
[1]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Recommendation
System with R

Learn the art of building robust and powerful
recommendation engines using R

Suresh K. Gorakala

Michele Usuelli

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Recommendation System with R

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1240915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-449-2

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Authors
Suresh K. Gorakala

Michele Usuelli

Reviewers
Ratanlal Mahanta

Cynthia O'Donnell

Commissioning Editor
Akram Hussain

Acquisition Editor
Usha Iyer

Content Development Editor
Kirti Patil

Technical Editor
Vijin Boricha

Copy Editors
Shruti Iyer

Karuna Narayanan

Project Coordinator
Kranti Berde

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Suresh K. Gorakala is a blogger, data analyst, and consultant on data mining,
big data analytics, and visualization tools. Since 2013, he has been writing and
maintaining a blog on data science at http://www.dataperspective.info/.

Suresh holds a bachelor's degree in mechanical engineering from SRKR Engineering
College, which is affiliated with Andhra University, India.

He loves generating ideas, building data products, teaching, photography, and
travelling. Suresh can be reached at sureshkumargorakala@gmail.com.You can
also follow him on Twitter at @sureshgorakala.

With great pleasure, I sincerely thank everyone who has supported
me all along. I would like to thank my dad, my loving wife, and
sister, who have supported me in all respects and without whom
this book would not have been completed.

I am also grateful to my friends Rajesh, Hari, and Girish, who
constantly support me and have stood by me in times of difficulty.
I would like to extend a special thanks to Usha Iyer and Kirti Patil,
who supported me in completing all my tasks. I would like to
specially mention Michele Usuelli, without whom this book would
be incomplete.

Michele Usuelli is a data scientist, writer, and R enthusiast specialized in the
fields of big data and machine learning. He currently works for Revolution Analytics,
the leading R-based company that got acquired by Microsoft in April 2015. Michele
graduated in mathematical engineering and has worked with a big data start-up and
a big publishing company in the past. He is also the author of R Machine Learning
Essentials, Packt Publishing.

www.it-ebooks.info

http://www.dataperspective.info/
http://www.it-ebooks.info/

About the Reviewer

Ratanlal Mahanta has several years of experience in the modeling and
simulation of quantitative trading. He works as a senior quantitative analyst at
GPSK Investment Group, Kolkata. Ratanlal holds a master's degree of science
in computational finance, and his research areas include quant trading, optimal
execution, and high-frequency trading.

He has also reviewed Mastering R for Quantitative Finance, Mastering Scientific
Computing with R, Machine Learning with R Cookbook, and Mastering Python for Data
Science, all by Packt Publishing.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Dedicated in loving memory of my mother, Damayanti, whose world we were.

 – Suresh K. Gorakala

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 v
Chapter 1: Getting Started with Recommender Systems	 1

Understanding recommender systems	 1
The structure of the book	 2
Collaborative filtering recommender systems	 3
Content-based recommender systems	 3
Knowledge-based recommender systems	 4
Hybrid systems	 5
Evaluation techniques	 5
A case study	 6
The future scope	 6
Summary	 6

Chapter 2: Data Mining Techniques Used in
Recommender Systems	 7

Solving a data analysis problem	 8
Data preprocessing techniques	 9

Similarity measures	 9
Euclidian distance	 9
Cosine distance	 10
Pearson correlation	 10

Dimensionality reduction	 11
Principal component analysis	 11

Data mining techniques	 15
Cluster analysis	 15

Explaining the k-means cluster algorithm	 16
Support vector machine	 18

Decision trees	 21

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Ensemble methods	 23
Bagging	 23
Random forests	 24
Boosting	 25

Evaluating data-mining algorithms	 27
Summary	 30

Chapter 3: Recommender Systems	 31
R package for recommendation – recommenderlab	 31

Datasets	 32
Jester5k, MSWeb, and MovieLense	 32

The class for rating matrices	 33
Computing the similarity matrix	 34
Recommendation models	 36

Data exploration	 38
Exploring the nature of the data	 38
Exploring the values of the rating	 39
Exploring which movies have been viewed	 40
Exploring the average ratings	 41
Visualizing the matrix	 43

Data preparation	 47
Selecting the most relevant data	 47
Exploring the most relevant data	 48
Normalizing the data	 49
Binarizing the data	 51

Item-based collaborative filtering	 53
Defining the training and test sets	 54
Building the recommendation model	 55
Exploring the recommender model	 57
Applying the recommender model on the test set	 60

User-based collaborative filtering	 64
Building the recommendation model	 65
Applying the recommender model on the test set	 66
Collaborative filtering on binary data	 68
Data preparation	 69
Item-based collaborative filtering on binary data	 70

User-based collaborative filtering on binary data	 72
Conclusions about collaborative filtering	 73

Limitations of collaborative filtering	 73

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Content-based filtering	 74
Hybrid recommender systems	 74
Knowledge-based recommender systems	 75
Summary	 75

Chapter 4: Evaluating the Recommender Systems	 77
Preparing the data to evaluate the models	 77

Splitting the data	 78
Bootstrapping data	 81
Using k-fold to validate models	 83

Evaluating recommender techniques	 84
Evaluating the ratings	 84
Evaluating the recommendations	 88

Identifying the most suitable model	 91
Comparing models	 92
Identifying the most suitable model	 94
Optimizing a numeric parameter	 95

Summary	 97
Chapter 5: Case Study – Building Your Own
Recommendation Engine	 99

Preparing the data	 100
Description of the data	 100
Importing the data	 100
Defining a rating matrix	 102
Extracting item attributes	 108

Building the model	 110
Evaluating and optimizing the model	 119

Building a function to evaluate the model	 119
Optimizing the model parameters	 122

Summary	 129
Appendix: References	 131
Index	 133

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[v]

Preface
Recommender systems are machine learning techniques that predict user purchases
and preferences. There are several applications of recommender systems, such as
online retailers and video-sharing websites.

This book teaches the reader how to build recommender systems using R. It starts
by providing the reader with some relevant data mining and machine learning
concepts. Then, it shows how to build and optimize recommender models using R
and gives an overview of the most popular recommendation techniques. In the end,
it shows a practical use case. After reading this book, you will know how to build a
new recommender system on your own.

What this book covers
Chapter 1, Getting Started with Recommender Systems, describes the book and presents
some real-life examples of recommendation engines.

Chapter 2, Data Mining Techniques Used in Recommender Systems, provides the reader
with the toolbox to built recommender models: R basics, data processing, and
machine learning techniques.

Chapter 3, Recommender Systems, presents some popular recommender systems and
shows how to build some of them using R.

Chapter 4, Evaluating the Recommender Systems, shows how to measure the
performance of a recommender and how to optimize it.

Chapter 5, Case Study – Building Your Own Recommendation Engine, shows how to
solve a business challenge by building and optimizing a recommender.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vi]

What you need for this book
You will need the R 3.0.0+, RStudio (not mandatory), and Samba 4.x Server software.

Who this book is for
This book is intended for people who already have a background in R and machine
learning. If you're interested in building recommendation techniques, this book is
for you.

Citation
To cite the recommenderlab package (R package version 0.1-5) in publications, refer
to recommenderlab: Lab for Developing and Testing Recommender Algorithms by Michael
Hahsler at http://CRAN.R-project.org/package=recommenderlab

LaTeX users can use the following BibTeX entry:

@Manual{,
 title = {recommenderlab: Lab for Developing and Testing
 Recommender Algorithms},
 author = {Michael Hahsler},
 year = {2014},
 note = {R package version 0.1-5},
 url = { http://CRAN.R-
 project.org/package=recommenderlab},
}

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We used the e1071 package to run SVM."

www.it-ebooks.info

http://CRAN.R-project.org/package=recommenderlab
http://www.it-ebooks.info/

Preface

[vii]

A block of code is set as follows:

vector_ratings <- factor(vector_ratings)
qplot(vector_ratings) + ggtitle("Distribution of the ratings")
exten => i,1,Voicemail(s0)

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

[viii]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/4492OS_GraphicBundle.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

https://www.packtpub.com/sites/default/files/downloads/4492OS_GraphicBundle.pdf
https://www.packtpub.com/sites/default/files/downloads/4492OS_GraphicBundle.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

[1]

Getting Started with
Recommender Systems

How do we buy things in our day-to-day lives? We ask our friends, research the
product specifications, compare the product with similar products on the Internet,
read the feedback from anonymous users, and then we make decisions. How
would it be if there is some mechanism that does all these tasks automatically and
recommends the products best suited for you efficiently? A recommender system or
recommendation engine is the answer to this question.

In this introductory chapter, we will define a recommender system in terms of the
following aspects:

•	 Helping to develop an understanding of its definition
•	 Explaining its basic functions and providing a general introduction of

popular recommender systems
•	 Highlighting the importance of evaluation techniques

Understanding recommender systems
Have you ever given a thought to the "People you may know" feature in LinkedIn
or Facebook? This feature recommends a list of people whom you might know,
who are similar to you based on your friends, friends of friends in your close
circle, geographical location, skillsets, groups, liked pages, and so on. These
recommendations are specific to you and differ from user to user.

Recommender systems are the software tools and techniques that provide
suggestions, such as useful products on e-commerce websites, videos on YouTube,
friends' recommendations on Facebook, book recommendations on Amazon, news
recommendations on online news websites, and the list goes on.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Recommender Systems

[2]

The main goal of recommender systems is to provide suggestions to online users
to make better decisions from many alternatives available over the Web. A better
recommender system is directed more towards personalized recommendations by
taking into consideration the available digital footprint of the user and information
about a product, such as specifications, feedback from the users, comparison with
other products, and so on, before making recommendations.

The structure of the book
In this book, we will learn about popular recommender systems that are used the
most. We will also look into different machine learning techniques used when
building recommendation engines with sample code.

The book is divided into 5 chapters:

•	 In Chapter 1, Getting Started with Recommender Systems, you will get a general
introduction to recommender systems, such as collaborative filtering
recommender systems, content-based recommender systems, knowledge-
based recommender systems, and hybrid systems; it will also include a brief
definition, real-world examples, and brief details of what one will be learning
while building a recommender system.

•	 In Chapter 2, Data Mining Techniques Used in Recommender Systems, gives
you an overview of different machine learning concepts that are commonly
used in building a recommender system and how a data analysis problem
can be solved. This chapter includes data preprocessing techniques, such
as similarity measures, dimensionality reduction, data mining techniques,
and its evaluation techniques. Here similarity measures such as Euclidean
distance, Cosine distance, Pearson correlation are explained. We will also
cover data mining algorithms such as k-means clustering, support vector
machines, decision trees, bagging, boosting, and random forests, along with a
popular dimensional reduction technique, PCA. Evaluation techniques such
as cross validation, regularization, confusion matrix, and model comparison
are explained in brief.

•	 In Chapter 3, Recommender Systems, we will discuss collaborative filtering
recommender systems, an example for user- and item-based recommender
systems, using the recommenderlab R package, and the MovieLens dataset.
We will cover model building, which includes exploring data, splitting it
into train and test datasets, and dealing with binary ratings. You will have
an overview of content-based recommender systems, knowledge-based
recommender systems, and hybrid systems.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

•	 In Chapter 4, Evaluating the Recommender Systems, we will learn about
the evaluation techniques for recommender systems, such as setting up
the evaluation, evaluating recommender systems, and optimizing the
parameters.

•	 In Chapter 5, Case Study – Building Your Own Recommendation Engine, we will
understand a use case in R, which includes steps such as preparing the data,
defining the rating matrix, building a recommender, and evaluating and
optimizing a recommender.

Collaborative filtering recommender
systems
The basic idea of these systems is that, if two users share the same interests in
the past, that is, they liked the same book, they will also have similar tastes in the
future. If, for example, user A and user B have a similar purchase history and user A
recently bought a book that user B has not yet seen, the basic idea is to propose this
book to user B. The book recommendations on Amazon are one good example of this
type of recommender system.

In this type of recommendation, filtering items from a large set of alternatives is done
collaboratively between users preferences. Such systems are called collaborative
filtering recommender systems.

While dealing with collaborative filtering recommender systems, we will learn about
the following aspects:

•	 How to calculate the similarity between users
•	 How to calculate the similarity between items
•	 How do we deal with new items and new users whose data is not known

The collaborative filtering approach considers only user preferences and does not
take into account the features or contents of the items being recommended. This
approach requires a large set of user preferences for more accurate results.

Content-based recommender systems
This system recommends items to users by taking the similarity of items and user
profiles into consideration. In simpler terms, the system recommends items similar to
those that the user has liked in the past. The similarity of items is calculated based on
the features associated with the other compared items and is matched with the user's
historical preferences.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Recommender Systems

[4]

As an example, we can assume that, if a user has positively rated a movie that
belongs to the action genre, then the system can learn to recommend other movies
from the action genre.

While building a content-based recommendation system, we take into consideration
the following questions:

•	 How do we create similarity between items?
•	 How do we create and update user profiles continuously?

This technique doesn't take into consideration the user's neighborhood preferences.
Hence, it doesn't require a large user group's preference for items for better
recommendation accuracy. It only considers the user's past preferences and the
properties/features of the items.

Knowledge-based recommender systems
These types of recommender systems are employed in specific domains where the
purchase history of the users is smaller. In such systems, the algorithm takes into
consideration the knowledge about the items, such as features, user preferences
asked explicitly, and recommendation criteria, before giving recommendations. The
accuracy of the model is judged based on how useful the recommended item is to the
user. Take, for example, a scenario in which you are building a recommender system
that recommends household electronics, such as air conditioners, where most of the
users will be first timers. In this case, the system considers features of the items, and
user profiles are generated by obtaining additional information from the users, such
as specifications, and then recommendations are made. These types of system are
called constraint-based recommender systems, which we will learn more about in
subsequent chapters.

Before building these types of recommender systems, we take into consideration the
following questions:

•	 What kind of information about the items is taken into the model?
•	 How are user preferences captured explicitly?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

Hybrid systems
We build hybrid recommender systems by combining various recommender systems
to build a more robust system. By combining various recommender systems, we can
eliminate the disadvantages of one system with the advantages of another system
and thus build a more robust system. For example, by combining collaborative
filtering methods, where the model fails when new items don't have ratings, with
content-based systems, where feature information about the items is available, new
items can be recommended more accurately and efficiently.

Before building a hybrid model, we consider the following questions:

•	 What techniques should be combined to achieve the business solution?
•	 How should we combine various techniques and their results for better

predictions?

Evaluation techniques
Before rolling out the recommender system to the users, how do we ensure that the
system is efficient or accurate? What is the base on which we state that the system
is good? As stated earlier, the goal of any recommendation system is to recommend
more relevant and useful items to the user. A lot of research has been happening
in developing new methods to evaluate the recommender systems to improve the
accuracy of the systems.

In Chapter 4, Evaluating the Recommender Systems, we will learn about the different
evaluation metrics employed to evaluate the recommender systems, these include
setting up the evaluation, evaluating recommender systems, optimizing the
parameters. This chapter also focuses on how important evaluating the system
is during the design and development phases of building recommender systems
and the guidelines to be followed in selecting an algorithm based on the available
information about the items and the problem statement. This chapter also covers the
different experimental setups in which recommender systems are evaluated.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Recommender Systems

[6]

A case study
In Chapter 5, Case Study – Building Your Own Recommendation Engine, we take a case
study and build a recommender system step by step as follows:

1.	 We take a real-life case and understand the problem statement and its
domain aspects

2.	 We then perform the data preparation, data source identification, and data
cleansing step

3.	 Then, we select an algorithm for the recommender system
4.	 We then look into the design and development aspects while building the

model
5.	 Finally, we evaluate and test the recommender system

The implementation of the recommender system is done using R, and code samples
will be provided in the book. At the end of this chapter, you will be confident
enough to build your own recommendation engine.

The future scope
In the final chapter, I will wrap up by giving the summary of the book and the topics
covered. We will focus on the future scope of the research that you will have to
undertake. Then we will provide a brief introduction to the current research topics
and advancements happening in the field of recommendation systems. I will also list
book references and online resources during the course of this book.

Summary
In this chapter, you read a synopsis of the popular recommender systems available
on the market. In the next chapter, you will learn about the different machine
learning techniques used in recommender systems.

www.it-ebooks.info

http://www.it-ebooks.info/

[7]

Data Mining Techniques
Used in Recommender

Systems
Though the primary objective of this book is to build recommender systems, a
walkthrough of the commonly used data-mining techniques is a necessary step before
jumping into building recommender systems. In this chapter, you will learn about
popular data preprocessing techniques, data-mining techniques, and data-evaluation
techniques commonly used in recommender systems. The first section of the chapter
tells you how a data analysis problem is solved, followed by data preprocessing steps
such as similarity measures and dimensionality reduction. The next section of the
chapter deals with data mining techniques and their evaluation techniques.

Similarity measures include:

•	 Euclidean distance
•	 Cosine distance
•	 Pearson correlation

Dimensionality reduction techniques include:

•	 Principal component analysis

Data-mining techniques include:

•	 k-means clustering
•	 Support vector machine
•	 Ensemble methods, such as bagging, boosting, and random forests

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Techniques Used in Recommender Systems

[8]

Solving a data analysis problem
Any data analysis problem involves a series of steps such as:

•	 Identifying a business problem.
•	 Understanding the problem domain with the help of a domain expert.
•	 Identifying data sources and data variables suitable for the analysis.
•	 Data preprocessing or a cleansing step, such as identifying missing values,

quantitative and qualitative variables and transformations, and so on.
•	 Performing exploratory analysis to understand the data, mostly through

visual graphs such as box plots or histograms.
•	 Performing basic statistics such as mean, median, modes, variances, standard

deviations, correlation among the variables, and covariance to understand
the nature of the data.

•	 Dividing the data into training and testing datasets and running a
model using machine-learning algorithms with training datasets, using
cross-validation techniques.

•	 Validating the model using the test data to evaluate the model on the new
data. If needed, improve the model based on the results of the validation step.

•	 Visualize the results and deploy the model for real-time predictions.

The following image displays the resolution to a data analysis problem:

Data analysis steps

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[9]

Data preprocessing techniques
Data preprocessing is a crucial step for any data analysis problem. The model's
accuracy depends mostly on the quality of the data. In general, any data
preprocessing step involves data cleansing, transformations, identifying missing
values, and how they should be treated. Only the preprocessed data can be fed
into a machine-learning algorithm. In this section, we will focus mainly on data
preprocessing techniques. These techniques include similarity measurements
(such as Euclidean distance, Cosine distance, and Pearson coefficient) and
dimensionality-reduction techniques, such as Principal component analysis
(PCA), which are widely used in recommender systems. Apart from PCA, we
have singular value decomposition (SVD), subset feature selection methods to
reduce the dimensions of the dataset, but we limit our study to PCA.

Similarity measures
As discussed in the previous chapter, every recommender system works on the concept
of similarity between items or users. In this section, let's explore some similarity
measures such as Euclidian distance, Cosine distance, and Pearson correlation.

Euclidian distance
The simplest technique for calculating the similarity between two items is by
calculating its Euclidian distance. The Euclidean distance between two points/
objects (point x and point y) in a dataset is defined by the following equation:

() 2

1
Euclidean Distance x,y

n

i i
i
x y

=

= −∑

In this equation, (x, y) are two consecutive data points, and n is the number of
attributes for the dataset.

