90 � 100

15
�

�10

15
� �.67

90

?

70

F I G U R E  7 . 1 5 The normal distribution illustrating the area bounded 
by IQ scores of 90 and 70
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7.20. Now that you know the proportion of students with scores between 30 and
40, would you expect to find the same proportion between scores of 20 and
30? If so, why? If not, why not?

7.21. Calculate the proportion of scores between 20 and 30. Be careful with this
one; drawing a picture is especially advised.

7.22. How many of the 800 students would be expected to have scores between 
20 and 30?

Extreme Scores in a Population

The extreme scores in a distribution are important in many statistical applications. Most
often extreme scores in either direction are of interest. For example, many applications
focus on the extreme 5 percent of the distribution. Thus, the upper percent and the lower

percent receive attention. Turn to Table C in Appendix C and find the z score that
separates the extreme percent of the curve from the rest. (Of course, the z score associated
with the lowest percent of the curve will have a negative value.) Please memorize the
z score you just looked up. This number will turn up many times in future chapters.

Here is an illustration. What two heart rates (beats per minute) separate the middle
95 percent of the population from the extreme 5 percent? Figure 7.16 is my sketch of
the problem. According to studies summarized by Milnor (1990), the mean heart rate
for humans is 71 beats per minute (bpm) and the standard deviation is 9 bpm. To find
the two scores, use the formula X � m� (z)(s). Using the values given, plus the z score
you memorized, you get the following:

Upper score Lower score

X � m � (z)(s) X � m � (z)(s)

� 71 � (1.96)(9) � 71 � (1.96)(9)

� 71 � 17.6 � 71 � 17.6

� 88.6, or 89 bpm � 53.4, or 53 bpm

21
2

21
2

21
2

21
2

F I G U R E  7 . 1 6 Sketch showing the separation of the extreme 5 percent of the
population from the rest
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P R O B L E M S

7.23. What two IQ scores separate the extreme 1 percent of the population from
the middle 99 percent? Set this problem up using the “extreme 5 percent”
example as a model.

7.24. What is the probability that a randomly selected person has an IQ higher
than 139 or lower than 61?

7.25. Look at Figure 7.9 and suppose that the union leadership decided to ask for
$0.85 per hour as a minimum wage. For those 185,822 workers, the mean
was $0.99 with a standard deviation of $0.17. If $0.85 per hour was
established as a minimum, how many workers would get raises?

7.26. Look at Figure 7.8 and suppose that a timber company decided to harvest all
trees 8 inches DBH (diameter breast height) or larger from a 100-acre tract.
On a 1-acre tract there were 199 trees with m� 13.68 and s � 4.83. How
many trees would be expected to be harvested from 100 acres?

Comparison of Theoretical and Empirical Answers

You have been using the theoretical normal distribution to find probabilities and to
calculate scores and proportions of IQs, wages, heart rates, and other measures. Earlier
in this chapter, I claimed that if the empirical observations are distributed like a normal
curve, accurate predictions can be made. A reasonable question is: How accurate are
all these predictions I’ve just made? A reasonable answer can be fashioned from a
comparison of the predicted proportions (from the theoretical curve) and the actual
proportions (computed from empirical data). Figure 7.7 is based on 261 IQ scores of
fifth-grade public school students. You worked through examples that produced
proportions of people with IQs higher than 120, lower than 90, and between 90 and
110. These actual proportions can be compared with those predicted from the normal
distribution. Table 7.2 shows these comparisons.

As you can see by examining the Difference column of Table 7.2, the accuracy of the
predictions ranges from excellent to not so good. Some of this variation can be explained
by the fact that the mean IQ of the fifth-grade students was 101 and the standard deviation
13.4. Both the higher mean (101, compared with 100 for the normal curve) and the lower
standard deviation (13.4, compared with 15) are due to the systematic exclusion of
children with very low IQ scores from regular public schools. Thus, the actual proportion

clue to the future
The idea of finding scores and proportions that are extreme in either direction will
come up again after Chapter 8. In particular, the extreme 5 percent and the extreme
1 percent are important.

Thus, 95 percent of the population is expected to have pulse rates between 53 and
89, which leaves 5 percent of the population above 89 or below 53. 
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of students with IQs lower than 90 is less than predicted, which is because our school
sample is not representative of all 10- to 11-year-old children.

Although IQ scores are distributed approximately normally, many other scores are
not. Karl Pearson recognized this, as have others. Theodore Micceri (1989) made this
point again in an article titled “The Unicorn, the Normal Curve, and Other Improbable
Creatures.” Caution is always in order when you are using theoretical distributions to
make predictions about empirical events. However, don’t let undue caution prevent you
from getting the additional understanding that statistics offers.

Other Theoretical Distributions

In this chapter you learned a little about rectangular distributions and binomial
distributions and quite a bit about normal distributions. Later in this book you will
encounter other distributions, such as the t distribution, the F distribution, and the chi
square distribution. (After all, this is a book about tales of distributions.) In addition to
the distributions in this book, mathematical statisticians have identified others, all of
which are useful in particular circumstances. Some have interesting names such as the
Poisson distribution; others have complicated names such as the hypergeometric
distribution. In every case, however, a distribution is used because it provides
reasonably accurate probabilities about particular events.

P R O B L E M S

7.27. For human infants born weighing 5.5 pounds or more, the mean gestation
period is 268 days, which is just less than 9 months. The standard deviation
is 14 days (McKeown and Gibson, 1951). What proportion of the gestation
periods are expected to last 10 months or longer (300 days)?

7.28. The height of residential door openings in the United States is 6�8�. Use the
information in problem 7.17 to determine the number of men among 10,000
who have to duck to enter a room.

7.29. An imaginative anthropologist measured the stature of 100 hobbits (using
the proper English measure of inches) and found these values:

�X � 3600 �X2 � 130,000

Assume that the heights of hobbits are normally distributed. Find m and s
and answer the following questions.

TABLE 7.2 Comparison of predicted and actual proportions

Predicted from Calculated from
IQs normal curve actual data Difference

Higher than 120 .0918 .0920 .0002
Lower than 90 .2514 .2069 .0445
Between 90 and 110 .4972 .5249 .0277
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a. The Bilbo Baggins Award for Adventure is 32 inches tall. What
proportion of the hobbit population is taller than the award?

b. Three hundred hobbits entered a cave that had an entrance 39 inches
high. The orcs chased them out. How many hobbits could exit without
ducking?

c. Gandalf is 46 inches tall. What is the probability that he is a hobbit?
7.30. Please review the objectives at the beginning of the chapter. Can you do

what is asked?

ADDITIONAL HELP FOR CHAPTER 7

Visit cengage.com/psychology/spatz. At the Student Companion Site, you’ll find
multiple-choice tutorial quizzes, flashcards with definitions and workshops.
For this chapter there is a Statistical Workshop on z Scores. 

KEY TERMS

Asymptotic (p. 131)
Binomial distribution (p. 127)
Empirical distribution (p. 124)
Extreme scores (p. 142)
Inflection point (p. 131)

Normal distribution (p. 130)
Probability (p. 125)
Rectangular distribution (p. 126)
Theoretical distribution (p. 125)
z score (p. 131)
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Samples, Sampling
Distributions, and
Confidence Intervals

C H A P T E R

8

O B J E C T I V E S  F O R  C H A P T E R  8

After studying the text and working the problems, you should be able to:

1. Define random sample and obtain one if you are given a population of data

2. Define and identify biased sampling methods

3. Distinguish between random samples and the more common research
samples

4. Define sampling distribution and sampling distribution of the mean

5. Discuss the Central Limit Theorem

6. Calculate a standard error of the mean either from s and N or from
sample data

7. Describe the effect of N on the standard error of the mean

8. Use the z-score formula to find the probability that a sample mean or 
a sample mean more extreme was drawn from a population with 
a specified mean

9. Describe the t distribution

10. Explain when to use the t distribution rather than the normal distribution

11. Calculate, interpret, and graphically display confidence intervals about
sample means

PLEASE BE ESPECIALLY attentive to SAMPLING DISTRIBUTIONS, a concept 
that is at the heart of inferential statistics. The subtitle of this book, “Tales of
Distributions,” is a reference to sampling distributions; every chapter after this one is
about some kind of sampling distribution. Thus, you might consider this paragraph to
be a SUPERCLUE to the future.

Here is a progression of ideas that lead to what a sampling distribution is and how it
is used. In Chapter 2 you studied frequency distributions of scores. If those scores are

146

08911_08_Ch08_146-171 pp2.qxd  12/15/09  7:38 AM  Page 146



Samples, Sampling Distributions, and Confidence Intervals n 147

distributed normally, you can use z scores to determine the probability of the
occurrence of any particular score (Chapter 7). Now imagine a frequency distribution,
not of scores but of statistics, each calculated from separate samples. This distribution
has a form and if it is normal, you could use z scores to determine the probability of the
occurrence of any particular value of the statistic. A distribution of sample statistics is
called a sampling distribution.

As I’ve mentioned several times, statistical techniques can be categorized as
descriptive and inferential. This is the first chapter that is entirely about inferential
statistics, which, as you probably recall, are methods that take chance factors into
account when samples are used to reach conclusions about populations. To take chance
factors into account, you must understand sampling distributions and what they tell
you. As for samples, I’ll describe methods of obtaining them and some of the pitfalls.
Thus, this chapter covers topics that are central to inferential statistics.

Here is a story with an inferential statistics problem embedded in it. The problem
can be solved using techniques presented in this chapter.

Late one afternoon, two students were discussing the average family income of students
on their campus.

“Well, the average family income for college students is $77,000, nationwide,” said the
junior, looking up from a book (Pryor et al., 2008). “I’m sure the mean for this campus is at
least that much.”

“I don’t think so,” the sophomore replied. “I know lots of students who have only their
own resources or come from pretty poor families. I’ll bet you a dollar the mean for students
here at State U. is below the national average.”

“You’re on,” grinned the junior.
Together the two went out with a pencil and pad and asked ten students how much their

family income was. The mean of these ten answers was $69,000.
Now the sophomore grinned. “I told you so; the mean here is $8000 less than the

national average.”
Disappointed, the junior immediately began to review their procedures. Rather quickly,

a light went on. “Actually, this mean of $69,000 is meaningless—here’s why. Those ten
students aren’t representative of the whole student body. They are late-afternoon students,
and several of them support themselves with temporary jobs while they go to school. Most
students are supported from home by parents who have permanent and better-paying jobs.
Our sample was no good. We need results from the whole campus or at least from a
representative sample.”

To get the results from the whole student body, the two went the next day to the director
of the financial aid office, who told them that family incomes for the student body are not
public information. Sampling, therefore, was necessary.

After discussing their problem, the two students sought the advice of a friendly statistics
professor. The professor explained how to obtain a random sample of students and
suggested that 40 replies would be a practical sample size. Forty students, selected
randomly, were identified. After three days of phone calls, visits, and callbacks, the 40
responses produced a mean of $73,900, or $3100 less than the national average.

“Pay,” demanded the sophomore.
“OK, OK, . . . here!”
Later, the junior began to think. What about another random sample and its mean? It

would be different and it could be higher. Maybe the mean of $73,900 was just bad luck,
just a chance event.

Shortly afterward, the junior confronted the sophomore with thoughts about repeated
sampling. “How do we know that the random sample we got told us the truth about the
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population? Like, maybe the mean for the entire student body is $77,000. Maybe a sample
with a mean of $73,900 would occur just by chance fairly often. I wonder what the chances
are of getting a sample mean of $73,900 from a population with a mean of $77,000?”

“Well, that statistics professor told us that if we had any more questions to come back
and get an explanation of sampling distributions. In the meantime, why don’t I just apply
my winnings toward a couple of ice cream cones.”

The two statistical points of the story are that random samples are good (the junior
paid off only after the results were based on a random sample) and that uncertainty
about random samples can be reduced if you know about sampling distributions.

This chapter is about getting a sample, drawing a conclusion about the population
the sample came from, and knowing how much faith to put in your conclusion. Of
course, there is some peril in this. Even the best methods of sampling produce variable
results. How can you be sure that the sample you use will lead to a correct decision
about its population? Unfortunately, you cannot be absolutely sure.

To use a sample is to agree to accept some uncertainty about the results.

Fortunately, a sampling distribution allows you to measure the uncertainty. On the
one hand, if a great deal of uncertainty exists, the sensible thing to do is to say you are
uncertain. On the other hand, if there is very little uncertainty, the sensible thing to do
is to reach a conclusion about the population, even though there is a small risk of being
wrong. Reread this paragraph; it is important.

In this chapter, the first three sections are about samples. Following that, sampling
distributions are explained and one method of drawing a conclusion about a
population mean is presented. In the final sections, I will explain the t distribution,
which is a sampling distribution. The t distribution is used to calculate a confidence
interval, a statistic that provides information about a population mean.

Random Samples

When it comes to finding out about a population, the best sample is a
random sample. In statistics, random refers to the method used to obtain
the sample. Any method that allows every possible sample of size N an
equal chance to be selected produces a random sample. Random does not
mean haphazard or unplanned. To obtain a random sample, you must do
the following:

1. Define the population. That is, explain what numbers (scores) are in the
population.

2. Identify every member of the population.1

3. Select numbers (scores) in such a way that every sample has an equal
probability of being selected.

To illustrate, I will use the population of scores in Table 8.1, for which m � 9 and
s � 2. Using these 20 scores allows us to satisfy requirements 1 and 2. As for
requirement 3, I’ll describe two methods of selecting numbers so that all the possible
samples have an equal probability of being selected. For this illustration, N � 8.

148 n Chapter 8

1 Technically, the population consists of the measurements of the members and not the members themselves.

random sample
Subset of a population chosen so
that all samples of the specified
size have an equal probability of
being selected.
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One method of getting a random sample is to write each number in the population
on a slip of paper, put the 20 slips in a box, jumble them around, and draw out 8 slips.
The numbers on the slips are a random sample. This method works fine if the slips are
all the same size, they are jumbled thoroughly, and the population has only a few
members. If the population is large, this method is tedious.

A second (usually easier) method of selecting a random sample is to use a table of
random numbers, such as Table B in Appendix C. To use the table, you must first assign
an identifying number to each of the scores in the population. My version is Table 8.2.
The population scores do not have to be arranged in any order. Each score in the
population is identified by a two-digit number from 01 to 20.

Now turn to Appendix C, Table B. Pick an intersection of a row and a column. Any
haphazard method will work; close your eyes and put your finger on a spot. Suppose you
found yourself at row 80, columns 15–19 (page 388). Find that place. Reading
horizontally, the digits are 82279.You need only two digits to identify any member of your
population, so you might as well use the first two (columns 15 and 16), which give you 8
and 2 (82). Unfortunately, 82 is larger than any of the identifying numbers, so it doesn’t
match a score in the population, but at least you are started. From this point you can read
two-digit numbers in any direction—up, down, or sideways—but the decision should be
made before you look at the numbers. If you decide to read down, you find 04. The
identifying number 04 corresponds to a score of 13 in Table 8.2, so 13 becomes the first
number in the sample. The next identifying number is 34, which again does not
correspond to a population score. Indeed, the next ten numbers are too large. The next
usable ID number is 16, which places an 8 in the sample. Continuing the search, you reach
the bottom of the table. At this point you can go in any direction; I moved to the right and
started back up the two outside columns (18 and 19). The first number, 83, was too large,
but the next identifying number, 06, corresponded to an 8, which went into the sample.

TABLE 8.1 20 scores used as a population; M � 9, S � 2

9 7 11 13 10 8 10 6 8 8
10 12 9 10 5 8 9 6 10 11

TABLE 8.2 Assignment of identifying numbers 
to a population of scores

ID ID
number Score number Score

01 9 11 10
02 7 12 12
03 11 13 9
04 13 14 10
05 10 15 5
06 8 16 8
07 10 17 9
08 6 18 6
09 8 19 10
10 8 20 11
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Next, a 15 and a 20 identified population scores of 5 and 11 for the sample. The next
number that is between 01 and 20 is 15, but it has already been used, so it should be
ignored. The identifying numbers 18, 02, and 14 match scores in the population of 6, 7, and
10. Thus, the random sample of eight consists of these scores: 13, 8, 8, 5, 11, 6, 7, and 10.

P R O B L E M

*8.1. A random sample is supposed to yield a statistic similar to the population
parameter. Find the mean of the random sample of eight numbers selected in
the text.

What is this table of random numbers? In Table B (and in any set of random
numbers), the probability of occurrence of any digit from 0 to 9 at any place in the
table is the same: 0.10. Thus, you are just as likely to find 000 as 123 or 397.
Incidentally, you cannot generate random numbers out of your head. Certain
sequences begin to recur, and (unless warned) you will not include enough repetitions
like 000 and 555. If warned, you produce too many.

Here are some suggestions for using a table of random numbers efficiently.

1. In the list of population scores and their ID numbers, check off the ID number
when it is chosen for the sample. This helps to prevent duplications.

2. If the population is large (more than 50), it is more efficient to get all the
identifying numbers from the table first. As you select them, put them in some
rough order to help prevent duplications. After you have all the identifying
numbers, go to the population to select the sample.

3. If the population has exactly 100 members, let 00 be the identifying number
for 100. By doing this, you can use two-digit identifying numbers, each one of
which matches a population score. This same technique works for populations
of 10 or 1000 members.

Random sampling has two uses. (1) It is the best method of sampling if you want
to generalize to a population. The two sections that follow, biased samples and research
samples, both address the issue of generalizing from the sample to the population.
(2) As an entirely separate use, random sampling is the mathematical basis for creating
sampling distributions, which are central to inferential statistics.

P R O B L E M S

8.2. Draw a random sample of 10 from the population in Table 8.1. 
Calculate X�.

8.3. Draw a random sample with N � 12 from the following scores:

76 47 81 70 67 80 64 57 76 81

68 76 79 50 89 42 67 77 80 71

91 72 64 59 76 83 72 63 69

78 90 46 61 74 74 74 69 83
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Biased Samples

A biased sample is one obtained by a method that systematically
underselects or overselects from certain groups in the population. Thus,
with a biased sampling technique, every sample of a given size does not
have an equal opportunity of being selected. With biased sampling
techniques, you are much more likely to get an unrepresentative sample
than you are with random sampling.

At times, conclusions based on mailed questionnaires are suspect because the
sampling methods were biased. Usually an investigator defines the population,
identifies each member, and mails the questionnaire to a randomly selected sample.
Suppose that 60 percent of the recipients respond. Can valid results for the population
be based on the questionnaires returned? Probably not. There is often good reason to
suspect that the 60 percent who responded are different from the 40 percent who did
not. Thus, although the population is made up of both kinds of people, the sample
reflects only one kind. Therefore, the sample is biased. The probability of bias is
particularly high if the questionnaire elicits feelings of pride or despair or disgust or
apathy in some of the recipients.

A famous case of a biased sample occurred in a poll that was to predict the results
of the 1936 election for president of the United States. The Literary Digest (a popular
magazine) mailed 10 million “ballots” to those on its master mailing list, a list of more
than 10 million people compiled from “all telephone books in the U.S., rosters of clubs,
lists of registered voters,” and other sources. More than 2 million “ballots” were
returned and the prediction was clear: Alf Landon by a landslide over Franklin
Roosevelt. As you may have learned, the actual results were just the opposite;
Roosevelt got 61 percent of the vote.

From the 10 million who had a chance to express a preference, 2 million very
interested persons had selected themselves. This 2 million had more than its proportional
share of those who were disgruntled with Roosevelt’s depression-era programs. The
2 million ballots were a biased sample; the results were not representative of the
population. In fairness, it should be noted that the Literary Digest used a similar master
list in 1932 and predicted the popular vote within 1 percentage point.2

Obviously, researchers want to avoid biased samples; random sampling seems like
the appropriate solution. The problem, however, is step 2 on page 148. For almost all
research problems, it is impossible to identify every member of the population.

What do practical researchers do when they cannot obtain a random sample?

Research Samples

Fortunately, the problem I have posed is not a serious one. For researchers whose
immediate goal is to generalize their results directly to a population, techniques besides
random sampling produce results that mirror the population in question. Such
nonrandom (though carefully controlled) samples are used by a wide variety of people
and organizations. The public opinion polls reported by Gallup, Lou Harris, and the

2 See the Literary Digest, August 22, 1936, and November 14, 1936.

biased sample
Sample selected in such a way
that not all samples from the
population have an equal chance
of being chosen.
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Roper organization are based on carefully selected nonrandom samples. ASCAP, the
musicians’ union, samples the broadcasts of the 12,000 U.S. radio stations and then
distributes royalties to members based on sample results. Inventory procedures in large
retail organizations rely on sampling. What you know about your blood is based on an
analysis of a small sample. (Thank goodness!) And what you think about your friends
and family is based on just a sample of their behavior.

Also, the immediate goal of most researchers is not to generalize to a larger
population but to determine whether two (or more) treatments produce different
outcomes. Their experiments seldom, if ever, involve random samples. Instead, they use
convenient, practical samples. If the researchers find a difference, they conduct the
experiment again, perhaps varying the independent or dependent variable. If several
similar experiments (often called replications) produce a coherent pattern of differences,
the researchers and their colleagues conclude that the differences are general, even
though no random samples were used at any time. Most of the time, they are correct. For
these researchers, the representativeness of their samples is not of immediate concern.

P R O B L E M S

8.4. Suppose a large number of questionnaires about educational accomplishments
are mailed out. Do you think that some recipients will be more likely to
return the questionnaire than others? Which ones? If the sample is biased,
will it overestimate or underestimate the educational accomplishments of
the population?

8.5. Sometimes newspapers sample opinions of the local population by printing
a “ballot” and asking readers to mark it and mail it in. Evaluate this
sampling technique.

8.6. Consider as a population the students at State U. whose names are listed 
alphabetically in the student directory. Are the following samples biased 
or random?
a. Every fifth name on the list
b. Every member of the junior class
c. 150 names drawn from a box that contains all the names in the directory
d. One name chosen at random from the directory
e. A random sample from those taking the required English course

8.7. Explain why researchers do not use random samples. How are they able to
generalize their results?

Sampling Distributions

A sampling distribution is always the sampling distribution of a particular
statistic. Thus, there is a sampling distribution of the mean, a sampling
distribution of the variance, a sampling distribution of the range, and so
forth. Here is a description of an empirical sampling distribution of a
statistic.

Think about many random samples (each with the same N) all drawn
from the same population. The same statistic (for example, the mean) is calculated for
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sampling distribution
Theoretical distribution of a
statistic based on all possible
random samples drawn from 
the same population.
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each sample. All of these statistics are arranged into a frequency distribution and graphed
as a frequency polygon. The mean and the standard deviation of the frequency
distribution are calculated. Now, imagine that the frequency polygon is a normal curve. If
the distribution is normal and you have its mean and standard deviation, you can calculate
z scores and find probabilities associated with particular values of the statistic.

The sampling distributions that statisticians and textbooks use are theoretical
distributions derived from formulas rather than empirical ones. These theoretical
distributions are similar, though, because they give you the probability associated with
particular values of a statistic.

Sampling distributions are so important that statisticians have special names for
their mean and standard deviation. The mean of a sampling distribution is called the
expected value and the standard deviation is called the standard error.3 I will not have
much more to say about expected value, but if you continue your study of statistics, you
will encounter it. The standard error, however, will be used many times in
this text.

To conclude, a sampling distribution is the theoretical distribution of
a statistic based on random samples of size N. Sampling distributions
are used by all who use inferential statistics, regardless of the nature of
their research samples. If you want to see what different sampling
distributions look like, peek ahead to Figure 8.3, Figure 8.5, Figure 11.4,
and Figure 14.1.

3 In this and in other statistical contexts, the term error means deviations or random variation. The word error
is left over from the 19th century, when random variation was referred to as the “normal law of error.” Of
course, error sometimes means mistake, so you will have to be alert to the context when this word appears
(or you may make an error).

clue to the future
In inferential statistics, decisions are made after comparing actual research outcomes
to outcomes predicted by a sampling distribution.

The Sampling Distribution of the Mean

Let’s turn to a particular sampling distribution, the sampling distribution of the mean.
Remember the population of 20 scores that you sampled from earlier in this chapter?
For problem 8.2, you drew a sample of 10 and calculated the mean. For almost every
sample in your class, the mean was different. Each, however, was an estimate of the
population mean.

My example problem in the section on random sampling used N � 8; my one
sample produced a mean of 8.50. Now, think about drawing 200 samples with N � 8
from the population of Table 8.1 scores, calculating the 200 means, and constructing a
frequency polygon. You may already be thinking, “That’s a job for a computer.” Right.
The result is Figure 8.1.

Look at Figure 8.1. Notice how nicely centered the sampling distribution is about
the population mean of 9.00. Most of the sample means (X�’s) are fairly close to the
population parameter, m.

expected value
The mean value of a random
variable over an infinite number
of samplings.

standard error
Standard deviation of a sampling
distribution.
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The characteristics of a sampling distribution of the mean are:

1. Every sample is drawn randomly from a specified population.
2. The sample size (N ) is the same for all samples.
3. The number of samples is very large.
4. The mean X� is calculated for each sample.4

5. The sample means are arranged into a frequency distribution.

I hope that when you looked at Figure 8.1, you were at least suspicious that it might be
the ubiquitous normal curve. It is. Now you are in a position that educated people often find
themselves: What you learned in the past, which was how to use the normal curve for scores
(X), can be used for a different problem—describing the relationship between X� andm.

Of course, the normal curve is a theoretical curve, and I presented you with an
empirical curve that only appears normal. I would like to let you prove for yourself that
the form of a sampling distribution of the mean is a normal curve, but, unfortunately,
that requires mathematical sophistication beyond that assumed for this course. So I will
resort to a time-honored teaching technique—an appeal to authority.

Central Limit Theorem

The authority I appeal to is mathematical statistics, which proved a
theorem called the Central Limit Theorem:

For any population of scores, regardless of form, the sampling distribution of the
mean approaches a normal distribution as N (sample size) gets larger. Furthermore,

the sampling distribution of the mean has a mean (the expected value) equal to m and a
standard deviation (the standard error) equal to s>1N.
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9.38 9.75 10.13 10.50

F I G U R E  8 . 1 Empirical sampling distribution of 200 means from the
population in Table 8.1. For each sample mean, N � 8.

4 To create a sampling distribution of a statistic other than the mean, substitute that statistic at this step.

Central Limit Theorem
The sampling distribution of the
mean approaches a normal curve
as N gets larger.
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This appeal to authority resulted in a lot of information about the sampling distribution
of the mean. To put this information into list form:

1. The sampling distribution of the mean approaches a normal curve as N
increases.

2. For a population with a mean m and a standard deviation s,
a. The mean of the sampling distribution (expected value) � m.
b. The standard deviation of the sampling distribution (standard error) �

.

Here are two final points of terminology:

1. The expected value of the mean is symbolized E(X�).
2. The standard error of the mean is symbolized .

The most remarkable thing about the Central Limit Theorem is that it works
regardless of the form of the original distribution. Figure 8.2 shows two populations
and three sampling distributions from each population. On the left is a rectangular
distribution of playing cards (from Figure 7.1) and on the right is the bimodal
distribution of number choices (from Figure 7.5). Three sampling distributions of
the mean (for N � 2, 8, and 30) are below their populations. The take-home
message of the Central Limit Theorem is that, regardless of the form of a distribution,
the form of the sampling distribution of the mean approaches normal if N is large
enough.

How large must N be for the sampling distribution of the mean to be normal? The
traditional answer is 30 or more. However, if the population itself is symmetrical, then
sampling distributions of the mean will be normal with N’s much smaller than 30. 
In contrast, if the population is severely skewed, N’s of more than 30 will be required.

Finally, the Central Limit Theorem does not apply to all sample statistics.
Sampling distributions of the median, standard deviation, variance, and correlation
coefficient are not normal distributions. The Central Limit Theorem does apply to the
mean, which is a most important and popular statistic. (In a frequency count of all
statistics, the mean is the mode.)

P R O B L E M S

8.8. The standard deviation of a sampling distribution is called the _________
and the mean is called the __________.

8.9. a. Write the steps needed to construct an empirical sampling distribution of
the range.

b. What is the name of the standard deviation of this sampling 
distribution?

c. Think about the expected value of the range compared to the 
population range. Write a statement about the relationship.

sX�

s

2N
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8.10. Describe the Central Limit Theorem in your own words.
8.11. In Chapter 6 you learned how to use a regression equation to predict a score

(Ŷ ) if you are given an X score. Ŷ is a statistic, so naturally it has a sampling
distribution with its own standard error. What can you conclude if the
standard error is very small? Very large?
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F I G U R E  8 . 2 Populations of playing cards and number choices. Sampling
distributions from each population with sample sizes of N � 2, N � 8, and 
N � 30.
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Calculating the Standard Error of the Mean

Calculating the standard error of the mean is fairly simple. I will illustrate with an
example that you will use again. For the population of scores in Table 8.1, s is 2.
For a sample size of eight, the standard error of the mean is

The Effect of Sample Size on the Standard Error 
of the Mean

As you can see by looking at the formula for the standard error of the mean,
becomes smaller as N gets larger. Figure 8.3 shows four sampling distributions of the
mean, all based on the population of numbers in Table 8.1. The sample sizes are 2, 4, 8,
and 16. A sample mean of 10 is included in all four figures as a reference point. Notice
that as N increases, a sample mean of 10 becomes less and less likely. The importance
of sample size will become more apparent as your study progresses.

Determining Probabilities About Sample Means

To summarize where we are at this point: Mathematical statisticians have produced a
mathematical invention, the sampling distribution. One particular sampling distribution,
the sampling distribution of the mean, is a normal curve, they tell us. Fortunately,
having worked problems in Chapter 7 about normally distributed scores, we are in a
position to check this claim about normally distributed means.

One check is fairly straightforward, given that I already have the 200 sample
means from the population in Table 8.1. To make this check, I will determine the
proportion of sample means that are above a specified point, using the theoretical
normal curve (Table C in Appendix C). I can then compare this theoretical proportion
to the proportion of the 200 sample means that are actually above the specified point.
If the two numbers are similar, I have evidence that the normal curve can be used to
answer questions about sample means.

The z score for a sample mean drawn from a sampling distribution with mean m
and standard error is

Any sample mean will do for this comparison; I will use 10.0. The mean of the
population is 9.0 and the standard error (for N � 8) is 0.707. Thus,

By consulting Table C, I see that the proportion of the curve above a z value of 1.41 is
.0793. Figure 8.4 shows the sampling distribution of the mean for N � 8. Sample
means are on the horizontal axis; the .0793 area above X� � 10 is shaded.

z �
X� � m

s
X�

�
10.0 � 9.0

0.707
� 1.41

z �
X� � m

s
X�

s>1N

sX�

�
2

18
�

2

2.828
� 0.707s

X�
�
s

1N
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21 3–1–2–3

.2389

.1587

N � 2, 
s

X
  � 1.41

N � 4, 
s

X
  � 1.00

21 3–1–2–3

.0793

N � 8, 
s

X
  � 0.71

21

9 10
m

3–1–2–3

.0228

N � 16, 
s

X
  � 0.50

F I G U R E  8 . 3 Sampling distributions of the mean for four different sample
sizes. All samples are drawn from the population in Table 8.1. Note how a sample
mean of 10 becomes rarer and rarer as sX� becomes smaller.
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How accurate is this theoretical prediction of .0793? When I looked at the
distribution of sample means that I used to construct Figure 8.1, I found that 13 of the
200 had means of 10 or more, a proportion of .0650. Thus, the theoretical prediction is
off by less than percent. That’s not bad; the normal curve model passes the test.5

P R O B L E M S

*8.12. When the population parameters are known, the standard error of the mean
is The following table gives four s values and four N values.
For each combination, calculate and enter it in the table.sX�

sX� � s>1N.

11
2

5 As you might suspect, the validity of the normal curve model for the sampling distribution of the mean has
been established with a mathematical proof rather than an empirical check.

10.49.78.37.66.9

.0793

9.0
10

Sample means

11.1

F I G U R E  8 . 4 Theoretical sampling distribution of the mean from the
population in Table 8.1. For each sample, N � 8.

s

N 1 2 4 8

1
4

16
64

8.13. On the basis of the table you constructed in problem 8.12, write a precise
verbal statement about the relationship between and N.

8.14. To reduce to one-fourth its size, you must increase N by how much?

8.15. For the population in Table 8.1, and for samples with N � 8, what
proportion of the sample means will be 8.5 or less?

8.16. For the population in Table 8.1, and for samples with N � 16, what
proportion of the sample means will be 8.5 or less? 10 or greater?

sX�

sX�

08911_08_Ch08_146-171 pp2.qxd  12/15/09  7:38 AM  Page 159



8.17. As you know from the previous chapter, for IQs, m � 100 and s � 15.
What is the probability that a first-grade classroom of 25 students who 
are chosen randomly from the population will have a mean IQ of 105 or
greater? 90 or less?

8.18. Now you are in a position to return to the story of the two students at the 
beginning of this chapter. Find, for the junior, the probability that a sample
of 40 from a population with m � $77,000 and s � $20,000 would produce
a mean of $73,900 or less. Write an interpretation.

Using your answer to problem 8.18, the junior might say to the sophomore,

“ . . . and so, the mean of $73,900 doesn’t lead to a clear-cut decision about the population.
The standard deviation is large, and with N � 40, samples can bounce all over the place.
Why, if the real mean for our campus is the same as the $77,000 national average, we would
expect about one-sixth of all our random samples of 40 students to have means of $73,900
or less.”

“Yeah,” said the sophomore, “but that if is a big one. What if the campus mean is really
$73,900? Then the sample we got was right on the nose. After all, a sample mean is an
unbiased estimator of the population parameter.”

“I see your point. And I see mine, too. It seems like either of us could be correct. That
leaves me uncertain about the real campus parameter.”

“Me, too. Let’s go get another ice cream cone.”

Not all statistical stories end with so much uncertainty (or calories). However, I
said that one of the advantages of random sampling is that you can measure the
uncertainty. You measured it, and there was a lot. Remember, if you agree to use a
sample, you agree to accept some uncertainty about the results.

Constructing a Sampling Distribution 
When S Is Not Available

Let’s review what you just did. You answered some questions about sample means by
relying on a table of the normal curve. Your justification for saying that sample means
are distributed normally was the Central Limit Theorem. The Central Limit Theorem
always applies when the sample size is adequate and you know s, both of which were
true for the problems you worked. For those problems, you were given s or calculated
it from the population data you had available.

In the world of empirical research, however, you often do not know s and you don’t
have population data to calculate it. Because researchers are always inventing new
dependent variables, an unknown s is common. Without s, the justification for using the
normal curve evaporates. What to do if you don’t have s? Can you suggest something?

One solution is to use ŝ as an estimate of s. (Was that your suggestion?) This was
the solution used by researchers about a century ago. They knew that ŝ was only an
estimate and that the larger the sample, the better the estimate. Thus, they chose
problems for which they could gather huge samples. (Remember Karl Pearson and
Alice Lee’s data on father–daughter heights? They had a sample of 1376.) Very large
samples produce an ŝ that is identical to s, for all practical purposes.
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Other researchers, however, could not gather that much data. One of those we
remember today is W. S. Gosset (1876–1937), who worked for Arthur Guinness, Son &
Co., a brewery headquartered in Dublin, Ireland. Gosset had majored in chemistry and
mathematics at Oxford, and his job at Guinness was to make recommendations to the
brewers that were based on scientific experiments. The experiments, of course, used
samples.

Gosset was familiar with the normal curve and the strategy of using large samples
to accurately estimate s. Unfortunately, his samples were small. Gosset (and other
statisticians) knew that such small-sample ŝ values were not accurate estimators of s
and thus the normal curve could not be relied on for accurate probabilities.

Gosset’s solution was to work out a new set of distributions that were based on ŝ.
He found that the distribution depended on the sample size, with a different
distribution for each N. These distributions make up a family of curves
that have come to be called the t distribution.6 The t distribution is an
important tool for those who analyze data. I will use it for confidence
interval problems in this chapter and for four other kinds of problems in
later chapters.

The t Distribution

The different curves that make up the t distribution are distinguished from one another
by their degrees of freedom. Degrees of freedom (abbreviated df ) range from 1 to �.
Knowing the degrees of freedom for your data tells you which t
distribution to use.7

Determining the correct number of degrees of freedom for a
particular problem can become fairly complex. For the problems in this
chapter, however, the formula is simple: df � N � 1. Thus, if the sample
consists of 12 members, df � 11. In later chapters I will give you a more
thorough explanation of degrees of freedom (and additional formulas).

Figure 8.5 is a picture of three t distributions. Their degrees of freedom are 2, 9,
and �. You can see that as the degrees of freedom increase, less and less of the curve is
in the tails. Note that the t values on the horizontal axis are quite similar to the z scores
used with the normal curve.

The t Distribution Table

Look at Table D (page 392), the t distribution table. The first column shows degrees of
freedom, ranging from 1 to �. Degrees of freedom are determined by an analysis of the
problem that is to be solved. There are three rows across the top of the table; the row you
use depends on the kind of problem you are working on. In this chapter, use the top row
because the problems are about confidence intervals. Each column is associated with

6 Gosset spent several months in 1906–07 studying with Karl Pearson in London. It was during this period
that the t distribution was developed.
7 Traditionally, the t distribution is written with a lowercase t. A capital T is used for another distribution
(covered in Chapter 15) and for standardized test scores. However, because some early computer programs
did not print lowercase letters, t became T on some printouts (and often in text based on that printout).
Be alert.

t distribution
Theoretical distribution used to
determine probabilities when s
is unknown.

degrees of freedom
Concept in mathematical statistics
that determines the distribution
that is appropriate for sample
data.
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probability (which can be converted to a percent). The body of the table contains t
values. Table D is used most frequently to find the probability associated with a
particular t value.8

Table D differs in several ways from the normal curve table you have been using. In
the normal curve table, the z scores are in the margin and the probability figures are in
the body of the table. In Table D, the t values are in the body of the table and the
probability figures are in the headings at the top. In the normal curve table, there are
hundreds of probability figures, and in Table D there are only six. These six are the ones
commonly used by researchers.

Dividing a Distribution into Portions

Look at Figure 8.6, which shows separated versions of the three distributions in 
Figure 8.5. Each distribution is divided into a large middle portion and smaller tail
portions. In all three curves in Figure 8.6, the middle portion is 95 percent and the other
5 percent is divided evenly between the two tails.

Notice that the t values that separate equal portions of the three curves are different.
The fewer the df, the larger the t value that is required to separate out the extreme 
5 percent of the curve.

The t values in Figure 8.6 came from Table D. Look at Table D for the 9 df row.
Now look in the 95% confidence interval column. The t value at the intersection is 2.26,
the number used in the middle curve of Figure 8.6.

Finally, look at the top curve in Figure 8.6. When df � �, the t scores that separate
the middle 95 percent from the extreme 5 percent are �1.96 and �1.96. You have seen
these numbers before. In fact, �1.96 are the z scores you used in the preceding chapter
to find heart rates that characterize the extreme 5 percent of the population. (See
Figure 7.16.) Thus, a t distribution with df � � is a normal curve. In summary, as df
increases, the t distribution approaches the normal distribution.

Your introduction to the t distribution is in place. After working the problems that
follow, you will be ready to calculate confidence intervals.

162 n Chapter 8

1 2 31�2�3� 0 4 54�5�

df � �

df � 9

df � 2

t values

F I G U R E  8 . 5 Three different t distributions

8 For data with a t value intermediate between two tabled values, be conservative and use the t value associated
with the smaller df.
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P R O B L E M S

8.19. Fill in the blanks in the statements with “t” or “normal.”
a. There is just one __________ distribution, but there are many

__________ distributions.
b. Given a value of �2.00 on the horizontal axis, a __________ distribution has

a greater proportion to the right than does a __________ distribution.

2.262.26� 0

1.961.96� 0

4.304.30� 0

df � �

2.5% 95% 2.5%

df � 9

2.5% 95% 2.5%

df � 2

2.5% 95% 2.5%

 t values

 t values

 t values

F I G U R E  8 . 6 Three t distributions showing the t values that enclose 
95 percent of the cases
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c. The __________ distribution has a larger standard deviation than does the
__________ distribution.

8.20. To know which t distribution to use, determine __________.
8.21. Who invented the t distribution? For what purpose?

Confidence Interval about a Population Mean

Although population means are generally unknowable, samples can be
obtained and means and standard errors calculated. A confidence interval
is an inferential statistic that uses sample statistics to establish two
brackets (limits) between which a population parameter is expected (with

a particular degree of confidence) to be. Confidence intervals are most often used to
capture a population mean, but they can be used for other population parameters as well.
Commonly chosen degrees of confidence are 95 percent and 99 percent.

164 n Chapter 8

clue to the future
Analyzing data with confidence intervals is increasingly popular among behavioral
and medical scientists. Confidence intervals are used again in Chapter 10.

To find the lower and upper limits of a confidence interval about a population
mean, use the formulas

where X� is the mean of the sample from the population
ta is the value from the t distribution table for a particular a value 

is the standard error of the mean, calculated from a sample

The formula for is quite similar to the formula for :

where ŝ is the standard deviation of the sample (using N � 1).
A confidence interval is useful for evaluating quantitative claims such as those

made by manufacturers. For example, some lightbulb manufacturers claim that their
13-watt compact fluorescent bulbs last an average of 10,000 hours. Is this claim true?
One way to find the answer is to gather data (although more than a year is required).
The following are fictitious data for hours to failure:

N � 16

�X � 156,000

�X2 � 1,524,600,000

sX� �
ŝ

2N

sX�sX�

sX�

UL � X� � ta 1sX� 2

LL � X� � ta 1sX� 2

confidence interval
Range of scores that is expected,
with specified confidence, to
capture a parameter.
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P R O B L E M

*8.22. For the data on the lives of 13-watt compact fluorescent lightbulbs, calculate the
mean (X�), the standard deviation (ŝ), and the standard error of the mean ( ).

You can calculate a 95 percent confidence interval about the sample mean in
problem 8.22 and use it to evaluate the claim that bulbs last 10,000 hours. With N �
16, df � N � 1 � 15. The t value in Table D for a 95 percent confidence interval with 
df � 15 is 2.131. Using the answers you found in problem 8.22,

Thus, you are 95 percent confident that the interval of 9489 to 10,011 hours contains
the true mean lighting time of the 13-watt bulbs. The advertised claim of 10,000 hours is
in the interval, but just barely. A reasonable interpretation is to recognize that samples are
changeable, variable things and that you do not have good evidence showing that the lives
of bulbs are shorter than claimed. But because the interval almost does not capture the
advertised claim, you might have an incentive to gather more data.

To obtain a 99 percent or a 90 percent confidence interval, use the t values under
those headings in Table D.

UL � X� � ta 1sX� 2 � 9750 � 2.131 1122.47 2 � 10,011 hours

LL � X� � ta 1sX� 2 � 9750 � 2.131 1122.47 2 � 9489 hours

sX�

error detection
The sample mean is always in the exact middle of any confidence interval.

As another example, normal body temperature is commonly given as 98.6°F. In
Chapters 2, 3, 4, and 5, you worked with data based on actual measurements
(Mackowiak, Wasserman, and Levine, 1992) that showed that average temperature is
less than 98.6°F. Is it true that we have been wrong all these years? Or, perhaps the
study’s sample mean is within the expected range of sample means taken from a
population with a mean of 98.6°F. A 99 percent confidence interval will help in
choosing between these two alternatives. The summary statistics are:

N � 40

�X � 3928.0

�X2 � 385,749.24

These summary statistics produce the following values:

The next task is to find the appropriate t value in Table D. With 39 df, be
conservative and use 30 df. Look under the heading for a 99 percent confidence interval.
Thus, t99 (30 df ) � 2.75. The 99 percent confidence limits about the sample mean are:

UL � X� � ta 1sX� 2 � 98.2 � 2.75 10.112 2 � 98.5°F

LL � X� � ta 1sX� 2 � 98.2 � 2.75 10.112 2 � 97.9°F

 df � 39 

 sX� � 0.112°F 

 ŝ � 0.710°F 

 X� � 98.2°F 
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What conclusion do you reach about the 98.6°F standard? We have been wrong all
these years. On the basis of actual measurements, you can be 99 percent confident that
normal body temperature is between 97.9°F and 98.5°F.9 98.6°F is not in the interval.

The 95 percent confidence interval is the basis for margin of error statistics in survey
reports. If a survey shows that a proposal has the support of 60 percent of the population,
plus or minus a margin of error of 3 percent, it means that you can be 95 percent confident
that the true level of support is between 57 percent and 63 percent. 

In summary, confidence intervals for population means produce an interval statistic
(lower and upper limits) that is destined to contain the population mean 95 percent of
the time (or 99 or 90). Whether or not a particular confidence interval contains the
unknowable m is uncertain, but you have control over the degree of uncertainty.

Confidence Intervals Illustrated

The concept of confidence intervals has been known to be troublesome. Here is another
explanation of confidence intervals, this time with a picture.

Look at Figure 8.7, which has these features:

n A population of scores (top curve)10

n A sampling distribution of the mean when N � 25 (small curve)
n Twenty 95 percent confidence intervals based on random samples (N � 25)

from the population

On each of the 20 horizontal lines, the endpoints represent the lower and upper limits
and the filled circles show the mean. As you can see, nearly all the confidence intervals
have “captured” m. One has not. Find it. Does it make sense to you that 1 out of 20 of
the 95 percent confidence intervals does not contain m?

Adding Confidence Intervals to Graphs

As you know from reading textbooks and articles, a bar graph that shows two or more
means that appear different conveys the idea that the means really are different. That is,
it never occurs to most of us that the observed difference could be due to the chance
differences that go with sampling. However, if confidence intervals are added, they direct
our attention to the degree of chance fluctuation that is expected for sample means.

Figure 8.8 is a bar graph of the Chapter 3 puberty data for females and males. In
addition to the two means (12.75 years and 14.75 years), 95 percent confidence intervals
are indicated by lines (often called bars) that extend in either direction from the
means. On the left side of Figure 8.8, look at the extent of the confidence interval for
females. The sample mean of the males is not within the confidence interval calculated
for the females. (Use a straightedge to assure yourself, if necessary.) Thus, you can
be more than 95 percent confident that the interval that estimates the population mean
of the females does not include the sample mean of the males. In short, these confidence
intervals provide assurance that the difference in the two means is due not to differences
that go with sampling but to a difference in the population means.

166 n Chapter 8

9 C. R. A. Wunderlich, a German investigator in the mid-19th century, was influential in establishing 98.6°F
(37°C) as the normal body temperature.
10 It is not necessary that the population be normal.
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1�2�3� 1 2 3

Population
of scores

Sampling distribution
of the mean, N � 25

m

20 confidence intervals
based on 20 random
samples from the
population

F I G U R E  8 . 7 Twenty 95 percent confidence intervals, each calculated 
from a random sample of 25 from a normal population. Each sample mean 
is represented by a dot.

Females
N = 8

Males
N = 16

10

12

14

16

A
ge

 (
ye

ar
s)

95% confidence interval

F I G U R E  8 . 8 Puberty data for females and males (means and confidence
intervals)
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Categories of Inferential Statistics

Two of the major categories of inferential statistics are confidence intervals and
hypothesis testing. A confidence interval establishes an interval within which a
population parameter is expected to lie (with a certain degree of confidence).
Confidence intervals were derived by Jerzy Neyman and introduced in 1934 (Salsburg,
2001). In recent years they have become more fashionable. The APA Publication
Manual (2010) recommends them strongly (p. 34).

A second category of inferential statistics, hypothesis testing, allows you to use
sample data to test a hypothesis about a population parameter. Popular for analyzing
data from experiments since the 1920’s, hypothesis testing is a topic in each of the
remaining chapters in this book.

P R O B L E M S

8.23. A social worker conducted an 8-week assertiveness training workshop.
Afterward, the 14 clients took the Door Manifest Assertiveness Test,
which has a national mean of 24.0. Use the data that follow to construct
a 95 percent confidence interval about the sample mean. Write an
interpretation about the effectiveness of the workshop.

24 25 31 25 33 29 21

22 23 32 27 29 30 27

8.24. Airplane manufacturers use only slow-burning materials. For the plastic in
coffee pots the maximum burn rate is 4 inches per minute. An engineer at
Hawker-Beechcraft randomly sampled from a case of 120 Krups coffee pots
and obtained burn rates of 1.20, 1.10, and 1.30 inches per minute. Calculate
a 99.9 percent confidence interval and write an interpretation that tells about
using Krups coffee makers in airplanes.

8.25. This problem will give you practice in constructing confidence intervals and
in discovering how to reduce their size (without sacrificing confidence).
Smaller confidence intervals tell you the value of m more precisely.
a. How wide is the 95 percent confidence interval about a sample mean

when ŝ � 4 and N � 4?
b. How much smaller is the 95 percent confidence interval about a sample

mean when N is increased fourfold to 16 (ŝ remains 4)?
c. Compared to your answer in part a, how much smaller is the 

95 percent confidence interval about a sample mean when N remains
4 and ŝ is reduced to 2?

8.26. In Figure 8.7, the 20 lines that represent confidence intervals vary in length.
What aspect of the sample causes this variation?

8.27. Figure 8.7 showed 95 percent confidence intervals for N � 25. Imagine a
graphic with confidence intervals based on N � 100.
a. How many of the 20 intervals are expected to capture m?
b. Will the confidence intervals be wider or narrower? By how much?

168 n Chapter 8
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8.28. Figure 8.7 showed 95 percent confidence intervals. Imagine that the lines
are 90 percent confidence intervals.
a. How many of the 20 intervals are expected to capture m?
b. Will the confidence intervals be wider or narrower?

8.29. Use a ruler to estimate the lower and upper limits of the confidence intervals
in Figure 8.8.

8.30. In the accompanying figure, look at the curve of performance over trials,
which is generally upward except for the dip at trial 2. Is the dip just a
chance variation, or is it a reliable, nonchance drop? By indicating the lower
and upper confidence limits for each mean, a graph can convey at a glance
the reliability that goes with each point. Calculate a 95 percent confidence
interval for each mean. Pencil in the lower and upper limits for each point on
the graph. Write a sentence explaining the dip at trial 2.

Trials

1 2 3 4

X� 8 6 14 16
ŝ 5 5 5 5
N 25 25 25 25

8.31. Here’s a problem you probably were expecting. Review the objectives at the
beginning of the chapter. You are using this valuable, memory-consolidating
technique, aren’t you?

1 2 3 4

Trials

4

8

12

16

20

M
ea

n 
pe

rf
or

m
an

ce
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ADDITIONAL HELP FOR CHAPTER 8

Visit cengage.com/psychology/spatz. At the Student Companion Site, you’ll
find multiple-choice tutorial quizzes, flashcards with definitions and
workshops. For this chapter there are Statistical Workshops on Sampling
Distribution, Standard Error, and Central Limit Theorem.

KEY TERMS

Biased sample (p. 151)
Central Limit Theorem (p. 154)
Confidence interval (p. 164)
Degrees of freedom (p. 161)
Expected value (p. 153)

Random sample (p. 148)
Sampling distribution (p. 152)
Standard error (p. 153)
t distribution (p. 161)
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YOU ARE IN the midst of material on inferential statistics, which, as you probably

recall, is a technique that allows you to use sample data to help you make

decisions about populations. In the last chapter, you studied and worked

problems on confidence intervals. Those confidence intervals allowed you to

decide something about the mean of an unmeasured population.

The next chapter, Chapter 9, covers the basics of null hypothesis statistical

testing (NHST), a more widely used inferential statistics technique. NHST

techniques result in a yes/no decision about a population parameter. 

In Chapter 9, you test hypotheses about population means and population

correlation coefficients. In Chapter 10, you test hypotheses about the difference

between the means of two populations and also calculate confidence intervals

about the difference between sample means. In both of these chapters, you

determine probabilities by using t distributions. Also in both chapters, you

calculate from sample data the effect size index d, the descriptive statistic you

learned about in Chapter 5.

One of the most important uses of statistics is to analyze data from

experiments. Chapter 10 discusses the basics of simple experiments.

transition passage
to hypothesis testing

171
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Hypothesis Testing 
and Effect Size: 
One-Sample Designs

C H A P T E R  

9

O B J E C T I V E S  F O R  C H A P T E R  9

After studying the text and working the problems in this chapter, you should
be able to:

1. Explain the procedure called null hypothesis statistical testing (NHST)

2. Define the null hypothesis in words

3. Define the three alternative hypotheses in words

4. Define a, significance level, rejection region, and critical value

5. Use a one-sample t test and the t distribution to decide if a sample 
mean came from a population with a hypothesized mean, and write 
an interpretation

6. Decide if a sample r came from a population in which the correlation
between the two variables is zero, and write an interpretation

7. Explain what rejecting the null hypothesis means and what retaining the 
null hypothesis means

8. Distinguish between Type I and Type II errors

9. Interpret the meaning of p in the phrase p � .05

10. Describe the difference between a one-tailed and a two-tailed statistical test

11. Calculate and interpret an effect size index for a one-sample experiment

THIS CHAPTER INTRODUCES null hypothesis statistical testing
(NHST). In the social, behavioral, and biological sciences, NHST is used
more frequently than any other inferential statistics technique. Every
chapter from this point on assumes that you can use the concepts of null
hypothesis statistical testing. I suggest that you resolve now to achieve an
understanding of NHST.

172

null hypothesis statistical
testing (NHST)
Process that produces probabilities
that are accurate when the null
hypothesis is true.
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Let’s begin by looking in on our two students from Chapter 8, the ones who
gathered family income data. As we catch up with them, they are hanging out at the
Campus Center, sharing a bag of Doritos® tortilla chips, nacho cheese flavor. The junior
picks up the almost empty bag, shakes the remaining contents into the outstretched hand
of the sophomore, and says,

“Hmmm, the bag says it had 269.3 grams in it.”
“Hummph. I doubt it,” complained the suspicious sophomore.
“Oh, I don’t think they would cheat us,” replied the genial junior, “but I’m surprised

that they can measure chips that precisely.”
“Well, let’s find out,” said the sophomore. “Let’s buy a fresh package, find a scale, and

get an answer.”
“OK, but maybe we ought to buy more than one package,” said the junior, thinking

ahead.

While our two investigators go off to buy chips and secure a scale, let’s examine
what is going on. The Frito-Lay® company claims that their package contains 269.3
grams of tortilla chips. Of course, we know that the claim cannot be true for every
package because there is always variation in the real world. A reasonable
interpretation is that the company claims that their packages on average contain 269.3
grams of chips.

Now, let’s put our story into the context of null hypothesis statistical testing
(NHST). A claim is made that these bags contain 269.3 grams of chips. Data can be
gathered to test the claim. Any conclusion about the claim will be based on sample
data, so there will be some uncertainty, but as you learned in the previous chapter,
uncertainty can be measured and if there isn’t much, you can state a conclusion and
your degree of uncertainty. As will become apparent, the logic used in NHST applies
not just to Doritos tortilla chips but to claims and comparisons on topics that range
from anthropology and business to zoology and zymurgy.

P R O B L E M

9.1. NHST is an acronym that stands for what phrase?

The Logic of Null Hypothesis 
Statistical Testing (NHST)

I will tell the story of NHST in general terms, but also present the Doritos problem side
by side as a specific example. NHST always begins with a claim about a parameter. For
claims about a population mean, the symbol is m0. In the case of the Frito-Lay
company, it claims that the mean weight of bags of Doritos tortilla chips is 269.3
grams. Thus, in formal terms the company claims that m0 � 269.3 grams. Of course,
the population of weights of the bags has an actual mean, which may or may not be
equal to 269.3 grams. The symbol for this unknown population mean is m1. With a
sample of weights and NHST, you may be able to reach a conclusion about m1.

NHST does not result in an exact value for m1 or even a confidence interval that
captures m1. Rather, NHST results in a conclusion about the relationship between m1
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and m0. In Table 9.1, the possible relationships between m1 and m0 are shown on the
left; their applications to the Doritos example are on the right. Table 9.1 covers all of
the logical possibilities of the relationship between m1 and m0. The two means are either
equal to each other (1) or they are not equal to each other (2).

NHST is a procedure that allows, if the data permit, strong statements of support
for the hypothesis of difference (2). However, NHST cannot result in strong support
for the hypothesis of equality (1), regardless of how the data come out. 

The logic that NHST uses is somewhat roundabout. Researchers (much like the
suspicious sophomore) usually believe that the hypothesis of difference is correct. To
get support for the hypothesis of difference, the hypothesis of equality must be
discredited. Fortunately, the hypothesis of equality produces predictions about
outcomes. NHST tests these predictions against actual outcomes.

If the hypothesis of equality is true, sample means of 269.3 grams are more likely
than larger values or smaller values. Some values are so far from 269.3 that they are
very unlikely. Now suppose that the actual observations did produce a sample mean
that was far from 269.3 (and thus, very unlikely according to the predictions of the
hypothesis of equality). Because of this failure to predict, the hypothesis of equality is
discredited. 

To capture this logic with a different set of words, let’s begin with the actual
outcome. If this outcome is unlikely when the hypothesis of equality is true, we can
reject the hypothesis of equality. With the hypothesis of equality removed, the only
hypothesis left is the hypothesis of difference. This paragraph and the two previous
paragraphs deserve marks in the margin. Reread them now and again later.

At this point, it will be helpful to have those data from the two students who
bought more bags of chips and weighed them. Let’s listen in again.

“I’m glad we went ahead and bought eight bags. The leftovers from this experiment are
delicious.”

“OK, we’ve got the eight measurements, but what statistics do we need? The mean, of
course. Anything else?”

“Knowing about variability always helps my understanding. Let’s calculate a standard
deviation.”

“OK, let’s see, the mean is 270.675 grams and the standard deviation is 0.523 gram.
How about that! The mean is more than what the company claims,” said the surprised
sophomore. “Surely they wouldn’t deliberately put in more than 269.3 grams?”

“I don’t know, but look at that tiny standard deviation,” said the junior. “It’s only about
a half a gram, which is less than a 50th of an ounce. They put almost exactly the same
amount in every bag!”

TABLE 9.1 The general case of the relationship between M1 and M0 and its
application to the Doritos example

General case The Doritos example

1. m1 � m0 The average weight of the chips is 269.3 grams, which is 
hypothesis of equality what the company claims

2. m1 � m0 The average weight of the chips is not 269.3 grams
hypothesis of difference
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At this point the data have changed the question from whether the company was
cheating to whether the company might be deliberately overfilling the bags. The
alternative to the overfilling hypothesis is that sample means of 270.675 grams or more
are common—such means are just examples of the normal fluctuation that goes with
production. NHST may be able to resolve this issue by providing the exact probability
of obtaining sample means equal to or greater than 270.675 grams from a population
with a mean of 269.3 grams (for samples with N � 8). What follows is a repeat of the
logic of NHST, but this version includes technical terms.

For any null hypothesis statistical test, there is a null hypothesis
(symbolized H0). The null hypothesis is always a statement about a
parameter (or parameters). It always includes an equals mark. For
problems in this chapter, the null hypothesis comes from some claim
about how things are. In the Doritos problem, the null hypothesis is
that m0 � m1 � 269.3 grams. Thus, H0: m0 � m1 � 269.3 grams.

Here’s how NHST provides an exact probability. NHST begins by tentatively
assuming that the null hypothesis is true. We know that random samples (N � 8)
from the population produce an array of sample means that center around 
269.3 grams. Except for the means that are exactly 269.3, half will be greater and
half will be less than 269.3 grams. If 269.3 is subtracted from each sample mean, the
result is a distribution of differences, centered around zero. This distribution is a
sampling distribution of differences.

Once you have a sampling distribution, it can be used to determine the probability
of obtaining any particular difference. The particular difference we are interested in 
is the difference between our sample mean and the null hypothesis mean, which is
1.375 grams. That is, 270.675 � 269.3 � 1.375 grams.

If the probability of a difference of 1.375 grams is very small when the null
hypothesis is true, we have evidence that the null hypothesis is not correct and should
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null hypothesis (H0)
Hypothesis about a population 
or the relationship among
populations.
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1 For example, hypotheses that specify that the difference between m1 and m0 is very small (but not zero) are
supported by large probabilities.

be rejected. If the probability is large, we have evidence that is consistent with the null
hypothesis. Unfortunately, large probabilities are also consistent with hypotheses other
than the null hypothesis.1 Large probabilities do not permit you to adopt or accept the
null hypothesis but only to retain it as one among many hypotheses that the data
support. Here’s an important point: The probability that NHST produces is the
probability of the data actually obtained, if the null hypothesis is true.

Central to the logic of NHST is the competition between a hypothesis
of equality and a hypothesis of difference. The hypothesis of equality is
called, as you already know, the null hypothesis. The hypothesis of
difference is called the alternative hypothesis; its symbol is H1. If H0 is
rejected, only H1 remains. Actually, for any NHST problem there are three
possible alternative hypotheses. In practice, a researcher chooses one of

the three H1’s before the data are collected. The choice of a specific alternative
hypothesis helps determine the conclusions that are possible. The three alternative
hypotheses for the Doritos data are:

H1: m1 � 269.3 grams. This alternative states that the mean of the population of
Doritos weights is not 269.3 grams. It doesn’t specify whether the actual mean
is greater than or less than 269.3 grams. If you reject H0 and accept this H1,
you must examine the sample mean to determine whether its population mean
is greater than or less than the one specified by H0.

H1: m1 � 269.3 grams. This alternative hypothesis states that the sample is from a
population with a mean less than 269.3 grams.

H1: m1 � 269.3 grams. This alternative hypothesis states that the sample is from a
population with a mean greater than 269.3 grams.

For the Doritos problem, the first alternative hypothesis, H1: m1 � 269.3 grams, is
the best choice because it allows the conclusion that the Doritos bags contain
more than or less than the company claims. The section on one-tailed and two-tailed tests
later in this chapter gives you more information on choosing an alternative hypothesis.

In summary, the null hypothesis (H0) meets with one of two fates at the hands of
the data. It may be rejected or it may be retained. Rejecting the null hypothesis
provides strong support for the alternative hypothesis, which is a statement of greater
than or less than. If H0 is retained, it is not proved as correct; it is simply retained as
one among many possibilities. A retained H0 leaves you unable to choose between 
H0 and H1. You do, however, have the data you gathered. They are informative and
helpful, even if they do not support a strong NHST conclusion. And, of course, a
completed experiment, regardless of its outcome, can lead to a new experiment and
then to better understanding.

clue to the future
You just completed a section that explains reasoning that is at the heart of inferential
statistics. This reasoning is important in every chapter that follows and for every
effort to comprehend and explain statistics in the years to come.

alternative hypothesis (H1)
Hypothesis about population
parameters that is accepted if the
null hypothesis is rejected.
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P R O B L E M S

9.2. NHST techniques produce probability figures such as .20. What event 
has a probability of .20?

9.3. Is the null hypothesis a statement about a statistic or about a parameter?
9.4. Distinguish between the null hypothesis and the alternative hypothesis,

giving the symbol for each.
9.5. List the three alternative hypotheses in the Doritos problem using symbols

and numbers.
9.6. In your own words, outline the logic of null hypothesis statistical testing

using technical terms and symbols.
9.7. Agree or disagree: The students’ sample of Doritos weights is a random

sample.

Using the t Distribution for Null 
Hypothesis Statistical Testing

To get a probability figure for an NHST problem, you must have a sampling
distribution. Fortunately for the Doritos problem, the sampling distribution that is
appropriate is a t distribution and you already know about t distributions from your
previous study. For the task at hand (testing the null hypothesis that m0 � 269.3 grams
using a sample of eight), a t distribution with 7 df gives you correct probabilities. You
may recall that Table D in Appendix C provides probabilities for 34 t distributions.
Table D values and their probabilities are generated by a mathematical formula that
assumes that the null hypothesis is true.

Figure 9.1 shows a t distribution with 7 df. It is a picture of the distribution
of the mean weights of samples (N � 8) from a population with a mean weight of
269.3 grams. The numbers in Figure 9.1 are based on the assumption that the null
hypothesis is true.

Examine Figure 9.1, paying careful attention to the three sets of values on the
abscissa. The t values on the top line and the probability figures at the bottom apply to
any problem that uses a t distribution with 7 df. Sandwiched between are differences
between sample means and the hypothesized population mean—differences that are
specific to the Doritos data.

In your examination of Figure 9.1, note the following characteristics:

1. The mean is zero.
2. As the size of the difference between the sample mean and the population

mean increases, t values increase.
3. As differences and t values become larger, probabilities become smaller.
4. As always, small probabilities go with small areas at each end of the 

curve.

Using Figure 9.1, you can make a decision about the null hypothesis for the
Doritos data. (Perhaps you have already anticipated the conclusion?) The difference
between the mean weight of the sample and the advertised weight is 1.375 grams.
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This difference is not even shown on the distribution, so it must be extremely rare—if
the null hypothesis is true. How rare is it?

Let’s take the rarest events shown and use them as a reference point. As seen in
Figure 9.1, a difference as extreme as 1.000 gram or greater occurs with a probability
of .0005. In addition, a difference as extreme as �1.000 or less occurs with the
same probability, .0005. Adding these two probabilities together gives a probability
of .001.2 Thus, the probability is .001 of getting a difference of �1.000 gram or
greater. The difference found in the data (1.375 grams) is even more rare, so the p
value of the data actually obtained is less than .001. Thus, if the null hypothesis is
true, the probability of getting the difference actually obtained is less than 1 in 1000
(p � .001).

The reasonable thing to do is abandon (reject) the null hypothesis. With the null
hypothesis gone, only the alternative hypothesis remains: H1: m1 � 269.3 grams.
Knowing that the actual weight is not 269.3 grams, the next step is to ask whether it
is greater than or less than 269.3 grams. The sample mean is greater, so a conclusion
can be written: “The contents of Doritos bags weigh more than the company claims,
p � .001.”

To summarize, we determined the probability of the data we observed if the
null hypothesis is true. In this case, the probability is quite small. Rather than
conclude that a very rare event occurred, we concluded that the null hypothesis is
false. Table 9.2 summarizes the NHST technique (left column) and its application
to the Doritos example (right column). Please study Table 9.2 now and mark it for
review later.

Probability of the
difference, or one
more extreme,
when H0 is true

Doritos difference 
values (X � m0)

01.422.373.505.41 ����t values

0.262.437.6471.000 ����

.10.025.005.0005

1.42 2.37 3.50 5.41

.262 .437 .647 1.000

.10 .025 .005 .0005

⎯

F I G U R E  9 . 1 A t distribution. The t values and probability figures are those
that go with 7 df. The difference values apply only to the Doritos data.

2 I’ll explain this step in the section on one- and two-tailed tests.
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A Problem and the Accepted Solution

The hypothesis that the sample of Doritos weights came from a population with a mean
of 269.3 grams was so unlikely (p � .001) that it was easy to reject the hypothesis. But
what if the probability had been .01, or .05, or .25, or .50? The problem that this section
addresses is where on the probability continuum you should change the decision from
“reject the null hypothesis” to “retain the null hypothesis.”

It may already be clear to you that any solution will be an arbitrary one. Breaking
a continuum into two parts often leaves you uncomfortable near the break. Nevertheless,
those who use statistics have adopted a solution.

Setting Alpha (A) or Establishing 
a Significance Level

The widely accepted solution to the problem of where to break the
continuum is to use the .05 mark. The choice of a probability value is
called setting alpha (A). It is also called establishing a significance level.

TABLE 9.2 A summary of NHST and its application to the Doritos example

General statement of NHST for means Application of NHST to Doritos example

Recognize two possibilities for the
population mean:

The null hypothesis, H0

The alternative hypothesis, H1

Assume for the time being that H0 is true.

Use a sampling distribution that shows the
differences between sample means and the
null hypothesis mean when H0 is true.

Gather sample data from the population.
Calculate a mean, X�1.

Calculate the difference between the sample
mean and the null hypothesis mean.

Using the sampling distribution, determine
the probability of the difference that was
actually observed (or one more extreme).

Small probability: Reject the null
hypothesis.

If X�1 � m0, conclude that m1 � m0.

If X�1 � m0, conclude that m1 � m0.

Large probability: Conclude that the data
are consistent with the null hypothesis.

H0: m0 � 269.3 grams
H1: m1 � 269.3 grams

Assume for the time being that the mean
weight of all bags of chips is 269.3 grams.

The t distribution is appropriate.

X�Doritos � 270.675 grams

270.675 � 269.3 � 1.375 grams

p � .001

Reject the null hypothesis that m0 � 269.3
grams.

The mean weight of Doritos chips in
bags is greater than the company’s claim
of 269.3 grams.

Not applicable

Not applicable

alpha (A)
Probability of a Type I error.

significance level
Probability (a) chosen as the
criterion for rejecting the null
hypothesis.
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In an experiment, the researcher sets a, gathers data, and uses a sampling
distribution to find the probability (p) of such data. This p value is correct only when
the null hypothesis is true. If p � a, reject H0. Thus, if a � .05 and p is .05 or less,
reject H0. If a� .05 and p � .05, retain H0. Of course, if p � .03, or .01, or .001, reject
H0. If the probability is .051 or greater, retain H0. When H0 is rejected, the difference is

described as statistically significant. Sometimes, when the context is
clear, this is shortened to simply “significant.” When H0 is retained (the
difference is not significant), the abbreviation NS is often used.

In some research reports, an a level is not specified; only data-based
probability values are given. Statistical software programs produce
probabilities such as .0004, .008, or .049, which are described as significant.
If tables are used to determine probabilities, such differences are identified
as p � .001, p � .01, and p � .05. Regardless of how the results are

reported, however, researchers view .05 as an important cutoff (Nelson, Rosenthal, and
Rosnow, 1986). When .10 or .20 is used as an a level, a justification should be given.

Rejection Region

The rejection region is the area of the sampling distribution that includes
all the differences that have a probability equal to or less than a. Thus,
any event in the rejection region leads to rejection of the null hypothesis.3

In Figure 9.1 the rejection region is shaded (for a significance level of
.05). Thus, t values more extreme than �2.37 lead to rejecting H0. 

Critical Values

Most statistical tables do not provide you with probability figures for every
outcome of a statistical test. What they provide are statistical test values that
correspond to commonly chosen a values. These specific test values are called
critical values.

I will illustrate critical values using the t distribution table (Table D
in Appendix C). The t values in that table are called critical values when
they are used in hypothesis testing. The a levels that researchers use are
listed across the top in rows 2 and 3. Degrees of freedom are in column 1.
Remember that if you have a df that is not in the table, it is conventional
to use the next smaller df or to interpolate a t value that corresponds to the
exact df.

The t values in the table separate the rejection region from the rest of the sampling
distribution (sometimes referred to as the acceptance region). Thus, data-produced t
values that are equal to or greater than the critical value fall in the rejection region, and
the null hypothesis is rejected.

Figure 9.2 is a t distribution with 14 df. It shows that the critical value separates
the rejection region from the rest of the distribution. I will indicate critical values with
an expression such as t.05 (14 df ) � 2.145. This expression indicates the sampling
distribution that was used (t), a level (.05), degrees of freedom (14), and critical value
from the table (2.145, for a two-tailed test).

3 Another term for rejection region is critical region.

statistically significant
Difference so large that chance 
is not a plausible explanation for
the difference.

NS
Difference is not significant.

rejection region
Area of a sampling distribution
that corresponds to test statistic
values that lead to rejection of the
null hypothesis.

critical value
Number from a sampling
distribution that determines
whether the null hypothesis 
is rejected.
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9.8. True or false? Sampling distributions used for hypothesis testing are based
on the assumption that H0 is false.

9.9. What is a significance level? What is the largest significance level you can
use without giving a justification?

9.10. Circle all phrases that go with events that are in the rejection region of a
sampling distribution.

p is small

Retain the null hypothesis

Accept H1

Middle section of the sampling distribution

9.11. Use Table D to find critical values for two-tailed tests for these values.
a. a level of .01; df � 17
b. a level of .001; df � 46
c. a level of .05; df � 	

The One-Sample t Test

Some students suspect that it is not necessary to construct an entire sampling distribution
such as the one in Figure 9.1 each time there is a hypothesis to test. You may be such a
student, and if so, you are correct. The conventional practice is to analyze the data using
the one-sample t test. The formula for the one-sample t test is

df � N � 1t �
X� � m0

sX�
;

0 2.145–2.145Critical
values

Rejection
region
.025

Rejection
region
.025

F I G U R E  9 . 2 A t distribution with 14 df. For A � .05 and a two-tailed test,
critical values and the rejection region are illustrated.

one-sample t test
Statistical test of the hypothesis
that a sample with mean X� came
from a population with mean m.
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where X� is the mean of the sample
m0 is the hypothesized mean of the population

is the standard error of the mean

For the chip data, the question to be answered is whether the Frito-Lay company is
justified in claiming that bags of Doritos tortilla chips weigh 269.3 grams. The null
hypothesis is that the mean weight of the chips is 269.3 grams. The alternative
hypothesis is that the mean weight is not 269.3 grams. A sample of eight bags
produced a mean of 270.675 grams with a standard deviation (using N � 1) of 0.523
gram. To test the hypothesis that the sample weights are from a population with a mean
of 269.3 grams, you should calculate a t value using the one-sample t test. Thus,

7 df

To interpret a t value of 7.44 with 7 df, turn to Table D and find the appropriate
critical value. For a levels for two-tailed tests, go down the .05 column until you reach 
7 df. The critical value is 2.365. The t test produced a larger value (7.44), so the
difference observed (1.375 grams) is statistically significant at the .05 level. To find out
if 7.44 is significant at an even lower a level, move to the right, looking for a number
that is greater than 7.44. There isn’t one. The largest number is 5.408, which is the
critical value for an a level of .001. Because 7.44 is greater than 5.408, you can reject
the null hypothesis at the .001 level.4

The last step is to write an informative conclusion that tells the story of the variable
that was measured. Here’s an example: “The mean weight of the eight Doritos 
bags was 270.675 grams, which is significantly greater than the company’s claim of
269.3 grams, p � .001.”

A good interpretation is more informative than simply, “the null hypothesis was
rejected, p � .05.” A good interpretation always:

1. Uses the terms of the experiment
2. Tells the direction of the difference between the means

The algebraic sign of the t in the t test is ignored when you are finding the critical
value for a two-tailed test. Of course, the sign tells you whether the sample mean is
greater or less than the null hypothesis mean—an important point in any statement of
the results.

I want to address two additional issues about the Doritos conclusion; both have to
do with generalizability. The first issue is the nature of the sample: It most certainly
was not a random sample of the population in question. Because of this, any conclusion
about the population mean is not as secure as it would be for a random sample. How
much less secure is it? I don’t really know, and inferential statistics provides me with
no guidelines on this issue. So, I state both my conclusion (contents weigh more than
company claims) and my methods (nonrandom sample, N � 8) and then see whether
this conclusion will be challenged or supported by others with more or better data. (I’ll
just have to wait to see who responds to my claim.)

t �
X� � m0

sX�
�

X� � m0

ŝ>1N
�

270.675 � 269.3

0.523>18
� 7.44;

sX�

4 Some statisticians simply determine if the t test value is significant at the .05 level and stop there. They say
that looking for smaller a levels amounts to changing the a level after looking at the data.
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The other generalizability issue is whether the conclusion applies to other-sized
bags of Doritos, to other Frito-Lay products, or to other manufacturers of tortilla chips.
These are good questions but, again, inferential statistics does not give any guidelines.
You’ll have to use aids such as your experience, library research, correspondence with
the company, or more data gathering.

Finally, I want to address the question of the usefulness of the one-sample t test.
The t test is useful for checking manufacturers’ claims (where an advertised claim
provides the null hypothesis), comparing a sample to a known norm (such as an IQ
score of 100), and comparing behavior against a “no error” standard (as used in studies
of lying or visual illusions). In addition to its use in analyzing data, the one-sample
t test is probably the simplest example of hypothesis testing (an important consideration
when you are being introduced to the topic).

P R O B L E M

9.12. What are the two characteristics of a good interpretation?

An Analysis of Possible Mistakes

To some forward-thinking students, the idea of adopting an a level of 5 percent seems
preposterous. “You gather the data,” they say, “and if the difference is large enough,
you reject H0 at the .05 level. You then state that the sample came from a population
with a mean other than the hypothesized one. But in your heart you are uncertain. Hey,
perhaps a rare event happened.”

This line of reasoning is fairly common. Many thoughtful students take the next
step. “For me, I won’t use the .05 level. I’ll use an a level of 1 in one million. That way 
I can reduce the uncertainty.”

It is true that adopting a .05 a level leaves some room for mistaking a chance
difference for a real difference. It is probably clear to you that lowering the a level
(to a probability such as .01 or .001) reduces the probability of this kind of mistake.
Unfortunately, lowering the a level increases the probability of a different kind of
mistake.

Look at Table 9.3, which shows the two ways to make a mistake.
Cell 1 shows the situation when the null hypothesis is true and you reject
it. Your sample data and hypothesis testing have produced a mistake—a
mistake called a Type I error. However, if H0 is true and you retain it,
you have made a correct decision (cell 2).

Now, suppose that the null hypothesis is actually false (the second column). If, on
the basis of your sample data, you reject H0, you have made a correct decision (cell 3).
Finally, if the null hypothesis is false and you retain it (cell 4), you have
made a mistake—a mistake called a Type II error.

Let’s attend first to a Type I error. The probability of a Type I error 
is a, and you control a when you adopt a significance level. If the data
produce a p value that is less than a, you reject H0 and conclude that the difference
observed is statistically significant. If you reject H0 (and H0 is true), you make a Type I

Type I error
Rejection of a null hypothesis
when it is true.

Type II error
Failure to reject a null hypothesis
that is false.
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error, but the probability of this error is controlled by your choice of a level. Note that
rejecting H0 is wrong only when the null hypothesis is true.

Now for a Type II error. A Type II error is possible only if you retain the
null hypothesis. If the null hypothesis is false and you retain it, you have
made a Type II error. The probability of a Type II error is symbolized by 
bb (beta).

Controlling a by setting a significance level is straightforward; determining the
value of b is much more complicated. For one thing, a Type II error requires that the
sample be from a population that is different from the null hypothesis population.
Naturally, the more different the two populations are, the more likely you are to detect
it and, thus, the lower b is.

In addition, the values of a and b are inversely related. As a is reduced (from,
say, .05 to .01), b goes up. To explain, suppose you insist on a larger difference
between means before you say the difference is “not chance.” (You reduce a.) In
this case, you will be less able to detect a small, real, nonchance difference. (b goes
up.) The following description further illustrates the relationship between a and b.

Figure 9.3 shows two populations. The population on the left has a mean m0 � 10;
the one on the right has a mean m1 � 14. An investigator draws a large sample from the
population on the right and uses it to test the null hypothesis H0: m0 � 10. In the real
world of data, every decision carries some uncertainty, but in this textbook example,
the correct decision is clear: Reject the null hypothesis.

TABLE 9.3 Type I and Type II errors*

True situation in the population

H0 true H0 false

Reject H0 1. Type I error 3. Correct decision

Retain H0 2. Correct decision 4. Type II error

* In this case, error means mistake.

Decision made 
on the basis of 

sample data

10 14

m0 m1

The null
hypothesis
population

Population from
which sample
is drawn

F I G U R E  9 . 3 Frequency distribution of scores when H0 is false

beta (B)
Probability of a Type II error.
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The actual decision, however, will be made by evaluating the difference between
the sample mean X� and the mean specified by the null hypothesis, m0 � 10.

Now, let’s suppose that the sample produced a mean of 14. That is, the sample tells
the exact truth about its population. Under these circumstances, will the hypothesis-testing
procedure produce a correct decision?

Figure 9.4 shows the sampling distribution for this problem. As you can see, if the
5 percent a level is used (all the blue areas), a difference of 4 falls in the rejection
region. Thus, if a � .05, you will correctly reject the null hypothesis. However, if a
1 percent a level is used (the dark shaded areas only), a difference of 4 does not fall in
the rejection region. Thus, if a � .01, you will not reject H0. This failure to reject the
false null hypothesis is a Type II error.

At this point, I can return to the discussion of setting the a level. The suggestion
was: Why not reduce the a level to 1 in one million? From the analysis of the potential
mistakes, you can answer that when you lower the a level to reduce the chance of a
Type I error, you increase b, the probability of a Type II error. More protection from
one kind of error increases the liability to another kind of error. Most who use statistics
adopt an a level (usually at .05) and let b fall where it may.

To summarize, some uncertainty always goes with a conclusion based on statistical
evidence. A famous statistics textbook put it this way: “If you agree to use a sample,
you agree to accept some uncertainty about the results.”

The Meaning of p in p a .05

The symbol p is quite common in data-based investigations, regardless of the topic of
investigation. The p in p � .05 deserves a special section.

Every statistical test such as the t test has its own sampling distribution. A sampling
distribution shows the probability of various sample outcomes when the null hypothesis is
true. For every statistical test, p is always the probability of the statistical test value when
H0 is true. If a t test gives you p � .05, it means that the sample results you actually got or
results more extreme occur fewer than 5 times in 100 when the null hypothesis is true.

0 2 4 62�4�6�

Differences between X and 10⎯

F I G U R E  9 . 4 A sampling distribution from the population on the left in
Figure 9.3
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There are a number of interpretations of p that might seem correct, but they are not.
To illustrate, here are some cautions about the meaning of p.

■ p is not the probability that H0 is true.
■ p is not the probability of a Type I error.
■ p is not the probability that the data are due to chance.
■ p is not the probability of making a wrong decision.
■ the complement of p(1 p) is not the probability that the alternative hypothesis

is true

For any statistical test, p is the probability of the data observed, if the null hypothesis
is true. Mistaken ideas about the interpretation of p are fairly common. Kline (2004,
Chapter 3) explains five misinterpretations and how widespread they are. He also gives
guidelines on how behavioral scientists can reduce their reliance on NHST tests.

Perhaps the best thing for beginners to do is to memorize a definition of p and use
it (or close variations) in the interpretations they write. In statistics, p is the probability
of the data obtained, if the null hypothesis is true. To be just a little more technical, p is
the probability of the statistical test value.

What about the situation when the null hypothesis is false? Statisticians address this
situation under the topic of power. There is a short discussion of power in the next chapter.

One-Tailed and Two-Tailed Tests

As mentioned earlier, researchers choose, before the data are gathered, a null
hypothesis, an a level, and one of three possible alternative hypotheses. The choice of
an alternative hypothesis determines the conclusions that are possible after the
statistical analysis is finished. Here’s the general expression of these alternative
hypotheses and the conclusions they allow you:

�

Two-tailed test:

One-tailed test:

H1: m1 � m0. The population means differ, but no direction of
the difference is specified. Conclusions that are possible:
The sample is from a population with a mean less than that
of the null hypothesis or the sample is from a population
with a mean greater than that of the null hypothesis.

H1: m1 � m0. Conclusion that is possible: The sample is from
a population with a mean less than that of the null
hypothesis.

H1: m1 � m0. Conclusion that is possible: The sample is from
a population with a mean greater than that of the null
hypothesis.

If you want to have two different conclusions available to you—
that the sample is from a population with a mean less than that of the
null hypothesis or that the sample is from a population with a mean
greater than that of the null hypothesis—you must have a rejection
region in each tail of the sampling distribution. Such a test is called a
two-tailed test of significance for reasons that should be obvious from
Figure 9.4 and Figure 9.2.

two-tailed test of
significance
Statistical test for a difference in
population means that can detect
positive and negative differences.
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If your only interest is in showing (if the data will permit you) that
the sample comes from a population with a mean greater than that of
the null hypothesis or from a population with a mean less than that
of the null hypothesis, you should conduct a one-tailed test of
significance, which puts all of the rejection region into one tail of the
sampling distribution. Figure 9.5 illustrates this for a t distribution with
30 df.

The probability figures for two-tailed tests are in the second row of Table D 
(p. 392); probability figures for one-tailed tests are in row 3.

For most research situations, a two-tailed test is the appropriate one. The usual goal
of a researcher is to discover the way things actually are, and a one-tailed test does not
allow you to discover, for example, that the populations are exactly reversed from the
way you expect them to be. Researchers always have expectations (but they sometimes
get surprised).

In many applied situations, however, a one-tailed test is appropriate. Some new
procedure, product, or person, for example, is being compared to an already existing
standard. The only interest is in whether the new is better than the old; that is, only a
difference in one direction will produce a decision to change. In such a situation, a 
one-tailed test seems appropriate.

I chose a two-tailed test for the Doritos data because I wanted to be able to
conclude that the Frito-Lay company was giving more than it claimed or that it was
giving less than it claimed. Of course, the data would have their say about the
conclusion, but either outcome would be informative.

I’ll end this section on one- and two-tailed tests by telling you that statistics
instructors sometimes smile or even laugh at the subtitle of this book. The phrase “tales
of distributions” brings to mind “tails of the distribution.”

0 1 2 31–2–3–

t values 1.70

.05

F I G U R E  9 . 5 A one-tailed test of significance, with A � .05, df � 30. 
The critical value is 1.70.

one-tailed test of
significance
Statistical test that can detect a
positive difference in population
means or a negative difference,
but not both.
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9.13. Distinguish between a and p.
9.14. What happens when you make a Type II error?
9.15. Suppose the actual situation is that the sample comes from a population that 

is not the one hypothesized by the null hypothesis. If the significance level is
.05, what is the probability of making a Type I error? (Careful on this one.)

9.16. Suppose a researcher chooses to use a � .01 rather than .05. What 
effect does this have on the probability of Type I and Type II errors?

9.17. The following table has blanks for you to fill in. Look up critical values
in Table D, decide if H0 should be rejected or retained, and give the
probability figure that characterizes your confidence in that decision.
Check the answer for each line when you complete it. (Be careful not
to peek at the next answer.) I designed this table so that some common
misconceptions will be revealed—just in case you acquired one. 

a Two-tailed or Critical t-test Reject H0 or p
N level one-tailed test? value value retain H0? value

a. 10 .05 Two _______ 2.25 _______ _______
b. 20 .01 One _______ 2.57 _______ _______
c. 35 .05 Two _______ 2.03 _______ _______
d. 6 .001 Two _______ 6.72 _______ _______
e. 24 .05 One _______ 1.72 _______ _______
f. 56 .02 Two _______ 2.41 _______ _______

9.18. The Minnesota Multiphasic Personality Inventory (MMPI-2) has one scale
that measures paranoia (a mistaken belief that others are out to get you).
The population mean on the paranoia scale is 50. Suppose 24 police officers
filled out the inventory, producing a mean of 54.3. Write interpretations of
these t-test values.
a. t � 2.10 b. t � 2.05

9.19. A large mail-order company with ten distribution centers had an average
return rate of 5.3 percent. In an effort to reduce this rate, a set of testimonials
was included with every shipment. The return rate was reduced to 4.9 percent.
Write interpretations of these t-test values.
a. t � 2.10 b. t � 2.50

*9.20. Head Start is a program for preschool children from educationally
disadvantaged environments. Head Start began in 1964, and the data that
follow are representative of early research on the effects of the program.

A group of children participated in the program and then enrolled in
first grade. They took an IQ test, the national norm of which was 100.
Perform a t test on the data. Begin your work by stating the null hypothesis
and end by writing a conclusion about the effects of the program.

�X � 5250 �X2 � 560,854 N � 50
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9.21. Odometers measure automobile mileage. How close to the truth is the
number that is registered? Suppose 12 cars traveled exactly 10 miles
(measured by surveying) and the following mileage figures were recorded 
by the odometers. State the null hypothesis, choose an alternative hypothesis,
perform a t test, and write a conclusion.

9.8 10.1 10.3 10.2 9.9 10.4 10.0 9.9 10.3 10.0 10.1 10.2

*9.22. The NEO PI-R is a personality test. The E stands for extraversion, one of
the personality characteristics the test measures. The population mean for
the extraversion test is 50. Suppose 13 people who were successful in used
car sales took the test and produced a mean of 56.10 and a standard
deviation of 10.00. Perform a t test and write a conclusion.

Effect Size Index

Null hypothesis statistical testing addresses this question: Is the population the sample
comes from different from the population specified by the null hypothesis? The question
of how different the two populations are is answered by an effect size index. Many
effect size indexes have been developed (see Kirk, 2005), but d, which you studied in
Chapter 5 (pages 79–82), is probably the most widely used. For the one-sample t test,
the formula for d is 

where X� is the mean of the sample
m0 is the mean specified by the null hypothesis
ŝ is the estimate of the population standard deviation based on a sample

The denominator ŝ is an estimate of s. For data sets where s is known, use s.
However, for the more common research situation in which s is not known, use ŝ.

Interpretation of d

Positive values of d indicate a sample mean larger than the hypothesized mean;
negative values of d signify that the sample mean is smaller than . As you may
recall from Chapter 5, Cohen (1969) proposed guidelines that help evaluate the
absolute size of d. Widely adopted by researchers, they are:

Small effect d � 0.20

Medium effect d � 0.50

Large effect d � 0.80

In problem 9.20, you concluded that the Head Start program has a statistically
significant effect on the IQs of preschool children. You found that the mean IQ of

m0

d �
X� � m0

ŝ
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children in the program (105) was significantly higher than 100. But how big is this
effect? The statistic d provides an answer. Knowing that s � 15 for IQ tests, you get

An effect size index of .33 indicates that the effect of Head Start is midway between a
small effect and a medium effect.

Relationship of p to d

The statistics p and d tell you different things about the population the sample is from. The
inferential statistic, p, coupled with NHST logic, provides information about whether the
population sampled from is different from the null hypothesis population. The descriptive
statistic, d, estimates the degree of separation between the population sampled from and
the null hypothesis population. These two bits of information are relatively independent of
each other. Knowing that p is large or small doesn’t tell you anything about the size of d.

P R O B L E M S

9.23. Calculate the effect size index for the students’ Doritos data (page 174), and
interpret it using the conventions that researchers use.

9.24. In problem 9.22, you found that people who are successful in used car sales
have significantly higher extraversion scores than those in the general
population. What is the effect size index for those data and is the effect
small, medium, or large?

9.25. In Chapters 2 and 8, you worked with data on normal body temperature. 
You found that the mean body temperature was 98.2°F rather than the
conventional 98.6°F. The standard deviation for those data was 0.7°F.
Calculate an effect size index and interpret it.

Other Sampling Distributions

You have been learning about the sampling distribution of the mean. There are times,
though, when the statistic necessary to answer a researcher’s question is not the mean.
For example, to find the degree of relationship between two variables, you need a
correlation coefficient. To determine whether a treatment causes more variable
responses, you need a standard deviation. And, as you know, proportions are commonly
used statistics. In each of these cases (and indeed, for any statistic), researchers often
use the basic hypothesis-testing procedure you have just learned. Hypothesis testing
always involves a sampling distribution of the statistic.

Where do you find sampling distributions for statistics other than the mean? In the
rest of this book you will encounter new statistics and new sampling distributions.
Tables E–L in Appendix C represent sampling distributions from which probability
figures can be obtained. In addition, some statistics have sampling distributions that are 
t distributions or normal curves. Still other statistics and their sampling distributions
are covered in other books.

d �
X� � m0

s
�

105 � 100

15
� 0.33
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Along with every sampling distribution comes a standard error. Just as every
statistic has its sampling distribution, every statistic has its standard error. For example,
the standard error of the median is the standard deviation of the sampling distribution of
the median. The standard error of the variance is the standard deviation of the sampling
distribution of the variance. Worst of all, the standard error of the standard deviation is
the standard deviation of the sampling distribution of the standard deviation. If you
follow that sentence, you probably understand the definition of standard error quite well.

The next step in your exploration of sampling distributions will be brief, though
useful and (probably) interesting. The t distribution will be used to answer a question
about correlation coefficients.

Using the t Distribution to Test the Significance
of a Correlation Coefficient

In Chapter 6, you learned to calculate a Pearson product-moment correlation
coefficient, a descriptive statistic that indicates the degree of relationship between two
variables in a bivariate distribution. This section is on testing the statistical significance
of correlation coefficients. NHST is used to test the null hypothesis that a sample-based
r came from a population with a parameter coefficient of .00.

The present-day symbol for the Pearson product-moment correlation coefficient of
a population is r (rho). The null hypothesis that is being tested is

H0: r � .00

that is, that there is no relationship between the two variables. The alternative hypothesis
is that there is a relationship,

H1: r � .00 (a two-tailed test)

For r � .00, the sampling distribution of r is a t distribution with a mean of .00.
The standard error of r is The test statistic for a sample r is
a t value calculated from the formula

clue to the future
Note that the formula for the t test of a correlation coefficient has the same form as that
of the t test for a sample mean. This form, which you will see again, shows a difference
between a statistic and a parameter, divided by the standard error of the statistic.

An algebraic manipulation of the formula above produces a formula that is easier
to use with a calculator:

df � N � 2, where N � number of pairst � 1r 2B
N � 2

1 � r 2
;

t �
r � r

sr

sr � 1 11 � r 2 2 > 1N � 2 2 .
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This test is the first of several instances in which you will find a t value whose df is
not 1 less than the number of observations. For testing the null hypothesis H0: r � .00,
df � N � 2. (Having fulfilled my promise to explain one- and two-tailed tests, I hope you
will accept my promise to explain degrees of freedom more fully in the next chapter.)

Do you remember your work with correlation coefficients in Chapter 6? 5 Think
about a sample r � �.40. How likely is a sample r � �.40 if the population r � .00?
Does it help to know that the coefficient is based on a sample of 22 pairs? Let’s answer
these questions by testing the value r � �.40 against r � .00, using a t test. Applying
the formula for t, you get

df � N � 2 � 22 � 2 � 20

Table D shows that, for 20 df, a t value of �2.09 (two-tailed test) is required to
reject the null hypothesis. The t value obtained for r � �.40, where N � 22, is less than
the tabled t, so the null hypothesis is retained. That is, a coefficient of �.40 would be
expected by chance alone more than 5 times in 100 from a population in which the true
correlation is zero.

In fact, for N � 22, the value r � �.43 is required for significance at the .05 level,
and r � �.54 at the .01 level. As you can see, even medium-sized correlations can be
expected by chance alone for samples as small as 22 when the null hypothesis is true.
Most researchers strive for N’s of 50 or more for correlation problems.

The critical values under “a level for two-tailed test” in Table D are ones that allow
you to reject the null hypothesis if the sample r is a large positive coefficient or a large
negative one.

