
Daniel Molkentin

The Book of Qt 4
The Art of Building Qt Applications

®

Munich San Francisco

The Book of Qt 4: The Art of Building Qt Applications. Copyright c© 2007 Open Source Press GmbH

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

Printed on recycled paper in the United States of America.

1 2 3 4 5 6 7 8 9 10 — 10 09 08 07

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Publisher: William Pollock
Cover Design: Octopod Studios
U.S. edition published by No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; http://www.nostarch.com

Original edition c© 2006 Open Source Press GmbH
Published by Open Source Press GmbH, Munich, Germany
Publisher: Dr. Markus Wirtz
Original ISBN 978-3-937514-12-3
For information on translations, please contact
Open Source Press GmbH, Amalienstr. 45 Rg, 80799 München, Germany
phone +49.89.28755562; fax +49.89.28755563; info@opensourcepress.de; http://www.opensourcepress.de

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor Open Source Press GmbH nor No Starch Press, Inc. shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

Library of Congress Cataloging-in-Publication Data

Molkentin, Daniel

[Qt 4, Einführung in die Applikationsentwicklung. English]

The book of Qt 4: the art of building Qt applications / by Daniel Molkentin.--

1st ed.

p. cm.

Includes index.

ISBN-13 978-1-59327-147-3

ISBN-10 1-59327-147-6

1. Qt (Electronic resource) 2. Graphical user interfaces (Computer systems) 3.

Application software--Development. I. Title. QA76.9.U83M6213 2007

005.4’37--dc22

2007013181

Contents

Introduction 19

Preparations 23

1 Basics, Tools, and First Code 25

1.1 Our First Qt Program . 25

1.1.1 Compiling a Qt Program 27

1.2 Layouts, Object Hierarchy, and Memory Management 29

1.2.1 How to Arrange Widgets Automatically 29

1.2.2 Memory Management in Object Hierarchies 31

1.2.3 Other Layout Types . 33

1.3 Signals and Slots . 35

1.3.1 The Simplest Case: A Slot Responds to a Signal 35

1.3.2 Signals Carrying Additional Information and How They
Are Processed . 36

1.4 Base Classes in Qt . 39

1.4.1 Classes Derived from QObject 39

1.4.2 QString and Other Classes not Derived from QObject . . . 40

1.4.3 The Qt Inheritance Hierarchy 41

1.5 Qt at a Glance . 42

1.5.1 The Qt Libraries . 42

1.5.2 Tools and Utilities . 47

1.5.3 Examples and Demos . 58

1.6 How to Use the Documentation 59

5

Contents

2 The Tools Needed to Create Dialogs 61

2.1 What’s the Difference Between Dialogs and Widgets? 62

2.1.1 Inheriting from QObject 64

2.1.2 More Complex Layouts . 65

2.1.3 Increasing Usability . 68

2.1.4 Implementing Slots . 70

2.2 Separation of GUI and Processing Logic 74

2.2.1 Alternative Design . 74

2.2.2 Declaring and Sending Out Signals 76

2.2.3 Using Your Own Signals 79

3 GUI Design Using the Qt Designer 81

3.1 Dialogs “By Mouse Click” . 81

3.1.1 Making Layouts With the Designer 84

3.1.2 The Property Editor . 85

3.1.3 The Preview . 88

3.1.4 Signal/Slot Connections 88

3.1.5 The Tab Sequence . 89

3.1.6 Shortcuts and Buddies . 90

3.2 Integrating Designer-generated Files into Your Qt Project 91

3.2.1 Using Designer-generated Classes as Helper Classes 92

3.2.2 Always Having Designer-generated Widgets Available . . . 94

3.2.3 Multiple Inheritance . 95

3.3 Automatic Signal/Slot Connections 97

3.4 Including Derived Classes in the Designer 99

3.5 The Resource Editor . 99

4 Developing a GUI Application Based on a Main Window 101

4.1 The Anatomy of the Main Window 101

4.2 Deriving from QMainWindow . 103

4.3 Creating a Main Window with the Qt Designer 106

4.3.1 Adding Menu Bars . 107

4.3.2 Recycling Actions in the Toolbar 108

6

Contents

4.3.3 Integrating the Main Window with Your Source Code . . . 110

4.4 Making the Most of the Status Bar 118

4.4.1 Temporary Messages . 120

4.4.2 Normal Messages . 120

4.4.3 Permanent Messages . 121

4.5 Toolbars . 125

4.6 How Do Actions Work? . 126

4.6.1 How to Instantiate QAction Manually 127

4.6.2 Selectable Actions . 128

4.6.3 Grouped Actions . 128

4.7 Dock Windows . 130

4.7.1 Positioning Dock Windows 131

4.7.2 A Dock Window for Our Editor 133

4.8 Saving Preferences . 136

4.8.1 Extending CuteEdit . 139

5 Laying Out Widgets 141

5.1 Manual Layout . 141

5.2 Automatic Layout . 143

5.2.1 Horizontal and Vertical Layout 144

5.2.2 Grid Layout . 148

5.2.3 Nested Layouts . 149

5.3 Splitter . 150

5.3.1 Behavior During Size Changes 150

5.3.2 Saving Splitter Positions and Determining the Widget Size 151

5.3.3 Defining Relative Sizes . 152

5.3.4 Customizing Handles . 153

5.3.5 Layout for Languages Written from Right to Left 156

5.4 Stacked Layouts . 157

5.4.1 The Alternative: Stacked Widgets 157

5.4.2 When to Use Stacked Layouts and Widgets 157

7

Contents

6 Dialogs 161

6.1 Modal Dialogs . 161

6.2 Non-modal Dialogs . 163

6.2.1 Usability Problems . 163

6.3 Semi-modal Dialogs . 164

6.4 Avoiding Bloated Dialogs . 164

6.5 Ready-made Dialogs in Qt . 166

6.5.1 Message Dialogs . 166

6.5.2 Error Messages That Are Only Visible Once 174

6.5.3 File Selection Dialogs . 175

6.5.4 Input Dialogs . 179

6.5.5 Font Selection Dialog . 182

6.5.6 Color Selection and Printing Dialog 183

7 Events, Drag and Drop, and the Clipboard 185

7.1 Event Loop and Event Handler . 185

7.2 Handling Events . 186

7.2.1 Using Specialized Event Handlers 186

7.2.2 Using the General Event Handler 189

7.3 Using Event Filters . 190

7.4 Drag and Drop . 194

7.4.1 MIME Types . 194

7.4.2 The Drag Side . 196

7.4.3 The Drop Side . 198

7.5 The Clipboard . 201

8 Displaying Data Using “Interview” 207

8.1 Underlying Concepts . 208

8.1.1 The View Classes . 210

8.1.2 The Model Classes . 211

8.2 Displaying Directory Hierarchies 212

8.2.1 Using View Classes in the Designer 214

8.2.2 Implementing the Functionality of the File Selection Dialog 216

8

Contents

8.3 The String Lists Model . 221

8.4 Implementing Your Own Models 222

8.4.1 An Address Book Model 222

8.4.2 Making Your Own Models Writable 227

8.5 Sorting and Filtering Data with Proxy Models 231

8.5.1 Adjustments to the User Interface 232

8.6 Making Entries Selectable with Checkboxes 234

8.7 Designing Your Own Proxy Models 237

8.8 Implementing Drag and Drop in Models 241

8.9 Your Own Delegates . 245

8.10 Without Your Own Data Source: The Standard Model 249

8.11 Element-based Views Without Model Access 251

8.11.1 Items . 251

8.11.2 The List View . 251

8.11.3 The Tree View . 252

8.11.4 The Table View . 253

8.11.5 Cloning Items . 254

9 The QtSql Module 257

9.1 Structure of the QtSql Module . 257

9.2 Selecting the Appropriate Driver 258

9.3 Making a Connection . 260

9.4 Making Queries . 261

9.5 Transactions . 264

9.6 Embedded Databases . 264

9.7 Using SQL Model Classes with Interview 265

9.7.1 Displaying SQL Tables Without Foreign Keys in Table and
Tree Views . 265

9.7.2 Resolving Foreign Key Relations 266

9.7.3 Displaying Query Results 267

9.7.4 Editing Strategies . 268

9.7.5 Errors in the Table Model 270

9

Contents

10 The Graphics Library “Arthur” 271

10.1 Colors . 271

10.1.1 The RGB Color Space . 272

10.1.2 Other Color Spaces . 273

10.1.3 Color Selection Dialog . 275

10.2 Painting with Qt . 276

10.3 Geometrical Helper Classes . 278

10.4 How to Paint on Widgets . 280

10.4.1 How to Prevent Monitor Flicker 282

10.5 Using QPainter in Practice . 283

10.5.1 Drawing a Pie Chart . 284

10.5.2 Defining the Widget Size 289

10.5.3 The Diagram Application 290

10.6 Transformations of the Coordinate System 290

10.6.1 Transformations in Practice 293

10.7 QImage . 297

10.7.1 Storage Formats, Transparency, and Color Palettes 297

10.7.2 Reading out Pixels Line by Line 298

10.8 SVG Support . 300

10.9 Printing with QPrinter . 302

10.9.1 Digression: Making Screenshots 304

10.9.2 Printing an Image File . 305

10.9.3 Generating PDFs . 306

10.9.4 The Test Application . 306

10.10 Complex Graphics . 307

10.10.1 Clipping . 307

10.10.2 Painter Paths . 309

10.10.3 Composition Modes . 310

11 Input/Output Interfaces 317

11.1 The QIODevice Class Hierarchy . 317

11.1.1 Derived Classes . 318

11.1.2 Opening I/O Devices . 319

10

Contents

11.2 Access to Local Files . 320

11.3 Serializing Objects . 322

11.3.1 Defining Serialization Operators 325

11.3.2 Saving Serialized Data to a File and Reading from It 326

11.4 Starting and Controlling Processes 328

11.4.1 Synchronous Use of QProcess 328

11.4.2 Asynchronous Use of QProcess 330

11.5 Communication in the Network 332

11.5.1 Name Resolution with QHostInfo 333

11.5.2 Using QTcpServer and QTcpSocket 333

12 Threading with QThread 337

12.1 Using Threads . 338

12.2 Synchronizing Threads . 341

12.2.1 The Consumer/Producer Pattern 342

12.3 Thread-dependent Data Structures 345

12.4 Using Signals and Slots Between Threads 347

12.5 Your Own Event Loops for Threads 350

12.5.1 Communication via Events Without a Thread-based Event
Loop . 352

13 Handling XML with QtXml 353

13.1 The SAX2 API . 354

13.1.1 How It Works . 354

13.1.2 Reimplementing a Default Handler to Read RSS Feeds . . 355

13.1.3 Digression: Equipping the RSS Reader with a GUI and
Network Capability . 361

13.2 The DOM API . 366

13.2.1 Reading in and Processing XML Files 367

13.2.2 Searching for Specific Elements 370

13.2.3 Manipulating the DOM Tree 371

13.2.4 The DOM Tree as XML Output 372

11

Contents

14 Internationalization 375

14.1 Translating Applications into Other Languages 375

14.1.1 Preparing the Application 376

14.1.2 Processing Translation Sources with Linguist 377

14.1.3 Using Translations in the Program 378

14.1.4 Adding Notes for the Translation 380

14.1.5 Specifying the Translation Context 380

14.1.6 Internationalizing Strings Outside Qt Classes 381

Appendixes 383

A Debugging Help 385

A.1 Debugging Functions . 385

A.1.1 Simple Debug Output . 386

A.1.2 Errors and Warnings . 387

A.1.3 Customizing the Output of Debugging Functions 388

A.2 Ways to Eliminate Errors . 390

A.2.1 Checking Assertions . 390

A.2.2 Checking Pointers . 391

A.2.3 Common Linker Errors . 392

B Tulip: Containers and Algorithms 393

B.1 Iterators . 394

B.1.1 STL-Style Iterators . 395

B.1.2 Java-Style Iterators . 396

B.2 Lists . 398

B.2.1 Simple List (QList) . 400

B.2.2 Linked List (QLinkedList) 401

B.2.3 Vectors (QVector) . 401

B.3 Stacks and Queues . 403

B.3.1 Stacks (QStack) . 403

B.3.2 Queues (QQueue) . 404

B.4 Associative Arrays . 404

B.4.1 Dictionaries (QMap) . 404

12

Contents

B.4.2 Allowing Several Identical Keys (QMultiMap) 407

B.4.3 Hash Tables with QHash 409

B.4.4 Hash-based Amounts with QSet 411

B.5 Algorithms . 412

B.5.1 The foreach Keyword . 412

B.5.2 Sorting . 413

B.5.3 Sorting in Unsorted Containers 414

B.5.4 Copying Container Areas 415

B.5.5 Binary Search in Sorted Containers 416

B.5.6 Counting the Number of Occurences of Equal Elements . . 418

B.5.7 Deleting Pointers in Lists 418

B.5.8 Checking that Data Structures Have Identical Elements . . 419

B.5.9 Filling Data Structures . 420

B.5.10 Swapping Values . 420

B.5.11 Minimum, Maximum, and Threshold Values 421

B.5.12 Determining Absolute Value 422

B.6 Qt-specific Type Definitions . 422

B.6.1 Integer types . 422

B.6.2 Floating-point Values . 423

B.6.3 Shortcuts for Common Types 423

Index 425

13

Foreword to the English Edition

“We need an object-oriented display system,” Haavard Nord said, as the two of us
sat on a park bench in the summer sun outside the regional hospital in Trondheim,
Norway, in the summer of 1991.

“Huh, what’s that?” was my response.

Haavard went on to sketch what seemed like an obvious idea at the time. A C++
library of user interface components, or widgets, that would have the same API on
all platforms.

We had both just gone through the transition from procedural programming to
event-driven programming and were appalled at the tools available to do the job.

Almost three years, a couple of design iterations, and some serious hacking later, we
incorporated what was to become Trolltech. At last we could work full time on our
great passion: to make the lives of programmers more pleasant. We were sick and
tired of using tools that detracted from the joy of creating software. We wanted to
create tools that made you think, “Of course, this is the way it was always meant
to be.”

And we refused to compromise. We designed, redesigned, and threw away lots of
code until we felt we got it just right. If a use case could be solved by one line
less of code and still be easy to read a year after you had written the code (both
are important), then we would ditch the current design and redo what had to be
redone.

Today Trolltech has almost 250 employees and is a public company listed on the
Oslo stock exchange. But still, that passion for making the best possible developer
tools are evident in the hallways of our offices.

Haavard and I have left the control of Qt’s destiny to much more capable program-
mers than ourselves. And I have to say they are doing an extraordinary job at it. Qt
has developed into an exceptionally beautiful piece of software.

Today Matthias Ettrich (KDE founder) and Lars Knoll (of KHTML fame) lead the
team of developers responsible for keeping Qt the kick-ass product you expect
from Trolltech.

15

Foreword to the English Edition

Qt 4 is more or less a total rewrite of Qt. And I know one of the parts the Trolltech
developers are especially proud of is the new painting engine in Qt 4. It is called
Arthur the paint engine, after “Thomas the Tank Engine,”1 and it really is “the paint
engine that could!” Arthur has developed into a state-of-the-art painting engine
that makes it possible to easily create all those eye-catching visual effects end
users have come to expect. And once you have created your breathtaking stuff,
recompiling will make it run on all platforms supported by Qt.

From the very first version of Qt released back in May 1995, Trolltech has been
using a dual-licensing business model with a free version of Qt available for devel-
opers of free and open source software. The first toe in the water back then was
a binary-only version for development of free software under Linux only. This was
quickly followed by a free version containing the complete source code. Today, Qt
is available both under a standard commercial license and under the GPL (General
Public License) on all platforms.

What this means in practice is that if you want to donate your work based on Qt
to the community at large by licensing your work under the GPL, then go ahead
and use our product for free. You can even modify and redistribute Qt under the
terms of the GPL, no strings attached. If, on the other hand, you want to keep
your software based on Qt proprietary and do not want to license your code under
the GPL, then you also have an option. You can purchase Qt under a standard
commercial license from Trolltech and you can license your code any way you want,
no strings attached.

Qt is an open source product with a thriving community and at the same time a
commercial product with the backing of a public company with a strong developer,
support, and documentation muscle. It really is the best of both worlds.

And it is because of the feedback from the thousands of users out there, both
commercial and open source developers, that Qt is such a high-quality toolkit. We
still rely on and listen closely to all the feedback we receive on Qt. So, if you do find
something you think can be improved in Qt or simply have a bug to report, do not
hesitate to let us know, e.g., by sending an email to qt-bugs@trolltech.com. We
have a team of eager engineers wanting to hear from you.

Well, I guess I have bragged enough about Qt now. The proof really is in the pud-
ding. The only way to truly appreciate Qt is to start using it. So, start diving into
this excellent coverage of Qt by Daniel Molkentin, and as you go along, play around
with Qt as much as you can. I do hope and believe that you will be surprised and
pleased by the programming universe of Qt.

Enjoy!

Eirik Chambe-Eng,
co-CEO and founder, Trolltech ASA

1 See http://www.thomasandfriends.com/.

16

Foreword to the German Edition

Traditionally, getting applications to look “just right” on different operating systems
and platforms has been the stuff of nightmares for programmers. Applications on
Microsoft Windows look and feel different to those on Mac OS X, which in turn
are different for those using Linux platforms. Applications written for Linux even
behave differently on the various free desktop environments available, and much
the same can be said of the various flavors of Windows.

While it is relatively easy to write code that works on all of these platforms, such
code is either likely to feel alien on all but the one platform it was originally de-
signed for, or it doesn’t provide features that users expect to find in modern appli-
cations.

With Qt, our aims are much higher than this. We want applications written with
Qt to be written in a platform-independent way, yet work as well as any other
application on Microsoft Windows, Mac OS X, and Linux desktops—even on mobile
devices. Writing code to make this possible is no easy task; it is one that provides a
new—and welcome—challenge for the Trolltech team of developers each day.

The most difficult part of Qt to get right, and also the most visible, is the graphical
user interface (GUI). The foundation for any GUI is the technology used to ren-
der the interface, and Qt contains its own technology for this purpose—namely
“Arthur the Paint Engine.” Partly inspired by “Thomas the Tank Engine,” Arthur has
come a long way in recent years. Its story is a good example of how Qt has contin-
ued to develop as users provide feedback and suggest solutions to problems they
encounter.

Arthur began with just such a simple problem: Many Qt users make use of OpenGL
in their software, and they increasingly wanted to be able to choose between draw-
ing with OpenGL and drawing on conventional widgets, but use the same applica-
tion programming interface (API) for both. We wanted to provide this ability with
Qt 4. Easier said than done! The old paint device architecture, nearly 10 years old
when we started, could not cope with this change, and so a little refactoring was
necessary before Arthur could see the light of day. In the first Technology Preview
of Qt 4, we were able to draw graphics not only with OpenGL, but also on the
relatively new GDI+ on Windows, with both anti-aliasing and linear gradients.

17

Foreword to the German Edition

Very nice, we thought, and far better than Qt 3, but we had failed to reckon with
the high expectations of our users. Many changes had been taking place in the
world of computer graphics. The XRender extension to X11 was becoming ever
more powerful, the Cairo project was getting ready to close the gap with other
systems once and for all, the Macintosh had CoreGraphics, and a new Scalable
Vector Graphics (SVG) format had begun to indicate where modern toolkits were
going at the beginning of the 21st century.

Arthur was on the right path, but we still had an enormous amount of ground to
make up. Things that worked fast on the Mac were slow with GDI+ on Windows
or with X11, and vice versa. And under X11—our core platform for the open source
version—we were a long way behind, even when using extensions like XRender.

Team Arthur, headed by Gunnar Sletta, therefore set itself a new goal: to match the
feature set offered by SVG. The team was determined not to rest until high-quality
vector graphics could be displayed equally well on all platforms, and at high speed,
too. All this happened, mind you, after the release of the first Qt 4 Technology
Preview.

How would you have reacted as the project manager? We knew that our solution
was not good enough, but we were already behind schedule. And how can you
put your faith in two developers alone being able to write a new renderer that
will compete with the giants of operating system vendors? Not only this, we also
wanted it to be even better than GDI+, and platform independent as well. Team
Arthur was given three weeks to build a prototype to show what it could achieve.

The two of them came up with the goods! The breakthrough success was due
to the fantastic scan-line converter from the FreeType project, a piece of open
source software that is generally used to display text. It took just three more days
to display complex SVGs with floating-point precision, anti-aliasing, and powerful
gradients.

What can we learn from this? Qt is continually being developed by highly moti-
vated (and sometimes quite crazy) programmers who call themselves Trolls, who are
spurred on to provide the best product for our users. It is also developed by ded-
icated people like Daniel and Patricia, to whom our thanks go for producing this
wonderful book you are holding in your hands, and by many other contributors
and users around the world.

Without this priceless community, Qt would not be where it is today, and the de-
velopment team is gratefully aware of this. This is precisely the reason we will
continue to strive for more and better. For you, our users—and because we enjoy it
a little bit, of course. Welcome to Qt!

Matthias Ettrich,
Head of Development, Trolltech

18

Introduction

A number of years ago, I happened to come across an article on GUI programming
with C++. I had just started learning C++ and was amazed at how little code the
author2 needed to produce a complete game, including the menus. Of course, there
were a number of constructs that needed explanation, but after a short time I was
hooked: The Qt library that he used turned out not only to have a very extensive
collection of all kinds of useful widgets (also known to Windows programmers as
control elements), but in addition had standard algorithms, data structures, and
other nongraphic classes that made programming with C++ so intuitive, in a way
that I had never seen before in any other toolkit.

The software company, Trolltech, was also promoting its own platform-independent
API. This toolkit, which could produce programs for both Windows and Linux, sim-
ply by recompiling the code, attracted my attention. Shortly after this, nearly six
years ago to the day, I joined the KDE project, which was developing an entire desk-
top based on Qt. Today, together with GNOME, KDE is one of the most important
desktops under Linux. But Qt is also used by a substantial number of companies:
Google Earth is based on Qt, as is the telephony software Skype and the video
editing program MainActor.

When Trolltech published a pre-version of Qt 4 in 2005, I started trying out several
of the new functionalities and was very impressed. For the first time there was
a uniform licensing scheme for variations of Qt, which until then were different
for Linux and Mac OS X: Quid pro quo—those companies that publish a program
under an open source license may use the open source version of the library. But
if the company is developing proprietary programs, then it pays for Qt license fees,
thus supporting the development of the toolkit, and receives support from the
manufacturer.

This structural level is of relevance as far as the licensing of the commercial Qt
version. Trolltech has three editions of Qt 4 available: Qt Console for nongraphic
development, and Qt Desktop Light and Qt Desktop as versions containing all
features. The open source version in each case corresponds to the desktop edition,
so it is not restricted in any way in terms of size.

2 The article was written by Matthias Ettrich, the founder of the KDE project.

19

Introduction

This book is based on the open source edition of Qt, but it can also be used without
problem by those who have purchased the commercial version. The embedded
version of Qt (Qtopia Core) is not covered in the book, because although the API
is identical, apart from a few extra classes, there are so many items to be noted in
embedded development that a separate book would be needed to describe them
all.

Target Audience and Prerequisites

It is difficult to define a target audience for Qt programming because the areas of
application for Qt are almost limitless. In general, however, it is aimed at all those
who wish to have platform-independent results in a machine-oriented high-level
language such as C++, results that can be compiled into native code, not least for
reasons of performance.

The book assumes that you have a fundamental knowledge of C++. An interested
reader should be familiar with the concepts of pointers and templates. The book
also assumes that you know about things such as the overloading of operators.

Knowledge of the Standard Template Library (STL) in particular is not expected. Qt
provides its own classes for the most common algorithms and containers, which
are explained in Appendix B.

Structure of the Book

The book first explains the basic structure of the Qt toolkit, together with its most
important specific properties. The subsequent chapters concentrate on writing your
own small applications. All other technologies, presented in the final chapters, are
demonstrated as short, independent examples for the sake of clarity. But they are
arranged in such a way that it should be no problem to use them in a real program
at the correct position.

Nearly all of the examples printed in this book are based on a complete and compi-
lable test program. These examples begin with the name of the quoted source text
file in C++ comments, such as

// program_name/file_name.cpp

For a better understanding, explanations are often added between code segments,
so that the code is interrupted. When the code continues in such cases, it is also
marked as a comment:

// program_name/file_name.cpp (continued)

20

Introduction

If you prefer to read the examples in context, or want to try them out yourself, you
can download a complete archive with all the examples described in the book. This
file, as well as other hints and link recommendations, is available at the website for
the book:

http://www.qt4-book.com/

This book is aimed at beginners and is not intended to be a reference. The excel-
lent online documentation—which can be called via the Qt Assistant incorporated
in the distribution or online at http://doc.trolltech.com/—provides a detailed API
documentation on all the classes introduced here, and would be hard to beat.

Instead, the book aims to explain contexts and basic techniques by the use of
examples, and to simplify getting started with programming, just as that magazine
article back then helped me when I was starting to get to grips with Qt.

Note of Thanks

It would have been impossible to read this book without a number of people giving
me support with their advice. In particular, Patricia Jung and her colleagues from
Open Source Press made a significant contribution as far as the form and contents
of the book were concerned. Further thanks go to Rainer M. Schmid, who also
helped in getting the project off the ground, and Steve Tomlin, who did a fantastic
job in translating this book.

I would also like to thank the people who proofread the book, providing me with
valuable feedback. Thorsten Stärk and Stephan Zeissler deserve special mention
here, as well as Axel Jäger, with whom I had many valuable discussions.

I would never have written this book, of course, if I had not bumped into the
KDE project and met Harri Porten, a patient maintainer who looked after my first
patches and commented on them with great patience.

As the book was being written, I also found support from the extremely helpful
members of the #kde4-devel channel at irc.freenode.net who provided important
tips and advice. The mailinglist archive of Trolltech and the community forum
http://www.qtcentre.org/ also provided valuable tips, clarifying some tricky ques-
tions.

Trolltech itself deserves special thanks, because due to the dual licensing, the com-
pany supports the ideals of free software. In some cases the source text was the
last possibility of confirming certain technical issues, where gaps were to be even
in the excellent API documentation.

The Linux/Unix Usergroup Sankt Augustin and the Bonner Netzladen also deserve
a special mention. Their excellent provision of Club-Mate iced tea always kept me
wide awake during my work.

21

Introduction

Many of my friends have given me encouragement and motivation on this project,
and many thanks should also go to my family. They provided support, particularly
in the critical phases, which was a great help in my work. This book is therefore
dedicated to the best family I could ask for.

Daniel Molkentin

22

Preparations

You should always use the most recent Qt version from Trolltech3 to ensure hav-
ing as many bugfixes covered as possible. Linux users may also use the precom-
piled packages from their Linux distribution, but they should be prepared to meet
some—often subtle—problems with older distributions like Ubuntu Dapper Drake,
where problems with the debug libraries have been reported. In these cases, it is
safer to obtain the source texts from Trolltech, and compile the sources yourself as
described below.

On OS X, you can choose between compiling Qt yourself or using a diskimage (.dmg)
archive, which installs precompiled libraries to /opt/qt4. The latter will install only
the static libraries, which are easily identified via their extension (.a). At link time,
these libraries become part of the binary. A second .dmg archive contains the debug
version of all Qt libraries, which should be installed on development systems, too.

Although Qt can be configured to build static libraries on all platforms, this is
mostly used on Mac OS X, where static linking is the preferred way to avoid li-
brary problems, at the expense of disk space.

If you choose to build the sources on Linux or Mac OS X, it is sufficient to unpack
the archive, and—provided you have a compiler installed—run the command

./configure -qt-gif -debug

make

from within the package directory. Beforehand you should check, using ./configure
-help, whether the system takes account of specific modules during compilation,
such as particular database drivers, which you may require for your work. More
detailed notes, especially on the SQL modules, are available in the corresponding
chapters of this book.

The parameters specified here for configure have turned out to be the smallest
common denominator for many application cases: -qt-gif adds support for the GIF
file format, disabled by default for reasons of licensing, to be included in the library.
-debug ensures that a version with debugging icons is built, apart from the normal

3 See ftp://ftp.trolltech.com/Qt/qt/source.

23

Preparations

libraries. For developing, you should always use the debug version of the libraries.
If you don’t do this, several of the examples in this book will provide no output,
since they use debugging functionality for this purpose.

A make install installs Qt under Unix to the directory /usr/local/Trolltech/Qt-version.
If you would prefer a different directory, you pass the desired installation path to
configure, using the -prefix option. Qt can be used straight out of the directory
in which it was built, however. To do this you just have to include the bin di-
rectory in the path and the lib directory under Unix in the environment variable
LD_LIBRARY_PATH.

Users of the Windows open source edition can download a precompiled archive as
an executable file. It will run an installer that does not only install Qt, but also
offers to download MinGW.4 MinGW (Minimalist GNU for Windows) is a port of
the GNU Compiler Collection (GCC) to Windows, which produces native Windows
executables without the need for a Unix compatibility library, as is the case with
Cygwin.

After a successful installation, Qt is available from C:\Qt\version. On Windows,
Trolltech provides both static and dynamic versions of Qt: The static libraries can
be found in lib, while the dynamically linked ones “live” in bin along with the helper
tools. The reason for this hodgepodge is that Windows looks for libraries only in
special places (like in the system32 directory) and in the path where the binary
resides.

If you prefer to build Qt from scratch, you will need to download and install
MingGW yourself. After having done this successfully, you install Qt as described
above, except that the configure command in this case is an .exe file, so that the
configuration command must be written as

configure.exe -qt-gif -debug

Corresponding graphic development environments are presented in the first chap-
ter.

4 See http://www.mingw.org/.

24

1 Ch
ap

te
r

Basics, Tools, and First Code

1.1 Our First Qt Program

Following in the tradition of many programming books and tutorials, this book will
start with the obligatory “Hello, world!” program. This minimal Qt application,
which we will save in a file called main.cpp, simply opens a window displaying the
text Hello, world! when it is run:

// helloWorld/main.cpp

#include <QApplication>

#include <QLabel>

int main(int argc, char *argv[])

{
QApplication a(argc, argv);

25

1 Basics, Tools, and First Code

QLabel label("Hello World");

label.show();

return a.exec();

}

For this purpose, the first two lines of code include the header files for the Qt
classes that we want to use in the following code. In our case these header files
contain the interface descriptions for the classes QApplication and QLabel.

In Qt 4 there is precisely one header file for each Qt class, which is named without
the otherwise standard filename extension .h: Its name corresponds exactly to the
class name.1 When you give the #include directive, make sure that you capitalize
the header filename correctly.

The fourth line of the listing onward shows what a typical main() function of a Qt
program looks like. First you create a QApplication object and pass to its constructor
the command-line arguments that the user supplied when invoking the finished
program. No GUI program can manage without a QApplication object, because,
among other things, QApplication makes available an event loop. This loop ensures
that the application continues running until its window is closed.

Next we create a QLabel object that displays the text “Hello, world!”. Initially, this
object is invisible. We must call its show() function in order to make it appear—as
shown in Figure 1.1—in a window.

Figure 1.1:

The first Qt program

Finally the call to exec() starts the event loop which is in charge of forwarding ap-
plication events to the appropriate objects. Such events are caused by user actions,
such as clicking a button. In our first example we will leave event handling entirely
to Qt itself. Section 1.3 (page 35) shows how additional user interaction can be
implemented.

The event loop is terminated when the quit() function of the QApplication object is
called. In our example, this happens indirectly when the last main window of the
application (which in this case is label) closes and is deleted from memory.

1 In reality, these files themselves just contain a directive that loads the corresponding .h file.
These are not documented, however, so that you can never be quite sure whether Trolltech
might have made unannounced changes.

26

1.1 Our First Qt Program

1.1.1 Compiling a Qt Program

When compiling this program, you are faced with a problem: Qt is supported on
various platforms, and the details of the compilation process differ for each type
of system. The Qt vendor Trolltech solves this problem with a simple program that
is used to create projects on a cross-platform basis: qmake.

qmake generates a Makefile from a project file that describes the application in
a form that is independent of the operating system on which the application is
actually compiled. The generated Makefile contains all the information required to
compile the C++ application code on a specific platform. (In Windows it is also
possible to generate Visual Studio projects from qmake project files.)

Generating Project Files and Makefiles with qmake

To generate a project file for the “Hello, world!” program, it is sufficient to call
qmake with the -project option.2 To do this, open a shell and change the current
directory to the directory containing the source file. If the source text is located
in the directory helloWorld and has the name, as in our case, main.cpp,3 then the
command

user@linux:helloWorld$ qmake -project

will generate a file called helloWorld.pro with the following contents:

#helloWorld/helloWorld.pro

#####################################

Automatically generated by qmake

#####################################

TEMPLATE = app

CONFIG -= moc

DEPENDPATH += .

INCLUDEPATH += .

Input

SOURCES += main.cpp

2 Please make sure that you really do use the Qt 4 qmake, which differs significantly from the
Qt 3 version. Use of the latter on Qt 4 projects causes errors. Many Linux distributions contain
both Qt 3 and Qt 4; in Ubuntu Breezy Badger and Dapper Drake, for example, qmake is linked by
default to qmake-qt3. The Qt 4 version of the tool can be run with qmake-qt4; if you seldom
need the third edition, change the corresponding link to /etc/alternatives.

3 Although qmake does not require main.cpp to contain the main() function, this convention has
become established.

27

1 Basics, Tools, and First Code

The interesting entries here are the ones for TEMPLATE and SOURCES.4 The value
of TEMPLATE specifies whether we want to create an application (app) or a library
(lib); that of SOURCES specifies the source text files of which the project consists.

Simply running qmake is then sufficient to generate the Makefile from the project
file:

user@linux:helloWorld$ qmake

In Windows this command generates three files: Makefile, Makefile.Debug, and
Makefile.Release. Makefile here is a metafile that refers to the two other files.
Makefile.Debug and Makefile.Release describe how the make program should put
the project together.

On Unix platforms (including Linux and Mac OS X projects built with qmake -spec
mac-g++, as described below), qmake generates only the Makefile file, which cre-
ates an executable of the program that includes debug output after make is run,
unless the debug variants of the Qt libraries used by the program are missing.5

To ensure that these are installed, on Unix systems you should search for the li-
brary files with _debug.so in the name, for example, libQtCore_debug.so.4 for the
debug version of the QtCore library. In Windows you should look for the corre-
sponding DLL files with names ending in d before the version number, for example,
qtcored4.dll for the debug version of QtCore. Clicking the entry Build debug li-
braries in the start menu folder Program ensures that Qt builds its debug libraries.

Furthermore, in order to achieve the same results with qmake in Unix as in Win-
dows, not only must the debug libraries be available, but the following line must
also be included in helloWorld.pro:

CONFIG += debug_and_release

The operator += here has the same function as in C++: It adds a further option
to the variable, without overwriting the ones already set. The -= operator is used
similarly to remove individual options.

Alternatively you can set the environment variable QMAKEFLAGS to the value ’CON-
FIG+=debug_and_release’ (don’t forget the apostrophes!) before running
qmake. But the entry in the .pro file simplifies development if several programmers
are all working on the code (or working with one program on several computers)
using a version control system such as CVS, Subversion, or Visual Source Safe.

4 The other entries are not required; qmake can be too cautious when automatically generating
a project. CONFIG = -moc specifies that we do not need the meta-object compiler for this
project, and in the entries for INCLUDEPATH and DEPENDPATH we can specify directories in
which the compiler should search for include files.

5 The debug libraries may need to be installed separately in, for example, Kubuntu (libqt4-debug,
libqt4-debug-dev) and SUSE (qt-debug, qt-devel).

28

1.2 Layouts, Object Hierarchy, and Memory Management

If you just want the debug-enabled variation of the executable application, the
CONFIG variable should include the value debug. Likewise, you can include release
if you just want to generate executable files without extra debugging support,
suitable for release to the end user.

Compiling the Project

The make command issued without any target or with the release target, for ex-
ample,

user@linux:helloWorld$ make release

creates a release version of the project, whereas

user@linux:helloWorld$ make debug

accordingly creates a debug version. If you use Microsoft Visual Studio, change the
command make to nmake. In either case, the executable file is stored in the release
or debug subdirectory, as appropriate.

Once the application is compiled in this way and executed on Unix systems with
either ./release/helloWorld or ./debug/helloWorld, the window opens as shown in
Figure 1.1 on page 26.

1.2 Layouts, Object Hierarchy, and Memory
Management

1.2.1 How to Arrange Widgets Automatically

In order to extend the “Hello, world!” program so that it doesn’t just show text in
a single QLabel object, but arranges two QLabels one under the other, as shown in
Figure 1.2, we use the layout system included in Qt. This automatically arranges
the GUI elements, referred to in Qt as widgets or controls. In language similar to
that used in the field of printing, we talk here of layouting.

Figure 1.2:

A widget with vertical

layout

29

1 Basics, Tools, and First Code

Figure 1.2 is created with the following source code:

// layout/main.cpp

#include <QApplication>

#include <QVBoxLayout>

#include <QLabel>

int main(int argc, char *argv[])

{
QApplication a(argc, argv);

QWidget window;

QVBoxLayout* mainLayout = new QVBoxLayout(&window);

QLabel* label1 = new QLabel("One");

QLabel* label2 = new QLabel("Two");

mainLayout->addWidget(label1);

mainLayout->addWidget(label2);

window.show();

return a.exec();

}

In addition to the QApplication and QLabel classes already used in Section 1.1, we
now include a class, QVBoxLayout, that is used to arrange widgets vertically—the
“V” in the name stands for vertical. This time, instead of the QLabel object, there
is a simple QWidget object for the main window of the application, which we call
window. Use of this variable name is just a convention. The object only becomes
a separate window after two steps. First, the QWidget constructor is called. If
no arguments are supplied, as in this case, the new object has no parent widget
and thus itself forms the root of an object hierarchy. Second, a widget becomes a
window only when it is displayed using its show() method.

After creating the QWidget, we create a QVBoxLayout object. The reason why the
new operator is used here instead of

QVBoxLayout mainLayout(&window);

is explained in the following Section 1.2.2. So that the new QVBoxLayout will know
that it is responsible for the layout of window, its constructor is given a pointer to
this QWidget object as an argument.

Similarly, the two QLabel objects with the texts One and Two are created. In order
for these to be managed by the layout object, we add them to the QVBoxLayout
object with the QVBoxLayout function addWidget().

30

1.2 Layouts, Object Hierarchy, and Memory Management

Otherwise the rest of the program hardly differs from the first example. Observe
that we only have to make the QWidget object visible by calling its show() method.
This causes all widgets that the QWidget contains to be displayed on the screen as
well, which in our case is both QLabels.

Finally we start the event loop as before and pass the return code from the event
loop back as the application’s return value. A simple return 0; would terminate the
application immediately without even displaying the window.

This application demonstrates the main advantage of layouts: You don’t need to
worry about the exact positioning of the widgets. In addition, the user can enlarge
or scale down layout windows, and the layout automatically ensures that the com-
ponents of the window will adjust to sensibly fill the space available, without the
need for the programmer to write explicit code to implement this behavior.

The programmer may also define what behavior is allowed for individual widgets
in a layout: for example, whether a control element (such as a widget to display
multiple line texts) should occupy as much space as possible or be constrained
in size; or how to handle widgets which don’t need more vertical space, such as
checkboxes. Chapter 5 (page 141) describes the possibilities here in more detail.

1.2.2 Memory Management in Object Hierarchies

The application shown in Figure 1.2 and described in the previous section not only
introduces automatic layouts, but also differs from “Hello, world!” from Section 1.1
in another respect: Although the variable declaration QWidget window; is used to
allocate the QWidget object, the new operator is used to allocate the QVBoxLayout
and the QLabel objects. We used

QVBoxLayout* mainLayout = new QVBoxLayout(&window);

rather than

QVBoxLayout mainLayout(&window);

to create the layout.

We’ve taken this approach because C++ does not provide automatic memory man-
agement. In general, the application programmer must take care of this himself.
However, Qt can take over some of the work of memory management, as follows.
Objects of classes that are derived from the QObject class can be arranged to form
a tree structure: Objects may possess “child” objects. If such an object is deleted,
then Qt automatically deletes all of the child objects, and these “children” in turn
delete their own “offspring,” and so on.

31

1 Basics, Tools, and First Code

Figure 1.3:

Classes inherited

from QObject can be

arranged in a tree.

QWidget

QVBoxLayout QLabel QLabel

Put another way, if the root of an object tree disappears, Qt automatically deletes
the entire tree. This relieves the programmer from having to track down the de-
scendants of the object and release the memory that they occupy. However, in
order for this automatic memory management to function, all children (and the
children’s children, and . . .) must lie on the heap, which is brought about by creat-
ing them using new. Objects that are created using new are then referenced with
a pointer into the heap. This is why mainLayout was declared as a pointer to a
QVBoxLayout, rather than as a QVBoxLayout.

Not placing objects on the heap (that is, not allocating them with new) is a com-
mon beginner’s mistake: Widgets that are created only on the stack, for example,
in a class constructor, are deleted by the compiler after processing is finished. Al-
though the application does generate the widget briefly, it is never visible to the
eye.6

Also, this declaration not only creates the QVBoxLayout object but also makes it a
child of the QWidget object window, by means of the constructor provided by the
QVBoxLayout class. In contrast, when they are created, the two labels initially have
no parent object; the QLabel constructor initializes only the label’s text:

QLabel* label1 = new QLabel("One");

We use the subsequent QVBoxLayout::addWidget() calls to ensure that the QWid-
get object assumes parentage of each of the new labels. (In fact, the GUI elements
contained in a widget must be the children of the overlying widget. For this rea-
son, the QWidget object becomes the parent of the QLabel object, and not the

6 Of course, all allocated objects will go out of scope after exec() returns. However, the problem
here is that we implicitly create an object hierarchy via the layouts for the first time ((foo-
>addWidget(bar) automatically assigns the widget that layout foo manages to be the parent
of bar). When the parent widget goes out of scope, it will try to delete its children, which may
already have gone out of scope, depending on the order that the compiler chooses to place the
objects on the stack (this should be deterministic in order of creations but has allegedly been
nondeterministic in special situations with some compilers). And even if you do it correctly,
there is still a lot of stuff to get wrong. Now if you just create all QObject derivatives (and thus
QWidget derivatives) on the heap, you don’t have to deal with those issues and, as a benefit,
the code is a lot easier to refactor later on. This is why it really is advisable to create all objects
on the heap rather than on the stack, with the exception of the parent widget.

32

1.2 Layouts, Object Hierarchy, and Memory Management

QVBoxLayout object, as might be assumed.) A tree structure as shown in Figure 1.3
is thereby created.

Both the layout object and the two labels, which are subobjects of the window
object, must be generated on the heap using new. On the other hand, we generate
the window on the stack using QWidget window;, so that we don’t have to delete
it by hand when the application is terminated. (You can do this only with objects
that have no parent object.) Therefore, in most cases you should create objects of
classes derived from QObject on the heap using new.

1.2.3 Other Layout Types

The class QHBoxLayout is used to arrange elements horizontally, in the same way
that the QVBoxLayout class is used for vertical layouts. Its interface is just like that
of the QVBoxLayout. If you replace QVBoxLayout with QHBoxLayout in the example
from Figure 1.2, the result will appear as shown in Figure 1.4.

Figure 1.4:

The two labels

arranged horizontally

instead of vertically

There is also a class that arranges widgets in a grid, QGridLayout:

// gridLayout/main.cpp

#include <QApplication>

#include <QGridLayout>

#include <QLabel>

int main(int argc, char *argv[])

{
QApplication a(argc, argv);

QWidget window;

QGridLayout* mainLayout = new QGridLayout(&window);

QLabel* label1 = new QLabel("One");

QLabel* label2 = new QLabel("Two");

QLabel* label3 = new QLabel("Three");

QLabel* label4 = new QLabel("Four");

QLabel* label5 = new QLabel("Five");

QLabel* label6 = new QLabel("Six");

mainLayout->addWidget(label1, 0, 0);

mainLayout->addWidget(label2, 0, 1);

33

1 Basics, Tools, and First Code

mainLayout->addWidget(label3, 1, 0);

mainLayout->addWidget(label4, 1, 1);

mainLayout->addWidget(label5, 2, 0);

mainLayout->addWidget(label6, 2, 1);

window.show();

return a.exec();

}

This program is like the previous example: Instead of the QVBoxLayout, now a
QGridLayout is used as a “container,” this time for six QLabel objects. Unlike the
addWidget() function of the horizontal or vertical layout class, QGridLayout::add-
Widget() requires three arguments: the widget to be allocated, as well as the line
and column number of the grid cell in which it should take its place. The first cell
of the grid has the coordinates (0,0) and is located at the top left corner. The result
can be seen in Figure 1.5.

If the text Five is not displayed correctly, the typical reason is that the editor used
has saved the source file in UTF-8 encoded form. In this case it needs to be con-
verted to the ISO-8859-1 or ISO-8859-15 format. In the KDE editor Kate, this
option can be found in the Save as. . . dialog.

Figure 1.5:

A program that uses

QGridLayout

You will find further details on the subject of layout in Chapter 5 which explains
how you can design complicated layouts, for example, through nesting, and also
looks at manual layout, splitters, and the QStackedLayout class.

Splitters behave like vertical or horizontal layouts, but display so-called handles in
an otherwise empty space. The user can pull these handles in either direction to
make more space for the widget lying next to it on the side opposite the motion.
When a handle is pulled, the widgets shrink on the side toward which the handle
is pulled.

The QStackedLayout class, on the other hand, manages layouts with several “pan-
els” that can each contain various groups of widgets, of which only one is ever
visible. Configuration dialogs can be created using this class. When, for example,
the user selects a category on a left-hand panel of such a configuration dialog, this
causes the right-hand panel to show the widgets that can be used to change the
configuration of the chosen category. When the user changes the category on the

34

1.3 Signals and Slots

left side, the QStackedLayout object knows that it should display a different “page”
on the right side.

1.3 Signals and Slots

The programs discussed until now generate output only. But if we need to handle
user input, we cannot manage without communication between objects.

Many GUI toolkits use callback functions or event listeners to manage commu-
nication between objects, but Qt uses the signal/slot concept.7 Compared with
callback functions, this mechanism has the advantage that Qt automatically dis-
mantles a connection if either of the two communicating objects is deleted. This
avoids crashes, and makes programming simpler.

1.3.1 The Simplest Case: A Slot Responds to a Signal

The easiest way to explain how signals and slots allow objects to communicate is
with a simple example. Consider the following program, which displays a simple
button with the text Quit. If the user clicks this button, the application ends.

// signalSlot/main.cpp

#include <QApplication>

#include <QPushButton>

int main(int argc, char *argv[])

{
QApplication a(argc, argv);

QPushButton button("Quit");

button.show();

QObject::connect(&button, SIGNAL(clicked()),

&a, SLOT(quit()));

return a.exec();

}

Compared with the “Hello, world!” program from Section 1.1 on page 25, only two
things have changed. First, the QLabel object used there has been replaced by a

7 There are also events and event handler functions in Qt. The difference between signals and
events is that a signal may be connected to as many slots as desired, including slots from
different objects. In contrast, an event handler handles events determined for other objects.
It’s a kind of event interceptor. Chapter 7 provides more details of events.

35

1 Basics, Tools, and First Code

QPushButton. This class is used to display a button and process mouse clicks on
this button.

The second difference consists of the call to QObject::connect(). connect() is a static
function of the QObject class that creates a connection between a signal originat-
ing from one object and a slot in a destination object. The first two arguments
specify the object sending the signal and the signal that we want to bind to the
receiving slot. The last two arguments specify the object that is the recipient of the
signal, and the receiving slot. The & characters are necessary because the function
expects the addresses of the sending and receiving objects as arguments. Here this
function is used to determine the action that is executed by the application when
the user presses the button: The application terminates.

Slots are normal functions of a class that are specially marked so that they can
react to signals. Signals on the other hand are “sent” by objects. A signal from an
object can be connected to one or several slots of a single receiving object or of
several different receiving objects. If an object sends out a signal, then all the slots
are called that are connected to the signal. If there is no matching link, nothing
happens.

The call to the QObject::connect() function in the example connects the clicked()
signal of the QPushButton object with the quit() slot of the QApplication object.
The button sends out the clicked() signal whenever the user presses the button,
thus causing the button’s clicked() function to be called. In response to this signal,
the quit() function of the application is called. Calling this slot ends the event loop,
and thus the entire application.

When linking signals and slots with the QObject::connect() function, you must use
the macros SIGNAL() and SLOT(), as shown. For its second (signal) and fourth (slot)
arguments, the connect() function expects to be passed string values that contain
a prefix describing the type (signal or slot) and otherwise comply with an internal
Qt convention, about which we need not be concerned. Using the two macros will
ensure that the expected strings are generated correctly.

1.3.2 Signals Carrying Additional Information and How They
Are Processed

The link between a signal and a slot can also be used to transmit additional infor-
mation that controls the precise reaction of the slot. For example, see the applica-
tion shown in Figure 1.6. This program consists of three control elements: a label,
which displays a numeric value; a spin box, which can be used to change the value
via the keyboard or mouse (and which also displays the value); and a slider, which
shows the current value graphically and can be manipulated to change the value.

36

1.3 Signals and Slots

Figure 1.6:

All three elements

should display the

same changeable

value.

The aim is for all three widgets to always display the same value. If the user changes
the value via the slider, the value must also be adjusted in the spin box and in the
label. The same applies to the slider and label if the user adjusts the value in the
spin box. This is accomplished with the following code:

// signalSlot2/main.cpp

#include <QApplication>

#include <QVBoxLayout>

#include <QLabel>

#include <QSpinBox>

#include <QSlider>

int main(int argc, char *argv[])

{
QApplication a(argc, argv);

QWidget window;

QVBoxLayout* mainLayout = new QVBoxLayout(&window);

QLabel* label = new QLabel("0");

QSpinBox* spinBox = new QSpinBox;

QSlider* slider = new QSlider(Qt::Horizontal);

mainLayout->addWidget(label);

mainLayout->addWidget(spinBox);

mainLayout->addWidget(slider);

QObject::connect(spinBox, SIGNAL(valueChanged(int)),

label, SLOT(setNum(int)));

QObject::connect(spinBox, SIGNAL(valueChanged(int)),

slider, SLOT(setValue(int)));

QObject::connect(slider, SIGNAL(valueChanged(int)),

label, SLOT(setNum(int)));

QObject::connect(slider, SIGNAL(valueChanged(int)),

spinBox, SLOT(setValue(int)));

window.show();

return a.exec();

}

37

1 Basics, Tools, and First Code

We will place the three widgets in turn (that is, from top to bottom) into a vertical
layout. To do this the QSpinBox class contributes the spin box element, and the
QSlider is correspondingly responsible for the slider.

To ensure synchronization of the widgets, we use four connect() calls (Figure 1.7):
if the value of the spin box changes, then the label and the slider must be updated;
if the status of the slider varies, the label and the spin box need to be brought
up-to-date. (Note that because the spinBox, label, and slider variables are already
pointer variables that reference the widgets, we don’t have to take their addresses
using the & operator, as we did in the previous example.)

Figure 1.7:

The example program

shows that a signal

can be connected to

several slots.

QSlider

setValue(int)

valueChanged(int)

QSpinBox

setValue(int)

valueChanged(int)

QLabel

setNum(int)

A change made to the value by the user is reported by the QSpinBox and QSlider
classes via the signal QSpinBox::valueChanged(int) or QSlider::valueChanged(int).
In each case, the integer argument indicated by the int keyword, which the signal
transmits to the slot, specifies the new value of the spin box or the slider.

A new value for the label is set using the QLabel::setNum(int) slot, a function that
is called with an integer value as an argument. The spin box and the slider are
handled similarly using the slots QSpinBox::setValue(int) and QSlider::setValue(int).

The arrows in Figure 1.7 show that a signal can be connected to several slots and
that a slot can react to several signals. For example, if the QSpinBox object sends
out the signal valueChanged(int) with the value 5, both the setNum(int) slot of the
QLabel object and the setValue(int) function of the QSlider object are called with
the value 5.

Qt does not specify the order in which this happens. Either the label or the slider
can be updated first, and the exact behavior may be unpredictable. Still, all three
widgets will eventually display the value 5.

In this example the signals and slots use the same argument list because no type
conversion takes place in signal/slot connections. Thus the setText() slot of the QLa-
bel object, which takes a string as an argument and displays it, cannot be connected
to the valueChanged(int) signal, since the int argument will not be converted to a
string.

38

1.4 Base Classes in Qt

If a type conversion cannot be avoided, then you must make a derived class and
implement a corresponding slot. This new slot performs the type conversion on
the value sent by the signal and then calls the actual, desired slot. This is possible
since slots are normal functions of a class. However, the reverse is not true: You
cannot use any function you like as a slot, since slots must specifically marked so
that they are detected as such by Qt. Chapter 2 explains in detail how to inherit
from QObject and define your own signals and slots.

Even though signal/slot connections do not automatically adjust argument types,
you may connect a signal to a slot that accepts fewer arguments than those sent
by the signal; the slot simply ignores the extra arguments. In this way the val-
ueChanged(int) signal of the QSlider could be connected, say, to the quit() slot of
the QApplication object. While this would terminate the application as soon as
the value of the slider is changed (admittedly not an especially useful behavior),
it does show that quit() ignores the int sent by the signal. The types of the argu-
ments used by the slot must match those of the signal arguments. For example,
you can connect the signal signalFoo(int, double) to the slots slotFoo(), slotFoo(int),
and slotFoo(int, double). However, you cannot link the signalFoo(int, double) signal
with the slotFoo(double) slot using connect().

If you try to create an invalid signal/slot connection, neither the compiler nor the
linker will complain. Only when the application is run will you see a warning that
the signal and slot were not connected properly. For example, if the erroneous
connect() call described in our previous paragraph is executed, the terminal window
from which the program was called displays the following warning:

Object::connect: Incompatible sender/receiver arguments

SomeClass::signalFoo(int,double) --> SomeClass::slotFoo(double)

A slot that expects more arguments than the signal contains cannot process the
signal. Thus we can’t connect the signalFoo(int, double) signal to the slotFoo(int,
double, double) slot.

1.4 Base Classes in Qt

1.4.1 Classes Derived from QObject

Both the automatic memory management mechanism (see Chapter 1.2.2, page 31)
and the signal/slot mechanism require the classes involved to be derived from the
QObject class.8

8 In addition to support for these mechanisms, there are further requirements demanded of
classes having QObject as a base class: the treatment of events and the translation of strings
from one language to another. These are explained in detail in Chapters 7 and 14.

39

1 Basics, Tools, and First Code

Several Qt classes have QObject as a base class. Thus all widgets (that is, all elements
that display something on the screen) are derived from the QWidget class, which,
in turn, is derived from QObject. The layout classes are also inherited from QObject,
so that their objects can also be formed into hierarchies which derive benefits from
the automatic memory management. As nonvisual objects, however, they are not
derived from QWidget.

Other nongraphical classes also originate from QObject, such as QThread for light-
weight processes (see Chapter 12) or QTcpSocket, a class that provides objects for
network communication via sockets. These classes have QObject as the base class
so that they can communicate through signals and slots.

1.4.2 QString and Other Classes not Derived from QObject

However, Qt also contains many classes that do not inherit from QObject, since
they require neither signals and slots, nor automatic memory management. These
classes include, for example, one of the most important classes, QString, which is
responsible for strings. The strings in QString are stored and processed by Qt in
Unicode format, enabling text in almost all notation systems in the world to be
used; that is, not only West European characters, but also Cyrillic, Arabic, Hebrew,
Chinese, and many more. For this reason, Qt can be used very efficiently for pro-
grams that must deal with different languages—provided that you use QString for
manipulating text that the user may see. The classes QImage (used for loading
and saving images), QColor (which saves a color), and many others are also not
inherited from QObject; they all work in a value-based manner.

Figure 1.8:

Implicit sharing using

two QString instances

Qt ensures that when these classes are used, two instances never have the same
contents. For example, it would be wasteful to have distinct copies of the string

40

1.4 Base Classes in Qt

“value” "Hello, world!", instead of one copy that is shared among all of that object’s
clients. However, it takes special management to avoid unnecessary duplication.
Figure 1.8 displays the value-based object management procedure at work on the
string "Hello, world!" using the following code example:

QString str1 = "Hello, world!";

QString str2 = str1;

str2.replace("world", "Qt");

As you can see, we first set up the QString instance str1. This automatically stores
the string’s text, "Hello, world!", in an underlying object, to which str1 is a refer-
ence. In the second line the instance str2 is is “assigned” the “value” of str1, but
what actually happens, because strings are value-based objects, is that str2 gets a
reference to the common underlying object. In the third step we change str2, but
before the str2 object implements the change, Qt creates a new underlying data
object and sets str2 to now refer to it, so that str1 remains the same afterward,
which is the “value-oriented” behavior one expects from string objects. This all
happens without the intervention of the programmer.

Qt’s use of this copy-when-needed memory management procedure allows data of
this kind, for example, strings or QImage objects, to be passed around and shared
without using up much memory.

1.4.3 The Qt Inheritance Hierarchy

Figure 1.9 shows a small excerpt from the inheritance hierarchy of Qt. Notice that
QLabel inherits not only all the properties of a QObject and a QWidget, but also
those of QFrame. This is a base class for all widgets that can have a visual frame
surrounding them.

Figure 1.9:

Not all Qt classes are

inherited from

QObject.

QLabel

QFrame

QPushButton

QAbstractButton

QWidget

QGridLayout

QLayout QThread

QObject QString QColor

41

1 Basics, Tools, and First Code

The base class QAbstractButton is also inherited from QWidget. It serves as a base
class for all classes that display a button (that is, an element that the user can
operate via mouse click). Apart from the QPushButton class that we have seen, this
also includes QCheckBox and QRadioButton.

The layout classes are located in a separate branch, which does not lead back to
QWidget and for which QLayout is the base class. QGridLayout inherits directly
from this,9 whereas QVBoxLayout and QHBoxLayout are derived from the QBoxLay-
out class.

The classes QFrame, QAbstractButton, QLayout, and QBoxLayout are used directly
only in very few cases. They merely summarize common properties and functions
of their “children” in a base class. The classes QString and QColor, on the other
hand, have no base class (except themselves).

If you want to implement your own widget, you will usually do so with a class
derived from QWidget.

1.5 Qt at a Glance

In reality, Qt 4 is not just one monolithic programming library, but rather seven
libraries, supplemented by several utility programs. qmake is one of these utilities.

1.5.1 The Qt Libraries

Today, the common usage of the term GUI toolkit conveys just a small part of what
such a system offers. Qt in particular includes relatively extensive classes for various
aspects of application development. Many of these relate to the programming of
graphical interfaces, but there are also classes for network programming, OpenGL
support, database and XML development, and many more. The focus throughout
lies on the platform independence of the classes: With very few exceptions, the
same classes are available on all supported operating systems, with the same func-
tions and the same behavior.

Qt 4.0 consists of the following program libraries:

QtCore contains base classes that do not generate any GUI output.

QtGui contains the base GUI classes.

QtNetwork contains the network classes.

QtOpenGL contains the OpenGL support.

9 See http://doc.trolltech.com/4.2/hierarchy.html.

42

1.5 Qt at a Glance

QtSql contains the SQL database classes.

QtXml contains the XML and DOM classes (see page 45).

QtAssistantClient allows you to use Qt assistant as a documentation browser in
your application.

Qt3Support includes classes that ensure compatibility with Qt 3.

Qt 4.1 added the QtSvg library, which provides support for the SVG vector graphics
format, as well as the QtTest library, also called QTestLib, which contains a frame-
work for writing unit tests.

Finally in Qt 4.2, Trolltech added the QtDBus module, which provides the Qt bind-
ings for the message bus system from Freedesktop.org.10

You may need to link an application’s code to several libraries, often including
QtCore and QtGui. For this reason, qmake uses both libraries by default.