R script to calculate the Euclidean distance is as follows:

x1 <- rnorm(30)
x2 <- rnorm(30)
Euc_dist = dist(rbind(x1,x2) ,method="euclidean")

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Techniques Used in Recommender Systems

[10]

Cosine distance
Cosine similarity is a measure of similarity between two vectors of an inner product
space that measures the cosine of the angle between them. Cosine similarity is given
by this equation:

()similarity cos A B
A B

θ ⋅
= =

R script to calculate the cosine distance is as follows:

vec1 = c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
vec2 = c(0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0)
library(lsa)
cosine(vec1,vec2)

In this equation, x is the matrix containing all variables in a dataset. The cosine
function is available in the lsa package.

Pearson correlation
Similarity between two products can also be given by the correlation existing
between their variables. Pearson's correlation coefficient is a popular correlation
coefficient calculated between two variables as the covariance of the two variables
divided by the product of their standard deviations. This is given by ƿ (rho):

()
,

cov ,
X Y

X Y

X Y
ρ

σ σ
=

R script is given by these lines of code:

Coef = cor(mtcars, method="pearson")
where mtcars is the dataset

Empirical studies showed that Pearson coefficient outperformed other similarity
measures for user-based collaborative filtering recommender systems. The
studies also show that Cosine similarity consistently performs well in item-based
collaborative filtering.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[11]

Dimensionality reduction
One of the most commonly faced problems while building recommender systems
is high-dimensional and sparse data. At many times, we face a situation where we
have a large set of features and fewer data points. In such situations, when we fit a
model to the dataset, the predictive power of the model will be lower. This scenario
is often termed as the curse of dimensionality. In general, adding more data points or
decreasing the feature space, also known as dimensionality reduction, often reduces
the effects of the curse of dimensionality. In this chapter, we will discuss PCA, a
popular dimensionality reduction technique to reduce the effects of the curse of
dimensionality.

Principal component analysis
Principal component analysis is a classical statistical technique for dimensionality
reduction. The PCA algorithm transforms the data with high-dimensional space to
a space with fewer dimensions. The algorithm linearly transforms m-dimensional
input space to n-dimensional (n<m) output space, with the objective to minimize the
amount of information/variance lost by discarding (m-n) dimensions. PCA allows us
to discard the variables/features that have less variance.

Technically speaking, PCA uses orthogonal projection of highly correlated variables
to a set of values of linearly uncorrelated variables called principal components.
The number of principal components is less than or equal to the number of
original variables. This linear transformation is defined in such a way that the first
principal component has the largest possible variance. It accounts for as much of the
variability in the data as possible by considering highly correlated features. Each
succeeding component in turn has the highest variance using the features that are
less correlated with the first principal component and that are orthogonal to the
preceding component.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Techniques Used in Recommender Systems

[12]

Let's understand this in simple terms. Assume we have three dimensional data space
with two features more correlated with each other than with the third. We now
want to reduce the data to two-dimensional space using PCA. The first principal
component is created in such a way that it explains maximum variance using the
two correlated variables along the data. In the following graph, the first principal
component (bigger line) is along the data explaining most variance. To choose the
second principal component, we need to choose another line that has the highest
variance, is uncorrelated, and is orthogonal to the first principal component. The
implementation and technical details of PCA are beyond the scope of this book, so
we will discuss how it is used in R.

We will illustrate PCA using the USArrests dataset. The USArrests dataset contains
crime-related statistics, such as Assault, Murder, Rape, and UrbanPop per 100,000
residents in 50 states in the US:

#PCA
data(USArrests)
head(states)
[1] "Alabama" "Alaska" "Arizona" "Arkansas" "California"
"Colorado"

names(USArrests)
[1] "Murder" "Assault" "UrbanPop" "Rape"

#let us use apply() to the USArrests dataset row wise to calculate the
variance to see how each variable is varying

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[13]

apply(USArrests , 2, var)

Murder Assault UrbanPop Rape
 18.97047 6945.16571 209.51878 87.72916
#We observe that Assault has the most variance. It is important to
note at this point that

#Scaling the features is a very step while applying PCA.

#Applying PCA after scaling the feature as below
pca =prcomp(USArrests , scale =TRUE)

pca

Standard deviations:

[1] 1.5748783 0.9948694 0.5971291 0.4164494

Rotation:

 PC1 PC2 PC3 PC4
Murder -0.5358995 0.4181809 -0.3412327 0.64922780
Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773
Rape -0.5434321 -0.1673186 0.8177779 0.08902432

#Now lets us understand the components of pca output.

names(pca)
[1] "sdev" "rotation" "center" "scale" "x"

#Pca$rotation contains the principal component loadings matrix which
explains

#proportion of each variable along each principal component.

#now let us learn interpreting the results of pca using biplot graph.
Biplot is used to how the proportions of each variable along the two
principal components.

#below code changes the directions of the biplot, if we donot include
the below two lines the plot will be mirror image to the below one.
pca$rotation=-pca$rotation
pca$x=-pca$x
biplot (pca , scale =0)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Techniques Used in Recommender Systems

[14]

The output of the preceding code is as follows:

In the preceding image, known as a biplot, we can see the two principal components
(PC1 and PC2) of the USArrests dataset. The red arrows represent the loading
vectors, which represent how the feature space varies along the principal
component vectors.

From the plot, we can see that the first principal component vector, PC1, more or less
places equal weight on three features: Rape, Assault, and Murder. This means that
these three features are more correlated with each other than the UrbanPop feature.
In the second principal component, PC2 places more weight on UrbanPop than the
remaining 3 features are less correlated with them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[15]

Data mining techniques
In this section, we will look at commonly used data-mining algorithms, such as
k-means clustering, support vector machines, decision trees, bagging, boosting,
and random forests. Evaluation techniques such as cross validation, regularization,
confusion matrix, and model comparison are explained in brief.

Cluster analysis
Cluster analysis is the process of grouping objects together in a way that objects in
one group are more similar than objects in other groups.

An example would be identifying and grouping clients with similar booking
activities on a travel portal, as shown in the following figure.

In the preceding example, each group is called a cluster, and each member (data
point) of the cluster behaves in a manner similar to its group members.

x
1

x
2

Clustering algorithm

Cluster analysis

Cluster analysis is an unsupervised learning method. In supervised methods, such
as regression analysis, we have input variables and response variables. We fit a
statistical model to the input variables to predict the response variable. Whereas in
unsupervised learning methods, however, we do not have any response variable to
predict; we only have input variables. Instead of fitting a model to the input variables
to predict the response variable, we just try to find patterns within the dataset. There
are three popular clustering algorithms: hierarchical cluster analysis, k-means cluster
analysis, and two-step cluster analysis. In the following section, we will learn about
k-means clustering.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Techniques Used in Recommender Systems

[16]

Explaining the k-means cluster algorithm
k-means is an unsupervised, iterative algorithm where k is the number of clusters to
be formed from the data. Clustering is achieved in two steps:

1.	 Cluster assignment step: In this step, we randomly choose two cluster points
(red dot and green dot) and assign each data point to the cluster point that is
closer to it (top part of the following image).

2.	 Move centroid step: In this step, we take the average of the points of all the
examples in each group and move the centroid to the new position, that is,
mean position calculated (bottom part of the following image).

The preceding steps are repeated until all the data points are grouped into two groups
and the mean of the data points after moving the centroid doesn't change.

Steps of cluster analysis

The preceding image shows how a clustering algorithm works on data to form
clusters. See the R implementation of k-means clustering on iris dataset as follows:

#k-means clustering
library(cluster)
data(iris)
iris$Species = as.numeric(iris$Species)
kmeans<- kmeans(x=iris, centers=5)
clusplot(iris,kmeans$cluster, color=TRUE, shade=TRUE,labels=13,
lines=0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[17]

The output of the preceding code is as follows:

Cluster analysis results

The preceding image shows the formation of clusters on the iris data, and the
clusters account for 95 percent of the data. In the preceding example, the number of
clusters of k value is selected using the elbow method, as shown here:

library(cluster)
library(ggplot2)
data(iris)
iris$Species = as.numeric(iris$Species)
cost_df <- data.frame()
for(i in 1:100){
kmeans<- kmeans(x=iris, centers=i, iter.max=50)
cost_df<- rbind(cost_df, cbind(i, kmeans$tot.withinss))
}
names(cost_df) <- c("cluster", "cost")
#Elbow method to identify the idle number of Cluster
#Cost plot
ggplot(data=cost_df, aes(x=cluster, y=cost, group=1)) +
theme_bw(base_family="Garamond") +
geom_line(colour = "darkgreen") +
theme(text = element_text(size=20)) +
ggtitle("Reduction In Cost For Values of 'k'\n") +
xlab("\nClusters") +
ylab("Within-Cluster Sum of Squares\n")

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Techniques Used in Recommender Systems

[18]

The following image shows the cost reduction for k values:

From the preceding figure, we can observe that the direction of the cost function
 is changed at cluster number 5. Hence, we choose 5 as our number of clusters k.
Since the number of optimal clusters is found at the elbow of the graph, we call it the
elbow method.

Support vector machine
Support vector machine algorithms are a form of supervised learning algorithms
employed to solve classification problems. SVM is generally treated as one of the
best algorithms to deal with classification problems. Given a set of training examples,
where each data point falls into one of two categories, an SVM training algorithm
builds a model that assigns new data points into one category or the other. This
model is a representation of the examples as a points in space, mapped so that
the examples of the separate categories are divided by a margin that is as wide as
possible, as shown in the following image. New examples are then mapped into that
same space and predicted to belong to a category based on which side of the gap
they fall on. In this section, we will go through an overview and implementation of
SVMs without going into mathematical details.

When SVM is applied to a p-dimensional dataset, the data is mapped to a p-1
dimensional hyperplane, and the algorithm finds a clear boundary with a sufficient
margin between classes. Unlike other classification algorithms that also create a
separating boundary to classify data points, SVM tries to choose a boundary that has
the maximum margin to separate the classes, as shown in the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[19]

Consider a two-dimensional dataset having two classes, as shown in the preceding
image. Now, when the SVM algorithm is applied, first it checks whether a one-
dimensional hyperplane exists to map all the data points. If the hyperplane exists,
the linear classifier creates a decision boundary with a margin to separate the classes.
In the preceding image, the thick red line is the decision boundary, and the thinner
blue and red lines are the margins of each class from the boundary. When new test
data is used to predict the class, the new data falls into one of the two classes.

Here are some key points to be noted:

•	 Though an infinite number of hyperplanes can be created, SVM chooses
only one hyperplane that has the maximum margin, that is, the separating
hyperplane that is farthest from the training observations.

•	 This classifier is only dependent on the data points that lie on the margins
of the hyperplane, that is, on thin margins in the image, but not on other
observations in the dataset. These points are called support vectors.

•	 The decision boundary is affected only by the support vectors but not by
other observations located away from the boundaries. If we change the data
points other than the support vectors, there would not be any effect on the
decision boundary. However, if the support vectors are changed, the decision
boundary changes.

•	 A large margin on the training data will also have a large margin on the test
data to classify the test data correctly.

•	 Support vector machines also perform well with non-linear datasets. In this
case, we use radial kernel functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Techniques Used in Recommender Systems

[20]

See the R implementation of SVM on the iris dataset in the following code snippet.
We used the e1071 package to run SVM. In R, the SVM() function contains the
implementation of support vector machines present in the e1071 package.

Now, we will see that the SVM() method is called with the tune() method, which
does cross validation and runs the model on different values of the cost parameters.

The cross-validation method is used to evaluate the accuracy of the predictive model
before testing on future unseen data:

 #SVM
library(e1071)
data(iris)
sample = iris[sample(nrow(iris)),]
train = sample[1:105,]
test = sample[106:150,]
tune =tune(svm,Species~.,data=train,kernel
="radial",scale=FALSE,ranges =list(cost=c(0.001,0.01,0.1,1,5,10,100)))
tune$best.model

Call:

best.tune(method = svm, train.x = Species ~ ., data = train, ranges =
list(cost = c(0.001,
 0.01, 0.1, 1, 5, 10, 100)), kernel = "radial", scale = FALSE)

Parameters:

 SVM-Type: C-classification
 SVM-Kernel: radial
 cost: 10
 gamma: 0.25

Number of Support Vectors: 25

summary(tune)

Parameter tuning of 'svm':
- sampling method: 10-fold cross validation
- best parameters:
 cost
 10
- best performance: 0.02909091
- Detailed performance results:
 cost error dispersion
1 1e-03 0.72909091 0.20358585

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

2 1e-02 0.72909091 0.20358585
3 1e-01 0.04636364 0.08891242
4 1e+00 0.04818182 0.06653568
5 5e+00 0.03818182 0.06538717
6 1e+01 0.02909091 0.04690612
7 1e+02 0.07636364 0.08679584

model =svm(Species~.,data=train,kernel ="radial",cost=10,scale=FALSE)
// cost =10 is chosen from summary result of tune variable

The tune$best.model object tells us that the model works best with the cost
parameter as 10 and total number of support vectors as 25:

pred = predict(model,test)

Decision trees
Decision trees are a simple, fast, tree-based supervised learning algorithm to
solve classification problems. Though not very accurate when compared to other
logistic regression methods, this algorithm comes in handy while dealing with
recommender systems.

We define the decision trees with an example. Imagine a situation where you have
to predict the class of flower based on its features such as petal length, petal width,
sepal length, and sepal width. We will apply the decision tree methodology to solve
this problem:

1.	 Consider the entire data at the start of the algorithm.
2.	 Now, choose a suitable question/variable to divide the data into two parts.

In our case, we chose to divide the data based on petal length > 2.45 and
<= 2.45. This separates flower class setosa from the rest of the classes.

3.	 Now, further divide the data having petal length >2.45, based on the same
variable with petal length < 4.5 and >= 4.5, as shown in the following image.

4.	 This splitting of the data will be further divided by narrowing down the
data space until we reach a point where all the bottom points represent the
response variables or where further logical split cannot be done on the data.

In the following decision tree image, we have one root node, four internal nodes
where data split occurred, and five terminal nodes where data split cannot be done
any further. They are defined as follows:

•	 Petal.Length <2.45 as root node
•	 Petal.Length <4.85, Sepal.Length <5.15, and Petal.Width <1.75 are called

internal nodes

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Techniques Used in Recommender Systems

[22]

•	 Final nodes having the class of the flowers are called terminal nodes
•	 The lines connecting the nodes are called the branches of the tree

While predicting responses on new data using the previously built model, each new
data point is taken through each node, a question is asked, and a logical path is taken
to reach its logical class, as shown in the following figure:

See the decision tree implementation in R on the iris dataset using the tree package
available from Comprehensive R Archive Network (CRAN).

The summary of the mode is given here. It tells us that the misclassification rate is
0.0381, indicating that the model is accurate:

library(tree)
data(iris)
sample = iris[sample(nrow(iris)),]
train = sample[1:105,]
test = sample[106:150,]
model = tree(Species~.,train)
summary(model)

Classification tree:

tree(formula = Species ~ ., data = train, x = TRUE, y = TRUE)
Variables actually used in tree construction:
[1] "Petal.Length" "Sepal.Length" "Petal.Width"
Number of terminal nodes: 5
Residual mean deviance: 0.1332 = 13.32 / 100
Misclassification error rate: 0.0381 = 4 / 105 '
//plotting the decision tree
plot(model)text(model)
pred = predict(model,test[,-5],type="class")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

> pred
 [1] setosa setosa virginica setosa setosa setosa
versicolor
 [8] virginica virginica setosa versicolor versicolor virginica
versicolor
[15] virginica virginica setosa virginica virginica versicolor
virginica
[22] versicolor setosa virginica setosa versicolor virginica
setosa
[29] versicolor versicolor versicolor virginica setosa virginica
virginica
[36] versicolor setosa versicolor setosa versicolor versicolor
setosa
[43] versicolor setosa setosa
Levels: setosa versicolor virginica

Ensemble methods
In data mining, we use ensemble methods, which means using multiple learning
algorithms to obtain better predictive results than applying any single learning
algorithm on any statistical problem. This section will provide an overview of
popular ensemble methods such as bagging, boosting, and random forests

Bagging
Bagging is also known as Bootstrap aggregating. It is designed to improve the
stability and accuracy of machine-learning algorithms. It helps avoid over fitting
and reduces variance. This is mostly used with decision trees.

Bagging involves randomly generating Bootstrap samples from the dataset and
trains the models individually. Predictions are then made by aggregating or
averaging all the response variables:

•	 For example, consider a dataset (Xi, Yi), where i=1 …n, contains n data points.
•	 Now, randomly select B samples with replacements from the original dataset

using Bootstrap technique.
•	 Next, train the B samples with regression/classification models

independently. Then, predictions are made on the test set by averaging
the responses from all the B models generated in the case of regression.
Alternatively, the most often occurring class among B samples is generated
in the case of classification.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Techniques Used in Recommender Systems

[24]

Random forests
Random forests are improvised supervised algorithms than bootstrap aggregation or
bagging methods, though they are built on a similar approach. Unlike selecting all the
variables in all the B samples generated using the Bootstrap technique in bagging, we
select only a few predictor variables randomly from the total variables for each of the
B samples. Then, these samples are trained with the models. Predictions are made by
averaging the result of each model. The number of predictors in each sample is decided
using the formula m = √p, where p is the total variable count in the original dataset.