P R O B L E M

9.26. Determine whether the Pearson product-moment correlation coefficients are
significantly different from .00.
a. r � .62; N � 10 c. r � .50; N � 15
b. r � �.19; N � 122 d. r � �.34; N � 64

Here is a thought problem. Suppose you have a summer job in an industrial research
laboratory testing the statistical significance of hundreds of correlation coefficients based
on varying sample sizes. An a level of .05 has been adopted by the management, and your
task is to determine whether each coefficient is “significant” or “not significant.” How
can you construct a table of your own, using Table D and the t formula for testing the
significance of a correlation coefficient, that will allow you to label each coefficient
without working out a t value for each? Imagine or sketch out your answer.

The table you mentally designed already exists. One version is reproduced in Table A
in Appendix C. The a values of .10, .05, .02, .01, and .001 are included there. Use Table A
in the future to determine whether a Pearson product-moment correlation coefficient is
significantly different from .00, but remember that this table is based on the t distribution.

t � 1r 2B
N � 2

1 � r 2
� 1�.40 2B

22 � 2

1 � 1�.40 2 2
� �1.95

5 If not, take a few minutes to review.
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As you might expect, SPSS not only calculates r values, but tests them as well.
Table 6.5 (page 99) shows the correlation between CR SAT verbal and Math SAT
scores (.724) and the probability of .724, if the correlation r is zero (.042).

A word of caution is in order about testing r’s other than .00. The sampling
distributions for r values other than .00 are not t distributions. Also, if you want to know
whether the difference between two sample-based coefficients is statistically significant,
you should not use a t distribution because it will not give you correct probabilities.
Fortunately, if you have questions that can be answered by testing these kinds of
hypotheses, you won’t find it difficult to understand the instructions given in
intermediate-level texts such as Howell (2010, p. 275).

This chapter has introduced you to two uses of the t distribution:

1. To test a sample mean against a hypothesized population mean
2. To test a sample correlation coefficient against a hypothesized population

correlation coefficient of .00

The t distribution has other uses, too, and it has been important in the history of statistics.
Here is a little more background on W. S. Gosset, who invented the t distribution

so he could assess probabilities in experiments conducted by the Guinness brewery.
Gosset was one of a small group of scientifically trained employees who developed
ways for the Guinness company to improve its products.

Gosset wanted to publish his work on the t distribution in Biometrika, a journal
founded in 1901 by Francis Galton, Karl Pearson, and W. R. F. Weldon. However, at the
Guinness company there was a rule that employees could not publish (the rule there,
apparently, was publish and perish). Because the rule was designed to keep brewing
secrets from escaping, there was no particular ferment within the company when Gosset,
in 1908, published his new mathematical distribution under the pseudonym “Student.”6

The distribution later came to be known as “Student’s t.” (No one seems to know why
the letter t was chosen. E. S. Pearson surmises that t was simply a “free letter”; that is,
no one had yet used t to designate a statistic.) Gosset worked for the Guinness company
all his life, so he continued to use the pseudonym “Student” for his publications in
mathematical statistics. Gosset was devoted to his company, working hard and rising
through the ranks. He was appointed head brewer a few months before his death in 1937.7

Why .05?

The story of how science and other disciplines came to adopt .05 as the arbitrary point
separating differences attributed to chance from those not attributed to chance is not
usually covered in textbooks. The story takes place in England at the turn of the century.

It appears that the earliest explicit rule about a was in a 1910 article by Wood and
Stratton, “The Interpretation of Experimental Results,” which was published in the
Journal of Agricultural Science. Thomas B. Wood, the principal editor of this journal,
advised researchers to take “30:1 as the lowest odds which can be accepted as giving

6 However, it may be that the Guinness company was completely unaware until Gosset died that he published
as “Student.” Salsburg (2001) gives the details of this possibility.
7 For a delightful account of “That Dear Mr. Gosset,” see Salsburg (2001). Also see “Gosset, W. S.” in
Dictionary of National Biography, 1931–1940 (London: Oxford University Press, 1949), or see McMullen
and Pearson (1939, pp. 205–253).
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practical certainty that a difference . . . is significant” (Wood and Stratton, 1910, p. 438).
“Practical certainty” meant “enough certainty for a practical farmer.” A consideration of
the circumstances of Wood’s journal provides a plausible explanation of his advice to
researchers.

As the 20th century began, farmers in England were doing quite well. For example,
Biffen (1905) reported that wheat production averaged 30 bushels per acre compared
to 14 in the United States, 10 in Russia, and 7 in Argentina. Politically, of course,
England was near the peak of its influence.

In addition, a science of agriculture was beginning to be established. Practical
scientists, with an eye on increased production and reduced costs, conducted studies of
weight gains in cattle, pigs, and sheep; amounts of dry matter in milk and mangels 
(a kind of beet); and yields of many grains. In 1905, the Journal of Agricultural Science
was founded so these results could be shared around the world. Conclusions were
reached after calculating probabilities, but the researchers avoided or ignored the
problem created by probabilities between .01 and .25.

Wood’s recommendation in his “how to interpret experiments” article was to
adopt an a level that would provide a great deal of protection against a Type I error.
(Odds of 30:1 against the null hypothesis convert to p � .0323.) A Type I error in this
context would be a recommendation that, when implemented, did not produce
improvement. I think that Wood and his colleagues wanted to be sure that when they
made a recommendation, it would be correct.

A Type II error (failing to recommend an improvement) would not cause much
damage; farmers would just continue to do well (though not as well as they might). A
Type I error, however, would, at best, result in no agricultural improvement and in a
loss of credibility and support for the fledgling institution of agriculture science.

To summarize my argument, it made sense for the agricultural scientists to protect
themselves and their institution against Type I errors. They did this by not making a
recommendation unless the odds were 30:1 against a Type I error.

When tables were published as an aid to researchers, probabilities such as .10, .05,
.02, and .01 replaced odds (e.g., Fisher, 1925). So 30:1 (p � .0323) gave way to .05.
Those tables were used by researchers in many areas besides agriculture, who appear
to have adopted .05 as the most important significance level.

P R O B L E M S

9.27. In Chapter 6 you encountered data for 11 countries on per capita cigarette
consumption and the male death rate from lung cancer 20 years later. The
correlation coefficient was .74. After consulting Table A, write a response
to the statement, “The correlation is just a fluke; chance is the likely
explanation for this correlation.”

9.28. One of my colleagues gathered data on the time students spent on a
midterm examination and their grade. The X variable is time and the 
Y variable is examination grade. Calculate r. Use Table A to determine 
if it is statistically significant.

�X � 903 �X2 � 25,585 �XY � 46,885

�Y � 2079 �Y2 � 107,707 N � 42
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9.29. In addition to weighing Doritos chips, I weighed six Snickers candy bars
manufactured by Mars, Inc. Test the company’s advertised claim that the
net weight of a bar is 58.7 grams by performing a t test on the following
data, which are in grams. Find d. Write a conclusion about Snickers bars.

59.1 60.0 58.6 60.2 60.8 62.1

9.30. When people choose a number between 1 and 10, the mean is 6. To investigate
the effects of subliminal (below threshold) stimuli on behavior, a researcher
embedded many low numbers (1 to 3) in a video clip. Each number
appeared so briefly that it couldn’t consciously be seen. Afterward the
participants were asked to “choose a number between 1 and 10.” Analyze
the data with a t test and an effect size index. Write an interpretation.

7 1 6 2 9 3 8 4 7 5 4

8 2 9 8 7 5 4 2 3 6 4

6 8 4 5 6 2 1 4 7 7 8

8 4 8 5 7 6 6 

9.31. Please review the objectives at the beginning of the chapter. Can you do
them?

ADDITIONAL HELP FOR CHAPTER 9

Visit cengage.com/psychology/spatz. At the Student Companion Site, you’ll
find multiple-choice tutorial quizzes, flashcards with definitions and
workshops. For this chapter, there are Statistical Workshops on Hypothesis
Testing and Single-Sample t Test.

KEY TERMS

Alpha (a) (p. 179)
Alternative hypothesis (H1) (p. 176)
Beta (b) (p. 184)
Correlation coefficient (p. 191)
Critical value (p. 180)
Effect size index (d ) (p. 189)
NS (p. 180)
Null hypothesis (H0) (p. 175)
Null hypothesis statistical testing

(NHST) (p. 172)

One-sample t test (p. 181)
One-tailed test of significance (p. 187)
p (p. 185)
Rejection region (p. 180)
Significance level (p. 179)
Statistically significant (p. 180)
t distribution (p. 177)
Two-tailed test of significance (p. 186)
Type I error (p. 183)
Type II error (p. 183)
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Size, and Confidence
Intervals: Two-Sample
Designs

C H A P T E R

10

O B J E C T I V E S  F O R  C H A P T E R  1 0

After studying the text and working the problems in this chapter, you should 
be able to:

1. Describe the logic of a simple experiment

2. Explain null hypothesis statistical testing (NHST) for two samples

3. Explain some of the reasoning for determining degrees of freedom

4. Distinguish between independent-samples designs and paired-samples
designs

5. Calculate t-test values for both independent-samples designs and paired-
samples designs and write interpretations

6. Distinguish between statistically significant results and important results

7. Calculate and interpret an effect size index for two-sample designs

8. Calculate confidence intervals for both independent-samples designs and
paired-samples designs and write interpretations

9. List and explain assumptions required for accurate probabilities from the 
t distribution

10. Explain how random assignment affects cause-and-effect conclusions

11. Define power and explain the factors that affect power

IN CHAPTER 9YOU learned to use null hypothesis statistical testing (NHST) to answer
questions about a population when data from one sample are available. In this chapter,
the same hypothesis-testing reasoning is used, but you have data from two samples.

Two-sample NHST is commonly used to analyze data from experiments. One of
the greatest benefits of studying statistics is that it helps you understand experiments
and the experimental method. The experimental method is probably our most powerful

196
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1 Two samples from one population are the same statistically as two samples from two identical populations.

method of investigating natural phenomena. Besides being powerful, experiments can
be interesting. They can answer such questions as:

n If you were lost at sea would you rather have a pigeon or a person searching
for you?

n Does the removal of 20 percent of the cortex of the brain have an effect on the
memory of tasks learned before the operation?

n Can you reduce people’s ability to solve a problem by educating them?

In this chapter I discuss the simplest kind of experiment and then show you how
the logic of null hypothesis statistical testing, which you studied in the preceding
chapter, can be expanded to answer questions like those above.

A Short Lesson on How to Design an Experiment

The basic ideas of a simple two-group experiment are not very complicated.

The logic of an experiment: Start with two equivalent groups. Treat them exactly alike
except for one thing. Measure both groups. Attribute any statistically significant difference
between the two to the one way in which they were treated differently.

This summary of an experiment is described more fully in Table 10.1. The
question that the experiment in Table 10.1 sets out to answer is: What is the effect of
Treatment A on a person’s ability to perform task Q? In formal statistical terms, the
question is: For task Q scores, is the mean of the population of those who have had
Treatment A different from the mean of the population of those who have not had
Treatment A?

To conduct this experiment, a group of participants is identified and two samples
are assembled. These samples should be (approximately) equivalent. Treatment A is
then administered to one group (generically called the experimental group) but not to
the other group (generically called the control group). Except for
Treatment A, both groups are treated exactly the same way; that is,
extraneous variables are held constant or balanced out for the two groups.
Both groups perform task Q, and the mean score for each group is
calculated.

The two sample means will almost surely differ. The question is
whether the difference is due to Treatment A or is just the usual chance
difference that would be expected of two samples from the same population.
This question can be answered by applying the logic of NHST.

This generalized example has an independent variable with two levels
(Treatment A and no Treatment A) and one dependent variable (scores on
task Q). The word treatment is recognized by all experimentalists; it
refers to different levels of the independent variable. The experiment in
Table 10.1 has two treatments.

In many experiments, it is obvious that there are two populations of participants to
begin with—for example, a population of men and a population of women. The question,
however, is whether they are equal on the dependent variable.1

experimental group
Group that receives treatment 
in an experiment and whose
dependent-variable scores are
compared to those of a control
group.

control group
No-treatment group to which
other groups are compared.

treatment
One value (or level) of the
independent variable.
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In some experimental designs, participants are randomly assigned to treatments by
the researcher. In other designs, the researcher uses a group of participants who have
already been “treated” (for example, being males or being children of alcoholic parents).
In either of these designs, the methods of inferential statistics are the same, although the
interpretation of the first kind of experiment is usually less open to attack.2

The experimental procedure is versatile. Experiments have been used to decide a
wide variety of issues such as how much sugar to use in a cake recipe, what kind of
persuasion is effective, whether a drug is useful in treating cancer, and the effect of
alcoholic parents on the personality of their children.

The raison d’être3 of experiments is to be able to tell a story about the universal
effect of one variable on a second variable. All the work with samples is just a way to

198 n Chapter 10

TABLE 10.1 Summary of a Simple Experiment

Key words Tasks for the researcher

Population A population of participants

d f

Assignment Randomly assign one-half of Randomly assign one-half of 
available participants to the available participants to the 
experimental group. control group.

b b

Independent Give Treatment A to participants Withhold Treatment A from 
variable in experimental group. participants in control group.

b b

Dependent Measure participants’ behavior Measure participants’ behavior 
variable on task Q. on task Q.

b b

Descriptive Calculate mean score on task Q, Calculate mean score on task Q,
statistics

f d

Descriptive Calculate effect size index, d.
statistics

b

Inferential Compare and using a hypothesis-testing statistic. 
statistics Reject or retain the null hypothesis.

b

Interpretation Write a conclusion about the effect of Treatment A on task Q scores.

X�cX�e

X�c.X�e.

2 I am bringing up an issue that is beyond the scope of this statistics book. Courses with titles such as
“Research Methods” and “Experimental Design” address the interpretation of experiments in more detail.
3 Raison d’être means “reason for existence.” (Ask someone who can pronounce French phrases to teach you
this one. If you already know how to pronounce the phrase, use it in conversation to identify yourself as
someone to ask.)
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get evidence to support the story, but samples, of course, have chance built into them.
NHST takes chance factors into account when the story is told.

NHST: The Two-Sample Example

Once the data are gathered, analysis follows. The NHST technique is a popular one among
researchers, although it has been criticized (see Dillon, 1999; Erceg-Hurn and Mirosevich,
2008; Nickerson, 2000; Spatz, 2000.) NHST with two samples is quite similar to NHST
with one sample, which you studied in Chapter 9. In fact, the logic is identical. (See pages
173–176 for a review.) Here is the logic of NHST for a two-sample experiment.

In a well-designed, well-executed experiment, all imaginable results are included in
the statement—Either Treatment A has an effect or it does not have an effect. Begin by
making a tentative assumption that Treatment A does not have an effect. Gather data. Using
a sampling distribution based on the assumption that Treatment A has no effect, find the
probability of the data obtained. If the probability is low, abandon your tentative assumption
and draw a strong conclusion: Treatment A has an effect.4 If the probability is not low, your
analysis does not permit you to make strong statements regarding Treatment A.

The outline that follows combines the logic of hypothesis testing with the language
of an experiment:

1. Begin with two logical possibilities, the null hypothesis, H0, and an alternative
hypothesis, H1. H0 is a hypothesis of equality about parameters. H1 is a
hypothesis of difference, again about parameters.

H0: Treatment A does not have an effect; that is, the mean of the population of
scores of those who receive Treatment A is equal to the mean of the
population of scores of those who do not receive Treatment A. The
difference between population means is zero. In statistical language:

H0: mA � mno A or H0: mA � mno A � 0

H1: Treatment A does have an effect; that is, the mean of the population of
scores of those who receive Treatment A is not equal to the mean of the
population of scores of those who do not receive Treatment A. The
alternative hypothesis, which should be chosen before the data are
gathered, can be two-tailed or one-tailed. The alternative hypothesis
consists of one of the three H1’s that follow.

Two-tailed alternative: H1: mA � mno A

The two-tailed alternative hypothesis says that Treatment A has an effect, but it
does not indicate whether the treatment improves or disrupts performance on
task Q. A two-tailed test allows either conclusion.

One-tailed alternatives: H1: mA � mno A

H1: mA � mno A

4 Always tell whether the treatment raises scores or lowers scores.
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The first one-tailed alternative hypothesis allows you to conclude that
Treatment A increases scores. However, no outcome of the experiment can lead
to the conclusion that Treatment A produces lower scores than no treatment.
The second alternative hypothesis permits a conclusion that Treatment A
reduces scores, but not that it increases scores.

2. Tentatively assume that Treatment A has no effect (that is, assume H0). If H0 is
true, the two samples will be alike except for the usual chance variations in
samples.

3. Decide on an a level. (Usually, a � .05.)
4. Choose an appropriate statistical test. For a two-sample experiment, a t test is

appropriate. Calculate a t-test value.
5. Compare the calculated t-test value to the critical value for a. (Use Table D in

Appendix C.)
6. If the data-based t-test value is greater than the critical value from the table,

reject H0. If the data-based t-test value is less than the critical value, retain H0.
7. Calculate an effect size index (d ).
8. Write a conclusion that is supported by the data analysis. Your conclusion

should describe how any differences in the dependent variable means are
related to the two levels of the independent variable.

As you know from the previous chapter, sample means from a population are
distributed as a t distribution. It is also the case that the differences between sample
means, each drawn from the same population, are distributed as a t distribution.5

Researchers sometimes are interested in statistics other than the mean, and they
often have more than two samples in an experiment. These situations call for sampling
distributions that will be covered later in this book—sampling distributions such as F,
chi square, U, and the normal distribution. NHST can be used for these situations as well.
The only changes in the preceding list are in steps 4, 5, and 6, starting with “Choose an
appropriate test.” I hope that you will return to this section for review when you
encounter new sampling distributions. If this seems like a good idea, mark this page.

P R O B L E M S

10.1. In your own words, outline a simple experiment.
10.2. What procedure is used in the experiment described in Table 10.1 to ensure

that the two samples are equivalent before treatment?
10.3. For each experiment that follows, identify the independent variable and its

levels. Identify the dependent variable. State the null hypothesis in words.
a. A psychologist compared the annual income of people with high

Satisfaction With Life Scale scores to the income of those with low
SWLS scores.

b. A sociologist compared the numbers of years served in prison by those
convicted of robbery and those convicted of embezzlement.

c. A physical therapist measured flexibility after 1 week of treatment and
again after 6 weeks of treatment for 40 patients.

200 n Chapter 10

5 Differences are distributed as t, if the assumptions discussed near the end of this chapter are true.
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10.4. In your own words, outline the logic of NHST for a two-group experiment.
10.5. What is the purpose of an experiment, according to your textbook?

Degrees of Freedom

In your use of the t distribution so far, you found degrees of freedom using rule-of-thumb
techniques: N � 1 for a one-sample t test, and N � 2 when you determine whether a
correlation coefficient r is significantly different from .00. Now it is time to explain
degrees of freedom more thoroughly.

The freedom in degrees of freedom refers to the freedom of a number to have any
possible value. If you are asked to pick two numbers and there are no restrictions, both
numbers are free to vary (take any value) and you have 2 degrees of freedom. If a restriction,
such as �X � 0, is imposed, then 1 degree of freedom is lost because of that restriction; that
is, when you now pick the two numbers, only one of them is free to vary. As an example, if
you choose 3 for the first number, the second number must be �3. Because of the restriction
that �X � 0, the second number is not free to vary. In a similar way, if you are to pick five
numbers with a restriction that �X � 0, you have 4 degrees of freedom. Once four numbers
are chosen (say, �5, 3, 16, and 8), the last number (�22) is determined.

The restriction that �X � 0 may seem to you to be an “out-of-the-blue” example
and unrelated to your earlier work in statistics, but some of the statistics you calculated
have such a restriction built in. For example, when you found , as required in the
formula for the one-sample t test, you used some algebraic version of

The built-in restriction is that �(X � X�) is always zero and, in order to meet that
requirement, one of the X’s is determined. All X’s are free to vary except one, and the
degrees of freedom for is N � 1. Thus, for the problem of using the t distribution to
determine whether a sample came from a population with a mean m0, df � N � 1.
Walker (1940) summarized this reasoning by stating: “A universal rule holds: The
number of degrees of freedom is always equal to the number of observations minus the
number of necessary relations obtaining among these observations.” A necessary
relationship for is that �(X � X�) � 0.

Another approach to explaining degrees of freedom is to emphasize the parameters
that are being estimated by statistics. The rule for this approach is that df is equal to the
number of observations minus the number of parameters that are estimated with a sample
statistic. In the case of , 1 df is subtracted because X� is used as an estimate of m.

Now, let’s turn to your use of the t distribution to determine whether a correlation
coefficient r is significantly different from .00. The test statistic was calculated using
the formula

t � 1r 2B
N � 2

1 � r 2

sX�

sX�

sX�

sX� �
ŝ

2N
�
B

© 1X � X� 2 2

N � 1

2N
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The r in the formula is a linear correlation coefficient, which is based on a linear
regression line. The formula for the regression line is

There are two parameters in the regression formula, a and b. Each of these parameters
costs one degree of freedom, so the df for testing the significance of correlation
coefficients is N � 2.

These explanations of df for the one-sample t test and for testing the significance
of r will prepare you for the reasoning I will give for determining df when you analyze
two-group experiments.

Paired-Samples Designs and 
Independent-Samples Designs

An experiment with two groups can be either a paired-samples design or
an independent-samples design. For either design, the appropriate
statistical test is a t test. However, the two different designs require
different formulas for calculating the t test, so you must decide what kind
of design you have before you analyze the data.

In a paired-samples (or paired-scores) design, each dependent-
variable score in one treatment is matched or paired with a particular
dependent-variable score in the other treatment. This pairing is based on
some logical reason for matching up two scores and not on the size of the
scores. In an independent-samples design, there is no reason to pair up the
scores in the two groups.

You cannot tell the difference between the two designs just by
knowing the independent variable and the dependent variable. And, after
the data are analyzed, you cannot tell the difference from the t-test value

or from the interpretation of the experiment. To tell the difference, you must know
whether scores in one group are paired with scores in a second group.

Ŷ � a � bX

202 n Chapter 10

clue to the future
Most of the rest of this chapter will be organized around independent-samples
and paired-samples designs. In Chapters 11 and 13 the procedures you will learn
are appropriate for only independent samples. The design in Chapter 12 is a
paired-samples design with more than two levels of the independent variable.
Three-fourths of Chapter 15 is also organized around these two designs.

Paired-Samples Design

The paired-samples design is a favorite of researchers if their materials permit.6 The
logical pairing required for this design can be created three ways: natural pairs,

6 Other terms for this design are correlated samples, related samples, dependent samples, matched groups,
within subject, repeated measures, and split plots.

paired-samples design
Experimental design in which
scores from each group are
logically matched.

independent-samples
design
Experimental design with samples
whose dependent-variable scores
cannot logically be paired.

t test
Test of a null hypothesis that uses
t distribution probabilities.
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matched pairs, and repeated measures. Fortunately, the arithmetic of calculating a t-test
value is the same for all three.

Natural pairs In a natural pairs investigation, the researcher does
not assign the participants to one group or the other; the pairing occurs
naturally, prior to the investigation. Table 10.2 identifies one way in
which natural pairs may occur in family relationships—fathers and
sons. In such an investigation, you might ask whether fathers are
shorter than their sons (or more religious, or more racially prejudiced, or whatever).
Notice, though, that it is easy to decide that these are paired-samples data: There is
a logical pairing of the scores by family. Pairing is based on membership in the same
family.

Matched pairs In some situations, the researcher can pair up participants on the
basis of similar (or identical) scores on a pretest that is related to the dependent
variable. Then one member of each pair is randomly assigned to one of the treatments.
This ensures that the two groups are fairly equivalent on the dependent variable at the
beginning of the experiment.

For example, in an experiment on the effect of hypnosis on problem solving,
college students might initially be paired on the basis of SAT or ACT scores, which are
known predictors of problem-solving ability. Participants are then separated into two
groups. One solves problems while hypnotized and the other works without being
hypnotized. If the two groups differ in problem solving, you have some assurance that
the difference is not due to cognitive ability because the groups were matched on SAT
or ACT scores.

Another variation of matched pairs is the split-litter technique used
with animal subjects. A pair from a litter is selected, and one individual is
put into each group. In this way, the genetics and prenatal conditions are
matched for the two groups. The same technique has been used in human
experiments with twins or siblings. Gosset’s barley experiments used this
design; Gosset started with two similar subjects (adjacent plots of ground) and assigned
them at random to one of two treatments.

A third example of the matched-pairs technique occurs when a pair is formed
during the experiment. Two subjects are “yoked” so that what happens to one, happens
to the other (except for the independent and dependent variables). For example, if the

TABLE 10.2 Illustration of a paired-samples design

Height (in.) Height (in.)
Father X Son Y

Michael Smith 74 Mike, Jr. 74
Christopher Johnson 72 Chris, Jr. 72
Matthew Williams 70 Matt, Jr. 70
Joshua Jones 68 Josh, Jr. 68
Daniel Brown 66 Dan, Jr. 66
David Davis 64 Dave, Jr. 64

natural pairs
Paired-samples design in which
pairing occurs without
intervention by the researcher.

matched pairs
Paired-samples design in which
individuals are paired by the
researcher before the experiment.
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procedure allows an animal in the experimental group to get a varying amount of food
(or exercise or punishment), then that same amount of food (or exercise or punishment)
is administered to the “yoked” control subject.

The difference between the matched-pairs design and a natural-pairs design is that,
with the matched pairs, the investigator can randomly assign one member of the pair to
a treatment. In the natural-pairs design, the investigator has no control over assignment.
Although the statistics are the same, the natural-pairs design is usually open to more
interpretations than the matched-pairs design.

Repeated measures A third kind of paired-samples design is called a
repeated-measures design because more than one measure is taken
on each participant. This design may take the form of a before-and-
after experiment. A pretest is given, some treatment is administered,
and a posttest is given. The mean of the scores on the posttest is
compared with the mean of the scores on the pretest to determine the

effectiveness of the treatment. Clearly, two scores should be paired: the pretest and
the posttest scores of each participant. In such an experiment, each person is said
to serve as his or her own control.

For paired-samples designs, researchers typically label one level of the independent
variable X and the other Y. The first score under treatment X is paired with the first
score under treatment Y because the two scores are natural pairs, matched pairs, or
repeated measures on the same subject.

Independent-Samples Design

The experiment outlined in Table 10.1 is an independent-samples design.7 In this
design, researchers typically label the two levels of the independent variable X1 and
X2. The distinguishing characteristic of an independent-samples design is that there is
no reason to pair a score in one treatment (X1) with a particular score in the other
treatment (X2).

In creating an independent-samples design, researchers often begin with a pool
of participants and then randomly assign individuals to the groups. Thus, there is
no reason to suppose that the first score under X1 should be paired with the first
score under X2. Random assignment can be used with paired-samples designs, too,
but in a different way. In a paired-samples design, one member of a pair is assigned
randomly.

The basic difference between the two designs is that with a paired-samples
design there is a logical reason to pair up scores from the two groups; with the
independent-samples design there is not. Thus, in a paired-samples design, the two
scores in the first row of numbers belong there because they come from two sources
that are logically related.

204 n Chapter 10

7 Other terms used for this design are between subjects, unpaired, randomized, and uncorrelated.

repeated measures
Experimental design in which each
subject contributes to more than
one treatment.
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P R O B L E M S

10.6. Describe the two ways to state the rule governing degrees of freedom.
10.7. Identify each of the following as an independent-samples design or a

paired-samples design. For each, identify the independent variable and its
levels and the dependent variable. Work all six problems before checking
your answers.
a. An investigator gathered many case histories of situations in which

identical twins were raised apart—one in a “good” environment and one
in a “bad” environment. The group raised in the “good” environment
was compared with that raised in the “bad” environment on attitude
toward education.

*b. A researcher counted the number of aggressive encounters among
children who were playing with worn and broken toys. Next, the
children watched other children playing with new, shiny toys. Finally,
the first group of children resumed playing with the worn and broken
toys, and the researcher again counted the number of aggressive
encounters. (For a classic experiment on this topic, see Barker, Dembo,
and Lewin, 1941.)

c. Patients with seasonal affective disorder (a type of depression) spent
2 hours a day under bright artificial light. Before treatment the mean
depression score was 20.0, and at the end of one week of treatment the
mean depression score was 6.4.

d. One group was deprived of REM (rapid eye movement) sleep and the
other was not. At the sleep lab, participants were paired and randomly
assigned to one of the two conditions. When those in the deprivation
group began to show REM, they were awakened, thus depriving them of
REM sleep. The other member of the pair was then awakened for an
equal length of time during non-REM sleep. The next day all
participants filled out a mood questionnaire.

e. One group was deprived of REM sleep and the other was not. At the
sleep lab, participants were randomly assigned to one of the two groups.
When those in the deprivation group began to show REM, they were
awakened, thus depriving them of REM sleep. The other participants
were awakened during non-REM sleep. The next day all participants
filled out a mood questionnaire.

f. Thirty-two freshmen applied for a sophomore honors course. Only 16
could be accepted, so the instructor flipped a coin for each applicant,
with the result that 16 were selected. At graduation, the instructor
compared the mean grade point average of those who had taken the
course to the GPA of those who had not to see if the sophomore honors
course had an effect on GPA.

The t Test for Independent-Samples Designs

When a t test is used to decide whether two populations have the same mean, the null
hypothesis is
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H0: m1 � m2

where the subscripts 1 and 2 are assigned arbitrarily to the two populations. If this null
hypothesis is true, any difference between two sample means is due to chance. The task
is to establish an a level, calculate a t-test value, and compare that value with a critical
value of t in Table D. If the t value calculated from the data is greater than the critical
value (that is, less probable than a), reject H0 and conclude that the two samples came
from populations with different means. If the data-based t value is not as large as the
critical value, retain H0. I expect that this sounds familiar to you. For an independent-
samples design, the formula for the t test is

The term is the standard error of a difference, and Table 10.3
shows formulas for calculating it. Use the formula at the top of the table
when the two samples have an unequal number of scores. In the situation
N1 � N2, the formula simplifies to those shown in the lower portion of
Table 10.3. These formulas are called the pooled error by some statistical
software.

The previous t-test formula is the “working formula” for the more general case in
which the numerator is (X�1 � X�2) � (m1 � m2). For the examples in this book, the
hypothesized value of m1 � m2 is zero, which reduces the general case to the working
formula shown above. Thus, the t test, like many other statistical tests, consists of a
difference between a statistic and a parameter divided by the standard error of the
statistic.

The formula for degrees of freedom for independent samples is df � N1 � N2 � 2.
Here is the reasoning. For each sample, the number of degrees of freedom is N � 1 because,

sX�1�X�2

t �
X�1 � X�2

sX�1�X�2
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TABLE 10.3 Formulas for s–X1�
–X2

, the standard error of a difference,
for independent-samples t tests

If � :

If :

 �R
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ŝ1
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b
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N1
� ©X 2

2 �
1©X 2 2

2

N2
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N1
�

1
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b

N2N1

standard error 
of a difference
Standard deviation of a sampling
distribution of differences
between means. 
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TABLE 10.4 Effort in kilograms for participants 
in the social psychology experiment

Group (X1) Alone (X2)

34 39
52 57
26 68
47 74
42 49
37 57
40

�X 278 344
�X2 11,478 20,520
N 7 6
X� 39.71 57.33

Applying the t test gives

df � N1 � N2 � 2 � 7 � 6 � 2 � 11

 �
�17.62

B a
437.43 � 797.33

11
b 10.31 2

�
�17.62

5.90
� �2.99

 �
39.71 � 57.33

R °
11,478 �

1278 2 2

7
� 20,520 �

1344 2 2

6

7 � 6 � 2

¢ a
1

7
�

1

6
b

 t �
X�1 � X�2

sX�1�X�2

�
X�1 � X�2

R °
©X 1

2 �
1©X 1 2

2

N1
� ©X 2

2 �
1©X 2 2

2

N2

N1 � N2 � 2

¢ a
1

N1
�

1

N2
b

for each sample, a mean has been calculated with the restriction that �(X � X�) � 0.
Thus, the total degrees of freedom is (N1 � 1) � (N2 � 1) � N1 � N2 � 2.

Let’s use the independent-samples design to analyze data that illustrate a classic
social psychology phenomenon. The question is whether you work harder when you
are part of a group or when you are alone. In the experimental setup, blindfolded
participants were instructed to “pull as hard as you can on this rope.” Some participants
thought they were part of a group and others thought they were pulling alone. In fact,
all were pulling alone, and their effort (in kilograms) was recorded. (See Ingham et al.,
1974, for a similar experiment.)

The null hypothesis is that group participation has no effect on effort. A two-tailed
test is appropriate because we want to be able to detect any effect that group
participation has, either to enhance or inhibit performance.

The scores of the participants and the t test are shown in Table 10.4. Because the
N’s are unequal for the two samples, the longer formula for the standard error must be
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used. The t value for these data is �2.99, a negative value. For a two-tailed test, always
use the absolute value of t. Thus, |�2.99| � 2.99.

To evaluate a data-based t value of 2.99 with 11 df, you need a critical value from
Table D. Begin by finding the row with 11 df. The critical value in the column for a
two-tailed test with a� .05 is 2.201; that is, t.05(11) � 2.201. Thus, the null hypothesis
can be rejected. Because 2.99 is also greater than the critical value at the .02 level
(2.718), the results would usually be reported as “significant at the .02 level.”

An SPSS analysis of the data in Table 10.4 is shown in Table 10.5. Descriptive
statistics for the two conditions in the experiment are in the upper panel; most of the
output from the independent-samples t test is in the lower panel. In the lower panel, the
first line, the one with 11 df, corresponds to the t test that I’ve provided the formulas
for. The t value of �2.989 has a probability of .012.

The final step is to interpret the results. Stop for a moment and compose your
interpretation of what this experiment shows. My version follows.

The experiment shows that participants exert less effort when working with a group than
when working alone. Participants exerted significantly less effort pulling a rope when
they thought they were part of a group (X� � 39.71 kg) than they did when they thought they
were pulling alone (X� � 57.33 kg), p � .02. The phenomenon that people slack off when
they are part of a group, compared to working alone, is called social loafing.

208 n Chapter 10

TABLE 10.5 SPSS output for independent-samples t test of the data in Table 10.4

Group Statistics

Std. Error
Perception N Mean Std. Deviation Mean

Effort Group 7 39.7143 8.53843 3.22722
Alone 6 57.3333 12.62801 5.15536

Independent Samples Test

t test for 95% Confidence Interval
Equality of Means of the Difference

Sig. 
t df (2-tailed) Lower Upper

Effort Equal 
variances —2.989 11 .012 —30.59262 —4.64548
assumed
Equal 
variances —2.897 8.588 .019 —31.47926 —3.75884
not assumed

clue to the future
The end result of statistical software programs is a p value. Such p values make
critical values obsolete. If p � a, reject H0. If p � a, retain H0. Tables and their
critical values are not needed.
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P R O B L E M S

*10.8. Imagine being lost at sea, bobbing around in an orange life jacket. The
Coast Guard sends out two kinds of observers to spot you, fellow humans
and pigeons. All observers are successful; the search time for each is given
in the table in minutes. Decide on a one- or two-tailed test, analyze the
data, and write a conclusion.

Fellow humans Pigeons

45 31
63 24
39 20

*10.9. Karl Lashley (1890–1958) studied how the brain stores memories. In one
experiment, rats learned a simple maze. Afterward, they were anesthetized
and for half the rats, 20 percent of the cortex of the brain was removed. For
the other half, no brain tissue was removed (a sham operation). The rats
recovered and learned a maze. The number of errors was recorded. Name
the independent variable, its levels, and the dependent variable. Analyze the
data in the table and write a conclusion about the effect of a 20 percent loss
of cortex on retention of memory for a simple maze.

Percent of 
cortex removed

0 20

�X 208 252
�X2 1706 2212
N 40 40

10.10. A mail-order firm was considering a new software package that provided
information on products (availability, history, cost, and so forth). To test the
software, the next 17 new employees were randomly assigned to use the old
or the new software.After training, each employee completed a search report
on 40 products. Analyze the data, which are in minutes, and write a
conclusion about the new software package.

New package Old package

4.3 6.3
4.7 5.8
6.4 7.2
5.2 8.1
3.9 6.3
5.8 7.5
5.2 6.0
5.5 5.6
4.9

08911_10_Ch10_196-227 pp2.qxd  12/15/09  7:55 AM  Page 209



*10.11. Two sisters attend different universities. Each is sure that she has to
compete with brighter students than her sister. They decide to settle their
disagreement by comparing ACT admission scores of freshmen at the two
schools. Suppose they bring you the following data and ask for an
analysis. The N’s represent all freshmen for one year.

The U. State U.

X� 23.4 23.5
ŝ 3 3
N 8000 8000

The sisters agree to a significance level of .05. Begin by deciding whether
to use a one-tailed or a two-tailed test. Calculate a t test and interpret your
results. Be sure to carry several decimal places in your work on this
problem.

The t Test for Paired-Samples Designs

The paired-samples t test has a familiar theme: a difference between means (X� � Y�)
divided by the standard error of a difference ( ). The working formula for this t test is

I will explain each of these elements and then conclude with a discussion of degrees of
freedom. I begin with , the standard error of a difference, which I will explain two
ways. First, the definitional formula is

Compare this standard error of a difference to that for an independent-samples t test for
equal N’s (lower portion of Table 10.3). The difference in the two procedures is the
term . As you can see, when rXY � 0, this term becomes zero, and the
standard error becomes the same as for independent samples.

Now, notice what happens to the formula when r � 0: The standard error of the
difference is reduced. Reducing the size of the standard error increases the size of the t-test
value. Whether this reduction increases the likelihood of rejecting the null hypothesis
depends on the size of the reduction because, as will be explained, there are fewer degrees
of freedom in a paired-samples design than in an independent-samples design.

Understanding the formula should help you
better understand the difference between the two designs in this chapter. Unfortunately,
this formula requires a number of separate calculations. A second formula, the direct
difference method, is algebraically equivalent and much simpler.

sD� � 2sX� 
2 � sY� 

2 � 2rXY 1sX� 2 1sY� 2

�2rXY 1sX� 2 1sY� 2

sD� � 2sX�
  2 � sY� 

2 � 2rXY 1sX� 2 1sY� 2

sD�

t �
X� � Y�

sD�
�

D�

sD�

sD�
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As you know, in a paired-samples t test, the scores for one group (X ) are aligned
with their partners in the other group (Y ). To calculate using the direct difference
method, find the difference between each pair of scores, calculate the standard
deviation of the difference scores, and divide the standard deviation by the square root
of the number of pairs. The formula is

where D � X � Y
N � number of pairs of scores
ŝD � standard deviation of the difference scores

In my examples I use this direct difference method, but for one of the problems, you’ll
need the definitional formula.

The numerator of the paired-samples t test is the difference between the means of
the two samples. This value can be found by subtracting one mean from the other 
(X� � Y�) or by averaging the D values ( ). The null hypothesis for a paired-samples
t test is H0: mX � mY � 0. Thus, the general case of the null hypothesis of the numerator
is (X� � Y�) � (mX � mY).

With the elements explained, the working formula for a paired-samples t test is

where df � N � 1, and N � number of pairs.
The degrees of freedom in a paired-samples t test is the number of pairs minus 1.

Although each pair has two values, once one value is determined, the other is expected
to be a similar value (not free to vary independently). In addition, another degree of
freedom is subtracted when is calculated. This loss is similar to the loss of 1 df when

is calculated.
Here is an example of a paired-samples design and a t-test analysis. Suppose you

are interested in the effects of interracial contact on racial attitudes. You have a fairly
reliable test of racial attitudes in which high scores indicate more positive attitudes. You
administer the test one Monday morning to a multiracial group of fourteen 12-year-old
girls who do not know one another but who have signed up for a weeklong community
day camp. The campers then spend the next week taking nature walks, playing ball,
eating lunch, swimming, making things, and doing the kinds of things that camp
directors dream up to keep 12-year-old girls busy. On Saturday morning the girls are
again given the racial attitude test. Thus, the data consist of 14 pairs of before-and-after
scores. The null hypothesis is that the mean of the population of “after” scores is equal
to the mean of the population of “before” scores or, in terms of the specific experiment,
that a week of interracial contact has no effect on racial attitudes.

sX�

sD�

t �
X� � Y�

sD�
�

D�

ŝD

2N

D�

sD� �
ŝD

2N
�
R

©D2 �
1©D 2 2

N

N � 1

2N

sD�
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Suppose researchers obtain the data in Table 10.6. Using the sums of the D and D2

columns in Table 10.6, you can find :

Also, �D � �81, and N � 14. Thus, � �D/N � �81/14 � �5.78. Now you can
find the t-test value:

df � N � 1 � 14 � 1 � 13

Because t.01(13 df ) � 3.012, a t value of 3.77 is significant beyond the .01 level;
that is, p � .01. Because the “after” mean is greater than the “before” mean, conclude
that racial attitudes were significantly more positive after camp than before.

An SPSS analysis of the data in Table 10.6 is in Table 10.7. The upper panel shows
descriptive statistics of the racial attitudes of the girls before camp and after camp. The
lower panel shows numbers you saw as you worked through the paired-samples t test
of the difference; it confirms the t-test value of �3.77.

 t �
X� � Y�

sD�
�

28.36 � 34.14

1.534
�

�5.78

1.534
� �3.77 

D�

sD� �
ŝD

2N
�

5.740

214
� 1.534

 ŝD �R
©D2 �

1©D 2 2

N

N � 1
�R

897 �
1�81 2 2

14

13
� 232.951 � 5.74 0

ŝD
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TABLE 10.6 Hypothetical data from a racial attitudes study

Racial attitude scores

Before After
day camp day camp

Name* X Y D D2

Jessica 34 38 �4 16
Ashley 22 19 3 9
Brittany 25 36 �11 121
Amanda 31 40 �9 81
Samantha 27 36 �9 81
Sarah 32 31 1 1
Stephanie 38 43 �5 25
Jennifer 37 36 1 1
Elizabeth 30 30 0 0
Lauren 26 31 �5 25
Megan 16 34 �18 324
Emily 24 31 �7 49
Nicole 26 36 �10 100
Kayla 29 37 �8 64

Sum 397 478 �81 897
Mean 28.36 34.14

* The names are, in order, the 14 most common for baby girls in the 
United States in 1990 (www.ssa.gov/cgi-bin/popularnames.cgi).
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TABLE 10.7 Output of an SPSS paired-samples t test of the data in Table 10.6

Paired Samples Statistics

Std. Error
Mean N Std. Deviation Mean

Before Camp 28.3571 14 5.94341 1.58844
After Camp 34.1429 14 5.72252 1.52941

Paired Samples Test

Paired Differences

95% Confidence 

Std.
Interval of

Std. Error
the Difference

Sig.
Mean Deviation Mean Lower Upper t df (2-tailed)

Before Camp —5.78571 5.74026 1.53415 —9.10004 —2.47139 —3.771 13 .002
After Camp

error detection
Deciding whether a study is a paired-samples or independent-samples design is
difficult for many beginners. Here are two hints. If the two groups have different
N’s, the design is independent samples. If N’s are equal, look at the top row of
numbers and ask if they are on the top row together for a reason (such as natural
pairs, matched pairs, or repeated measures). If yes, paired-samples design; if no,
independent-samples design.

P R O B L E M S

10.12. Give a formula and definition for each symbol.
a. ŝD

b. D
c.
d.

10.13. The accompanying table shows data based on the aggression and toys
experiment described in problem 10.7b. Reread the problem, analyze the
scores, and write a conclusion.

Before After

16 18
10 11
17 19
4 6
9 10

12 14

Y

sD�
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*10.14. When I first began statistical consulting, a lawyer asked me to 
analyze salary data for employees at a large rehabilitation center 
to determine if there was evidence of sex discrimination. At the 
center, men’s salaries were about 25 percent higher than women’s. 
To rule out explanations such as “more educated” and “more
experienced,” a subsample of employees with bachelor’s degrees 
was separated out. From this group, men and women with equal
experience were paired, resulting in an N of 16 pairs. Analyze the data.
In your conclusion (which you can direct to the judge), explain whether
education, experience, or chance could account for the observed
difference. (Note: You will have to think to set up this problem.) 

Women, X Men, Y

�X or �Y $204,516 $251,732
�X2 or �Y2 2,697,647,000 4,194,750,000
�XY 3,314,659,000

*10.15. Which do you respond faster to, a visual signal or an auditory signal?
The reaction times (RT) of seven students were measured for both
signals. Decide whether the study is an independent- or paired-samples
design, analyze the data, and write a conclusion.

Auditory RT Visual RT
(seconds) (seconds)

0.16 0.18
0.19 0.20
0.14 0.20
0.14 0.17
0.13 0.14
0.18 0.17
0.20 0.21

10.16. To study the effects of primacy and recency, two groups were chosen
randomly from a large sociology class. Both groups read a two-page
description of a person at work, which included a paragraph telling how
the person had been particularly helpful to a new employee. 
For half of the participants the “helping” paragraph was near the
beginning (primacy), and for the other half the “helping” paragraph was
near the end (recency). Afterward, each participant wrote a paragraph
describing the worker’s leisure activities. The dependent variable was the
number of positive adjectives in the paragraph (words such as good,
exciting, cheerful). Based on these data, write a conclusion about
primacy and recency.

214 n Chapter 10
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Primacy Recency

0 1
6 6

10 8
8 4
5 4

10.17. Asthma is a reemerging health problem among children. In one
experiment, a group whose attacks began before age 3 was compared with
a group whose attacks began later (Mrazek, Schuman, and Klinnert,
1998). The dependent variable was the child’s score on the Behavioral
Screening Questionnaire (BSQ), which was filled out by the mother. High
BSQ scores indicate more problems. Analyze the difference between
means and write a conclusion.

Onset of asthma

Before age 3 After age 6

X� 60 36
ŝ 12 6
N 45 45

Significant Results and Important Results

When I was a rookie instructor, I did some research with an undergraduate student,
David Cervone, who was interested in hypnosis. We used two rooms in the library to
conduct the experiment. When the results were analyzed, two of the groups were
significantly different. One day, a librarian asked how the experiment had come out.

“Oh, we got some significant results,” I said.
“I imagine David thought they were more significant than you did,” was the reply.
At first I was confused. Why would David think they were more significant than

I would? Point oh-five was point oh-five. Then I realized that the librarian and I were
using the word significant in two quite different ways. I was using significant in the
statistical sense: The difference was a reliable one that would be expected to occur
again if the study was run again. The librarian meant important. Of course, important
is important, so let’s pursue the librarian’s meaning and ask about the importance of a
difference.

First of all, if a difference is not statistically significant, its importance is
questionable because such differences might reasonably be attributed to chance. If a
difference is NS, you have no assurance that a second experiment will produce a
similar difference.

If a difference is statistically significant, you have to go beyond NHST to decide if
the difference is important. Arthur Irion (1976) captured this limitation of NHST
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(and the two meanings of the word significant) when he reported that his statistical test
“reveals that there is significance among the differences although, of course, it doesn’t
reveal what significance the differences have.”

In two problems that you worked, you found differences that were statistically
significant. In problem 10.11 the difference in college ACT admissions scores between
two schools was one-tenth of a point, which doesn’t qualify as important. In contrast,
in problem 10.17 the big difference in children’s behavioral problems that depended on
age of asthma onset seems like an important difference.

Thus, NHST tests a difference only for statistical significance. The next two
sections will describe other statistics that help you decide about importance.

Effect Size Index

The effect size index, d, may help you decide whether a significant difference is
important. You probably recall from Chapter 5 that the mathematical formula for d is

You may also recall that for the problems in Chapter 5 you were given s. In Chapter 9
you calculated ŝ from data to find d. In this chapter, you use ŝ again. The formula for ŝ,
however, depends on whether the design is independent samples or paired samples.

Effect Size Index for Independent Samples

For independent-samples designs, the working formula for d is

The calculation of ŝ depends on whether or not the sample sizes are equal. When 
N1 � N2,

where N1 is the sample size for one group.
In the case N1 � N2, you cannot find ŝ directly from . To find ŝ when 

N1 � N2, use the formula

where df1 and df2 are the degrees of freedom (N � 1) for each of the two samples
ŝ1 and ŝ2 are the sample standard deviations.

The formula for for N1 � N2 (Table 10.3) does not include separate elements for
ŝ1 and ŝ2. Thus, you have to calculate ŝ1 and ŝ2 from the raw data for each sample.

sX�1�X�2

ŝ �  B
ŝ1

2 1df1 2 � ŝ2
2 1df2 2

df1 � df2

sX�1�X�2

ŝ � B
N1

2
1sX�1�X�2

2

d �
X�1 � X�2

ŝ

d �
m1 � m2

s
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Effect Size Index for Paired Samples

For paired samples, the working formula for d is 

The formula for for paired samples is

where N is the number of pairs of participants.
If you like to play algebra, you can use the formulas for the paired-samples case to

prove an equivalent rule for d, namely

which is a formula that often involves less work.

Interpretation of d

The conventions proposed by Cohen (1969) are commonly used to interpret d:

Small effect d � 0.20

Medium effect d � 0.50

Large effect d � 0.80

In studies that compare an experimental group to a control group, it is conventional
to subtract the control group mean from the experimental group mean. Thus, if the
treatment increases scores, d is positive; if the treatment reduces scores, d is negative.

To illustrate the interpretation of d, I calculated an effect size index for two
problems that you have already worked. For both of these, the t test revealed a
significant difference.

When you compared the ACT scores at two state universities (problem 10.11), you
found that the mean for State U. freshmen (23.5) was significantly higher than the
mean for freshmen at The U. (23.4). The standard error of the difference for this 
N1 � N2 study was 0.0474. Thus,

An effect size index of 0.03 is very, very small. Thus, although the difference between
the two schools is statistically significant, the size of this difference seems to be of no
consequence.

In problem 10.14 you found that there was a significant difference between the
salaries of men and women. An effect size index will reveal whether this difference can
be considered small, medium, or large. 

d �
X�1 � X�2

ŝ
�

23.5 � 23.4

B
8000

2
10.0474 2

�
0.1

3.00
� 0.03

d �
t

1N

ŝD � 2N 1sD� 2

ŝD

d �
X� � Y�

ŝD

08911_10_Ch10_196-227 pp2.qxd  12/15/09  7:56 AM  Page 217



An effect size index of 1.03 qualifies as large. Thus, the statistical analysis of these
data, which includes a t test and an effect size index, supports the conclusion that sex
discrimination was taking place and that the effect was large. In fact, on the basis of
these and other considerations, the defendants agreed to an out-of-court settlement.

Establishing a Confidence Interval 
About a Mean Difference

Another way to measure the size of the effect that an independent variable has is to
establish a confidence interval. You probably recall from Chapter 8 that a confidence
interval establishes a range of values that captures a parameter with a certain degree of
confidence. In this section the parameter that is being captured is the difference
between population means, m1 � m2. Researchers usually choose 95 percent or
99 percent as the amount of confidence they want.

Confidence Intervals for Independent Samples

To find the lower and upper limits of the confidence interval about a mean difference
for data from an independent-samples design, use these formulas:

Of course, X�1 and X�2 come from the two samples. The standard error of the difference,
, is calculated using the appropriate formula from Table 10.3. The value for ta

comes from Table D. Look again at Table D. The top row of the table gives you
commonly used confidence interval percents.

As an example, let’s return to problem 10.8, the time required by humans and
pigeons to find a person lost at sea. The data produce a mean of 49 minutes for the three
humans and 25 minutes for the three pigeons. The standard error of the difference,

is 7.895. For this example, let’s find the lower and upper limits of a 95 percent
confidence interval about the true difference between humans and pigeons. The ta (4 df )
value from Table D for 95 percent confidence is 2.776. You get

The interpretation of this confidence interval is that we can expect, with 95 percent
confidence, that the true difference between the people and the pigeons in the time
required to find a person lost at sea is between 2.08 and 45.92 minutes.

Not only does a confidence interval about a mean difference tell you the size of
the difference but it also tests the null hypothesis in the process. The null hypothesis is

UL � 1X�1 � X�2 2 � ta 1sX�1�X�2
2 � 149 � 25 2 � 2.776 17.895 2 � 45.92 minutes

LL � 1X�1 � X�2 2 � ta 1sX�1�X�2
2 � 149 � 25 2 � 2.776 17.895 2 � 2.08 minutes

sX�1�X�2
,

sX�1�X�2

UL � 1X�1 � X�2 2 � ta 1sX�1�X�2
2

LL � 1X�1 � X�2 2 � ta 1sX�1�X�2
2

d �
X� � Y�

sDˆ
�

12,782.25 � 15,733.25

216 1718.44 2
�

�2951

2873.76
� �1.03
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H0: m1 � m2 � 0. A 95 percent confidence interval gives you a lower limit for 
m1 � m2 and an upper limit for m1 � m2. If zero is not between the two limits, you can
be 95 percent confident that the difference between m1 and m2 is not zero. This is
equivalent to rejecting the null hypothesis at the .05 level. Because the interval for
search time, 2.08 to 45.92 minutes, does not contain zero, you can reject the hypothesis
that humans and pigeons take equal amounts of time to spot a person lost at sea. This is
the conclusion you reached when you first worked problem 10.8.

Thus, one of the arguments for confidence intervals is that they do everything that
hypothesis testing does, plus they give you an estimate of just how much difference there
is between the two groups. The APA publication manual gives this endorsement: “Because
confidence intervals … can often be directly used to infer significance levels, they are, in
general, the best reporting strategy” (APA, 2010, p. 35). When used as error bars on
graphs, confidence intervals are especially informative (Cumming and Finch, 2005).

Confidence Interval for Paired Samples

To find the confidence interval about a mean difference for paired-samples data, use
these formulas:

Remember that with paired-samples data, df is N � 1, where N is the number of pairs
of data.

Both the effect size index and confidence intervals about a mean difference are
statistics that may help you decide about the importance of a difference that is statistically
significant. If you are a little hazy in your understanding of confidence intervals about
mean differences, it might help to reread the material in Chapter 8 that introduced
confidence intervals.

SPSS routinely displays a confidence interval when you have it calculate a t test.
Both Table 10.5 and Table 10.7 show a 95 percent confidence interval about the
difference in sample means.

UL � 1X� � Y� 2 � ta 1sD� 2

LL � 1X� � Y� 2 � ta 1sD� 2

error detection
For confidence intervals for either independent or paired samples, use a t value from
Table D, not a t-test value calculated from the data.

P R O B L E M S

10.18. In an experiment teaching Spanish, the total physical response method
produced higher test scores than the lecture–discussion method. A report
of the experiment included the phrase “p � .01.” What event does the
p refer to?

10.19. Write sentences that distinguish between a statistically significant
difference and an important difference.
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10.20. Problem 10.9 revealed that there was no significant loss in the memory of
rats that had 20 percent of their cortex removed. Calculate the effect size
index and write an interpretation that incorporates both the effect size index
and the t test. (Hint: My interpretation notes that the nonsignificant t test
was based on 80 rats, which is a large sample.)

10.21. In the example problem for the paired-samples t test (page 211), you found
that a week of camp activities significantly improved racial attitudes.
Calculate and interpret an effect size index for those data.

10.22. How does sleep affect memory? To find out, eight students learned a list
of 10 nonsense words. For the next 4 hours, half of them slept and half engaged
in daytime activities. Then each was tested on the list. The next day everyone
learned a new list. Those who had slept did daytime activities and those who
were awake the day before slept for 4 hours. Each recalled the new list. The
table shows the number of words each person recalled under the two
conditions. Establish a 95 percent confidence interval about the difference
between the two means, and write an interpretation that includes a statement
about the fate of the null hypothesis when a� .05. (Based on a 1924 study by
Jenkins and Dallenbach.)

Asleep Awake

4 2
3 2
5 4
3 0
2 4
4 3
3 1
6 4

10.23. Twenty depressed patients were randomly assigned to two groups of ten.
Each group spent 2 hours each day working and visiting at the clinic. One
group worked in bright artificial light; the other did not. At the end of the
study, the mean depression score for those who received light was 6; for
those who did not, the mean score was 11. (High scores mean more
depression.) The standard error of the difference was 1.20. Establish a
99 percent confidence interval about the mean difference and write an
interpretation.

Reaching Correct Conclusions

The last step in any statistical analysis is to reach a conclusion (and to express it
clearly). A good conclusion describes the relationship of the dependent variable to the
independent variable, often utilizing values, magnitudes, or confidence interval
limits. But can you be sure that your conclusion is correct? Of course, with practice you
can be sure that your expressed conclusion is correct for the probabilities that result.

dp
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But are the probabilities correct? Are there considerations that should temper your
description of the relationship of the dependent variable to the independent variable? The
two subsections that follow give cautions about probabilities and the description of the
relationship between the dependent variable and the independent variable.

Nature of the Populations the Samples Come From

For an independent-samples t test, the two populations the samples come from should:

1. Be normally distributed
2. Have variances that are equal

The reason the populations should have these characteristics is that the probability
figures in Table D were derived mathematically from populations that were normally
distributed and had equal variances. What if you are uncertain about the characteristics
of the populations in your own study? Are you likely to reach the wrong conclusion by
using Table D?

There is no simple answer to this important question. Several studies suggest that
the answer is no because the t test is a robust test. (Robust means that a test gives fairly
accurate probabilities even when the populations do not have the assumed characteristics.)
In actual practice, researchers routinely use t tests unless the data are clearly not
normally distributed or the variances are not equal.

Random Assignment

Extraneous variables are bad news when it comes time to draw conclusions. If a study
has an uncontrolled extraneous variable, you cannot write a simple cause-and-effect
conclusion relating the dependent variable to the independent variable.

The most common way for researchers to control for extraneous variables is to
randomly assign available participants to treatment groups. Using random assignment
creates two groups that are approximately equal on all extraneous variables. When
random assignment is used, strong conclusions are warranted. Phrases such as caused,
produced, and responsible for mean that changes in the independent variable created
differences in scores on the dependent variable.

Unfortunately, for many interesting investigations, random assignment is just not
possible. Studies of gender, socioeconomic status, and age are examples. When random
assignment isn’t possible, researchers typically use additional control groups and logic
to reduce the number of extraneous variables.

When random assignment is not used, phrases such as related to, associated with,
and correlated are used to describe the relationship between the dependent variable and
the independent variable.

This section introduced three considerations that affect your confidence when you
draw conclusions from an independent-samples t test. The first two (normal distribution
and equal variances) are referred to as “assumptions of the independent-samples test”
and are related to the value of obtained from the data. The general topic “assumptions
of the test” will be addressed again in later chapters. The other consideration (random
assignment) in related to the strength of the conclusion you can make about the effect
of the independent variable on the dependent variable.

p
t
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To prepare you for the next section, remember that the probabilities the t
distribution gives are for differences that occur when the null hypothesis is true. When
those probabilities are correct and you use an a level of .05, you are assured that if you
reject the null hypothesis, the probability that you’ve made a Type I error is .05 or less.
Thus, you have good protection against making a mistake when the null hypothesis is
true. However, what about when the null hypothesis is false?

Statistical Power

The theme of this section is the same as that of the previous one: how to arrive at
correct conclusions. Look again at Table 9.3 (page 184). Table 9.3 shows that you will
be correct if you retain H0 when the null hypothesis is true and that you will be correct
if you reject H0 when the null hypothesis is false. Of course, rejecting H0 is what a
researcher usually wants. When H0 is rejected, there is a clear-cut conclusion: The two
populations are different. Statistical power is about making the correct decision when
H0 is false.

When the null hypothesis is false, the probability that you will either make a
correct decision or make a Type II error is 1.00 (see Table 9.3). As you may recall from
Chapter 9, the probability of a Type II error is symbolized b (beta). Thus, 1 – b is the

probability of a correct decision. For statisticians, power � 1 – b. Here
are two equivalent word versions of this formula:

n Power is the probability of not making a Type II error.
n Power is the probability of a correct decision when the null
hypothesis is false.

Naturally, researchers want to maximize power. The three factors that affect the power
of a statistical analysis are effect size, standard error, and a.

1. Effect size. The larger the effect size, the more likely that you will reject H0. For
example, the greater the difference between the mean of the experimental group
population and the mean of the control group population, the more likely that the
samples will lead you to correctly conclude that the populations are different. Of course,
determining effect size before the data are gathered is difficult, and experience helps.

2. Standard error of a difference. Look at the formulas for t on pages 206 and 210.
You can see that as and get smaller, t gets larger and you are more likely to
reject H0. Here are two ways you can reduce the size of the standard error:

a. Sample size. The larger the sample, the smaller the standard error of a difference.
Figure 8.3 shows this to be true for the standard error of the mean; it is also true
for the standard error of a difference. How big should a sample be? Cohen
(1992) provides a helpful table (as well as a discussion of the other factors that
affect power). Many times, of course, sample size is dictated by practical
considerations—time, money, or availability of participants.

b. Sample variability. Reducing the variability in the sample data will produce a
smaller standard error. You can reduce variability by using reliable measuring
instruments, recording data correctly, being consistent, and, in short, reducing
the “noise” or random error in your experiment.

sD�sX�1�X�2
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power
Power � 1 � b; the probability 
of rejecting a false null 
hypothesis.
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3. Alpha. The larger a is, the more likely you are to reject H0. As you know, the
conventional limit is .05. Values above .05 begin to raise doubts in readers’ minds,
although there has been a healthy recognition in recent years of the arbitrary nature of
the .05 rule. Researchers whose results come out with p � .08 (or near there) are very
likely to remain convinced that a real difference exists and proceed to gather more data,
expecting that the additional data will establish a statistically significant difference.

Actually incorporating these three factors into a power analysis is a topic covered in
Chapter 17, which is on the Student Companion Website that accompanies this book,
and in intermediate textbooks.8 Researchers use a power analysis before gathering data
to help decide how large N should be. In addition, a power analysis after the data are
gathered and analyzed can help determine the value of an experiment in which the null
hypothesis was retained.

I will close this section on power by asking you to imagine that you are a researcher
directing a project that could make a Big Difference. (Because you are imagining this,
the difference can be in anything you would like to imagine—the health of millions, the
destiny of nations, your bank account, whatever.) Now suppose that the success or
failure of the project hinges on one final statistical test. One of your assistants comes to
you with the question, “How much power do you want for this last test?”

“All I can get,” you answer.
If you examine the list of factors that influence power, you will find that there is

only one item that you have some control over and that is the standard error of a
difference. Of the factors that affect the size of the standard error of a difference, the
one that most researchers can best control is N. So, allocate plenty of power to
important statistical tests—use large N’s.

P R O B L E M S

10.24. Your confidence that the probabilities are accurate for an 
independent-samples t test depends on certain assumptions. List them.

10.25. Using words, define statistical power.
10.26. List the four topics that determine the power of an experiment. [If you can

recall them without looking at the text, you know that you have been
reading actively (and effectively).]

10.27. What is the effect of set (previous experience) on problem solving? 
In a classic experiment by Birch and Rabinowitz (1951), the problem was
to tie together two strings (A and B in the illustration) that were suspended
from the ceiling. The solution to the problem is to tie a weight to string A,
swing it out, and then catch it on the return. The researcher supplied the
weight (an electrical light switch) under one of two conditions. In one
condition, participants had wired the switch into an electrical circuit and
used it to turn on a light. In the other condition, participants had no
experience with the switch. Does education (wiring experience) have an
effect on the time required to solve the problem? State the null hypothesis,
analyze the data in the accompanying table with a t test and an effect size
index, and write a conclusion.

8 See Howell (2010, Chap. 8), Howell (2008, Chap. 15) or Aron, Aron, and Coups (2009, Chap. 6).
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Wired the switch into circuit No previous experience with switch

X� 7.40 minutes 5.05 minutes
ŝ 2.13 minutes 2.31 minutes
N 20 20

10.28. How does cell phone use affect driving performance? Strayer, Drews, and
Johnston (2003) had undergraduates drive a high-fidelity automobile simulator
as their only task and while engaged in a hands-free cell phone conversation.
Participants applied the brake when the brake lights of the vehicle in front of
them came on. The numbers that follow are reaction times in seconds. Analyze
the data and write a conclusion about the effect of cell phone conversations on
driving performance. Carry four decimals in your calculations.

No cell phone Cell phone

1.03 1.12
0.97 1.31
0.82 0.96
1.09 1.08
1.15 0.99
0.72 1.04
0.95 1.16
0.87 1.22

10.29. A French teacher tested the claim that “concrete, immediate experience
enhances vocabulary learning.” Driving from the college into the city, he
described in French the terrain, signs, distances, and so forth, which he
recorded with a digital voice recorder. (“L’auto est sur le pont. Carrefour
prochain est dangereux.”) For the next part of his investigation, his French II
students were ranked from 1 to 10 in competence. The 10 were divided in
such a way that numbers 1, 4, 5, 8, and 9 listened to the record while riding
to the city (concrete, immediate experience) and numbers 2, 3, 6, 7, and 10
listened to the record in the language laboratory. The next day each student
took a 25-item vocabulary test; the number of errors was recorded. Think
about the design, analyze the data, and write a conclusion about immediate,
concrete experience.

#1 7 #2 7 #3 15 #4 7 #5 12

#6 22 #7 24 #8 12 #9 21 #10 32

A
B
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10.30. When we speak, we convey not only information but emotional tone as
well. Ambady et al. (2002) investigated the relationship between the
emotional tone used by surgeons as they talked to patients and the
surgeon’s history of being sued for malpractice. Audiotapes of the doctor’s
conversations were filtered to remove high-frequency sounds, thus making
the words unintelligible but leaving expressive features such as intonation,
pitch, and rhythm. Judges rated the sounds for the emotional tone of
dominance on a scale of 1 to 7, with 7 being extremely dominant. The
surgeons in this study had never been sued or had been sued twice. Analyze
the scores and write an interpretation.

Malpractice suits

0 2

3 4
4 3
2 2
6 7
3 5
1 5
3 4
2 7

5

10.31. Skim over the objectives at the beginning of the chapter as a way to
consolidate what you have learned.

KEY TERMS

alternative hypothesis (p. 199)
assumptions (p. 221)
confidence interval (p. 218)
control group (p. 197)
degrees of freedom (p. 201)
effect size index (d ) (p. 216)
experimental group (p. 197)
important results (p. 215)
independent-samples design (p. 202)
matched pairs (p. 203)
natural pairs (p. 203)

NHST (p. 199)
null hypothesis (p. 199)
one-tailed tests (p. 199)
paired-samples design (p. 202)
power (p. 222)
repeated measures (p. 204)
standard error of a difference (p. 206)
t test (p. 202)
treatment (p. 197)
two-tailed test (p. 199)

ADDITIONAL HELP FOR CHAPTER 10

Visit cengage.com/psychology/spatz. At the Student Companion Site, you’ll
find multiple-choice tutorial quizzes, flashcards with definitions and
workshops. For this chapter there are Statistical Workshops on Independent
versus Repeated t Tests and Statistical Power.
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What Would You Recommend? Chapters 7–10

It is time again for a set of What would you recommend? problems. No calculations are
required. Reviewing Chapters 7 through 10 is permitted and even encouraged. 

Read an item. Think about the techniques you studied in the Chapters 7 to 9.
(Perhaps you even have a list?) Choose one or more statistics that would help you write
an answer to the question that is posed or a conclusion about the topic. In my answers,
I’ll give some explanation for my choices.

a. Do babies smile to establish communication with others or to express their own
emotion? During 10-minute sessions in which the number of smiles was recorded,
there was an audience for 5 minutes (a requirement for communication) and no
audience for the other 5 minutes.

b. Imagine a social worker with a score of 73 on a personality inventory that measures
gregariousness. The scores on this inventory are distributed normally with a
population mean of 50 and a standard deviation of 10. How can you determine the
percent of the population that is less gregarious than this social worker?

c. A psychologist conducted a workshop to help people improve their social skills.
After the workshop, the participants filled out a personality inventory that measured
gregariousness. (See problem b.) The mean gregariousness score of the participants
was 55. What statistical test can help determine whether the workshop produced
participants whose mean gregariousness score was greater than the population
mean?

d. A sample of high school students takes the SAT test each year. The mean score for
the students in a particular state is readily available. What statistical technique will
give you a set of brackets that “captures” a population mean?

e. One interpretation of the statistical technique in problem d is that the brackets
capture the state’s population mean. This interpretation is not correct. Why not?

f. In a sample of 50 undergraduates, there was a correlation of �.39 between
disordered eating and self-esteem. How could you determine the likelihood of such
a correlation coefficient if there is actually no relationship between the two
variables?

g. Colleges and universities in the United States are sometimes divided into six
categories: public universities, 4-year public institutions, 2-year public institutions,
private universities, 4-year private institutions, and 2-year private institutions. In
any given year, each category has a certain number of students. Which of the six
categories does your institution belong to? How can you find the probability that a
student, chosen at random, is from your category?

h. Half the school-age children in an experiment were placed on a diet high in sugar
for 3 weeks and then switched to a low-sugar diet. The other half of the participants
began on the low-sugar diet and then changed to the high-sugar diet. All children
were assessed on cognitive and behavioral measures. [See Wolraich et al. (1994),
who found no significant differences.]

226 n Chapter 10
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THE TRADITIONAL STATISTICAL analysis of a two-group experiment involves an

effect size index and a t test or a confidence interval. The statistical analysis of

experiments with more than two groups requires a more complex technique.

This more complex technique is called the analysis of variance (ANOVA for

short). ANOVA is based on the very versatile concept of assigning the variability in

the data to various sources. (This often means that ANOVA identifies the

variables that produce changes in the scores.) Among social and behavioral

scientists, it is used more frequently than any other inferential statistical

technique. ANOVA was invented by Sir Ronald A. Fisher, an English biologist and

statistician.

So the transition this time is from a t test and its sampling distribution, the 

t distribution, to ANOVA and its sampling distribution, the F distribution. In

Chapter 11 you will use ANOVA to compare means from independent-samples

designs that involve more than two treatments. Chapter 12 shows you how to

use ANOVA to compare means from a repeated-measures design that has more

than two treatments. In Chapter 13 the ANOVA technique is used to analyze

experiments with two independent variables, both of which may have two or

more levels of treatment.

The analysis of variance is a widely used statistical technique, and Chapters

11–13 are devoted to an introduction to its elementary forms. Intermediate and

advanced books explain more sophisticated (and complicated) analysis-of-variance

designs. [Howell (2010) is particularly accessible.]

transition passage
to more complex designs
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1 As will become apparent, ANOVA can also be used when there are just two groups.

IN THIS CHAPTER you will work with the simplest analysis of variance
design, a design called one-way ANOVA. (ANOVA stands for analysis of
variance. Remember, a variance is just a squared standard deviation.) The
one in one-way means that the experiment has one independent variable.
One-way ANOVA is used to find out if there are any differences among
three or more population means.1 Experiments with more than two
treatment levels are common in all disciplines that use statistics. Here are
some examples, each of which is covered in this chapter:

1. People with phobias received treatment using one of four
methods. Afterward, the group means were compared to

C H A P T E R

11

228

O B J E C T I V E S  F O R  C H A P T E R  1 1

After studying the text and working the problems in this chapter, you should 
be able to:

1. Identify the independent and dependent variables in a one-way ANOVA

2. Explain the rationale of ANOVA

3. Define F and explain its relationship to t and the normal distribution

4. Compute sums of squares, degrees of freedom, mean squares, and F for 
an ANOVA

5. Construct a summary table of ANOVA results

6. Interpret the F value for a particular experiment and explain what the
experiment shows

7. Distinguish between a priori and post hoc tests

8. Use the Tukey Honestly Significant Difference (HSD) test to make all 
pairwise comparisons

9. List and explain the assumptions of ANOVA

10. Calculate and interpret d and f, effect size indexes

Analysis of Variance:
One-Way
Classification

analysis of variance
An inferential statistics technique
for comparing means, comparing
variances, and assessing
interactions.

one-way ANOVA
Statistical test of the hypothesis
that two or more population
means in an independent-samples
design are equal.
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determine which method of therapy was most effective in reducing fear
responses.

2. Four different groups learned a new task. A different schedule of reinforcement
was used for each group. Afterward, persistence in doing the task was measured.

3. Suicide rates were compared for countries that represented low, medium,
and high degrees of modernization.

Except for the fact that these experiments have more than two groups, they are
like those you analyzed in Chapter 10. There is one independent and one dependent
variable. The null hypothesis is that the population means are the same for all groups.
The subjects in each group are independent of the subjects in the other groups. The
only difference is that the independent variable has more than two levels. To analyze
the differences among three or more means, use a one-way ANOVA.2

In example 1, the independent variable is method of treatment, and it has four levels.
The dependent variable is fear responses. The null hypothesis is that the four methods are
equally effective in reducing fear responses—that is,
H0: m1 � m2 � m3 � m4.

P R O B L E M

*11.1. For examples 2 and 3 in the text, identify the independent variable, the
number of levels of the independent variable, the dependent variable,
and the null hypothesis.

Although this chapter does not have “hypothesis testing” or “effect size” in the title
(as did the two previous chapters on t tests), ANOVA is an NHST technique, and  effect
size indexes will be calculated.

A common first reaction to the task of determining if there is a difference among
three or more population means is to compute t tests on all possible pairs of sample means.
For three populations, three t tests are required (X�1 vs. X�2, X�1 vs. X�3, and X�2 vs.  X�3).
For four populations, six tests are needed.3 This multiple t-test approach will not work
(and not just because doing lots of t tests is tedious). Here’s why.

Suppose you have 15 samples that all come from the same population. (Because
there is just one population, the null hypothesis is clearly true.) These 15 sample
means will vary from one another as a result of chance factors. Now suppose you
perform every possible t test (all 105 of them), retaining or rejecting each null
hypothesis at the .05 level. How many times would you reject the null hypothesis?

The answer is about five. When the null hypothesis is true (as in this example) and
a is .05, 100 t tests will produce about five Type I errors.

Now, let’s move from this theoretical analysis to the reporting of the experiment.
Suppose you conducted a 15-group experiment, computed 105 t tests, and found five
significant differences. If you then pulled out those five and said they were reliable

2 The ANOVA technique for analyzing paired-samples designs is covered in Chapter 12.
3 The formula for the number of combinations of n things taken two at a time is [n(n � 1)]/2.
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differences (that is, differences not due to chance), people who understand the
preceding two paragraphs would realize that you don’t understand statistics (and would
recommend that your manuscript not be published). You can protect yourself from such
a disaster if you use some other statistical technique—one that keeps the overall risk of
a Type I error at an acceptable level (such as .05 or .01).

Sir Ronald A. Fisher (1890–1962) developed such a technique. Fisher did brilliant
work in genetics, but it has been overshadowed by his fundamental work in statistics.
In genetics, it was Fisher who showed that Mendelian genetics is compatible with
Darwinian evolution. (For a while after 1900, genetics and evolution were in opposing
camps.) And, among other contributions, Fisher showed how a recessive gene can
become established in a population.

In statistics, Fisher invented ANOVA, the topic of this chapter and the next two.
He also discovered the exact sampling distribution of r (1915), developed a general
theory of estimation, and wrote the book on statistics. (Statistical Methods for Research
Workers was first published in 1925 and went through 14 editions and several
translations by 1973.)

Before getting into biology and statistics in such a big way, Fisher worked for 
an investment company for 2 years and taught in a private school for 4 years. For
biographical sketches, see Field (2005b), Edwards (2001), Yates (1981), Hald (1998,
pp. 734–739), or Salsburg (2001).

Rationale of ANOVA

The question that ANOVA addresses is whether the populations that the samples come
from have the same m. If the answer is no, then at least one of the populations has a
different m. I’ve grouped the rationale of ANOVA into two subsections. The first is a
description of null hypothesis statistical testing (NHST) as applied in ANOVA. The
second describes the distribution, which supplies probabilities, much as the 
distribution provided probabilities for a two-sample experiment.

Null Hypothesis Statistical Testing (NHST)

1. The populations you are comparing (the different treatments) may be exactly
the same or one or more of them may have a different mean. These two
descriptions cover all the logical possibilities and are, of course, the null
hypothesis (H0) and the alternative hypothesis (H1).

2. Tentatively assume that the null hypothesis is correct. If the populations are all
the same, any differences among sample means will be the result of chance.

3. Choose a sampling distribution that shows the probability of various
differences among sample means when H0 is true. For more than two sample
means, use the sampling distribution that Fisher invented, which is now called
the F distribution.

4. Obtain data from the populations you are interested in. Perform calculations on
the data using the procedures of ANOVA until you have an F value.

5. Compare your calculated F value to the critical value of F in the sampling
distribution (F distribution). From the comparison you can determine the
probability of obtaining the data you did, if the null hypothesis is true.

tF

230 n Chapter 11
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6. Come to a conclusion about H0. If the probability is less than a, reject H0. With
H0 eliminated, you are left with H1. If the probability is greater than a, retain
H0, leaving you with both H0 and H1 as possibilities.

7. Tell the story of what the data show. If you reject H0 when there are three or
more treatments, a conclusion about the relationships of the specific groups
requires further data analysis. If you retain H0, you have your data, but no
strong conclusion about H0 and H1.

I’m sure that the ideas in this list are more than somewhat familiar to you. In fact,
I suspect that your only uncertainties are about step 3, the F distribution, and step 4,
calculating an F value. The next several pages will explain the F distribution and then
what to do to get an F value from the data.

The F Distribution

The F distribution used in ANOVA is yet another sampling distribution. Like the t
distribution and the normal distribution, it gives the probability of various outcomes
when all samples come from identical populations (the null hypothesis is
true). The concepts of ANOVA and the F distribution are not simple.
Understanding them will take careful study now and review later. You
should mark this section and reread it later.

F is a ratio of two numbers. The numerator is a variance and the denominator is a
variance. When the null hypothesis is true, the variances are equal. To put this in
symbol form:

When the two variances are equal, the value of F is 1. Of course, the two s2’s are
parameters, and parameters are never available in sample-based research. Each s2 must
be estimated with a statistic, ŝ2.

Fisher’s insight was to calculate ŝ2 for the numerator with a formula that is
accurate (on the average) when the null hypothesis is true but is too large (on the
average) when the null hypothesis is false. The denominator, however, is calculated
with a formula that is accurate (on the average) regardless of whether the null
hypothesis is true or false.

Thus, when the null hypothesis is true, Fisher’s ANOVA produces an F value that
is approximately 1. When the null hypothesis is false, ANOVA produces an F that is
greater than 1. The sampling distribution of F allows you to determine whether a
particular F value is so large that the null hypothesis should be rejected. I’ll explain
more about the F ratio using both algebra and graphs.

An algebraic explanation of the F ratio Begin with the idea that each level
(treatment) of the independent variable produced a group of scores. Assume that the
null hypothesis is true.

Numerator

1. For each treatment level, calculate a sample mean.

F �
s2

s2

F distribution
Theoretical sampling distribution
of F values.

08911_11_Ch11_228-255 pp2.qxd  12/15/09  7:58 AM  Page 231



2. Using the treatment means as data, calculate a standard deviation. This
standard deviation of treatment means is an acquaintance of yours, the
standard error of the mean, .

3. Remember that . Squaring both sides gives .
Multiplying both sides by N and rearranging give .

4. is, of course, an estimator of s2.

Thus, starting with a null hypothesis that is true and a set of treatment means, you can
obtain an estimate of the variance of the populations that the samples come from.

Notice that the accuracy of this estimate of s2 depends on the assumption that the
samples are all drawn from the same population. If one or more samples come from a
population with a larger or smaller mean, the treatment means will vary more, and  ŝ2

will overestimate s2.

Denominator

The formula for ŝ2 in the denominator is based on the fact that each sample variance is
an independent estimate of the population variance.4 An average of these independent
estimators produces a more reliable estimate of s2. This denominator of the F ratio has

a special name, the error term. (It is also referred to as the error estimate
and as the residual error.) One important point about the error term is that
it is an unbiased estimate of s2 even if the null hypothesis is false.5

To summarize the algebra of the F ratio, one student described it as “the variance
of the means divided by the mean of the variances.” If the treatment means all come
from the same population, their variance will be small. If they come from different
populations, their variance will be larger. The standard of comparison is the population
variance itself.

Finally, here are two additional terms. They are widely used because they are
descriptive of the process that goes into the numerator and the denominator of the F
ratio. Because the estimate of s2 in the numerator is based on variation among the
treatment means, the numerator is referred to as the between-treatments estimate or
between-groups estimate. At least two groups are needed to find a between-treatments
estimate. The estimate of s2 in the denominator (the error term) is referred to as the
within-treatments estimate or within-groups estimate because any one group by itself
can produce a statistic that is an estimate of the population variance. That is, the
estimate can be obtained from within one group.

A graphic explanation of the F ratio The three graphs that follow (Figures 11.1,
11.2, and 11.3) also help explain the F ratio. Each figure shows three treatment
populations (A, B, and C). Each population produces a sample and its sample mean (X�A,
X�B, or X�C ). In Figure 11.1 and Figure 11.3, the null hypothesis is true; in Figure 11.2,
the null hypothesis is false.

Figure 11.1 shows three treatment populations that are identical. Each population
produced a sample whose mean is projected onto a dependent-variable line at the

ŝ 2
ŝ 2 � NsX�

2

sX�
2 �  ŝ 2>NsX� � ŝ>1N

sX�
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4 As will be explained later, one of the assumptions of ANOVA is that the populations the samples are from
have variances that are equal.
5 Just a reminder: Error in statistics means random variation.

error term
Variance due to factors not
controlled in the experiment.

08911_11_Ch11_228-255 pp2.qxd  12/15/09  7:58 AM  Page 232



Analysis of Variance: One-Way Classification n 233

bottom of the figure. Note that the three means are fairly close together. Thus, a
variance calculated from these three means will be small. This is a between-treatments
estimate, the numerator of the F ratio.

In Figure 11.2, the null hypothesis is false. The mean of Population C is greater
than that of Populations A and B. Look at the projection of the sample means onto the
dependent-variable line. A variance calculated from these sample means will be larger
than the one for the means in Figure 11.1. By studying Figures 11.1 and 11.2, you can
convince yourself that the between-treatments estimate of the variance (the numerator
of the F ratio) is larger when the null hypothesis is false.

Figure 11.3 is like Figure 11.1 in that the null hypothesis is true, but in Figure 11.3,
the population variances are larger. Because of the larger population variance, the
sample means are likely to be more variable (as shown by the larger spaces between the
sample mean projections at the bottom).

So, a large between-treatments estimate may be due to a false null hypothesis
(Figure 11.2) or to population variances that are large (Figure 11.3). To distinguish
between the two situations, divide by the population variance (the error term). In
Figure 11.2, the small population variance produces an F ratio greater than 1.00. In
Figure 11.3, the larger population variance produces an F ratio of about 1.00. Thus, the F
ratio is large when H0 is false and about 1.00 when H0 is true.

Table F One of Fisher’s central tasks while developing ANOVA was to determine the
sampling distribution of the ratio that today we call F. Part of the problem was that
there is a sampling distribution of between-treatments variances (the numerator) and a

⎯

⎯

⎯

XA

XB

XC

Dependent-variable score (X )

Population from which
Treatment A came

Population from which
Treatment B came

Population from which
Treatment C came

F I G U R E  1 1 . 1 H0 is true. All three treatment groups are from identical
populations. Not surprisingly, samples from those populations produce means 
that are similar. (Note that the points are close together on the X axis.)
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Dependent-variable score (X )

Population from which
Treatment A came

Population from which
Treatment B came

Population from which
Treatment C came

⎯XB

⎯XC

⎯XA

F I G U R E  1 1 . 2 H0 is false. Two treatment groups are from identical
populations. A third group is from a population with a larger mean. 
The sample means show more variability than those in Figure 11.1.

sampling distribution of error terms (the denominator). As a result, every different
between-treatment variance can be paired with a whole array of different error-term
values. The result is a matrix of possibilities. As it turns out, both numerator and
denominator values are identified by their degrees of freedom. Thus, there is an F value
that goes with 3 df in the numerator and 20 df in the denominator, and a different F for
3 df and 21 df (and a different one for 2 df and 21 df, and so forth).

In 1934, George W. Snedecor of Iowa State University compiled these ratios
into tables that provided critical values for a � .05 and a � .01. He named the ratio F
in honor of Fisher (who had been a visiting professor at Iowa in 1931). Table F in
Appendix C (to be explained later) gives you the critical values of F that you need for
ANOVA problems.

Figure 11.4 shows two of the many F curves. As you can see on the abscissa, their
F values range from 0 to greater than 4. For the solid curve (df � 10, 20),
5 percent of the curve has F values equal to or greater than 2.35. Notice that both
curves are skewed, which is typical of F curves.

I’d like for you to be aware of the relationships among the normal distribution, the
t distribution, and the F distribution. There is just one normal distribution, but t and F
are each a family of curves, characterized by degrees of freedom. As you already know
(page 162), a t distribution with df � � is a normal curve. The F distributions that
have 1 df in the numerator are directly related to the t distributions in Table C of
Appendix C. The relationship is that F � t2. And to conclude, an F distribution with �
df in the numerator and � df in the denominator is a normal distribution.

Fisher and Gosset (who derived the t distribution) were friends for years, each
respectful of the other’s work [Fisher’s daughter reported their correspondence
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XA

XB

XC

Dependent-variable score (X)

Population from which
Treatment A came

Population from which
Treatment B came

Population from which
Treatment C came

F I G U R E  1 1 . 3 H0 is true. All three treatment groups are from identical
populations. Because the populations have larger variances than those in
Figure 11.1, the sample means show more variability; that is, the arrow points 
are spaced farther apart

6 That is,

 �
A range

Standard error of a difference between means
�

A measure of variability between treatments

A measure of variability within treatments

t �
X�1 � X�2

sX�1�X�2

 

(Box, 1981)]. Fisher recognized that the Student’s t test was really a ratio of two
measures of variability and that such a concept was applicable to experiments with
more than two groups.6
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P R O B L E M S

11.2. Suppose three sample means came from a population with m � 100 and
a fourth from a population with a smaller mean, m � 50. Will the
between-treatments estimate of variability be larger or smaller than the
between-treatments estimate of variability of four means drawn from 
a population with m � 100?

11.3. Define F using parameters.
11.4. Describe the difference between the between-treatments estimate of variance

and the within-treatments estimate.
11.5. In your own words, explain the rationale of ANOVA. Identify the two

components that combine to produce an F value. Explain what each of
these components measures, both when the null hypothesis is true and when
it is false.

11.6. a. Suppose an ANOVA for example 1 at the beginning of this chapter
produced a very small value. Write an interpretation, using the terms
of the example.

b. Suppose an ANOVA for example 3 at the beginning of this chapter
produced a very large value. Write an interpretation, using the terms
of the example.

F

F

1 2 3 4

df = 10, 20

df = 3, 20

F values
2.35

F I G U R E  1 1 . 4 Two F distributions, showing their positively skewed nature

More New Terms

Sum of squares In the “Clue to the Future” on page 67 you read that parts of the
formula for the standard deviation would be important in future chapters. That future is
now. The numerator of the basic formula for the standard deviation, �(X � X�)2, is the
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sum of squares (abbreviated SS). So, SS � �(X � X�)2.A more complete
name for sum of squares is “sum of the squared deviations.”

Mean square Mean square (MS) is the ANOVA term for a
variance, ŝ2. The mean square is a sum of squares divided by its
degrees of freedom.

Grand mean The grand mean (GM) is the mean of all scores; it
ignores the fact that the scores come from different groups (treatments).

tot A subscript tot (total) after a symbol means that the symbol
stands for all such numbers in the experiment; �Xtot is the sum of 
all X scores.

t The subscript t after a symbol means that the symbol applies to a treatment
group; for example, � (�Xt )

2 tells you to sum the scores in each group, square
each sum, and then sum these squared values. Nt is the number of
scores in one treatment group.

K K is the number of treatments in the experiment. K is the same
as the number of levels of the independent variable.

F test An F test is the outcome of an analysis of variance.

sum of squares (SS)
Sum of the squared deviations
from the mean.

mean square (MS)
The variance; a sum of squares
divided by its degrees of freedom.

grand mean (GM)
The mean of all scores, regardless
of treatment.

F test
Test of the statistical significance
of differences among means, or
variances, or of an interaction.

clue to the future
In this chapter and the next two, you will work problems with several sets of
numbers. Unless you are using a computer, you will need the sum, the sum of
squares, and other values for each set. Most calculators produce both the sum and
the sum of squares with just one entry of each score. If you know how (or take the
time to learn) to exploit your calculator’s capabilities, you can spend less time on
statistics problems and make fewer errors as well.

Sums of Squares

Analysis of variance is called that because the variability of all the scores in an
experiment is assigned to two or more sources. In the case of simple analysis of variance,
just two sources contribute all the variability seen among the scores. One source is the
variability between treatments, and the other source is the variability within the scores of
each treatment. The sum of these two sources is equal to the total variability.

Now that you have studied the rationale of ANOVA, it is time to do the calculations.
Table 11.1 shows fictional data from an experiment in which there were three treatments
for patients with psychological disorders. The independent variable was drug therapy.
Three levels of the independent variable were used—Drug A, Drug B, and Drug C.
The dependent variable was the number of psychotic episodes each patient had during
the therapy period.

In this experiment (and in all one-way ANOVAs), the null hypothesis is that the
populations are identical. In terms of treatment means in the drug experiment,
H0: mA � mB � mC. If the null hypothesis is true, the differences among the numbers of
psychotic episodes for the three treatment groups is due to sampling fluctuation and not
to the drugs administered.
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TABLE 11.1 Computation of sums of squares of fictional data 
from a drug study

Drug A Drug B Drug C

XA XA
2 XB XB

2 XC XC
2

9 81 9 81 4 16
8 64 7 49 3 9
7 49 6 36 1 1
5 25 5 25 1 1

� 29 219 27 191 9 27
X� 7.25 6.75 2.25

Check: 60.667 � 24.250 � 84.917SStreat � SSerror � SStot;

 � 8.750 � 8.750 � 6.750 � 24.250

 SSerror � � c�X 2
t �

1�Xt 2
2

Nt

d � a219 �
292

4
b � a191 �

272

4
b � a27 �

92

4
b

 � 210.25 � 182.25 � 20.25 � 352.083 � 60.667

 �
292

4
�

272

4
�

92

4
�

652

12

 SSdrugs � � c
1�Xt 2

2

Nt

d �
1�X tot 2

2

Ntot

 SStot � �X 2
tot �

1�X tot 2
2

Ntot
� 437 �

652

12
� 84.917

 �X 2
tot � 219 � 191 � 27 � 437

 �X tot � 29 � 27 � 9 � 65

In this particular experiment, the researcher believed that Drug C would be better than
Drug A or B, which were in common use. In this case, better means fewer psychotic
episodes. A researcher’s belief is often referred to as the research hypothesis. This belief is
not ANOVA’s alternative hypothesis, H1. The alternative hypothesis in ANOVA is that one
or more populations are different from the others. No greater than or less than is specified.

The first step in any data analysis is to calculate descriptive statistics. No doubt the
researcher would be pleased to see in Table 11.1 that the mean number of psychotic
episodes for Drug C is less than those for Drugs A and B. An ANOVA can determine if
the reduction is statistically significant, and an effect size index tells how big the
reduction is. The first step in an ANOVA is to calculate the sum of squares, which is
illustrated in Table 11.1.

First, please focus on the total variability as measured by the total sum of squares
(SStot). As you will see, you are already familiar with SStot. To find SStot, subtract the
grand mean from each score, square these deviation scores, and sum them:

SStot � © 1X � X�GM 2
2
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To compute SStot, use the algebraically equivalent raw-score formula:

which you may recognize as the numerator of the raw-score formula for ŝ. To calculate
SStot, square each score and sum the squared values to obtain �X2

tot. Next, the scores are
summed and the sum squared. That squared value is divided by the total number of
scores to obtain (�Xtot )

2/Ntot. Subtraction of (�Xtot )
2/Ntot from �X 2

tot yields the total
sum of squares. For the data in Table 11.1,

Thus, the total variability of all the scores in Table 11.1 is 84.917 when measured
by the sum of squares. This total comes from two sources: the between-treatments
sum of squares and the error sum of squares. Each of these can be computed
separately.

The between-treatments sum of squares (SStreat) is the variability of the
group means from the grand mean of the experiment, weighted by the size of the
group:

SStreat is more easily computed by the raw-score formula:

This formula tells you to sum the scores for each treatment group and then square the
sum. Each squared sum is then divided by the number of scores in its group. These
values (one for each group) are then summed, giving you � [(�Xt)

2/Nt]. From this sum
is subtracted the value (�Xtot)

2/Ntot, a value that was obtained previously in the
computation of SStot.

Although the general case of an experiment is described in general terms such as
treatment and SStreat, a specific experiment is described in the words of the experiment.
For the experiment in Table 11.1, that word is drugs. Thus,

The other source of variability is the error sum of squares (SSerror), which is the
sum of the variability within each of the groups. SSerror is defined as

SSerror � © 1X 1 � X�1 2
2 � © 1X 2 � X�2 2

2 � p � © 1XK � X�K 2
2

 �
292

4
�

272

4
�

92

4
�

652

12
� 60.667

SSdrugs � © c
1©Xt 2

2

Nt

d �
1©X tot 2

2

Ntot
 

SStreat � © c
1©Xt 2

2

Nt

d �
1©X tot 2

2

Ntot

SStreat � © 3Nt 1X�t � X�GM 2
2 4

SStot � ©X 2
tot �

1©X tot 2
2

Ntot
� 437 �

652

12
� 84.917

SStot � ©X tot
2 �

1©X tot 2
2

Ntot
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or the sum of the squared deviations of each score from the mean of its treatment
group added to the sum of the squared deviations from all other groups for the
experiment. As with the other SS values, one arrangement of the arithmetic is easiest.
For SSerror, it is

This formula tells you to square each score in a treatment group and sum them
(�Xt

2). Subtract from this a value that you obtain by summing the scores, squaring
the sum, and dividing by the number of scores in the group: (�Xt)

2/Nt. For each
group, a value is calculated, and these values are summed to get SSerror. For the data
in Table 11.1,

Please pause and look at what is happening in calculating the sums of squares,
which is the first step in any ANOVA problem. The total variation (SStot) is found by
squaring every number (score) and adding them up. From this total, you subtract
(�Xtot)

2/Ntot. In a similar way, the variation that is due to treatments is found by
squaring the sum of each treatment and dividing by Nt, adding these up, and then
subtracting the same component you subtracted before, (�Xtot)

2/Ntot. This factor,

is sometimes referred to as the correction factor and is found in all ANOVA analyses.
Finally, the error sum of squares is found by squaring each number within a treatment
group and subtracting that group’s correction factor. Summing the differences from all
the groups gives you SSerror.