The libraries to be linked are specified by the qmake variable QT. By default it con-
tains the values core and gui. For example, to write a GUI program with network
support, you would add the value network to this variable. This is brought about in
the .pro file with the line

QT += network

To write a command-line program with XML support that merely links with QtCore
and QtXml, and not with QtGui, you must add xml and remove the value gui. This
is done with the following lines:

QT -= gui

QT += xml

To use all of the libraries in Qt 4.0, write:

QT += network opengl sql xml support

In addition to specifying project files, there is another topic for which knowledge of
the contents of the Qt libraries is of particular interest. Besides the header files for
individual class definitions, whose filenames match the names of the classes they
describe, Qt also provides header files for its libraries. Each of these files contains
the interface descriptions of all of the classes of a library; the name of the header
file matches the name of the library. Thus, in the examples so far, which have only
used classes from QtGui, instead of the many separate #include statements, we
could simply have written

10 See http://www.freedesktop.org/wiki/Software/dbus.

43

1 Basics, Tools, and First Code

#include <QtGui>

However, these library header files are very long, which considerably increases the
length of the compiling process. This won’t be a problem if the compiler supports
precompiled header files, but only the more recent compilers do (such as with GCC
from version 3.4 on).

The Base Library QtCore

QtCore is a partial library required by every Qt program. Among other things, it
makes available the following:

Basic data types, such as QString and QByteArray

Basic data structures, such as QList, QVector, and QHash

Input/output classes such as QIODevice, QTextStream, and QFile

Classes with which multiple threads can be programmed (including QWaitCon-
dition and QThread)

The classes QObject and QCoreApplication (the base class for QApplication)

None of these classes depends on GUI components. This separation from the GUI
allows Qt applications (such as command-line programs) to be written that do not
implement a GUI

In nongraphical programs the QCoreApplication class takes on the role of the QAp-
plication class in GUI applications: It makes an event loop available. This is useful
if you require asynchronous communication, whether between different threads or
via network sockets.11

The GUI Library QtGui

The QtGui library contains all classes that are necessary for programming graphical
user interfaces, including the following:

The QWidget class and classes derived from it, such as QLabel and QPushButton

The layout classes (including QVBoxLayout, QHBoxLayout, and QGridLayout)

Classes such as QMainWindow and QMenu, which are needed if you want to add
menus to an application

11 QtCore does not contain any network classes, but the QtNetwork library can be used with
QtCore if networking is required.

44

1.5 Qt at a Glance

Classes for drawing, such as QPainter, QPen, and QBrush

Classes providing ready-to-use dialogs (including QFileDialog and QPrintDialog)

The QApplication class

QtGui requires the QtCore library.

The Network Library QtNetwork

The partial library QtNetwork provides classes for writing network applications.
In addition to supporting simple socket communication via the QTcpSocket and
QUdpSocket classes, this library also enables client-side HTTP and FTP with QHttp
and QFtp.

Unlike QtGui, QtNetwork requires the QtCore library, but it can, of course, be used
together with QtGui and the other libraries.

The OpenGL Library QtOpenGL

The QtOpenGL library enables OpenGL to be used in a Qt program. It provides the
QGLWidget class—a Qt widget in which you can draw using OpenGL commands.

QtOpenGL uses the QtCore and QtGui libraries.

The Database Library QtSql

The QtSql library classes provide access to SQL databases in Qt programs. This library
includes classes that are used to establish a connection with an SQL database and
to query and modify data. Qt supports a range of SQL databases, including the
open source databases PostgreSQL, MySQL, and SQLite.

QtSql requires the QtCore library, and it is discussed at length in Chapter 9 (page
257).

The XML Library QtXml

A simple, nonvalidating XML parser is provided by the partial library QtXML. It can
be addressed directly through a SAX2 interface (Simple API for XML).

QtXml also contains an implementation of the DOM standard (Document Object
Model). The corresponding classes allow you to parse an XML document, manipu-
late its tree structure, publish the modified document again as an XML document,
or to create a new XML document with DOM.

45

1 Basics, Tools, and First Code

This library requires only the QtCore library, and it is discussed in more depth in
Chapter 13 (page 353).

The Compatibility Library Qt3Support

Compared with its predecessor, Qt 3, Qt 4 has undergone considerable develop-
ment: Some classes contain changes that are incompatible with the Qt 3 versions,
and others have been replaced in Qt 4 with completely new classes with different
names. In order to simplify the porting of Qt 3 programs to Qt 4, Trolltech includes
the corresponding Qt 3 classes in the Qt3Support library. However, you should not
use this library for new programs, since development of their classes has stopped.
Since this book explains programming with Qt 4, we will not use these classes and
will not discuss them further.

The Vector Graphics Library QtSvg

The SVG vector graphics format, published by the W3 consortium and based on
XML, has great potential. From Qt 4.1 onward the QtSvg library supports the SVG
profiles SVG Basic and SVG Tiny,12which can be used to display SVG files and
animations, although it cannot as yet create them or, as in XML, manipulate them
through a DOM tree.

The QtAssistantClient Library

The assistant client library allows you to remotely control the Qt assistant applica-
tion. This allows you to use the assistant as a platform-independent help browser
for your application. The heart of the module is the QAssistantClient class.

Customized help pages for use with Qt assistant are provided in basic HTML markup,
along with an XML file that describes the structure of the documentation.

The Test Case Library QTestLib

Originally released outside the Qt core distribution for paying customers, QTestLib
entered the regular Qt distribution starting with the Qt 4.1.0 release. The library
contains facilities to write proper unit tests for newly written classes, and covers a
scope similar to JUnit in Java.

12 See http://www.w3.org/TR/SVGMobile/.

46

1.5 Qt at a Glance

The QtDBus Library

DBus is a messaging protocol that has emerged as a de facto standard on Linux and
other Unix derivates. For instance, the Linux Hardware Abstraction Layer (HAL) and
the upcoming KDE 4 are using DBus for interprocess communication. Even though
ports for Windows and Mac OS X exist, Qt 4.2 will offer to build this library only on
Unix. This may, however, change in future versions.

ActiveQt and Migration Classes

The platform-specific extension ActiveQt for Windows makes it possible to imple-
ment Active X components with Qt and to use them in Qt programs. It is available
only in the commercial Qt desktop edition, however.

Trolltech also provides migration solutions for MFC-, Motif-, and Xt-based appli-
cations. Like ActiveQt, however, they are available only as separate commercial
add-ons for Qt 4, the Qt Solutions,13 and will not be discussed in this book.

1.5.2 Tools and Utilities

In addition to all this, Qt includes three GUI programs that can be used to display
Qt documentation, create dialogs according to the WYSIWYG principle (What You
See Is What You Get), or translate programs into other languages. The toolkit also
provides a series of command-line programs for performing various tasks.

The Documentation Browser “Qt Assistant”

The Qt documentation consists of simple HTML files that can be viewed with any
web browser or with the Qt Assistant. Unlike a web browser, the Assistant displays
an index of the entire Qt documentation and allows for a full-text search of that
documentation (Figure 1.10).

The Assistant’s keyword directory is particularly useful when working with Qt daily.
For example, if you require documentation on a class, on QLabel, simply enter qlabel
in the index input box. With

✞✝ ☎✆Enter you are taken immediately to the excellent class
documentation.

13 See http://www.trolltech.com/products/solutions/.

47

1 Basics, Tools, and First Code

Figure 1.10:

The Qt Assistant

displays the Qt

documentation.

The Assistant is an important complement to this book because it not only doc-
uments newly added API calls (or ones not discussed in this book due to lack of
space), but also provides additional usage examples.14

The GUI Editor “Qt Designer”

The Qt Designer allows you to create application dialogs and the main application
window in a WYSIWYG fashion (Figure 1.11), which is particularly useful when
creating complex dialogs and layouts. You can add widgets in the Designer via
drag and drop and set their properties. For example, you can change the text of a
QLabel or its color and typeface.

You can use the Designer to combine several widgets in a layout, and immediately
see the effect that the layout has on the window. You can even set up signal/slot
connections between the widgets and the Designer, if necessary.

The Designer’s preview mode allows you to check the GUIs you’ve created: You can
see how the layouts react to changes in size, test the widgets, and see whether the
signal/slot connections have the desired effects.

The Designer also has a mode that specifies the tab sequence of the widgets; that
is, the order in which the user accesses the individual widgets when pressing

✞✝ ☎✆tab

repeatedly. This is an important aspect of a user interface, and one that you should
always check. A program can only be operated intuitively from the keyboard if the

14 For those who prefer to read it in the web browser, the Qt class documentation can be found
on the Trolltech website at http://doc.trolltech.com/.

48

1.5 Qt at a Glance

tab sequence makes sense. Note that if you do not set the sequence yourself, Qt
sets it automatically, which may not always lead to desirable results.

Figure 1.11:

The tools of the

Designer as multiple

top-level windows

In order to use dialogs created with Designer in an application program, you will
need a separate conversion program. The Qt Designer saves the description of the
draft versions of an interface in a separate XML-formatted file with the filename
extension .ui. To use this interface in a program, C++ code must be created from
the XML description with the command-line tool uic (User Interface Compiler).

If you use qmake to create a project, uic can be used to integrate a Designer-created
interface very easily: Each .ui file to be used is added to the FORMS variable by a line
in the .pro file. For example, the following line in the .pro file adds the description
of the dialog from mydialog.ui to the project:

FORMS += mydialog.ui

qmake then creates a corresponding rule that generates the C++ file ui_mydialog.h
from mydialog.ui, using uic. The latter contains the interface description of the
code that implements the dialog. (We explain this file and its use in the rest of the
code for the application program in more detail in Chapter 3 on page 91.)

The Translation Tool “Qt Linguist”

Qt Linguist is used to translate application programs from one language to another.
As a separate GUI tool it allows you to integrate language translators in the work
process of a software project more easily. Like Qt Designer, Qt Linguist is used in
conjunction with external command-line programs, namely lupdate and lrelease,
to update the binaries of a software project and replace the words and phrases

49

1 Basics, Tools, and First Code

that are displayed to the user with their equivalents in a different language. lup-
date extracts the texts to be localized from the source code of the program and
generates translation files according to a definition given in the project file:

TRANSLATIONS = application_fr.ts \
application_nl.ts

The GUI application Linguist serves as a graphical utility when translating (i.e., edit-
ing) the translation files generated in this way (Figure 1.12). Finally, lrelease creates
additional binary files containing the translations that the application, on request,
will load at startup, and hence appear translated. By using lupdate, Linguist, and
lrelease together in this way, the application code does not have to be rewritten
and recompiled in order to produce a release that supports another language.

In order for all this to work, the source code of the application must follow certain
conventions. Specifically, strings representing text that is to be translated must be
passed on to the functions QObject::tr() or QApplication::translate(). This accom-
plishes two things.

It allows Qt to change strings dynamically. If you specify only the string "Hello,
world!" in the source code, then only this will be used when the application
runs. But if you send the string first through the QObject function tr() or to the
translate() function of the QApplication class, then this function will look up the
translation and return a string containing it, which will be used instead of the
original "Hello, world!".

It allows the lupdate utility to look for such function calls and thus identify
passages in the source code that are to be translated.

Figure 1.12:

The Qt Linguist

enables applications

to be translated into

other languages.

50

1.5 Qt at a Glance

Unfortunately, the simple “Hello, world!” program from Section 1.1 cannot be
translated into other languages, since we used neither tr() nor translate() for the
string "Hello, world!". To rectify this shortcoming we replace the line

QLabel label("Hello, world!");

with

QLabel label(QApplication::translate("MyLabel", "Hello, world!"));

The function QApplication::translate() takes as the first argument a context label
for the text, whereas the QObject::tr() function the class name of the widget in
question is automatically used as the context label.15 If, for example, you call up
tr() for a QLabel object, Qt automatically uses the context name QLabel. This is
possible because QLabel is derived from QObject as the base class and therefore
inherits the tr() function.

The context label is important because the same text may appear in several places,
with different meanings. If the target language uses distinct terms for these varia-
tions, the appropriate translations for the instances of original text will depend on
the context. For example, the English text Open may occur in one dialog with the
meaning open file, but in another dialog with the meaning open Internet connec-
tion; the German version of the program should render the first instance as Öffnen
and the second as Aufbauen. When the two instances are given different context
labels, Qt Linguist can distinguish them.

You should send all text in your program through the tr() or translate() function.
You will find that the program can generally be translated without great difficulty
when it is done during code development, and that it is very tedious to go through
the entire source text of a large program by hand and add tr() or translate() calls
once the coding is finished. The example programs in the remainder of this book
therefore will use tr() right from the beginning.

(You’ll find details on internationalization and localization in Chapter 14.)

Creating the Project

As demonstrated in Section 1.1.1, qmake creates platform-specific Makefiles from
system-independent project files. The rules stored in the Makefile, make, or nmake
are then used to compile and link the application. nmake, however, only works with
the commercial Qt version, not with the open source edition.16 The GPL variant of

15 See also page 380.
16 The EULA of Visual Studio is incompatible with the GPL anyway once the libraries from Visual

Studio are included.

51

1 Basics, Tools, and First Code

Qt 4 for Windows uses the GCC port MinGW, which instead of nmake provides the
GNU make known from Linux.

qmake project files don’t require us to worry about either the compiler or linker
options. For this reason we will use qmake for all the examples in this book.

In Windows you can also create project files for Microsoft Visual Studio with qmake,
if you own a commercial Qt license. (The Qt integration does not function in
the free variant of Visual Studio Express; these users are also dependent on the
command-line–based version, qmake.)

Figure 1.13:

Code::Blocks builds

our “Hello, world!”

program.

For open source developers in Windows, the development environment Code::
Blocks17 provides a useful alternative. It works together with the MinGW included
in Qt, and even has a template for Qt 4 projects. In order for it to work together
with qmake, however, you first have to stop it from generating the Makefile itself.
To do this, select Project→Properties and mark the option This is a custom Makefile.
Then look for the dialog under Project→Build options and activate the Commands
tab. Then, in the Pre-build steps field, enter the following commands:

qmake -project

qmake

make.bat

17 See http://www.codeblocks.org/.

52

1.5 Qt at a Glance

To ensure that qmake is called even when other programs (such as the Qt Designer)
add new files, select the option Always execute, even if target is up-to-date. Figure
1.13 shows Code::Blocks after the “Hello, world!” program has been compiled.

It is useful to store the menu items for starting the Designer, the Assistant, or make
in the Tools menu. You can also use this, to a certain extent, to quickly start your
own programs, which you can specify in the subitem Configure tools. . . .

Figure 1.14:

Apple’s Xcode IDE

enables efficient

project management,

for which qmake

generates the

necessary files.

On Mac OS X, the preferred development environment is the Xcode IDE. Apple
provides this software free of charge since OS X version 10.3 (Panther), but it needs
to be installed separately. qmake on the Mac conveniently creates project files for
Xcode instead of Makefiles. However, if you prefer to avoid Xcode and rely on
command line tools only, simply append -spec macx-g++ to generate a Makefile:

qmake -spec macx-g++

In contrast,

qmake -spec macx-xcode

will cause qmake to generate Mac OS X project files for Xcode in all Qt editions.
qmake generates an Xcode project from a .pro file, which then turns up in the
project management tool of Xcode.

qmake -spec macx-g++

creates a Makefile for direct use with GCC.

When creating your application under Linux, the development environment KDe-
velop18 is probably the best choice. Version 3.4 provides support for Qt 4 projects.
KDevelop includes both, a project template and a graphical management utility for
qmake project files, which can be integrated seamlessly into the IDE.

18 See http://www.kdevelop.org/.

53

1 Basics, Tools, and First Code

Upon first startup, KDevelop will present an almost blank main window. Choosing
Project→New Project will start the project wizard which guides through the initial
steps of creating a KDevelop-based project. To create a Qt 4 project that uses
qmake, select C++→QMake project→Basic Qt4 application from the treeview as
shown in Figure 1.15. For the first step to complete, the wizard also needs a name
for the application, as well as a directory location to store all files in.

Figure 1.15:

KDevelop provides a

qmake-based project

support.

In the next step, KDevelop asks for the name of the default author, an initial version
number, and the license for the project. Also it is important that you specify the
full path to the Qt 4 versions of qmake and designer in this step. This ensures that
KDevelop will not pick the Qt 3 version by accident if both are installed in parallel.

The next step allows you to pick a source code control. If you are not using source
code management system, just keep the None default. The remaining steps allow
for customizing the templates that are inserted into all header and implementa-
tion files. These usually contain the license as well as the author’s name. Figure
1.16 shows a mainwindow with the example main.cpp file after the wizard has
completed.

54

1.5 Qt at a Glance

Pressing
✞✝ ☎✆Shift+F9 will build and execute a given project; the textual output is visible

in the Messages and Application tab on the bottom, which will automatically open
during build and execution phases, respectively.

Figure 1.16:

The KDevelop main

window after the

setup

The qmake-project manager (QMake Manager) is hidden behind a tab on the right
bearing the Qt symbol. Upon expansion, you can use it to graphically add, re-
move, or open files. The project manager view separates between different types
of sources: KDevelop opens a new tab for common source files, while ui files are
automatically launched with the Qt Designer.

Figure 1.17:

The KDE editor Kate

can quickly be

converted to a

powerful source code

editor.

A good alternative for those who dislike a fullblown IDE is the Kate editor (KDE
Advanced Text Editor), which includes a pull-down menu from which you can run

55

1 Basics, Tools, and First Code

the compiler directly, as shown in Figure 1.17. Depending on your distribution, you
may want to install the kate-plugins package first which—among others—provides
a plugin for code completion. Equipped this way, Kate gives an overview of meth-
ods and member variables in C and C++ files, and even allows for code snippet
administration under Settings→Configure Kate→Application→Plugins.

Kate’s setup dialog provides a subitem, External Tools, in which you can store your
own commands, as with Code::Blocks, which then appear under Tools→External
Tools. Settings→Configure Shortcuts lists keyboard shortcuts.

The Meta-object Compiler moc

The signal/slot concept in Qt is not pure C++, but rather an extension of the C++
standard. For this reason the command-line program moc (meta object compiler)
is used to convert the signal and slot constructs into standard C++. moc gener-
ates additional C++ code for each class derived from QObject. This ensures that
signal/slot connections can be dynamically generated at runtime. It also allows the
names of classes that have QObject as a base class to be dynamically determined at
runtime, and even to determine whether a class is a base class for another class.19

Qt also includes a property system, for which moc generates the necessary code.
Properties are special characteristics of a class that can be queried and set. For
example, the QLabel class has a text property, whose value is a string containing
the text that the label displays. For each property there are two functions: one that
reveals its current value, also called the get method, and one that changes it, also
known as the set method. In the case of QLabel, text() is the get method returning
the label’s text, and setText() is the set method providing the label with a new text.

These two functions, marked in the class definition as properties, allow the text
to be queried via QObject::property() and be set with QObject::setProperty(). Both
require a string, namely, the name of the property, as an argument. The Property
Editor of the Designer determines the value of properties at runtime and allows
these properties to be changed. If you require properties in a separate class, these
must be derived from QObject.

In short, moc is needed whenever a class uses QObject as a base class. The meta-
object compiler must preprocess every file that implements the definition of such
a class before the C++ compiler is run. In each case this creates a file beginning
with the prefix moc_.

For example, if you write your own dialog class MyDialog with QObject as a base
class, with the class definition in the file MyDialog.h and the actual implementation

19 By base class we mean not just the class from which a class is directly derived, but all classes in
the inheritance sequence beginning from a root of the class hierarchy. Thus QVBoxLayout has
three base classes (QBoxLayout, QLayout, and QObject), because QLayout inherits from QObject,
QBoxLayout from QLayout, and QVBoxLayout from QBoxLayout.

56

1.5 Qt at a Glance

in MyDialog.cpp, the meta-object compiler has to process MyDialog.h, then gener-
ate the file moc_MyDialog.cpp, and integrate the generated file into the complete
project. qmake does all of this automatically.

The Qt Resources Compiler rcc

Almost every program uses external resources such as images or graphics. These
resources can either lie in separate files or be embedded directly in the executable
files to be generated. Qt 4 uses the resources compiler rcc for generated files.
The resource compiler obtains its information from resource description files, the
names of which end in the extension .qrc. A .qrc file specifies filesystem paths to
resources used by the program, beginning from the directory in which the .qrc file
resides.

If you include the resource file in the qmake project, Qt automatically generates
arrays encoded in hexadecimal form, in which it stores the contents of the resource
files. The Qt resource system ensures that the application program can access the
resources encoded in this way using the old directory and file names. A .qrc file
describes (using XML) which files are needed by the finished program. It looks
something like this:

<RCC>

<qresource>

<file>pics/symbols/stop.png</file>

<file>pics/symbols/start.png</file>

<file>pics/symbols/pause.png</file>

</qresource>

</RCC>

The path details are always understood as relative to the directory in which the
resource file is located. For this example we assume that the above resource file is
called symbols.qrc and that the directory pics/symbols, which contains the required
images, is beneath the directory with the source code (including the resource file).

In order for qmake to be able to take the information from the resource file into
account, a corresponding RESOURCES directive must be added to the project file:

RESOURCES = symbols.qrc

The image file stop.png under pics/symbols can now be referenced in the applica-
tion code as follows:

myLabel->setPixmap(QPixmap(":/pics/symbols/stop.png"));

That is, in order to refer to a resource, you need only place a colon in front of the
path details specified in the .qrc file. (The leading slash is not a typo; relative paths

57

1 Basics, Tools, and First Code

in the file system are specified in the logical path notation as absolute paths, with
the code directory as the root.) If the resource description file is properly integrated
into the project, a call to QPixmap() can correctly resolve the path, and the label
will display a stop icon.

A file in a resource can also be addressed with a logical path completely different
from its actual file system path, as shown here:

<RCC>

<qresource prefix="/player">

<file alias="stop.png">pics/symbols/stop.png</file>

...

</qresource>

</RCC>

The prefix attribute for the qresource tag specifies a prefix to be used before the
path details, whereas the alias attribute specifies an alternative name or path that
can be used instead of the actual path details. With the combination shown above,
the stop icon can now also be addressed in the application code as follows:

myLabel->setPixmap(QPixmap(":/player/stop.png"));

With the help of the lang attribute and alternative qresource entries, the system
can load other graphics depending on the current language setting:

<RCC>

<qresource>

<file>pics/symbols/stop.png</file>

...

</qresource>

<qresource lang="de">

<file>pics/symbols/de/stop.png</file>

...

</qresource>

</RCC>

Beginning with version 4.1, Qt Designer includes a Resource Editor (see page 99).
Unfortunately, in Qt 4.1.0 this does not display the relative paths to the individual
resources, nor will it handle the alias attribute. Therefore, you should always check
the resource description file that is generated.

1.5.3 Examples and Demos

A complete Qt installation contains a series of example programs in the examples
directory and several demo programs in the demo folder.

58

1.6 How to Use the Documentation

The example programs are of particular help if you have problems using specific Qt
classes, whereas the demo programs mainly demonstrate all the things that Qt can
do and are not appropriate as a reference for how to use the class libraries.

1.6 How to Use the Documentation

The HTML documentation included by Trolltech is recommended as a constant com-
panion in Qt programming, especially because it describes all Qt classes in detail.
Also, you may find it useful when reading this book to look up the documentation
for the classes used in the various examples.

When Qt Assistant starts, the program automatically loads the start page doc/html/
index.html (Figure 1.10 on page 48); it can also be viewed in any web browser, and
is available online.20 In addition to the precise documentation of the Qt classes
already mentioned, the documentation includes introductory texts; overviews of
the signal/slot concept, layouts, and the SQL, network, XML, and OpenGL modules;
and detailed descriptions of the tools and utilities.

Figure 1.18:

The class

documentation of the

QWidget class

The class documentation is what is most frequently used in day-to-day work with
Qt. If you know the class names, you can enter them in the Index tab of the
Assistant. From the start page you can also access a list of all classes and a list
grouped according to topics.

20 For Qt 4.1, see http://doc.trolltech.com/4.1/.

59

1 Basics, Tools, and First Code

The documentation of each class begins with a short description of what the class
does, followed by the name of the header file that needs to be integrated in order
to use it. The keyword Inherits reveals from which direct base classes the class is
derived, Inherited by lists the classes that inherit from this one (Figure 1.18).

This information is followed by a list of the functions of the class which is divided
into several categories. These categories include the get and set methods for prop-
erties of the class, public and protected functions, signals, and slots.

Only the functions that are defined in the class itself appear in this list; the doc-
umentation does not discuss methods that the class obtains through inheritance
from base classes. Remember that if you are looking for a specific function and
do not find it in the list—it may be documented in a base class. Alternatively,
the link List of all members, including inherited members at the beginning of the
class documentation, leads to a list of all functions of the class, including inherited
functions.

The function list is followed by a detailed description of the class. In addition to a
description of the tasks that the class carries out, it also explains some typical ways
in which the class is used.

60

2 Ch
ap

te
r

The Tools Needed to
Create Dialogs

Now that you have an overview of Qt, we will turn to a more practical example to
see how the classes work together. Our first extensive program will convert num-
bers between decimal, hexadecimal, and binary notation; it’s shown in Figure 2.1.

Figure 2.1:

Our example program

converts numbers

between decimal,

hexadecimal, and

binary notation.

61

2 The Tools Needed to Create Dialogs

The user of this program can enter any one-byte number (from 0 to 255) in any of
the three input fields. The program updates the other two Line-Edits input fields
with the converted value.

2.1 What’s the Difference Between Dialogs and
Widgets?

The program’s main() function is almost identical to the main() function of the
“Hello, world!” program discussed in Section 1.1:

// byteConverter/main.cpp

#include <QApplication>

#include "ByteConverterDialog.h"

int main(int argc, char *argv[])

{
QApplication a(argc, argv);

ByteConverterDialog bc;

bc.setAttribute(Qt::WA_QuitOnClose);

bc.show();

return a.exec();

}

There is just one exception: The class QLabel has been replaced by ByteConver-
terDialog. This class inherits from QDialog, and its class definition is placed in
the header file ByteConverterDialog.h.1 The #include directive that integrates this
header file into the application code uses quotation marks (”) instead of angle
brackets (<>), since the file is in the same directory as main.cpp.

We’ve also added the WA_QuitOnClose attribute to the dialog to ensure that the
program ends when the dialog is closed. This was not necessary in the previous
examples, because we did not use any classes inherited from QDialog as the main
window. Since dialogs usually only provide in-between information, the attribute
is not active by default for QDialog. After all, closing a dialog shouldn’t terminate
the application unless there’s a serious bug.

We surround the contents of the file ByteConverterDialog.h with include guards,
consisting of the three preprocessor instructions #ifndef label, #define label and
#endif:

1 For header files that we create ourselves, we use the C/C++ standard file extension .h, to make
the file type clear.

62

2.1 What’s the Difference Between Dialogs and Widgets?

// byteConverter/ByteConverterDialog.h

#ifndef BYTECONVERTERDIALOG_H

#define BYTECONVERTERDIALOG_H

#include <QDialog>

class QLineEdit;

class ByteConverterDialog : public QDialog

{
Q_OBJECT

public:

ByteConverterDialog();

private:

QLineEdit* decEdit;

QLineEdit* hexEdit;

QLineEdit* binEdit;

};

#endif

Using include guards is a standard technique in C/C++ programming to avoid prob-
lems that occur if more than one source file tries to #include a header file, which
can happen in large programs with many independently developed modules. Here,
the first time ByteConverterDialog.h is processed, the keyword BYTECONVERTER-
DIALOG_H is defined. If a later source file attempts to #include ByteConverterDia-
log.h again, the #ifndef . . . endif (“if not defined”) directive causes the preprocessor
to skip the header file’s contents. Without the include guards, the compiler would
notice that the keywords and classes are being multiply defined and signal an error.

We include the header file QDialog, since the ByteConverterDialog class inherits
from QDialog. In order for the functions of QDialog to be available outside the
ByteConverterDialog class we use the access control public.

The class declaration class QLineEdit; is a forward declaration. Objects of the
ByteConverterDialog class contain three private variables that point to QLineEdit
objects, and so the C++ compiler needs to know that QLineEdit is a class in order
to process the ByteConverterDialog declaration, but it does not need to know the
exact class definition at that point.2

The Q_OBJECT macro must be used in all derivations from the QObject base class,
including indirect ones, because it defines functions without which the signal/slot
concept cannot work. (More on this in Section 2.1.1.)

2 Alternatively, you could include the QLineEdit header file before the declaration of ByteCon-
verterDialog, but then the parser would need to read this, which would slow down compiling
considerably, especially on slower machines. For this reason, we try, in this book, to optimize
the header files so that only the necessary ones are included.

63

2 The Tools Needed to Create Dialogs

The constructor is the only public function of the class. We will store pointers to
the QLineEdit objects displayed by the byte converter widget in the three mem-
ber variables (decEdit, hexEdit, and binEdit) because we wish to update the input
fields in which the user does not enter data immediately to ensure that all three
line edits display the same text. Because this is an implementation detail of our
ByteConverterDialog class, we declare them as private variables.

2.1.1 Inheriting from QObject

As mentioned previously, you must always use the Q_OBJECT macro when a class
inherits, directly or indirectly, from QObject.3 This macro defines several functions
that implement the signal/slot concept. Unfortunately, if the macro is missing in
the definition of a class that inherits from QObject, neither the compiler nor the
linker will report an error. Instead, the signals and slots of the class will remain
unknown to Qt, and at runtime the corresponding connections will not work.

Applications compiled with debugging information will warn at runtime (in a ter-
minal window) that a signal or slot does not exist whenever code is executed that
tries to access an unknown signal or slot. The error message is:

Object::connect: No such slot QObject::decChanged(QString)

However, this error message is a bit non-specific. You will also see it if you have
written the name of the signal or slot incorrectly or if the argument list is incorrect.

Every file that uses the Q_OBJECT macro must be submitted to the command-line
program moc (see page 56). This tool automatically generates the code converted
into pure C++ code by the signal/slot concept.4

If you use qmake to create your project, the qmake tool searches all header and
source text files named in the .pro file for the Q_OBJECT macro. When it finds one,
qmake automatically generates the necessary build instructions for moc based on
the contents of those files.5

For this to work you must, of course, specify the project’s header files in the .pro
file. To do so, use the qmake variable HEADERS, as you would the SOURCES variable
for source text files:

3 Some compilers issue errors if the Q_OBJECT macro is terminated with a semicolon, which is
why, for reasons of portability, we recommend that you always omit it.

4 moc does not modify your files; it provides the new code in separate files which you have to
take care of when writing your Makefiles by hand. If you use qmake as we recommend, you
don’t have to care.

5 qmake will not automatically notice if the Q_OBJECT macro is inserted into a file later on.

64

2.1 What’s the Difference Between Dialogs and Widgets?

#byteConverter/byteConverter.pro

TEMPLATE = app

SOURCES = main.cpp \
ByteConverterDialog.cpp

HEADERS = ByteConverterDialog.h

If moc is not invoked for files containing the Q_OBJECT macros, the linker com-
plains of undefined symbols, and GCC issues this error message:

ld: Undefined symbols:

vtable for ByteConverterDialog

ByteConverterDialog::staticMetaObject

If you see this error message, check the following:

Have the qmake variable HEADERS been properly defined?

Is the problem resolved if the Makefiles are regenerated with qmake?

2.1.2 More Complex Layouts

We now turn to the implementation of the ByteConverterDialog class. When cre-
ating instances of this class, the constructor function generates all the QLineEdit
widgets displayed by the new ByteConverterDialog object and inserts them into a
layout. However, this is no longer as simple as before: In order for the application
to behave in an intuitive manner when the user changes the size of the dialog, we
need to use nested layouts. Figure 2.2 shows how Qt ensures that the input fields
always appear at the top of the window and that the Quit button always appears
at the lower right corner of the window.

Figure 2.2:

How Qt layouts react

to a size change in

the dialog

But don’t panic: Even though the source code for the constructor becomes quite
long, it uses only simple functions:

65

2 The Tools Needed to Create Dialogs

// byteConverter/ByteConverterDialog.cpp

#include "ByteConverterDialog.h"

#include <QLabel>

#include <QLineEdit>

#include <QPushButton>

#include <QVBoxLayout>

#include <QHBoxLayout>

#include <QGridLayout>

ByteConverterDialog::ByteConverterDialog()

{
// Generate the necessary layouts

QVBoxLayout* mainLayout = new QVBoxLayout(this);

QGridLayout* editLayout = new QGridLayout;

QHBoxLayout* buttonLayout = new QHBoxLayout;

mainLayout->addLayout(editLayout);

mainLayout->addStretch();

mainLayout->addLayout(buttonLayout);

// Generate the labels and line-edits and add them

// to the object pointed at by editLayout

QLabel* decLabel = new QLabel(tr("Decimal"));

QLabel* hexLabel = new QLabel(tr("Hex"));

QLabel* binLabel = new QLabel(tr("Binary"));

decEdit = new QLineEdit;

hexEdit = new QLineEdit;

binEdit = new QLineEdit;

editLayout->addWidget(decLabel, 0, 0);

editLayout->addWidget(decEdit, 0, 1);

editLayout->addWidget(hexLabel, 1, 0);

editLayout->addWidget(hexEdit, 1, 1);

editLayout->addWidget(binLabel, 2, 0);

editLayout->addWidget(binEdit, 2, 1);

// Create the Quit button and add it to the object pointed

// at by buttonLayout

QPushButton* exitButton = new QPushButton(tr("Quit"));

buttonLayout->addStretch();

buttonLayout->addWidget(exitButton);

...

Figure 2.3 shows which layouts are involved with which widgets. Keep an eye on it
when we now walk through the code above.

The mainLayout object, a vertical box layout, is responsible for the layout of the
entire dialog. Therefore, we pass a pointer to the ByteConverterDialog object when
we call its constructor. To do this we use the this pointer, since we are in a function
of the ByteConverterDialog class itself.

66

2.1 What’s the Difference Between Dialogs and Widgets?

Figure 2.3:

The layouts as used

by

ByteConverterDialog

The editLayout object is responsible for the layout of the labels and line-edit widgets.
In order to be able to stack these elements neatly, and to organize the widgets in a
single column, we use a grid layout.

The buttonLayout, which we create with the third new call, will be responsible
for managing the Quit button. However, before we can generate widgets like this
button and add them to editLayout and buttonLayout, we must add those two
layouts to the mainLayout using addLayout(), which is the layout equivalent of
addWidget(). If you add widgets to a layout not yet associated with a widget, you
will receive this runtime error in a terminal window:

QLayout::addChildWidget: add layout to parent before adding children to

layout.

and the widgets will remain invisible. Therefore, you should always generate the
basic layout for your class first, then continue with the next layout “layer,” and so
on.

To ensure that input fields are always placed at the top of the ByteConverterDialog
and that the Quit button is always positioned at its lower right, we use stretches.

Figure 2.4:

The dialog after a

change in size when

stretches are not used

Stretches occupy the space not required by the widgets and thus create empty
spaces in your dialog. If you were to omit stretches in our example, the widgets

67

2 The Tools Needed to Create Dialogs

would occupy the entire space. Were the user to enlarge such a dialog, without
stretch, he would see something like Figure 2.4.

To avoid this behavior, we add a stretch between the editLayout and the button-
Layout with the addStretch() function.

Now we can generate the labels and line edits and entrust them to the editLayout.
We save the line edit objects in the private class variables decEdit, hexEdit, and
binEdit, because we want to change their contents through code stored in other
functions. For all other objects, we can manage without corresponding pointers
because we do not need to access them outside the constructor.

To ensure that the Quit button is always displayed at the far bottom right of the
dialog, we first fill the horizontal layout buttonLayout with a stretch before we
adjust the button itself.

By adding all the widgets and sublayouts to the mainLayout object or its children
using QObject::addWidget() and QObject::addLayout(), we ensure that all objects
generated by the constructor with new are inherited from the ByteConverterDialog
object. Since they now form a heap-allocated object hierarchy that Qt’s memory
management will handle for us, we do not need to delete any of them manually.
When the ByteConverterDialog object is deleted, all its children disappear auto-
matically.

Are you becoming slightly disillusioned because of the not insignificant amount of
code that we had to write just to create a really simple dialog? Help is on the way
in Chapter 3, which explains how a dialog can be created using the Qt designer,
and code automatically generated. More details and background information on
layouts is provided in Chapter 5.

2.1.3 Increasing Usability

Despite the improved layout, the dialog does not yet behave ideally in certain re-
spects:

The window title at the moment shows the program name byteConverter. Some-
thing more descriptive might be better.

The Quit button should become the default button of the dialog. The default
button is activated by

✞✝ ☎✆Enter even if it currently does not have keyboard focus.
Most widget styles highlight the default button in a particular way.

Currently you can enter any numbers in the line-edit widgets. We should restrict
this to valid values, that is, only whole decimal numbers between 0 and 255,
hexadecimal numbers with a maximum of two digits, and binary numbers with
a maximum of eight bits.

68

2.1 What’s the Difference Between Dialogs and Widgets?

We can solve these three problems by adding the following lines to the construc-
tor:6

// byteConverter/ByteConverterDialog.cpp (continued)

...

exitButton->setDefault(true);

// Limit input to valid values

QIntValidator* decValidator =

new QIntValidator(0, 255, decEdit);

decEdit->setValidator(decValidator);

QRegExpValidator* hexValidator =

new QRegExpValidator(QRegExp("[0-9A-Fa-f]{1,2}"), hexEdit);

hexEdit->setValidator(hexValidator);

QRegExpValidator* binValidator =

new QRegExpValidator(QRegExp("[01]{1,8}"), binEdit);

binEdit->setValidator(binValidator);

setWindowTitle(tr("Byte Converter"));

...

Setting the Window Title

The first two problems are each solved with a single line of additional code. To solve
the first problem, we use the function setWindowTitle(), which sets the window title
of a widget if the widget occupies a top-level window. This function is a method
of the QWidget class. Since ByteConverterDialog has QWidget as its base class, it
inherits this function, and we can simply call it up.

Specifying the Default Button

The default button for a dialog is specified by informing the button (rather than the
dialog, as you might expect) that it is indeed the default button. (Note, however,
that calling setDefault(true) on a QPushButton object only has an effect if the
button is used in a dialog—in a main window there are no default buttons. If you
try to define a default button for a main window, Qt will make it look like one, but
it doesn’t activate it when the user presses the

✞✝ ☎✆Enter key.)

6 To compile the resulting code, please also add the missing #include lines (omitted above for the
sake of clarity) for the classes used for the first time here, QIntValidator and QRegExpValidator!

69

2 The Tools Needed to Create Dialogs

Checking User Input

The third problem, restricting the input in the line-edit widgets to valid values, re-
quires somewhat more work, but can be resolved through validators. These inherit
from QValidator as the base class. A validator is associated to a parent object that
receives input and informs that object whether or not it should accept the current
input value.

To check the validity of the decimal number, we use a QIntValidator object. It is
created by invoking the constructor and passing to it, as the first and second argu-
ments, the minimum and maximum input values allowed. The third argument, here
decEdit, is a pointer to the line-edit object that we want to make the parent object
of the validator. This invocation, besides binding the validator to the input widget,
also makes it subject to automatic memory management, so that the validator will
be deallocated when the widget is. The setValidator() call then causes the validator
to keep an eye on the input given to the object pointed to by decEdit. Now the
user can type only whole numbers between 0 and 255 in the input field.

To check the validity of hexadecimal numbers, we must make use of another type of
validator: QRegExpValidator. This compares the input, viewed as a string, against a
regular expression. In our case, the regular expression is [0-9A-Fa-f]{1,2}. The first
subexpression in square brackets specifies the characters permitted in the input
string: the digits 0 to 9 and the letters A to F (written either in upper or lower
case). The following subexpression, {1,2}, restricts the length of the input string to
at least one, and at most two, characters.

Regular expressions in Qt are related to those from Perl, but there are some sig-
nificant differences. For example, it is necessary to escape a backslash (\) in a
Perl-style regular expression with another backslash to get the corresponding Qt-
style expression, because a single backslash already acts as an escape character in
C/C++. QRegExp then recognizes the double backslash as a simple backslash. It
follows from this that we need to type in four backslashes if we want to specify a
literal backslash within a Qt-style regular expression.

We also use a QRegExpValidator with the regular expression [01]{1,8} as a validator
for the input field for binary numbers. This expression allows only the characters
0 and 1 in the input string, but the string can be anywhere from one to eight
characters in length.

2.1.4 Implementing Slots

Finally, we need to implement the functional connections that make the Quit but-
ton work as expected and synchronize the three input fields with one another.

To ensure that clicking the Quit button will close the byte-converter dialog, we
extend the ByteConverterDialog constructor to associate the clicked() signal of the

70

2.1 What’s the Difference Between Dialogs and Widgets?

button with the accept() slot of the dialog. The slot is provided by QDialog, which
the ByteConverterDialog class inherits from:

// byteConverter/ByteConverterDialog.cpp (continued)

...

connect(exitButton, SIGNAL(clicked()),

this, SLOT(accept()));

...

The accept() method, when invoked, simply closes the dialog. Our use of accept()
here follows a general convention: A large number of dialogs have an Ok and a
Cancel button at the bottom; Ok corresponds to the accept() slot, Cancel to the
reject() slot. Both slots close the dialog, the first exiting with a positive return
value, the second with a negative one (see Chapter 6, page 161). In this example
we only have one button and therefore are not interested in the return value, just
the action.

However, the real event-processing logic of our byte converter application consists
of augmenting the customary signals and slots with several custom-built connec-
tions, specific to the functionality of our ByteConverterDialog class. These sig-
nal/slot connections should come into action when any one of the QLineEdit ob-
jects sends out the signal textChanged(), indicating that the text in that object’s
input field has changed. For this purpose, we expand our class definition as fol-
lows:

// byteConverter/ByteConverterDialog.h (continued)

class ByteConverterDialog : public QDialog

{
...

private slots:

void decChanged(const QString&);

void hexChanged(const QString&);

void binChanged(const QString&);

};

Slots are declared in the same way as normal functions, except that for access
control we use the designators public slots:, protected slots:, and private slots:,
instead of the usual public:, protected:, and private: protection modes.

Each of our three slots accepts an argument of the type const QString&. In this
way the textChanged() signal of the function can pass the new text of the line edit.

As the argument type for the signals/slots to be, we do not choose simply QString,
but a reference to a const QString. There are two reasons for this. First, by us-
ing call-by-reference rather than call-by-value, the QString object containing the

71

2 The Tools Needed to Create Dialogs

updated input to be passed to the signals/slots will not be copied when the sig-
nals and slots are invoked, and the code becomes more efficient. However, use of
call-by-reference allows the function to modify the actual parameter, which the
signals and slots should not do, so the parameter is also declared to be a reference
to const data. This second step is a recommended “defensive programming” prac-
tice whenever a function should not change an actual parameter that is passed by
reference.

Even though the declaration of a slot differs slightly from that of other functions,
it is still an ordinary function, which is implemented and can be called in the usual
way. Here is the definition of the decChanged() slot in the file ByteConverterDia-
log.cpp:

// byteConverter/ByteConverterDialog.cpp (continued)

void ByteConverterDialog::decChanged(const QString& newValue)

{
bool ok;

int num = newValue.toInt(&ok);

if (ok) {
hexEdit->setText(QString::number(num, 16));

binEdit->setText(QString::number(num, 2));

} else {
hexEdit->setText("");

binEdit->setText("");

}
}

The function receives the new string displayed by the decimal line-edit widget as
the actual value for its newValue parameter, and it updates the strings displayed
by the hexadecimal and binary line-edit widgets. First, we need to determine the
numeric value that corresponds to the input string. As an object of the QString
class, newValue knows several functions that convert strings to numbers. We will
use the toInt() function, as the input is a string representing an integer value.

toInt() accepts a bool pointer as an optional argument: If this argument is specified,
the function sets the variable to which it points to true if the string is successfully
converted to a numeric value, and to false if the conversion fails, that is, if the
string does not represent an integer value.

If the conversion is successful, we set the texts displayed by the two other line
edits (hexEdit and binEdit) to the hexadecimal and binary equivalents of the new
value. To do this, we convert the number to a string that represents the new value
in hexadecimal form and to a string that represents the new value in binary form.
For this purpose the QString class has the static function number(), which returns
the representation of a number as a string. The number itself is its first argument.
As a second argument, number() expects the base for the number system used, in
our case 16 for hexadecimal and 2 for binary. The second argument is optional,

72

2.1 What’s the Difference Between Dialogs and Widgets?

and if it is not specified, number() assumes base 10 (the decimal system), which is
the most common case.

If the toInt() function could not convert the string that was entered in the decimal
line-edit widget into a number, we write an empty text to the other two line-edit
widgets, with setText(). Thanks to the validator we used for the decEdit object,
which ensures that only numbers in the range 0 to 255 can be entered, the con-
version will only fail in one single case: if the user deletes the input completely.

We implement the two remaining slots in the same way:

// byteConverter/ByteConverterDialog.cpp (continued)

void ByteConverterDialog::hexChanged(const QString& newValue)

{
...

if (ok) {
decEdit->setText(QString::number(num));

binEdit->setText(QString::number(num, 2));

} else {
...

}
}

void ByteConverterDialog::binChanged(const QString& newValue)

{
...

if (ok) {
decEdit->setText(QString::number(num));

hexEdit->setText(QString::number(num, 16));

} else {
...

}
}

In these functions, when transforming the string to an integer value, we specify
the base in an optional second argument to toInt(); like QString::number(), toInt()
uses base 10 by default if this argument is omitted.

In order for these parts of our application to work together according to our design,
we must connect the textChanged() signals of each of our QLineEdit objects with
the corresponding slots. To do this, we extend the constructor for the last time:

// byteConverter/ByteConverterDialog.cpp (continued)

...

connect(decEdit, SIGNAL(textChanged(const QString&)),

this, SLOT(decChanged(const QString&)));

connect(hexEdit, SIGNAL(textChanged(const QString&)),

this, SLOT(hexChanged(const QString&)));

73

2 The Tools Needed to Create Dialogs

connect(binEdit, SIGNAL(textChanged(const QString&)),

this, SLOT(binChanged(const QString&)));

}

The code for the constructor of our ByteConverterDialog class is now complete,
and performs three different tasks:

It generates all the widgets of a dialog, incorporates them into the appropriate
layouts, and sets up the object hierarchy of the dialog.

It restricts the user input to sensible values.

It sets up all the necessary signal/slot connections.

The entire logic of the application is contained in the code for slots and in their
connections to the corresponding signals.

2.2 Separation of GUI and Processing Logic

2.2.1 Alternative Design

In the previous example program, we defined a single ByteConverterDialog class
that implements both the graphical interface and the processing logic for the ap-
plication: If the user changes the value in one of the line-edit widgets, the Byte-
ConverterDialog class calls the corresponding slot, which adjusts the value of the
two other line edits. Figure 2.5 depicts this.

Such a dovetailing of the GUI and the application logic brings the risk of a program
design that is confusing and difficult to maintain. If, for example, crucial applica-
tion logic has been embedded in methods responsible for setting up layouts and
widgets, and it’s later decided to change the look and feel of the interface, then the
code responsible for the functionality will have to be painstakingly factored out.

This problem cannot be completely avoided, but it can at least be minimized by
separating user interface code and data processing code, as shown in Figure 2.6.
The possibility of using signals and slots simplifies the abstraction here, because
unnecessary dependencies of the dialog class on the processing class (and vice
versa) can be avoided.

In this design, the ByteConverterDialog class is responsible only for the GUI; con-
version of the numbers is taken over by an additional class, ByteConverter. This
class has the slots setDec(), setHex() and setBin(). If you call the setDec() slot with
a string, the class sends out the signals hexChanged() and binChanged() with the
corresponding values in hexadecimal or binary form, and similarly for the other
two slots.

74

2.2 Separation of GUI and Processing Logic

Figure 2.5:

GUI elements and

processing logic of

the

ByteConverterDialog

class until now

ByteConverterDialog

decEdit

textChanged()

setText()

hexEdit

textChanged()

setText()

binEdit

textChanged()

setText()

decChanged()

hexChanged()

binChanged()

We can connect the signals and slots of the line-edit widgets from the ByteCon-
verterDialog to the signals and slots of the ByteConverter class, for example, the
hexChanged() signal of the decEdit object in a dialog to the setDec() slot of the
associated ByteConverter. If the user enters a new decimal value, the line-edit
widget sends out the textChanged() signal and setDec() is applied. This slot in turn
sends out the signals hexChanged() and binChanged(). Since we have connected
them to the setText() slot of the hexEdit or binEdit object, the program updates the
hexadecimal and binary values in the graphical user interface.

The ByteConverter class “knows” nothing about the GUI components. It has a
clearly defined interface and can still be used if the appearance of the applica-
tion changes.

Separating data processing from the GUI in this way should always be considered
if the processing logic can be separated naturally from the user interface. If, on
the other hand, you only want to synchronize individual GUI elements with one
another, you should decide against such a splitting-up: In this case you will not
attain any independence, but only shift responsibility to a new class.

75

2 The Tools Needed to Create Dialogs

Our example program is a borderline case in this respect: Its data processing task
consists of converting numbers from one base to another—a functionality not
linked to a particular user interface. If you were to write a hex editor, on the
other hand, whose outputs can be switched between decimal, hexadecimal, and
binary notation, it would probably not be justifiable to separate the GUI from the
calculation logic for the synchronization of the corresponding line edits.

Figure 2.6:

Separation of GUI

elements from the

processing logic

It can already be seen that there is no easy answer as to what you should separate
and what you should leave together. To a certain extent the answer depends on
the programming style and the project organization. Qt provides the necessary
freedom for both methods.

2.2.2 Declaring and Sending Out Signals

The new ByteConverter class has signals and slots, and must therefore ultimately
inherit from QObject. Since it displays nothing on the screen, is not a widget,
and requires no other functionality that Qt makes available in other subclasses of
QObject, it can inherit directly from QObject:

// byteConverter2/ByteConverter.h

#ifndef BYTECONVERTER_H

#define BYTECONVERTER_H

#include <QObject>

class ByteConverter : public QObject

{
Q_OBJECT

public:

ByteConverter(QObject* = 0);

public slots:

void setDec(const QString&);

76

2.2 Separation of GUI and Processing Logic

void setHex(const QString&);

void setBin(const QString&);

signals:

void decChanged(const QString&);

void hexChanged(const QString&);

void binChanged(const QString&);

};

#endif

Again it is important here not to forget the Q_OBJECT macro, otherwise Qt will not
know about the signals and slots declared.

The constructor accepts a pointer to a QObject object as an argument. This becomes
the “father” of the new object in the object hierarchy. As the default value (exactly
as in the signature of the QObject constructor) is 0, the zero pointer is used—a
corresponding ByteConverter object therefore has no parent.

The class has three slots, setDec(), setHex(), and setBin(). This time we want to
access them from outside the class, namely from the ByteConverterDialog class,
and we allow this with the keyword public.

Signals are declared with the signals: designator. There is no access control mode
specified—they are always public. Any private or protected signals would be in-
visible outside the class, and therefore would be useless for communicating be-
tween different classes. Within a single class (as in our previous implementation),
straightforward function calls can be used. Apart from the signals: designator,
signal declarations look just like function declarations.

In contrast to member functions and slots, however, the implementation of the
class omits defining the signals, since all they do is call the slots to which they are
connected.7

The ByteConverter constructor is quickly implemented:

// byteConverter2/ByteConverter.cpp

#include "ByteConverter.h"

ByteConverter::ByteConverter(QObject* parent) :

QObject(parent)

{
}

We pass only the parent argument to the QObject constructor (that is, the con-
structor of the base class).

7 Of course, signals are also implemented automatically by moc. The code generated for a signal
calls the corresponding slots, but it is not possible to write a separate implementation for
signals.

77

2 The Tools Needed to Create Dialogs

The implementation of the slots corresponds more or less to that from Section 2.1.4
on page 70:

// byteConverter2/ByteConverter.cpp (continued)

void ByteConverter::setDec(const QString& newValue)

{
bool ok;

int num = newValue.toInt(&ok);

if (ok) {
emit hexChanged(QString::number(num, 16));

emit binChanged(QString::number(num, 2));

} else {
emit hexChanged("");

emit binChanged("");

}
}

void ByteConverter::setHex(const QString& newValue)

{
bool ok;

int num = newValue.toInt(&ok, 16);

if (ok) {
emit decChanged(QString::number(num));

emit binChanged(QString::number(num, 2));

} else {
emit decChanged("");

emit binChanged("");

}
}

void ByteConverter::setBin(const QString& newValue)

{
bool ok;

int num = newValue.toInt(&ok, 2);

if (ok) {
emit decChanged(QString::number(num));

emit hexChanged(QString::number(num, 16));

} else {
emit decChanged("");

emit hexChanged("");

}
}

Again we convert a numerical value into each of the three number systems with the
QString functions toInt() and number(). However, the slots do not change the value
of the line-edit widgets themselves, but merely send the corresponding signals. To
do this, we simply call the signal like a function.

To make it clear that this is not a normal function call, we prefix the call with
the emit designator. This is not necessary, but merely intended as an aid for the

78

2.2 Separation of GUI and Processing Logic

programmer, who can immediately see from this that a signal is being sent. It is
good programming practice to consistently mark signal emissions with emit.

Now we only need to enter the new header and source text files in the .pro file so
that qmake can generate the necessary moc calls:

#byteConverter2/byteConverter2.pro

TEMPLATE = app

SOURCES = main.cpp \
ByteConverterDialog.cpp \
ByteConverter.cpp

HEADERS = ByteConverterDialog.h \
ByteConverter.h

If you forget to process a file that declares a class with signals using moc, the linker
will complain of undefined symbols; GCC issues the following error message, for
example:

ld: Undefined symbols:

ByteConverter::binChanged(QString const&)

ByteConverter::decChanged(QString const&)

ByteConverter::hexChanged(QString const&)

If the class only declares slots, however, and you do not process it with moc, then
you will unfortunately only receive an error message at runtime that the signal/slot
connection could not be created, since the slot is not known.

2.2.3 Using Your Own Signals

With the ByteConverter class, the ByteConverterDialog class has been simplified—
we require neither class variables nor slots; the constructor is sufficient:

// byteConverter2/ByteConverterDialog.h

#ifndef BYTECONVERTERDIALOG_H

#define BYTECONVERTERDIALOG_H

#include <QDialog>

class ByteConverterDialog : public QDialog

{
Q_OBJECT

public:

ByteConverterDialog();

79

2 The Tools Needed to Create Dialogs

};

#endif

We generate the widgets as in the previous example and pass them in the same
way as before to the care of the layout, and there are also no differences in the
adjustments, including the validators. We merely require different signal/slot con-
nections:

// byteConverter2/ByteConverterDialog.cpp

ByteConverterDialog::ByteConverterDialog()

{
...

// Signal/slot connections

connect(exitButton, SIGNAL(clicked()),

this, SLOT(accept()));

ByteConverter* bc = new ByteConverter(this);

connect(decEdit, SIGNAL(textChanged(const QString&)),

bc, SLOT(setDec(const QString&)));

connect(hexEdit, SIGNAL(textChanged(const QString&)),

bc, SLOT(setHex(const QString&)));

connect(binEdit, SIGNAL(textChanged(const QString&)),

bc, SLOT(setBin(const QString&)));

connect(bc, SIGNAL(decChanged(const QString&)),

decEdit, SLOT(setText(const QString&)));

connect(bc, SIGNAL(hexChanged(const QString&)),

hexEdit, SLOT(setText(const QString&)));

connect(bc, SIGNAL(binChanged(const QString&)),

binEdit, SLOT(setText(const QString&)));

}

We connect the clicked() signal of the Quit button to the accept() slot of the dialog,
which closes the dialog. The remaining signal/slot connections correspond to those
shown in Figure 2.6 on page 76.

In the ByteConverter constructor we enter the this pointer as an argument so that
the new object will become a child of ByteConverterDialog. This causes the auto-
matic memory management to delete the ByteConverter object as soon as the GUI
is deleted. In addition, this parent/child relationship ensures that the ByteConverter
object is available for the entire lifetime of the ByteConverterDialog object.

The example demonstrates that whether you connect slots with your own signals
or with signals of the Qt classes, it makes no difference as far as the syntax is
concerned.

80

3 Ch
ap

te
r

GUI Design Using the Qt
Designer

While simple graphical interfaces such as the one for the converter created in
Chapter 2 can be programmed “manually” without too many problems, there is
a need for a graphical interface design tool, especially when designing dialogs in
which many GUI elements must be placed. Qt provides this very thing in the form
of the Qt Designer.

3.1 Dialogs “By Mouse Click”

Below we will create the ByteConverter dialog from the previous chapter using this
GUI tool.

The fact that many different windows open when the Designer starts is something
to which some Windows users are unaccustomed. If you want to use the dock

81

3 GUI Design Using the Qt Designer

window mode instead, which is the default mode in Visual Studio, for example,
you can switch this on under Edit→User Interface Mode→Docked Window.

One of the windows is the “New Form” dialog, which expects a template to be
selected. Templates are generally available here for main windows, dialogs, and
widgets. Qt 4 makes a distinction between dialogs that place the buttons for the
user actions OK (confirm) and Cancel on the bottom edge and those that place
them in the right corner. We select one of these as a template for the ByteCon-
verter dialog; Figure 3.1 shows the Dialog with Buttons Bottom type.

Figure 3.1:

The dialog template

with standard

buttons arranged

below

We no longer require the buttons specified. To delete them, we draw, using the left
mouse button, a selection frame surrounding the buttons and the space marker
(spacer). Pressing the

✞✝ ☎✆Del key removes the widgets that are surplus to require-
ments in our case.

The next step is to add the input lines and labels to the dialog framework. These
can be found in the Widget Box, which the program normally places on the left
side of the screen. To create a new label, we look for the Display Widgets group (at
the bottom of the box) and pull the Label entry onto the dialog via drag and drop.

Figure 3.2:

The dialog contains

the first widgets.

82

3.1 Dialogs “By Mouse Click”

Now we add the line-edit widgets. As an input element, this user interface com-
ponent belongs to the category of Input Widgets and is also moved into position
via drag and drop. In addition to the three text labels and line edits, we need a
button (Buttons→Push Button) and both a horizontal and vertical spacer. These
placeholders in the Designer work like stretches; they adjust the distance between
widgets when the window containing them is resized.

A GUI element that has been positioned can be repositioned by dragging it with the
left mouse button. Figure 3.2 shows the form for the ByteConverter dialog after all
required Widgets have been placed.

Users of Qt 4.2 and newer might not find the Designer template as described above,
as Trolltech has slightly altered the default dialog template. The motivation was to
overcome problems with regard to the button order on different platforms: The
current style defines the order of the buttons. On Mac OS X and GNOME, the
destructive action (e.g., Cancel) is located on the left side, while the constructive
action (e.g., OK) is located on the right hand side. On Windows and KDE, the button
order is the other way around.

Trolltech’s solution was to introduce a new class called QButtonBox in Qt 4.2, which
automatically provides what the user had to set up manually before: a set of de-
fault buttons and a spacer. By using QButtonBox, the application will automatically
pick the right order for the style chosen. Figure 3.3 shows the default template in
Cleanlooks (GNOME) and Plastique (KDE) style.

Figure 3.3:

QButtonBox adapts

the button order to

the environment’s

style guide.

If Qt Designer can make use of QButtonBox, the best solution is to neither remove
it as advised for the buttons above nor add a new button. Instead, we modify the
standardButtons property in the Designer’s Property Editor in a way that it will
only use the Close button. This is done by deselecting both active entries from the
drop-down box of the standardButtons property and then selecting QDialogBut-
tonBox::Close.

Users unfamiliar with property editors, e.g., from other graphical GUI builders,
should first read section 5 to obtain a short introduction.