Here are some key notes:

•	 This approach removes the condition of dependency of strong predictors in
the dataset as we intentionally select fewer variables than all the variables for
every iteration

•	 This approach also de-correlates variables, resulting in less variability in the
model and, hence, more reliability

Refer to the R implementation of random forests on the iris dataset using the
randomForest package available from CRAN:

#randomForest
library(randomForest)
data(iris)
sample = iris[sample(nrow(iris)),]
train = sample[1:105,]
test = sample[106:150,]
model =randomForest(Species~.,data=train,mtry=2,importance
=TRUE,proximity=TRUE)
model

Call:

 randomForest(formula = Species ~ ., data = train, mtry = 2,
importance = TRUE, proximity = TRUE)
 Type of random forest: classification
 Number of trees: 500
No. of variables tried at each split: 2

 OOB estimate of error rate: 5.71%
Confusion matrix:
 setosa versicolor virginica class.error
setosa 40 0 0 0.00000000
versicolor 0 28 3 0.09677419
virginica 0 3 31 0.08823529

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

pred = predict(model,newdata=test[,-5])
pred
pred
 119 77 88 90 51 20
96
 virginica versicolor versicolor versicolor versicolor setosa
versicolor
 1 3 118 127 6 102
5
 setosa setosa virginica virginica setosa virginica
setosa
 91 8 23 133 17 78
52
versicolor setosa setosa virginica setosa virginica
versicolor
 63 82 84 116 70 50
129
versicolor versicolor virginica virginica versicolor setosa
virginica
 150 34 9 120 41 26
121
 virginica setosa setosa virginica setosa setosa
virginica
 145 138 94 4 104 81
122
 virginica virginica versicolor setosa virginica versicolor
virginica
 18 105 100
 setosa virginica versicolor
Levels: setosa versicolor virginica

Boosting
Unlike with bagging, where multiple copies of Bootstrap samples are created, a
new model is fitted for each copy of the dataset, and all the individual models
are combined to create a single predictive model, each new model is built using
information from previously built models. Boosting can be understood as an iterative
method involving two steps:

•	 A new model is built on the residuals of previous models instead of
the response variable

•	 Now, the residuals are calculated from this model and updated to the
residuals used in the previous step

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Techniques Used in Recommender Systems

[26]

The preceding two steps are repeated for multiple iterations, allowing each new
model to learn from its previous mistakes, thereby improving the model accuracy:

#Boosting in R
library(gbm)
data(iris)
sample = iris[sample(nrow(iris)),]
train = sample[1:105,]
test = sample[106:150,]
model = gbm(Species~.,data=train,distribution="multinomial",n.
trees=5000,interaction.depth=4)
summary(model)

The output of the preceding code is as follows:

In the following code snippet, the output value for the predict() function is used
in the apply() function to pick the response with the highest probability among
each row in the pred matrix. The resultant output from the apply() function is the
prediction for the response variable:

//the preceding summary states the relative importance of the
variables of the model.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

pred = predict(model,newdata=test[,-5],n.trees=5000)

pred[1:5,,]
 setosa versicolor virginica
[1,] 5.630363 -2.947531 -5.172975
[2,] 5.640313 -3.533578 -5.103582
[3,] -5.249303 3.742753 -3.374590
[4,] -5.271020 4.047366 -3.770332
[5,] -5.249324 3.819050 -3.439450

//pick the response with the highest probability from the resulting
pred matrix, by doing apply(.., 1, which.max) on the vector output
from prediction.
p.pred <- apply(pred,1,which.max)
p.pred
[1] 1 1 3 3 2 2 3 1 3 1 3 2 2 1 2 3 2 2 3 3 1 1 3 1 3 3 3 1 1 2 2 2 2
2 2 2 1 1 3 1 2
[42] 1 3 2 3

Evaluating data-mining algorithms
In the previous sections, we have seen various data-mining techniques used in
recommender systems. In this section, you will learn how to evaluate models built
using data-mining techniques. The ultimate goal for any data analytics model is
to perform well on future data. This objective could be achieved only if we build a
model that is efficient and robust during the development stage.

While evaluating any model, the most important things we need to consider are
as follows:

•	 Whether the model is over fitting or under fitting
•	 How well the model fits the future data or test data

Under fitting, also known as bias, is a scenario when the model doesn't even perform
well on training data. This means that we fit a less robust model to the data. For
example, say the data is distributed non-linearly and we are fitting the data with a
linear model. From the following image, we see that data is non-linearly distributed.
Assume that we have fitted a linear model (orange line). In this case, during the
model building stage itself, the predictive power will be low.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Techniques Used in Recommender Systems

[28]

Over fitting is a scenario when the model performs well on training data, but does
really bad on test data. This scenario arises when the model memorizes the data
pattern rather than learning from data. For example, say the data is distributed in a
non-linear pattern, and we have fitted a complex model, shown using the green line.
In this case, we observe that the model is fitted very close to the data distribution,
taking care of all the ups and downs. In this case, the model is most likely to fail on
previously unseen data.

The preceding image shows simple, complex, and appropriate fitted models' training
data. The green fit represents overfitting, the orange line represents underfitting, the
black and blue lines represent the appropriate model, which is a trade-off between
underfit and overfit.

Any fitted model is evaluated to avoid previously mentioned scenarios using cross
validation, regularization, pruning, model comparisons, ROC curves, confusion
matrices, and so on .

Cross validation: This is a very popular technique for model evaluation for almost
all models. In this technique, we divide the data into two datasets: a training dataset
and a test dataset. The model is built using the training dataset and evaluated using
the test dataset. This process is repeated many times. The test errors are calculated
for every iteration. The averaged test error is calculated to generalize the model
accuracy at the end of all the iterations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

Regularization: In this technique, the data variables are penalized to reduce the
complexity of the model with the objective to minimize the cost function. There are
two most popular regularization techniques: ridge regression and lasso regression.
In both techniques, we try to reduce the variable co-efficient to zero. Thus, a smaller
number of variables will fit the data optimally.

Confusion matrix: This technique is popularly used in evaluating a classification
model. We build a confusion matrix using the results of the model. We calculate
precision and recall/sensitivity/specificity to evaluate the model.

Precision: This is the probability whether the truly classified records are relevant.

Recall/Sensitivity: This is the probability whether the relevant records are truly
classified.

Specificity: Also known as true negative rate, this is the proportion of truly classified
wrong records.

A confusion matrix shown in the following image is constructed using the results of
classification models discussed in the previous section:

Let's understand the confusion matrix:

TRUE POSITVE (TP): This is a count of all the responses where the actual response
is negative and the model predicted is positive

FALSE POSITIVE (FP): This is a count of all the responses where the actual response
is negative, but the model predicted is positive. It is, in general, a FALSE ALARM.

FALSE NEGATIVE (FN): This is a count of all the responses where the actual
response is positive, but the model predicted is negative. It is, in general, A MISS.

TRUE NEGATIVE (TN): This is a count of all the responses where the actual
response is negative, and the model predicted is negative.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Techniques Used in Recommender Systems

[30]

Mathematically, precision and recall/specificity is calculated as follows:

Model comparison: A classification problem can be solved using one or more
statistical models. For example, a classification problem can be solved using logistic
regression, a decision tree, ensemble methods, and SVM. How do you choose
which model fits the data well? A number of approaches are available for a suitable
model selection, such as Akaike information criteria (AIC), Bayesian information
criteria (BIC), and Adjusted R^2, Cᵨ. For each model, AIC / BIC / Adjusted R^2 is
calculated. The model with least of these values is selected as the best model.

Downloading the example code
You can download the example code fies from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the fies
e-mailed directly to you.

Summary
In this chapter, you learned about popular data preprocessing techniques,
data-mining techniques, and evaluation techniques commonly used in recommender
systems. In the next chapter, you will learn about the recommender systems
introduced in Chapter 1, Getting Started with Recommender Systems, in more detail.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

[31]

Recommender Systems
This chapter shows some popular recommendation techniques. In addition, we will
implement some of them in R.

We will deal with the following techniques:

•	 Collaborative filtering: This is the branch of techniques that we will explore
in detail. The algorithms are based on information about similar users or
similar items. The two sub-branches are as follows:

°° Item-based collaborative filtering: This recommends to a user the
items that are most similar to the user's purchases

°° User-based collaborative filtering: This recommends to a user the
items that are the most preferred by similar users

•	 Content-based filtering: This is for each user; it defines a user profile and
identify the items that match it.

•	 Hybrid filtering: This combines different techniques.
•	 Knowledge-based filtering: This is uses explicit knowledge about users

and items.

R package for recommendation –
recommenderlab
In this chapter, we will build recommender systems using recommenderlab, which is
an R package for collaborative filtering. This section will present a quick overview of
this package. First, let's install it, if we haven't done so already:

if(!"recommenderlab" %in% rownames(installed.packages())){
install.packages("recommenderlab")}

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[32]

Now, we can load the package. Then, using the help function, we can take a look at
its documentation:

library("recommenderlab")
help(package = "recommenderlab")

When we run the preceding command in RStudio, a help file containing some links
and a list of functions will open.

The examples that you will see in this chapter contain some random components.
In order to be able to reproduce the code obtaining the same output, we need to run
this line:

set.seed(1)

We are now ready to start exploring recommenderlab.

Datasets
Like many other R packages, recommenderlab contains some datasets that can be
used to play around with the functions:

data_package <- data(package = "recommenderlab")
data_package$results[, "Item"]

Jester5k, MSWeb, and MovieLense
In our examples, we will use the MovieLense dataset; the data is about movies. The
table contains the ratings that the users give to movies. Let's load the data and take a
look at it:

data(MovieLense)
MovieLense
943 x 1664 rating matrix of class 'realRatingMatrix' with
99392 ratings.

Each row of MovieLense corresponds to a user, and each column corresponds to a
movie. There are more than 943 x 1664 = 1,500,000 combinations between a user and
a movie. Therefore, storing the complete matrix would require more than 1,500,000
cells. However, not every user has watched every movie. Therefore, there are fewer
than 100,000 ratings, and the matrix is sparse. The recommenderlab package allows
us to store it in a compact way.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[33]

The class for rating matrices
In this section, we will explore MovieLense in detail:

class(MovieLense)
[1] "realRatingMatrix"
attr(,"package")
[1] "recommenderlab"

The realRatingMatrix class is defined by recommenderlab, and ojectsojectsb
contains sparse rating matrices. Let's take a look at the methods that we can apply
on the objects of this class:

methods(class = class(MovieLense))

[dimnames<- Recommender

binarize dissimilarity removeKnownRatings

calcPredictionAccuracy evaluationScheme rowCounts

calcPredictionAccuracy getData.frame rowMeans

colCounts getList rowSds

colMeans getNormalize rowSums

colSds getRatings sample

colSums getTopNLists show

denormalize image similarity

dim normalize

dimnames nratings

Some methods that are applicable to matrices have been redefined in a more
optimized way. For instance, we can use dim to extract the number of rows and
columns, and colSums to compute the sum of each column. In addition, there are
new methods that are specific for recommendation systems.

Usually, rating matrices are sparse matrices. For this reason, the realRatingMatrix
class supports a compact storage of sparse matrices. Let's compare the size of
MovieLense with the corresponding R matrix:

object.size(MovieLense)
1388448 bytes
object.size(as(MovieLense, "matrix"))
12740464 bytes

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[34]

We can compute how many times the recommenderlab matrix is more compact:

object.size(as(MovieLense, "matrix")) / object.size(MovieLense)
9.17604692433566 bytes

As expected, MovieLense occupies much less space than the equivalent standard
R matrix. The rate is about 1:9, and the reason is the sparsity of MovieLense. A
standard R matrix object stores all the missing values as 0s, so it stores 15 times
more cells.

Computing the similarity matrix
Collaborative filtering algorithms are based on measuring the similarity between
users or between items. For this purpose, recommenderlab contains the similarity
function. The supported methods to compute similarities are cosine, pearson,
and jaccard.

For instance, we might want to determine how similar the first five users are with
each other. Let's compute this using the cosine distance:

similarity_users <- similarity(MovieLense[1:4,], method =
"cosine", which = "users")

The similarity_users object contains all the dissimilarities. Let's explore it:

class(similarity_users)
[1] "dist"

As expected, similarity_users is an object containing distances. Since dist is a
base R class, we can use it in different ways. For instance, we could use hclust to
build a hierarchic clustering model.

We can also convert similarity_users into a matrix and visualize it:

as.matrix(similarity_users)

1 2 3 4
0 0.1689 0.03827 0.06635

0.1689 0 0.09707 0.1531

0.03827 0.09707 0 0.3334

0.06635 0.1531 0.3334 0

Using image, we can visualize the matrix. Each row and each column corresponds to
a user, and each cell corresponds to the similarity between two users:

image(as.matrix(similarity_users), main = "User similarity")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[35]

The more red the cell is, the more similar two users are. Note that the diagonal is red,
since it's comparing each user with itself:

Using the same approach, we can compute and visualize the similarity between the
first four items:

similarity_items <- similarity(MovieLense[, 1:4], method =
"cosine", which = "items")
as.matrix(similarity_items)

Toy Story (1995) GoldenEye (1995)
Toy Story (1995) 0 0.4024

GoldenEye (1995) 0.4024 0

Four Rooms (1995) 0.3302 0.2731

Get Shorty (1995) 0.4549 0.5026

The table continues as follows:

Four Rooms (1995) Get Shorty (1995)
Toy Story (1995) 0.3302 0.4549

GoldenEye (1995) 0.2731 0.5026

Four Rooms (1995) 0 0.3249

Get Shorty (1995) 0.3249 0

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[36]

Similar to the preceding screenshot, we can visualize the matrix using this image:

image(as.matrix(similarity_items), main = "Item similarity")

The similarity is the base of collaborative filtering models.

Recommendation models
The recommenderlab package contains some options for the recommendation
algorithm. We can display the model applicable to the realRatingMatrix objects
using recommenderRegistry$get_entries:

recommender_models <- recommenderRegistry$get_entries(dataType =
"realRatingMatrix")

The recommender_models object contains some information about the models. First,
let's see which models we have:

names(recommender_models)

Models
IBCF_realRatingMatrix

PCA_realRatingMatrix

POPULAR_realRatingMatrix

RANDOM_realRatingMatrix

SVD_realRatingMatrix

UBCF_realRatingMatrix

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[37]

Let's take a look at their descriptions:

lapply(recommender_models, "[[", "description")
$IBCF_realRatingMatrix
[1] "Recommender based on item-based collaborative filtering (real
data)."
##
$PCA_realRatingMatrix
[1] "Recommender based on PCA approximation (real data)."
##
$POPULAR_realRatingMatrix
[1] "Recommender based on item popularity (real data)."
##
$RANDOM_realRatingMatrix
[1] "Produce random recommendations (real ratings)."
##
$SVD_realRatingMatrix
[1] "Recommender based on SVD approximation (real data)."
##
$UBCF_realRatingMatrix
[1] "Recommender based on user-based collaborative filtering (real
data)."

Out of them, we will use IBCF and UBCF.

The recommender_models object also contains some other information, such as its
parameters:

recommender_models$IBCF_realRatingMatrix$parameters

Parameter Default
k 30

method Cosine

normalize center

normalize_sim_matrix FALSE

alpha 0.5

na_as_zero FALSE

For a more detailed description of the package and some use cases, you can take a
look at the package vignette. You can find all the material by typing help(package
= "recommenderlab").

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[38]

The recommenderlab package is a good and flexible package to perform
recommendation. If we combine its models with other R tools, we will have
a powerful framework to explore the data and build recommendation models.

In the next section, we will explore a dataset of recommenderlab using some of its tools.

Data exploration
In this section, we will explore the MovieLense dataset. For this purpose, we will
use recommenderlab to build recommender systems and ggplot2 to visualize their
results. Let's load the packages and the data:

library("recommenderlab")
library("ggplot2")
data(MovieLense)
class(MovieLense)
[1] "realRatingMatrix"
attr(,"package")
[1] "recommenderlab"

MovieLense is a realRatingMatrix object containing a dataset about movie ratings.
Each row corresponds to a user, each column to a movie, and each value to a rating.

Exploring the nature of the data
Let's take a quick look at MovieLense. As explained in the previous section, there
are some generic methods that can be applied to realRatingMatrix objects. We can
extract their size using dim:

dim(MovieLense)
[1] 943 1664

There are 943 users and 1664 movies. Since realRatingMatrix is an S4 class, the
components of the objects are contained in MovieLense slots. We can see all the slots
using slotNames, which displays all the data stored within an object:

slotNames(MovieLense)
[1] "data" "normalize"
MovieLense contains a data slot. Let's take a look at it.
class(MovieLense@data)
[1] "dgCMatrix"
attr(,"package")
[1] "Matrix"
dim(MovieLense@data)
[1] 943 1664

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[39]

MovieLense@data belongs to the dgCMatrix class that inherits from Matrix. In order
to perform custom data exploration, we might need to access this slot.

Exploring the values of the rating
Starting from the slot data, we can explore the matrix. Let's take a look at the ratings.
We can convert the matrix into a vector and explore its values:

vector_ratings <- as.vector(MovieLense@data)
unique(vector_ratings)
[1] 5 4 0 3 1 2
The ratings are integers in the range 0-5. Let's count the occurrences
of each of them.
table_ratings <- table(vector_ratings)
table_ratings

Rating Occurrences
0 1469760

1 6059

2 11307

3 27002

4 33947

5 21077

According to the documentation, a rating equal to 0 represents a missing value, so
we can remove them from vector_ratings:

vector_ratings <- vector_ratings[vector_ratings != 0]

Now, we can build a frequency plot of the ratings. In order to visualize a bar plot
with frequencies, we can use ggplot2. Let's convert them into categories using factor
and build a quick chart:

vector_ratings <- factor(vector_ratings)

Let's visualize their distribution using qplot:

qplot(vector_ratings) + ggtitle("Distribution of the ratings")

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[40]

The following image shows the distribution of the ratings:

Most of the ratings are above 2, and the most common is 4.

Exploring which movies have been viewed
Starting with MovieLense, we can easily extract quick results using methods such as
the following ones:

•	 colCounts: This is the number of non-missing values for each column
•	 colMeans: This is the average value for each column

For instance, which are the most viewed movies? We can use colCounts for this
purpose. First, let's count the views for each movie:

views_per_movie <- colCounts(MovieLense)

Then, we can sort the movies by number of views:

table_views <- data.frame(
 movie = names(views_per_movie),
 views = views_per_movie
)
table_views <- table_views[order(table_views$views, decreasing =
TRUE),]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[41]

Now, we can visualize the first six rows and build a histogram:

ggplot(table_views[1:6,], aes(x = movie, y = views)) +
geom_bar(stat="identity") + theme(axis.text.x =
element_text(angle = 45, hjust = 1)) + ggtitle("Number of views
of the top movies")

The following image shows the number of views of the top movies:

In the preceding chart, you can notice that Star Wars (1977) is the most viewed
movie, exceeding the others by about 100 views.

Exploring the average ratings
We can identify the top-rated movies by computing the average rating of each of
them. For this purpose, we can use colMeans; it automatically ignores the 0s, since
they represent missing values. Let's take a look at the distribution of the average
movie rating:

average_ratings <- colMeans(MovieLense)

Let's build the chart using qplot:

qplot(average_ratings) + stat_bin(binwidth = 0.1) +
ggtitle("Distribution of the average movie rating")

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[42]

The following image shows the distribution of the average movie rating:

The highest value is around 3, and there are a few movies whose rating is either 1 or
5. Probably, the reason is that these movies received a rating from a few people only,
so we shouldn't take them into account. We can remove the movies whose number of
views is below a defined threshold, for instance, below 100:

average_ratings_relevant <- average_ratings[views_per_movie > 100]

Let's build the chart:

qplot(average_ratings_relevant) + stat_bin(binwidth = 0.1) +
ggtitle(paste("Distribution of the relevant average ratings"))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

The following image shows the distribution of the relevant average ratings:

All the rankings are between 2.3 and 4.5. As expected, we removed the extremes. The
highest value changes, and now, it is around 4.

Visualizing the matrix
We can visualize the matrix by building a heat map whose colors represent the
ratings. Each row of the matrix corresponds to a user, each column to a movie, and
each cell to its rating. For this purpose, we can use the generic method: image. The
recommenderlab package redefined the method image for realRatingMatrix objects.

Let's build the heatmap using image:

image(MovieLense, main = "Heatmap of the rating matrix")

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[44]

The following image displays the heatmap of the rating matrix:

We can notice a white area in the top-right region. The reason is that the row and
columns are sorted.

Since there are too many users and items, this chart is hard to read. We can build
another chart zooming in on the first rows and columns.