Another way of expressing these ideas is to say that SSerror is the variation within the
groups and SStreat is the variation between the groups. In a one-way ANOVA, the total
variability (as measured by SStot) consists of these two components, SStreat and SSerror. So,

Thus, 60.667 � 24.250 � 84.917 for the drug experiment. This relationship is shown
graphically in Figure 11.5 as a flowchart and as a pie chart.

SStreat � SSerror � SStot

1©X tot 2
2

Ntot

 � a219 �
292

4
b � a191 �

272

4
b � a27 �

92

4
b � 24.250

SSerror � © c©Xt
2 �
1©Xt 2

2

Nt

d  

SSerror � © c©Xt
2 �
1©Xt 2

2

Nt

d

240 n Chapter 11

error detection
1. Sums of squares are always positive numbers or zero.
2. Always use the check SStot � SStreat � SSerror. This check, however, will

not catch errors made in summing the scores (�X) or in summing the
squared scores (�X)2.
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SStot
(84.917)

SSerror
(24.250)

SStreat
(60.667)

SStot
(84.917)

SSerror
(24.250)

SStreat
(60.667)

F I G U R E  1 1 . 5 SStreat � SSerror � SStot

P R O B L E M S

*11.7. Here are three groups of numbers. This problem and the ones that 
use this data set are designed to illustrate some relationships and to 
give you practice calculating ANOVA values. To begin, show that 
SStreat � SSerror � SStot.

X1 X2 X3

5 6 12
4 4 8
3 2 4

*11.8. Emile Durkheim (1858–1917), a founder of sociology, believed that
modernization produced social problems such as suicide. He compiled
data from several European countries and published Suicide (1897/1951),
a book that helped establish quantification in social science disciplines.
The data in this problem were created so that the conclusion you reach
will mimic that of Durkheim (and present-day sociologists).

On variables such as electricity consumption, newspaper circulation,
and gross national product, 13 countries were classified as to their degree
of modernization (low, medium, or high). The numbers in the table are
annual suicide rates per 100,000 persons. For the data in the table, name
the independent variable, the number of levels it has, and the dependent
variable. Compute SStot, SSmod, and SSerror.

Degree of modernization

Low Medium High

4 17 20
8 10 22
7 9 19
5 12 9

14
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*11.9. The best way to cure phobias is known. Bandura, Blanchard, and Ritter
(1969) conducted an experiment that provided individuals with one of
four treatments for their intense fear of snakes. One group worked with
a model—a person who handled a 4-foot king snake and encouraged
others to imitate her. One group watched a film of adults and children
who enjoyed progressively closer contact with a king snake. A third
group received desensitization therapy, and a fourth group served as a
control, receiving no treatment. The numbers of snake-approach
responses after treatment are listed in the table. Name the independent
variable and its levels. Name the dependent variable. Compute SStot,
SStreat, and SSerror.

Model Film Desensitization Control

29 22 21 13
27 18 17 12
27 17 16 9
21 15 14 6

Mean Squares and Degrees of Freedom

After you calculate SS, the next step in an ANOVA is to find the mean squares. A mean
square is simply a sum of squares divided by its degrees of freedom. It is an estimate of
the population variance, s2, when the null hypothesis is true.

Each sum of squares has a particular number of degrees of freedom associated
with it. In a one-way classification, the df are dftot, dftreat, and dferror. The relationship
among degrees of freedom is the same as that among sums of squares:

dftot � dftreat � dferror

The formula for dftot is Ntot � 1. The dftreat is the number of treatment groups
minus one (K � 1). The dferror is the sum of the degrees of freedom for each group
[(N1 � 1) � (N2 � 1) � ��� � (NK � 1)]. If there are equal numbers of scores in the
K groups, the formula for dferror reduces to K(Nt � 1). A little algebra will reduce this
still further:

dferror � K(Nt � 1) � KNt � K

However, KNt � Ntot, so dferror � Ntot � K. This formula for dferror works whether or not
the numbers in all groups are the same. In summary,

dftot � Ntot � 1

dftreat � K � 1

dferror � Ntot � K
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error detection
dftot � dftreat � dferror. Degrees of freedom are always positive numbers.

Mean squares are found using the following formulas:7

For the data in Table 11.1,

2 � 9 � 11Check: dftreat � dferror � dftot;

dferror � Ntot � K � 12 � 3 � 9

dfdrugs � K � 1 � 3 � 1 � 2

 MSerror �
SSerror

dferror
   where  dferror � Ntot � K 

 MStreat �
SStreat

dftreat
   where  dftreat � K � 1 

7 MStot is not used in ANOVA; only MStreat and MSerror are calculated.

Now, returning to the drug problem and calculating mean squares,

Notice that although SStreat � SSerror � SStot and dftreat � dferror � dftot, mean squares
are not additive; that is, MStreat � MSerror � MStot.

Calculation and Interpretation of F Values 
Using the F Distribution

The next two steps in an ANOVA are to calculate an F value and to interpret it using
the F distribution.

The F Test: Calculation

You learned earlier that F is a ratio of two estimates of the population variance. MStreat

is an estimate based on the variability between groups. MSerror is an estimate based on
the variances within the groups. The F test is the ratio:

F �
MStreat

MSerror

 MSerror �
SSerror

dferror
�

24.250

9
� 2.694 

MSdrugs �
SSdrugs

dfdrugs
�

60.667

2
� 30.333
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TABLE 11.2 Summary table of ANOVA for data in Table 11.1

Source SS df MS F p

Drugs 60.667 2 30.333 11.26 �.01
Error 24.250 9 2.694
Total 84.917 11
F.01(2, 9 df ) � 8.02

Every F value has 2 degrees of freedom associated with it. The first is the df
associated with MStreat (the numerator) and the second is the df associated with MSerror

(the denominator). For the data in Table 11.1,

F Value: Interpretation

The next question is: What is the probability of obtaining F � 11.26 if all three samples
come from populations with the same mean? If that probability is less than a, then the
null hypothesis should be rejected.

Turn now to Table F in Appendix C, which gives the critical values of F when 
a � .05 and when a � .01. Across the top of the table are degrees of freedom
associated with the numerator (MStreat). For the data in Table 11.1, dfdrugs � 2, so 2 is
the column you want. The rows of the table show degrees of freedom associated with
the denominator (MSerror). In this case, dferror � 9, so look for 9 along the side. The
tabled value for 2 and 9 df is 4.26 at the .05 level (lightface type) and 8.02 at the 
.01 level (boldface type). If the F value from the data is as great as or greater than the
tabled value, reject the null hypothesis. If the F value from the data is not as great as
the tabled value, the null hypothesis must be retained.

Because 11.26 	 8.02, you can reject the null hypothesis at the .01 level. The three
samples do not have a common population mean. At least one of the drugs produced
scores (psychotic episodes) that were different from the rest.

At this point, your interpretation must stop. An ANOVA does not tell you which of
the population means is different from the others. Such an interpretation requires an
additional statistical analysis, which is covered later in this chapter.

It is customary to present all of the calculated ANOVA statistics in a summary
table. Table 11.2 is an example. Look at the right side of the table under p (for
probability). The notation “p � .01” is shorthand for “the probability is less than 1 in
100 of obtaining treatment means as different as the ones actually obtained, if, in fact,
the samples all came from identical populations.”

Sometimes Table F does not contain an F value for the df in your problem. For
example, an F with 2, 35 df or 4, 90 df is not tabled. When this happens, be
conservative; use the F value that is given for fewer df than you have. Thus, the

F �
MSdrugs

MSerror
�

30.333

2.694
� 11.26;  df � 2, 9
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proper F values for those two examples would be based on 2, 34 df and 4, 80 df,
respectively.8

Schedules of Reinforcement—
A Lesson in Persistence

Persistence is shown when you keep on trying even though the rewards are scarce or
nonexistent. It is something that seems to vary a great deal from person to person, from
task to task, and from time to time. What causes this variation? What has happened to
lead to such differences in people, tasks, and times?

Persistence can often be explained if you know how frequently reinforcement
(rewards) occurred in the past. I will illustrate with data produced by pigeons, but
the principles illustrated hold for other forms of life, including students and
professors.

The data in Table 11.3 are typical results from a study of schedules of
reinforcement. A hungry pigeon is taught to peck at a disk on the wall. A peck produces
food according to a schedule the experimenter set up. For some pigeons every peck
produces food—a continuous reinforcement schedule (crf ). For other birds every other
peck produces food—a fixed-ratio schedule of 2:1 (FR2). A third group of pigeons get
food after every fourth peck—an FR4 schedule. Finally, for a fourth group, eight pecks
are required to produce food—an FR8 schedule. After all groups receive 100
reinforcements, no more food is given (extinction begins). Under such conditions
pigeons will continue to peck for a while and then stop. The dependent variable is the
number of minutes a bird continues to peck (persist) after the food stops. As you can
see in Table 11.3, three groups had five birds and one had seven.

Table 11.3 shows the raw data and the steps required to get the three SS figures and
the three df figures. Work through Table 11.3 now. When you finish, examine the
summary table (Table 11.4), which continues the analysis by giving the mean squares,
F test, and the probability of such an F.

The SPSS output of a one-way ANOVA on the data in Table 11.3 is a summary
table that looks like Table 11.4, except that the treatment name Schedules is replaced
with a generic Between Groups and the error term is labeled Within Groups. In
addition, SPSS always produces a specific probability rather than a figure such
as �.01.

When an experiment produces an F with a probability value less than .05, a
conclusion is called for. Here it is: “The schedule of reinforcement used during learning
significantly changes the persistence of responding during extinction. It is unlikely that
the four samples have a common population mean.”

8 The F distribution may be used to test hypotheses about variances as well as hypotheses about means. To
determine the probability that two sample variances came from the same population (or from populations
with equal variances), form a ratio with the larger sample variance in the numerator. The resulting F value
can be interpreted with Table F. The proper df are N1 � 1 and N2 � 1 for the numerator and denominator,
respectively. For more information, see Kirk (2008, p. 362).
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TABLE 11.4 Summary table of ANOVA analysis of the schedules
of reinforcement study

Source SS df MS F p

Schedules 202.473 3 67.491 17.16 6.01
Error 70.800 18 3.933
Total 273.273 21
F.05(3, 18) � 3.16 F.01(3, 18) � 5.09

TABLE 11.3 Partial analysis of the data for the number of minutes to extinction 
after four schedules of reinforcement during learning

Schedule of reinforcement during learning

crf FR2 FR4 FR8

3 5 8 10
5 7 12 14
6 9 13 15
2 8 11 13
5 11 10 11

10
6

� X 21 56 54 63
� X2 99 476 598 811
X� 4.2 8.0 10.8 12.6
N 5 7 5 5

 dferror � Ntot � K � 22 � 4 � 18

 dfschedules � K � 1 � 4 � 1 � 3

 dftot � Ntot � 1 � 22 � 1 � 21

 � 70.800

 � a99 �
121 2 2

5
b � a476 �

156 2 2

7
b � a598 �

154 2 2

5
b � a811 �

163 2 2

5
b

 SSerror � � c�X 2
t �

1�Xt 2
2

Nt

d

 SSschedules � � c
1�Xt 2

2

Nt

d �
1©X tot 2

2

Ntot
�
121 2 2

5
�
156 2 2

7
�
154 2 2

5
�
163 2 2

5
�
1194 2 2

22
� 202.473

 SStot � �X 2
tot �

1�X tot 2
2

Ntot
� 1984 �

1194 2 2

22
� 1984 � 1710.727 � 273.273

 �X 2
tot � 99 � 476 � 598 � 811 � 1984

 �X tot � 21 � 56 � 54 � 63 � 194

You might feel unsatisfied with this conclusion. You might ask which groups differ
from the others, or which groups are causing that “significant change.” Good questions.
You will find answers in the next section, but first, here are a few problems to reinforce
what you learned in this section.
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P R O B L E M S

11.10. Suppose your analysis produced F � 2.56 with 5, 75 df. How many
treatment groups are in your experiment? What are the critical values
for the .05 and .01 levels? What conclusion should you reach?

11.11. Here are two more questions about those raw numbers you found sums
of squares for in problem 11.7.
a. Perform an F test and compose a summary table. Look up the critical

value of F and make a decision about the null hypothesis. Write a
sentence explaining what the analysis has shown.

b. Perform an F test using only the data from group 2 and group 3.
Perform a t test on these same two groups.

*11.12. Perform an F test on the modernization and suicide data in problem 
11.8 and write a conclusion.

*11.13. Perform an F test on the data from Bandura and colleagues’ phobia
treatment study (problem 11.9). Write a conclusion.

Comparisons Among Means

A significant F by itself tells you only that it is not likely that the samples have a
common population mean. Usually you want to know more, but exactly what you want
to know often depends on the particular problem you are working on. For example,
in the schedules of reinforcement study, many would ask which schedules are
significantly different from others (all pairwise comparisons). Another question might
be whether there are sets of schedules that do not differ among themselves but do differ
from other sets. In the drug study, the focus of interest is the new experimental drug. Is
it better than either of the standard drugs or is it better than the average of the
standards? This is just a sampling of the kinds of questions that can be asked.

Questions such as these are answered by analyzing the data using
specialized statistical tests. As a group, these tests are referred to as
multiple-comparisons tests. Unfortunately, no one multiple-comparisons
method is satisfactory for all questions. In fact, not even three or four
methods will handle all questions satisfactorily.

The reason there are so many methods is that specific questions are best answered
by tailor-made tests. Over the years, statisticians have developed many tests for specific
situations, and each test has something to recommend it. For an excellent chapter on
the tests and their rationale, see Howell (2010, “Multiple Comparisons Among
Treatment Means”).

With this background in place, here is the plan for this elementary statistics book.
I will discuss the two major categories of tests subsequent to ANOVA (a priori and post
hoc) and then cover one post hoc test (the Tukey HSD test).

A Priori and Post Hoc Tests

A priori tests require that you plan a limited number of tests before gathering the
data. A priori means “based on reasoning, not on immediate observation.” Thus, for a
priori tests, you must choose the groups to compare when you design the experiment.

multiple-comparisons test
Tests for statistical significance
between treatment means or
combination of means.
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Post hoc tests can be chosen after the data are gathered and you
have examined the means. Any and all differences for which a story can
be told are fair game for post hoc tests. Post hoc means “after this” or
“after the fact.”

The necessity for two kinds of tests is evident if you think again
about the 15 samples that were drawn from the same population.
Before the samples are drawn, what is your expectation that two
randomly chosen means will be significantly different if tested with
an independent-samples t test? About .05 is a good guess. Now, what

if the data are drawn, the means compiled, and you then pick out the largest and the
smallest means and test them with a t test? What is your expectation that these two
will be significantly different? Much higher than .05, I would suppose. Thus, if you
want to make comparisons after the data are gathered (and keep a at .05),
then larger differences should be required before a difference is declared “not due
to chance.”

The preceding paragraphs should give you a start on understanding that there is a
good reason for having more than one statistical test to answer questions subsequent to
ANOVA. For this text, however, I have confined us to just one test, a post hoc test
named the Tukey Honestly Significant Difference test.

The Tukey Honestly Significant Difference Test

For many research problems, the principal question is: Are any of the treatments
different from the others? John W. Tukey (pronounced “too-key”) designed a test to

answer this question when N is the same for all samples. A Tukey
Honestly Significant Difference (HSD) test pairs each sample mean
with every other mean, a procedure called pairwise comparisons. For each
pair, the Tukey HSD test tells you if one sample mean is significantly
larger than the other.

When Nt is the same for all samples, the formula for HSD is

where 

Nt � the number in each treatment; the number that an X� is based on

The critical value against which HSD is compared is found in Table G in Appendix C.
Turn to Table G. Critical values for HSD.05 are on the first page; those for HSD.01 are on
the second. For either page, enter the row that gives the df for the MSerror from the ANOVA.
Go over to the column that gives K for the experiment.

If the HSD you calculated from the data is equal to or greater than the number at
the intersection in Table G, reject the null hypothesis and conclude that the two means
are significantly different. Finally, describe the direction of the difference using the
names of the independent and dependent variables.

sX� � B
MSerror

Nt

HSD �
X�1 � X�2

sX�

a priori test
Multiple-comparisons test that
must be planned before
examination of the data.

post hoc test
Multiple-comparisons test that is
appropriate after examination of
the data.

Tukey Honestly Significant
Difference (HSD) Test
Significance test for all possible
pairs of treatments in a
multitreatment experiment.
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To illustrate Tukey HSD tests, I will make comparisons of the three groups in the
drug experiment (Tables 11.1 and 11.2). With three groups, there are three pairwise
comparisons, A and B, B and C, and A and C. The three tests are:

In Table G, the critical values for experiments with three treatments and dferror = 9
are HSD.05 = 3.95 and HSD.01 = 5.43. At this point, all the numbers are calculated and
tables consulted. It’s time for thinking and interpretation.

A good beginning is to replace the generic levels of the independent variable, A,
B, and C, with information specific to the experiment. Drug C was a new drug being
compared with two existing standards, Drug A and Drug B. Interpretation: The mean
number of psychotic episodes during the therapy period was only 2.25 for patients
taking a new medicine, Drug C. This number is significantly less (p .01) than
that recorded for patients taking either of two standard drugs (Drug A 7.25
episodes and Drug B 6.75 episodes). Drug A and Drug B are not significantly
different, p .05.

SPSS calculates HSD tests when Tukey is selected from among the post hoc
comparisons available with a one-wayANOVA. Table 11.5 shows the output for the drug
study data in Table 11.1. Each comparison of a pair is printed twice, and 95 percent
confidence intervals are provided for each mean difference. Note that the mean
differences of 4.50 and 5.00 are significant (p � .009 and p � .005) and that the mean
difference of 0.50 is not (p � .904).

7
�

�
6

HSD �
XA � XC

sX�
�

7.25 � 2.25

12.694>4
�

5.00

0.821
� 6.09

HSD �
XB � XC

sX�
�

6.75 � 2.25

12.694>4
�

4.50

0.821
� 5.48

HSD �
XA � XB

sX�
�

7.25 � 6.75

12.694>4
�

0.50

0.821
� 0.61
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TABLE 11.5 SPSS output of Tukey HSD tests for the drug study

Multiple Comparisons
Dependent Variable: Episodes
Tukey HSD

Mean
Difference Std.

95% Confidence Interval

(I) Drug (J) Drug (I-J) Error Sig. Lower Bound Upper Bound

A B .50000 1.16070 .904 —2.7407 3.7407
C 5.00000* 1.16070 .005 1.7593 8.2407

B A —.50000 1.16070 .904 —3.7407 2.7407
C 4.50000* 1.16070 .009 1.2593 7.7407

C A —5.00000* 1.16070 .005 —8.2407 —1.7593
B —4.50000* 1.16070 .009 —7.7407 —1.2593

*The mean difference is significant at the .05 level.
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11.14. Distinguish between the two categories of multiple-comparisons 
tests: a priori and post hoc.

11.15. For Durkheim’s modernization and suicide data (problems 11.8 
and 11.12), make all possible pairwise comparisons and write a
conclusion telling what the data show.

11.16. For the schedules of reinforcement data, make all possible pairwise
comparisons and write a conclusion about reinforcement schedules 
and persistence.

*11.17. For the data on treatment of phobias (problems 11.9 and 11.13), compare
the best treatment with the second best, and the poorest treatment with the
control group. Write a conclusion about the study.

Assumptions of the Analysis of Variance 
and Random Assignment

Reaching conclusions by analyzing data with an ANOVA is fairly straightforward. But
are there any behind-the-scenes requirements? Of course.

Two of the requirements are about the populations the samples come from. If these
“requirements” (assumptions) are met, you are assured that the probability figures of

250 n Chapter 11

Tukey HSD when Nt’s are not equal The Tukey HSD test was developed for
studies in which the Nt’s are equal for all groups. Sometimes, despite the best of
intentions, unequal Nt’s occur. A modification in the denominator of HSD produces a
statistic that can be tested with the values in Table G. The modification, recommended
by Kramer (1956) and shown to be accurate (R. A. Smith, 1971), is

SPSS calculations of Tukey HSD values use this formula when N’s are unequal.

Tukey HSD and ANOVA

In the analysis of an experiment, it has been common practice to calculate an ANOVA
and then, if the F value is significant, conduct Tukey HSD tests. Mathematical
statisticians (see Zwick, 1993) have shown, however, that this practice fails to detect
real differences (the procedure is too conservative). So, if the only thing you want to
know from your data is whether any pairs of treatments are significantly different, then
you may calculate the Tukey HSD test without first showing that the ANOVA produced
a significant F. Other multiple comparisons tests besides HSD, however, do require that
an initial ANOVA produce a significant F. So, for the beginning statistics student,
I recommend that you learn both ANOVA and Tukey HSD and apply them in that order.

sX� � B
MSerror

2
 a

1

N1
�

1

N2
b

08911_11_Ch11_228-255 pp2.qxd  12/15/09  7:58 AM  Page 250



Analysis of Variance: One-Way Classification n 251

.05 and .01 are correct for the F values in the body of Table F. If the third “requirement”
is met, cause-and-effect conclusions are supported.

Assumptions of ANOVA

1. Normality. The dependent variable is assumed to be normally distributed in the
populations from which samples are drawn. In some areas of research, populations are
known to be skewed, and researchers in those fields may decide that ANOVA is not
appropriate for their data analysis. However, unless there is a reason to suspect that
populations depart severely from normality, the inferences made from the F test will
probably not be affected. ANOVA is robust. (It gives correct probabilities even when
the populations are not exactly normal.) Where there is suspicion of a severe departure
from normality, however, use the nonparametric method explained in Chapter 15.

2. Homogeneity of variance. The variances of the dependent-variable scores for
each of the populations are assumed to be equal. Figures 11.1, 11.2, and 11.3, which
were used to illustrate the rationale of ANOVA, show populations with equal
variances. Several methods of testing this assumption are presented in advanced texts,
such as Winer, Brown, and Michels (1991), Kirk (1995), and Howell (2010). When
variances are grossly unequal, the nonparametric method discussed in Chapter 15 may
be called for.

Random Assignment

Random assignment of participants to conditions distributes the effects of extraneous
variables equally over all levels of the independent variable. For experiments where
random assignment is used, strong statements of cause-and-effect are possible.
When random assignment is not used, cause-and-effect conclusions should be avoided
or, if tentatively advanced, supported by additional control groups, previous research,
or logical considerations.

I hope these requirements seem familiar to you. They are the same as those you
learned for the t distribution in Chapter 10. This makes sense; t is the special case of F
when there are two samples.

Effect Size Indexes

The important question, Are the populations different? can be answered with an NHST
F test. The equally important question, Are the differences large, medium, or small?
requires an effect size index.

The Index d

Values for d, the effect size index covered in Chapters 5, 9, and 10, can be calculated
for any two pairs of treatments in a one-way ANOVA design. The formula is

d �
X1 � X2

ŝerror
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where 
For the schedules of reinforcement example in Table 11.3, how much of an effect

does changing from an FR4 to an FR8 schedule have on persistence? Calculating d for
the two groups,

Based on the convention that d values of 0.20, 0.50, and 0.80 correspond to small,
medium, and large effect sizes, conclude that changing a schedule of reinforcement
from FR4 to FR8 greatly increases persistence.

The Index f

Many other indexes of effect size have been developed to use on ANOVA data. Most
provide a measure of the overall magnitude that the levels of the independent variable
have on the dependent variable. Examples include v 2 (omega squared), h 2 (eta
squared), and f (lowercase). v2 and h2 are explained in Howell (2008, 2010), and Field
(2005a). As for f,

To find f, estimators of streat and serror are required. The estimator of streat is
symbolized by ŝtreat and is found using the formula9

The estimator of serror is symbolized by ŝerror, and as you know, it is the square root of
the error variance:

Thus,

Using the drug data in Table 11.1, the calculation of f is

f �
B

K � 1

Ntot
1MStreat � MSerror 2

2MSerror

�
B

3 � 1

12
130.333 � 2.694 2

22.694
� 1.31

f �
ŝtreat

ŝerror

ŝerror � 2MSerror

ŝtreat � B
K � 1

Ntot
 1MStreat � MSerror 2

f �
streat

serror

d �
XFR4 � XFR8

ŝerror
�

10.8 � 12.6

13.933
� �0.91

ŝerror � 1MSerror

252 n Chapter 11

9 This formula is appropriate for an ANOVA with equal numbers of participants in each treatment group
(Kirk, 1995, p. 181). For unequal N’s, see Cohen (1988, pp. 359–362).
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The next step is to interpret an f value of 1.31. Jacob Cohen, who promoted the
awareness of effect size and also contributed formulas, provided guidance for judging
f values as small, medium, and large (Cohen, 1969, 1992):

Small f � 0.10

Medium f � 0.25

Large f � 0.40

Thus, an f value of 1.31 indicates that the effect size in the drug study was just
huge. (This is not surprising because textbook authors often manufacture fictional data
so that an example will produce a large effect.) As another example of a huge effect size
index, the value of f for the distributions pictured in Figure 11.2 is about 1.2.

The statistic can be helpful when ANOVA produces an that is not statistically
significant. Facing  a nonsignificant difference, should you pour more resources into
your study or call it quits and look for other variables to investigate? If is small, then
perhaps any differences you might find are so small as to be unimportant and a new line
of research is appropriate. On the other hand, if is large, additional resources may
reveal differences that the first study failed to detect.

The following set of problems provides an opportunity for you to apply all the
ANOVA techniques you have studied.

f

f

Ff
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P R O B L E M S

11.18. ANOVA is based on two assumptions about the populations the samples
are from. List them

11.19. What is the advantage of random assignment of participants to treatments
in an experiment?

11.20. For the data from Bandura and colleagues’ phobia treatment experiment
(problems 11.9, 11.13, and 11.17), find f and write a sentence of
interpretation.

11.21. Hermann Rorschach, a Swiss psychiatrist, began to get an inkling
of an idea in 1911. By 1921 he had developed, tested, and published
his test, which measures motivation and personality. One of the
several ways that the test is scored is to count the number of
responses the test-taker gives (R scores). The data in the table are
representative of those given by people with schizophrenia,
depression, and those with no diagnosable disorder. Analyze the data
with an F test and a set of Tukey HSDs. Determine d for the
schizophrenia–depression comparison. Write a conclusion about
Dr. Rorschach’s test.
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Disorder

Schizophrenia Depression None

17 16 23
20 11 18
22 13 31
19 10 14
21 12 22
14 10 28
25 20

22

11.22. Many health professionals recommend that women practice monthly breast
self-examination (BSE) to detect breast cancer in its early stages (when
treatment is much more effective). Several methods are used to teach BSE.
T. S. Spatz (1991) compared the method recommended by the American
Cancer Society (ACS) to the 4MAT method, a method based on different
learning styles that different people have. She also included an untrained
control group. The dependent variable was the amount of information
retained three months after training. Analyze the data in the table with an
ANOVA, HSD tests, and f. Write a conclusion.

ACS 4MAT Control

�X 178 362 62
�X2 2619 7652 1192
N 20 20 20

11.23. Common sense says that a valuable goal is worth suffering for. Is that the way
it works? In a classic experiment in social psychology (Aronson and Mills,
1959), college women had to “qualify” to be in an experiment. The
qualification activity caused severe embarrassment, mild embarrassment, or no
embarrassment. After qualifying, the women listened to a recorded discussion,
which was, according to the experimenters, “one of the most worthless and
uninteresting discussions imaginable.” The dependent variable was the
women’s rating of the discussion. Analyze the ratings using the techniques in
this chapter (high scores � favorable ratings). Write an interpretation.

Degree of embarrassment

Severe Mild None

18 18 17
23 12 15
14 14 9
20 15 12
25 10 13

11.24. Look over the objectives at the beginning of the chapter. Can you do them?

254 n Chapter 11
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ADDITIONAL HELP FOR CHAPTER 11

Visit cengage.com/psychology/spatz. At the Student Companion Site, you’ll find
multiple-choice tutorial quizzes, flashcards with definitions and workshops.
For this chapter there is a Statistical Workshop on One-Way ANOVA.

KEY TERMS

A priori test (p. 247–248)
Alternative hypothesis (p. 230)
Analysis of variance (p. 228)
Assumptions of ANOVA (p. 251)
Between-treatments estimate (p. 232)
Degrees of freedom (p. 242)
Effect size index d (p. 251)
Effect size index f (p. 252)
Error term (p. 232)
F distribution (p. 231)
F test (p. 237)

Grand mean (p. 237)
Mean square (MS ) (p. 237)
Multiple-comparisons test (p. 247)
Null hypothesis (p. 229, 230)
NHST (p. 230)
One-way ANOVA (p. 228)
Post hoc test (p. 248)
Sum of squares (SS) (p. 237)
Summary table (p. 244)
Tukey HSD test (p. 248)
Within-treatment estimate (p. 232)
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C H A P T E R

12
Analysis of Variance: 
One-Factor Repeated
Measures

O B J E C T I V E S  F O R  C H A P T E R  1 2

After studying the text and working the problems in this chapter, you should be
able to:

1. Describe the characteristics of a one-factor repeated-measures analysis of
variance (ANOVA)

2. For a one-factor repeated-measures ANOVA, identify the sources of variance
and calculate their sums of squares, degrees of freedom, mean squares, and
the F value

3. Interpret the F value from a one-factor repeated-measures ANOVA

4. Use a Tukey Honestly Significant Difference test to make pairwise
comparisons

5. Distinguish between Type I and Type II errors

6. List and explain advantages and cautions that come with a one-factor
repeated-measures ANOVA

Let’s begin with a review of the designs in the two previous chapters and then fit this
chapter into that context. In Chapter 10 you studied tests. Both the independent-
samples t test and the paired-samples t test are null hypothesis statistical testing
(NHST) techniques that are used to analyze experiments with two levels of one
independent variable. The difference is that with the paired-samples t test you have a
reason to pair the scores from one level of the independent variable with the scores
from the second level—a reason other than that the scores are similar. The reason might
be that the participants who made the scores are natural pairs, or matched pairs, or that
the scores are made by the same person (or rat or fruit fly).

In Chapter 11 you studied analysis of variance (ANOVA), a NHST technique that
helps you evaluate data from experiments that have more than two levels of one
independent variable. The technique in Chapter 11, one-way ANOVA, is used when the
treatment levels are independent of each other. It is the multilevel counterpart of the
independent-samples test.t

t

08911_12_Ch12_256-267 pp2.qxd  12/15/09  8:02 AM  Page 256



The multilevel counterpart of the paired-samples test is a repeated-
measures ANOVA, a NHST technique that is the topic of this chapter.
Like the paired-samples design, the scores of a repeated-measures
ANOVA are grouped together for a reason. For an experiment with three
levels of the independent variable, scores might be grouped together
because they are natural triplets, or the three participants had similar
scores on a pretest, or the three scores were all made by the same participant. The term
repeated measures refers to all three of these ways to group scores together.

Here are two points about ANOVA terminology. First, the word factor
is often substituted for independent variable. A one-factor design has one
independent variable and a two-factor design has two independent
variables. Thus, the title of this chapter indicates that it is about a technique used to
analyze data from multilevel experiments (ANOVA) with one independent variable
(“One Factor”) and whose scores can be grouped together for some logical reason
(“Repeated Measures”).

The second point is that statistics terminology in one discipline is different from
terminology in other disciplines. This is because terms that are quite descriptive in one
field do not get adopted by researchers in other fields. In agriculture, the name of the
repeated-measures design is the split-plot design. When several plots are available for
planting, each is split into subplots equal to the number of treatments. Thus, a shady
plot has all the treatments within it (as does a sunny plot and a hillside plot). In this
way, the effects of shade, sun, and slope occur equally in all treatments. Besides
repeated-measures and split-plot, the design in this chapter is also referred to as a
randomized blocks design and a subjects x treatments design.

A Data Set

To begin your study of repeated-measures ANOVA, look at the data in Table 12.1. There
are three levels of the factor (named simply X at this point). The mean score for
each treatment is shown at the bottom of its column. Using the skills you learned in
Chapter 11, estimate whether an F ratio for these data will be significant. Remember that
F � MStreat /MSerror. Go ahead, stop reading and make your estimate. (If you also write
down how you arrived at your estimates, you can compare them to the analysis that
follows.)

t

Analysis of Variance: One-Factor Repeated Measures n 257

TABLE 12.1 A repeated-measures data set

Levels of factor X

Subjects X1 X2 X3

S1 57 60 64
S2 71 72 74
S3 75 76 78
S4 93 92 96

X� 74 75 78

repeated-measures ANOVA
Statistical technique for designs
with repeated measures of
subjects or groups of matched
subjects.

factor
Independent variable.
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Here’s one line of thinking that might be expected from a person who remembers
the lessons of Chapter 11:

Well, OK, let’s start with the means of the three treatments. They are pretty close together:
74, 75, and 78. Not much variability there. How about within each treatment? Uh-huh,
scores range from 57 to 93 in the first column, so there is a good bit of variability there.
Same story in the second and the third columns, too. There’s lots of variability within the
groups, so MSerror will be large. Nope, I don’t think the F ratio will be very big. My guess is
that F won’t be significant—that the means are not significantly different.

Most of us who teach statistics would say that this reasoning shows a good
understanding of what goes into the F value in a one-way ANOVA. Such a description
would put an approving smile on our faces. With a repeated-measures ANOVA,
however, there is an additional consideration.

The additional consideration for the data in Table 12.1 is that each subject 1

contributed a score to each level of the independent variable. To explain, look at the
second column, X2, which has scores of 60, 72, 76, and 92. The numbers are quite
variable. But notice that some of this variability is predictable from the X1 scores. That
is, low scores (such as 60) are associated with S1 (who had a low score of 57 on X1).
Notice, too, that in column X3, S1 had a score of 64, the lowest in the X3 column. Thus,
knowing that a score was made by S1, you can predict that the score will be low. Please
do a similar analysis on the scores for the person labeled S4.

In a repeated-measures ANOVA, then, some of the variability of the scores within
a level of the factor is predictable if you know which subject contributed the score. If
you could remove the variability that goes with the differences between the subjects,
you could reduce the variability within a level of the factor.

One way to reduce the variability between subjects is to use subjects who are alike.
Although this would work well, getting subjects—whether people, agricultural plots,
or production units—who are all alike is almost impossible. Fortunately, a repeated-
measures ANOVA provides a statistical alternative that accomplishes the same goal.

One-Factor Repeated-Measures ANOVA: 
The Rationale

A one-factor repeated-measures ANOVA is a null hypothesis statistical testing
technique. Like all NHST techniques, there is a null hypothesis, and for most research
situations the null hypothesis is that the populations the samples are from are identical.
Thus, for a three-treatment study,

Samples are collected from each population. This produces means of , , and ,
which typically vary from each other.  A repeated-measures ANOVA allows you to
calculate and then discard the variability among the means that comes from the
differences between the subjects. The remaining variability in the data set is then
partitioned into two components: one due to the differences between treatments
(between-treatment variance) and another due to the inherent variability in the

X3X2X1

H0: m1 � m2 � m3.

258 n Chapter 12

1 “Participant” is usually preferable to “subject” when referring to people whose scores are analyzed in a
behavioral science or medical study. Statistical methods, however, are used by all manner of disciplines;
Dependent variable scores come from agricultural plots, production units, and Rattus norvegicus as well as
from Homo sapiens. Thus, statistics books often use the more general term subjects.
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2 By the way, should you be one of those people who find yourself taking multiple-choice tests from time to
time, understanding this problem will reveal a strategy for improving your score on such exams.

measurements (the error variance). These two variances are put into a ratio; the between-
treatments variance is divided by the error variance. This ratio is an F value. This F ratio
is a more sensitive measure of any differences that may exist among the treatments
because the variability produced by differences among the subjects has been removed.

An Example Problem

The numbers in Table 12.1 can be used to illustrate the procedures for calculating a
one-factor repeated-measures ANOVA. However, to include the important step of
telling what the analysis shows, you must know what the independent and dependent
variables are. The numbers in the table (the dependent variable) are scores on a
multiple-choice test. The independent variable is the instruction given to those taking
the multiple-choice test. The three different instructions were:

1. If you become doubtful about an item, always return to your first choice. 
2. Write notes and comments about the items on the test itself.
3. No instructions.

Thus, the design compares two strategies and a control group.2 Do you use either of
these strategies? Do you have an opinion about the value of either of these strategies?
Perhaps you would be willing to express your opinion by deciding which of the
columns in Table 12.1 represent which of the two strategies and which column
represents the control condition (taking the test without instructions). (If you want to
guess, do it now, because I’m going to label the columns in the next paragraph.)

The numbers in the X2 column represent typical multiple-choice test performances
(control condition). The mean is 75. The X1 column shows scores when test-takers
follow strategy 1 (go with your initial choice). The scores in column X3 represent
performance when test-takers make notes on the test itself (though these notes are not
graded in any way). Does either strategy have a significant effect on scores? A
repeated-measures ANOVA will give you an answer.

Terminology for N

The three different ’s in a one-factor repeated-measures ANOVA are distinguished by
three different subscripts. Two of these terms you have used before; the new one is .
Definitions:

Ntot � total number of scores. In Table 12.1, Ntot � 12.

Nt � number of scores that receive one treatment. In Table 12.1, Nt � 4.

Nk � number of treatments. In Table 12.1, Nk � 3.

Sums of Squares

The first set of calculations in the analysis of test-taking strategies is of sums of
squares. They are shown in the lower portion of Table 12.2. The upper portion of

Nk

N
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Table 12.2 is identical to Table 12.1, except that labels and sums have been added.
I did not include columns of X 2 values like those in previous chapters. Line 2 in the
sum of squares portion of the table shows the calculation of �X 2

tot. The formula for
SStot is the same as that for all ANOVA problems:

For the data in Table 12.2, SStot � 1754.667.
SSsubjects is the variability due to differences between subjects. As you know, people

differ in their abilities when it comes to multiple-choice exams. These differences are
reflected in the different row totals. The sum of one subject’s scores (a row total) is

SStot � ©X 2
tot �

1©X tot 2
2

Ntot

260 n Chapter 12

TABLE 12.2 A repeated-measures ANOVA that compares two test-taking
strategies and a control condition (same data set as Table 12.1)

Strategies

Use first 
Subjects choice Control Write notes �Xk

S1 57 60 64 181
S2 71 72 74 217
S3 75 76 78 229
S4 93 92 96 281
�Xt 296 300 312 908
X� 74 75 78

dferror � 1Nt � 1 2 1Nk � 1 2 � 13 2 12 2 � 6

dfstrategies � Nk � 1 � 3 � 1 � 2

dfsubjects � Nt � 1 � 4 � 1 � 3

dftot � Ntot � 1 � 12 � 1 � 11

 � 1754.667 � 1712.000 � 34.667 � 8.000

 SSerror � SStot � SSsubjects � SSstrategies

 � 68,740.000 � 68,705.333 � 34.667

 SSstrategies � © c
1©Xt 2

2

Nt

d �
1©Xtot 2

2

Ntot
�

2962

4
�

3002

4
�

3122

4
�

9082

12

 � 70,417.333 � 68,705.333 � 1712.000

 SSsubjects � © c
1©Xk 2

2

Nk

d �
1©Xtot 2

2

Ntot
�

1812

3
�

2172

3
�

2292

3
�

2812

3
�

9082

12

SStot � �X 2
tot �

1�X tot 2
2

Ntot
� 70,460 � 68,705.333 � 1754.667

�X 2
tot � 572 � 602 � p � 922 � 962 � 70,460

�X tot � 296 � 300 � 312 � 908
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symbolized �Xk. This sum depends on the number of treatments, which is symbolized
Nk. The general formula for SSsubjects is

Work through the calculations in Table 12.2 that lead to the conclusion SSsubjects � 1712.000.
Perhaps you have already noted that 1712 is a big portion of the total sum of squares.

SStreat is the variability that is due to differences among the strategies the subjects
used; that is, SStreat is the variability due to the independent variable. The sum of the
scores for one treatment level is �Xt. This sum depends on the number of subjects in
that treatment, Nt. The general formula for SStreat is

For the analysis in Table 12.2, the generic term treatments has been replaced with the
term specific to these data: strategies. As you can see, SSstrategies � 34.667.

SSerror is the variability that remains in the data when the effects of the other
identified sources have been removed. To find SSerror, calculate

SSerror � SStot � SSsubjects � SStreat

For these data, SSerror � 8.000.

P R O B L E M S

12.1. You just worked through three SS values for a repeated-measures ANOVA. But
is it a repeated-measures design? (I gave no description of the procedures.)
Describe a way to form groups to create a repeated-measures design.

12.2. Figure 11.5 shows how SStot is partitioned into its components in a one-way
ANOVA. Construct a graphic that shows the partition of the components of
sums of squares in a one-factor repeated-measures ANOVA.

Degrees of Freedom, Mean Squares, and F

After you calculate sums of squares, the next step is to determine their degrees of
freedom. Degrees of freedom for one-way repeated-measures ANOVA follow the
general rule: number of observations minus 1.

In general: For the strategy study:

dftot � Ntot � 1 dftot � 12 � 1 � 11

dfsubjects � Nt � 1 dfsubjects � 4 � 1 � 3

dftreat � Nk � 1 dfstrategies � 3 � 1 � 2

dferror � (Nt � 1)(Nk � 1) dferror � (3)(2) � 6

As is always the case for ANOVAs, mean squares are found by dividing a sum of
squares by its df. With mean squares in hand, you can form any appropriate F ratios.

SStreat � © c
1©Xt 2

2

Nt

d �
1©X tot 2

2

Ntot

SSsubjects � © c
1©Xk 2

2

Nk

d �
1©X tot 2

2

Ntot
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Because the usual purpose of this design is to provide a more sensitive test of the treatment
variable, Fstrategies is the only F to calculate. Thus, there is no need to calculate MSsubjects.

To find F, divide MSstrategies by the error term:

An ANOVA summary table is the conventional way to present the results of an
analysis of variance. Table 12.3 shows the analysis that assessed strategies for taking
multiple-choice exams.

Interpretation of F

Recall that the null hypothesis for a three-treatment, repeated-measures ANOVA is
: . As you can see in Table 12.3, the tabled values for with 2 and

6 are 5.14 and 10.92 at the .05 and .01 levels, respectively. Thus, for an obtained
value of 13.00, reject the null hypothesis and conclude that the three strategies for

taking multiple-choices tests do not have a common population mean. Such a
conclusion, of course, doesn’t answer the obvious question: Should I use or avoid
either of these strategies?

With this question in mind, look at the means of each of the strategies in 
Table 12.2. What pairwise comparison is the most interesting to you?

Tukey HSD Tests

The one pairwise comparison that I’ll do for you is the comparison between the Write
notes strategy and the Control group. The formula for a Tukey HSD is the same as the
one you used in Chapter 11:

HSD �
X�1 � X�2

sX�

F
adf

Fm1 � m2 � m3H0

F �
MSstrategies

MSerror
�

17.333

1.333
� 13.003

MSerror �
SSerror

dferror
�

8.000

6
� 1.333

MSstrategies �
SSstrategies

dfstrategies
�

34.667

2
� 17.333
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TABLE 12.3 ANOVA summary table for the 
multiple-choice strategy study

Source SS df MS F p

Subjects 1712.000 3
Strategies 34.667 2 17.333 13.00 �.01
Error 8.000 6 1.333
Total 1754.667 11

F.05(2, 6 df ) � 5.14 F.01(2, 6 df ) � 10.92

08911_12_Ch12_256-267 pp2.qxd  12/15/09  8:02 AM  Page 262



where 

Nt � the number of scores in each treatment; the number that an X� is based on.

Applying the formula to the data for the Write notes strategy and the Control group,
you get

The critical value of HSD at the .05 level for three groups and a dferror � 6 is
4.34. Because the data-produced HSD is greater than the critical value of HSD,
conclude that making notes on a multiple-choice exam produces a significantly better
score.3

OK, now it is time for you to put into practice what you have been learning.

P R O B L E M S

12.3. Many studies show that interspersing rest between practice sessions 
(spaced practice) produces better performance than a no-rest condition
(massed practice). Most studies use short rests, such as minutes or hours.
Bahrick et al. (1993), however, studied the effect of weeks of rest. Thirteen
practice sessions of learning the English equivalents of foreign words were
interspersed with rest periods of 2, 4, or 8 weeks. The scores (percent of
recall) for all four participants in this study are in the accompanying table.
Analyze the data with a one-factor repeated-measures ANOVA, construct 
a summary table, perform Tukey HSD tests, and write an interpretation.

Rest interval (weeks)

Subject 2 4 8

1 40 50 58
2 58 56 65
3 44 70 69
4 57 61 74

12.4. Using the data in Table 12.2 and a Tukey HSD, compare the scores of 
those who returned to their first choice to those of the control group.4

HSDwrite v. cont �
78 � 75

21.333>4
�

3

0.577
� 5.20; p 6 .05

sX� � B
MSerror

Nt
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3 For confirmation, see McKeachie, Pollie, and Speisman (1955).
4 This comparison is based on data presented by Benjamin, Cavell, and Shallenberger (1984).

Type I and Type II Errors

In problem 12.3 you reached the conclusion that an 8-week rest between practice
sessions is better than a 2-week rest. Could this conclusion be in error? Of course it
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could be, although it isn’t very likely. But suppose the conclusion is erroneous. What
kind of a statistical error is it: a Type I error or a Type II error?

In problem 12.4 you compared the strategy of return to your initial choice to the
control condition. You did not reject the null hypothesis. If this conclusion is wrong,
then you’ve made an error. Is it a Type I error or a Type II error?

Perhaps these two review questions have accomplished their purpose—to provide
you with a spaced practice trial in your efforts to learn about Type I and Type II errors. As
a reminder, a Type I error is rejecting the null hypothesis when it is true. A Type II error
is failing to reject a false null hypothesis. (To review, see pages 183–185 and 222–223.)

Some Behind-the-Scenes Information 
about Repeated-Measures ANOVA

Now that you can analyze data from a one-factor repeated-measures ANOVA, you are
ready to appreciate something about what is really going on when you perform this
statistical test. I’ll begin by addressing the fundamental issue in any ANOVA: partitioning
the variance.

Think about SStot. You may recall that the definitional formula for SStot is
�(X � X�GM)2. When you calculate SStot, you get a number that measures how variable
the scores are. If the scores are all close together, SStot is small. (Think this through. Do
you agree?) If the scores are quite different, SStot is large. (Agree?)

Regardless of the amount of total variance, an ANOVA divides it into separate,
independent parts. Each part is associated with a different source.

Look again at the raw scores in Table 12.2. Some of the variability in those scores
is associated with different subjects. You can see this in the row totals—there is a lot
of variability from S1 to S2 to S3 to S4; that is, there is variability between the subjects.

Now, focus on the variability within the subjects. That is, look at the variability
within S1. S1’s scores vary from 57 to 60 to 64. S2’s scores vary from 71 to 72 to 74.
Where does this variability within a subject come from? Clearly, treatments are
implicated because, as treatments vary from the first to the second to the third column,
scores increase.

But the change in treatments doesn’t account for all the variation. That is, for S1

the change in treatments produced a 3-point or 4-point increase in the scores, but for 
S2 the change in treatments produced only a 1-point or 2-point increase, going from the
first to the third treatment. Thus, the change from the first treatment to the third is not
consistent; although an increase usually comes with the next treatment, the change isn’t

the same for each subject. This means that some of the variability within
a subject is accounted for by the treatments, but not all. The variability
that remains in the data in Table 12.2 is used to calculate an error term. It
is sometimes called the residual variance.

Advantages of Repeated-Measures ANOVA

With repeated-measures ANOVA there is a reason the scores in each row belong
together. That reason might be that the subjects were matched before the experiment
began, that the subjects were “natural triplets” or “natural quadruplets,” or that the
same subject contributed all the scores in one row.

264 n Chapter 12

residual variance
Variability due to unknown 
or uncontrolled variables; 
error term.
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When the same subjects are used for all levels of the independent variable, there is
a saving of time and effort. To illustrate, it takes time to recruit participants, give
explanations, and provide debriefing. So, if your study has three levels of the
independent variable, and each person can participate in all three conditions, you can
probably save two-thirds of the time it takes to recruit, explain, and debrief. Clearly, a
repeated-measures design can be more efficient.

What about statistical power? You may recall that the more powerful the statistical
test, the more likely it will reject a false null hypothesis (see pages 222–223). Any
procedure that reduces the size of the error term (MSerror) will produce a larger F ratio.
When the between-subjects variability is removed from the analysis, the error term is
reduced, making a repeated-measures design more powerful. To summarize, two of the
advantages of a repeated-measures ANOVA are efficiency and power.

Cautions about Repeated-Measures ANOVA

The previous section, titled “Advantages of . . . ,” leads good readers to respond internally
with “OK, disadvantages is next.” Well, this section gives you three cautions that go with
repeated-measures ANOVAs. To address the first, work the problem that follows.

P R O B L E M

12.5. One of the following experiments does not lend itself to a repeated-measures
design using the same participants in every treatment. Figure out which one
and explain why.

a. You want to design an experiment to find out the physiological effects
of meditation. Your plan is to measure oxygen consumption 1 hour
before meditation, during meditation, and 1 hour after a meditation
session.

b. A friend, interested in the treatment of depression, wants to compare
drug therapy, interpersonal therapy, cognitive-behavioral therapy, and a
placebo drug using Beck Depression Inventory scores as a dependent
variable.

The first caution about repeated-measures ANOVA is that it may not be useful if
one level of the independent variable continues to affect the participant’s response in
the next treatment condition (a carryover effect). In problem 12.5a, there is no problem
with the experiment because there is no reason to expect that measuring oxygen
consumption before meditation will carry over and affect consumption at a later time.
However, in problem 12.5b, the effect of therapy is long-lasting and will affect
depression scores at a later time. (To use a repeated-measures ANOVA on problem
12.5b, some method of matching patients could be used.)

Having cautioned you about carryover effects, I must mention that sometimes you
want and expect carryover effects. For example, to evaluate a workshop on computerizing
medical records, you might measure compliance and accuracy by giving  the participants
a pretest, a test after the workshop, and a follow-up test 6 months later. The important
thing is carryover effects, and a repeated-measures ANOVA is the way to measure these
effects.

Analysis of Variance: One-Factor Repeated Measures n 265
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The second caution is that the levels of the independent variable must be chosen
by the researcher (a fixed-effects model) rather than being selected randomly from a
number of possible levels. This requirement is commonly met in behavioral science
experiments. For the random-effects model, see Howell (2010, Chapter 14) or Kirk
(1995, Chapter 7).

The third caution that goes with repeated-measures ANOVA is one that goes with
all NHST techniques—the caution about the assumptions of the test. In deriving
formulas for statistical tests, mathematical statisticians begin by assuming that certain
characteristics of the population are true. If the populations the samples come from
have these characteristics, the probability figures that the tests produce are exact. If the
populations don’t have these characteristics, the accuracy of the p values is not assured.
For this chapter’s repeated-measures ANOVA, the only familiar assumption is that the
populations are normally distributed. Other assumptions are covered in advanced
statistics courses.

P R O B L E M S

12.6. What are three cautions about using the repeated-measures ANOVA in this
chapter?

12.7. What is a carryover effect?
*12.8. Many college students are familiar with meditation exercises. One question

about meditation that has been answered is: Are there physiological
effects? The data that follow are representative of answers to this question.
These data on oxygen consumption (in cubic centimeters per minute) are
based on Wallace and Benson’s article in Scientific American (1972).
Analyze the data. Include HSD tests and an interpretation that describes the
effect of meditation on oxygen consumption.

Oxygen consumption (cc/min)

Before During After
Subjects meditation meditation meditation

S1 175 125 180
S2 320 290 315
S3 250 210 250
S4 270 215 260
S5 220 190 240

12.9. In problem 12.8 you drew three conclusions based on HSD tests. Each
could be wrong. For each conclusion, identify what type of error is
possible.

12.10. Most of the problems in this book are already set up for you in tabular
form. Researchers, however, usually begin with fairly unorganized raw
scores in front of them. For this problem, study the data until you can
arrange it into a usable form.

266 n Chapter 12
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The data are based on the report of Hollon, Thrase, and Markowitz
(2002), who compared three kinds of therapy for depression with a control
group. I have given you characteristics that allow you to match up a group
of four subjects for each row. The dependent variable is Beck Depression
Inventory (BDI) scores recorded at the end of treatment. The lower the
score, the less the depression. Begin by identifying the independent
variable. Study the data until it becomes clear how to set up the analysis.
Analyze the data and write a conclusion.

Female, age 20 BDI � 10 Drug therapy
Male, age 30 BDI � 9 Interpersonal therapy
Female, age 45 BDI � 16 Drug therapy
Female, age 20 BDI � 11 Interpersonal therapy
Female, age 20 BDI � 8 Cognitive-behavioral therapy
Female, age 20 BDI � 18 Placebo
Female, age 45 BDI � 10 Cognitive-behavioral therapy
Male, age 30 BDI � 10 Drug therapy
Male, age 30 BDI � 15 Cognitive-behavioral therapy
Female, age 45 BDI � 24 Placebo
Female, age 45 BDI � 16 Interpersonal therapy
Male, age 30 BDI � 21 Placebo

12.11. Look over the objectives at the beginning of the chapter. Can you do them?
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KEY TERMS

Assumptions (p. 266)
Carryover effects (p. 265)
Degrees of freedom (p. 261)
Error sum of squares (p. 261)
Factor (p. 257)
F value (p. 262)
Mean squares (p. 261)

Partitioning the variance (p. 264)
Repeated-measures ANOVA (p. 257)
Residual variance (p. 264)
Subjects sum of squares (p. 260)
Treatment sum of squares (p. 261)
Tukey HSD (p. 262)
Type I and Type II errors (p. 263)

ADDITIONAL HELP FOR CHAPTER 12

Visit cengage.com/psychology/spatz. At the Student Companion Site, you’ll
find multiple-choice tutorial quizzes and flashcards with definitions.
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C H A P T E R  

13
Analysis of Variance:
Factorial Design

O B J E C T I V E S  F O R  C H A P T E R  1 3

After studying the text and working the problems in this chapter, you should
be able to:

1. Define the terms factorial design, factor, cell, main effect, and interaction

2. Name the sources of variance in a factorial design

3. Compute sums of squares, degrees of freedom, mean squares, and F values
in a factorial design

4. Determine whether or not F values are significant

5. Interpret an interaction 

6. Interpret main effects when the interaction is not significant 

7. Make pairwise comparisons between means with Tukey HSD tests

8. List the assumptions required for a factorial design ANOVA

Three chapters in this book (Chapters 11 through 13) are about the analysis of
variance (ANOVA). No other NHST technique gets as much space from me or as
much time from you. This emphasis mirrors ANOVA’s importance and widespread
use. When I surveyed 50 consecutive empirical articles in the most recent issues of
Psychological Science, I found that 56 percent reported using ANOVA. Of those that
used ANOVA, 93 percent used a factorial ANOVA. Among behavioral scientists,
ANOVA is the most widely used inferential statistics technique and factorial ANOVA
is its most popular version.

Chapters 11 and 12 covered the concepts, procedures and
interpretation of ANOVA designs for experiments that have one factor.
This chapter explains a design for experiments that have two or more
factors, a design called factorial ANOVA. An attractive feature of
factorial ANOVAs is that they not only give you a NHST test of each
separate factor but they also tell you about the interaction between the
factors.

factor
Independent variable.

factorial ANOVA
Experimental design with two or
more independent variables.
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Using factorial terminology, here is a review of designs covered in Chapters 10
through 12 to help prepare you for factorial ANOVA and its bonus information, the
interaction.

In Chapter 10 you learned to analyze data from a two-group experiment, schematically
shown in Table 13.1. There is one independent variable, Factor A, with data from two
levels, A1 and A2. For the t test, the question is whether the population that X�A1

is from is
different from the population that X�A2 

is from. You learned to determine this for both
independent and paired-samples designs.

In Chapters 11 and 12 you learned to analyze data from a two-or-more-treatment
experiment, schematically shown in Table 13.2 for a four-treatment design. There is one
independent variable, Factor A, with data from four levels, A1, A2, A3, and A4. The question
is whether the four treatment means could have come from populations with identical
means. The ANOVA technique covered in Chapter 11 is for independent-samples designs.
The technique for samples that are matched in some fashion (repeated measures) is
explained in Chapter 12.

Factorial Design

A factorial design has two or more factors, each of which has two or more levels. In a
factorial design, every level of a factor occurs with every level of the other factor(s).
The technique I explain in this chapter is for independent samples.1 Table 13.3
illustrates this design. One factor (Factor A) has three levels (A1, A2, and A3) and the
other factor (Factor B) has two levels (B1 and B2).
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TABLE 13.2 Illustration of a four-treatment design that 
can be analyzed with an F test

Factor A

A1 A2 A3 A4

Scores on the Scores on the Scores on the Scores on the
dependent variable dependent variable dependent variable dependent variable

X�A4
X�A3

X�A2
X�A1

TABLE 13.1 Illustration of a two-treatment
design that can be analyzed with a t test

Factor A

A1 A2

Scores on the Scores on the 
dependent variable dependent variable

X�A2
X�A1

1 Advanced textbooks such as Howell (2010) and Kirk (1995) discuss the analysis of factorial repeated-measures
designs and three-or-more-factor designs.

08911_13_Ch13_268-299 pp2.qxd  12/18/09  7:00 PM  Page 269



Table 13.4 shows the NHST tests that are explained in Chapters 10 through 13
organized according to whether the tests are for independent samples or related
samples. Related samples is a general term that includes pairing, matching, and
repeated measures. Studying Table 13.4 now will help you put this chapter’s topic into
the matrix of what you already know.

Factorial Design Notation

Factorial designs are identified with a shorthand notation such as “2 � 3” (two by
three) or “3 � 5.” The general term is R � C (Rows � Columns). The first number is
the number of levels of one factor; the second number is the number of levels of the
other factor. Thus, the design in Table 13.3 is a 2 � 3 design. Assignment of a factor to

a row or column is arbitrary; Table 13.3 could also be rearranged into a
3 � 2 table.

Table 13.3 has six cells. The participants in each cell are treated
differently. Participants in the upper left cell are given treatment A1

270 ■ Chapter 13

cell
Scores that receive the same
combination of treatments.

TABLE 13.3 Illustration of a 2 � 3 factorial design

Factor A

A1 A2 A3

Cell A1B1 Cell A2B1 Cell A3B1

B1
Scores on the Scores on the Scores on the
dependent dependent dependent
variable variable variable

Factor B
Cell A1B2 Cell A2B2 Cell A3B2

B2
Scores on the Scores on the Scores on the
dependent dependent dependent
variable variable variable

X�A3
X�A2

X�A1

X�B2

X�B1

TABLE 13.4 Catalog of statistical tests arranged by kind of design

Independent variables
Design of experiment

and number of levels Independent samples Related samples

One IV, 2 levels Independent-samples t test Paired-samples t test 
(Chapter 10) (Chapter 10)

One IV, 2 or more levels One-way ANOVA (Chapter 11) One-factor repeated-measures
ANOVA (Chapter 12)

Two IVs, each with Factorial ANOVA (Chapter 13)
2 or more levels
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and treatment B1; that cell is identified as Cell A1B1. Participants in the lower right cell
are given treatment A3 and treatment B2, and that cell is called Cell A3B2.

Factorial Design Information

A factorial ANOVA gives you two kinds of information. First, it gives you the same
information that you would get from two separate one-factor ANOVAs. Look again at
Table 13.3. A factorial ANOVA can determine the probability of obtaining means such
as X�A1

, X�A2
, and X�A3

from identical populations. The same factorial
ANOVA can determine the probability of X�B1

and X�B2
, if the null hypothesis

is true. These comparisons, which are like one-factor ANOVAs, are called
main effects.

In addition, a factorial ANOVA helps you decide whether the two
factors interact with each other to affect scores on the dependent variable.
An interaction between two factors means that the effect that one factor
has on the dependent variable depends on which level of the other factor
is being administered.

The experiment in Table 13.3 would have an interaction if the
difference between Level B1 scores and Level B2 scores depended on
whether you looked at the A1 column, the A2 column, or the A3 column.
To expand on this, each of the three columns represents an experiment that compares
B1 to B2. If there is no interaction, then the difference between B1 scores and B2 scores
will be the same for all three experiments. If there is an interaction, however, the
difference between B1 and B2 will depend on whether you are examining the
experiment at A1, at A2, or at A3.

Factorial Design Examples

Perhaps a couple of factorial design examples will help. The first has an interaction;
the second doesn’t. Suppose several students are sitting in a dormitory lounge one
Monday discussing the big party they all went to on Saturday. There is a lot of
disagreement; some loved the party, while others just shrug. Now, imagine that
everyone goes quantitative and rates the party on a scale from 1 to 10. The resulting
numbers are quite variable. Why are they so variable?

One tactic for explaining variability is to give reasons that help explain the
variability. For example, some people were at the party with one special person and
others were there with several friends. Perhaps that helps explain some of the variability.
Also, there were two kinds of activities at the party, talking and playing games. Perhaps
some of the variability in ratings depends on the activity people engaged in. With two
variables identified (number of companions and activities) and the ratings of the party
(the dependent variable), you have the makings of a factorial ANOVA.

In Table 13.5, locate the two factors, companions and activities. Each factor has
two levels, so this is a 2 � 2 factorial design. The numbers in the cells are the mean
ratings of the party by those in that cell.

The cell means in Table 13.5 show an interaction between the two factors. Those
who went to the party with one companion rated it highly if they talked but poorly if
they played games. For those who went with several companions, the effect was just
the opposite; talking resulted in low ratings and games resulted in high ratings.
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main effect
Significance test of the deviations
of the mean levels of one
independent variable from 
the grand mean.

interaction
When the effect of one
independent variable on the
dependent variable depends 
on the level of another
independent variable.
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To return to the definition of an interaction, the effect of the number of companions
depends on which column you look at. In the talk column, being with one companion
results in a higher rating than being with several, but in the games column, being with
one companion results in a lower rating than being with several.

As a second example, let’s take a different Monday group who attended the same
party where the activities were talking and playing games. In this second group, there
were two personality types, shy and outgoing.

Table 13.6 shows the mean party ratings for this second group. The shy people
gave the party a low rating if they talked and a slightly higher rating if they played
games. Outgoing people show the same pattern as you look from talk to games—
ratings go up slightly. The data in Table 13.6 show no interaction because the effect that
personality type has on ratings does not depend on the type of activity. Although there
is no interaction, there is an effect of personality—outgoing people rated the party
higher than shy people.

P R O B L E M S

13.1. Use R � C notation to identify the following factorial designs:
*a. Men and women worked complex problems at either 7:00 A.M. or 

7:00 P.M.
b. Three methods of teaching Chinese were used with 4-year-olds 

and 8-year-olds.
c. Four strains of mice were infected with three types of virus.
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TABLE 13.5 Illustration of a factorial design
with an interaction (The numbers are mean
ratings of a party.)

Activity

Talk Games

One 8 3
Companions

Several 3 8

TABLE 13.6 Illustration of a factorial design
with no interaction (The numbers are mean
ratings of a party.)

Activity

Talk Games

Shy 2 3
Personality

Outgoing 7 8
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d. (This one is a little different.) Four varieties of peas were grown with three
amounts of fertilizer in soil of low, medium, or high acidity.

13.2. Group together the designs that have the same number of factors.
a. Paired t test
b. Independent t test
c. One-way ANOVA with four treatments
d. A 2 � 4 factorial ANOVA
e. Repeated-measures ANOVA with three conditions 

13.3. Group together the designs that have an independent variable with two
levels.
a. Paired t test
b. Independent t test
c. One-way ANOVA with four treatments
d. A 2 � 4 factorial ANOVA
e. Repeated-measures ANOVA with three conditions 

13.4. In your own words, define an interaction.
13.5. Make up an outcome for problem 13.1a that has an interaction.

Main Effects and Interaction

A two-way factorial ANOVA produces three statistical tests: two main effects and one
interaction. That is, a factorial ANOVA gives you a test for Factor A and a separate test
for Factor B. The test for the interaction (symbolized AB) tells you whether the scores
for the different levels of Factor A depend on the levels of Factor B.

An Example That Does Not Have an Interaction

Table 13.7 shows a 2 � 3 factorial ANOVA. The numbers in the cells are cell means.
I’ll use Table 13.7 to illustrate how to examine a table of cell means and how to look
for the two main effects and the interaction.
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TABLE 13.7 Illustration of a 2 � 3 factorial design with no
interaction (The number in each cell is the mean of the scores 
in the cell. N is the same for each cell.)

Factor A

A1 A2 A3 Factor B means

B1 10 20 60 30
Factor B

B2 50 60 100 70

Factor A means 30 40 80 Grand mean
50
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Main effects Begin by looking at the margin means for Factor B (B1 � 30, B2 � 70 in
Table 13.7). The B main effect gives the probability of obtaining means of 30 and 70 if
both samples came from identical populations. Using this probability you can decide
whether the null hypothesis H0: mB1

� mB2
should be rejected or not.

The A main effect gives you the probability of getting means of A1, A2, and A3 (30,
40, and 80) if mA1

� mA2
� mA3

. Again, this probability can result in a rejection or a
retention of the null hypothesis.

Notice that a comparison of B1 to B2 satisfies the requirements for an experiment
(page 199) in that, except for being treated with either B1 or B2, the groups are alike.
That is, Group B1 and Group B2 both have equal numbers of participants who received
A1 (and also A2 and A3). The effect of receiving A1 occurs as much in the B1 group as it
does in the B2 group; B1 and B2 differ only in their levels of Factor B. This same line of
reasoning when comparing A1, A2, and A3 also satisfies the requirements for an
experiment.

Interaction To check for an interaction, begin by looking at the two cell means in
the A1 column of Table 13.7 (10 and 50). Changing from B1 to B2 increases the mean
score by 40 points. Now look at level A2. There is an increase of 40 points. The same
increase is also found at level A3. Thus, the effect of changing levels of Factor B does
not depend on Factor A; the 40-point effect is the same, regardless of the level of A.

In a similar way, if you start with the B1 row, you see that there is a mean increase
of 10 points and then 40 points as you move from A1 to A2 to A3. This same change is
found in the B2 row (an increase of 10 points and then an increase of 40 points). Thus,
the effect of changing levels of Factor A does not depend on Factor B; the change is the
same regardless of which level of B you look at.

An Example That Has an Interaction

Table 13.8 shows a 2 � 3 factorial design in which there is an interaction between the
two independent variables. The main effect of Factor A is seen in the margin means
along the bottom. The average effect of a change from A1 to A2 to A3 is to reduce the
mean score by 10 (55 to 45 to 35). But look at the cells. For B1, the effect of changing
from A1 to A2 to A3 is to increase the mean score by 10 points. For B2, the effect is to
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TABLE 13.8 Illustration of a 2 � 3 factorial design with an
interaction between factors (The number in each cell is the mean 
of the scores within that cell. N is the same for each cell.)

Factor A

A1 A2 A3 Factor B means

B1 10 20 30 20
Factor B

B2 100 70 40 70

Factor A means 55 45 35 Grand mean
45
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decrease the score by 30 points. These data have an interaction because the effect of
one factor depends on which level of the other factor you administer.

Now, let’s do this same interaction analysis in Table 13.8 by examining the two
levels of factor B. In condition A1, what is the effect of changing from B1 to B2? The
effect is to increase scores by 90. How about for A2? In condition A2, the mean increase
is 50 points. And for A3, the mean increase from B1 to B2 is only 10 points. The effect
of Factor B depends on the level of Factor A you are examining.2

To examine Table 13.8 for main effects, look at the margin means. A main effect for
Factor B tests the hypothesis that the mean of the population of B1 scores is identical to
the mean of the population of B2 scores. A main effect for Factor A gives the probability
that the three means (55, 45, and 35) came from populations with a common mean.3

Graphs of Factorial ANOVA Designs

Because graphs are so helpful, the cell means of factorial ANOVA data are often
presented as either a line graph or a bar graph. In both cases, the dependent variable is
on the Y axis and one of the independent variables is on the X axis. The other
independent variable is identified in the legend.

Figure 13.1 shows a line graph of the cell means in Table 13.7. Factor A is plotted
on the X axis. Factor B is plotted as two separate curves, B1 and B2. Note that the two
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F I G U R E  1 3 . 1 Line graph of data in Table 13.7. Parallel lines indicate there is
no interaction.

2 The concept of interaction is not easy to grasp. Usually, a presentation of the same concept in different
words helps. After you finish the chapter, two good sources for additional explanations are Howell (2008,
pp. 427–429) and an encyclopedia entry, Aiken and West (2005).
3 A factorial ANOVA actually compares each margin mean to the grand mean, but for interpretation purposes
I’ve described the process as a comparison of margin means.
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curves are parallel, which is a characteristic of factorial data with no interaction. Of
course, you cannot determine the statistical significance of an interaction for sure just
by looking at a graph of the means, because means are subject to sampling variability.
A statistical test of the interaction is required.

In a similar way, you cannot determine the significance of main effects just by
looking at a graph, but an examination encourages helpful estimates. For example, in
Figure 13.1 the B1 curve is well below the B2 curve, which suggests that the main effect
for Factor B may be significant. Turning to Factor A, there are three levels to compare.
The A1 mean is the mean of the two points, A1B1 and A1B2. Thus, the A1 mean is about
30. In a similar way, you can estimate the A2 mean and the A3 mean. These three means,
30, 40, and 80, seem quite different, which suggests that Factor A might prove to be
statistically significant.

Figure 13.2 is a bar graph of the same data (Table 13.7). With bar graphs,
comparing the pattern of the heights of the bars allows you to estimate the significance
of the interaction and the main effects. For the interaction, the pattern of the stair steps
in the three Factor A cells is identical, so the bar graph indicates there is no interaction.
To assess the main effect of Factor B, judge the average height of the B1 bars and the
average height of the B2 bars. The B1 bars are shorter, so we can estimate that Factor B
may be significant. Comparing the three levels of Factor A is about as difficult with a
bar graph as it is with a line graph; the mean of the two A1 conditions must be
compared to the mean of the A2 conditions and to the A3 conditions. Please make those
comparisons yourself.

Figure 13.3 shows two graphs of the data in Table 13.8 in which there is an
interaction. The line graph in the left panel has curves that are not parallel, which
indicates an interaction. Factor B appears to be significant, because the B1 curve is
always below the B2 curve. Factor A appears to be not significant because the three
means appear to be about the same, although there is some decrease from A1 to A2 to A3.

Examining the bar graph in the right panel of Figure 13.3, you can see that the
stair-step pattern of the three B1 measures (going up) is not the pattern in the three B2

measures (going down). Different patterns indicate there may be a significant
interaction. Looking at main effects, the B1 bars on the left are shorter than the B2 bars
on the right; Factor B appears to be significant. The difficult-to-assess Factor A with its
three levels shows three means that are similar.

276 ■ Chapter 13

Level of Factor A

20

100

D
ep

en
de

nt
-v

ar
ia

bl
e 

m
ea

n

40

60

80

A1 A2 A3

B1

B2

F I G U R E  1 3 . 2 Bar graph of data in Table 13.7. There is no interaction.
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For additional graphing examples, let’s return to the ratings of the party described
previously in the chapter. For the first group of partygoers, there was an interaction
between the two factors, companions and activities. Figure 13.4 shows a line graph
and a bar graph of the cell means in Table 13.5. The line graph shows decidedly
unparallel lines; they form an , which is a strong indication of an interaction. The
main effect of companions is not significant; both means are 5.5. Likewise, the main
effect of activities isn’t significant; both means are 5.5. For the bar graph in the right
panel, an interaction is clearly indicated because the pattern of steps on the left is
reversed on the right.

For the second group of partygoers (Table 13.6), the factors were personality and
activities. The cell means are graphed in Figure 13.5. The line graph has two parallel
lines, which indicate there is no interaction. The main effect of personality may be
significant because the two means are so different (2.5 and 7.5). The main effect of
activities does not appear to be significant; the means are similar (4.5 and 5.5). The bar
graph indicates there is no interaction because the pattern of steps on the left is repeated
on the right. As for main effects, personality makes a big difference, but the average of
talk and games produces similar means.

X
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F I G U R E  1 3 . 4 Line graph and bar graph of party ratings in Table 13.5
(shows interaction).
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F I G U R E  1 3 . 3 Line graph and bar graph of cell means in Table 13.8. Both
graphs show the interaction.
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P R O B L E M S

13.6. What is a main effect?
13.7. Descriptions of four studies follow (i–iv). High scores indicate better, or

positive, outcomes. For each study, provide answers to a–e.
a. Graph the cell means, using a line graph or bar graph as indicated.
b. Decide whether an interaction appears to be present. State that an

interaction does or does not appear to be present. Interactions, like
main effects, are subject to sampling variations.

c. Explain how the two factors interact or do not interact. 
d. For problems with no interaction, decide whether either main effect

appears to be significant.
e. Explain the main effects in those problems that do not show an

interaction.
i. The dependent variable for this ANOVA is attitude scores. Attitudes

were expressed toward card games and computer games by the young
and the old. Graph as a bar graph.

Factor A (age)

A1 A2

(young) (old)

Factor B B1 (cards) 50 75
(games) B2 (computer) 75 50

ii. This is a study of the effect of the dose of a new drug on three types of
schizophrenia. The dependent variable is scores on a competency test.
Use a line graph.
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F I G U R E  1 3 . 5 Line graph and bar graph of party ratings in Table 13.6
(no interaction).

clue to the future
When the interaction is statistically significant, the interpretation of the main effects
may not be as straightforward as I have indicated. Be alert for this issue later in the
chapter.
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A (diagnosis)

A1 A2 A3

(disorganized) (catatonic) (paranoid)

B1 (small) 5 10 70
B (dose) B2 (medium) 20 25 85

B3 (large) 35 40 100

iii. The dependent variable is the score on a test that measures 
self-consciousness. Use a bar graph.

A (grade)

A1 A2 A3

(5th grade) (9th grade) (12th grade)

B1 (short) 10 30 20
B (height)

B2 (tall) 5 60 30

iv. The dependent variable is attitude toward lowering the taxes on
profits from investments. Graph as a line graph.

A (socioeconomic status)

A1 A2 A3

(low) (middle) (high)

B1 (men) 10 35 60
B (gender) B2 (women) 15 35 55

A Simple Example of a Factorial Design

As you read the following story, identify the dependent variable and the two independent
variables (factors).

The semester was over. A dozen students who had all been in the same class were talking
about what a bear of a test the comprehensive final exam had been. Competition surfaced.

“Of course, I was ready. Those of us who major in natural science disciplines just study
more than you humanities types.”

“Poot, poot, and balderdash,” exclaimed one of the humanities types, who was a
sophomore.

A third student said, “Well, there are some of both types in this group; let’s just gather
some data. How many hours did each of you study for that exam?”

“Wait a minute,” exclaimed one of the younger students. “I’m a natural science type, but
this is my first term in college. I didn’t realize how much time I would need to cover the
readings. I don’t want my score to pull down my group’s tally.”

“Hmmm,” mused the data-oriented student. “Let’s see. Look, some of you are in your
first term and the rest of us have had some college experience. We’ll just take experience
into account. Maybe the dozen of us will divide up evenly.”
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This story establishes the conditions for a 2 � 2 factorial ANOVA. One of the
factors is area of interest; the two levels are natural science and humanities. The other
factor is previous experience in college; the two levels are none and some. The
dependent variable is hours of study for a comprehensive final examination. In
explaining this example, I will add the specific terms of the experiment to the
AB terminology I’ve used so far. Interpretations should use the terms of the experiment.

It probably won’t surprise you to find out that when I created a data set to go with
this story, the dozen did divide up evenly—there were three students in each of the four
cells. The data are shown in Table 13.9, along with ∑ , means, and ∑ , which are
used in all factorial ANOVA problems.

Developing a preliminary understanding of the data in even more helpful with
factorial designs than with simpler designs. Cell means, margin means, and graphs are
a big help.

P R O B L E M

13.8. Perform a preliminary analysis on the data in Table 13.9. Graph the cell
means using the technique that you prefer. What is your opinion about
whether the interaction is significant? Give your opinion about each of
the main effects.

X 2X
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TABLE 13.9 Scores, cell means, and summary statistics for the study time data

Previous college experience (Factor A)

Some (A1) None (A2)

X X2 X X2

12 144 8 64
11 121 7 49
10 100 7 49

�Xcell � 33 �Xcell � 22 �XB1
� 55

�X2
cell � 365 �X2

cell � 162 �X2
B1

� 527
X�cell � 11.00 X�cell � 7.3333 X�B1

� 9.1667

Natural 12 144 10 100
science 10 100 9 81

(B2) 9 81 8 64

�Xcell � 31 �Xcell � 27 �XB2
� 58

�X2
cell � 325 �X2

cell � 245 �X2
B2

� 570
X�cell � 10.3333 X�cell � 9.00 X�B2

� 9.6667

�XA1
� 64 �XA2

� 49 �Xtot � 113
�X2

A1
� 690 �X2

A2
� 407 �X2

tot � 1097
X�A1

� 10.6667 X�A2
� 8.1667 X�GM � 9.4167

Humanities
(B1)

Major
(Factor B)
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Sources of Variance and Sums of Squares

Remember that in Chapter 11 you identified three sources of variance in the one-way
analysis of variance: (1) the total variance, (2) the between-treatments variance, and 
(3) the error variance. In a factorial design with two factors, the same sources of
variance can be identified. However, the between-treatments variance, which is called
the between-cells variance in factorial ANOVA, is further partitioned into three
components. These are the two main effects and the interaction. That is, of the
variability among the four cell means in Table 13.9, some can be attributed to the A
main effect, some to the B main effect, and the rest to the AB interaction. Calculation
of the sums of squares is shown in Table 13.10. I’ll explain each calculation in the text
that follows.
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TABLE 13.10 Sums of squares and computation check for the study time data

Check:

 Check: SScells � SSerror � SStot; 23.5833 � 9.3333 � 32.9167

 � 2 � 0.6667 � 4.6667 � 2 � 9.3333

 � a 365 �
133 22

3
b � a162 �

122 2 2

3
b � a325 �

131 2 2

3
b � a245 �

127 2 2

3
b

 SSerror � � c�X 2
cell �

1�X cell 2
2

Ncell
d

SScells � SSA � SSB � SSAB; 23.5833 � 18.7501 � 0.7501 � 4.0831

 � 4.0836

 � 110.3333 � 10.6667 � 9.6667 � 9.4167 22 � 19.00 � 8.1667 � 9.6667 � 9.4167 2 2 4

 � 3 3 111.00 � 10.6667 � 9.1667 � 9.4167 2 2 � 17.3333 � 8.1667 � 9.1667 � 9.4167 2 2
   � 1X�A1B2

� X�A1
� X�B2

� X�GM 2
2 � 1X�A2B2

� X�A2
� X�B2

� X�GM 2
2 4

 SSAB � Ncell 3 1X�A1B1
� X�A1

� X�B1
� X�GM 2

2 � 1X�A2B1
� X�A2

� X�B1
� X�GM 2

2

 � 504.1667 � 560.6667 � 1064.0833 � 0.7501

 SSmajor �
1�XB1

2 2

NB1

�
1�XB2

2 2

NB2

�
1�X tot 2

2

Ntot
�
155 2 2

6
�
158 2 2

6
�
1113 2 2

12

 � 682.6667 � 400.1667 � 1064.0833 � 18.7501

 SSexperience �
1�XA1

2 2

NA1

�
1�XA2

2 2

NA2

�
1�X tot 2

2

Ntot
�
164 2 2

6
�
149 2 2

6
�
1113 2 2

12

 � 363 � 161.3333 � 320.3333 � 243 � 1064.0833 � 23.5833

 SScells � � c
1�X cell 2

2

Ncell
d �

1�X tot 2
2

Ntot
�
133 2 2

3
�
122 2 2

3
�
131 2 2

3
�
127 2 2

3
�
1113 2 2

12

SStot � �X 2
tot �

1�X tot 2
2

Ntot
� 1097 �

1113 2 2

12
� 1097 � 1064.0833 � 32.9167
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Total sum of squares Calculating the total sum of squares will be easy for you
because it is the same as SStot in a one-way ANOVA and a one-factor repeated-
measures ANOVA. Defined as �(X � X�GM)2, SStot is the sum of the squared deviations
of each score in the experiment from the grand mean of the experiment. To compute
SStot, use the formula

For the study time data (Table 13.10),

Between-cells sums of squares To find the main effects and interaction, first find
the between-cells sum of squares and then partition it into its component parts. SScells is
defined as �[Ncell(X�cell � X�GM)2]. A “cell” in a factorial ANOVA is a group of
participants treated alike; for example, humanities majors with no previous college
experience constitute a cell.

The computational formula for SScells is similar to that for a one-way analysis:

For the study time data (Table 13.10),

After SScells is obtained, it is partitioned into its three components: the A main
effect, the B main effect, and the AB interaction.

Main effects sum of squares The sum of squares for each main effect is somewhat
like a one-way ANOVA. The sum of squares for Factor A ignores the existence of Factor
B and considers the deviations of the Factor A means from the grand mean. Thus,

where NA1
is the total number of scores in the A1 cells. For Factor B,

Computational formulas for the main effects are like formulas for SStreat in a 
one-way design:

SSA �
1©XA1

2 2

NA1

�
1©XA2

2 2

NA2

�
1©X tot 2

2

Ntot

SSB � NB1
1X�B1

� X�GM 2
2 � NB2

1X�B2
� X�GM 2

2

SSA � NA1
1X�A1

� X�GM 2
2 � NA2

1X�A2
� X�GM 2

2

SScells �
133 2 2

3
�
122 2 2

3
�
131 2 2

3
�
127 2 2

3
�
1113 2 2

12
� 23.5833

SScells � © c
1©X cell 2

2

Ncell
d �

1©X tot 2
2

Ntot

SStot � 1097 �
1113 2 2

12
� 32.9167

SStot � ©X 2
tot �

1©Xtot 2
2

Ntot
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And for the study time data (Table 13.10),

The computational formula for the B main effect simply substitutes B for A in the
previous formula. Thus,

For the study time data (Table 13.10),

SSmajor �
155 2 2

6
�
158 2 2

6
�
1113 2 2

12
� 0.7501

SSB �
1©XB1

2 2

NB1

�
1©XB2

2 2

NB2

�
1©Xtot 2

2

Ntot

SSexperience �
164 2 2

6
�
149 2 2

6
�
1113 2 2

12
� 18.7501
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error detection
SScells, SSA, and SSB are calculated by adding a series of terms and then subtracting 

, which is sometimes called the correction factor. The numerators of the 

terms that are added are equal to (�Xtot)
2. The denominators of the terms that are

added are equal to Ntot.

1©Xtot 2
2

Ntot

Interaction sum of squares To find the sum of squares for the interaction, use this
formula:

For the study time data (Table 13.10),

SSAB � 3[(11.00 � 10.6667 � 9.1667 � 9.4167)2

� (7.3333 � 8.1667 � 9.1667 � 9.4167)2

� (10.3333 � 10.6667 � 9.6667 � 9.4167)2

� (9.00 � 8.1667 � 9.6667 � 9.4167)2] 

� 4.0836

Because SScells contains only the components SSA, SSB, and the interaction SSAB,
you can also obtain SSAB by subtraction:

SSAB � SScells � SSA � SSB

For the study time data (Table 13.10),

SSAB � 23.5833 � 18.7501 � 0.7501 � 4.0831

� 1X�A1B2
� X�A1

� X�B2
� X�GM 2

2 � 1X�A2B2
� X�A2

� X�B2
� X�GM 2

2 4

SSAB � Ncell 3 1X�A1B1
� X�A1

� X�B1
� X�GM 2

2 � 1X�A2B1
� X�A2

� X�B1
� X�GM 2

2
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SSA = 18.7501

SSB = 0.7501
SSAB = 4.0831

SSerror = 9.3333SSA
(18.7501)

SSB
(0.7501)

SStot
(32.9167)

SStot
(32.9167)

SSAB
(4.0831)

SScells
(23.5833)

SSerror
(9.3333)

F I G U R E  1 3 . 6 The partition of sums of squares in a factorial ANOVA problem 

Error sum of squares The error variability is due to the fact that participants
treated alike differ from one another on the dependent variable. Because all were
treated the same, this difference must be due to uncontrolled variables or random
variation. SSerror for a 2 � 2 design is defined as

In words, SSerror is the sum of the sums of squares for each cell in the experiment. The
computational formula is

For the study time data (Table 13.10),

As in a one-way ANOVA, the total variability in a factorial ANOVA is composed
of two components: SScells and SSerror. Thus,

23.5833 � 9.3333 � 32.9167 

As you read earlier, SScells can be partitioned among SSA, SSB, and SSAB in a factorial
ANOVA. Thus,

23.5833 � 18.7501 � 0.7501 � 4.0831 

These relationships among sums of squares in a factorial ANOVA are shown
graphically in Figure 13.6.

� a325 �
131 2 2

3
b � a245 �

127 2 2

3
b � 9.3333

SSerror � a365 �
133 2 2

3
b � a162 �

122 2 2

3
b

SSerror � © c©X 2
cell �

1©X cell 2
2

Ncell
d

� © 1XA2B2
� X�A2B2

2 2
SSerror � © 1XA1B1

� X�A1B1
2 2 � © 1XA2B1

� X�A2B1
2 2 � © 1XA1B2

� X�A1B2
2 2
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Did you notice that the direct calculation of SSAB produced 4.0836 but that the
value obtained by subtraction was 4.0831? The difference is due to rounding. By the
time mean squares and an F test are calculated (in the next section), the difference
disappears.

I’ll interrupt the analysis of the study time data now so that you may practice what
you have learned about the sums of squares in a factorial ANOVA.
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error detection
One computational check for a factorial ANOVA is similar to that for the one-way
classification: SScells � SSerror � SStot. A more complete version is SSA � SSB � SSAB �
SSerror � SStot. As before, this check will not catch errors in calculating �X or �X2.

P R O B L E M S

*13.9. You know that women live longer than men. What about right-handed
and left-handed people? Coren and Halpern’s review (1991) included
data on both gender and handedness, as well as age at death. An analysis
of the age-at-death numbers in this problem produces conclusions like
those reached by Coren and Halpern.

Gender

Women Men

76 67
Left-handed 74 61

69 58
Handedness

82 76
Right-handed 78 72

74 68

a. Identify the design using R � C notation.
b. Name the independent variables, their levels, and the dependent

variable.
c. Calculate SStot, SScells, SSgender, SShandedness, SSAB, and SSerror.

*13.10. Clinical depression occurs in about 15 percent of the population. 
Many treatments are available. The data that follow are based on Hollon,
Thrase, and Markowitz’s study (2002) comparing: (1) psychodynamic
therapy, which uses free association and dream analysis to explore
unconscious conflicts from childhood, (2) interpersonal therapy, which
progresses through a three-stage treatment that alters the patient’s
response to recent life events, and (3) cognitive-behavioral therapy,
which focuses on changing the client’s thought and behavior patterns.
The second factor in this data set is gender. The numbers are
improvement scores for the 36 individuals receiving therapy.
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a. Identify the design using R � C notation.
b. Identify the independent variables, their levels, and the dependent

variable.
c. Calculate SStot, SScells, SStherapy, SSgender, SSAB, and SSerror.

Therapies

Psychodynamic Interpersonal Cognitive-behavioral

22 41 33
42 57 67
30 75 41Women
49 68 59
15 48 49
34 59 51

37 48 36
20 52 56
56 41 44Men
39 67 72
48 33 52
28 59 64

*13.11. Many experiments have investigated the concept of state-dependent
memory. Participants learn a task in a particular state—say, under 
the influence of a drug or not under the influence of the drug. They
recall what they have learned in the same state or in the other state. The
dependent variable is recall score (memory). The data in the table are
designed to illustrate the phenomenon of state-dependent memory.
Calculate SStot, SScells, SSlearn, SSrecall, SSAB, and SSerror.

Learn with

Drug No drug

�X � 43 �X � 20
Drug �X2 � 400 �X2 � 100

Recall
N � 5 N � 5

with �X � 25 �X � 57
No drug �X2 � 155 �X2 � 750

N � 5 N � 5

Degrees of Freedom, Mean Squares, and F Tests

Now that you are skilled at calculating sums of squares, you can proceed with the
analysis of the study time data. Mean squares, as before, are sums of squares divided
by their appropriate degrees of freedom. Formulas for degrees of freedom are:
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In general: For the study time data:

dftot � Ntot � 1 dftot � 12 � 1 � 11

dfA � A � 1 dfexperience � 2 � 1 � 1

dfB � B � 1 dfmajor � 2 � 1 � 1

dfAB � (A � 1)(B � 1) dfAB � (1)(1) � 1

dferror � Ntot � (A)(B) dferror � 12 � (2)(2) � 8

In these equations, A and B stand for the number of levels of Factor A and Factor B,
respectively.
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error detection
Always use these checks:

dfA � dfB � dfAB � dferror � dftot

dfA � dfB � dfAB � dfcells

A mean square is always the sum of squares divided by its degrees of freedom.
Mean squares for the study time data are

The F values are computed by dividing mean squares by the error mean square:

Results of a factorial ANOVA are usually presented in a summary table. Examine
Table 13.11, the summary table for the study time data.

You now have three F values from the data. Each has 1 degree of freedom in the
numerator and 8 degrees of freedom in the denominator. To find the probabilities of
obtaining such F values if the null hypothesis is true, use Table F in Appendix C. Table
F yields the following critical values: F.05(1, 8) � 5.32 and F.01(1, 8) � 11.26.

 FAB �
MSAB

MSerror
�

4.0831

1.1667
� 3.50 

 Fmajor �
MSmajor

MSerror
�

0.7501

1.1667
� 0.64 

Fexperience �
MSexperience

MSerror
�

18.7501

1.1667
� 16.07 

 MSerror �
SSerror

dferror
�

9.3333

8
� 1.1667 

 MSAB �
SSAB

dfAB

�
4.0831

1
� 4.0831 

 MSmajor �
SSmajor

dfmajor
�

0.7501

1
� 0.7501 

MSexperience �
SSexperience

dfexperience
�

18.7501

1
� 18.7501 
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The next step is to compare the obtained F’s to the critical value F’s and then tell
what your analysis reveals about the relationships among the variables. With factorial
ANOVAs, you should first interpret the interaction F and then proceed to the F’s for
the main effects. (As you continue this chapter, be alert for the explanation of why you
should use this order.)

The interaction FAB (3.50) is less than 5.32, so the interaction between experience
and major is not significant. Although the effect of experience was to increase study
time by 50 percent for humanities majors and only about 15 percent for natural science
majors, this interaction difference was not statistically significant. When the interaction
is not significant, interpret each main effect as if it came from a one-way ANOVA.

The main effect for experience (Fexperience) is significant beyond the .01 level
(16.07 � 11.26). The null hypothesis msome � mnone can be rejected. By examining the
margin means (8.17 and 10.67), you can conclude that experienced students study
significantly more than those without experience. Fmajor was less than 1, and F values
less than 1 are never significant. Thus, these data do not provide evidence that students
in either major study more than the others. For the problems that follow, complete the
factorial ANOVAs that you began earlier.

P R O B L E M S

*13.12. For the longevity data in problem 13.9, plot the cell means with a bar
graph. Compute df, MS, and F values. Arrange these in a summary table
that footnotes appropriate critical values. Tell what the analysis shows.

*13.13. For the data on the effectiveness of therapies and gender in problem
13.10, plot the cell means using a line graph. Compute df, MS, and F
values. Arrange these in a summary table and note the appropriate critical
values. Tell what the analysis shows.

*13.14. For the data on state-dependent memory in problem 13.11, plot the cell
means using a bar graph. Compute df, MS, and F values. Arrange these
in a summary table and note the appropriate critical values.

Analysis of a 2 � 3 Design

Here’s a question for you. Read the question, take 10 seconds, and compose an answer.
Who is taller, boys or girls?

A halfway good answer is “It depends.” A completely good answer gives the other
variable that the answer depends on; for example, “It depends on the age of the boys
and girls.”
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TABLE 13.11 ANOVA summary table for the study time data

Source SS df MS F p

Experience (A) 18.7501 1 18.7501 16.07 6.01
Major (B) 0.7501 1 0.7501 0.64 7.05
AB 4.0831 1 4.0831 3.50 7.05
Error 9.3333 8 1.1667
Total 32.9167 11

08911_13_Ch13_268-299 pp2.qxd  12/18/09  7:00 PM  Page 288



Analysis of Variance: Factorial Design ■ 289

TABLE 13.12 Data and summary statistics for height example

Gender (Factor A)

Male (A1) Female (A2)

XA1
X2

A1
XA2

X2
A2

Summary values

Age 6 (B1)

Sum
Mean

Age 12 (B2)

Sum
Mean

Age 18 (B3)

Sum
Mean

Summary
values

A
ge

 (
Fa

ct
or

 B
)

44 1936
45 2025
46 2116
47 2209

182 8286
45.50

56 3136
57 3249
59 3481
60 3600

232 13,466
58.00

66 4356
69 4761
72 5184
73 5329

280 19,630
70.00

�XA1
� 694

�X2
A1

� 41,382
X�A1

� 57.83

44 1936
44 1936
46 2116
46 2116

180 8104
45.00

58 3364
60 3600
61 3721
63 3969

242 14,654
60.50

63 3969
65 4225
67 4489
69 4761

264 17,444
66.00

�XA2
� 686

�X2
A2

� 40,202
X�A2

� 57.17

�XB1
� 362

�X2
B1

� 16,390
X�B1

� 45.25

�XB2
� 474

�X2
B2

� 28,120
X�B2

� 59.25

�XB3
� 544

�X2
B3

� 37,074
X�B3

� 68.00

�Xtot � 1380
�X2

tot � 81,584
X�GM � 57.50

Factorial ANOVA designs are often used when a researcher thinks that the answer
to a question about the effect of variable A is “It depends on variable B.” As you may
have already anticipated, the way to express this idea statistically is to talk about
significant interactions.