83

3 GUI Design Using the Qt Designer

3.1.1 Making Layouts With the Designer

The widgets do not yet have a clean arrangement. To avoid having to explicitly
position interface elements down to the last pixel, the Qt Designer provides some
standard layouts. To group a number of widgets together, you can first highlight
them by drawing a rectangle around them all with the left mouse button, and
then choose the desired layout, either from the context menu which appears in
the selection if you click the right mouse button, or from the toolbar. The latter is
recommended specifically for Mac users with a one-button mouse.

In the case of the line edits and labels, a grid layout is the best choice; this is
selected in the context menu through the item Lay out→Lay Out in a Grid. The
layout is then outlined in red and the objects appear, grouped together, as they will
be in the final application.

When applying a layout, the Designer tries to tolerate any pixel imprecisions that
the developer may have caused in placing the widgets. If the selected layout does
not arrange the widgets as you intended, or if there are the wrong number of
elements for the layout, the arrangement can be canceled through the context
menu entry Lay out→Break Layout.

If we chose not to use QButtonBox above, we choose a horizontal layout for the
spacer and the buttons, as QButtonBox already includes a horizontal layout with a
spacing (Lay out→Lay Out Horizontally).

Figure 3.4:

Layouts group

widgets together.

Finally, we bring together both layouts, along with the until now ungrouped vertical
spacers, by selecting the context menu entry Lay out→ Lay Out Vertically into a
single, vertical layout. This “global” layout does not need to be specifically selected:
The Designer does not highlight it with a separate frame, and its context menu
opens if you click an empty space in the dialog. It affects all the previously formed
layouts and until now ungrouped elements (e.g., the vertical spacer).

84

3.1 Dialogs “By Mouse Click”

The result, shown in Figure 3.4, is close to our desired GUI. The labels, however, are
not yet correct. This can be changed via the context menu entry Change text. . . or
via the Property Editor to the right of the screen. To better understand the latter,
it is worth taking a look at the property concept of Qt.

3.1.2 The Property Editor

QObject-based classes have special properties that can be set with setProperty()
and queried using property(). Examples of user interface information that can be
represented by properties include size, labeling, formatting details, help texts, and
many other things.

Figure 3.5:

The Property Editor

classifies each

property of a class

according to the class

in which it was first

defined (either the

class itself, or one of

its parents).

This is done in the Property Editor (Figure 3.5). It lists the changeable properties,
arranged by the class in which each property was first implemented—either the
class itself, or one of its parents. For example, a QLabel inherits from the QFrame
class, which in turn is a descendant of QWidget; accordingly, one can get and set
not only a label’s QLabel-specific properties such as the labeling text (text property),
but also its QFrame properties such as the frameShape1 and its QWidget properties
such as the size (geometry).

Since all widgets inherit from QObject, you can always get and set the QObject
property objectName, which provides an internal description and should not be
confused with a label to be displayed on the widget in the user interface—for ex-
ample, the text on a label or button (which is specified with the text property). The
name of the object variable and other things are derived from objectName.

Since we don’t want to change the labels in the code we are going to write later,
their variable names play no further role. That is why we continue using the object
names generated by the Designer.

1 Labels are normally without frames, which is why frameShape is set to QFrame::None by default.

85

3 GUI Design Using the Qt Designer

On the other hand, we need to manually access the line-edit widgets later on,
which is why we give them the same names as the ones they had in Chapter 2
(that is, decEdit, hexEdit, and binEdit) using the Property Editor. This ensures that
in the code that will be generated by the User Interface Compiler, the correspond-
ing pointers also have the same names. How we can access the line-edit widgets
created by the Designer is explained on page 92.

To change properties in the Designer, you highlight the relevant widget with a (left)
mouse click. The contents of the Property Editor window are adjusted accordingly,
and you can change the properties of the highlighted widget. The properties whose
values are (already) different from the default are shown in bold type.

Changing Window Titles

To change the window title of the entire dialog, we click any point in the widget
construction window not covered by child widgets or layouts, such as the area
between the layout frame and the dialog margin. The Property Editor now displays
the windowTitle property in the QWidget section. Clicking the corresponding line
enables you to change the value of the property, for example, to turn the Dialog
into a number converter.2 The button with the small red arrow, next to the value
of the property, allows the property to be reset to the default value.

Although every widget has the windowTitle property, it becomes visible only in the
case of top-level widgets, that is, windows and dialogs.

Adjusting Lettering

Our dialog still does not display the correct text strings on its labels and buttons.
In order to do this, the text property is required.

Figure 3.6:

The labels contain the

correct text.

2 For new projects, the Designer only displays the changed window title after the user has saved
the dialog. Before the dialog is saved for the first time, the title bar contains only the word
untitled.

86

3.1 Dialogs “By Mouse Click”

We set this property in the three QLabels, in turn, to decimal, hexadecimal, and
binary. For the button, we set the property value (in the QAbstractButton section
of the parent class) to Exit. Figure 3.6 shows the result.

Defining the Default Button

If you want, you can also switch on the default property for the QPushButton. If
it is set to true, pressing the

✞✝ ☎✆Enter key anywhere within the dialog activates the
button. However, this hardly makes sense, because when the button is activated,
the application carries out a destructive action (that is, it closes), which would
probably irritate the user if he activated it by mistake.

Although the Designer allows the default property of several buttons in a widget
to be set to true, only one of them can function as the default button. Qt treats
the last button of the widget to have its default property set to true as the widget’s
actual default button.

If the widget involved is a dialog, Qt from version 4.1 onward also automatically en-
ables the autoDefault property for all buttons arranged on it. This property comes
into effect if the user “jumps” from one widget part to the next using the

✞✝ ☎✆Tab key
(see page 89): If he reaches a line edit when doing this, for example, pressing the✞✝ ☎✆Enter key activates the next button in the tab sequence, provided its autoDefault
property has been set.

When using QButtonBox, the default property is automatically assigned to con-
structive button. Close, being a destructive action, cannot become the default
button in this case.

Changing the Window Size

Only one detail now spoils the picture: The dialog as a whole is much too large. It
is possible, of course, to click the plus sign in front of the geometry property and
define the width and height precisely, down to the pixel.

Figure 3.7:

Adjust Size provides

the dialog with the

correct size.

Alternatively, the dialog can be scaled down to the required size using the mouse.
But as a rule it is simpler to select the Adjust Size function from the Form menu or

87

3 GUI Design Using the Qt Designer

from the toolbar (via the icon with the diagonal arrow on the far right), provided
you activated the dialog yourself beforehand. This will now shrink the dialog to a
suitable size calculated by the Designer (Figure 3.7).

3.1.3 The Preview

To check the result, you can use the preview function provided in the Form menu
of the Designer. If you want, you can even view the dialog in other widgets’ styles,
via the Preview in submenu. Figure 3.8 shows the preview under Linux. Trolltech
defines the Plastique style as the default, which is similar to the default style of
KDE 3. Under Mac OS X, Qt uses the native Aqua style, using the drawing routine
of Mac OS X. Likewise, the Windows XP style uses Windows APIs to draw the style.
Therefore, the Aqua and XP styles are available only on those respective operating
systems.

Figure 3.8:

A preview of the

finished widget

3.1.4 Signal/Slot Connections

Besides the interface design mode, the Designer also contains a view in which the
signals of widgets in an existing design can be graphically linked to slots. Press the✞✝ ☎✆F4 key or select the entry Edit Signals/Slots from the Edit menu to switch to this
mode; you can leave this mode with Edit→Edit Widgets or the

✞✝ ☎✆F3 key.

Connecting signals and slots in the Designer is a two-step process. First, you pull
a connection from the widget with the desired signal onto a widget with a cor-
responding slot. The backgrounds of the widget or dialog can themselves be drop
targets here. Connections that land there are provided with a ground icon by the
Designer; all other connections end with an arrow on the target widget (Figure 3.9
demonstrates both cases).

88

3.1 Dialogs “By Mouse Click”

Figure 3.9:

Signal/slot

connections are

created in the

Designer via drag and

drop.

Step two consists of specifying the desired signal and slot pair for the two widgets.
As soon as you release the mouse button over the target widget, the Designer
opens a dialog, as shown in Figure 3.10: On the left it shows a menu of the most
frequently used signals. If the signal you are looking for is not there, click the Show
all signals and slots checkbox to display all possible signals of the source widget.
The right selection box will show all the slots of the target widget matching the
signal selected on the left. If you confirm the choice, the connection is established.

Figure 3.10:

Signals and slots of

two selected widgets

are connected by the

developer in this

dialog.

A click on the connecting line, followed by pressing the
✞✝ ☎✆Del key, will remove the

connection.

3.1.5 The Tab Sequence

The so-called tab sequence is important for keyboard users. This function allows
the input focus to be shifted, via the

✞✝ ☎✆Tab key, to the next widget that expects
input. The Designer specifies the tab sequence so that initially the first widget in
the dialog has the keyboard focus. The focus is moved to the next inserted GUI
element when the

✞✝ ☎✆Tab key is pressed. When designing a user interface, you should

89

3 GUI Design Using the Qt Designer

pay attention to the default tab sequence and modify it as necessary in order to
make your application as user friendly as possible.

Figure 3.11:

How the focus is

passed on when

pressing the
✞✝ ☎✆Tab key

is specified in the Tab

Order mode

To do this, you switch to the Tab Order mode, via Edit→Edit Tab Order or the icon
with the numbers 123 and an arrow in the toolbar. Now the Designer displays each
widget’s current position in the tab sequence in a blue box (Figure 3.11). A click on
the corresponding box increases the rank in the sequence by one.

3.1.6 Shortcuts and Buddies

Those who prefer keyboard control will thank you if they can jump directly to
as many commonly used widgets as possible. GUI elements that display a user-
defined text, such as buttons, are assigned a key abbreviation by placing an am-
persand (&) before the character that will serve as the keyboard shortcut. If the
text itself contains a real ampersand, it is masked by duplicating it: &&.

If the user presses the combination of
✞✝ ☎✆Alt +

✞✝ ☎✆character from now on, the widget
obtains the focus and is activated. In Figure 3.12 we use this technique with the
Quit button.

QLabel objects form an exception, however. Since they usually occur in a layout
for the purpose of describing an adjacent “partner” widget, they themselves do
not accept a focus. However, the Buddy property of a label can be used to spec-
ify a keyboard shortcut to be associated with the partner widget, as though the
descriptive text of the label were directly attached to the partner element itself.

In the Designer view mode Edit Buddies, you can now specify with which widget
a label is a partner. To do this, click the future Buddy label, which will then light
up in red. Holding down the mouse button, you now pull a connection over to the
widget that in future should be associated to the label.

90

3.2 Integrating Designer-generated Files into Your Qt Project

Figure 3.12:

Labels are friends to

other widgets: The

Buddy allocations can

be found in the Buddy

mode of the Qt

Designer.

In the example from Figure 3.12, the respective line edit now has the focus if the
user presses the letters underlined in the label inscription while holding down the✞✝ ☎✆Alt key.

Alternatively, while in the normal design mode, you can set the name of the de-
sired Buddy widget in the Property Editor, using the Buddy property.3 Using this ap-
proach, we would set the value of the Buddy property of the QLabel object that dis-
plays the Decimal text in our byte converter dialog so that it matches the value of
the objectName property of the corresponding line-edit object, namely, the string
decEdit.

To undo the relationship, all you need to do is click the connection line in the Buddy
mode and press the

✞✝ ☎✆Del key.

3.2 Integrating Designer-generated Files into Your
Qt Project

When saving with the menu item File→Save Form or Save Form As. . . , the Designer
generates a .ui file from the information it has for each widget in the form.4 This
.ui file is specified in the qmake project file, as shown in the following line:

FORMS = byteconverterdialog.ui

In our case, qmake takes into account the user interface file byteconverterdialog.ui;
several files can be specified, separated by a space, or other lines can be added
according to the pattern FORMS +=file.ui.

3 Although this property has been there since Qt 3.x, the Designer for Qt 4.0 does not display it.
Only in version 4.1 does it appear again.

4 Using the third menu item, Save Form As Template. . . , you can save your form as a template,
which then appears in the selection dialog for new Forms.

91

3 GUI Design Using the Qt Designer

When building the project, make then relies on the user interface compiler uic
to convert Designer-generated .ui files into C/C++ header files.5 There is a fixed
naming convention in this step: for example, if the class represented by the .ui file
generated by the Designer is called ByteConverterDialog (the value of the object-
Name property can be examined to determine the class name), then the resulting
header file is given the name ui_byteconverterdialog.h by uic.

It is important here that at least one other file in the project includes this generated
header file. You must add the appropriate #include statements before qmake is
run. Otherwise, make won’t call uic with the relevant interface description file as
an argument on its next run.

Notice that the generated header file contains only a help class with two methods:
setupUi(), which generates the GUI, and retranslateUi(), which can be called if the
program is to allow the user to change the language while it is running.

Both methods expect (as an argument) a pointer to the widget to which the GUI
object described in the Designer is to be bound. Even if you have already chosen a
template in the Designer, you can freely choose at this point the widget class for
which the interface is intended. The MainWindow template is the only one that
must be used together with a QMainWindow.6

The class generated by the uic is now available as Ui::ByteConverterDialog or Ui_
ByteConverterDialog, in general as Ui::classname or Ui_class name, whereby the
class name corresponds to the objectName attribute of the form created in the
Designer.

There are now three ways of using and functionally developing the widget created.
Which of these is best to use depends on the particular context.

3.2.1 Using Designer-generated Classes as Helper Classes

If you only want to display a Designer-created user interface once, without touch-
ing the corresponding object again after it is initialized, it is appropriate to directly
instantiate the generated class and bind the instance to a previously created widget
with setupUi(). This method fixes the GUI elements described in the .ui file on to
the widget and anchors them—provided this was specified in the Designer—with
layouts.

We shall demonstrate this technique using our Designer-generated ByteConverter-
Dialog:

5 Note for Qt 3 users: uic no longer generates a complete QObject-based class in Qt 4, but merely
a framework which can be applied to the widget of the matching type.

6 The widget created in the Designer is used in this case as the central widget for the QMainWin-
dow instance, and it is positioned with setCentralWidget(), instead of with the help of a layout,
as normal. In addition, the Designer menu bars and toolbars are treated separately from Qt 4.1,
a functionality that is equally available only for QMainWindow instances.

92

3.2 Integrating Designer-generated Files into Your Qt Project

// simple/main.cpp

#include <QtGui>

#include "ui_byteconverterdialog.h"

int main(int argc, char*argv[])

{
QApplication app(argc, argv);

QDialog dlg;

Ui::ByteConverterDialog ui;

ui.setupUi(&dlg);

dlg.setAttribute(Qt::WA_QuitOnClose);

dlg.show();

return app.exec();

}

Since the widgets of the Designer-generated dialog are available as publicly ac-
cessible members of the UI class, they can be fine-tuned in the code later on by
calling the methods of the respective widgets. Their signals and slots can partici-
pate in signal/slot connections. Whether the class Ui::ByteConverterDialog is now
instantiated in the main() function or in the constructor of a class inheriting from
QDialog makes no difference.

In our example, however, the approach shown in the listing above causes problems:
We could connect the Quit button’s clicked signal to the accept() slot of the dialog,
and we would then be able to connect the slots binChanged(), hexChanged(), and
binChanged() to the textChanged() signals of the respective QTextEdit widgets. But
then we would not be able to access the pointer to any uic-generated widget in
the slot itself.

For this reason, the use of directly calling setupUi() is very limited: If we do so,
we shall restrict ourselves to applying instances of the class generated by uic to
instances of a standard class like QWidget or QDialog. However, in some situations
this procedure could be completely sufficient, for example, in simple modal input
dialogs which are called with exec(). The exec call starts a separate event loop
and returns only if accept(), reject(), or another method closes the dialog. Since
the dialog object does not cease to exist when the dialog has been closed, the
subsequent code can fetch the values of the widgets placed inside the dialog by
setupUi() without any danger, so that you can get by without the QDialog subclass
in those cases.

It is important that you always call the setupUi() method of an instance of a
Designer-generated class first, before trying to access member variables of the in-
terface object (in the current example, those of ui). Otherwise, the program will
mess around with uninitialized pointers and crash.

An argument for not instanciating Designer-generated classes directly results from
the fact that public-member varibles are accessible from the outside, causing a

93

3 GUI Design Using the Qt Designer

violation of secrecy, one of the most important principles of object-oriented pro-
gramming. Secrecy enforces abstraction by only granting the class members access
to their own methods.

The internal details of the class are thus “cut off” from the other classes, and you
can change the internal design of the class without having to adjust the rest of the
program that uses this class. As long as you use only the UI class as a short-term
setup class, the infringement of the encapsulation principle is not really of any
consequence.

3.2.2 Always Having Designer-generated Widgets Available

In order to deal with the shortcoming just demonstrated, it is a good idea to include
the class generated by uic as a member variable. To do this, we first inherit from
the desired class, which in our case is QDialog.

The main() function matches the one from Chapter 2, since ByteConverterDialog
from its point of view is again a “black box.”

The crucial difference is in the declaration of the class. We declare the class gen-
erated by uic as a private member of a QDialog subclass. This allows for abitrary
access to the widgets within the Designer-generated class via this newly created ui
member variable of the ByteConverterDialog class inherited from QWidget:

// member/byteconverterdialog.h

...

#include <QDialog>

#include "ui_byteconverterdialog.h"

class QLineEdit;

class ByteConverterDialog : public QDialog

{
...

private:

Ui::ByteConverterDialog ui;

};

The constructor and all slots now access the generated class via the ui member
variable:

// member/byteconverterdialog.cpp

...

ByteConverterDialog::ByteConverterDialog(QWidget *parent)

: QDialog(parent)

94

3.2 Integrating Designer-generated Files into Your Qt Project

{
ui.setupUi(this);

connect(ui.decEdit, SIGNAL(textChanged(const QString&)),

this, SLOT(decChanged(const QString&)));

connect(ui.hexEdit, SIGNAL(textChanged(const QString&)),

this, SLOT(hexChanged(const QString&)));

connect(ui.binEdit, SIGNAL(textChanged(const QString&)),

this, SLOT(binChanged(const QString&)));

}

void ByteConverterDialog::decChanged(const QString& newValue)

{
bool ok;

int num = newValue.toInt(&ok);

if (ok) {
ui.hexEdit->setText(QString::number(num, 16));

ui.binEdit->setText(QString::number(num, 2));

} else {
ui.hexEdit->setText("");

ui.binEdit->setText("");

}
}
...

The overlying principle also applies here: It is essential that setupUi() is called first
before we can use the UI class in any way at all. The disadvantage of this method
is its indirectness, via the member variable. But the advantage of this approach
is that it defuses the encapsulation problem, limiting the problem to scope of the
dialog class. Any since access from outside of the dialog is not possible under any
circumstances. A further bonus: It is clear from the code which widgets were gen-
erated in the Designer. In addition, this approach is particularly suited for widgets
in libraries that have to remain binary-compatible, because only the pointer to the
instance of the generated class changes the binary layout in the compiler output.7

3.2.3 Multiple Inheritance

As the ideal solution, Trolltech recommends multiple inheritance. But like the pre-
vious solution, this works only if you plan your own subclass.

In this method, the new widget inherits not only from QWidget, but also from the
UI class generated by uic. A particular highlight is the use of the private keyword
in the inheritance instruction. This ensures that all methods from the UI class

7 More details of binary compatibility in C++ have been compiled by the KDE project at
http://developer.kde.org/documentation/other/binarycompatibility.html.

95

3 GUI Design Using the Qt Designer

are given the status of private class variables in the new class, although they are
actually publicly accessible in the former class itself:

// inherit/byteconverterdialog.h

...

class ByteConverterDialog : public QDialog,

private Ui::ByteConverterDialog

...

This method thus solves several problems at one stroke: We can use the widget
pointers generated by uic as standard member variables, without going the long
way round, via a help object, and they remain private, so that encapsulation to the
outside is maintained.

For our example, this means that the constructor changes as follows:

// inherit/byteconverterdialog.cpp

...

ByteConverterDialog::ByteConverterDialog(QWidget *parent)

: QDialog(parent)

{
setupUi(this);

connect(decEdit, SIGNAL(textChanged(const QString&)),

this, SLOT(decChanged(const QString&)));

connect(hexEdit, SIGNAL(textChanged(const QString&)),

this, SLOT(hexChanged(const QString&)));

connect(binEdit, SIGNAL(textChanged(const QString&)),

this, SLOT(binChanged(const QString&)));

}

void ByteConverterDialog::decChanged(const QString& newValue)

{
bool ok;

int num = newValue.toInt(&ok);

if (ok) {
hexEdit->setText(QString::number(num, 16));

binEdit->setText(QString::number(num, 2));

} else {
hexEdit->setText("");

binEdit->setText("");

}
}

...

As before, we only need to call the setupUi() method in first position, and as the
argument we again use a pointer to the widget that is our current class scope.

96

3.3 Automatic Signal/Slot Connections

Caution: In this approach the inheritance sequence is important. First the class
must inherit from QDialog, and then from the Designer class. If this is not the case,
the compiler will throw an error that is difficult to understand, and which quickly
brings the programmer to despair:

moc_byteconverterdialog.cpp:43: error: ‘staticMetaObject’ is not a

member of type ‘Ui::ByteConverterDialog’

moc_byteconverterdialog.cpp: In member function ‘virtual void*
ByteConverterDialog::qt_metacast(const char*)’:

moc_byteconverterdialog.cpp:60: error: ’class Ui::ByteConverterDialog’

has no member named ’qt_metacast’

moc_byteconverterdialog.cpp: In member function ‘virtual int

ByteConverterDialog::qt_metacall(QMetaObject::Call, int, void**)’:

moc_byteconverterdialog.cpp:66: error: ’class Ui::ByteConverterDialog’

has no member named ’qt_metacall’

make: *** [moc_byteconverterdialog.o] Error 1

The reason is the behavior of the meta-object compiler, which checks only in the
first parent class of the inheritance list whether this inherits from QObject or not.
This also means that it is generally not possible to inherit from several classes that
all have QObject as a base class.

3.3 Automatic Signal/Slot Connections

Developers versed in Visual Basic or Delphi who start on Qt/C++ development find
the signal/slot concept unusual, and they miss the event handler. Qt 4 allows them
to stick to the semantics they are used to, permitting slot declarations of the form

void on objectname signalname();

that are converted into connect() instructions that uic saves in setupUi(). Inciden-
tally, this naming convention increases the readability of the source text.

The whole point of this functionality is the static QMetaObject::connectSlotsBy
Name() method: It expects a pointer to a QObject and searches through it for
slots with matching names. Then QMetaObject::connectSlotsByName() connects
the found slots with the appropriate signal. To do this it uses information from the
meta-object generated by the meta-object compiler, moc. This meta-object adds
the capability known in C++ as introspection (also known in Java as reflection) to
all classes inheriting from QObject. At runtime the class therefore “knows” its meth-
ods, signals, and slots. connectSlotsByName() recursively looks at the slot names of
the object behind the pointers and all its children, connecting the respective signals
to them.

Trolltech recommends the semantics shown above only with the Designer-genera-
ted classes, since in this case the object name and the name of the uic-generated

97

3 GUI Design Using the Qt Designer

pointer to the widget match, and because the setupUi() method subsequently calls
connectSlotsByName(). But for those who find this consistent naming pattern irre-
sistible, all the relevant objects must be assigned a name via setObjectName(), must
be called in the constructor or from outside QMetaObject::connectSlotsByName(),
and must pass a pointer to the current class (this) to this call.

Because the shown semantics are very prone to errors,8 you should use automatic
connection only with Designer-generated widgets with multiple inheritance.

We will modify our examples from above so that the slot names follow the con-
ventions for automatic connection. At the same time the connect() calls in the
constructor cease to apply, so that only the setupUi() instruction is left:

// autoconnect/byteconverterdialog.h

...

private slots:

void on_decEdit_textChanged(const QString&);

void on_hexEdit_textChanged(const QString&);

void on_binEdit_textChanged(const QString&);

...

// autoconnect/byteconverterdialog.cpp

...

ByteConverterDialog::ByteConverterDialog(QWidget *parent)

: QDialog(parent)

{
setupUi(this);

}

void ByteConverterDialog::on_decEdit_textChanged(const QString& newValue)

{
bool ok;

int num = newValue.toInt(&ok);

if (ok) {
hexEdit->setText(QString::number(num, 16));

binEdit->setText(QString::number(num, 2));

} else {
hexEdit->setText("");

binEdit->setText("");

}
}

...

8 Remember that only the object name is relevant and that in this procedure, Qt cannot issue
warnings about connections that fail at runtime.

98

3.4 Including Derived Classes in the Designer

3.4 Including Derived Classes in the Designer

It is sometimes necessary to make minor modifications to a Qt standard widget. In
such cases you can no longer use the Designer without registering the new widget
there as a so-called custom widget, which involves a fair amount of work.9

To still be able to use such a widget in the Designer, you select its Qt base widget
in the Designer and click it with the right mouse button after it has been adjusted.
From the context menu, you now select the entry Promote to Custom Widget.
In the dialog that appears (see Figure 3.13), you specify the name of the new class
and that of its header file. Although the Designer continues to show the original Qt
widget, the finished program uses the modified widget; so in the implementation
you obtain a pointer to an object of the type of the inherited widget.

Figure 3.13:

Using inherited

classes in the

Designer is very

simple, thanks to

widget promotion. It

is often all you need.

To undo such a promotion, the entry Demote to base class can be found at the
same position in the context menu.

For more complex modifications, such as fundamental changes to the layout be-
havior or adding properties, this procedure is not suitable, however, since the De-
signer does not take them into account.

3.5 The Resource Editor

From Qt 4.1 on, the Designer supports the setting up and administration of the
resources already discussed on page 57. The editor integrated in this (Figure 3.14)
can be called from the entry Tools → Resource Editor, in case it is not already
visible. Navigating in it takes some getting used to, however. The drop-down box
next to the New and Open entries shows a list of already opened resource files. It
does not include a save action, as this is performed implicitly by the editor.

9 Notes on this are provided in the online documentation for Qt.

99

3 GUI Design Using the Qt Designer

Figure 3.14:

The resources

example from page

57 in the Resource

Editor of the Designer

In addition, the list of resources displayed in the Designer is independent of those
in the .pro file. This is why it is important to ensure that all the resources really are
entered there under the keyname RESOURCES. By subsequently running qmake,
the resources become a part of the project.

To assign an image from a resource to a QLabel in the Designer, for example, you
first search in the Property Editor for the pixmap property and click there on the
folder icon. In the following dialog you reach the Resource Editor by selecting
Specify a resource, where you can choose one of the images. To display the desired
graphics in the current widget size, the scaledContents property in the Property
Editor must be set to true; otherwise it will remain in the original size of the image.

100

4 Ch
ap

te
r

Developing a GUI Application
Based on a Main Window

In the following section we will develop an application step by step, one which
displays all the typical features of a genuine graphical application and which also
performs a useful task: a small text editor called CuteEdit.

We design its main window using the Designer, which allows the basic graphical
framework of most applications to be put together “by mouse click” in Qt versions
4.1 and later. The basis of this is the QMainWindow Qt class.

4.1 The Anatomy of the Main Window

The QMainWindow class forms the basis of an application window: Menu bar, sta-
tus bar, toolbars, and dock windows can be brought into this main window. Figure
4.1 shows the individual components. The central widget provides the workspace
for the user.

101

4 Developing a GUI Application Based on a Main Window

Figure 4.1:

Anatomy of a main

window

A bare main window, as shown in Figure 4.2, initially consists only of the central
widget and frame, plus a title bar.1

In order to conjure this minimal arrangement onto the screen, nothing more than
a simple program that instantiates a QMainWindow object and sets a label an-
nouncing it as the central widget is required. So that the lettering is displayed with
centered alignment by the label, we use the <center> tag: QLabel interprets certain
HTML tags as markup, rather than as text:

// mainwindow/main.cpp

#include <QApplication>

#include <QMainWindow>

#include <QLabel>

int main(int argc, char *argv[])

{
QApplication a(argc, argv);

QMainWindow mainWindow;

QLabel *label = new QLabel("<center>Central Widget</center>");

mainWindow.setCentralWidget(label);

mainWindow.show();

return a.exec();

}

This example is therefore different from the one introduced in Chapter 1.1 (page
25), in particular because we display a label within a QMainWindow instance. The
result is shown in Figure 4.2.

1 Under X11, there are a few window managers that do not show any decoration around the
window.

102

4.2 Deriving from QMainWindow

Since the label is no longer the top-level widget, it is vital that it is created on the
heap, with new. Otherwise, the program may try to delete it twice after the main()
function has ended: First the computer would remove the label from the stack,
and only then remove the main window, which in turn would also like to delete
the label, which it too has adopted as a child through setCentralWidget(). Under
certain circumstances this can cause the program to crash after it has run normally.

Figure 4.2:

Our MainWindow

example

program—without

menu bar, status bar,

toolbar, and dock

window

4.2 Deriving from QMainWindow

More serious applications usually inherit from QMainWindow, adding features that
provide more control. In contrast to the above example, we shall derive a separate
class called MainWindow from QMainWindow, on the basis of which we shall con-
struct CuteEdit. At the same time we will get to know other essential widgets, such
as QTextEdit, a flexible editor widget.

// cuteedit1/main.cpp

#include <QApplication>

#include "mainwindow.h"

int main(int argc, char *argv[])

{
QApplication a(argc, argv);

MainWindow mainWindow;

mainWindow.show();

return a.exec();

}

103

4 Developing a GUI Application Based on a Main Window

The main() function is almost identical to the one from our “Hello, world!” pro-
gram from Section 1.1. Instead of the QMainWindow class from the mainwin-
dow example on page 102, we now use our own MainWindow class, derived from
QMainWindow. The corresponding class definition can be found in the header file
mainwindow.h.2 The #include directive which incorporates the contents of this
header file uses quotation marks instead of angle brackets, since the file is not a
standard header file.

We again surround the file contents of mainwindow.h with an #ifdef construction
providing the include guards to avoid compilation errors if this header file is in-
cluded by more than one source file.3 MAINWINDOW_H will be defined when the
header file is processed for the first time, and the preprocessor ignores the entire
file contents for all subsequent inclusion attempts:

// cuteedit1/mainwindow.h

#ifndef MAINWINDOW_H

#define MAINWINDOW_H

#include <QMainWindow>

class MainWindow : public QMainWindow

{
Q_OBJECT

public:

MainWindow();

};

#endif // MAINWINDOW_H

Since the MainWindow class is derived from QMainWindow, we first issue a di-
rective to include the header file for the QMainWindow class. To ensure that the
QMainWindow methods remain accessible even outside the MainWindow class, we
grant the derivation public access.

Because our new class also inherits from QObject as a base class, we must not forget
the Q_OBJECT macro. Otherwise the linker will complain of undefined symbols,
which, in the case of self-defined signals, results in an error message. In the case
of a Tool class, which defines a signal called switchTool(Tool*), this will appear as
follows:

tool.o: In function ‘Tool::activateTool(bool)’:

tool.cpp:(.text+0x5f): undefined reference to ‘Tool::switchTool(Tool*)’

collect2: ld returned status 1

2 For header files that we create ourselves, we use the filename extension common in C/C++, .h,
to make clear the file type. We do not use uppercase in any filenames.

3 See page 62.

104

4.2 Deriving from QMainWindow

In the MainWindow class itself, we only have to define the constructor. For this
reason, the source text file mainwindow.cpp is also rather short:

// cuteedit1/mainwindow.cpp

#include "mainwindow.h"

#include <QLabel>

MainWindow::MainWindow()

{
setWindowTitle(tr("CuteEdit"));

resize(600, 400);

QLabel* label = new QLabel(tr("Central Widget"));

setCentralWidget(label);

label->setAlignment(Qt::AlignCenter);

}

In the constructor we the first call the QWidget function setWindowTitle(). Since
the MainWindow class is derived from QWidget as the base class, it inherits this
function, and we can use it to set the text displayed by the title bar of the window.
If you leave this step out, Qt uses the program name as the title text.

We set the text for the title bar via the tr() method, which inherits MainWindow
inherits from QObject. If the user wants, this will translate the text to another
language at runtime; if not, it returns the string unchanged.4

The resize() function that MainWindow also inherits from QWidget specifies the
size of the window. The two arguments determine the width and height of the
window in pixels. If the size is not set explicitly, Qt will determine it automatically,
based on the content to be displayed. But in our case this would be too small, since
we will soon fill the window with more content.

In order to display something in the main window, we create a QLabel object with
the central widget text and make it the focal point of the application with the set-
CentralWidget() function, which MainWindow inherits from QMainWindow. With
this call the MainWindow object adopts the new QLabel. Accordingly we must al-
locate it on the heap with new, from which it will ultimately be deleted by the
memory management provided by Qt for instances of QObject.

The setCentralWidget() call packs the QLabel object into a layout so that it fills the
entire space in the window. By default the QLabel class arranges text centered ver-
tically, and horizontally aligned at the left margin. To center text in both directions,
we change the alignment with setAlignment(). This function takes as an argument
values from the enumeration type (enum) alignment, which is defined in the Qt
namespace5—hence the value AlignCenter is prefixed with Qt::.

4 See also page 49 and Chapter 14 from page 375 for a detailed discussion.
5 Qt uses the namespace Qt for a large number of enumeration types, in order to avoid conflicts

when the same symbolic names are used in several contexts.

105

4 Developing a GUI Application Based on a Main Window

So that qmake can unite the existing files into a project, we use the following .pro
file:

#cuteedit1/cuteedit1.pro

TEMPLATE = app

SOURCES = main.cpp mainwindow.cpp

HEADERS = mainwindow.h

FORMS = mainwindow.ui

Apart from the already known variables TEMPLATE and SOURCES, which we use to
specify that we are compiling an application and to specify the source text files,
the HEADERS variable is also used. This specifies the header files to be used in the
project: qmake searches through those header files for the Q_OBJECT macro and
creates appropriate rules for the moc calls.

4.3 Creating a Main Window with the Qt Designer

Ever since Qt 4.1, the Qt Designer has enabled the user to design main windows
as well as dialogs. When used for this purpose, all the descriptions from Chapter 3
apply. In particular, just as explained there, the user interface compiler uic creates
a class from the .ui file generated by the Designer; the setupUi() method then
“decorates” a main window to a certain extent.

After the Designer has started, we select the Main Window item from the template
menu. When designing our editor window, we borrow ideas from the designs of
other editors. The central widget will be a widget that enables text to be displayed
and edited. Qt provides a class called QTextEdit for this purpose.

Accordingly we pull an empty text edit element from the input widget category
to the middle of our new main window, and then click the gridded window back-
ground.

We now select a layout strategy, either from the Context menu or from the Form
menu. It is completely irrelevant which one we choose. The 9-pixel-wide margin
that is created, which makes available the necessary space in dialog widgets, is out
of place in the main window, however. To remove it, we select the centralwidget
entry in the object inspector window and enter a margin value of 0 to its layout.

For the text editor itself it is recommended that the font type be changed to a
monospaced font, using the Property Editor. To do this we open the font entry in
the Property Editor and select the Courier font type, for example. In addition we set
the lineWrapMode mode to NoWrap, since line wraps are seldom wanted in editors.
If you do want them, an action is feasible that would switch on the lineWrapMode
property.

106

4.3 Creating a Main Window with the Qt Designer

In addition we equip the editor with a menu bar from which the program functions
can be controlled. To guarantee rapid access to the most important functions, such
as loading and saving, we also insert a toolbar beneath this containing an icon for
each of these commonly invoked actions. A status bar provides space for display
of permanent and/or contextual information, such as the current position of the
cursor or the purpose of the current menu entry.

4.3.1 Adding Menu Bars

First we will look at the menu bar. We provide it with the standard entries that we
are accustomed to from standard applications: the File menu, which takes care of
the file to be edited, the Edit menu, which controls manipulation of the text, and a
Help menu.

To do this, we select the Type here entry in the already existing menu bar and
create the three entries. When doing this we should remember to place an amper-
sand (&) before each entry, so that the

✞✝ ☎✆Alt key will call up the respective menu in
combination with a

✞✝☎✆F ,
✞✝☎✆E , or

✞✝ ☎✆H key.

The & instructs the menu to define a window-wide shortcut (called accelerator),
which, in combination with the

✞✝ ☎✆Alt key, jumps to the corresponding menu item.
It is appropriate to take the first letter of a menu entry, but the same letter may
not be used twice, so you may need to use another letter for the shortcut when
two menu entries begin with the same letter. The letter in the entry chosen as the
shortcut character should be as intuitive as possible.

Figure 4.3:

Now our editor has

an input window and

a menu bar.

Accelerators like this allow experienced users to operate the application with the
keyboard, which can often be much quicker than using the mouse and can improve

107

4 Developing a GUI Application Based on a Main Window

the user friendliness of the software. They should therefore be provided as a matter
of course in the design of user interfaces. With the accelerators in place, the design
view of the editor should correspond to that shown in Figure 4.3.

To define the subitems of an individual menu entry, we select the entry in the menu
bar. A drop-down menu then appears and, for each desired subitem, we select Type
here. . . and enter its name.

Let’s start in the File menu, to which we will assign the subentries New, Open. . . ,
Save, Save as . . . , and Quit. We recommend that you add a separator before the
Quit entry, so that this special action has visual distance from the other entries.

There is a reason behind the fact that only some entries end with dots (. . .)—these
denote entries that require further user interaction through a dialog.

In the same way we equip the Edit menu with the entries Undo, Repeat, and after
a separator, Cut, Copy, and Paste. The Help menu gets by with the Info. . . item, the
implementation of which we will deal with on page 117.

4.3.2 Recycling Actions in the Toolbar

If you want to make the most important entries in the menu bar easily accessible
for mouse users, this raises the following question: Is it possible to recycle the en-
tries from the menu entries? Luckily the answer is yes, since Qt encapsulates menu
and toolbar entries in so-called actions, for which the QAction class is responsible.

When we created the entries in the menus of the menu bar, the Designer created a
separate action for each entry, which we will now reuse. An overview of all existing
actions is provided by the Action Editor. If it is not already displayed as shown in
Figure 4.4, you can make it visible with Actions→Action Editor.

Figure 4.4:

The Action Editor lists

all available actions

that can be adjusted

in the Property Editor

like widgets.

At the moment, no icons are assigned to the actions listed in it, in which case the
full text is displayed instead of an icon, taking up significantly more space. Icons

108

4.3 Creating a Main Window with the Qt Designer

can also be of great help here because the human brain can rerecognize them
more easily, since it can apply a simple pattern matching instead of having to parse
a textual description.

In general there are two ways of rectifying the lack of icons. First we select the
appropriate action in the Action Editor. Its properties now appear in the Property
Editor. We are interested in the Icon property, and we select the Open icon in the
value column. The dialog now allows us to choose whether we want to search
for an icon from a resource (see page 99) or use an image file directly from the
filesystem.

For our example, we copy the items from the Crystal Icons series as used by KDE 3
and combine them into a resource, using the Resource Editor in the Designer. For
each action we can now select a matching icon. We save the resource file in the
same directory as the .ui file.

Figure 4.5:

The toolbar provides

quick access to

important actions.

To add a new toolbar, we move the mouse cursor to the status bar at the bottom
of the window and select Add Tool Bar from the context menu. We now drag the
actions New, Open, and Save from the Action Editor into the bar that now appears.

Cut, copy, and paste are also frequently used actions in editors. If you want to
include them in the same toolbar, as is the case in Figure 4.5, you should separate
them from the other entries in the File menu with a separator (right mouse button
→Insert Separator).

Actions have other properties that the Property Editor allows to be set. These
include the application-wide shortcut (the so-called shortcut). In contrast to ac-
celerators, shortcuts are activated with the

✞✝ ☎✆Ctrl key. The user can often get to the
action he wants more quickly with shortcuts than with accelerators.

109

4 Developing a GUI Application Based on a Main Window

This becomes clear in the example of the Open file action:
✞✝ ☎✆Ctrl +

✞✝ ☎✆O is quicker
to type than

✞✝ ☎✆Alt +
✞✝☎✆F , followed by

✞✝ ☎✆Alt +
✞✝ ☎✆O . For the sake of clarity, you should

not use an excess of shortcuts, but experienced users highly value shortcuts for
frequently used operations. The Qt documentation provides an overview of the
standard shortcuts for programs in English.6

It is interesting that the entry for a shortcut in the Designer is a string. There is no
syntax check when this is done, so you should always check the entries yourself.
The format is Ctrl+key.

The reason Qt interprets shortcuts as strings is due to internationalization: The
code generated by the Designer and the user interface compiler passes the string
to the localization routine tr(), so that the shortcut can be customized. This is a
useful feature, since abbreviations that no one can remember (ones held over from
an implementation in another language, for example) are just not used, whereas
many users will remember them if the abbreviations are mnemonics for the action
to be triggered.

Another feature of the QAction class is the tooltip. Tooltips, which the application
displays to the user as a “pale yellow note” if the mouse cursor is held over a menu
or toolbar entry, are set in the code using setToolTip().

The text set via the statusText property shows up in the status bar (if the current
window has one) as the mouse hovers over the respection action. Finally the what-
sThis property allows longer help texts on individual widget parts to be displayed.

4.3.3 Integrating the Main Window with Your Source Code

It is now time to turn the GUI generated in this way into a program. We can save
ourselves a bit of work doing this and use the file main.cpp from the example on
page 103:

// cuteedit2/main.cpp

#include <QApplication>

#include "mainwindow.h"

int main(int argc, char *argv[])

{
QApplication a(argc, argv);

MainWindow mainWindow;

mainWindow.show();

return a.exec();

}
6 See http://doc.trolltech.com/4.1/accelerators.html.

110

4.3 Creating a Main Window with the Qt Designer

In the implementation, we now make a multiple derivation from both the QMain-
Window class and from the helper class Ui::MainWindow class generated from the
uic; the latter is a private derivation so that—as already described in Chapter 3—the
objects generated in the Designer are made available as member variables for the
new MainWindow class with the correct visibility:

// cuteedit2/mainwindow.h

#ifndef MAINWINDOW_H

#define MAINWINDOW_H

#include <QMainWindow>

#include "ui_mainwindow.h"

class MainWindow : public QMainWindow,

private Ui::MainWindow

{
Q_OBJECT

public:

MainWindow(QWidget *parent = 0);

˜MainWindow();

protected:

void setupActions();

...

Before discussing the rest of the declaration on page 112, we will first turn to the
implementation of the constructor. It is important that we correctly initialize the
parent class. C++ does guarantee the automatic initialization of QMainWindow, so
the chain of inheritance has not been interrupted. The parent object is no longer
passed on when this is done, however, which can lead to memory leaks and prob-
lems when using layouts. Details are explained in Section 1.2.2 on page 31.

The first thing the constructor itself contains is the setupUi() call, which guarantees
the initialization of all member variables from Ui::MainWindow:

#include <QtGui>

#include "mainwindow.h"

MainWindow::MainWindow(QWidget *parent)

: QMainWindow(parent)

{
setupUi(this);

setupActions();

}

111

4 Developing a GUI Application Based on a Main Window

Linking Actions to Functionality

The next step is to link a number of actions manually to slots and provide them
with functionality. To achieve better clarity, we will move this task to a separate
method called setupActions().

Here we will breathe a bit of life into the actions through a signal/slot connection.
If the user sets off an action, such as clicking the menu entry, this will send out the
triggered(bool) signal. The parameter does not interest us, since it is only relevant
for alternating (“toggled”) or grouped actions. We must include it nevertheless so
that connect() can find the signal:

// cuteedit2/mainwindow.cpp

void MainWindow::setupActions()

{
connect(action_quit, SIGNAL(triggered(bool)),

qApp, SLOT(quit()));

connect(action_open, SIGNAL(triggered(bool)),

this, SLOT(loadFile()));

connect(action_save, SIGNAL(triggered(bool)),

this, SLOT(saveFile()));

connect(action_saveas, SIGNAL(triggered(bool)),

this, SLOT(saveFileAs()));

connect(textEdit, SIGNAL(copyAvailable(bool)),

action_copy, SLOT(setEnabled(bool)));

connect(textEdit, SIGNAL(undoAvailable(bool)),

action_undo, SLOT(setEnabled(bool)));

connect(textEdit, SIGNAL(redoAvailable(bool)),

action_redo, SLOT(setEnabled(bool)));

connect(action_copy, SIGNAL(triggered(bool)),

this, SLOT(copy()));

connect(action_undo, SIGNAL(triggered(bool)),

this, SLOT(undo()));

connect(action_redo, SIGNAL(triggered(bool)),

this, SLOT(redo()));

connect(action_about, SIGNAL(triggered(bool)),

this, SLOT(about()));

}

We link the quit action with the quit() signal of the QApplication object, which is
accessible from the entire application via the global pointer qApp. This causes the
application to leave the event loop and terminate itself.

In order for other connections to work, we still need to declare a number of slots in
mainwindow.h, the contents of which are discussed on the following pages. Since
we only use them in the MainWindow class itself, we declare them as protected
methods:

112

4.3 Creating a Main Window with the Qt Designer

// cuteedit2/mainwindow.h (continued)

...

protected:

bool mayDiscardDocument();

void saveFile(const QString&);

protected slots:

void newFile();

void loadFile();

void saveFile();

void saveFileAs();

void undo();

void redo();

void copy();

void about();

private:

QString mFilePath;

};

#endif // MAINWINDOW_H

The variable mFilePath specifies the path to the current file. If the document has
not been saved until now, this string is empty.

Since we do not need to destruct anything manually, the destructor remains empty.
All Widget destruction is taken care of by the QObject hierarchy when the Main-
Window instance is destructed at the end of main().

Opening Files

The first function that CuteEdit should master is the loading of a file, usually called
a document in the terminology of text editors. To do this, we first require a file-
name, for which we query the user via an object of the QFileDialog class.

It is normally completely sufficient to use the static methods of this class, which
merely require a pointer to the parent widget, as well as an optional window title
and a filter for various file types. We will use the getOpenFileName() static method,
which returns precisely one filename as a QString. A more detailed description of
various dialog types is provided in Chapter 6.

To open a file, Qt uses the QFile class, which allows platform-independent access
to files. This is part of the Qt input/output concept that is explained in more detail
in Chapter 11 and occurs in place of the FILE pointer familiar from C.

The open() method, similar to the C function fopen(), opens the file, in this case in
read-only mode:

// cuteedit2/mainwindow.cpp (continued)

void MainWindow::loadFile()

{

113

4 Developing a GUI Application Based on a Main Window

QString filename = QFileDialog::getOpenFileName(this);

QFile file(filename);

if (file.open(QIODevice::ReadOnly|QIODevice::Text)) {
textEdit->setPlainText(QString::fromUtf8(file.readAll()));

mFilePath = filename;

statusBar()->showMessage(tr("File successfully loaded."), 3000);

}
}

We use the QIODevice::Text flag so that the editor can cope with the differences
between Unix and Windows with respect to text files. Unix uses just a line feed (\n)
to separate lines, whereas Windows in addition requires the control character for a
carriage return (\r\n). Qt classes are internally based on Unix conventions wherever
possible, which is why QTextEdit only works with line feeds, and so we have QFile
remove all the carriage returns when it opens a text file on Windows platforms by
specifying QIODevice::Text.

Now the readAll() method reads the entire contents of the file into a QByteArray.
We could import this directly into the textWidget, using setPlainText(), but we do
not know the encoding format of the files. QByteArray contains the text in its 8-bit
encoding, while QString uses 16-bit Unicode characters. In Windows, text files are
normally saved in UTF-8 format. This mirrors the Unicode characters in 8-bits, and
is compatible to ASCII encoding. In Linux, text files are available either as UTF-8 or
in country-specific encoding, such as ISO Latin 1 (also known as ISO 8859-1).

For the sake of simplicity, CuteEdit assumes that files are always encoded in UTF-8
and therefore converts the text contents using QString::fromUtf8() into a QString.7

We will remember the filename for later operations, for example to save the file
again when we need to.

To report the successful opening of the selected file, we use the status bar. Its
showMessage() method in this example shows the message File successfully loaded.
for three seconds, and then removes it.

Saving Files

Now we have to implement the CuteEdit function that makes the program usable
in the first place, namely, the ability to save the current document:

// cuteedit2/mainwindow.cpp (continued)

void MainWindow::saveFile()

7 In a real editor the program should first ask the user about the encoding of his file or—even
better—find out the encoding method itself. Valuable work in implementation is provided by the
QTextCodec class, which also provides a list of the available codecs, with the availableCodecs()
static methods.

114

4.3 Creating a Main Window with the Qt Designer

{
if(mFilePath.isEmpty())

saveFileAs();

else

saveFile(mFilePath);

}

void MainWindow::saveFile(const QString &name)

{
QFile file(name);

if (file.open(QIODevice::WriteOnly|QIODevice::Text)) {
file.write(textEdit->toPlainText().toUtf8());

statusBar()->showMessage(tr("File saved successfully."), 3000);

}
}

void MainWindow::saveFileAs()

{
mFilePath = QFileDialog::getSaveFileName(this);

if(mFilePath.isEmpty())

return;

saveFile(mFilePath);

}

If no file is currently opened and mFilePath is therefore empty, the saveFileAs()
method comes into play. It is also directly called from the menu item File→Save
as. . . , but serves the same purpose in both cases: to store the file under a name
specified by the user.

Internally saveFileAs() uses the overloaded method, not declared as a slot, save-
File(const QString &name), which takes on the actual work: To do this, it makes
use of the toPlainText() method of the QTextEdit instance, which returns a QString.
The resulting text is encoded by toUtf8() again as an 8-bit text. Before this, it
opens the file, as loadFile() did before, with the QIODevice::Text flag, in order to
guarantee the correct conversion in Windows. But this time we only open the
file for writing (QIODevice::WriteOnly). Afterward, this method also reports the
successful completion of the action via the status bar.

Even if he has already loaded a file, the user should be able to create another new
document. Since CuteEdit, for the sake of simplicity, can only manage one open
file at a time, we have a problem if the first document has been modified but not
yet saved.

Whether this is the case or not is known by the document object which is managed
by QTextEdit:

// cuteedit2/mainwindow.cpp (continued)

bool MainWindow::mayDiscardDocument()

115

4 Developing a GUI Application Based on a Main Window

{
if (textEdit->document()->isModified()) {

QString filename = mFilePath;

if (filename.isEmpty()) filename = tr("Unnamed");

if (QMessageBox::question(this, tr("Save Document?"),

tr("You want to create a new document, but the "

"changes in the current document ’%1’ have not "

"been saved. How do you want to proceed?"),

tr("Save Document"), tr("Discard Changes")))

saveFile();

return true;

}
return false;

}

void MainWindow::newFile()

{
if (!mayDiscardDocument()) return;

textEdit->setPlainText("");

mFilePath = "";

}

Before CuteEdit opens a new document in the newFile() slot, it should ask the
user what he intends to do with these changes. Since this function can be used
universally, we shall move it to the mayDiscardDocument() method, which returns
a true value.

For the actual requests to the user, we use a QMessageBox. In a similar way as for
QDialogBox, for this class we use mainly the static methods that are appropriate
for most situations and only need to be provided with the corresponding argu-
ments. Although a title and the message contents would be sufficient in this case,
the example replaces the standard responses of Yes and No with more descriptive
responses, for the sake of better usability.

Ideally, message boxes should clearly inform the user what action is to be carried
out—unfortunately the number of applications with dialog box texts that lead to
misunderstandings is very high. Since buttons specify responses directly, this re-
duces the probability that the user will select the wrong action.

If mayDiscardDocument() returns true, we delete the text of the current document
and reset the file path so that other functions do not access the file just edited by
mistake. An even more efficient method would be to set a new document through
textEdit->setDocument(), but since all signal/slot connections to the document are
lost, these would have to be recreated afterwards.

In addition the method here has the side-effect that the undo buffer remains. This
could be an advantage for people who can click faster than they can read, but it
could also involve possible data protection problems (such as if several users are
using the same workplace).

116

4.3 Creating a Main Window with the Qt Designer

The Undo/Redo Function

Programs that do not allow the user to undo actions can be frustrating. This applies
particularly to text editors. Since QTextDocument already provides an undo stack,
we can equip CuteEdit quickly and easily with an undo function:

// cuteedit2/mainwindow.cpp (continued)

void MainWindow::undo()

{
textEdit->document()->undo();

}

The redo is to a certain extent the opposite operation to undo: It recreates a status
that has been undone. This has also been implemented already, so that we just
need to make it accessible as a slot.

// cuteedit2/mainwindow.cpp (continued)

void MainWindow::redo()

{
textEdit->document()->redo();

}

The copy method, with which the user copies highlighted text to the temporary
buffer, is also made available directly by QTextEdit, so we just need a wrapper
method here:

// cuteedit2/mainwindow.cpp (continued)

void MainWindow::copy()

{
textEdit->copy();

}

The undo(), redo(), and copy() slots therefore simply call the matching methods
of the QTextEdit or QTextDocument classes. If the undo stack is empty, the first
two actions in the menu and icon bars are grayed out, since we disable them in
setupActions() through signals undoAvailable() and redoAvailable() of QTextEdit, if
QTextEdit or QTextDocument consider them to be not applicable. We discussed
setupActions() on page 112.

Information on the Program

Of course, the obligatory info box must not be missing in any program. QMessage-
Box (see page 166) provides its own static method for this, called about(), which
expects a heading and a short text:

117

4 Developing a GUI Application Based on a Main Window

// cuteedit2/mainwindow.cpp (continued)

void MainWindow::about()

{
QMessageBox::about(this, tr("About CuteEdit"),

tr("CuteEdit 1.0\nA Qt application example.\n"

"(c) 2006 Daniel Molkentin, Open Source Press"));

}

The first parameter is a pointer to the parent window towards which the info box
should behave in a modal manner. If you pass 0 here, Qt generates a non-modal
box.

Building a Project

Finally, to display the program, we generate the project file with qmake -project
and build the program with qmake and make.

#cuteedit2/cuteedit2.pro

TEMPLATE = app

SOURCES = main.cpp mainwindow.cpp

HEADERS = mainwindow.h

FORMS = mainwindow.ui

RESOURCES = pics.qrc

4.4 Making the Most of the Status Bar

Qt Designer–generated main windows already have a status bar. This is used both
to announce short-term responses, as we have already done in saveFile() (page 114)
and loadFile() (page 113), as well as more persistent messages of an application. In
this way, CuteEdit could display word statistics for the current document there, for
example. We will discuss this and how to implement it in more detail from page
121.

Figure 4.6:

The size grip at the

bottom right

The bar also provides a size grip (outlined in bold in Figure 4.6) for the window.
This is the serrated triangle at the lower right edge of the window, which changes
its size. Even if you don’t want to have any status messages displayed but only
require this “size change handle,” it is recommended that you display the status bar
in the main window. If required, setSizeGripEnabled(false) can be used to hide the
size grip.

118

4.4 Making the Most of the Status Bar

The class that is responsible for the status bar, and which also contains the method
just mentioned, is called QStatusBar. QMainWindow::statusBar() returns a pointer
to the QStatusBar object used by the main window. If the window does not yet
have any status bar, then this function generates one and adds it to the main
window.

If, in an instance of QMainWindow not generated by Designer, we add the line

statusBar();

the application window is given a status bar that shows only the size grip. On the
other hand, the line

statusBar->hide();

causes an undesired status bar (in this case: statusBar) to disappear again.

The status bar presents three different types of status messages:

Temporary messages
These are used for information that should only be visible for a short time
(Figure 4.7). This includes, for example, the URL of a link over which the
mouse in the web browser is currently located, or progress details during a
download.

Figure 4.7:

The left side of the

status bar is often

used to briefly display

messages to the user,

as shown here in

CuteEdit.

Normal messages
These are always shown by an application unless a temporary message is

119

4 Developing a GUI Application Based on a Main Window

shown. This covers over normal messages which are used for general status
information, such as the coordinates of the mouse in a CAD application.

Permanent messages
These always monopolize the status bar and can never be covered by tem-
porary messages. They are used for messages that should always be visible,
such as the connection status of a network application.

Temporary and normal messages appear on the left in the status bar, permanent
messages on the right. A status bar can display several normal and permanent mes-
sages at the same time, but it is not possible to display more than one temporary
message: The new one always displaces the old one.

4.4.1 Temporary Messages

Temporary messages are activated with the QStatusBar::showMessage() slot and
are deleted with QStatusBar::clearMessage(). The message text is passed to show-
Message() as an argument in the form of a QString. In our example we add the
line

statusBar()->message(tr("File successfully loaded."));

to the constructor so that the temporary message is displayed in the status bar.8

The temporary message remains visible until we either set a new message with
showMessage(), delete the current text with clearMessage(), or overwrite it by in-
voking showMessage() again.

If you want to display the temporary message only for a specific length of time,
the showMessage() slot accepts an optional second parameter. If specified, the
QStatusBar-Object automatically deletes the message after a specified time. So
the call

statusBar()->message(tr("File successfully saved."), 3000);

displays the message File successfully saved. for 3,000 milliseconds (that is, three
seconds). Then the normal messages take over again, provided any exist.

4.4.2 Normal Messages

Normal messages are not so easy to handle, unfortunately. You must use widgets
for them. If you want to show a simple text as a normal message, for example,

8 To compile the program successfully, you must also include the QStatusBar header with #in-
clude <QStatusBar>. The entire code is available from http://www.qt4-buch.de/examples.tar.gz.

120

4.4 Making the Most of the Status Bar

then you generate a QLabel object and add this to the status bar, with the QStatus-
Bar::addWidget() function. This is a bit more complicated, but it has the advantage
that it is not restricted to text messages. You can also use icons, for example, or a
progress bar for an operation that takes more than a brief amount of time.

In accordance with its signature, addWidget(QWidget* widget, int stretch=0), the
addWidget() function requires two arguments, one of which is optional. First it is
passed a pointer to the widget to be added. The QStatusBar destructor deletes this
automatically; for this reason it must have been created on the heap with new.

The second argument does not have to be specified if you are satisfied with the
default values. It determines how several widgets divide the space in the status
bar among themselves. The value 0 means that the widget has as much space as
necessary. Another value specifies the proportions of the widgets to each other. If,
for example, you have a widget with a stretch value of 1 and the second one with
a value of 2, then they jointly occupy the entire space in the status bar so that the
second one is twice as wide as the first. In the example of Figure 4.8, whose five
widgets have been assigned stretch values of 1, 2, 3, 4, and 5, the first widget is
only allocated the space it requires. The other widgets occupy the remaining space
so that the third one has twice as much space as the second, and so on.

Figure 4.8:

Different stretch

values in the status

bar

4.4.3 Permanent Messages

As with addWidget(), there is the addPermanentWidget() function for permanent
messages. Widgets inserted with this method appear on the extreme right: These
are appropriate for permanent status displays, for example. Permanent messages
are guaranteed not to be interrupted, even for a short time, by messages that are
displayed as described above via showMessage().

To expand our MainWindow class so that it displays word statistics in the status
bar, we first insert a label into the status bar. Since we need to access this later, we
create a member variable called mStatLabel in the class definition:

// cuteedit2/mainwindow.h (added)

...

class QLabel;

class MainWindow : public QMainWindow,

private Ui::MainWindow

{
...

private:

121

4 Developing a GUI Application Based on a Main Window

QString mFilePath;

QLabel *mStatLabel;

}

The line class QLabel; is a forward declaration of the QLabel class—in this way we
do not yet need to include the QLabel header file. Because of this, the parser needs
less time for mainwindow.h and for the files that later include this file.

In a header file containing a forward declaration of a class, one can only declare
variables of pointer and reference types derived from the class;9 variables repre-
senting instances of the class can’t be declared because the compiler doesn’t know
how much space they should occupy until it sees the class’s definition.

However, the source text file needs to include the QLabel header file, of course,
since the compiler would otherwise not recognize the interface of the class.