Let's build the heat map using image:

image(MovieLense[1:10, 1:15], main = "Heatmap of the first rows and
columns")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

The following image shows the heatmap of the first rows and columns:

Some users saw more movies than the others. However, this chart is just displaying
some random users and items. What if, instead, we select the most relevant users and
items? This means visualizing only the users who have seen many movies and the
movies that have been seen by many users. To identify and select the most relevant
users and movies, follow these steps:

1.	 Determine the minimum number of movies per user.
2.	 Determine the minimum number of users per movie.
3.	 Select the users and movies matching these criteria.

For instance, we can visualize the top percentile of users and movies. In order to do
this, we use the quantile function:

min_n_movies <- quantile(rowCounts(MovieLense), 0.99)
min_n_users <- quantile(colCounts(MovieLense), 0.99)
min_n_movies
99%
440.96
min_n_users
99%
371.07

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[46]

Now, we can visualize the rows and columns matching the criteria.

Let's build the heat map using image:

image(MovieLense[rowCounts(MovieLense) > min_n_movies,
colCounts(MovieLense) > min_n_users], main = "Heatmap of the top users
and movies")

The following image displays the heatmap of the top users and movies:

Let's take account of the users having watched more movies. Most of them have
seen all the top movies, and this is not surprising. We can notice some columns
that are darker than the others. These columns represent the highest-rated movies.
Conversely, darker rows represent users giving higher ratings. Because of this, we
might need to normalize the data.

In this section, we have explored the data. In the next section, we will process and
transform it in order to have the inputs for the recommendation models.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

Data preparation
This section will show you how to prepare the data to be used in recommender
models. Follow these steps:

1.	 Select the relevant data.
2.	 Normalize the data.

Selecting the most relevant data
When we explored the data, we noticed that the table contains:

•	 Movies that have been viewed only a few times. Their ratings might be
biased because of lack of data.

•	 Users who rated only a few movies. Their ratings might be biased.

We need to determine the minimum number of users per movie and vice versa. The
correct solution comes from an iteration of the entire process of preparing the data,
building a recommendation model, and validating it. Since we are implementing the
model for the first time, we can use a rule of thumb. After having built the models,
we can come back and modify the data preparation.

We will define ratings_movies containing the matrix that we will use. It takes
account of:

•	 Users who have rated at least 50 movies
•	 Movies that have been watched at least 100 times

The preceding points are defined in the following code:

ratings_movies <- MovieLense[rowCounts(MovieLense) > 50,
colCounts(MovieLense) > 100] ratings_movies
560 x 332 rating matrix of class 'realRatingMatrix' with 55298
ratings.

The ratings_movies object contains about half of the users and a fifth of the movies
in comparison with MovieLense.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[48]

Exploring the most relevant data
Using the same approach as we did in the previous section, let's visualize the
top 2 percent of users and movies in the new matrix:

visualize the top matrix
min_movies <- quantile(rowCounts(ratings_movies), 0.98)
min_users <- quantile(colCounts(ratings_movies), 0.98)

Let's build the heatmap:

image(ratings_movies[rowCounts(ratings_movies) > min_movies,
colCounts(ratings_movies) > min_users], main = "Heatmap of the top
users and movies")

The following image displays the heatmap of the top users and movies:

As we already noticed, some rows are darker than the others. This might mean that
some users give higher ratings to all the movies. However, we have visualized the
top movies only. In order to have an overview of all the users, let's take a look at the
distribution of the average rating by user:

average_ratings_per_user <- rowMeans(ratings_movies)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

Let's visualize the distribution:

qplot(average_ratings_per_user) + stat_bin(binwidth = 0.1) +
ggtitle("Distribution of the average rating per user")

The following image shows the distribution of the average rating per user:

As suspected, the average rating varies a lot across different users.

Normalizing the data
Having users who give high (or low) ratings to all their movies might bias the results.
We can remove this effect by normalizing the data in such a way that the average
rating of each user is 0. The prebuilt normalize function does it automatically:

ratings_movies_norm <- normalize(ratings_movies)

Let's take a look at the average rating by users:

sum(rowMeans(ratings_movies_norm) > 0.00001)
[1] 0

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[50]

As expected, the mean rating of each user is 0 (apart from the approximation error).
We can visualize the new matrix using image. Let's build the heat map:

visualize the normalized matrix
image(ratings_movies_norm[rowCounts(ratings_movies_norm) > min_movies,
colCounts(ratings_movies_norm) > min_users], main = "Heatmap of the
top users and movies")

The following image shows the heatmap of the top users and movies:

The first difference that we can notice is the colors, and this is because the data
is continuous. Previously, the rating was an integer between 1 and 5. After the
normalization, the rating can be any number between -5 and 5.

There are still some lines that are more blue and some that are more red. The reason
is that we are visualizing only the top movies. We already checked that the average
rating is 0 for each user.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

Binarizing the data
Some recommendation models work on binary data, so we might want to binarize
our data, that is, define a table containing only 0s and 1s. The 0s will be either treated
as missing values or as bad ratings.

In our case, we can either:

•	 Define a matrix having 1 if the user rated the movie, and 0 otherwise. In this
case, we are losing the information about the rating.

•	 Define a matrix having 1 if the rating is above or equal to a definite threshold
(for example, 3), and 0 otherwise. In this case, giving a bad rating to a movie
is equivalent to not having rated it.

Depending on the context, one choice is more appropriate than the other.

The function to binarize the data is binarize. Let's apply it to our data. First, let's
define a matrix equal to 1 if the movie has been watched, that is if its rating is at
least 1:

ratings_movies_watched <- binarize(ratings_movies, minRating = 1)

Let's take a look at the results. In this case, we will have black-and-white charts so
that we can visualize a larger portion of users and movies, for example, 5 percent.
Similarly, let's select this 5 percent using quantile. The row and column counts are
the same as the original matrix, so we can still apply rowCounts and colCounts on
ratings_movies:

min_movies_binary <- quantile(rowCounts(ratings_movies), 0.95)
min_users_binary <- quantile(colCounts(ratings_movies), 0.95)

Let's build the heat map:

image(ratings_movies_watched[rowCounts(ratings_movies) > min_movies_
binary,colCounts(ratings_movies) > min_users_binary], main = "Heatmap
of the top users and movies")

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[52]

The following image shows the heat map of the top users and movies:

Only a few cells contain unwatched movies. This is just because we selected the top
users and movies.

Let's use the same approach to compute and visualize the other binary matrix The
cells having a rating above the threshold will have their value equal to 1 and the
other cells will be 0s:

ratings_movies_good <- binarize(ratings_movies, minRating = 3)

Let's build the heat map:

image(ratings_movies_good[rowCounts(ratings_movies) > min_movies_
binary, colCounts(ratings_movies) > min_users_binary], main = "Heatmap
of the top users and movies")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

The following image shows the heatmap of the top users and movies:

As expected, we have more white cells now. Depending on the model, we can leave
the ratings matrix as it is or normalize/binarize it.

In this section, we prepared the data to perform recommendations. In the upcoming
sections, we will build collaborative filtering models.

Item-based collaborative filtering
Collaborative filtering is a branch of recommendation that takes account of the
information about different users. The word "collaborative" refers to the fact that
users collaborate with each other to recommend items. In fact, the algorithms take
account of user purchases and preferences. The starting point is a rating matrix in
which rows correspond to users and columns correspond to items.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[54]

This section will show you an example of item-based collaborative filtering. Given
a new user, the algorithm considers the user's purchases and recommends similar
items. The core algorithm is based on these steps:

1.	 For each two items, measure how similar they are in terms of having received
similar ratings by similar users

2.	 For each item, identify the k-most similar items
3.	 For each user, identify the items that are most similar to the user's purchases

In this chapter, we will see the overall approach to building an IBCF model. In
addition, the upcoming sections will show its details.

Defining the training and test sets
We will build the model using a part of the MovieLense dataset (the training set) and
apply it on the other part (the test set). Since it's not a topic of this chapter, we will
not evaluate the model, but will only recommend movies to the users in the test set.

The two sets are as follows:

•	 Training set: This set includes users from which the model learns
•	 Test set: This set includes users to whom we recommend movies

The algorithm automatically normalizes the data, so we can use ratings_movies
that contains relevant users and movies of MovieLense. We defined ratings_
movies in the previous section as the subset of MovieLense users who have rated
at least 50 movies and movies that have been rated at least 100 times.

First, we randomly define the which_train vector that is TRUE for users in the
training set and FALSE for the others. We will set the probability in the training
set as 80 percent:

which_train <- sample(x = c(TRUE, FALSE), size = nrow(ratings_movies),
replace = TRUE, prob = c(0.8, 0.2))
head(which_train)
[1] TRUE TRUE TRUE FALSE TRUE FALSE

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

Let's define the training and the test sets:

recc_data_train <- ratings_movies[which_train,]
recc_data_test <- ratings_movies[!which_train,]

If we want to recommend items to each user, we could just use the k-fold:

•	 Split the users randomly into five groups
•	 Use a group as a test set and the other groups as training sets
•	 Repeat it for each group

This is a sample code:

which_set <- sample(x = 1:5, size = nrow(ratings_movies), replace =
TRUE)
for(i_model in 1:5) {
 which_train <- which_set == i_model
 recc_data_train <- ratings_movies[which_train,]
 recc_data_test <- ratings_movies[!which_train,]
 # build the recommender
}

In order to show how this package works, we split the data into training and test
sets manually. You can also do this automatically in recommenderlab using the
evaluationScheme function. This function also contains some tools to evaluate
models that we will use in the Chapter 4, Evaluating the Recommender Systems,
which is about model evaluation.

Now, we have the inputs to build and validate the model.

Building the recommendation model
The function to build models is recommender and its inputs are as follows:

•	 Data: This is the training set
•	 Method: This is the name of the technique
•	 Parameters: These are some optional parameters of the technique

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[56]

The model is called IBCF, which stands for item-based collaborative filtering.
Let's take a look at its parameters:

recommender_models <- recommenderRegistry$get_entries(dataType =
"realRatingMatrix")
recommender_models$IBCF_realRatingMatrix$parameters

Parameters Default
k 30

method Cosine

normalize center

normalize_sim_matrix FALSE

alpha 0.5

na_as_zero FALSE

minRating NA

Some relevant parameters are as follows:

•	 k: In the first step, the algorithm computes the similarities among each
pair of items. Then, for each item, it identifies its k most similar items
and stores it.

•	 method: This is the similarity function. By default, it is Cosine. Another
popular option is pearson.

At the moment, we can just set them to their defaults. In order to show how
to change parameters, we are setting k = 30, which is the default. We are now
ready to build a recommender model:

recc_model <- Recommender(data = recc_data_train, method = "IBCF",
parameter = list(k = 30))
recc_model
Recommender of type 'IBCF' for 'realRatingMatrix'
learned using 111 users.
class(recc_model)
[1] "Recommender"
attr(,"package")
[1] "recommenderlab"

The recc_model class is an object of the Recommender class containing the model.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

Exploring the recommender model
Using getModel, we can extract some details about the model, such as its description
and parameters:

model_details <- getModel(recc_model)
model_details$description
[1] "IBCF: Reduced similarity matrix"
model_details$k
[1] 30

The model_details$sim component contains the similarity matrix. Let's check
its structure:

class(model_details$sim)
[1] "dgCMatrix"
attr(,"package")
[1] "Matrix"
dim(model_details$sim)
[1] 332 332

As expected, model_details$sim is a square matrix whose size is equal to the
number of items. We can explore a part of it using image:

n_items_top <- 20

Let's build the heat map:

image(model_details$sim[1:n_items_top, 1:n_items_top],
main = "Heatmap of the first rows and columns")

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[58]

The following image displays heatmap of the first rows and columns:

Most of the values are equal to 0. The reason is that each row contains only k
elements. Let's check it:

model_details$k
[1] 30
row_sums <- rowSums(model_details$sim > 0)
table(row_sums)
row_sums
30
332

As expected, each row has 30 elements greater than 0. However, the matrix is not
supposed to be symmetric. In fact, the number of non-null elements for each column
depends on how many times the corresponding movie was included in the top k of
another movie. Let's check the distribution of the number of elements by column:

col_sums <- colSums(model_details$sim > 0)

Let's build the distribution chart:

qplot(col_sums) + stat_bin(binwidth = 1) + ggtitle("Distribution of
the column count")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

The following image displays the distribution of the column count:

As expected, there are a few movies that are similar to many others. Let's see which
are the movies with the most elements:

which_max <- order(col_sums, decreasing = TRUE)[1:6]
rownames(model_details$sim)[which_max]

Movie col_sum
Sling Blade (1996) 62

Usual Suspects, The (1995) 60

Fargo (1996) 58

Vertigo (1958) 58

Stargate (1994) 57

The Godfather (1972) 55

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[60]

Applying the recommender model on the test
set
Now, we are able to recommend movies to the users in the test set. We will define
n_recommended that specifies the number of items to recommend to each user. This
section will show you the most popular approach to computing a weighted sum:

n_recommended <- 6

For each user, the algorithm extracts its rated movies. For each movie, it identifies all
its similar items, starting from the similarity matrix. Then, the algorithm ranks each
similar item in this way:

•	 Extract the user rating of each purchase associated with this item. The rating
is used as a weight.

•	 Extract the similarity of the item with each purchase associated with
this item.

•	 Multiply each weight with the related similarity.
•	 Sum everything up.

Then, the algorithm identifies the top n recommendations:

recc_predicted <- predict(object = recc_model, newdata = recc_data_
test, n = n_recommended)
recc_predicted
Recommendations as 'topNList' with n = 6 for 449 users.

The recc_predicted object contains the recommendations. Let's take a look at
its structure:

class(recc_predicted)
[1] "topNList"
attr(,"package")
[1] "recommenderlab"
slotNames(recc_predicted)
[1] "items" "itemLabels" "n"

The slots are:

•	 items: This is the list with the indices of the recommended items for
each user

•	 itemLabels: This is the name of the items
•	 n: This is the number of recommendations

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

For instance, these are the recommendations for the first user:

recc_predicted@items[[1]]
[1] 201 182 254 274 193 297

We can extract the recommended movies from recc_predicted@item labels:

recc_user_1 <- recc_predicted@items[[1]]
movies_user_1 <- recc_predicted@itemLabels[recc_user_1]
movies_user_1

Index Movie
201 Schindler's List (1993)

182 Secrets and Lies (1996)

254 Trainspotting (1996)

274 The Deer Hunter (1978)

193 L.A. Confidential (1997)

297 The Manchurian Candidate (1962)

We can define a matrix with the recommendations for each user:

recc_matrix <- sapply(recc_predicted@items, function(x){
 colnames(ratings_movies)[x]
})
dim(recc_matrix)
[1] 6 449

Let's visualize the recommendations for the first four users:

recc_matrix[, 1:4]

Schindler's List (1993) Babe (1995)

Secrets and Lies (1996) The Usual Suspects (1995)

Trainspotting (1996) Taxi Driver (1976)

The Deer Hunter (1978) Blade Runner (1982)

L.A. Confidential (1997) Welcome to the Dollhouse (1995)

Manchurian Candidate, The (1962) The Silence of the Lambs (1991)

Batman Forever (1995) Strictly Ballroom (1992)

Stargate (1994) L.A. Confidential (1997)

Star Trek III: The Search for
Spock (1984)

Cold Comfort Farm (1995)

Tin Cup (1996) 12 Angry Men (1957)

Courage Under Fire (1996) Vertigo (1958)

Dumbo (1941) A Room with a View (1986)

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[62]

Now, we can identify the most recommended movies. For this purpose, we will
define a vector with all the recommendations, and we will build a frequency plot:

number_of_items <- factor(table(recc_matrix))
chart_title <- "Distribution of the number of items for IBCF"

Let's build the distribution chart:

qplot(number_of_items) + ggtitle(chart_title)

The following image shows the distribution of the number of items for IBCF:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

Most of the movies have been recommended only a few times, and a few movies
have been recommended many times. Let's see which are the most popular movies:

number_of_items_sorted <- sort(number_of_items, decreasing = TRUE)
number_of_items_top <- head(number_of_items_sorted, n = 4)
table_top <- data.frame(names(number_of_items_top),
number_of_items_top)
table_top

names.number_of_items_top
Mr. Smith Goes to Washington (1939) Mr. Smith Goes to

Washington (1939)

Babe (1995) Babe (1995)

The Maltese Falcon (1941) The Maltese Falcon (1941)

L.A. Confidential (1997) L.A. Confidential (1997)

The preceding table continues as follows:

number_of_items_top
Mr. Smith Goes to Washington (1939) 55

Babe (1995) 38

The Maltese Falcon (1941) 35

L.A. Confidential (1997) 34

IBCF recommends items on the basis of the similarity matrix. It's an eager-learning
model, that is, once it's built, it doesn't need to access the initial data. For each item,
the model stores the k-most similar, so the amount of information is small once the
model is built. This is an advantage in the presence of lots of data.

In addition, this algorithm is efficient and scalable, so it works well with big rating
matrices. Its accuracy is rather good, compared with other recommendation models.

In the next section, we will explore another branch of techniques: user-based
collaborative filtering.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[64]

User-based collaborative filtering
In the previous section, the algorithm was based on items and the steps to identify
recommendations were as follows:

•	 Identify which items are similar in terms of having been purchased by the
same people

•	 Recommend to a new user the items that are similar to its purchases

In this section, we will use the opposite approach. First, given a new user, we will
identify its similar users. Then, we will recommend the top-rated items purchased by
similar users. This approach is called user-based collaborative filtering. For each new
user, these are the steps:

1.	 Measure how similar each user is to the new one. Like IBCF, popular
similarity measures are correlation and cosine.

2.	 Identify the most similar users. The options are:
°° Take account of the top k users (k-nearest_neighbors)
°° Take account of the users whose similarity is above a defined

threshold

3.	 Rate the items purchased by the most similar users. The rating is the average
rating among similar users and the approaches are:

°° Average rating
°° Weighted average rating, using the similarities as weights

4.	 Pick the top-rated items.

Like we did in the previous chapter, we will build a training and a test set. Now, we
can start building the model directly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

Building the recommendation model
The R command to build the model is the same as the previous chapter. Now, the
technique is called UBCF:

recommender_models <- recommenderRegistry$get_entries(dataType =
"realRatingMatrix")
recommender_models$UBCF_realRatingMatrix$parameters

Parameter Default
method cosine

nn 25

sample FALSE

normalize center

minRating NA

Some relevant parameters are:

•	 method: This shows how to compute the similarity between users
•	 nn: This shows the number of similar users

Let's build a recommender model leaving the parameters to their defaults:

recc_model <- Recommender(data = recc_data_train, method = "UBCF")
recc_model
Recommender of type 'UBCF' for 'realRatingMatrix'
learned using 451 users.

Let's extract some details about the model using getModel:

model_details <- getModel(recc_model)

Let's take a look at the components of the model:

names(model_details)

Element
description

data

method

nn

sample

normalize

minRating

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[66]

Apart from the description and parameters of model, model_details contains a
data slot:

model_details$data
451 x 332 rating matrix of class 'realRatingMatrix' with 43846
ratings.
Normalized using center on rows.