The analysis that follows is for a 2 � 3 factorial design. The factor with two levels
is gender: males and females. The second factor is age: 6, 12, and 18 years old. The
dependent variable is height in inches.

I’ve constructed data that mirror fairly closely the actual situation for Americans.
The data and the summary statistics are given in Table 13.12. Orient yourself to this
table by noting the column headings and the row headings. Examine the six cell means
and the five margin means. Note that N � 4 for each cell.

Next, examine Figure 13.7, which shows a line graph and a bar graph of the cell
means. Make a preliminary guess about the significance of the interaction and the two
main effects.

08911_13_Ch13_268-299 pp2.qxd  12/18/09  7:00 PM  Page 289



Table 13.13 shows the calculation of the components of a factorial ANOVA. The
headings in this table are familiar to you: sums of squares, degrees of freedom, mean
squares, and F values. Work your way through each line in Table 13.13 now.

The results of a factorial ANOVA are presented as a summary table. Table 13.14 is
the summary table for the height example. First, check the interaction F value. It is
statistically significant.

Table 13.15 is an SPSS summary table from the factorial analysis of the height
data. The lines labeled Gender, Age, and Gender*Age correspond to the factorial
ANOVA analyses covered in this chapter. 

Interpreting a Significant Interaction

Telling the story of a significant interaction in words is facilitated by referring to the
graph of the cell means. Look at Figure 13.7. Boys and girls are about the same height
at age 6, but during the next 6 years the girls grow faster, and they are taller at age 12.
In the following 6 years, however, the boys grow faster, and at age 18 the boys are taller
than the girls are. The question of whether boys or girls are taller depends on what age
is being considered.

So, one way to interpret a significant interaction is to examine a graph of the cell
means and describe the changes in the variables. Though a good start, this technique
is just a beginning. A complete interpretation of interactions requires techniques that
are beyond the scope of a textbook for elementary statistics. (To begin a quest for
more understanding, see Rosnow and Rosenthal, 2005, for an explanation of
residuals.)

Interpreting Main Effects When 
the Interaction Is Significant

When the interaction is not significant, the interpretation of a main effect is the same as
the interpretation of the independent variable for a one-way ANOVA. However, when
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Males

F I G U R E  1 3 . 7 Line graph and bar graph of height data. An interaction is
present.
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the interaction is significant, the interpretation of main effects becomes complicated.
To illustrate the problem, consider the main effect of gender in Table 13.14. The simple
interpretation of F � 0.59 is that gender does not have a significant effect on height.
But clearly, that isn’t right! Gender is important, as the interpretation of the interaction
revealed.

Analysis of Variance: Factorial Design ■ 291

TABLE 13.13 Calculation of the components of the 2 � 3 factorial ANOVA of height

Sums of squares

Check:

Check: 2152.000 � 82.000 � 2234.000

 � 82.000

  � a 14,654 �
1242 2 2

4
b � a19,630 �

1280 2 2

4
b � a17,444 �

1264 2 2

4
b

 � a 8286 �
1182 2 2

4
b � a8104 �

1180 2 2

4
b � a13,466 �

1232 2 2

4
b

 SSerror � � c�X 2
cell �

1�X cell 2
2

Ncell
d

SScells � SSA � SSB � SSAB;  2152.000 � 2.667 � 2107.000 � 42.333

 � 4 310.583 4 � 42.333

 � 170.00 � 57.83 � 68.00 � 57.50 22 � 166.00 � 57.17 � 68.00 � 57.50 2 2 4

 � 158.00 � 57.83 � 59.25 � 57.50 2 2 � 160.50 � 57.17 � 59.25 � 57.50 2 2

 � 4 3 145.50 � 57.83 � 45.25 � 57.50 2 2 � 145.00 � 57.17 � 45.25 � 57.50 2 2

 � 1X�A1B2
� X�A1

� X�B2
� X�GM 2

2 � p � 1X�A2B3
� X�A2

� X�B3
� X�GM 2

2 4

 SSAB � Ncell 3 1X�A1B1
� X�A1

� X�B1
� X�GM 2

2 � 1X�A2B1
� X�A2

� X�B1
� X�GM 2

2

SSage 1B2 �
1�XB1

2 2

NB1

�
1�XB2

2 2

NB2

�
1�XB3

2 2

NB3

�
1�Xtot 2

2

Ntot
�
1362 2 2

8
�
1474 2 2

8
�
1544 2 2

8
�
11380 2 2

24
� 2107.000

 SSgender 1A2 �
1�XA1

2 2

NA1

�
1�XA2

2 2

NA2

�
1�X tot 2

2

Ntot
�
1694 2 2

12
�
1686 2 2

12
�
11380 2 2

24
� 2.667

 �
1182 2 2

4
�
1180 2 2

4
�
1232 2 2

4
�
1242 2 2

4
�
1280 2 2

4
�
1264 2 2

4
�
11380 2 2

24
� 2152.000

 SScells � � c
1�X cell 2

2

Ncell
d �

1�X tot 2
2

Ntot

 SStot � �X 2
tot �

1�X tot 2
2

Ntot
� 81,584 �

11380 2 2

24
� 2234.000

(continued)
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In a factorial ANOVA, the analysis of a main effect ignores the other independent
variable. This causes no problems if there is no interaction, but it can lead to a faulty
interpretation when the interaction is significant.

So, what should you do about interpreting a factorial ANOVA that has a significant
interaction? First, interpret the interaction based on a graph of the cell means. Then for
the main effects, you might (1) seek the advice of your instructor, (2) acknowledge that
you don’t yet know the techniques needed for a thorough interpretation, or (3) study
more advanced statistics textbooks (Kirk, 1995, pp. 383–389, or Howell, 2010,
pp. 421–426).

Sometimes, however, a simple interpretation of a main effect is not misleading.
The height data provide an example. The interpretation of the significant age effect is
that age has an effect on height. In Figure 13.7 this effect is seen in an increase from
age 6 to age 12 and another increase from age 12 to age 18. In situations like this, a
conclusion such as “The main effect of age was significant, p � .01” is appropriate. For
more explanation of this approach to interpreting main effects even though the
interaction is significant, see Howell (2008, pp. 427–429).
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TABLE 13.13 (Continued)

Degrees of freedom

F values

 FAB �
MSAB

MSerror
�

21.167

4.556
� 4.65

 Fage �
MSage

MSerror
�

1053.500

4.556
� 231.23

 Fgender �
MSgender

MSerror
�

2.667

4.556
� 0.59

 dftot � Ntot � 1 � 24 � 1 � 23

 dferror � Ntot � 1A 2 1B 2 � 24 � 12 2 13 2 � 18

 dfAB � 1A � 1 2 1B � 1 2 � 11 2 12 2 � 2

 dfB � B � 1 � 3 � 1 � 2

 dfA � A � 1 � 2 � 1 � 1

Mean squares

 MSerror �
SSerror

dferror
�

82.000

18
� 4.556

 MSAB �
SSAB

dfAB

�
42.333

2
� 21.167

 MSage �
SSage

dfage
�

2107.000

2
� 1053.500

 MSgender �
SSgender

dfgender
�

2.667

1
� 2.667

TABLE 13.14 ANOVA summary table for the height example

Source SS df MS F p

Gender (A) 2.667 1 2.667 0.59 �.05
Age (B) 2107.000 2 1053.500 231.23 �.01
AB 42.333 2 21.167 4.65 �.05
Error 82.000 18 4.556
Total 2234.000 23

F.05(2, 18 df ) � 3.55 F.01(2, 18 df ) � 6.01

08911_13_Ch13_268-299 pp2.qxd  12/18/09  7:00 PM  Page 292



P R O B L E M S

13.15. These problems are designed to help you learn to interpret the results
of a factorial experiment. For each problem (a) identify the independent
variables, their levels, and the dependent variable; (b) fill in the rest of the
summary table; and (c) interpret the results.
i. A clinical psychologist investigates the relationship between humor and

aggression. The participant’s task is to think up as many captions as
possible for four cartoons in 8 minutes. The psychologist simply counts
the number of captions produced. In the psychologist’s latest
experiment, a participant is either insulted or treated in a neutral way by
an experimenter. Next, the participant responds to the cartoons at the
request of either the same experimenter or a different experimenter. The
cell means and the summary table are given.

Participant was

Insulted Treated neutrally

Same 31 18
Experimenter was

Different 19 17

Source df MS F p

A (treatments) 1 675.00
B (experimenters) 1 507.00
AB 1 363.00
Error 44 74.31

ii. An educational psychologist studied response bias. For example, a
response bias occurs if the grade an English teacher puts on a theme

Analysis of Variance: Factorial Design ■ 293

TABLE 13.15 SPSS summary table for the 2 � 3 factorial analysis of height data

Tests of Between-Subjects Effects
Dependent Variable: Height

Type III Sum
Source of Squares df Mean Square F Sig.

Corrected Model 2152.000a 5 430.400 94.478 .000
Intercept 79350.000 1 79350.000 17418.293 .000
Gender 2.667 1 2.667 .585 .454
Age 2107.000 2 1053.500 231.256 .000
Gender*Age 42.333 2 21.167 4.646 .024
Error 82.000 18 4.556
Total 81584.000 24
Corrected Total 2234.000 23

aR Squared = .963 (Adjusted R Squared = .953)
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written by a 10th-grader is influenced by the student’s name or by the
occupation of his father. For this particular experiment, the psychologist
used a “high-prestige” name (David) and a “low-prestige” name
(Elmer). In addition, she made up two biographical sketches that
differed only in the occupation of the student’s father (research chemist
or unemployed). The participants in this experiment read a biographical
sketch and then graded a theme by that person using a scale of 50 to
100. The same theme was given to each participant.

Name

David Elmer

Research chemist 86 81
Occupation of father

Unemployed 80 88

Source df MS F p

A (names) 1 22.50
B (occupations) 1 2.50
AB 1 422.50
Error 36 51.52

iii. What teaching techniques can instructors use that may help students
learn? One is to ask questions during lectures. A second is to conduct
demonstrations during class. Of course, both could be used or neither
used. An instructor who taught four sections of statistics covered
the same material in each class using one of the four conditions.
A comprehension test followed.

Questions

Used Not used

Used 89 81
Demonstrations

Not used 78 73

Source df MS F p

A (questions) 1 211.25
B (demonstrations) 1 451.25
AB 1 11.25
Error 76 46.03

12.16. Write an interpretation of your analysis of the data from the 
state-dependent memory experiment (Problems 13.11 and 13.14).
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Comparing Levels within a Factor—
Tukey HSD Tests

If the interaction in a factorial ANOVA is not significant, you can compare levels within
a factor. Each main effect in a factorial ANOVA is like a one-way ANOVA; the question
that remains after testing a main effect is: Are any of the levels of this factor
significantly different from any others? You will be pleased to learn that the solution
you learned for one-way ANOVA also applies to factorial ANOVA.

Of course, for some main effects you do not need a test subsequent to ANOVA; the
F test on that main effect gives you the answer. This is true for any main effect with
only two levels. Just like a t test, a significant F tells you that the two means are from
different populations. Thus, if you are analyzing a 2 � 2 factorial ANOVA, you do not
need a test subsequent to ANOVA for either factor.

When there are more than two levels of one factor in a factorial design, a Tukey
HSD test can be used to test for significant differences between pairs of levels. There is
one restriction, however, which is that the Tukey HSD test is appropriate only if the
interaction is not significant.4

The HSD formula for a factorial ANOVA is the same as that for a one-way
ANOVA:

where 

Two of the terms need a little explanation. The means in the numerator are margin
means. HSD tests the difference between two levels of a factor, so all the scores for one
level are used to calculate that mean. The term Nt is the number of scores used to
calculate a mean in the numerator (a margin N ).

I’ll illustrate HSD for factorial designs with the improvement scores in Problems
13.10 and 13.13. The two factors were gender (two levels) and the kind of therapy used
to treat depression (three levels). The interaction was not significant, so Tukey HSD
tests on kind of therapy are appropriate. To refresh your recall, look at the data in
Problem 13.10 (pages 285–286).

Begin by calculating the three differences between treatment means:

Psychodynamic and interpersonal 35 � 54 � �19

Psychodynamic and cognitive-behavioral 35 � 52 � �17

Interpersonal and cognitive-behavioral 54 � 52 � 2

Because none of the three therapies is a “control” condition, the sign of the difference
is not important. The intermediate difference is �17, so it should be tested first.

HSD �
X�P � X�C

sX�
�

35 � 52

B
172

12

�
�17

3.786
� �4.49

sX� � B
MSerror

Nt

HSD �
X�1 � X�2

sX�
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4 A nonsignificant interaction is a condition required by many a priori and post hoc tests.
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From Table G in Appendix C, HSD.01 is 4.46 for K � 3 and dferror � 30. Because
4.49 � 4.46, you can conclude that cognitive-behavioral therapy produced significantly
greater improvement scores than psychodynamic therapy, p � .01.

The difference in psychodynamic and interpersonal therapy (19) is even greater
than the difference between psychodynamic and cognitive-behavioral therapy (17).
Thus, conclude that the interpersonal therapy scores were significantly greater than
those for psychodynamic therapy, p � .01.

The other difference is between interpersonal and cognitive-behavioral therapy:

Values of HSD that are less than 1.00 are never significant ( just like F ). Thus, there is
no strong evidence that interpersonal therapy is better than cognitive-behavioral therapy.

Note that the value of , 3.786, is the same in both HSD problems. For factorial
ANOVA problems such as those in this text (cells all have the same N ), always has
the same value for every comparison.

Effect Size Indexes for Factorial ANOVA

The two effect size indexes that I discussed in Chapter 11, d and f, can be used with
factorial designs if the interaction is not significant. I’ll illustrate with the depression
therapy study, in which the interaction was not significant. 

Calculations for d are made using column totals (for Factor A comparisons) or row
totals (for Factor B comparisons). This disregard of the factor not under consideration
is the same disregard found in the preceding section on calculating Tukey HSD values
for factorial ANOVAs. How much difference is there between psychodynamic and
cognitive-behavioral therapy? The effect size index d provides an answer:

A d value of 1.35 is much larger than 0.80, the d value that indicates a large effect (see
page 80). Cognitive-behavioral therapy produced considerably greater improvement
scores than did psychodynamic therapy.

The effect size index f for the therapy variable is 

A value of 0.63 is well above the value of 0.40 that qualifies as a large effect size index
(see page 253).

f �
B

K � 1

Ntot
1MStherapy � MSerror 2

2MSerror

�
B

3 � 1

36
11308.00 � 158.73 2

2158.73
� 0.63

d �
X�I � X�2

ŝerror
�

X�P � X�C

2MSerror

�
�17

12.599
� �1.35

sX�

sX�

HSD �
X�I � X�C

sX�
�

54 � 52

B
172

12

�
2

3.786
� 0.53
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Restrictions and Limitations

I have emphasized throughout this book the limitations that go with each statistical test
you learn. For the factorial analysis of variance presented in this chapter, the
restrictions include the three that you learned for one-way ANOVA. If you cannot recall
those three, reread the section near the end of Chapter 11, “Assumptions of the Analysis
of Variance and Random Assignment.” In addition to the basic assumptions of ANOVA,
the factorial ANOVA presented in this chapter requires the following:

1. The number of scores in each cell must be equal. For techniques dealing with
unequal N’s, see Kirk (1995) or Howell (2010).

2. The cells must be independent. One way to accomplish this is to randomly assign
participants to only one of the cells. This restriction means that these formulas
should not be used with any type of paired-samples or repeated-measures design.

3. The levels of both factors are chosen by the experimenter. The alternative 
is that the levels of one or both factors are chosen at random from several
possible levels of the factor. The techniques of this chapter are used when the
levels are fixed by the experimenter and not chosen randomly. For a discussion
of fixed and random models of ANOVA, see Howell (2010) or Winer, Brown,
and Michels (1991).

For a general discussion of the advantages and disadvantages of factorial ANOVA,
see Kirk (1995).

P R O B L E M S

13.17. To use the techniques in this chapter for factorial ANOVA and have
confidence about the p values, the data must meet six requirements.
List them.

13.18. Two social psychologists asked freshman and senior college students to write
an essay supporting recent police action on campus. (The students were
known to be against the police action.) The students were given $20,
$10, $5, or $1 for their essay. Later, each student’s attitude toward the police
was measured on a scale of 1 to 20. Perform an ANOVA, fill out a summary
table, and write an interpretation of the analysis at this point. (See Brehm and
Cohen, 1962, for a similar study of Yale students.) If appropriate, calculate
HSDs for all pairwise comparisons.Write an overall interpretation of the
results of the study.

Reward

$20 $10 $5 $1

�X 73 83 99 110
Freshmen �X2 750 940 1290 1520

N 8 8 8 8
Students

�X 70 81 95 107
Seniors �X 2 820 910 1370 1610

N 8 8 8 8

Analysis of Variance: Factorial Design ■ 297
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13.19. The conditions that make for happy people have been researched by
psychologists for a long time. The data that follow are based on a review of
the literature by Diener and colleagues (1999). Participants were asked
their marital status and how often they engaged in religious behavior. They
also indicated how happy they were on a scale of 1 to 10. Analyze the data
with a factorial ANOVA and, if appropriate, Tukey HSD tests.

Frequency of religious behavior

Never Occasionally Often

6 3 7
Married 2 7 8

4 5 9
Marital status

4 3 3
Unmarried 2 1 7

3 5 5

13.20. Review the objectives at the beginning of the chapter.

KEY TERMS

Assumptions (p. 297)
Bar graph (p. 276)
Between-cells sums of squares (p. 282)
Cell (p. 270)
Degrees of freedom (p. 287)
Effect size index d (p. 296)
Effect size index f (p. 296)
Error sum of squares (p. 284)
F tests (p. 287)

Factor (p. 268)
Factorial ANOVA (p. 268)
Interaction (p. 271)
Line graph (p. 275)
Main effect (p. 271)
Mean squares (p. 287)
Related samples (p. 270)
Sums of squares (p. 281)
Tukey HSD (p. 295)

ADDITIONAL HELP FOR CHAPTER 13

Visit cengage.com/psychology/spatz. At the Student Companion Site, you’ll
find multiple-choice tutorial quizzes, flashcards with definitions and
workshops. For this chapter there is a Statistical Workshop on Two-Way
ANOVA.
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transition passage
to nonparametric statistics

299

SO FAR IN your practice of null hypothesis statistical testing, you have used 

three different sampling distributions. The normal curve is appropriate when 

you know s (Chapter 8). When you don’t know s, you can use the t distribution

or the F distribution (Chapters 8–13) if the populations you are sampling from

have certain characteristics such as being normally distributed and having equal

variances. The t test and F test are called parametric tests because they make

assumptions about parameters such as s2.

In the next two chapters, you will learn about statistical tests that require

neither knowledge of s nor that the data have the characteristics needed for 

t and F tests. These tests are called nonparametric tests because they don’t

assume that populations are normally distributed or have equal variances. These

nonparametric NHST tests have sampling distributions that will be new to you.

They do, however, have the same purpose as those you have been working

with—providing you with the probability of obtaining the observed sample

results, if the null hypothesis is true.

In Chapter 14, “Chi Square Tests,” you will learn to analyze frequency count

data. These data result when observations are classified into categories and the

frequencies in each category are counted. In Chapter 15, “More Nonparametric

Tests,” you will learn four techniques for analyzing scores that are ranks or can

be reduced to ranks.

The techniques in Chapters 14 and 15 are sometimes described as “less

powerful.” This means that if the populations you are sampling from have the

characteristics required for t and F tests, then a t or an F test is more likely than

a nonparametric test to reject H0 if it should be rejected. To put this same idea

another way, t and F tests have a smaller probability of a Type II error if the

population scores have the characteristics the tests require.
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C H A P T E R
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O B J E C T I V E S  F O R  C H A P T E R  1 4

After studying the text and working the problems in this chapter, you should be
able to:

1. Identify the kind of data that require a chi square test for hypothesis testing

2. Distinguish between problems that require tests of independence and those
that require goodness-of-fit tests

3. For tests of independence: State the null hypothesis and calculate and
interpret chi square values

4. For goodness-of-fit tests: State the null hypothesis and calculate and
interpret chi square values

5. Calculate a chi square value from 2 � 2 tables using the shortcut method

6. Calculate an effect size index for 2 � 2 chi square problems

7. Discuss issues associated with chi square tests based on small samples

ALEX’S PLAN FOR his senior year project was coming into focus—conducting
experiments on risk taking. Being somewhat shy and reserved, Alex admired fellow
students who seemed brave and adventurous; a year-long project gathering data on risk
taking might just cure him, he thought. What he had in mind was for participants to
actually engage in risky behavior such as rock climbing, eating unfamiliar food, and
initiating conversations with strangers. His advisor suggested that his first step should
be to find out if students at his college would volunteer for such experiments.

After gathering questionnaire data from 112 students, Alex reported to his advisor
that more than half were willing to participate. His  advisor wanted to see the data,
because “exploring data usually produces good ideas.” Alex responded that 62 of the
112 indicated they would volunteer for experiments such as Alex listed.

“No, no,” said his advisor, “that’s not what I mean. Separate the data into
categories and make up some tables. Then, let’s get together and look at them.”

One of the tables was:

300
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Willing to participate

Yes No

Women 32 38
Men 30 12
Total 62 50
Percentage 55.4% 44.6%

“See,” said Alex pointing to the bottom line, 55.4 percent is more than half,”
“What I see,” said his advisor “is that you may have to worry about a gender bias

in your project. Women seem less willing than men to participate in your activities. Of
the 70 women, just 32 said yes, but 30 of the 42 men said yes.”

“Uh, hang on a minute,” said Alex, stalling for time as he tried to process the
numbers. He pulled out his calculator and punched in some numbers.

“OK, I see what you mean. Only 40 percent of the women said yes, but two-thirds
of the men agreed. But still, couldn’t that difference be just the usual variation we often
find in samples?”

“Could be,” said his advisor, “or maybe there really is a gender difference in
willingness to sign up for experiments that involve risky behavior.”1

Do the two positions at the end of the story sound familiar? This issue seems like
it could be resolved with a NHST test. The null hypothesis is that women and men are
the same in their willingness to volunteer for experiments that involve risky behavior.
What is needed is a statistical test and its sampling distribution. Together, the test and
the distribution produce the probability of the data observed, if the null hypothesis is
true. With a probability in hand, you can reject or retain the null hypothesis.

In the case of Alex’s data, the statistical test needed is a chi square test and the
sampling distribution is the chi square distribution. The probability is that of sample
proportions of .40 and .67 coming from identical populations, if the null hypothesis
is true.2

Chi square (pronounced “ki,” as in kind, “square,” and symbolized x2) is a sampling
distribution that gives probabilities about frequencies. Frequencies like those in the
table above are distributed approximately as chi square, so the chi square distribution
provides the probabilities needed for decision making about the difference between the
responses of women and men.

The characteristic that distinguishes chi square from the techniques in previous
chapters is the kind of data. For t tests and ANOVA, the data consist of a set of scores,
such as attitudes, time, errors, heights, and so forth. Each subject has one quantitative
score.

1 The data in this scenario are based on Byrnes, Miller, and Schafer (1999), Gender Differences in Risk
Tasking: A Meta-analysis.
2 Casting data in a chi square problem as proportions helps you interpret the results. However, this book does
not cover direct tests of proportions using chi square. To test proportions see Kirk, 2008, pp. 485–488
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With chi square, however, the data are frequency counts in categories. Each subject
is observed and placed in one category. The frequencies of observations in categories
are counted and the chi square test is calculated from the frequency counts. What a chi
square analysis does is compare the observed frequencies of a category to frequencies
that would be expected if the null hypothesis is true.

error detection
To determine if chi square is appropriate, look at the data for one subject. If the subject
has a quantitative score, chi square is not appropriate. If the subject is classified into
one category among several, chi square may be appropriate.

Karl Pearson (1857–1936), of Pearson product-moment correlation coefficient
fame, published the first article on chi square in 1900. Pearson wanted a way to
measure the “fit” between data generated by a theory and data obtained from
observations. Until chi square was dreamed up, theory testers presented theoretical
predictions and empirical data side by side, followed by a declaration such as “good
fit” or “poor fit.”

The most popular theories at the end of the 19th century predicted that data would
be distributed as a normal curve. Many data gatherers had adopted Quetelet’s position
that measurements of almost any social phenomenon would be normally distributed if
the number of cases was large enough. Pearson (and others) thought this was not true,
and they proposed other curves. By inventing chi square, Pearson provided everyone
with a quantitative method of choosing the curve of best fit.

Chi square turned out to be very versatile, being applicable to many problems
besides curve-fitting ones. As a test statistic, it is used by psychologists, sociologists,
health professionals, biologists, educators, political scientists, economists, foresters,
and others. In addition to its use as a test statistic, the chi square distribution has come
to occupy an important place in theoretical statistics. As further evidence of the
importance of Pearson’s chi square, it was selected as one of the 20 most important
discoveries of the 20th century (Hacking, 1984).

Pearson, too, turned out to be very versatile, contributing data and theory to both
biology and statistics. He is credited with naming the standard deviation and seven
other concepts in this textbook (David, 1995). He (and Galton and Weldon) founded
the journal Biometrika to publicize and promote the marriage of biology and
mathematics.3 In addition to his scientific efforts, Pearson was an advocate of women’s
rights and the father of an eminent statistician, Egon Pearson.

As a final note, Pearson’s overall goal was not to be a biologist or a statistician. His
goal was a better life for the human race. An important step in accomplishing this was to
“develop a methodology for the exploration of life” (Walker, 1968, pp. 499–500).

3 In 1901 when Biometrika began, the Royal Society, the principal scientific society in Great Britain,
accepted articles on biology and articles on mathematics, but it would not permit papers that combined the
two. (See Galton, 1901, for a thinly disguised complaint against the establishment.)
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The Chi Square Distribution 
and the Chi Square Test

The chi square distribution is a theoretical distribution, just as t and F are. Like them,
as the number of degrees of freedom increases, the shape of the distribution changes.
Figure 14.1 shows how the shape of the chi square distribution changes as degrees of
freedom change from 1 to 5 to 10. Note that x2, like the F distribution, is a
positively skewed curve.

Critical values for x2 are given in Table E in Appendix C for a levels
of .10, .05, .02, .01, and .001. Look at Table E.

The design of the x2 table is similar to that of the t table: a levels are listed across
the top and each row shows a different df value. Notice, however, that with chi square, as
degrees of freedom increase (looking down columns), larger and larger values of x2 are
required to reject the null hypothesis. This is just the opposite of what occurs in the t and
F distributions. This will make sense if you examine the three curves in Figure 14.1.

Once again, I will symbolize a critical value by giving the statistic (x2), the a level,
df, and the critical value. Here’s an example (that you will see again): x2

.05(1 df ) � 3.84.
To calculate a chi square test value to compare to a critical value from

Table E, use the formula

where O � observed frequency
E � expected frequency

x 2 � © c
1O � E 2 2

E
d

5 10 15 20

Value of χ2

df = 10

df = 5

df = 1

25

F I G U R E  1 4 . 1 Chi square distribution for three different degrees of freedom.
Rejection regions at the .05 level are shaded.

chi square distribution
Theoretical sampling distribution
of chi square values.

chi square test
NHST technique that compares
observed frequencies to expected
frequencies.
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Obtaining the observed frequency is simple enough—count the
events in each category. Finding the expected frequency is a bit more
complex. Two methods can be used to determine the expected frequency.
One method is used if the problem is a “test of independence” and
another method is used if the problem is one of “goodness of fit.”

Chi Square as a Test of Independence

Probably the most common use of chi square is to test the independence of two variables.
The null hypothesis for a chi square test of independence is that the two variables are
independent—that there is no relationship between the two. If the null hypothesis is
rejected, you can conclude that the two variables are related and then tell how they are
related. Another word that is an opposite of independent is contingent. Tables arranged in
the fashion of the one on page 301 are often referred to as contingency tables.

The data gathered by Alex had two variables, willingness to volunteer and gender.
Are the two variables independent or are they related? The null hypothesis is that
gender and willingness are independent—that knowing a person’s gender gives no
clue to his or her willingness to volunteer for risky experiments (and that knowing a
person’s willingness gives no clue about gender). Rejecting the null hypothesis
supports the alternative hypothesis, which is that the two variables are contingent—
that knowing a person’s gender helps predict the person’s willingness to volunteer.

Expected Values

A chi square test of independence requires observed values and expected values.
Table 14.1 shows the observed values that you saw before. In addition, it includes the
expected values (in parentheses). Expected frequencies are those that are expected if
the null hypothesis is true. Please pay careful attention to the logic behind the
calculation of expected frequencies.

Let’s start with an explanation of the expected frequency in the upper left corner,
38.75, the expected  number of women who are willing to participate in risky
experiments. Of  all the 112 subjects, 70 (row total) were  women, so if you chose a
subject at random, the probability that the person would be a woman is 70/112 � .6250.

In a similar way, of the 112 subjects, 62 (column total) were willing to volunteer.
Thus, the probability that a randomly chosen person would  be willing to volunteer is
62/112 � .5536.

304 ■ Chapter 14

TABLE 14.1 Hypothetical data on willingness to
volunteer for risky experiments (Expected
frequencies are in parentheses)

Willing to volunteer

Yes No �

Women 32 (38.75) 38 (31.25) 70
Men 30 (23.25) 12 (18.75) 42
� 62 50 112

observed frequency
Count of actual events in a category.

expected frequency
Theoretical frequency derived 
from the null hypothesis.

08911_14_Ch14_300-322 pp3.qxd  12/18/09  7:00 PM  Page 304



Chi Square Tests ■ 305

Next, if you ask the probability that a person chosen at random is both a woman and
a person who is willing to participate, the answer is found by multiplying together the
probability of the two separate events.4 Thus (.6250)(.5536) � .3460.

Finally, the expected frequency of such people is the probability of such a person
multiplied by the total number of people. Thus (.3460)(112) � 38.75. Notice what
happens to the arithmetic when the steps described above are combined:

Thus, the formula for the expected value of a cell is its row total, multiplied by its
column total, divided by N.

In a similar way, the expected frequency of men  who are willing to participate is
the probability of a man times the probability of being  willing participate times the
number of subjects. For an overall view, here is the arithmetic for calculating expected
values for all four cells in Table 14.1:

With the expected values (E ) and observed values (O) in hand, you have what you need
to calculate (O�E )2/E for each category. Table 14.2 shows a convenient way to
arrange your calculations in a step-by-step fashion. The result is a x2 value of 7.02.

142 2 162 2

112
� 23.25  

142 2 150 2

112
� 18.75

170 2 162 2

112
� 38.75  

170 2 150 2

112
� 31.25

a
70

112
b a

62

112
b 1112 2 �

170 2 162 2

112
� 38.75

4 This is like determining the chances of obtaining two heads in two tosses of a coin. For each toss, the probability
of a head is . The probability of two heads in two tosses is found by multiplying the two probabilities:

See the section “A Binomial Distribution” in Chapter 7 for a review of this topic.112 2 1
1
2 2 � 1

4 � .25.

1
2

TABLE 14.2 Calculation of X2 for the data in Table 14.1

(O � E )2

O E O � E (O � E )2 E

32 38.75 �6.75 45.56 1.176
38 31.25 6.75 45.56 1.458
30 23.25 �6.75 45.56 1.960
12 18.75 6.75 45.56 2.430

112 112.00 x2 � 7.02©

error detection
For every chi square test, whether for independence or goodness of fit, the sum of
the expected frequencies must equal the sum of the observed frequencies 
(�E � �O). Look at the bottom row of Table 14.2. The total of the observed
frequencies (112) is equal to the total of the expected frequencies (112.00).
Sometimes rounding may lead to slight discrepancies between the two totals.
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Degrees of Freedom

Every x2 value is accompanied by its df. To determine the df for any R � C (rows
by columns) table such as Table 14.1, use the formula (R � 1)(C � 1). In this case,
(2 � 1)(2 � 1) � 1.

Here is the reasoning behind degrees of freedom for tests of independence.
Consider the simplest case, a 2 � 2 table with the four margin totals fixed. How
many of the four data cells are free to vary? The answer is one. Once a number is
selected for any one of the cells, the numbers in the other three cells must have
particular values in order to keep the margin totals the same. You can check this out
for yourself by constructing a version of Table 14.1 that has empty cells and margin
totals of (reading clockwise) 70, 42, 50, and 62. You are free to choose any number
for any of the four cells, but once it is chosen, the rest of the cell numbers are
determined. The general rule again is df � (R � 1)(C � 1), where R and C refer to
the number of rows and columns.

Interpretation

To determine the significance of x2 � 7.02 with 1 df, look at Table E in Appendix C.
In the first row, you will find that if x2 � 6.64, the null hypothesis may be rejected at
the .01 level of significance. Because the x2 value exceeds this, you can conclude that
the attitudes toward taking risks are influenced by gender; that is, gender and
attitudes toward risk taking in the population are not independent, but related.
By examining the proportions (.40 and .67), you can conclude that men are
significantly more likely to indicate they are willing to volunteer to participate in
riskyexperiments. 

Table 14.3 shows the result of a chi square test on the data in Table 14.1 using an
SPSS analysis that follows the path Descriptive Statistics and Crosstabs. The Pearson
Chi-Square in the top row (7.023 with 1 df ) corresponds to the analysis you just
studied. The probability of such a chi square value is .008, or less than .01.
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TABLE 14.3 SPSS Crosstabs chi square analysis of the data in Table 14.1

Chi-Square Tests

Asymp. Sig. Exact Sig. Exact Sig.
Value df (2-sided) (2-sided) (1-sided)

Pearson Chi-Square 7.023b 1 .008
Continuity Correctiona 6.022 1 .014
Likelihood Ratio 7.196 1 .007
Fisher’s Exact Test .011 .007
Linear-by-Linear 

Association 6.961 1 .008
N of Valid Cases 112

aComputed only for a 2 � 2 table
b0 cells (.0%) have expected count less than 5. The minimum expected
count is 18.75
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Shortcut for Any 2 � 2 Table

If you have a calculator and are analyzing a 2 � 2 table, the following shortcut will
save you time. With this shortcut, you do not have to calculate the expected
frequencies, which reduces calculating time by as much as half. Here is the general
case of a 2 � 2 table:

Row totals

A B A � B

C D C � D

Column totals A � C B � D N

To calculate x2 from a 2 � 2 table, use the formula

The term in the numerator, AD � BC, is the difference between the cross-products. The
denominator is the product of the four margin totals.

To illustrate the equivalence of the shortcut method and the method explained in
the previous section, I will calculate x2 for the data in Table 14.1. Translating cell
letters into cell totals produces A � 32, B � 38, C � 30, D � 12, and N � 112.
Applying these figures to the formula gives,

Both methods yield x2 � 7.02.
A common error in interpreting a x2 problem is to tell less than you might.

This is especially the case when the shortcut method is used. For example, the
statement “There is a relationship between gender and willingness to volunteer for
risky experiments, x2(1) � 7.02; p � .01” leaves unsaid the direction of the
relationship. In contrast, “Men are more willing than women to volunteer for risky
experiments, x2(1) 7.02; p � .01” tells the reader not only that there is a
relationship but also what the relationship is. So, don’t stop with a vague “There is
a relationship.” Tell what the relationship is, which you can determine by exploring
proportions.

Effect Size Index for 2 � 2 Chi Square Data

Although a x2 test allows you to conclude that two variables are related, it doesn’t tell
you the degree of relationship. To know the degree of relationship, you need an effect
size index.

x2 �
1112 2 3 132 2 112 2 � 138 2 130 2 4 2

170 2 142 2 162 2 150 2
� 7.02

x2 �
N 1AD � BC 2 2

1A � B 2 1C � D 2 1A � C 2 1B � D 2
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f (written phi and pronounced “fee” by statisticians) is an effect size
index for chi square that works for 2 � 2 tables but not for larger tables.
f is calculated with the formula

where x2 is the x2 value from a 2 � 2 table
N is the total number of observations

The interpretation of f is much like that of a correlation coefficient. f gives you
the degree of relationship between the two variables in a chi square analysis. Thus, a
value near 0 means that there is no relationship and a value near 1 means that there is
an almost perfect relationship between the two variables.

Here are the guidelines for evaluating f coefficients:

Small effect f � 0.10

Medium effect f � 0.30

Large effect f � 0.50

For the gender-risky experiment data,

Thus, for these data (and those of Byrnes, Miller and Schafer, 1999), men are more
willing than women to volunteer for risky experiments and this difference produces an
effect size value that approaches a medium-sized effect.

P R O B L E M S

14.1. In the late 1930s and early 1940s an important sociology experiment took
place in the Boston area. At that time 650 boys (median age � years)
participated in the Cambridge–Somerville Youth Study (named for the
two economically depressed communities where the boys lived). The
participants were randomly assigned to either a delinquency-prevention
program or a control group. Boys in the delinquency-prevention program
had a counselor and experienced several years of opportunities for
enrichment. At the end of the study, police records were examined for
evidence of delinquency among all 650 boys. Analyze the data in the
table and write a conclusion.

Received
program Control

Police record 114 101
No police record 211 224

101
2

f � B
x2

N
� B

7.02

112
� 20.0627 � 0.25

f � B
x 2

N
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phi (F)
Effect size index for a 2 � 2 chi
square test of independence.
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14.2. A psychology student was interested in the effect of group size on the
likelihood of joining an informal group. On one part of the campus, he had a
group of two people looking intently up into a tree. On a distant part of the
campus, a group of five stood looking up into a tree. Single passersby were
classified as joiners or nonjoiners depending on whether they looked up for
5 seconds or longer or made some comment to the group. The data in the
accompanying table were obtained. Use chi square techniques to determine
whether group size had an effect on joining. (See Milgram, 1969.) Use the
calculation method you did not choose for problem 14.1. Write a
conclusion.

Group size

2 5

Joiners 9 26
Nonjoiners 31 34

14.3. You have probably heard that salmon return to the stream in which they
hatched. According to the story, after years of maturing in the ocean, the
salmon arrive at the mouth of a river and swim upstream, choosing at each
fork the stream that leads to the pool in which they hatched. Arthur D.
Hasler’s classic research investigated this homing instinct [reported in
Hasler (1966) and Hasler and Scholz (1983)]. Here are two sets of data that
he gathered.
a. These data help answer the question of whether salmon really do make

consistent choices at the forks of a stream in their return upstream.
Forty-six salmon were captured from the Issaquah Creek ( just east of
Seattle, Washington) and another 27 from its East Fork. All salmon were
marked and released below the confluence of these two streams. All of
the 46 captured in the Issaquah were recaptured there. Of the 27
originally captured in the East Fork, 19 were recaptured from the East
Fork and 8 from the Issaquah. Use x2 to determine if salmon make
consistent choices at the confluence of two streams. Calculate f and
write an explanation of the results.

b. Hasler believed that the salmon were making the choice at each 
fork on the basis of olfactory (smell) cues. He thought that young salmon
become imprinted on the particular mix of dissolved mineral and
vegetable molecules in their home streams. As adults, they simply make
choices at forks on the basis of where the smell of home is coming from.
To test this, he captured 70 salmon from the two streams, plugged their
nasal openings, and released the salmon below the confluence of the two
streams. The fish were recaptured above the fork in one stream or the
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other. Analyze using chi square techniques and write a sentence about
Hasler’s hypothesis.

Recapture site

Issaquah East Fork

Issaquah 39 12
Capture site

East Fork 16 3

14.4. Here are some data that I analyzed for an attorney. Of the 4200 white
applicants at a large manufacturing facility, 390 were hired. Of the
850 black applicants, 18 were hired. Analyze the data and write a
conclusion. Note: You will have to work on the data some before you
set up the table.

Chi Square as a Test for Goodness of Fit

A chi square goodness-of-fit test allows an evaluation of a theory and its ability to
predict outcomes. The formula is the same as that for a test of independence. Thus, both

chi square tests require observed values and expected values. The
expected values for a goodness-of-fit test, however, come from a
hypothesis, theory, or model, rather than from calculations on the data
itself as in tests of independence. With a goodness-of-fit test, you can
determine whether or not there is a good fit between the theory and
the data.

In a chi square goodness-of-fit test, the null hypothesis is that the actual data fit
the expected data. A rejected H0 means that the data do not fit the model—that is, the
model is inadequate. A retained H0 means that the data are not at odds with the model.
A retained H0 does not prove that the model, theory, or hypothesis is true, because other
models may also predict such results. A retained H0 does, however, lend support for the
model.

Where do hypotheses, theories, and models come from? At a very basic level, they
come from our nature as human beings. Humans are always trying to understand
things, and this often results in a guess at how things are. When these guesses are
developed, supported, and discussed (and perhaps, published), they earn the more
sophisticated label of hypothesis, theory, or model. Some hypotheses, theories, and
models make quantitative predictions. Such predictions lead to expected frequencies.
By comparing these predicted frequencies to observed frequencies, a chi square
analysis provides a test of the theory.

The chi square goodness-of-fit test is used frequently in population genetics, where
Mendelian laws predict offspring ratios such as 3:1, or 1:2:1, or 9:3:3:1. For example,
the law (model) might predict that crossing two pea plants will result in three times as
many seeds in the smooth category as in the wrinkled category (3:1 ratio). If you
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goodness-of-fit test
Chi square test that compares
observed frequencies to
frequencies predicted by 
a theory.
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perform the crosses, you might get 316 smooth seeds and 84 wrinkled seeds, for a total
of 400. How well do these actual frequencies fit the expected frequencies of 300 and
100? Chi square gives you a probability figure to help you decide if the data are
consistent with the theory.

Although the mechanics of x2 require you to manipulate raw frequency counts
(such as 316 and 84), you can best understand this test by thinking of proportions.
Thus, 316 out of 400 is a proportion of .79 and 84 out of 400 is a proportions of .21.
How likely are such proportions if the population proportions are .75 and .25?
Chi square provides you with the probability of obtaining the observed proportions if
the theory is true. As a result, you have a quantitative way to decide “good fit” or
“poor fit.”

In the genetics example, the expected frequencies were predicted by a theory.
Sometimes, in a goodness-of-fit test, the expected frequencies are predicted by chance.
In such a case, a rejected H0 means that something besides chance is at work. When
you interpret the analysis, you should identify what that “something” is. Here is an
example.

Suppose you were so interested in sex stereotypes and job discrimination that you
conducted the following experiment, which is modeled after that of Mischel (1974).
You make up four one-page resumes and four fictitious names—two female, two male.
The names and resumes are randomly combined, and each participant is asked to
read the resumes and “hire” one of the four “applicants” for a management trainee
position. The null hypothesis tested is a “no discrimination” hypothesis. The hypothesis
says that gender is not being used as a basis for hiring and therefore equal numbers of
men and women will be hired. Thus, if the data cause the null hypothesis to be rejected,
the hypothesis of “no discrimination” may be rejected.

Suppose you have 120 participants in your study, and they “hire” 75 men and 45
women. Is there statistical evidence that sex stereotypes are leading to discrimination?
That is, given the hypothesized result of 60 men and 60 women, how good a fit are the
observed data of 75 men and 45 women?

Applying the x2 formula, you get

The number of degrees of freedom for this problem is the number of categories
minus 1. There are two categories here—hired men and hired women. Thus, 2 � 1 � 1 df.
Looking in Table E, you find in row 1 that if x2 � 6.64, the null hypothesis may be
rejected at the .01 level. Thus, the model may be rejected.

The last step in data analysis (and perhaps the most important one) is to write a
conclusion. Begin by returning to the descriptive statistics of the original data. Because
62.5 percent of the hires were men and 37.5 percent were women, you can conclude
that discrimination in favor of men was demonstrated.

The term degrees of freedom implies that there are some restrictions. For both tests
of independence and goodness of fit, one restriction is always that the sum of the
expected events must be equal to the sum of the observed events; that is, �E � �O.
If you manufacture a set of expected frequencies from a model, their sum must
be equal to the sum of the observed frequencies. In our sex discrimination example,
�O � 75 � 45 � 120 and therefore, �E must be 120, which it is (60 � 60).

x2 � © c
1O � E 2 2

E
d �

175 � 60 2 2

60
�
145 � 60 2 2

60
� 3.75 � 3.75 � 7.50
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There is no effect size index for a chi square goodness-of-fit test. A little reflection
shows why. An effect size index is a measure of how large a difference is. In a
goodness-of-fit test, the difference is between the data observed and data predicted by
a theory. A chi square p value of less than .05 means that the theory’s predictions are
wrong. The question “How wrong?” (an effect size index kind of question) doesn’t
seem necessary. Wrong is wrong.5

P R O B L E M S

14.5. Using the data on wrinkled and smooth pea seeds on pages 310–311, test
how well the data fit a 3:1 hypothesis.

14.6. John B. Watson (1878–1958), the behaviorist, thought there were three
basic, inherited emotions: fear, rage, and love (Watson, 1924). He suspected
that the wide variety of emotions experienced by adults had been learned.
Proving his suspicion would be difficult because “unfortunately there are no
facilities in maternity wards for keeping mother and child under close
observation for years.” So Watson attacked the apparently simpler problem
of showing that the emotions of fear, rage, and love could be distinguished
in infants. (He recognized the difficulty of proving that these were the only
basic emotions, and he made no such claim.) Fear could be elicited by
dropping the child onto a soft feather pillow (but not by the dark, dogs,
white rats, or a pigeon fluttering its wings in the baby’s face). Rage could be
elicited by holding the child’s arms tightly at its sides, and love by “tickling,
shaking, gentle rocking, and patting,” among other things.

Here is an experiment reconstructed from Watson’s conclusions. A
child was stimulated so as to elicit fear, rage, or love. An observer then
looked at the child and judged the emotion the child was experiencing. Each
judgment was scored as correct or incorrect—correct meaning that the
judgment (say, love) corresponded to the stimulus (say, patting). Sixty
observers made one judgment each, with the results shown in the
accompanying table. To find the expected frequencies, think about the
chance of being correct or incorrect when there are three possible outcomes.
Analyze the data with x2 and write a conclusion.

Correct Incorrect

32 28

Chi Square with More Than 1 Degree of Freedom

Thex2 values you have found so far have been evaluated by comparing them to a chi square
distribution with 1 df. In this section, the problems require chi square distributions with
more than 1 df. Some are tests of independence and some are goodness-of-fit problems.
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5In away, smaller and smaller p values indicate larger and larger differences between the data and the theory,
but, unfortunately, p values are influenced by other factors as well.
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Here’s a question for you. Suppose that for 6 days next summer you get a free
vacation, all expenses paid. Which location would you choose for your vacation?

_____ City

_____ Mountains

_____ Seashore

I asked 78 students that question and found, not surprisingly, that different people
chose different locations. The results I got from my sample follow:

Choice

City Mountains Seashore Total

9 27 42 78

A chi square analysis can test the hypothesis that all three of these locations are
preferred equally. In this case, the null hypothesis is that among those in the population,
all three locations are equally likely as a first choice. Using sample data and a chi
square test, you can reject or retain this hypothesis.

Think for a moment about the expected value for each cell in this problem. If each
of the three locations is equally likely, then the expected value for a location is times
the number of respondents; that is ( )(78) � 26.

The arrangement of the arithmetic for this x2 problem is a simple extension of
what you have already learned. Look at the analysis in Table 14.4.

What is the df for thex2 value in Table 14.4? The margin total of 78 is fixed, so only
two expected cell frequencies are free to vary. Once two are determined, the third is
restricted to whatever value will make the total 78. Thus, there are 3 � 1 � 2 df. For this
design, the number of df is the number of categories minus 1. From Table E, for
a� .001, x2 with 2 df � 13.82. Therefore, reject the hypothesis of independence and
conclude that the students were responding in a nonchance manner to the questionnaire.

One characteristic of x2 is its additive nature. Each (O � E)2/E value is a measure of
deviation of the data from the model, and the finalx2 is simply the sum of these measures.
Because of this, you can examine the (O � E )2/E values and see which deviations are
contributing the most to x2. For the vacation preference data, it is a greater number of
seashore choices and fewer city choices that make the final x2 significant. The mountain
choices are about what would be predicted by the “equal likelihood” model.

1
3

1
3

TABLE 14.4 Calculation of X2 for the vacation location preference data

(O � E )2

Locations O E O � E (O � E )2 E

City 9 26 �17 289 11.115
Mountains 27 26 1 1 0.038
Seashore 42 26 16 256 9.846

x2 � 20.999
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Let’s move now to a more complicated example. Suppose you wanted to gather
data on family planning from a variety of people. Your sample consists of high
school students, college students, and businesspeople. Your family-planning
question is, “A couple just starting a family this year should plan to have how many
children?”

_____ 0 or 1

_____ 2 or 3

_____ 4 or more

As participants answer your question, you classify them as high school,
college, or business types. Suppose you obtained the 275 responses that are shown
in Table 14.5.

For this problem, you do not have a theory or model to tell you what the theoretical
frequencies should be. The question is whether there is a relationship between attitudes
toward family size and group affiliation. A chi square test of independence may answer
this question. The null hypothesis is that there is no relationship—that is, that
recommended family size and group affiliation are independent.

To get the expected frequency for each cell, assume independence (H0) and apply
the reasoning explained earlier about multiplying probabilities:

These expected frequencies are incorporated into Table 14.6, which shows the
calculation of the x2 value.

The df for a contingency table such as Table 14.5 is obtained from the formula

df � (R � 1)(C � 1)

Thus, df � (R � 1)(C � 1) � (3 � 1)(3 � 1) � 4.

 
166 2 1104 2

275
� 24.960    

166 2 1130 2

275
� 31.200    

166 2 141 2

275
� 9.840 

1117 2 1104 2

275
� 44.247    

1117 2 1130 2

275
� 55.309    

1117 2 141 2

275
� 17.444

 
192 2 1104 2

275
� 34.793    

192 2 1130 2

275
� 43.491    

192 2 141 2

275
� 13.716 
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TABLE 14.5 Recommended family size by those in high
school, college, and business

Number of children

Subjects 0–1 2–3 4 or more �

High school 26 57 9 92
College 61 38 18 117
Business 17 35 14 66
� 104 130 41 275
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6 The statistical analysis of these data is straightforward; the null hypothesis is rejected. However, a flaw in
the experimental design has two variables confounded, leaving the interpretation clouded. Because the three
groups differ in both age and education, we are unsure whether the differences in attitude are related to only
age, to only education, or to both of these variables. A better design would have groups that differed only on
the age or only on the education variable.

(O � E )2

O E O � E (O � E )2 E

26 34.793 �8.793 77.317 2.222
57 43.491 13.509 182.493 4.196
9 13.716 �4.716 22.241 1.622

61 44.247 16.753 280.663 6.343
38 55.309 �17.309 299.602 5.417
18 17.444 0.556 0.309 0.018
17 24.960 �7.960 63.362 2.539
35 31.200 3.800 14.440 0.463
14 9.840 4.160 17.306 1.759

275 275.000 x2 � 24.579

For df � 4, x2 � 18.46 is required to reject H0 at the .001 level. The obtained x2

exceeds this value, so reject H0 and conclude that attitudes toward family size are
related to group affiliation.6

By examining the right-hand column in Table 14.6, you can see that 6.343 and
5.417 constitute a large portion of the final x2 value. By working backward on those
rows, you will discover that college students chose the 0–1 category more often than
expected and the 2–3 category less often than expected. The interpretation, then, is that
college students think that families should be smaller than high school students and
businesspeople do.

There is an effect size index for chi square problems that have more than 1 degree
of freedom. It was proposed by Harald Cramér and has been variously referred to as
Cramer’s f, fc, and Cramer V. The formula and explanations are available in Aron,
Aron, and Coups (2009, pp. 555–556.) and Howell (2010, p. 165).

P R O B L E M S

*14.7. Professor Stickler always grades “on the curve.” “Yes, I see to it that my
grades are distributed as 7 percent A’s, 24 percent B’s, 38 percent C’s,
24 percent D’s, and 7 percent flunks,” he explained to a young colleague. 
The colleague, convinced that the professor is really a softer touch than he
sounds, looked at Professor Stickler’s grade distribution for the past year.
He found frequencies of 20, 74, 120, 88, and 38, respectively, for the five
categories, A through F. Perform a x2 test for the colleague. What do you
conclude about Professor Stickler?

©

TABLE 14.6 Calculation of X2 for the family-planning data
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14.8. Is problem 14.7 a problem of goodness of fit or of independence?
*14.9. “Snake eyes,” a local gambler, let a group of sophomores know they would

be welcome in a dice game. After 3 hours the sophomores went home broke.
However, one sharp-minded, sober lad had recorded the results on each
throw. He decided to see if the results of the evening fit an “unbiased dice”
model. Conduct the test and write a sentence summary of your conclusions.

Number of spots Frequency

6 195
5 200
4 220
3 215
2 190
1 180

14.10. Identify problem 14.9 as a test of independence or of goodness of fit.
*14.11. Remember the controversy described in Chapter 1 over the authorship of

12 of The Federalist papers? The question was whether they were written by
Alexander Hamilton or James Madison. Mosteller and Wallace (1989) selected
48 1000-word passages known to have been written by Hamilton and 50
1000-word passages known to have been written by Madison. In each passage
they counted the frequency of certain words. The results for the word by are
shown in the table. Is by used with significantly different frequency by the two
writers? Explain how these results help in deciding about the 12 disputed papers.

Rate per
1000 words Hamilton Madison

0–6 21 5
7–12 27 31
13–18 0 14

14.12. Is problem 14.11 one of independence or of goodness of fit?

Small Expected Frequencies

The theoretical chi square distribution, which comes from a mathematical formula, is a
continuous function that can have any positive numerical value. Chi square test
statistics calculated from frequencies do not work this way. They change in discrete
steps and when the expected frequencies are very small, the discrete steps are quite
large. It is clear to mathematical statisticians that as the expected frequencies approach
zero, the theoretical chi square distribution becomes a less and less reliable way to
estimate probabilities. In particular, the fear is that such chi square analyses will reject
the null hypothesis more often than warranted.

The question for researchers who analyze their data with chi square has always
been: Those expected frequencies—how small is too small? For years the usual
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recommendation was that if an expected frequency was less than 5, a chi square
analysis was suspect. A number of studies, however, led to a revision of the answer.

When df � 1

Several studies used a computer to draw thousands of random samples from known
populations for which the null hypothesis was true, a technique called the Monte Carlo
method. Each sample was analyzed with a chi square, and the proportion of rejections
of the null hypothesis (Type I errors) was calculated. (If this proportion was
approximately equal to a, the chi square analysis would be clearly appropriate.) The
general trend of these studies has been to show that the theoretical chi square
distribution gives accurate conclusions even when the expected frequencies are
considerably less than 5. Yates’s correction used to be recommended for 2 � 2 tables
that had one expected frequency less than 5. The effect of the correction was to reduce
the size of the obtained chi square. According to current thinking, Yates’s
correction resulted in many Type II errors. Therefore, I do not
recommend Yates’s correction for the kinds of problems found in most
research. (See Camilli and Hopkins, 1978, for an analysis of a 2 � 2 test
of independence.)

When df b 1

When df � 1, the same uncertainty exists if one or more expected frequencies is small.
Is the chi square test still advisable? Bradley and colleagues (1979) addressed some of
the cases in which df � 1. Again, they used a computer to draw thousands of samples
and analyzed each sample with a chi square test. The proportion of cases in which the
null hypothesis was mistakenly rejected when a � .05 was calculated. Of course, if
the test was working correctly, the proportion rejected should be .05. Nearly all the
proportions were in the range of .03 to .06. Exceptions occurred when sample size was
small (N � 20). The conclusion was that the chi square test gives fairly accurate
probabilities if sample size is greater than 20.

An Important Consideration

Now, let’s back away from these trees we’ve been examining and visualize the forest
that you are trying to understand. The big question, as always, is, What is the nature of
the population? The question is answered by studying a sample, which may lead you to
reject or to retain the null hypothesis. Either decision could be in error. The concern of
this section so far has been whether the chi square test is keeping the percentage of
mistaken rejections (Type I errors) near an acceptable level (.05).

Because the big question is, What is the nature of the population? you should keep
in mind the other error you could make: retaining the null hypothesis when it should be
rejected (a Type II error). How likely is a Type II error when expected frequencies are
small? Overall (1980) has addressed this question and his answer is “Very.”

Overall’s warning is that if the effect of the variable being studied is not huge, then
small expected frequencies have a high probability of dooming you to make the
mistake of failing to discover a real difference. You may recall that this issue was
discussed in Chapter 10 under the topic of power.

Yates’s correction
Correction for a 2 � 2 chi square
test that has one small expected
frequency.
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How can this mistake be avoided? Use large N’s. The larger the N, the more power
you have to detect any real differences. In addition, the larger the N, the more confident
you are that the actual probability of a Type I error is your adopted a level.

Combining Categories

Combining categories is a technique that allows you to ensure that your chi square
analysis will be more accurate. (It reduces the probability of a Type II error and keeps
the probability of a Type I error close to a.) Remember the example in the previous
section in which I had you gathering data on recommended family size? Let’s return to
the idea but with a slightly different design.

Suppose you had just two categories or participants, high school students and
college students. However, suppose you expanded their options of number of children
so that participants could recommend 0, 1, 2, 3, 4, or 5 or more. For this hypothetical
example, the high school students’ frequency counts are 13, 12, 18, 5, 2, and 2 and for
college students, 12, 13, 3, 6, 3, and 2. Arranging the frequency counts into a
contingency table and adding the expected frequencies by calculating them from the
margin totals produces Table 14.7.

Examine the expected frequencies (in parentheses) in Table 14.7. Several are quite
small, well under 5, a value that causes worry among some statisticians. When
expected frequencies are so low, the probability figure from a chi square test may be
suspect. What to do?

A common resolution to concern about small expected frequencies is to combine
categories to create a smaller contingency table. Combining cateogies produces larger
expected frequencies. If the categories of 3, 4, and 5 or more in Table 14.7 are
combined, the result is Table 14.8. All of the expected frequencies in Table 14.8 are
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TABLE 14.7 Family size recommended by high school and college students
(hypothetical data)

Number of Children

0 1 2 3 4 5 or more �

High school 13 12 18 5 2 2 52
(14.29) (14.29) (12.00) (6.29) (2.86) (2.29)

College 12 13 3 6 3 2 39
(10.71) (10.71) (9.00) (4.71) (2.14) (1.71)

� 25 25 21 11 5 4 91

TABLE 14.8 Family size recommended by high school and
college students when categories are combined

Subjects 0 1 2 3 or more �

High school 13 (14.29) 12 (14.29) 18 (12.00) 9 (11.43) 52
College 12 (10.71) 13 (10.71) 3 (9.00) 11 (8.57) 39
� 25 25 21 20 91
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well above a worrisome 5, which produces more confidence in the probability figure
from a chi square analysis.

Table 14.9 shows the calculation of a chi square statistic for the frequency counts
in Table 14.8. For those data, x2 � 9.33. Using the formula (R � 1)(C � 1) for degrees
of freedom gives (4 � 1)(2 � 1) � 3 df. By consulting Table E in Appendix C, you can
see that a x2 � 7.82 is required to reject the null hypothesis at the .05 level (and 11.34
at the .01 level). The null hypothesis can be rejected. The overall interpretation is that
high school students and college students give significantly different recommendations
when asked to specify how many children a couple starting a family this year should
have. Because of the additive nature of chi square, you can examine Table 14.9 and give
a more precise interpretation. The two largest components of the chi square value of
9.33 in Table 14.9 are the 3.00 and 4.00 associated with those who recommended that a
family have two children. Upon further examination of where the 3.00 and 4.00 come
from, you can conclude that high school students recommend two children to a greater
degree than college students.

There are other situations in which small expected frequencies may be combined.
For example, it is common in opinion surveys to have categories of “strongly agree,”
“agree,” “no opinion,” “disagree,” and “strongly disagree.” If there are few respondents
who check the “strongly” categories, those who do might be combined with their
“agree” or “disagree” neighbors—producing a table of three cells instead of five. The
basic rule on combinations is that they must “make sense.” It wouldn’t make sense to
combine the “strongly agree” and the “no opinion” categories in this example.

When You May Use Chi Square

1. Use chi square when the subjects in your study are identified by
category rather than by a quantitative score. With chi square, the
raw data are the number of subjects in each category.

2. To use chi square, each observation must be independent of
other observations. (Independence here means independence of
the observations and not independence of the variables.) In practical 

(O � E )2

O E O � E (O � E )2 E

13 14.29 �1.29 1.66 0.116
12 14.29 �2.29 5.24 0.367
18 12.00 6.00 36.00 3.000
9 11.43 2.43 5.91 0.517
12 10.71 1.29 1.66 0.155
13 10.71 2.29 5.24 0.490
3 9.00 �6.00 36.00 4.000
11 8.57 2.43 5.91 0.689

91.00 x2 � 9.33� 91©

TABLE 14.9 Calculation of X2 for data in Table 14.8

independent
The occurrence of one event does
not affect the outcome 
of a second event.
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terms, independence means that each subject appears only once in the table 
(no repeated measures on one subject) and that the response of one subject is
not influenced by the response of another subject.

3. Chi square conclusions apply to populations of which the samples are 
representative. Random sampling is one way to ensure representativeness.

error detection
One check for independence is that N (the total number of observations in the
analysis) must equal the number of subjects in the study.

Table 14.10 compares the characteristics of chi square tests of independence and
goodness-of-fit tests. Study it.

P R O B L E M S

14.13. An early hypothesis about schizophrenia (a form of severe mental illness)
was that it has a simple genetic cause. In accordance with the theory,
one-fourth (a 1:3 ratio) of the offspring of a selected group of parents would
be expected to be diagnosed as schizophrenic. Suppose that of
140 offspring, 19.3 percent were schizophrenic. Use this information to test
the goodness of fit of a 1:3 model. Remember that a x2 analysis is
performed on frequency counts.

14.14. How do goodness-of-fit tests and the tests of independence differ in
obtaining expected values?

14.15. You may recall from Chapter 9 that I bought Doritos tortilla chips and Snickers
candy bars to have data for problems. For this chapter, I bought regular M&Ms.
In a 1.69-ounce package I got 9 blues, 11 oranges, 17 greens, 8 yellows,
5 browns, and 7 reds. At the time I bought the package, Mars, Inc., the
manufacturer, claimed that the population breakdown is 24 percent blue,
20 percent orange, 16 percent green, 13.3 percent yellow, 13.3 percent brown,
and 13.3 percent red. Use a chi square test to evaluate Mars’s claim.

14.16. Suppose a friend of yours decides to gather data on sex stereotypes and job
discrimination. He makes up ten resumes and ten fictitious names, five male
and five female. He asks each of his 24 subjects to “hire” five of the candidates
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TABLE 14.10 Comparison of chi square tests of independence and goodness of fit

Features Tests of independence Goodness-of-fit tests

Purpose Tests independence of two variables Tests adequacy of a theory
Expected values Based on assumption of independence Derived from the theory
Null hypothesis (H0) Variables are independent Data fit the theory

If H0 rejected Variables are related Theory is inadequate
If H0 retained Supports independence Supports theory

Independent Required Required
observations
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rather than just one. The data show that 65 men and 55 women are hired. He
asks you for advice on x2. What would you say to your friend?

14.17. For a political science class, students gathered data for a supporters profile
of the two candidates for senator, Hill and Dale. One student stationed
herself at a busy intersection and categorized the cars turning left according
to whether or not they signaled the turn and whose bumper sticker was
displayed. After 2 hours, she left with the frequencies shown in the
accompanying table. Test these data with a x2 test. Write a paragraph of
explanation for the supporters profile that can be understood by students
who haven’t studied statistics. Begin the paragraph with appropriate details
about how the data were gathered.

Signaled turn Sticker Frequency

No Hill 11
No Dale 2
Yes Hill 57
Yes Dale 31

14.18. A friend, who knows that you are almost finished with this book, comes to
you for advice on a statistical analysis. He wants to know whether there is a
significant difference between men and women. Examine the data that
follow. What do you tell your friend?

Men Women

Mean score 123 206
N 18 23

14.19. Our political science student from problem 14.17 has launched a new
experiment—to determine whether affluence is related to voter choice. This
time she looks for yard signs for the two candidates and then classifies the
houses as brick or one-story frame. Her reasoning is that the one-story
frame homes represent less affluent voters in her city. Houses that do not fit
the categories are ignored. After 3 hours of driving and three-fourths of a
tank of gas, the frequency counts are as shown in the accompanying table.
Analyze the data using your chi square techniques. Write a statement of the
procedures and results, which can be used by the political science class in
the voter profile.

Type of house Yard signs Frequency

Brick Hill 17
Brick Dale 88
Frame Hill 59
Frame Dale 51
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14.20. When using x2, what is the proper df for each of the following tables?
a. 1 � 4
b. 4 � 5
c. 2 � 4
d. 6 � 3

14.21. Please reread the chapter objectives. Can you do each one?
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ADDITIONAL HELP FOR CHAPTER 14

Visit cengage.com/psychology/spatz. At the Student Companion Site, you’ll
find multiple-choice tutorial quizzes and flashcards with definitions. For this
chapter there is a Statistics Workshop on Chi-Square.

KEY TERMS

Additive (p. 313)
Chi square distribution (p. 303)
Chi square test (x2) (p. 303)
Contingency (p. 304)
Degrees of freedom (p. 306, 311, 318)
Effect size index (f) (p. 308)
Expected frequency (p. 304)
Expected values (p. 304, 310)

Frequency counts (p. 302)
Goodness-of-fit test (p. 310)
Independent (p. 319)
Observed frequency (p. 304)
Phi (f) (p. 308)
Small expected frequencies (p. 316)
Test of independence (p. 304)
Yates’s correction (p. 317)
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More Nonparametric
Tests

C H A P T E R

15

O B J E C T I V E S  F O R  C H A P T E R  1 5

After studying the text and working the problems in this chapter, you should be
able to:

1. Describe the rationale of nonparametric statistical tests

2. Distinguish among designs that require a Mann–Whitney U test, a Wilcoxon
matched-pairs signed-ranks T test, a Wilcoxon–Wilcox multiple-comparisons
test, and a Spearman rs correlation coefficient

3. Calculate a Mann–Whitney U test for small or large samples and interpret
the results

4. Calculate a Wilcoxon matched-pairs signed-ranks T test for small or large
samples and interpret the results

5. Calculate a Wilcoxon–Wilcox multiple-comparisons test and interpret the
results

6. Calculate a Spearman rs correlation coefficient and test the hypothesis that
the coefficient came from a population with a correlation of zero

TWO CHILD PSYCHOLOGISTS were talking shop over coffee one morning. (Much
research begins with just such sessions.) The topic was intensive early training in
athletics. Both were convinced that such training made the child less sociable as an
adult, but one psychologist went even further. “I think that really intensive training of
young kids is ultimately detrimental to their performance in the sport. Why, I’ll bet that,
among the top ten men’s singles tennis players, those with intensive early training are
not in the highest ranks.”

“Well, I certainly wouldn’t go that far,” said the second psychologist. “I think all
that early intensive training is quite helpful.”

“Good. In fact, great. We disagree and we may be able to decide who is right.
Let’s get the ground rules straight. For tennis players, how early is early and what is
intensive?”
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“Oh, I’d say early is starting by age 7 and intensive is playing 5 days a week for 
2 or more hours.”1

“That seems reasonable. Now, let’s see, our population is ‘excellent tennis
players’ and these top ten will serve as our representative sample.”

“Yes, indeed. What we would have among the top ten players would be two groups
to compare. One had intensive early training, and the other didn’t. The dependent
variable is the player’s rank. What we need is some statistical test that will tell us
whether the difference in average ranks of the two groups is statistically significant.”2

“Right. Now, a t test won’t give us an accurate probability figure because t tests
assume that the population of dependent variable scores is normally distributed.
A distribution of ranks is rectangular with each score having a frequency of 1.”

“I think there is a nonparametric test that is proper for ranks.”

My story is designed to highlight the reason that nonparametric
tests exist: Some kinds of data do not meet the assumptions3 that
parametric tests such as t tests and ANOVA are based on. Nonparametric
statistical tests (sometimes called distribution-free tests) provide correct

values for the probability of a Type I error regardless of the nature of the populations
the samples come from. As implied in the story, the tests in this chapter use ranks as
the dependent variable.

The Rationale of Nonparametric Tests

Many of the reasoning steps in nonparametric statistics are already familiar to 
you—they are NHST steps. By this time in your study of statistics, you should be able
to write two or three paragraphs about the null hypothesis, the alternative hypothesis,
gathering data, using a sampling distribution to find the probability of such results
when the null hypothesis is true, making a decision about the null hypothesis, and
telling a story that the data support. (Can you do this?)

The only part of the hypothesis-testing rationale that is unique to the tests in this
chapter is that the sampling distributions are derived from ranks rather than
quantitative scores. Here’s an explanation of how a sampling distribution based on
ranks might be constructed.

Suppose you drew two samples of equal size (for example, N1 � N2 � 10) from
the same population.4 You then arranged all the scores from both samples into one
overall ranking, from 1 to 20. Because the samples are from the same population, the
sum of the ranks of one group should be equal to the sum of the ranks of the second
group. In this case, the expected sum for each group is 105. (With a little figuring, you
can prove this for yourself now, or you can wait for an explanation later in the chapter.)

1 Because the phrase intensive early training can mean different things to different people, the second
psychologist has provided an operational definition. An operational definition is a definition that specifies
how the concept can be measured.
2 This is how the experts convert vague questionings into comprehensible ideas that can be communicated to
others—they identify the independent and the dependent variables.
3 Two common assumptions are that the population distributions are normal and have equal variances.
4 As always, drawing two samples from one population is statistically the same as starting with two identical
populations and drawing a random sample from each.

nonparametric tests
Statistical techniques that do not
require assumptions about the
sampled populations.
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Although the expected sum is 105, actual sampling from the population would also
produce sums greater than 105 and less than 105. After repeated sampling, all the sums
could be arranged into a sampling distribution, which would allow you to determine the
likelihood of any sum (if both samples come from the same population).

If the two sample sizes are unequal, the same logic will work. A sampling
distribution could be constructed that shows the expected variation in sums of ranks
for one of the two groups.

With this rationale in mind, you are ready to learn four new techniques. The first
three are NHST methods that produce the probability of the data observed, if the null
hypothesis is true. The fourth technique is a correlation coefficient for ranked data,
symbolized rs . You will learn to calculate rs and then test the hypothesis that a sample
rs came from a population with a correlation coefficient of .00.

The four nonparametric techniques in this chapter and their functions are listed in
Table 15.1. In earlier chapters you studied parametric tests that have similar functions,
which are listed on the right side of the table. Study Table 15.1 carefully now.

There are many other nonparametric statistical methods besides the four that you
learn in this chapter. Sprent and Smeeton’s superb handbook Applied Nonparametric
Statistical Methods (2007) covers many of these methods. Sprent and Smeeton’s book
describes applications in fields such as road safety, space research, trade, and medicine,
as well as in traditional academic disciplines.

Comparison of Nonparametric to Parametric Tests

In what ways are the nonparametric tests in this chapter similar to and in what ways are
they different from parametric tests (such as t tests and ANOVA)? Here are the similarities:

n The hypothesis-testing logic is the same for both nonparametric and parametric
tests. Both tests yield the probability of the observed data, when the null
hypothesis is true. As you will see, though, the null hypotheses of the two
kinds of tests are different.

TABLE 15.1 The function of some nonparametric and parametric tests

Function Nonparametric test Parametric test

Tests for a significant Mann–Whitney U test Independent-samples t test
difference between two 
independent samples

Tests for a significant Wilcoxon matched-pairs Paired-samples t test
difference between two signed-ranks T test 
paired samples

Tests for significant Wilcoxon–Wilcox multiple- One-way ANOVA and Tukey
differences among all comparisons test HSD tests
possible pairs of 
independent samples

Describes the degree of Spearman rs correlation Pearson product-moment
correlation between two coefficient correlation coefficient, r
variables

08911_15_Ch15_323-349 pp3.qxd  12/17/09  10:44 AM  Page 325



n Both nonparametric and parametric tests require you to assign participants
randomly to subgroups (or to sample randomly from the populations) if you
want to make unambiguous cause-and-effect conclusions.

As for the differences:

n Nonparametric tests do not require the assumptions about the populations that
parametric tests require. For example, parametric tests such as t tests and
ANOVA produce accurate probabilities when the populations are normally
distributed and have equal variances. Nonparametric tests do not assume the
populations have these characteristics.

n The null hypothesis for nonparametric tests is that the population
distributions are the same. For parametric tests, the null hypothesis is
usually that the population means are the same (H0: m1 � m2). Because
distributions can differ in form, variability, central tendency, or all three,
the interpretation of a rejection of the null hypothesis may not be quite so
clear-cut after a nonparametric test.

Recommendations on how to choose between a parametric and a nonparametric
test have varied over the years. Two of the issues involved in the debate are the
(1) scale of measurement and (2) power of the tests.

In the 1950s and after, some texts recommended that nonparametric tests be used
if the scale of measurement was nominal or ordinal. After a period of controversy, this
consideration was dropped. Later, it resurfaced. Currently, most researchers do not use
a “scale of measurement” criterion when deciding between nonparametric and
parametric tests.

The other issue, power, is also complicated. Power, you may recall, comes up 
when the null hypothesis should be rejected (see pages 222–223). A test’s power is the
probability that the test will reject a false null hypothesis. It is clear to mathematical
statisticians that if the populations being sampled from are normally distributed and
have equal variances, then parametric tests are more powerful than nonparametric ones.

If the populations are not normal or do not have equal variances, then it is less
clear what to recommend. Early work on this question showed that parametric tests
were robust, meaning that they gave approximately correct probabilities even though
populations were not normal or did not have equal variances. However, this robustness
has been questioned. For example, Blair, Higgins, and Smitley (1980) showed that a
nonparametric test (Mann–Whitney U ) is generally more powerful than its parametric
counterpart (t test) for the nonnormal distribution they tested. Blair and Higgins (1985)
arrived at a similar conclusion when they compared the Wilcoxon matched-pairs
signed-ranks T test to the t test. I am sorry to leave these issues without giving you
specific advice, but no simple rule of thumb about superiority is possible except for
one: If the data are ranks, use a nonparametric test.

For each of the four tests in this chapter, you will have to understand the steps.
Formulas aren’t available that permit a mechanical “plug in the raw numbers and grind
out an answer” approach. Also, the interpretation of rank statistics requires that you
know whether the rank of #1 is a good thing or a bad thing. To work and interpret
nonparametric problems correctly, think your way through them.

326 n Chapter 15
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P R O B L E M S

15.1. Name the test that is the nonparametric relative of an independent-samples 
t test. Name the relative of a paired-samples t test.

15.2. How are nonparametric tests different from parametric tests?
15.3. Sketch out in your own words the rationale of nonparametric tests.
15.4. Two issues have dominated the discussion of how to choose between

nonparametric and parametric tests. What are they?

The Mann–Whitney U Test

The Mann–Whitney U test is a nonparametric test for data from an
independent-samples design.5 Thus, it is the appropriate test for the child
psychologists to use to test the difference in ranks of tennis players.

The Mann–Whitney U test produces a statistic, U, that is evaluated
by consulting the sampling distribution of U. When U is calculated from small samples
(both samples have 20 or fewer scores), the sampling distribution is Table H in
Appendix C. Table H has critical values for sample sizes of 1 to 20. If the number of
scores in one of the samples is greater than 20, the normal curve is used to evaluate U.
With larger samples, a z score is calculated, and the values of �1.96 and �2.58 are
used as critical values for a� .05 and a� .01.

Mann–Whitney U Test for Small Samples

To provide data to illustrate the Mann–Whitney U test, I made up the numbers in 
Table 15.2 about the intensive early training of the top ten male singles tennis players.

In Table 15.2 the players are listed by initials in the left column; the right column
indicates that they had intensive early training (Nyes � N1 � 4) or that they did not 
(Nno � N2 � 6). Each player’s rank is shown in the middle column. At the bottom of
the table, the ranks of the four yes players are summed (27), as are the ranks of the six
no players (28).

The sums of the ranks are used to calculate two U values. The smaller of the two
U values is used to enter Table H, which yields a probability figure. For the yes group,
the U value is

 � 14 2 16 2 �
14 2 15 2

2
� 27 � 7 

U � 1N1 2 1N2 2 �
N1 1N1 � 1 2

2
� ©R1

5 The Mann–Whitney U test is identical to the Wilcoxon rank-sum test. Frank Wilcoxon published his test first
(1945), but when Henry Mann and Donald Whitney independently published a test based on the same logic
(1947), they provided tables and a name for their statistic. Today, researchers usually call it the Mann–Whitney
U test. The lesson: name your invention. [A hint of justice recently surfaced. The Encyclopedia of Statistics in
Behavioral Science (2005) refers to the test as the Wilcoxon–Mann–Whitney test.]

Mann–Whitney U test
Nonparametric test that compares
two independent samples.
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For the no group, the U value is

error detection
The sum of the two U values in a Mann–Whitney U test is equal to the product of
(N1)(N2).

Applying the error detection hint to the tennis ranking calculations, you get 7 �
17 � 24 � (4)(6). The calculations check.

Now, please examine Table H. It appears on two pages. On the first page of the
table, the lightface type gives the critical values for a levels of .01 for a one-tailed test
and .02 for a two-tailed test. The numbers in boldface type are critical values for 
a� .005 for a one-tailed test and a� .01 for a two-tailed test. In a similar way, the second
page shows larger a values for both one- and two-tailed tests. Having chosen the page
you want, use N1 and N2 to determine the column and row for your problem. The
commonly used two-tailed test with a � .05 is on this second page (boldface type).

Now, you can test the value U � 7 from the tennis data. From the conversation of
the two child psychologists, it is clear that a two-tailed test is appropriate; they are
interested in knowing whether intensive early training helps or hinders players.
Because an a level was not discussed, you should do what they would do—see if the
difference is significant at the .05 level and, if it is, see if it is also significant at some
smaller a level. Thus, in Table H begin by looking for the critical value of U for a
two-tailed test with a � .05. This number is on the second page in boldface type at the
intersection of N1 � 4, N2 � 6. The critical value is 2.

 � 14 2 16 2 �
16 2 17 2

2
� 28 � 17 

U � 1N1 2 1N2 2 �
N2 1N2 � 1 2

2
� ©R2

328 n Chapter 15

TABLE 15.2 Early training of top ten
male singles tennis players

Intensive
Players Rank early training?

Y.O. 1 No
U.E. 2 No
X.P. 3 No
E.C. 4 Yes
T.E. 5 No
D.W. 6 Yes
O.R. 7 No
D.S. 8 Yes
H.E. 9 Yes
R.E. 10 No

�Ryes � 4 � 6 � 8 � 9 � 27

�Rno � 1 � 2 � 3 � 5 � 7 � 10 � 28
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With the U test, a small U value obtained from the data indicates a large
difference between the samples. This is just the opposite from t tests, ANOVA, and 
chi square, in which large sample differences produce large t, F, and x2 values. Thus,
for statistical significance with the Mann–Whitney U test, the obtained U value must
be equal to or smaller than the critical value in Table H.

For the tennis training example, because the U value of 7 is larger than the critical
value of 2, you must retain the null hypothesis and conclude that there is no evidence
from the sample that the distribution of players trained early and intensively is
significantly different from the distribution of those without such training.

Although you can easily find a U value using the preceding method and quickly
go to Table H and reject or retain the null hypothesis, it would help your understanding
of this test to think about small values of U. Under what conditions would you get 
a small U value? What kinds of samples would give you a U value of zero?

By examining the formula for U, you can see that U � 0 when the members of
one sample all rank lower than every member of the other sample. Under such
conditions, rejecting the null hypothesis seems reasonable. By playing with formulas
in this manner, you can move from the rote memory level to the understanding level.

Assigning Ranks and Tied Scores

Sometimes you may choose a nonparametric test for data that are not already in
ranks.6 In such cases, you have to rank the scores. Two questions often arise. Is the
largest or the smallest score ranked 1, and what should I do about the ranks for
scores that are tied?

You will find the answer to the first question to be very satisfactory. For the
Mann–Whitney test, it doesn’t make any difference whether you call the largest or the
smallest score 1. (This is not true for the test described next, the Wilcoxon T test.)

Ties are handled by giving all tied scores the same rank. This rank is the mean
of the ranks the tied scores would have if no ties had occurred. For example, if a
distribution of scores is 12, 13, 13, 15, and 18, the corresponding ranks are 1, 2.5,
2.5, 4, 5. The two scores of 13 would have been 2 and 3 if they had not been tied,
and 2.5 is the mean of 2 and 3. As a slightly more complex example, the scores 
23, 25, 26, 26, 26, 29 have ranks of 1, 2, 4, 4, 4, 6. Ranks of 3, 4, and 5 average
out to be 4.

Ties do not affect the value of U if they are in the same group. If several ties
involve both groups, a correction factor may be advisable.7

6 Severe skewness or populations with very unequal variances are often reasons for such a choice.
7 See Kirk (2008, p. 504) for the correction factor.

error detection
Assigning ranks is tedious, and it is easy to make errors. Pay careful attention to the
examples, and practice by assigning ranks yourself to all the problems.
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Mann–Whitney U Test for Larger Samples

If one sample (or both samples) has 21 scores or more, the normal curve
is used to assess U. A z test value is obtained by the formula

where U � the smaller of the two U values
c � 0.5, a correction factor explained below

The correction factor, c, is a correction for continuity. It is used because the
normal curve is a continuous function but the values of z that are possible in this
formula are discrete.

Once again, an NHST formula has a familiar form: the difference between a
statistic based on data (U � c) and the expected value of a parameter (mU) divided by a
measure of variability, sU. After you have obtained z, critical values can be obtained
from Table C, the normal curve table. For a two-tailed test, reject H0 if �z� � 1.96 
(a � .05). For a one-tailed test, reject H0 if z � 1.65 (a � .05). The corresponding
values for a � .01 are z � 2.58 and z � 2.33.

Here is a problem for which the normal curve is necessary. An undergraduate
psychology major was devoting a year to the study of memory. The principal independent
variable was gender. Among her several experiments was one in which she asked the
students in a general psychology class to write down everything they remembered that was
unique to the previous day’s class, during which a guest had lectured. Students were
encouraged to write down every detail they remembered. This class was routinely
videotaped so it was easy to check each recollection for accuracy and uniqueness. Because
the samples indicated that the population data were severely skewed, the psychology major
chose a nonparametric test. (If you plot the scores in Table 15.3, you can see the skew.)

The scores, their ranks, and the statistical analysis are presented in Table 15.3.
The z score of �2.61 led to rejection of the null hypothesis, so the psychology major
returned to the original data and their means to interpret the results. Because the mean
rank of the women, 15 (258 � 17), is greater than that of the men, 25 (603 � 24), and
because higher ranks (those closer to 1) mean more recollections, she concluded that
women recalled significantly more items than men did.

Her conclusion singles out central tendency for emphasis. On the average, women
did better than men. The Mann–Whitney test, however, compares distributions. What our
undergraduate has done is what most researchers who use the Mann–Whitney do: Assume
that the two populations have the same form but differ in central tendency. Thus, when a
significant U value is found, it is common to attribute it to a difference in central tendency.

Table 15.4 shows SPSS output for a Mann–Whitney U test of the gender–memory
experiment. The upper panel gives N and mean rank for the two groups; the lower
panel gives the z score for the difference in ranks and the probability of such a z score,

 sU � B
1N1 2 1N2 2 1N1 � N2 � 1 2

12

 mU �
1N1 2 1N2 2

2
 

z �
1U � c 2 � mU

sU

330 n Chapter 15

z test
Statistical test that uses the
normal curve as the sampling
distribution.
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if the null hypothesis is true. I don’t know why the SPSS z score (�2.62) is different
from the formula-based z score (�2.61).

TABLE 15.3 Numbers of items recalled by men and women, 
ranks, and a Mann–Whitney U test

Men (N � 24) Women (N � 17)

Items Items
recalled Rank recalled Rank

70 3 85 1
51 6 72 2
40 9 65 4
29 13 52 5
24 15 50 7
21 16.5 43 8
20 18.5 37 10
20 18.5 31 11
17 21 30 12
16 22 27 14
15 23 21 16.5
14 24.5 19 20
13 26.5 14 24.5
13 26.5 12 28.5
11 30.5 12 28.5
11 30.5 10 33
10 33 10 33

9 35.5 �R2 � 258
9 35.5
8 37.5
8 37.5
7 39
6 40
3 41

�R1 � 603

z �
1U � c 2 � mU

sU
�

105 � 0.5 � 204

37.79
� �2.61

sU � B
1N1 2 1N2 2 1N1 � N2 � 1 2

12
� B

124 2 117 2 142 2

12
� 37.79

mU �
1N1 2 1N2 2

2
�
124 2 117 2

2
� 204

U � 1N1 2 1N2 2 �
N1 1N1 � 1 2

2
� �R1 � 124 2 117 2 �

124 2 125 2

2
� 603 � 105

error detection
Here are two checks you can make on your assignment of ranks. First, the last rank
is the sum of the two N’s. In Table 15.3, N1 � N2 � 41, which is the lowest rank.

Second, when �R1 and �R2 are added, the sum is equal to N(N � 1)/2, where N
is the total number of scores. In Table 15.3, 603 � 258 � 861 � (41)(42)/2.
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From the information in the error detection box, you can see how I found the
expected sum of 105 in the section on the rationale of nonparametric tests. That
example had 20 scores, so the overall sum of the ranks is

Half of this total should be found in each group, so the expected sum of ranks of each
group, both of which come from the same population, is 105.

120 2 121 2

2
� 210

TABLE 15.4 Results of an SPSS Mann–Whitney U test 
of the gender–memory experiment data

Ranks

Gender N Mean Rank Sum of Ranks

ItemsRecalled Men 24 16.88 405.00
Women 17 26.82 456.00
Total 41

Test Statisticsa

ItemsRecalled

Mann–Whitney U 105.000
Wilcoxon W 405.000
Z �2.621
Asymp. Sig. (2-tailed) .009

aGrouping Variable: Gender

P R O B L E M S

15.5. Many studies show that noise affects cognitive functioning. The data that
follow mirror the results of Hygge, Evans, and Bullinger (2002). One
elementary school was near a noisy airport; the other was in a quiet area of
the city. Fifth-grade students were given a difficult reading test at both
schools under no-noise conditions. The errors of 17 students follow. Analyze
the errors with a Mann–Whitney U test and write a conclusion about the
effects of noise on reading.

Near airport 32 25 22 20 18 15 15 13

Quiet area 23 19 16 14 12 11 10 8 7

*15.6. A friend of yours is trying to convince a mutual friend that the ride is quieter
in an automobile built by [Toyota or Honda (you choose)] than one built by
[Honda or Toyota (no choice this time; you had just 1 degree of freedom—once
the first choice was made, the second was determined)]. This friend has
arranged to borrow six fairly new cars—three made by each company—and to
drive your blindfolded mutual friend around in the six cars (labeled A–F) until
a stable ranking for quietness is achieved. So convinced is your friend that he
insists on adopting a� .01, “so that only the recalcitrant will not be
convinced.”
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As the statistician in the group, you decide that a Mann–Whitney U test
is appropriate. However, being the type who thinks through the statistics
before gathering experimental data, you look at the appropriate subtable in
Table H and find that the experiment, as designed, is doomed to retain the null
hypothesis. Write an explanation of why the experiment must be redesigned.

15.7. Suppose your friend in problem 15.6 arranged for three more cars, labeled
the 9 cars A–I, changed a to .05, and conducted the “quiet” test. The results
are shown in the accompanying table. Perform a Mann–Whitney U test and
write a conclusion.

Company Y Company Z
Car ranks Car ranks

B 1 H 3
I 2 A 5
F 4 G 7
C 6 E 8

D 9

15.8. Grackles, commonly referred to as blackbirds, are hosts for a parasitic worm
that lives in the tissue around the brain. To see if the incidence of this parasite
was changing, 24 blackbirds were captured and the number of brain parasites
in each bird was recorded. These data were compared with the infestation of
16 birds captured from the same place 10 years earlier. Analyze the data with
a Mann–Whitney test and write a conclusion. Be careful and systematic in
assigning ranks. Errors here are quite frustrating.

Present day

20 16 12 11 51 8 23 68 23 44 0 78

0 28 53 20 44 20 36 32 64 16 101 0

Ten years earlier

16 19 43 90 16 72 29 62

103 39 70 29 110 32 87 57

The Wilcoxon Matched-Pairs Signed-Ranks T Test

The Wilcoxon matched-pairs signed-ranks T test (1945) is appropriate for testing
the difference between two paired samples. In Chapter 10 you learned of three kinds
of paired-samples designs: natural pairs, matched pairs, and repeated measures (before
and after). In each of these designs, a score in one group is logically paired with a
score in the other group. If you are not sure of the difference between a
paired-samples and an independent-samples design, you should review
the explanations and problems in Chapter 10. Knowing the difference
is necessary if you are to decide correctly between a Mann–Whitney U
test and a Wilcoxon matched-pairs signed-ranks T test.

Wilcoxon matched-pairs
signed-ranks T test
Nonparametric test that compares
two paired samples.
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8 Be alert when you see a capital T in your outside readings; it has uses other than to symbolize the
Wilcoxon matched-pairs signed-ranks test. Also note that this T is capitalized, whereas the t in the t test and 
t distribution is not capitalized except by some computer programs. Some writers avoid these problems by
designating the Wilcoxon matched-pairs signed-ranks test with a W or a Ws.
9 The Wilcoxon test is like the Mann–Whitney test in that you have a choice of two values for your test
statistic. For both tests, choose the smaller value.

The result of a Wilcoxon matched-pairs signed-ranks test is a T value,8 which is
interpreted using critical values from Table J in Appendix C. Finding T involves some
steps that are different from finding U.

Table 15.5 provides you with a few numbers from a paired-samples design. Using
Table 15.5, work through the following steps, which lead to a T value for a Wilcoxon
matched-pairs signed-ranks T:

1. Find a difference, D, for every pair of scores. The order of subtraction doesn’t
matter, but it must be the same for all pairs.

2. Using the absolute value for each difference, rank the differences. The rank of
1 is given to the smallest difference, 2 goes to the next smallest, and so on.

3. Attach to each rank the sign of its difference. Thus, if a difference produces 
a negative value, the rank for that pair is negative.

4. Sum the positive ranks and sum the negative ranks.
5. T is the smaller of the absolute values of the two sums.9

Here are two cautions about the Wilcoxon matched-pairs signed-ranks T test: (1) It is the
differences that are ranked, and not the scores themselves, and (2) a rank of 1 always
goes to the smallest difference.

The rationale of the Wilcoxon matched-pairs signed-ranks T test is that if there is no
difference between the two populations, the absolute value of the negative sum should be
equal to the positive sum, with all deviations being due to sampling fluctuations.

Table J shows the critical values for both one- and two-tailed tests for several a levels.
To enter the table, use N, the number of pairs of subjects. Reject H0 when the obtained T is
equal to or less than the critical value in the table. Like the Mann–Whitney test, the
Wilcoxon T must be equal to or less than the tabled critical value if you are to reject H0.

To illustrate the calculation and interpretation of a Wilcoxon matched-pairs
signed-ranks T test, I’ll describe an experiment based on some early work of Muzafer
Sherif (1935). Sherif was interested in whether a person’s basic perception could be
influenced by others. The basic perception he used was a judgment of the size of the

TABLE 15.5 Illustration of how to calculate T

Signed
Participant Variable 1 Variable 2 D Rank rank

Caitlin 16 21 �5 2 �2
Kevin 14 17 �3 1 �1
Selene 26 18 8 3 3
Ian 23 9 14 4 4

�(positive ranks) � 7
�(negative ranks) � �3

T � 3
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autokinetic effect. The autokinetic effect is obtained when a person views a stationary
point of light in an otherwise dark room. After a few moments, the light appears to
move erratically. Sherif asked his participants to judge how many inches the light
moved. Under such conditions, judgments differ widely among individuals but they
are fairly consistent for each individual.

In the first phase of Sherif’s experiment, participants worked alone. They estimated
the distance the light moved and, after a few judgments, their estimates stabilized. These
are the before measurements. Next, additional observers were brought into the dark
room and everyone announced aloud their perceived movement. These additional
observers were confederates of Sherif, and they always judged the movement to be
somewhat less than that of the participant. Finally, the confederates left and the
participant made another series of judgments (the after measurements). The perceived
movements (in inches) of the light are shown in Table 15.6 for 12 participants.

Table 15.6 also shows the calculation of a Wilcoxon matched-pairs signed-ranks
T test. The before measurements minus the after measurements produce the D column.
These D scores are then ranked by absolute size and the sign of the difference attached in
the Signed ranks column. Notice that when D � 0, that pair of scores is dropped from
further analysis and N is reduced by 1. The negative ranks have the smaller sum, so T � 4.

The obtained T is less than the T value of 5 shown in Table J under a � .01 (two-
tailed test) for N � 11. Thus, the null hypothesis is rejected. The after scores represent
a distribution that is different from the before scores. Now let’s interpret the result
using the terms of the experiment.

TABLE 15.6 Wilcoxon matched-pairs signed-ranks analysis 
of the effect of peers on perception

Mean movement (in.)

Participant Before After D Signed ranks

1 3.7 2.1 1.6 4.5
2 12.0 7.3 4.7 10
3 6.9 5.0 1.9 6
4 2.0 2.6 �0.6 �3
5 17.6 16.0 1.6 4.5
6 9.4 6.3 3.1 8
7 1.1 1.1 0.0 Eliminated
8 15.5 11.4 4.1 9
9 9.7 9.3 0.4 2

10 20.3 11.2 9.1 11
11 7.1 5.0 2.1 7
12 2.2 2.3 �0.1 �1

�(positive) � 62
�(negative) � �4

T � 4
N � 11

Check: 62 � 4 � 66  and  
11 112 2

2
� 66
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By examining the D column, you can see that all scores except two are positive.
This means that after hearing others give judgments smaller than their own, the
participants saw the amount of movement as less. Thus, you may conclude (as did
Sherif) that even basic perceptions tend to conform to opinions expressed by others.

Table 15.7 shows the results of an SPSS Wilcoxon test of the autokinetic
movement data in Table 15.7. Descriptive statistics are in the upper panel; a z-score
test and its probability are in the lower panel. The probability figure of .010 is
consistent with the statistical significance found for T � 4.