In the constructor we include code that generates a QLabel object and displays this
in the status bar as a permanent message; the message should only take up as
much space as it needs, so that we still have room for temporary messages. Since
a stretch of 0, which would cause this, is the default, we can just leave out the
second argument of addPermanentWidget() altogether in this case. We place the
QLabel object on the heap with new, since the QStatusBar object will delete it in
the destructor.10

// cuteedit2/mainwindow.cpp (continued)

#include <QtGui>

#include "mainwindow.h"

MainWindow::MainWindow(QWidget *parent)

: QMainWindow(parent)

{
setupUi(this);

setupActions();

mStatLabel = new QLabel;

statusBar()->addPermanentWidget(mStatLabel);

connect(textEdit, SIGNAL(textChanged()), this, SLOT(updateStats()));

updateStats();

}

As mentioned before, statusBar() not only returns a pointer to the status bar, but
also generates it if it does not yet exist.

To now update statistics each time whenever the edited document is changed, we
listen to the textChanged() signal and connect it to the slot (still to be implemented)

9 In this case the compiler knows the size of the memory to be reserved, since an address on each
platform always has the same size, for example, four bytes on IA32 architectures.

10 The QStatusBar object is deleted in turn by its parent object, the QMainWindow instance.

122

4.4 Making the Most of the Status Bar

updateStats(), which is responsible for updating the word statistics label. In this
way we ensure that Qt really does update statistics correctly. Finally, we call the
new slot manually so that the label can obtain an initial status.

After we have entered updateStats() as a slot in the class declaration of MainWin-
dow, we must now find a way of having the statistics delivered to the label in the
status bar. The text, with all its many properties—QTextEdit can even handle simple
HTML constructions and allows the user to precisely format texts—is stored in an
instance of QTextDocument:

// cuteedit2/mainwindow.cpp (continued)

void MainWindow::updateStats()

{
QString text = textEdit->document()->toPlainText();

int chars = text.length();

text = text.simplified();

int words = 0;

words = text.count(" ");

if (!text.isEmpty()) words++;

QString output = tr("Characters: %1, Words: %2").arg(chars).arg(words);

mStatLabel->setText(output);

}

Each QTextEdit possesses exactly one document, which is encapsulated in the QText-
Document class. What at first glance just seems to be an implementation detail is,
in reality, a very powerful tool for displaying and manipulating text. But here we
just use one method to access the current text of the document: With the call
document()->toPlainText(), QTextDocument generates a QString from its currently
saved text, but this is more than enough for our relatively simple analysis.

This searches the string for individual words and characters. To count the char-
acters, we simply query its length, taking into account that line breaks are also
counted as spaces. If you don’t want this, you can remove the line breaks from the
string beforehand using text.replace(’\n’, "").

When determining the number of words in the text, we also do not need a more
complex parser, since our statistics are relatively simple (and even so can be quite
slow, depending on the text length): It defines a word as a string separated by a
space. Thus the number of words is one more than the number of spaces which
lie between them. So that superfluous empty spaces do not get in the way, we
use the QString method simplified(), which removes all whitespace (that is, spaces,
word wraps, etc.) at the beginning and end of the string and reduces the white
spaces between individual words to exactly one space. The string, which we are
now examining for empty spaces, exactly matches our desired definition, and the
number of spaces plus one results in the number of words. The only tricky detail is
that because an empty text has no words, we may only increase the space count
by one if text is not empty.

123

4 Developing a GUI Application Based on a Main Window

We construct the lettering for the label with tr(”Characters: %1, Words: %2”).
arg(chars).arg(words);. The tr() function returns the text Characters: %1, Words:
%2 as a QString, and if necessary translates this into a different language. The
QString class has an arg() method, which searches for the strings %1, %2, . . . ,
%9, and from those it finds, replaces the one with the smallest number with the
function argument. In our case we will thus obtain the desired result, because the
contents of chars and words, converted into a string, replace the placeholders %1
and %2, in that order.

Using this method, you can create strings containing dynamic text. This has the ad-
vantage that the order of the strings in translations may change if this is necessary
from a grammatical point of view.

Finally, we set the text of the label with the QLabel function setText(), so that the
status bar displays Characters: 0, Words: 0, provided that the function for the
variables chars and words returns the value 0. Our expanded application now looks
like Figure 4.9.

Figure 4.9:

The editor program

CuteEdit, now with an

added status bar with

a permanent message

The status bar shows messages that do not interrupt the user’s work, in contrast
to notification dialogs, which obtain the keyboard focus and which the user must
close explicitly. For messages that are not so important, you should weigh whether
they really require a separate dialog, or whether a temporary message in the status
bar is sufficient, and whether the message is indeed relevant enough to the user
to be shown at all. An application that is too “talkative” can quickly get on your
nerves.

124

4.5 Toolbars

4.5 Toolbars

Each toolbar has a so-called handle with which it can be moved (see Figure 4.10),
so that a user can rearrange the toolbars in his application and move them to
different positions in the window. If you want to prevent this, you should use
setMovable(false);.

Figure 4.10:

A typical toolbar with

a handle (on the left)

To locate a toolbar at a position other than horizontally beneath the menu bar,
such as directly on the left margin of the window, we must make a slight change
to our example. There is a second version of the addToolBar() method that requires
positioning details as the first argument. We therefore change the call in this way:

QToolBar *mainToolBar = addToolBar(Qt::BottomToolBarArea,

tr("Main Toolbar"));

Now the main toolbar appears on the bottom margin; Table 4.1 specifies the pos-
sible positions. In practice, though, this only makes sense for toolbar selections in
the style of Photoshop or GIMP, which are usually implemented anyway as dock
windows (see page 130). Users are creatures of habit, and tend to look for toolbars
in the upper section of the window.

Table 4.1:

The ToolBarAreas

enumerator

Value Position

Qt::LeftToolBarArea Vertically, on the left side of the main window.

Qt::RightToolBarArea Vertically, on the right side of the main window.

Qt::TopToolBarArea Horizontally, as high up as possible but beneath
the menu bar and above any dock windows.

Qt::BottomToolBarArea Horizontally, as low down as possible, but above
the status bar and beneath any dock windows.

Qt::AllToolBarAreas All previous positions. Not permissible for ad-
dToolBar().

Using setAllowedAreas(), it is also possible to allow toolbars only at certain posi-
tions. Table 4.1 provides the values valid for this, which can be linked with a logical
OR operator. The following code restricts the placement of the mainToolBar toolbar
to beneath the menu bar and above the status bar:

mainToolBar->setAllowedAreas(Qt::TopToolBarArea |

Qt::BottomToolBarArea);

125

4 Developing a GUI Application Based on a Main Window

Since the user can remove the tool selections, it is the duty of the programmer to
ensure that they can be found again at any time. A suitable place for the toolbar
retrieve instruction is the menu bar, since the user can normally not hide this. The
toggleViewAction() method provides a pointer to a QAction and ensures that the
toolbar reappears—or disappears, if that is what the user wants. The visible text of
the action is oriented towards the windowTitle of the icon bar, which is why this
should be set in the Designer. If you don’t like it, you can define your own text for
the action, using QAction::setText().

Menu entries which allow an option to be switched on or off, that is, to be toggled,
are derived from toggle actions.

To make the toolbar in our example program disappear or reappear, we build an
action like this into the (yet to be implemented) Settings→Toolbars submenu of the
menu bar. To do this, we add the following code to the end of the setupActions()
function on page 112:

QMenu *toolBarMenu = settingsMenu->addMenu(tr("&Toolbars"));

toolBarMenu->addAction(mainToolBar->toggleViewAction());

...

For the code to work, we must first insert an addtional menu with the title Settings
in the Designer, which we will call settingsMenu. The Settings menu here belongs
in front of the Help menu, since the latter should always be the last entry in the
menu bar.

This results in a selectable entry being located in the tool bars submenu. All visible
bars are prefixed with a checkmark. You can see here why toolbars should always
be given a name.

4.6 How Do Actions Work?

We have already made contact with the QAction class. So far however, the Designer
generated the appropriate code. So to get a better picture, we should not forget
to mention how actions work and how you can use them “manually.” Those not
interested in these details can continue reading on page 130.

Each QAction object encapsulates information involving a user interface action.11

All important properties are summarized in Table 4.2 on page 129.

11 In Qt 3, actions (also called QActions) were active objects that selected the matching display
method themselves, dependent on the object in which they were included. In Qt 4 Trolltech has
reversed this principle: Now widgets decide on the display form of the actions presented.

126

4.6 How Do Actions Work?

4.6.1 How to Instantiate QAction Manually

We do not have to use the Designer every time, of course, to create QAction objects.
The following example demonstrates how you can create actions yourself in the
constructor of a QMainWindow subclass.

First we instantiate the desired action with an icon and name, and assign it to the
main window as a parent object. The QIcon() class encapsulates an icon:

QAction *action_open;

action_open = new QAction(QIcon(":/pics/fileopen.png"),

tr("&Open"), this);

action_open->setShortcut(tr("Ctrl+O"));

action_open->setStatusTip(tr("Opens an existing file."));

In contrast to QPixmap, an action can take in images for various states (normal,
active, and grayed out) and stages (selected or not selected). If the class contains
just one image—as in this case—it tries to calculate the icons for the other states
and stages from the icon specified.

By means of setShortcut() we can set the corresponding key binding as a string.
Together with the translation function tr(), this has the advantage that the trans-
lators can select an appropriate shortcut for the Open action in the respective
language. setStatusTip() sets the text that appears in the status bar if the mouse
is held over the action.

To integrate actions directly into the menu bar, the following code suffices:

menuBar()->addAction(action_open);

menuBar(), a method of QMainWindow returns the main windows menu bar. The
procedure just shown is rather unusual, however. Normally menus are first inserted
into the menu bar, and then the actions are integrated. The QMenu instance repre-
senting the menu can be generated via the addMenu() Factory Method. We insert
the Open action into this as follows:

QMenu *menu_Datei = menuBar()->addMenu(tr("&File"));

menu_Datei->addAction(action_open);

For actions that are used as information carriers for various widgets simultaneously,
you should particularly think about the parenthood in the object model of Qt. The
main window, as the father of all other widgets, is always the last to be deleted.
So that Qt will delete action objects as late as possible, it is best to turn them into
direct descendants of the main window.

If actions are used in several windows simultaneously, there are basically two al-
ternatives: Either you duplicate all actions for each window, or you turn them into
children of QApplication. In this case you can simply pass qApp as a parent to the
QAction constructor.

127

4 Developing a GUI Application Based on a Main Window

4.6.2 Selectable Actions

Some actions contain a binary state. A typical example of this is a word-wrap
function in CuteEdit. So that the user can see whether this is active or not, we
convert it to a selectable action with setCheckable():

QAction *action_linebreak;

action_linebreak = new QAction(tr("&Line break"), this);

action_linebreak->setCheckable(true);

Its status can be queried with isChecked(). Although a selectable action automati-
cally changes its state every time it is selected, you can alternatively change it with
setChecked() instead.

4.6.3 Grouped Actions

Several selectable actions can be grouped together so that the user can always ac-
tivate only one of them. This function is particularly familiar from word processing
programs, in which you can exclusively select from text alignment to the left, to the
right, or centered. If you select one of these actions, the others are automatically
deactivated.

To implement this in Qt, all states must be available as QAction instances. But first
we create a QActionGroup object, which we pass to the QAction constructor as a
parent widget. This causes the action to be automatically inserted into the action
group. If we now make each individual element in the group selectable, the actions
are linked to each other:

QAction *act_alignleft;

QAction *act_alignright;

QAction *act_aligncenter;

QActionGroup *aligngroup = new QActionGroup(this);

act_alignleft = new QAction(tr("Align &right"), aligngroup);

act_alignright = new QAction(tr("Align &left"), aligngroup);

act_aligncenter = new QAction(tr("&Center"), aligngroup);

act_alignleft->setCheckable(true);

act_alignright->setCheckable(true);

act_aligncenter->setCheckable(true);

Since QActionGroup is just an administration class, we must insert the individual
actions manually, with addAction(), into the appropriate menu or toolbar. If the
user now selects an action, the class emits the triggered() signal with the selected
action as an argument. With this, a matching slot can decide how to react to the
corresponding action, such as by comparing the pointer to the passed on QAction
instance with the actions produced.

128

4.6 How Do Actions Work?

Table 4.2:

Important properties

of QAction

Property Get method Set method Description

text text() setText(const
QString&)

Short description of ac-
tion, used as a menu
text, for example

icon icon() setIcon(const
QIcon&)

Icon that symbolizes the
action

iconText iconText() setIconText(const
QString&)

Text that fits in the icon
or underneath the icon;
if not set, text() is used

shortcut shortcut() setShortcut(const
QKeySequence&)

Shortcut

statusTip statusTip() setStatusTip(const
QString&)

Longer text that the sta-
tus bar shows when the
mouse passes over it

whatsThis whatsThis() setWhatsThis(const
QString&)

Extensive help text
that is displayed in the
What’s This? mode12

toolTip toolTip() setToolTip(const
QString&)

Text displayed floating
below the widget that
has recorded the action

font font() setFont(const
QFont&)

Specifies the font prop-
erties for menu entries

enabled isEnabled() setEnabled(bool) If this is false, the action
is grayed and cannot be
selected

visible isVisible() setVisible(bool) If this is false, the action
is not displayed

checkable isCheckable() setCheckable(bool) If this is true, the action
can be switched on and
off (toggled) (for ex-
ample, bold typeface in
a word processing pro-
gram)

12 In the What’s This? mode the application displays an information text for each selected entry,
which can be defined for each widget and for each QAction with setWhatsThis(). Users can

navigate to the What’s This? mode via
✞✝ ☎✆Shift +

✞✝ ☎✆F1 or via a QAction, which generates the call
QWhatsThis().createAction(). It must be inserted explicitly into the Help menu.

129

4 Developing a GUI Application Based on a Main Window

continued

Property Get method Set method Description

checked isChecked() setChecked(bool) Defines whether a tog-
gled action is on (true) or
off

4.7 Dock Windows

In some cases it is useful, apart from simple actions, to also group together more
complex widgets so that the user can place them either inside the main window
or separate from this. Such so-called dock windows are also provided by Qt 4: The
class responsible for this is called QDockWidget.

Users are especially aware of these in development environments such as Microsoft
Visual C++ or the Qt Designer,13 which arrange all their tools within the main
window. As can be seen in the example of the Designer in Figure 4.11, the user can
dock them in the same way as toolbars to side areas of the window, or position
them floating over the main window. If they are docked, the latter have a splitter
(see Chapter 5.3 on page 150), with which the user can fine-tune the size ratio
of the dock window to the main window, if necessary. Dock windows also have a
handle (similar to toolbars), with which the user can move them to another margin
of the window or, if he pulls them out of the window, make them independent.

Figure 4.11:

The Designer with a

floating widget box.

All other dock

windows are stuck to

the right margin.

To the right of the handle there are two miniaturized buttons. The left one makes
the window independent, while the right one closes it, whether or not it is currently
docked to the main window. Closing it does not delete the QDockWindow instance
though, but merely hides it, using hide() (inherited from QWidget). Two methods

13 For Designer, only while in the dock window mode, which can be set via Edit→ User Interface
Mode→Docked Window.

130

4.7 Dock Windows

are available to the programmer if he now wants to display them again: He can
either make the widget itself visible at any time via show(), or he can use the
toggleShowAction() method, as already used for toolbars, which then generates a
corresponding entry in menus or toolbars.

The developer has the option of restricting a series of privileges that QDockWid-
get provides to the user. These privileges are described in the enumerator QDock-
Widget::DockWidgetFeatures. They can either be defined as a property in the Qt
Designer or by passing a combination of enumerator elements to the setFeatures()
method:

DockWidgetClosable
Determines whether a dock window may be closed

DockWidgetMovable
Specifies whether a dock window may be moved

DockWidgetFloatable
Defines whether a dock window may float

If you want to restrict privileges, you must interpret these DockWidgetFeatures as
bit flags that can be combined with a logical OR. This can be done because the
enumerator has values that are based on the power of 2, which are referred to as
“bit flags.”14

To prevent the user from closing and removing the dock window, the following call
is sufficient

dockWindow->setFeatures(QDockWidget::DockWidgetClosable|

QDockWidget::DockWidgetFloatable);

To remove or assign all freedoms, the Qt additionally provides the enumerated val-
ues QDockWidget::NoDockWidgetFeatures and QDockWidget::AllDockWidgetFeat-
ures.

Enumerators that are used as bit flags are an elementary concept in Qt, and we will
come across them frequently.

4.7.1 Positioning Dock Windows

Another important difference between toolbars and dock windows is their posi-
tioning. As can be seen in Figure 4.12, QMainWindow divides its margins into two

14 Unix users know this from the file permissions in the filesystem. Unix-based operating systems
form the permissions for reading, writing, and executing (rwx) from the powers of two, using a
single digit. A file with access permissions 5 is readable (4) and executable (1), but not writable
(2).

131

4 Developing a GUI Application Based on a Main Window

rings; toolbars are always located directly on the window margin, but dock win-
dows are always inside the margin.

Figure 4.12:

The main window

takes in toolbars and

dock windows in two

rings as decorations

on the margin.

Dock windows have a title and a child widget, so their contents can be arranged
in any way you like. With setWidget() we insert the widget created specifically for
the dock window. The heading set with setWindowTitle() appears as the title of the
dock window.

addDockWidget() then integrates the dock window into the main window. As the
first parameter, the method expects the position of the tool window, because, in
contrast to toolbars, Qt does not specify a standard position for dock widgets.
Which one you choose depends heavily on the intended purpose. In the code
example on page 133 we “stick” the window to the left main window frame, with
Qt:LeftDockWidgetArea. The DockWidgetAreas enumerator is used to specify the
location, and is described in Table 4.3.

Table 4.3:

The DockWidgetAreas

enumerator

Value Position

Qt::LeftDockWidgetArea Vertically, on the left side of the main win-
dow, but to the right of any possible menu
bars

Qt::RightDockWidgetArea Vertically, on the right side of the main win-
dow, but to the left of any possible menu bars

Qt::TopDockWidgetArea Horizontally, as high up as possible but be-
neath the menu bar and any possible icon
bars

Qt::BottomDockWidgetArea Horizontally, as low down as possible, but
above the status bar and any possible icon
bars

Qt::AllDockWidgetAreas All previous positions; not permissible for ad-
dDockWidget()

132

4.7 Dock Windows

As the second argument, addDockWidget() expects a pointer to the QDockWidget
to be inserted. During the instantiation of the dock window on page 133, we could
leave out details of a parent, because addDockWidget() not only integrates the
window graphically into the main window, but also transfers the parenthood for
the dock window to the main window.

Since dock windows usually contain more complex widgets, horizontal docking is
generally recommended—that is, positioning on the left or right side of the win-
dow. The upper and lower sides of the main window are only rarely suited to
docking. The areas in which the dock window may reside are again summarized by
the enumerator type Qt::DockWidgetAreas; which of them are actually permitted
is determined by setAllowedAreas(). Members of the enumeration are used as an
argument, and they are linked with a logical OR. To prevent docking on the upper
and lower window margin, for example, we extend the constructor from the above
example as follows:

dockWidget->setAllowedAreas(Qt::LeftDockWidgetArea |

Qt::RightDockWidgetArea);

Normally the user may also position the dock window as floating over the window,
instead of docking it. The call setFloating(false) prevents this—the corresponding
dock window then sticks only to the window sides allowed by setAllowedAreas().

As has already been indicated, dock windows can also be closed. Just like menu
bars, they therefore have a method called toggleViewAction(). The example from
page 126 works here in the same way: If it is included in the menu bar, the user
can make the dock window reappear at any time through the entry generated with
this.

4.7.2 A Dock Window for Our Editor

Now that we have had a good look at the theory of dock windows, we will turn our
attention to a small example. Our editor should be given a list of templates which
can be inserted by clicking the current cursor position.

To do this, we generate a new dock window in the Designer and give it, together
with the text editor, a horizontal layout.15 In the Property Editor we allow docking
for it only on the right and left sides of the main window. Finally we give the object
a name: TemplateDocker.

Alternatively, we can generate the dock window in the constructor of the Main-
Window as follows:

QDockWidget *templateDocker = new QDockWidget;

templateDocker->setAllowedAreas(Qt::LeftDockWidgetArea|

15 The Designer interprets dock windows in design mode as widgets in the central widget.

133

4 Developing a GUI Application Based on a Main Window

Qt::RightDockWidgetArea);

templateDocker->setObjectName("TemplateDocker");

templateDocker->setWindowTitle(tr("Templates"));

addDockWidget(Qt::LeftDockWidgetArea, templateDocker);

QListView *view = new QListView();

templateDocker->setWidget(view);

new TemplateHandler(view, textEdit, this);

The main window requires the object name to save the window properties. We
will discuss this topic at the end of Section 4.8. If the name is missing, Qt com-
plains at runtime on the standard output. Unfortunately, it is not possible to set
the windowTitle attribute of QDockWidget in the Designer, which is why it is im-
portant that this must be done separately in the constructor. windowTitle labels
the window and also gives a name to the toggle action that is generated by tog-
gleViewAction().

In the final step we breathe life into the widget by filling it with a list view. We will
later find the templates in this view. The TemplateHandler class now instantiated
is responsible for filling the list and for inserting templates at the current cursor
position in the editor window:

// cuteedit2/templatehandler.cpp

TemplateHandler::TemplateHandler(QListView *view, QTextEdit *textEdit,

QObject *parent) : QObject(parent), mTextEdit(textEdit)

{
mModel = new QStringListModel(this);

QStringList templates;

templates << "<html>" << "</html>" << "<body>" << "</body>";

mModel->setStringList(templates);

view->setModel(mModel);

connect(view, SIGNAL(clicked(const QModelIndex&)),

SLOT(insertText(const QModelIndex&)));

}

In Qt 4, list views work on the basis of the model/view principle introduced in
Chapter 8: A model is responsible for obtaining data, while the view displays the
data. In the case of our templates, one model is enough, which takes data directly
from a QStringList. As before, these are fed with several templates, in this case for
HTML.16 .

We pass the list created in this way to the model via setStringList() and turn this
into the reference model for our view, the list view. The list view is now filled, and

16 In a proper application the templates are not compiled statically, of course, but are loaded from
a file.

134

4.7 Dock Windows

we just need to include the selected template in the editor window. To do this,
we connect the clicked() signal of the view and implement the insertText() method
(which we must first declare in the class definition as a slot, of course):

// cuteedit2/templatehandler.cpp (continued)

void TemplateHandler::insertText(const QModelIndex& index)

{
QString text = mModel->data(index, Qt::DisplayRole).toString();

QTextCursor cursor = mTextEdit->textCursor();

cursor.insertText(text);

mTextEdit->setTextCursor(cursor);

}

The model index passed represents the selected line in our model. Using the data()
method, we can obtain the data as QVariant from this, which we must still convert
into a QString. QVariant works in a similar way to a union in C++. The class can
also convert various types—both Qt-specific data types such as QString and QSize,
as well as C++ types such as int or double—from one to another.

Figure 4.13:

The template dock

window in docked

condition: A click

inserts the text into

the corresponding

line in the editor

window.

The model/view concept of Qt has many different roles for a model index (see table
8.1 on page 209; for instance, many views can display an icon (Qt::DecorationRole),
in addition to normal text (Qt::DisplayRole). At the moment, however, only Qt::
DisplayRole is relevant to us.

135

4 Developing a GUI Application Based on a Main Window

The textCursor() method of the text window represents the current position of the
writing cursor.17 We pass the text, which it should insert at the cursor position, to
the instance. Now we must insert the text cursor to the current cursor position
again, using setTextCursor, to update the cursor.18

Our dock window is now completely implemented. Thanks to the QObject base
class and the fact that we pass the main window as the parent object, we do not
need to delete the instance of TemplateHandler manually. The result is shown in
Figure 4.13.

4.8 Saving Preferences

Last but not least, our program should be able to keep the settings made by the
user, even after the program is restarted. To this end, different conventions have
become established on different operating systems.

Depending on the platform, application data may be stored in the Windows Reg-
istry (in the user scope HKEY_LOCAL_MACHINE\Software) or in the system scope
HKEY_CURRENT_USER\Software), in an XML-based .plist file under Mac OS X, or in
/etc/xdg,19 (system-wide settings) or ~/.config (user-defined settings) under Unix.

Qt encapsulates access to these configuration storage systems with the help of
theQSettings class. Every filing system in this is a backend. QSettings objects
can be created either on the heap or on the stack. Since little work is needed
to instantiate them, we recommend that you create them on the stack, if this is
necessary.

In case two or more QSettings instances are working with the same data, the class
ensures that data between different instances is always correctly synchronized, in
case two or more QSettings objects are working with the same file. The same
applies for two threads, both of which contain a QSettings object with the link to
the same file, and even for two different processes, in case both are using QSettings
linked to a common file. Qt uses internal locking mechanisms for this purpose.

The QSettings constructor normally requires two parameters for the instantiation
in order to generate the appropriate entry in the configuration storage system: the
name of the organization for which the programmer works, and the name of the
program. In Windows,

17 The QTextCursor class in general does not have to describe the currently visible cursor, but it
can manipulate text at any position at all.

18 This is necessary because QTextCursor works not in a pointer-based manner, but in a value-
based one, and we therefore work with a copy created with the allocation to the cursor variable.

19 The directory name stands for an abbreviation of X Desktop Group the now-obsolete
generic term for the Freedesktop.org developers. See also http://www.redhat.com/archives/xdg-
list/2003-March/msg00041.html.

136

4.8 Saving Preferences

QSettings settings("OpenSourcePress", "CuteEdit");

would reference the registry path

HKEY CURRENT USER\Software\OpenSourcePress\CuteEdit

If a programmer generates such QSettings instances at many locations in the code,
it would be a good idea not to have to constantly pass the parameters. This is
possible if we feed the application itself with program and organization details,
preferably straight in the main() function:

QCoreApplication::setOrganizationName("OpenSourcePress");

QCoreApplication::setOrganizationDomain("OpenSourcePress.de");

QCoreApplication::setApplicationName("CuteEdit");

From now on, QSettings makes use of these details, so that an instance without
parameters is all that is needed:

QSettings settings;

It is surprising that setOrganizationDomain() method exists, since we have just
managed without it. But it is justified through the way that Mac OS X stores its
settings: it tries to sort the organizations according to an inverted domain name
pattern. If the domain details are missing, QSettings creates artificial details from
the organization name. If setOrganizationDomain() is specified correctly, the file-
names in OS X are as follows:

$HOME/Library/Preferences/de.OpenSourcePress.CuteEdit.plist

$HOME/Library/Preferences/de.OpenSourcePress.plist

/Library/Preferences/de.OpenSourcePress.CuteEdit.plist

/Library/Preferences/de.OpenSourcePress.plist

It is not absolutely essential to specify the domain, but it should not be left out
in case the organization has a real domain name. The first two parts specify the
user scope, and the last two specify the system scope, a distinction that—as hinted
above—concerns all three platforms.

In the user scope (QSettings::UserScope) an application saves all the applications
involving just that user, while in the system scope (QSettings::SystemScope) it saves
data that are important for all users. Because writing in the system scope generally
requires root or administrator rights, the following constructor is normally relevant
only for installation programs:20

20 Never assume that the user has administrator rights, even if this is standard practice in many
Windows home installations.

137

4 Developing a GUI Application Based on a Main Window

QSettings settings(QSettings::SystemScope);

QSettings now ignores the user scope and reads and writes exclusively in the sys-
tem scope. If you specify QSettings::UserScope instead, the class behaves as if it
was called via the standard constructor. QSettings looks in this for a setting, first
in the user scope. If the object is not found there, it then looks for it in the system
scope.

To write the actual data, QSettings provides the setValue() call, which expects a
key and the actual value. The value itself is of the QVariant type, with which we
are already familiar. The following code first stores a value in the system-specific
configuration backend and then reads it out:

// configtest/main.cpp

// manufacturer, product

QSettings settings("OpenSourcePress", "ConfigTest");

QString hello = "Hello, world!";

// store a value

settings.setValue("Greeting", hello);

// reset variable

hello = "";

// read value and assign to variable

hello = settings.value("Greeting").toString();

qDebug() << hello; // prints "Hello, world!"

The explicit conversion to a QString using toString() is necessary because C++ is
not in a position to correctly convert the QVariant value returned by Qt because
QString has no knowledge of QVariant, and thus it does not provide an assignment
operator.

After it is run, the program generates a file in Unix called ~/.config/OpenSource
Press/ConfigTest.conf with the contents

[General]

Greeting=Hello, world!

Since we have not specified any group, QSettings stores the key in the [General]
standard group. There are generally two methods of naming a specific group. On
one hand, we can specify the desired group before one or more setValue() calls, but
we must remove this setting afterward if we want to continue using the object for
other purposes:

settings.beginGroup("My Group");

settings.setValue("Greeting", hello);

settings.endGroup();

138

4.8 Saving Preferences

On the other hand, we can simply place the name of the group in front of the key,
separated by a slash:

settings.setValue("My Group/Greeting", hello);

In both cases the result looks like this:

[My Group]

Greeting=Hello, world!

Under Windows, groups are subpaths of the current application path in the Reg-
istry, whereas Mac OS X structures them through XML tags.

4.8.1 Extending CuteEdit

To use QSettings in CuteEdit, we first set up two methods for reading and writing
in MainWindow: readSettings() and writeSettings().

We call writeSettings() in the destructor. This generates a new QSettings object and
saves the size of the current window in the Size key of the MainWindow group. In
the next step we save all internal settings for the MainWindow; for instance, the
positions of the toolbars and dock windows. To do this, QMainWindow provides
the saveState() method, which converts these properties into a QByteArray:

// cuteedit2/mainwindow.cpp (continued)

void MainWindow::writeSettings()

{
QSettings settings;

settings.setValue("MainWindow/Size", size());

settings.setValue("MainWindow/Properties", saveState());

}

We call its counterpart, readSettings(), as the final step in the constructor of the
class. It reads the settings and applies them to the finished main window, using
restoreState(). restoreState() restores the internal status of the main window, us-
ing the read-out QByteArray. But first we must convert the QVariant returned by
value() into a QSize or QByteArray:

// cuteedit2/mainwindow.cpp (continued)

void MainWindow::readSettings()

{
QSettings settings;

resize(settings.value("MainWindow/Size", sizeHint()).toSize());

139

4 Developing a GUI Application Based on a Main Window

restoreState(settings.value("MainWindow/Properties").toByteArray());

}

The second parameter that we pass to value()—sizeHint()—is also unusual. It is the
default value if the backend cannot find the key. In specific cases it ensures that
the editor window has an appropriate initial size.

140

5 Ch
ap

te
r

Laying Out Widgets

Even if you leave it up to Qt to arrange the widgets in a dialog or main window
(as we have done so far), there is nothing preventing you from doing the layout
manually using the class library in special cases. In practice this is seldom done,
but a closer look at manual layout provides an understanding of the Qt layout
mechanism, which we will examine below.

5.1 Manual Layout

In the traditional version of GUI design, each widget is “attached by hand” to a
point in the overlying window or widget (that is, the widget that has been specified
as a parent object for the given GUI element) and fixed values for its height and
width are defined. The QWidget class provides the setGeometry() method as a basis
class for nearly all graphical elements. This expects four integer parameters: first

141

5 Laying Out Widgets

the values for the x and y positions relative to the parent widget, followed by the
height and width. At this point in time the parent widget does not have to display
its own final size.

As an example, we can look at a window derived from QWidget (Figure 5.1):

// manually/window.cpp

#include <QtGui>

#include "window.h"

Window::Window(QWidget *parent) : QWidget(parent)

{
setFixedSize(640, 480);

QTextEdit *txt = new QTextEdit(this);

txt->setGeometry(20, 20, 600, 400);

QPushButton *btn = new QPushButton(tr("&Close"), this);

btn->setGeometry(520, 440, 100, 20);

}

Figure 5.1:

A simple, manually

laid out widget

The setFixedSize() method instructs the window to accept a fixed, unchanged size.
Then we position an editor window (a QTextEdit widget1) and a button.

From these setGeometry() calls it is already evident that it is quite difficult to guess
the correct values. Getting a layout constructed in this manner to work is a contin-
uous cycle of choosing candidate values, compiling, and then adjusting the values
to improve the appearance. It can also be quite awkward if the widget or dialog

1 For all those who have not (yet) read, or so far merely browsed through Chapter 4: The QTextEdit
class provides a multiple-line input field for text, which can be formatted via the API. In addition
to pure text, it can also load structured HTML.

142

5.2 Automatic Layout

changes: If you want to add a new button in the middle of an arrangement, for
example, the position of all elements placed beneath the new element must be
modified.

Now, it can be argued that none of this is a problem in practice, since the Qt
Designer considerably simplifies the positioning work involved. But even a GUI
designer cannot solve all problems without using automatic layouts.

One of these problems concerns widgets that would look better if they could shrink
or grow: In an inflexible layout and without additional aids, such elements—like the
editor window in the example—always retain the same size, although it would be
nice if they would adjust to the available screen size or at least give the user the
option of changing their dimensions.

To keep the size of the dialog flexible, we could replace the setFixedSize() call with
the resize() method, which also expects two integer parameters or a QSize param-
eter. This only adjusts the size, and does not fix it. The user can now change the
dimensions of the dialog with the mouse, although the widgets that it contains
retain their dimensions.

Alternatively, you could reimplement the QWidget method resizeEvent(): Qt always
invokes this method when the widget size changes. You could write code to com-
pute the new sizes and positions of the window elements on each resize event.
But this procedure is much too complex in most cases, and also requires manual
calculation of the widget proportions.2

In addition, reimplementing resizeEvent() poses a particular problem in combina-
tion with internationalization: With localized software, the dimensions of a labeled
widget may depend on the language in which it is displayed. A button called Close
in English has a much longer label in the German translation (Schließen), and the
text will be cut off unless special precautionary measures are taken.

Ultimately, we can only patch up the symptoms in this way. To actually solve the
underlying problem, we cannot avoid using automatic layout.

5.2 Automatic Layout

The QLayout class and specialized layouts derived from it help the developer to
position widgets dynamically. For this to succeed, each graphic element derived
from QWidget has a sizeHint() method, which returns how much space the widget
would like to occupy under normal circumstances. In the same way, there is a
minimumSizeHint() method—a widget may under no circumstances be smaller than
the value returned by minimumSizeHint(). Both sizeHint and minimumSizeHint are
properties, which can be changed with the corresponding set method.

2 In some cases this procedure is very useful, however. A number of KDE programs use re-
sizeEvent() to display status windows on the current layout at the lower-right edge of the
window.

143

5 Laying Out Widgets

Each widget also has a size policy, which the developer can set for the horizontal
and vertical values using setSizePolicy(). The purpose of this can best be explained
by means of an example: The QTextEdit object from Figure 5.1 should, if possible,
use all of the space in the window not required by other widgets—that is, the fully
available width and height. Since this applies not only here, but in general for
editor windows, the standard setting for this widget type defines the size policy
QSizePolicy::Expanding for both directions (that is, “windows for this widget type
should expand as much as possible”).

A button, on the other hand, should only take up as much space vertically as is
specified in the sizeHint(). This is ensured by QSizePolicy::Preferred (that is, widgets
of this type should occupy the ideal size, if possible). QPushButtons expand in
width as far as possible, because for this direction Trolltech specifies QSizePol-
icy::Expanding.

Figure 5.2:

All layouts inherit

from the QLayout

base class.

QHBoxLayout QVBoxLayout

QBoxLayout QGridLayout QStackedLayout

QLayout

5.2.1 Horizontal and Vertical Layout

QLayout as an abstract base class only covers the basic functions for layouts. Spe-
cific strategies, such as the already familiar horizontal or vertical layout, are looked
after by the special Qt clusters shown in Figure 5.2 inheriting from QLayout.

Thus the QVBoxLayout class, used in the example on page 29 and the following
pages, arranges widgets among themselves, vertically. Here the order in which the
widgets are included in the layout using addWidget() is crucial.

The example from page 142 now appears as follows:

// vertically/window.cpp

#include <QtGui>

#include "window.h"

Window::Window(QWidget *parent) : QWidget(parent)

{
resize(640, 480);

QVBoxLayout *lay = new QVBoxLayout(this);

144

5.2 Automatic Layout

QTextEdit *txt = new QTextEdit(this);

lay->addWidget(txt);

QPushButton *btn = new QPushButton(tr("&Close"), this);

lay->addWidget(btn);

}

The resize() instruction is not absolutely necessary. Without it, Qt adds the mini-
mum sizes of the editor window and the button suggested by minimumSizeHint()
to the spacing inserted by the layout, that is, the distance between two widgets in
a layout. In addition it adds a margin for the layout and fixes the window size to
the total.

Figure 5.3:

The widget with a

vertical layout

Figure 5.3 clearly shows the weaknesses of the vertical layout: The button takes
over the full width, which is not what we had in mind.

There are two ways of overcoming this problem. In the first case we make use of
something we are already familiar with, and take a look at the API documenta-
tion of QBoxLayout,3 the class from which QVBoxLayout inherits: The addWidget()
method actually has two other parameters, stretch and alignment. The latter looks
after the horizontal alignment of a widget. It is now possible to arrange the button
correctly, thanks to Qt::AlignRight.

To do this, we simply replace the last two lines of code above with the following:

QPushButton *btn = new QPushButton(tr("&Close"), this);

lay->addWidget(btn, 0, Qt::AlignRight);

You should try this method, particularly if you had trouble with the grid layout
described in Chapter 5.2.2. Grid layouts remain the better choice, particularly for

3 See http://doc.trolltech.com/4.1/qboxlayout.html.

145

5 Laying Out Widgets

more complex layouts, in which you can easily lose track of what is lined up where
when using box layouts.

Box layouts have an additional property which we have so far ignored, the so-
called stretch factor. If this does not equal 0, it determines the proportional space
occupied by the widget in the overall layout, in the direction of the box layout.
This assumes, of course, that the widget is interested in spreading out in this par-
ticular direction. It does not make any sense for a button, for example, to stretch
out vertically above the height or below the depth of the text or the icon that it
displays.

If this should still be necessary, however, the size policy can be adjusted using set-
SizePolicy(). The method expects two parameters here from the QSizePolicy::Policy
enumerator (see Table 5.1), which define the size guidelines for the horizontal and
vertical stretches.

Table 5.1:

The Enumerator Policy
Value Meaning

QSizePolicy::Fixed The widget may never have a size other
than sizeHint().

QSizePolicy::Minimum sizeHint() is the smallest acceptable size
for the widget, but the widget may be en-
larged as much as you want.

QSizePolicy::Maximum sizeHint() is the largest acceptable size for
the widget, but the widget may be re-
duced in size as much as you want.

QSizePolicy::Preferred sizeHint() is the optimal size, but the
widget may be either larger or smaller
than this value (default for QWidget).

QSizePolicy::Expanding As Preferred, but the widget demands any
available space in the layout.

QSizePolicy::MinimumExpanding As Minimum, but the widget absolutely
demands any available space in the lay-
out.

QSizePolicy::Ignored Ignore sizeHint()—the widget is given as
much space as possible in the layout.

But let’s return to the stretch factor: This is illustrated by the following code ex-
ample, which places five stretchable text edits next to each other, but assigns a
different stretch to each of them:

146

5.2 Automatic Layout

// stretchfactors/main.cpp

#include <QtGui>

int main(int argc, char *argv[])

{
QApplication a(argc, argv);

QWidget w;

QHBoxLayout lay(&w);

QTextEdit *txtEdit = 0;

for (int stretch = 1; stretch <= 5; stretch++) {
txtEdit = new QTextEdit(&w);

lay.addWidget(txtEdit, stretch);

}

w.show();

return a.exec();

}

We choose a horizontal layout in this example and insert dynamically generated
text fields into it. These contain a stretch factor of 1 to 5, according to the status
of the loop counter. As can be seen in Figure 5.4, the widgets now take up more
space, increasing from left to right according to their factor. Thus the second text
field has twice as much space as the first one, the third, three times as much, and
so on.

The text edit behaves strangely as soon as the horizontal window size is reduced:
Although all widgets become proportionately smaller, they always try to attain
their smallest possible size (minimumSize()), which is always the same despite the
stretch factor. Therefore, all the text fields in our example are the same size as soon
as the window has reached its minimum size.

Figure 5.4:

Stretch factors

provide individual

widgets with more

space.

While horizontal stretches seldom cause problems, hardly any widget wants to be
stretched vertically. However, if the user expands a dialog lengthways, the layouts
insert ugly spaces between all the GUI elements contained in the dialog window.
This can also be avoided using manually defined spaces. One approach is to define
a stretch factor in one of the addWiget() calls for a single position, to define a

147

5 Laying Out Widgets

pretetermined breaking point, so to speak. An alternative is to use addStretch() to
add a stretch of any size to the end of the layout (that is, at the lower or right edge,
depending on the layout type).

5.2.2 Grid Layout

The best way to describe the grid layout in Qt is probably as a kind of table, such
as frequently encountered, for example, in HTML or spreadsheet calculations. In
contrast to QBoxLayout derivatives, the grid layout class QGridLayout also requires
information on the column and row in which the layout should insert a widget.

As can be seen in Figure 5.2 on page 144, QGridLayout inherits directly from QLay-
out, so it has properties differing from those of QBoxLayout-based layouts.

In particular, these include another addWidget() method that requires, in addition
to the widget to be inserted, at least two more details, namely the row and the
column of the insertion point. For widgets that should take up more space than one
cell, an overloaded version of the method exists that expects four extra parameters:
the coordinates of the first cell and the number of cells that the widget should
cover in each direction.

In addition the setColumnStretch() and setRowStretch() methods allow stretch fac-
tors to be set for individual columns or rows. Here the first parameter specifies the
row or column, and the second parameter specifies the relevant stretch factor.

The following example implements our input dialog using a grid layout. Through
addWidget(), it positions the text field at the coordinates (0, 0) and specifies for it
a width of two columns and a height of one row.

The button is placed on the second row and in the second column, with coordinates
(1, 1), because we start from zero when counting positions, as is usual in informa-
tion technology. Stretching the first column with addColumnStretch() then ensures
that the second column, in which the button is located, is squashed up. Using this
trick, the layout is restricted to the optimal width:

// grid/window.cpp

#include <QtGui>

#include "window.h"

Window::Window(QWidget *parent) : QWidget(parent)

{
resize(640, 480);

QGridLayout *lay = new QGridLayout(this);

QTextEdit *txt = new QTextEdit(this);

lay->addWidget(txt, 0, 0, 1, 2);

148

5.2 Automatic Layout

QPushButton *btn = new QPushButton(tr("&Close"), this);

lay->addWidget(btn, 1, 1);

lay->setColumnStretch(0, 1);

}

5.2.3 Nested Layouts

Sometimes it is useful to nest layouts inside one another, for instance if you need
to include a new layout, with all its widgets, in an existing one. For this reason,
QLayout classes provide a way of including other layouts, with addLayout(). This
method expects the same parameters as the addWidget() method of the same lay-
out object.

For more complex layouts in particular, the clear hierarchy created in this way turns
out to be very useful, especially if you want to arrange several buttons, as in the
following code:

// nested/main.cpp

#include <QtGui>

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

QWidget *w = new QWidget;

QHBoxLayout *mainLayout = new QHBoxLayout(w);

QTextEdit *txtEdit = new QTextEdit(w);

mainLayout->addWidget(txtEdit);

QVBoxLayout *buttonLayout = new QVBoxLayout;

QPushButton *cancelBtn = new QPushButton(QObject::tr("&Cancel"), w);

QPushButton *okBtn = new QPushButton(QObject::tr("&OK"), w);

QPushButton *defaultBtn = new QPushButton(QObject::tr("&Default"), w);

buttonLayout->addWidget(defaultBtn);

buttonLayout->addWidget(cancelBtn);

buttonLayout->addWidget(okBtn);

buttonLayout->addStretch();

mainLayout->addLayout(buttonLayout);

w->show();

return app.exec();

}

By placing the individual buttons in a separate layout (buttonLayout), they are
made to appear as one unit to the overlying layout mainLayout. You can now use
addLayout() to insert the buttonLayout into mainLayout.

149

5 Laying Out Widgets

Within buttonLayout, use is again made of addStretch(): The variable empty space
created by this forces the buttons upwards and takes up the remaining space.

5.3 Splitter

Although horizontal and vertical layouts are dynamic, they cannot be changed
directly by the user. But sometimes he should be able to adjust the spacing between
two or more widgets interactively.

This need is fulfilled by the QSplitter class that, just like the standard layouts, have
an addWidget() (but no addLayout()) method. The partial widgets inserted using
this method are separated by a so-called handle, which can be picked up and
moved by using the mouse (Figure 5.5).

Figure 5.5:

Two text fields moved

with the splitter

In contrast to the QBoxLayout class, there are no specialized classes for QSplitter
that determine whether vertical or horizontal layout is used. Instead the orien-
tation property determines the alignment. It can be set in the constructor, or set
later on. If no orientation is specified, Qt creates horizontal splitters.

5.3.1 Behavior During Size Changes

The freedom of movement allowed the user by the splitter is restricted by the
widgets involved: The smallest size is specified by the minimumSizeHint or (if set)
the minimumSize property. If the user tries to shrink the widget more than this, the
splitter is completely hidden by the widget. This is known as a collapsible widget.
If you want to prevent the user from so “getting rid of the widgets,” you can disable
this behavior with setCollapsible(0, false), where 0 stands for the first widget from
the left for a horizontal splitter, or, with vertical splitters, for the top widget in the
splitter.

150

5.3 Splitter

The isCollapsible() method, which takes one integer argument, provides information
on whether the widget with the specified number is collapsible or not. Another
property of the adjacent widget, maximumSize, ensures that the corresponding
area above the splitter cannot be made any smaller once the neighboring widget
has achieved its maximum size.

Splitters can react in two ways if the user pulls the handle in one direction while
holding down the mouse button: They either draw a gray line at the point where
the handle would come if the mouse button is released, or else actually move
the handle to the corresponding location. This latter method is known as opaque
resizing (that is, a size change that “lets no light in”).

Normally opaque resizing is a better choice, since the user can directly see the re-
sults of his actions. Since this technique can often trigger a resizeEvent() under
certain circumstances, however, ugly artifacts can appear if one of the widgets
controlled by the splitter performs very complex drawing operations, or is not op-
timally programmed. In this case it is often better to disable opaque resizing, with
setOpaqueResize(false).

5.3.2 Saving Splitter Positions and Determining the Widget
Size

To save the positions of individual splitters beyond program sessions, the QSplitter
API provides the methods saveState() and restoreState().

Since saveState() stores all values in a QByteArray, the method is ideally suited to
saving the sizes of a splitter between one program session and the next. This is
done using the class presented on page 136, QSettings. If we hadn’t implemented
the templates in CuteEdit as dock windows in Chapter 4, but separated them from
the text field with a splitter, we could save the values of a splitter as a key/value
pair called SplitterSizes in the configuration file, with the following code:

QSettings settings("OpenSourcePress", "CuteEdit");

settings.setValue("SplitterSizes", splitter->saveState());

Conversely, the following code extract resets the size of the splitters when the
program is started:

QSettings settings("OpenSourcePress", "CuteEdit");

splitter->restoreState(settings.value("SplitterSizes").toByteArray());

For situations in which, depending on the alignment of the splitter, the widths or
heights of individual widgets are required as individual integer values, the QSplitter
API has the methods sizes() and setSizes(), which work with the list type QList<int>.
This means that you can read out the sizes, for example by using the foreach macro
defined by Qt:

151

5 Laying Out Widgets

foreach(int size, splitter->sizes())

qDebug("Size: %i", size);

qDebug() is one of the debugging macros that works like the C function printf(),
and returns the error message specified in the argument. We use it here to quickly
produce output. Details on debugging with Qt are contained in Appendix A.

Analogous to reading out the current splitter sizes, it is also possible to change
them by passing the new values with setSizes() in list form:

QList<int> sizes;

sizes << 20 << 60 << 20;

splitter->setSizes(sizes);

In this example, which assumes a splitter with three widgets, these are now 20,
60, and 20 pixels wide (for a horizontal splitter) or high (for a vertically arranged
splitter).

5.3.3 Defining Relative Sizes

Just like a normal layout, QSplitter also provides a way of defining a stretch factor
for each widget inserted. In contrast to layouts, these must be specified for splitters
afterward using the setStretchFactor() method. Since this function also requires the
position of the widget, apart from the stretch, you first have to define the position
of the widget using the indexOf() method. This returns the correct position for a
given widget or a handle.

The example below, documented in Figure 5.6, is derived from the stretch factor
example on page 147, but now uses a splitter instead of a layout. Since splitters
are aligned horizontally if no other details are given, the result more or less matches
that of a QHBoxLayout—with the exception that the spaces between widgets now
carry handles which can be used to define the size of the text edit.

// stretchfactorsplitter/main.cpp

#include <QtGui>

int main(int argc, char *argv[])

{
QApplication a(argc, argv);

QSplitter s;

QTextEdit *txtEdit = 0;

for (int stretch = 1; stretch <= 5; stretch++) {
txtEdit = new QTextEdit(&s);

s.addWidget(txtEdit);

s.setStretchFactor(s.indexOf(txtEdit), stretch);

152

5.3 Splitter

}
s.show();

return a.exec();

}

Figure 5.6:

The stretch factor

example from Figure

5.4 also works with

splitters.

Splitters are often used, for example, to separate a main widget from a page bar.
With different-sized monitors, the relative size created here by the use of stretch
factors can quickly become a nightmare: If the space on the the screen is too
small, the page bar will appear too small, while on widescreen displays, currently
very popular on laptops, they will take up too much space. In such cases it is better
to specify a fixed initial size with setSizes() and to manage the sizes defined by the
user with saveState() and restoreState().

5.3.4 Customizing Handles

The splitter handle itself is implemented in the QSplitterHandle class. But some-
times the standard implementation is not enough, for example, if you want to have
the splitter collapse when it is double-clicked, similar to the way the page bar of the
Mozilla browser reacts. Then you have to use your own implementation, derived
from QSplitterHandle. We will call this ClickSplitterHandle.

Since we want to react to a double-click, we must also reimplement the mouseDou-
bleClickEvent() method, as well as the constructor. To be able to use this double-
clickable handle in a splitter, the design of QSplitter also forces us to create a
subclass of the actual splitter. A method that allows a QSplitterHandle instance to
be set is not enough, since a splitter—as already explained—can have any number
of handles.

Because the copy operators of QWidget-based widgets are disabled, the QSplitter
API performs a trick: The class has a protected method called createHandle(), which
is allowed to overwrite subclasses. The only purpose of this factory method con-
sists of creating a new instance of QSplitterHandle or a subclass. QSplitter then
uses this method when creating new handles.

In the following example we will therefore create, besides the subclass of QSplitter-
Handle called ClickSplitterHandle, a class with the name of ClickSplitter, which in-

153

5 Laying Out Widgets

herits directly from QSplitter and which overwrites only the createHandle() method:

// clicksplitter/clicksplitter.h

#include <QSplitter>

#include <QSplitterHandle>

class ClickSplitterHandle : public QSplitterHandle

{
Q_OBJECT

public:

ClickSplitterHandle(Qt::Orientation o, QSplitter *parent = 0);

void mouseDoubleClickEvent(QMouseEvent *e);

private:

int lastUncollapsedSize;

};

class ClickSplitter : public QSplitter

{
Q_OBJECT

friend class ClickSplitterHandle;

public:

ClickSplitter(Qt::Orientation o, QSplitter *parent = 0)

: QSplitter(o, parent) {}
ClickSplitter(QSplitter *parent = 0)

: QSplitter(parent) {}

protected:

QSplitterHandle * createHandle() {
return new ClickSplitterHandle(orientation(), this);

}
};

The implementation is centered on the mouseDoubleClickEvent() method. In the
constructor we initialize only the class variable lastUncollapsedSize, which we later
require in mouseDoubleClickEvent() so that we can remember how large the widget
was before it was collapsed:

// clicksplitter/clicksplitter.cpp

#include "clicksplitter.h"

#include <QtGui>

ClickSplitterHandle::ClickSplitterHandle(Qt::Orientation o,

QSplitter *parent) :QSplitterHandle(o, parent)

{
lastUncollapsedSize = 0;

}

void ClickSplitterHandle::mouseDoubleClickEvent(QMouseEvent *e)

154

5.3 Splitter

{
QSplitter *s = splitter();

Qt::Orientation o = s->orientation();

int pos = s->indexOf(this);

QWidget *w = s->widget(pos);

if (lastUncollapsedSize == 0)

if (o == Qt::Horizontal)

lastUncollapsedSize = w->sizeHint().width();

else

lastUncollapsedSize = w->sizeHint().height();

int currSize = s->sizes().value(pos-1);

if (currSize == 0)

moveSplitter(lastUncollapsedSize);

else {
lastUncollapsedSize = currSize;

moveSplitter(0);

}

}

In ClickSplitterHandle::mouseDoubleClickEvent() we first determine the alignment
of the splitter. We obtain the position of the splitter, using the QSplitter::indexOf()
method. This is also the position of the widget lying to the right of (or directly
beneath) the splitter.

For reasons of symmetry, a zeroth handle exists in every splitter, which QSplitter
never displays. This guarantees that indexOf() always delivers a sensible position.
The function makes a distinction between general widgets and splitters when doing
this, and is able to determine the number of a specific widget or splitter. Thus the
splitter can be defined for a widget as follows,

...

QSplitter *splitter = new QSplitter;

splitter->addWidget(new QWidget);

QLabel *lbl = new QLabel;

splitter->addWidget(lbl);

splitter->handle(splitter->indexOf(lbl));

...

while in the mouseDoubleClickEvent() method on page 154, we look for the widget
to go with a splitter.

The ClickSplitterHandle class variable lastUncollapsedSize remembers the last size
of the widget in an uncollapsed state. If this is 0 for any reason, the implementation
uses the value of the respective sizeHint(). The current position of our splitter

155

5 Laying Out Widgets

depends on the size of the widget in front of the splitter, which is why the code
detects the size of the widget that occupies the space up to the position pos-1, by
accessing sizes().

If the left widget is currently collapsed, the last lines of code on page 154 open
it again using the lastUncollapsedSize variable. Otherwise the widget “disappears”
to the left of the handle, but not without remembering its current size in last-
UncollapsedSize.

5.3.5 Layout for Languages Written from Right to Left

The way in which texts in some languages, such as Hebrew, are read differs fun-
damentally from European languages in one respect: They are read from right to
left, and this must also be accounted for by software applications. For such texts,
it is not the top left, but the top right edge of the screen that is the starting point
for the eye when reading. Accordingly, a toolkit must be able to invert the layout
horizontally. The KDE browser Konqueror in Figure 5.7 masters this task correctly,
because Qt manages to mirror all layouts horizontally, largely without the help of
the user, if the language configured is oriented from right to left, or if the pro-
gram is passed the -reverse option. The Qt-internal equivalent for this option is
the QApplication::setLayoutDirection(Qt::RightToLeft) call. This program option is
mainly used for test purposes.

In the development of your own layouts and widgets, you must always make your
own provisions in case inverted layout is used. Thus our example from above no
longer works correctly in the case of a right-to-left configuration: It still collapses
the widget to the left of the splitter, although the widget that should collapse is
now on the right side.

Figure 5.7:

Because languages

like Hebrew require a

horizontally reflected

layout, developers of

widgets and layouts

must take this case

into account and test

it.

156

5.4 Stacked Layouts

To examine such special cases, QApplication has the static methods isLeftToRight()
and isRightToLeft(), which developers can easily use to check the current layout.

5.4 Stacked Layouts

In stacked layouts, several widgets are placed on top of each other on the same
area—in contrast to other layouts, which arrange widgets on a single level. This
technique is usually applied when implementing complex configuration dialogs
(see Figure 5.8, page 160).

The class that implements this functionality in Qt is called QStackedLayout. New
widgets are also added in this form of layout with the addWidget() method. You
should remember the ID returned when this is done: The widgets can be identified
later on with its help. Alternatively, you can save the pointer to the inserted widget.

So that you can access one of the inserted widgets again, QStackedLayout has
two slots: setCurrentIndex() expects a position of the widget as an integer value,
whereas setCurrentWidget() accepts a pointer to an instance of a class derived from
QWidget.

5.4.1 The Alternative: Stacked Widgets

A QStackedLayout, like all layouts, requires a widget that will manage it. In most
cases this needs to be additionally created, and you have to equip this widget
with a layout. To simplify this, Qt provides so-called stacked widgets with the
QStackedWidget class, which have the same API as QStackedLayout. Internally,
these are widgets equipped with a stacked layout.

5.4.2 When to Use Stacked Layouts and Widgets

Below we will develop a simple variation of such a configuration widget ourselves,
which of course can also be implemented as a dialog.4

Configuration dialogs such as those in KDE provide a very good example of the
use of a QStackedLayout: A standard KDE configuration dialog consists of a list or
icon view, as well as a stacked layout or a stacked widget. Depending on which
entry the user selects from the list, the stacked class ensures that the relevant
widget comes to the front. List and icon views in Qt are normally based on the
so-called model/view concept, which is covered separately in Chapter 8. For our
purposes, a simplified list view that is provided by Qt with the QListWidget class
will be sufficient. Each list entry is encapsulated in an instance of the lightweight

4 Exactly how dialogs function is explained in Chapter 6.

157

5 Laying Out Widgets

QListWidgetItem class. Each QListWidgetItem contains the text belonging to the
entry, as well as a definition for a possible icon. In our configuration dialog we
associate a page in the stacked widget to each widget item.

The heart of our new class, which we derive directly from QWidget, is the addPage()
method, which adds new pages to the stacked widget. In addition we require this
very stacked widget and a list view as member variables:

// configwidget/configwidget.h

#include <QWidget>

class QListWidget;

class QStackedWidget;

class ConfigWidget : public QWidget

{
Q_OBJECT

public:

ConfigWidget(QWidget *parent = 0);

void addPage(const QString& title, const QIcon& icon, QWidget *page);

private:

QStackedWidget *widgetStack;

QListWidget *contentsWidget;

};

In the constructor we initially arrange the list view to the right of the stacked
widget and restrict its width to 180 pixels so that it doesn’t take up too much
space.

The list view regards each widget item as a row. As soon as the user selects another
item, it reports via the currentRowChanged(int) signal. It helps that stacked layouts
and widgets save the positions of their widgets as integers, in which the number
value corresponds to the number of the widget. These classes therefore have the
setCurrentIndex(int) slot, which causes the widget with the number specified as an
argument to be displayed. We connect this slot in the connect() instruction in the
final lines of the constructor to the currentRowChanged(int) signal.

Now it is important to create the entry in the list view when the stacked widget
incorporates the accompanying widget. Since both indices start at zero, and since
only addPage() carries out changes to both widgets, it is guaranteed that the list
view entry is associated with the correct widget.

// configwidget/configwidget.cpp

#include <QtGui>

#include "configwidget.h"

158

5.4 Stacked Layouts

ConfigWidget::ConfigWidget(QWidget *parent)

: QWidget(parent)

{
QHBoxLayout *lay = new QHBoxLayout(this);

contentsWidget = new QListWidget;

widgetStack = new QStackedWidget;

lay->addWidget(contentsWidget);

lay->addWidget(widgetStack);

contentsWidget->setMaximumWidth(180);

connect(contentsWidget, SIGNAL(currentRowChanged(int)),

widgetStack, SLOT(setCurrentIndex(int)));

}

void ConfigWidget::addPage(const QString& title, const QIcon& icon,

QWidget *page)

{
QListWidgetItem *item = new QListWidgetItem;

item->setText(title);

item->setIcon(icon);

contentsWidget->addItem(item);

widgetStack->addWidget(page);

}

Using this new API, we insert only a few simple QLabels below, but widgets are
possible, of course, in any combination and size:

// configwidget/main.cpp

...