The model_details$data object contains the rating matrix. The reason is that UBCF
is a lazy-learning technique, which means that it needs to access all the data to
perform a prediction.

Applying the recommender model on the test
set
In the same way as the IBCF, we can determine the top six recommendations for each
new user:

n_recommended <- 6
recc_predicted <- predict(object = recc_model,
newdata = recc_data_test, n = n_recommended) recc_predicted
Recommendations as 'topNList' with n = 6 for 109 users.

We can define a matrix with the recommendations to the test set users:

recc_matrix <- sapply(recc_predicted@items, function(x){
 colnames(ratings_movies)[x]
})
dim(recc_matrix)
[1] 6 109

Let's take a look at the first four users:

recc_matrix[, 1:4]

The Usual Suspects (1995) Lone Star (1996)

The Shawshank Redemption (1994) This Is Spinal Tap (1984)

Contact (1997) The Wrong Trousers (1993)

The Godfather (1972) Hoop Dreams (1994)

Nikita (La Femme Nikita) (1990) Mighty Aphrodite (1995)

Twelve Monkeys (1995) Big Night (1996)

The Silence of the Lambs (1991) The Usual Suspects (1995)

The Shawshank Redemption (1994) The Wrong Trousers (1993)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

Jaws (1975) Monty Python and the Holy Grail
(1974)

Schindler's List (1993) GoodFellas (1990)

The Godfather (1972)

Fargo (1996) 2001: A Space Odyssey (1968)

We can also compute how many times each movie got recommended and build the
related frequency histogram:

number_of_items <- factor(table(recc_matrix))
chart_title <- "Distribution of the number of items for UBCF"

Let's build the distribution chart:

qplot(number_of_items) + ggtitle(chart_title)

The following image displays the distribution of the numbers of items for UBCF:

Compared with the IBCF, the distribution has a longer tail. This means that there are
some movies that are recommended much more often than the others. The maximum
is 29, compared with 11 for IBCF.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[68]

Let's take a look at the top titles:

number_of_items_sorted <- sort(number_of_items, decreasing = TRUE)
number_of_items_top <- head(number_of_items_sorted, n = 4)
table_top <- data.frame(names(number_of_items_top), number_of_items_
top)
table_top

names.number_of_items_top
Schindler's List (1993) Schindler's List (1993)

The Shawshank Redemption (1994) The Shawshank Redemption (1994)

The Silence of the Lambs (1991) The Silence of the Lambs (1991)

The Godfather (1972) The Godfather (1972)

The preceding table is continued as follows:

number_of_items_top
Schindler's List (1993) 36

The Shawshank Redemption (1994) 34

The Silence of the Lambs (1991) 29

The Godfather (1972) 27

Comparing the results of UBCF with IBCF helps in understanding the algorithm
better. UBCF needs to access the initial data, so it is a lazy-learning model. Since it
needs to keep the entire database in memory, it doesn't work well in the presence of
a big rating matrix. Also, building the similarity matrix requires a lot of computing
power and time.

However, UBCF's accuracy is proven to be slightly more accurate than IBCF, so it's a
good option if the dataset is not too big.

Collaborative filtering on binary data
In the previous two sections, we built recommendation models based on user
preferences, since the data displayed the rating for each purchase. However, this
information is not always available. The following two scenarios can take place:

•	 We know which items have been purchased, but not their ratings
•	 For each user, we don't know which items it purchased, but we know which

items it likes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

In these contexts, we can build a user-item matrix whose values would be 1 if the
user purchased (or liked) the item, and 0 otherwise. This case is different from the
previous cases, so it should be treated separately. Similar to the other cases, the
techniques are item-based and user-based.

In our case, starting from ratings_movies, we can build a ratings_movies_
watched matrix whose values will be 1 if the user viewed the movie, and 0
otherwise. We built it in one of the Binarizing the data sections.

Data preparation
We can build ratings_movies_watched using the binarize method:

ratings_movies_watched <- binarize(ratings_movies, minRating = 1)

Let's take a quick look at the data. How many movies (out of 332) did each user
watch? Let's build the distribution chart:

qplot(rowSums(ratings_movies_watched)) + stat_bin(binwidth = 10) +
geom_vline(xintercept = mean(rowSums(ratings_movies_watched)), col
= "red", linetype = "dashed") + ggtitle("Distribution of movies by
user")

The following image shows a distribution of movies by user:

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[70]

On the average, each user watched about 100 movies, and only a few watched more
than 200 movies.

In order to build a recommendation model, let's define a training set and a test set:

which_train <- sample(x = c(TRUE, FALSE), size = nrow(ratings_movies),
replace = TRUE, prob = c(0.8, 0.2))
recc_data_train <- ratings_movies[which_train,]
recc_data_test <- ratings_movies[!which_train,]

We are now ready to build the IBCF and UBCF models.

Item-based collaborative filtering on binary
data
The first step with IBCF is defining a similarity between items. In the case of
binary data, distances such as the correlation and the cosine don't work properly.
A good alternative is the Jaccard index. Given two items, the index is computed
as the number of users purchasing both the items divided by the number of users
purchasing at least one of them. Let's start from 1item and 2item , which are the sets of
users purchasing the first and second item, respectively. The "∩" symbol refers to the
intersection of two sets, that is, the items contained in both. The "U" symbol refers to
the union of two sets, that is, the items contained in at least one of them. The Jaccard
index is the number of elements in the intersection between the two sets, divided by
the number of elements in their union.

() 1 2
1 2

1 2

, item itemdistance item item
item item

∩
=

∪

We can build the IBCF filtering model using the same commands as in the previous
chapters. The only difference is the input parameter method equal to Jaccard:

recc_model <- Recommender(data = recc_data_train, method = "IBCF",
parameter = list(method = "Jaccard"))
model_details <- getModel(recc_model)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

Like in the previous sections, we can recommend six items to each of the users in the
test set:

n_recommended <- 6
recc_predicted <- predict(object = recc_model, newdata = recc_data_
test, n = n_recommended)
recc_matrix <- sapply(recc_predicted@items, function(x){
 colnames(ratings_movies)[x]
})

Let's see the recommendations for the first four users.

recc_matrix[, 1:4]

L.A. Confidential (1997) Hoop Dreams (1994)

Evita (1996) Quiz Show (1994)

Being There (1979) Strictly Ballroom (1992)

Chasing Amy (1997) This Is Spinal Tap (1984)

Dr. Strangelove or: How I
Learned to Stop Worrying and
Love the Bomb (1963)

What's Eating Gilbert Grape
(1993)

The Full Monty (1997) The Wrong Trousers (1993)

Gone with the Wind (1939) Cop Land (1997)

Citizen Kane (1941) Lost Highway (1997)

On Golden Pond (1981) Kolya (1996)

Emma (1996) Secrets and Lies (1996)

One Flew Over the Cuckoo's Nest
(1975)

Everyone Says I Love You (1996)

The Philadelphia Story (1940) Boogie Nights (1997)

The approach is similar to IBCF using a rating matrix. Since we are not taking
account of the ratings, the result will be less accurate.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[72]

User-based collaborative filtering on
binary data
Similar to IBCF, we need to use the Jaccard index for UBCF. Given two users, the
index is computed as the number of items purchased by both the users divided by
the number of items purchased by at least one of them. The mathematical symbols
are the same as in the previous section:

() 1 2
1 2

1 2

, user userdistance user user
user user

∩
=

∪

Let's build the recommender model:

recc_model <- Recommender(data = recc_data_train, method = "UBCF",
parameter = list(method = "Jaccard"))

Using the same commands as IBCF, let's recommend six movies to each user, and
let's take a look at the first four users:

n_recommended <- 6
recc_predicted <- predict(object = recc_model,
newdata = recc_data_test,n = n_recommended)
recc_matrix <- sapply(recc_predicted@items, function(x){
 colnames(ratings_movies)[x]
})
dim(recc_matrix)
[1] 6 109
recc_matrix[, 1:4]

The Shawshank Redemption (1994) Titanic (1997)

Casablanca (1942) Cinema Paradiso (1988)

Braveheart (1995) Lone Star (1996)

The Terminator (1984) L.A. Confidential (1997)

The Usual Suspects (1995) Singin' in the Rain (1952)

Twelve Monkeys (1995) Leaving Las Vegas (1995)

Titanic (1997) Monty Python and the Holy Grail
(1974)

Usual Suspects, The (1995) The Shawshank Redemption (1994)

Groundhog Day (1993) Schindler's List (1993)

The Shawshank Redemption (1994) Young Frankenstein (1974)

The Blues Brothers (1980) The Usual Suspects (1995)

Monty Python and the Holy Grail
(1974)

North by Northwest (1959)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

The results are different from IBCF.

These techniques assumed that the 0s are missing values. However, there is also the
option to treat them as bad ratings. There is a branch of technique that deals with
binary matrices only.

Most of the users don't give ratings to items, so there are several real-life cases of 0-1
matrices. That's why it's important to know how to build recommender systems in
these contexts.

Conclusions about collaborative filtering
This book focuses on collaborative filtering as it's the most popular branch of
recommendation. Also, it's the only one that is supported by recommenderlab.

However, collaborative filtering is not always the most suitable technique. This
chapter provides an overview of its limitations and some alternatives.

Limitations of collaborative filtering
Collaborative filtering has some limitations. When dealing with new users and/or
new items, the algorithm has these potential problems:

•	 If the new user hasn't seen any movie yet, neither the IBCF nor the UBCF is
able to recommend any item. Unless the IBCF knows the items purchased
by the new user, it can't work. The UBCF needs to know which users have
similar preferences to the new one, but we don't know about its ratings.

•	 If the new item hasn't been purchased by anyone, it will never be
recommended. IBCF matches items that have been purchased by the
same users, so it won't match the new item with any of the others. UBCF
recommends to each user items purchased by similar users, and no one
purchased the new item. So, the algorithm won't recommend it to anyone.

Then, we might not be able to include them, and this challenge is called a cold start
problem. In order to include new users and/or items, we need to take account of
other information such as user profiles and item descriptions.

Another limitation of collaborative filtering is that it takes account of rating matrices
only. In many contexts, we have some additional information that can improve the
recommendations. In addition, user preferences are not always available, or they
might be incomplete.

In the upcoming sections, we will look at some other approaches.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommender Systems

[74]

Content-based filtering
Another popular branch of techniques is content-based filtering. The algorithms start
with a description of items, and they don't need to take account of different users at
the same time. For each user, the algorithms recommend items that are similar to its
past purchases.

Here are the steps to perform a recommendation:

1.	 Define item descriptions.
2.	 Define user profiles based on purchases.
3.	 Recommend to each user the items matching its profile

User profiles are based on their purchases, so the algorithms recommend items
similar to past purchases.

Hybrid recommender systems
In many situations, we are able to build different collaborative and content-based
filtering models. What if we take account of all of them at the same time? In machine
learning, the approach of combining different models usually leads to better results.

A simple example is collaborative filtering combined with information about users
and/or items. In the case of IBCF, the distance between items can take account of
user preferences and item descriptions at the same time. Even in UBCF, the distance
between users can take account of their preferences and personal data.

In the case of recommendation, these models are called hybrids. There are different
ways to combine filtering models.

Parallelized hybrid systems run the recommenders separately and combine their
results. There are a few options such as the following ones:

•	 Define a rule to pick one of the results for each user. The rule can be based on
the user profile and/or on the recommendation.

•	 Compute an average of the rankings. The average can be weighted.

Pipelined hybrid systems run the recommenders in sequence. The output of each
model is an input for the next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

Monolithic hybrid systems integrate the approaches in the same algorithm. Some
options are as follows:

•	 Feature combination: This can be learned from different types of inputs.
For example, an algorithm can take account of ratings, user profiles,
and item descriptions.

•	 Feature augmentation: This builds the input of a recommender by
combining different data sources.

Knowledge-based recommender systems
There are situations where collaborative and content-based filtering don't work.

In these contexts, we can use explicit knowledge about users and products, and
recommendation criteria. This branch of techniques is called knowledge-based.
There are a variety of techniques, and they depend on the data and on the business
problem. For this reason, it's hard to define some techniques that are applicable in
different contexts.

Summary
Among the different techniques for recommendation, collaborative filtering is the
easiest to implement. In addition, content-based filtering algorithms depend on the
context, and it's still possible to build them in R.

This chapter showed you different approaches to recommendation by focusing on
collaborative filtering. The next chapter will show you how to test and evaluate the
recommendation techniques.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[77]

Evaluating the
Recommender Systems

The previous chapter showed you how to build recommender systems. There are
a few options, and some of them can be developed using the recommenderlab
package. In addition, each technique has some parameters. After we build
the models, how can we decide which one to use? How can we determine its
parameters? We can first test the performance of some models and/or parameter
configurations and then choose the one that performs best.

This chapter will show you how to evaluate recommender models, compare their
performances, and choose the most appropriate model. In this chapter, we will cover
the following topics:

•	 Preparing the data to evaluate performance
•	 Evaluating the performance of some models
•	 Choosing the best performing models
•	 Optimizing model parameters

Preparing the data to evaluate the
models
To evaluate models, you need to build them with some data and test them on some
other data. This chapter will show you how to prepare the two sets of data. The
recommenderlab package contains prebuilt tools that help in this task.

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating the Recommender Systems

[78]

The target is to define two datasets, which are as follows:

•	 Training set: These are the models from which users learn
•	 Testing set: These are the models that users apply and test

In order to evaluate the models, we need to compare the recommendations with the
user preferences. In order to do so, we need to forget about some user preferences in
the test set and see whether the techniques are able to identify them. For each user in
the test set, we ignore some purchases and build the recommendations based on the
others. Let's load the packages:

library(recommenderlab)
library(ggplot2)

The data-set that we will use is called MovieLense. Let's define ratings_movies
containing only the most relevant users and movies:

data(MovieLense)
ratings_movies <- MovieLense[rowCounts(MovieLense) > 50,
colCounts(MovieLense) > 100]
ratings_movies
560 x 332 rating matrix of class 'realRatingMatrix' with 55298
ratings.

We are now ready to prepare the data.

Splitting the data
The easiest way to build a training and test set is to split the data in two parts. First,
we need to decide how many users to put into each part. For instance, we can put
80 percent of the users into the training set. We can define percentage_training
by specifying the percentage of the training set:

percentage_training <- 0.8

For each user in the test set, we need to define how many items to use to generate
recommendations. The remaining items will be used to test the model accuracy. It's
better that this parameter is lower than the minimum number of items purchased by
any user so that we don't have users without items to test the models:

min(rowCounts(ratings_movies))
18

For instance, we can keep 15 items:

items_to_keep <- 15

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[79]

Evaluating a model consists of comparing the recommendations with the unknown
purchases. The ratings are between 1 and 5, and we need to define what constitutes
good and bad items. For this purpose, we will define a threshold with the minimum
rating that is considered good:

rating_threshold <- 3

There is an additional parameter defining how many times we want to run the
evaluation. For the moment, let's set it to 1:

n_eval <- 1

We are ready to split the data. The recommenderlab function is evaluationScheme
and its parameters are as follows:

•	 data: This is the initial dataset
•	 method: This is the way to split the data. In this case, it's split
•	 train: This is the percentage of data in the training set
•	 given: This is the number of items to keep
•	 goodRating: This is the rating threshold
•	 k: This is the number of times to run the evaluation

Let's build eval_sets containing the sets:

eval_sets <- evaluationScheme(data = ratings_movies, method = "split",
train = percentage_training, given = items_to_keep, goodRating =
rating_threshold, k = n_eval) eval_sets
Evaluation scheme with 15 items given
Method: 'split' with 1 run(s).
Training set proportion: 0.800
Good ratings: >=3.000000
Data set: 560 x 332 rating matrix of class 'realRatingMatrix' with
55298 ratings.

In order to extract the sets, we need to use getData. There are three sets:

•	 train: This is the training set
•	 known: This is the test set, with the item used to build the recommendations
•	 unknown: This is the test set, with the item used to test the recommendations

Let's take a look at the training set:

getData(eval_sets, "train")
448 x 332 rating matrix of class 'realRatingMatrix' with 44472
ratings.

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating the Recommender Systems

[80]

It's a realRatingMatrix object, so we can apply methods such as nrow and
rowCounts to it:

nrow(getData(eval_sets, "train")) / nrow(ratings_movies)
0.8

As expected, about 80 percent of the users are in the training set. Let's take a look at
the two test sets:

getData(eval_sets, "known")
112 x 332 rating matrix of class 'realRatingMatrix' with 1680
ratings.
getData(eval_sets, "unknown")
112 x 332 rating matrix of class 'realRatingMatrix' with 9146
ratings.

They both have the same number of users. There should be about 20 percent of data
in the test set:

nrow(getData(eval_sets, "known")) / nrow(ratings_movies)
0.2

Everything is as expected. Let's see how many items we have for each user in the
known set. It should be equal to items_to_keep, that is, 15:

unique(rowCounts(getData(eval_sets, "known")))
15

The same is not true for the users in the test set, since the number of remaining items
depends on the initial number of purchases:

qplot(rowCounts(getData(eval_sets, "unknown"))) + geom_
histogram(binwidth = 10) + ggtitle("unknown items by the users")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

The following image displays the unknown items by the users:

As expected, the number of items by users varies a lot.

Bootstrapping data
In the previous subsection, we split the data into two parts, and the training
set contained 80 percent of the rows. What if, instead, we sample the rows with
replacement? The same user can be sampled more than once and, if the training
set has the same size as it did earlier, there will be more users in the test set. This
approach is called bootstrapping, and it's supported by recommenderlab. The
parameters are the same as the previous approach. The only difference is that we
specify method = "bootstrap" instead of method = "split":

percentage_training <- 0.8
items_to_keep <- 15
rating_threshold <- 3
n_eval <- 1
eval_sets <- evaluationScheme(data = ratings_movies, method =
"bootstrap", train = percentage_training, given = items_to_keep,
goodRating = rating_threshold, k = n_eval)

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating the Recommender Systems

[82]

The number of users in the training set is still equal to 80 percent of the total:

nrow(getData(eval_sets, "train")) / nrow(ratings_movies)
0.8

However, the same is not true for the items in the test set:

perc_test <- nrow(getData(eval_sets, "known")) / nrow(ratings_movies)
perc_test
0.4393

The test set is more than twice as big as the previous set.

We can extract the unique users in the training set:

length(unique(eval_sets@runsTrain[[1]]))
314

The percentage of unique users in the training set should be complementary to the
percentage of users in the test set, which is shown as follows:

perc_train <- length(unique(eval_sets@runsTrain[[1]])) / nrow(ratings_
movies)
perc_train + perc_test
1

We can count how many times each user is repeated in the training set:

table_train <- table(eval_sets@runsTrain[[1]])
n_repetitions <- factor(as.vector(table_train))
qplot(n_repetitions) + ggtitle("Number of repetitions in the training
set")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[83]

The following image displays the number of repetitions in the training set:

Most of the users have been sampled fewer than four times.

Using k-fold to validate models
The two previous approaches tested the recommender on part of the users.
If, instead, we test the recommendation on each user, we could measure the
performances much more accurately. We can split the data into some chunks, take a
chunk out as the test set, and evaluate the accuracy. Then, we can do the same with
each other chunk and compute the average accuracy. This approach is called k-fold
and it's supported by recommenderlab.