Tied Scores and D � 0

Ties among the D scores are handled in the usual way—that is, each tied score is
assigned the mean of the ranks that would have been assigned if there had been
no ties. Ties do not affect the probability of the rank sum unless they are numerous
(10 percent or more of the ranks are tied). When there are numerous ties, the
probabilities in Table J associated with a given critical T value may be too large.
In this case, the test is described as too conservative because it may fail to
ascribe significance to differences that are in fact significant (Wilcoxon and Wilcox,
1964).

As you already know from Table 15.6, when one of the D scores is zero, it is not
assigned a rank and N is reduced by 1. When two of the D scores are tied at zero,
each is given the average rank of 1.5. Each is kept in the computation; one is
assigned a plus sign and the other a minus sign. If three D scores are zero, one is
dropped, N is reduced by 1, and the remaining two are given signed ranks of �1.5
and �1.5. You can generalize from these three cases to situations with four, five, or
more zeros.

TABLE 15.7 SPSS output of a Wilcoxon matched-pairs signed-ranks 
test of data in Table 15.6

Ranks

N Mean Rank Sum of Ranks

Before–After Negative Ranks 2a 2.00 4.00
Positive Ranks 9b 6.89 62.00
Ties 1c

Total 12

aBefore < After
bBefore > After
cBefore = After

Test Statisticsb

Before–After

Z �2.580a

Asymp. Sig. (2-tailed) .010

aBased on negative ranks
bWilcoxon Signed Ranks Test
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Wilcoxon Matched-Pairs Signed-Ranks 
T Test for Large Samples

When the number of pairs exceeds 50, the T statistic may be evaluated using the z test
and the normal curve. The test statistic is

where T � smaller sum of the signed ranks
c � 0.5

N � number of pairs

P R O B L E M S

15.9. A private consultant was asked to evaluate a job-retraining program. As
part of the evaluation, she determined the income of 112 individuals
before and after retraining. She found a T value of 4077. Complete the
analysis and draw a conclusion. Be especially careful in wording your
conclusion.

15.10. Six industrial workers were chosen for a study of the effects of rest periods
on production. Output was measured for one week before the new rest
periods were instituted and again during the first week of the new schedule.
Perform an appropriate nonparametric statistical test on the results shown in
the following table.

Output

Without With
Worker rests rests

1 2240 2421
2 2069 2260
3 2132 2333
4 2095 2314
5 2162 2297
6 2203 2389

15.11. Undergraduates from Canada and the United States responded to a
questionnaire on attitudes toward government regulation of business. High
scores indicate a favorable attitude. Analyze the data in the accompanying
table with the appropriate nonparametric test and write a conclusion.

 sT � B
N 1N � 1 2 12N � 1 2

24

mT �
N 1N � 1 2

4
 

z �
1T � c 2 � mT

sT
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Canada United States Canada United States

12 16 27 26
39 19 33 15
34 6 34 14
29 14 18 25

7 20 31 21
10 13 17 30
17 28 8 3
5 9

15.12. A professor gave his general psychology class a 50-item true/false test on
the first day of class to measure the students’ beliefs about punishment,
reward, mental breakdowns, and so forth—topics that would be covered
during the course. Many items were phrased to represent a common
misconception (“mental breakdowns are usually caused by defective
genes”). At the end of the course, the same test was given again. High
scores mean lots of misconceptions. Analyze the data and write a conclusion
about the effect of the course on misconceptions.

Student Before After

1 18 4
2 14 14
3 20 10
4 6 9
5 15 10
6 17 5
7 29 16
8 5 4
9 8 8

10 10 4
11 26 15
12 17 9
13 14 10
14 12 12

15.13. A health specialist conducted an 8-week workshop on weight control during
which all 17 of the people who completed the course lost weight. To assess
the long-term effects of the workshop, she weighed the participants again 
10 months later. The weight lost or gained is listed with a positive sign for
those who continued to lose weight and a negative sign for those who
gained some back. What can you conclude about the long-term effects of
the workshop?

�5 24 0 13 9 6 �7 �3 2

�10 �16 7 12 �19 �4 8 15
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The Wilcoxon–Wilcox Multiple-Comparisons Test

So far in this chapter on the analysis of ranked data, you have studied techniques for
independent-samples designs with two groups (Mann–Whitney U) and related-samples
designs with two groups (Wilcoxon matched-pairs signed-ranks T). The next technique
is for data from three or more independent groups. This method allows you to compare
all possible pairs of groups, regardless of the number of groups in the experiment. This
is the nonparametric equivalent of a one-way ANOVA followed by Tukey HSD tests.10

The Wilcoxon–Wilcox multiple-comparisons test (1964) allows
you to compare all possible pairs of treatments, which is like having 
a Mann–Whitney test on each pair of treatments. However, the
Wilcoxon–Wilcox multiple-comparisons test keeps the a level at .05 or
.01, regardless of how many pairs you have. Like the Mann–Whitney 
U test, this test requires independent samples.11 (Remember that
Wilcoxon devised a test identical to the Mann–Whitney U test.)

To create a Wilcoxon–Wilcox multiple-comparisons test, begin by ordering the
scores from the K treatments into one overall ranking. Then, within each sample, add
the ranks, which gives a �R for each sample. Finally, for each pair of treatments,
subtract one �R from the other, which gives a difference. Finally, compare the
absolute size of the difference to a critical value in Table K.

The rationale of the Wilcoxon–Wilcox multiple-comparisons test is that when the
null hypothesis is true, the various �R values should be about the same. A large
difference indicates that the two samples came from different populations. Of course,
the larger K is, the greater the likelihood of large differences by chance alone, and this
is taken into account in the sampling distribution that Table K is based on.

The Wilcoxon–Wilcox test can be used only when the N’s for all groups are equal.
A common solution to the problem of unequal N’s is to reduce the too-large group(s)
by dropping one or more randomly chosen scores. A better solution is to conduct the
experiment so that you have equal N’s.

The data in Table 15.8 represent the results of a solar collector experiment by two
designer-entrepreneurs. These two had designed and built a 4-foot by 8-foot solar
collector they planned to market, and they wanted to know the optimal rate at which to
pump water through the collector. The rule of thumb for pumping is 1/2 gallon per hour
per square foot of collector, so they chose values of 14, 15, 16, and 17 gallons per hour for
their experiment. Starting with the reservoir full of water at 0ºC, the water was pumped
for 1 hour through the collector and back to the reservoir. At the end of the hour, the
temperature of the water in the reservoir was measured. Then the water was replaced with
0ºC water, the flow rate was changed, and the process repeated. The temperature
measurements (to the nearest tenth of a degree) are shown in Table 15.8.

In Table 15.8 ranks are given to each temperature, ignoring the group the
temperature is in. The ranks of all those in a group are summed, producing �R values
that range from 20 to 84 for flow rates of 14 to 17 gallons per hour. Note that you can

10 The Kruskal–Wallis one-way ANOVA on ranks is a direct analogue of a one-way ANOVA. (See Howell,
2008, pp. 507–509, or Sprinthall, 2007, pp. 479–482.) Unfortunately, tests that compare treatments (as the
Tukey HSD does) are not readily available.
11 A nonparametric test for more than two related samples, the Friedman rank test for correlated samples,
is explained in Howell (2008, pp. 509–511).

Wilcoxon–Wilcox 
multiple-comparisons test
Nonparametric test of all
possible pairs from an
independent-samples design.
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confirm your arithmetic for the Wilcoxon–Wilcox test using the same checks you used
for the Mann–Whitney U test. That is, the sum of the four group sums, 210, is equal to
N(N � 1)/2, where N is the total number of observation (20). Also, the largest rank,
20, is equal to the total number of observations.

The next step is to make pairwise comparisons. With four groups, six pairwise
comparisons are possible. The rate of 14 gallons per hour can be paired with 15, 16,
and 17; the rate of 15 can be paired with 16 and 17; and the rate of 16 can be paired
with 17. For each pair, a difference in the sum of ranks is found and the absolute value
of that difference is compared with the critical value in Table K.

The upper half of Table K has critical values for a � .05; the lower half has
values for a � .01. For the experiment in Table 15.8, where K � 4 and N � 5, the
critical values are 48.1 (a � .05) and 58.2 (a � .01). To reject H0, a difference in rank
sums must be equal to or greater than the critical values.

It is convenient (and conventional) to arrange the differences in rank sums into a
matrix summary table. Table 15.9 is an example using the flow-rate data. The table

TABLE 15.9 Summary table for differences in
the sums of ranks in the flow-rate experiment

Flow rates

14 15 16

15 15

Flow rates 16 51* 36

17 64** 49* 13

* p 6 .05; for a� .05, the critical value is 48.1.
** p 6 .01; for a� .01, the critical value is 58.2.

TABLE 15.8 Temperature increases (°C) for four flow rates in a solar collector

Experimental conditions

14 gal/hr 15 gal/hr 16 gal/hr 17 gal/hr

Temp Rank Temp Rank Temp Rank Temp Rank

28.1 7 28.9 3 25.1 14 24.7 15
28.8 4 27.7 8.5 25.3 13 23.5 18
29.4 1 27.7 8.5 23.7 17 22.6 19
29.0 2 28.6 5 25.9 11 21.7 20
28.3 6 26.0 10 24.2 16 25.8 12

� (ranks) 20 35 71 84

Check: 20 � 35 � 71 � 84 � 210

 
N 1N � 1 2

2
�

20 121 2

2
� 210
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displays, for each pair of treatments, the difference in the sum of the ranks. Asterisks
are used to indicate differences that exceed various a values. Thus, in Table 15.9, with
a � .05, rates of 14 and 16 are significantly different from each other, as are rates of
15 and 17. In addition, a rate of 14 is significantly different from a rate of 17 at the .01
level. What does all this mean for our two designer-entrepreneurs? Let’s listen to their
explanation to their old statistics professor.

“How did the flow-rate experiment come out, fellows?” inquired the kindly old gentleman.
“OK, but we are going to have to do a follow-up experiment using different flow rates.

We know that 16 and 17 gallons per hour are not as good as 14, but we don’t know if 14 is
optimal for our design. Fourteen was the best of the rates we tested, though. On our next
experiment, we are going to test rates of 12, 13, 14, and 15.”

The professor stroked his beard and nodded thoughtfully. “Typical experiment. You
know more after it than you did before, . . . but not yet enough.”

P R O B L E M S

15.14. Farmer Marc, a Shakespearean devotee, delivered a plea at the County
Faire, asking three different groups to lend him unshelled corn. (Perhaps
you can figure out how he phrased his plea.) The numbers of bushels
offered by the farmers are listed. What can you conclude about the three
groups?

Friends Romans Countrymen

25 14 8
31 18 15
17 10 11
22 16 7
27 9 13
29 10 12

15.15. Many studies have investigated methods of reducing anxiety and depression.
I’ve embedded some of their conclusions in this problem. College students
who reported anxiety or depression were randomly assigned to one of four
groups: no treatment (NO), relaxation (RE), solitary exercise (SE), and
group exercise (GE). The numbers are the students’ improvement scores
after 10 weeks. Analyze the data and write a conclusion.

NO RE SE GE

10 14 12 22
8 10 27 32
3 21 23 20
0 10 20 28
7 15 17 22
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15.16. The effect of three types of leadership on group productivity and
satisfaction was investigated.12 Groups of five children were randomly
constituted and assigned an authoritarian, a democratic, or a laissez-faire
leader. Nine groups were formed—three with each type of leader. The
groups worked on various projects for a week. Measures of each child’s
personal satisfaction were taken and pooled to give a score for each child.
The data are presented in the accompanying table. Test all possible
comparisons with a Wilcoxon–Wilcox test.

Authoritarian Democratic Laissez-faire

120 108 100
102 156 69
141 92 103
90 132 76

130 161 99
153 90 126
77 105 79
97 125 114

135 146 141
121 131 82
100 107 84
147 118 120
137 110 101
128 132 62

86 100 50

15.17. Given the summary data in the following table, test all possible
comparisons. Each group had a sample of eight subjects.

Sum of ranks for six groups

Group 1 2 3 4 5 6
�R 196 281 227 214 93 165

15.18. List the tests presented so far in this chapter and the design for which each
is appropriate. Be sure you can do this from memory.

Correlation of Ranked Data

Here is a short review of what you learned about correlation in Chapter 6.

1. Correlation requires a bivariate distribution (a logical pairing of scores).
2. Correlation is a method of describing the degree of relationship between two

variables—that is, the degree to which high scores on one variable are
associated with low or high scores on the other variable.

12 For a summary of a similar classic investigation, see Lewin (1958).
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3. Correlation coefficients range in value from �1.00 (perfect positive) to
�1.00 (perfect negative). A value of .00 indicates that there is no
relationship between the two variables.

4. Statements about cause and effect may not be made on the basis of 
a correlation coefficient alone.

In 1901, Charles Spearman (1863–1945) was “inspired by a book by Galton” and
began experimenting at a little village school in England. He thought there was a
relationship between intellect (school grades) and sensory ability (detecting musical
discord). Spearman worked to find a mathematical way to express the degree of this
relationship. He came up with a coefficient that did this, although he later found that
others were ahead of him in developing such a coefficient (Spearman, 1930).

Spearman’s name is attached to the coefficient that is used to show the degree
of correlation between two sets of ranked data. He used the Greek letter r (rho) as the
symbol for his coefficient. Later statisticians began to reserve Greek letters to indicate
parameters, so the modern symbol for Spearman’s statistic has become
rs , the s honoring Spearman. Spearman rs is a special case of the
Pearson product-moment correlation coefficient and is most often used
when the number of pairs of scores is small (less than 20).

Actually, rs is a descriptive statistic that could have been introduced
in the first part of this book. I waited until now to introduce it because rs is a rank-order
statistic, and this is a chapter about ranks. The next section shows you how to calculate
this descriptive statistic; determining the statistical significance of rs follows.

Calculation of rs

The formula for rs is

where D � difference in ranks of a pair of scores
N � number of pairs of scores

I started this chapter with speculation about male tennis players and a made-up
data set. I will end it with speculation about female tennis players, but now I have
actual data.

What is the progression in women’s professional tennis? Do they work their way
up through the ranks, advancing their ranking year by year? Or do the younger players
flash to the top and then gradually lose their ranking year by year? An rs might lend
support to one of these hypotheses.

If a rank of 1 is assigned to the oldest player, a positive rs means that the older the
player, the higher her rank (supporting the first hypothesis). A negative rs means that
the older the player, the lower her rank (supporting the second hypothesis). A zero rs

means no relationship between age and rank.
Table 15.10 shows the 12 top-ranked women tennis players just before the U.S. Open

in 2009 and their age as a rank score among the 12 (www.sonyericssonwtatour.com). The
Spearman rs is .57. Thus, the descriptive statistic lends support for the “work your way up”

rs � 1 �
6©D2

N 1N 2 � 1 2

Spearman rs
Correlation coefficient for
degree of relationship between
two variables measured by ranks.
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hypothesis. Perhaps this conclusion could be made stronger by ruling out chance as an
explanation. A NHST test is called for.

error detection
For Spearman rs , first assign ranks to the scores and then find the differences. The
Wilcoxon matched-pairs signed-ranks T test is different. For it, first find the
differences and then assign ranks to the differences.

Testing the Significance of rs

At this point in your studies, it is probably easy for you to imagine a sampling
distribution of rs. It would consist of many rs values all calculated from samples taken
from a population in which the correlation coefficient is zero. With such a sampling
distribution, you can determine the probability of any rs. If the probability of your
sample rs is small, reject the null hypothesis and conclude that the relationship in the
population that rs came from is not zero. You probably recall that you conducted this
same test for a Pearson product-moment r in Chapter 9.

Table L in Appendix C gives the critical values for rs for the .05 and .01 levels of
significance when the number of pairs is 16 or fewer. If the obtained rs is equal to or
greater than the value in Table L, reject the null hypothesis. The null hypothesis is that
the population correlation coefficient is zero.

For the tennis data in Table 15.10, rs � .57. Table L shows that a correlation of
.587 (either positive or negative) is required for statistical significance at the .05 level
for 12 pairs. Thus, a correlation of .57 is not statistically significant.

TABLE 15.10 Top 12 women tennis players, their rank in age, 
and the calculation of Spearman rs

Rank in Rank in
Player tennis age D D2

Safina (Russia) 1 8 �7 49
Williams, S. (USA) 2 2 0 0
Williams, V. (USA) 3 1 2 4
Dementieva (Russia) 4 3 1 1
Jankovic (Serbia) 5 6 �1 1
Kuznetsova (Russia) 6 7 �1 1
Zvonareva (Russia) 7 5 2 4
Wozniacki (Denmark) 8 12 �3 9
Azarenka (Belarus) 9 11 �3 9
Pennetta (Italy) 10 4 6 36
Ivanovic (Serbia) 11 9 2 4
Radwanska (Poland) 12 10 2 4

� � 122

Source: www.sonyericssonwtatour.com.

rs � 1 �
6�D2

N 1N 2 � 1 2
� 1 �

6 1122 2

12 1143 2
� 1 �

732

1716
� 1 � 0.43 � .57
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“But… but…,” you might be thinking, “A correlation  coefficient of is
almost .587. Surely, closeness counts for something.” I see your point and can tell you that
such a result does affect researchers. They are frustrated when their outcome is so close to
statistical significance, but they are resigned to the rules of the game—NS is NS. Usually,
in such cases, a researcher gathers more data so that that a larger sample will confirm (or
erode) the notion that there is a relationship. Of course, some data are easier to gather than
others, but some, such as the tennis data, are very easy (www.sonyericssonwtatour.com).

Notice in Table L that rather large correlations are required for significance. As
with r, not much confidence can be placed in low or moderate correlation coefficients
that are based on only a few pairs of scores.

For samples larger than 16, test the significance of rs by using Table A. Note,
however, that Table A requires df and not the number of pairs. The degrees of freedom
for rs is N � 2 (the number of pairs minus 2), which is the same formula used for r.

When D � 0 and Tied Ranks

In calculating rs, you may get a D value of zero (as I did for Serena Williams in
Table 15.10). Should a zero be dropped from further analysis as it is in a Wilcoxon
matched-pairs signed-ranks T test? You can answer this question by taking a moment
to decide what D � 0 means in an rs correlation problem. (Decide now.)

A zero means there is a perfect correspondence between the two ranks. If all
differences were zero, the rs would be 1.00. Thus, differences of zero should not be
dropped when calculating an rs.

The formula for rs that you are working with is not designed to handle ranks that are
tied. With rs, ties are troublesome. A tedious procedure has been devised to overcome ties,
but your best solution is to arrange your data collection so there are no ties. Sometimes,
however, you are stuck with tied ranks, perhaps as a result of working with someone
else’s data. Kirk (2008) recommends assigning average ranks to ties, as you did for the
three other procedures in this chapter, and then computing a Pearson r on the data.

My Final Word

In the first chapter I said that the essence of applied statistics is to measure a
phenomenon of interest, apply statistical techniques to the numbers that result, and write
the story of the new understanding of the phenomenon. The question, What should we
measure? was not raised in this book, but it is important nonetheless. Here is an anecdote
by E. F. Schumacher (1979), an English economist, that highlights the issue of what to
measure.

I will tell you a moment in my life when I almost missed learning something. It was during the
war and I was a farm laborer and my task was before breakfast to go to yonder hill and to a field
there and count the cattle. I went and I counted the cattle—there were always thirty-two—and
then I went back to the bailiff, touched my cap, and said “Thirty-two, sir,” and went and had my
breakfast. One day when I arrived at the field an old farmer was standing at the gate, and he
said, “Young man, what do you do here every morning?” I said, “Nothing much. I just count the
cattle.” He shook his head and said, “If you count them every day they won’t flourish.” I went
back, I reported thirty-two, and on the way back I thought, Well, after all, I am a professional
statistician, this is only a country yokel, how stupid can he get. One day I went back, I counted

rs � .57
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and counted again, there were only thirty-one. Well, I didn’t want to spend all day there so
I went back and reported thirty-one. The bailiff was very angry. He said, “Have your breakfast
and then we’ll go up there together.” And we went together and we searched the place and
indeed, under a bush, was a dead beast. I thought to myself, Why have I been counting them all
the time? I haven’t prevented this beast dying. Perhaps that’s what the farmer meant. They
won’t flourish if you don’t look and watch the quality of each individual beast. Look him in the
eye. Study the sheen on his coat. Then I might have gone back and said, “Well, I don’t know
how many I saw but one looks mimsey.”

P R O B L E M S

15.19. For each situation described, tell whether you would use a Mann–Whitney
test, a Wilcoxon matched-pairs signed-ranks test, a Wilcoxon–Wilcox
multiple-comparisons test, or an rs.
a. A limnologist (a scientist who studies freshwater streams and lakes)

measured algae growth in a lake before and after the construction of
a copper smelting plant to see what effect the plant had.

b. An educational psychologist compared the sociability scores of firstborn
children with scores of their next-born brother or sister to see if the two
groups differed in sociability.

c. A child psychologist wanted to determine the degree of relationship
between eye–hand coordination scores obtained at age 6 and scores
obtained from the same individuals at age 12.

d. A nutritionist randomly and evenly divided boxes of cornflakes cereal into
three groups. One group was stored at 40°F, one group at 80°F, and one
group alternated from day to day between the two temperatures. After
30 days, the vitamin context of each box was assayed.

e. The effect of STP gas treatment on gasoline mileage was assessed by
driving six cars over a 10-mile course, adding STP, and then again
driving over the same 10-mile course.

15.20. Fill in the cells of the table.

Reject H0 when statistic
Symbol of Appropriate for is (greater, less) 

statistic (if any) what design? than critical value?

Mann–Whitney
test

Wilcoxon
matched-pairs

signed-ranks test

Wilcoxon–Wilcox
multiple-

comparisons test
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15.21. Two members of the department of philosophy (Locke and Kant) were
responsible for hiring a new professor. Each privately ranked from 1 to 10
the ten candidates who met the objective requirements (degree, specialty,
and so forth). The rankings are shown in the table. Begin by writing an
interpretation of a low correlation and a high correlation. Then calculate an
rs and choose the correct interpretation.

Candidates Locke Kant

A 7 8
B 10 10
C 3 5
D 9 9
E 1 1
F 8 7
G 5 3
H 2 4
I 6 6
J 4 2

15.22. Self-esteem is a widely discussed concept. (See Baumeister et al., 2003, for
a review.) The two problems that follow are based on Diener, Wolsic, and
Fujita (1995).
a. The researchers measured participants’ self-esteem and then had them

judge their own physical attractiveness. Calculate rs and test for
statistical significance.

Self-esteem scores 40 39 37 36 35 32 28 24 20 16 12 7

Self-judged
attractiveness 97 99 100 93 59 88 83 96 90 94 70 78

b. As part of the same study, the researchers had others judge photographs
of the participants for attractiveness. Calculate rs and write a conclusion
that is based on both data sets in the problem.

Self-esteem scores 28 39 24 40 37 16 32 36 20 7 35 12

Other-judged
attractiveness 28 43 26 37 29 49 54 25 40 34 60 31

15.23. With N � 16 and �D2 � 308, calculate rs and test its significance at the 
.05 level.

15.24. You are once again asked to give advice to a friend who comes to you for
criticism of an experimental design. This friend has four pairs of scores
obtained randomly from a population. Her intention is to calculate a
correlation coefficient rs and decide whether there is any significant
correlation in the population. Give advice.

15.25. One last time: Review the objectives at the beginning of the chapter.
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ADDITIONAL HELP FOR CHAPTER 15

Visit cengage.com/psychology/spatz. At the Student Companion Site, you’ll
find multiple-choice tutorial quizzes and flashcards with definitions. 

KEY TERMS

Assigning ranks (pp. 329, 334)
D � 0 (pp. 336, 345)
Distribution-free tests (p. 324)
Mann–Whitney U test (p. 327)
Nonparametric tests (p. 324)
Operational definition (p. 324)
Parametric tests (p. 325)
Power (p. 326)
Scales of measurement (p. 326)

Spearman rs (p. 343)
T value (p. 334)
Tied scores (pp. 329, 336, 345)
U value (p. 327)
Wilcoxon matched-pairs signed-ranks 

T test (p. 333)
Wilcoxon–Wilcox multiple-comparisons

test (p. 339)
z test (pp. 330, 337)

What Would You Recommend? Chapters 11–15

Here is the last set of What would you recommend? problems. Your task is to choose
an appropriate statistical technique from among the several you have learned in the
previous five chapters. No calculations are necessary. For each problem that follows,
(1) recommend a statistic that will either answer the question or make the comparison,
and (2) explain why you recommend that statistic.

a. Systematic desensitization and flooding are the names of two techniques that help
people overcome anxiety about specific behaviors. One anxiety-arousing behavior
is strapping on a parachute and jumping out of an airplane. To compare the two
techniques, researchers had military trainees experience one technique or the other.
Later, at the time of the first five actual jumps, each trainee’s “delay time” was
measured. (The assumption was that longer delay means more anxiety.) On the
basis of the severely skewed distribution of delay times, each trainee was given 
a rank. What statistical test should be used to compare the two techniques?

b. Stanley Milgram researched the question, When do people submit to demands for
compliance? In one experiment, participants were told to administer a shock to
another participant, who was in another room. (No one was actually shocked in this
experiment.) The experimenter gave directions to half the participants over a
telephone; the other half received directions in person. The dependent variable was
whether or not a participant complied with the directions.

c. Forensic psychologists study factors that influence people as they judge defendants in
criminal cases. They often supply participants in their studies with fictitious “pretrial
reports” and ask them to estimate the likelihood, on a scale of .00 to 1.00, that the
defendant will be convicted. In one study, the pretrial reports contained a photograph
showing a person who was either baby-faced or mature-faced. In addition, half the
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reports indicated that the defendant was simply negligent in the alleged incident and
half indicated that the defendant had been intentionally deceptive in the incident.

d. As part of a class project, two students administered a creativity test to undergraduate
seniors. They also obtained each person’s rank in class. In what way could the two
students determine the degree of relationship between the two variables?

e. Suppose a theory predicts that the proportion of people who participate in a rather
difficult exercise will drop by one-half each time the exercise is repeated. When the
data were gathered, 100 people participated on the first day. On each of the next
three occasions, fewer and fewer people participated. What statistical test could be
used to arrive at a judgment about the theory?

f. Participants in an experiment were told to “remember what you hear.” A series of
sentences followed. (An example was “The plumber slips $50 into his wife’s
purse.”) Later, when the participants were asked to recall the sentences, one group
was given disposition cues (such as “generous”), one was given semantic
(associative) cues (such as “pipes”), and one was given no cues at all. Recall
measures ranged between 0 and 100. The recall scores for the “no cues” condition
were much more variable than those for the other two conditions. The researcher’s
question was: Which of the three conditions produces the best recall? 

g. To answer a question about the effect of an empty stomach on eating, investigators
in the 1930s studied dogs that ate a normal-sized meal (measured in ounces).
Because of a surgical operation, however, no food reached the stomach. Thirty
minutes later, the dogs were allowed to eat again. The data showed that the dogs,
on the average, ate less the second time (even though their stomachs were just as
empty). At both time periods, the data were positively skewed.

h. College cafeteria personnel are often dismayed by the amount of food that is left
on plates. One way to reduce waste is to prepare the food using a tastier recipe.
Suppose a particular vegetable is served on three different occasions, and each time
a different recipe is used. As the plates are cleaned in the kitchen, the amount of
the vegetable left on the plate is recorded. How might each pair of recipes be
compared to determine if one recipe has resulted in significantly less waste?

i. Many programs seek to change behavior. One way to assess the effect of a program
is to survey the participants about their behavior, administer the program, and 
give the survey again. To demonstrate the lasting value of the program, however,
follow-up data some months later are required. If the data consist of each
participant’s three scores on the same 100-point survey (pretest, post-test, and
follow-up), what statistical test is needed to determine the effect of the program?
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O B J E C T I V E S  F O R  C H A P T E R  1 6

After studying the text and working the problems in this chapter, you should be
able to:

1. List the descriptive and inferential statistical techniques that you studied in
this book

2. Describe, using a table of characteristics or decision trees or both, the
descriptive and inferential statistics that you studied in this book

3. Read the description of a study and identify a statistical technique that is
appropriate for such data

4. Read the description of a study and recognize that you have not studied 
a statistical technique that is appropriate for such data

5. Given the statistical analysis of a study, write an interpretation of what the
study reveals

THIS CHAPTER IS designed to help you consolidate the many bits and pieces of
statistics that you have learned. It will help you, regardless of the number of chapters
your course covered (as long as you completed through Chapter 10, “Hypothesis
Testing, Effect Size, and Confidence Intervals: Two-Sample Designs”). 

The first section of this chapter is a review of the major concepts of each chapter.
The second section describes statistical techniques that you did not read about in this
book. These two sections should help prepare you to apply what you have learned to
the exercises in the last section of this chapter, which are designed to help you see the
big picture of what you’ve learned.

A Review

If you have been reading for integration, the kind of reading in which you are continually
asking the question, How does this stuff relate to what I learned before? you may have
clearly in your head a major thread that ties this book together from Chapter 2 onward.

350
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The name of that thread is distributions. It is the importance of distributions that justifies
the subtitle of this book, Tales of Distributions. I want to summarize explicitly some of
what you have learned about distributions. I hope this will help you understand not only
the material in this book but also other statistical techniques that you might encounter in
future courses or in future encounters with statistics.

In Chapter 2 you were confronted with a disorganized array of scores on one
variable. You learned to organize those scores into a frequency distribution and graph the
distribution. In Chapter 3 you learned about central tendency values and in Chapter 4, you
studied the variability of distributions—especially the standard deviation. Chapter 5
introduced the z score, effect size index, and boxplot, which are descriptive statistics that
are useful for a Descriptive Statistics Report.

In Chapter 6, where you were introduced to bivariate distributions, you learned to
express the relationship between variables with a Pearson correlation coefficient and,
using a linear regression equation, predict scores on one variable from scores on another.
In Chapter 7 you learned about the normal distribution and how to use means and
standard deviations to find probabilities associated with distributions. In Chapter 8 you
studied the important concept of the sampling distribution. You used two sampling
distributions, the normal distribution and the t distribution, to determine probabilities
about sample means and to establish confidence intervals about a sample mean.

Chapter 9 presented you with the concept of null hypothesis statistical testing
(NHST). You used the t distribution to test the hypothesis that a sample mean came
from a population with a hypothesized mean, and you calculated an effect size index.
In Chapter 10 you studied the design of a simple two-group experiment. You applied
the NHST procedure to both independent-samples designs and paired-samples
designs, using the t distribution as a source of probabilities. You calculated effect sizes
and for a second time, found confidence intervals. In Chapter 11 you learned about
still another sampling distribution (F distribution) that is used when there are two or
more independent samples in an experiment. Chapter 12 covered the analysis of two or
more repeated-measures samples. Chapter 13 discussed an even more complex
experiment, one with two independent variables for which probability figures could be
obtained with the F distribution. 

Chapter 14 taught you to answer questions of independence and goodness of fit by
using frequency counts and the chi square distribution. In Chapter 15 you analyzed
data using nonparametric tests—techniques based on distributions that do not satisfy
the assumptions that the dependent-variable scores be normally distributed and have
equal variances.

Look back at the preceding paragraphs. You have learned a lot, even if your course
did not cover every chapter. Allow me to offer my congratulations!

Future Steps

One short step you can take is to acknowledge that you are prepared to analyze data from
a variety of sources and to write a Statistics Report. Similar to the Descriptive Statistics
Report that you wrote for Chapter 5, a Statistics Report gives details about how the data
were gathered, descriptive statistics (perhaps with graphs) that reveal the relationships
between the variables, NHST test results, and an overall interpretation of the study.
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As for additional NHST techniques, several paths might be taken from here. One
logical next step is to analyze an experiment with three independent variables. The
three main effects and the several interactions are tested with an F distribution.

A second possibility is to study techniques for the analysis of experiments that
have more than one dependent variable. Such techniques are called multivariate statistics.
Many of these techniques are analogous to those you have studied in this book, except
there are two or more dependent variables instead of just one. For example, Hotelling’s
T2 is analogous to the t test; one-way multivariate analysis of variance (MANOVA) is
analogous to one-way ANOVA; and higher-order MANOVA is analogous to factorial
ANOVA.

It turns out that the inferential statistics techniques described in this book and those
mentioned in the previous paragraph are all special cases of a more general approach to
finding relationships among variables. This approach, the General Linear Model, is a

topic in advanced statistics courses (and sometimes it is the topic).
Finally, there is the task of combining the results of many separate

studies that all deal with the same topic. It is not unusual to have
conflicting results among 10 or 15 or 50 studies, and researchers have
been at the task of synthesizing since the beginning. This task is facilitated
by a set of statistical procedures called meta-analysis.

What I’ve just described are advanced statistical techniques that are well
established. As I mentioned in Chapter 1, however, statistics is a dynamic discipline;
your future statistics studies will no doubt be influenced by the recent challenges to
the central role of NHST in data analysis. For example, Killeen (2005) derived a new
statistic to take the place of p, the probability of the data observed, if the null
hypothesis is true. He proposed that data be analyzed using prep, the probability of
replicating the effect if the experiment is conducted again. The statistic prep does not
depend on a null hypothesis. In 2009, researchers were regularly using prep in articles
in Psychological Science, a leading psychology journal. For now, however, let’s finish
this elementary statistics textbook with problems that help you consolidate what you
have learned so far (especially the logic).

Choosing Tests and Writing Interpretations

In Chapter 1, I described the fourfold task of a statistics student:

1. Read a problem.
2. Decide what statistical procedure to use.
3. Perform that procedure.
4. Write an interpretation of the results.

Students tell me that the parts of this task they still need to work on at the end of the
course are (2) deciding what statistical procedure to use and (4) writing an interpretation
of the results.

Even though you may have some uncertainties, you are well on your way to being
able to do all four tasks. What you may need at this point is exercises that help you
“put it all together.” (Of course, an ice cream cone couldn’t hurt, either.) Pick and
choose from the four exercises that follow; the emphasis is heavily on the side of
deciding what statistical test to use.

Chocolate!

meta-analysis
A technique for reaching
conclusions when the data consist
of many separate studies done by
different investigators.
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Exercise A: Reread all the chapters you have studied and all the tests and homework
you have. If you choose to do this exercise (or part of it), spend most of your time on
concepts that you recognize as especially important (such as NHST). It will take a
considerable amount of time for you to do this—probably 8 to 16 hours. However, the
benefits are great, according to students who have invested the time. A typical quote is
“Well, during the course I would read a chapter and work the problems without too
much trouble, but I didn’t relate it to the earlier stuff. When I went back over the whole
book, though, I got the big picture. All the pieces do fit together.”

Exercise B: Construct a table with all the statistical procedures and their 
characteristics. List the procedures down the left side. I suggest column heads such
as Description (brief description of procedure), Purpose (descriptive or inferential),
Null hypothesis (parametric or nonparametric), Number of independent variables
(if applicable), and so forth.

I’ve included my version of this table (Table 16.1), but please don’t look at what
I’ve done until you have a copy of your own. However, after you have worked for a
while on your own, it wouldn’t hurt to peek at the column heads I used.

Exercise C: Construct two decision trees. For the first one, show all the descriptive
statistics you have learned. To begin, you might divide these statistics into categories of
univariate and bivariate distributions. Under univariate, you might list the different
categories of descriptive statistics you have learned and then, under those categories,
identify specific descriptive statistics. Under bivariate, choose categories under which
specific descriptive statistics belong.

The second decision tree is for inferential statistics. You might begin with the
categories of NHST and confidence intervals, or you might decide to divide inferential
statistics into the type of statistics analyzed (means, frequency counts, and ranks).
Work in issues such as the number of independent variables, whether the design is
related samples or independent samples, and other issues that will occur to you.

There are several good ways you might organize your decision trees. My versions
are Figure 16.1 and Figure 16.2, but please don’t look at them now. Looking at the
figures now would prevent you from going back over your text and digging out the
information you learned earlier, which you now need for your decision trees. My
experience has been that students who create their own decision trees learn more than
those who are handed someone else’s. After you have your trees in hand, then look
at mine.

Exercise D: Work the two sets of problems that follow. The first set requires you to
decide what statistical test or descriptive statistic answers the question the investigator
is asking. The second set requires you to interpret the results of an analyzed experiment.
You will probably be glad that no number crunching is required for these problems.
You won’t need your calculator or computer.

However, here is a word of warning. For a few of the problems, the statistical
techniques necessary are not covered in this book. (In addition, perhaps your course
did not cover all the chapters.) Thus, a part of your task is to recognize what problems
you are prepared to solve and what problems would require digging into a statistics
textbook.
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TABLE 16.1 Summary table for elementary statistics

Null No. of No. of 
Procedure (text page numbers) Purpose Description hypothesis IVs IV levels Design

Frequency distributions (Chapter 2) D Picture of raw data NA NA NA NA
Boxplot (76) D Data picture that includes statistics NA NA 1, 2� NA
Central tendency—Mean (41, 44, 50) D One number to represent all NA NA NA NA

Median (43, 45) D One number to represent all NA NA NA NA
Mode (44, 46) D One number to represent all NA NA NA NA

Variability—Range (56) D Dispersion of scores NA NA NA NA
Standard deviation (60, 65) D Dispersion of scores NA NA NA NA
Variance (68) D Dispersion of scores NA NA NA NA
Interquartile range (57) D Dispersion of scores NA NA NA NA

Outlier (75) D An extreme score NA NA NA NA
z Score (72) D Relative position of one score NA NA NA NA
Regression (114) D Linear equation; 2 variables NA NA NA Corr
Correlation—Pearson r (96) D/I Degree of relationship; 2 variables P NA NA Corr

Spearman rs (343) D/I Degree of relationship; 2 variables NP NA NA Corr
Confidence interval (164, 218, 219) D/I Limits around mean or mean difference P 1 NA Indep
t test—One sample (181) I Test sample X� from pop. m P 1 NA Indep

Independent samples (206) I 2 sample X�’s; same m? P 1 2 Indep
Paired samples (210) I 2 sample X�’s; same m? P 1 2 Rel
Pearson r (191) I Test r from r � .00 P NA NA Corr

d—One sample (189) D Assess size of IV effect P 1 NA Indep
Two independent samples (216) D Assess size of IV effect P 1 2 Indep
Two paired samples (217) D Assess size of IV effect P 1 2 Rel
ANOVA (251, 296) D Assess size of IV effect P 1 2 Indep

F test—Two variances (245) I 2 sample variances; same s2? P 1 2 Indep
One-way ANOVA (243) I �2 sample X�’s; same m? P 1 2� Indep
Repeated measures (262) I �2 sample X�’s; same m? P 1 2� Rel
Factorial ANOVA (287) I 2 or more IVs plus interactions P 2� 2� Indep

f—One-way ANOVA (252) D Assess size of IV effect P 1 2� Indep
Factorial ANOVA (296) D Assess size of IV effect P 1 2� Indep

Tukey HSD (248, 262, 295) I Tests all pairwise differences P 1 2 Indep
Chi square—Goodness of fit (310) I Do data fit theory? NP NA NA Indep

Independence (304) I Are variables independent? NP NA NA Indep
w: Chi square effect size (308) D Assess size of relationship NP NA NA Indep
Mann–Whitney U (327) I 2 samples from same population? NP 1 2 Indep
Wilcoxon matched-pairs signed-ranks T (333) I 2 samples from same population? NP 1 2 Rel
Wilcoxon–Wilcox multiple comparisons (339) I Tests all pairwise differences NP 1 2� Indep

Key: Corr � Correlated Indep � Independent NP � Nonparametric
D � Descriptive IV � Independent variable P � Parametric
I � Inferential NA � Not applicable Rel � Related
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Purpose

Descriptive

Variability
(interval/ratio)

Single score

One-way
ANOVA
(251, 252)

One-sample
t test
(189)

Two-sample
t test
(216, 217)

Factorial
ANOVA
(296)

Standard
deviation
(60, 65)

Variance
(68)

Range
(56)

Outlier
(75)

z score
(72)

UnivariateBivariate

Mode
(44, 46)

Median
(43, 45)

Mean
(41, 44, 
50)

Mode
(44, 46)

Mode
(44, 46)

Median
(43, 45)

Interval/RatioNominal

Central tendency

Ordinal

Line
graph
(36)

Graphs

Scatter-
plot
(90)

Linear
regression
(114)

Parametric

Pearson r
(96)

Spearman rs
(343)

Nonparametric

Interquartile
range (57)

2

2�2 
(308)

Frequency
distribution
graphs

Qualitative
data

Bar
graph
(32)

Histogram
(31)

Frequency
polygon
(31)

Quantitative
data

Boxplot
(76)

Graphs

Effect size

F I G U R E  1 6 . 1 Decision tree for descriptive statistics. (Text page numbers are in parentheses.)
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Purpose

Inferential

Confidence
interval

About a mean
(164)

Independent
samples

Mann–
Whitney
U
(327)

Wilcoxon
matched-
pairs
signed-
ranks T
(333)

Wilcoxon–
Wilcox
multiple
comparisons
(339)

Paired
samples

Independent
samples

One-sample
t test
(181)

Paired
t test
(210)

Independent
t test
(206)

Paired
samples

Related
samples

Independent
samples

One-way
ANOVA
(243)

Tukey
HSD
(248)

Repeated
measures
ANOVA
(262)

Tukey
HSD
(262)

Independent
samples

Test of
independence

Goodness
of fit

> Two levels
of independent
variable

Two levels
of independent
variable

Ranks
(nonparametric)

Frequency counts
(nonparametric)

≥ Two levels
of independent
variable

Factorial
ANOVA
(287)

Tukey
HSD
(295)

Two
independent
variables

Two levels
of independent
variable

One
independent
variable

Means
(parametric)

One
sample

χ2

(310)
χ2

(304)

Independent
samples

Variances
(parametric)

F test
(245)

Null hypothesis
statistical testing
(NHST)

Type
of data

About a mean
difference
(218, 219)

Quantitative
(parametric)

F I G U R E  1 6 . 2 Decision tree for inferential statistics. (Text page numbers are in parentheses.)
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P R O B L E M S

Set A. Determine what descriptive statistic or inferential test is appropriate for
each problem in this set.

16.1. A company has three separate divisions. Based on the capital invested,
Division A made 10 cents per dollar, Division B made 20 cents per dollar,
and Division C made 30 cents per dollar. How can the overall profit for the
company be found?

16.2. Reaction time scores tend to be severely skewed. The majority of the
responses are quick and there are diminishing numbers of scores in the
slower categories. A student wanted to find out the effects of alcohol on
reaction time, so he found the reaction time of each subject under both
conditions—alcohol and no alcohol.

16.3. As part of a 2-week treatment for phobias, a therapist measured the general
anxiety level of each client four times: before, after 1 week of treatment, at
the end of treatment, and 4 months later.

16.4. “I want a number that will describe the typical score on this test. Most did
very well, some scored in the middle, and a very few did quite poorly.”

16.5. The city park benches are 16.7 inches high. The mean distance from the
bottom of the shoe to the back of the knee is 18.1 inches for women.
The standard deviation is 0.70 inch. What proportion of the women
who use the bench will have their feet dangle (unless they sit forward on
the bench)?

16.6. A measure of dopamine (a neurotransmitter) activity is available for
14 acute schizophrenic patients and 14 chronic schizophrenic patients.
Do acute and chronic schizophrenics differ in dopamine activity?

16.7. A large school district needs to know the range of scores within which they
can expect the mean reading achievement score of their sixth-grade
students. A random sample of 50 reading achievement scores is available.

16.8. Based on several large studies, a researcher knew that 40 percent of the
public in the United States favored capital punishment, 35 percent were
against it, and 25 percent expressed no strong feelings. The researcher
polled 150 Canadians on this question to compare the two countries in
attitudes toward capital punishment.

16.9. What descriptive statistic should be used to identify the most typical choice
of major at your college?

16.10. A music-minded researcher wanted to express with a correlation coefficient
the strength of the relationship between stimulus intensity and pleasantness.
She knew that both very low and very high intensities are not pleasant and
that the middle range of intensity produces the highest pleasantness ratings.
Would you recommend a Pearson r? An rs?

16.11. A consumer testing group compared Boraxo and Tide to determine which
got laundry whiter. White towels that had been subjected to a variety of
filthy treatments were identified on each end and cut in half. Each was
washed in either Boraxo or Tide. After washing, each half was tested with
a photometer for the amount of light reflected.
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16.12. An investigator wants to predict a male adult’s height from his length at
birth. He obtains records of both measures from a sample of male military
personnel.

16.13. An experimenter is interested in the effect of expectations and drugs on
alertness. Each participant is given an amphetamine (stimulant) or a placebo
(an inert substance). In addition, half in each group are told that the drug
taken was a stimulant and half that the drug was a depressant. An alertness
score for each participant is obtained from a composite of measures that
included a questionnaire and observation.

16.14. A professor told a class that she found a correlation coefficient of
.20 between the alphabetical order of a person’s last name and that person’s
cumulative point total for 50 students in a general psychology course. One
student in the class wondered whether the correlation coefficient was
reliable; that is, would a nonzero correlation be found in other classes? How
can reliability be determined without calculating an r on another class?

16.15. As part of a test for some advertising copy, a company assembled
120 people who rated four toothpastes. They read several ads (including the
ad being tested). Then they rated all four toothpastes again. The data to be
analyzed consisted of the number of people who rated Crest highest before
reading the ad and the number who rated it highest after reading the ad.

16.16. Most lightbulb manufacturing companies claim that their 60-watt bulbs have
an average life of 1000 hours. A skeptic with some skill as an electrician
wired up sockets and timers and lighted 40 bulbs. The life of each bulb
recorded automatically. Is the companies’ claim justified?

16.17. An investigator wondered whether a person’s education is related to his or
her satisfaction in life. Both of these variables can be measured using 
a quantitative scale.

16.18. To find out the effect of a drug on reaction time, an investigator administered
0, 25, 50, or 75 milligrams to four groups of volunteer rats. The quickness of
their response to a tipping platform was measured in seconds.

16.19. The experimenters (a man and a woman) staged 140 “shoplifting” incidents
in a grocery store. In each case, the “shoplifter” (one experimenter) picked
up a carton of cigarettes in full view of a customer and then walked out.
Half the time the experimenter was well dressed and half the time sloppily
dressed. Half the incidents involved a male shoplifter and half involved a
female. For each incident, the experimenters (with the cooperation of the
checkout person) simply noted whether the shoplifter was reported or not.

16.20. A psychologist wanted to illustrate for a group of seventh-graders the fact
that items in the middle of a series are more difficult to learn than those at
either end. The students learned an eight-item series. The psychologist
found the mean number of repetitions necessary to learn each of the items.

16.21. A nutritionist and an anthropologist gathered data on the incidence of
cancer among 21 cultures. The incidence data were quite skewed, with
many cultures having low numbers and the rest having various higher
numbers. In eight of the cultures, red meat was a significant portion of the
diet. For the other 13, diet consisted primarily of grains.
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16.22. A military science teacher wanted to know if there was a relationship
between the class rank of West Point graduates and their military rank in the
service at age 45.

16.23. The boat dock operators at a lake sponsored a fishing contest. Prizes were to
be awarded for the largest bass, crappie, and bream and to the overall
winner. The problem in deciding the overall winner is that the bass are by
nature larger than the other two species of fish. Describe an objective way to
find the overall winner that will be fair to all three kinds of contestants.

16.24. Yes is the answer to the question, Is psychotherapy effective? Studies
comparing a quantitative measure of groups who did or did not receive
psychotherapy show that the therapy group improves significantly more
than the nontherapy group. What statistical technique will answer the
question, How effective is psychotherapy?

Set B. Read each problem, look at the statistical analysis, and write an appropriate
conclusion using the terms in the problem; that is, rather than saying, “The null
hypothesis was rejected at the .05 level,” say, “Those with medium anxiety solved
problems more quickly than those with high anxiety.”

For some of the problems, the design of the study has flaws. There are
uncontrolled extraneous variables that would make it impossible to draw precise
conclusions about the experiment. It is good for you to be able to recognize such
design flaws, but the task here is to interpret the statistics. Thus, don’t let design
flaws, keep you from drawing a conclusion based on the statistic.

For all problems, use a two-tailed test with a � .05. If the results are
significant at the .01 or .001 level, report that, but treat any difference that has 
a probability greater than .05 as not significant.

16.25. The interference theory of the serial position effect predicts that participants
who are given extended practice will perform more poorly on the initial items
of a series than will those not given extended practice. The mean numbers of
errors on initial items are shown in the accompanying table. A t test with 54 df
produced a value of 3.88.

Extended No extended
practice practice

Mean number of errors 13.7 18.4

16.26. A company that offered instruction in taking college entrance examinations
correctly claimed that its methods “produced improvement that was
statistically significant.” A parent with some skill as a statistician obtained
the information the claim was based on (a one-sample t test) and calculated
an effect size index. The effect size index was 0.10.

16.27. In a particular recycling process, the break-even point for each batch occurs
when 54 kilograms of raw material remain as unusable foreign matter. An
engineer developed a screening process that leaves a mean of 38 kilograms of
foreign material. The upper and lower limits of a 95 percent confidence
interval are 30 and 46 kilograms.
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16.28. Four kinds of herbicides were compared for their weed-killing characteristics.
Eighty plots were randomly but evenly divided, and one herbicide was
applied to each. Because the effects of two of the herbicides were quite variable,
the dependent variable was converted to ranks and a Wilcoxon–Wilcox
multiple-comparisons test was used. The plot with the fewest weeds remaining
was given a rank of 1. The summary table follows.

A B C
(936.5) (316.5) (1186)

B (316.5) 620

C (1186) 249.5 869.5

D (801) 135.5 482.5 385

16.29. A developmental psychologist advanced a theory that predicted the
proportion of children who would, during a period of stress, cling 
to their mother, attack the mother, or attack a younger sibling. The 
stress situation was set up and the responses of 50 children recorded. 
The x2 value was 5.30.

16.30. An experimental psychologist at a Veterans Administration hospital
obtained approval from the Institutional Review Board to conduct a study
of the efficacy of Cymbalta for treating depression. The experiment lasted
60 days, during which one group of depressed patients was given placebos,
one was given a low dose of Cymbalta, and one was given a high dose.
At the end of the experiment, the patients were observed by two outside
psychologists who rated several behaviors such as eye contact, posture,
verbal output, and activity for degree of depression. The ratings went into
a composite score for each patient, with high scores indicating depression.
The means were: placebo, 18.86; low dose, 10.34; and high dose, 16.21.
An ANOVA summary table and two Tukey HSD tests are shown in the
accompanying table.

Source df F

Between treatments 2 21.60
Error 18

HSD (placebo vs. low) � 13.14
HSD (placebo vs. high) � 0.65

16.31. One sample of 16 third-graders had been taught to read by the “look–say”
method. A second sample of 18 had been taught by the phonics method.
Both were given a reading achievement test, and a Mann–Whitney U test
was performed on the results. The U value was 51.
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16.32. Sociologists make a profile of the attitudes of a group by asking each
individual to rate his or her tolerance of people in particular categories.
For example, members might be asked to assess, on a scale of 1–7, their
tolerance of prostitutes, atheists, former mental patients, intellectuals,
college graduates, and so on. The mean score for each category is then
calculated and the categories are ranked from low to high. When
18 categories of people were ranked by a group of people who owned
businesses and also by a group of college students, an rs of .753
between the rankings was found.

16.33. In a large high school, one group of juniors took an English course that
included a 9-week unit on poetry. Another group of juniors studied plays
during that 9-week period. Afterward, both groups completed a
questionnaire on their attitudes toward poetry. High scores mean favorable
attitudes. The means and variances are presented in the accompanying table.
For the t test: t (78 df ) � 0.48. To compare the variances, an F test was
performed: F (37, 41) � 3.62. (See footnote 8 in Chapter 11.)

Attitude toward poetry

Studied poetry Studied plays

Mean 23.7 21.7
Variance 51.3 16.1

16.34. Here is an example of the results of experiments that asked the question,
Can you get more attitude change from an audience by presenting just one
side of an argument and claiming that it is correct, or should you present
both sides and then claim that one side is correct? In this experiment,
a second independent variable was also examined: amount of education.
The first table contains the mean change in attitude, and the second is the
ANOVA summary table.

Presentation

Amount of education One side Both sides

Less than 12 years 4.3 2.7
13� years 2.1 4.5

Source df F

Between presentations 1 2.01
Between education 1 1.83
Presentations � education 1 7.93
Error 44
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16.35. A college student was interested in the relationship between handedness and
verbal ability. She gave three classes of third-grade students a test of verbal
ability that she had devised and then classified each child as right-handed,
left-handed, or mixed. The obtained F value was 2.63.

Handedness

Left Right Mixed

Mean verbal ability score 21.6 25.9 31.3
N 16 36 12

16.36. As part of a large-scale study on alcoholism, alcoholics and nonalcoholics
were classified according to when they were toilet-trained as children. The
three categories were early, normal, and late. A x2 of 7.90 was found.

ADDITIONAL HELP FOR CHAPTER 16

Visit cengage.com/psychology/spatz. At the Student Companion Site, you’ll
find multiple-choice tutorial quizzes and flashcards with definitions. For
this chapter there is a Statistics Workshop on Choosing the Correct
Statistical Test.

KEY TERMS

Meta-analysis (p. 352) prep (p. 352)
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1 An extreme and debilitating fear of new symbols.

Arithmetic and 
Algebra Review

A P P E N D I X

A

O B J E C T I V E S  F O R  A P P E N D I X  A

After studying the text and working the problems, you should be able to:

1. Estimate answers

2. Round numbers

3. Find answers to problems with decimals, fractions, negative numbers,
proportions, percents, absolute values, � signs, exponents, square roots,
complex expressions, and simple algebraic expressions

Statistical Symbols

As far as I know, there has never been a clinical case of neoiconophobia.1 However, I
know that some students show a mild form of this behavior. Symbols like , s, m,
and � can cause a grimace, a frown, or a droopy eyelid. In severe cases, I suspect that
the behavior involves avoiding a statistics course entirely. I’m sure that you don’t
have a severe case because you are still reading this textbook. Even so, if you are a
typical beginning student in statistics, symbols like s, m, �, and maybe X� are not
very meaningful to you, and they may even elicit feelings of uneasiness. Soon, however,
you will know what these symbols mean and be able to approach them with an
unruffled psyche—and perhaps even with joy.

Some of the symbols stand for concepts you are already familiar with. For
example, the capital letter X with a bar over it, X�, stands for the mean or average. (X� is
pronounced “mean” or sometimes “ex-bar.”) You already know about means. You just
add up the scores and divide the total by the number of scores. This verbal instruction
can be put into symbols: X� � �X/N. The Greek uppercase sigma (�) is the instruction
to add, and X is the symbol for scores. X� � �X/N is something you already know
about, even if you have not been using these symbols.

X�
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Pay careful attention to symbols. They serve as shorthand notations for the ideas
and concepts you are learning. Each time a new symbol is introduced, concentrate on
it, learn it, memorize its definition and pronunciation. The more meaning a symbol has
for you, the better you understand the concepts it represents and, of course, the easier
the course will be.

Sometimes I need to distinguish between two different s’s or two X’s. The
convention is to use subscripts, and the results look like s1 and s2 or X1 and X2. In
later chapters, subscripts other than numbers are used to identify a symbol. You will
see both sX and . The point here is that subscripts are for identification purposes
only; they never indicate multiplication. Thus, does not mean (s)(X�).

Two additional comments—to encourage and to caution you. I encourage you to
do more in this course than just read the text, work the problems, and pass the tests,
however exciting that may be. I hope you will occasionally get beyond this text and
read journal articles or short portions of other statistics textbooks. I will provide
recommendations in footnotes at appropriate places. The word of caution that goes
with this encouragement is that reading statistics texts is like reading a Russian
novel—the same characters have different names in different places. For example,
the mean of a sample in some texts is symbolized M rather than X�. There is even
more variety when it comes to symbolizing standard deviations. If you expect such
differences, it will be less difficult for you to fit the new symbol into your
established scheme of understanding.

Working Problems

This appendix covers the basic mathematical skills you need to work the problems in
this course. This math is not complex. The highest level of mathematical sophistication
is simple algebra.

Although the mathematical reasoning is not very complex, a good bit of arithmetic
is required. To be good in statistics, you need to be good at arithmetic. A wrong answer
is wrong whether the error is arithmetical or logical. For the beginning statistics student,
the best way to prevent arithmetic errors is to use a calculator or a computer program.

Of course, even calculators can do more than simple arithmetic. Answers to many
of the computational problems in this book can be found with calculators that produce
means, standard deviations, correlation coefficients, and other statistics. By using a
computer program, you can find numerical answers to all the computational problems.
The question to ask yourself is: How can I use these aids so that I not only get the right
answer but also understand what is going on and can tell the story that goes with my
arithmetic? Your instructor will have some ideas about how to accomplish both goals.

Here is my advice. In the beginning, use a calculator to do the arithmetic for
each part of a problem. Write down each step so you can see the progression from
formula to final answer. When you know the steps and can explain them, use the
special function keys (standard deviation, correlation, and so forth) to produce final
answers directly from raw scores. Use computer programs when you understand a
technique fairly well.

Most calculators produce values that are intermediate between raw scores and a
final answer. For example, suppose a problem had three scores: 1, 2, and 3. For many

sX�

sX�
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techniques, you need to know the sum of the numbers (6) and the sum when each
number is squared (14, which is 1 � 4 � 9). A calculator with a �� key or a stat
function gives you both the sum of the numbers and the sum of the squares—with just
one entry of each of the three numbers. This feature saves time and reduces errors.

This appendix is designed to refresh your memory of arithmetic and algebra. It is
divided into two parts, a pretest and a review of fundamentals. The pretest gives you
problems that are similar to those you have to work later in the course. Take the pretest
and then check your answers against the answers in Appendix G. If you find that you
made any mistakes, work through those sections of the review that explain the
problems you missed.

As stated earlier, to be good at statistics, you must be good at arithmetic. To be
good at arithmetic, you must know the rules and be careful in your computations. The
rules follow the pretest; it is up to you to be careful in your computations.

Pretest

Estimating answers (Estimate whole-number answers to the problems.)
A.1. (4.02)2 A.2. 1.935 � 7.89 A.3. 31.219 � 2.0593

Rounding numbers (Round numbers to the nearest tenth.)
A.4. 6.06 A.5. 0.35 A.6. 10.348

Decimals

Add:
A.7. 3.12 � 6.3 � 2.004 A.8. 12 � 8.625 � 2.316 � 4.2

Subtract:
A.9. 28.76 � 8.91 A.10. 3.2 � 1.135

Multiply:
A.11. 6.2 � 8.06 A.12. 0.35 � 0.162

Divide:
A.13. 64.1 � 21.25 A.14. 0.065 � 0.0038

Fractions

Add:
A.15. A.16.

Subtract:
A.17. A.18.

Multiply:
A.19. A.20.

Divide:
A.21. A.22.

Negative numbers

Add:
A.23. (�5) � 16 � (�1) � (�4) A.24. (�11) � (�2) � (�12) � 3

7
9 � 1

4
3
8 � 1

4

2
3 � 1

4 � 3
5

4
5 � 3

4

5
9 � 1

2
11
16 � 1

2

1
3 � 1

2
1
8 � 3

4 � 1
2
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Subtract:
A.25. (�10) � (�3) A.26. (�8) � (�2)

Multiply:
A.27. (�5) � (�5) A.28. (�8) � (3)

Divide:
A.29. (�10) � (�3) A.30. (�21) � 4

Percents and proportions
A.31. 12 is what percent of 36?
A.32. Find 27 percent of 84.
A.33. What proportion of 112 is 21?
A.34. A proportion of .40 of the tagged birds were recovered. 150 were tagged in all.

How many were recovered?

Absolute value
A.35. A.36.

� Problems
A.37. A.38.

Exponents
A.39. 42 A.40. 2.52 A.41. 0.352

Square roots
A.42. A.43. A.44.

Complex problems (Round answers to two decimal places.)

A.45. A.46.

A.47. A.48.

A.49. A.50.

A.51. A.52.

A.53.

A.54. For the numbers 1, 2, 3, and 4: Find the sum and the sum of the squared
numbers.

A.55. For the numbers 2, 4, and 6: Find the sum and the sum of the squared numbers.

Simple algebra (Solve for x.)

A.56. A.57.

A.58. A.59.
6 � 2

3
�

x � 9

5

20 � 6

2
� 4x � 3

14 � 8.5
x

� 0.5
x � 3

4
� 2.5

6 3 13 � 5 2 14 � 1 2 � 2 4

52 � 16 2 12 2

12 150 � 20 2 2

18 2 110 2 112 2 111 2

190 � 1252>5 2

5 � 1

13 2 14 2 � 16 2 18 2 � 15 2 16 2 � 12 2 13 2

14 2 14 � 1 2
a

3.6

1.2
b

2

� a
6.0

2.4
b

2

a
8 � 4

8 � 4 � 2
b a

1

8
�

1

4
b

18 � 6.5 2 2 � 15 � 6.5 2 2

2 � 1

15 � 3 2 2 � 13 � 3 2 2 � 11 � 3 2 2

3 � 1

3 � 4 � 7 � 2 � 5

5

20.09320.9329.30

13 � 9 �8 � 2 �

08�12 00�5 0
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Review of Fundamentals

This section gives you a quick review of the pencil-and-paper rules of arithmetic and
simple algebra. I assume that you once knew all these rules but that refresher exercises
will be helpful. Thus, there isn’t much explanation. To obtain basic explanations, ask a
teacher in your school’s mathematics department to recommend one of the many
“refresher” books that are available.

Definitions

Sum. The answer to an addition problem is called a sum. In Chapter 11 you calculate a
sum of squares, a quantity that is obtained by adding together squared numbers.

Difference. The answer to a subtraction problem is called a difference. Much of
what you learn in statistics deals with differences and how to explain them.

Product. The answer to a multiplication problem is called a product. Chapter 6 is
about the product-moment correlation coefficient, which requires multiplication.
Multiplication problems are indicated either by a � or by parentheses. Thus, 6 � 4 and
(6)(4) call for the same operation.

Quotient. The answer to a division problem is called a quotient. The three ways to
indicate a division problem are �, / (slash mark), and � (division line). Thus, 9 � 4,
9/4, and call for the same operation. It is a good idea to think of any common fraction
as a division problem. The numerator is to be divided by the denominator.

Estimating Answers

It is a very good idea to just look at a problem and estimate the answer
before you do any calculating. This is referred to as “eyeballing the
data,” and Edward Minium captured its importance with Minium’s First
Law of Statistics: “The eyeball is the statistician’s most powerful instrument.”
(See Minium and King, 2002.)

Estimating keeps you from making gross errors such as misplacing a decimal
point. For example, can be estimated as a little more than 6. If you estimate before
you divide, you are likely to recognize that an answer of 63 or 0.63 is wrong.

The estimated answer to the problem (21)(108) is 2000 because (20)(100) �
2000. The problem (0.47)(0.20) suggests an estimated answer of 0.10 because (0.20) �
0.10. With 0.10 in mind, you are not likely to write 0.94 for the answer (which is
0.094). Estimating answers is also important if you are finding a square root. You can
estimate that is about 10 because ; is about 1; is
about 0.1.

To calculate a mean, eyeball the numbers and estimate the mean. If you estimate a
mean of 30 for a group of numbers that are primarily in the 20s, 30s, and 40s, a
calculated mean of 60 will arouse your suspicion that you have made an error.

Rounding Numbers

Find the number that is to be rounded up or not rounded up. If the number to its right
is 5 or greater, increase the number by 1. If the number to its right is less than 5, do not

10.01311.0341100 � 10195

1
2

31.5
5

9
4
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very good idea
Examine a statistics problem until
you understand it well enough to
estimate the answer.
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change the number. These rules are built into most calculators. Here are some illustrations
of these rules.

Rounding to the nearest whole number:

6.2 � 6 4.5 � 5

12.7 � 13 163.5 � 164

6.49 � 6 9.5 � 10

Rounding to the nearest hundredth:

13.614 � 13.61 12.065 � 12.07

0.049 � 0.05 4.005 � 4.01

1.097 � 1.10 0.675 � 0.68

3.6248 � 3.62 1.995 � 2.00

A reasonable question is: How many decimal places should an answer in statistics
have? A good rule of thumb in statistics is to carry all operations to three decimal
places and then, for the final answer, round back to two decimal places.

Sometimes a rule of thumb can get you into trouble, though. For example, if halfway
through a division problem of 0.0016 � 0.0074 you dutifully round those four decimals
to three (0.002 � 0.007), you get an answer of 0.2857, which becomes 0.29. However,
division without rounding gives you an answer of 0.2162 or 0.22. The difference between
0.22 and 0.29 may be substantial. I often give you cues if more than two decimal places
are necessary, but you should always be alert to the problems of rounding.

Most calculators carry more decimal places in memory than they show in the
display. If you have such a calculator, it will protect you from the problem of rounding
too much or too soon.

P R O B L E M S

A.60. Define (a) sum, (b) quotient, (c) product, and (d) difference.
A.61. Estimate answers to the expressions.

a. b. c. (11.4)2 d.
e. 0.412 f. 11.92 � 4.60 g. h.

A.62. Round the numbers to the nearest whole number.
a. 13.9 b. 126.4 c. 9.0
d. 0.4 e. 127.5 f. 12.51
g. 12.49 h. 12.50 i. 9.46

A.63. Round the numbers to the nearest hundredth.
a. 6.3348 b. 12.997 c. 0.050
d. 0.965 e. 2.605 f. 0.3445
g. 0.003 h. 0.015 i. 0.9949

Decimals

1. Addition and subtraction of decimals. There is only one rule about the addition
and subtraction of numbers that have decimals: Keep the decimal points in a vertical

10.009810.888
10.045974.16 � 9.871103.48
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line. The decimal point in the answer goes directly below those in the problem. This
rule is illustrated in the five problems here.

Add Subtract

0.004 6.0
1.26 1.310 18.0 14.032 16.00

10.00 4.039 0.5 8.26 4.32
11.26 5.353 24.5 5.772 11.68

2. Multiplication of decimals. The basic rule for multiplying decimals is that the
number of decimal places in the answer is found by adding the numbers of decimal
places in the two numbers that are being multiplied. To place the decimal point in the
product, count from the right.

1.3 0.21 1.47
� 4.2 �0.4 � 3.12

26 0.084 294
52 147
5.46 441

4.5864

3. Division of decimals. Two methods have been used to teach division of decimals.
The older method required the student to move the decimal in the divisor (the number
you are dividing by) enough places to the right to make the divisor a whole number.
The decimal in the dividend is then moved to the right the same number of places, and
division is carried out in the usual way. The new decimal places are identified with
carets (^), and the decimal place in the quotient is just above the caret in the dividend.

20. 38.46

Decimal moved three places in Decimal moved two places in both 
both the divisor and the dividend the divisor and the dividend

2.072 .004

Divisor is already a whole number Decimal moved one place in both 
the divisor and the dividend

The newer method of teaching the division of decimals is to multiply both the
divisor and the dividend by the number that will make both of them whole numbers.
(Actually, this is the way the caret method works also.)

 
12.432

6
�

1000

1000
�

12,432

6000
� 2.072 

 
15

0.39
�

100

100
�

1500

39
� 38.46 

 
0.0369

9.1
�

10,000

10,000
�

369

91,000
� 0.004 

 
0.32

0.016
�

1000

1000
�

320

16
� 20.00 

9.1^>0.0^3696>12.432

0.39^>15.00^  0.016^>0.320^
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P R O B L E M S

Perform the operations indicated.
A.64. 0.001 � 10 � 3.652 � 2.5 A.65. 14.2 � 7.31
A.66. 0.04 � 1.26 A.67. 143.3 � 16.92 � 2.307 � 8.1

A.68. 3.06 � 0.04 A.69.

A.70. 152.12 � 127.4 A.71. (0.5)(0.07)

Fractions

In general, there are two ways to deal with fractions.

1. Convert each fraction to a decimal.
2. Work directly with the fractions, using a set of rules for each operation. The

rule for addition and subtraction is: Convert the fractions to ones with common
denominators, add or subtract the numerators, and place the result over the
common denominator. The rule for multiplication is: Multiply the numerators
together to get the numerator of the answer, and multiply the denominators to-
gether for the denominator of the answer. The rule for division is: Invert the di-
visor and multiply the fractions.

For statistics problems, it is usually easier to convert the fractions to decimals and
then work with the decimals, and this is the method I use. However, if you are a whiz
at working directly with fractions, by all means continue with your method. To convert
a fraction to a decimal, divide the lower number into the upper one. Thus,
and .

Addition of fractions Subtraction of fractions

Multiplication of fractions Division of fractions

7

8
�

3

4
� 0.875 � 0.75 � 1.17

1

11
�

2

3
� 10.09 2 10.67 2 � 0.06

14 �
1

3
� 14 � 0.33 � 42

10

19
�

61

90
� 0.526 � 0.678 � 0.36

9

21
�

13

19
� 0.429 � 0.684 � 0.63

1

2
�

3

4
� 10.5 2 10.75 2 � 0.38

41

53
�

17

61
� 0.774 � 0.279 � 0.50

2

3
�

3

4
� 0.667 � 0.75 � 1.42

11

12
�

2

3
� 0.917 � 0.667 � 0.25

13

17
�

21

37
� 0.765 � 0.568 � 1.33

1

2
�

1

4
� 0.50 � 0.25 � 0.25

1

2
�

1

4
� 0.50 � 0.25 � 0.75

13
17 � 0.765

3
4 � 0.75

24

11.75
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P R O B L E M S

Perform the operations indicated.

A.72. A.73.

A.74. A.75.

A.76. A.77.

A.78.

Negative Numbers

1. Addition of negative numbers. (Any number without a sign is understood to be
positive.)
a. To add a series of negative numbers, add the numbers in the usual way and

attach a negative sign to the total.

�3
�8

�12 (�1) � (�6) � (�3) � �10
�5

�28

b. To add two numbers, one positive and one negative, subtract the smaller
number from the larger number and attach the sign of the larger number to
the result.

140 �14 (28) � (�9) � 19
�55 8

85 �6 74 � (�96) � �22

c. To add a series of numbers, some positive and some negative, add all the
positive numbers together, add all the negative numbers together (see 1a),
and then combine the two sums (see 1b).

(�4) � (�6) � (12) � (�5) � (2) � (�9) � 14 � (�24) � �10
(�7) � (10) � (4) � (�5) � 14 � (�12) � 2

2. Subtraction of negative numbers. To subtract a negative number, change it to
positive and add it.

(�14) 5 18 (�7)
�(�2) �(�7) �(�3) �(�5)

�12 12 21 �2

18 �
1

3

3

4
�

5

6

1

3
�

5

6

4

5
�

1

6
a

1

3
b a

5

6
b

9

20
�

19

20

9

10
�

1

2
�

2

5
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3. Multiplication of negative numbers. When the two numbers to be multiplied
are both negative, the product is positive.

(�3)(�3) � 9 (�6)(�8) � 48

When one of the numbers is negative and the other is positive, the product is
negative.

(�8)(3) � �24 14 � �2 � �28

4. Division of negative numbers. The rule in division is the same as the rule in
multiplication. If both the numbers are negative, the quotient is positive.

(�10) � (�2) � 5 (�4) � (�20) � 0.20

If one number is negative and the other positive, the quotient is negative.

(�10) � 2 � �5 6 � (�18) � �0.33

14 � (�7) � �2 (�12) � 3 � �4

P R O B L E M S

A.79. Add the numbers.
a. �3, 19, �14, 5, �11 b. �8, �12, �3
c. �8, 11 d. 3, �6, �2, 5, �7

A.80. (�8)(5) A.81. (�4)(�6) A.82. (4)(12)
A.83. (11)(�3) A.84. (�18) � (�9) A.85. 14 � (�6)
A.86. 12 � (�3) A.87. (�6) � (�7) A.88. (�9) � (�3)
A.89. (�10) � 5 A.90. 4 � (�12) A.91. (�7) � 5

Proportions and Percents

A proportion is a part of a whole and can be expressed as a fraction or as a decimal.
Usually, proportions are expressed as decimals. If eight students in a class of 44

received A’s, 8 is a proportion of the whole (44). Thus, , or 0.18, is the
proportion of the class that received A’s.

To convert a proportion to a percent (per one hundred), multiply
by 100. Thus, 0.18 � 100 � 18; 18 percent of the students received

A’s. As you can see, proportions and percents are two ways to express the
same idea.

If you know a proportion (or percent) and the size of the original whole, you can
find the number that the proportion represents. If 0.28 of the students were absent due
to illness and there are 50 students in all, then 0.28 of the 50 were absent: (0.28)(50) �
14 students who were absent. Here are some more problems. Cover the answers and
work all four problems.

1. 26 out of 31 completed the course. What proportion completed the course?
2. What percent completed the course?

8
44

374 ■ Appendix A

proportion
A part of a whole.
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3. What percent of 19 is 5?
4. If 90 percent of the population agreed and the population consisted of 210

members, how many members agreed?

Answers:

1.

2. 0.83 � 100 � 83 percent

3.

4. 0.90 � 210 � 189 members

Absolute Value

The absolute value of a number ignores the sign of the number. 
Thus, the absolute value of �6 is 6. This is expressed with symbols
as ��6� � 6. It is expressed verbally as “the absolute value of
negative six is six.” In a similar way, the absolute value of 4 � 7 is
3; that is, �4 � 7� � ��3� � 3.

� Signs

A � sign (“plus or minus” sign) means to both add and subtract. A � problem always
has two answers.

10 � 4 � 6, 14

8 � (3)(2) � 8 � 6 � 2, 14

� (4)(3) � 21 � �12 � 21 � 9, 33

�4 � 6 � �10, �2

Exponents

In the expression 52 (“five squared”), 2 is the exponent. The 2 means that 5 is to be
multiplied by itself. Thus, 52 � 5 � 5 � 25.

In elementary statistics, the only exponent used is 2, but it will be used frequently.
When a number has an exponent of 2, the number is said to be squared. The
expression 42 (“four squared”) means 4 � 4, and the product is 16.

82 � 8 � 8 � 64 (0.75)2 � (0.75)(0.75) � 0.5625

1.22 � (1.2)(1.2) � 1.44 122 � 12 � 12 � 144

Square Roots

Statistics problems often require you to find the square root of a number.
Use a calculator with a square root key. 

5

19
� 0.26  0.26 � 100 � 26 percent

26

31
� 0.83
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P R O B L E M S
A.92. 6 is what proportion of 13? A.93. 6 is what percent of 13?
A.94. What proportion of 25 is 18? A.95. What percent of 115 is 85?
A.96. Find 72 percent of 36. A.97. 22 is what proportion of 72?
A.98. If .40 of the 320 members voted against the proposal, how many voted no?
A.99. 22 percent of the 850 coupons were redeemed. How many were redeemed?

A.100. ��31� A.101. �21 � 25� A.102. 12 � (2)(5)
A.103. �(5)(6) � 10 A.104. �(2)(2) � 6 A.105. (2.5)2

A.106. 92 A.107. (0.3)2

A.108.

A.109. Find the square root of the numbers to two decimal places (or more if ap-
propriate).

a. 625 b. 6.25 c. 0.625
d. 0.0625 e. 16.85 f. 0.003
g. 181,476 h. 0.25 i. 22.51

Complex Expressions

Two rules are used for the complex expressions encountered in statistics.

1. Perform the operations within the parentheses. If there are brackets in the
expression, perform the operations within the parentheses and then the
operations within the brackets.

2. Perform the operations in the numerator separately from those in the
denominator and, finally, carry out the division.

 �
6 19 � 5 2

30
�

6 14 2

30
�

24

30
� 0.80 

6 3 113 � 10 2 2 � 5 4

6 16 � 1 2
�

6 132 � 5 2

6 15 2

a
8.2

4.1
b

2

� a
4.2

1.2
b

2

� 12 2 2 � 13.5 2 2 � 4 � 12.25 � 16.25

 � 14.40 2 10.583 2 � 2.57 

a
10 � 12

4 � 3 � 2
b a

1

4
�

1

3
b � a

22

5
b 10.25 � 0.333 2

 �
4 � 1 � 9

2
�

14

2
� 7.00 

18 � 6 2 2 � 17 � 6 2 2 � 13 � 6 2 2

3 � 1
�

22 � 12 � 1�3 2 2

2

a
1

4
b

2
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Simple Algebra

To solve a simple algebra problem, isolate the unknown (x) on one side of the equal
sign and combine the numbers on the other side. To do this, remember that the same
number can be added to or subtracted from both sides of the equation without
affecting the value of the unknown.

x � 5 � 12 x � 7 � 9
x � 5 � 5 � 12 � 5 x � 7 � 7 � 9 � 7

x � 17 x � 2

In a similar way, you can multiply or divide both sides of the equation by the same
number without affecting the value of the unknown.

11x � 30

x � 54 x � 2.73 3 � 14x

0.21 � x

I combine some of these steps in the problems that follow. Be sure you see what
operation is being performed on both sides in each step.

x � 2.5 � (1.3)(1.96) 6.6 � 0.04x

x � 2.548 � 2.5

x � 5.048 165 � x

4x � 9 � 52

4x � 25 � 9 14 � x � (1.9)(6)

14 � 11.4 � x

x � 8.50 2.6 � x

x �
34

4

14 � x

6
� 1.9

6.6

0.04
� x

21.6 � 15
x

� 0.04
x � 2.5

1.3
� 1.96

3

14
�

14x

14

1x 2 a
3
x
b � 114 2 1x 2

11x

11
�

30

11
16 2 a

x

6
b � 16 2 19 2

3
x

� 14
x

6
� 9

18 �
62

4

4 � 1
�

18 �
36

4

3
�

18 � 9

3
�

9

3
� 3.00
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P R O B L E M S

Reduce these complex expressions to a single number rounded to two decimal
places.

A.110.

A.111.

A.112. A.113.

A.114. A.115.

A.116. A.117.

A.118. A.119.

Find the value of x.

A.120. A.121.

A.122. A.123. x �
36 � 41

8.2
x �

14 � 11

2.5

x � 21

6.1
� 1.04

x � 4

2
� 2.58

104 � 1122>6 2

5

10 � 162>9 2

8

a
9

2>3
b

2

� a
8

3>4
b

26

1>2
�

8

1>3

3 18 � 2 2 15 � 1 2 4 2

5 110 � 7 2

8 3 16 � 2 2 2 � 5 4

13 2 12 2 14 2

a
13 � 18

6 � 8 � 2
b a

1

6
�

1

8
ba

5 � 6

3 � 2 � 2
b a

1

3
�

1

2
b

112 � 8 2 2 � 18 � 8 2 2 � 15 � 8 2 2 � 17 � 8 2 2

4 � 1

14 � 2 2 2 � 10 � 2 2 2

6
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379

Grouped Frequency
Distributions and 
Central Tendency

A P P E N D I X  

B

O B J E C T I V E S  F O R  A P P E N D I X  B

After studying the text and working the problems, you should be able to:

1. Use four conventions for constructing grouped frequency distributions

2. Arrange raw data into a grouped frequency distribution

3. Find the mean, median, and mode of a grouped frequency distribution

(In writing this appendix, I assumed that you have studied Chapter 2, “Exploring
Data: Frequency Distributions and Graphs,” and Chapter 3, “Exploring Data: Central
Tendency.”)

As you know from Chapter 2, converting a batch of raw scores into a simple
frequency distribution brings order out of apparent chaos. For some distributions,
even more order can be obtained if the raw scores are arranged into a grouped
frequency distribution. The order becomes even more apparent when grouped
frequency distributions are graphed. In addition to grouping and graphing, this
appendix covers the calculation of the mean, median, and mode of grouped frequency
distributions.

Grouped frequency distributions are used when the range of scores is too large
for a simple frequency distribution. How large is too large? A rule of thumb is that
grouped frequency distributions are appropriate when the range of scores is 
greater than 20. At times, however, ignoring this rule of thumb produces an improved
analysis.

Grouped Frequency Distributions

As you may recall from Chapter 2, the only difference between simple frequency
distributions and grouped frequency distributions is that grouped frequency distributions
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have class intervals in the place of scores. Each class interval in a grouped frequency
distribution covers the same number of scores. The number of scores in the interval is
symbolized i (interval size). 

Establishing Class Intervals

There are no hard-and-fast rules for establishing class intervals. The ones that follow
are used by many researchers, but some computer programs do not follow them.

1. The number of class intervals. The number of class intervals should be 10 to
20. On the one hand, with fewer than 10 intervals, the extreme scores in the
data are not as apparent because they are clustered with more frequently occur-
ring scores. On the other hand, more than 20 class intervals often make it diffi-
cult to see the shape of the distribution.

2. The size of i. If i is odd, the midpoint of the class interval will be a whole num-
ber, and whole numbers look better on graphs than decimal numbers. Three
and five often work well as interval sizes. You may find that i � 2 is needed if
you are to have 10 to 20 class intervals. If an i of 5 produces more than 20
class intervals, data groupers usually jump to an i of 10 or some multiple of 10.
An interval size of 25 is popular.

3. The lower limit of a class interval. Begin each class interval with a multiple of i.
For example, if the lowest score is 5 and i � 3 (as happened with the
Satisfaction With Life Scale (SWLS) scores in Table 2.4), the first class inter-
val should be 3–5. An exception to this convention occurs when i � 5. When
the interval size is 5, it is usually better to use a multiple of 5 as the midpoint
because multiples of 5 are easier to read on graphs.

4. The order of the intervals. The largest scores go at the top of the table. (This is
a convention not followed by some computer programs.)

Converting Unorganized Scores 
into a Grouped Frequency Distribution

With the conventions for establishing class intervals in mind, here are the steps for
converting unorganized data into a grouped frequency distribution. As an example, I
will use the raw data in Table 2.1 and describe converting it into Table 2.4.

1. Find the highest and lowest scores. In Table 2.1, the highest score is 35 and the
lowest score is 5.

2. Find the range of the scores by subtracting the lowest score from the highest
score (35 � 5 � 30).

3. Determine i by a trial-and-error procedure. Remember that there are to be 10
to 20 class intervals and that the interval size should be convenient (3, 5, 10, or
a multiple of 10). Dividing the range by a potential i value gives the
approximate number of class intervals. Dividing the range, 30, by 3 gives 10,
which is a recommended number of class intervals.

4. Establish the lowest interval. Begin the interval with a multiple of i, which
may or may not be an actual raw score. End the interval so that it contains 
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i scores (but not necessarily i frequencies). For Table 2.4, the lowest interval is
3–5. (Note that 3 is not an actual score but is a multiple of i.) Each interval
above the lowest one begins with a multiple of i. Continue building the class
intervals.

5. With the class intervals written, underline each score (Table 2.1) and put a tally
mark beside its class interval (Table 2.4).

6. As a check on your work, add up the frequency column. The sum should be N,
the number of scores in the unorganized data.

P R O B L E M S

*B.1. A sociology professor was deciding what statistics to present in 
her introduction to sociology classes. She developed a test that 
covered concepts such as the median, graphs, standard deviation,
and correlation. She tested one class of 50 students, and on the basis 
of the results, planned a course syllabus for that class and the other 
six intro sections. Arrange the data into an appropriate rough-draft frequency
distribution.

20 56 48 13 30 39 25 41 52 44
27 36 54 46 59 42 17 63 50 24
31 19 38 10 43 31 34 32 15 47
40 36 5 31 53 24 31 41 49 21
26 35 28 37 25 33 27 38 34 22

*B.2. The measurements that follow are weights in pounds of a sample of college
men in one study. Arrange them into a grouped frequency distribution. If
these data are skewed, tell the direction of the skew.

164 158 156 148 180 176 171 150 152 155 
161 168 148 175 154 155 149 149 151 160 
157 158 161 167 152 168 151 157 150 154 189

Central Tendency of Grouped 
Frequency Distributions

Mean

Finding the mean of a grouped frequency distribution involves the same arithmetic as
that for a simple frequency distribution. Setting up the problem, however, requires one
additional step. Look at Table B.1, which has four columns (compared to the three in
Table 3.3). For a grouped frequency distribution, the midpoint of the interval represents
all the scores in the interval. Thus, multiplying the midpoint by its f value includes all
the scores in that interval. As you can see at the bottom of Table B.1, summing the
f X column gives �f X, which, when divided by N, yields the mean.

Grouped Frequency Distributions and Central Tendency ■ 381
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In terms of a formula,

For Table B.1,

Note that the mean of the grouped data is 23.92 but the mean of the simple
frequency distribution is 24.00. The mean of grouped scores is often different, but
seldom is this difference of any consequence.

Median

Finding the median of a grouped distribution is almost the same as finding the median
of a simple frequency distribution. Of course, you are looking for a point that has as
many frequencies above it as below it. To locate the median, use the formula

For the data in Table B.1,

As before, look for a point with 50 frequencies above it and 50 frequencies below it.
Adding frequencies from the bottom of the distribution, you find that there are 37 scores
below the interval 24–26 and 24 scores in that interval. The 50.5th score is in the interval

Median location �
N � 1

2
�

100 � 1

2
� 50.5

Median location �
N � 1

2

m or X� �
©f X

N
�

2392

100
� 23.92

m or X� �
©f X

N

382 ■ Appendix B

TABLE B.1 A grouped frequency distribution of
Satisfaction With Life Scale scores with i � 3

SWLS scores Midpoint
(class interval) (X) f f X

33–35 34 5 170
30–32 31 11 341
27–29 28 23 644
24–26 25 24 600
21–23 22 14 308
18–20 19 8 152
15–17 16 5 80
12–14 13 3 39
9–11 10 5 50
6–8 7 0 0
3–5 4 2 8

N � 100 2392
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24–26. The midpoint of the interval is the median. For the grouped SWLS scores in
Table B.1, the median is 25.

Thus, to find the median of a grouped frequency distribution, locate the class
interval that is the location of the middle score. The midpoint of that interval is the
median.

Mode

The mode is the midpoint of the interval that has the highest frequency. In Table B.1
the highest frequency count is 24. The interval with 24 scores is 24–26. The midpoint
of that interval, 25, is the mode.

P R O B L E M S

B.3. Find the mean, median, and mode of the grouped frequency distribution you
constructed from the statistics questionnaire data (problem B.1).

B.4. Find the mean, median, and mode of the weight data in problem B.2.