ConfigWidget *w = new ConfigWidget;

w->addPage("First Page", icon,

new QLabel("<center>first page</center>"));

w->addPage("Second Page", icon,

new QLabel("<center>second page</center>"));

w->addPage("Third Page", icon,

new QLabel("<center>third page</center>"));

...

Figure 5.8 shows the result. Instead of a stacked widget, we could just as well use
a layout in this example. To do this only the member variable widgetStack needs
to use the QStackedLayout type. We change the constructor as follows:

...

159

5 Laying Out Widgets

contentsWidget = new QListWidget;

QWidget *widget = new QWidget;

widgetStack = new QStackedLayout(widget);

lay->addWidget(contentsWidget);

lay->addWidget(widget);

...

All API calls in this example remain intact in the same way when changing to a
stacked layout.

Figure 5.8:

With the selection

widget on the left, Qt

brings the relevant

widget in the stacked

widget or layout to

the top.

160

6 Ch
ap

te
r

Dialogs

Dialogs and their base class, QDialog, which we have already briefly encountered
in Chapter 2, are used in various contexts. These contexts determine the proper
behavior of the dialog. For example, normally a configuration dialog should always
remain in the foreground of the application until the user has made the desired
changes to the settings. The interaction with a search dialog in a word processor is
somewhat different, however—a user may have such a dialog window open during
the editing of a document, but he will certainly not want to be prevented from
making changes to the document at the same time. This chapter looks at the
various dialog types and how they can be implemented with Qt.

6.1 Modal Dialogs

Some dialogs remain in the foreground until the user completes his interaction
with them, and the rest of the application is blocked until the dialog window is

161

6 Dialogs

closed. These dialogs normally implement operations that should be completed
before the user can continue working. Such dialogs are known as modal dialogs.

This dialog type is specifically suited to configuration interfaces: If these do not
block the application, this often means increased programming work, particularly
if settings altered using this dialog influence other parts of the GUI. In such a
case unexpected phenomena could occur for the user, but these can be elegantly
avoided with the help of the modality.

A modal dialog represents a new top level widget. In Qt this means that the de-
veloper must make instances of this type of QDialog visible explicitly, since dialogs
are always invisible after being instantiated.1 For modal dialogs the exec() method
is normally used for this, which generates a new event loop and displays the dialog
at the same time. The similarity of the method name to QApplication::exec(), the
function which starts the main event loop for the overall program, is thus inten-
tional.

The following code fragment demonstrates how to proceed when instantiating a
modal dialog, using the subclass QFileDialog of QDialog as an example, which we
will get to know more closely in Section 6.5.3. First we instantiate a dialog and let
it enter its own event loop, by invoking its exec() method:

QFileDialog dialog;

int status = dialog.exec(); // start dedicated Event-Loop

//execution continues here after the dialog has been closed

Only when the QFileDialog’s exec() finishes and returns control to the application,
for example because the user closes the dialog window, does the main event loop
resume (i.e., the QApplication::exec() method). This behavior ensures the modal-
ity of the dialog internally, together with the Qt::WA_ShowModal flag (see page
164). It also means that modal dialogs started via exec() can return a success or
failure code for the main event loop to examine, in a similar way to how the main()
function of a C/C++ program returns a status code to the operating system.

The return value is determined by a slot: QDialog provides two predefined slots, ac-
cept() and reject(), that are normally triggered by clicking the OK or Cancel buttons,
respectively, with the latter also triggered by pressing the

✞✝ ☎✆Esc key. At the same
time these slots close the dialog, but without deleting the dialog object. Supplied
with the return value, the code that called the dialog can conveniently take over
the processing logic.

Of course, if a subclass of QDialog implements the processing of its GUI elements
internally, or if the return value is not relevant, as in the number converter example
from Chapter 2, the programmer may ignore the return value.

1 In general widgets are only invisible at first when they do not possess a parent window; for
dialogs this rule does not apply.

162

6.2 Non-modal Dialogs

6.2 Non-modal Dialogs

It is not always possible or sensible to use modal dialogs. A classic example is the
dialogs provided by word processors for searching in an open document. Here,
the user must be able to interact simultaneously with both the dialog and the
document view, which is stored either in the main window or in another widget.

A QDialog implementing a non-modal dialog can be displayed using the show()
method. As with the function of the same name possesed by “normal widgets,”
this call immediately returns a value. However, communication with the dialog is
accomplished not through the return value, but through signals and slots.

We have already come across this type of behavior in the ByteConverterDialog
example, which we discussed in Chapter 2.

int main(int argc, char *argv[])

{
ByteConverterDialog bc;

bc.setAttribute(Qt::WA_QuitOnClose);

bc.show();

return a.exec()

}

The show() call returns immediately. This is not a problem in the above example
because bc is not deleted from the stack before the program quits, causing a.exec()
to return. However, dialogs outside the main method must be allocated on the
heap, since objects on the stack get deleted as soon as the method they are created
in (e.g., the constructor) goes out of scope. Usually we can also manage without
the setAttribute() call, which is used only to terminate the main event loop as soon
as the dialog returns.

6.2.1 Usability Problems

A warning is appropriate at this point, particularly in view of the example of the
search dialog just mentioned: Non-modal dialogs that are used together with the
main application window frequently present the user with a visually impenetrable
barrier. This is because dialogs are placed above the matching main window, so
that the user knows which program they belong to. Unfortunately, it is almost
impossible to prevent the dialog from covering over relevant information displayed
in the application’s main window.

In practice, two different approaches exist to get round this problem: On one hand,
the application can ensure that the relevant part of the document or application

163

6 Dialogs

window and the non-modal (search) dialog never overlap by moving the dialog if
necessary.2 KDE applications, at least in KDE 3, use this approach to a large extent.

On the other hand, it is often feasible to do without a separate dialog altogether
and to display an additional search widget in the main window, as is the standard
practice, for example, in the Firefox browser. But here there is a danger that the
user, expecting a dialog, will not see the input widget.

6.3 Semi-modal Dialogs

A separate category of dialog is represented by the semi-modal dialogs. The term3

is based on the fact that they are displayed, like non-modal dialogs, via show().
The application program therefore continues running. However, these dialogs are
meant to be used in a modal fashion: The user should not continue working in
the application, but in all cases turn his attention to the dialog. To enforce such a
modal interaction, you must call setModal(true)4 before calling show().

6.4 Avoiding Bloated Dialogs

A user-friendly dialog does not overwhelm its users with options. It is much more
sensible to set reasonable default settings and to present the user only with choices
for which he really must make a decision. He should be shown more options only if
he explicitly demands to see them. This usability requirement can be set using the
QDialog API extensions.

Figure 6.1:

Example of the use of

extensions: The Run

dialog of KDE usually

looks neat and tidy.

These provide a good service, for example in the KDE Run dialog. This dialog allows
the user to type URLs or program names, and tries to either display the web page
or start the correct program (Figure 6.1), as appropriate.

2 QWidget::mapToGlobal() and QWidget::mapFromGlobal() are a great help here in transferring
coordinates between widgets.

3 Although the Qt documentation also refers to instances of this type of dialog as modal dialogs,
the author considers the distinction to be relevant.

4 This is a wrapper around the call setAttribute(Qt::WA_ShowModal, true), which can also be
applied to every other top-level widget.

164

6.4 Avoiding Bloated Dialogs

More advanced users will sometimes have extra wishes, such as specifying real-
time priority, a different priority, or execution of a program as a user with restricted
permissions. Since these options are only rarely required, they are not stored in the
basic dialog but in another widget, which is displayed only if requested by the user
via the Options button from Figure 6.1. Figure 6.2 shows the result.

Figure 6.2:

Thanks to the

extension, it still

provides advanced

users with a wide

range of setting

options.

The following code example illustrates the state of affairs:

// extensions/main.cpp

#include <QtGui>

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

QDialog dlg;

QPushButton *btn = new QPushButton(QObject::tr("Expand/Collapse"),

&dlg);

btn->setCheckable(true);

QVBoxLayout *lay = new QVBoxLayout(&dlg);

lay->addWidget(btn);

QLabel *ext = new QLabel(QObject::tr("Extension"));

dlg.setExtension(ext);

QObject::connect(btn, SIGNAL(toggled(bool)),

&dlg, SLOT(showExtension(bool)));

dlg.exec();

return app.exec();

}

A button with the inscription Expand/Collapse allows the user to fold down a label
with the inscription Extension (Figure 6.3). The extension itself is a QWidget in Qt 4,

165

6 Dialogs

which we pass to the dialog via QDialog::setExtension(). If it should fold downward
rather than sideways, which is the default, the call QDialog::setOrientation(Qt::Ver-
tical) can be used; thus, in the example code above we would include the following
line:

dlg.setOrientation(Qt::Vertical);

So that the button will display and hide the extension, we turn it into a toggle
switch using setCheckable(true) and connect its toggled() signal to the showExten-
sion() slot of QDialog.

Figure 6.3:

The example program

from page 165 with

and without a

horizontally folded

out extension

6.5 Ready-made Dialogs in Qt

Many dialogs are universal enough to justify a predefined class. One of these is the
open file dialog implemented in QFileDialog, with which we became acquainted in
Chapter 4.

In addition to this, Qt 4 has other such ready-to-use dialogs, which will be intro-
duced below.

6.5.1 Message Dialogs

Very frequently, a program must forward information to the user. If it is essential
that the user notices this or needs to make a decision based on it, a simple message
in the status bar is not sufficient.

A possible alternative would be to derive a separate class from QDialog that dis-
plays the message in a label and additionally provides one or several buttons with
actions. Luckily this is not necessary, since Qt provides the QMessageBox class for
this purpose. Apart from the text to be displayed and the obligatory window title
(also called a caption, which is set using the windowTitle property), a QMessageBox
contains up to three buttons. Optionally, an icon can be defined that is displayed

166

6.5 Ready-made Dialogs in Qt

in the message dialog next to the text message. The text in the dialog can—as in all
Qt dialogs—be formatted using HTML tags. This is demonstrated by the following
code, visualized in Figure 6.4:

// messageboxmanually/main.cpp

...

QString text = QObject::tr("<qt>This is a very complicated way"

"of showing message boxes. <i>Only use this in exceptional cases</i>! "

"Do you want to continue?</qt>");

QMessageBox msg(QObject::tr("Academic Example Warning"), text,

QMessageBox::Warning, QMessageBox::Yes|QMessageBox::Default,

QMessageBox::No|QMessageBox::Escape, QMessageBox::NoButton);

if (msg.exec() == QMessageBox::Yes)

{
qDebug() << "Keep on going!";

}
...

Figure 6.4:

A manually

instantiated

QMessageBox

The call to the message box’s constructor seems to be quite complicated, but this
is only due to the many arguments. After specifying the dialog heading and a
message to be displayed in the first two parameters, we can choose from one of
four predefined icons by passing one of the following values as the third argument:

QMessageBox::Question
This is intended for the message dialogs that ask questions.

QMessageBox::Information
This emphasizes general information.

QMessageBox::Warning
This should be used for potentially dangerous actions.

QMessageBox::Critical
This is the choice of preference to emphasize serious errors.

QMessageBox::NoIcon
This displays no icon at all.

167

6 Dialogs

How the displayed icon will ultimately appear is determined by the currently se-
lected style. If you do not like any of the predefined icons, you can instead define
any QPixmap you want as an icon for the message dialog, using the setPixmap
Icon() method.

The fourth to sixth arguments to the constructor are used to specify up to three dif-
ferent buttons. Possible values for these parameters are listed in Table 6.1. The value
QMessageBox::NoButton has a special meaning: As in the example, it specifies that
the corresponding button is not desired, and will therefore not be displayed.

Since the call to the message dialog’s exec() method causes the application to enter
a separate event loop and remain there for the duration of the display of the dialog,
it is quite enough to instantiate the object on the stack. This way we do not specify
a parent widget here. To make the dialog modal, you would, however, be required
to specify a parent. The parent parameter follows the final button specification in
the QMessageBox constructor.

Which button the user ultimately chooses is specified by the return value of exec(),
which can be compared, in an if or switch statement, against the values from Table
6.1, as in the example.

Through an OR link with QMessageBox::Default and QMessageBox::Escape, we can
also specify the actions that are triggered when the user presses the

✞✝ ☎✆Enter or
✞✝ ☎✆Esc

key.

Table 6.1:

Possible button texts
Value Button text

QMessageBox::Ok Ok

QMessageBox::Cancel Cancel

QMessageBox::Yes Yes

QMessageBox::No No

QMessageBox::Abort Abort

QMessageBox::Retry Retry

QMessageBox::Ignore Ignore

QMessageBox::YesAll Yes, all

QMessageBox::NoAll No, all

QMessageBox::NoButton —

The approach described here is unsatisfactory in one respect—namely, the program-
mer has to be careful that all of the sections of code implementing the message
boxes for a given type of event are the same, or else the application’s user interface
will be inconsistent. So that we do not have to rely too much on the discipline of
developers, QMessagebox provides a range of static methods that can be used to
display finished message dialogs for different purposes. Only if these are not suf-

168

6.5 Ready-made Dialogs in Qt

ficient for your requirements should you try and assemble your own customized
info box. We will present the static methods below, in order of importance of the
message they transmit.

Asking Questions

The question dialog QMessageBox::question() (Figure 6.5) is one of the most fre-
quently needed message dialogs. Apart from a parent widget, its constructor ex-
pects a caption, a short descriptive text, and the text for its buttons. According to
Microsoft’s style guide, the heading should match the name of the application. This
is returned by qApp->applicationName(). Other style guides suggest using a com-
bination of the program name and a short description of the operation currently
being processed, for example “Overwrite file? – application name”.

Figure 6.5:

QMessageBox::question()

takes decisions off

the user’s hands.

In the example below we assign the buttons—as is normal for question dialogs—
the text labels Yes and No, making the Yes button the default and allowing the No
button to react to the

✞✝ ☎✆Esc key. Since we do not need a third button, we leave it
out by specifying QMessageBox::NoButton.

The status code returned by QMessageBox::question() corresponds to the value of
the button chosen by the user. To check whether the user has answered the ques-
tion with Yes, we compare the return value with QMessageBox::Yes:

bool checkOverwrite(const QString &filename)

{
int status = QMessageBox::question(this,

tr("Overwrite File?"),

tr("A file called ’%1’ already exists. \n"

"Do you realy want to overwrite this file?")

.arg(filename),

QMessageBox::Yes|QMessageBox::Default,

QMessageBox::No|QMessageBox::Escape,

QMessageBox::NoButton);

if (status != QMessageBox::Yes)

return false;

return true;

}

169

6 Dialogs

Yes-No questions have one considerable disadvantage, however: The user needs
to read through the entire text and understand it. It is possible, especially with
complex user prompts, that the user will misunderstand the question and decide
on the wrong answer.

This drawback can be avoided to a large extent by following two basic principles.
First, a question should never be formulated in the negative. Words that negate
the meaning of a phrase or clause are generally passed over in a quick reading:
There is a high probability that questions such as “Are you sure that you do not
want to overwrite the file?” will be misunderstood. For the sake of better usability,
such negated phrases should absolutely be avoided in a GUI, even if they match
the logic of the application code itself.

In addition, users can be more sure of their responses to a question dialog if instead
of the simple button labels Yes and No, they can read a descriptive text that again
emphasizes the options described in the description text.

QMessageBox provides programmatic support for this paradigm of GUI design:
Trolltech has included another version of the static method question() for this pur-
pose. The second variant takes the same first three parameters as the one just
described, but after this there are differences.

Instead of three enumerator values, we now pass the strings that are to appear on
the buttons. If a button is not required, this is signaled with an empty string, as
shown in the following example (in the sixth parameter).5 Finally, you again need
to specify the buttons in turn that are “clicked” if the user operates the

✞✝ ☎✆Enter or✞✝ ☎✆Esc key; this is done with the final two parameters. The numbering of the buttons
corresponds to their position (in the code and in the order of reading, from the
user’s point of view), whereby 0 refers to the first button and 2 to the third one.
The button with the Choose a different name inscription (Figure 6.6) thus becomes
the default button with the code below—an additional feature that helps to prevent
the user from losing data by accident:

bool checkOverwrite(const QString &filename)

{
int status = QMessageBox::question(this,

tr("Overwrite File?"),

tr("<qt>A File called <i>%1</i> already exists. "

"Do you want to overwrite the file or cancel "

"the procedure to choose a different name?</qt>").arg(filename),

tr("&Overwrite file"), tr("&Choose different name"),

QString(), 1, 1);

if (status == 1)

return false;

return true;

}

5 The QString constructor called with no arguments always makes a QString that denotes the
empty string.

170

6.5 Ready-made Dialogs in Qt

QMessageBox processes the text enclosed in <qt> tags as HTML and line-wraps it
automatically. We can take advantage of the fact that simple HTML formatting is
possible within these tags and put the filename displayed to the user in italics.

The return value of this QMessageBox::question() variant is based on the position of
the selected button—in contrast to the first variant, which returns the enumerator
value for the selected button. This is an essential semantic difference that can
easily lead to faulty code: Since enumerators can also be used as integer values,
the compiler does not complain if the code you write to check the status is based
on the return semantics of the opposing variant.

Figure 6.6:

QMessageBox::ques-

tion() with individual

responses to the

buttons

Conveying Information

If you want the program to inform the user about matters occurring during a
work process that is proceeding normally, information dialogs are ideal and are
provided by the QMessageBox::information() static method (Figure 6.7). Just like
QMessageBox::question(), this is also overloaded twice and works identically, except
that it merely displays a different icon: an exclamation mark instead of a question
mark. Some style guides even suggest using normal information dialogs instead
of the question dialog. But since Qt allows you to easily differentiate between
question dialogs and information dialogs, it is recommended that you do so.

Figure 6.7:

QMessageBox::infor-

mation() is used quite

rarely as a

replacement for the

question dialog

In particular, you should not make use of the option of equipping an information
dialog with more than one button (i.e., an OK button). If you require a second one
for canceling, QMessageBox::question() is usually the better choice.

For example, to inform a user of the success of a search process, you can use an
information box, as shown in Figure 6.7:

QMessageBox::information(this,

tr("Search Failed"),

171

6 Dialogs

tr("No matches found!"),

QMessageBox::Ok|QMessageBox::Default,

QMessageBox::NoButton, QMessageBox::NoButton);

With OK as the only response, querying the return value in this case is not neces-
sary.

Issuing Warnings

Warnings are encapsulated in Qt inside warning dialogs, represented by the QMes-
sageBox::warning() static method. This works in the same way as QMessage-
Box::question(), but it should only be used for unusual problems that interrupt
the normal program sequence.

Figure 6.8:

To report errors that

interrupt the course

of the program, use

QMessage-

Box::warning().

In the example from Figure 6.8, a program absolutely needs a server connection,
without which it cannot start. The warning dialog allows the user to choose be-
tween trying again to establish a connection, or terminating the program, thus
ensuring the availability of the network if the application continues:

int result = QMessageBox::warning(this, tr("Applicationname"),

tr("Could not connect to server.\n This application requires"

"a server to function correctly."),

tr("&Retry"), tr("&Exit application"), QString(), 0, 1);

if (result == 1)

qApp->quit();

else

retryConnect();

Of the three buttons available, we label two and leave the third one empty. As in
the QMessageBox::question() example, the third button is thus not displayed. The
last two parameters link

✞✝ ☎✆Enter to the first button (0) and
✞✝ ☎✆Esc to the second one

(1). If the user selects the second button, the result variable receives the button
code 1, and the application terminates. Otherwise, the program tries again, via
retryConnect(), to establish a connection to the server.

172

6.5 Ready-made Dialogs in Qt

Passing on Critical Messages

A program should open a special dialog for critical messages reporting errors that
the user himself cannot solve, or can solve only with great difficulty. This dialog is
also available in the same two versions as discussed until now. It is normally used
as follows (Figure 6.9):

QMessageBox::critical(this, qApp->applicationName(),

tr("A critical error has occurred. "

"If the problem persists,\n"

"please contact our support center"

"at +01 555 12 34 56."),

QMessageBox::Ok, QMessageBox::NoButton,

QMessageBox::NoButton);

Here, as with the information dialog, we do not to check for a return value, since
there is only one button. In a real situation the dialog should contain more infor-
mation on the type of critical error that was encountered. It is recommended that
you use critical messages very sparingly—they should be the exception rather than
the rule.

Figure 6.9:

Only if nothing else

works is it is time for

QMessage-

Box::critical().

Providing Your Own Information on the Application

The help area of an application usually contains a small dialog providing informa-
tion on the application. We have already encountered one in Section 4.3.3 on page
117, without explaining it in more detail.

Like the other static methods listed here, QMessageBox::about() also first expects
a parent widget and a window title. The third parameter is a free text that can
also be HTML formatted. If an icon for the application was defined with QAppli-
cation::setWindowIcon(), it is displayed as an icon next to the free text. The dialog
only has one button and has no return value.

If you also want to show that you have written your application with the Qt toolkit,
you can include an additional help menu entry in your program that calls QMes-
sageBox::aboutQt(). This notification dialog provides information on Qt.

173

6 Dialogs

6.5.2 Error Messages That Are Only Visible Once

Apart from QStatusBar::showMessage() (see page 114) and QMessageBox, there
is a third possibility for supplying the user with information—namely, using the
QErrorMessage class.

In contrast to QMessageBox, QErrorMessage does not provide static methods. It
displays messages if its showMessage() slot is called, either directly or via the con-
nection with a signal.

Figure 6.10:

Queuing with

QErrorMessage: Only

if the first error

message was

confirmed . . .

Figure 6.11:

. . . does the second

message appear.

Two other features make this class very useful. First, if two messages are waiting,
as in the following example, then QErrorMessage only shows the second one once
the user has clicked the first one away:

QErrorMessage *msg = new QErrorMessage(this);

msg->showMessage(tr("This error message will only reoccur if you "

"don’t uncheck the checkbox in this message box."));

msg->showMessage(tr("If you can see this message, you have closed the "

"previous message box."));

The effect of this code is shown in Figures 6.10 and 6.11. Second, each of these
dialog boxes contains a “Show this message again” checkbox. If the user unchecks
this, Qt suppresses the error message if the same situation arises in future.

174

6.5 Ready-made Dialogs in Qt

6.5.3 File Selection Dialogs

Applications frequently use dialogs to prompt the user to select files or directories.
For this reason nearly all platforms provide implementations of such selection di-
alogs. Each one has its own special features, to which the end users of applications
quickly become accustomed.

As a platform-independent toolkit, Qt is in somewhat of a quandary here: On the
one hand the user should be able to use his or her own system dialog, but on the
other, these dialogs cannot be extended with the widgets you as a programmer
have written.

The QFileDialog class, which implements the file and directory selector, is therefore
split into two parts: If you instantiate the class via the constructor, then Qt displays
a separate dialog. If you use the predefined static methods, on the other hand,
which cover most needs of application developers, then Qt tries to use the file
dialog for the appropriate operating system.6

If you explicitly want to use no native system dialogs, you notify static methods
of this via the QFileDialog::DontUseNativeDialog flag. In this case Qt uses its own
dialog at the corresponding position. This and other flags are documented in Table
6.2.

Table 6.2:

Options for

QFileDialog

Value Effect

QFileDialog::ShowDirsOnly Show only directories.

QFileDialog::DontResolveSymlinks Do not resolve symbolic links, but in-
terpret them as regular files or direc-
tories.

QFileDialog::DontConfirmOverwrite Do not confirm whether an existing
file should be overwritten.

QFileDialog::DontUseSheet Do not display the Open file dialog in
Mac OS X as a sheet. Only works if
DontUseNativeDialog is not set.

QFileDialog::DontUseNativeDialog Always use Qt’s own dialog.

File Selection Dialogs

In an initial example, illustrated in Figure 6.12, we want to allow the user to select
an image. To do this we use the static method getOpenFileName():

6 An exception is provided by the X11 platform. Currently, the Portland project
(http://portland.freedesktop.org/) is working on a solution in which applications can use the
file dialogs of the currently running desktop environment (GNOME or KDE).

175

6 Dialogs

QString file = QFileDialog::getOpenFileName(

this,

tr("Pick a File"),

"/home",

tr("Images (*.png *.xpm *.jpg)"));

If successful, the method call returns a filename; otherwise, it returns a null QString
(which can be checked with file.isNull()). As the first argument, the method expects
a pointer to the dialog’s parent widget. If a null pointer is given as the first argu-
ment, then the dialog will not be modal. The next two arguments are the dialog
heading and the start directory.

The QDir class provides static methods for retrieving the paths to the most im-
portant directories, which can be used as the third argument instead of a fixed
string:7

QDir::currentPath()
This returns the current directory of the application.

QDir::homePath()
Under Windows, this returns the contents of the HOME environment vari-
able. If this does not exist, it tries to evaluate the USERPROFILE environ-
ment variable. If this also fails, Qt forms the directory from HOMEDRIVE and
HOMEPATH. If these variables are also not set, the method calls rootPath().
In Unix systems, including OS X, the method uses the HOME environment
variable. If this is not set, rootPath() is used.

QDir::rootPath()
In Windows, this returns drive C:\; in Unix, the root directory /.

QDir::tempPath()
This is /tmp in Unix, while in Windows it is based on the environment vari-
ables TEMP and TMP.

Finally, as the fourth argument, getOpenFileName() expects a file filter. It allows
only files with specific endings to appear in the dialog. Here you must adhere to
the following syntax:

"filetypedesignator(*.ex1 *.ex2 ... *.exn)"

The file type designator can be freely chosen. It explains to the user what sort of
file is involved. The file extensions listed in the parentheses act as the actual filter
for the filenames contained in the directory. The following filter, for example, finds
all files that end in .png, .xpm, or .jpg:

7 For an example see page 178.

176

6.5 Ready-made Dialogs in Qt

"Images (*.png *.xpm *.jpg)"

Every filter should be made localizable, that is, enclosed by tr(). In this way, readers
of other languages can still enjoy a file type description in their own language.

If the user himself should decide which filters are to be used, alternatives can be
appended to the first filter, separated from it by two semicolons. For example, if
the filter is

"Images (*.png *.xpm *.jpg);;Text files (*.txt)"

then a corresponding drop-down dialog appears in the Open file dialog, as in Figure
6.12.

Figure 6.12:

The static methods of

QFileDialog allow the

use of standard

dialogs with their

own filters.

We can now choose from exactly those files that have either one of the three
graphic file extensions or the extension .txt in this example. In general, the amount
of filters is of course not limited.

Selecting Several Files Simultaneously

If a user needs to be able to select several files simultaneously, this possibility is
covered by the getOpenFileNames() static method. In contrast to its little sister
getOpenFileName(), it returns a QStringList, but the arguments are identical. Each
entry in the returned list corresponds to a selected file.

This method of QFileDialog also makes use, in Windows and OS X, of the native
dialogs of the corresponding operating system. The following example prints all
the selected files, together with their paths, to the debug stream:

QStringList fileList = QFileDialog::getOpenFileNames(

this,

tr("Pick a File"),

"/home",

177

6 Dialogs

tr("Images (*.png *.xpm *.jpg)"));

foreach(QString file, fileList)

qDebug() << file;

Selecting Existing Directories

Some programs require a base directory for their operations. When prompting
the user for this path, the application must prevent the user from specifying a
file target. A photo-manipulating program, for example, cannot store its gallery
beneath a file.

To ensure that the user is shown only directories, you can call the file dialog class’s
getExistingDirectory() method. This does not expect a filter and displays only di-
rectories. Furthermore, it checks to see whether a specified directory really does
exist—the user or another application could have deleted it in the meantime.

The following example queries the user for a directory, in which the program in-
tends to store all its photos in future. As the base directory we will use the home
directory of the current user:

QString directory = QFileDialog::getExistingDirectory(

this,

tr("Please pick the folder containing the photo gallery."),

QDir::homePath());

Selecting a Filename

If a user wants to save a file, this file usually does not yet exist. getOpenFileName()
tests whether the specified file exists, however, so it is of no use for saving files. We
require a new static method that meets the requirements of storage semantics. In
Qt this function is called getSaveFileName(), and it is analogous in its arguments
and in its return value to getOpenFileName().

The following example requires the user to select the name of a file in which to save
data. Here, if the user selects the name of an already existing file, the program does
not question this, thanks to the DontConfirmOverwrite flag. This can be useful, for
example, if the program wants to investigate the state of affairs outside the dialog.

QString file = QFileDialog::getSaveFileName(

this,

tr("Save File As..."),

QDir::homePath(),

tr("Images (*.png *.xpm *.jpg)"),

QFileDialog::DontConfirmOverwrite);

178

6.5 Ready-made Dialogs in Qt

6.5.4 Input Dialogs

For simple queries, Qt provides various template input dialogs, consisting of a suit-
able input widget and two buttons, OK and Cancel. The relevant QInputDialog class
has only ready-made static methods that we will now look at in more detail.

Frequently, you are put in the position of having to ask the user to enter a value. Qt
distinguishes here between whole number values and floating-point values, which
it provides in double precision.

Accepting Integer Input Values

The following example (Figure 6.13) shows how the getInteger() method of QIn-
putDialog is used:

bool ok;

int alter = QInputDialog::getInteger (this, tr("Enter Age"),

tr("Please enter year of birth"), 1982,

1850, QDate::currentDate().year(), 1, &ok);

if (ok)

{
...

}

Figure 6.13:

QInputDialog::getIn-

teger() with preset

default value

The first two arguments of this are—as in other dialogs—a pointer to the parent
widget and the heading of the dialog. Then getInteger() expects an explanatory
text, which it displays above the input widget. This is followed by a default value
and then the limits of the allowed input range. This example restricts the upper
limit to the current year to avoid input that makes no sense (i.e., specifying a year
of birth in the future). To do this we use QDate, a class for processing date details.
The currentDate() static method provides the system time according to the current
date, and in turn, year() extracts the year from this and returns it as an integer
value. Also, instead of inserting a static lower limit (1850), as is done here, this can
be formed dynamically (e.g., with an expression such as QDate::currentDate().year()
- 200).

179

6 Dialogs

In the next-to-last parameter, getInteger() asks for the amount by which the in-
teger value should be increased or decreased if the user clicks on one of the two
buttons to the right of the input field to increment or decrement the value (a so-
called spin box).

Since the return value provides no information on whether the user has canceled
the dialog or has made a proper data entry, the method expects a pointer to a
Boolean variable as the final parameter. If the user cancels the dialog, getInteger()
stores the value false in the variable; otherwise, it is set to true.

Accepting Floating-point Numbers as Input Values

In the same way as with getInteger(), you can also prompt the user for real numbers
with getDouble(). The dialog in the next example expects the price for a given
product. getDouble() also expects the pointer to the parent widget, the dialog
heading, and the description of the expected input as its first three parameters.
This is again followed by the default, minimum, and maximum values.

However, for the next-to-last parameter, there is a difference between getInteger()
and getDouble(): The floating-point variant here expects the number of places after
the decimal point (see Figure 6.14). We use two of them in this example, in order
to specify a price.

Figure 6.14:

QInputDialog::getDouble()

works here with only

two places after the

decimal point.

Once again, you can find out whether the dialog completed normally or was in-
terrupted by using an auxilliary variable, the address of which is passed as the last
parameter:

double getPrice(const QString& product, bool *ok)

{
return QInputDialog::getDouble(this, tr("Price"),

tr("Please enter a price for product ’%1.’").arg(product),

0, 0, 2147483647, 2, &ok);

}

The value 2147483647 is the maximum number here that an integer can display.

180

6.5 Ready-made Dialogs in Qt

Reading in Strings

The most frequent use of QInputDialog is to allow the user to select a string from
several predefined strings. For this purpose the static method getItem() is used
(Figure 6.15): This expects a QStringList and displays its contents in a drop-down
widget.

Figure 6.15:

QInputDialog::getItem()

returns the selected

string.

Again, the first three parameters specify the pointer to the parent widget, the head-
ing, and the user query. This is followed by the list of strings to be displayed. Then
comes the index of the list element that the drop-down widget displays at the be-
ginning. The next-to-last parameter specifies whether the user can add his own
entries to the list. If this is this case, the return value does not have to match one
of the predefined entries. The final parameter, as before, is the address of a variable
that indicates whether the user has terminated the dialog with OK or Cancel:

QStringList languages;

bool ok;

languages << "English" << "German" << "French" << "Spanish";

QString language = QInputDialog::getItem(this, tr("Select Language"),

tr("Please select your language"), languages,

0, false, &ok);

if (ok) {
...

}

Reading in Free Text

Freely written texts are read in with the QInputDialog method getText(). The fol-
lowing example introduces probably the most frequent usage of this type of user
input: entering a password.

The first three parameters specify the details of the parent widget, dialog head-
ing, and dialog text, and are followed by the display form, which is specified by

181

6 Dialogs

a value from the EchoMode enumerator of the QLineEdit input widget: QLine-
Edit::NormalMode displays the text as it is entered; QLineEdit::NoEcho prints noth-
ing at all, so that anybody watching cannot see how many characters getText()
accepts; and the QInputDialog::Password value used here causes a placeholder to
be printed for each character entered, usually stars or circular icons (Figure 6.16).

Figure 6.16:

QInputDialog::getText()

in password mode

Since a default value is normally not specified for input of a password, we pass an
empty QString object as the next-to-last parameter.

QString getPassword(const QString& resource)

{
QString passwd = QInputDialog::getText(this, tr("Please Enter Password"),

tr("Please enter a password for ’%1’").arg(resource),

QLineEdit::Password, QString(), 0);

}

Our final parameter in this example is a 0 (i.e., a null pointer) instead of a pointer
to a bool variable, because in the case of the password it is sufficient to check
the return value with QString::isEmpty() in order to see whether anything has been
entered. Since these last two values match the default values for the fifth and sixth
arguments of QInputDialog::getText(), you can shorten the method call in this case
as follows:

QString getPassword(const QString& resource)

{
QString passwd = QInputDialog::getText(this, tr("Please Enter Password"),

tr("Please enter a password for ’%1’").arg(resource),

QLineEdit::Password);

}

6.5.5 Font Selection Dialog

The QFont class is responsible for the description of a font type in Qt. Each widget
has a font() method that returns the current font as a QFont object and a setFont()
method that sets a new font type. QApplication knows these methods as well. It
changes or reveals the standard font type for new widgets.

182

6.5 Ready-made Dialogs in Qt

If you need to have the user select font types, you can make use of QFontDialog
(Figure 6.17).

Figure 6.17:

QFontDialog::getFont()

displays the default

font.

This class offers a getFont() static method, which apart from a pointer to the parent
widget requires a pointer to a Boolean value as its first argument: true.

bool ok;

QFont font = QFontDialog::getFont(&ok, this);

If the user has selected a font, this value is set to true. If you want to define
a font type that deviates from the default font, you can define an appropriate
QFont object and hand it over to getFont(). Note that the QFont object needs to be
number two in the getFont() argument list:

bool ok;

QFont initial("Times New Roman", 48);

QFont font = QFontDialog::getFont(&ok, initial, this);

Here we select Times New Roman. If this font does not exist on the system, Qt tries
to make an approximation by finding a similar font through the use of heuristics.
The second parameter of the QFont constructor shown above gives the font size, in
this example 48 points.

6.5.6 Color Selection and Printing Dialog

As well as the dialogs mentioned until now, Qt also provides a color selection and
a printing dialog. It makes more sense to explain the use of these after we have

183

6 Dialogs

introduced the color and painting system of Qt in more detail, so these dialogs will
be introduced in Chapter 10 on pages 275 and 302.

184

7 Ch
ap

te
r

Events, Drag and Drop, and
the Clipboard

From Section 1.1, we know that all interactive Qt programs have event loops, be-
cause they work in an event-driven manner: GUI-based programs are influenced
by application events such as mouse movements.

7.1 Event Loop and Event Handler

The event loop performs two kinds of tasks. First, it manages events that it obtains
from the window system used, such as queries to redraw a window area. To do this
it transforms them into Qt-specific events. Events are encapsulated in classes that
are derived from the QEvent base class.

At the same time, Qt also generates its own events. An example of this is the
QTimerEvent, which is triggered after a specific time has expired, set by the pro-

185

7 Events, Drag and Drop, and the Clipboard

grammer. Such events are also based on QEvent and are processed by the event
loop.

Each QEvent has a type. Subclasses of QEvent can contain arbitrary amounts of
information; for example, QMouseEvent handles messages about buttons clicked
and the position of the mouse cursor.

Qt passes events via QCoreApplication::postEvents() specifically to certain objects.
These objects must inherit from QObject. The method expects the receiving object
as the first parameter, followed by a QEvent.

To deliver it, postEvents() passes the event to the event() method of the target
object. The task of the event() method is to either process or ignore the incoming
events, depending on the requirements of the class of the receiving object. This
method is therefore also referred to as an event handler. If an event cannot be
processed immediately by the receiver, the event is put into a queue and scheduled
for delivery. If another part of the application blocks the application by executing a
syncronous long-winded operation,1 the queue cannot be processed by the event
loop during that time. User can easily confuse this behavior with an application
“crashing.”

The standard implementation of event() calls a separate virtual method for the
most important event handlers, which already used the matching QEvent subclass
as a parameter. This allows us to save code. We will now take a closer look at how
this works.

7.2 Handling Events

We will implement a widget that displays the clock time in the local display format
and the current date, also in the appropriate format, alternating every ten seconds
(Figure 7.1 on page 189). The display itself should update every second.

7.2.1 Using Specialized Event Handlers

We implement the clock in a class called ClockWidget, which we derive from Q-
LCDNumber, a Qt class that provides an imitation of an LCD display:

// clockwidget/clockwidget.h

#ifndef CLOCKWIDGET_H

#define CLOCKWIDGET_H

#include <QLCDNumber>

1 You can use threads to avoid blocking. We will discuss this in Chapter 12.

186

7.2 Handling Events

class QTimerEvent;

class ClockWidget : public QLCDNumber

{
Q_OBJECT

public:

ClockWidget(QWidget *parent = 0);

protected:

void timerEvent(QTimerEvent *e);

private:

int updateTimer, switchTimer;

bool showClock;

};

#endif // CLOCKWIDGET_H

Here we are particularly interested in, besides the constructor, the specialized event
handler timerEvent(), which will update the clock time. In the updateTimer and
switchTimer member variables we save numbers that serve as identifiers for the
timers. The showClock status flag determines whether the clock time (showClock=
true) or the date (showClock=false) appears on the widget.

The implementation in clockwidget.cpp begins by specifying the form of the dis-
play. Usually QLCDNumber shows a frame around the digital display. This behavior,
inherited from QFrame, is disabled by the QFrame::NoFrame frame style. In addi-
tion we dissuade the widget from drawing the LCD elements with shadows and a
border, by passing on QLCDNumber::Flat to the widget’s setSegmentStyle() method.

// clockwidget/clockwidget.cpp

#include <QtGui>

#include "clockwidget.h"

ClockWidget::ClockWidget(QWidget *parent)

: QLCDNumber(parent), showClock(true)

{
setFrameShape(QFrame::NoFrame);

setSegmentStyle(QLCDNumber::Flat);

updateTimer = startTimer(1000);

switchTimer = startTimer(10000);

QTimerEvent *e = new QTimerEvent(updateTimer);

QCoreApplication::postEvent(this, e);

}

Now we need two timers. Each QObject can start a timer using the startTimer()
method. As an argument startTimer() expects the number of seconds that must

187

7 Events, Drag and Drop, and the Clipboard

pass before it triggers a QTimerEvent, which is addressed to the current widget.
Each QTimerEvent in turn contains an identification number, which is returned by
the invocation of startTimer() that originates it. We can use this to distinguish
between the two timers in timerEvent() later on.

So that we do not have to wait for a second to elapse before the time appears on
the widget’s display, we manually send a timer event with the ID of the update-
Timer, using the postEvent() method of QCoreApplication. As the target we specify
the current widget (in this case, this) as we do later on for the events generated by
the timers themselves.

In the timerEvent() method we first check whether the pointer to the event really
is valid—just to be on the safe side. Next, if the event contains the switchTimer
ID, this only toggles the showClock variable. The actual work awaits in the last
conditional statement, which is triggered by an event containing the updateTimer
ID.

// clockwidget/clockwidget.cpp (continued)

void ClockWidget::timerEvent(QTimerEvent *e)

{
if (!e) return;

if (e->timerId() == switchTimer)

showClock = !showClock;

if (e->timerId() == updateTimer) {
if (showClock) {

QTime time = QTime::currentTime();

QString str = time.toString(Qt::LocalDate);

setNumDigits(str.length());

display(str);

} else {
QDate date = QDate::currentDate();

QString str = date.toString(Qt::LocalDate);

setNumDigits(str.length());

display(str);

}
}

}

If the widget is supposed to display the time, then we first determine the current
time. In Qt, the QTime class is responsible for handling time. The currentTime()
static method of this provides the current system time in a QTime object. This time
is converted by toString() into a QString. Qt::LocalDate instructs the method to
take into account the country settings (locales)of the user. Finally we must inform
the display how many LCD digit positions are required. We deduce this from the
string length and display the string with display().

188

7.2 Handling Events

Figure 7.1:

Our ClockWidget

alternately displays

the time (above) and

the date (below).

Although QLCDNumber cannot display all alphanumerical characters, it does cope
with all the characters required for the date and clock time (0–9, slash, colon, and
dot). setNumDigits(), by the way, does not change the size of the widget, the text
just gets smaller, the more numbers there are.

On the other hand, if showClock is set to false, which means that the widget should
display just the date, we proceed in the same way with the QDate class, which in Qt
is responsible for managing date specifications, and whose API corresponds almost
exactly to that of QTime.

Now we can try out our widgets with the following test program (Figure 7.1 shows
the result in the form of two screenshots recorded at an interval of ten seconds):

// clockwidget/main.cpp

#include <QtGui>

#include "clockwidget.h"

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

ClockWidget w;

w.show();

return app.exec();

}

7.2.2 Using the General Event Handler

Instead of treating the timer event specifically, we could also use the general
event() event handler. Since this receives all types of events and we are only inter-
ested in timer events, we must first check the event type. Furthermore, in order to
access the timerId() method of a timer event, a cast to QTimerEvent is necessary:

189

7 Events, Drag and Drop, and the Clipboard

bool ClockWidget::event(QEvent *e)

{
if (!e) return;

if (e->type() == QEvent::Timer) {
QTimerEvent *te = static_cast<QTimerEvent*>(e);

if (te->timerId() == switchTimer) {
showClock = !showClock;

return true;

}

if (te->timerId() == updateTimer) {
// handle event timer as before

...

return true;

}
}
return QObject::event(e);

}

Otherwise, we work with the te variable in the same manner as in the timerEvent()
method (see page 188). One peculiarity is that event(), in contrast to the specialized
event handlers, returns a Boolean value. This reveals whether an event has been
processed or not.

If we override the default event(), we must not forget to forward all events that
we do not handle to the event() method of the parent class. Otherwise, the event()
method of the parent class would never be called and the event handling of our
class would be lastingly disrupted. By calling QObject::event() unconditionally in
the end, we avoid a broken event handling.

Thus, whenever there is an appropriate specialized event handler, you should over-
ride it, rather than implement a general event handler. There is no need for a cast
because the input parameter is already of the correct event type, and no need to
forward unhandled events. In this way it can also be seen from just a glance at the
class declaration which event handlers are implemented by the class.

7.3 Using Event Filters

QObject-based classes have, in addition to the event handlers with which they react
to their own events, event filters that allow an object A to receive the events of
another object B. For each B event that A receives, A can then either forward it to
B or remove it from B’s event stream.

Before you can filter events, the event filter must be installed. To do this we call
installEventFilter() in the constructor of the object A that is to monitor the events
of object B:

190

7.3 Using Event Filters

b->installEventFilter(this);

Here b is a pointer to B. Now B gives up all its events to A and leaves A with
the decision whether it should filter out the event or let it through to B. For this
purpose an eventFilter() method is used, which has the following signature:

bool QObject::eventFilter(QObject *watched, QEvent *e);

This must be reimplemented by A. The watched parameter allows events from sev-
eral monitored objects to be distinguished from one another, and e is the event to
be processed.

The return value tells the event system of Qt how it should proceed with the event.
If false is returned, it is forwarded to the monitored object, whereas true causes it
to be filtered out. This means that the event does not arrive at the object for which
it was originally intended.

Classes with event filters can change the behavior of other QObject-based objects
in this way. This is of particular benefit because you do not want to reimplement a
widget just to make a minor modification to its event processing.

A classic example of the use of event handlers is in chat dialogs, in which QTextEdit
is used. In contrast to the standard implementation of the class, here the

✞✝ ☎✆Return

and
✞✝ ☎✆Enter keys should not start a new line, but send off what has been written.2

The declaration in chatwindow.h appears as follows:

// chatwindow/chatwindow.h

#ifndef CHATWINDOW_H

#define CHATWINDOW_H

#include <QWidget>

class QTextBrowser;

class QTextEdit;

class QEvent;

class ChatWindow : public QWidget

{
Q_OBJECT

public:

ChatWindow(QWidget *parent = 0);

bool eventFilter(QObject *watched, QEvent *e);

void submitChatText();

private:

2 Although
✞✝ ☎✆Return and

✞✝ ☎✆Enter are generally used synonymously, strictly speaking they are two
different keys, which is reflected in the code.

191

7 Events, Drag and Drop, and the Clipboard

QTextBrowser *conversationView;

QTextEdit *chatEdit;

};

#endif // CHATWINDOW_H

The submitChatText() method is responsible for sending the text. In this example its
only task consists of including the written text from the QTextEdit instance chatEdit
into the conversationView. Pointers to each of these widgets are saved in member
variables.

In the chatwindow.cpp implementation, we first define the constructor: We place a
vertical splitter into the widget with a QVBoxLayout. The conversation view comes
into the splitter at the top, followed by the actual input widget, chatEdit:

// chatwindow/chatwindow.cpp

#include <QtGui>

#include "chatwindow.h"

ChatWindow::ChatWindow(QWidget *parent)

: QWidget(parent)

{
QVBoxLayout *lay = new QVBoxLayout(this);

QSplitter *splitter = new QSplitter(Qt::Vertical, this);

lay->addWidget(splitter);

conversationView = new QTextBrowser;

chatEdit = new QTextEdit;

splitter->addWidget(conversationView);

splitter->addWidget(chatEdit);

chatEdit->installEventFilter(this);

setWindowTitle(tr("Chat Window"));

setTabOrder(chatEdit, conversationView);

};

Then we install the event filter in the input widget using installEventFilter(), as just
described. The target is the ChatWindow object itself (this).

The ChatWindow will filter the keypress events of the chatEdit object and respond
to them, so that we do not need to implement a specialized subclass of QTextEdit
for this application.

Finally, we set the window title and use setTabOrder() to specify the order in which
the widgets will be given focus inside the ChatWindow if the user presses the✞✝ ☎✆Tab key. The call in this case has the effect that chatEdit obtains the focus before
conversationView, so that the user can begin typing immediately after the program
starts. At the same time chatEdit obtains the focus as soon as the show() method
of a ChatWindow instance is called.

Until now we have only learned how to specify the tab order with the help of the
Qt Designer, in Chapter 3.1.5 on page 89. If you read the C++ code generated by

192

7.3 Using Event Filters

uic, you will realize that the Designer also converts the tab order specified into a
series of setTabOrder() calls.

We shall now turn to the core item of the example, the eventFilter() method:

// chatwindow/chatwindow.cpp (continued)

bool ChatWindow::eventFilter(QObject *watched, QEvent* e)

{
if (watched == chatEdit && e->type() == QEvent::KeyPress) {

QKeyEvent *ke = static_cast<QKeyEvent*>(e);

if (ke->key() == Qt::Key_Enter ||

ke->key() == Qt::Key_Return) {
submitChatText();

return true;

}
}
return QWidget::eventFilter(watched, e);

}

We first use a pointer comparison to check whether the filter is currently handling
chatEdit at all and whether the pressing of a key (QEvent::KeyPress) is involved.
Once we are sure of this, we cast the generic event e into its actual event type,
QKeyEvent, with a static_cast.

This is necessary to access the keypress event’s key() method, which we now use
to check whether the key pressed is either the

✞✝ ☎✆Enter or
✞✝ ☎✆Return key. If this is the

case, we call submitChatText() and request Qt to filter the event with return true,
that is, not to forward it to the chatWindow object. If the event is not a keypress
event, we forward it to the parent class’s event filter. We take this precaution since
several Qt classes rely on event filters.

The submitChatText() method, which would also be responsible for forwarding text
in a real chat client, in our example only attaches the typed text to the conversation
view and empties the text window:

// chatwindow/chatwindow.cpp (continued)

void ChatWindow::submitChatText()

{
// append text as new paragraph

conversationView->append(chatEdit->toPlainText());

// clear chat window

chatEdit->setPlainText("");

}

We also check this class again for its functionality with a short test program, by
starting an event loop via QApplication::exec(), after we have instantiated and dis-
played ChatWindow:

193

7 Events, Drag and Drop, and the Clipboard

// chatwindow/main.cpp

#include <QtGui>

#include "chatwindow.h"

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

ChatWindow win;

win.show();

return app.exec();

}

7.4 Drag and Drop

The drag and drop functionality, that is, the capability to transfer information
with the mouse between two widgets within the same program, or between two
applications, is also regulated in Qt via events (Figure 7.2 on page 196). Each event
has its own event handler in QWidget-based classes.

7.4.1 MIME Types

The first question to arise here is how the information should be encoded so that
it can be transferred at all between two widgets via drag and drop. This is solved
by the QMimeData class: It serves as a container for data, whose type is specified
as a MIME type.3 A PNG image, for example, has the MIME type image/png, and a
normal ASCII text file has the type text/plain.

It is also possible to use your own MIME types that are understood only by your own
application. The names of these are defined according to the pattern application/x-
vendor .content designator (page 242 shows an example).

In the following example we pack an image so that it can be “sent away” with a
drag. To do this we write a QLabel-based widget that expects the path to a PNG
image, displays it, and allows it to be included in other applications via drag and
drop.

The following help function, called prepareImageDrag(), packs the image into a
QMimeData object:

QMimeData* prepareImageDrag(const QString& path)

{
QFile file(path);

3 MIME stands for Multipurpose Internet Mail Extensions and is described in RFCs 2045, 2046,
and 2047.

194

7.4 Drag and Drop

if (!file.open()) return;

QByteArray image = file.readAll();

QMimeData *mimeData = new QMimeData;

mimeData->setData("image/png", image);

return mimeData;

}

Fortunately QMimeData already includes its own encoding methods for the most
important data types, such as for colors, HTML, reformatted text, and URLs. In
practice, the following code is therefore sufficient to encode an image:

QMimeData* prepareImageDrag(const QString& path)

{
QImage image(path);

QMimeData *mimeData = new QMimeData;

mimeData->setImageData(image);

return mimeData;

}

Qt even makes the image available in different formats with setImageData(). QMime-
Data can save several MIME types together with their data in one object. When
dragging, Qt offers all supported image formats, but it has a preference for PNG
here, since this displays the best quality. The program that receives the drop then
iterates through the list of MIME types and selects the data for the first MIME type
that it can handle.

We make use of this property to include the path specification for the image: We
pack it into a QUrl object, which converts it into an RFC-compliant URL, and we
also include the normalized path specification as a text:

// draglabel/draglabel.cpp

#include <QtGui>

QMimeData* prepareImageDrag(const QString& path)

{
QImage pic(path);

QMimeData *mimeData = new QMimeData;

mimeData->setImageData(pic);

QList<QUrl> urls;

QUrl imageUrl(path);

urls.append(imageUrl);

mimeData->setUrls(urls);

mimeData->setText(imageUrl.path());

return mimeData;

}

We intentionally do not use the path variable here directly: If we are passed a rel-
ative path, this could become a problem with drag and drop between applications
with different working directories. QUrl, however, resolves relative paths.

195

7 Events, Drag and Drop, and the Clipboard

An application that obtains a drop originating from a drag with these MIME data
first comes across the image data. If it cannot handle images, it then checks
whether it can handle URLs, which would be the case for a file manager, for ex-
ample. If these attempts are unsuccessful, the program can still access the path in
text form, so that even an editor may act as a drop target. We will use this flexible
variation in our example.

Figure 7.2:

A specific event

handler is responsible

for every

drag-and-drop step

in Qt.

Source Destination

Application A Application B

Source::mousePressEvent()
Source::mouseMoveEvent()

Destination::dropEvent()

Destination::dragEnterEvent()
Destination::dragLeaveEvent()

Destination::dragMoveEvent()

7.4.2 The Drag Side

We have seen how to encode data in MIME format. But how do the MIME data
from a widget in one part of our program manage to get to another part—or even
into a completely different application? To illustrate this, Figure 7.2 shows the
sequence of a typical drag-and-drop operation.

The source widget defines when a drag begins. If the widget cannot be clicked,
which is the case for labels, it is sufficient to reimplement the mousePressEvent()
event handler in a way that a drag is triggered by clicking:

// draglabel/draglabel.cpp (continued)

void DragLabel::mousePressEvent(QMouseEvent *event)

{
if (event->button() == Qt::LeftButton) {

QMimeData* data = prepareImageDrag(picPath);

QDrag *drag = new QDrag(this);

drag->setMimeData(data);

if (pixmap())

drag->setPixmap(pixmap()->

scaled(100,100, Qt::KeepAspectRatio));

drag->start();

}
}

First we check whether the user is holding down the left mouse button. Then we
prepare the QMimeData object with the help function prepareImageDrag() (page
195). We obtain the path from the member variable picPath. The constructor

196

7.4 Drag and Drop

retrieves the image displayed by the label from the specified path, with the help of
the QLabel::setPixmap() method, as shown in the following code:

// draglabel/draglabel.cpp (continued)

#include "draglabel.h"

DragLabel::DragLabel(const QString& path, QWidget *parent)

: QLabel(parent), picPath(path)

{
setPixmap(QPixmap(path));

}

In order to start the actual drag, we need to instantiate a new QDrag object in the
mousePressEvent() and equip it with the MIME data using setMimeData().

In addition we assign the image from the label to the drag, for which we obtain a
pointer with pixmap(). The graphical interface links it to the mouse cursor so that
the content of the drag object is visualized. Therefore drags do not have to have
an image set, although this is recommended from a usability point of view, since
the user can then see what he is juggling with. We must ensure that the image
is presented in the preview size. To do this we specify a version scaled down, with
scaled(). KeepAspectRatio instructs the method to retain the page proportions, but
not to exceed the maximum size of 100 pixels in either direction.

drag->start() begins the actual drag action. In the pattern from Figure 7.2, the
source corresponds to our DragLabel.

To test the widget, we will write a small program that requires the path of an image
file that can be read by Qt as a command-line argument. If this is available, we pass
it to DragLabel during the instantiation:

// draglabel/main.cpp

#include <QtGui>

#include "draglabel.h"

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

if (argc < 2) return 1;

DragLabel w(argv[1]);

w.setWindowTitle(QObject::tr("Drag me!"));

w.show();

return app.exec();

}

197

7 Events, Drag and Drop, and the Clipboard

The program then looks something like what is shown in Figure 7.3. We can drag
the image into various programs, such as Gimp or Paint, and see what happens to
it.

Figure 7.3:

The DragLabel with

the Qt-4 logo

7.4.3 The Drop Side

So that we can better understand the drag-and-drop process illustrated in Figure
7.2 on page 196, we will now implement a label widget complementary to the
DragLabel, which we will call DropLabel.

Each widget that should accept drops must first activate this capability in its con-
structor, with setAcceptDrops(true):

// droplabel/droplabel.cpp

#include <QtGui>

#include "droplabel.h"

DropLabel::DropLabel(QWidget *parent)

: QLabel(parent)

{
setAcceptDrops(true);

}

Events to be Handled

The first drop event that the widget needs to process occurs as soon as the mouse
cursor moves into the widget. Accordingly, the widget’s dragEnterEvent() handler
must check to see if the MIME types contained in the drag object are ones it can
handle. For this purpose we access the the QMimeData object, via the mimeData()
method:

198

7.4 Drag and Drop

// droplabel/droplabel.cpp (continued)

void DropLabel::dragEnterEvent(QDragEnterEvent *event)

{
if (event && event->mimeData()) {

const QMimeData* md = event->mimeData();

if (md->hasImage() || md->hasUrls() || md->hasText())

event->acceptProposedAction();

}
}

We check the contents of the QMimeData object and accept the drop action, via
acceptProposedAction(), as soon as we find that there is an image, some URLs, or
a text. Otherwise the mouse cursor will display an X, signaling to the user that the
widget will not accept the drop. If you want, you can carry out more precise checks
here, but you should be aware that too much checking at this point may prevent
the widget from signaling promptly that it can accept the drag.

If you want to perform additional checks within the widget, such as allowing drops
only in specific areas, you can implement a dragMoveEvent() handler. The function
takes a pointer to a QDragMoveEvent, with which the current position in the widget
can be checked, using pos(). This method must also call acceptProposedAction(),
passing it the event, if the widget should accept a drop at a particular point. Most
widgets and applications usually do not need to handle this event, however.

For the sake of completeness, we should also give a mention to dragLeaveEvent().
This event handler is also normally not needed, but can be used in special cases to
undo changes made to the current widget by dragEnterEvent() or dragMoveEvent().

The dropEvent() Handler

The core part of a drop operation is the dropEvent() handler; it is used to decode
the mimeData() object and complete the drag-and-drop process:

// droplabel/droplabel.cpp (continued)

void DropLabel::dropEvent(QDropEvent *event)

{
QPixmap pix;

if(event && event->mimeData()) {
const QMimeData *data = event->mimeData();

if (data->hasImage())

pix = data->imageData().value<QPixmap>();

else if(data->hasUrls())

foreach(QUrl url, data->urls()) {
QFileInfo info(url.toLocalFile());

199

7 Events, Drag and Drop, and the Clipboard

if(info.exists() && info.isFile())

pix = QPixmap(url.toLocalFile());

if (pixmap() && !pixmap()->isNull())

break;

}
else if(data->hasText()) {

QUrl url(data->text());

QFileInfo info(url.toLocalFile());

if(info.exists() && info.isFile())

pix = QPixmap(url.toLocalFile());

}
}
if (!pix.isNull()) {

setPixmap(pix);

resize(pix.size());

}
}

Because the QMimeData object is const (that is, write protected), we are not re-
sponsible for freeing its memory.

If the image exists as a data stream in the QMimeData instance (determined using
hasImage()), we convert this to a pixmap. Since imageData() returns a QVariant and
QPixmap is a component of the QtGui module, about which the QVariant “living”
in QtCore has no knowledge, we will make use of the QVariant template method
value<type>(), to which we pass QPixmap as a type parameter.

If the MIME data contain URLs instead, we first convert each of them to the cor-
responding local file path with toLocalFile(). If the path is not local, the method
returns an empty string.

Using QFileInfo, we then check the path to see if it exists and also to see whether
it really references a file. If this is the case, we try to read the file as an image file.
If this doesn’t work, pix becomes a null object, which will respond to isNull() with
true. As soon as we have found a valid URL, we skip the other URLs, with break.

It may sometimes be the case that QMimeData contains several URLs for the same
object. For example, the KDE desktop environment references files on external data
media first with a media:/ URL, but also provides the matching traditional Unix
path for non-KDE programs.

Finally, if all else fails, because a file locator can also be represented as unformatted
text, we try to interpret any existing text part of the MIME data as an URL, so that
we can try to obtain a pixmap from this.

If one of our extraction attempts is successful, the pix filled with data becomes the
new label’s pixmap, and we can adjust the label to the pixmap size.