We can use evaluationScheme and the difference is that, instead of specifying the
percentage of data to put in the training set, we will define how many chunks we
want. The argument is k, like the number of repetitions in the previous examples.
Clearly, we don't need to specify train anymore:

n_fold <- 4
eval_sets <- evaluationScheme(data = ratings_movies, method = "cross-
validation", k = n_fold, given = items_to_keep, goodRating = rating_
threshold)

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating the Recommender Systems

[84]

We can count how many items we have in each set:

size_sets <- sapply(eval_sets@runsTrain, length)
size_sets
420, _420_, _420_ and _420_

As expected, all the sets have the same size.

This approach is the most accurate one, although it's computationally heavier.

In this chapter, we've seen different approaches to prepare the training and the test
set. In the next chapter, we will start with the evaluation.

Evaluating recommender techniques
This chapter will show you two popular approaches to evaluate recommendations.
They are both based on the cross-validation framework described in the previous
section.

The first approach is to evaluate the ratings estimated by the algorithm. The other
approach is to evaluate the recommendations directly. There is a subsection for
each approach.

Evaluating the ratings
In order to recommend items to new users, collaborative filtering estimates the
ratings of items that are not yet purchased. Then, it recommends the top-rated
items. At the moment, let's forget about the last step. We can evaluate the model by
comparing the estimated ratings with the real ones.

First, let's prepare the data for validation, as shown in the previous section. Since the
k-fold is the most accurate approach, we will use it here:

n_fold <- 4
items_to_keep <- 15
rating_threshold <- 3
eval_sets <- evaluationScheme(data = ratings_movies, method = "cross-
validation", k = n_fold, given = items_to_keep, goodRating = rating_
threshold)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[85]

We need to define the model to evaluate. For instance, we can evaluate an item-based
collaborative filtering recommender. Let's build it using the Recommender function.
We need to specify the name of the model and the list of its parameters. If we use
their defaults, then it's NULL:

model_to_evaluate <- "IBCF"
model_parameters <- NULL

We are now ready to build the model, using the following code:

eval_recommender <- Recommender(data = getData(eval_sets, "train"),
method = model_to_evaluate, parameter = model_parameters)

The IBCF can recommend new items and predict their ratings. In order to build the
model, we need to specify how many items we want to recommend, for example, 10,
even if we don't need to use this parameter in the evaluation:

items_to_recommend <- 10

We can build the matrix with the predicted ratings using the predict function:

eval_prediction <- predict(object = eval_recommender, newdata =
getData(eval_sets, "known"), n = items_to_recommend, type = "ratings")
class(eval_prediction)
realRatingMatrix

The eval_prediction object is a rating matrix. Let's see how many movies we are
recommending to each user. For this purpose, we can visualize the distribution of the
number of movies per user:

qplot(rowCounts(eval_prediction)) + geom_histogram(binwidth = 10) +
ggtitle("Distribution of movies per user")

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating the Recommender Systems

[86]

The following image displays the distribution of movies per user:

The number of movies per user is roughly between 150 and 300.

The function to measure the accuracy is calcPredictionAccuracy and it computes
the following aspects:

•	 Root mean square error (RMSE): This is the standard deviation of the
difference between the real and predicted ratings.

•	 Mean squared error (MSE): This is the mean of the squared difference
between the real and predicted ratings. It's the square of RMSE, so it contains
the same information.

•	 Mean absolute error (MAE): This is the mean of the absolute difference
between the real and predicted ratings.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

We can compute these measures about each user by specifying byUser = TRUE:

eval_accuracy <- calcPredictionAccuracy(
 x = eval_prediction, data = getData(eval_sets, "unknown"), byUser =
TRUE)
head(eval_accuracy)

RMSE MSE MAE
1 1.217 1.481 0.8205

2 0.908 0.8244 0.727

6 1.172 1.374 0.903

14 1.405 1.973 1.027

15 1.601 2.562 1.243

18 0.8787 0.7721 0.633

Let's take a look at the RMSE by a user:

qplot(eval_accuracy[, "RMSE"]) + geom_histogram(binwidth = 0.1) +
ggtitle("Distribution of the RMSE by user")

The following image displays the distribution of the RSME by user:

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating the Recommender Systems

[88]

Most of the RMSEs are in the range of 0.8 to 1.4. We evaluated the model for each
user. In order to have a performance index of the whole model, we need to compute
the average indices, specifying byUser = FALSE:

eval_accuracy <- calcPredictionAccuracy(
 x = eval_prediction, data = getData(eval_sets, "unknown"), byUser =
FALSE) eval_accuracy
1.101, _1.211_ and _0.8124_

These measures are useful to compare the performance of different models on the
same data.

Evaluating the recommendations
Another way to measure accuracies is by comparing the recommendations with
the purchases having a positive rating. For this purpose, we can use the prebuilt
evaluate function. Its inputs are as follows:

•	 x: This is the object containing the evaluation scheme.
•	 method: This is the recommendation technique.
•	 n: This is the number of items to recommend to each user. If we can specify

a vector of n, the function will evaluate the recommender performance
depending on n.

We have already defined a threshold, rating_threshold <- 3, for positive ratings,
and this parameter is already stored inside eval_sets. The progress = FALSE
argument suppresses a progress report:

results <- evaluate(x = eval_sets, method = model_to_evaluate, n =
seq(10, 100, 10))
class(results)
evaluationResults

The results object is an evaluationResults object containing the results of the
evaluation. Using getConfusionMatrix, we can extract a list of confusion matrices.
Each element of the list corresponds to a different split of the k-fold. Let's take a look
at the first element:

head(getConfusionMatrix(results)[[1]])

TP FP FN TN precision recall TPR FPR
10 3.443 6.557 70.61 236.4 0.3443 0.04642 0.04642 0.02625

20 6.686 13.31 67.36 229.6 0.3343 0.09175 0.09175 0.05363

30 10.02 19.98 64.03 223 0.334 0.1393 0.1393 0.08075

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

TP FP FN TN precision recall TPR FPR
40 13.29 26.71 60.76 216.2 0.3323 0.1849 0.1849 0.1081

50 16.43 33.57 57.62 209.4 0.3286 0.2308 0.2308 0.1362

60 19.61 40.39 54.44 202.6 0.3268 0.2759 0.2759 0.164

The first four columns contain the true-false positives/negatives, and they are
as follows:

•	 True Positives (TP): These are recommended items that have been purchased
•	 False Positives (FP): These are recommended items that haven't been

purchased
•	 False Negatives(FN): These are not recommended items that have been

purchased
•	 True Negatives (TN): These are not recommended items that haven't been

purchased

A perfect (or overfitted) model would have only TP and TN.

If we want to take account of all the splits at the same time, we can just sum up
the indices:

columns_to_sum <- c("TP", "FP", "FN", "TN")
indices_summed <- Reduce("+", getConfusionMatrix(results))[, columns_
to_sum]
head(indices_summed)

TP FP FN TN
10 13.05 26.95 279.3 948.7

20 25.4 54.6 267 921

30 37.74 82.26 254.7 893.4

40 50.58 109.4 241.8 866.2

50 62.35 137.7 230 838

60 74.88 165.1 217.5 810.5

Note that we could have used avg(results) instead.

The other four columns contain performance indices, and it's harder to summarize
them across all the folds. However, we can visualize them by building some charts.

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating the Recommender Systems

[90]

First, let's build the ROC curve. It displays these factors:

•	 True Positive Rate (TPR): This is the percentage of purchased items that
have been recommended. It's the number of TP divided by the number of
purchased items (TP + FN).

•	 False Positive Rate (FPR): This is the percentage of not purchased items that
have been recommended. It's the number of FP divided by the number of not
purchased items (FP + TN).

The plot method will build a chart with the ROC curve. In order to visualize the
labels, we add the annotate = TRUE input:

plot(results, annotate = TRUE, main = "ROC curve")

The following image displays the ROC curve:

Two accuracy metrics are as follows:

•	 Precision: This is the percentage of recommended items that have been
purchased. It's the number of FP divided by the total number of positives
(TP + FP).

•	 Recall: This is the percentage of purchased items that have been
recommended. It's the number of TP divided by the total number of
purchases (TP + FN). It's also equal to the True Positive Rate.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

If a small percentage of purchased items are recommended, the precision usually
decreases. On the other hand, a higher percentage of purchased items will be
recommended so that the recall increases:

plot(results, "prec/rec", annotate = TRUE, main = "Precision-recall")

The following image displays the precision-recall:

This chart reflects the tradeoff between precision and recall. Even if the curve is not
perfectly monotonic, the trends are as expected.

In this section, we've seen how to evaluate a model. In the next section, we will see
how to compare two or more models.

Identifying the most suitable model
The previous chapter showed you how to evaluate a model. The performance indices
are useful to compare different models and/or parameters. Applying different
techniques on the same data, we can compare a performance index to pick the most
appropriate recommender. Since there are different evaluation metrics, there is no
objective way to do it.

The starting point is the k-fold evaluation framework that we defined in the previous
section. It is stored inside eval_sets.

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating the Recommender Systems

[92]

Comparing models
In order to compare different models, we first need to define them. Each model
is stored in a list with its name and parameters. The components of the list are
as follows:

•	 name: This is the model name.
•	 param: This is a list with its parameters. It can be NULL, if all the parameters

are left at their defaults.

For instance, that's how we can define an item-based collaborative filtering by setting
the k parameter to 20:

list(name = "IBCF", param = list(k = 20))

In order to evaluate different models, we can define a list with them. We can build
the following filtering:

•	 Item-based collaborative filtering, using the Cosine as the distance function
•	 Item-based collaborative filtering, using the Pearson correlation as the

distance function
•	 User-based collaborative filtering, using the Cosine as the distance function
•	 User-based collaborative filtering, using the Pearson correlation as the

distance function
•	 Random recommendations to have a base line

The preceding points are defined in the following code:

models_to_evaluate <- list(
 IBCF_cos = list(name = "IBCF", param = list(method =
 "cosine")),
 IBCF_cor = list(name = "IBCF", param = list(method =
 "pearson")),
 UBCF_cos = list(name = "UBCF", param = list(method =
 "cosine")),
 UBCF_cor = list(name = "UBCF", param = list(method =
 "pearson")),
 random = list(name = "RANDOM", param=NULL)
)

In order to evaluate the models properly, we need to test them, varying the number
of items. For instance, we might want to recommend up to 100 movies to each user.
Since 100 is already a big number of recommendations, we don't need to include
higher values:

n_recommendations <- c(1, 5, seq(10, 100, 10))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

We are ready to run and evaluate the models. Like in the previous chapter, the
function is evaluate. The only difference is that now the input method is a list
of models:

list_results <- evaluate(x = eval_sets, method = models_to_evaluate, n
= n_recommendations)
class(list_results)
evaluationResultList

The list_results object is an evaluationResultList object and it can be treated
as a list. Let's take a look at its first element:

class(list_results[[1]])
evaluationResults

The first element of list_results is an evaluationResults object, and this object
is the same as the output of evaluate with a single model. We can check whether the
same is true for all its elements:

sapply(list_results, class) == "evaluationResults"
TRUE TRUE TRUE TRUE TRUE

Each element of list_results is an evaluationResults object. We can extract the
related average confusion matrices using avg:

avg_matrices <- lapply(list_results, avg)

We can use avg_matrices to explore the performance evaluation. For instance, let's
take a look at the IBCF with Cosine distance:

head(avg_matrices$IBCF_cos[, 5:8])

precision recall TPR FPR
1 0.3589 0.004883 0.004883 0.002546

5 0.3371 0.02211 0.02211 0.01318

10 0.3262 0.0436 0.0436 0.02692

20 0.3175 0.08552 0.08552 0.0548

30 0.3145 0.1296 0.1296 0.08277

40 0.3161 0.1773 0.1773 0.1103

We have all the metrics of the previous chapter. In the next section, we will explore
these metrics to identify the best performing model.

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating the Recommender Systems

[94]

Identifying the most suitable model
We can compare the models by building a chart displaying their ROC curves. Like
the previous section, we can use plot. The annotate argument specifies which
curves will contain the labels. For instance, the first and second curves are labeled
by defining annotate = c(1, 2). In our case, we will label only the first curve:

plot(list_results, annotate = 1, legend = "topleft") title("ROC
curve")

A good performance index is the area under the curve (AUC), that is, the area under
the ROC curve. Even without computing it, we can notice that the highest is UBCF
with cosine distance, so it's the best-performing technique.

Like we did in the previous section, we can build the precision-recall chart:

plot(list_results, "prec/rec", annotate = 1, legend = "bottomright")
title("Precision-recall")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

The following image shows the precision-recall:

The UBCF with cosine distance is still the top model. Depending on what we want to
achieve, we can set an appropriate number of items to recommend.

Optimizing a numeric parameter
Recommendation models often contain some numeric parameters. For instance, IBCF
takes account of the k-closest items. How can we optimize k?

In a similar way to categoric parameters, we can test different values of a numeric
parameter. In this case, we also need to define which values we want to test.

So far, we left k to its default value: 30. Now, we can explore more values, ranging
between 5 and 40:

vector_k <- c(5, 10, 20, 30, 40)

Using lapply, we can define a list of models to evaluate. The distance metric is
the cosine:

models_to_evaluate <- lapply(vector_k, function(k){
 list(name = "IBCF", param = list(method = "cosine", k = k))
})
names(models_to_evaluate) <- paste0("IBCF_k_", vector_k)

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating the Recommender Systems

[96]

Using the same commands as we did earlier, let's build and evaluate
the models:
n_recommendations <- c(1, 5, seq(10, 100, 10))
list_results <- evaluate(x = eval_sets, method = models_to_evaluate, n
= n_recommendations)

Building a chart with the ROC curve, we should be able to identify the
best-performing k:

plot(list_results, annotate = 1, legend = "topleft") title("ROC
curve")

The k having the biggest AUC is 10. Another good candidate is 5, but it can never
have a high TPR. This means that, even if we set a very high n value, the algorithm
won't be able to recommend a big percentage of items that the user liked. The IBCF
with k = 5 recommends only a few items similar to the purchases. Therefore, it can't
be used to recommend many items.

Let's take a look at the precision-recall chart:

plot(list_results, "prec/rec", annotate = 1, legend = "bottomright")
title("Precision-recall")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

The following image displays the precision-recall:

To achieve the highest recall, we need to set k = 10. If we are more interested in the
precision, we set k = 5.

This section evaluated four techniques using different methods. Then, it optimized
a numeric parameter of one of them. Depending on what we want to achieve, the
choice of parameters might be slightly different.

Summary
This chapter showed you how to evaluate the performance of different models
in order to choose the most accurate one. There are different ways to evaluate
performances that might potentially lead to different choices. Depending on the
business target, the evaluation metric is different. This is an example of how business
and data should be combined to achieve the final result.

The next chapter will explain a complete use case in which we will prepare the data,
build different models, and test them.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[99]

Case Study – Building Your
Own Recommendation

Engine
The previous two chapters showed how you how to build, test, and optimize
recommender systems using R. Although the chapters were full of examples, they
were based on datasets provided by an R package. The data was structured using
redyal and was ready to be processed. However, in real life, the data preparation is
an important, time-consuming, and tough step.

Another limitation of the previous examples is that they are based on the ratings only.
In most of the situations, there are other data sources such as item descriptions and user
profiles. A good solution comes from a combination of all the relevant information.

This chapter shows a practical example in which we will build and optimize
a recommender system, starting from raw data. This chapter will cover the
following topics:

•	 Preparing the data to build a recommendation engine
•	 Exploring the data through visualization techniques
•	 Choosing and building a recommendation model
•	 Optimizing the performance of the recommendation model by setting its

parameters

In the end, we will build an engine that generates recommendations.

www.it-ebooks.info

http://www.it-ebooks.info/

Case Study – Building Your Own Recommendation Engine

[100]

Preparing the data
Starting from raw data, this section will show you how to prepare the input for the
recommendation models.

Description of the data
The data is about Microsoft users visiting a website during one week. For each user,
the data displays which areas the users visited. For the sake of simplicity, from now
on we will refer to the website areas with the term "items".

There are 5,000 users and they are represented by sequential numbers between
10,001 and 15,000. Items are represented by numbers between 1,000 and 1,297, even if
they are less than 298.

The dataset is an unstructured text file. Each record contains a number of fields
between 2 and 6. The first field is a letter defining what the record contains. There are
three main types of records, which are as follows:

•	 Attribute (A): This is the description of the website area
•	 Case (C): This is the case for each user, containing its ID
•	 Vote (V): This is the vote lines for the case

Each case record is followed by one or more votes, and there is just one case for
each user.

Our target is to recommend each user to explore some areas of the website that they
haven't explored yet.

Importing the data
This section will show you how to import data. First, let's load the packages that we
will use:

library("data.table")
library("ggplot2")
library("recommenderlab")
library("countrycode")

The preceding code is explained in the following points:

•	 data.table: This manipulates the data
•	 ggplot2: This builds charts

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[101]

•	 recommenderlab: This builds recommendation engines
•	 countrycode: This package contains the country names

Then, let's load the table into memory. If the text file is already in our working
directory, it's enough to define its name. Otherwise, we need to define its full path:

file_in <- "anonymous-msweb.test.txt"

The rows contain different numbers of columns, which means that the data is
unstructured. However, there are at most six columns, so we can load the file into
a table using read.csv. The rows with fewer than six fields will have just empty
values:

table_in <- read.csv(file_in, header = FALSE)
head(table_in)

V1 V2 V3 V4 V5 V6
I 4 www.microsoft.

com
created by getlog.pl

T 1 VRoot 0 0 VRoot

N 0 0

N 1 1

T 2 Hide1 0 0 Hide

N 0 0

The first two columns contain the user IDs and their purchases. We can just drop the
other columns:

table_users <- table_in[, 1:2]

In order to process the data more easily, we can convert it into a data table, using
this command:

table_users <- data.table(table_users)

The columns are as follows:

•	 category: This is a letter specifying the content of the column. The
columns containing a user or an item ID belong to the categories C
and V, respectively.

•	 value: This is a number specifying the user or item ID.

www.it-ebooks.info

http://www.it-ebooks.info/

Case Study – Building Your Own Recommendation Engine

[102]

We can assign the column names and select the rows containing either users
or items:

setnames(table_users, 1:2, c("category", "value"))

table_users <- table_users[category %in% c("C", "V")]

head(table_users)

category value
C 10001

V 1038

V 1026

V 1034

C 10002

V 1008

The table_users object contains structured data, which is our starting point to
define a rating matrix.

Defining a rating matrix
Our target is to define a table having a row for each item and a column for each
purchase. For each user, table_users contains its ID and purchases in separate
rows. In each block or rows, the first column contains the user ID and the other
contains the item IDs.

You can use the following steps to define a rating matrix:

1.	 Label the cases.
2.	 Define a table in the long format.
3.	 Define a table in the wide format.
4.	 Define the rating matrix.