Grouped Frequency Distributions and Central Tendency ■ 383
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Tables ■ 385

TABLE A Critical values for Pearson product-moment correlation coefficients, r*

a levels (two-tailed test)
df .10 .05 .02 .01 .001

a levels (one-tailed test)
(df � N � 2) .05 .025 .01 .005 .0005

1 .98769 .99692 .999507 .999877 .9999988
2 .90000 .95001 .98000 .990000 .99900
3 .8053 .8783 .9343 .95874 .99113
4 .7293 .8114 .8822 .91720 .97407
5 .6694 .7545 .8329 .8745 .95089
6 .6215 .7067 .7888 .8343 .92491
7 .5823 .6664 .7498 .7976 .8983
8 .5495 .6319 .7154 .7646 .8721
9 .5214 .6020 .6850 .7348 .8471

10 .4972 .5760 .6581 .7079 .8233
11 .4762 .5529 .6339 .6836 .8010
12 .4574 .5324 .6120 .6614 .7800
13 .4409 .5139 .5922 .6411 .7604
14 .4258 .4973 .5742 .6226 .7419
15 .4124 .4821 .5577 .6055 .7247
16 .4000 .4683 .5425 .5897 .7084
17 .3888 .4556 .5285 .5750 .6932
18 .3783 .4438 .5154 .5614 .6788
19 .3687 .4329 .5033 .5487 .6652
20 .3599 .4227 .4921 .5368 .6524
21 .3516 .4133 .4816 .5256 .6402
22 .3438 .4044 .4715 .5151 .6287
23 .3365 .3961 .4623 .5051 .6177
24 .3297 .3883 .4534 .4958 .6073
25 .3233 .3809 .4451 .4869 .5974
26 .3173 .3740 .4372 .4785 .5880
27 .3114 .3673 .4297 .4706 .5790
28 .3060 .3609 .4226 .4629 .5703
29 .3009 .3550 .4158 .4556 .5620
30 .2959 .3493 .4093 .4487 .5541
40 .2573 .3044 .3578 .3931 .4896
50 .2306 .2733 .3218 .3542 .4432
60 .2109 .2500 .2948 .3248 .4078
80 .1829 .2172 .2565 .2830 .3568

100 .1638 .1946 .2301 .2540 .3211
120 .1496 .1779 .2104 .2324 .2943

* To be significant, the r obtained from the data must be equal to or greater than the value shown in
the table.
Source: Entries computed by the author.
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TABLE B Random digits

00–04 05–09 10–14 15–19 20–24 25–29 30–34 35–39 40–45 45–49

00 54463 22662 65905 70639 79365 67382 29085 69831 47058 08186
01 15389 85205 18850 39226 42249 90669 96325 23248 60933 26927
02 85941 40756 82414 02015 13858 78030 16269 65978 01385 15345
03 61149 69440 11286 88218 58925 03638 52862 62733 33451 77455
04 05219 81619 10651 67079 92511 59888 84502 72095 83463 75577

05 41417 98326 87719 92294 46614 50948 64886 20002 97365 30976
06 28357 94070 20652 35774 16249 75019 21145 05217 47286 76305
07 17783 00015 10806 83091 91530 36466 39981 62481 49177 75779
08 40950 84820 29881 85966 62800 70326 84740 62660 77379 90279
09 82995 64157 66164 41180 10089 41757 78258 96488 88629 37231

10 96754 17676 55659 44105 47361 34833 86679 23930 53249 27083
11 34357 88040 53364 71726 45690 66334 60332 22554 90600 71113
12 06318 37403 49927 57715 50423 67372 63116 48888 21505 80182
13 62111 52820 07243 79931 89292 84767 85693 73947 22278 11551
14 47534 09243 67879 00544 23410 12740 02540 54440 32949 13491

15 98614 75993 84460 62846 59844 14922 48730 73443 48167 34770
16 24856 03648 44898 09351 98795 18644 39765 71058 90368 44104
17 96887 12479 80621 66223 86085 78285 02432 53342 42846 94771
18 90801 21472 42815 77408 37390 76766 52615 32141 30268 18106
19 55165 77312 83666 36028 28420 70219 81369 41493 47366 41067

20 75884 12952 84318 95108 72305 64620 91318 89872 45375 85436
21 16777 37116 58550 42958 21460 43910 01175 87894 81378 10620
22 46230 43877 80207 88877 89380 32992 91380 03164 98656 59337
23 42902 66892 46134 01432 94710 23474 20423 60137 60609 13119
24 81007 00333 39693 28039 10154 95425 39220 19774 31782 49037

25 68089 01122 51111 72373 06902 74373 96199 97017 41273 21546
26 20411 67081 89950 16944 93054 87687 96693 87236 77054 33848
27 58212 13160 06468 15718 82627 76999 05999 58680 96739 63700
28 70577 42866 24969 61210 76046 67699 42054 12696 93758 03283
29 94522 74358 71659 62038 79643 79169 44741 05437 39038 13163

30 42626 86819 85651 88678 17401 03252 99547 32404 17918 62880
31 16051 33763 57194 16752 54450 19031 58580 47629 54132 60631
32 08244 27647 33851 44705 94211 46716 11738 55784 95374 72655
33 59497 04392 09419 89964 51211 04894 72882 17805 21896 83864
34 97155 13428 40293 09985 58434 91412 69124 82171 59058 82859

35 98409 66162 95763 47420 20792 61527 29441 39435 11859 41567
36 45476 84882 65109 96597 25930 66790 65706 61203 53634 22557
37 89300 69700 50741 30329 11658 23166 05400 66669 48708 02306
38 50051 95137 91631 66315 91428 12275 24816 68091 71710 33258
39 31753 85178 31310 89642 98364 92396 24617 09609 83942 22716

40 79152 53829 77250 20190 56535 18760 69942 77448 33278 48805
41 44560 38750 83635 56540 64900 42912 13953 79149 18710 68618
42 68328 83378 63369 71381 39564 95615 42451 64559 97501 65747
43 46939 38689 58625 08342 30459 85863 20781 09284 26333 91777
44 83544 86141 15707 96256 23068 13782 08467 89469 93842 55349

45 91621 00881 04900 54224 46177 55309 17852 27491 89415 23466
46 91896 67126 04151 03795 59077 11848 12630 98375 52068 60142
47 55751 62515 21108 80830 02263 29303 37204 96926 30506 09808
48 85156 87689 95493 88842 00664 55017 55539 17771 69448 87530
49 07521 56898 12236 60277 39102 62315 12239 07105 11844 01117

(continued)

Source: From Statistical Methods, by G. W. Snedecor and W. G. Cochran, Seventh Edition. Copyright © 1980 Iowa
State University Press. Reprinted by permission.
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TABLE B (continued)

50–54 55–59 60–64 65–69 70–74 75–79 80–84 85–89 90–94 95–99

00 59391 58030 52098 82718 87024 82848 04190 96574 90464 29065
01 99567 76364 77204 04615 27062 96621 43918 01896 83991 51141
02 10363 97518 51400 25670 98342 61891 27101 37855 06235 33316
03 86859 19558 64432 16706 99612 59798 32803 67708 15297 28612
04 11258 24591 36863 55368 31721 94335 34936 02566 80972 08188

05 95068 88628 35911 14530 33020 80428 39936 31855 34334 64865
06 54463 47237 73800 91017 36239 71824 83671 39892 60518 37092
07 16874 62677 57412 13215 31389 62233 80827 73917 82802 84420
08 92494 63157 76593 91316 03505 72389 96363 52887 01087 66091
09 15669 56689 35682 40844 53256 81872 35213 09840 34471 74441

10 99116 75486 84989 23476 52967 67104 39495 39100 17217 74073
11 15696 10703 65178 90637 63110 17622 53988 71087 84148 11670
12 97720 15369 51269 69620 03388 13699 33423 67453 43269 56720
13 11666 13841 71681 98000 35979 39719 81899 07449 47985 46967
14 71628 73130 78783 75691 41632 09847 61547 18707 65489 69944

15 40501 51089 99943 91843 41995 88931 73631 69361 05375 15417
16 22518 55576 98215 82068 10798 86211 36584 67466 69373 40054
17 75112 30485 62173 02132 14878 92879 22281 16783 86352 00077
18 80327 02671 98191 84342 90813 49268 95441 15496 20168 09271
19 60251 45548 02146 05597 48228 81366 34598 72856 66762 17002

20 57430 82270 10421 05540 43648 75888 66049 21511 47676 33444
21 73528 39559 34434 88596 54086 71693 43132 14414 79949 85193
22 25991 65959 70769 64721 86413 33475 42740 06175 82758 66248
23 78388 16638 09134 59880 63806 48472 39318 35434 24057 74739
24 12477 09965 96657 57994 59439 76330 24596 77515 09577 91871

25 83266 32883 42451 15579 38155 29793 40914 65990 16255 17777
26 76970 80876 10237 39515 79152 74798 39357 09054 73579 92359
27 37074 65198 44785 68624 98336 84481 97610 78735 46703 98265
28 83712 06514 30101 78295 54656 85417 43189 60048 72781 72606
29 20287 56862 69727 94443 64936 08366 27227 05158 50326 59566

30 74261 32592 86538 27041 65172 85532 07571 80609 39285 65340
31 64081 49863 08478 96001 18888 14810 70545 89755 59064 07210
32 05617 75818 47750 67814 29575 10526 66192 44464 27058 40467
33 26793 74951 95466 74307 13330 42664 85515 20632 05497 33625
34 65988 72850 48737 54719 52056 01596 03845 35067 03134 70322

35 27366 42271 44300 73399 21105 03280 73457 43093 05192 48657
36 56760 10909 98147 34736 33863 95256 12731 66598 50771 83665
37 72880 43338 93643 58904 59543 23943 11231 83268 65938 81581
38 77888 38100 03062 58103 47961 83841 25878 23746 55903 44115
39 28440 07819 21580 51459 47971 29882 13990 29226 23608 15873

40 63525 94441 77033 12147 51054 49955 58312 76923 96071 05813
41 47606 93410 16359 89033 89696 47231 64498 31776 05383 39902
42 52669 45030 96279 14709 52372 87832 02735 50803 72744 88208
43 16738 60159 07425 62369 07515 82721 37875 71153 21315 00132
44 59348 11695 45751 15865 74739 05572 32688 20271 65128 14551

45 12900 71775 29845 60774 94924 21810 38636 33717 67598 82521
46 75086 23527 49939 33595 13484 97588 28617 17979 70749 35234
47 99495 51434 29181 09993 38190 42553 68922 52125 91077 40197
48 26075 31671 45386 36583 93159 48599 52022 41330 60651 91321
49 13636 93596 23377 51133 95126 61496 42474 45141 46660 42338

(continued)
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TABLE B (continued)

00–04 05–09 10–14 15–19 20–24 25–29 30–34 35–39 40–45 45–49

50 64249 63664 39652 40646 97306 31741 07294 84149 46797 82487
51 26538 44249 04050 48174 65570 44072 40192 51153 11397 58212
52 05845 00512 78630 55328 18116 69296 91705 86224 29503 57071
53 74897 68373 67359 51014 33510 83048 17056 72506 82949 54600
54 20872 54570 35017 88132 25730 22626 86723 91691 13191 77212

55 31432 96156 89177 75541 81355 24480 77243 76690 42507 84362
56 66890 61505 01240 00660 05873 13568 76082 79172 57913 93448
57 48194 57790 79970 33106 86904 48119 52503 24130 72824 21627
58 11303 87118 81471 52936 08555 28420 49416 44448 04269 27029
59 54374 57325 16947 45356 78371 10563 97191 53798 12693 27928

60 64852 34421 61046 90849 13966 39810 42699 21753 76192 10508
61 16309 20384 09491 91588 97720 89846 30376 76970 23063 35894
62 42587 37065 24526 72602 57589 98131 37292 05967 26002 51945
63 40177 98590 97161 41682 84533 67588 62036 49967 01990 72308
64 82309 76128 93965 26743 24141 04838 40254 26065 07938 76236

65 79788 68243 59732 04257 27084 14743 17520 95401 55811 76099
66 40538 79000 89559 25026 42274 23489 34502 75508 06059 86682
67 64016 73598 18609 73150 62463 33102 45205 87440 96767 67042
68 49767 12691 17903 93871 99721 79109 09425 26904 07419 76013
69 76974 55108 29795 08404 82684 00497 51126 79935 57450 55671

70 23854 08480 85983 96025 50117 64610 99425 62291 86943 21541
71 68973 70551 25098 78033 98573 79848 31778 29555 61446 23037
72 36444 93600 65350 14971 25325 00427 52073 64280 18847 24768
73 03003 87800 07391 11594 21196 00781 32550 57158 58887 73041
74 17540 26188 36647 78386 04558 61463 57842 90382 77019 24210

75 38916 55809 47982 41968 69760 79422 80154 91486 19180 15100
76 64288 19843 69122 42502 48508 28820 59933 72998 99942 10515
77 86809 51564 38040 39418 49915 19000 58050 16899 79952 57849
78 99800 99566 14742 05028 30033 94889 53381 23656 75787 79223
79 92345 31890 95712 08279 91794 94068 49037 88674 35355 12267

80 90363 65162 32245 82279 79256 80834 06088 99462 56705 06118
81 64437 32242 48431 04835 39070 59702 31508 60935 22390 52246
82 91714 53662 28373 34333 55791 74758 51144 18827 10704 76803
83 20902 17646 31391 31459 33315 03444 55743 74701 58851 27427
84 12217 86007 70371 52281 14510 76094 96579 54863 78339 20839

85 45177 02863 42307 53571 22532 74921 17735 42201 80540 54721
86 28325 90814 08804 52746 47913 54577 47525 77705 95330 21866
87 29019 28776 56116 54791 64604 08815 46049 71186 34650 14994
88 84979 81353 56219 67062 26146 82567 33122 14124 46240 92973
89 50371 26347 48513 63915 11158 25563 91915 18431 92978 11591

90 53422 06825 69711 67950 64716 18003 49581 45378 99878 61130
91 67453 35651 89316 41620 32048 70225 47597 33137 31443 51445
92 07294 85353 74819 23445 68237 07202 99515 62282 53809 26685
93 79544 00302 45338 16015 66613 88968 14595 63836 77716 79596
94 64144 85442 82060 46471 24162 39500 87351 36637 42833 71875

95 90919 11883 58318 00042 52402 28210 34075 33272 00840 73268
96 06670 57353 86275 92276 77591 46924 60839 55437 03183 13191
97 36634 93976 52062 83678 41256 60948 18685 48992 19462 96062
98 75101 72891 85745 67106 26010 62107 60885 37503 55461 71213
99 05112 71222 72654 51583 05228 62056 57390 42746 39272 96659

(continued)
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Tables ■ 389

TABLE B (continued)

50–54 55–59 60–64 65–69 70–74 75–79 80–84 85–89 90–94 95–99

50 32847 31282 03345 89593 69214 70381 78285 20054 91018 16742
51 16916 00041 30236 55023 14253 76582 12092 86533 92426 37655
52 66176 34047 21005 27137 03191 48970 64625 22394 39622 79085
53 46299 13335 12180 16861 38043 59292 62675 63631 37020 78195
54 22847 47839 45385 23289 47526 54098 45683 55849 51575 64689

55 41851 54160 92320 69936 34803 92479 33399 71160 64777 83378
56 28444 59497 91586 95917 68553 28639 06455 34174 11130 91994
57 47520 62378 98855 83174 13088 16561 68559 26679 06238 51254
58 34978 63271 13142 82681 05271 08822 06490 44984 49307 62717
59 37404 80416 69035 92980 49486 74378 75610 74976 70056 15478

60 32400 65482 52099 53676 74648 94148 65095 69597 52771 71551
61 89262 86332 51718 70663 11623 29834 79820 73002 84886 03591
62 86866 09127 98021 03871 27789 58444 44832 36505 40672 30180
63 90814 14833 08759 74645 05046 94056 99094 65901 32663 73040
64 19192 82756 20553 58446 55376 88914 75096 26119 83998 43816

65 77585 52593 56612 95766 10019 29531 73064 20953 53523 58136
66 23757 16364 05096 03192 62386 45389 85332 18877 55710 96459
67 45989 96257 23850 26216 23309 21526 07425 50254 19455 29315
68 92970 94243 07316 41467 64837 52406 25225 51553 31220 14032
69 74346 59596 40088 98176 17896 86900 20249 77753 19099 48885

70 87646 41309 27636 45153 29988 94770 07255 70908 05340 99751
71 50099 71038 45146 06146 55211 99429 43169 66259 97786 59180
72 10127 46900 64984 75348 04115 33624 68774 60013 35515 62556
73 67995 81977 18984 64091 02785 27762 42529 97144 80407 64525
74 26304 80217 84934 82657 69291 35397 98714 35104 08187 48109

75 81994 41070 56642 64091 31229 02595 13513 45148 78722 30144
76 59537 34662 79631 89403 65212 09975 06118 86197 58208 16162
77 51228 10937 62396 81460 47331 91403 95007 06047 16846 64809
78 31089 37995 29577 07828 42272 54016 21950 86192 99046 84864
79 38207 97938 93459 75174 79460 55436 57206 87644 21296 43395

80 88666 31142 09474 89712 63153 62333 42212 06140 42594 43671
81 53365 56134 67582 92557 89520 33452 05134 70628 27612 33738
82 89807 74530 38004 90102 11693 90257 05500 79920 62700 43325
83 18682 81038 85662 90915 91631 22223 91588 80774 07716 12548
84 63571 32579 63942 25371 90234 94592 98475 76884 37635 33608

85 68927 56492 67799 95392 77642 54613 91853 08424 81450 76229
86 56401 63186 39389 99798 31356 89235 97036 32341 33292 73757
87 24333 95603 02359 72942 46287 95382 08452 62862 97869 71775
88 17025 84202 95199 62272 06366 16175 97577 99304 41587 03686
89 02804 08253 52133 20224 68034 50865 57868 22343 55111 03607

90 08298 03879 20995 19850 73090 13191 18963 82244 78479 99121
91 59883 01785 82403 96062 03785 03488 12970 64896 38336 30030
92 46982 06682 62864 91837 74021 89094 39952 64158 79614 78235
93 31121 47266 07661 02051 67599 24471 69843 83696 71402 76287
94 97867 56641 63416 17577 30161 87320 37752 73276 48969 41915

95 57364 86746 08415 14621 49430 22311 15836 72492 49372 44103
96 09559 26263 69511 28064 75999 44540 13337 10918 79846 54809
97 53873 55571 00608 42661 91332 63956 74087 59008 47494 99581
98 35531 19162 86406 05299 77511 24311 57257 22826 77555 05941
99 28229 88629 25695 94932 30721 16197 78742 34974 97528 45447
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TABLE C
Normal curve areas

A B C A B C A B C

z m to z z to � z m to z z to � z m to z z to �

0.00 .0000 .5000 0.55 .2088 .2912 1.10 .3643 .1357
0.01 .0040 .4960 0.56 .2123 .2877 1.11 .3665 .1335
0.02 .0080 .4920 0.57 .2157 .2843 1.12 .3686 .1314
0.03 .0120 .4880 0.58 .2190 .2810 1.13 .3708 .1292
0.04 .0160 .4840 0.59 .2224 .2776 1.14 .3729 .1271
0.05 .0199 .4801 0.60 .2257 .2743 1.15 .3749 .1251
0.06 .0239 .4761 0.61 .2291 .2709 1.16 .3770 .1230
0.07 .0279 .4721 0.62 .2324 .2676 1.17 .3790 .1210
0.08 .0319 .4681 0.63 .2357 .2643 1.18 .3810 .1190
0.09 .0359 .4641 0.64 .2389 .2611 1.19 .3830 .1170
0.10 .0398 .4602 0.65 .2422 .2578 1.20 .3849 .1151
0.11 .0438 .4562 0.66 .2454 .2546 1.21 .3869 .1131
0.12 .0478 .4522 0.67 .2486 .2514 1.22 .3888 .1112
0.13 .0517 .4483 0.68 .2517 .2483 1.23 .3907 .1093
0.14 .0557 .4443 0.69 .2549 .2451 1.24 .3925 .1075
0.15 .0596 .4404 0.70 .2580 .2420 1.25 .3944 .1056
0.16 .0636 .4364 0.71 .2611 .2389 1.26 .3962 .1038
0.17 .0675 .4325 0.72 .2642 .2358 1.27 .3980 .1020
0.18 .0714 .4286 0.73 .2673 .2327 1.28 .3997 .1003
0.19 .0753 .4247 0.74 .2704 .2296 1.29 .4015 .0985
0.20 .0793 .4207 0.75 .2734 .2266 1.30 .4032 .0968
0.21 .0832 .4168 0.76 .2764 .2236 1.31 .4049 .0951
0.22 .0871 .4129 0.77 .2794 .2206 1.32 .4066 .0934
0.23 .0910 .4090 0.78 .2823 .2177 1.33 .4082 .0918
0.24 .0948 .4052 0.79 .2852 .2148 1.34 .4099 .0901
0.25 .0987 .4013 0.80 .2881 .2119 1.35 .4115 .0885
0.26 .1026 .3974 0.81 .2910 .2090 1.36 .4131 .0869
0.27 .1064 .3936 0.82 .2939 .2061 1.37 .4147 .0853
0.28 .1103 .3897 0.83 .2967 .2033 1.38 .4162 .0838
0.29 .1141 .3859 0.84 .2995 .2005 1.39 .4177 .0823
0.30 .1179 .3821 0.85 .3023 .1977 1.40 .4192 .0808
0.31 .1217 .3783 0.86 .3051 .1949 1.41 .4207 .0793
0.32 .1255 .3745 0.87 .3078 .1922 1.42 .4222 .0778
0.33 .1293 .3707 0.88 .3106 .1894 1.43 .4236 .0764
0.34 .1331 .3669 0.89 .3133 .1867 1.44 .4251 .0749
0.35 .1368 .3632 0.90 .3159 .1841 1.45 .4265 .0735
0.36 .1406 .3594 0.91 .3186 .1814 1.46 .4279 .0721
0.37 .1443 .3557 0.92 .3212 .1788 1.47 .4292 .0708
0.38 .1480 .3520 0.93 .3238 .1762 1.48 .4306 .0694
0.39 .1517 .3483 0.94 .3264 .1736 1.49 .4319 .0681
0.40 .1554 .3446 0.95 .3289 .1711 1.50 .4332 .0668
0.41 .1591 .3409 0.96 .3315 .1685 1.51 .4345 .0655
0.42 .1628 .3372 0.97 .3340 .1660 1.52 .4357 .0643
0.43 .1664 .3336 0.98 .3365 .1635 1.53 .4370 .0630
0.44 .1700 .3300 0.99 .3389 .1611 1.54 .4382 .0618
0.45 .1736 .3264 1.00 .3413 .1587 1.55 .4394 .0606
0.46 .1772 .3228 1.01 .3438 .1562 1.56 .4406 .0594
0.47 .1808 .3192 1.02 .3461 .1539 1.57 .4418 .0582
0.48 .1844 .3156 1.03 .3485 .1515 1.58 .4429 .0571
0.49 .1879 .3121 1.04 .3508 .1492 1.59 .4441 .0559
0.50 .1915 .3085 1.05 .3531 .1469 1.60 .4452 .0548
0.51 .1950 .3050 1.06 .3554 .1446 1.61 .4463 .0537
0.52 .1985 .3015 1.07 .3577 .1423 1.62 .4474 .0526
0.53 .2019 .2981 1.08 .3599 .1401 1.63 .4484 .0516
0.54 .2054 .2946 1.09 .3621 .1379 1.64 .4495 .0505
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Tables ■ 391

TABLE C (continued)

A B C A B C A B C

z m to z z to � z m to z z to � z m to z z to �

1.65 .4505 .0495 2.22 .4868 .0132 2.79 .4974 .0026
1.66 .4515 .0485 2.23 .4871 .0129 2.80 .4974 .0026
1.67 .4525 .0475 2.24 .4875 .0125 2.81 .4975 .0025
1.68 .4535 .0465 2.25 .4878 .0122 2.82 .4976 .0024
1.69 .4545 .0455 2.26 .4881 .0119 2.83 .4977 .0023
1.70 .4554 .0446 2.27 .4884 .0116 2.84 .4977 .0023
1.71 .4564 .0436 2.28 .4887 .0113 2.85 .4978 .0022
1.72 .4573 .0427 2.29 .4890 .0110 2.86 .4979 .0021
1.73 .4582 .0418 2.30 .4893 .0107 2.87 .4979 .0021
1.74 .4591 .0409 2.31 .4896 .0104 2.88 .4980 .0020
1.75 .4599 .0401 2.32 .4898 .0102 2.89 .4981 .0019
1.76 .4608 .0392 2.33 .4901 .0099 2.90 .4981 .0019
1.77 .4616 .0384 2.34 .4904 .0096 2.91 .4982 .0018
1.78 .4625 .0375 2.35 .4906 .0094 2.92 .4982 .0018
1.79 .4633 .0367 2.36 .4909 .0091 2.93 .4983 .0017
1.80 .4641 .0359 2.37 .4911 .0089 2.94 .4984 .0016
1.81 .4649 .0351 2.38 .4913 .0087 2.95 .4984 .0016
1.82 .4656 .0344 2.39 .4916 .0084 2.96 .4985 .0015
1.83 .4664 .0336 2.40 .4918 .0082 2.97 .4985 .0015
1.84 .4671 .0329 2.41 .4920 .0080 2.98 .4986 .0014
1.85 .4678 .0322 2.42 .4922 .0078 2.99 .4986 .0014
1.86 .4686 .0314 2.43 .4925 .0075 3.00 .4987 .0013
1.87 .4693 .0307 2.44 .4927 .0073 3.01 .4987 .0013
1.88 .4699 .0301 2.45 .4929 .0071 3.02 .4987 .0013
1.89 .4706 .0294 2.46 .4931 .0069 3.03 .4988 .0012
1.90 .4713 .0287 2.47 .4932 .0068 3.04 .4988 .0012
1.91 .4719 .0281 2.48 .4934 .0066 3.05 .4989 .0011
1.92 .4726 .0274 2.49 .4936 .0064 3.06 .4989 .0011
1.93 .4732 .0268 2.50 .4938 .0062 3.07 .4989 .0011
1.94 .4738 .0262 2.51 .4940 .0060 3.08 .4990 .0010
1.95 .4744 .0256 2.52 .4941 .0059 3.09 .4990 .0010
1.96 .4750 .0250 2.53 .4943 .0057 3.10 .4990 .0010
1.97 .4756 .0244 2.54 .4945 .0055 3.11 .4991 .0009
1.98 .4761 .0239 2.55 .4946 .0054 3.12 .4991 .0009
1.99 .4767 .0233 2.56 .4948 .0052 3.13 .4991 .0009
2.00 .4772 .0228 2.57 .4949 .0051 3.14 .4992 .0008
2.01 .4778 .0222 2.58 .4951 .0049 3.15 .4992 .0008
2.02 .4783 .0217 2.59 .4952 .0048 3.16 .4992 .0008
2.03 .4788 .0212 2.60 .4953 .0047 3.17 .4992 .0008
2.04 .4793 .0207 2.61 .4955 .0045 3.18 .4993 .0007
2.05 .4798 .0202 2.62 .4956 .0044 3.19 .4993 .0007
2.06 .4803 .0197 2.63 .4957 .0043 3.20 .4993 .0007
2.07 .4808 .0192 2.64 .4959 .0041 3.21 .4993 .0007
2.08 .4812 .0188 2.65 .4960 .0040 3.22 .4994 .0006
2.09 .4817 .0183 2.66 .4961 .0039 3.23 .4994 .0006
2.10 .4821 .0179 2.67 .4962 .0038 3.24 .4994 .0006
2.11 .4826 .0174 2.68 .4963 .0037 3.25 .4994 .0006
2.12 .4830 .0170 2.69 .4964 .0036 3.30 .4995 .0005
2.13 .4834 .0166 2.70 .4965 .0035 3.35 .4996 .0004
2.14 .4838 .0162 2.71 .4966 .0034 3.40 .4997 .0003
2.15 .4842 .0158 2.72 .4967 .0033 3.45 .4997 .0003
2.16 .4846 .0154 2.73 .4968 .0032 3.50 .4998 .0002
2.17 .4850 .0150 2.74 .4969 .0031 3.60 .4998 .0002
2.18 .4854 .0146 2.75 .4970 .0030 3.70 .4999 .0001
2.19 .4857 .0143 2.76 .4971 .0029 3.80 .4999 .0001
2.20 .4861 .0139 2.77 .4972 .0028 3.90 .49995 .00005
2.21 .4864 .0136 2.78 .4973 .0027 4.00 .49997 .00003
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Tables ■ 393

TABLE E Chi square distribution*

a levels

df .10 .05 .025 .01 .001

1 2.706 3.841 5.024 6.635 10.828
2 4.605 5.991 7.378 9.210 13.816
3 6.251 7.815 9.348 11.345 16.266
4 7.779 9.488 11.143 13.277 18.467
5 9.236 11.070 12.833 15.086 20.515

6 10.645 12.592 14.449 16.812 22.458
7 12.017 14.067 16.013 18.475 24.322
8 13.362 15.507 17.535 20.090 26.125
9 14.684 16.919 19.023 21.666 27.877

10 15.987 18.307 20.483 23.209 29.588

11 17.275 19.675 21.920 24.725 31.264
12 18.549 21.026 23.337 26.217 32.910
13 19.812 22.362 24.736 27.688 34.528
14 21.064 23.685 26.119 29.141 36.123
15 22.307 24.996 27.488 30.578 37.697

16 23.542 26.296 28.845 32.000 39.252
17 24.769 27.587 30.191 33.409 40.790
18 25.989 28.869 31.526 34.805 42.312
19 27.204 30.144 32.852 36.191 43.820
20 28.412 31.410 34.170 37.566 45.315

21 29.615 32.671 35.479 38.932 46.797
22 30.813 33.924 36.781 40.289 48.268
23 32.007 35.172 38.076 41.638 49.728
24 33.196 36.415 39.364 42.980 51.179
25 34.382 37.652 40.646 44.314 52.620

26 35.563 38.885 41.923 45.642 54.052
27 36.741 40.113 43.195 46.963 55.476
28 37.916 41.337 44.461 48.278 56.892
29 39.087 42.557 45.722 49.588 58.301
30 40.256 43.773 46.979 50.892 59.703

* To be significant, the x2 obtained from the data must be equal to or greater than
the value shown in the table.
Source: Engineering Statistics Handbook, Retrieved from
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm.
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TABLE F The F distribution*

a levels of .05 (lightface) and .01 (boldface) for the distribution of F

Degrees of freedom (for the numerator of F ratio)

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 q

1 161 200 216 225 230 234 237 239 241 242 243 244 245 246 248 249 250 251 252 253 253 254 254 254 1
4,052 4,999 5,403 5,625 5,764 5,859 5,928 5,981 6,022 6,056 6,082 6,106 6,142 6,169 6,208 6,234 6,258 6,286 6,302 6,323 6,334 6,352 6,361 6,366

2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 19.40 19.41 19.42 19.43 19.44 19.45 19.46 19.47 19.47 19.48 19.49 19.49 19.50 19.50 2
98.49 99.00 99.17 99.25 99.30 99.33 99.34 99.36 99.38 99.40 99.41 99.42 99.43 99.44 99.45 99.46 99.47 99.48 99.49 99.49 99.49 99.49 99.50 99.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78 8.76 8.74 8.71 8.69 8.66 8.64 8.62 8.60 8.58 8.57 8.56 8.54 8.54 8.53 3
34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 27.13 27.05 29.92 26.83 26.69 26.60 26.50 26.41 26.35 26.27 26.23 26.18 26.14 26.12

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.93 5.91 5.87 5.84 5.80 5.77 5.74 5.71 5.70 5.68 5.66 5.66 5.64 5.63 4
21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.54 14.45 14.37 14.24 14.15 14.02 13.93 13.83 13.74 13.69 13.61 13.57 13.52 13.48 13.46

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.70 4.68 4.64 4.60 4.56 4.53 4.50 4.46 4.44 4.42 4.40 4.38 4.37 4.36 5
16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.27 10.15 10.05 9.96 9.89 9.77 9.68 9.55 9.47 9.38 9.29 9.24 9.17 9.13 9.07 9.04 9.02

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.96 3.92 3.87 3.84 3.81 3.77 3.75 3.72 3.71 3.69 3.68 3.67 6
13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72 7.60 7.52 7.39 7.31 7.23 7.14 7.09 7.02 6.99 6.94 6.90 6.88

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63 3.60 3.57 3.52 3.49 3.44 3.41 3.38 3.34 3.32 3.29 3.28 3.25 3.24 3.23 7
12.25 9.55 8.45 7.85 7.46 7.19 7.00 6.84 6.71 6.62 6.54 6.47 6.35 6.27 6.15 6.07 5.98 5.90 5.85 5.78 5.75 5.70 5.67 5.65

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34 3.31 3.28 3.23 3.20 3.15 3.12 3.08 3.05 3.03 3.00 2.98 2.96 2.94 2.93 8
11.26 8.65 7.59 7.01 6.63 6.37 6.19 6.03 5.91 5.82 5.74 5.67 5.56 5.48 5.36 5.28 5.20 5.11 5.06 5.00 4.96 4.91 4.88 4.86

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 3.10 3.07 3.02 2.98 2.93 2.90 2.86 2.82 2.80 2.77 2.76 2.73 2.72 2.71 9
10.56 8.02 6.99 6.42 6.06 5.80 5.62 5.47 5.35 5.26 5.18 5.11 5.00 4.92 4.80 4.73 4.64 4.56 4.51 4.45 4.41 4.36 4.33 4.31

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.97 2.94 2.91 2.86 2.82 2.77 2.74 2.70 2.67 2.64 2.61 2.59 2.56 2.55 2.54 10
10.04 7.56 6.55 5.99 5.64 5.39 5.21 5.06 4.95 4.85 4.78 4.71 4.60 4.52 4.41 4.33 4.25 4.17 4.12 4.05 4.01 3.96 3.93 3.91

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.86 2.82 2.79 2.74 2.70 2.65 2.61 2.57 2.53 2.50 2.47 2.45 2.42 2.41 2.40 11
9.65 7.20 6.22 5.67 5.32 5.07 4.88 4.74 4.63 4.54 4.46 4.40 4.29 4.21 4.10 4.02 3.94 3.86 3.80 3.74 3.70 3.66 3.62 3.60

12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.80 2.76 2.72 2.69 2.64 2.60 2.54 2.50 2.46 2.42 2.40 2.36 2.35 2.32 2.31 2.30 12
9.33 6.93 5.95 5.41 5.06 4.82 4.65 4.50 4.39 4.30 4.22 4.16 4.05 3.98 3.86 3.78 3.70 3.61 3.56 3.49 3.46 3.41 3.38 3.36

13 4.67 3.80 3.41 3.18 3.02 2.92 2.84 2.77 2.72 2.67 2.63 2.60 2.55 2.51 2.46 2.42 2.38 2.34 2.32 2.28 2.26 2.24 2.22 2.21 13
9.07 6.70 5.74 5.20 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96 3.85 3.78 3.67 3.59 3.51 3.42 3.37 3.30 3.27 3.21 3.18 3.16

(continued)

* To be significant, the F obtained from the data must be equal to or greater than the value shown in the table.
Source: From Statistical Methods, by G. W. Snedecor and W. W. Cochran, Seventh Edition. Copyright © 1980 Iowa State University Press. Reprinted by permission. For critical
values of F for a � .10, see www.itl.nist.gov/div898/handbook/eda/section3/eda3673.htm.
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TABLE F (continued)

Degrees of freedom (for the numerator of F ratio)

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 q

14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.65 2.60 2.56 2.53 2.48 2.44 2.39 2.35 2.31 2.27 2.24 2.21 2.19 2.16 2.14 2.13 14
8.86 6.51 5.56 5.03 4.69 4.46 4.28 4.14 4.03 3.94 3.86 3.80 3.70 3.62 3.51 3.43 3.34 3.26 3.21 3.14 3.11 3.06 3.02 3.00

15 4.54 3.68 3.29 3.06 2.90 2.79 2.70 2.64 2.59 2.55 2.51 2.48 2.43 2.39 2.33 2.29 2.25 2.21 2.18 2.15 2.12 2.10 2.08 2.07 15
8.68 6.36 5.52 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67 3.56 3.48 3.36 3.29 3.20 3.12 3.07 3.00 2.97 2.92 2.89 2.87

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.45 2.42 2.37 2.33 2.28 2.24 2.20 2.16 2.13 2.09 2.07 2.04 2.02 2.01 16
8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.61 3.55 3.45 3.37 3.25 3.18 3.10 3.01 2.96 2.89 2.86 2.80 2.77 2.75

17 4.45 3.59 3.20 2.96 2.81 2.70 2.62 2.55 2.50 2.45 2.41 2.38 2.33 2.29 2.23 2.19 2.15 2.11 2.08 2.04 2.02 1.99 1.97 1.96 17
8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.45 3.35 3.27 3.16 3.08 3.00 2.92 2.86 2.79 2.76 2.70 2.67 2.65

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.29 2.25 2.19 2.15 2.11 2.07 2.04 2.00 1.89 1.95 1.93 1.92 18
8.28 6.01 5.09 4.58 4.25 4.01 3.85 3.71 3.60 3.51 3.44 3.37 3.27 3.19 3.07 3.00 2.91 2.83 2.78 2.71 2.68 2.62 2.59 2.57

19 4.38 3.52 3.13 2.90 2.74 2.63 2.55 2.48 2.43 2.38 2.34 2.31 2.26 2.21 2.15 2.11 2.07 2.02 2.00 1.96 1.94 1.91 1.90 1.88 19
8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30 3.19 3.12 3.00 2.92 2.84 2.76 2.70 2.63 2.60 2.54 2.51 2.49

20 4.35 3.49 3.10 2.87 2.71 2.60 2.52 2.45 2.40 2.35 2.31 2.28 2.23 2.18 2.12 2.08 2.04 1.99 2.96 1.92 1.90 1.87 1.85 1.84 20
8.10 5.85 4.94 4.43 4.10 3.87 3.71 3.56 3.45 3.37 3.30 3.23 3.13 3.05 2.94 2.86 2.77 2.69 2.63 2.56 2.53 2.47 2.44 2.42

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25 2.20 2.15 2.09 2.05 2.00 1.96 1.93 1.89 1.87 1.84 1.82 1.81 21
8.02 5.78 4.87 4.37 4.04 3.81 3.65 3.51 3.40 3.31 3.24 3.17 3.07 2.99 2.88 2.80 2.72 2.63 2.58 2.51 2.47 2.42 2.38 2.36

22 4.30 3.44 3.05 2.82 2.66 2.55 2.47 2.40 2.35 2.30 2.26 2.23 2.18 2.13 2.07 2.03 1.98 1.93 1.91 1.87 1.84 1.81 1.80 1.78 22
7.94 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12 3.02 2.94 2.83 2.75 2.67 2.58 2.53 2.46 2.42 2.37 2.33 2.31

23 4.28 3.42 3.03 2.80 2.64 2.53 2.45 2.38 2.32 2.28 2.24 2.20 2.14 2.10 2.04 2.00 1.96 1.91 1.88 1.84 1.82 1.79 1.77 1.76 23
7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.14 3.07 2.97 2.89 2.78 2.70 2.62 2.53 2.48 2.41 2.37 2.32 2.28 2.26

24 4.26 3.40 3.01 2.78 2.62 2.51 2.43 2.36 2.30 2.26 2.22 2.18 2.13 2.09 2.02 1.98 1.94 1.89 1.86 1.82 1.80 1.76 1.74 1.73 24
7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.25 3.17 3.09 3.03 2.93 2.85 2.74 2.66 2.58 2.49 2.44 2.36 2.23 2.27 2.33 2.21

25 4.24 3.38 2.99 2.76 2.60 2.49 2.41 2.34 2.28 2.24 2.20 2.16 2.11 2.06 2.00 1.96 1.92 1.87 1.84 1.80 1.77 1.74 1.72 1.71 25
7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.21 3.13 3.05 2.99 2.89 2.81 2.70 2.62 2.54 2.45 2.40 2.32 2.29 2.23 2.19 2.17

26 4.22 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.10 2.05 1.99 1.95 1.90 1.85 1.82 1.78 1.76 1.72 1.70 1.69 26
7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.17 3.09 3.02 2.96 2.86 2.77 2.66 2.58 2.50 2.41 2.36 2.28 2.25 2.19 2.15 2.13

(continued)
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TABLE F (continued)

Degrees of freedom (for the numerator of F ratio)

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 q

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.30 2.25 2.20 2.16 2.13 2.08 2.03 1.97 1.93 1.88 1.84 1.80 1.76 1.74 1.71 1.68 1.67 27
7.68 5.49 4.60 4.11 3.79 3.56 3.39 3.26 3.14 3.06 2.98 2.93 2.83 2.74 2.63 2.55 2.47 2.38 2.33 2.25 2.21 2.16 2.12 2.10

28 4.20 3.34 2.95 2.71 2.56 2.44 2.36 2.29 2.24 2.19 2.15 2.12 2.06 2.02 1.96 1.91 1.87 1.81 1.78 1.75 1.72 1.69 1.67 1.65 28
7.64 5.45 4.57 4.07 3.76 3.53 3.36 3.23 3.11 3.03 2.95 2.90 2.80 2.71 2.60 2.52 2.44 2.35 2.30 2.22 2.18 2.13 2.09 2.06

29 4.18 3.33 2.93 2.70 2.54 2.43 2.35 2.28 2.22 2.18 2.14 2.10 2.05 2.00 1.94 1.90 1.85 1.80 1.77 1.73 1.71 1.68 1.65 1.64 29
7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.08 3.00 2.92 2.87 2.77 2.68 2.57 2.49 2.41 2.32 2.27 2.19 2.15 2.10 2.06 2.03

30 4.17 3.32 2.92 2.69 2.53 2.42 2.34 2.27 2.21 2.16 2.12 2.09 2.04 1.99 1.93 1.89 1.84 1.79 1.76 1.72 1.69 1.66 1.64 1.62 30
7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.06 2.98 2.90 2.84 2.74 2.66 2.55 2.47 2.38 2.29 2.24 2.16 2.13 2.07 2.03 2.01

32 4.15 3.30 2.90 2.67 2.51 2.40 2.32 2.25 2.19 2.14 2.10 2.07 2.02 1.97 1.91 1.86 1.82 1.76 1.74 1.69 1.67 1.64 1.61 1.59 32
7.50 5.34 4.46 3.97 3.66 3.42 3.25 3.12 3.01 2.94 2.86 2.80 2.70 2.62 2.51 2.42 2.34 2.25 2.20 2.12 2.08 2.02 1.98 1.96

34 4.13 3.28 2.88 2.65 2.49 2.38 2.30 2.23 2.17 2.12 2.08 2.05 2.00 1.95 1.89 1.84 1.80 1.74 1.71 1.67 1.64 1.61 1.59 1.57 34
7.44 5.29 4.42 3.93 3.61 3.38 3.21 3.08 2.97 2.89 2.82 2.76 2.66 2.58 2.47 2.38 2.30 2.21 2.15 2.08 2.04 1.98 1.94 1.91

36 4.11 3.26 2.86 2.63 2.48 2.36 2.28 2.21 2.15 2.10 2.06 2.03 1.98 1.93 1.87 1.82 1.78 1.72 1.69 1.65 1.62 1.59 1.56 1.55 36
7.39 5.24 4.38 3.89 3.58 3.35 3.18 3.04 2.94 2.86 2.78 2.72 2.62 2.54 2.43 2.35 2.26 2.17 2.12 2.04 2.00 1.94 1.90 1.87

38 4.10 3.25 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09 2.05 2.02 1.96 1.92 1.85 1.80 1.76 1.71 1.67 1.63 1.60 1.57 1.54 1.53 38
7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.91 2.82 2.75 2.69 2.59 2.51 2.40 2.32 2.22 2.14 2.08 2.00 1.97 1.90 1.86 1.84

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.07 2.04 2.00 1.95 1.90 1.84 1.79 1.74 1.69 1.66 1.61 1.59 1.55 1.53 1.51 40
7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.88 2.80 2.73 2.66 2.56 2.49 2.37 2.29 2.20 2.11 2.05 1.97 1.94 1.88 1.84 1.81

42 4.07 3.22 2.83 2.59 2.44 2.32 2.24 2.17 2.11 2.06 2.02 1.99 1.94 1.89 1.82 1.78 1.73 1.68 1.64 1.60 1.57 1.54 1.51 1.49 42
7.25 5.15 4.29 3.80 3.49 3.26 3.10 2.96 2.86 2.77 2.70 2.64 2.54 2.46 2.35 2.26 2.17 2.08 2.02 1.94 1.91 1.85 1.80 1.78

44 4.06 3.21 2.82 2.58 2.43 2.31 2.23 2.16 2.10 2.05 2.01 1.98 1.92 1.88 1.81 1.76 1.72 1.66 1.63 1.58 1.56 1.52 1.50 1.48 44
7.24 5.12 4.26 3.78 3.46 3.24 3.07 2.94 2.84 2.75 2.68 2.62 2.52 2.44 2.32 2.24 2.15 2.06 2.00 1.92 1.88 1.82 1.78 1.75

46 4.05 3.20 2.81 2.57 2.42 2.30 2.22 2.14 2.09 2.04 2.00 1.97 1.91 1.87 1.80 1.75 1.71 1.65 1.62 1.57 1.54 1.51 1.48 1.46 46
7.21 5.10 4.24 3.76 3.44 3.22 3.05 2.92 2.82 2.73 2.66 2.60 2.50 2.42 2.30 2.22 2.13 2.04 1.98 1.90 1.86 1.80 1.76 1.72

48 4.04 3.19 2.80 2.56 2.41 2.30 2.21 2.14 2.08 2.03 1.99 1.96 1.90 1.86 1.79 1.74 1.70 1.64 1.61 1.56 1.53 1.50 1.47 1.45 48
7.19 5.08 4.22 3.74 3.42 3.20 3.04 2.90 2.80 2.71 2.64 2.58 2.48 2.40 2.28 2.20 2.11 2.02 1.96 1.88 1.84 1.78 1.73 1.70

(continued)
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TABLE F (continued)

Degrees of freedom (for the numerator of F ratio)

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 q

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.02 1.98 1.95 1.90 1.85 1.78 1.74 1.69 1.63 1.60 1.55 1.52 1.48 1.46 1.44 50
7.17 5.06 4.20 3.72 3.41 3.18 3.02 2.88 2.78 2.70 2.62 2.56 2.46 2.39 2.26 2.18 2.10 2.00 1.94 1.86 1.82 1.76 1.71 1.68

55 4.02 3.17 2.78 2.54 2.38 2.27 2.18 2.11 2.05 2.00 1.97 1.93 1.88 1.83 1.76 1.72 1.67 1.61 1.58 1.52 1.50 1.46 1.43 1.41 55
7.12 5.01 4.16 3.68 3.37 3.15 2.98 2.85 2.75 2.66 2.59 2.53 2.43 2.35 2.23 2.15 2.06 1.96 1.90 1.82 1.78 1.71 1.66 1.64

60 4.00 3.15 2.76 2.52 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 1.86 1.81 1.75 1.70 1.65 1.59 1.56 1.50 1.48 1.44 1.41 1.39 60
7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 2.40 2.32 2.20 2.12 2.03 1.93 1.87 1.79 1.74 1.68 1.63 1.60

65 3.99 3.14 2.75 2.51 2.36 2.24 2.15 2.08 2.02 1.98 1.94 1.90 1.85 1.80 1.73 1.68 1.63 1.57 1.54 1.49 1.46 1.42 1.39 1.37 65
7.04 4.95 4.10 3.62 3.31 3.09 2.93 2.79 2.70 2.61 2.54 2.47 2.37 2.30 2.18 2.09 2.00 1.90 1.84 1.76 1.71 1.64 1.60 1.56

70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.01 1.97 1.93 1.89 1.84 1.79 1.72 1.67 1.62 1.56 1.53 1.47 1.45 1.40 1.37 1.35 70
7.01 4.92 4.08 3.60 3.29 3.07 2.91 2.77 2.67 2.59 2.51 2.45 2.35 2.28 2.15 2.07 1.98 1.88 1.82 1.74 1.69 1.62 1.56 1.53

80 3.96 3.11 2.72 2.48 2.33 2.21 2.12 2.05 1.99 1.95 1.91 1.88 1.82 1.77 1.70 1.65 1.60 1.54 1.51 1.45 1.42 1.38 1.35 1.32 80
6.96 4.88 4.04 3.56 3.25 3.04 2.87 2.74 2.64 2.55 2.48 2.41 2.32 2.24 2.11 2.03 1.94 1.84 1.78 1.70 1.65 1.57 1.52 1.49

100 3.94 3.09 2.70 2.46 2.30 2.19 2.10 2.03 1.97 1.92 1.88 1.85 1.79 1.75 1.68 1.63 1.57 1.51 1.48 1.42 1.39 1.34 1.30 1.28 100
6.90 4.82 3.98 3.51 3.20 2.99 2.82 2.69 2.59 2.51 2.43 2.36 2.26 2.19 2.06 1.98 1.89 1.79 1.73 1.64 1.59 1.51 1.46 1.43

125 3.92 3.07 2.68 2.44 2.29 2.17 2.08 2.01 1.95 1.90 1.86 1.83 1.77 1.72 1.65 1.60 1.55 1.49 1.45 1.39 1.36 1.31 1.27 1.25 125
6.84 4.78 3.94 3.47 3.17 2.95 2.79 2.65 2.56 2.47 2.40 2.33 2.23 2.15 2.03 1.94 1.85 1.75 1.68 1.59 1.54 1.46 1.40 1.37

150 3.91 3.06 2.67 2.43 2.27 2.16 2.07 2.00 1.94 1.89 1.85 1.82 1.76 1.71 1.64 1.59 1.54 1.47 1.44 1.37 1.34 1.29 1.25 1.22 150
6.81 4.75 3.91 3.44 3.14 2.92 2.76 2.62 2.53 2.44 2.37 2.30 2.20 2.12 2.00 1.91 1.83 1.72 1.66 1.56 1.51 1.43 1.37 1.33

200 3.89 3.04 2.65 2.41 2.26 2.14 2.05 1.98 1.92 1.87 1.83 1.80 1.74 1.69 1.62 1.57 1.52 1.45 1.42 1.35 1.32 1.26 1.22 1.19 200
6.76 4.71 3.88 3.41 3.11 2.90 2.73 2.60 2.50 2.41 2.34 2.28 2.17 2.09 1.97 1.88 1.79 1.69 1.62 1.53 1.48 1.39 1.33 1.28

400 3.86 3.02 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.81 1.78 1.72 1.67 1.60 1.54 1.49 1.42 1.38 1.32 1.28 1.22 1.16 1.13 400
6.70 4.66 3.83 3.36 3.06 2.85 2.69 2.55 2.46 2.37 2.29 2.23 2.12 2.04 1.92 1.84 1.74 1.64 1.57 1.47 1.42 1.32 1.24 1.19

1000 3.85 3.00 2.61 2.38 2.22 2.10 2.02 1.95 1.89 1.84 1.80 1.76 1.70 1.65 1.58 1.53 1.47 1.41 1.36 1.30 1.26 1.19 1.13 1.08 1000
6.66 4.62 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 2.26 2.20 2.09 2.01 1.89 1.81 1.71 1.61 1.54 1.44 1.38 1.28 1.19 1.11

� 3.84 2.99 2.60 2.37 2.21 2.09 2.01 1.94 1.88 1.83 1.79 1.75 1.69 1.64 1.57 1.52 1.46 1.40 1.35 1.28 1.24 1.17 1.11 1.00 �

6.64 4.60 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.24 2.18 2.07 1.99 1.87 1.79 1.69 1.59 1.52 1.41 1.36 1.25 1.15 1.00
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TABLE H Critical values for the Mann–Whitney U test*

One-tailed test Two-tailed test
a � .01 (lightface) a � .02 (lightface)
a � .005 (boldface) a � .01 (boldface)

N1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N2

1 — — — — — — — — — — — — — — — — — — — —
2 — — — — — — — — — — — — 0 0 0 0 0 0 1 1

— — — — — — 0 0
3 — — — — — — 0 0 1 1 1 2 2 2 3 3 4 4 4 5

— — 0 0 0 1 1 1 2 2 2 2 3 3
4 — — — — 0 1 1 2 3 3 45 5 6 7 7 8 9 9 10

— 0 0 1 1 2 2 3 3 4 5 5 6 6 7 8
5 — — — 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

— 0 1 1 2 3 4 5 6 7 7 8 9 10 11 12 13
6 — — — 1 2 3 4 6 7 8 9 11 12 13 15 16 18 19 20 22

0 1 2 3 4 5 6 7 9 10 11 12 13 15 16 17 18
7 — — 0 1 3 4 6 7 9 11 12 14 16 17 19 21 23 24 26 28

— 0 1 3 4 6 7 9 10 12 13 15 16 18 19 21 22 24
8 — — 0 2 4 6 7 9 11 13 15 17 20 22 24 26 28 30 32 34

— 1 2 4 6 7 9 11 13 15 17 18 20 22 24 26 29 30
9 — — 1 3 5 7 9 11 14 16 18 21 23 26 28 31 33 36 38 40

0 1 3 5 7 9 11 13 16 18 20 22 24 27 29 31 33 36
10 — — 1 3 6 8 11 13 16 19 22 24 27 30 33 36 38 41 44 47

0 2 4 6 9 11 13 16 18 21 24 26 29 31 34 37 39 42
11 — — 1 4 7 9 12 15 18 22 25 28 31 34 37 41 44 47 50 53

0 2 5 7 10 13 16 18 21 24 27 30 33 36 39 42 45 48
12 — — 2 5 8 11 14 17 21 24 28 31 35 38 42 46 49 53 56 60

1 3 6 9 12 15 18 21 24 27 31 34 37 41 44 47 51 54
13 — 0 2 5 9 12 16 20 23 27 31 35 39 43 47 51 55 59 63 67

— 1 3 7 10 13 17 20 24 27 31 34 38 42 45 49 53 56 60
14 — 0 2 6 10 13 17 22 26 30 34 38 43 47 51 56 60 65 69 73

— 1 4 7 11 15 18 22 26 30 34 38 42 46 50 54 58 63 67
15 — 0 3 7 11 15 19 24 28 33 37 42 47 51 56 61 66 70 75 80

— 2 5 8 12 16 20 24 29 33 37 42 46 51 55 60 64 69 73
16 — 0 3 7 12 16 21 26 31 36 41 46 51 56 61 66 71 76 82 87

— 2 5 9 13 18 22 27 31 36 41 45 50 55 60 65 70 74 79
17 — 0 4 8 13 18 23 28 33 38 44 49 55 60 66 71 77 82 88 93

— 2 6 10 15 19 24 29 34 39 44 49 54 60 65 70 75 81 86
18 — 0 4 9 14 19 24 30 36 41 47 53 59 65 70 76 82 88 94 100

— 2 6 11 16 21 26 31 37 42 47 53 58 64 70 75 81 87 92
19 — 1 4 9 15 20 26 32 38 44 50 56 63 69 75 82 88 94 101 107

0 3 7 12 17 22 28 33 39 45 51 56 63 69 74 81 87 93 99
20 — 1 5 10 16 22 28 34 40 47 53 60 67 73 80 87 93 100 107 114

0 3 8 13 18 24 30 36 42 48 54 60 67 73 79 86 92 99 105

(continued)

* To be significant, the U obtained from data must be equal to or less than the value shown in the table. Dashes in the body of the table indicate
that no decision is possible at the stated level of significance.
Source: From Elementary Statistics, Second Edition, by R. E. Kirk, Brooks/Cole Publishing, 1984.
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TABLE H (continued)

One-tailed test Two-tailed test
a � .05 (lightface) a � .10 (lightface)
a � .025 (boldface) a � .05 (boldface)

N1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N2

1 — — — — — — — — — — — — — — — — — — 0 0
2 — — — — 0 0 0 1 1 1 1 2 2 2 3 3 3 4 4 4

— — — 0 0 0 0 1 1 1 1 1 2 2 2 2
3 — — 0 0 1 2 2 3 3 4 5 5 6 7 7 8 9 9 10 11

— — — — 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
4 — — 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18

— — — 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 13
5 — 0 1 2 4 5 6 8 9 11 12 13 15 16 18 19 20 22 23 25

— — 0 1 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20
6 — 0 2 3 5 7 8 10 12 14 16 17 19 21 23 25 26 28 30 32

— — 1 2 3 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27
7 — 0 2 4 6 8 11 13 15 17 19 21 24 26 28 30 33 35 37 39

— — 1 3 5 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
8 — 1 3 5 8 10 13 15 18 20 23 26 28 31 33 36 39 41 44 47

— 0 2 4 6 8 10 13 15 17 19 22 24 26 29 31 34 36 38 41
9 — 1 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54

— 0 2 4 7 10 12 15 17 20 23 26 28 31 34 37 39 42 45 48
10 — 1 4 7 11 14 17 20 24 27 31 34 37 41 44 48 51 55 58 62

— 0 3 5 8 11 14 17 20 23 26 29 33 36 39 42 45 48 52 55
11 — 1 5 8 12 16 19 23 27 31 34 38 42 46 50 54 57 61 65 69

— 0 3 6 9 13 16 19 23 26 30 33 37 40 44 47 51 55 58 62
12 — 2 5 9 13 17 21 26 30 34 38 42 47 51 55 60 64 68 72 77

— 1 4 7 11 14 18 22 26 29 33 37 41 45 49 53 57 61 65 69
13 — 2 6 10 15 19 24 28 33 37 42 47 51 56 61 65 70 75 80 84

— 1 4 8 12 16 20 24 28 33 37 41 45 50 54 59 63 67 72 76
14 — 2 7 11 16 21 26 31 36 41 46 51 56 61 66 71 77 82 87 92

— 1 5 9 13 17 22 26 31 36 40 45 50 55 59 64 67 74 78 83
15 — 3 7 12 18 23 28 33 39 44 50 55 61 66 72 77 83 88 94 100

— 1 5 10 14 19 24 29 34 39 44 49 54 59 64 70 75 80 85 90
16 — 3 8 14 19 25 30 36 42 48 54 60 65 71 77 83 89 95 101 107

— 1 6 11 15 21 26 31 37 42 47 53 59 64 70 75 81 86 92 98
17 — 3 9 15 20 26 33 39 45 51 57 64 70 77 83 89 96 102 109 115

— 2 6 11 17 22 28 34 39 45 51 57 63 67 75 81 87 93 99 105
18 — 4 9 16 22 28 35 41 48 55 61 68 75 82 88 95 102 109 116 123

— 2 7 12 18 24 30 36 42 48 55 61 67 74 80 86 93 99 106 112
19 0 4 10 17 23 30 37 44 51 58 65 72 80 87 94 101 109 116 123 130

— 2 7 13 19 25 32 38 45 52 58 65 72 78 85 92 99 106 113 119
20 0 4 11 18 25 32 39 47 54 62 69 77 84 92 100 107 115 123 130 138

— 2 8 13 20 27 34 41 48 55 62 69 76 83 90 98 105 112 119 127
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TABLE J Critical values for the Wilcoxon matched-pairs signed-ranks T test*

a levels for a a levels for a
one-tailed test one-tailed test

No.
.05 .025 .01 .005 .05 .025 .01 .005

of a levels for a a levels for a
pairs two-tailed test two-tailed test

N .10 .05 .02 .01 N .10 .05 .02 .01

5 0 — — — 28 130 116 101 91
6 2 0 — — 29 140 126 110 100
7 3 2 0 — 30 151 137 120 109
8 5 3 1 0 31 163 147 130 118
9 8 5 3 1 32 175 159 140 128

10 10 8 5 3 33 187 170 151 138

11 13 10 7 5 34 200 182 162 148
12 17 13 9 7 35 213 195 173 159
13 21 17 12 9 36 227 208 185 171
14 25 21 15 12 37 241 221 198 182
15 30 25 19 15 38 256 235 211 194

16 35 29 23 19 39 271 249 224 207
17 41 34 27 23 40 286 264 238 220
18 47 40 32 27 41 302 279 252 233
19 53 46 37 32 42 319 294 266 247
20 60 52 43 37 43 336 310 281 261

21 67 58 49 42 44 353 327 296 276
22 75 65 55 48 45 371 343 312 291
23 83 73 62 54 46 389 361 328 307
24 91 81 69 61 47 407 378 345 322
25 100 89 76 68 48 426 396 362 339
26 110 98 84 75 49 446 415 379 355
27 119 107 92 83 50 466 434 397 373

* To be significant, the T obtained from the data must be equal to or less than the value shown in the table.
Source: From Elementary Statistics, Second Edition, by R. E. Kirk, Brooks/Cole Publishing, 1984.
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TABLE L Critical values for Spearman rs*

No. of

a levels

pairs
One-tailed test Two-tailed test

N .01 .05 .01 .05

4 — 1.000 — —
5 1.000 .900 — 1.000
6 .943 .829 1.000 .886
7 .893 .714 .929 .786
8 .833 .643 .881 .738
9 .783 .600 .833 .700

10 .745 .564 .794 .648
11 .709 .536 .755 .618
12 .677 .503 .727 .587
13 .648 .484 .703 .560
14 .626 .464 .679 .538
15 .604 .446 .654 .521
16 .582 .429 .635 .503

For samples larger than 16, use Table A, which requires df.

* To be significant, the rs obtained from the data must be equal to or
greater than the value shown in the table.
Source: From “Testing the Significance of Kendall’s t and Spearman’s
rs” by M. Nijsse, 1988, Psychological Bulletin, 103, 235–237. Copyright
© 1988 American Psychological Association. Reprinted by permission.
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a priori test Multiple-comparisons test that must be
planned before examination of the data.

abscissa The horizontal, or X, axis of a graph.
absolute value A number without consideration of its

algebraic sign.
alpha (A) The probability of a Type I error.
alternative hypothesis (H1) A hypothesis about

population parameters that is accepted if the null
hypothesis is rejected.

analysis of variance (ANOVA) An inferential
statistics technique for comparing means, comparing
variances, and assessing interactions.

asymptotic A line that continually approaches but
never reaches a specified limit.

bar graph A graph of the frequency distribution of
nominal or qualitative data.

beta (B) The probability of a Type II error.
biased sample A sample selected in such a way that

not all samples from the population have an equal
chance of being chosen.

bimodal distribution A distribution with two modes.
binomial distribution A distribution of the frequency

of events that can have only two possible outcomes.
bivariate distribution A joint distribution of two

variables. The individual scores of the variables are
paired in some logical way.

boxplot A graph that shows a distribution’s range,
interquartile range, skew, median, and sometimes
other statistics.

cell In a table of ANOVA data, those scores that receive
the same combination of treatments.

Central Limit Theorem The sampling distribution
of the mean approaches a normal curve as N gets
larger. This normal curve has a mean equal to m and a
standard deviation equal to .

central tendency Descriptive statistics that indicate 
a typical or representative score; mean, median,
mode.

s>1N

chi square distribution A theoretical sampling
distribution of chi square values. Chi square
distributions vary with degrees of freedom.

chi square test An NHST technique that compares
observed frequencies to expected frequencies.

class interval A range of scores in a grouped frequency
distribution.

coefficient of determination A squared correlation
coefficient, which is an estimate of common variance
of the two variables.

confidence interval A range of scores that is expected,
with specified confidence, to capture a parameter.

control group A no-treatment group to which other
groups are compared.

correlation coefficient A descriptive statistic calculated
on bivariate data that expresses the degree of
relationship between two variables.

critical region Synonym for rejection region.
critical value Number from a sampling distribution

that determines whether the null hypothesis is
rejected.

degrees of freedom A concept in mathematical
statistics that determines the distribution that is
appropriate for a particular set of sample data.

dependent variable The observed variable that is
expected to change as a result of changes in the
independent variable in an experiment.

descriptive statistic A number that conveys a particular
characteristic of a set of data. Graphs and tables are
sometimes included in this category. (Congratulations
to you if you have checked this entry after reading
footnote 1 in Chapter 1. Very few students make the
effort to check out their authors’ claims, as you just
did. You have one of the makings of a scholar.)

deviation score A raw score minus the mean of its
distribution.

dichotomous variable A variable that has only two
values.

Glossary of Words
A P P E N D I X

D
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effect size index The amount or degree of separation
between two distributions.

empirical distribution A set of scores that comes
from observations.

epistemology The study or theory of the nature of
knowledge.

error term Variance due to factors not controlled in the
experiment; within-treatment or within-cell variance.

expected frequency A theoretical value in a chi square
analysis that is derived from the null hypothesis.

expected value The mean value of a random variable
over an infinite number of samplings. The expected
value of a statistic is the mean of the sampling
distribution of the statistic.

experimental group A group that receives treatment
in an experiment and whose dependent-variable
scores are compared to those of a control group.

extraneous variable A variable other than the
independent variable that may affect the dependent
variable.

F distribution A theoretical sampling distribution of
F values. There is a different F distribution for each
combination of degrees of freedom.

F test A test of the statistical significance of differences
among means, or variances, or of an interaction.

factor Independent variable.
factorial ANOVA An experimental design with two or

more independent variables; allows F tests for main
effects and interactions.

frequency polygon A frequency distribution graph of a
quantitative variable with frequency points connected
by lines.

goodness-of-fit test A chi square test that compares
observed frequencies to frequencies predicted by a
theory.

grand mean The mean of all scores, regardless of 
treatment.

grouped frequency distribution A compilation of
scores into equal-sized ranges, called class intervals.
Includes frequencies for each interval; may include
midpoints of class intervals.

histogram A graph of frequencies of a quantitative
variable constructed with contiguous vertical bars.

independent The occurrence of one event does not
affect the outcome of a second event.

independent-samples design An experimental de-
sign with samples whose dependent-variable scores
cannot logically be paired.

independent variable A variable controlled by the
researcher; changes in this variable may produce
changes in the dependent variable.

406 ■ Appendix D

inferential statistics A method that uses sample
evidence and probability to reach conclusions about
unmeasurable populations.

inflection point A point on a curve that separates a
concave upward arc from a concave downward arc, or
vice versa.

interaction In a factorial ANOVA, the effect of one
independent variable on the dependent variable
depends on the level of another independent variable.

interpolation A method to determine an intermediate
value.

interquartile range A range of scores that contains
the middle 50 percent of a distribution.

interval scale A measurement scale in which equal
differences between numbers represent equal differences
in the thing measured. The zero point is arbitrarily
defined.

least squares A method of fitting a regression line
such that the sum of the squared deviations from the
straight regression line is a minimum.

level One value of the independent variable.
line graph A graph that shows the relationship

between two variables with lines. 
linear regression Method that produces a straight line

that best fits the data.
lower limit The bottom of the range of possible values

that a measurement on a quantitative variable can
have.

main effect In a factorial ANOVA, a significance test of
the deviations of the mean levels of one independent
variable from the grand mean.

Mann–Whitney U test A nonparametric test that
compares two independent samples.

matched pairs A paired-samples design in which
individuals are paired by the researcher before the
experiment.

mean The arithmetic average; the sum of the scores
divided by the number of scores.

mean square (MS) The variance; a sum of squares
divided by its degrees of freedom. ANOVA termi-
nology.

median The point that divides a distribution of scores
into equal halves; half the scores are above the
median and half are below it. The 50th percentile.

meta-analysis A technique that combines separate
studies into an overall conclusion about effect size.

mode The score that occurs most frequently in a
distribution.

multiple-comparisons tests Tests for statistical sig-
nificance between treatment means or combinations
of means.
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multiple correlation A correlation coefficient that
expresses the degree of relationship between one
variable and a set of two or more other variables.

natural pairs A paired-samples design in which
pairing occurs without intervention by the researcher.

negative skew A graph with a great preponderance of
large scores.

nominal scale A measurement scale in which numbers
serve only as labels and do not indicate a quantitative
relationship.

nonparametric tests Statistical techniques that do not
require assumptions about the sampled populations.

normal distribution (normal curve) A mathe-
matically defined, theoretical distribution with a
particular bell shape. An empirical distribution of sim-
ilar shape.

NS Not statistically significant.
null hypothesis (H0) A hypothesis about a population

or the relationship among populations.
null hypothesis statistical testing (NHST) A

statistical technique that produces probabilities that
are accurate when the null hypothesis is true.

observed frequency The count of actual events in
categories in a chi square test.

one-sample t test A statistical test of the hypothesis
that a sample with mean X� came from a population
with mean m.

one-tailed test of significance A directional statis-
tical test that can detect a positive difference in
population means, or a negative difference, but not
both.

one-way ANOVA A statistical test of the hypothesis
that two or more population means in an independent-
samples design are equal.

operational definition A definition that tells how to
measure a variable.

ordinal scale A measurement scale in which numbers
are ranks, but equal differences between numbers do
not represent equal differences between the things
measured.

ordinate The vertical axis of a graph; the Y axis.
outlier A very high or very low score, separated from

other scores. A score 1.5 IQR or more beyond the
25th or 75th percentile.

paired-samples design An experimental design in
which scores from each group are logically matched.

parameter A numerical or nominal characteristic of a
population.

partial correlation Technique that allows the sepa-
ration or partialing out of the effects of one variable
from the correlation of two other variables.

�

percentile The point below which a specified percent-
age of the distribution falls.

phi (F) An effect size index for a 2 � 2 chi square test
of independence.

population All measurements of a specified group.
positive skew A graph with a great preponderance of

low scores.
post hoc test Multiple-comparisons test that is appropriate

after examination of the data.
power Power � 1 � b. Power is the probability of

rejecting a false null hypothesis.
proportion A part of a whole.
qualitative variable A variable whose levels are

different kinds rather than different amounts.
quantification Translating a phenomenon into numbers

promotes a better understanding of the phenomenon.
quantitative variable A variable whose levels indicate

different amounts.
random sample A subset of a population chosen in

such a way that all samples of the specified size have
an equal probability of being selected.

range The highest score minus the lowest score.
ratio scale A measurement scale that has all the

characteristics of an interval scale; in addition, zero
means that none of the thing measured is present.

raw score A score obtained by observation or from an
experiment.

rectangular distribution A distribution in which all
scores have the same frequency; also called a uniform
distribution.

regression coefficients The constants a (point where
the regression line intersects the Y axis) and b (slope
of the regression line) in a regression equation.

regression equation An equation that predicts values
of Y for specific values of X.

regression line A line of best fit for a scatterplot.
rejection region The area of a sampling distribution

that corresponds to test statistic values that lead to
rejection of the null hypothesis.

reliability The dependability or consistency of a
measure.

repeated measures An experimental design in which
each subject contributes to more than one treatment.

repeated-measures ANOVA A statistical technique
for designs with multiple measures on subjects or
with subjects who are matched.

residual variance ANOVA term for variability due to
unknown or uncontrolled variables; the error term.

sample A subset of a population; it may or may not be
representative.
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sampling distribution A theoretical distribution of a
statistic based on all possible random samples
drawn from the same population; used to determine
probabilities.

scatterplot A graph of the scores of a bivariate
frequency distribution.

significance level A probability (a) chosen as the
criterion for rejecting the null hypothesis.

simple frequency distribution Scores arranged
from highest to lowest, with the frequency of each
score in a column beside the score.

skewed distribution An asymmetrical distribution;
may be positive or negative.

Spearman rs A correlation coefficient for the degree of
relationship between two variables measured by ranks.

standard deviation A descriptive measure of the
dispersion of scores around the mean of the distribution.

standard error The standard deviation of a sampling
distribution.

standard error of a difference The standard deviation
of a sampling distribution of differences between
means.

standard error of estimate The standard deviation
of the differences between predicted outcomes and
actual outcomes.

standard score A score expressed in standard 
deviation units; z score is an example.

statistic A numerical or nominal characteristic of a
sample.

statistically significant A difference so large that
chance is not a likely explanation for the difference.

t distribution Theoretical distribution used to deter-
mine probabilities when s is unknown.

t test Test of a null hypothesis that uses t distribution
probabilities.

theoretical distribution Hypothesized scores based
on mathematical formulas and logic.

treatment One value (or level) of the independent
variable.

truncated range The range of the sample is smaller
than the range of its population.
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Tukey Honestly Significant Difference (HSD)
test Significance test for all possible pairs of
treatments in a multitreatment experiment.

two-tailed test of significance A nondirectional
statistical test that can detect either a positive or a
negative difference in population means.

Type I error Rejection of a null hypothesis when it is
true.

Type II error Failure to reject a null hypothesis that is
false.

univariate distribution A frequency distribution of
one variable.

upper limit The top of the range of possible values
that a measurement on a quantitative variable can
have.

variability Having more than one value.
variable Something that exists in more than one

amount or in more than one form.
variance The square of the standard deviation; also,

mean square in ANOVA.
very good idea Examine a statistics problem until

you understand it well enough to estimate the
answer.

weighted mean Overall mean calculated from two or
more samples.

Wilcoxon matched-pairs signed-ranks T test
A nonparametric test that compares two paired
samples.

Wilcoxon rank-sum test A nonparametric test of the
difference between two independent samples.

Wilcoxon–Wilcox multiple-comparisons test A
nonparametric test of all possible pairs from an
independent-samples design.

Yates’s correction A correction for a 2 � 2 chi square
test with one small expected frequency; considered
obsolete.

z score A score expressed in standard deviation units;
describes the relative standing of a score in its
distribution.

z test A statistical test that uses the normal curve as the
sampling distribution.
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Greek Letter Symbols

a The probability of a Type I error
b The probability of a Type II error
m The mean of a population
r Population correlation coefficient
� The sum; an instruction to add
s Standard deviation of a population
f Effect size index for 2 � 2 chi square design
s2 Variance of a population

Standard error of the mean (population s known)
x2 The chi square statistic

Mathematical and Latin Letter Symbols

� Infinity
� Greater than
� Less than
a Point where the regression line intersects the Y axis
b The slope of the regression line
D The difference between two paired scores

The mean of a set of difference scores
d Effect size index for one-sample and two-sample comparisons
df Degrees of freedom
E In chi square, the expected frequency
E(X�) The expected value of the mean; the mean of a sampling distribution
F The F statistic in ANOVA
f Frequency; the number of times a score occurs
f Effect size index for ANOVA
H0 The null hypothesis
H1 A hypothesis that is an alternative to the null hypothesis
HSD Tukey Honestly Significant Difference; makes pairwise comparisons
i The interval size; the number of score points in a class interval
IQR Interquartile range
K The number of levels of the independent variable
LL Lower limit of a confidence interval
MS Mean square; ANOVA term for the variance

D�

sX�

409
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N The number of scores or observations
O In chi square, the observed frequency
r Pearson product-moment correlation coefficient
rs A correlation coefficient for ranked data; named for Spearman
r2 The coefficient of determination
S The standard deviation of a sample; describes the sample
ŝ The standard deviation of a sample; estimates s
ŝ2 Variance of a sample; estimates s2

ŝD Standard deviation of a distribution of differences between paired scores
Standard error of the difference between paired means
Standard error of a difference between means
Standard error of the mean

SS Sum of squares; the sum of the squared deviations from the mean
T Wilcoxon matched-pairs signed-ranks T statistic for paired samples
t t test statistic
ta Critical value of t; level of significance � a
U Mann-Whitney statistic for independent samples
UL Upper limit of a confidence interval
X A score
X� The mean of a sample
X�W The weighted overall mean of two or more means
XH The highest score in a distribution
XL The lowest score in a distribution
Ŷ The Y value predicted for some X value
Y� The mean of the Y variable
z A score expressed in standard deviation units; a standard score
z Test statistic when the sampling distribution is normal
zX A z value for a score on variable X
zY A z value for a score on variable Y

sX�

sX�1�X�2

sD�
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Glossary of Formulas
A P P E N D I X  

F

Analysis of Variance
degrees of freedom in one-way dftreat � K � 1

ANOVA, p. 243 dferror � Ntot � K

dftot � Ntot � 1

degrees of freedom in factorial dfA � A � 1
ANOVA, p. 287 dfB � B � 1

dfAB � (A � 1)(B � 1)

dferror � Ntot � (A)(B)

dftot � Ntot � 1

degrees of freedom in one-factor dfsubjects � Nt � 1
repeated-measures ANOVA, p. 261 dftreat � Nk � 1

dferror � (Nt � 1)(Nk � 1)

dftot � Ntot � 1

F value in one-way ANOVA and 
repeated-measures ANOVA, p. 244

F values in factorial ANOVA, p. 287

mean square, p. 243

total sum of squares, p. 239

between-treatments sum of 
squares, p. 239  

SStreat � � c
1�Xt 2

2

Nt

d �
1�X tot 2

2

Ntot

SStot � �X 2
tot �

1�X tot 2
2

Ntot

MS �
SS

df

FAB �
MSAB

MSerror

FB �
MSB

MSerror

FA �
MSA

MSerror

F �
MStreat

MSerror
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between-cells sum of squares, p. 282

between-subjects sum of squares, p. 261

error sum of squares for 
one-way ANOVA, p. 240

error sum of squares for 
factorial ANOVA, p. 284

error sum of squares for 
repeated-measures ANOVA, p. 261

sum of squares for the 
interaction effect in factorial Check:
ANOVA, p. 283

sum of squares for a main 
effect in factorial ANOVA, p. 282

where 1 and 2 denote levels of a factor and 
k denotes the last level of a factor

Chi Square

basic formula, p. 303

degrees of freedom for a df � (R � 1)(C � 1)
chi square table, p. 315 where R � number of rows

C � number of columns

shortcut formula for a 2 � 2 
table, p. 308

where A, B, C, and D designate the four cells of the
table, moving left to right across the top row and
then across the bottom row

Coefficient of Determination
p. 102 r2

Confidence Intervals
about a population mean, p. 164

about a mean difference 
(independent samples), p. 218  UL � 1X�1 � X�2 2 � ta 1sX�1�X�2

2

 LL � 1X�1 � X�2 2 � ta 1sX�1�X�2
2

 UL � X� � ta 1sX� 2
 LL � X� � ta 1sX� 2

x 2 �
N 1AD � BC 2 2

1A � B 2 1C � D 2 1A � C 2 1B � D 2

x2 � � c
1O � E 2 2

E
d

 � 
1�Xk 2

2

Nk

�
1�Xtot 2

2

Ntot

 SS �
1�X 1 2

2

N1
�
1�X 2 2

2

N2
 � p

SSAB � SScells � SSA � SSB

SSAB � Ncell� 3 1X�AB � X�A � X�B � X�gm 2
2 4

SSerror � SStot � SSsubjects � SStreat

SSerror � � c�X 2
cell �

1�Xcell 2
2

Ncell
d

SSerror � � c�X 2
t �

1�Xt 2
2

Nt

d

SSsubjects � � c
1�Xk 2

2

Nk

d �
1�Xtot 2

2

Ntot

SScells � � c
1�Xcell 2

2

Ncell
d �

1�Xtot 2
2

Ntot
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about a mean difference 
(paired samples), p. 219

Correlation

Pearson product-moment 
definition formula, p. 96

computation formulas, pp. 96, 97

testing significance from .00
(or use Table A), p. 191

df � N � 2

Spearman rs

computation formula, p. 344

Degrees of Freedom See specific statistical tests.

Deviation Score, p. 59 X � X� or X � m

Effect Size Index

definition, p. 79

one-sample design, p. 189

two independent samples,
N1 � N2, p. 216

two independent samples,
N1 � N2, p. 216

two paired samples, p. 217

ANOVA for all means, pp. 253, 296 f �
ŝ treat

ŝerror
�
B

K � 1

Ntot
 1MStreat � MSerror 2

1MSerror

d �
X� � Y�

1N 1sD� 2

d �
X�1 � X�2

B
ŝ1

2 1df1 2 � ŝ2
2 1df2 2

df1 � df2

d �
X�1 � X�2

B
N1

2
1sX�1�X�2

2

d �
X� � m

ŝ

d �
m1 � m2

s

rs � 1 �
6�D2

N 1N 2 � 1 2

t � 1r 2B
N � 2

1 � r 2

r �
N�XY � 1�X 2 1�Y 2

2 3N�X 2 � 1�X 2 2 4 3N�Y 2 � 1�Y 2 2 4

r �

�XY

N
� 1X� 2 1Y� 2

1SX 2 1SY 2

r �
� 1zX zY 2

N

 UL � 1X� � Y� 2 � ta 1sD� 2
 LL � 1X� � Y� 2 � ta 1sD� 2
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for two means, pp. 252, 290

chi square (2 � 2), p. 308

Mann–Whitney U Test

value for U, p. 328

where �R1� sum of the ranks of the N1 group

testing significance for 
larger samples, N � 21, p. 331

where c � 0.5

Mean

from raw data, p. 41

from a frequency distribution, p. 44

weighted mean, p. 50

where N1, N2, and so on are the numbers of scores
associated with their respective means, and K is the
last of the means being averaged

Median Location

p. 44

Outlier
Lower outlier 25th percentile 

p. 75 Upper outlier 75th percentile 

Range
of a distribution, p. 56 Range � XH � XL

where XH � highest score
XL � lowest score

interquartile range, p. 57 IQR � 75th percentile � 25th percentile

� 11.5 � IQR 2�
� 11.5 � IQR 2�

N � 1

2

X�W �
� 1N1X�1 � N2 X�2 � p � NKX�K 2

�N

m or X� �
� f X

N

m or X� �
�X

N

 sU � B
1N1 2 1N2 2 1N1 � N2 � 1 2

12

 mU �
N1N2

2

z �
1U1 � c 2 � mU

sU

U1 � 1N1 2 1N2 2 �
N1 1N1 � 1 2

2
� �R1

f � B
x 2

N

d �
X�1 � X�2

2MSerror
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Regression

predicting Y from X, p. 116

straight line, p. 114

where a � value at the Y intercept
b � slope of the regression line

Y intercept of a regression 
line, p. 114

slope of a regression 
line, p. 114

Standard Deviation of a Population or Sample (for description)

deviation-score method 
from ungrouped data, p. 60

raw-score method from 
ungrouped data, p. 62

Standard Deviation of a Sample (an estimator of S)

deviation-score method 
from ungrouped data, p. 64

raw-score method from 
ungrouped data, p. 65

raw-score method from 
grouped data, p. 65

paired samples, p. 211 ŝD �R
�D2 �

1�D 2 2

N

N � 1

ŝ �R
� f X 2 �

1� f X 2 2

N

N � 1

ŝ �R
�X 2 �

1�X 2 2

N

N � 1

ŝ � B
� 1X � X� 2 2

N � 1

s or S �R
�X 2 �

1�X 2 2

N

N

S � B
� 1X � X� 2 2

N

b �
N�XY � 1�X 2 1�Y 2

N�X 2 � 1�X 2 2

b � r 
SY

SX

a � Y� � bX�

Ŷ � a � bX

Ŷ � r 
SY

SX

 1X � X� 2 � Y�
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Standard Error
of the mean

where s is known, p. 157

estimated from a single sample, p. 164

of a difference between means 
equal-N samples, p. 206

samples with 
unequal N’s, p. 206

paired samples by the 
direct-difference method, p. 211

where

paired samples 
when r is known, p. 210

t Test

one sample m, p. 181

df � N � 1

independent samples, p. 206

df � N1 � N2 � 2

paired samples 
where r is known, p. 210 

paired samples 
using the direct-difference
method, p. 210 df � number of pairs minus 1

testing whether a correlation 
coefficient is significantly 
different from .00, p. 191 df � number of pairs minus 2

t � 1r 2B
N � 2

1 � r 2

t �
X� � Y�

sD�
�

D�

sD�

t �
X� � Y�

2sX�
2 � sY�

2 � 2rXY 1sX� 2 1sY� 2

t �
X�1 � X�2

sX�1�X�2

t �
X� � m

sX�

sD� � 2sX�
2 � sY�

2 � 2rXY 1sX� 2 1sY� 2

ŝD �R
�D2 �

1�D 2 2

N

N � 1

sD� �
ŝD

1N

sX�1�X�2
�R °

�X1
2 �
1�X1 2

2

N1
� �X2

2 �
1�X2 2

2

N2

N1 � N2 � 2
¢ a

1

N1
�

1

N2
b

 �R
�X1

2 �
1�X1 2

2

N1
� �X2

2 �
1�X2 2

2

N2

N1 1N2 � 1 2

 � B a
ŝ1

1N1

b
2

� a
ŝ2

1N2

b
2

 sX�1�X�2
� 2sX�1

2 � sX�2

2

sX� �
ŝ

1N

sX� �
s

1N
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Tukey HSD

one-way, factorial, and
repeated-measures ANOVA,
pp. 248, 262, 295

where 

Variance Use the formulas for the standard deviation. 
For ŝ2 square ŝ. For s2 square s.

Wilcoxon Matched-Pairs Signed-Ranks T Test
value for T, p. 335 T � smaller sum of the signed ranks

testing significance for 
larger samples, N � 50, p. 338

where c � 0.5

N � number of pairs

z-Score Formulas

descriptive, pp. 72, 131

probability of a sample mean, p. 157

(See also Mann–Whitney U test and Wilcoxon Matched-Pairs Signed-Ranks T test.)

z �
X� � m

sX�

also z �
X � m

s
z �

X � X�

S
;

 sT � B
N 1N � 1 2 12N � 1 2

24

 mT �
N 1N � 1 2

4

z �
1T � c 2 � mT

sT

 sX� 1for N1 � N2 2 � B
MSerror

2
a

1

N1
�

1

N2
b

 sX� 1for N1 � N2 � Nt 2 � B
MSerror

Nt

HSD �
X�1 � X�2

sX�
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418

CHAPTER 1
1.1. a. 64.5–65.5 b. Qualitative c. Qualitative

d. 3.5–4.5 e. 80.5–81.5
1.2. Many paragraphs can qualify as good answers to

this question. Your paragraph should include 
variations of these definitions:
Population: a defined set of scores that is of 
interest to an investigator
Sample: a subset of the population
Parameter: a numerical or nominal characteristic
of a population
Statistic: a numerical or nominal characteristic of
a sample

1.3. a. Inferential
b. Inferential
c. Descriptive

1.4. Nominal, ordinal, interval, and ratio
1.5. Nominal: Different numbers are assigned to 

different classes of things.
Ordinal: Nominal properties, plus the numbers
carry information about greater than and less than.
Interval: Ordinal properties, plus the distance
between units is equal.
Ratio: Interval properties, plus a zero point that
means a zero amount of the thing being measured.

1.6. a. Ordinal b. Ratio c. Nominal d. Nominal
e. Ordinal f. Ratio g. Ordinal

1.7. a. Dependent variable: rating of qualification;
independent variable: gender; number of 
levels: two; names of levels: female and male

b. Dependent variable: narcissism; independent
variable: birth order; number of levels: three;
names of levels: first, second, and later born

c. Dependent variable: jail sentence; independent
variable: occupation; number of levels: three;
names of levels: vice president, janitor, and
unspecified

Answers to Problems
A P P E N D I X  

G

1.8. a. Dependent variable: number of suggestions
complied with
Independent variable, number of levels, and
their names: hypnosis; two; yes and no
i. Nominal variables: hypnosis, suggestions;

statistic: mean number of suggestions 
complied with

ii. Interpretation: Barber’s study shows that
hypnotized participants do not acquire powers
greater than normal (see Barber, 1976).

b. Dependent variable: answer to the question
Did you see a barn?
Independent variable, number of levels, and their
names: mention of the barn in the question about
how fast the car was going; two; mentioned and
not mentioned
i. Several answers can be correct here. The

most general population answer is “people”
or “people’s memory.” Less general is “the
memory of people given misinformation
about an event.” One parameter is the
percent of all people who say they see a
barn even though no barn was in the film.

ii. Interpretation: If people are given 
misinformation after they have witnessed
an event, they sometimes incorporate the
misinformation into their memory. [See
Loftus’s book, Eyewitness Testimony
(1979), which relates this phenomenon to
courts of law.]

c. Dependent variable: weight (grams) of 
crackers consumed
Independent variable, number of levels, and
their names: the time shown on the clock on
the wall; three; slow, correct, and fast
i. Weight (grams)
ii. Interpretation: Eating by obese men is

affected by what time they think it is; that is,
consumption by obese men does not depend
entirely on internal physiological cues of
hunger (see Schachter and Gross, 1968).
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Answers to Problems (Chapter 2) ■ 419

1.9. Besides differing in the textbook used, the two
classes differed in (1) the professor, one of whom
might be a better teacher; (2) the time the class
met; and (3) the length of the class period. A
10:00 A.M. class probably has younger students
who have fewer outside commitments. Students
probably concentrate less during a 3-hour class
than they do in three 1-hour classes. Any of these
extraneous variables might be responsible for the
difference in scores. Also, the investigator needs
assurance that the comprehensive test was 
appropriate for both textbooks.

1.10. Epistemology
1.11. a. Reason (or rationalism) and experience 

(or empiricism)
b. Reason (or rationalism)

1.12. Step 1 is an exploratory step that involves reading
the information, descriptive statistics, and attention
to differences. Step 2 involves inferential statistics
and answers the question of whether the 
differences could be due to chance. Step 3 is a
story (a paragraph) written in journal style that
explains the data set.

CHAPTER 2

2.1.

2.2. The order of candidates is arbitrary; no order is
wrong.

Candidate f

Attila 13
Bolivar 5
Gandhi 19
Lenin 8
Mao 11

2.3. Temperature intervals Tally marks f

99.3–99.5 >>> 3
99.0–99.2 >> 2
98.7–98.9 > 6
98.4–98.6 5
98.1–98.3 > 6
97.8–98.0 10
97.5–97.7 >> 2
97.2–97.4 >>> 3
96.9–97.1 >> 2
96.6–96.8 0
96.3–96.5 > 1

2.4. Errors Tally marks f

16 >> 2
15 0
14 >> 2
13 >>> 3
12 >>> 3
11 >>>> 9
10 > 6
9 >> 7
8 >>>> 4
7 >> 2
6 > 1

Interpretation: Here are some points that would be
appropriate: (1) Surprisingly, no one recognized
that all 20 statements were new. (2) All the stu-
dents thought they had heard more than a fourth of
the statements before. (3) Most students thought
they had heard about half the statements before,
but, as the number of statements increased or
decreased from half, fewer and fewer thought that.

2.5. a. 25 is the midpoint of the interval 24–26
b. 5 is a frequency count; for example, there

were 5 scores in the interval with 10 as the
midpoint

c. 0

>>>>

>>>>

>>>>

>>>>>>>>

>>>>

>>>>

>>>>

Women

Height Tally
(in.) marks f

72 > 1
71 0
70 > 1
69 > 1
68 > 1
67 >>> 3
66 > 6
65 10
64 >>>> 9
63 >> 7
62 >>>> 4
61 > 1
60 >>>> 4
59 >> 2

>>>>

>>>>

>>>>>>>>

>>>>

Men

Height Tally
(in.) marks f

77 > 1
76 > 1
75 >> 2
74 > 1
73 >>>> 4
72 >> 7
71 > 6
70 >> 7
69 >>> 8
68 >>>> 4
67 >> 2
66 >> 2
65 >>> 3
64 > 1
63 0
62 > 1

>>>>

>>>>

>>>>
>>>>
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2.6.

420 ■ Appendix G

2.7. A bar graph is appropriate. I arranged the
countries in the order of their scores so that more
than and less than comparisons are easier.

2.8. They should be graphed as frequency polygons.
Note that the midpoint of the class interval is
used as the X-axis score.
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■ Graphs are a means of communication among
scientists.

■ Graphs can help you understand.
■ Designing graphs takes time.
■ Attitudes toward graphs have changed in recent

years.
■ New kinds of graphs are being created.

2.17. a. Body temperature f

99.5 2
99.4 1
99.2 1
99.1 1
98.9 2
98.8 2
98.7 2
98.6 2
98.5 1
98.4 2
98.3 3
98.2 2
98.1 1
98.0 3
97.9 5
97.8 2
97.7 1
97.5 1
97.4 2
97.2 1
97.0 1
96.9 1
96.4 1

40

b. Either a frequency polygon or a histogram is
appropriate. The form is negatively skewed.

Answers to Problems (Chapter 2) ■ 421

2.9. A bar graph is the proper graph for the qualitative
data in problem 2.2. I ordered the candidates
according to votes received, but other orders
could be justified.

2.10. Distribution x is positively skewed; distribution y
is negatively skewed.

2.11. A frequency polygon has a frequency count on
the Y axis; the variable that is being counted is
on the X axis. A line graph has some variable
other than frequency on the Y axis.

2.12.

L
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)
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Interpretation: Temperature is affected by eleva-
tion. The higher the elevation, the lower the
temperature, although the relationship is not a
straight line.

2.13. Check your sketches against Figures 2.6 and 2.8.
2.14. Right
2.15. a. Positively skewed b. Symmetrical

c. Positively skewed d. Positively skewed
e. Negatively skewed f. Symmetrical

2.16. Of course many paragraphs can qualify for A’s.
Here are some points you might have included:

■ Graphs are persuasive.
■ Graphs can guide research, not just convey the

results.
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CHAPTER 3
3.1. To find the median, arrange the scores in descend-

ing order.
a. 5 b. 12.5, halfway between 12 and 13
c. 9.5, halfway between 8 and 11

3.2. It may help to arrange the scores in descending
order. Only distribution c has two modes. They
are 14 and 18.

3.3. a. For these nominal data, only the mode is
appropriate. The mode is Gandhi, who
accounted for 34 percent of the signs.

b. Because only one precinct was covered and
the student’s interest was citywide, this is a
sample mode, a statistic.

c. Interpretation: Because there are more Gandhi
yard signs than signs for any other candidate,
Gandhi can be expected to get the most votes.

3.4. Women

Height (in.) Tally marks f f X

72 > 1 72
71 0
70 > 1 70
69 > 1 69
68 > 1 68
67 >>> 3 201
66 > 6 396
65 10 650
64 >>>> 9 576
63 >> 7 441
62 >>>> 4 248
61 > 1 61
60 >>>> 4 240
59 >> 2 118

50 3210

>>>>

>>>>

>>>>>>>>

>>>>

422 ■ Appendix G

Counting from the bottom of the distribution, you
find 18 scores below 64 inches, so the median is
located among the 9 scores of 64. Median �
64 inches. The most frequently occurring score
(10 times) is 65 inches. Mode � 65 inches,
which is found for 20 percent of the women.

Men

Height (in.) Tally marks f f X

77 > 1 77
76 > 1 76
75 >> 2 150
74 > 1 74
73 >>>> 4 292
72 >> 7 504
71 > 6 426
70 >> 7 490
69 >>> 8 552
68 >>>> 4 272
67 >> 2 134
66 >> 2 132
65 >>> 3 195
64 > 1 64
63 0
62 > 1 62

50 3500

Counting from the top of the distribution, you
find 22 scores above 70 inches. The median is
among the 7 scores of 70. Median � 70 inches.
A height of 69 inches occurs most frequently.
Mode � 69 inches, which is the height of
16 percent of the men.

3.5. a.

Counting from the bottom, you reach 7 when you
include the score of 12. The 10th score is located
among the 5 scores of 13. Median � 13.

b. Median location �
N � 1

2
�

20 � 1

2
� 10.5

Median location �
N � 1

2
�

19 � 1

2
� 10

Median location �
N � 1

2
�

50 � 1

2
� 25.5

Mean � X�men �
©fX

N
�

3500

50
� 70.0 inches

>>>>

>>>>

>>>>

>>>>

Median location �
N � 1

2
�

50 � 1

2
� 25.5

Mean � X�women �
©fX

N
�

3210
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� 64.2 inches

8

6

4

2

96
.4

Fr
eq

ue
nc

y

Oral body temperature (°F)

10

96
.7

97
.0

97
.3

97
.6

97
.9

98
.2

98
.5

98
.8

99
.1

99
.4

08911_G_APP G_418-472 pp.qxd  12/15/09  7:40 PM  Page 422



Answers to Problems (Chapter 4) ■ 423

Arrange the scores in descending order. Counting
from the top, you reach 6 when you include the
score of 2. The location of the 10.5th score is
among the 5 scores of 1. Median � 1.

c.

The median is the average of 26 and 21. 
Median � 23.5

3.6. and is a minimum.
3.7. a. The mode is appropriate because nominal

variable events are being observed.
b. The median or mode is appropriate because

helpfulness is measured with an ordinal variable.
c. The median and mode are appropriate for 

data with an open-ended category.
d. The median and mode are appropriate

measures. It is conventional to use the median
for income data because the distribution is often
severely skewed. (About half of the frequencies
are in the $0–$20,000 range.)

e. The mode is appropriate because these are
nominal data.

f. The mean is appropriate because the data 
are not severely skewed.

3.8. This problem calls for a weighted mean.

74 � 12 � 888

69 � 31 � 2139

75 � � 

� 60 4302 percent
correct

3.9. a. By inspection, the expenditures in Table 3.2
are positively skewed; the elevations in Table
3.4 are also positively skewed. For Table 3.2,
the mean ($2.90) is larger than the median
($2.75), which is characteristic of positive
skew. In Table 3.4, the mean (78.5 feet) is
larger than the median (12.5 feet), again an
indication of positive skew.

b. For distribution x, mean � 21.80 and median � 20.
The mean is larger, so the distribution is positively
skewed.
For distribution y, mean � 43.19 and
median � 46. The mean is smaller, so the
distribution is negatively skewed.

3.10. Interpretation: This is not correct. To find his
lifetime batting average he should add his hits
for the three years and divide by the total number
of at-bats, a weighted mean. It appears that his
lifetime average is less than .317.

X�W �
4302

60
� 71.7 

127517

© 1X � X� 2 2© 1X � X� 2 � 0

Median location �
N � 1

2
�

6 � 1

2
� 3.5

3.11. Mean:

Median location When

the expenditures are arranged in order, the 8th
score is $24; median $24.
There are more scores of $20 than any other; 
mode $20.
Skew: 26.53 24 2.53, which indicates a 
positive skew.

CHAPTER 4
4.1. a. Range � 17 � 1 � 16

b. Range � 0.45 � 0.30 � 0.15
4.2. With N � 100, the 25th percentile score is the 25th

score from the bottom. There are 23 scores less than
21 and 3 scores of 21. The 25th percentile score is
21. The 75th percentile score is 25 frequencies from
the top. There are 23 scores greater than 28 and 6
scores of 28. The 75th percentile score is 28.
IQR � 28 � 21 � 7.
Interpretation: Fifty percent of the SWLS scores
are in the 7-point range of 21 to 28.

4.3. Women: Because 0.25 � 50 � 12.5, the 25th
percentile score is 12.5 frequencies up from the
bottom and the 75th percentile score is 12.5 frequen-
cies down from the top. For the 25th percentile,
there are 11 scores of 62 or less, so the 12.5th score
is among the 7 scores of 63. 25th percentile � 63
inches. There are 7 scores of 67 or more so the
12.5th score from the top is among the 6 scores of
66. 75th percentile � 66 inches. IQR � 66 �
63 � 3 inches; 50 percent of women are 63 to
66 inches tall.
Men: With N � 50 for men also, the same 12.5
frequencies from the bottom and top identify
the 25th and 75th percentile scores. The 25th
percentile score is among the 6 scores of 68 inches
(there are 9 shorter than 68). The 75th percentile
score is among the 7 scores of 72 inches (there are
9 taller than 72). IQR � 72 � 68 � 4 inches for
men; 50 percent are from 68 to 72 inches tall.

4.4. ■ s is used to describe the variability of a
population.

■ ŝ is used to estimate s from a sample of the
population.

■ S is used to describe the variability of a
sample when you do not want to estimates.

��
�

�

�
N � 1

2
�

15 � 1

2
� 8.

X �
©X

N
�

398

15
� $26.53
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scores are 56.69°F for San Francisco and 56.49°F
for Albuquerque, you are very alert. These are
weighted means based on 30 days in June and
September and 31 days in March and December.)

4.8. In eyeballing data for variability, use the range 
as a quick index.
a. Set II is more variable.
b. Equal variability
c. Set I is more variable.
d. Set II is more variable; however, most of the

variability is due to one extreme score, 15.
e. Equal variability

4.9. The second distribution (b) is more variable than
the first (a).

a. X X2

5 25 2.5 6.25
4 16 1.5 2.25
3 9 0.5 0.25
2 4 �0.5 0.25
1 1 �1.5 2.25
0 0 �2.5 6.25

� 15 55 0 17.50

b. X X2

5 25 2.5 6.25
5 25 2.5 6.25
5 25 2.5 6.25
0 0 �2.5 6.25
0 0 �2.5 6.25
0 0 �2.5 6.25

� 15 75 0 37.50

� 26.25 � 2.50

S �R
©X2 �

1©X 2 2

N

N
 �R

75 �
115 2 2

6

6

1X � X� 2 2X � X�

S � B
© 1X � X� 2 2

N
� B

17.50

6
� 22.917 � 1.71

 � 22.917 � 1.71

S �R
©X 2 �

1©X 2 2

N

N
�R

55 �
115 2 2

6

6

1X � X� 2 2X � X�

4.5. a. X

7 2 4
6 1 1
5 0 0
2 �3 9

� 20 0 14

b. X

14 3.8 14.44
11 0.8 0.64
10 �0.2 0.04
8 �2.2 4.84
8 �2.2 4.84

� 51 0 24.80

c. X

107 2 4
106 1 1
105 0 0
102 �3 9

� 420 0 14

4.6. a. The size of the numbers has no effect on the
standard deviation. It is affected by the size 
of the differences among the numbers.

b. The mean is affected by the size of the
numbers.

4.7. City Mean Standard deviation

San Francisco 56.75°F 3.96°F
Albuquerque 56.75°F 16.24°F

Interpretation: Although the mean temperature is
the same for the two cities, Albuquerque has a
wider variety of temperatures. (If your mean

S � B
© 1X � X� 2 2

N
� B

14

4
� 23.5 � 1.87

X� � 105

1X � X� 2 2X � X�

S � B
© 1X � X� 2 2

N
� B

24.80

5
� 24.96 � 2.23

X� � 10.2

1X � X� 2 2X � X�

S � B
© 1X � X� 2 2

N
� B

14

4
� 23.5 � 1.87

X� � 5

1X � X� 2 2X � X�

424 ■ Appendix G

(Continued)
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4.15. Because the researcher wanted to estimate the
standard deviation of the freshman class scores
from a sample, ŝ is the correct standard deviation.