We will also put this example to the test with a small test program. Instead of
a DragLabel, we instantiate a DropLabel here and blow it up to an initial size of
100x100 pixels, so that there is enough space for objects to be dropped:

200

7.5 The Clipboard

// droplabel/main.cpp

#include <QtGui>

#include "droplabel.h"

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

DropLabel w;

w.setWindowTitle(QObject::tr("Drop here!"));

w.resize(100,100);

w.show();

return app.exec();

}

If we pull the image from the DragLabel example on page 197 onto the DropLabel
window, the widget accepts the drop. If you let go of the button the DropWidget
accepts the graphics, as can be seen in Figure 7.4. The program can also process
drops made from file managers, thanks to its ability to interpret URLs.

Figure 7.4:

The DropLabel, after it

has received the drop

with the Qt-4 logo

7.5 The Clipboard

The Qt QClipboard class is responsible for handling the “clipboard” provided by
many operating systems. Interaction with the system clipboard requires no event
handling, but like the Qt drag-and-drop functionality, it utilizes MIME data encod-
ing.

You don’t even need to define a QClipboard object, because every QApplication
already provides one that you can use to read text from or write text to, as shown
below.

QClipboard *clipboard = QApplication::clipboard();

201

7 Events, Drag and Drop, and the Clipboard

qDebug() << clipboard->text();

clipboard->setText(newText);

But the clipboard can also store and retrieve more complex data, and it is able to
do so based on a MIME type. The methods mimeData() and setMimeData() transfer
the MIME data in existing QMimeData objects to and from the clipboard.

To demonstrate how closely the clipboard and the drag-and-drop system are re-
lated, we shall write a small test application called drag2clip. The core of this is
a label widget named D2cLabel, which copies data received from a drop to the
clipboard. Conversely, the clipboard data can be retrieved by dragging from the
D2cLabel object.

Apart from the constructor and the three events handlers necessary for drag and
drop, mousePressEvent(), dragEnterEvent() and dropEvent(), there is also the clone-
MimeData() method. This creates an identical copy of a write-protected QMime-
Data object, as is obtained by QClipboard or QDropEvent:

// drag2clip/d2clabel.h

#ifndef D2CWIDGET_H

#define D2CWIDGET_H

#include <QLabel>

class QMimeData;

class D2cLabel : public QLabel

{
Q_OBJECT

public:

D2cLabel(QWidget *parent = 0);

void mousePressEvent(QMouseEvent *event);

void dragEnterEvent(QDragEnterEvent *event);

void dropEvent(QDropEvent *event);

protected:

QMimeData* cloneMimeData(const QMimeData *data);

};

#endif // D2CWIDGET_H

In the constructor we add an inscription to the new label and enable drops into it.
Thanks to setWordWrap(true), the label line-wraps the text the moment it is longer
than the widget is wide. By enclosing the text inside <center> tags, we cause it to
appear centered:

// drag2clip/d2clabel.cpp

202

7.5 The Clipboard

#include <QtGui>

#include "d2clabel.h"

D2cLabel::D2cLabel(QWidget *parent)

: QLabel(parent)

{
setWordWrap(true);

setText(tr("<center>Drag from here to retrieve the text currently "

"located in the clipboard or fill the clipboard by "

"dragging text from abitrary places and dropping it here."

"</center"));

setAcceptDrops(true);

}

In the mousePressEvent() we retrieve the MIME data from the clipboard and check
the pointer to it for its validity. If everything is in order, we generate a QDrag object
and transfer the MIME data there:

// drag2clip/d2clabel.cpp (continued)

void D2cLabel::mousePressEvent(QMouseEvent *event)

{
if (event->button() == Qt::LeftButton) {

const QMimeData *mimeData = QApplication::clipboard()->mimeData();

if (!mimeData) return;

QDrag *drag = new QDrag(this);

drag->setMimeData(cloneMimeData(

QApplication::clipboard()->mimeData()));

drag->start();

}
}

At this point we require cloneMimeData(), as we have no information on the MIME
types from the clipboard and their lifespans, which also has a bearing on the validity
of the mimeData() pointer from the QApplication::clipboard(). We can pass the
cloned QMimeData instance, on the other hand, with a free conscience to the
QDrag object, and initiate the drag process with start().

Next, we implement dragEnterEvent(). This accepts everything, and after all, we
want to leave all the data in the clipboard:

// drag2clip/d2clabel.cpp (continued)

void D2cLabel::dragEnterEvent(QDragEnterEvent *event)

{
event->acceptProposedAction();

}

203

7 Events, Drag and Drop, and the Clipboard

Next, dropEvent() does exactly the opposite of mousePressEvent(). It clones the
MIME data from the MIME data from the QDropEvent, after it has first checked the
validity of the pointer, so that it can forward them on to the QClipboard instance:

// drag2clip/d2clabel.cpp (continued)

void D2cLabel::dropEvent(QDropEvent *event)

{
if(event && event->mimeData()) {

QApplication::clipboard()->setMimeData(cloneMimeData

(event->mimeData()));

}
}

Figure 7.5:

Drag2Clip mediates

between the

drag-and-drop

system and the

clipboard.

Finally, cloneMimeData() uses the formats() method, which contains all MIME types
as a list of strings. We use this list to read out the data of an entry, together with
its MIME type, using the data() method. This we copy to a new QMimeData object
with the help of setData(). In this way we obtain an exact copy of the contents:

// drag2clip/d2clabel.cpp (continued)

QMimeData* D2cLabel::cloneMimeData(const QMimeData *data)

{
if (!data)

return 0;

QMimeData *newData = new QMimeData;

foreach(QString format, data->formats())

newData->setData(format, data->data(format));

return newData;

}

The test application with which we want to verify the functionality of this in-
stantiates the D2cLabel and sets it to a size of 400x150 pixels, as before with the
DropLabel, so that there is enough space available as a “drop space”:

204

7.5 The Clipboard

// drag2clip/main.cpp

#include <QtGui>

#include "d2clabel.h"

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

D2cLabel w;

w.resize(400, 150);

w.setWindowTitle(QObject::tr("Drag2Clip"));

w.show();

return app.exec();

}

The visual result of our work is shown in Figure 7.5. However, the application is
only of interest if you can pull data onto the widget and then retrieve it from the
clipboard or copy data to the clipboard, remove it from the widget via drag and
drop, and place it somewhere else.

205

8 Ch
ap

te
r

Displaying Data Using
“Interview”

In GUI-based applications, data is often presented in list and table views, which
can be nested within one another. When using list views, programmers often take
a very simple approach: They simply add values, such as strings, to lists. However,
this raises the possibility that what should be distinct items in the list view cannot
be distinguished from one another, particularly if duplicate labels are allowed or if
the user can manipulate the strings used to label the list items. Qt 4 therefore does
not support purely string-based list views.

A second approach to data visualization is to represent each of the list entries as
a separate object. On page 157 we already tackled such item-based lists, which
encapsulate each entry as a lightweight item. These items can be extended to con-
tain references to data denoted by the corresponding list entries, or to incorporate
this data directly in the item object itself.

207

8 Displaying Data Using “Interview”

Although this concept stands out because of its simplicity, it is not always the best
solution. Why should you pack the results of SQL queries into items, thus storing
the data of the original query a second time? In addition, certain advantages of
SQL would be lost, such as incremental delivery of queried data to the application:
The user has to wait until all data are available, or the programmer is faced with
much more work to display the data from the source in an item-based view.

For this reason Qt 4 has a model/view concept called Interview. This is much
more flexible than item-based programming, but it is also more complex, so that
even professionals need a while to fully understand it. We will therefore first look
at the underlying ideas, and then take a closer look at some simple examples of
model/view programming. Starting on page 222 we will develop our own models,
and we will briefly discuss item-based views on page 251.

8.1 Underlying Concepts

The model/view architecture is based on the idea of separating data from its display.
By doing so, the same data can easily be represented in a variety of forms, such
as lists or tables. Since the data source ideally knows nothing about the view
that displays it, and a view knows nothing about the internal organization of the
source, an element in between is required—the model. Figure 8.1 illustrates this
relationship.

Figure 8.1:

In Interview, the

views display data

fetched via a model

from any data source

at all. For writable

models, changes flow

back to the source.

So that models and views can understand one another, the model has knowledge of
the basic properties of the views: Each entry occupies one row and one column in
the model, and if necessary has a link to a parent object. The latter is of importance
only for nested lists, not for normal lists and tables. Interview describes these basic
properties with the QModelIndex class.

With the help of the QModelIndex class, a model can reference the data to which
it refers and thereby supply it to a view in the format that the view demands.

In order to display data on the screen correctly, a view queries the data source, via
a QModelIndex, in various roles. In the DisplayRole the view expects to receive text

208

8.1 Underlying Concepts

to be displayed; in the DecorationRole, an icon; in the FontRole, the font type for
some displayed text; and in the ToolTipRole, the text to be shown in a tooltip. There
are more than a dozen predefined roles in total, as Table 8.1 shows.

Table 8.1:

Roles in models
Value Effect (typical content)

Qt::DisplayRole Main data to be displayed (usually text)

Qt::DecorationRole Additional decoration (usually icons)

Qt::EditRole Data in a form suitable for an editor (e.g., the
file path if the DisplayRole data is an image)

Qt::ToolTipRole Data that should be displayed by a tooltip
(text, HTML)

Qt::StatusTipRole Data to be displayed in the status line (text)

Qt::WhatsThisRole Data that the widgets should return in the
“What’s This?” mode (text, HTML)

Qt::SizeHintRole Size hint for the element; is forwarded to the
views (QSizeHint)

Qt::FontRole Font type for rendering the DisplayRole

Qt::TextAlignmentRole Alignment of the text of the DisplayRole

Qt::BackgroundColorRole Background color (QColor)

Qt::TextColorRole Color for the DisplayRole text (QColor)

Qt::CheckStateRole Defines whether an element is completely,
partially, or not at all selected; the val-
ues from the Qt::CheckState enumerator are
valid: Qt::Unchecked, Qt::PartiallyChecked,1

or Qt::Checked

Qt::AccessibleTextRole Screenreader or other accessibility tools out-
put this text; an example for the Accessible-
Role is the text description of an icon, which
a blind person could not understand

Qt::AccessibleDescriptionRole A description of the item for accessibility pur-
poses

Qt::UserRole Offset for your own roles that may be re-
quired in the development of your own dele-
gates

The data() method of a model is responsible for delivering data and therefore needs
to react accordingly when it is passed each type of role, together with a model

1 In a tree view, Qt::PartiallyChecked is useful for items with children of which only a few can be
selected, that is, those that have the Qt::CheckState status.

209

8 Displaying Data Using “Interview”

index. It returns data to the view in the form of a QVariant. This enables the view
to interpret the data it receives in accordance with the role it adopted to make the
request. If, given a role and a model index, there is no data available to return,
the model signals this by returning an empty QVariant object as the result of the
call to data(). This procedure also enables the view to present different data types
in accordance with the various roles. Figure 8.2 illustrates the use of roles in an
example of a list view.

If the predefined roles are not sufficient, you can define your own roles and make
them available in the model. The predefined views, however, can’t use them yet.
But there is an easier way to use your self-defined roles than inheriting your own
view class from the pre-defined view class. This is because a so-called delegate is
in charge of drawing list or table entries (see Figure 8.1).

The delegate provided by Qt that is implemented in the QItemDelegate class will
be sufficient in most cases. It also provides an editor function for modifying data
elements displayed in the view. For this to be useful, however, the model must
support writing back to the data source, which is not always the case: Many models
only make information available for reading and do not provide write access.

Figure 8.2:

Roles define the

space entries can

take up in a view.

Qt::DecorationRole

Qt::ToolTipRole

Qt::DisplayRole

8.1.1 The View Classes

For the data visualization itself, Interview provides three ready-to-use classes that
we can admire in use in Figure 8.5 on page 213:

QListView
This class displays one-dimensional lists (Figure 8.5 at the top left) and also
has an icon mode in which it shows all of its entries arranged as icons (Figure
8.5 at the top right).

QTreeView
This class displays lists in tree form (Figure 8.5 at the bottom left) and is thus
more elaborate than QListView. In addition this class can display several
columns, which QListView is not capable of doing.

210

8.1 Underlying Concepts

QTableView
This class displays data in a table (Figure 8.5, bottom right). At the top and
side are the row and column headings, which can be individually customized.

In addition, QHeaderView provides header lines for QTreeView as well as header
columns and lines for QTableView. This class is not used as a separate view, but it
can be adjusted to your own requirements and then used in instances of QTreeView
and QTableView.

These views inherit from QAbstractItemView, the base class of all views in Interview.
If you look more closely at the inheritance structure in Figure 8.3, you will realize
that QAbstractItemView does not inherit from QWidget directly. Rather, the view
classes are based on QAbstractScrollArea, a class that provides a widget with an
embedded widget.

The embedded widget, called the viewport, can be many times larger than the
widget that encloses it. The frame widget displays vertical or horizontal scrollbars
where appropriate. In this way the view can make available much more space for
the data than was actually allocated for it in the layout in question; of course, the
user must then navigate through the viewport using the scrollbars.

Figure 8.3:

All view classes are

derived from

QAbstractItemView.

8.1.2 The Model Classes

All the models that are included in Qt also inherit from a common abstract base
class called QAbstractItemModel. Abstract here means that the class cannot be in-
stantiated directly, because it contains unimplemented methods. The programmer
can create objects only from a subclass that is tailored for a specific purpose and
implements the missing methods. As can be seen in Figure 8.4, every model is also
a QObject, and thus benefits from automatic memory management.

QAbstractItemModel is not the only abstract class in the inheritance model. If you
look more closely at the inheritance structures, you will see two additional classes
derived from QAbstractItemModel, called QAbstractListModel and QAbstractTable-
Model, whose APIs further specialize that of QAbstractItemModel with list or table
views. These abstract subclasses also cannot have objects directly instantiated from
them.

211

8 Displaying Data Using “Interview”

Figure 8.4:

The inheritance

hierarchy of models

in Interview QStringListModel

QAbstractListModel

QSqlQueryModel

QAbstractTableModel QDirModel QProxyModel QStandardItemModel

QAbstractItemModel

For compatibility reasons, classes based on QAbstractListModel and QAbstractTable-
Model can be used in tables, nested lists, and one-dimensional lists. The practical
benefits of doing so, however, are strictly limited if you try to use them in QListView
and QTableView, respectively. QAbstractListModel, for example, reduces the number
of usable columns to one single one—which makes little sense in a table view.

With QStringListModel, Interview also provides a specific implementation of QAb-
stractListModel, an editable model, the data source of which is a string list. If the
user changes a string in the view, the model adjusts the corresponding entry in the
string list.

QStandardItemModel allows data to be stored directly in the model. Although this
contradicts the basic idea that a model only provides a pure mediation service
between the data source and views, it turns out to be very practical in certain
application cases with modest data-handling requirements. For large applications,
however, QStandardItemModel is usually too inflexible.

QAbstractProxyModel replaces the QProxyModel class in Qt 4.1, which was intended
to extract data from a model, manipulate them, and return them to a new model,
for example, to filter the data. But the class turned out to be too inflexible, and
was therefore replaced. Trolltech advises against using it in new projects. QAb-
stractProxyModel is powerful, but again it is an abstract class, and so it relies on
subclasses to implement the functionality it offers.

In order that the effort in using the new class is not larger than that required for the
directly usable QProxyModel, Trolltech provides the QSortFilterProxyModel subclass.
It allows you to perform the most frequently performed tasks of a proxy model,
mainly filtering and sorting, without the need to first derive further subclasses.

Finally, Interview provides a model in QDirModel that can be used, if required, to
project a directory hierarchy in QListView, QTreeView, and QtableView.

8.2 Displaying Directory Hierarchies

We are now ready to acquire our first practical experience with Interview and create
a small program, using QDirModel and the three ready-to-use views, which displays
the home directory in four different views (Figure 8.5). In the source code we first
instantiate, in addition to the obligatory QApplication object, a QDirModel. You

212

8.2 Displaying Directory Hierarchies

again have to remember that here, as an exception, we allocate the model not on
the heap but on the stack, because our entire code is located in the main() method.2

In the next step we create a widget with a table layout, into which we insert two
list views at the top and a tree view and table view at the bottom. In doing so, we
switch the second list view to icon mode. For each of the views we use the instance
of QDirModel that was just created as the model, which we pass on to the view’s
setModel() method as a pointer. This way we bind the views to the model.

Before we can work with the views, we have a chicken-and-egg problem to solve:
The views have to know the path to the directory that they should initially display.
But strictly speaking, they cannot learn this path, as they themselves only work on
the directory model.

For this reason, QDirModel provides an overloaded version of the index() method.
This function usually expects a triplet of indices (column, row, and parent) as an
argument, a representation which is of no help to us here. The overloaded version,
on the other hand, accepts a path description encoded as a QString.

Figure 8.5:

Four views, one model

as the source: Here

the Qt QDirModel is

used to display the

contents of the

current directory.

Then we specify the directory beneath which the views should operate. Since all
views access the model independently of each other, we must also set the index
separately for each view. After that, we only need to display the widget and start
the event loop. The code for the application is shown below:

// diransichten/main.cpp

#include <QtGui>

int main(int argc, char* argv[])

{

2 See Section 1.2.2 on page 31.

213

8 Displaying Data Using “Interview”

QApplication app(argc, argv);

QDirModel dirModel;

QWidget w;

w.setWindowTitle(QObject::tr("Four "

"directory views using one model"));

QGridLayout *lay = new QGridLayout(&w);

QListView *lv = new QListView;

lay->addWidget(lv, 0, 0);

lv->setModel(&dirModel);

QListView *lvi = new QListView;

lay->addWidget(lvi, 0, 1);

lvi->setViewMode(QListView::IconMode);

lvi->setModel(&dirModel);

QTreeView *trv = new QTreeView;

lay->addWidget(trv, 1, 0);

trv->setModel(&dirModel);

QTableView *tav = new QTableView;

tav->setModel(&dirModel);

lay->addWidget(tav, 1, 1);

QModelIndex cwdIndex = dirModel.index(QDir::currentPath());

lv->setRootIndex(cwdIndex);

lvi->setRootIndex(cwdIndex);

trv->setRootIndex(cwdIndex);

tav->setRootIndex(cwdIndex);

w.show();

return app.exec();

}

8.2.1 Using View Classes in the Designer

Unfortunately, QDirModel has one significant restriction: Because the views do not
react to mouse clicks, we have to build this functionality in ourselves. In addition,
only one element can be selected in each of the views. If you want to allow several
items to be selected, then you will also have to go it alone. We can correct these
shortcomings by designing our own file dialog, such as can be seen in Figure 8.6.
As a nice side-effect, we will get acquainted with how to use view classes in the
Designer.

Our file selection dialog is based on the Designer template Dialog with Buttons
and consists of a combo box with the available drives, a button (Tool Button) to

214

8.2 Displaying Directory Hierarchies

the right of this, and a stacked widget.3 The two small triangles in the upper-
right corner of the stacked widget also allow us to move through the stack in the
Designer. As the first widget, we place a list view on the stack.

Figure 8.6:

The file dialog in the

icon mode

The Insert page entry located in the context menu4 (Figure 8.7) makes it possible to
add new pages in which there is space for further widgets, if required. In this way
we can extend the stack by adding another list view and a tree view.

Figure 8.7:

Quickly clicked

together: combo box,

button, and stacked

widget with list view

Later we want to use the button—the object name of which we set to switchButton
in the Property Editor, and whose text property we change to V (for View; if you
want something else, you can select a suitable icon in the icon property)—to switch
back and forth between the different views. We place the combo box with a tool
button into a frame. To do this we must first position the frame and then place the
combo box and tool button inside it. If the frame becomes colored before the drop,
then it will accept the widgets as children. We arrange both of them horizontally

3 Figure 8.8 shows all the required widgets at a glance.
4 The context menu of the stacked widget only opens if you right-click while hovering directly

above the two small triangles.

215

8 Displaying Data Using “Interview”

via the Lay out menu in the context menu. We also rename the OK button: After a
right-click and the subsequent selection of Change text. . . , we can type in the new
text label Open, replacing OK.

Figure 8.8:

The dialog in the

draft view with the

required tools from

the toolbox

Finally we use a layout to integrate the label, the stacked widget, and the horizontal
button layout (using the Lay out entry in the context menu). So that the views can
take up as much space as possible in their stacked widget, we select the three
page objects beneath the stacked widget in the object inspector and set the value
for margin in the Property Editor in the Layout section of the stacked widget to
0. Finally we assign the object name iconView to one of the two list views and
change the viewMode property of the iconView list view to iconMode. It should
then display the directory contents as shown in Figure 8.6, while the other list view
displays the information for each file in a separate row of the view.

In this basic framework it is appropriate to enable multiple selections. This is done
via the selectionMode property. In all three views we switch this property to Ex-
tendedSelection so that the user may select several entries at the same time.

The dialog itself we call FileDialog by setting the objectName property accordingly.
Then we save the file as filedialog.ui in a separate dialog called filedialog.

8.2.2 Implementing the Functionality of the File Selection
Dialog

After giving the standard include guards in the header file filedialog.h, which con-
tains the declaration of the FileDialog class, we #include each class definition that
uic generates from the UI file created by the Designer. The forward class declara-
tions prevent the need to read in the corresponding header files for those classes
at this point:

// filedialog/filedialog.h

#ifndef FILEDIALOG_H

#define FILEDIALOG_H

216

8.2 Displaying Directory Hierarchies

#include "ui_filedialog.h"

class QModelIndex;

class QDirModel;

class QItemSelectionModel;

class FileDialog: public QDialog, private Ui::FileDialog {
Q_OBJECT

public:

FileDialog(QWidget *parent = 0);

...

private:

QItemSelectionModel *selModel;

QDirModel *dirModel;

};

#endif // FILEDIALOG_H

As well as QDirModel, we now require a selection model, which manages and com-
pares the selections for the views assigned to it. Accordingly we create a QItemSe-
lectionModel in addition to the directory model in the FileDialog constructor, after
we have called setupUi() to initialize the Designer-generated widgets. To do this
we assign the directory model to the QItemSelectionModel constructor. This way,
the selection model knows the data source, and as such can manage the entries.

Now we assign all views the same model, via setModel() and the same selection
model via setSelectionModel(). The latter step ensures that the same selections
are switched on for all three views: If you select several files in one view, these
automatically appear highlighted in the other two views as well:

// filedialog/filedialog.cpp

#include <QtGui>

#include "filedialog.h"

FileDialog::FileDialog(QWidget *parent)

: QDialog(parent)

{
setupUi(this);

dirModel = new QDirModel;

selModel = new QItemSelectionModel(dirModel);

listView->setModel(dirModel);

treeView->setModel(dirModel);

iconView->setModel(dirModel);

listView->setSelectionModel(selModel);

treeView->setSelectionModel(selModel);

217

8 Displaying Data Using “Interview”

iconView->setSelectionModel(selModel);

QModelIndex cwdIndex =

dirModel->index(QDir::rootPath());

listView->setRootIndex(cwdIndex);

treeView->setRootIndex(cwdIndex);

iconView->setRootIndex(cwdIndex);

The views still require an entry point for the model, however, which we set using
setRootIndex(). This function expects a QModelIndex as an argument, but we are
using the semantics of the filesystem here. To mediate between these two “worlds”
we use the overloaded index() method from QDirModel as a “translator”: This ac-
cepts a path, searches for the matching index in the model, and returns it.

Then we fill the combo box generated in the Designer with the base directories
(Windows) or the root directory (Linux). Because QDir::rootPath() consists of drive
C: in Windows, the question arises, how do we obtain a list of all available drives?
As an answer, we recommend a brief digression on the way models function in
general and how QDirModel functions in particular.

Figure 8.9:

The structure of a

model using the

example of QDirModel

A model basically has two dimensions: In a QDirModel each row corresponds to one
file entry, whereas each of the columns contains one file property (name, size, date
of creation). If a file entry also points to a valid QModelIndex, this corresponds to a
subdirectory. As can be seen in Figure 8.9, this forms a third dimension, as it were.
Although the list and table views cannot display this additional level of structure,
the tree views visually represent data items from the source (i.e., the filesystem)
that are themselves valid QModelIndex objects as subtrees. This explains the code
that appears next in the constructor of the file dialog:

// filedialog/filedialog.cpp (continued)

for (int r = 0; r < dirModel->rowCount(QModelIndex()); ++r) {
QModelIndex index = dirModel->index(r, 0, QModelIndex());

if (index.isValid())

comboBox->addItem(dirModel->fileIcon(index),

dirModel->filePath(index));

}

218

8.2 Displaying Directory Hierarchies

An invalid (i.e., empty) QModelIndex means that the model should select the root
level in the filesystem as the start index. In our case this level contains all the drives
in Windows, and only the directory tree root in Linux. We determine the number
of drive entries via rowCount(), so that with this knowledge we can iterate through
all entries. For this purpose we use the zeroth column, since QModelIndex provides
us with the desired information at these positions. To be on the safe side, we check
whether the index really is valid. In this case we add an entry for the corresponding
drive to the combo box.

To be able to work with the models, we require a number of slots, which we declare
in the header following the declaration of the constructor:

// filedialog/filedialog.h (replenished)

...

protected slots:

void switchToDir(const QModelIndex& index);

void syncActive(const QModelIndex& index);

void switchView();

...

switchToDir() should react to clicks and update the other list views so that they
also show the directory selected. syncActive() compares the active entry, that is,
the one highlighted in color in all three views, and opens at the corresponding
branch in the tree view, while switchView() reacts to the toggle button and runs
through the views stacked on top of each other in the stacked widget.

We now need to connect each of these new slots in the constructor with the acti-
vated() signal of all three views. switchToDir() and syncActive() require the QMod-
elIndex as an argument, which references the new directory. Finally we instruct Qt
to call the switchView() slot if there is a click on the switchButton defined in the
Designer:

// filedialog/filedialog.cpp (continued)

connect(listView, SIGNAL(activated(const QModelIndex&)),

SLOT(switchToDir(const QModelIndex&)));

connect(treeView, SIGNAL(activated(const QModelIndex&)),

SLOT(switchToDir(const QModelIndex&)));

connect(iconView, SIGNAL(activated(const QModelIndex&)),

SLOT(switchToDir(const QModelIndex&)));

connect(listView, SIGNAL(clicked(const QModelIndex&)),

SLOT(syncActive(const QModelIndex&)));

connect(treeView, SIGNAL(clicked(const QModelIndex&)),

SLOT(syncActive(const QModelIndex&)));

connect(iconView, SIGNAL(clicked(const QModelIndex&)),

SLOT(syncActive(const QModelIndex&)));

219

8 Displaying Data Using “Interview”

connect(switchButton, SIGNAL(clicked()), SLOT(switchView()));

}

The constructor is now finished, and we can turn our attention to the implemen-
tation of the slots: In switchToDir() we first check to see whether the index passed
really is a directory. The appropriate method is contained in QDirModel itself. If
this is the case, we set the start index in the model to the new directory. Note: We
do not need to switch over to the tree view, since this type of view should always
display the entire drive contents. Since the tree view uses the same selection model
as the other views, it automatically shows the selected entries:

// filedialog/filedialog.cpp (continued)

void FileDialog::switchToDir(const QModelIndex& index)

{
if (dirModel->isDir(index)) {

listView->setRootIndex(index);

iconView->setRootIndex(index);

}
}

syncActive() compares the active entry in all three views. The corresponding API
call in QAbstractItemView is setCurrentIndex():

// filedialog/filedialog.cpp (continued)

void FileDialog::syncActive(const QModelIndex& index)

{
listView->setCurrentIndex(index);

treeView->setCurrentIndex(index);

iconView->setCurrentIndex(index);

}

The slot to switch through the views is just one line in length: It queries the index
of the current widget and increases this by one. To ensure that the index does not
become larger than the number of views, we insert a modulo operation (when the
value becomes greater than the index of the last view, we should land back in the
first view, which has index zero):

// filedialog/filedialog.cpp (continued)

void FileDialog::switchView()

{
stackedWidget->setCurrentIndex(

(stackedWidget->currentIndex()+1)%stackedWidget->count());

}

220

8.3 The String Lists Model

Finally, we make the selected files available to the user. To do this we define a
method called selectedFiles(). After the dialog ends—when the user clicks Open
(the Designer has already linked the corresponding signal to the accept() slot)—you
can read out the selected filenames (together with their paths) as a QStringList
using this FileDialog method:

// filedialog/filedialog.cpp (continued)

QStringList FileDialog::selectedFiles()

{
QStringList fileNames;

QModelIndexList indexes = selModel->selectedIndexes();

foreach(QModelIndex index, indexes)

fileNames.append(dirModel->filePath(index));

return fileNames;

}

Which entries are returned is revealed by the selection model: selectedIndexes()
returns the selected QModelIndex entries from the QDirModel instance. With the
filePath() method provided by the model, we can obtain the file paths.

8.3 The String Lists Model

Simple, text-based lists are presented in Interview via the QStringListModel class.
This operates on a string list that it displays in a column. Each entry in the list thus
corresponds to a row in the model.

The following example deposits a shopping list into a string list and passes it to the
model. As soon as we assign the string list model to the list view, it displays the list
entries:

// stringlistenmodell/main.cpp

#include <QtGui>

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

QStringListModel model;

QStringList toBuy;

toBuy << "butter" << "milk"

<< "cherries" << "bananas";

model.setStringList(toBuy);

QListView view;

view.setModel(&model);

view.show();

return app.exec();

}

221

8 Displaying Data Using “Interview”

The model also has write access to the data source: If the user changes an entry
in the view (perhaps by clicking an entry and typing something in the editor that
then appears), the model writes the changes back to the string list, which can be
read out again at any time with the stringList() method.

8.4 Implementing Your Own Models

The best way to understand how models are constructed is to create your own
model. Initially, it should only read data from a source and display this in a view.
Later we will make it writable, so that changes to the view will cause the data
source to be updated.

8.4.1 An Address Book Model

Our example model should read an address book from a CSV file. Such a data source
is formatted as follows:

’’title (column 1)’’, ’’title (column 2)’’, ...,’’title (column n)’’

’’value’’, ’’value’’, ..., ’’value’’

’’value’’, ’’value’’, ..., ’’value’’

’’value’’, ’’value’’, ..., ’’value’’

We regard this data as specifying a table, where the first line reveals the column
headings, and all subsequent lines contain the entries in each of the rows. Because
a two-dimensional table should be formed from this file, we use QAbstractTable-
Model as the base class, since, in contrast to QAbstractItemModel, it implements
an index() method that is suitable for a list whose items have several columns.

The constructor in our model, defined in addressbookmodel.cpp, receives the entire
address book as a QString. In order to work with this, we split it up into the indi-
vidual lines of data (using QString::split(), specifying the newline character,
n, as a field separator). Our model will represent the address book internally as a
QList<QStringList> called addressBook, in which each string list in the QList is a
dataset corresponding to one address. Given a line of address book data, the help
function splitCSVLine() separates the line into the components of the address, re-
moves the quote characters, and returns the resulting dataset. The constructor uses
this helper function to turn each of the lines of address book data into a dataset
and packs them into a QList, thus producing the data structure we desire:

// addressbook/addressbookmodel.cpp

#include <QtGui>

#include "addressbookmodel.h"

222

8.4 Implementing Your Own Models

QStringList splitCSVLine(const QString& line)

{
bool inItem = false;

QStringList items;

QString item;

for (int pos = 0; pos < line.length(); pos++)

{
QChar c = line.at(pos);

if (c == ’\’’) {
if (inItem) {

items.append(item);

item = "";

}
inItem = !inItem;

}
else

if (inItem) {
item += c;

}
}
return items;

}

AddressbookModel::AddressbookModel(const QString& addresses,

QObject *parent): QAbstractTableModel(parent)

{
QStringList records = addresses.split(’\n’);

QStringList line;

foreach(QString record, records)

addressBook.append(splitCSVLine(record));

}

We know that our model manages n − 1 datasets, where n is the number of rows
of actual data in the CSV file, since the first line of the CSV file contains the column
names. In addition, CSV files finish with an unused empty line. The number of data
lines (rows) is therefore exactly two less than the total number of lines in the CSV
file.

A view can use the rowCount() method to find out the number of rows of data
contained in the model. Since the reference to the parent QModelIndex passed
via the parent parameter variable is not needed—after all, this is just a flat two-
dimensional model—we can suppress any irritating compiler warnings using the
Q_UNUSED macro, which in addition serves to explicitly document that we do not
want to use the variable:

// addressbook/addressbookmodel.cpp (continued)

int AddressbookModel::rowCount(const QModelIndex &parent) const

{

223

8 Displaying Data Using “Interview”

Q_UNUSED(parent);

return addressBook.count() - 2;

}

To determine the number of columns, we look at the dataset from the first line of
the CSV file. The QStringList::count() method is used to determine the number of
strings in the string list that contains the dataset corresponding to the first line of
the file, obtained from addressBook by invoking at(0):

// addressbook/addressbookmodel.cpp (continued)

int AddressbookModel::columnCount(const QModelIndex &parent) const

{
Q_UNUSED(parent);

return addressBook.at(0).count();

}

Views that use our address book model can discover the labeling of the rows and
columns via the headerData() method. To do so, they must specify the numeric
position of the section of data for which the heading is desired, where a section
is either a row or a column—whether the desired heading is a row heading or
a column heading is decided by the value given for the orientation. This is of
the enumeration type Qt::Orientation and has the possible values Qt::Vertical or
Qt::Horizontal.

When it comes to roles, in this example we are interested only in supporting the
DisplayRole, which is used when the view needs the text to be displayed. Everything
else we pass on to the implementation of the overclass. QAbstractTableModel does
more than just return empty QVariants: If we had not reimplemented headerData(),
it would number all the rows and columns. In order to ensure that we can use
the model later with a QTableView that also queries row descriptions, we call the
headerData() function of the overclass, particularly in case the orientation is not
horizontal. This means that by default, a label to the left of the datasets will denote
the dataset number. For horizontal orientation we use the entries from the first
dataset in the list, which as we know contains the column names:

// addressbook/addressbookmodel.cpp (continued)

QVariant AddressbookModel::headerData(int section,

Qt::Orientation orientation, int role) const

{
if (orientation == Qt::Horizontal) {

if (role == Qt::DisplayRole) {
return addressBook.at(0).at(section);

}
}
return QAbstractTableModel::headerData(section, orientation, role);

}

224

8.4 Implementing Your Own Models

Finally, the model delivers actual data to a view via the data() method. As argu-
ments we pass a QModelIndex, which contains the position requested by the view,
and the requested role:

// addressbook/addressbookmodel.cpp (continued)

QVariant AddressbookModel::data(const QModelIndex &index,

int role) const

{
if (!index.isValid()) return QVariant();

QStringList addressRecord = addressBook.at(index.row()+1);

if (role == Qt::DisplayRole || role == Qt::EditRole) {
return addressRecord.at(index.column());

}
if (role == Qt::ToolTipRole) {

QString tip, key, value;

tip = "<table>";

int maxLines = addressRecord.count();

for (int i = 0; i < maxLines; i++) {
key = headerData(i, Qt::Horizontal, Qt::DisplayRole)

.toString();

value = addressRecord.at(i);

if (!value.isEmpty())

tip += QString("<tr><td>%1: %2</td></tr>")

.arg(key, value);

}
tip += "</table>";

return tip;

}
return QVariant();

}

First we check that the index passed is valid—a good practice that prevents nasty
crashes in Interview programming, since out-of-range indices can always occur.

Then we retrieve the desired dataset from the list. In doing this we access the
dataset following the one in the row specified by the index—after all, the column
headings are in the first row.

We deliver an address dataset ourselves if the view asks for data in the DisplayRole.
To extract this, we proceed in almost exactly the same way as before when reading
out the headings, with one difference: We localize the dataset via the row() detail
of the index.

Since the model is supposed to be editable, we must also handle the situation
in which the view asks for data in the EditRole: Because the same text should
appear later on in the editor as in the DisplayRole, we handle the EditRole- and
Qt::DisplayRole queries in one go.

To make the example a little more interesting, we will also implement the ToolTip-
Role at this point. A tooltip is a yellow box that contains a description of a view

225

8 Displaying Data Using “Interview”

element and appears if you linger over it with the mouse. In the tooltip for a list en-
try, our address book view will show the components of the dataset corresponding
to that entry, as depicted in Figure 8.10. It is our aim to display only the nonempty
components in the dataset.

Figure 8.10:

Thanks to the

treatment of the

ToolTipRole, the views

now show an

individual tooltip

when the mouse

lingers over an entry.

HTML formatting can be used in tooltip texts, and we construct the description of
the address book entry using the <table> tag. Each row of the table consists of
two cells, one of which contains the name of the address book field (the key) and
the other, the matching value. Both of them will be shown in the tooltip only if the
value is not the empty string. We obtain the key by calling the headerData() method
just implemented, and we obtain the value by reading it out of the current dataset.
We format the cells using the <tr> and <td> tags and append the resulting HTML
phrase to the string that we started previously with the table tag. Finally, when
all of the fields of the dataset have been processed, we complete the tooltip text
string by appending the closing </table> tag, and return the finished string.

We will now write a program to test our model. This reads in the CSV file, allocates
a model, and passes the file’s contents to the model as a QString. We then bind
the model to a list view, a table view, and a tree view. The result is shown in Figure
8.11.

// addressbook/main.cpp

#include <QtGui>

#include "addressbookmodel.h"

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

// Open the addressbook file in the working directory

QFile file("addressbook.csv");

if (!file.open(QIODevice::ReadOnly|QIODevice::Text))

return 1;

// Read its content into a string

QString addresses = QString::fromUtf8(file.readAll());

226

8.4 Implementing Your Own Models

AddressbookModel model(addresses);

QListView listView;

listView.setModel(&model);

listView.setModelColumn(0);

listView.show();

QTreeView treeView;

treeView.setModel(&model);

treeView.show();

QTableView tableView;

tableView.setModel(&model);

tableView.show();

return app.exec();

}

The column to be displayed by the list view can be selected from the model with a
setModelColumn() instruction; for example, setModelColumn(2) would display all
first names instead of the formatted name.

Figure 8.11:

These three views use

our address book

model.

If a model you have written yourself does not turn out to work as you wished,
you should first check whether the overridden const methods have been declared
properly. Since they should merely provide information about the model, Interview
does not give them any write access to the class. If the const keyword is missing,
the correct method will not be available, because the inheritance mechanism of
C++ makes a distinction between const and non-const versions of a method.

8.4.2 Making Your Own Models Writable

Just outputting data in the EditRole is not enough if you want to modify the data
source via the model. In order to be able do this, we need to overwrite the flags()
and setData() methods.

flags() returns specific properties of an index entry, so-called flags (see Table 8.2).
Views use this method to check whether operations are allowed for a specific item.

227

8 Displaying Data Using “Interview”

Table 8.2:

ItemFlags for models
Value Effect

Qt::ItemIsSelectable Element can be selected

Qt::ItemIsEditable Element can be modified

Qt::ItemIsDragEnabled Element can be used as a starting point for drag-
and-drop operations

Qt::ItemIsDropEnabled Element can be used as a target for drag-and-
drop operations

Qt::ItemIsUserCheckable Element has a selection status with two states
(selected, deselected); requires the implementa-
tion of Qt::CheckStateRole in the model

Qt::ItemIsEnabled Element reacts to user requests

Qt::ItemIsTristate Element has a selection status with three states
(selected, not selected, partially selected); use-
ful in hierarchical models where several child en-
tries are selected and others not selected; requires
the implementation of Qt::CheckStateRole in the
model in advance

We will come back to the services of this method on page 241, when we equip our
model with drag-and-drop capability for data. Here we must first make all the cells
editable:

// addressbook/addressbookmodel.cpp (continued)

Qt::ItemFlags AddressbookModel::flags(const QModelIndex &index) const

{
if (!index.isValid())

return 0;

return QAbstractItemModel::flags(index) | Qt::ItemIsEditable;

}

Now the user can edit every position. To do this, the views use a QItemDelegate by
default, just as for the display. Once it has finished its work, it calls the setData()
method to store the new data in the model. As soon as this has stored the data
successfully in the model, it returns true.

setData() is the counterpart to data(): Both functions must work together. Since
the standard implementation of setData() does nothing more than return false, we
need to reimplement it as follows:

// addressbook/addressbookmodel.cpp (continued)

228

8.4 Implementing Your Own Models

bool AddressbookModel::setData(const QModelIndex & index,

const QVariant& value, int role)

{
if (index.isValid() && (role == Qt::EditRole ||

role == Qt::DisplayRole)) {
// add 1 to the row index to skip over the header

addressBook[index.row()+1][index.column()] = value.toString();

emit dataChanged(index, index);

return true;

}
return false;

}

First we check, as always, whether the index is valid. This time we also ensure that
we are located in the editing or in the display role. We do not have to make a
distinction between these two roles for our address book model, because in both
cases the same string is involved. Other models may need to make a distinction
between the two roles; for example, when delivering or updating image data, a
model may need to work with actual pixmaps for the DisplayRole, but with paths
to pixmaps when in the EditRole.

If these conditions apply, we set the new value, passed via value, at the appropriate
point. Here we use the index operator [], instead of at() as usual, in order to avoid
the normally desirable behavior of at(): The method provides only a const reference
to the string, whereas the index operator provides a simple reference.5

After successfully changing the data, it is important that the dataChanged() signal
is emitted so that the views linked to the model update the data. This demands
two indices as parameters, of which the row and column properties should form
a rectangle. Because usually only one value is being changed at a time, we pass
the same index twice in order to indicate the position of the corrected data item.
Finally we signal the successful completion of the process with return true. In all
other cases, in which we have not saved anything, we consequently return false.

Inserting and Removing Rows

So that the model will be completely flexible, we implement the insertion and re-
moval of rows. To do this we overwrite the insertRows() and removeRows() meth-
ods. The equivalent removeColumns() and addColumns() methods also exist to re-
move or insert columns, but we are not concerned with these at this point. As
parameters we pass an index to the row beneath which we wish to insert empty
rows, as well as the number of rows to be inserted. We can safely ignore the parent
argument.

To insert an empty row, we first need to create an empty dataset. To do this we fill
a string list with as many empty strings as there are columns in the model. Then we

5 On this subject, see also page 400 in Appendix B.

229

8 Displaying Data Using “Interview”

inform the model, with beginInsertRows(), that we want to insert rows. If we do
not do this, existing selections in this model could get mixed up. Next, we insert the
empty dataset—again incrementing the row by 1 because of the header—and end
the insert mode. Finally, we signal that the data have been successfully inserted, by
returning true:

// addressbook/addressbookmodel.cpp (continued)

bool AddressbookModel::insertRows(int row, int count,

const QModelIndex & parent)

{
Q_UNUSED(parent);

QStringList emptyRecord;

for (int i=0; i<columnCount(QModelIndex()); i++)

emptyRecord.append(QString());

beginInsertRows(QModelIndex(), row, row+count-1);

for (int i=0; i<count; i++)

addressBook.insert(row+1, emptyRecord);

endInsertRows();

return true;

}

We implement removeRows() in the same way, but with a safety check in this case:
If there are more lines to be removed than there are datasets in the address book,
we return false—otherwise, we would run the risk of the application crashing. We
also need to announce the removal of lines and signal the end of the action. If
everything was successful, we return true to the caller as a confirmation:

// addressbook/addressbookmodel.cpp (continued)

bool AddressbookModel::removeRows(int row, int count,

const QModelIndex& parent)

{
Q_UNUSED(parent);

if (row-count-1 > addressBook.count()-1) return false;

beginRemoveRows(QModelIndex(), row, row+count-1);

for(int i=0; i<count; i++)

addressBook.removeAt(row+1);

endRemoveRows();

return true;

}

With these changes, a program that accesses the model can delete datasets by
calling removeRows() or add them by inserting empty datasets with insertRows()
and filling them via setData()—the method is not reserved just for delegates.

230

8.5 Sorting and Filtering Data with Proxy Models

Outputting the Contents of the Model

In order to round off our model and to complete our tour through the world of
writable models, we construct a method called toString(), which converts the con-
tents of the model back into CSV form and outputs this as a string.

To do this we go through all the datasets and use the QStringList method join to
combine each string list into a single line in which the individual strings are sep-
arated from one another with commas (,). We terminate each line with a newline
character before beginning the next line, which ensures that the desired empty line
at the end of the CSV file is created:

// addressbook/addressbookmodel.cpp (continued)

QString AddressbookModel::toString() const

{
QString ab;

foreach (QStringList record, addressBook) {
ab += "\"";

record.join("\",\"");

ab += "\"\n";

}
return ab;

}

To save the current status of the model, you now only need to save the return value
from toString().

8.5 Sorting and Filtering Data with Proxy Models

Our model up until now has lacked the capability to return its entries to a view in
a sorted form. This is because there is no sorting criterion in this model for any of
the columns. It is also practically impossible to filter out specific entries from the
model.

To address this shortcoming, Interview has provided, starting from Qt version 4.1,
the QSortFilterProxyModel class, after its predecessor QProxyModel proved to be
too unwieldy. It is based on the QAbstractProxyModel base class, which represents
so-called proxy models. These lie somewhere between a model and view, obtain-
ing their data from the model and returning it to the view in modified form (see
Figure 8.14 on page 237). The proxy model therefore becomes the source model for
the view. On page 237 we will look in more detail at how proxy models function
and implement our own proxy model. For the moment, we will just look at what
QSortFilterProxyModel can do: sort and filter.

231

8 Displaying Data Using “Interview”

During filtering, the model returns the model indices for those rows in which the
text in a column matches the search filter. During sorting, the row order is arranged
according to the values in a specified column, whereby you can sort in ascending
or descending order.

We will demonstrate both capabilities of QSortFilterProxyModel with a small ex-
ample, the FilteringView. This consists of a tree view, above which is a line edit that
accepts a filter term. Next to this we place a combo box containing all the column
names. Figure 8.12 shows how you can use this to select the column that is to act
as the search column.

Figure 8.12:

QSortFilterProxyModel

helps in sorting and

filtering models.

8.5.1 Adjustments to the User Interface

Simplifying Sorting

Since our view will use a QSortFilterProxyModel instance, which can already sort,
we need only to adjust the viewer accordingly. The work necessary for this is done
by the constructor of the class:

// addressbook/filteringview.cpp

#include <QtGui>

#include "filteringview.h"

FilteringView::FilteringView(QAbstractItemModel *model, QWidget *parent)

: QWidget(parent)

{
setWindowTitle(tr("Filter View"));

proxyModel = new QSortFilterProxyModel(this);

proxyModel->setSourceModel(model);

QVBoxLayout *lay = new QVBoxLayout(this);

QHBoxLayout *hlay = new QHBoxLayout;

QLineEdit *edit = new QLineEdit;

QComboBox *comboBox = new QComboBox;

int modelIndex = model->columnCount(QModelIndex());

for(int i=0; i < modelIndex; i++)

232

8.5 Sorting and Filtering Data with Proxy Models

comboBox->addItem(model->headerData(i, Qt::Horizontal,

Qt::DisplayRole).toString());

hlay->addWidget(edit);

hlay->addWidget(comboBox);

QTreeView *view = new QTreeView;

view->setModel(proxyModel);

view->setAlternatingRowColors(true);

// Make the header "clickable"

view->header()->setClickable(true);

// Sort Indicator festlegen

view->header()->setSortIndicator(0, Qt::AscendingOrder);

// Sort Indicator anzeigen

view->header()->setSortIndicatorShown(true);

// Initial sortieren

view->sortByColumn(0);

lay->addLayout(hlay);

lay->addWidget(view);

connect(edit, SIGNAL(textChanged(const QString&)),

proxyModel, SLOT(setFilterWildcard(const QString&)));

connect(comboBox, SIGNAL(activated(int)),

SLOT(setFilterKeyColumn(int)));

}

First we create a proxy model and save it in a member variable called proxyModel.
Then we create both a vertical and a horizontal layout used later to enclose the
widgets: We group the line edit and the combo box together in one line with the
horizontal layout. With the help of the vertical layout, we position this above the
view to which we pass the proxy model as the source.

To make reading easier, every other line in the tree view is displayed with a second
background color. We activate this feature with setAlternatingRowColors(true).

To obtain the widget containing the column headers in tree views, we use header().
So that it can react to clicks, we set setClickable(true). In addition we provide
it with a sorting indicator, usually this is a triangle that charts whether data is
shown sorted in ascending or descending order. In this case we sort column 0 in
ascending order (Qt::AscendingOrder) and display the indicator via setSortIndica-
torShown(true). To make sure that the list is already sorted before the user clicks
the header for the first time, we prearrange the datasets sorted by the first column,
with sortByColumn(0).

233

8 Displaying Data Using “Interview”

Restricting the View to Specific Datasets

In order to restrict the data shown in the view to datasets matching a filter string
specified in the line edit widget, two connect() instructions are needed: The first
one informs the proxy model as soon as the text changes in the line edit. The proxy
model then uses this text as the new filter.

There are three slots in the proxy model to which the textChanged() signal can be
linked. setFilterFixedString() delivers all rows where the search column contains the
specified filter string as a substring, whereas setFilterWildcard()—which we use in
the example—also accepts * as a wildcard in the filter string. For example, when
setFilterWildcard() is used, the search term Hel*ld would match a dataset in the
model with “Hello world” in the search column. A search for Hel*ld using setFilter-
FixedString() will return only datasets that contain the exact six-character string
Hel*ld.

setFilterRegExp() accepts filter strings that are regular expressions. Using Hel*ld as
a search string, it will return rows of which the search column contains one of the
following substrings: Held, Helld, Hellld, Helllld and so on.

The second signal/slot connection is used to select the field which the proxy model
should compare against the filter string. For this purpose the proxy model has the
setFilterKeyColumn() method, which expects the search column as the argument.
Since this method is unfortunately not implemented as a slot, we must implement
our own slot in the view, which will call the function:

// addressbook/filteringview.cpp (continued)

void FilteringView::setFilterKeyColumn(int col) {
proxyModel->setFilterKeyColumn(col);

}

The slot is also the reason we created the proxyModel member variable: We require
access to the proxy model outside the constructor.

8.6 Making Entries Selectable with Checkboxes

If it is intended that the user should make a selection from a list, Interview places
a box in front of the corresponding entries that can be checked via the QItemDele-
gate used by default, a checkbox. We make use of this property in a new subclass
of our address book model, the CheckableAddressbookModel subclass.

To implement selectable entries, we need to reimplement only three methods, apart
from the constructor: In flags() we inform the view that specific entries can be
selected. In order for the delegate to draw the checkbox, we need to use a new role
in data() and setData()—the CheckStateRole.

234

8.6 Making Entries Selectable with Checkboxes

// addressbook/checkableaddressbookmodel.h

class CheckableAddressbookModel : public AddressbookModel

{
Q_OBJECT

public:

CheckableAddressbookModel(const QString& addresses,

QObject *parent = 0);

virtual QVariant data (const QModelIndex & index,

int role = Qt::DisplayRole) const;

virtual bool setData(const QModelIndex & index,

const QVariant & value, int role = Qt::EditRole);

virtual Qt::ItemFlags flags(const QModelIndex &index) const;

private:

QList<bool> checkedStates;

};

In the constructor we first call the constructor of the overclass, passing it the com-
plete dataset as a string (addresses), as well as the parent widget. We then have to
find out how many datasets the passed string contains. Equipped with this value,
we can keep track of the selection status of the respective line in the checkedStates
list.

We can find out the number of datasets through the number of newline characters.
Only those datasets should be selectable that really contain address data—so not
the first line with the headers:

// addressbook/checkableaddressbookmodel.cpp

CheckableAddressbookModel::CheckableAddressbookModel(

const QString& addresses, QObject *parent)

: AddressbookModel(addresses, parent)

{
// Contrary to what we’ve done in the AddressbookModel,

// we don’t add 1 to the index here

// since the headers can’t be checked by the user

int rows = addresses.count(’\n’);

for (int i = 0; i < rows; i++) {
checkedStates.append(false);

}
}

In the reimplementation of flags() we first catch invalid indices again. So that
there is not a checkbox in front of every single column entry, only the entries in
the first column are selectable, standing for the whole line. For this reason we
check the index and allow the additional status only in column 0. It is important
here to consult the base implementation, AddressbookModel::flags(index), because
this, among other things, ensures that it is editable. Provided that we are in the
first column, we apply a bitwise logical OR operation with Qt::ItemIsUserCheckable
to the existing flags. This operation combines the flags with each other:

235

8 Displaying Data Using “Interview”

// addressbook/checkableaddressbookmodel.cpp (continued)

Qt::ItemFlags CheckableAddressbookModel::flags

(const QModelIndex &index) const {
if (!index.isValid())

return 0;

if (index.column() == 0)

return AddressbookModel::flags(index)| Qt::ItemIsUserCheckable;

else

return AddressbookModel::flags(index);

}

Then we implement data(). If the caller is located in the first column and queries
the model while in the CheckStateRole, we look up the status of the current row
(index.row()) in the checkedStates list. If the checkbox is selected, the correspond-
ing element is true, which we signal by returning Qt::Checked; otherwise, if it is
false, we return Qt::Unchecked. In all other cases we retrieve the return value from
the overclass:

// addressbook/checkableaddressbookmodel.cpp (continued)

QVariant CheckableAddressbookModel::data(

const QModelIndex &index, int role) const

{
if (!index.isValid()) return QVariant();

if (role == Qt::CheckStateRole && index.column() == 0) {
if (checkedStates[index.row()] == true)

return Qt::Checked;

else

return Qt::Unchecked;

}
return AddressbookModel::data(index,role);

}

Although QItemDelegate now draws a checkbox for every row, the user can still not
change its status. This only works if setData() has been implemented accordingly:

// addressbook/checkableaddressbookmodel.cpp (continued)

bool CheckableAddressbookModel::setData(const QModelIndex & index,

const QVariant& value, int role)

{
if (!index.isValid()) return false;

if (role == Qt::CheckStateRole && index.column() == 0) {
checkedStates[index.row()] = !checkedStates[index.row()];

emit dataChanged(index, index);

236

8.7 Designing Your Own Proxy Models

return true;

}

return AddressbookModel::setData(index, value, role);

}

Here we also check whether the role is correct and whether we are located in the
first column. If everything is all right, we negate the status of the list element
at the relevant position. In order for the views to display the changed value, we
trigger the dataChanged() signal for the index when we are finished, just as we did
in the overclass. We forward all other calls to the overclass, as we did for the other
two methods.

To try out the model we have just completed, we change the main() program so
that it instantiates our new model instead of the AddressbookModel overclass, and
adjust the #include compiler directive accordingly. The results can be seen in Figure
8.13.

Figure 8.13:

CheckableAddress-

bookModel inserts a

checkbox for each

row.

8.7 Designing Your Own Proxy Models

With QSortFilterProxyModel we have already gotten to know one class that inherits
from QAbstractProxyModel. But proxy models can also display the original models
in very different ways. To demonstrate this we will write our own proxy model that
swaps the columns and rows of the original model in a way similar to the matrix
transpose operation in mathematics.

Figure 8.14:

Proxy models lie

between the original

model and the view.
Data source

(Directory, Database, XML, ...)

Proxy
model

Views

Delegate

Model

237

8 Displaying Data Using “Interview”

First we will start with the constructor: Since we are not using additional data
structures of our own, it remains empty and merely initializes the overclass:

// addressbook/transposeproxymodel.cpp

TransposeProxyModel::TransposeProxyModel(QObject *parent)

: QAbstractProxyModel(parent)

{
}

The two methods that follow define how the data from the source model are ar-
ranged in the proxy model: mapFromSource() converts an index from the source
model to an index for the proxy model, while mapToSource() converts an index
from the proxy model to an index for the source model. In the mapFromSource()
implementation we fetch the index using the method of the same name, but pass
column() as the row number and row() as the column number. mapToSource()
works in exactly the same way, but calls the index() method of the source model,
in case the source model index has been manipulated:

// addressbook/transposeproxymodel.cpp (continued)

QModelIndex TransposeProxyModel::mapFromSource(

const QModelIndex& sourceIndex) const

{
return index(sourceIndex.column(), sourceIndex.row());

}

QModelIndex TransposeProxyModel::mapToSource(

const QModelIndex& proxyIndex) const

{
return sourceModel()->index(proxyIndex.column(), proxyIndex.row());

}

But we are still not finished, because QAbstractProxyModel inherits directly from
QAbstractItemModel. This means that we must also implement all of its methods.
Take index(), for example. Since we are planning a normal, two-dimensional model,
we use the createIndex() function to generate the index. Columns and rows must
not be swapped here, since the this would undo the mappings to and from the
source:

// addressbook/transposeproxymodel.cpp (continued)

QModelIndex TransposeProxyModel::index(int row, int column,

const QModelIndex& parent) const

{
Q_UNUSED(parent);

return createIndex(row, column);

}

238

8.7 Designing Your Own Proxy Models

We also have to implement the parent() method. But since our proxy model only
supports two-dimensional models, and therefore does not support parent relations,
we return an invalid index here:

// addressbook/transposeproxymodel.cpp (continued)

QModelIndex TransposeProxyModel::parent(

const QModelIndex& index) const

{
Q_UNUSED(index);

return QModelIndex();

}

Next we reimplement rowCount() and columnCount(). The view uses these func-
tions to determine which indices it should query. For our purposes, rowCount()
should call the source model’s columnCount(), and vice versa.

// addressbook/transposeproxymodel.cpp (continued)

int TransposeProxyModel::rowCount(const QModelIndex& parent) const

{
return sourceModel()->columnCount(parent);

}

int TransposeProxyModel::columnCount(const QModelIndex& parent) const

{
return sourceModel()->rowCount(parent);

}

In addition, data() must deliver the correct data. We also fetch this directly from
the source model. It is important here that you convert the index correctly, using
the previously created mapping methods. Since the passed index originates from
the proxy model, we use mapToSource():

// addressbook/transposeproxymodel.cpp (continued)

QVariant TransposeProxyModel::data(const QModelIndex& index,

int role) const

{
if (!index.isValid()) return QVariant();

return sourceModel()->data(mapToSource(index), role);

}

Even if not required (the headerData() method is not completely virtual), it is rec-
ommended that you swap the column and row headers. To do this we simply pass
the other value of the Orientation enumerator in each case:

239

8 Displaying Data Using “Interview”

// addressbook/transposeproxymodel.cpp (continued)

QVariant TransposeProxyModel::headerData(int section,

Qt::Orientation orientation, int role) const

{
if (orientation == Qt::Horizontal)

return sourceModel()->headerData(section, Qt::Vertical, role);

else

return sourceModel()->headerData(section, Qt::Horizontal, role);

}

We can now place this model as a proxy model between a table view and our
address book model, for example. To do this we first modify the main() program
from the original address book example on page 226 by including the header file
transposeproxymodel.h, displayed below:

// addressbook/transposeproxymodel.h

#ifndef TRANSPOSEPROXYMODEL_H

#define TRANSPOSEPROXYMODEL_H

#include <QAbstractProxyModel>

class TransposeProxyModel : public QAbstractProxyModel {
Q_OBJECT

public:

TransposeProxyModel(QObject *parent = 0);

virtual QModelIndex mapFromSource(

const QModelIndex& sourceIndex) const;

virtual QModelIndex mapToSource(

const QModelIndex& proxyIndex) const;

virtual QModelIndex index(int, int,

const QModelIndex& parent = QModelIndex()) const;

virtual QModelIndex parent(const QModelIndex& index) const;

virtual int rowCount(const QModelIndex& parent) const;

virtual int columnCount(const QModelIndex& parent) const;

virtual QVariant data(const QModelIndex& index,

int role = Qt::DisplayRole) const;

virtual QVariant headerData(int section,

Qt::Orientation orientation,

int role = Qt::DisplayRole) const;

};

#endif // TRANSPOSEPROXYMODEL_H

240

8.8 Implementing Drag and Drop in Models

Figure 8.15:

Our proxy model

transposes the

original model.

Then we instantiate the proxy, invoke its setSourceModel() method, passing this a
pointer to the original model, and make the proxy model be the source for the view.
Figure 8.15 shows the result.