In order to reshape the table, the first step is to define a field called chunk_user
containing an incremental number for each user. The category == "C" condition is
true for the user rows, which are the first rows of the chunks. Using cumsum, we are
incrementing the index of 1 whenever there is a row with a new user:

table_users[, chunk_user := cumsum(category == "C")]

head(table_users)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[103]

category value chunk_user
C 10001 1

V 1038 1

V 1026 1

V 1034 1

C 10002 2

V 1008 2

The next step is to define a table in which rows correspond to the purchases. We
need a column with the user ID and a column with the item ID. The new table is
called table_long, because it's in a long format:

table_long <- table_users[, list(user = value[1], item = value[-1]), by =
"chunk_user"]

head(table_long)

chunk_user user item
1 10001 1038

1 10001 1026

1 10001 1034

2 10002 1008

2 10002 1056

2 10002 1032

Now, we can define a table having a row for each user and a column for each item.
The values are equal to 1 if the item has been purchased, and 0 otherwise. We can
build the table using the reshape function. Its inputs are as follows:

•	 data: This is the table in the long format.
•	 direction: This shows whether we are reshaping from long to wide or

otherwise.
•	 idvar: This is the variable identifying the group, which, in this case,

is the user.
•	 timevar: This is the variable identifying the record within the same group. In

this case, it's the item.
•	 v.names: This is name of the values. In this case, it's the rating that is always

equal to one. Missing user-item combinations will be NA values.

www.it-ebooks.info

http://www.it-ebooks.info/

Case Study – Building Your Own Recommendation Engine

[104]

After defining the column value equal to 1, we can build table_wide using
reshape:

table_long[, value := 1]

table_wide <- reshape(data = table_long,
 direction = "wide",
 idvar = "user",
 timevar = "item",
 v.names = "value")

head(table_wide[, 1:5, with = FALSE])

chunk_user user value.1038 value.1026 value.1034
1 10001 1 1 1

2 10002 NA NA NA

3 10003 1 1 NA

4 10004 NA NA NA

5 10005 1 1 1

6 10006 NA NA 1

In order to build the rating matrix, we need to keep only the columns containing
ratings. In addition, the user name will be the matrix row names, so we need to store
them in the vector_users vector:

vector_users <- table_wide[, user]

table_wide[, user := NULL]

table_wide[, chunk_user := NULL]

In order to have the column names equal to the item names, we need from the value
prefix. For this purpose, we can use the substring function:

setnames(x = table_wide,
 old = names(table_wide),
 new = substring(names(table_wide), 7))

We need to store the rating matrix within a recommenderlab object. For this purpose,
we need to convert table_wide in a matrix first. In addition, we need to set the row
names equal to the user names:

matrix_wide <- as.matrix(table_wide)
rownames(matrix_wide) <- vector_users

head(matrix_wide[, 1:6])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[105]

user 1038 1026 1034 1008 1056 1032
10001 1 1 1 NA NA NA

10002 NA NA NA 1 1 1

10003 1 1 NA NA NA NA

10004 NA NA NA NA NA NA

10005 1 1 1 1 NA NA

10006 NA NA 1 NA NA NA

The last step is coercing matrix_wide into a binary rating matrix using as, in the
following way:

matrix_wide[is.na(matrix_wide)] <- 0

ratings_matrix <- as(matrix_wide, "binaryRatingMatrix")

ratings_matrix

5000 x 236 rating matrix of class binaryRatingMatrix with 15191
ratings.

Let's take a look at the matrix using image:

image(ratings_matrix[1:50, 1:50], main = "Binary rating matrix")

The following image shows the binary rating matrix:

www.it-ebooks.info

http://www.it-ebooks.info/

Case Study – Building Your Own Recommendation Engine

[106]

As expected, the matrix is sparse. We can also visualize the distributions of the
number of users purchasing an item:

n_users <- colCounts(ratings_matrix)

qplot(n_users) + stat_bin(binwidth = 100) + ggtitle("Distribution of the
number of users")

The following image displays the distribution of the number of users:

There are some outliers, that is, items purchased by many users. Let's visualize the
distribution excluding them:

qplot(n_users[n_users < 100]) + stat_bin(binwidth = 10) +
ggtitle("Distribution of the number of users")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[107]

The following image displays the distribution of the numbers of users:

There are many items that have been purchased by a few users only, and we won't
recommend them. Since they increase the computational time, we can just remove
them by defining a minimum number of purchases, for example, 5:

ratings_matrix <- ratings_matrix[, colCounts(ratings_matrix) >= 5]

ratings_matrix

5000 x 166 rating matrix of class 'binaryRatingMatrix' with 15043
ratings.

Now, we have 166 items, compared to the initial 236. As regards users, we want to
recommend items to everyone. However, there might be users that have purchased
only items that we removed. Let's check it:

sum(rowCounts(ratings_matrix) == 0)
15

www.it-ebooks.info

http://www.it-ebooks.info/

Case Study – Building Your Own Recommendation Engine

[108]

There are 15 users with no purchases. These purchases should be removed. In
addition, users who have purchased just a few items are difficult to deal with.
Therefore, we only keep users that have purchased at least five items:

ratings_matrix <- ratings_matrix[rowCounts(ratings_matrix) >= 5,]

ratings_matrix

959 x 166 rating matrix of class 'binaryRatingMatrix' with 6816
ratings

Extracting item attributes
The table_in raw data contains some records starting with A, and they display some
information about the items. In order to extract these records, we can convert table_
in into a data table and extract the rows having A in the first column:

table_in <- data.table(table_in)

table_items <- table_in[V1 == "A"]

head(table_items)

V1 V2 V3 V4 V5
A 1277 1 NetShow for

PowerPoint
/stream

A 1253 1 MS Word Development /worddev

A 1109 1 TechNet (World Wide
Web Edition)

/technet

A 1038 1 SiteBuilder Network
Membership

/sbnmember

A 1205 1 Hardware Supprt /hardwaresupport

A 1076 1 NT Workstation
Support

/ntwkssupport

The relevant columns are:

•	 V2: Item ID
•	 V4: Item description
•	 V5: Web page URL

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[109]

In order to have a more clear table, we can extract and rename them. In addition, we
can sort the table by item ID:

table_items <- table_items[, c(2, 4, 5), with = FALSE]

setnames(table_items, 1:3, c("id", "description", "url"))

table_items <- table_items[order(id)]

head(table_items)

id description url
1000 regwiz /regwiz

1001 Support desktop /support

1002 End user produced
view

/athome

1003 Knowledge base /kb

1004 Microsoft.com search /search

1005 Norway /norge

We need to identify one or more features describing the items. If we look at the table,
we can identify two categories of web pages:

•	 Microsoft product
•	 Geographic location

We can identify the records containing a geographic location, and consider the
remaining as products. For this purpose, we can start defining the field category
that, at the moment, is equal to product for all the records:

table_items[, category := "product"]

The country code package provides us with the countrycode_data object that
contains most of the country names. We can define the name_countries vector that
contains the names of countries and geographic locations. Then, we can categorize as
region all the records whose description is in name_countries:

name_countries <- c(countrycode_data$country.name,
 "Taiwan", "UK", "Russia", "Venezuela",
 "Slovenija", "Caribbean", "Netherlands (Holland)",
 "Europe", "Central America", "MS North Africa")

table_items[description %in% name_countries, category := "region"]

www.it-ebooks.info

http://www.it-ebooks.info/

Case Study – Building Your Own Recommendation Engine

[110]

There are other records containing the word region. We can identify them through a
regular expression using grepl:

table_items[grepl("Region", description), category := "region"]

head(table_items)

V2 description url category
1000 regwiz /regwiz product

1001 Support Desktop /support product

1002 End User Produced View /athome product

1003 Knowledge Base /kb product

1004 Microsoft.com Search /search product

1005 Norway /norge region

Let's take a look at the result and find out the number of items we have for
each category:

table_items[, list(n_items = .N), by = category]

category n_items
product 248

region 46

About 80 percent of the web pages are products, and the remaining 20 percent
are regions.

We are now ready to build recommendation models.

Building the model
This section will show you how to build a recommendation model using item
descriptions and user purchases. The model combines item-based collaborative
filtering with some information about the items. We will include the item description
using a monolithic hybrid system with feature combination. The recommender will
learn from the two data sources in two separate stages.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[111]

Following the approach described in Chapter 3, Recommender Systems, let's split the
data into the training and the test set:

which_train <- sample(x = c(TRUE, FALSE),
 size = nrow(ratings_matrix),
 replace = TRUE,
 prob = c(0.8, 0.2))
recc_data_train <- ratings_matrix[which_train,]

recc_data_test <- ratings_matrix[!which_train,]

Now, we can build an IBCF model using Recommender. Since the rating matrix is
binary, we will set the distance method to Jaccard. For more details, look at the
Collaborative filtering on binary data section in Chapter 3, Recommender Systems. The
remaining parameters are left to their defaults:

recc_model <- Recommender(data = recc_data_train,
 method = "IBCF",
 parameter = list(method = "Jaccard"))

The engine of IBCF is based on a similarity matrix about the items. The distances are
computed from the purchases. The more the number of items purchased by the same
users, the more similar they are.

We can extract the matrix from the sim element in the slot model. Let's take a look
at it:

class(recc_model@model$sim)
dgCMatrix
dim(recc_model@model$sim)
166 and _166_

The matrix belongs to the dgCMatrix class, and it is square. We can visualize
it using image:

image(recc_model@model$sim)

www.it-ebooks.info

http://www.it-ebooks.info/

Case Study – Building Your Own Recommendation Engine

[112]

The following image is the output of the preceding code:

We can't identify any clear pattern, and it's because the items are not sorted. Let's
take a look at the range of values:

range(recc_model@model$sim)
0 and _1_

All the distances are between 0 and 1.

Our target is to combine the distance matrix with the item descriptions, via the
following steps:

1.	 Define a similarity matrix based on the purchases.
2.	 Define a similarity matrix based on the item descriptions.
3.	 Combine the two matrices.

Starting from recc_model, we can define the purchases similarity matrix. All we
need to do is to convert the dgCMatrix object into matrix:

dist_ratings <- as(recc_model@model$sim, "matrix")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[113]

In order to build the matrix based on item descriptions, we can use the dist function.
Given that it's based on a category column only, the distance will be as follows:

•	 1, if the two items belong to the same category
•	 0, if the two items belong to different categories

We need to build a similarity matrix, and we have a distance matrix. Since distances
are between 0 and 1, we can just use 1 - dist(). All the operations are performed
within the data table:

dist_category <- table_items[, 1 - dist(category == "product")]
class(dist_category)

dist

The dist_category raw data is a dist object that can be easily converted into a
matrix using the as() function :

dist_category <- as(dist_category, "matrix")

Let's compare the dimensions of dist_category with dist_ratings:

dim(dist_category)
294 and _294_
dim(dist_ratings)
166 and _166_

The dist_category table has more rows and columns, and the reason is that it
contains all the items, whereas dist_ratings contains only the ones that have
been purchased.

In order to combine dist_category with dist_ratings, we need to have the same
items. In addition, they need to be sorted in the same way. We can match them using
the item names using these steps:

1.	 Make sure that both the matrices have the item names in their row and
column names.

2.	 Extract the row and column names from dist_ratings.
3.	 Subset and order dist_category according to the names of dist_ratings.

The dist_ratings table already contains the row and column names. We need to
add them to dist_category, starting from table_items:

rownames(dist_category) <- table_items[, id]

colnames(dist_category) <- table_items[, id]

www.it-ebooks.info

http://www.it-ebooks.info/

Case Study – Building Your Own Recommendation Engine

[114]

Now, it's sufficient to extract the names from dist_ratings and subset
dist_category:

vector_items <- rownames(dist_ratings)

dist_category <- dist_category[vector_items, vector_items]

Let's check whether the two matrices match:

identical(dim(dist_category), dim(dist_ratings))
TRUE
identical(rownames(dist_category), rownames(dist_ratings))
TRUE
identical(colnames(dist_category), colnames(dist_ratings))
TRUE

Everything is identical, so they match. Let's take a look at dist_category:

image(dist_category)

The following image is the output of the preceding code:

The matrix contains only 0s and 1s, and it's based on two categories, so there are
clear patterns. In addition, we can notice that the matrix is symmetric.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[115]

We need to combine the two tables, and we can do it with a weighted average. Since
dist_category takes account of two categories of items only, it's better not to give it
too much relevance. For instance, we can set its weight to 25 percent:

weight_category <- 0.25

dist_tot <- dist_category * weight_category + dist_ratings * (1 - weight_
category)

Let's take a look at the dist_tot matrix using image:

image(dist_tot)

The following image is the output of the preceding code:

We can see some white dots representing items that are very similar. In addition, we
can still see the patterns of dist_category in the background.

Now, we can include the new matrix within recc_model. For this purpose, it's
sufficient to convert dist_tot into dgCMatrix and insert it in recc_model:

recc_model@model$sim <- as(dist_tot, "dgCMatrix")

recc_model@model$sim <- as(dist_tot, "dgCMatrix")

www.it-ebooks.info

http://www.it-ebooks.info/

Case Study – Building Your Own Recommendation Engine

[116]

As shown in Chapter 3, Recommender Systems, we can recommend items
using predict():

n_recommended <- 10

recc_predicted <- predict(object = recc_model,
 newdata = recc_data_test,
 n = n_recommended)

The itemLabels slot of recc_predicted contains the item names, that is, their code:

head(recc_predicted@itemLabels)

1038, 1026, 1034, 1008, 1056 and 1032

In order to display the item description, we can use table_items. All we need to do is
make sure that the items are ordered in the same way as itemLabels. For this purpose,
we will prepare a data frame containing the item information. We will also make sure
that it's sorted in the same way as the item labels using the following steps:

1.	 Define a data frame having a column with the ordered item labels.
table_labels <- data.frame(id = recc_predicted@itemLabels)

2.	 Left-join between table_labels and table_items. Note the argument sort
= FALSE that does not let us re-sort the table:
table_labels <- merge(table_labels, table_items,

 by = "id", all.x = TRUE, all.y = FALSE,

 sort = FALSE)

3.	 Convert the description from factor to character:

descriptions <- as(table_labels$description, "character")

Let's take a look at table_labels:

head(table_labels)

id description url category
1038 SiteBuilder Network Membership /sbnmember product

1026 Internet Site Construction for
Developers

/sitebuilder product

1034 Internet Explorer /ie product

1008 Free Downloads /msdownload product

1056 sports /sports product

1032 Games /games product

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[117]

As expected, the table contains the description of the items. Now, we are able to
extract the recommendations. For instance, we can do it for the first user:

recc_user_1 <- recc_predicted@items[[1]]

items_user_1 <- descriptions[recc_user_1]

head(items_user_1)

Windows family of OSs, Support Desktop, Knowledge Base, Microsoft.com Search,
Products, and Windows 95.

Now, we can define a table with the recommendations to all users. Each column
corresponds to a user and each row to a recommended item. Having set
n_recommended to 10, the table should have 10 rows. For this purpose, we can
use sapply() For each element of recc_predicted@items, we identify the related
item descriptions.

However, the number of recommended items per user is a number between 1 and
10, which is not the same for each user. In order to define a structured table with
10 rows, we need the same number of elements for each user. For this reason, we
will replace the missing recommendations with empty strings. We can obtain it by
replicating the empty string with rep():

recc_matrix <- sapply(recc_predicted@items, function(x){

 recommended <- descriptions[x]

 c(recommended, rep("", n_recommended - length(recommended)))

})

dim(recc_matrix)

10 and _191_

Let's take a look at the recommendations for the first three users:

head(recc_matrix[, 1:3])

Windows family of
OSs

Products Developer workshop

Support Desktop MS Word SiteBuilder Network
Membership

Knowledge Base isapi isapi
Microsoft.com Search regwiz Microsoft.com Search
Products Windows family of OSs Windows Family of OSs
Windows 95 Microsoft.com Search Web Site Builder's Gallery

www.it-ebooks.info

http://www.it-ebooks.info/

Case Study – Building Your Own Recommendation Engine

[118]

We can notice that some items have been recommended to the three of them:
Products and Support Desktop. Therefore, we suspect that some items are much
more likely to be recommended.

Just like we did in Chapter 3, Recommender Systems, we can explore the output. For
each item, we can count how many times it has been recommended:

table_recomm_per_item <- table(recc_matrix)

recomm_per_item <- as(table_recomm_per_item, "numeric")

In order to visualize the result, we bin_recomm_per_item using cut():

bin_recomm_per_item <- cut(recomm_per_item,
 breaks = c(0, 10, 20, 100,
 max(recomm_per_item)))

Using qplot, we can visualize the recomm_per_item distribution:

qplot(bin_recomm_per_item) + ggtitle("Recommendations per item")

The following image displays the recommendations per item:

Most of the items have been recommended 10 times or fewer, and a few of them
have more than 100 recommendations. The distribution has a long tail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[119]

We can also identify the most popular items by sorting recomm_per_item:

recomm_per_item_sorted <- sort(table_recomm_per_item,
 decreasing = TRUE)
 recomm_per_item_top <-
 head(recomm_per_item_sorted, n = 4)

table_top <- data.frame(

 name = names(recomm_per_item_top),
 n_recomm = recomm_per_item_top)

table_top

name n_recomm
Internet Explorer 126

Windows Family of OSs 120

Knowledge Base 118

Products 115

In this section, we built and explored a hybrid recommender model. The next step is
to evaluate it and optimize its parameters.

Evaluating and optimizing the model
This section will show you how to evaluate the performance of our recommender.
Starting from the evaluation, we can try some parameter configurations and
choose the one performing the best. For more details, see Chapter 4, Evaluating the
Recommender Systems.

The following are the steps to evaluate and optimize the model:

•	 Build a function that evaluates the model given a parameter configuration
•	 Use the function to test different parameter configurations and pick the

best one

Let's go through these steps in detail.