4.16. Women

Height (in.) f f X f X2

72 1 72 5,184
70 1 70 4,900
69 1 69 4,761
68 1 68 4,624
67 3 201 13,467
66 6 396 26,136
65 10 650 42,250
64 9 576 36,864
63 7 441 27,783
62 4 248 15,376
61 1 61 3,721
60 4 240 14,400
59 2 118 6,962

� 3210 206,428

Men

Height (in.) f f X f X2

77 1 77 5,929
76 1 76 5,776
75 2 150 11,250
74 1 74 5,476
73 4 292 21,316
72 7 504 36,288
71 6 426 30,246
70 7 490 34,300
69 8 552 38,088
68 4 272 18,496
67 2 134 8,978
66 2 132 8,712
65 3 195 12,675
64 1 64 4,096
62 1 62 3,844

� 3500 245,470

ŝ �R
206,428 �

13210 2 2

50

49
� 2.66 inches

ŝ2 � 33.162

 � 233.16 � 5.76

ŝ �R
©X 2 �

1©X 2 2

N

N � 1
�R

5064 �
1304 2 2

21

20

Answers to Problems (Chapter 4) ■ 425

How did your estimate compare to your
computation?

4.10. For problem 4.9a, � 2.92. For problem 4.9b,

� 2.00. Yes, these results are between 2 and 5.

4.11. a.

b.

4.12.

s �R
294 �

138 2 2

5

5
� 1.02

s �R
©X 2 �

1©X 2 2

N

N
�R

262 �
134 2 2

5

5
� 2.48

5

2.50

5

1.71

S � B© 1X � X� 2 2

N
� B

37.50

6
� 26.25 � 2.50

4.13. Interpretation: For : Because you spend
almost exactly $2.90 each day in the Student
Center, any day you don’t go to the center will
save you about $2.90.
Interpretation: For : Because you spend
widely varying amounts in the Student Center,
you can best reduce the total by reducing the
number of big-ticket items you buy (Goodbye 
ice cream.). (The actual value of ŝ for the data in
Table 4.1 is $2.87.)

4.14. The variance is the square of the standard deviation.

ŝ � $2.50

ŝ � $0.02
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4.21. Number of errors

Heard before f f X f X2

16 2 32 512
15 0 0 0
14 2 28 392
13 3 39 507
12 3 36 432
11 9 99 1089
10 6 60 600
9 7 63 567
8 4 32 256
7 2 14 98
6 1 6 36

� 39 409 4489

From the bottom of the distribution, there are 20
scores of 10 or less. From the top there are 19
scores of 11 or more. The 20th score is at 10.
Median � 10 errors. Mode � 11 errors. Range �
16 � 6 � 10 errors. The 25th percentile is 9 errors;
the 75th percentile is 12. The interquartile range is
3 errors (12 � 9 � 3).
Interpretation: Bransford and Franks are interested
in the way human beings process information and
remember it. Thus, these data are a sample and the
purpose is to generalize to all humans. is the
appropriate standard deviation, and ŝ2 is the
appropriate variance.

ŝ2 � 5.26 errors
Interpretation: People are poor at recognizing what
they have heard if the test includes concepts simi-
lar to what they heard originally. On the average,
about half of the 20 sentences that they had never
heard were identified as having been heard earlier.

� 25.256 � 2.29 errors

ŝ �R
© f X2 �

1© f X 2 2

N

N � 1
 �R

4489 �
1409 2 2

39

38

ŝ

Median location �
N � 1

2
�

39 � 1

2
� 20

Mean �
�X

N
�

409

39
� 10.49 errors

426 ■ Appendix G

Interpretation: The heights of men are more 
variable than the heights of women.

4.17. Before:

After:
Interpretation: It appears that students were
homogeneous and neutral before studying 
poetry. After studying poetry for 9 weeks,
some students were turned on and some were
turned off; they were no longer neutral.

4.18. ŝ is the more appropriate standard deviation;
generalization to the manufacturing process is
expected.

Process A:

Process B:

Interpretation: Process B produces more consistent
gizmos. Note that both processes have an average
error of zero.

4.19. With 40 scores, the 25th percentile is located at 
the 10th score from the bottom of the distribution
( ) and the 75th percentile is at the
10th score from the top. 25th percentile �
and 75th percentile � .
Interpretation: 50 percent of the population has 
a normal oral body temperature between 
and .

4.20.

 �R
385,749.24 �

13928 2 2

40

39
� 20.504 � 0.71°F

ŝ �R
© f X 2 �

1© f X 2 2

N

N � 1
 

98.7°F
97.8°F

98.7°F
97.8°F

0.25 � 40 � 10

ŝ �R
12 �

02

6

5
� 1.55 millimeters

ŝ �R
18 �

02

6

5
� 1.90 millimeters

ŝ � 214.286 � 3.78, X� � 5.0

ŝ � 21.429 � 1.20, X� � 5.0

ŝ �R
245,470 �

13500 2 2

50

49
� 3.10 inches

(Continued)
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Answers to Problems (Chapter 5) ■ 427

The highest outlier temperature is

a. no
b. no
c. yes
d. no
e. yes

5.8. ■ Distribution , which is positively skewed, has
a mean of about 3 and a median of about 1 1/2.
The range of scores is 7 and the interquartile
range is 2.

■ Distribution . The mean of this distribution is
near 6 1/2 with a median near 7 1/2. The
range is 6, the interquartile range is 2, and the
distribution is negatively skewed.

■ Distribution Z is symmetrical with a mean and
median of about 6 1/2. The range is 3 and the
interquartile range is 1.

5.9.

5.10. For normal oral body temperatures: highest �
99.5°F; lowest � 96.4°F; 25th percentile � 97.8°F;
75th percentile � 98.7°F; median � 98.2°F

5.11.

a. d � 0.50. Interpretation: A d of 0.50 is a
medium effect size index.

b. d � 0.90. Interpretation: A d of 0.90 indicates
a quite large effect size, greater even than the
0.80 that is considered large.

c. d � 0.30. Interpretation: A d of 0.30 is
intermediate in size between values that are
considered small and medium; I’d call it
“somewhat larger than a small effect size.”
(Note that the means are the same in problems
b and c. Data variability is always important.)

d �
m1 � m2

s
�

X�1 � X�2

s

Normal oral body temperature (oF)

96 97 98 99 100

58 60 62 64 66 68 70 72 74 76 78

Height (in.)

Women

Men

Y

X
100.5°F
96.6°F
96.0°F
99.9°F
98.6°F

98.7 � 1.35 � 100.05°F
(Mean � 10.49 errors; median � 10 errors; mode
� 11 errors.) People are fairly consistent in their
mistakes; the IQR was only three errors, although
the range of errors was from 6 to 16. The standard
deviation (ŝ) was 2.29 errors; the variance was
5.26 errors.

4.22. What is your response? Do you know this stuff?
Can you work the problems?

CHAPTER 5

5.1. Zero
5.2. �z � 0. Because � 0, it follows that 

.

5.3. Negative z scores are preferable when lower
scores are preferable to higher scores. Examples
include measures such as errors, pollution levels,
and finish times.

5.4. Harriett:

Heslope:

Interpretation: Of course, in timed events, the
more negative the z score, the better the score.
Heslope’s �1.52 is superior to Harriett’s �1.39.

5.5. Tobe’s apple: ;

Zeke’s orange:

Interpretation: Tobe’s z score is larger, so the
answer to Hamlet must be a resounding “To be.”
Notice that each fruit varies from its group mean
by the same amount. It is the smaller variability of
the apple weights that makes Tobe’s fruit a winner.

5.6. First test: ; 

Second test: ; 

Third test:

Interpretation: Drop Ableson’s second test.
5.7. An efficient way to solve this problem is to first

find the value of ( ). Then subtract
from and add to the 25th percentile and the 
75th percentile, respectively. Thus,

The lowest outlier temperature
is 97.8 � 1.35 � 96.45°F.
1.5 � 0.9 � 1.35.

1.5 � IQR �

1.5 � IQR

z �
51 � 45

3
� 2.00

z �
125 � 105

15
� 1.33

z �
79 � 67

4
� 3.00

z �
10 � 6

1.2
� 3.33

z �
9 � 5

1
� 4.00

z �
24 � 26.25

1.479
� �1.52

z �
37 � 39.5

1.803
� �1.39;

© 1X � X� 2

S
� 0

© 1X � X� 2
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428 ■ Appendix G

5.15. Compile the raw data into simple frequency 
distributions:

Psychotherapy f Control f

34 1 22 1
28 1 21 1
25 1 18 1
23 1 13 1
18 1 10 1
15 1 9 1
13 2 5 1
11 1 4 2
10 2 3 2
9 1 2 1
7 2 1 1
5 1 0 1
0 1 �2 1

�2 1 �3 1
�5 1 �7 1

�10 1 �9 1
�15 1 �12 1

�22 1
� 20 � 20

Mediantherapy: The 10.5th score is between the two
scores of 10. Mediantherapy � 10.

Mediancontrol: The 10.5th score is between the two
scores of 3. Mediancontrol � 3.

Therapy: 25th percentile: 0.25 � N � 5. The 5th
score is 0, so 0 is the 25th percentile.
75th percentile: The 5th score from the
top is 18, which is the 75th percentile.

Control: 25th percentile: 0.25 � N � 5. �3 is the
25th percentile. 
75th percentile: 10 is the 75th percentile.

d �
m1 � m2

s
�

X�1 � X�2

s
�

9.8 � 3.0

10
� 0.68

Median location �
N � 1

2
�

20 � 1

2
� 10.5

X�control �
©X

N
�

60

20
� 3.0

X�therapy �
©X

N
�

196

20
� 9.8

5.12.

Interpretation: Although first-born children score
higher on cognitive ability than second-born chil-
dren, the size of the effect is quite small, being
about half the size usually designated as “small.”

5.13. For cabbages:

For pumpkins:

Lavery’s cabbage:

Jutras’s pumpkin:

Interpretation: Jutras’s pumpkin is the BIG
winner.

5.14. The lowest outlier score is 25th percentile

The highest outlier score is 75th percentile

The outliers in Table 2.3 are all low scores:
10, 9, and 5.

� 11.5 � IQR 2 � 28 � 11.5 � 7 2 � 38.5.

� 11.5 � IQR 2 � 21 � 11.5 � 7 2 � 10.5.

z �
X � X�

S
�

1689 � 1200

163.3
� 2.99

z �
X � X�

S
�

124 � 100

8.165
� 2.94

 �R
4,400,000 �

13600 2 2

3

3
� 163.3 pounds 

 S �R
©X 2 �

1©X 2 2

N

N
 

X� �
©X

N
�

3600

3
� 1200 pounds 

 �R
30,200 �

1300 2 2

3

3
� 8.165 pounds

 S �R
©X 2 �

1©X 2 2

N

N
 

X� �
©X

N
�

300

3
� 100 pounds

d �
m1 � m2

s
�

X�1 � X�2

s
�

469 � 456

110
� 0.12
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Answers to Problems (Chapter 6) ■ 429

6.5. Fathers Daughters

Mean 67.50 62.50
S 3.15 2.22
� (score) 405 375
� (score)2 27,397 23,467

� XY � 25,334
r � .513

r by the blanched formula:

By the raw-score formula:

r �
16 2 125,334 2 � 1405 2 1375 2

2 3 16 2 127,397 2 � 1405 2 2 4 3 16 2 123,467 2 � 1375 2 2 4
� .513

 �
4222.33 � 4218.75

6.99
� .512

r �

25,334

6
� 167.5 2 162.5 2

13.15 2 12.22 2
 

62 64 66 68 70 72

Father’s height (in.)

58

60

62

64

66

D
au

gh
te

r’
s 

he
ig

ht
 (

in
.)

Interpretation: Psychotherapy helps. On the
average, the psychological health of those who
received psychotherapy was 9.8 points higher after
treatment. Those not receiving treatment improved
only 3.0 points. The difference in the two means
produced an effect size index of 0.68, which is
intermediate between “medium” and “large.”
Both distributions of scores were approximately
symmetrical.

CHAPTER 6

6.1. A bivariate distribution has two variables.
The scores of the variables are paired in
some logical way.

6.2. Variation from high to low in one variable is
accompanied by predictable variation in the other
variable. Saying that two variables are correlated
does not tell you if the correlation is positive or
negative.

6.3. In a positive correlation, as X increases, Y increases.
(It is equivalent to say that as X decreases,
Y decreases.) In a negative correlation, as
X increases, Y decreases. (Equivalent statement: As
X decreases, Y increases in negative correlation.)

6.4. a. Yes; positive; taller people usually weigh more
than shorter people.

b. No; these scores cannot be correlated because
there is no basis for pairing a particular first-
grader with a particular fifth-grader.

c. Yes, negative; as temperatures go up, less 
heat is needed and fuel bills go down.

d. Yes, positive; people with higher IQs score
higher on reading comprehension tests.

e. Yes, positive; those who score well on quiz 1
are likely to score well on quiz 2. The fact
that some students are in section 1 and some
are in section 2 can be ignored.

f. No; there is no basis for pairing the score of a
student in section 1 with that of a student in
section 2.

6.6. X� � 105.00 Y� � 103.00

 �
11,004.76 � 10,815.00

206.786
�

189.760

206.786
� .92 

 r �

231,100

21
� 1105 2 1103 2

114.268 2 114.493 2
 

SY �R
227,200 �

12163 2 2

21

21
� 2210.048 � 14.493

SX �R
235,800 �

12205 2 2

21

21
� 2203.571 � 14.268

�25�20�15�10�5 0 5 10 15 20 25 30 35

Change in psychological health

Control

Psychotherapy

(Continued)
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Interpretation: A correlation of .92 indicates that
the WAIS and the Wonderlic are measuring almost
the same thing.

6.7.

6.8. The actual correlation coefficients are:
a. �.60 b. �.95 c. .50 d. .25
Would you be interested in knowing how statistics
teachers did on this question? I asked 31 of them
to estimate r for these four scatterplots. These
are the means and standard deviations of their
estimates:

a. b.
c. d.
These data suggest to me that estimating correla-
tion coefficients from scatterplots is not easy.

6.9. Coefficient of determination � .922 � .85.
Interpretation: The two measures of intelligence
have about 85 percent of their variance in common,
which shows that there is a great deal of overlap in
what they are measuring.

6.10. r2 � (.25)2 � .0625
Interpretation: This means that 6.25 percent of 
the variation that is seen in infectious diseases is
related to stress; 93.75 percent is due to other 
factors. Thus, to “explain” illness (prevalence,
severity, and such), factors other than stress 
are required.

6.11. Your shortest answer here is no. Although you have
two distributions, you do not have a bivariate distri-
bution. There is no pairing of a height score for a
woman with a height score for a man.

6.12. (.10)2 � .01, or 1 percent; (.40)2 � .16, or
16 percent. Note that a 4-fold increase in the
correlation coefficient produces a 16-fold increase
in the common variance.

6.13. Cigarette consumption Death rate

Mean 604.27 205.00
S 367.865 113.719
� (score) 6,647 2,255
� (score)2 5,505,173 604,527

� XY � 1,705,077
N � 11
r � .74

X� � .13; ŝ � .11X� � .42; ŝ � .17
X� � �.87; ŝ � .06X� � �.50; ŝ � .19

 r �

8524

10
� 119.0 2 144.4 2

15.744 2 16.184 2
� .25 

r �
110 2 18524 2 � 1190 2 1444 2

2 3 110 2 13940 2 � 1190 2 2 4 3 110 2 120096 2 � 1444 2 2 4
� .25
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1 2 3 4 5 6 7 8

Serial position

2

4

6

8

10

12

14

N
um

be
r 

of
 e

rr
or

s

Interpretation: With r � .74, these data show that
there is a strong relationship between per capita
cigarette consumption and male death rate
20 years later. Data such as these do not permit
cause-and-effect conclusions.

6.14. a. Interpretation: Vocational interests tend to
remain stable from age 20 to age 40.

b. Identical twins raised together have very 
similar IQs.

c. There is a slight tendency for IQ to be lower
as family size increases.

d. There is a slight tendency for taller men to
have higher IQs than shorter men.

e. The lower a person’s income level is, the
greater the probability that he or she will 
be diagnosed as schizophrenic.

6.15. Interpretation: As humor scores increase, insight
scores increase. The effect size index, 0.83, is very
large, which indicates that there is a very strong
relationship between humor and insight. Humor and
insight have 69 percent of their variance in common,
leaving only 31 percent not accounted for. The
caveats (warnings) that go with r are that the scatter-
plot must show a linear relationship and that r by
itself does not justify cause-and-effect statements.

6.16. Interpretation: A correlation of �.37 means that
there is a medium-sized tendency for children
with more older siblings to accept less credit or
blame for their own successes or failures than
children with fewer older siblings. The coefficient
of determination, .1369, means that only about
14 percent of the variance in acceptance of
responsibility is predictable from knowledge of
the number of older siblings; 86 percent is not.
No cause-and-effect statements are justified by a
correlation coefficient alone.

6.17. A Pearson r is not a useful statistic for data such
as these because the relationship is a curved one.
You might note that the scatterplot is similar to
the curved relationship you saw in Figure 2.9.
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Answers to Problems (Chapter 6) ■ 431

6.18.

6.19. a.

b. To draw the regression line, I used two points:
(X�, Y�) and (62, 60.5). I got the point (62, 60.5)
by using the formula Ŷ � a � bX. Other X values
would work just as well.

 a � Y� � bX� � 62.5 � 10.3612 2 167.5 2 � 38.12 

b � r 
SY

SX

� 1.513 2  
2.217

3.149
� 1.513 2 1.704 2 � 0.3612

 Ŷ � a � bX � 165 � 0.700X

 a � Y � bX � 515 � 10.700 2 1500 2 � 515 � 350 � 165

 b � r
SY

SX

� 1.724 2
90.42

93.54
� 1.724 2 10.967 2 � 0.700

62 64 66 68 70 72

Father’s height (in.)

58

60

62

64

66

D
au

gh
te

r’
s 

he
ig

ht
 (

in
.)

3 4 5 6
Advertising budget ($ thousands)

80

100

120

140

Sa
le

s 
($

 th
ou

sa
nd

s)

6.20. a.

b.

6.21. a. Advertising X Sales Y

Mean 4.286 108.571
S 1.030 20.304
� (score) 30 760
� (score)2 136 85,400

�XY � 3360
r � .703

b. Ŷ � a � bX � 49.176 � 13.858X
c. One point that I used for the regression line

on the scatterplot was for X� � 4.29 and
Y� � 108.57, the two means. The other point
was X � 6.00 and Y � 132.33. Other X values
would work just as well.

Ŷ � a � bX � 4.877 � 10.935 2 1130 2 � 126.4

 � 103 � 98.123 � 4.877 

 a � Y� � bX� � 103 � 10.935 2 1105 2  

b � r 
SY

SX

� 1.92 2  
14.493

14.268
� 1.92 2 11.016 2 � 0.935

d. Ŷ � a � bX. For X � 10, Ŷ � 187.756 or, in
terms of sales, $187,756.

e. Interpretation: You were warned that the inter-
pretation of r can be a tricky business. Your
answer might contain one of those common
errors I mentioned. With r � .70, you have a
fair degree of confidence that the prediction
will be close. However, if your thinking (and
your answer) was that increasing advertising
would increase sales, you made the error of
inferring a causal relationship from a correla-
tion coefficient.

As a matter of fact, some analysts say that
sales cause advertising; they say that advertis-
ing budgets are determined by last year’s
sales. In any case, don’t infer more than the
data permit. These data allow you to estimate
with some confidence what sales were by
knowing the amount spent for advertising.
In this problem, the percent of sales spent on
advertising (just less than 4 percent) is about
the same as the percent spent nationally in the
United States.

Another caution: The $10,000 figure is much
more than any of the values used to find the
regression line. It is not safe to predict outcomes
for points far from the data.

6.22.

Interpretation: An IQ score depends to some
degree on the test administered; a person with an
IQ of 65 on the Stanford–Binet is predicted to have
an IQ of 74 on the WAIS.

6.23. Designate the time number X and the graduates Y.

�X � 15.0000 �Y � 6.9700 N � 5

�X2 � 55.0000 �Y2 � 9.7403 �XY � 21.4000

Ŷ � 1.80 2 a
15

16
b 165 � 100 2 � 100 � 73.75 � 74
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X� � 3.0000 Y� � 1.3940 SX � 1.4142

SY � 0.0695

r � .998 a � 1.2469 b � 0.0490

For the year 2011, X � 10. Thus,

Adjusting the decimals, the number of predicted
graduates with bachelor’s degrees in the year
2011 is approximately 1,737,000 or 1.7 million.
Depending on when you are working this problem,
you can check the accuracy of this prediction in the
Statistical Abstract of the United States. (Also,
because you already have the regression equation,
you can easily predict the number of graduates for
the particular year that you will graduate.)

6.24. On the big important questions like this one,
you are on your own!

What Would You
Recommend? Chapters 1–6

a. The mode is appropriate because this is a 
distribution of nominal data.

b. z scores can be used.
c. A regression analysis produces a prediction.
d. The median is appropriate because the distribution is

severely skewed (the class interval with zero has the
highest frequency). The range, interquartile range,
and standard deviation would all be informative. The
appropriate standard deviation is s because the 50
states represent the entire population of states.

e. The applicant with the more consistent judgments is
the better candidate. The range, interquartile range,
and standard deviation would all be helpful.

f. A line graph is appropriate for the relationship that is
described. A Pearson product-moment correlation 
coefficient is not appropriate because the relationship
is curvilinear (much forgetting at first, and much less
after 4 days).

g. The median is the appropriate central tendency statistic
when one or more of the categories is open-ended.

h. A correlation coefficient will describe this
relationship. (What direction and size would 
you guess for this coefficient? The answer,
based on several studies, is �.10.)

Ŷ � 1.2469 � 0.0490 110 2 � 1.737

Ŷ � a � bX � 1.2469 � 0.0490X

CHAPTER 7

7.1. There are seven cards between the 3 and
jack, each with a probability of � .077. So
(7)(.077) � .539.

7.2. The probability of drawing a 7 is , and there are
52 opportunities to get a 7. Thus, (52)( ) 4.

7.3. There are four cards that are higher than a jack or
lower than a 3. Each has a probability of . Thus,

7.4. The probability of a 5 or 6 is .
In 78 draws, (78)(.154) � 12 cards that are 5s or 6s.

7.5. a. .7500; adding the probability of one head (.3750)
to that of two heads (.3750), you get .7500.

b. .1250 � .1250 � .2500
7.6. 16(.1250) � 2 times
7.7. a. .0668

b. Interpretation: The test scores are normally
distributed.

7.8. a. .0832
b. .2912
c. .4778

7.9. Empirical; the scores are based on observations.
7.10. z � (X � m)/s.

a. z score � �3.00
b. z score � .67
c. z score � .20
d. z score � .00

7.11. To make a quick check of your answer, compare
it with the proportion of students who have IQs
of 120 or higher, .0918. The proportion with IQs
of 70 or lower will be less than the proportion
with IQs of 120 or higher. Is your calculated 
proportion less? The figure that follows shows a
normal distribution in which the proportion of the
population with IQs of 70 or lower is shaded. 
For IQ � 70, z � (70 � 100)/15 � �30/15 �
�2.00. The proportion beyond z � 2.00 is .0228
(column C in Table C). Thus, .0228, or 2.28 per-
cent, of the population is expected to have IQs of
70 or lower.

4
52 � 4

52 � 8
52 � .154

14 2 1 4
52 2 � 16

52 � .308.

4
52

�
4
52

4
52

4
52

?

70 100
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7.12. (.0228)(4000) � 91.2, or 91 students.
7.13. z � (110 � 100)/15 � 10/15 � .67. The pro-

portion beyond z � .67 is .2514, which is the
expected proportion of people with IQs of 110 or
higher.

7.14. a. .2514 � 250 � 62.85, or 63 students
b. 250 � 62.85 � 187.15, or 187 students
c. . I hope you were able to get

this one immediately by thinking about the
symmetrical nature of the normal distribution.

7.15. The z score that includes a proportion of .02 is
2.06. If z � 2.06, then X � 100 � (2.06)(15) �
100 � 30.9 � 130.9 � 131. In fact, Mensa
requires an IQ of 130 on tests that have a stan-
dard deviation of 15, which permits somewhat
more than 2 percent of the population to qualify.

7.16. a. The z score you need is 1.65. (1.64 will include
more than the tallest 5 percent.) 1.65 �
(X � 64.2)/2.5; X � 64.2 � 4.1 � 68.3 inches.

b. z � (58 � 64.2)/2.5 � �6.2/2.5 � �2.48.
The proportion excluded is .0066.

7.17. a. z � (60 � 70.0)/3.0 � �10.0/3.0 � �3.33.
The proportion excluded is .0005.

b. z � (62 � 70.0)/3.0 � �8.0/3.0 � �2.67.
The proportion taller than Napoleon is .9962
(.5000 � .4962).

7.18. a. , proportion � .0359

b. The z score corresponding to a proportion of
.1000 is 1.28. Thus,

X � 3.11 � (1.28)(.05) � 3.11 � .064 � 3.17 grams

X � 3.11 � .064 � 3.05 grams

Thus, the middle 80 percent of the pennies weigh
between 3.05 and 3.17 grams.

z �
3.20 � 3.11

.05
� 1.80

1
2 � 250 � 125

Answers to Problems (Chapter 7) ■ 433

30 40

?

30 3520

?

.2967

7.19.

, proportion � .4938

, proportion � .2967

.4938 � .2967 � .1971. The proportion of stu-
dents with scores between 35 and 30 is subtracted
from the proportion with scores between 35 and
20. There are other ways to set up this problem
that yield the same proportion.

7.22. 800 � .1971 � 157.7 � 158 students

z �
30 � 35

6
� �.83

z �
20 � 35

6
� �2.50

a. , proportion � .2967;

, proportion � .2967; 

(2)(.2967) � .5934 � the proportion of
students with scores between 30 and 40.

b. The probability is also .5934.
7.20. Interpretation: No, because the proportion

between 30 and 40 straddles the mean, where
scores that occur frequently are found. The
proportion between 20 and 30 is all in one tail of
the curve, where scores occur less frequently.

7.21.

z �
40 � 35

6
� .83

z �
30 � 35

6
� �.83

7.23.

? ?

.0050 .0050

.9900
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The z score that is conventionally used for a 
proportion of .0050 is 2.58 (column C). Thus,

X � m � (z)(s) � 100 � (2.58)(15) 
� 138.7, or 139

and

X � 100 � (�2.58)(15) � 61.3, or 61

IQ scores of 139 or higher or 61 or lower are
achieved by 1 percent of the population.

7.24. Because .01 of the curve lies outside the limits of
the scores 61 and 139, the probability is .01. The
probability is .005 that the randomly selected 
person has an IQ of 139 or higher and .005 that 
it is 61 or lower.

7.25.

The proportion associated with z � �.82 is .2061
(column C), and (.2061)(185,822) � 38,298 truck
drivers. Because the normal curve corresponds
only approximately to the empirical curve, the
usual procedure is to report this result as “About
38,000 truck drivers would get raises.”

7.26. This problem has two parts: determining the num-
ber of trees over 8 inches DBH on 1 acre and
multiplying by 100.

proportion � .5000 � .3810 � .8810
.8810(199) � 175.319 trees on 1 acre
175.319(100) � 17,532 trees on 100 acres 
(about 17,500 trees)

7.27.

The proportion of gestation periods expected to
last 10 months or longer is .0110. In modern
obstetrical care, pregnancies are normally brought
to term (by drugs or surgery) earlier than 300 days.

7.28. Converting this problem to inches, you find the 
z score is

The proportion of the curve above 3.33 is .0004,
so only 4 in 10,000 have to duck to enter a resi-
dential room.

7.29.

 s �R
130,000 �

13600 22

100

100
� 2.00 inches 

m �
3600

100
� 36.0 inches 

z �
80 � 70.0

3.0
� 3.33

z �
300 � 268

14
�

32

14
� 2.29

z �
8 � 13.68

4.83
� �1.18

z �
.85 � .99

.17
�

�.14

.17
� �.82

a. , proportion � .5000 �

.4772 � .9772

b. , proportion � .5000 �

.4332 � .9332

.9332(300) � 279.96, or 280 hobbits

c. ,

proportion � .00003, or practically zero

CHAPTER 8

8.1.

8.2. For this problem, it is not the numbers in your
sample that are “right” or “wrong” but the method
you used to get them. Create an identifying number
(01–20) for every population member. (Table 8.2
works fine.) Haphazardly find a starting place in
Table B and record in sequence 10 two-digit
identifying numbers (ignoring numbers over 20
and duplications). Write the 10 population
members that correspond to the 10 selected
identifying numbers. How does your mean
compare to the mean of 8.50?

8.3. As in problem 8.2, the method, not the numbers,
determines a correct answer. You should give
each number an identifying number of 01 to 38,
begin at some chance starting place in Table B,
and select 12 numbers. The starting place for
every random sample taken from Table B should
be haphazardly chosen. If you start at the same
place in the table every time, you will have the
same identifying numbers every time.

8.4. Interpretation: Those with greater educational
accomplishments are more likely to return 
the questionnaire. Such a biased sample will 
overestimate the accomplishments of the 
population.

8.5. Interpretation: The sample will be biased. Many
of the general population will not even read the
article and thus cannot be in the sample. Of those
who read it, some will have no opinion and some
will not bother to mark the ballot and return it. In
short, the results of such a questionnaire cannot
be generalized to the larger population.

X� �
©X

N
�

68

8
� 8.50

z �
46 � 36

2
� 5.00

z �
39 � 36

2
� 1.50

z �
32 � 36

2
� �2.00
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8.6. a. Biased, although such a bias is not considered
serious. Every sample does not have an equal
chance of being selected. For example, two
brothers named Kotki, next to each other on
the list, could not both be in one sample.
Thus, samples with both Kotki brothers are
not possible.

b. Biased, because none of the samples would
have freshmen, sophomores, or seniors,
although they are members of the population.

c. Random, assuming the names in the box were
thoroughly mixed.

d. Random; though small, this sample fits the
definition of a random sample.

e. Biased; some members of the population have
completed the English course and no samples
could include these people.

8.7. For many important problems, random samples
are impractical or impossible to obtain.
Researchers often use convenient samples to
conduct experiments. If the experiments produce
a consistent pattern of results, researchers
conclude that this pattern is true for the
population, and they are usually correct.

8.8. Standard error; expected value
8.9. a. Select a set of numbers as the population.

Draw many samples of the same size, find
the range for each sample, and arrange those
ranges into a frequency distribution.

b. The standard error of the range
c. The expected value of the range, which is the

mean of the sampling distribution of the range,
will be less than the population range. Only a
very few sample ranges (maybe only one) can
have a value equal to the population range.
Thus, almost all the sample ranges will be less
than the population range. Statistics (such as the
range) with expected values that are not equal
to the corresponding population parameters are
called biased estimators and are not popular
among mathematical statisticians.

8.10. Please check your answer with the definition and
explanation in the chapter.

8.11. If this standard error (which is called the standard
error of estimate) is very small, it means that the
actual Y will be close to the predicted Ŷ. A very
large standard error indicates that you cannot put
much confidence in a predicted Ŷ. That is, the
actual Y is subject to other influences besides X.

8.12. s

N 1 2 4 8

1 1 2 4 8
4 0.50 1 2 4

16 0.25 0.50 1 2
64 0.125 0.25 0.50 1

8.13. Interpretation: As N increases by a factor of 4,
is reduced by one-half. More simply but less
accurately, as N increases, decreases.

8.14. 16 times

8.15.

8.16. For sample means of 8.5 or less,

� �1.00; 

proportion � .1587

For sample means of 10 or greater,

8.17. For mean IQs of 105 or greater,

For mean IQs of 90 or less,

� �3.33; 

probability � .0004

Interpretation: Classrooms with 25 students will
have a mean IQ fairly close to 100; departures of
as much as 5 points will happen less than 5 percent
of the time; departures of as much as 10 points will
be very rare, occurring less than one time in a
thousand. This analysis is based on the premise that
no systematic factors are influencing a child’s
assignment to a classroom.

8.18. Therefore,

z �
73,900 � 77,000

3162
� �.98; p � .1635

sX� �
20,000

240
� 3162.

z �
90 � 100

15>225
�

�10

3

z �
105 � 100

15>225
�

5

3
� 1.67; probability � .0475

z �
10 � 9

2>216
�

1

0.5
� 2.00; probability � .0228

z �
8.5 � 9

2>216
�

�0.5

0.5

z �
8.5 � 9

2>28
�

�0.5

0.707
� �.71; proportion � .2389

sX�

sX�

(Continued)
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Interpretation: The junior’s suspicion that the
$73,900 sample mean might be just a chance
fluctuation from a true mean of $77,000 has
some foundation. Such a sample mean (or one
even smaller) would be expected in about 16 per-
cent (one-sixth) of a large number of random
samples if the true campus mean is $77,000.

8.19. a. Normal; t b. t; normal c. t; normal
8.20. Degrees of freedom
8.21. W. S. Gosset, who wrote under the pseudonym

“Student,” invented the t distribution so that he
could assess probabilities for small samples from
populations for which s was not known.

8.22.

8.23. X� � 27.00 points; ŝ � 3.803 points;
df � 13

The t value for 95 percent confidence for 13 df
is 2.160.

Interpretation: The workshop is effective. The
national norm of the DoorMAT test is 24.0 points.
Based on a sample of 14, we are 95 percent
confident that the average score of all who take
the workshop is between 24.80 and 29.20 points.
Because the national mean is less than the lower
limit of the confidence interval, we can conclude
that the workshop increases assertiveness scores.
(This conclusion assumes that the clients were not
more assertive than average before the workshop.)

8.24. X� � 1.20 inches, ŝ � 0.10 inch,
t � 31.598

LL � 1.20 � 31.598(0.0577) � �0.62 inch

UL � 1.20 � 31.598(0.0577) � 3.02 inches

sX� � 0.0577 inch,

 � 27.00 � 2.160 11.016 2 � 29.20 points

UL � X� � ta 1sX� 2  

 � 27.00 � 2.160 11.016 2 � 24.80 points

LL � X� � ta 1sX� 2  

sX� � 1.016 points;

sX� �
ŝ

2N
�

489.90

216
� 122.47 hours 

� 489.90 hours

 ŝ �R
1,524,600,000 �

1156,000 2 2

16

15

X� �
©X

N
�

156,000

16
� 9750 hours 

Interpretation: The 120 Krups coffee pots meet
the specifications. The company can have 99.9
percent confidence that the true mean burn rate
for this box of pots is less than 4 inches per
minute. (The lower limit is not of interest to
Hawker-Beechcraft, and of course, there is no
such thing as �0.62 inches.)

8.25. a. �3.182(2) � �6.364 (12.728 units wide)
b. �2.131(1) � �2.131 (4.262 units wide). The

fourfold increase in N produces a confidence
interval about one-third as wide. The effect of
changing the sample size depends on the rela-
tive change in N, not the absolute change.

c. �3.182(1) � �3.182 (6.364 units wide).
Reducing ŝ by half reduces the size of the con-
fidence interval by half. This relationship is
true regardless of the size of ŝ. Data gatherers
reduce ŝ by making careful measurements,
using precise instruments, and increasing N.

8.26. The size of the standard deviation of each sample.
If you happen to get a sample that produces a
large standard deviation, a large standard error will
result and the confidence interval will be wide.

8.27. a. 19
b. Narrower; because N was increased by four,

is reduced to half of its size. In addition,
increasing N decreases the t value from Table D.
Therefore, the lines are less than half as long.

8.28. a. 18
b. Narrower; the t value is smaller.

8.29. The actual values for the two 95 percent confi-
dence intervals are:

females: 10.9–14.6 years

males: 14.0–15.5 years

8.30. The standard error of the mean for each of the
four trial means is 1.0; the t value (24 df ) for the
95 percent confidence interval is 2.064. The lower
and upper limits for each mean are �2.064.

Look at the graph that accompanies this problem.
The graph in problem 7.30 has been modified by
adding a 95 percent confidence interval to each trial
mean. The overlap of the trial 2 confidence interval
with that of the trial 1 mean indicates that the dip at
trial 2 may not be reliable. That is, you are 95 percent
confident that the population mean for trial 2 is in the
range of 3.94 to 8.06. Because the upper half of this
range is also included in the trial 1 confidence
interval, you aren’t confident that a second sample of

sX�

(Continued)
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data will show the dip at trial 2. [Note that the figure
that shows only the means invites you to conclude
that performance (always) goes down on trial 2. The
figure with the confidence intervals leads to a more
cautious interpretation.]

1 2 3 4

Trials

4

8

12

16

20

M
ea

n 
pe

rf
or

m
an

ce

95% confidence
interval

■ H0: a statement specifying an exact value
for the parameter of the population

■ H1: a statement specifying all other values
for the parameter

c. Using a sampling distribution that assumes H0

is correct, find the probability of the statistic
you calculated.

d. If the probability is very small, reject H0 and
accept H1. If the probability is large, retain
both H0 and H1, acknowledging that the data
do not allow you to reject H0.

9.7. Disagree
9.8. False. Although the researcher probably thinks

that H0 is false, the sampling distribution is based
on the assumption that H0 is true.

9.9. A significance level (a level) is chosen by the
researcher as the point that separates “This is an
unlikely event if H0 is true and therefore reject H0”
from “This could reasonably happen if H0 is true
and therefore retain H0.” The largest acceptable
significance level without justification is .05.

9.10. Phrases that should be circled are “p is small”
and “Accept H1.”

9.11. a. t.01 (17 df ) � 2.898
b. t.001 (40 df ) � 3.551
c. t.05 (� df ) � 1.96

9.12. A good interpretation explains the results with the
terms and concepts used in the description of the
problem. It also tells the direction of any difference
that was observed.

9.13. a is the probability of a Type I error, which
occurs when a researcher mistakenly rejects H0.
A statistical test of the data produces a p value,
which is the probability of obtaining the sample
statistic actually obtained, if H0 is true.

9.14. You retain a false null hypothesis.
9.15. Interpretation: The probability of making a Type I

error is zero. If at first you don’t agree with this
answer, keep thinking until you understand.

9.16. The probability of a Type I error decreases from
.05 to .01, and the probability of a Type II error
increases.

9.17. If an answer here surprises you, make a note of
what surprised you. Students, like researchers,
have expectations and surprises. A surprise often
means that you are about to learn something. 
Figure out why you were surprised.

Look at the lack of overlap between the
confidence intervals of trial 2 and trial 3. You 
can conclude that trial 3 performance is reliably
better than that of trial 2; that is, you are more
than 95 percent confident that a second sample 
of data will also show that the trial 3 mean is
greater than the trial 2 mean.

CHAPTER 9

9.1. Null hypothesis statistical test (or testing)
9.2. Interpretation: .20 is the probability of data 

such as those actually observed, if the equality
hypothesis is true.

9.3. The null hypothesis is a statement about a
parameter.

9.4. The null hypothesis (symbolized H0) is a tentative
hypothesis about the value of some parameter
(often the mean) of the population that the
sample is taken from. The alternative hypothesis
(symbolized H1) specifies other values for the
parameter.

9.5. H1: m1 	 269.3 grams; H1: m1 � 269.3 grams; 
H1: m1 
 269.3 grams

9.6. Your outline should include the following points:
a. Gather sample data from the population you

are interested in and calculate a statistic.
b. Recognize two logical possibilities for the

population: (Continued)
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Critical t-test Reject or
value value retain H0? p value

a. 2.262 2.25 Retain p 
 .05
b. 2.539 2.57 Reject p � .01
c. 2.042 2.03 Retain p 
 .05
d. 6.869 6.72 Retain p 
 .001
e. 1.714 1.72 Reject p � .05
f. 2.423 2.41 Retain p 
 .02

9.18. t.05 (23 df ) � 2.069
a. Interpretation: The mean paranoia score on the

MMPI-2 for the 24 police officers was 54.3,
which is significantly greater than the popula-
tion mean of 50 ( p � .05). Police officers are
significantly more paranoid than the general
population.

b. Interpretation: The mean paranoia score on 
the MMPI-2 for the 24 police officers was
54.3, which is not significantly different from
the population mean of 50 ( p 
 .05). Police
officers are not significantly more paranoid
than the general population.

9.19. t.05 (9 df ) � 2.262
a. Interpretation: The reduction in return rate

from 5.3 percent to 4.9 percent was not
statistically significant ( p 
 .05). Including
testimonials with orders does not reduce
returns by a statistically significant amount.

b. Interpretation: Including testimonials with
orders reduced the return rate from 5.3 percent
to 4.9 percent, a statistically significant 
reduction ( p � .05).

9.20. The null hypothesis is H0: m0 � 100.

t.02 140 df 2 � 2.423

  t �
X� � m0

sX�
�

105 � 100

1.98
� 2.53;  49 df 

 sX� �
14.00

250
� 1.98

 ŝ �R
560,854 �

15250 2 2

50

49
� 14.00 

 X� �
5250

50
� 105.00 

Interpretation: The null hypothesis can be rejected;
p � .02. The conclusion is that the Head Start 
participants had IQs that were significantly above
average.

The actual studies that evaluated Head Start
were more sophisticated than the one described
here, but the conclusions were the same. The IQ
differences, however, weren’t lasting, but other
benefits were.

9.21. The null hypothesis is H0: m0 � 10. The best alter-
native hypothesis is H1: m1 	 10. A two-tailed
alternative hypothesis will allow you to conclude
that odometers indicate too much or too little
distance.

Interpretation: Retain the null hypothesis. Although
the sample mean (10.1 miles) is greater than the
actual distance traveled (10 miles), the t test does
not provide evidence that odometers record a sig-
nificantly greater distance.

9.22.

t.05 (12 df ) � 2.179

Interpretation: Reject the null hypothesis and
conclude that people who were successful in used
car sales have significantly higher extraversion
scores than the general population.

9.23.

Interpretation: The effect size index, 2.63, is
much larger than the conventional designation of
“large.” Even though the sample mean was only
1.375 grams more than the Frito-Lay company
claimed, the effect was large because the bag-
filling machinery was so precise (the standard
deviation was small).

d �
X� � m

s
�

270.675 � 269.3

0.523
� 2.63

t �
X� � m0

sX�
�

56.10 � 50.00

2.774
� 2.199;  df � 12

t.05 111 df 2 � 2.201

 t �
10.1 � 10

0.0537
� 1.86;  11 df 

 sX� �
0.186

212
� 0.0537 

 ŝ �R
1224.5 �

1121.2 2 2

12

11
� 0.186 

 X� �
121.2

12
� 10.1 
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9.29. H0: m0 � 58.7 �X � 360.8
�X2 � 21,703.86 N � 6 X� � 60.1333
ŝ � 1.2453

t.05 (5 df ) � 2.571

Interpretation: Snickers candy bars weigh more
than the company claims ( p � .05). The effect
size index for the difference is huge (d � 1.15).

9.30. H0: m0 � 6 �X � 216 �X2 � 1368
N � 40 X� � 5.40 ŝ � 2.274 

t.05 (30 df ) � 2.042

Interpretation: For number choices between 1 and
10, there is no significant difference between the
numbers chosen by people subjected to subliminal
stimuli and those who were not. The effect size
index, 0.26, is small.

CHAPTER 10

10.1. Your outline should include at least the following
points:
a. Two samples are selected using random assign-

ment (or random selection).
b. The samples are treated the same except for

one thing.
c. The samples are measured.
d. The difference in measurements either is attrib-

uted to the difference in treatments or is about
what would be expected if the treatment does
not have an effect.

e. Write an explanation of the results.
10.2. Random assignment of participants to groups
10.3. a. Independent variable and levels: satisfaction

with life; high SWLS scorers and low SWLS
scorers
Dependent variable: annual income
Null hypothesis: Mean annual income is the
same for the population of people with high
SWLS scores as for the population with low
SWLS scores.

d �
5.4 � 6

2.274
� �0.26

df � 39t �
X� � m0

sX�
�

5.40 � 6

0.3595
� �1.67;

sX� � 0.3595

d �
X� � m

ŝ
�

60.1333 � 58.7

1.2453
� 1.15

t �
X� � m0

sX�
�

60.1333 � 58.7

0.5084
� 2.82;  5 df

sX� � 0.5084

9.24.

Interpretation: The difference in extraversion
between successful used car salespeople and the
population mean has a medium effect size index.

9.25.

Interpretation: An effect size index of �0.57 shows
that a medium-size effect existed undetected for a
long time and that the true value is less than the
hypothesized value.

9.26.

a. t � 2.24; df � 8. Because t.05 (8 df ) � 2.31,
r � .62 is not significantly different from .00.

b. t � �2.12; df � 120. Because t.05 (120 df ) �
1.98, r � �.19 is significantly different
from .00.

c. t � 2.08; df � 13; t.05 (13 df ) � 2.16. Retain
the null hypothesis.

d. t � �2.85; df � 62; t.05 (60 df ) � 2.00. Reject
the null hypothesis.

9.27. Interpretation: Here’s my response: Chance is not
a likely explanation for a correlation coefficient
of .74 based on an N of 11 pairs. If there was
really no relationship between cigarette smoking
and lung cancer, chance would produce an r �
�.7348 only 1 time in 100 (Table A, df � 9). An
r � .74 is even less likely than an r � .7348, so 
I conclude that there is a statistically significant
correlation between cigarette smoking and lung
cancer (p � .01).

9.28.

From Table A, r.01 (40 df ) � .3932.
Interpretation: Because .40 � .3932, reject the
null hypothesis and conclude that there is a posi-
tive correlation between the time a student works
on a test and the grade, p � .01.

If, as you finished up this problem, you thought
about waiting until the end of the period to turn in
your next test (so that you would get a better
grade), you drew a cause-and-effect conclusion
from a correlation coefficient. Better go back and
reread pages 105–106.

� .40 

�
42 146,885 2 � 1903 2 12079 2

2 342 125,585 2 � 1903 2 2 4 342 1107,707 2 � 12079 2 2 4

r �
N©XY � 1©X 2 1©Y 2

2 3N©X 2 � 1©X 2 2 4 3N©Y 2 � 1©Y 2 2 4

t � 1r 2B
N � 2

1 � r 2

d �
X� � m

s
�

98.2 � 98.6

0.7
� �0.57

d �
X� � m

s
�

56.1 � 50.0

10
� 0.61
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exposure to better toys; levels: yes and no;
dependent variable: number of aggressive
encounters.

c. Paired samples. This is a repeated-measures
design; independent variable: bright artificial
light; levels: yes and no; dependent variable:
depression score.

d. Paired samples (yoked control design). Par-
ticipants are paired so that the amount of
interrupted sleep is equal for the two. One,
however, is deprived of REM sleep, the other
is not; independent variable: REM deprivation;
levels: yes and no; dependent variable: mood
questionnaire score.

e. Independent samples. The random assignment
of individuals and the subsequent procedures
give you no reason to pair two particular partic-
ipants’ mood questionnaire scores; independent
variable: REM deprivation; levels: yes and no;
dependent variable: mood questionnaire score.

f. Independent samples. The instructor randomly
assigned individuals to one of the two groups;
independent variable: sophomore honors
course; levels: yes and no; dependent variable:
grade point average.
This paragraph is really not about statistics, and

you may skip it if you wish. Were you somewhat
more anxious about your decisions on experiments
c and d than on experiments a and b? Was this
anxiety based on the expectation that surely it was
time for an answer to be “independent samples”?
Did you base your answer on your expectation
rather than on the problem? If your answers are
yes, you were exhibiting a response bias. A
response bias occurs when you make a response
on the basis of previous responses rather than on
the basis of the current stimulus. Response biases
often lead to a correct answer in textbooks, and
you may learn to make decisions you are not sure
about based on irrelevant cues (such as what your
response was on the last question). To the extent it
rewards your response biases, a textbook is doing
you a disservice. So, be forewarned; recognize
response bias and resist it. (I’ll try to do my part.)

10.8. A two-tailed test is appropriate; if one of the two
kinds of animals is superior, you want to know
which one.
H0: m1 � m2

H1: m1 	 m2

b. Independent variable and levels: type of crime;
robbers and embezzlers
Dependent variable: years served in prison
Null hypothesis: Convicted robbers and
convicted embezzlers spend, on the average,
the same number of years in jail.

c. Independent variable and levels: amount (or
weeks) of treatment; 1 week and 6 weeks
Dependent variable: flexibility scores
Null hypothesis: One week of physical therapy
produces a mean flexibility score that is equal
to the mean score after 6 weeks of treatment.

10.4. Your outline should include the following points:
a. Recognize two logical possibilities:

1. The treatment has no effect (null hypothesis,
H0).

2. The treatment has an effect (alternative
hypothesis, H1).

b. Tentatively assume H0 to be correct and 
establish an a level.

c. Calculate an appropriate test statistic from the
sample data. Compare the test statistic to the
critical value for a (which comes from a 
sampling distribution based on the assumption
that H0 is true).

d. If the test statistic has a probability less than a,
reject H0, adopt H1, and write a conclusion
about the effects of the treatment. If the test
statistic has a probability greater than a, retain
H0 and conclude that the data did not allow
you to choose between H0 and H1.

10.5. Experiments are conducted so that researchers
can reach a conclusion about the effect of an
independent variable on a dependent variable.

10.6. Degrees of freedom are always equal to the 
number of observations minus either
■ The number of necessary relationships that

exist among the observations
■ The number of parameters that are estimated

from the observations
10.7. a. Paired samples. With twins divided between

the two groups, there is a logical pairing
(natural pairs); independent variable:
environment; levels: good and bad; dependent
variable: attitude toward education.

b. Paired samples. This is a before-and-after
experiment (repeated measures). For each
group, the amount of aggression before
watching the other children is paired with the
amount afterward; independent variable:

440 ■ Appendix G
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Fellow humans Pigeons

�X 147 75
�X 2 7515 1937
N 3 3
X� 49 25
ŝ 12.4900 5.5678

df � 4
Interpretation: Reject the null hypothesis and
conclude that pigeons can spot a person in the
ocean more quickly than humans can, p � .05.

10.9. Independent variable: percent of cortex removed;
levels: 0 percent and 20 percent; dependent
variable: number of errors

t.05 (60 df ) � 2.00.
Interpretation: Retain the null hypothesis.
Conclude that a 20 percent loss of cortex did not
produce a statistically significant reduction in the
memory of rats that were learning a simple maze.
Note: Some brain operations improve performance
on some tasks, so a two-tailed test is appropriate.

10.10. New package Old package

�X 45.9 52.8
�X2 238.73 354.08
X� 5.1 6.6
N 9 8
ŝ 0.76 0.89

 t �
X�0 � X�20

sX�1�X�2

�
5.2 � 6.3

0.894
� �1.23; df � 78

 sX�1�X�2
� B a

4.00

240
b

2

� a
4.00

240
b

2

� 0.894 

 ŝ20 percent �R
2212 �

1252 2 2

40

40 � 1
� 4.00 

 ŝ0 percent �R
1706 �

1208 2 2

40

40 � 1
� 4.00 

 �
49 � 25

B a
12.49

23
b

2

� a
5.5678

23
b

2
�

24

7.895
� 3.04

t �
X�1 � X�2

B a
ŝ1

2N1

b
2

� a
ŝ2

2N2

b
2
 

t.005 (15 df ) � 2.947 (one-tailed test). Thus,
p � .005.

Interpretation: Reject the null hypothesis and
conclude that the search report can be compiled
more quickly with the new software than with the
old. A one-tailed test is appropriate here because
the only interest is whether the new software is
better than the one on hand. (See the section
“One-Tailed and Two-Tailed Tests” in Chapter 9.)

10.11. First of all, you might point out to the sisters that
if the populations are the two freshman classes,
no statistics are necessary; you have the popula-
tion data and there is no sampling error. State U.
is one-tenth of a point higher than The U. If the
question is not about those freshman classes but
about the two schools, and the two freshman
classes can be treated as representative samples,
a two-tailed test is called for because superiority
of either school would be of interest.

t.05 (120 df ) � 1.980. Thus, p � .05.
Interpretation: Students at State U. have statistically
significantly higher ACT admission scores than do
students at The U. You may have noted how small
the difference actually is—only one-tenth of a
point, an issue that is discussed in a later section
in the text.

10.12. a.

ŝD is the standard deviation of the distribution
of differences between paired scores.

b. D � X � Y. D is the difference between two
paired scores.

c. is the standard error of the
difference between means for a paired set of
scores.

d. is the mean of a set of scores
that is paired with another set.
Y� � ©Y>N. Y�

sD� � ŝD>1N. sD�

ŝD �R
©D2 �

1©D 2 2

N

N � 1

t �
X�1 � X�2

sX�1�X�2

�
23.4 � 23.5

0.0474
� �2.11;  df 7 120

sX�1�X�2
� B a

ŝ1

2N1

b
2

� a
ŝ2

2N2

b
2

� 0.0474

t �
6.6 � 5.1

B a
10.24

15
b 10.24 2

�
1.5

0.40
� 3.75;  df � 15
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10.13. X Y D D2

16 18 �2 4
10 11 �1 1
17 19 �2 4
4 6 �2 4
9 10 �1 1

12 14 �2 4
� 68 78 �10 18
Mean 11.3 13.0

t.001 (5 df ) � 6.869. Therefore, p � .001.
Interpretation: The conclusion reached by the
researchers was that frustration (produced by 
seeing others treated better) leads to aggression.

Notice that the small difference between
means (1.67) is highly significant even though
the data consist of only six pairs of scores. This
illustrates the power that a large correlation can
have in reducing the standard error.

10.14. On this problem you cannot use the direct-
difference method because you do not have the
raw data. This leaves you with the definition
formula, t � (X� � Y�)>

, which requires a
correlation coefficient. Fortunately, you have the
data necessary to calculate r. (The initial clue
for many students is the term �XY.)

Women Men

r � .693

 � �4.11 

t �
12,782.25 � 15,733.25

2 1589.75 2 2 � 1987.82 2 2 � 12 2 1.693 2 1589.75 2 1987.82 2

sY� � 987.82sX� � 589.75
ŝY � 3,951.27ŝX � 2,358.99

Y� � $15,733.25X� � $12,782.25

1sX� 
2 � sY� 

2 � 2rXY 1sX� 2 1sY� 2

t �
11.3333 � 13.0000

0.2108
�

�1.6667

0.2108
� �7.91;  df � 5

 sD� �
ŝD

2N
�

0.5164

26
� 0.2108 

� 20.2667 � 0.5164

 ŝD �R
©D2 �

1©D 2 2

N

N � 1
�R

18 �
1�10 2 2

6

5

t.001 (15 df ) � 4.073. Thus, p � .001.
Interpretation: Here is the conclusion written for
the court.

Chance is not a likely explanation for the $2951 an-
nual difference in favor of men. Chance would be ex-
pected to produce such a difference less than one time
in a thousand if there is really no difference. In addi-
tion, the difference cannot be attributed to education
because both groups were equally educated. Likewise,
the two groups were equal in their work experience at
the rehabilitation center. One explanation that has not
been eliminated is discrimination, based on sex.

(These data are 1979 salary data submitted in
Hartman and Hobgood v. Hot Springs Rehabili-
tation Center, HS-76-23-C.)

10.15. This is a paired-samples study. It helps to carry
four or five decimal places.

�D � �0.1300 �D2 � 0.0053

N � 7

t.05 (6 df ) � 2.447. Thus, p 
 .05.
Interpretation: The obtained t does not indicate
statistical significance. (This is a case in which a
small sample led to a Type II error. Auditory RT
is faster than visual RT. For practiced subjects,
auditory RT � 0.16 second and visual RT �
0.18 second.)

10.16. I hope that you did not treat these data as paired
samples. If you did, you exhibited a response
bias that led you astray. If you recognized the
design as independent samples, you are on your
(mental) toes.

Primacy Recency

�X2 � 29 �X1 � 23
�X2

2 � 225 �X1
2 � 133

N2 � 5 N1 � 5

 t �
�0.0186

0.00829
� �2.24;  df � 6 

 sD� �
0.02193

27
� 0.00829 

 ŝD �R
©D2 �

1©D 2 2

N

N � 1
� 20.00048 � 0.02193 

X� � Y� �
©D

N
� �0.0186

Y� � 0.1814 secondX� � 0.1629 second
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t.05 (8 df ) � 2.306. Thus, p 
 .05.
Interpretation: Retain the null hypothesis. This
experiment does not provide evidence that either
primacy or recency is more powerful.

10.17.

t.001 (60 df ) � 3.460. Thus, p � .001.
Interpretation: The meaning of very large t-test
values is quite clear; they indicate a very, very
small probability. Thus, conclude that children
whose illness begins before age 3 show more
problems than do those whose illness begins
later.

10.18. The p is the probability of obtaining such a
difference in samples (or a larger difference) 
if the two populations they come from (total
physical response method scores and
lecture–discussion scores) are identical. That
is, if the populations are the same, then chance
would produce such a difference (or one larger)
less than 1 time in 100.

10.19. Here is one version: Significant differences 
are due to the independent variable and not to
chance; important differences are ones that
change our understanding about something.
Important differences are significant, but 
significant differences may or may not be
important.

10.20.

Interpretation: An effect size index of 0.28 is
small. Thus, in these data d is small and a t test
using large samples did not find a significant
difference. This combination leads to the
conclusion that the effect (if any) of removal of
20 percent of the cortex is small. If there is an
effect, to detect it will require very large samples.

d �
X�1 � X�2

ŝ
�

5.2 � 6.3

4.00
� �0.28

df � 88 �
24

2
� 12.00;

t �
X�1 � X�2

sX�1�X�2

�
60 � 36

B a
12

245
b

2

� a
6

245
b

2

t �
X�1 � X�2

sX�1�X�2

�
5.80 � 4.60

2.049
� 0.59; df � 8

 � 2.049 

sX�1�X�2
�R

©X1
2 �
1©X1 2

2

N
� ©X2

2 �
1©X2 2

2

N

N 1N � 1 2
 

10.21.

Interpretation: An effect size index of 1.01 is
large; thus, the effect of the multiracial camp on
racial attitudes was both reliable (statistically
significant) and sizable. Note that the effect size
index gives you information that the means do
not. That is, d � 1.01 tells you much more than
does the fact that the girls scored an average of
5.78 points higher after the camp.

10.22. This is a paired-samples design.

�D � 10

�D2 � 28

Interpretation: We are 95 percent confident that
sleep improved memory by 0.01 to 2.49 words
in this experiment. With a � .05, the null
hypothesis is rejected. (Note how much more
informative “a 95 percent confidence interval of
0.01 to 2.49 more words” is compared to “the
null hypothesis was rejected.”)

10.23. This is an independent-samples study. Note that
problem 10.7c had the same independent and
dependent variables. The procedures used, not
the variables, determine the design.

Interpretation: These data support (with 99 per-
cent confidence) the conclusion that 2 hours a
day in bright light reduces depression by 1.55

 � 111 � 6 2 � 2.878 11.20 2 � 5 � 3.45 � 8.45

UL � 1X�1 � X�2 2 � ta 1sX�1�X�2
2  

 � 111 � 6 2 � 2.878 11.20 2 � 5 � 3.45 � 1.55

LL � 1X�1 � X�2 2 � ta 1sX�1�X�2
2  

 � 1.25 � 1.24 � 2.49 

 � 13.75 � 2.50 2 � 2.365 10.5261 2

UL � 1X� � Y� 2 � ta 1sD� 2  

 � 1.25 � 1.24 � 0.01 

 � 13.75 � 2.50 2 � 2.365 10.5261 2

LL � 1X� � Y� 2 � ta 1sD� 2  

sD� �
ŝD

2N
�

1.488

28
� 0.5261

ŝD �R
©D2 �

1©D 2 2

N

N � 1
�R

28 �
110 2 2

8

7
� 1.488

D� � 1.25

Y�awake � 2.50X�asleep � 3.75

d �
X� � Y�

ŝ
�

28.36 � 34.14

5.74
� �1.01
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to 8.45 units on the scale used to measure
depression. Also note that these data allow the
null hypothesis to be rejected, p � .01.

10.24. You can be confident that probabilities are
accurate when the dependent-variable scores
are (1) normally distributed and (2) have equal
variances.

10.25. Power is the probability of rejecting the null
hypothesis when it is false.

10.26. My version of the list is (1) effect size, (2) sample
size, (3) a level, and (4) preciseness of measuring
the dependent variable.

10.27. The null hypothesis is that experience has no
effect on performance. H0: mexp � mno exp.
A two-tailed test allows a conclusion about the
advantage or the disadvantage of experience. The
experimental design is independent samples.

t.01 (30 df ) � 2.750. Thus, p � .01. Reject the 
null hypothesis.

Interpretation: Because the experienced group
took longer, you should conclude that the
previous experience with the switch retarded the
subject’s ability to recognize the solution. An
effect size index of 1.06 is large. Thus, the effect
of experience produced a large delay in
recognizing a solution to the problem.

10.28. This is a paired-samples design.

no cell � 0.95 second cell � 1.11 second

�D � �1.28 �D2 � 0.438

� � � �0.160 N � 8

�
R

1.6384 �
0.438

8

8 � 1

18
� 0.0645

sD �
ŝD

1N
�
R

©D2 �
1©D 2 2

N

N � 1

1N

©D

N
YX

YX

 d �
X�1 � X�2

ŝ
�

7.40 � 5.05

2.22
� 1.06 

 �
2.35

0.7026
� 3.34;  df � 38 

 t �
7.40 � 5.05

B a
2.13

220
b

2

� a
2.31

220
b

2
 

df � 7t �
�X ��Y

s �D

�
�D

s �D

�
�0.160

0.0645
� �2.48;

t.05 (7 df ) � 2.365; p � .05

Interpretation: Engaging in a hands-free cell
phone conversation significantly increased the
reaction time to brake lights of a lead car,
p � .05. The effect size index (0.88) shows that
conversing on the phone has a large effect on
reaction time.

These data were constructed so that the
means of the two groups (0.95 and 1.11 
seconds) and the effect size index (0.88) would
be identical to those found by Strayer, Drews,
and Johnston (2003). Incidentally, simulated
crashes occurred during phone conversations 
but not during the driving-only condition.

10.29. I hope you recognized that these data could be
arranged as matched pairs. Each pair represents 
a level of achievement in French II.

Listened to recorder

In car In laboratory

Rank Errors Rank Errors D D2

1 7 2 7 0 0
4 7 3 15 �8 64
5 12 6 22 �10 100
8 12 7 24 �12 144
9 21 10 32 �11 121

Sum 59 100 �41 429
Mean 11.8 20.0 �8.2

t.02 (4 df ) � 3.747. Thus, p � .02. Reject the 
null hypothesis at the .02 level.

d �
X� � Y�

sDˆ
�

11.8 � 20.0

4.817
� �1.70

 t �
X� � Y�

sD�
�

11.8 � 20.0

2.154
�

�8.2

2.154
� �3.81;  df � 4

 sD� �
ŝD

2N
�

4.817

25
� 2.154 

ŝD �R
©D2 �

1©D 2 2

N

N � 1
�R

429 �
1�41 2 2

5

4
� 4.817

d �
X � Y

ŜD

�
0.95 � 1.11

0.182
� �0.88
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Interpretation: Because the car group made
fewer errors, conclude that concrete, immediate
experience facilitates learning vocabulary. A
two-tailed test is appropriate because disproving
a claim is always of interest to the scientifically
minded. To use your data to support or refute a
claim requires you to choose a two-tailed test
(before the data are gathered). An effect size
index of 1.70 is very large. (It is true that
concrete, immediate experience has a great
effect on learning foreign vocabulary words.)

Perhaps you analyzed these data with a 
confidence interval. Here is one for 
95 percent confidence.

Interpretation: With 95 percent confidence, you
can be sure that the effect of concrete, immediate
experience is to reduce the number of errors on a
25-item vocabulary test by 2.22 to 14.18 items.

10.30. These data are independent samples. Answers 
and interpretations for a t test and a 95 percent
confidence interval follow.

Malpractice suits

0 2

�X 24 42
�X2 88 218
N 8 9
X� 3.000 4.667
ŝ 1.512 1.658

df � 15

t.05 (15 df ) � 2.131. Thus, p � .05.

d �
3.000 � 4.667

B
11.512 2 2 17 2 � 11.658 2 2 18 2

7 � 8

�
�1.667

1.592
� 1.05

t �
3.000 � 4.667

B a
1.512

28
b

2

� a
1.658

29
b

2
�

�1.667

0.769
� �2.16

 � �8.2 � 5.98 � �2.22 

 � 111.8 � 20.0 2 � 2.776 12.154 2

UL � 1X� � Y� 2 � ta 1sD� 2  

 � �8.2 � 5.98 � �14.18 

 � 111.8 � 20.0 2 � 2.776 12.154 2

LL � 1X� � Y� 2 � ta 1sD� 2  

Interpretation: Using audio recordings, judges
gave significantly higher dominance scores to
surgeons who had been sued twice as compared
to surgeons who had never been sued, p � .05.
The difference in the number of suits (0 or 2)
produced a large effect on the judgments,
d � 1.05.

Interpretation: With 95 percent confidence,
conclude that the tone of dominance used by
surgeons who had been sued twice was 0.03 to
3.31 units greater than that used by surgeons
who had never been sued. Units represent
judgments on a 1 to 7 scale. The difference in
the number of suits (0 or 2) produced a large
effect on the judgments, d � 1.05.

What Would You
Recommend? Chapters
7–10
a. Statistics appropriate for this problem are a

paired-samples t test, a confidence interval about 
a mean difference, and d, an effect size index. 
The independent variable is audience (present and
not present) and the dependent variable is smiles.
The samples are paired because each infant 
contributes data to both the audience and the 
no-audience condition.

b. A z-score analysis using the normal curve gives the
percent of the population that is less gregarious
than the social worker who has a score of 73.

c. A one-sample t test gives the probability of obtaining
a sample with a mean of 55 from a population with a
mean of 50. If this probability is very low, conclude
that the workshop increased gregariousness scores.

d. The lower and upper limits of a confidence interval
will capture a population mean with a certain level
of confidence (usually 95 or 99 percent).

 � 13.000 � 4.667 2 � 2.131 10.769 2 � �0.03

UL � 1X�1 � X�2 2 � ta 1sX�1�X�2
2  

 � 13.000 � 4.667 2 � 2.131 10.769 2 � �3.31

LL � 1X�1 � X�2 2 � ta 1sX�1�X�2
2  
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e. The state’s population mean is not captured in
problem d because the sample is not a random
sample from the state (or even a representative one).
A better interpretation is that the interval captures the
mean of “those students planning to go to college.”

f. To determine the probability that an r � �.39 could
be a chance fluctuation, test the null hypothesis H0:
r � 0. If H0 is rejected, conclude that there is a 
reliable relationship between the two variables. 
(See Elgin and Pritchard, 2006.)

g. The probability that a student, chosen at random,
comes from one of the six categories is found by 
dividing the number of students in that category by
the total number of students. (See the most recent 
issue of Statistical Abstract of the United States for
current data.)

h. Statistics that would be helpful for this problem are 
a paired-samples t test, a confidence interval about 
a mean difference, and the effect size index, d. 
The independent variable is diet (high sugar and low
sugar) and the dependent variables are measures 
of cognition and behavior, which are not specified. 
The design is a paired-samples one; each child serves
in both conditions.

CHAPTER 11
11.1. Example 2: Independent variable and levels:

schedule of reinforcement; four levels. Dependent
variable: persistence. The null hypothesis is that
the mean persistence scores of the four 
populations are equal; that is, the schedule of
reinforcement has no effect on persistence.

Example 3: Independent variable and levels:
degree of modernization; three levels. Dependent
variable: suicide rate. The null hypothesis is that
suicide rates are not dependent on degree of
modernization, that the mean suicide rate for
countries with low, medium, and high degrees 
of modernization is the same. In formal terms,
the null hypothesis is H0: mlow � mmed � mhigh.

11.2. Larger

11.3. F �
s2

s2

446 ■ Appendix G

11.4. The between-treatments estimate of variance
is a variance calculated from the sample
means; it is the numerator of the F ratio. The
within-treatments estimate of variance is
calculated from each set of treatment scores;
it is the denominator of the F ratio.

11.5. Interpretation: There are several ways to write an 
answer to this question, but any writing is better
than just reading my answer. As for elements,
you could use graphs, algebra, words, or all three.
A good answer includes such elements as: (a) F
is a ratio of two variances—a between-treatments
variance over an error variance; (b) when the null
hypothesis is true, both variances are good 
estimators of the population variance and the 
ratio is about 1.00; (c) when the null hypothesis
is false, the between-treatments variance 
overestimates the population variance, resulting 
in a ratio that is greater than 1.00; (d) the F value
calculated from the data is compared to a critical
value from the F distribution, a distribution that
assumes the null hypothesis is true.

11.6. a. Retain the null hypothesis and conclude that
the data do not provide evidence that the
methods of therapy differ in reducing fear
responses.

b. Reject the null hypothesis and conclude that
there is a relationship between degree of
modernization and suicide rate.

11.7. X1 X2 X3 �

�X 12 12 24 48
�X2 50 56 224 330
X� 4 4 8

Check: 32.00 � 42.00 � 74.00

 � 2 � 8 � 32 � 42.0 

SSerror � a50 �
122

3
b � a56 �

122

3
b � a224 �

242

3
b

 � 288 � 256 � 32.00 

 � 48 � 48 � 192 � 256 

 SStreat �
122

3
�

122

3
�

242

3
�

482

9
 

 SStot � 330 �
482

9
� 330 � 256 � 74.00 
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11.8. Independent variable: degree of modernization,
three levels; dependent variable: suicide rate.

Degree of modernization

Low Medium High �

�X 24 48 84 156
�X2 154 614 1522 2290
X� 6.0 12.0 16.8
N 4 4 5 13

Check: 259.20 � 158.80 � 418.00
Incidentally, the rate per 100,000 is about 11 
in the United States and about 12 in Canada.

11.9. Independent variable: kind of therapy; levels:
model, film, desensitization, and control; 
dependent variable: snake-approach responses.

Model Film Desensitization Control �

�X 104 72 68 40 284
�X2 2740 1322 1182 430 5674
X� 26 18 17 10
N 4 4 4 4 16

� 2704 � 1296 � 1156 � 400 � 5041

� 5556 � 5041 � 515

� 36 � 26 � 26 � 30 � 118
Check: 515 � 118 � 633

� a1182 �
682

4
b � a430 �

402

4
b

SSerror � a2740 �
1042

4
b � a 1322 �

722

4
b  

 SStreat �
1042

4
�

722

4
�

682

4
�

402

4
�

2842

16
 

 SStot � 5674 �
2842

16
� 5674 � 5041 � 633 

� a 1522 �
184 2 2

5
b � 158.80

SSerror � a 154 �
124 2 2

4
b � a614 �

148 2 2

4
b  

 SSmod �
124 2 2

4
�
148 2 2

4
�
184 2 2

5
�
1156 2 2

13
� 259.20 

 SStot � 2290 �
1156 2 2

13
� 418.00 

11.10. Six groups. The critical values of F are based on
5, 70 df and are 2.35 and 3.29 at the .05 and .01
levels, respectively. If a � .01, retain the null
hypothesis; if a � .05, reject the null hypothesis.

11.11. Data from problem 11.7:

a. Source SS df MS F p

Treatments 32.00 2 16.00 2.29 
.05
Error 42.00 6 7.00
Total 74.00 8

F.05 (2, 6 df ) � 5.14. Interpretation: Because 2.29
does not reach the critical value, retain the null
hypothesis and conclude that you do not have
strong evidence against the hypothesis that these
three groups came from the same population.
b.

Source SS df MS F p

Treatments 24.00 1 24.00 2.40 
.05
Error 40.00 4 10.00
Total 64.00 5

F.05 (1, 4 df ) � 7.71. Retain the null hypothesis.

Note that (1.55)2 � 2.40; that is, t2 � F.
11.12. Durkheim’s modernization and suicide data

from problem 11.8: For df, use

dftot � Ntot � 1 � 13 � 1 � 12

dfmod � K � 1 � 3 � 1 � 2

dferror � Ntot � K � 13 � 3 � 10

Source SS df MS F p

Modernization 259.20 2 129.60 8.16 �.01
Error 158.80 10 15.88
Total 418.00 12

F.01 (2, 10 df ) � 7.56. Interpretation: Reject 
the null hypothesis and conclude that there 
is a relationship between suicide rate and a 
country’s degree of modernization.

t �
X�1 � X�2

sX�1�X�2

�
8 � 4

2.582
� 1.55;  df � 4

 SSerror � a56 �
122

3
b � a224 �

242

3
b � 40.00 

 SStreat �
122

3
�

242

3
�

362

6
� 24.00 

 SStot � 280 �
362

6
� 64.00 
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The table shows all six HSD values. 
The significance level of each comparison 
is indicated with one or two asterisks. 
HSD.05 � 4.00, HSD.01 � 5.09.

crf FR2 FR4

FR2 4.63*
FR4 7.44** 3.41
FR8 9.47** 5.60** 2.03

* p � .05
** p � .01

Interpretation: The trend of the means is
consistent; the higher the ratio of response to
reinforcement during learning, the greater the
persistence during extinction. The crf schedule
produced the least persistence, significantly less
than any other schedule. The FR2 schedule
produced less persistence than the FR4 schedule
(NS) and significantly less than the FR8
schedule ( p � .01).

11.17. Comparing the best treatment (model) with 
the second best (film):

Comparing the poorest treatment (desensitization)
with the control group:

Interpretation: For the treatment of phobias,
using a live model and encouraging participation
are significantly better than using a film or
desensitization. All three of the treatments
produced significant improvement compared to
an untreated control group.

11.18. Normally distributed dependent variable and
homogeneity of variance.

HSD.05 � 4.20 

 HSD �
X�3 � X�4

sX�
�

17 � 10

1.568
� 4.46; p 6 .05;

HSD.05 � 4.20

 HSD �
X�1 � X�2

2MSerror>Nt

�
26 � 18

1.568
� 5.10;  p 6 .05; 

 � B
3.93

2
a

1

5
�

1

7
b � 0.821 

sX� � B
MSerror

2
 a

1

N1
�

1

N2
b  

sX� � B
MSerror

Nt

� B
3.93

5
� 0.887 11.13. Source SS df MS F p

Treatments 515 3 171.667 17.46 �.01
Error 118 12 9.833
Total 633 15

F.01 (3, 12 df ) � 5.95. Interpretation: Reject the
null hypothesis at the .01 level and conclude
that the treatment method had an effect on the
number of snake-approach responses. By the
end of this chapter, you will be able to compare
the means to determine which method is best
(or worst).

11.14. A priori tests are those planned in advance.
They are tests based on the logic of the design
of an experiment. Post hoc tests are chosen 
after examining the data.

11.15. Recall that the mean suicide rates for the different
degrees of modernization were: low—6.0;
medium—12.0; high—16.8. Comparing countries
with low and medium degrees of modernization:

Comparing countries with medium and high 
degrees of modernization:

Comparing countries with low and high degrees
of modernization:

Interpretation: Suicide rates are significantly
higher in countries with a high degree of
modernization than they are in countries with
a low degree of modernization. Although the
other differences were not significant, the trend
is in the direction predicted by Durkheim’s
hypothesis.

11.16. I calculated HSDs for each of the six pairwise
differences. For some of these HSDs the 
equal-N formula was appropriate, and for some
the unequal-N formula was necessary. The two 
values of aresX�

HSD.01 � 5.27 

 HSD �
16.8 � 6.0

1.890
�

10.8

1.890
� 5.71;  p 6 .01; 

HSD.05 � 3.88

HSD �
16.8 � 12.0

B
15.88

2
a

1

4
�

1

5
b

�
4.8

1.890
� 2.54;  NS;

HSD.05 � 3.88 

 HSD �
12.0 � 6.0

215.88>4
�

6.0

1.99
� 3.02;  NS;
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11.19. Random assignment permits strong statements
of cause and effect between the independent
and dependent varable.

11.20.

Interpretation: An effect size index of 1.76 is
much greater than the value f � 0.40 that signi-
fies a large effect; thus, the type of therapy
given to those suffering from a phobia has a
very large effect on improvement.

11.21. Disorder

None Schizophrenia Depression �

�X 178 138 72 388
�X2 4162 2796 890 7848
X� 22.25 19.71 12.00
N 8 7 6 21

 �
B

4 � 1

16
 1171.667 � 9.833 2

29.833
� 1.76

f �
B

K � 1

Ntot
 1MStreat � MSerror 2

2MSerror

 

No disorder and schizophrenia:

Interpretation: Those diagnosed with depres-
sion have significantly lower R scores on the
Rorschach test than those with schizophrenia 
( p � .01). The effect of these two diagnoses 
on R scores was huge (d � 1.88).

Additional note: Depressed patients’ R scores
were also significantly lower than those with no
diagnosis ( p � .01). Schizophrenics and those
with no diagnosis were not significantly 
different. For a review of the Rorschach test 
and an explanation of the problem with R
scores, see Lilienfeld, Wood, and Garb (2000).

11.22. ACS 4MAT Control

X� 8.9 18.1 3.1

Source SS df MS F p

Instruction 2288.533 2 1144.267 20.81 �.01
methods

Error 3134.400 57 54.989
Total 5422.933 59

F.01 (2, 55 df ) � 5.01

HSD values calculated for the three pairwise
comparisons are:

ACS and 4MAT: HSD � 5.55**
ACS and control: HSD � 3.50*
4MAT and control: HSD � 9.05**

*p � .05 **p � .01
HSD.05 � 3.44 HSD.01 � 4.37

d �

�Xsch ��Xdep

ŝerror
�

19.71 � 12.00

216.83
� 1.88

HSD.05 � 3.61NS; � 1.69;

HSD �
22.25 � 19.71

B
16.83

2
a

1

8
�

1

7
b

�
2.54

1.501
 

Source SS df MS F p

Disorder 376.31 2 188.16 11.18 �.01
categories
Error 302.93 18 16.83
Total 679.24 20

F.01 (2, 18 df ) � 6.01

Depression and schizophrenia:

Depression and no disorder:

 � �6.54;  p 6 .01;  HSD.01 � 4.70 

 HSD �
12.00 � 22.25

B
16.83

2
a

1

6
�

1

8
b

�
�10.25

1.567
 

 � �4.78;  p 6 .01;  HSD.01 � 4.70 

 HSD �
12.00 � 19.71

B
16.83

2
a

1

7
�

1

6
b

�
�7.71

1.614
 

(Continued)

08911_G_APP G_418-472 pp.qxd  12/15/09  7:41 PM  Page 449



450 ■ Appendix G

for the embarrassment procedures in this experi-
ment is quite large ( f � 0.80).

Although common sense says that a valuable
goal is worth suffering for, these data (and many
more) say that if we have suffered, then whatever
we get is valuable. This balance that we create in
our minds is called effort justification by social
psychologists.

CHAPTER 12

12.1. Obviously, there are several solutions to this
problem. Before reading further, you might ask
yourself if your solution is a practical one. If
not, try to create a more practical solution.

One solution is to select participants in groups
of three. Within each group the three are matched
in some way related to the material that is on the
multiple-choice test. If the material is unfamiliar
and the participants are college students, I would
match on grade point average. Assignment of
treatments within a group would be random. This
is a three-group version of the matched-pairs
design (page 203).

12.2.
SStot

SSsubjects SStreat SSerror

12.3. Rest interval (weeks)

Subject 2 4 8 �

1 40 50 58 148
2 58 56 65 179
3 44 70 69 183
4 57 61 74 192
� 199 237 266 702
X� 49.75 59.25 66.50

Source SS df MS F

Subjects 365.667 3
Intervals 564.500 2 282.250 7.21
Error 234.833 6 39.139
Total 1165.000 11

F.05 (2, 6 df ) � 5.14

Interpretation: Three months after BSE training,
women retained significantly more information if
they had learned with the 4MAT method than if
they were taught with theACS method. Either
method is better than no training. The effect size
index of 0.81 shows that BSE training has a
very large effect on information retained 3 months
later.

11.23. Source SS df MS F p

Between 
embarrassments 141.733 2 70.867 5.76 �.05

Error 147.600 12 12.300
Total 289.333 14

F.05 (2, 12 df ) � 3.88

HSD values are calculated from pairwise 
comparisons with

Severe and mild embarrassment: HSD � 3.95*

Severe and no embarrassment: HSD � 4.34*

Mild and no embarrassment: HSD � 0.38

*p � .05, HSD.05 � 3.77

Interpretation: The participants who were
subjected to severe embarrassment in order to be
in the experiment judged the uninteresting
discussion more favorably than did those who
experienced mild embarrassment ( p � .05) or no
embarrassment ( p � .05). The effect size index

sX� � B
12.300

5
� 1.568

 �
B

3 � 1

15
 170.867 � 12.300 2

212.300
� 0.80

f �
B

K � 1

Ntot
 1MStreat � MSerror 2

2MSerror

 

f �

 �
B

3 � 1

60
 11144.267 � 54.989 2

254.989
� 0.81

f �
B

K � 1

Ntot
 1MStreat � MSerror 2

2MSerror
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Tukey HSD tests; HSD.05 � 4.34; 

HSD8v4 � 2.32; NS

HSD8v2 � 5.35; p � .05

HSD4v2 � 3.04; NS

Interpretation: These data show that as the rest
interval increases from 2 weeks to 4 weeks to 8
weeks, there is an increase in percent of recall.
That is, the longer the rest interval, the better the
percent of recall. Only the difference between
2 weeks and 8 weeks is statistically significant,
p � .05.

12.4.

HSD.05 � 4.34. Although always staying with
your first choice resulted in an average loss of 
1 point, the difference is not statistically 
significant.

12.5. The comparison of the therapy techniques does
not lend itself to a repeated-measures design
using the same participants. Clearly, it doesn’t
make sense to provide therapy for someone for
a period sufficient to help and then use another
therapy on that same person.

12.6. (1) Carryover effects, (2) levels of the inde-
pendent variable are chosen by researcher,
(3) assumptions of the test are true for the 
populations the samples are from.

12.7. A carryover effect occurs when the effect of
one level of the independent variable continues
to influence dependent-variable scores during
the administration of a second level of the
independent variable.

12.8. Oxygen consumption (cc/min)

Before During After
mediation mediation mediation

247 206 249X

HSD1st v. cont �
74 � 75

21.333>4
�

�1

0.577
� �1.73;  p 7 .05

sX� � B
39.139

4
� 3.128

Source SS df MS F p

Subjects 34,543.33 4
Periods 5,890.00 2 2945.00 44.73 �.01
Error 526.67 8 65.83
Total 40,960.00 14

F.01 (2, 8 df ) � 8.65

Tukey HSD tests; HSD.01 � 5.64; 

HSDbefore v during � 11.30; p � .01

HSDbefore v after � 0.55; NS

HSDafter v during � 11.85; p � .01

Interpretation: During meditation, oxygen
consumption drops to about 80 percent of the
level observed before and after meditation. The
drop is statistically significant, p � .01. The 
oxygen consumption rates before and after
meditation are not significantly different.

12.9. If the conclusion that meditation lowers oxygen
consumption is wrong, it is a Type I error. If the
conclusion that oxygen consumption before and
after meditation is not significantly different is
wrong, it is a Type II error.

12.10. Matching Inter- Cognitive-
character- personal behavioral Drug
istic Placebo therapy therapy therapy �

Women at 
age 20 18 11 8 10 47

Men at 
age 30 21 9 15 10 55

Women at 
age 45 24 16 10 16 66

� 63 36 33 36 168
X� 21 12 11 12

sX� � B
65.833

5
� 3.629
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Card games B1 

Computer games B2 

Levels of Factor A (age)

50

M
ea

n 
at

tit
ud

e 
sc

or
e

Young
A1

 

Old
A2

 

75

Disorganized
A1

Catatonic
A2

Paranoid
A3

Diagnosis (Levels of Factor A) 

25

50

75

100

M
ea

n 
co

m
pe

te
nc

y 
sc

or
e 

Large dose B3 

Medium dose B2 

 Small dose B1

13.7. i. a.

b. There appears to be an interaction.
c. Interpretation: Attitudes toward games

depend on age. The young prefer 
computer games, and the old prefer cards.

d. There appear to be no main effects. Mar-
gin means for games are cards � 62.5
and computers � 62.5. Margin means for
age are young � 62.5 and old � 62.5.

e. Later in this chapter you will learn that
when there is a significant interaction,
the interpretation of main effects isn’t
simple. Although all four means are
exactly the same, there is a difference in
attitudes toward the two games, but this
difference depends on the age of the 
participant.

ii. a.

b. There appears to be no interaction.
c. Interpretation: The effect of the drug dose

does not depend on the diagnosis of the
patient.

Source SS df MS F

Subjects 45.500 2
Therapies 198.000 3 66.000 8.16*
Error 48.500 6 8.083
Total 292.000 11

F.05 (3, 6 df ) � 4.76 *p � .05

Tukey HSD tests: HSD.05 � 4.90; 

HSDno v interpersonal � 5.48; p � .05

HSDno v drug � 5.48; p � .05

HSDno v cognitive � 6.09; p � .01

HSDdrug v cognitive � 0.61; NS

Interpretation: Each of the three therapies is
significantly better than the placebo control
group. There are no significant differences
among the three therapy groups.

CHAPTER 13

13.1. a. 2 � 2 b. 3 � 2 c. 4 � 3
d. 4 � 3 � 3; this is a factorial design with

three independent variables.
13.2. a, b, c, and e all have one factor.
13.3. a, b, and d all have an independent variable that

has two levels.
13.4. My version: An interaction occurs when the

effect of changing levels of one factor depends
on which level of the other factor you are
looking at.

13.5. Interpretation: The effect on problem solving of
time of day depends on gender. There are several
ways to write a specific answer; here are two:
a. Women solve problems better at 7:00 A.M.;

men solve them better at 7:00 P.M.
b. A 7:00 A.M. session in problem solving pro-

duces more correct answers from men; a
7:00 P.M. session produces more correct
answers from women.

13.6. A main effect is a comparison of the different
levels of one factor using dependent variable
scores.

sX� � B
8.083

3
� 1.641
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d. There appear to be main effects for both
factors.

e. Interpretation: For people with all types
of schizophrenia, the larger the dose, the
higher the competency score (Factor B,
main effect). People with paranoia have
higher competency scores than the others
at all dose levels (Factor A, main effect).

iii. a.

iv. a.

20

40

60

Low Middle High
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None Some

Humanities major
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major
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ss
 s
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re

s

5th grade
A1

9th grade
A2

40

60

12th grade
A3

Short B1  

Tall B2  

b. There appears to be an interaction.
c. Interpretation: The effect of a person’s

height on self-consciousness depends on
the person’s grade in school. Height seems
to make little difference in the 5th grade.
In the 9th grade, tall students are much
more self-conscious than short students,
but this difference is much smaller in the
12th grade.

d. The main effects appear to be significant.
The margin means are 20 and 30 for
height; 7.5, 45, and 25 for grade level.

e. Interpretation: Here’s an interpretation that
is appropriate for the information you’ve
been given so far. (More on interpretation
of main effects when the interaction is
significant comes later.) Tall students are
more self-conscious than short students
(mean scores of 35 and 30, respectively).
Ninth-graders are more 
self-conscious than 12th-graders

or 5th-graders .1X� � 7.5 21X� � 25 2

1X� � 45 2

b. There appears to be no interaction.
Although the lines in the graph are not
parallel—they even cross—the departure
from parallel is slight and may be due to
sampling variation.

c. Interpretation: Gender differences in 
attitudes toward lowering taxes on invest-
ments do not depend on socioeconomic
status.

d. There appears to be a main effect for
socioeconomic status but not for gender.

e. Interpretation: Men and women do not
differ in their attitudes toward lowering
taxes on investments (Factor B). The
higher the socioeconomic status, the
more positive are attitudes toward lower-
ing taxes on investments.

13.8.

08911_G_APP G_418-472 pp.qxd  12/15/09  7:41 PM  Page 453



454 ■ Appendix G

� 26.00 � 42.00 � 32.00 � 32.00 � 132.00
Check: 404.25 � 132.00 � 536.25 

13.10. a. 2 � 3
b. Independent variables and levels: therapy:

psychodynamic, interpersonal, cognitive-
behavioral; gender: women, men
Dependent variable: improvement scores

c.

SSAB � 6[(32 � 35 � 46.667 � 47)2

� (58 � 54 � 46.667 � 47)2

� (50 � 52 � 46.667 � 47)2

� (38 � 35 � 47.333 � 47)2

� (50 � 54 � 47.333 � 47)2

� (54 � 52 � 47.333 � 47)2]
� 344

Check: SSAB � 2964 � 2616 � 4 � 344

� 4762

Check: 4762 � 2964 � 7726

 � a15,748 �
3002

6
b � a18,352 �

3242

6
b

 � a15,742 �
3002

6
b � a9514 �

2282

6
b

SSerror � a6930 �
1922

6
b � a20,964 �

3482

6
b  

 SSgender �
8402

18
�

8522

18
�

16922

36
� 4 

SStherapy �
4202

12
�

6482

12
�

6242

12
�

16922

36
� 2616 

  �
3002

6
�

3242

6
�

16922

36
� 2964 

 SScells �
1922

6
�

3482

6
�

3002

6
�

2282

6
 

 SStot � 87,250 �
16922

36
� 87,250 � 79,524 � 7726 

� c18,284 �
2342

3
d � c15,584 �

2162

3
d

SSerror � c16,013 �
2192

3
d � c11,574 �

1862

3
d

6

8

10

12

College experience 

None Some

M
ea

n 
st

ud
y 

tim
e 

(h
r)

Humanities

Natural science

Major

Interpretation: At this stage in the chapter, most
any opinion will do. There appears to be an
interaction between students’ experience in col-
lege and their major. Both main effects might
be significant because there is a difference in
each set of margin means. Right or wrong, a
preliminary analysis of a study improves your
understanding (and may prepare you to recog-
nize gross computational errors if they occur
later).

13.9. a. 2 � 2
b. Independent variables and levels: gender:

male and female; handedness: left and right 
Dependent variable: age at death

c.

SSAB � 3[(73 � 75.5 � 67.5 � 71.25)2

� (62 � 67.5 � 67 � 71.25)2

� (78 � 75 � 75.5 � 71.25)2

� (72 � 75 � 67 � 71.25)2] 

� 3(6.25) � 18.75

Check: SSAB � 404.25 � 216.75 � 168.75 �
18.75

 � 61,087.50 � 60,918.75 � 168.75 

SShandedness �
4052

6
�

4502

6
� 60,918.75 

 � 61,135.50 � 60,918.75 � 216.75 

 SSgender �
4532

6
�

4022

6
� 60,918.75 

 � 61,323 � 60,918.75 � 404.25 

 SScells �
2192

3
�

1862

3
�

2342

3
�

2162

3
�

8552

12
 

 � 61,455 � 60,918.75 � 536.25 

SStot � 61,455 �
8552

12
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13.11.

SSAB � 5[(8.60 � 6.80 � 6.30 � 7.25)2

� (4.00 � 7.70 � 6.30 � 7.25)2

� (5.00 � 6.80 � 8.20 � 7.25)2

� (11.40 � 7.70 � 8.20 � 7.25)2] 
� 151.25

Check: SSAB � 173.35 � 4.05 � 18.05 

� 151.25

� 180.40

Check: 173.35 � 180.40 � 353.75 

13.12. Source SS df MS F p

Gender (A) 216.75 1 216.75 13.14 �.01
Handedness (B)168.75 1 168.75 10.23 �.05
A � B 18.75 1 18.75 1.14 
.05
Error 132.00 8 16.50
Total 536.25 11

F.05(1, 8 df ) � 5.32; F.01 (1, 8 df ) � 11.26

 � a155 �
252

5
b � a750 �

572

5
b  

SSerror � a400 �
432

5
b � a100 �

202

5
b  

SSrecall �
632

10
�

822

10
�

1452

20
� 18.05 

SSlearn �
682

10
�

772

10
�

1452

20
� 4.05 

 SScells �
252

5
�

572

5
�

432

5
�

202

5
�

1452

20
� 173.35 

 SStot � 1405 �
1452

20
� 353.75 

Left-handed
Right-handed

Gender

60

M
ea

n 
ag

e 
at

 d
ea

th

Women Men

70

80

Interpretation: The interaction is not significant,
so the main effects can be interpreted directly.
Both gender and handedness produced significant
differences. Right-handed people live longer than
left-handed people ( p � .05) and women live
longer than men ( p � .01).

13.13. Source SS df MS F p

Therapy (A) 2616 2 1308 8.24 �.01
Gender (B) 4 1 4 0.03 
.05
AB 344 2 172 1.08 
.05
Error 4762 30 158.73
Total 7726 35

F.05 (2, 30 df ) � 3.32; F.01 (2, 30 df ) � 5.39

Interpretation: The interaction between therapy 
and gender was not statistically significant. The
main effect of gender was also not significant.
The differences among the three kinds of
therapy did produce a significant F, p � .01.
The amount of improvement among depressed
patients depended on the kind of therapy
received. [Hollon, Thrase, and Markowitz’s
article on treatment and prevention of depression
(2002) explains these psychotherapies and also
other psychotherapies and antidepressant 
medications.]

13.14. Source SS df MS F p

Learning (A) 4.05 1 4.05 0.36 
.05
Recall (B) 18.05 1 18.05 1.60 
.05
AB 151.25 1 151.25 13.41 �.01
Error 180.40 16 11.28
Total 353.75 19

F.05 (1, 16 df ) � 4.49; F.01 (1, 16 df ) � 8.53
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(Continued)
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c. Interpretation: The significant interaction
means that the effect of the name depends
on the occupation of the father. The effect
of the name David is good if his father is
a research chemist (Cell A1B1) and bad if
his father is unemployed (Cell A1B2). The
effect of the name Elmer is good if his
father is unemployed (Cell A2B2) and
bad if his father is a research chemist
(Cell A2B1).