8.8 Implementing Drag and Drop in Models

So far our model is not able to move or copy individual rows via drag and drop.
In Section 7.4 we got to know how drag and drop can be implemented for any
widgets you like, and Interview also offers the possibility of using elements from
views as drag objects. But in contrast to the previous examples, it is not necessary
here to use inheritance and adjust one of the view classes in this manner. It is
sufficient to modify the model.

To demonstrate this we will use a subclass of the already-implemented Address-
bookModel class, called DndAddressbookModel.6 To provide it with drag-and-drop
capability, we must now overwrite the following methods:

// addressbook/dndaddressbookmodel.h

#ifndef DNDADDRESSBOOKMODEL_H

#define DNDADDRESSBOOKMODEL_H

#include "addressbookmodel.h"

class DndAddressbookModel : public AddressbookModel

{
public:

DndAddressbookModel(const QString& addresses, QObject *parent = 0);

virtual Qt::ItemFlags flags(const QModelIndex &index) const;

QStringList mimeTypes() const;

QMimeData *mimeData(const QModelIndexList &indexes) const;

bool dropMimeData(const QMimeData *data, Qt::DropAction action,

int row, int column, const QModelIndex &parent);

6 Of course, we could also inherit from CheckableAddressbookModel and extend its functionality,
but that would be more complex, and is therefore less suitable for didactic purposes.

241

8 Displaying Data Using “Interview”

};

#endif //ADDRESSBOOKMODEL_H

In our example implementation, if the user touches any element from a row with
the mouse, the entire row will always be copied, so that the dataset remains intact.
For this reason the DndAddressbookModel is useless for table views. (Although with
a bit more work, it is possible to copy only individual elements, we will not go into
this here, to avoid things becoming too complicated.)

In the constructor we do nothing more than forward the arguments to the over-
class. Calls such as setDropEnabled() are not necessary here:

// addressbook/dndaddressbookmodel.cpp

#include <QtGui>

#include "dndaddressbookmodel.h"

DndAddressbookModel::DndAddressbookModel(const QString& addresses,

QObject *parent)

: AddressbookModel(addresses, parent)

{
}

Qt::ItemFlags DndAddressbookModel::flags(const QModelIndex &index) const

{
Qt::ItemFlags defaultFlags = AddressbookModel::flags(index);

if (index.isValid())

return Qt::ItemIsDragEnabled | Qt::ItemIsDropEnabled | defaultFlags;

else

return Qt::ItemIsDropEnabled | defaultFlags;

}

If we want to allow drops, we must signal this for each model index in the flags()
method. Whereas we only allow drags from valid model indices, dropping is also
possible on invalid ones: If the user releases a drag after the last entry in a list, this
position is invalid as a model index, although it can be used to signify that a new
element should be appended to the list.

In the next step we define which MIME types can be handled by our model. Here we
use our own format called application/x-osp.text.csv, which will save us some work
on the next page when copying the entries between two model/view instances:

// addressbook/dndaddressbookmodel.cpp (continued)

QStringList DndAddressbookModel::mimeTypes() const

{
QStringList types;

types << "application/x-osp.text.csv";

242

8.8 Implementing Drag and Drop in Models

return types;

}

The mimeData() method comes into play if the user pulls a selection away from the
view, thus initiating a drag. We are given a list with the model indices involved.
The method should pack them into a QMimeData object, and the instantiation of a
QDrag object is taken over by Interview:

// addressbook/dndaddressbookmodel.cpp (continued)

QMimeData *DndAddressbookModel::mimeData(

const QModelIndexList &indexes) const

{
QMimeData *mimeData = new QMimeData();

QList<int> rows;

foreach (QModelIndex index, indexes)

if (index.isValid())

if (!rows.contains(index.row()))

rows += index.row();

QByteArray encodedData;

QDataStream stream(&encodedData, QIODevice::WriteOnly);

foreach(int row, rows)

stream << addressBook.at(row+1);

mimeData->setData("application/x-osp.text.csv", encodedData);

return mimeData;

}

Since we are interested only in complete rows, we extract the respective row num-
bers from the model indices passed and save them in a list.

In the second step we must find a suitable way of storing our datasets in a QByteAr-
ray. Here the QDataStream class is of help, which we will get to know better in
Chapter 11 on page 317. It can serialize all primitive data types in Qt via the <<
operator, including QStringList objects. The byte array encodedData is used here as
an output medium, because although QDataStream is intended for output into files
and for real output devices, thanks to an overloaded constructor the class can also
write to QByteArray objects or read from them. Corresponding to the file seman-
tics, the second parameter QIODevice::WriteOnly indicates that the QDataStream
instance stream may only write to the byte array.

Now we go through the just-created rows list and access the corresponding entry
of the addressBook structure. To get to the position we really want, we must again
access one entry beyond that position.

Each entry found in this way is read via a QDataStream into the byte array en-
codedData. We pass the finished byte array to the mimeData object. The fact that

243

8 Displaying Data Using “Interview”

the contents no longer have to be pure ASCII text after transformation through
QDataStream is another reason we cannot use text/plain as MIME types, in addi-
tion to the issue of distinguishability during the drop procedure.

The other side of the drag-and-drop procedure is handled by the dropMimeData()
method. Apart from the MIME data, it also contains the type of drop: Should the
data be copied (CopyAction), moved (MoveAction), linked (LinkAction), or ignored
(IgnoreAction)?

Furthermore, we are given both the row and column in which the user released
the mouse, thus triggering the drop. Via parent we learn whether the current item
is a child of another item. Since this cannot be the case in our childless model,
we can ignore parent as well as column, since we are only dragging and dropping
entire rows at a time. The method returns true if the drop procedure is successful,
otherwise false:

// addressbook/dndaddressbookmodel.cpp (continued)

bool DndAddressbookModel::dropMimeData(const QMimeData *data,

Qt::DropAction action, int row,

int column, const QModelIndex &parent)

{

Q_UNUSED(column);

Q_UNUSED(parent);

if (action == Qt::IgnoreAction)

return true;

if (!data->hasFormat("application/x-osp.text.csv"))

return false;

// workaround for Qt 4.1.2 bug

if (row == -1)

row = rowCount();

QByteArray encodedData = data->data("application/x-osp.text.csv");

QDataStream stream(&encodedData, QIODevice::ReadOnly);

QList<QStringList> lines;

while (!stream.atEnd())

stream >> lines;

int rows = lines.count();

insertRows(row, rows, QModelIndex());

foreach(QStringList line, lines) {
addressBook.replace(row+1, line);

row++;

}
return true;

}

244

8.9 Your Own Delegates

We react to all actions, but to be on the safe side we catch IgnoreAction. We
shouldn’t really accept this action. If this happens, though, we announce a success-
ful completion of the drop operation—after all, we successfully ignored the drop.
In addition we must ensure that our drag contains the application/x-osp.text.csv
MIME type, otherwise we terminate with return false, since the drop action was
not successful.

In several Qt versions, including 4.1.2, the problem occurs that row returns the
value -1 if the drop target lies beneath the last entry in a list or tree view. For this
reason we will intercept this case and return the number of columns in the model
so that the new dataset(s) can be inserted after the last row, as intended.

Now we read out the QByteArray for our MIME types. This is the data we obtained
by combining the various string list entries. We now reverse that process by reading
out the lines list from encodedData, string list by string list, but this time marked
as read-only. The use of the atEnd() method demonstrates that we have treated
the byte array, through QDataStream, like a file.

Now we can calculate the number of rows to be inserted with count and add them
to the model with insertRows(). row provides us with the offset here. Finally we
replace the empty string lists created by insertRows() with the real contents. The
drag operation is now completed, which we will announce to the caller of the
method with return true.

To test our modified model, we replace AddressbookModel with DndAddressbook-
Model in the main() function of the address program on page 226 and start two
instances of the application. Drag and drop is now possible between them, and also
within the same view.

8.9 Your Own Delegates

Until now we have accepted that views display their entries themselves. We will
now reveal the secret of the delegates, which are responsible for the display of
individual elements and for providing an editor for writable models. Each model
has exactly one delegate.

All delegates inherit from QAbstractItemDelegate, in the manner of Figure 8.16.
By default, all views use the QItemDelegate class derived directly from this, which
provides a standard editor and contains the character logic for the entries. We will
get to know a similar SQL-specific class called QSqlRelationalDelegate in Chapter
9.

Below we will write a delegate that not only provides an editor like QItemDelegate
but also has tab completion and an overview of all existing entries. The current
column serves as the data source. In the case of our address book model, this can
save the user a great deal of typing work, for example, for frequently occurring first
names and family names.

245

8 Displaying Data Using “Interview”

Figure 8.16:

The inheritance

pattern of delegates

in Interview

QSqlRelationalDelegate

QItemDelegate

QAbstractItemDelegate

First we shall look at the constructor: All this has to do is call the constructor of
the overclass, because for this model we don’t need any member variables that we
would have to initialize:

// addressbook/completiondelegate.cpp

#include <QtGui>

#include "completiondelegate.h"

CompletionDelegate::CompletionDelegate(QObject *parent)

: QItemDelegate(parent)

{
}

The view calls the createEditor() method when the user launches an editor for the
first time from any index position at all, by double-clicking or pressing

✞✝ ☎✆F2 :

// addressbook/completiondelegate.cpp (continued)

QWidget *CompletionDelegate::createEditor(QWidget* parent,

const QStyleOptionViewItem& option,

const QModelIndex& index) const

{
const QAbstractItemModel *model = index.model();

if (!model)

return QItemDelegate::createEditor(parent, option, index);

QComboBox *box = new QComboBox(parent);

box->setEditable(true);

box->setAutoCompletion(true);

box->setModel(const_cast<QAbstractItemModel*>(model));

box->setModelColumn(index.column());

box->installEventFilter(const_cast<CompletionDelegate*>(this));

return box;

}

246

8.9 Your Own Delegates

As the processing widget we display a combo box, which can be edited like a line
edit, and in addition it should be able to perform tab completion. We use the parent
pointer passed as the father for the constructor; as a result, the view, and not the
delegate, controls the widget.

To fill the combo box with data, it is sufficient to pass the combo box the current
model, because QComboBox, although not an official view class, can handle the
QAbstractItemModel-based models as a source. Just as with QListView, here we
must also specify the column from the model for which the selection box should
look, using setModelColumn().

The const_cast is necessary here because we are in a const method and our model
pointer is a const pointer. This means that we must prevent any write operations
to the model. In addition we must ensure that certain keys, such as

✞✝ ☎✆Enter or
✞✝ ☎✆Esc ,

close the editor and signal to the delegate that it should write the data back to the
model.

This is done by the event filter that we install on the combo box. It diverts all
the keystrokes to the delegate. Now we would have to overwrite the eventFilter()
method to intercept the keystrokes. In practice, however, QComboBox has such an
event filter in the private (that is, internally hidden) QComboBoxPrivateContainer
class,7 which is undocumented, however.

This means that in theory, the filter may disappear in each new Qt release. If you
want to be completely sure, you should write your own event filter, based on the
implementation of this Qt class.

Figure 8.17:

Our

CompletionDelegate

completes the entry

on the basis of other

entries in the same

column of the source

model.

The editor is now available, but it is possible that the user may want to use it again
later on at the same index position. To supply it with current data every time it is
used, the setEditorData() method exists. Our combo box serves as an editor widget,
which is why we convert the object via qobject_cast:

// addressbook/completiondelegate.cpp (continued)

void CompletionDelegate::setEditorData(QWidget* editor,

const QModelIndex & index) const

{
QComboBox* box = qobject_cast<QComboBox*>(editor);

7 See qcombobox_p.h/qcombobox.cpp in the Qt source code.

247

8 Displaying Data Using “Interview”

const QAbstractItemModel *model = index.model();

if (!box || !model)

QItemDelegate::setEditorData(editor, index);

box->setCurrentIndex(index.row());

}

qobject_cast functions like a dynamic_cast but does not require any RTTI support,8

which many people like to disable for reasons of space, particularly on embedded
platforms. In addition it works beyond the borders of dynamic libraries—normally
dynamic_cast will not work here. The only consolation: It can only be used for
QObject-based classes.

Exactly like a dynamic_cast, qobject_cast also returns a zero pointer if the conver-
sion fails. Although the conversion should never fail, we will intercept this scenario
and busy ourselves instead with the base implementation. If everything goes ac-
cording to plan, we pass the row coordinates of our current position in the model
to the combo box. It uses this information at this point as the standard text. Our fi-
nal task now consists of implementing setModelData(). After a few security checks,
we simply set the current contents of the combo box as the new value for the
current model index. If you want to be really sure, you should do this both for the
DisplayRole and for the EditRole:

// addressbook/completiondelegate.cpp (continued)

void CompletionDelegate::setModelData(QWidget *editor,

QAbstractItemModel *model,

const QModelIndex &index) const

{
if (!index.isValid())

return;

QComboBox* box = qobject_cast<QComboBox*>(editor);

if (!box)

return QItemDelegate::setModelData(editor, model, index);

model->setData(index, box->currentText(), Qt::DisplayRole);

model->setData(index, box->currentText(), Qt::EditRole);

}

We can now insert our own delegates into whatever views we want (into our ad-
dress book as well, or course) using setItemDelegate(). What this looks like is shown
in Figure 8.17.

8 RTTI stands for Runtime Type Information. It allows the type of a method to be determined in
C++. Since RTTI support heavily inflates the size of the object file created, and moc obtains the
corresponding information anyway at compile time, you can manage without RTTI support in
Qt programs.

248

8.10 Without Your Own Data Source: The Standard Model

8.10 Without Your Own Data Source: The Standard
Model

For many purposes, creating your own model would seem to be excessive, as well
as quite inconvenient. If you just want to display a few numbers, for example, that
do not change or change very little, QStandardItemModel is the right choice. This
class has the advantage that it manages without inheritance in most cases, so we
can use it directly.

For a small example we will again use our address book model, which we now
implement with the help of QStandardItemModel. To demonstrate that the model
manages without inheritance, will carry out all tasks in the main() function.

First we again require the splitCSVLine() help function from page 222, which con-
verts a row from the CSV file into a string list:

// stdmodeladdressbook/main.cpp

#include <QtGui>

QStringList splitCSVLine(const QString& line)

{
...

}

The first part of the main() function also appears to be as before: We open the
file, read the complete contents into a string, chop off the line ends, and store the
result in a string list. We remove the first line of this, with takeAt()—in contrast to
removeAt(), takeAt() returns the removed string directly:

// stdmodeladdressbook/main.cpp (continued)

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

// Open file

QFile file("addressbook.csv");

if (!file.open(QIODevice::ReadOnly|QIODevice::Text))

return 1;

// Read addresses line for line into a stringlist

QString addresses = QString::fromUtf8(file.readAll());

QStringList records = addresses.split(’\n’);

// Take the first row with the headers and split them

QString header = records.takeAt(0);

QStringList headers = splitCSVLine(header);

249

8 Displaying Data Using “Interview”

// Create a model using the number of rows and columns as arguments

QStandardItemModel model(records.count(), headers.count());

// Add headers

for (int col=0;col<headers.count(); col++) {
model.setHeaderData(col, Qt::Horizontal, headers.at(col));

}

// Add contents

for (int recNo=0;recNo<records.count(); recNo++) {
QStringList cells = splitCSVLine(records.at(recNo));

for (int col=0;col<cells.count(); col++) {
QModelIndex index = model.index(recNo, col, QModelIndex());

model.setData(index, cells.at(col));

}
}

// Create, set and show model

QTreeView treeView;

treeView.setWindowTitle(QObject::tr("Addressbook

via QStandardItemModel"));

treeView.setModel(&model);

treeView.show();

return app.exec();

}

After we have split the headers, with splitCSVLine(), it is time to instantiate QS-
tandardItemModel with the number of rows and columns as arguments. At this
point we have collected enough data to know the maximum number of rows and
columns, but we still have to insert the data into the model. This is the next step.

First the headers are included in the model, via setHeaderData(), followed by the
actual data. For each element of the model we must create a separate model index.
Because we know both the current row and also the current column, this is not a
problem. The only disadvantage: We have to manage without the more convenient
foreach() loop.

In the final segment of code, we instantiate a tree view, set the model and display
the view. Last of all, we start the event loop.

This example demonstrates that Interview can also be used via QStandardItem-
Model without the need for time-intensive reimplementation of models. In doing
this you save all the data in the model, however. For the user, the result is identical.
But the procedure does have some disadvantages: With reimplemented models, we
can use complex data structures in the background, whereas in this case we must
get by with duplicated data in the model, only addressable via QModelIndex.

Writable models thus become very complex, so that in this case you should always
choose reimplemented models. If this still seems too time consuming, you should
take a look at the element-based views.

250

8.11 Element-based Views Without Model Access

8.11 Element-based Views Without Model Access

Qt 3 programmers are used to every element in a view being represented by a
separate object. Although this concept is no longer up to date in Qt 4, there is
still a use for it in some areas, but usually it serves as a porting aid for Qt 3–based
applications that are converted only at a later stage to model/view programming.
For this reason Trolltech has developed an element-based class for each of the
Interview views that manages without an external model. To distinguish these from
normal views, we will call them view widgets from now on. We will discuss them
only briefly here, because for most purposes a standard model is just as suitable.

Internally, view widgets are based on the respective view classes, but they pro-
vide an extended API. Because this makes them completely autonomous, and they
require no further classes, they are called widgets.

In this way the QListView list view becomes the QListWidget, the counterpart to
the QTreeView list view is QTreeWidget, and the table view QTableView is called
QTableWidget in the independent version.

8.11.1 Items

Each entry in these view widgets is an instance of an element or item. For each
of the three widgets there are separate item classes that do not have a common
parent class. This also means that the data in a view widget in each case cannot be
used in the other two widget types without additional processing.

In order that the item classes remain lightweight, they do not inherit from QObject,
and, if they are not controlled by a view widget, they are therefore not part of the
automatic Qt memory management.

The item classes are each named according to the view widget to which they be-
long: QListWidgetItem is used as an entry in a list view, QTreeWidgetItem represents
an entry in a tree view, and QTableWidgetItem is responsible for displaying entries
in a table.

Each item has certain properties that can be selectively modified via its API. These
can be compared with roles, which we used to make distinctions in the data()
method of QAbstractItemModel (see Table 8.1). The setFont() method allows an-
other font to be used, so it corresponds to the Qt::FontRole, whereas setToolTip()
corresponds to the Qt::ToolTipRole. The items are basically pointer-based so they
must always be created on the heap.

8.11.2 The List View

Below we will insert a few names into a list widget. We create the view widget as
before when doing this, but we create the entries via QListWidgetItem. By passing

251

8 Displaying Data Using “Interview”

this to the view widget as the second argument, it takes over control of the item
and inserts it. For this reason we do not need to intercept the pointer returned by
new:

// listwidgetexample/main.cpp

#include <QtGui>

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

QListWidget listWidget;

new QListWidgetItem(QObject::tr("Antje"), &listWidget);

new QListWidgetItem(QObject::tr("Barbara"), &listWidget);

new QListWidgetItem(QObject::tr("Daniel"), &listWidget);

listWidget.show();

return app.exec();

}

There are two ways of instantiating a QListWidgetItem. You can call the item con-
structor, which expects a string or an icon, followed by a string as a parameter. A
suitable view widget can be passed optionally as the third parameter, into which
the item is inserted. The example uses an alternative constructor that gets by with-
out specifying an icon.

A more direct way is to use the addItem() method, which every view widget pos-
sesses. It expects a string, generates the item automatically, and inserts the item
into the view widget.

8.11.3 The Tree View

If you want to have a tree structure as a view widget, the QTreeWidget is used as a
base class, in which the number of columns is fixed from the beginning. We specify
this with setColumnCount(). Then we define the header, with setHeaderLabels().

We now insert the first item into the widget, as before, but we save the pointer. In
this way we can insert three child entries with the addChild() method of the item:

// treewidgetexample/main.cpp

#include <QtGui>

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

QTreeWidget treeWidget;

treeWidget.setColumnCount(1);

QStringList headerLabels;

headerLabels << "Namen";

252

8.11 Element-based Views Without Model Access

treeWidget.setHeaderLabels(headerLabels);

QTreeWidgetItem *parent =

new QTreeWidgetItem(&treeWidget,

QStringList(QObject::tr("Otto+Margit")));

parent->addChild(new QTreeWidgetItem

(QStringList(QObject::tr("Daniel"))));

parent->addChild(new QTreeWidgetItem

(QStringList(QObject::tr("Moritz"))));

parent->addChild(new QTreeWidgetItem

(QStringList(QObject::tr("Philipp"))));

treeWidget.expandItem(parent);

treeWidget.show();

return app.exec();

}

Before we display the widget, we first expand the parent item Otto+Margit by
calling the expandItem() slot. Otherwise the user would have to do this with the +
icon in front of the item. Now the view appears as shown in Figure 8.18.

Figure 8.18:

A simple tree view is

quickly implemented

with QTreeWidget.

Since tree views may have more than one column, most set methods expect the
column as the first argument from QTreeWidgetItem. The following instruction fills
the second column of an item called item with (new) text:

item->setText(1, tr("Text"));

In the same way, setIcon() inserts an icon and setFont() determines the font type
of the text. An exception is setFlags(), with which the properties listed in Table 8.2
on page 228 can be set. They refer to the entire row. It is therefore not possible
to provide individual columns with checkboxes: setFlags(Qt::ItemIsUserCheckable)
sets the box in the first column.

8.11.4 The Table View

The third and last ready-to-use view widget, QTableWidget, is based on QTableView
and uses QTableWidgetItem as an item class. The size of the table can be con-

253

8 Displaying Data Using “Interview”

veniently specified in the constructor. Items are inserted here with the setItem()
method, which expects a column and row number and the item itself as argu-
ments.

The following example creates a 3x3 table, in which each cell contains the product
of its column and row coordinates:

// tablewidgetexample/main.cpp

#include <QtGui>

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

QTableWidget tableWidget(3,3);

for (int row=0;row<tableWidget.rowCount(); row++)

for (int col=0;col<tableWidget.columnCount(); col++)

tableWidget.setItem(row, col,

new QTableWidgetItem(QString::number(row*col)));

tableWidget.show();

return app.exec();

}

8.11.5 Cloning Items

Often, you want to have items that are identical up to a certain point: the same
font type, the same icons, and so on, with only the text different each time. In
such cases the clone() method, contained in all item classes, is very useful. It allows
an item to be put together into a prototype, from which new items can then be
cloned. Then all you need to do is give the clone separate text and insert it into the
view widget:

// listwidgetexample2/main.cpp

#include <QtGui>

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

QListWidget listWidget;

// Setup a prototype

QListWidgetItem *proto = new QListWidgetItem;

proto->setFont(QFont("Times"));

proto->setTextColor(Qt::blue);

proto->setBackgroundColor(Qt::yellow);

// Clone and modify object, insert it

254

8.11 Element-based Views Without Model Access

// before everything else

QListWidgetItem *name = proto->clone();

name->setText("Antje");

listWidget.insertItem(0, name);

// Same procedure...

name = proto->clone();

name->setText("Daniel");

listWidget.insertItem(0, name);

// Use proto itself

name = proto;

name->setText("Barbara");

listWidget.insertItem(0, name);

// Sort the list

listWidget.sortItems();

listWidget.show();

return app.exec();

}

The sortItems() method sorts the already inserted items in descending order, so that
the names appear below each other, sorted in alphabetical order in the list widget.

255

9 Ch
ap

te
r

The QtSql Module

Nowadays, it is difficult to imagine many applications being able to function with-
out relational databases to back them up. For this reason Qt provides a range of
classes in the QtSql module that work with various relational database manage-
ment systems (DBMS). Relational tables and queries can also be used as the basis
of Interview models.

9.1 Structure of the QtSql Module

The QtSql module is an independent library that can load additional plugins if re-
quired. In contrast to QtCore and QtGui, its contents are not integrated by default
(with qmake -project) into the generated projects. In order to use the library, the
following entry is therefore necessary in the .pro file:

QT += sql

257

9 The QtSql Module

To be able to work with the classes of the module, Qt provides a meta-include for
this package as well, which contains all the class definitions from the module. The
command to integrate it into a source file is as follows:

#include <QtSql>

Each of the classes of the module belong to one of three layers. The driver layer im-
plements the interface between the drivers for various databases and the API layer
(see Table 9.1). This provides application developers with access to the databases
and enables typical SQL operations, such as browsing or modifying tables or query-
ing data.

In order to include the results of queries in Interview views, the user interface
layer provides models that are based on SQL tables or queries. Figure 9.1 provides
an overview of the layers and the classes belonging to them.

Figure 9.1:

The structure of the

QtSql module

User interface level

SQL API level

Driver level

QSqlQueryModel, QSqlTableModel,
QSqlRelationalTableModel

QSqlDatabase, QSqlQuery, QSqlError,
QSqlField, QSqlIndex, QSqlRecord

QSqlDriver, QSqlDriverCreator<T*>,
QSqlDriverCreatorBase, QSqlDriverPlugin, QSqlResult

9.2 Selecting the Appropriate Driver

Since the license of the client API for some database systems is not GPL-compatible,
a number of drivers are missing (marked in Table 9.1 with *)) in the open source
edition.

Table 9.1:

Drivers for QtSql
Driver name Database system

QDB2 IBM DB2 (Version 7.1 and newer)*)

QIBASE Borland InterBase

QMYSQL MySQL

QOCI Oracle Call Interface driver (versions 8, 9, and 10)*)

QODBC Open Database Connectivity (ODBC), used by Microsoft SQL
server and other ODBC-capable databases

258

9.2 Selecting the Appropriate Driver

continued

Driver name Database system

QPSQL PostgreSQL (version 7.3 and newer)

QSQLITE2 SQLite (version 2)

QSQLITE SQLite (version 3)

QTDS Sybase Adaptive Server*)

If the Qt version originates from packages of a Linux distribution, you may need
to install additional packages. Ubuntu stores the SQL library in the package libqt4-
sql, whereas OpenSUSE, in addition to installing qt-sql, requires a DBMS-specific
database package, such as qt-sql-mysql for MySQL.

If you build Qt from the sources, you should take a look at the output of ./configure
--help:

...

-Istring Add an explicit include path.

...

-qt-sql-<driver> Enable a SQL <driver> in the Qt Library, by

default none are turned on.

-plugin-sql-<driver> .. Enable SQL <driver> as a plugin to be linked

to at run time.

-no-sql-<driver> Disable SQL <driver> entirely.

Possible values for <driver>:

[db2 ibase mysql oci odbc psql sqlite

sqlite2 tds]

Auto-Detected on this system:

[sqlite]

...

By default Qt builds the driver modules as plugins for all systems found automati-
cally—in this case for SQLite. If you do not want to compile one of these explicitly,
the -no-sql-driver switch is used; for example, in the case of SQLite the switch
would be -no-sql-sqlite. Qt also includes its own SQLite version. If you want to
use a version of SQLite installed on the system instead, you must also specify the
-system-sqlite switch.

If ./configure cannot find an installed database system, despite the development
packages installed, then you can specify the include directory of the database sys-
tem with the -I switch, for example -I/usr/include/mysql, in the case of MySQL. It is
left to each user to decide whether a driver is built separately as a plugin (-plugin-
sql-driver) or compiled permanently into the library (-qt-sql-driver). Plugins are
more flexible, whereas compiled-in drivers are simpler to handle if the Qt library is
to be included in the program.

259

9 The QtSql Module

9.3 Making a Connection

The QSqlDatabase class is used to manage contact with the database server, and its
addDatabase() static method returns an instance of QSqlDatabase:

QSqlDatabase db = QSqlDatabase::addDatabase("QPSQL");

As an argument, addDatabase() expects at least the name of the database driver in
string form, thus something like ”QPSQL” for the Postgres driver. A QSqlDatabase
instance generated in this manner serves as the standard connection. If the pro-
gram needs to establish contact with more than one database, the addDatabase()
method additionally requires a connection name:

QSqlDatabase webdb =

QSqlDatabase::addDatabase("QMYSQL", "WebServerDB");

QSqlDatabase personaldb =

QSqlDatabase::addDatabase("QOCI", "PersonalDB");

QSqlDatabase embeddeddb =

QSqlDatabase::addDatabase("QSQLITE", "EmbeddedDB");

If this argument had been omitted in the variable definitions above, all three QSql-
Database instances would end up pointing to the SQLite database, since each ad-
dDatabase() call without additional parameters modifies the standard connection.

In the following example we set up a connection to a single MySQL server. We
establish a connection to a database on this server using a QSqlDatabase object
initialized with the relevant driver. To do this we declare the server name, the
name of the database, the username, and the password:

// sqlexample/main.cpp

#include <QtGui>

#include <QtSql>

#include <QDebug>

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

QSqlDatabase db = QSqlDatabase::addDatabase("QMYSQL");

db.setHostName("datenbankserver.example.com");

db.setDatabaseName("firma");

db.setUserName("user");

db.setPassword("pass");

if (!db.open()) {
qDebug() << db.lastError();

return 1;

}

260

9.4 Making Queries

The open() method establishes the connection to the database with this access
data. Whether the attempt to connect was successful or not is indicated by its
Boolean return value. In case of error, we can determine the reason for the con-
nection failure by using lastError(). The method returns an object of type QSqlError,
which qDebug() can read out. If you want to reuse this error object elsewhere, the
QSqlError class method text() can be used.

9.4 Making Queries

In the following examples we will work with two tables: The employees table holds
information on the employees in a company (Table 9.2), and the departments table
(Table 9.3) describes the various organizational units in the company.

Table 9.2:

The employees table

from the example

database

id last name first name department

1 Werner Max 1

2 Lehmann Daniel 2

3 Roetzel David 1

4 Scherfgen David 2

5 Scheidweiler Najda 2

6 Jueppner Daniela 4

7 Hasse Peter 4

8 Siebigteroth Jennifer 3

Table 9.3:

The departments table

from the example

database

id name

1 Management

2 Development

3 Marketing

4 Accounting

For database operations we use the QSqlQuery class. If a class used in the con-
structor is given an SQL command as a string, the instanced object immediately
carries out this statement. You can re-run the command stored in the query object
later on using exec() (for example, after modification to the database). If there are
several open connections, the QSqlQuery class accepts a QSqlDatabase instance as
a second parameter.

If the SQL operation was successful, the QSqlQuery object is regarded as active,
which can be checked with isActive(). If it has collected datasets, for example

261

9 The QtSql Module

through a SELECT query, you can navigate through them: first() jumps to the first
dataset, last() to the last one, next() to the next one, and previous() to the previous
one. With seek() you can address a specific dataset by specifying an integer index.
The number of datasets contained in the query object is revealed with size().

The QSqlQuery::record() method returns a QSqlRecord object. It contains infor-
mation on the response to a SELECT query. Using it we can learn, for example, the
numerical index of a specified column in the query result via QSqlRecord::indexOf().
We can use this index to read the value in that column of a dataset (row) in the
result with QSqlQuery::value(). The row is determined by the current position in
the query object, which we can retrieve using QSqlQuery::at() and change using
QSqlQuery::next().

// sqlexample/main.cpp (continued)

QSqlQuery query("SELECT firstname, lastname FROM employees");

QSqlRecord record = query.record();

while (query.next()) {
QString firstname =

query.value(record.indexOf("firstname")).toString();

QString lastname =

query.value(record.indexOf("lastname")).toString();

qDebug() << query.at() << ":" << lastname << "," << firstname;

}

For operations that change the contents of the database (such as UPDATE or DELETE),
numRowsAffected() returns the number of datasets involved:

// sqlexample/main.cpp (continued)

query.exec("DELETE FROM employees WHERE lastname = ’Hasse’");

qDebug() << query.numRowsAffected(); // "1"

Things are a little more complicated for INSERT instructions. Since these are used to
write values from the program’s own data structures to the database, it can be quite
complicated to construct a string containing the corresponding SQL instruction.
For this reason we take a different path: Using prepare() we save a template for the
desired command, equipped with placeholders, in the QSqlQuery object:

// sqlexample/main.cpp (continued)

query.prepare("INSERT INTO employees (lastname, firstname, department)"

"VALUES(:lastname, :firstname, :department)");

query.bindValue(":lastname", "Hasse");

query.bindValue(":firstname", "Peter");

query.bindValue(":department", 3);

query.exec();

262

9.4 Making Queries

The named wildcards in the VALUES part of the SQL command, originating from
the Oracle world, each begin with a colon. Using the bindValue() command we can
replace them with the specific values.

QSqlQuery can also handle the unknown parameters familiar from the ODBC using
addBindValue() . Each call to this method replaces one of the question marks in the
VALUES clause, in the order in which they appear:

// sqlexample/main.cpp (continued)

query.prepare("INSERT INTO employees (lastname, firstname, department)"

"VALUES(?, ?, ?)");

query.addBindValue("Schwan");

query.addBindValue("Waldemar");

query.addBindValue(3);

query.exec();

If you don’t want to specify the unknown values according to the sequence of
occurrence, you can use the following overloaded variant:

query.bindValue(2, 3);

query.bindValue(0, "Schwan");

query.bindValue(1, "Waldemar");

Here the first parameter specifies the position of the question mark to be replaced
in the prepare() string.

bindValue() also plays a central role in the use of stored procedures, because the
parameters of these procedures can be declared both as IN and as OUT. Parameters
declared as cmdOUT function as return values.

In order to access a return value, we must adjust the bindValue() method: The
value passed does not matter here, as it will be overwritten by the OUT value later.
But the QSql::Out specification, which tells QSqlQuery to overwrite the value, is
important here. After we have executed exec(), the value lies at the corresponding
position. We can check this with boundValue():

// sqlexample/main.cpp (continued)

query.prepare("CALL countEmployees(?)");

query.bindValue(0, 0, QSql::Out);

query.exec();

qDebug() << query.boundValue(0).toInt()

Unfortunately, this approach does not work correctly in MySQL 5, due to API lim-
itations. In order to access the OUT values under MySQL 5, we must make two
queries manually: First we run the stored procedure with CALL, and then we read
in the value produced, using SELECT. In order to refer to the value, in each case

263

9 The QtSql Module

we use a wildcard with @ as a MySQL-specific prefix, so that we can read out the
return value of the stored procedure as a dataset:

// sqlexample/main.cpp (continued)

query.exec("CALL countEmployees(@outwert)");

query.exec("SELECT @outwert");

query.next();

qDebug() << query.value(0);

return 0;

}

9.5 Transactions

Not all database systems support transactions, which combine several SQL opera-
tions into an atomic operation. To help the Qt programmer keep the code portable,
QSqlDriver can therefore be asked about its transaction capabilities with hasFea-
ture():

if (db.driver()->hasFeature(QSqlDriver::Transactions)) ... ;

If the driver supports transactions, you can introduce them with the QSqlDatabase
method transaction(). If all operations are completed, the transaction is closed with
commit(). If an error occurs, rollback() undoes all the operations of the current
transaction.

9.6 Embedded Databases

Qt’s SQLite driver enables data to be stored in a relational database and queried,
without an external database server. There are restrictions, of course, but the de-
mands made of embedded databases are usually less severe than those for databases
residing on dedicated servers, and SQLite is intended for just such situations. This
means that SQLite cannot handle stored procedures and does not scale as well as
its big brothers. It is well suited, however, to applications that need a basic rela-
tional data store. A perfect example is the KDE music player Amarok, which stores
metadata about pieces of music in a SQLite database.

To open a connection to a SQLite database, you only need to specify a database
name. The SQLite driver expects a filename in this case:

QSqlDatabase db = QSqlDatabase::addDatabase("QSQLITE");

db.setDatabaseName("firma.db");

264

9.7 Using SQL Model Classes with Interview

If the database should only remain in memory while the program is running, a tem-
porary database can be generated by enclosing the database name within colons,
as shown below. The :results: database will not not be saved as a file when the
program terminates:

QSqlDatabase db = QSqlDatabase::addDatabase("QSQLITE");

db.setDatabaseName(":results:");

You can work with this database as normal, with the understanding that any
changes made to it will later be lost. A temporary database does not need its
own data structures if the data is already of a relational nature.

9.7 Using SQL Model Classes with Interview

In order to display the contents of databases, table views are usually appropriate,
and in some cases, list views are as well. This is why the QtSql module has a range
of models for Interview (see Chapter 8 on page 207).

9.7.1 Displaying SQL Tables Without Foreign Keys in Table
and Tree Views

QSqlTableModel enables complete tables to be displayed directly in a table or tree
view. The column headers correspond to the field names (attributes, columns) of
the SQL table. In our personnel database from Table 9.2 on page 261, these are
id, first name, last name, and department. Each line corresponds to a dataset. To
illustrate this better, we will look at the following example, which assumes an open
standard connection:

// sqlmvd/main.cpp

...

QTableView tableView;

QSqlTableModel tableModel;

tableModel.setTable("employees");

tableModel.select();

tableModel.removeColumn(0);

tableView.setModel(&tableModel);

tableView.setWindowTitle("’employees’ table");

tableView.show();

First we create a table view and then the model. We allocate a table to it from the
current database and order it to fetch data with select(). Then we remove the id
column from the view using removeColumn() (Figure 9.2). This method originates

265

9 The QtSql Module

from QAbstractItemModel, the ultimate base class of all models. Finally, we bind
the model to the table view, give the table a name, and display it.

Figure 9.2:

QTableModel is

responsible for SQL

tables in Interview.

9.7.2 Resolving Foreign Key Relations

QSqlRelationalTableModel extends the functionality of the table model for use with
relational databases. In addition, objects in this class set off foreign key relations.
We can use these to replace the uninformative number shown in the department
field with the name of the department, by making use of the departments table
(see Table 9.3 on page 261).

Figure 9.3:

QSqlRelationalTa-

bleModel records the

foreign key field id

with the help of a

second table.

To describe this relation, the setRelation() method is used: It expects the number
of the column containing the foreign key as the first argument. In our exam-
ple, the value in the name field from the departments table should appear in the
third column instead of the value in the foreign key field (that is, the id field) of
the departments table. This information is encapsulated in the instance rel of the
QSqlRelation help class, which we pass to setRelation() as the second argument.

266

9.7 Using SQL Model Classes with Interview

Now we can start the query via select(), bind the model to the view, and display the
results, as in the previous example:

// sqlmvd/main.cpp (continued)

QTableView tableRelationalView;

QSqlRelationalTableModel tableRelationalModel;

tableRelationalModel.setTable("employees");

QSqlRelation rel("departments", "id", "name");

tableRelationalModel.setRelation(3, rel);

tableRelationalModel.select();

tableRelationalView.setModel(&tableRelationalModel);

tableRelationalView.setItemDelegate(

new QSqlRelationalDelegate(&tableRelationalView));

tableRelationalView.setWindowTitle(

"Tables with resolved relations");

tableRelationalView.show();

This is now followed by a peculiarity that only functions in combination with QRe-
lationalTableModel: A special delegate called QSqlRelationalDelegate allows the
user to select the value from a list when editing columns for which a relation is
defined (Figure 9.3). It compiles these independently from the QSqlRelation used.
In the example it takes suggestions from the name column; the value written back
to the table, on the other hand, comes from the id column.

9.7.3 Displaying Query Results

To display the results of particularly complex SELECT queries that cannot simply
be modeled on a QSqlTableModel with a filter, make use of the QSqlQueryModel.
The following example evaluates how many employees the company has in each
department. In addition the columns should bear descriptive names, as can be seen
in Figure 9.4.

Figure 9.4:

QSqlQueryModel is

used as a source for

queries of all types in

Interview.

267

9 The QtSql Module

After instantiating the model, we pass the query as a string to setQuery(). Alterna-
tively, we could use a QSqlQuery object.

Since errors can occur in more complex queries, we should introduce an error check
immediately after the query executes. lastError() returns the last error announced
by the SQL server in an QSqlError object. If this is valid, an error has occurred, which
we can display with qDebug():

// sqlmvd/main.cpp (continued)

QTableView queryView;

QSqlQueryModel queryModel;

queryModel.setQuery("SELECT departments.name, "

"COALESCE(COUNT(employees.lastname),0) "

"FROM departments LEFT JOIN employees "

"ON employees.department = departments.id "

"GROUP BY employees.department");

if (queryModel.lastError().isValid())

qDebug() << queryModel.lastError();

queryModel.setHeaderData(0, Qt::Horizontal,

QObject::tr("department"));

queryModel.setHeaderData(1, Qt::Horizontal,

QObject::tr("employee count"));

queryView.setModel(&queryModel);

queryView.setWindowTitle("employee count per department");

queryView.show();

We can achieve user-friendly column headers by replacing the first two column
headers withsetHeaderData().1 Then we bind the model to the view and display the
view, as before, with a customized heading.

9.7.4 Editing Strategies

All of these table models are writable. However, we have not yet looked closely at
the point in time when the model writes the data back to the database.

QSqlTableModel and QSqlRelationalTableModel know three editing strategies, which
are allocated to models using setEditStrategy(). They are as follows:

SqlTableModel::OnRowChange
This is the default in all models. If this strategy is active, the model sends an

1 This can also be done with the SQL instruction AS, of course, but then you would have to
ensure, via tr(), that the query can be internationalized; otherwise, the column headers cannot
be transferred to other languages.

268

9.7 Using SQL Model Classes with Interview

UPDATE for the dataset as soon as the user selects another dataset—that is,
another row in the view.

SqlTableModel::OnFieldChange
This transfers every change to the database directly after the user has changed
a value in a field.

SqlTableModel::OnManualSubmit
This temporarily saves all changes in the model until either the submitAll()
slot, which transfers all changes to the database, or the revertAll() slot is
triggered. The latter rejects all cached data and restores the status from the
database (see Chapter 9.7.5 on page 270 for more on the revertAll() slot).

We will illustrate this last scenario by modifying the example from page 265 so
that it additionally contains two buttons that are arranged in a layout beneath the
table view. All other commands are left as they are.

// sqlmvd/main.cpp (continued)

QWidget w;

QPushButton *submitPb = new QPushButton(

QObject::tr("Save Changes"));

QPushButton *revertPb = new QPushButton(

QObject::tr("Roll back changes"));

QGridLayout *lay = new QGridLayout(&w);

QTableView *manualTableView = new QTableView;

lay->addWidget(manualTableView, 0, 0, 1, 2);

lay->addWidget(submitPb, 1, 0);

lay->addWidget(revertPb, 1, 1);

QSqlTableModel manualTableModel;

manualTableModel.setTable("employees");

manualTableModel.select();

manualTableModel.setEditStrategy(

QSqlTableModel::OnManualSubmit);

manualTableView->setModel(&manualTableModel);

QObject::connect(submitPb, SIGNAL(clicked(bool)),

&manualTableModel, SLOT(submitAll()));

QObject::connect(revertPb, SIGNAL(clicked(bool)),

&manualTableModel, SLOT(revertAll()));

w.setWindowTitle("manually revertable table");

w.show();

return app.exec();

}

After converting the editing strategy to OnManualSubmit, we insert two signal/slot
connections: A click on the submitPb button calls the submitAll() slot, whereas
revertPb triggers revertAll().

269

9 The QtSql Module

Figure 9.5:

With the

OnManualSubmit

editing strategy, local

changes can be

transferred at any

time you want to the

database.

Now we must not forget to display the main widget w as the new top-level widget.
The result is illustrated in Figure 9.5.

9.7.5 Errors in the Table Model

Several problems that occur in connection with the table models in Qt 4.1 should
not be left unaddressed at this point. One is that editor operations do not always
function reliably after columns have been removed. The QSqlRelationalTableModel
even ignores the removeColumn() instruction entirely. As a workaround, a proxy
model that filters out the unwanted datasets is recommended here. If the data
should only be displayed, you can instead simply place an SQL query above the
QSqlQueryModel.

Another problem involves the revertAll() slot, which is intended to undo all changes
in relational tables with the OnManualSubmit editing strategy. However, in the
columns in which a foreign key relation was previously defined with setRelation(),
revertAll() does not revert back to the old values. The only solution until now
was to connect the slot of the button with a custom-developed slot that replaces
the current model with a new one that has the same properties. Since the model
temporarily saves the data, it will be lost in this way, and the new model will display
the original data from the database.

270

10 Ch
ap

te
r

The Graphics Library “Arthur”

This chapter looks at the drawing methods of the class library that Trolltech has
baptized “Arthur,” presumably as a reference to Microsoft’s “Avalon” technology. In
this chapter we will work with examples that let us observe how Qt “paints” on
buffers in the graphics and main memory as well as on widgets and other devices,
and we will introduce in detail the classes belonging to Arthur, together with their
classic fields of application. But first we must explain more precisely how drawing
really works in Qt. First we will look at the color specifications used by Qt.

10.1 Colors

Color specifications are of central importance in graphic interfaces, including the
issues of how colors are generated and how known colors are named so that you
can work with them efficiently. The following section is devoted to the question of
how developers can manage colors.

271

10 The Graphics Library “Arthur”

10.1.1 The RGB Color Space

Qt encapsulates colors in the QColor class. This is based on the RGB model, in
which 8 bits, representing a range of values from 0 to 255, are allocated to a color.
In addition, QColor specifies another value, the so-called alpha value, also referred
to as the alpha channel. This defines the transparency of a pixel.

QColor can also work with values other than integers. For each color command
that accepts an integer, there exists a floating-point variation that allows col-
ors to be specified more precisely. Whenever a QColor method that expects in-
teger color information is discussed below, you can always substitute an associ-
ated floating-point variant instead, which accepts qreal values. For example, the
setRgb() method, which expects three integer values for the red, green, and blue
color components and takes an optional alpha value, has a corresponding floating-
point equivalent called setRgbF().

There are several ways to generate a new QColor object. The basic QColor() con-
structor creates an object with an invalid color. Furthermore, there is a constructor
that accepts colors described using integers. The semantics here correspond to
those of setRgb(). There is no separate constructor that takes floating-point num-
bers as arguments, since this would be ambiguous, as C++ automatically converts
integer values to floating-point values. To initialize a color with floating-point val-
ues, you first create an empty (and initially invalid) QColor object, and then set
color via setRgbF().

Earlier examples often used yet another constructor that accepts a color chosen
from 20 predefined colors that are defined in the GlobalColor enumerator. This
enumeration also includes values describing a number of special cases: The “color”
Qt::transparent, for example, corresponds to QColor(0, 0, 0, 0) and allows a back-
ground color to show through.

In addition, QColor can deduce the desired color from a name, as defined in the
SVG-1.0 specification.1 For this purpose the class has a constructor that accepts
a QString or a string. The setNamedColor() method works in the same way. This
option permits a named color to be set later on, as illustrated in the following
example:

QColor color("navy"); // sets a dark blue

color.setNamedColor("royalblue"); // sets a light blue

The names of all available named colors are returned by QColor with the color-
Names() method.

Finally, QColor has a constructor that accepts a QRgb value. QRgb in this case is
not a class name, but a name, given by a type definition, for a 32-bit integer. Given
such a value as an argument, this constructor sets the RGB values and the alpha

1 See http://www.w3.org/TR/SVG/types.html#ColorKeywords.

272

10.1 Colors

value of the new QColor instance to the values encoded in the QRgb variable.
The advantage of QRgb as a lightweight alternative for transporting RGB color
information is particularly evident whenever large amounts of pixel data from an
image need to be read in.

QRgb divides the available bits in the 32-bit integer into four integer color values,
each consisting of eight bits representing values from 0 to 255. This is done as
follows, in hexadecimal notation (“A” = alpha value, “R” = red, “G” = green, “B” =
blue):

0xAARRGGBB

You do not have to construct your own QRgb values, however: The help functions
qRgb() and qRgba() take on this task and expect the color details to be provided
in three integer arguments, as values between 0 and 255. qRgba() expects the al-
pha channel as the fourth argument. qRgb() omits the specification of the alpha
channel, and sets this component of the constructed QRgb value to 255 (corre-
sponding to an opaque, that is, a nontransparent, color). You can then access the
individual QRgb components via QRgb::qRed(), QRgb::qGreen(), QRgb::qBlue(), and
QRgb::qAlpha(). These functions return values from 0 to 255.

The following example creates a red, semitransparent QRgb value and passes it to
a QColor object, from which we read out the colors and the alpha channel with the
rgba() function and write it back to the QRgb variable:

QRgb rgba = qRgba(255, 0, 0, 127); // A=127, R=255, G=0, B=0

QColor color = QColor::fromRgba(rgba);

rgba = 0; // A=0, R=0, G=0, B=0

rgba = color.rgba(); // A=127, R=255, G=0, B=0

It is important here to use the fromRgba() static method because the standard
constructor, which accepts a QRgb value, ignores the alpha channel.

10.1.2 Other Color Spaces

In addition to RGB, QColor can also use the HSV model, which defines a color
through hue, saturation, and brightness (or value) parameters. (HSV is therefore
sometimes also referred to as HSB, where the B stands for brightness, which is
actually a more precise term for the third parameter.) The HSV model corresponds
most closely to the human perception of color composition.

To make use of it, we must accordingly convert the color, via toHsv(). Then we can
read out the HSV parameters, either componentwise via hue(), saturation(), value(),
and alpha(), or all at the same time, using getHsv():

273

10 The Graphics Library “Arthur”

QColor red(Qt::red);

QColor red = red.toHsv();

int h, s, v, a;

red.getHsv(&h, &s, &v, &a);

// HSV values now in h, s, v, a

To specify a color in the HSV model, we have the setHsv() method, which expects
the three HSV components as integers and, optionally, the alpha channel. If the
alpha value is missing, QColor assumes it to be 255, that is, opaque.

QColor is also able to accept CMYK specifications and to display colors specified in
CMYK format. Since there are differences between the color spaces of the RGB and
CMYK models, however, and CMYK is a subtractive color model whereas RGB is an
additive one, not all colors can be represented in both color models. In cases where
there is no exact equivalent for a desired conversion from one system to the other,
Qt tries to approximate the color as closely as possible.

To obtain the CMYK representation of a color, it is sufficient to read out the four
color components and the alpha channel, with getCmyk():

QColor red(Qt::red);

int c, m, y, k, a;

red.getCmyk(&c,&m,&y,&k,&a);

// CMYK values now in c, m, y, k, a

Here Qt calculates the matching four-color values in getCmyk() from the QColor’s
internally stored RGB parameters. If a routine of an application program requires
the color to be specified in a color model other than RGB particularly often, QColor
can also represent it internally in CMYK or HSV. In these cases, no resources are used
for conversion when the color is accessed via getCmyk() or getHsv(), respectively,
but their interpretation as RGB colors is resource intensive. To convert to another
color model, the methods toHsv(), toCymk(), and toRgb() are used. The conversion
can be done at any time before the corresponding color is accessed:

QColor red(Qt::red);

// convert to CMYK internally

QColor red = red.toCmyk();

int c, m, y, k, a;

// no conversion required, already converted

red.getCmyk(&c,&m,&y,&k,&a);

// CMYK colors now in c, m, y, k, a

You should only convert permanently to another color model, however, if you have
good reason to do so—internally, Qt uses the RGB model nearly everywhere, which
explains why a class is slower in operation after the internal representation of the
colors it uses is changed from RGB to another color model.

The setCmyk() method defines a color with CYMK details, and, in the same way as
getCmyk(), reads in four colors and, optionally, the alpha channel.

274

10.1 Colors

10.1.3 Color Selection Dialog

The color selection dialog QColorDialog (Figure 10.1, left) is specialized for the se-
lection of colors described using the RGB model.2 Its API has static methods only.
To read out an RGB value, getColor() is used:

QColor color = QColorDialog::getColor(Qt::red, this);

The first parameter defines the color that the dialog initially selects, and the second
describes the obligatory parent widget, which can also be 0 if the modality of the
dialog does not play any role. If the user interrupts the dialog, the method returns
an invalid color, which in this case can be checked with !color.isValid().

Figure 10.1:

QColorDialog::

getRgba() (right)

differs from QColor-

Dialog::getColor() (left)

only in the input field

for the alpha channel.

Another method called getRgba() can be used to define the alpha channel for a
color (Figure 10.1, on the right):

bool ok;

QRgb rgb = QColorDialog::getRgba(qRgba(255,0,0,127), &ok, this);

QColor color(rgb);

In contrast to getColor(), this method expects a QRgb value. Since QRgb has no
dedicated value for “invalid,” getRgba() again has an ok parameter, which is set to
false if Cancel is clicked. In this case getRgba() returns the default value passed. The
last line shows how you can store a QRgb value (together with its alpha channel)
in a QColor object.

bool ok;

QColor color = Qt::red;

color.setAlpha(127);

color = QColorDialog::getRgba(color.toRgba(), &ok, this);

2 An HSV selection dialog is available as a commercial Qt solution.

275

10 The Graphics Library “Arthur”

QColorDialog allows a number of your own colors, in addition to the default color,
to be stored in a separate palette. The number of fields available is defined by the
QColorDialog::customCount() static method.

To set a color in this palette, the setCustomColor() is used. This method expects the
palette position and the color as a QRgb value. The following call loads the first
position of the palette with a semitransparent red tone:

QColorDialog::setCustomColor(0, qRgba(255, 0, 0, 127));

customColor() calls up the color in your custom palette at a particular position.
This method returns the QRgb value set for the index specified:

QRgb QColorDialog::customColor(0);

Once they are set, the colors apply for the entire lifetime of the application for all
QColorDialog calls.

10.2 Painting with Qt

We will now take a look at the classes that paint colors in specific shapes. As in real
life, painting tools and a drawing board are necessary.

Figure 10.2:

The base class

QPaintDevice and its

specializations

QBitmap

QPixmap QPicture QImage QPrinter QWidget

QPaintDevice

Painting tools are bundled by Qt into the QPainter class. This can be used to both
draw simple brushstrokes and handle more complex geometric forms, as well as
bitmaps. A wide range of classes are eligible for use as the drawing areas targeted
by QPainter operations. They are descendants of the QPaintDevice class. Each
QPaintDevice can therefore be a recipient for QPainter operations. These include,
among others, all widgets and pixmaps, as well as the print interface, QPrinter. An
extensive overview is shown in Figure 10.2.

To start, here is a small program that draws a filled-in circle:

// pixmap/main.cpp

#include <QtGui>

276

10.2 Painting with Qt

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

QPixmap pm(100,100);

pm.fill();

QPainter p(&pm);

p.setRenderHint(QPainter::Antialiasing, true);

QPen pen(Qt::blue, 2);

p.setPen(pen);

QBrush brush(Qt::green);

p.setBrush(brush);

p.drawEllipse(10, 10, 80,80);

QLabel l;

l.setPixmap(pm);

l.show();

return app.exec();

}

First we create an empty QPixmap object. The contents of this are initially unde-
fined, which is why we fill it with a basic color; when it is called Without a fill color
as an argument, fill() uses white.

Figure 10.3:

Anti-aliasing

minimizes formation

of staircase artifacts.

Now it is the painter’s turn: It performs the actual drawing operations. So that
the circle looks really round, and not square-edged, we switch on anti-aliasing.
This technique smooths the edges through color gradients, thus minimizing the
formation of steps (Figure 10.3). Before setting the QPainter::Antialiasing flag to
true, you should bear in mind that this can lead to significant loss of performance,
particularly under X11.

Two significant properties of a painter are contained in additional classes. The QPen
defines how the painter draws lines. In contrast to this, the paintbrush, in the form
of a QBrush, describes how an area is filled, together with patterns and textures.

In our case we will use a blue pen, two pixels wide. We define the paintbrush color
as green, without a pattern or texture. We can already define these properties via

277

10 The Graphics Library “Arthur”

the constructors. Then we bind these new definitions to the painter with setPen()
and setBrush().

Finally we use a QPainter drawing method to actually draw the circle. drawEllipse()
draws a circle, starting from the coordinates (10, 10), in a square of 80×80 pixels.
Since we have set the size of the whole image to 100×100 pixels, the circle is right
at the center of the picture. Qt adheres to the standard programming convention
in which the coordinates (0, 0) specify the top left corner of the current reference
system. In our case this is the top left corner of the pixmap defined.

Figure 10.4:

Our pixmap in a

simple label

We display the resulting image in a QLabel, which can display pixmaps as well as
text if you use the setPixmap() method instead of setText(). (This method expects a
reference to a QPixmap.) The result is shown in Figure 10.4.

10.3 Geometrical Helper Classes

In the examples just mentioned, we have placed the circle, using

p.drawEllipse(10, 10, 80, 80);

in a square with the side lengths of 80 × 80 pixels, the left top corner of which is
at the point (10, 10). If we had chosen two different values for height and width,
this would have resulted in a bounding rectangle instead of a bounding square—
and drawEllipse() would have drawn an ellipse. To describe other geometric objects,
Qt provides the classes QPoint, QSize, QRect, and QPolygon.

The QPoint class saves two coordinates, without reference to an external system.
QSize, on the other hand, also combines two parameters passed in the constructor,
but interpreted as a height and a width instead of as coordinates, again without
defining a reference point. These object types are united by the QRect class, which
generates a rectangle: When passed a QPoint and a QSize as arguments, the QRect
constructor instantiates a corresponding rectangle. Alternatively, you may use an

278

10.3 Geometrical Helper Classes

overloaded constructor and specify the (x, y) position for the top left corner of
the rectangle and the height and the width of the rectangle, in the form of four
integers.

In case a rectangle is to be defined not via its attachment point and details of
its length and width, but by specifying a top left and bottom right point, QRect
provides another constructor that expects this pair of coordinates in the form of
two QPoints.

The QPolygon constructor takes a number of points and sketches out a polygon,
edge by edge, as determined by the pairs of consecutive points. This class is a spe-
cial case of QVector<QPoint> and includes a series of useful methods. For example,
QPolygon::boundingRect() defines the smallest possible rectangle that contains all
the points of the polygon.

There are also floating-point variants of all these classes: QPointF, QSizeF, QRectF,
and QPolygonF, which provide for increased precision.

Instead of supplying drawEllipse() with rectangle parameters, as above, you can use
an alternative version of the method that accepts a QRect as an argument:

QRect rect(10, 10, 80, 80)

p.drawEllipse(rect);

The advantage of this notation becomes clear as soon as several actions take place
within the same coordinates, for example, if another geometric figure is to be
added. Practical use of the classes discussed so far is illustrated by the following,
slightly modified example:

// pixmap2/main.cpp

#include <QtGui>

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

QRect r(0,0, 100, 100);

QPixmap pm(r.size());

pm.fill();

QPainter p(&pm);

p.setRenderHint(QPainter::Antialiasing, true);

QPen pen(Qt::red, 2);

p.setPen(pen);

QBrush brush(Qt::blue);

p.setBrush(brush);

QRect ri = r.adjusted(10,10,-10,-10)

p.drawEllipse(ri);

QLabel l;

l.setPixmap(pm);

279

10 The Graphics Library “Arthur”

l.show();

return app.exec();

}

Here the rectangle r forms the global reference system to which everything else is
aligned. The constructor of the corresponding pixmap stretched out by this expects
merely a size detail. Accordingly, we pass the size of the rectangle, with r.size(), as
QSize.

To draw the ellipse, we generate a rectangle shrunk by 10 pixels on each edge,
which we can use for other drawing operations.3 The adjusted() function, with
r as the reference system, generates the coordinates for a new rectangle: This is
done by moving from the top left corner 10 pixels to the right and 10 pixels down,
from the lower right corner 10 pixels to the left (since this is a negative value) and
10 pixels upwards, and moving the edges in parallel with r until they lie on these
points.

Qt stores drawing paths in instances of the QPainterPath class; they are provided
for creating more complex geometric objects, for which several of these primitives
are necessary. A QPainter object can use these paths to fill a described area, to cut
that shape out of some other area,4 or to simply draw a corresponding outline.

10.4 How to Paint on Widgets

As can be seen in the inheritance diagram in Figure 10.2, QWidget, and therefore
all widgets, are also QPaintDevices. This brings us to the most important question
in this chapter: How can you paint on widgets?