Building a function to evaluate the model
This section will show you how to define a function that:

1.	 Sets up cross validation using the k-fold.
2.	 Builds a hybrid IBCF.

www.it-ebooks.info

http://www.it-ebooks.info/

Case Study – Building Your Own Recommendation Engine

[120]

3.	 Recommends the items to the users in the test sets.
4.	 Evaluates the recommendation.

The inputs of our function are as follows:

•	 Data: This is the rating matrix table with the item description
•	 k-fold parameters: This is the number of folds, the number of items to keep

in the test set
•	 Model parameters: This is the number of nearest neighbors, weight to the

description-based distance, number of items to recommend

Let's define the function arguments. You can find the description of each argument
as a comment next to its name:

evaluateModel <- function (

 # data inputs

 ratings_matrix, # rating matrix

 table_items, # item description table

 # K-fold parameters

 n_fold = 10, # number of folds

 items_to_keep = 4, # number of items to keep in the test set

 # model parameters

 number_neighbors = 30, # number of nearest neighbors

 weight_description = 0.2, # weight to the item description-based
 distance

 items_to_recommend = 10 # number of items to recommend

){

 # build and evaluate the model

}

Now, we can walk through the function body step by step. For a more detailed
explanation, see the previous section and Chapter 4, Evaluating the Recommender
Systems:

1.	 Using the evaluationScheme() function, set-up a k-fold. The parameters
k and given are set according to the inputs n_fold and items_to_keep,
respectively. The set.seed(1) command makes sure that the example is
reproducible, that is, the random component will be the same if repeated:
set.seed(1)

eval_sets <- evaluationScheme(data = ratings_matrix,

 method = "cross-validation",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[121]

 k = n_fold,

 given = items_to_keep)

2.	 Using Recommender(), build an IBCF defining the distance function as
Jaccard and the k argument as the number_neighbors input:
recc_model <- Recommender(data = getData(eval_sets, "train"),

 method = "IBCF",

 parameter = list(method = "Jaccard",

 k = number_neighbors))

3.	 Extract the rating-based distance matrix from the recc_model model:
dist_ratings <- as(recc_model@model$sim, "matrix")

vector_items <- rownames(dist_ratings)

4.	 Starting from the table_items input, define the description-based distance
matrix:
dist_category <- table_items[, 1 - as.matrix(dist(category ==
"product"))]

rownames(dist_category) <- table_items[, id]

colnames(dist_category) <- table_items[, id]

dist_category <- dist_category[vector_items, vector_items]

5.	 Define the distance matrix combining dist_ratings and dist_category.
The combination is a weighted average, and the weight is defined by the
weight_description input:
dist_tot <- dist_category * weight_description +

 dist_ratings * (1 - weight_description)

recc_model@model$sim <- as(dist_tot, "dgCMatrix")

6.	 Predict the test set users with known purchases. Since we are using a
table with 0 and 1 ratings only, we can specify that we predict the top n
recommendations with the argument type = "topNList". The argument
n, defining the number of items to recommend, comes from the items_to_
recommend input:
eval_prediction <- predict(object = recc_model,
 newdata = getData(eval_sets,
 "known"),
 n = items_to_recommend,
 type = "topNList")

www.it-ebooks.info

http://www.it-ebooks.info/

Case Study – Building Your Own Recommendation Engine

[122]

7.	 Evaluate the model performance using calcPredictionAccuracy().
Specifying byUser = FALSE, we have a table with the average indices such
as precision and recall:
eval_accuracy <- calcPredictionAccuracy(

 x = eval_prediction,

 data = getData(eval_sets, "unknown"),

 byUser = FALSE,

 given = items_to_recommend)

8.	 The function output is the eval_accuracy table:
return(eval_accuracy)

9.	 Now, we can test our function:
model_evaluation <- evaluateModel(ratings_matrix = ratings_matrix,
 table_items = table_items)

model_evaluation

index value
TP 2

FP 8

FN 1

TN 145

precision 19%

recall 64%

TPR 64%

FPR 5%

You can find a detailed description of the indices in Chapter 4, Evaluating the
Recommender Systems.

In this section, we defined a function evaluating our model with given settings.
This function will help us with parameter optimization.

Optimizing the model parameters
Starting with our evaluateModel() function, we can optimize the model
parameters. In this section, we will optimize these parameters:

•	 number_neighbors: This is the number of nearest neighbors of IBCF
•	 weight_description: This is the weight given to the description-based

distance

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[123]

Although we could optimize other parameters, we will just leave them to their
defaults, for the sake of simplicity.

Our recommender model combines IBCF with the item descriptions. Therefore, it's a
good practice to optimize IBCF first, that is, the number_neighbors parameter.

First, we have to decide which values we want to test. We take account of k, that is,
at most, half of the items, that is, about 80. On the other hand, we exclude values that
are smaller than 4, since the algorithm would be too unstable. Setting a granularity of
2, we can generate a vector with the values to test:

nn_to_test <- seq(4, 80, by = 2)

Now, we can measure the performance depending on number_neighbors. Since
we are optimizing the IBCF part only, we will set weight_description = 0. Using
lapply, we can build a list of elements that contain the performance for each value
of nn_to_test:

list_performance <- lapply(

 X = nn_to_test,

 FUN = function(nn){

 evaluateModel(ratings_matrix = ratings_matrix,
 table_items = table_items,
 number_neighbors = nn,
 weight_description = 0)

 })

Let's take a look at the first element of the list:

list_performance[[1]]

name value
TP 1.663

FP 8.337

FN 1.683

TN 144.3

precision 0.1663

recall 0.5935

TPR 0.5935

FPR 0.05449

The first element contains all the performance metrics. In order to evaluate our
model, we can use the precision and recall. See Chapter 4, Evaluating the Recommender
Systems for more information.

www.it-ebooks.info

http://www.it-ebooks.info/

Case Study – Building Your Own Recommendation Engine

[124]

We can extract a vector of precisions (or recalls) using sapply:

sapply(list_performance, "[[", "precision")^t

0.1663, 0.1769, 0.1769, 0.175, 0.174, 0.1808, 0.176, 0.1779, 0.1788,
0.1788, 0.1808, 0.1817, 0.1817, 0.1837, 0.1846, 0.1837, 0.1827, 0.1817,
0.1827, 0.1827, 0.1817, 0.1808, 0.1817, 0.1808, 0.1808, 0.1827, 0.1827,
0.1837, 0.1827, 0.1808, 0.1798, 0.1798, 0.1798, 0.1798, 0.1798, 0.1798,
0.1788, 0.1788 and 0.1788

In order to analyze the output, we can define a table whose columns are nn_to_test,
precisions, and recalls:

table_performance <- data.table(

 nn = nn_to_test,
 precision = sapply(list_performance, "[[", "precision"),
 recall = sapply(list_performance, "[[", "recall")

)

In addition, we can define a performance index that we will optimize. The
performance index can be a weighted average between the precision and the recall.
The weights depend on the use case, so we can just leave them to 50 percent:

weight_precision <- 0.5

table_performance[

 performance := precision * weight_precision + recall * (1 -
 weight_precision)]

head(table_performance)

nn precision recall performance
4 0.1663 0.5935 0.3799

6 0.1769 0.621 0.399

8 0.1769 0.5973 0.3871

10 0.175 0.5943 0.3846

12 0.174 0.5909 0.3825

14 0.1808 0.6046 0.3927

The precision is the percentage of recommended items that have been purchased,
and the recall is the percentage of purchased items that have been recommended.

The table_performance table contains all the evaluation metrics. Starting with it,
we can build charts that help us identify the optimal nn.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[125]

Before building the charts, let's define the convertIntoPercent() function that we
will use within the ggplot2 functions:

convertIntoPercent <- function(x){

 paste0(round(x * 100), "%")

}

We are ready to build the charts. The first chart is about the precision based on nn.
We can build it using these functions:

•	 qplot: This builds the scatterplot.
•	 geom_smooth: This adds a smoothing line.
•	 scale_y_continuous: This changes the y scale. In our case, we just want to

display the percentage.

The following command consists of the preceding points:

 qplot(table_performance[, nn], table_performance[, precision]) +
 geom_smooth() + scale_y_continuous(labels = convertIntoPercent)

The following image is the output of the preceding code:

www.it-ebooks.info

http://www.it-ebooks.info/

Case Study – Building Your Own Recommendation Engine

[126]

The smoothed line grows until the global maximum, which is around nn = 35,
slowly decreases. This index expresses the percentage of recommendations that have
been successful, so it's useful when there are high costs associated with advertising.

Let's take a look at the recall, using the same commands:

 qplot(table_performance[, nn], table_performance[, recall]) +
 geom_smooth() + scale_y_continuous(labels = convertIntoPercent)

The following image is the output of the preceding screenshot:

The maximum recall is around nn = 40. This index expresses the percentage of
purchases that we recommended, so it's useful if we want to be sure to predict most
of the purchases.

The performance takes account of the precision and the recall at the same time. Let's
take a look at it:

 qplot(table_performance[, nn], table_performance[, performance]) +
 geom_smooth() + scale_y_continuous(labels = convertIntoPercent)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[127]

The optimal performances are between 30 and 45. We can identify the best nn using
which.max:

row_best <- which.max(table_performance$performance)

number_neighbors_opt <- table_performance[row_best, nn]

number_neighbors_opt

34

The optimal value is 34. We optimized the IBCF parameter, and the next step is
determining the weight of the item description component. First, let's define the
weights to try. The possible weights range between 0 and 1, and we just need to set
the granularity, for instance, 0.05:

wd_to_try <- seq(0, 1, by = 0.05)

Using lapply, we can test the recommender based on the weight:

list_performance <- lapply(

 X = wd_to_try,
 FUN = function(wd){

www.it-ebooks.info

http://www.it-ebooks.info/

Case Study – Building Your Own Recommendation Engine

[128]

 evaluateModel(ratings_matrix = ratings_matrix,
 table_items = table_items,
 number_neighbors = number_neighbors_opt,
 weight_description = wd)
 })

Just like we did earlier, we can build a table containing precisions, recalls, and
performances:

table_performance <- data.table(

 wd = wd_to_try,
 precision = sapply(list_performance, "[[", "precision"),
 recall = sapply(list_performance, "[[", "recall")

)

table_performance[

 performance := precision * weight_precision + recall * (1 - weight_
precision)]

Now, we can visualize the performance based on the weight through a chart:

 qplot(table_performance[, wd], table_performance[, performance]) +
 geom_smooth() + scale_y_continuous(labels = convertIntoPercent)

The following image is the output of the preceding command:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[129]

The performance is the same for each point, with the exception of the extremes.
Therefore, the smoothing line is not useful.

We have the best performance that takes account of both ratings and descriptions.
The extreme 0.00 corresponds to pure IBCF, and it performs slightly worse than the
hybrid. The model in the extreme 1.00 is based on the item description only, and
that's why it performs so badly.

The reason why the performance doesn't change much is that the item description
is based on a binary feature only. If we add other features, we will see a
greater impact.

This section showed you how to optimize our recommendation algorithm on
the basis of two parameters. A next step could be optimizing on the basis of the
remaining IBCF parameters and improving the item description.

Summary
This chapter showed you how to apply the techniques in a real-life context.
Starting with raw unstructured data, we built a rating matrix, which is the input
of collaborative filtering. In addition, we extracted the item description, which
improved the performance of our model. Using performance evaluations, we
optimized the model parameters. The same approach can be applied in real-life
contexts, if properly refined.

This book is a path that shows, first, the basics of machine learning and then a
practical application. After having read this book, you will be able to deal with real-
life challenges, identifying the most appropriate recommendation solution. Thank
you for following until this point.

If you have any queries, don't hesitate to contact us.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[131]

References
To learn more about recommender systems and machine learning use the following
references:

•	 The Recommender Systems: An Introduction by Dietmar Jannach, Markus Zanker,
Alexander Felfernig, and Gerhard Friedrich

•	 Recommender Systems Handbook by Francesco Ricci, Lior Rokach, Bracha Shapira,
and Paul B. Kantor

•	 An Introduction to Statistical Learning with Applications in R by Gareth James,
Daniela Witten, Trevor Hastie, and Robert Tibshirani

•	 https://en.wikipedia.org/wiki/Precision_and_recall

•	 The online course, Machine Learning, by Andrew NG at https://www.
coursera.org/

www.it-ebooks.info

https://en.wikipedia.org/wiki/Precision_and_recall
https://www.coursera.org/
https://www.coursera.org/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[133]

Index
A
accuracy metrics

precision 90
recall 90

Akaike information criteria (AIC) 30
area under the curve (AUC) 94

B
bagging (Bootstrap aggregating) 23
Bayesian information criteria (BIC) 30
binary data

collaborative filtering 68
item-based collaborative filtering 70, 71
user-based collaborative filtering 72, 73

C
case study 6
cluster analysis

about 15
k-means cluster algorithm 16

collaborative filtering
about 31
conclusions 73
item-based collaborative filtering 31
limitations 73
user-based collaborative filtering 31

collaborative filtering recommender
systems 3

Comprehensive R Archive Network
(CRAN) 22

confusion matrix 29
content-based filtering 31, 74
content-based recommender systems 3
cosine distance 10

D
data

describing 100
importing 100, 101
item attributes, extracting 108-110
preparing 100
rating matrix, defining 102-107
record, types 100

data analysis problem
solving 8

data exploration
about 38
average ratings, exploring 41-43
matrix, visualizing 43-46
nature of data, exploring 38, 39
values of rating, exploring 39, 40
viewed movies, exploring 40, 41

data mining
techniques 15

data-mining algorithms
confusion matrix 29
cross validation 28
evaluating 27-30
model comparison 30
precision 29
Recall/Sensitivity 29
regularization 29
specificity 29

data preparation
about 47
data, binarizing 51-53
data, bootstrapping 81-83
data, normalizing 49, 50
data, splitting 78-81
for evaluating models 77, 78

www.it-ebooks.info

http://www.it-ebooks.info/

[134]

k-fold, using 83
most relevant data, exploring 48, 49
most relevant data, selecting 47

data preprocessing techniques
about 9
dimensionality reduction 11
similarity measures 9

datasets
testing set 78
training set 78

decision trees
about 21
using 21

dimensionality reduction
about 11
Principal component analysis

(PCA) 11-14

E
ensemble methods

about 23
bagging (Bootstrap aggregating) 23
boosting 25, 26
random forests 24

Euclidian distance 9
evaluation techniques 5

F
False Positive Rate (FPR) 90
function

data 120
defining 119
k-fold parameters 120
model parameters 120

H
hybrid filtering 31
hybrid recommender systems 5, 74

I
item-based collaborative filtering

about 31, 53, 54
on binary data 70, 71

recommendation model, building 55, 56
recommendation model, exploring 57, 58
recommender model, applying on

test set 60-63
test set, defining 54, 55
training set, defining 54, 55

K
k-fold

used, for validating models 83
k-means cluster algorithm

about 16-18
cluster assignment step 16
move centroid step 16
support vector machines (SVM) 18-21

knowledge-based filtering 31
knowledge-based recommender

systems 4, 75

M
mean absolute error (MAE) 86
mean squared error (MSE) 86
models

comparing 92, 93
identifying 91
most proper model, identifying 94, 95
numeric parameter, optimizing 95-97

monolithic hybrid systems
feature augmentation 75
feature combination 75

P
Pearson correlation 10
Principal component analysis

(PCA) 9-14

R
recommendation model

building 110-119
evaluating 119-122
optimizing 119
parameters, optimizing 122-129

www.it-ebooks.info

http://www.it-ebooks.info/

[135]

recommenderlab
datasets 32
Jester5k dataset 32
MovieLense dataset 32
MSWeb dataset 32
realRatingMatrix class, defining 33, 34
recommendation models, displaying 36-38
similarity matrix, computing 34-36

recommender systems
about 1, 2
building, recommenderlab used 31, 32
case study 6
future scope 6

recommender techniques
evaluating 84
ratings, evaluating 84-88
recommendations, evaluating 88-91

root mean square error (RMSE) 86

S
similarity measures

about 9
cosine distance 10
Euclidian distance 9
Pearson correlation 10

singular value decomposition (SVD) 9
support vector machines (SVM) 18-21

T
test set 54
training set 54
True Positive Rate (TPR) 90

U
user-based collaborative filtering

about 31, 64
data preparation 69, 70
on binary data 68, 72, 73
recommendation model, building 65
recommender model, applying on

test set 66-68

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Building a Recommendation

System with R

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering Predictive Analytics
with R
ISBN: 978-1-78398-280-6 Paperback: 414 pages

Master the craft of predictive modeling by developing
strategy, intuition, and a solid foundation in essential
concepts

1.	 Grasp the major methods of predictive
modeling and move beyond black box thinking
to a deeper level of understanding.

2.	 Leverage the flexibility and modularity of R to
experiment with a range of different techniques
and data types.

3.	 Packed with practical advice and tips
explaining important concepts and best
practices to help you understand quickly and
easily.

Learning Data Mining with R
ISBN: 978-1-78398-210-3 Paperback: 314 pages

Develop key skills and techniques with R to create
and customize data mining algorithms

1.	 Develop a sound strategy for solving predictive
modeling problems using the most popular
data mining algorithms.

2.	 Gain understanding of the major methods of
predictive modeling.

3.	 Packed with practical advice and tips to help
you get to grips with data mining.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering Scientific Computing
with R
ISBN: 978-1-78355-525-3 Paperback: 432 pages

Employ professional quantitative methods to answer
scientific questions with a powerful open source data
analysis environment

1.	 Perform publication-quality science using R.

2.	 Use some of R's most powerful and least known
features to solve complex scientific computing
problems.

3.	 Learn how to create visual illustrations of
scientific results.

R for Data Science
ISBN: 978-1-78439-086-0 Paperback: 364 pages

Learn and explore the fundamentals of data science
with R

1.	 Familiarize yourself with R programming
packages and learn how to utilize them
effectively.

2.	 Learn how to detect different types of data
mining sequences.

3.	 A step-by-step guide to understanding R scripts
and the ramifications of your changes.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Recommender Systems
	Understanding recommender systems
	The structure of the book
	Collaborative filtering recommender systems
	Content-based recommender systems
	Knowledge-based recommender systems
	Hybrid systems
	Evaluation techniques
	A case study
	The future scope
	Summary

	Chapter 2: Data Mining Techniques Used in Recommender Systems
	Solving a data analysis problem
	Data preprocessing techniques
	Similarity measures
	Euclidian distance
	Cosine distance
	Pearson correlation

	Dimensionality reduction
	Principal component analysis

	Data mining techniques
	Cluster analysis
	Explaining the k-means cluster algorithm
	Support vector machine

	Decision trees
	Ensemble methods
	Bagging
	Random forests
	Boosting

	Evaluating data-mining algorithms
	Summary

	Chapter 3: Recommender Systems
	R package for recommendation – recommenderlab
	Datasets
	Jester5k, MSWeb, and MovieLense

	The class for rating matrices
	Computing the similarity matrix
	Recommendation models

	Data exploration
	Exploring the nature of the data
	Exploring the values of the rating
	Exploring which movies have been viewed
	Exploring the average ratings
	Visualizing the matrix

	Data preparation
	Selecting the most relevant data
	Exploring the most relevant data
	Normalizing the data
	Binarizing the data

	Item-based collaborative filtering
	Defining the training and test sets
	Building the recommendation model
	Exploring the recommender model
	Applying the recommender model on the test set

	User-based collaborative filtering
	Building the recommendation model
	Applying the recommender model on the test set
	Collaborative filtering on binary data
	Data preparation
	Item-based collaborative filtering on binary data

	User-based collaborative filtering on binary data
	Conclusions about collaborative filtering
	Limitations of collaborative filtering

	Content-based filtering
	Hybrid recommender systems
	Knowledge-based recommender systems
	Summary

	Chapter 4: Evaluating the
Recommender Systems
	Preparing the data to evaluate the models
	Splitting the data
	Bootstrapping data
	Using k-fold to validate models

	Evaluating recommender techniques
	Evaluating the ratings
	Evaluating the recommendations

	Identifying the most suitable model
	Comparing models
	Identifying the most suitable model
	Optimizing a numeric parameter

	Summary

	Chapter 5: Case Study – Building Your Own Recommendation Engine
	Preparing the data
	Description of the data
	Importing the data
	Defining a rating matrix
	Extracting item attributes

	Building the model
	Evaluating and optimizing the model
	Building a function to evaluate the model
	Optimizing the model parameters

	Summary

	Appendix: References
	Index