The main effects are not significant.
The average “David” theme is about
equal to the average “Elmer” theme.
Similarly, the themes do not differ 
significantly according to whether the
father was unemployed or a research
chemist. Notice that this interpretation of
the main effects is misleading; that is,
names do have an effect, but the effect
depends on the occupation of the father.

iii. a. Independent variables: (1) questions
(used and not used) and 
(2) demonstrations (used and not used).
Dependent variable: score on a 
comprehension test.

b. Fquestions � 4.59, p � .05; 
Fdemos � 9.80, p � .01; 
FAB � 0.24, p 
 .05

c. Interpretation: Because the interaction is
not significant, the main effects can be
interpreted in a straightforward manner.
Questions are important; when questions
are incorporated, students learn
significantly more than when questions
are not used. Demonstrations make a
difference; presentations that have
demonstrations produce comprehension
scores that are significantly better than
presentations without demonstrations.

13.16. Interpretation: Only the interaction is significant.
The conclusion is that when conditions of 
learning and recall are the same, memory is
enhanced. When conditions of learning and 
recall are different, memory is retarded.

13.17. a. The number of scores in each group (cell)
must be the same.

b. The scores in each cell must be independent.
c. The levels of both factors must be chosen by

the experimenter and not selected randomly.

13.15. i. a. Independent variables: (1) treatment the
participant received (insulted or treated
neutrally) and (2) administrator of test
(same or different). Dependent variable:
number of captions produced.

b. Ftreatments � 9.08, p � .01; 
Fexperimenters � 6.82, p � .05; 
FAB � 4.88, p � .05.

c. Interpretation: The significant interaction
means that the effect of the experimenter
depended on whether the participant was
insulted or treated neutrally. If the participant
was insulted, taking the humor test from the
person who had done the insulting caused a
larger number of captions to be written—
larger, that is, than if a new experimenter
had administered the test. If the participant
was not insulted, there was little difference
between the two kinds of experimenters.

Both main effects are statistically
significant. For both main effects, the
difference in margin means depends heavily
on one cell, Cell A1B1. Interpreting the main
effects for this problem isn’t advisable.

ii. a. Independent variables: (1) name 
(high prestige or low prestige) and 
(2) occupation of father (research
chemist or unemployed). Dependent
variable: score assigned to the theme.

b. Fname � 0.44, p 
 .05; 
Foccupation � 0.05, p 
 .05; 
FAB � 8.20, p � .01
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13.19.

Check: SScells � 18.00 � 31.00 � 3.00 � 52.00

Check: 52.00 � 36.00 � 88.00 

Source df MS F p

Marital status 1 18.00 6.00 �.05
Religious behavior 2 15.50 5.17 �.05
AB 2 1.50 0.50 
.05
Error 12 3.00
Total 17

F.05 (1, 12 df ) � 4.75; F.05 (2, 12 df ) � 3.88

 � 36.00 

  � a35 �
19 22

3
b � a83 �

115 2 2

3
b  

  � a194 �
124 2 2

3
b � a29 �

19 2 2

3
b  

SSerror � a56 �
112 2 2

3
b � a83 �

115 2 2

3
b  

 � 3 11.00 2 � 3.00 

  � 15.0 � 6.5 � 3.667 � 4.667 2 2 4  

  � 13.0 � 4.0 � 3.667 � 4.667 2 2 

  � 13.0 � 3.5 � 3.667 � 4.667 2 2 

  � 18.0 � 6.5 � 5.667 � 4.667 2 2 

  � 15.0 � 4.0 � 5.667 � 4.667 2 2 

SSAB � 3 3 14.0 � 3.5 � 5.667 � 4.667 2 2 

SSreligious �
121 2 2

6
�
124 2 2

6
�
139 2 2

6
�
184 2 2

18
� 31.00

 SSmarital �
151 2 2

9
�
133 2 2

9
�
184 2 2

18
� 18.00 

�
115 2 2

3
�
184 2 2

18
� 52.00

 SScells �
112 2 2

3
�
115 2 2

3
�
124 2 2

3
�
19 2 2

3
�
19 2 2

3
 

SStot � 480 �
184 2 2

18
� 88.00

d. The samples are drawn from normally 
distributed populations.

e. The variances of the populations are equal.
f. The participants are assigned randomly to the

group, or the samples are drawn randomly
from the populations.

13.18. Source SS df MS F p

Rewards (A) 199.31 3 66.44 3.90 �.05
Classes (B) 2.25 1 2.25 0.13 
.05
AB 0.13 3 0.04 0.00 
.05
Error 953.25 56 17.02
Total 1154.94 63

F.05 (3, 55 df ) � 2.78

Interpretation: There is no significant interaction
between rewards and class standing, and fresh-
men and seniors do not differ significantly.
There is a significant difference among the
rewards; that is, rewards have an effect on
attitudes toward the police. Pairwise compar-
isons are called for.

The table that follows shows the four 
treatment means, N’s, and a matrix of HSD 
values calculated from the formula,

$20 $10 $5 $1

Means 8.938 10.250 12.125 13.563
N 16 16 16 16

$20 1.27 3.09 4.48*
10 1.82 3.21
5 1.39

* HSD.05 � 3.79

Interpretation: The less students were paid to
defend the police, the more positive their attitude
toward the police. Those who paid 1 dollar had
significantly more positive attitudes toward the
police than those who paid 20 dollars, p � .05.

HSD �
X�1 � X�2

217.02>16

(Continued)
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The interaction is not significant; HSD tests
are appropriate for comparing the three levels
of frequency of religious behavior. For this
problem,

; HSD.05 � 3.77

HSDoften & occasionally � 3.54; NS

HSDnever & occasionally � 0.71; NS

HSDoften & never � 4.24; p � .05

Interpretation: Both marital status and frequency
of religious behavior have an effect on reports 
of happiness. Married people reported being
more happy than unmarried people ( p � .05).
Those frequently engaged in religious behavior
reported higher happiness scores than those
who never engaged in religious behavior 
( p � .05). Happiness was intermediate (but 
not significantly different) for those who 
occasionally practiced religious behavior. There
was not an interaction between marital status 
and frequency of religious behavior.

CHAPTER 14

14.1. Received 
program Control Total

Police record 114 101 215
No police record 211 224 435
Total 325 325 650

The expected frequencies are:

O E O � E 1O � E 22

114 107.5 6.5 42.25 0.393
101 107.5 �6.5 42.25 0.393
211 217.5 �6.5 42.25 0.194
224 217.5 6.5 42.25 0.194

� 650 650.0 x2 � 1.174

x2
.05 (1 df ) � 3.84 df � 1

1O � E 2 2

E

1435 2 1325 2

650
� 217.5

1435 2 1325 2

650
� 217.5

1215 2 1325 2

650
� 107.5

1215 2 1325 2

650
� 107.5

HSD �
X�1 � X�2

23.00>6

By the shortcut method:

Interpretation: Retain the null hypothesis and
conclude that the number who had police records
in the two groups did not differ significantly.
When a statistical test does not show a
statistically significant effect, an effect size index
usually isn’t calculated. (Did you notice that the
proportion with police records was higher for the
boys who participated in the program?)

The Cambridge–Somerville Youth study,
discussed in many sociology texts, was first
reported by Powers and Witmer (1951).

14.2.

Calculations of the expected frequencies are as
follows:

O E O � E 1O � E 22

9 14 �5 25 1.786
26 21 5 25 1.191
31 26 5 25 0.962
34 39 �5 25 0.641

� 100 100 x2 � 4.58

x2
.05 (1 df ) � 3.84 df � 1

Interpretation: Reject the hypothesis that group
size and joining are independent. Conclude that
passersby are more likely to join a group of five
than a group of two.

The effect that group size has on joining is
midway between a small effect and a medium
effect.

f � B
x 2

N
� B

4.58

100
� 2.0458 � 0.21

1O � E 2 2

E

165 2 140 2

100
� 26

165 2 160 2

100
� 39

135 2 140 2

100
� 14

135 2 160 2

100
� 21

x 2 �
100 3 19 2 134 2 � 126 2 131 2 4 2

135 2 165 2 140 2 160 2
� 4.579

x 2 �
650 3 1114 2 1224 2 � 1101 2 1211 2 4 2

1215 2 1435 2 1325 2 1325 2
� 1.17
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14.3. a. Recapture site

Issaquah East Fork

Issaquah 46 (34.027) 0 (11.973)
Capture site

East Fork 8 (19.973) 19 (7.027)

x2
.001 (1 df ) � 10.83. Interpretation: Reject the

null hypothesis (which is that the second
choice is independent of the first) and conclude
that choices are very consistent; salmon tend to
choose the same stream each time. The effect
size index is 0.77, which shows that streams
have a very large effect on choice.

b. Recapture site

Issaquah East Fork

Issaquah 39 (40.071) 12 (10.929)
Capture site

East Fork 16 (14.929) 3 (4.071)

x2
.05 (1 df ) � 3.84. Interpretation: Hasler’s

hypothesis is supported; fish with plugged
nasal openings do not make a consistent
choice of streams, but those that get olfactory
cues consistently choose the same stream.
For further confirmation and a short
summary of Hasler’s work, see Hasler,
Scholz, and Horrall (1978).

14.4. The work that needs to be done on the data is to
divide each set of applicants into two independent
categories, hired and not hired. The following
table results. Expected values are in parentheses.

White Black Total

Hired 390 (339.327) 18 (68.673) 408
Not hired 3810 (3860.673) 832 (781.327) 4642
Total 4200 850 5050

x 2 �
70 3 139 2 13 2 � 112 2 116 2 4 2

151 2 119 2 155 2 115 2
� 0.49

f � B
x2

N
� B

43.76

73
� 2.5995 � 0.77

x 2 �
73 3 146 2 119 2 � 10 2 18 2 4 2

146 2 127 2 154 2 119 2
� 43.76

Interpretation: Given that x2
.001 (1 df ) � 10.83, the

null hypothesis can be rejected. Because 9.29
percent of the white applicants were hired
compared to 2.12 percent of the black applicants,
the statistical consultant and the company in ques-
tion concluded that discrimination had occurred.

The effect size index is 0.10, which is a small
effect. The lesson here is that a small effect
practiced on a large sample produces a reliable
difference between the two groups.

14.5.

� 0.8533 � 2.5600

� 3.4133; df � 1

x2
.05 (1 df ) � 3.84. Interpretation: Retain the

null hypothesis and conclude that these data are
consistent with a 3:1 hypothesis.

14.6. The expected frequencies are 20 correct and 
40 incorrect: and 

df � 1; p � .01

Interpretation: The three emotions can be
distinguished from each other. Observers did
not respond in a chance fashion.

There is an interesting sequel to this experiment.
Subsequent researchers did not find the simple,
clear-cut results that Watson reported. One
experimenter (Sherman, 1927) found that if only
the infants’ reactions were observed, there was a
great deal of disagreement. However, if the
observers also knew the stimuli (patting, dropping,
and so forth), they agreed with each other. This
seems to be a case in which Watson’s design did

x 2 �
132 � 20 2 2

20
�
128 � 40 2 2

40
� 10.80;

123 2 160 2 � 40.113 2 160 2 � 20

x 2 � © c
1O � E 2 2

E
d �

1316 � 300 2 2

300
�
184 � 100 2 2

100

f � B
x 2

N
� B

48.91

5050
� 2.00969 � 0.10

 �
3.3070 � 1014

6.7514 � 1012 � 48.91 

x 2 �
5050 3 1390 2 1832 2 � 13810 2 118 2 4 2

1408 2 14642 2 14200 2 1850 2
 

(Continued)
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14.11. O E O � E 1O � E 22

21 12.735 8.265 68.310 5.365
5 13.265 �8.265 68.310 5.150

27 28.408 �1.408 1.982 0.070
31 29.592 1.408 1.982 0.067
0 6.857 �6.857 47.018 6.857

14 7.143 6.857 47.018 6.583
� 98 98.000 x2 � 24.09

x2
.001 (2 df ) � 13.82 df � (3 � 1)(2 � 1) � 2

Interpretation: Reject the null hypothesis and
conclude that Madison used the word by
significantly more frequently than did
Hamilton. The stage is now set to examine 
the 12 disputed papers for their use of by, an
examination that Mosteller and Wallace carried
out. They describe the rates they found as
“Madisonian.” In addition, other words that
distinguished between Madison and Hamilton
(upon, also, and others) were used at 
Madisonian rates in the 12 papers.

14.12. Independence
14.13. To convert the information you have into 

frequencies that can be analyzed with x2, multiply
the percentages (as proportions) by the number of
observations. Thus, for observed frequencies:

.193(140) � 27 schizophrenic offspring

.807(140) � 113 nonschizophrenic offspring
For the expected frequencies:

.25(140) � 35 schizophrenic offspring

.75(140) � 105 nonschizophrenic offspring

O E O � E 1O � E 22

27 35 �8 64 1.829
113 105 �8 64 0.610

� 140 140 x2 � 2.439

x2
.05 (1 df ) � 3.84 df � 2 � 1 � 1

Interpretation: Retain the null hypothesis and
conclude that these data are consistent with the
1:3 ratio predicted by the theory.

This problem illustrates that data that are
consistent with the theory do not prove that
the theory is true. Current explanations of
schizophrenia include a genetic component,
but not the simple one envisioned by the early
hypothesis.

1O � E 2 2

E

1O � E 2 2

E

not permit him to separate the effect of the
infant’s reaction (the independent variable) from
the effect of knowing what caused the reaction (an
extraneous variable).

14.7. To get the expected frequencies, multiply the
percentages given by Professor Stickler by the
340 students. Then enter these expected fre-
quencies in the usual table.

O E O � E 1O � E 22

20 23.8 �3.8 14.44 0.607
74 81.6 �7.6 57.76 0.708

120 129.2 �9.2 84.64 0.655
88 81.6 6.4 40.96 0.502
38 23.8 14.2 201.64 8.472

� 340 340.0 x2 � 10.94

x2
.05 (4 df ) � 9.49 df � 5 � 1 � 4

(The only restriction on these theoretical fre-
quencies is that �E � �O. Thus, df � 4.)
Interpretation: Reject the contention of the pro-
fessor that his grades conform to “the curve.”
By examining the data, you can also reject the
contention of the colleague that the professor is
too soft. The primary reason the data do not fit
the curve is that there were too many “flunks.”

14.8. Goodness of fit

14.9. O E O � E 1O � E 22

195 200 �5 25 0.125
200 200 0 0 0.000
220 200 20 400 2.000
215 200 15 225 1.125
190 200 �10 100 0.500
180 200 �20 400 2.000

� 1200 1200 x2 � 5.75

x2
.05 (5 df ) � 11.07 df � 6 � 1 � 5

Interpretation: Each of the six sides of a die is
equally likely. With 1200 as the total number of
throws, the expected value for any one of them
is times 1200, or 200. With x2 � 5.75, retain
the null hypothesis. The results of the evening
do not differ significantly from the “unbiased
dice” model.

14.10. Goodness of fit

1
6

1O � E 2 2

E

1O � E 2 2

E
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14.14. In the goodness-of-fit test, expected frequencies
are predicted by a theory, whereas in the inde-
pendence test, they are obtained from the data.

14.15. The first task in this problem is to determine
the expected frequencies. To do this, multiply
each color’s population percentage by the total
number of M&Ms, 57. Next, construct a
summary table of O, E, and x2 values. 

Color O E O � E 1O � E 22

Blue 9 13.7 �4.7 22.09 1.612
Orange 11 11.4 �0.4 0.16 0.014
Green 17 9.1 7.9 62.41 6.858
Yellow 8 7.6 0.4 0.16 0.021
Brown 5 7.6 �2.6 6.76 0.900
Red 07 7.6 �0.6 0.36 0.047
� 57 57.0 x2 � 9.45

x2
.05 (5 df ) � 11.07 df � 6 � 1 � 5

Interpretation: Retain the null hypothesis. The
observed frequencies are not significantly dif-
ferent from the expected frequencies, which are
based on the company’s claims.

Fortunately, this is the kind of problem you
can gather your own data on. Of course, you
must use a larger sample (and having a research
partner would be nice, too). Should you and
your partner find yourselves somehow forced to
test peanut M&Ms, the percentages are 23 per-
cent blue, 23 percent orange, 15 percent green,
15 percent yellow, 12 percent brown, and 
12 percent red. Also, I want to acknowledge my
debt to Randolph A. Smith, who explained to
me the value of M&Ms as a statistical tool.

14.16. You should be gentle with your friend but
explain that the observations in his study are
not independent and cannot be analyzed with
x2. Explain that because one person is making
five observations, the observations are not inde-
pendent; the choice of one female candidate
may cause the subject to pick a male candidate
next (or vice versa).

14.17. Candidates

Hill Dale �

Yes 57 (59.248) 31 (28.752) 88

Signaled turn No 11 (8.752) 2 (4.248) 13

� 68 33 101

1O � E 2 2

E

x2
.05 (1 df ) � 3.84. Interpretation: Cars with

bumper stickers for candidates Hill and Dale
were observed as they turned left at a busy
intersection. Sixteen percent of the 68 Hill cars
failed to signal their left turn; 6 percent of the
33 Dale cars turned left without signaling. This
difference is not statistically significant, which
means that a difference this big is expected
more than 5 percent of the time if, in actuality,
there is no difference in the percentage of traffic
signal violators among supporters of the two
candidates.

14.18. I hope you would say something like, “Gee, I’ve
been able to analyze data like these since I
learned the t test. I will need to know the stan-
dard deviations for those means, though.” If you
attempted to analyze these data using x2, you
erred (which, according to Alexander Pope, is
human). If you erred, forgive yourself and
reread pages 301 and 319.

14.19. Houses

Brick Frame �

Hill 17 (37.116) 59 (38.884) 76

Candidates Dale 88 (67.884) 51 (71.116) 139

� 105 110 215

x2
.001 (1 df ) � 10.83; p � .001

Interpretation: Of the 105 affluent (brick) houses,
16 percent had Hill signs and 84 percent had
Dale signs. At the 110 less affluent (frame)
houses, the relationship was reversed; 54 percent
had Hill signs and 46 percent had Dale signs.
These differences are statistically significant,
which means that if there is really no difference
between the two candidates, percentages like this
would be rare, occurring less than one time in a

 f � B
x 2

N
� B

32.96

215
� 2.1533 � 0.39 

 �
215 1867 � 5192 2 2

176 2 1139 2 1105 2 1110 2
� 32.96;  df � 1

x 2 �
N 1AD � BC 2 2

1A � B 2 1C � D 2 1A � C 2 1B � D 2
 

x2 �
101 3 157 2 12 2 � 131 2 111 2 4 2

188 2 113 2 168 2 133 2
� 2.03

(Continued)
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thousand. These data support the conclusion that
Dale’s supporters are more affluent than Hill’s
supporters. The effect size index (f � 0.39)
indicates that the relationship between candidate
support and affluence is between medium and
large.

14.20. df � (R � 1)(C � 1), except for a table with
only one row.
a. 3 b. 12 c. 3 d. 10

CHAPTER 15

15.1. The relative of the independent-samples t test 
is the Mann–Whitney U test. Corresponding 
to a paired-samples t test is the Wilcoxon
matched-pairs signed-ranks T test.

15.2. There are two differences: (a) Parametric tests
give accurate probabilities of a Type I error if
the populations the samples are drawn from
have the characteristics that parametric tests
assume (e.g., ANOVA assumes the populations
are normally distributed and have equal 
variances). Nonparametric tests do not have
assumptions about the populations built in. 
(b) The null hypothesis for parametric tests is
that the population means are equal; for 
nonparametric tests, the null hypothesis is that
the population distributions are the same.

15.3. Compare your answer with the material in the
section “The Rationale of Nonparametric Tests.”

15.4. Scales of measurement and power
15.5. I ranked the fewest errors (7) as #1 so that high

ranks would indicate many errors. If you gave
32 errors a rank of #1, the sum of ranks is
shown in parentheses, but the U values and 
conclusion are the same.

Near airport N1 � 8 Sum of ranks � 94 (50)

Quiet area N2 � 9 Sum of ranks � 59 (103)

Thus, U � 14

From Table H for a two-tailed test with a � .05
(the second page), U � 15.

U2 � 18 2 19 2 �
19 2 110 2

2
� R2 � 117 � 59 � 58

U1 � 18 2 19 2 �
18 2 19 2

2
� R1 � 108 � 94 � 14

462 ■ Appendix G

Interpretation: The obtained U is smaller than
the tabled U, so reject the null hypothesis. The
mean rank in errors for those near the airport
was 11.75 (94/8), which is higher than the mean
rank for the other group, 6.56 (59/9). Thus,
conclude that children whose school is near a
busy airport make significantly more errors on a
difficult reading test than children whose school
is in a quiet area of the same city. The study by
Hygge et al. (2002) was conducted in Munich,
Germany, when a new airport opened and the
old airport closed.

15.6. With a � .01, there are no possible results that
would allow H0 to be rejected. The friend must
find more cars.

15.7. �RY � 13, �RZ � 32

Even with a � .05 and a two-tailed test, a U of
1 or less is required to reject H0.
Interpretation: With an obtained U � 3,
conclude that the quietness test did not produce
evidence that Y cars are quieter than Z cars.

15.8. Giving a score of 0 a rank of 2 and 110 a rank
of 40, the sum of the ranks for present day is
409.5; the sum of the ranks for 10 years earlier
is 410.5. If you ranked in reverse order, the sum
of the ranks for present day is 574.5 and the
sum for 10 years earlier is 245.5. Either way,
the smaller U is 109.5 and the larger U is
274.5.

The critical value of z is �1.96� for a two-tailed
test.

 z �
1109.5 � 0.5 2 � 192

36.22
� �2.26 

 sU � B
124 2 116 2 141 2

12
� 36.22 

 mU �
124 2 116 2

2
� 192 

 U2 � 124 2 116 2 �
116 2 117 2

2
� 410.5 � 109.5 

 U1 � 124 2 116 2 �
124 2 125 2

2
� 409.5 � 274.5 

Smaller U � 14 2 15 2 �
15 2 16 2

2
� 32 � 3

(Continued)
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Interpretation: Reject the null hypothesis that the
distributions are the same. By examining the
average ranks (23.9 for present-day birds and
15.3 for 10-years-ago birds), you can conclude
that present-day birds have significantly fewer
brain parasites. (If the 0 score birds rank 2,
the average ranks are 17.1 for present-day birds
and 25.7 for 10-years-ago birds. The same 
conclusion results.)

15.9.

Interpretation: Because 2.65 
 1.96, reject H0.
The incomes were significantly different after the
program. Because you do not have the actual
data, you cannot tell whether the incomes were
higher or lower than before.

15.10. Without With Signed 
Worker rests rests D ranks

1 2240 2421 181 2
2 2069 2260 191 4
3 2132 2333 201 5
4 2095 2314 219 6
5 2162 2297 135 1
6 2203 2389 186 3

Check: 21 � 0 � 21 � (positive) � 21
(6)(7) � (negative) � 0

� 21
2 T � 0

N � 6

Interpretation: The critical value of T at the 
.05 level for a two-tailed test is 0. Because 0
(obtained) is equal to or less than 0 (table), reject
the null hypothesis and conclude that the output
with rests is greater than the output without rests.
Here is the story behind this study.

From 1927 to 1932 the Western Electric
Company conducted a study on a group of

 z �
14077 � 0.5 2 � 3164

344.46
� 2.65 

 � B
1112 2 1113 2 1225 2

24
� 344.46 

 sT � B
N 1N � 1 2 12N � 1 2

24
 

 mT �
N 1N � 1 2

4
�
1112 2 1113 2

4
� 3164 

workers at the Hawthorne Works plant near
Chicago. In the study, workers who assembled
telephone relays were separated from the rest of
the workers. A variety of changes in their daily
routine followed, one at a time, with the
following results: 5-minute rest periods
increased output; 10-minute rest periods
increased output; company-provided snacks
during rest periods increased output; and quitting
30 minutes early increased output. Going back to
the original no-rest schedule increased output
again, as did the reintroduction of the rest
periods. Finally, management concluded that
it was the special attention paid to the workers,
rather than the changes, that increased output.
Today, we call it the Hawthorne Effect when
there is an improvement in performance that
is due to being in an experiment (getting
special attention) rather than to the specific
manipulation in the experiment. For a
summary of this study, see Mayo (1946).

15.11. The experimental design has two independent
samples. A Mann–Whitney U test is needed. If
high scores are given high rank (that is, 39
ranks 1):

� (Canadians) � 208; � (people from U.S.) � 257
(If low scores are given high ranks, the sums
are reversed.)

Consulting the second page of Table H (boldface
type), a U value of 64 is required to reject the
null hypothesis (a � .05, two-tailed test). The
lower of the two calculated U values for this
problem is 88. Because 88 
 64, the null
hypothesis must be retained.
Interpretation: Conclude that there is no strong
evidence that Canadians and people from the
United States have different attitudes toward the
regulation of business.

Once again you must be cautious in writing
the conclusion when the null hypothesis is
retained. You have not demonstrated that the
two groups are the same; you have shown only
that the groups are not significantly different.

U1 � 115 2 115 2 �
115 2 116 2

2
� 257 � 88; U2 � 137
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15.14. The tables show the raw data converted to ranks.
The table on the left shows the lowest score
ranked 1. If the highest score is ranked 1, the
table on the right results. Although the sums at
the bottom are not the same, the difference
between any two pairs is the same.

Country- Country-
Friends Romans men Friends Romans men

15 9 2 4 10 17
18 13 10 1 6 9
12 4.5 6 7 14.5 13
14 11 1 5 8 18
16 3 8 3 16 11
17 4.5 7 2 14.5 12

� � 92 45 34 � � 22 69 80

Friends Romans

Romans 47*

Countrymen 58** 11

*p � .05 **p � .01

For K � 3, N � 6, the critical values are 43.3
(.05 level) and 53.9 (.01 level).
Interpretation: Romans and countrymen did not
differ from each other, but both groups offered
significantly less than friends did. So, when you
have a plea, ask a friend to lend an ear.

15.15. The table shows the raw scores converted to
ranks.

NO RE SE GE

6 9 8 15.5
4 6 18 20
2 14 17 12.5
1 6 12.5 19
3 10 11 15.5

� 16 45 66.5 82.5
� (reverse ranks) 89 60 38.5 22.5

NO RE SE

RE 29

SE 50.5* 21.5

GE 66.5** 37.5 16

*p � .05 **p � .01

15.12. Signed
Student Before After D rank 

1 18 4 14 13
2 14 14 0 1.5
3 20 10 10 9
4 6 9 �3 �4
5 15 10 5 6
6 17 5 12 11
7 29 16 13 12
8 5 4 1 3
9 8 8 0 �1.5

10 10 4 6 7
11 26 15 11 10
12 17 9 8 8
13 14 10 4 5
14 12 120                Eliminated

Check: 85.5 � 5.5 � 91 � (positive) � 85.5
(13)(14) � (negative) � �5.5

� 91 T � 5.52
N � 13

The tabled value for T for a two-tailed test with
a � .01 is 9, so reject H0.

Interpretation: Conclude that the after-distribution
is from a different population than the before-
distribution. Except for one person, the number
of misconceptions stayed the same or decreased,
so the course reduced the number of 
misconceptions.

I would like to remind you here of the 
distinction made in Chapter 10 between 
statistically significant and important. There is 
a statistically significant decrease in the number
of misconceptions, but a professor might be
quite dismayed at the number of misconceptions
that remain.

15.13. � (positive) � 81.5 Check: 81.5 � 54.5 � 136

� (negative) � �54.5

T � 54.5

N � 16

T � 29 is required for rejection at the .05 level.
Thus, there is no significant difference in the
weight 10 months later. 

Interpretation: Put in the most positive language,
there is no statistically significant evidence that
the participants gained back the weight lost dur-
ing the workshop.

116 2 117 2

2
� 136

08911_G_APP G_418-472 pp.qxd  12/15/09  7:41 PM  Page 464



Answers to Problems (Chapter 15) ■ 465

leadership, but the authoritarian and democratic
types of leadership did not differ significantly
from each other.

15.17. Arranging the data into a summary table gives:

Groups

1 2 3 4 5

2 85

3 31 54

Groups 4 18 67 13

5 103 188* 134 121

6 31 116 62 49 72

*p � .05

For K � 6, N � 8, differences of 159.6 and
188.4 are required to reject the null hypothesis
at the .05 and .01 level, respectively. Thus, the
only significant difference is between the means
of groups 2 and 5 at the .05 level. (With data
such as these, the novice investigator may be
tempted to report “almost significant at the .01
level.” Resist that temptation.)

15.18. The Mann–Whitney U test is used for ranked
data from two independent samples with equal
or unequal N’s. The Wilcoxon matched-pairs
signed-ranks T test is used for ranked data from
two related samples. The Wilcoxon–Wilcox
multiple-comparisons test makes all possible
pairwise comparisons among K independent
equal-N groups of ranked data.

15.19. a. Wilcoxon matched-pairs signed-ranks T test;
this is a before-and-after study.

b. Wilcoxon matched-pairs signed-ranks T test;
pairs are formed by family.

c. Spearman’s rs; the degree of relationship is
desired.

d. Wilcoxon–Wilcox multiple-comparisons test;
the experiment has three independent
groups.

e. Wilcoxon matched-pairs signed-ranks T test;
again, this is a before-and-after design.

For K � 4, N � 5, the critical values are 48.1
(.05 level) and 58.2 (.01 level).
Interpretation: Although group exercise is better
than solitary exercise, the difference is not
significant. Both of these groups improved
significantly when compared to the no-treatment
group. The relaxation group was intermediate
between no treatment and solitary exercise, but
not significantly different from the other three
groups. Take-home message: Exercise with
others.

15.16. Authoritarian Democratic Laissez-faire

X Rank X Rank X Rank

77 5 90 10.5 50 1
86 9 92 12 62 2
90 10.5 100 16 69 3
97 13 105 21 76 4

100 16 107 22 79 6
102 19 108 23 82 7
120 27.5 110 24 84 8
121 29 118 26 99 14
128 32 125 30 100 16
130 33 131 34 101 18
135 37 132 35.5 103 20
137 38 132 35.5 114 25
141 39.5 146 41 120 27.5
147 42 156 44 126 31
153 43 161 45 141 39.5

� 393.5 419.5 222.0
� (reverse 296.5 270.5 468.0

ranks)

Authoritarian Democratic

Democratic 26

Laissez-faire 171.5* 197.5*

*p � .05

For K � 3, N � 15, a difference in the sum of
the ranks of 168.6 is required to reject H0 at the
.05 level.

Interpretation: Both the authoritarian leadership
and the democratic leadership resulted in higher
personal satisfaction scores than laissez-faire
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15.20. Reject H0

when statistic
Appropriate is (greater,

Symbol for what less) than
of statistic design? critical value?

Mann–Whitney U Two Less
test independent

samples

Wilcoxon matched- T Two Less
pairs signed- paired

ranks test samples

Wilcoxon–Wilcox None More than Greater
multiple- two

comparisons test independent
samples,
equal N’s

15.21. A low correlation means the philosophers have
different sets of criteria of what is important. A
high correlation means that their criteria are
about the same.

Candidates Locke Kant D D2

A 7 8 �1 1
B 10 10 0 0
C 3 5 �2 4
D 9 9 0 0
E 1 1 0 0
F 8 7 1 1
G 5 3 2 4
H 2 4 �2 4
I 6 6 0 0
J 4 2 2 4

�D2 � 18

Interpretation: The two professors seem to be in
pretty close agreement on the selection criteria.

rs � 1 �
6©D2

N 1N 2 � 1 2
� 1 �

6 118 2

10 199 2
� 1 � .109 � .891

15.22.

Self- Other-
Self- judged judged

esteem attrac- attrac-
scores Rank tiveness Rank D2 tiveness Rank D2

40 1 97 3 4 37 6 25
39 2 99 2 0 43 4 4
37 3 100 1 4 29 9 36
36 4 93 6 4 25 12 64
35 5 59 12 49 60 1 16
32 6 88 8 4 54 2 16
28 7 83 9 4 28 10 9
24 8 96 4 16 26 11 9
20 9 90 7 4 40 5 16
16 10 94 5 25 49 3 49
12 11 70 11 0 31 8 9
7 12 78 10 4 34 7 25

�D2 � 118 278

a.

In Table L, an rs of .587 is required for statisti-
cal significance at the .05 level for a two-tailed
test. Thus, the correlation coefficient of .587 is
significantly different from .00 at the .05 level.

b.

Interpretation: The greater the participant’s self-
esteem, the greater that person’s judgment of his
or her own attractiveness (rs � .59). However,
when other people judged their attractiveness,
the correlation between self-esteem and attrac-
tiveness dropped to about zero (rs � .03). Thus,
the attractiveness of those with high self-esteem
is apparent to themselves but not to others.

 � 1 �
1668

1716
� 1 � .9720 � .028 

rs � 1 �
6©D2

N 1N 2 � 1 2
� 1 �

6 1278 2

12 1143 2
 

 � 1 �
708

1716
� 1 � .4126 � .587 

rs � 1 �
6©D2

N 1N 2 � 1 2
� 1 �

6 1118 2

12 1143 2
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15.23.

From Table L, a coefficient of .503 is required
for significance (two-tailed test). Thus, an rs �
.55 is significantly different from .00.

15.24. With only four pairs of scores there is no possi-
ble way to reject the hypothesis that the
population correlation is .00 (see Table L).
Advise your friend that more data must be
obtained before any inference can be made
about the population.

What Would You Recommend?
Chapters 11–15

a. A Mann–Whitney U test should be used to compare
systematic desensitization and flooding. The two
groups are independent samples—there is no reason
to pair the score of a trainee who experienced
systematic desensitization with the score of a trainee
who experienced flooding. A nonparametric test is
called for because the data were skewed.

b. The proper analysis of these data is with a chi square
test of independence. The score that a participant
received was counted as a frequency in a category
(comply or not comply).

c. These data should be analyzed with a factorial
ANOVA. The two independent variables are the
appearance and intentionality of the defendant. The
dependent variable is the likelihood estimate (a
quantitative measure). In Berry and McArthur’s
study (1986) of these variables there was a
significant interaction. Baby-faced defendants were
less likely to be convicted of an intentional offense
than mature-faced defendants, but more likely to be
convicted of a negligent offense.

d. A Spearman rs gives the degree of relationship
between two variables. A Spearman rs is more
appropriate than a Pearson r because one variable is
rank scores.

e. The theory, which predicts the number of participants
on subsequent occasions of the exercise, can be
evaluated using a chi square goodness-of-fit test.
(The expected values are 50, 25, and 12.5.)

rs � 1 �
6©D2

N 1N 2 � 1 2
� 1 �

6 1308 2

16 1162 � 1 2
� .55

f. This experiment has one independent variable that
has three levels. Because the variance of the “no
cues” condition was much greater than that of the
other two conditions, a Wilcoxon–Wilcox 
multiple-comparisons test is appropriate. See Winter,
Uleman, and Cunniff (1985).

g. A Wilcoxon matched-pairs signed-ranks T test is
appropriate for these skewed weight data. This is a
paired-samples design because a before-meal score
is paired with an after-meal score. (Both scores were
obtained from the same dog.)

h. The problem gives no indication that the data are not
normally distributed or have unequal variances. Thus,
to compare each pair of recipes, use a Tukey HSD
test. If, however, you reasoned that tasty recipes
would produce a positively skewed distribution (that
is, many waste scores � 0), then the answer is
Wilcoxon–Wilcox multiple-comparison tests of the
pairs.

i. A one-factor repeated-measures ANOVA will help
evaluate the program. Tukey HSD tests can
determine the immediate effect of the program 
(posttest vs. pretest), the long-term effect (follow-up
vs. pretest), and the effect of time on retention 
(follow-up vs. posttest).

CHAPTER 16

Set A
16.1. A weighted mean is needed, and to find it you

need to know the number of dollars invested in
each division.

16.2. Wilcoxon matched-pairs signed-ranks T test.
You have evidence that the population of
dependent-variable scores (reaction time) is not
normally distributed.

16.3. A one-factor repeated-measures ANOVA
16.4. A median is appropriate because the scores are

skewed.
16.5. Assume that these measures are normally 

distributed and use a normal curve to find the
proportion (.0228 is the answer).

16.6. Either an independent-measures t test or a
Mann–Whitney U test

16.7. A 95 or 99 percent confidence interval about
the mean reading achievement of those 
50 sixth-graders

16.8. x2 goodness-of-fit test
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16.9. Mode
16.10. Neither will do. The relationship described is

nonlinear—one that first increases and then
decreases. A statistic, eta, is appropriate for
curved relationships.

16.11. Paired-samples t test or Wilcoxon matched-pairs
signed-ranks T test

16.12. A regression equation will provide the predictions,
and a correlation coefficient will indicate how
accurate the predictions will be.

16.13. A 2 � 2 factorial ANOVA
16.14. The student’s wondering may be translated into

a question of whether a correlation of .20 is 
statistically significant. Use a t test to find
whether r � .20 for that class is significantly
different from r � .00. Or, look in Table A in
Appendix C.

16.15. This is a x2 problem but it cannot be worked
using the techniques in this text because these
before-and-after data are correlated, not
independent. Intermediate texts describe 
appropriate techniques for such x2 problems.

16.16. A confidence interval about the sample mean.
Does the CI include the manufacturer’s claim of
1000 hours?

16.17. Pearson product-moment correlation coefficient
16.18. Wilcoxon–Wilcox multiple-comparisons test (if

the reaction-time scores are skewed) or one-way
analysis of variance

16.19. A x2 test of independence may determine
whether a decision to report shoplifting is 
influenced by gender (one x2 test) and by the
dress of the shoplifter (a second x2 test).

16.20. A line graph with serial position on the X axis
and number of errors on the Y axis will 
illustrate this relationship.

16.21. A Mann–Whitney U test is preferred because
the dependent variable is skewed. The question
is whether there is a relationship between diet
and cancer. (Note that if the two groups differ,
two interpretations are possible. For example, if
the incidence is higher among the red meat 
cultures, it might be because of the red meat or
because of the lack of grains.)

16.22. An rs will give the degree of relationship for
these two ranked variables.

16.23. For each species of fish, a set of z scores may
be calculated. The fish with the largest z score
should be declared the overall winner.

468 ■ Appendix G

16.24. Calculating an effect size for the experiments
mentioned in the first part of this question will
tell you how big a difference psychotherapy
makes.

Set B
16.25. t.001 (40 df ) � 3.55; therefore, reject the null

hypothesis and conclude that extended practice
improved performance. Because this is just the
opposite of the theory’s prediction, conclude that
the theory does not explain the serial position
effect.

16.26. An effect size of 0.10 is quite small. Effect
sizes of 0.20, 0.50, and 0.80 are classified as
small, medium, and large. In the case of a 
company offering instruction, a large number of
clients provides a large N, which can ensure a
“statistically significant improvement,” even if
the effect size is quite small.

16.27. The screening process is clearly worthwhile in
making each batch profitable. Of course, the
cost of screening has to be taken into account.

16.28. The critical values are 377.6 at the .05 level and
457.6 at the .01 level. Conclude that Herbicide
B is significantly better than A, C, or D at the
.01 level and that D is better than C at the .05
level.

16.29. Because x2
.05 (2 df ) � 5.99, the null hypothesis

for this goodness-of-fit test is retained. The data
do fit the theory; the theory is adequate.

16.30. The overall F is significant (p � .01), so the
differences should not be attributed to chance.
The low dose is significantly better than the
placebo (HSD.01 � 4.70) and significantly
better than the high dose (which has a smaller
mean than the placebo). The placebo and high
dose are not significantly different. A low dose
of Cymbalta reduced depression.

16.31. The critical value of U for a two-tailed test with 
a � .01 is 70. The difference between the two
methods is statistically significant at the .01
level. You cannot, from the information supplied,
tell which of the two methods is superior.

16.32. The critical value at the .001 level of an rs with 
N � 18 is .708 (Table A, df � 16). Attitudes of
college students and people in business toward
the 18 groups are similar. College students and
businesspeople have similar attitudes.
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16.33. t.05 (60 df ) � 2.00; F.01 (30, 40 df ) � 2.20; the
poetry unit appears to have no significant effect
on mean attitudes toward poetry. There is a very
significant effect on the variability of the 
attitudes of those who studied poetry. It appears
that the poetry unit turned some students on and
some students off, thus causing a large variance
in attitudes toward poetry.

16.34. F.05 (1, 44 df ) � 4.06; F.01 (1, 44 df ) � 7.24;
only the interaction is significant. A graph, as
always, helps in interpretation. Whether to 
present one or both sides to get the most 
attitude change depends on the level of 
education of the audience. If the members of a
group have less than a high school education,
present one side. If they have some college 
education, present both sides.

16.35. The tabled value of F.05 (2, 60 df ) � 3.15, so
the null hypothesis is retained. There are no 
significant differences in the verbal ability
scores of third-graders who are left- or 
right-handed or have mixed handedness.

16.36. Because x2
.02 (2 df ) � 7.82, the null hypothesis

for this test of independence is rejected at the
.02 level. Alcoholism and toilet-training are not
independent; they are related. Experiments 
such as this do not allow you to make 
cause-and-effect statements, however.

< 12 years 13+ years

Amount of education

2

3

4

5

M
ea

n 
at

tit
ud

e 
ch

an
ge

Both sides

One side

APPENDIX A

Part 1 (Pretest)
A.1. About 16 A.21. 1.50 A.41. 0.1225
A.2. About 15 A.22. 3.11 A.42. 3.05
A.3. About 15 A.23. 6 A.43. 0.96
A.4. 6.1 A.24. �22 A.44. 0.30
A.5. 0.4 A.25. �7 A.45. 4.20
A.6. 10.3 A.26. �6 A.46. 4.00
A.7. 11.424 A.27. 25 A.47. 4.50
A.8. 27.141 A.28. �24 A.48. 0.45
A.9. 19.85 A.29. 3.33 A.49. 15.25

A.10. 2.065 A.30. �5.25 A.50. 8.00
A.11. 49.972 A.31. 33% A.51. 16.25
A.12. 0.0567 A.32. 22.68 A.52. 1.02
A.13. 3.02 A.33. 0.19 A.53. 12.00
A.14. 17.11 A.34. 60 birds A.54. 10, 30
A.15. 1.375 A.35. 5 A.55. 12, 56
A.16. 0.83 A.36. 4 A.56. 13.00
A.17. 0.1875 A.37. 6, 10 A.57. 11.00
A.18. 0.056 A.38. 4, 22 A.58. 2.50
A.19. 0.60 A.39. 16 A.59. �2.33
A.20. 0.10 A.40. 6.25

Part 2 (Review)
A.60. a. A sum is the answer to an addition problem.

b. A quotient is the answer to a division
problem.

c. A product is the answer to a multiplication
problem.

d. A difference is the answer to a subtraction
problem.

A.61. a. About 10 b. About 7 c. About 100
d. About 0.2 e. About 0.16 f. About 60
g. Just less than 1 h. About 0.1

A.62. a. 14 b. 126 c. 9 d. 0 e. 128
f. 13 g. 12 h. 13 i. 9

A.63. a. 6.33 b. 13.00 c. 0.05 d. 0.97 e. 2.61
f. 0.34 g. 0.00 h. 0.02 i. 0.99

A.64. 0.001 A.65. 14.20
10.000 �7.31
3.652 6.89
2.500

16.153
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A.66. 1.26 A.67. 143.300
� 0.04 16.920
0.0504 2.307

8.100
170.627

A.68. 76.5 A.69. 2.04
0.04>3.06 11.75>24.00

2 8 23 50
26 5000
24 4700
20 300
20

A.70. 152.12 A.71. 0.07
�127.40 � 0.5

24.72 0.035

A.72.

A.73.

A.74.

A.75.

A.76.

A.77.

A.78.

A.79. a. (24) � (�28) � �4 b. �23
c. (�8) � (11) � 3 d. (�15) � (8) � �7

A.80. �40 A.81. 24
A.82. 48 A.83. �33
A.84. (�18) � (�9) � �9
A.85. 14  (�6) � �2.33
A.86. 12 � (�3) � 15
A.87. (�6) � (�7) � 1
A.88. (�9)  (�3) � 3 A.89. (�10)  5 � �2
A.90. 4  (�12) � �0.33 A.91. (�7) � 5 � �12
A.92. 6  13 � 0.46
A.93. .46 � 100 � 46 percent
A.94. 18  25 � 0.72
A.95. 85  115 � 0.74 � 100 � 74 percent
A.96. 25.92 A.97. 0.31
A.98. 128 A.99. 187 coupons

A.100. |�31| � 31
A.101. |21 � 25| � |�4| � 4
A.102. 12 � (2)(5) � 12 � 10 � 2, 22

18 
1

3
� 18  0.333 � 54

3

4
�

5

6
� 0.75 � 0.833 � 0.62

1

3


5

6
� 0.333  0.833 � 0.40

4

5
�

1

6
� 0.80 � 0.167 � 0.63

a
1

3
b a

5

6
b � 0.333 � 0.833 � 0.28

9

20


19

20
� 0.45  0.95 � 0.47

9

10
�

1

2
�

2

5
� 0.90 � 0.50 � 0.40 � 1.80

A.103. �(5)(6) � 10 � �30 � 10 � �20, 40
A.104. �(2)(2) � 6 � �4 � 6 � �10, �2
A.105. (2.5)2 � 2.5 � 2.5 � 6.25
A.106. 92 � 9 � 9 � 81 A.107. 0.3 � 0.3 � 0.09
A.108.
A.109. a. 25.00 b. 2.50 c. 0.79

d. 0.25 e. 4.10 f. 0.0548
g. 426.00 h. 0.50 i. 4.74

A.110.

A.111.

A.112.

A.113.

A.114.

A.115.

A.116.

A.117.

� 13.52 � 10.6672 � 182.25 � 113.785 � 296.03

� 19  0.667 2 2 � 18  0.75 2 2

a
9

2>3
b

2

� a
8

3>4
b

2

 � 12 � 24 � 36 

6

1>2
�

8

1>3
� 16  0.5 2 � 18  0.333 2

 �
324 4 2

15
�

576

15
� 38.40 

3 18 � 2 2 15 � 1 2 4 2

5 110 � 7 2
�
3 16 2 14 2 4 2

5 13 2
 

 �
8 311 4

24
�

88

24
� 3.67 

8 3 16 � 2 2 2 � 5 4

13 2 12 2 14 2
�

8 342 � 5 4

24
�

8 316 � 5 4

24

 � 12.583 2 10.292 2 � 0.75 

a
13 � 18

6 � 8 � 2
b a

1

6
�

1

8
b � a

31

12
b 10.167 � 0.125 2  

 � 13.667 2 10.833 2 � 3.05

a
5 � 6

3 � 2 � 2
b a

1

3
�

1

2
b � a

11

3
b 10.333 � 0.500 2

�
16 � 0 � 9 � 1

3
�

26

3
� 8.67

�
42 � 02 � 1�3 2 2 � 1�1 2 2

3

112 � 8 2 2 � 18 � 8 2 2 � 15 � 8 2 2 � 17 � 8 2 2

4 � 1

 �
4 � 4

6
�

8

6
� 1.33

14 � 2 2 2 � 10 � 2 2 2

6
�

22 � 1�2 2 2

6
 

114 2
2 � 10.25 2 10.25 2 � 0.0625
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A.118.

A.119.

A.120.

A.121.

A.122.

A.123.

APPENDIX B

B.1. Test scores
(class interval) Tally marks f

63–67 > 1
58–62 > 1
53–57 >>> 3
48–52 >>>> 4
43–47 >>>> 4
38–42 7
33–37 7
28–32 7
23–27 7
18–22 >>>> 4
13–17 >>> 3
8–12 > 1
3–7 > 1

� � 50

>>>> >>

>>>> >>

>>>> >>

>>>> >>

x �
36 � 41

8.2
�

�5

8.2
� �0.61

x �
14 � 11

2.5
�

3

2.5
� 1.20

x � 21

6.1
� 1.04,  x � 21 � 6.344,  x � 27.34

x � 4

2
� 2.58,  x � 4 � 5.16,  x � 9.16

 �
104 � 24

5
�

80

5
� 16.00 

104 � 1122>6 2

5
�

104 � 1144>6 2

5
 

 �
10 � 4

8
�

6

8
� 0.75

10 � 162>9 2

8
�

10 � 136>9 2

8
 B.2. Weights Tally marks f

189–191 > 1
186–188 0
183–185 0
180–182 > 1
177–179 0
174–176 >> 2
171–173 > 1
168–170 >> 2
165–167 > 1
162–164 > 1
159–161 >>> 3
156–158 5
153–155 >>>> 4
150–152 6
147–149 >>>> 4

� � 31

The data are positively skewed.

B.3.

Median location

There are 23 frequencies in the intervals below
33–37 and 7 scores in the interval. The median is
35, the midpoint of the interval 33–37.

Because four intervals share the largest number
of scores, 7, the mode is the midpoint of these four
intervals. Mode � 32.5.

B.4.

Median location There

are 14 frequencies below the interval 156–158,
which has 5 measurements. The median is 157
pounds.

The mode is 151 pounds because the interval
150–152 has 6 frequencies, more than any other
interval.

Note that the mean is larger than the median,
confirming your judgment that the distribution is
positively skewed.

�
N � 1

2
�

31 � 1

2
� 16.

X� �
©X

N
�

4939

31
� 159.32 pounds

�
N � 1

2
�

50 � 1

2
� 25.5.

X� �
©X

N
�

1720

50
� 34.40

>>>> >

>>>>

08911_G_APP G_418-472 pp.qxd  12/15/09  7:41 PM  Page 471



This page intentionally left blank 



473

References

Aiken, L. S., & West, S. G. (2005). Interaction
effects. In B. S. Everitt & D. C. Howell (Eds.),
Encyclopedia of statistics in behavioral science
(pp. 929–933). West Sussex, UK: Wiley.

Ambady, N., LaPlante, D., Nguyen, T., Rosenthal, R.,
Chaumeton, N., & Levinson, W. (2002). Surgeons’
tone of voice: A clue to malpractice history.
Surgery, 132, 5–9. doi: 10.1067/msy.2002.124733

American Psychological Association. (2010).
Publication manual of the American Psychological
Association (6th ed.). Washington, DC: Author.

Aron, A., Aron, E. N., & Coups, E. J. (2009).
Statistics for psychology (5th ed.). Upper Saddle
River, NJ: Pearson Prentice-Hall.

Aronson, E., & Mills, J. (1959). The effect of 
severity of initiation on liking for a group. Journal
of Abnormal and Social Psychology, 59, 177–181.

Bahrick, H. P., Bahrick, L. E., Bahrick, A. S., &
Bahrick, P. E. (1993). Maintenance of foreign
language vocabulary and the spacing effect.
Psychological Science, 4, 316–321.

Bandura, A., Blanchard, E. B., & Ritter, B. (1969).
The relative efficacy of desensitization and
modeling approaches for inducing behavioral,
affective, and attitudinal changes. Journal of Per-
sonality and Social Psychology, 64, 173–199.

Barber, T. X. (1976). Suggested (“hypnotic”) behavior:
The trance paradigm versus an alternative paradigm.
In T. X. Barber (Ed.), Advances in altered states of
consciousness & human potentialities (Vol. 1, pp.
175–259). NewYork: Psychological Dimensions.

Barker, R. B., Dembo, T., & Lewin, K. (1941).
Frustration and regression: An experiment with
young children. University of Iowa Studies in
Child Welfare, 18, No. 1.

Baumeister, R. F., Campbell, J. D., Krueger, J. I., &
Vohs, K. D. (2003). Does high self-esteem cause
better performance, interpersonal success,
happiness, or healthier lifestyles? Psychological
Science in the Public Interest, 4, 1– 44.

Benjamin, L. T., Cavell, T. A., & Shallenberger, W. R.
(1984). Staying with initial answers on objective
tests: Is it a myth? Teaching of Psychology, 11,
133–141.

Berry, D. S., & McArthur, L. Z. (1986). Perceiving
character in faces: The impact of age-related
craniofacial changes on social perception.
Psychological Bulletin, 100, 3–18. doi: 10.1037/
0033-2909.100.1.3

Biffen, R. H. (1905). Mendel’s laws of inheritance and
wheat breeding. Journal of Agricultural Science, 1,
4–48.

Birch, H. G., & Rabinowitz, H. S. (1951). The negative
effect of previous experience on productive
thinking. Journal of Experimental Psychology, 41,
121–125.

Blair, R. C., & Higgins, J. J. (1985). Comparison
of the power of the paired samples t test to that
of Wilcoxon’s signed-ranks test under various
population shapes. Psychological Bulletin, 97,
119–128. doi: 10.1037/0033-2909.97.1.119

Blair, R. C., Higgins, J. J., & Smitley, W. D. S.
(1980). On the relative power of the U and t tests.
British Journal of Mathematical and Statistical
Psychology, 33, 114–120.

Boehner, C., & Howe, S. (1996, June). Statisti-
cal graphics in psychological research. Poster
session presented at the annual meeting of the
American Psychological Society, San Fran-
cisco, CA.

08911_REF 473-479 pp.qxd  12/15/09  6:02 PM  Page 473



Box, J. F. (1981). Gosset, Fisher, and the t distribution.
American Statistician, 35, 61–66.

Bradley, D. R., Bradley, T. D., McGrath, S. G., &
Cutcomb, S. D. (1979). Type I error rate of the chi-
square test of independence in R � C tables that
have small expected frequencies. Psychological
Bulletin, 86, 1290–1297.

Bransford, J. D., & Franks, J. J. (1971). The abstrac-
tion of linguistic ideas. Cognitive Psychology, 2,
331–350.

Brehm, J. W., & Cohen, A. R. (1962). Explorations
in cognitive dissonance. New York: Wiley.

Bureau of Labor Statistics. (1994, December).
Union wages and hours of motor truck drivers
and helpers. Monthly Labor Review, July 1,
1944.

Byrnes, J. P., Miller, D. C., & Schafer, W. D. (1999).
Gender differences in risk taking: A meta-
analysis. Psychological Bulletin, 125, 367–383.

Camilli, G., & Hopkins, K. D. (1978). Applicability
of chi-square to 2 � 2 contingency tables with
small expected cell frequencies. Psychological
Bulletin, 85, 163–167.

Cleveland, W. S. (1994). The elements of graphing
data (Rev. ed). Murray Hill, NJ: AT&T Bell
Laboratories.

Cohen, I. B. (1984, March). Florence Nightingale.
Scientific American, 250, 128–137.

Cohen, J. (1969). Statistical power analysis for the
behavioral sciences. New York: Academic.

Cohen, J. (1988). Statistical power analysis for
the behavioral sciences (2nd ed.). Hillsdale, NJ:
Erlbaum.

Cohen, J. (1992). A power primer. Psychological
Bulletin, 112, 155–159. doi: 10.1037/0033-
2909.112.1.155

Cohen, S., & Williamson, G. M. (1991). Stress 
and infectious disease in humans. Psychological
Bulletin, 109, 5–24. doi: 10.1037/0033-2909.
109.1.5

Coren, S., & Halpern, D. F. (1991). Left-handedness:
A marker for decreased survival fitness.
Psychological Bulletin, 109, 90–106. doi: 10.1037/
0033-2909.109.1.90

Cumming, G., & Finch, S. (2005). Inference by eye:
Confidence intervals and how to read pictures of
data. American Psychologist, 60, 170–180. doi:
10.1037/ 0003-066X.60.2.170

David, H. A. (1995). First (?) occurrence of common
terms in mathematical statistics. American
Statistician, 49, 121–133.

Diener, E., Emmons, R. A., & Larsen, R. J. (1985).
The Satisfaction with Life Scale. Journal of
Personality Assessment, 49, 71–75.

Diener, E., & Seligman, M. E. P. (2004). Beyond
money: Toward an economy of well-being.
Psychological Science in the Public Interest, 5,
1–31.

Diener, E., Suh, E. M., Lucas, R. E., & Smith, H. L.
(1999). Subjective well-being: Three decades
of progress. Psychological Bulletin, 125,
276–302. doi: 10.1037/0033-2909.125.2.276

Diener, E., Wolsic, B., & Fujita, F. (1995). Physical
attractiveness and subjective well-being. Jour-
nal of Personality and Social Psychology, 68,
653–663. doi: 10.1037/0022-3514.69.1.120

Dillon, K. M. (1999). I am 95% confident that the
world is round: An interview about statistics with
Chris Spatz. Teaching of Psychology, 26, 232–234. 

Doll, R. (1955). Etiology of lung cancer. Advances
in Cancer Research, 3, 1–50.

Durkheim, E. (1951, reprint). Suicide. New York:
Free Press. (Original work published 1897)

Edwards, A. W. F. (2001). Fisher, Ronald A. (1890–
1962). In N. J. Smelser & P. B. Baltes (Eds.),
International encyclopedia of the social &
behavioral sciences (Vol. 8, pp. 5698–5701).
Oxford: Elsevier.

Elgin, J., & Pritchard, M. (2006). Age differences in
eating disordered behavior and its correlates. Psi Chi
Journal of Undergraduate Research, 11, 63–70.

Ellis, D. (1938). A source book of Gestalt psychology.
London: Routledge & Kegan Paul.

Erceg-Hurn, D. M., & Mirosevich, V. M. (2008).
Modern robust statistical methods: An easy way
to maximize the accuracy and power of your
research. American Psychologist, 63, 591–601.
doi: 10.1037/0003-066X.63.7.591

Faber, D. (2005). Quetelet,Adolphe. In B. S. Everitt &
D. C. Howell (Eds.), Encyclopedia of statistics in
behavioral science (pp. 1650–1651). West Sussex,
UK: Wiley.

Fancher, R. E. (2009). Scientific cousins: The
relationship between Charles Darwin and Francis
Galton. American Psychologist, 64, 84–92. doi:
10.1037/a0013339

474 ■ References

08911_REF 473-479 pp.qxd  12/15/09  6:02 PM  Page 474



Field, A. P. (2005a). Eta and eta squared. In
B. S. Everitt & D. C. Howell (Eds.), Encyclopedia
of statistics in behavioral science (pp. 553–554).
West Sussex, UK: Wiley.

Field, A. P. (2005b). Fisher, Sir Ronald Aylmer. In
B. S. Everitt & D. C. Howell (Eds.), Encyclopedia
of statistics in behavioral science (pp. 658–659).
West Sussex, UK: Wiley.

Fisher, R. A. (1925). Statistical methods for research
workers. London: Oliver and Boyd.

Fisher, R. A., & Yates, F. (1963). Statistical tables
for biological, agricultural, and medical research
(6th ed.). Edinburgh: Oliver and Boyd.

Flynn, J. R. (1987). Massive IQ gains in 14 nations:
What IQ tests really measure. Psychological
Bulletin, 101, 171–191. doi: 10.1037/h0090408 

Forbs, R., & Meyer, A. B. (1955). Forestry
handbook. New York: Ronald.

Galton, F. (1869). Hereditary genius. London:
Macmillan.

Galton, F. (1889). Natural inheritance. London:
Macmillan.

Galton, F. (1901). Biometry. Biometrika, 1, 7–10.
Garcia, S. M., & Tor, A. (2009). The N-Effect: More

competitors, less competition. Psychological
Science, 20, 871–877.

Gigerenzer, G., Gaissmaier, W., Kurz-Milcke, E.,
Schwartz, L. M., & Woloshin, S. (2007).
Helping doctors and patients make sense of
health statistics. Psychological Science in the
Public Interest, 8, 53–96.

Guinness World Records 2009. (2008). Enfield,
UK: Guinness World Records.

Hacking, I. (1984). Trial by number. Science, 84, 5,
69–70.

Hald, A. (1998). A history of mathematical statistics
from 1750 to 1930. New York: Wiley.

Harter, H. L. (1960). Tables of range and studentized
range. Annals of Mathematical Statistics, 31,
1122–1147.

Hasler, A. D. (1966). Underwater guideposts.
Madison: University of Wisconsin Press.

Hasler, A. D., & Scholz, A. T. (1983). Olfactory
imprinting and homing in salmon. New York:
Springer-Verlag.

Hasler, A. D., Scholz, A. T., & Horrall, R. M. (1978).
Olfactory imprinting and homing in salmon.
American Scientist, 66, 347–355.

Hedges, L. V., & Nowell, A. (1995). Sex differences
in mental test scores, variability, and numbers of
high-scoring individuals. Science, 269, 41–45.

Hemphill, J. F. (2003). Interpreting the magnitudes of
correlation coefficients. American Psychologist,
58, 78–80. doi: 10.1037/0003-066X.58.1.78 

Hogan, T. P., & Evalenko, K. (2006). The elusive
definition of outliers in introductory statistics
textbooks for behavioral sciences. Teaching of
Psychology, 33, 252–256.

Hollon, S. D., Thrase, M. E., & Markowitz, J. C.
(2002). Treatment and prevention of depression.
Psychological Science in the Public Interest, 3,
39–77.

Howell, D. C. (2008). Fundamental statistics for the
behavioral sciences (6th ed.). Belmont, CA:
Thomson Wadsworth.

Howell, D. C. (2010). Statistical methods for
psychology (7th ed.). Pacific Grove, CA: Cengage
Wadsworth.

Hygge, S., Evans, G. W., & Bullinger, M. (2002).
A prospective study of some effects of aircraft
noise on cognitive performance in schoolchil-
dren. Psychological Science, 13, 469–474.

Ingham, A. G., Levinger, G., Graves, J., &
Peckham, V. (1974). The Ringelmann effect:
Studies of group size and group performance.
Journal of Experimental Social Psychology, 10,
371–384.

Irion, A. L. (1976). A survey of the introductory
course in psychology. Teaching of Psychology, 3,
3–8.

Jacoby, W. (1997). Statistical graphics for univariate
and bivariate data. Thousand Oaks, CA: Sage.

Jenkins, J. G., & Dallenbach, K. M. (1924).
Obliviscence during sleep and waking. American
Journal of Psychology, 35, 605–612.

Johnson, R. C., McClearn, G. E., Yuen, S.,
Nagoshi, C. T., Ahern, F. M., & Cole, R. E.
(1985). Galton’s data a century later. American
Psychologist, 40, 875–892. doi: 10.1037/ 0003-
066X.40.8.875

Killeen, P. R. (2005). An alternative to null-
hypothesis significance tests. Psychological
Science, 16, 345–353.

Kirk, R. E. (1984). Elementary statistics (2nd ed.).
Pacific Grove, CA: Brooks/Cole.

References ■ 475

08911_REF 473-479 pp.qxd  12/17/09  11:59 AM  Page 475



Kirk, R. E. (1995). Experimental design: Procedures
for the behavioral sciences (3rd ed.). Pacific
Grove, CA: Brooks/Cole.

Kirk, R. E. (2005). Effect size measures. In
B. S. Everitt & D. C. Howell (Eds.), Encyclopedia
of statistics in behavioral science (pp. 532–542).
West Sussex, UK: Wiley.

Kirk, R. E. (2008). Statistics: An introduction
(5th ed.). Belmont, CA: Thompson-Wadsworth.

Kline, R. B. (2004). Beyond significance testing:
Reforming data analysis methods in behavioral
research. Washington, DC: American Psycholo-
gical Association.

Korbrin, J. L., Patterson, B. F., Shaw, E. J., Mattern,
K. D., & Barbuti, S. M. (2008). Validity of the SAT
for predicting first-year college grade point
average. Research Report No. 2008–5. Retrieved
from http://professionals.collegeboard.com/
profdownload/Validity_of_the_SAT_for_Predictin
g_First_Year_College_Grade_Point_Average.pdf

Kramer, C. Y. (1956). Extension of multiple range
tests to group means with unequal numbers of
replications. Biometrics, 12, 307–310.

Lewin, K. (1958). Group decision and social change.
In E. E. Maccoby, T. M. Newcomb, & E. L. Hartley
(Eds.), Readings in social psychology (3rd ed.).
NewYork: Holt, Rinehart & Winston.

Lilienfeld, S. O., Wood, J. M., & Garb, H. N. (2000).
The scientific status of projective techniques.
Psychological Science in the Public Interest, 1,
27–66.

Loftus, E. F. (1979). Eyewitness testimony.
Cambridge, MA: Harvard University Press.

Lovie, S. (2005). Exploratory data analysis. In
B. S. Everitt & D. C. Howell (Eds.), Encyclopedia
of statistics in behavioral science (pp. 586–588).
West Sussex, UK: Wiley.

Mackowiak, P. A., Wasserman, S. S., & Levine,
M. M. (1992). A critical appraisal of 98.6°F,
the upper limit of the normal body temperature,
and other legacies of Carl Reinhold August
Wunderlich. Journal of the American Medical
Association, 268, 1578–1580.

Maindonald, J., & Richardson, A. M. (2004). This
passionate study: A dialogue with Florence
Nightingale. Journal of Statistics Education, 12.
Retrieved September 27, 2006, from www.amstat
.org/publications/jse/v12n1/maindonald.html

Mann, H. B., & Whitney, D. R. (1947). On a test
of whether one or two random variables is
stochastically larger than the other. Annals of
Mathematical Statistics, 18, 50–60.

Mayo, E. (1946). The human problems of an
industrial civilization. Boston: Harvard University
Press.

McKeachie, W. J., Pollie, D., & Speisman, J. (1955).
Relieving anxiety in classroom examinations.
Journal of Abnormal and Social Psychology, 50,
93–98.

McKeown, T., & Gibson, J. R. (1951). Observation
on all births (23,970) in Birmingham, 1947. IV.
“Premature birth.” British Medical Journal, 2,
513–517.

McMullen, L., & Pearson, E. S. (1939). William Sealy
Gosset, 1876–1937. Biometrika, 30, 205–253.

Micceri, T. (1989). The unicorn, the normal curve,
and other improbable creatures. Psychological
Bulletin, 105, 156–166. doi: 10.1037/ 0033-
2909.105.1.156 

Milgram, S. (1969). Note on the drawing power of
crowds of different size. Journal of Personality
and Social Psychology, 13, 79–82.

Milnor, W. R. (1990). Cardiovascular physiology.
New York: Oxford.

Minium, E. W., & King, B. M. (2002). Statistical
reasoning in psychology and education (4th ed.).
New York: Wiley.

Mischel, H. N. (1974). Sex bias in the evaluation of
professional achievements. Journal of Educational
Psychology, 66, 157–166.

Mosteller, F., & Wallace, D. L. (1989). Deciding
authorship. In J. M. Tanur, F. Mosteller, W. H.
Kruskal, R. F. Link, R. S. Picters, G. R. Rising, &
E. L. Lehmann (Eds.), Statistics: A guide to
the unknown (3rd ed.). Pacific Grove, CA:
Wadsworth & Brooks/Cole.

Mrazek, D. A., Schuman, W. B., & Klinnert, M.
(1998). Early asthma onset: Risk of emotional and
behavioral difficulties. Journal of Child Psychology
and Psychiatry and Allied Disciplines, 39,
247–254. doi: 10.1111/1469-7610.00318 

Nelson, N., Rosenthal, R., & Rosnow, R. L. (1986).
Interpretation of significance levels and effect
sizes by psychological researchers. American
Psychologist, 41, 1299–1301. doi: 10.1037/ 0003-
066X.41.11.1299 

476 ■ References

08911_REF 473-479 pp.qxd  12/15/09  6:02 PM  Page 476

www.amstat.org/publications/jse/v12n1/maindonald.html
www.amstat.org/publications/jse/v12n1/maindonald.html
http://professionals.collegeboard.com/profdownload/Validity_of_the_SAT_for_Predicting_First_Year_College_Grade_Point_Average.pdf
http://professionals.collegeboard.com/profdownload/Validity_of_the_SAT_for_Predicting_First_Year_College_Grade_Point_Average.pdf
http://professionals.collegeboard.com/profdownload/Validity_of_the_SAT_for_Predicting_First_Year_College_Grade_Point_Average.pdf


Nickerson, R. S. (2000). Null hypothesis statistical
testing: A review of an old and continuing
controversy. Psychological Methods, 5, 241–301.
doi: 10.1037/1082-989X.5.2.241 

Nicol, A., & Pexman, P. (2003). Displaying your
findings: A practical guide for creating figures,
posters, and presentations. Washington, DC:
American Psychological Association.

Nijsse, M. (1988). Testing the significance of Kendall’s
t and Spearman’s rs. Psychological Bulletin, 103,
235–237. doi: 10.1037/0033-2909.103.2.235 

Overall, J. E. (1980). Power of chi-square tests for
2 � 2 contingency tables with small expected
frequencies. Psychological Bulletin, 87, 132– 135.

Pagano, R. R. (2007). Understanding statistics in
the behavioral sciences (8th ed.). Belmont, CA:
Wadsworth/Thomson.

Pearson, E. S. (1949). W. S. Gosset. In L. G. Wickham
Legg (Ed.), Dictionary of national biography:
1931–1940. London: Oxford University Press.

Pearson, K., & Lee, A. (1903). Inheritance of
physical characters. Biometrika, 2, 357–462.

Peden, B. F. (2001). Correlational analysis and
interpretation: Graphs prevent gaffes. Teaching
of Psychology, 28, 129–131.

Peden, B. F., & Hausmann, S. E. (2000). Data
graphs in introductory and upper-level
psychology textbooks: A content analysis.
Teaching of Psychology, 27, 93–97.

Porter, T. M. (1986). The rise of statistical thinking.
Princeton, NJ: Princeton University Press.

Powers, E., & Witmer, H. (1951). An experiment in
the prevention of delinquency: The Cambridge-
Somerville Youth Study. New York: Columbia
University Press.

Pryor, J. H., Hurtado, S., DeAngelo, L., Sharkness,
J., Romero, L. C., Korn, W. S., & Tran, S.
(2008). The American freshman: National norms
for Fall 2008. Los Angeles: Higher Education
Research Institute.

Rokeach, M., Homant, R., & Penner, L. (1970).
A value analysis of the disputed Federalist papers.
Journal of Personality and Social Psychology, 16,
245–250.

Rosnow, R. L., & Rosenthal, R. (2005). Begin-
ning behavioral research: A conceptual primer
(5th ed.). Upper Saddle River, NJ: Pearson
Prentice Hall.

Runyon, R. P., Coleman, K. A., & Pittenger, D. J.
(2000). Fundamentals of behavioral statistics
(9th ed.). Boston: McGraw-Hill.

Ryan, J. J. (2008). Intelligence. In S. F. Davis &
W. Buskist (Eds.), 21st century psychology: A
reference handbook (Vol. 1, pp. 413–421).
Thousand Oaks, CA: Sage.

Salsburg, D. (2001). The lady tasting  tea: How
statistics revolutionized science in the twentieth
century. New York: Henry Holt.

Schachter, S., & Gross, L. P. (1968). Manipulated
time and eating behavior. Journal of Personality
and Social Psychology, 10, 98–106.

Schumacher, E. F. (1979). Good work. New York:
Harper & Row.

Shedler, J., & Block, J. (1990). Adolescent drug use
and psychological health. American Psychologist,
45, 612–630. doi: 10.1037/0003-066X.45.5.612

Sherif, M. (1935). A study of some social factors in
perception. Archives of Psychology. No. 187.

Sherman, M. (1927). The differentiation of
emotional responses in infants: The ability of
observers to judge the emotional characteristics
of the crying infants, and of the voice of an
adult. Journal of Comparative Psychology, 7,
335–351.

Smith, L. D., Best, L. A., Stubbs, D. A., Archibald,
A. B., & Roberson-Nay, R. (2002). Constructing
knowledge: The role of graphs and tables in hard
and soft psychology. American Psychologist, 57,
749–761. doi: 10.1037/0003-066X.57.10.749 

Smith, M. L., & Glass, G. V. (1977). Meta-analysis
of psychotherapy outcome studies. American
Psychologist, 32, 752–760.

Smith, R. A. (1971). The effect of unequal group
size on Tukey’s HSD procedure. Psychometrika,
36, 31–34.

Snedecor, G. W., & Cochran, W. G. (1980).
Statistical methods (7th ed.). Ames: Iowa State
University Press.

Spatz, C. (2000, November–December). Our
changing statistical methods: Controversies
about the null hypothesis. Psychology Teacher
Network, 3–4.

Spatz, C. (2008). Statistical techniques and analysis.
In S. F. Davis & W. Buskist (Eds.), 21st century
psychology: A reference handbook (Vol. 1,
pp. 46–54). Thousand Oaks, CA: Sage.

References ■ 477

08911_REF 473-479 pp.qxd  12/15/09  6:02 PM  Page 477



Spatz, T. S. (1991). Improving breast self-
examination training by using the 4MAT
instructional model. Journal of Cancer
Education, 6, 179–183.

Spearman, C. (1930). Autobiography. In
C. Murchison (Ed.), History of psychology in
autobiography. New York: Russell & Russell.

Sprent, P., & Smeeton, N. C. (2007). Applied
nonparametric statistical methods (4th ed.).
Boca Raton, FL: CRC Press.

Sprinthall, R. C. (2007). Basic statistical analysis
(8th ed.). Boston: Allyn and Bacon.

Sternberg, R. J., & Williams, W. M. (1997). Does the
Graduate Record Examination predict meaningful
success in the graduate training of psychologists?
A case study. American Psychologist, 52,
630–641. doi: 10.1037/0003-066X.52.6.630 

Stevens, S. S. (1946). On the theory of scales of
measurement. Science, 103, 677–680.

Strayer, D. L., Drews, F. A., & Johnston, W. A.
(2003). Cell phone–induced failures of visual
attention during simulated driving. Journal of
Experimental Psychology: Applied, 9, 23–32.
doi: 10.1037/1076-898X.9.1.23

Tanur, J. M., Mosteller, F., Kruskal, W. H.,
Lehmann, E. L., Link, R. F., Pieters, R. S., &
Rising, G. R. (Eds.). (1989). Statistics: A guide
to the unknown (3rd ed.). Pacific Grove, CA:
Wadsworth & Brooks/Cole.

Thomas, R. (2005). Francis Galton. In B. S. Everitt &
D. C. Howell (Eds.), Encyclopedia of statistics in
behavioral science (pp. 687–688). West Sussex,
UK: Wiley.

Tufte, E. R. (2001). The visual display of quantitative
information (2nd ed.). Cheshire, CT: Graphics.

U.S. Census Bureau. (2008). Statistical abstract of the
United States: 2009 (128th ed.). Washington, DC:
Author.

von Hippel, P. T. (2005). Mean, median, and skew:
Correcting a textbook rule. Journal of Statistics
Education, 13. Retrieved September 27, 2006, from
www.amstat.org/publications/jse/v13n2/vonhippel.
html

Wainer, H. (1984). How to display data badly.
American Statistician, 38, 137–147.

Wainer, H., & Velleman, P. F. (2001). Statistical
graphics: Mapping the pathways of science.
Annual Review of Psychology, 52, 305–335.

Walker, H. M. (1929). Studies in the history of
statistical method. Baltimore: Williams & Wilkins.

Walker, H. M. (1940). Degrees of freedom. Journal
of Educational Psychology, 31, 253–269.

Walker, H. M. (1968). Karl Pearson. In D. L. Sills
(Ed.), International encyclopedia of the social
sciences. New York: Macmillan and Free
Press.

Wallace, R. K., & Benson, H. (1972). The physiology
of meditation. Scientific American, 226, 84–90.

Waller, J. C. W. (2001). Sir Francis Galton
(1822–1911). In N. J. Smelser & P. B. Baltes
(Eds.), International encyclopedia of the social &
behavioral sciences (Vol. 9, pp. 5860–5863).
Oxford: Elsevier.

Watson, J. B. (1924). Psychology from the standpoint
of a behaviorist (2nd ed.). Philadelphia: Lippincott.

White, E. B. (1970). The trumpet of the swan.
New York: Harper & Row.

Wight, R. D., & Gable, P. A. (2005). Gauss,
Johann Carl Friedrich. In B. S. Everitt & D. C.
Howell (Eds.), Encyclopedia of statistics in
behavioral science (pp. 694–696). West Sussex,
UK: Wiley.

Wilcox, R. R. (2005a). Outliers. In B. S. Everitt &
D. C. Howell (Eds.), Encyclopedia of statistics
in behavioral science (pp. 1497–1498). West
Sussex, UK: Wiley.

Wilcox, R. R. (2005b). Introduction to robust
estimation and hypothesis testing (2nd ed.). San
Diego: Academic Press.

Wilcoxon, F. (1945). Individual comparisons by
ranking methods. Biometrics, 1, 80–83.

Wilcoxon, F., & Wilcox, R. A. (1964). Some rapid
approximate statistical procedures (Rev. ed.).
Pearl River, NY: Lederle Laboratories.

Wilkinson, L., and Task Force on Statistical Inference.
(1999). Statistical methods in psychology journals:
Guidelines and explanations. American
Psychologist, 54, 594–604. doi: 10.1037/0003-
066X.54.8.594 

Winer, B. J., Brown, D. R., & Michels, K. M. (1991).
Statistical principles in experimental design (3rd
ed.). NewYork: McGraw-Hill. 

Winter, L., Uleman, J. S., & Cunniff, C. (1985).
How automatic are social judgments? Journal of
Personality and Social Psychology, 49, 904–917.
doi: 10.1037/0022-3514.49.4.904

478 ■ References

08911_REF 473-479 pp.qxd  12/15/09  6:02 PM  Page 478

www.amstat.org/publications/jse/v13n2/vonhippel.html
www.amstat.org/publications/jse/v13n2/vonhippel.html


Wittrock, M. C. (1991). Generative teaching of
comprehension. Elementary School Journal, 92,
169–184.

Wolraich, M. L., Lindgren, S. D., Stumbo, P. J.,
Stegink, L. D., Applebaum, M. I., & Kiritsy,
M. C. (1994). Effects of diets high in sucrose or
aspartame on the behavior and cognitive
performance of children. New England Journal
of Medicine, 330, 301–307.

Wood, T. B., & Stratton, F. J. M. (1910). The
interpretation of experimental results. Journal of
Agricultural Science, 3, 417–440.

Woodworth, R. S. (1926). Introduction. In
H. E. Garrett (Ed.), Statistics in psychology and
education. New York: Longmans, Green.

Wuensch, K. L. (2005). Scales of measurement. 
In B. S. Everitt & D. C. Howell (Eds.),
Encyclopedia of statistics in behavioral science
(pp. 1785–1787). West Sussex, UK: Wiley.

Yates, F. (1981). Sir Ronald Aylmer Fisher. In
E. T. Williams & C. S. Nichols (Eds.), Dictionary
of national biography 1961–1970. Oxford: Oxford
University.

Youden, W. J. (1962). Experimentation and mea-
surement. Washington, DC: National Science
Teachers Association.

Zajonc, R. B. (2001). The family dynamics of
intellectual development. American Psychologist,
56, 490–496. doi: 10.1037/ 0003-066X.56.6-7.490

Zajonc, R. B., & Bargh, J. (1980). Birth order,
family size, and decline of SAT scores. American
Psychologist, 35, 662–668.

Zwick, R. (1993). Pairwise comparison procedures
for one-way analysis of variance designs. In
G. Keren & C. Lewis (Eds.), A handbook for data
analysis in the behavioral sciences: Statistical
issues (pp. 43–71). Hillsdale, NJ: Erlbaum.

References ■ 479

08911_REF 473-479 pp.qxd  12/15/09  6:02 PM  Page 479



480

Abscissa, 30
Aiken, L. S., 275
Alpha (�):

choice of .05, 185–186
defined, 179
and power, 223
relation to �, 184, 223
and Type I error,

183–185
Alternative hypothesis, 176,

199–200
Ambady, N., 225
American Psychological

Association, 4, 168, 219
American Statistical

Association, 16
American Statistical Society, 16
Analysis of variance

(ANOVA):
assumptions, 250–251,

266, 297
comparisons among means:

247–250
a priori, 247
multiple t tests, 229
post hoc, 248

correction factor, 240
degrees of freedom, 242–243,

261, 286–287
effect size indexes,

251–253, 296

factorial design: 268–298
assumptions, 297
compared to one-way

ANOVA, 269
compared to t test, 269
interaction, 271–275,
interpretation,

269–271, 290
null hypothesis, 269
R x C notation, 270
Tukey HSD, 295–296

F tests, 243–244, 262, 287
grand mean, 237
interaction, 271–275, 290
main effects, 271, 273–275,

290–292
mean square, 237, 242–243,

262, 286–288
null hypothesis, 229,

258, 269
one-way ANOVA: 228–253

compared to factorial
design, 269

compared to t test, 229
effect size index, 251–253
interpretation, 244–245
null hypothesis, 229
Tukey HSD, 247–250

rationale, 230–235, 269
repeated measures, 257–266

advantages, 264–265

assumptions, 266
cautions, 265–266
interpretation, 257–258
rationale, 258–259
Tukey HSD, 262–263

sum of squares, 237–240,
259–261, 281–285

Tukey HSD, 247–250,
262–263, 295–296

of variances, 245
A priori test, 247
Aron, A., 223, 315
Aron, E. N., 223, 315
Aronson, E., 254
Array, 43
Assumptions (See under

individual tests),
220–222

Asymptotic, 131
Asthma, 215

Baggins, Bilbo, 145
Bahrick, H. P., 263
Bandura, A., 242
Barber, T. X., 21
Bar graph, 32, 276
Baumeister, R. F., 347
Barker, R. B., 205
Benjamin, L. T., 263
Berry, D. S., 467
Beta (�), 184, 222

Index

08911_IDX 480-489 pp.qxd  12/18/09  8:33 AM  Page 480



Index n 481

Biffen, R. H., 194
Bimodal distribution, 35
Binomial distribution,

127–128
Biometrika, 193, 302
Birch, H. G., 223
Birth weights, 144
Bivariate distribution, 89
Blackmun, Justice Harry, 5
Blair, R. C., 326
Block, J., 105
Boehner, C., 36
Box, J. F., 235
Boxplot, 4, 76–79
Bradley, D. R., 317
Bransford, J. D., 30, 70
Brehm, J. W., 297
Byrnes, J. P., 301, 308

Cabbage, 84
Cambridge-Somerville Youth

Study, 308
Camilli, G., 317
Cancer, and cigarette con-

sumption, 106–107, 194
Casteneda v. Partida, 5
Central Limit Theorem,

154–155
Central Michigan 

University, 53
Central tendency (see also

Mean, Median, Mode):
comparisons among, 47–49
defined, 40
and skewness, 47–48

Cervone, David, 215
Chi square distribution,

301–302, 303
Chi square test, 303–304

additive nature, 313
combining categories,

318–319

contingency table, 304
effect size index (�),

307–308, 312
formula, 303
goodness of fit, 310–312
of independence, 304–306,

318–319
more than 1 df, 312–315
null hypothesis, 304, 310
restrictions, 319–320
shortcut for 2 x 2 table, 307
small expected frequencies,

316–319
Yates’ correction, 317

Cigarette consumption, and
cancer, 106–107, 194

Clark University, 16
Class intervals, 28, 48, 380
Cleveland, W. S., 37
Coefficient of determination,

102–103
Cochran, W. G., 386, 394
Cohen, A. R., 297
Cohen, J., 80, 102, 189, 217,

222, 252, 253
Cohen, S., 100
College majors, 32–33, 125
Columbia University, 16
Confidence interval:

calculating limits, 164–167
concept of, 164
on graphs, 166–167
interpretation, 165,

218–219
about a mean difference,

218–219
relation to NHST, 219
about a population mean,

164–167
Contingency table, 304
Control group, 197
Coren, S., 285

Correlation (see also
Correlation coefficient):

and causation, 105, 431, 439
curvilinear, 107–108
multiple, 110
negative, 92–94
partial, 110
positive, 90–92
of ranked data, 342–345
zero, 95

Correlation coefficient (see
also Correlation):

cause and effect, 105
coefficient of determination,

102–103
computation formulas,

96–98
definition formula, 96
effect size index, 102
interpretation, 101–104
reliability, 104–105
significance test, 191–193
Spearman rs, 325, 342–345
spuriously low, 107
truncated range, 108–109
z formula, 96

Coups, E. J., 223, 315
Cramér, Harald, 315
Critical region (see Rejection

region)
Critical value, 180
Cumming, G., 219

Dallenbach, K. M., 220
Darwin, Charles, 88
Darwin, Erasmus, 88
David, H. A., 130, 302
Degrees of freedom:

analysis of variance,
242–243, 261, 287

chi square, 306, 312, 317
explained, 201–202

08911_IDX 480-489 pp.qxd  12/18/09  8:33 AM  Page 481



482 n Index

independent samples t test,
206–207

paired-samples t test, 211
Pearson r, 191, 201–202
one-sample t test, 161
Spearman rs, 345

DeMoivre, Abraham, 130
Dependent variable, 13
Descriptive statistics, 3,

11–12, 354, 355
Descriptive Statistics 

Report, 82–84
Deviation score, 59, 72
Diener, E., 24–25,

298, 347
Dillon, K. M., 4, 199
Distribution (see also

Frequency distributions;
Sampling distribution):

bimodal, 35
binomial, 127–128
bivariate, 89
chi square, 303
empirical, 41, 124, 129,

143–144
F, 233–234, 236
normal, 34, 130–143
rectangular, 34, 126–127,

155
skewed, 34–35, 47–48,

49–50, 77
symmetrical, 34
t, 161–163
theoretical, 41, 125, 129,

143–144
univariate, 89

Distribution-free statistics (see
Nonparametric tests)

Doll, R., 107
Doritos, 173–183
Drew, Nancy, 1, 2
Durkheim, Emile, 241, 250

Edwards, A. W. F., 230
Effect size:

analysis of variance,
251–253, 296

chi square, 307–308
correlation coefficient, 102
explained, 79–82
one-sample t, 189–190
and power, 222
two-sample t, 216–217

Elgin, J. 446
Ellis, D., 3
Empirical distribution, 124,

129, 143–144
Epistemology, 15
Erceg-Hurn, D. M., 4, 199
Error:

as mistake, 153, 183–185
as variation, 153, 232

Error term, 232, 261, 284
Estimating answers, 51, 369
Eta (�), 110
Evalenko, K., 75
Evans, G. W., 332
Expected frequencies, 304

goodness-of-fit test,
310–312

test of independence,
304–305

Expected value, 153, 155
Expenditures, student, 52–53
Experimental group, 197
Experimental design, 13–15,

197–199
Exploring data, 2, 4, 17, 23
Exploratory Data Analysis, 4
Extraneous variable, 14, 221

Faber, D., 130
Factor, 257, 268
Factorial design (see under

Analysis of variance)

Fancher, R. E., 88
F distribution (see also F test),

231–236, 244–245
Federalist papers, 5, 316
Field, A. P., 110, 230, 252
Finch, S., 219
First year college GPA,

115–116
Fisher, R. A., 227, 230, 231,

233, 234
Flynn, J. R., 136
Forbs, R., 134
Franks, J. J., 30, 70
Frequency distributions (see

also Bar graph,
Distribution, Frequency
polygon, Graphs,
Histogram):

bimodal, 35
bivariate, 86, 89
class intervals, 28, 380
grouped, 28, 379–381
simple, 26–27
skewed, 34–35, 49–50

Frequency polygon, 31
F test (see also Analysis of

variance):
of an interaction, 287
of means, 243–244, 262,

287
of variances, 245

Gable, P. A., 130
Galton, Francis, 87–89, 90,

104, 130, 193, 302, 343
Garcia, Stephen, 93, 94
Gauss, C. Friedrich, 130
General Linear Model, 352
Gestation period, 144
Gibson, J. R., 144
Gigerenzer, G., 2
Girl Scout cookies, 60–63

08911_IDX 480-489 pp.qxd  12/18/09  8:33 AM  Page 482



Index n 483

Glass, G. V., 84
Goodness of fit (see Chi

square)
Gosset, W. S. (“Student”),

161, 193, 203, 234–235
Graphs (see also

Distributions):
bar graph, 32, 276
bimodal, 35
boxplot, 76–79
confidence interval,

166–167
elements, 30
frequency polygon, 31
histogram, 31–32
interaction, 275–278
invented, 16
line graph, 36
scatterplot, 90–95,

100–101
skewed distributions, 34–35
standard deviation, 67

Grand mean, 237
Gross, L., 21, 418
Grouped frequency

distributions (see under
Frequency distributions)

Guinness Company, 161, 193
Guinness World Records, 84

Hacking, I., 302
Hald, A., 230
Halpern, D. F., 285
Hamilton, Alexander, 5, 316
Harter, H. L., 398
Harvard University, 16
Hasler, A. D., 309, 459
Hausmann, S. E., 36
Hawker-Beechcraft, 168, 436
Hawthorne Effect, 463
Heart rates, 142–143
Hedges, L. V., 82

Heights, 29, 69, 80, 83, 100,
288–292

Hemphill, J. F., 102
Higgins, J. J., 326
Histogram, 31–32
Hobbits, 144–145
Hollon, S. D., 267, 285, 455
Hopkins, K. D., 317
Honestly Significant

Difference (see HSD)
Hotelling’s T 2, 352
Hogan, T. P., 75
Howe, S., 36
Howell, D. C., 110, 117, 128,

193, 223, 227, 251, 252,
266, 269, 275, 297,
315, 339

HSD, 247–250, 262–263,
295–296, 325, 339

Hygge, S., 332
Hypothesis testing (see Null

hypothesis statistical
testing)

Ice cream cones, 72,
148, 352

Important versus significant,
215–216

Income, 95, 147
Independent-samples 

design:
compared to paired-samples,

202, 213
confidence interval,

218–219
effect size index, 216
explained, 204
F test (see Analysis of

variance)
Mann-Whitney U test,

327–332
t test, 205–208

Wilcoxon-Wilcox multiple-
comparisons test,
339–341

Independent variable, 13, 257,
268

Inferential statistics, 3, 147,
168, 356

Inflection points, 131
Ingham, A. G., 207
Interaction:

effect on interpretation of
main effects, 290–292

explained, 271–275, 290
graphics, 275–278, 290

Interquartile range, 56–57, 77
Interval scale, 11
Iowa State University, 234
Irion, Arthur L., 215

Jacoby, W., 37
Jay, John, 5
Jenkins, J. G., 220
Johnson, R. C., 88, 104
Johnston, J. O., 134
Journal of Agricultural

Science, 193, 194

Killeen, P. R., 352
King, B. M., 103, 369
Kirk, R. E., xvii, 16, 43, 49,

79, 245, 251, 252, 266,
269, 297, 301, 329, 345,
400, 402

Korbrin, J. L., 115
Kotki, the brothers, 435
Kramer, C. Y., 250
Kruskal-Wallis one-way

ANOVA, 339

Lambert, J. H., 16
Landon, Alf, 151
Laplace, Pierre-Simon, 130

08911_IDX 480-489 pp.qxd  12/18/09  8:33 AM  Page 483



484 n Index

Lashley, K., 209
Least squares, 112–114
Lee, Alice, 100, 112, 160
Lewin, K., 205, 342
Lilienfeld, S. O., 449
Linear regression (see

Regression)
Limits, 8, 164
Line graph, 36, 275–276
Literary Digest, 151
Loftus, E. F., 21, 418
Lowry, Richard, 20
Lovie, S., 4, 76

M & M’s, 320, 461
Mackowiak, P. A., 29,

55, 79, 165
Madison, James, 5, 316
Maindonald, J., 130
Main Effects (see under

Analysis of variance)
Mann, H. B., 327
Mann-Whitney U test,

327–332
compared to t test, 325
for large samples,

330–332
for small samples, 327–329
tied scores, 329

MANOVA, 352
Margin of error, 166
Markowitz, J. C., 267, 285,

455
Mayo, E., 463
McArthur, L. Z., 467
McKeachie, W. J., 263
McKeown, T., 144
McMullen, L., 193
Mean:

calculation, 41–42, 44–45,
381–382

characteristics, 43

compared to median and
mode, 47–49

defined, 41
skewed data, 49–50
weighted, 50–51

Mean square (see also
Analysis of variance):

defined, 67, 237
factorial ANOVA, 287
one-way ANOVA, 242–243
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one-sample, 181–183
paired samples, 202–204,

210–212
Pearson r, 191–193

Tufte, E. R., 16, 37, 107
Tukey Honestly Significant

Difference test 
(See HSD)

Tukey, J. W., 4, 76, 248

Two-tailed test, 186–187
Type I error, 183–185,

263–264, 317
Type II error, 183–185,

222–223, 263–264, 317

Uleman, J., 467
Unbiased estimator, 64
Univariate distribution, 89
University College of 
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von Hippel, P. T., 49

Wainer, H., 37
Walker, H. M., 16, 201, 302
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Purpose

Descriptive

Variability
(interval/ratio)

Single score

One-way
ANOVA
(251, 252)

One-sample
t test
(189)

Two-sample
t test
(216, 217)

Factorial
ANOVA
(296)

Standard
deviation
(60, 65)

Variance
(68)

Range
(56)

Outlier
(75)

z score
(72)

UnivariateBivariate

Mode
(44, 46)

Median
(43, 45)

Mean
(41, 44, 
50)

Mode
(44, 46)

Mode
(44, 46)

Median
(43, 45)

Interval/RatioNominal

Central tendency

Ordinal

Line
graph
(36)

Graphs

Scatter-
plot
(90)

Linear
regression
(114)

Parametric

Pearson r
(96)

Spearman rs
(343)

Nonparametric

Interquartile
range (57)

χ2

2�2 
(308)

Frequency
distribution
graphs

Qualitative
data

Bar
graph
(32)

Histogram
(31)

Frequency
polygon
(31)

Quantitative
data

Boxplot
(76)

Graphs

Effect size
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Purpose

Inferential

Confidence
interval

About a mean
(164)

Independent
samples

Mann–
Whitney
U
(327)

Wilcoxon
matched-
pairs
signed-
ranks T
(333)

Wilcoxon–
Wilcox
multiple
comparisons
(339)

Paired
samples

Independent
samples

One-sample
t test
(181)

Paired
t test
(210)

Independent
t test
(206)

Paired
samples

Related
samples

Independent
samples

One-way
ANOVA
(243)

Tukey
HSD
(248)

Repeated
measures
ANOVA
(262)

Tukey
HSD
(262)

Independent
samples

Test of
independence

Goodness
of fit

> Two levels
of independent
variable

Two levels
of independent
variable

Ranks
(nonparametric)

Frequency counts
(nonparametric)

≥ Two levels
of independent
variable

Factorial
ANOVA
(287)

Tukey
HSD
(295)

Two
independent
variables

Two levels
of independent
variable

One
independent
variable

Means
(parametric)

One
sample

χ2

(310)
χ2

(304)

Independent
samples

Variances
(parametric)

F test
(245)

Null hypothesis
statistical testing
(NHST)

Type
of data

About a mean
difference
(218, 219)

Quantitative
(parametric)

Decision Tree for Inferential Statistics
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