To explain this, we recommend a brief tour of event handling in Qt. If the user
starts a program, calls a dialog, alters the interface, or terminates a program in
the current window, the graphics subsystem of the operating system requests the
application to redraw the corresponding window or regions. For this purpose it sets
off a paint event.

Qt then calls the paintEvent() method for the widgets involved. This method de-
scribes how the widget is drawn. The paintEvent() expects a QPaintEvent object
as an argument. This object is only relevant for more complex widgets: With a
complex widget it can often be worthwhile to redraw only the parts that need to
be updated. To do this, the class has two methods: region() reveals which region
of the widget needs to be redrawn, and rect() returns a rectangle that encloses this
region.

3 Scaling would also be possible via a matrix transformation. Qt enables this via the QMatrix
class, which we will introduce on page 290.

4 We will look at this process, also known as clipping, on page 307.

280

10.4 How to Paint on Widgets

For our simple example, we do not need these details. The declaration part of the
code appears as follows:

// widgetpaint/paintwidget.h

#include <QWidget>

class PaintWidget : public QWidget

{
Q_OBJECT

public:

PaintWidget(QWidget* parent = 0);

˜PaintWidget() {};

virtual void paintEvent(QPaintEvent*);

virtual QSize sizeHint() const {return QSize(200,200);}
};

Here we first override paintEvent(). In addition we redefine the return value of the
sizeHint() method. This ensures that we have a square, at least when the program
starts, in which drawEllipse() then draws a circle. Otherwise, sizeHint() would be
oriented according to the layout into which the widget is inserted, or else return
an invalid size if no layout is responsible for the widget. In these cases we would
thus not have ensured that height and width were identical.

Qt uses the size hint supplied by sizeHint() when displaying the widget, unless
another layout forces a different size. In the current example we will force neither
a permanent fixed size nor a fixed page ratio, so that the circle may turn into an
ellipse if the widget is enlarged or if it is fitted into a layout.

If you can manage with just a widget of a fixed size, you can simply use the QWid-
get method setFixedSize(), which accepts either a QSize container object or integers
specifying the details of height and width. If you call setFixedSize() in a widget’s
constructor, you don’t need to reimplement sizeHint(). In this case even layouts
cannot change the size of the widget in this case.

The problem can also be solved more flexibly with a separate layout class, which
guarantees a fixed page ratio.

From the above example it soon becomes clear what an advantage it is to define
the circle relative to a fixed reference system, in this case the frame of our widget:
The circle now grows and shrinks automatically, relative to the widget’s size.

If overriding sizeHint() does not work, for whatever reason, it is essential that you
check whether you may have forgotten the keyword const. The compiler will oth-
erwise generate a nonconstant variant of the method, which is also valid in C++,
but is something different, which is why it does not issue a warning.

In the implementation part of our example’s code, we are only interested in the
definition of the paintEvent() method:

281

10 The Graphics Library “Arthur”

// widgetpaint/paintwidget.cpp

void PaintWidget::paintEvent(QPaintEvent* ev)

{
QWidget::paintEvent(ev);

QPainter p(this);

p.setRenderHint(QPainter::Antialiasing, true);

QPen pen(Qt::blue, 2);

p.setPen(pen);

QBrush brush(Qt::green);

brush.setStyle(Qt::Dense4Pattern);

p.setBrush(brush);

QRect ri = rect().adjusted(10,10,-10,-10);

p.drawEllipse(ri);

}

We first forward the paint event ev, passed in the call to PaintWidget::paintEvent(),
to the corresponding method of the parent class in the inheritance line, which in
this case is QWidget::paintEvent(). This is the first thing to be drawn.

Then we instantiate a Painter on the stack and treat this as discussed in Section
10.2. The only difference consists in the selection of our reference system. Now
this is no longer chosen artificially, but depends dynamically on the environment
dimensions of the widget, which QWidget::rect() returns to us as a rectangle.

Figure 10.5:

Drawing directly: Our

example uses a

QPainter to paint

directly on a widget.

We now redraw our circle, but this time on the PaintWidget instead of on a pixmap.
The result can be viewed in Figure 10.5. As a further detail, this time our paintbrush
is not completely green, but displays a pattern (Qt::Dense4Pattern). Paintbrushes
can generate patterns, tiles, and gradients; the examples to come will further illus-
trate this.

In this context we should mention that it is worthwhile to store the actual charac-
ter code in helper methods: From our experience, paintEvent() can grow rapidly, so
you can quickly lose track of what’s happening there.

10.4.1 How to Prevent Monitor Flicker

To display the graphics drawn with QPainter without flicker on the monitor, Qt 4
uses a technique called double buffering. During this procedure, all QPainter op-

282

10.5 Using QPainter in Practice

erations first land in a memory buffer that is not displayed. Only when all painting
operations are finished does Qt copy the buffer’s contents to the screen. Double
buffering thus elegantly prevents the user from seeing an unpleasant flicker on
the screen caused by the multiple steps needed to update the screen as objects are
redrawn.

If, under X11, you want to implement double buffering yourself, you can switch off
automatic double buffering by Qt with the following instructions:

extern void qt_x11_set_global_double_buffer(bool);

qt_x11_set_global_double_buffer(false);

This is only useful in specific cases, for example, if part of the program uses a
different rendering library. Otherwise, double buffering is always switched on, on
all platforms, and should be left that way.

10.5 Using QPainter in Practice

As we have now become familiar with the geometry classes and the underlying
capabilities of QPainter, it is time to put them to the test in a practical example.

We will write a PieWidget class, which paints a pie chart together with its legend
on a widget and calculates the size required for both parts (Figure 10.6). It uses the
sizeHint() and minimumSizeHint() methods to do this.

Figure 10.6:

A pie chart with

legend

We implement the actual drawing process in paintEvent(), and the widget obtains
the data necessary for this from a QHash. This is an associative data structure that
connects a key to a value.

In the values associative hash, the name (a QString) serves as the key and the
integer as the corresponding value. From a semantic point of view, the key is the
legend entry, and the integer value is the associated number:

// piechart/piewidget.h

#ifndef PIEWIDGET_H

283

10 The Graphics Library “Arthur”

#define PIEWIDGET_H

#include <QWidget>

#include <QHash>

class PieWidget : public QWidget {
Q_OBJECT

public:

PieWidget(QWidget *parent=0);

QSize sizeHint() const;

QSize minimumSizeHint () const;

void addEntry(const QString& key, int val);

protected:

void paintEvent(QPaintEvent *ev);

private:

QHash<QString, int> values;

};

#endif // PIEWIDGET_H

10.5.1 Drawing a Pie Chart

In this specific case we will populate the values hash table with data from a fic-
titious survey on the most important goals in life, as can be seen in Figure 10.6.
Questions here serve as the key, and the associated values are the number of peo-
ple who made the corresponding choice.

In the constructor we only perform the initializations for the parent class. The
addEntry() method allows new values to be entered into the hash table:

// piechart/piewidget.cpp

#include <QtGui>

#include "piewidget.h"

PieWidget::PieWidget(QWidget *parent)

: QWidget(parent)

{
}

void PieWidget::addEntry(const QString& key, int val) {
values.insert(key, val);

}

Before we take a look at the details of paintEvent(), we must think about how to di-
vide up the widget. The pie charts must always be round, so here the height should

284

10.5 Using QPainter in Practice

be the same as the width. The legend part should always be as wide as the longest
text in the hash. The minimum height is calculated from the number of legend
entries and their vertical spacing. The handler for the paint event and the reim-
plemented methods sizeHint() and minimumSizeHint() must take these conditions
into account.

Before we can start painting, we first calculate the sum of all the values. We’ll need
this later on to calculate (using a rule of three calculation) how much of the pie
the current segment should take up:

// piechart/piewidget.cpp (continued)

void PieWidget::paintEvent(QPaintEvent * /*ev*/)

{
// calculate total

QHash<QString, int>::const_iterator it;

int total = 0;

for(it = values.begin(); it != values.end(); ++it)

total += it.value();

// prepare painter

QPainter p(this);

p.setRenderHint(QPainter::Antialiasing, true);

We now instantiate the Painter and assign it the current widget (this) as the paint
device. We also enable anti-aliasing.

Drawing Segments of the Pie

We also need to have a series of colors for the different pie segments in the dia-
gram. To do this we access the colorNames() method, which gives us all the colors
predefined in QColor. We also introduce the colorPos variable, which will later be
used to select an element from the list. We initialize it with 13, because from this
point onward there are several pleasant pastel colors in succession (in practice you
would probably define a list with your own colors):

// piechart/piewidget.cpp (continued)

// prepare colors

QStringList colorNames = QColor::colorNames();

int colorPos = 13; // pastel colors

int height = rect().height();

QRect pieRect(0, 0, height, height);

Then we define the dimensions of the chart. These should exactly match the height
of the widget. We obtain this height value from the current size of the widget:

285

10 The Graphics Library “Arthur”

rect() returns the size in the form of a QRect(), and we can extract the height from
this with height().

pieRect is now initialized to contain the rectangle in which we will later draw our
pie chart. We reserve the space remaining in the width for the key. We obtain
the corresponding rectangle by first copying the measurements of the widget, with
rect(), and then subtracting the width of pieRect from this square on the left side,
with setLeft():

// piechart/piewidget.cpp (continued)

// dedicate right half to legend

QRect legendRect = rect();

legendRect.setLeft(pieRect.width());

legendRect.adjust(10,10,-10,-10);

With the adjust() call we move ten pixels further inward from all sides, so the
rectangle becomes smaller. This has the effect that we obtain ten pixels of space
from the outer edges and from the right side of the pie graphics.

This causes the geometries for both parts of the widget to be dependent on the
current widget size, and we proceed to draw the segments of the pie and the
legend entries belonging to it, entry for entry. We need two help variables to do
this. lastAngleOffset specifies the angle in the circle where we previously stopped
drawing. We also require currentPos later to draw the key entry at the correct
position:

// piechart/piewidget.cpp (continued)

int lastAngleOffset = 0;

int currentPos = 0;

// create an entry for every piece of the pie

for(it = values.begin(); it != values.end(); ++it) {
int value = it.value();

QString text = it.key();

int angle = (int)(16*360*(value/(double)total));

QColor col(colorNames.at(colorPos%colorNames.count()));

colorPos++;

// gradient for the pie pieces

QRadialGradient rg(pieRect.center(), pieRect.width()/2,

pieRect.topLeft());

rg.setColorAt(0, Qt::white);

rg.setColorAt(1, col);

p.setBrush(rg);

QPen pen = p.pen();

p.setPen(Qt::NoPen);

286

10.5 Using QPainter in Practice

p.drawPie(pieRect, lastAngleOffset, angle);

lastAngleOffset += angle;

We again iterate through the hash and remember the keys and values. For each
entry in the hash table we can determine how many degrees of the circle are to
be apportioned to the current segment of pie. The value stored in the current
key, divided by the total sum, results in the fraction that this value represents.
Multiplied by 360, this reveals how many degrees the segment of pie to be drawn
takes up. It only remains to be explained from where the additional factor of 16
comes. This is due to a peculiarity of the drawPie() method, which expects its details
in parts of 1

16 th of a degree, for reasons of precision. angle therefore contains the
actual number of degrees, multiplied by 16.

We then select the current color using the colorPos variable from the colorNames
list. With a modulo calculation (%), we ensure that under no circumstances do we
overwrite the end of the list, which means that if we were to run out of colors, we
would just start assigning the current color from the beginning of the list again.

The next step is to define the form and color of the paintbrush and pen. Whereas
we always used a continuous color for the paintbrush, we will now change to a
gradient. Qt has several predefined gradient types. Here we will use a radial one.

This gradient has a center, a diameter, and a focus. We specify the center as the real
center of pieRect, and we also determine the diameter via pieRect(). So that the
gradient later “creases” the edge of the pie chart circle, thus creating the impression
of spatial depth, we place the focus to the edge of the upper left region. We achieve
this by specifying a region, with pieRect.topLeft(), which actually lies outside the
pie. Between the center and the outer edge, we must also define at least two values
for the course of the gradient. We do this using setColorAt(), which accepts colors
for any floating-point numbers between 0 and 1. Instead of a color, we pass the
gradients obtained in this way with setBrush().

Since we do not want any borders, we set the pen to NoPen, but not before saving
the current pen—we still need it to draw the legend text, where it is used to define
the font colors.

Now we can illustrate the current hash entry. drawPie() stretches out a rectangle
in pieRect and draws an angle/16-degree large segment of pie, starting at lastAn-
gleOffset.

Drawing Key Icons

The matching legend entry is still missing in the legendRect. We make this associ-
ation clear with a square in the color of the corresponding segment of pie, which
we store in the legendEntryRect variable:

287

10 The Graphics Library “Arthur”

// piechart/piewidget.cpp (continued)

// calculate the squares for the legend

int fh = fontMetrics().height();

QRect legendEntryRect(0,(fh*2)*currentPos,fh,fh);

currentPos++;

legendEntryRect.translate(legendRect.topLeft());

// define gradient for the legend squares

QLinearGradient lg(legendEntryRect.topLeft(),

legendEntryRect.bottomRight());

lg.setColorAt(0, col);

lg.setColorAt(1, Qt::white);

p.setBrush(QBrush(lg));

p.drawRect(legendEntryRect);

Since this square should match the height and width of the type size, its size must
be based on the nature of the current font. The QFontMetrics class is of help to
us here, as it calculates the size of letters and strings in a specific font. The font
metrics for the current widget are obtained via fontMetrics(). If you just want
to change the font temporarily within the Painter, you should read out the font
metrics via the method of the same name from QPainter.

Here we just require information on the maximum height of a letter, which we read
out with height(). If we now plan as much space between the entries as is necessary
for one entry, then we can calculate the position of the square: On the X-axis it lies
directly at the zero point, while on the Y-axis it wanders two font heights down for
each position ((fh*2)*currentPos). Width and height are also specified by fh in each
case.

Now we still have to move legendEntryRect to the legendRect, because so far it is
at the zero point of the X-axis. This is done using the translate method, to which
we pass the upper left point, that is, our desired offset.

We redraw the square itself with a gradient, but this time with a linear gradient
running from the top right to the bottom left, ending in the color white. Since
the pen is still defined with NoPen, the drawRect() method now called with the
rectangle also draws the square without the edge.

Inserting Legend Text

It is now time to draw the legend text next to the square. So that the distance
from the square to the text is adjusted to the size of the font used, we select the
width of the letter x in the respective font as the spacing. For this purpose we add
the corresponding width to the x component of the textStart point. This variable
now contains the top left point of our text. The lower left point is determined by
combining the right edge of legendRect and the lower side of the current entry

288

10.5 Using QPainter in Practice

rectangle legendEntryRect into a new point. Together with textStart, this now
opens up the textEntryRect in which space should be made for our text:

// piechart/piewidget.cpp (continued)

// draw text behind squares

QPoint textStart = legendEntryRect.topRight();

textStart = textStart + QPoint(fontMetrics().width(’x’), 0);

QPoint textEnd(legendRect.right(), legendEntryRect.bottom());

QRect textEntryRect(textStart, textEnd);

p.setPen(pen);

p.drawText(textEntryRect, Qt::AlignVCenter, text);

}
}

After restoring our paintbrush, we insert the legend text precisely into the rectangle
spcified, using the drawText() method. The AlignVCenter option ensures that the
text is centered in its vertical alignment.

We repeat this procedure for each entry in the list until the circle is completely full.

10.5.2 Defining the Widget Size

In the minimumSizeHint() and sizeHint() methods, we need to determine only sen-
sible minimum and default sizes for the widget. We specify that the widget must
not be smaller than the default size, thus bringing both methods into line. But the
widget may inflate at any time.

The height is the decisive factor for vertical expansion, which results from the total
of all legend entries, together with the intervals between them. For the horizontal
spread, we must first calculate the length of the longest entry in pixels. To do this
we again iterate through the hash and look for the longest string in it:

// piechart/piewidget.cpp (continued)

QSize PieWidget::minimumSizeHint() const

{
int fh = fontMetrics().height();

int height = fh*2*values.count();

int longest = 0;

QHash<QString, int>::const_iterator it;

QFontMetrics fm = fontMetrics();

for(it = values.begin(); it != values.end(); ++it)

longest = qMax(fm.width(it.key()), longest);

int width = height+longest+fontMetrics().width(’x’)+fm+(2*10);

QSize minSize(width, height);

return minSize;

}

289

10 The Graphics Library “Arthur”

QSize PieWidget::sizeHint() const

{
return minimumSizeHint();

}

The template function qMax() helps us in doing this. It is able to compare two
objects of the same type, provided they both have the smaller-than operator, and
it returns the larger element. In the same way, qMin() also exists.

The width is determined by the following parameters: the widget height of the
square of the pie,5 the longest entry in the hash table, the width of an x, the width
of the legend square (fm) and the width of the 2 × 10 pixel–wide margin on both
sides of the legend square. We pack the height and width into an instance of QSize
and return this.

10.5.3 The Diagram Application

In order to use the class, we instantiate the widget, add a few entries with values,
and display it. We have already seen the result in Figure 10.6:

// piechart/main.cpp

#include <QtGui>

#include "piewidget.h"

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

PieWidget w;

w.addEntry("Choice 1", 50);

w.addEntry("Choice 2", 40);

w.addEntry("Choice 3", 60);

w.addEntry("Choice 4", 70);

w.show();

return app.exec();

}

10.6 Transformations of the Coordinate System

Normally a QPainter draws in a neutral, two-dimensional coordinate system. But
sometimes it is necessary to manipulate this. Qt includes the QMatrix class for this
purpose, which we will first approach theoretically. A QMatrix makes available a
3 × 3 matrix in the form

5 With squares, length and width are equal.

290

10.6 Transformations of the Coordinate System

 m11 m12 0
m21 m22 0
dx dy 1

To understand how it functions, a short mathematics lesson is recommended: To
transport a point (x, y) in a two-dimensional space to a new point (x′, y′), it
applies that:

x′ = m11 ∗ x + m21 ∗ y + dx

y′ = m22 ∗ y + m12 ∗ x + dy

The constructor of QMatrix has the form

QMatrix(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy);

It therefore takes the individual matrix components as floating-point numbers and
instantiates the corresponding 3 × 3 matrix.6

For matrices that are invertible, the corresponding inverse matrix undoes the op-
erations carried out by the original matrix. QMatrix objects have a method by the
name of inverted() that calculates the appropriate inverse matrix. This method ex-
pects as one of its parameters the address of a Boolean variable, and it returns a
QMatrix. If the value stored in the variable after the method has been called is true,
then the QMatrix object that inverted() returns is the inverse matrix of the spec-
ified matrix. If inverted() sets the Boolean variable to false, however, the original
matrix is singular, meaning that no inverse matrix exists. In this case the method
returns a unit or identy matrix, whose application results in no transformation
taking place; that is, the unit matrix maps each point to itself. Whether a matrix
can be inverted can be checked, when necessary, with isInvertible().

In the unit matrix, all the elements on the main diagonal (m11, m22, and the lower
right-hand 1) have the value 1, and the others have the value 0. Whether a matrix
is a unit matrix or not is revealed by the Boolean return value of the isIdentity()
method.

To move points by a specific displacement using a transformation matrix, dx and
dy are allocated values for the x and y offsets, in the following example 10 each,
and the other values are like those of a unit matrix:

x′ = 1 ∗ x + 0 ∗ y + 10
y′ = 1 ∗ y + 0 ∗ x + 10

6 qreal is a data type defined by Qt, corresponding to the C++ double type. Section B.6 in
Appendix B lists all type definitions defined by Qt and explains their benefits.

291

10 The Graphics Library “Arthur”

This matrix transformation, called a translation, moves the point (x, y) so that the
new x-coordinate x′ is the value of x shifted by dx (here: 10) units. In the same
way, you obtain y′ by moving y by dy (in this example, also 10) units.

Instead of determining yourself what the corresponding QMatrix will look like, you
can apply the translate() function to a unit matrix:

QMatrix matrix; // yields a unit matrix

matrix.translate(10.0, 10.0);

From now on, matrix moves all points by 10 units.7

The decisive variables when scaling (that is, when enlarging or decreasing in size)
are m11 and m22, each set to 10 in the following example:

x′ = 10 ∗ x + 0 ∗ y + 0
y′ = 10 ∗ y + 0 ∗ x + 0

The corresponding matrix transformation enlarges the points in the figure by a fac-
tor of 10 in each direction, thus scaling the coordinate system. The corresponding
QMatrix can be obtained through the call

QMatrix matrix; // yields a unit matrix

matrix.scale(10.0, 10.0);

Figure 10.7:

All four

transformations at a

glance: scaling and

rotation (above),

moving and shearing

(below)

So far we have not seen the effects of m21 and m12 . These values in a transforma-
tion matrix cause the upper and lower sides of a rectangle to move apart from each
other in a horizontal direction, and the sides to come closer together accordingly.

7 The units themselves are specified by the class used by the matrix. At the moment we are using
the term abstractly.

292

10.6 Transformations of the Coordinate System

This effect, which can be seen in Figure 10.7 at the bottom right, is referred to as
shearing:

x′ = 1 ∗ x + 10 ∗ y + 0
y′ = 1 ∗ y + 10 ∗ x + 0

Rotation uses the factors for shearing and scaling. The theory behind this is rather
complicated, however; a more detailed treatment of this, together with derivations,
would go beyond the scope of this book. At this point, we can only ascertain that
rotation around the origin of the coordinate system can be represented as follows:

x′ = cos a ∗ x − sin a ∗ y + 0
y′ = sin a ∗ y + sin a ∗ x + 0

a stands for the degree of rotation in radian form; the rotational direction is coun-
terclockwise. The rotate() method implements this rotation. As a parameter it
demands the angle in degrees, which can be specified in floating-point precision.

10.6.1 Transformations in Practice

To achieve a better understanding of transformations with Qt, we shall look at the
following example, which draws a circle filled with pattern onto a widget. A click
on the widget starts it turning; the second click stops it again. In addition we allow
the user to change the direction of rotation with the mouse wheel.

In addition to the sizeHint() method, which defines the initial size of the widget,
we reimplement paintEvent() for drawing, mousePressEvent() for catching mouse
clicks, wheelEvent() for reacting to the scroll wheel, and timerEvent(), which helps
us to implement automatic rotation. rotate() performs the actual rotation work.
We also need the variable timerId to be able to handle a timer. With degree we
note by how many degrees the circle has just rotated:

// rotationwidget/rotationwidget.h

#ifndef ROTATIONWIDGET_H

#define ROTATIONWIDGET_H

#include <QWidget>

#include <QSize>

class RotationWidget : public QWidget {
Q_OBJECT

public:

RotationWidget(QWidget *parent=0);

QSize sizeHint() const {return QSize(200,200);}

293

10 The Graphics Library “Arthur”

protected:

void paintEvent(QPaintEvent *ev);

void mousePressEvent(QMouseEvent *ev);

void timerEvent(QTimerEvent *ev);

void wheelEvent(QWheelEvent *ev);

void rotate(int degree);

private:

int timerId;

int degree;

};

#endif // ROTATIONWIDGET_H

The constructor initializes the parent class and ensures that the two member vari-
ables are preset to zero:

// rotationwidget/rotationwidget.cpp

#include <QtGui>

#include "rotationwidget.h"

RotationWidget::RotationWidget(QWidget *parent)

: QWidget(parent)

{
degree = 0;

timerId = 0;

}

In paintEvent() we first determine the geometry of the widget. So that our draw-
Ellipse() call immediately results in a circle, we match the width of the rectangle
to its height. Then we adjust the rectangle. Specifically, QPainter from version 4.0
onward no longer includes the line that we draw with the pen into dimensions of
the figures. Accordingly, we must reduce the rectangle in which we are about to
draw the circle by the width of the pen, which in this case is two pixels:

// rotationwidget/rotationwidget.cpp (continued)

void RotationWidget::paintEvent(QPaintEvent* /*ev*/)

{
QRect paintRect = rect();

paintRect.setWidth(paintRect.height());

paintRect.adjust(2,2,-2,-2);

QPainter p(this);

p.setRenderHint(QPainter::Antialiasing, true);

QMatrix m;

m.translate(center.x(), center.y());

294

10.6 Transformations of the Coordinate System

m.rotate(degree);

m.translate(-center.x(), -center.y());

p.setMatrix(m);

QPoint center = paintRect.center();

p.setBrush(QPixmap("qt.png"));

p.setPen(QPen(Qt::black, 2, Qt::DashLine));

p.drawEllipse(paintRect);

}

After we have instantiated the QPainter and have taught it to handle anti-aliasing,
it is now time to create a transformation matrix that allows the coordinate system
to rotate around the midpoint of the circle. To do this we create a new matrix.
Since the center of the desired rotation is not the current zero point (origin) of the
coordinate system, but the point at the center of the square, we first move the
center of our square to the zero point of our coordinate system. Then we rotate
the matrix and move the point back to its original location.

We then pass the matrix generated in this manner to the Painter. Everything that
it now paints is rotated by the number of degrees specified in degree.

We select an ellipse as a drawing object. To fill it with a tiled pattern, we pass an
image to the paintbrush, which then turns it into tiles placed next to each other,
provided there is sufficient space.

This time we also select the pen slightly differently: It is black, has a thickness of
two pixels (as mentioned), and forms a dashed line (Qt::DashLine). Finally, we draw
an ellipse into the square, thus forcing a circle to be drawn.

As soon as the user clicks the widget with one of his mouse buttons, the widget
obtains a mousePressEvent(). We first check whether the user pressed the left
mouse button, and whether the timer is 0. If it is, then the timer is not running,
and we can now start it. If, however, it contains a number not equal to 0, then it is
active and we delete it, but not before resetting the timerId:

// rotationwidget/rotationwidget.cpp (continued)

void RotationWidget::mousePressEvent(QMouseEvent* ev)

{
if (ev->button() != Qt::LeftButton)

return;

if (timerId == 0)

timerId = startTimer(20);

else {
killTimer(timerId);

timerId = 0;

}
}

void RotationWidget::timerEvent(QTimerEvent *ev)

{

295

10 The Graphics Library “Arthur”

if (ev->timerId() == timerId)

rotate(1);

}

We set the timer interval to 20 milliseconds, which corresponds to 50 timer events
and therefore, ideally, 50 frames per second, since for each timerEvent() triggered,
the program calls rotate(). The parameter in this call (here: 1) specifies by how
many degrees the circle should turn.

With most mice, a scroll wheel movement corresponds to 15 degrees. Qt multiplies
this by a factor of 8, so in this case we divide it again by 8. A scroll wheel move-
ment therefore rotates the circle by 15 degrees clockwise or counterclockwise—
depending on which direction the wheel is moved:

// rotationwidget/rotationwidget.cpp (continued)

void RotationWidget::wheelEvent(QWheelEvent *ev)

{
rotate(ev->delta()/8);

}

void RotationWidget::rotate(int deg)

{
degree = degree + deg % 360;

update();

}

rotate now manages the degree value that we use in the paint event. As soon as
it exceeds 359, the modulo operator ensures that the counter is reset to zero. In
wheelEvent(), the delta() method from QWheelEvent holds the movement value.

To force a paint event, we must now call update(). update() sends a repaintEvent()
via the event system to the widget. This in turn causes the repaintEvent() handler
to be called, and the widget to be redrawn.

To demonstrate this behavior, it is sufficient to instantiate the widget, together
with a QApplication, display it, and then enter the event loop, with app.exec():

// rotationwidget/main.cpp

#include <QtGui>

#include "rotationwidget.h"

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

RotationWidget w;

w.show();

return app.exec();

}

296

10.7 QImage

10.7 QImage

If image points are to be manipulated directly, the QImage, which is optimized for
this purpose, is ideal as a “screen.” Qt carries out corresponding operations on the
processor, whereas the graphic card is normally responsible for QPixmap operations.

Under X11 in particular, another difference between the two classes is of some sig-
nificance: The X client is responsible for rendering QImages, whereas pixmaps are
drawn by the server. Every conversion between classes is therefore slow, and possi-
bly bandwidth intensive,8 but nevertheless generally possible with QPixmap::con-
vertToImage() and QPixmap::convertFromImage(). An advantage of QImage is its
platform independence, a property that QPixmap does not have.

If a program should only be based on QCoreApplication, but should still process
graphics, QPixmap is not available, but it is still possible to work with QImage.9

10.7.1 Storage Formats, Transparency, and Color Palettes

A QImage is capable of storing images in various ways in the main memory. The de-
veloper can specify the image format when calling the class constructor by passing
it the matching value of the Format enumerator. The format() method accordingly
returns the format of the current QImage.

Normally Qt stores images in a quality requiring 32 bits for each pixel. In do-
ing this, QImage uses 8 bits each for the colors red, green, and blue, so that only
24 bits are used up. The remaining byte either remains unused,10 or specifies the
“transparency” (the alpha channel) of each pixel. The former option is specified us-
ing QImage::Format_RGB32, whereas the format with the predefined transparency
value is referred to by Trolltech as ARGB32 (QImage::Format_ARGB32).

It is relatively resource intensive to use an alpha channel when drawing, because
a series of calculations must precede each drawing operation: For each pixel, the
processor multiplies each color channel with the value of the corresponding alpha
channel, and divides the result by 255. The obvious consideration, of performing
these calculations when the pixel is set and saving the results in the color values,
has been put into practice by Trolltech with the ARGB32-Premultiplied format
(QImage::Format_ARGB32_Premultiplied). Here the alpha channel is still stored as
an additional value. The disadvantage of this format is that when the alpha channel
is recalculated, this does not result in exactly the same color. Since the deviation
is very small, however, it can often be ignored. However, if you constantly con-

8 Remember that any conversion is expensive, even in a local X-session—that is, even if you do
not use the network capability of the X server.

9 Nevertheless, QImage remains a part of the QtGui library. This must therefore be included in
the project, whatever the case, even though you do not use a graphical interface.

10 The obvious idea of reducing the size to 24 bits is a bad one, because modern processors usually
process at least 32-bit words anyway. In the worst case, speed would be reduced by correspond-
ing special adjustments.

297

10 The Graphics Library “Arthur”

vert colors that have already been converted back from the RGB32-Premultiplied
format, the color deviation will become clearly visible at some stage. Because of
its advantages in speed, the ARGB32-Premultiplied is nevertheless the preferred
format of the RGB32 family supported by QImage.

Alternatively, you can use a color palette. In a similar way to the palette of a
Painter, only selected colors are available here. With the QImage-Indexed8 format
(QImage::Format_Indexed8), an 8-bit index is available for colors, which means
that there is space for a maximum of 256 colors on the palette simultaneously. Be-
fore you can work with this format, you must specify the number of colors in the
palette, using setNumColors(), with a number between 1 and 256. The correspond-
ing query method, numColors(), returns a valid value only for color palette-based
formats; otherwise, it returns 0.

To set the color palette, the API provides two possibilities. setColorTable() allows
the complete palette to be covered with a vector consisting of RGB color details
(QVector<QRgb>). In addition to this, setColor() allows individual palette colors to
be defined. This method expects the position as an integer and the color as QRgb
as its parameters.

Monochrome images are saved by using QImage::Format_Mono. When this hap-
pens, each bit represents a pixel, whereby the most significant bit comes first.
In contrast, QImage::Format_Mono_LSB saves monochrome images with the least
significant bit first.

A QImage can be converted to another format via the convertToFormat() method.
This method expects a first parameter specifying the new format, and for the sec-
ond parameter it requires more details on the conversion, which may sometimes
result in losses.

If a QImage becomes invalid, its form is also invalid, and format() returns Q-
Image::Format_Invalid.

10.7.2 Reading out Pixels Line by Line

If you want to perform complex operations on images, you must have access to
every single pixel. For this purpose, QImage provides the scanLine() method, which
returns color information of the line pixel by pixel, as an array of unsigned chars.
Since an unsigned char is eight bits in size, each individual pixel is represented by
four array entries.

When this is done, however, the byte order gets in the developer’s way: Some
systems arrange bytes from left to right so that the byte with the lowest value lies
at the lowest memory address. These architectures, which include the Intel x86
family, are referred to as little endian. For other systems the opposite is the case:
They store the byte with the highest value at the lowest memory address. This

298

10.7 QImage

species, the big endian system,11 includes the PowerPC processor, which is used in
a wide range of IBM Linux servers and in many Macintosh computers and laptops.

The color details of an image four pixels in size can therefore be arranged in two
variations, depending on architecture on which the image is stored as a QImage:

BBGGRRAABBGGRRAABBGGRRAABBGGRRAA (little endian)

AARRGGBBAARRGGBBAARRGGBBAARRGGBB (big endian)

In order to implement color details without taking into account the byte order, Qt
uses a small trick: It defines the type QRgb. This is nothing more than a 32-bit
integer that stores the alpha channel and the three color channels in the form
0xAARRBBGG. When converting via reinterpret_cast<QRgb*>, Qt takes up the un-
signed chars in the byte order of the platform. The individual components of the
color can now be safely accessed via QRgb::qRed(), QRgb::qGreen(), QRgb::qBlue()
and QRgb::qAlpha(), which also return values from 0 to 255.

The following example reads out an image line by line and runs through the RGB
values. The result is also saved to a QImage.

The core of the program is the rotateRgb() method. This creates a new QImage
object of identical size and identical color format. Then it opens the same array in
both files and reinterprets the characters as a QRgb array. The number of rows are
defined by the height of the image, the number of columns by the width. For each
pixel we can now read out all color values separately, and recombine them as we
please. The image processed in this way is then returned:

// rotatergb/main.cpp

#include <QtGui>

QImage rotateRgb(const QImage &in)

{
QImage out(in.size(), in.format());

for(int line = 0; line < in.height(); line++) {
const QRgb* inPixels = reinterpret_cast<const QRgb*>

(in.scanLine(line));

QRgb* outPixels = reinterpret_cast<QRgb*>(out.scanLine(line));

for(int pos = 0; pos < in.width(); pos++) {
int red = qRed(inPixels[pos]);

int green = qGreen(inPixels[pos]);

int blue = qBlue(inPixels[pos]);

int alpha = qAlpha(inPixels[pos]);

outPixels[pos] = qRgba(blue, red, green, alpha);

}
}

11 The terms big endian and little endian owe their origin to an analogy in a story from Gulliver’s
Travels, in which two states are at war over which end of a boiled egg should be chopped off.
The similarly heated discussions on what is the best byte order now seem to be running in favor
of big endian architectures. Big endian is is also known as Network Byte Order, as it is used to
transport data across the Internet.

299

10 The Graphics Library “Arthur”

return out;

}

In the main() function we load the reference image, have it rotated, and then dis-
play the distorted image in a label. Then we repeat the procedure and obtain an
image that is still distorted. Only after the third swap are the colors again in order.
All three labels are shown next to each other in Figure 10.8.

// rotatergb/main.cpp (continued)

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

QImage img("qt.png");

QLabel rgb;

img = rotateRgb(img);

QLabel brg;

brg.setPixmap(QPixmap::fromImage(img));

img = rotateRgb(img);

QLabel grb;

grb.setPixmap(QPixmap::fromImage(img));

img = rotateRgb(img);

rgb.setPixmap(QPixmap::fromImage(img));

rgb.show();

brg.show();

grb.show();

return app.exec();

}

Figure 10.8:

One image, three

color arrangements:

Our test application

has swapped the RGB

channels around.

10.8 SVG Support

Since version 4.1, Qt 4 has supported the scalable vector graphics format, in short,
SVG. It is being officially published by the W3 consortium, which is also responsible

300

10.8 SVG Support

for the HTML and CSS standards. SVG describes two-dimensional vector graphics
and is based on XML, in contrast to many established vector graphics standards.
The last SVG version to be published by the W3C was version 1.1, and the SVG
working committee of the W3C is preparing version 1.2, which currently has the
status of a working draft.

To guarantee its use on mobile platforms, the W3C additionally published so-called
profiles with a reduced functionality, SVG Basic and SVG Tiny.12

Qt 4 implements SVG-Tiny and SVG-Basic in versions 1.1 and 1.2, but currently
supports neither ECMA script (often referred to as JavaScript) nor other graphic
manipulations via the Document Object Model (DOM).

Qt combines the SVG classes in a separate library called QtSvg. To use them, you
must first extend the .pro file as follows:

QT += svg

The include instruction corresponds to the library name:

#include <QtSvg>

So far, Qt has not handled SVG files via QPixmap. Instead it makes the rendering
API directly available, under the name QSvgRenderer. In addition there is a widget,
QSvgWidget, which can directly display SVG images (below we create an instance
that displays the file file.svg):

QSvgWidget *svgw = new QSvgWidget("file.svg");

QSvgWidget knows the load() slot in two variations. The first one expects a filename
as a QString, similar to the constructor in the above example. The second one is
passed the contents of an SVG file as a QByteArray. No corresponding constructor
exists for this.

Another method that distinguishes QSvgWidget from a normal QWidget is the ac-
cess function renderer(), which returns a pointer to the QSvgRenderer object used
for the widget. QSvgRenderer is the class responsible for actual rendering.

If QSvgWidget has loaded an image, it finds out about its sizeHint(), which matches
the image size proposed in the SVG file, with QSvgRenderer::defaultSize(). Without
a loaded image, it inherits its behavior from QWidget::size().

The QSvgRenderer itself provides an extensive API for checking images and anima-
tions. In addition to the load() slot (which is available in QSvgWidget and QSv-
gRenderer), there is an additional render() slot, which expects a QPainter object as
a parameter. This enables the redrawing of the widget by the Painter passed on,

12 See http://www.w3.org/TR/SVGMobile/.

301

10 The Graphics Library “Arthur”

if you want to use the render object directly. This is always necessary for widgets,
for example, if a paint event occurs. QSvgWidget reacts to this something like as
follows:

void QSvgWidget::paintEvent(QPaintEvent *)

{
...

QPainter p(this);

renderer->render(&p);

}

renderer here is the QSvgRenderer instance. The QSvgRenderer::animate() method
checks whether the loaded SVG file contains animated elements. If this is the case,
animationDuration() returns the length of the animation as an integer value in sec-
onds. In Qt 4.1, however, this method is not fully implemented: It always returns
0. framesPerSecond() reveals the number of frames per second. The standard play-
back speed is 30 frames per second. setFramesPerSecond() changes this value, thus
slowing down or speeding up the animation.

If load() loads an SVG file with animated elements, QSvgRenderer emits the sig-
nal repaintNeeded() according to the details specified in framesPerSecond(). The
current frame of an animation is revealed by currentFrame(). It is defined with
setCurrentFrame().

10.9 Printing with QPrinter

The QPrinter class is responsible for printing in Qt. Like QPixmap or QImage, it is a
QPaintDevice, but has several interesting special features.

So that the printing process can begin, the current Painter must explicitly confirm
that it has finished its work, with end(). In addition you must call the QPrinter
method newPage() for each new page, including the first one. The Painter, which
works on the QPrinter instance, will then have a free page available again. Some
parameters, such as the page orientation (portrait or landscape mode), can only be
changed before the Painter registers with the QPrinter object, that is, back in the
QPainter constructor.

There is also the QPrintDialog class, enabling a variety of settings to be made at
the printer. Under Windows and Mac OS X the class shows the print dialog of
the system; otherwise, it uses a separate dialog. The user can manipulate all the
settings in the dialog.

We want to take a closer look at these classes, using as an example a small program
to create screenshots (Figure 10.9 on page 307). This has a slot that prepares the
acquisition of the screenshot, another slot that retrieves the screenshot, and a third
one to print it out.

302

10.9 Printing with QPrinter

In addition it has the previewLabel member variable, pointing to a QLabel which
displays the last screenshot in preview size, as well as a screenshot member, speci-
fying a QPixmap with the screenshot in full resolution:

// screenshot/grabdialog.h

#ifndef GRABDIALOG_H

#define GRABDIALOG_H

#include <QDialog>

#include <QPixmap>

class QLabel;

class GrabDialog : public QDialog

{

Q_OBJECT

public:

GrabDialog(QWidget *parent=0);

protected slots:

void prepareGrabDesktop();

void grabDesktop();

void printScreenshot();

private:

QLabel *previewLabel;

QPixmap screenshot;

};

#endif // GRABDIALOG_H

In the constructor we set up a table layout into which we place the previewLabel
so that it takes up two columns. Two buttons, one to start the screenshot and one
to print it out, are placed one row beneath this, each in their own column. So that
the preview label is always visible, we fix it to 300 × 200 pixels:

// screenshot/grabdialog.cpp

#include <QtGui>

#include "grabdialog.h"

GrabDialog::GrabDialog(QWidget *parent)

: QDialog(parent)

{
QGridLayout *lay = new QGridLayout(this);

previewLabel = new QLabel;

previewLabel->setFixedSize(300,200);

lay->addWidget(previewLabel, 0, 0, 1, 2);

QPushButton *screenshotBtn = new QPushButton(tr("&Screenshot!"));

QPushButton *printBtn= new QPushButton(tr("&Print"));

303

10 The Graphics Library “Arthur”

lay->addWidget(screenshotBtn, 1, 0);

lay->addWidget(printBtn, 1, 1);

connect(screenshotBtn, SIGNAL(clicked()), SLOT(prepareGrabDesktop()));

connect(printBtn, SIGNAL(clicked()), SLOT(printScreenshot()));

grabDesktop();

setWindowTitle(tr("Screenshot"));

}

We now connect the clicked() signal of the Screenshot! button to the slot that
prepares the screenshot, and the signal of the Print button to the slot that enables
the configuration of the printing parameters. Then we call grabDesktop(), which
retrieves a screenshot from the current screen at the time the program is started.
It is intended merely as a substitute image for the previewLabel.

10.9.1 Digression: Making Screenshots

Because screenshot programs are normally not intended to record themselves, they
should be hidden as much as possible during the screenshot itself. To do this we
call hide(), directly followed by a singleshot timer,13 which starts grabDesktop():

// screenshot/grabdialog.cpp (continued)

void GrabDialog::prepareGrabDesktop()

{
hide();

QTimer::singleShot(500, this, SLOT(grabDesktop()));

}

The 500-millisecond delay is intended to give the operating system a chance, before
the actual screenshot is made, to adjust any possible artifacts that may have been
caused by the window suddenly disappearing.

But how do we access a copy of the entire screen? Although QPixmap provides the
static method grabWidget(), it can record only individual widgets in the current
application. Luckily there is also the grabWindow() static method, which expects
not a pointer to a widget, but a window ID. The use of these IDs is portable in
principle; nevertheless, the documentation strongly warns against making certain
assumptions about the IDs.

Information on the current desktop is provided by the QDesktopWidget class. The
QApplication instance already provides an object of this class, which we can im-
mediately access. The window ID for the entire current desktop can be obtained
via the QWidget method winId(), applied to the current screen, which is returned

13 In contrast to normal timers, a singleshot timer announces itself only once, not at fixed inter-
vals.

304

10.9 Printing with QPrinter

byQDesktopWidget::screen(). screen() returns a QWidget, which you can unfortu-
nately not scan directly using grabWidget(), but which instead has the sizes of the
current desktop as well as its window ID.

But with grabWindow() we can obtain the screenshot and store it in screenshot. A
pixmap scaled down to the size of the label is also included in the previewLabel.
In addition we save the screenshot on the hard drive, to be more precise, in the
current working directory of the application, and then display the window again:

// screenshot/grabdialog.cpp (continued)

void GrabDialog::grabDesktop()

{
QDesktopWidget *w = qApp->desktop();

screenshot= QPixmap::grabWindow(w->screen()->winId());

previewLabel->setPixmap(screenshot.scaled(previewLabel->size()));

screenshot.save("screenshot.png", "PNG");

show();

}

10.9.2 Printing an Image File

Now we are ready to print: To do this we first instantiate a QPrinter object. Since
we want to print an image, we require a high resolution. For this purpose it would
be good to pass the QPrinter::HighResolution parameter to the constructor. But
due to the immense amount of memory needed, this precautionary measure will
be of no help to us under Linux. This is less the fault of Qt than that of the Linux
memory management system. For such images, even on systems with 512 MB
of main memory, it continues swapping until the system simply hangs. For this
reason we will stick to the standard resolution, even if it produces somewhat poorer
results:

// screenshot/grabdialog.cpp (continued)

void GrabDialog::printScreenshot()

{
QPrinter printer;

printer.setOrientation(QPrinter::Landscape);

QPrintDialog dlg(&printer, this);

if (dlg.exec() == QDialog::Accepted) {
printer.newPage();

QPainter p(&printer);

QPixmap resized = screenshot.scaledToWidth(

printer.pageRect().width());

p.drawPixmap(0,0, resized);

p.end();

}
}

305

10 The Graphics Library “Arthur”

In the next step we instantiate a print dialog and start it with exec(). In this way
the user has the opportunity to change nearly all previously set printing options as
he pleases. The dialog is based on the current QPrinter settings: the orientation is
already set to Landscape, for example.

If the user has ended the dialog by clicking Ok, the actual printing process be-
gins: We instantiate a new QPainter, which operates the printer. Then we scale
the screenshot so that it fits exactly onto the page—normally it is slightly larger—
depending on the resolution. As a help in orientation, we use pageRect() to do this:
This value already takes into account any possible page margins already set. We
now draw the resized pixmap matching in size, with drawPixmap(), to draw on the
printer. With p.end(), we signal that our work is complete, and QPrinter sends our
job to a printer.

10.9.3 Generating PDFs

Since Qt 4.1, QPrinter has also been able to generate PDF files. To write our image
to a PDF file, just the following code is needed:

QPrinter printer;

printer.setOutputFormat(QPrinter::PdfFormat);

printer.setOutputFileName("out.pdf");

printer.newPage();

QPainter p(&printer);

QPixmap resized = screenshot.scaledToWidth(

printer.pageRect().width());

p.drawPixmap(0,0, resized);

p.end();

10.9.4 The Test Application

The test routine for the dialog instantiates a QApplication object and a dialog.
Instead of sending it into a separate event loop with exec(), we display it normally
with show() (Figure 10.9), and afterward enter the global event loop.

This way is ideal if you need neither a return value nor a dialog that behaves
modally:

// screenshot/main.cpp

#include <QtGui>

#include "grabdialog.h"

int main(int argc, char* argv[])

{
QApplication app(argc,argv);

306

10.10 Complex Graphics

GrabDialog dialog;

dialog.show();

return app.exec();

}

Figure 10.9:

The screenshot

program after it

starts

10.10 Complex Graphics

The possibilities that are offered by QPainter can be skillfully combined, essentially
using three techniques: clipping, Painter paths, and the composition modes.

10.10.1 Clipping

With clipping, a QPaintDevice is cut off, with the help of a figure, so that it can
be seen only inside the boundary of the figure. This technique is demonstrated in
Figure 10.10, in which the tiled pattern is restricted by a triangle.

In the corresponding code we create a QWidget subclass called PaintWidget. Apart
from the empty constructor, this just has a static sizeHint():

// clipping/paintwidget.h

#include <QWidget>

class PaintWidget : public QWidget

{
Q_OBJECT

public:

PaintWidget(QWidget* parent = 0);

virtual void paintEvent(QPaintEvent*);

virtual QSize sizeHint() const {return QSize(200,200);}
};

307

10 The Graphics Library “Arthur”

Figure 10.10:

A triangular polygon

restricts the Painter.

In the constructor we initialize the parent class, whereas in paintEvent() we instan-
tiate a QPainter on the widget. There we then construct a QPolygon with three
points:

// clipping/paintwidget.cpp

#include <QtGui>

#include "paintwidget.h"

PaintWidget::PaintWidget(QWidget *parent)

: QWidget(parent)

{
}

void PaintWidget::paintEvent(QPaintEvent* /*ev*/)

{
QPainter p(this);

QPolygon poly;

poly << rect().topLeft();

poly << QRect(rect().center().x(), rect().bottom());

poly << rect().topRight();

p.setClipRegion(poly);

painter.drawTiledPixmap(rect(), QPixmap("qt.png"));

}

The QPolygon class is based on QVector<QPoint> so that we can add new points
with the streaming operators. We select them so that they open up a triangle
between the two top corner points and the lower midpoint, and set the polygon
created in this way as a clip region.

We now paint a tiled pattern over the entire widget background. But only the part
inside the triangle is visible, as shown in Figure 10.10.

308

10.10 Complex Graphics

10.10.2 Painter Paths

The second technique that plays a role in connection with complex graphics is
Painter paths. The QPainterPath class can combine instances of all primitive ge-
ometry classes into a figure that can be as complex as you want, and it can also
include Bezier curves.

Figure 10.11:

Painter paths allow

flexible forms with

gradients.

With this technique, figures can be implemented as shown in Figure 10.11. These
are created with the following source code:

// painterpath/paintwidget.cpp

#include <QtGui>

#include "paintwidget.h"

PaintWidget::PaintWidget(QWidget *parent)

: QWidget(parent)

{
}

void PaintWidget::paintEvent(QPaintEvent* /*ev*/)

{
QLinearGradient gradient(rect().topLeft(), rect().bottomRight());

gradient.setColorAt(0, Qt::yellow);

gradient.setColorAt(1, Qt::white);

QPainterPath path;

path.cubicTo(rect().topLeft(), rect().bottomLeft(),

rect().bottomRight());

path.cubicTo(rect().topRight(), rect().bottomRight(),

rect().bottomLeft());

309

10 The Graphics Library “Arthur”

QPainter p(this);

p.setRenderHint(QPainter::Antialiasing, true);

p.drawTiledPixmap(rect(), QPixmap("qt.png"));

p.setBrush(gradient);

p.drawPath(path);

}

The class declaration and constructor match those from the previous example. The
differences can be found in the paintEvent() method.

There we first instantiate a QLinearGradient object, the color gradation of which
should run from yellow to white across the widget along the main diagonal. With
this gradient we want to fill a Painter path consisting of two cubic Bezier curves.
We fix the shapes of these to the corner points of the widget geometry.

After we have completed these preparations, we instantiate a QPainter here as
well. In the next step we activate anti-aliasing, draw the background, and pass the
gradient to the paintbrush. This now fills the pixels painted over by it according
to the specifications of the gradient. If we draw the path, it contains the color
gradient. Thus elegant figures can also be implemented via Painter paths.

10.10.3 Composition Modes

Finally, QPainter supports the so-called composition modes for pixels, according
to Porter and Duff.14

In Porter-Duff compositing, a pixel is combined from two sources that each have
color details with an alpha channel. So-called composition operators combine
these sources into a new pixel.

In Qt these operators always refer to the current Painter operation (the source) as
well as the current target pixel on the drawing device (target, or destination). The
composition mode can be changed before every drawing operation. A new ARGB32
pixel is created according to the formula

result colorpixels = source colorpixels ∗pdo destination colorpixels

Here the operator ∗pdo is not a normal multiplication, but stands for one of the
Porter-Duff operators that combine both values with each other. If such an opera-
tor is set, this changes the composition mode in the QPainter.

For this to function, the QImage must use the Format_ARGB32_Premultiplied or
the Format_ARGB32. If this is not the case, it is converted accordingly using con-
vertToFormat().

14 Named after Thomas Porter and Tom Duff, who developed this technique at Lucasfilm and
went public at the SIGGRAPH conference (Thomas Porter and Tom Duff, “Compositing Digital
Images,” SIGGRAPH Vol. 88, 1984, pages 253–59). The term Porter-Duff algebra is also used.

310

10.10 Complex Graphics

Compositing Operators

A number of composition modes, such as SourceOver and DestinationOver, only
reveal their full efects for images with Alpha channels. The SourceOver mode (Q-
Painter::CompositionMode_SourceOver) is also known as alpha blending: Here
the Painter paints the source pixel over the destination pixel. If transparency is
switched on, parts of the destination pixel still shine through (Figure 10.12 links).

The opposite is the case with DestinationOver (QPainter::CompositionMode_Desti-
nationOver): Here the source pixel becomes the background, and the destination
pixel accordingly remains in the foreground (Figure 10.12 on the right).

Figure 10.12:

A comparison of the

SourceOver and

DestinationOver

operators

The source and destination operators also behave in a complementary manner:
In the source mode (QPainter::CompositionMode_Source), the new pixel results
directly from the source pixel. Its contents overwrite the previous contents of this
pixel.

Figure 10.13:

The source and

destination operators

let only one color

through, instead of

combining them as

their brothers

SourceOver or

DestinationOver do.

311

10 The Graphics Library “Arthur”

In QPainter::CompositionMode_Destination, the destination operator ignores the
newly drawn pixel and takes into account only the already existing image content.
This is illustrated in Figure 10.13: the left circle, drawn in source mode, completely
covers over the rectangle and the transparent area. On the right, on the other hand,
no circle is visible, because the transparent destination pixels themselves dominate
the source pixels.

Both procedures behave in the same way, as SourceOver and DestinationOver if
source and destination colors are opaque, that is, if they have an alpha value of
255.

Figure 10.14:

A comparison of the

complementary

SourceIn and

DestinationIn

operators

With the operators discussed below, the alpha channel plays an important role.
With the SourceIn procedure (QPainter::CompositionMode_SourceIn), the color
of the new pixel can be derived from the source, reduced by the alpha value of
the destination. The reduction of the alpha channel here means a higher trans-
parency,15 as can be seen on the left in Figure 10.14. Conversely, the new color can
be derived in the DestinationIn procedure (QPainter::CompositionMode_Destinati-
onIn) from the destination, reduced by the alpha value of the source. The result of
this mode can be seen on the right in the figure.

The SourceOut and DestinationOut modes function in the same way as SourceIn
and DestinationIn, by using the alpha channel. The only difference consists in the
value to be subtracted: With SourceOut (QPainter::CompositionMode_SourceOut),
the inverse of the source is subtracted, and with DestinationOut (QPainter::Com-
positionMode_DestinationOut), the inverse alpha value of the destination is sub-
tracted. Each of these is defined as follows:

inverseAlpha = 255 − alpha

Figure 10.15 shows the circle and the rectangle from the previous examples, painted
in SourceOut mode (on the left) and in DestinationOut mode (on the right). There

15 An alpha value of 0 makes a pixel fully transparent; 255 makes it fully visible.

312

10.10 Complex Graphics

the right half of the circle is invisible, since the alpha value for these positions
amounts to 0.

Of course, the SourceOver and SourceIn modes and their counterparts Destina-
tionOver and DestinationIn can be combined. These are given the names SourceA-
top and DestinationAtop.

In the SourceAtop mode (QPainter::CompositionMode_SourceAtop), the source is
overlayed on the destination, and the alpha value of the source is reduced by the
alpha value of the destination.

Figure 10.15:

The SourceOut and

DestinationOut

operators work like

SourceIn and

DestinationIn, but use

an inverse alpha

value.

In the inverse DestinationAtop mode (QPainter::CompositionMode_Destination-
Atop) the source overlays the destination. The difference from SourceAtop becomes
clear in Figure 10.16 from the dominance of the fill color for circle and rectangle.
In addition, this mode subtracts the alpha value of the destination pixel from that
of the source pixel.

Figure 10.16:

SourceAtop and

DestinationAtop

combine SourceOver

and SourceIn as well

as DestinationOver

and DestinationIn.

313

10 The Graphics Library “Arthur”

In XOR mode (QPainter::CompositionMode_Xor), the Painter links the alpha value
of the source (subtracted from the inverse of the destination) to the destination,
the alpha value of which it subtracts from the inverse of the source. The result of
this operation is shown on the left side of Figure 10.17.

The clear mode displayed on the right (QPainter::CompositionMode_Clear) is used,
for example, to stencil out masks from figures. For each pixel in the source in
which the alpha channel has a value other than 0, the Painter in clear mode sets
the alpha value of the destination pixel to 0, thus making the corresponding pixel
transparent.

Figure 10.17:

The XOR operator

links source and

destination with an

exclusive OR; Clear

enables complete

figures to be

stencilled out of

images.

Using the DestinationOut Operator on a Painter Path

We will adjust the example from Section 10.10.2 (page 309) so that a compositing
operator covers the area in a dark color. The result should match that shown in
Figure 10.18.

The Painter path in paintEvent() remains the same; we again instantiate the Painter
and activate anti-aliasing. Then we draw the background. For the paintbrush,
we select black with a semitransparent alpha channel. With the DestinationOut
operator, the Painter path thus acquires its black and semitransparent coloring:

// composition/paintwidget.cpp

#include <QtGui>

#include "paintwidget.h"

PaintWidget::PaintWidget(QWidget *parent)

: QWidget(parent)

{
}

314

10.10 Complex Graphics

void PaintWidget::paintEvent(QPaintEvent* /*ev*/)

{
QPainterPath path;

path.cubicTo(rect().topLeft(), rect().bottomLeft(),

rect().bottomRight());

path.cubicTo(rect().topRight(), rect().bottomRight(),

rect().bottomLeft());

QPainter p(this);

p.setRenderHint(QPainter::Antialiasing, true);

p.drawTiledPixmap(rect(), QPixmap("qt.png"));

p.setBrush(QColor::fromRgba(qRgba(0,0,0,128)));

p.setCompositionMode(QPainter::CompositionMode_DestinationOut);

p.drawPath(path);

}

The fact that the widget itself is opaque means that most of the compositing op-
erators in this example are not very exciting, as they only reveal their full effects if
a source and destination have a non-opaque alpha channel.

Figure 10.18:

DestinationOut

darkens the Painter

path.

Nevertheless, compositing is an interesting alternative to clipping, which cannot
offer capabilities such as alpha transparency or anti-aliasing. This advantage is
offset at times, however, particularly under X11, by programs that run considerably
more slowly.

315

11 Ch
ap

te
r

Input/Output Interfaces

You can hardly imagine any application today that does not access files, networks,
or external processes. Consequently, Qt 4 provides interfaces for communicating
with the environment that are independent of the operating system.

Although each of the operating systems supported by Qt provides interfaces to deal
with the various kinds of I/O, there is sadly no uniform standard for managing this
functionality. These circumstances often force programmers to completely redesign
the code if they want to, for example, send a datastream across a network instead
of saving it to a file. Qt 4 gets around this problem by providing a base class called
QIODevice, which provides a platform for all I/O interfaces.

11.1 The QIODevice Class Hierarchy

QIODevice implements operations such as reading and writing on one device. Qt
also considers a network connection to be a device. Of course, there are some

317

11 Input/Output Interfaces

restrictions, because stream-oriented connections (also called sequential connec-
tions), such as those implemented via TCP, are not available for limitless access.

Figure 11.1:

The base class

QIODevice and its

specializations

QUdpSocket QTcpSocket

QAbstractSocket QBuffer

QTemporaryFile

QFile QProcess

QIODevice

QIODevice is an abstract class, so the developer only ever instantiates its subclasses.
It represents the lowest common denominator of all types of input and output
operations. Figure 11.1 provides an overview of the input/output classes that are
based on QIODevice.

11.1.1 Derived Classes

QAbstractSocket cannot be used directly as the base class for socket-based com-
munication, in contrast to its subclasses QUdpSocket and QTcpSocket. QUdpSocket
enables communications via the User Datagram Protocol (UDP). This works with-
out a connection and provides no guarantee that the data sent will arrive intact or
in the correct order. Due to the lack of corrective measures, however, it is consid-
erably faster than the Transmission Control Protocol (TCP), via which the QTcp-
Socket class sends data.

In contrast to UDP, TCP connections are connection oriented and ensure a reliable
transfer of data. Many of the protocols popular today, such as HTTP, which is used
commonly in the World Wide Web for transmitting web pages and downloads, are
based on TCP.

The QBuffer class allows you to write to QByteArray instances as if they were QIO-
Device-based devices. We were already introduced to this procedure in Section 8.8
on page 243, and we will take a further look at it on page 322 in connection with
QDataStream.

Probably the most frequently used subclass of QIODevice is the QFile subclass. We
learned about its ability to read and write files on the local filesystem for the first
time on page 113.

In case there is not enough memory to store temporary data via QBuffer in a
QByteArray, QTemporaryFile is available. In contrast to QFile, this class generates
a filename independently and ensures that this name is unique, so that it will not

318

11.1 The QIODevice Class Hierarchy

overwrite other files by mistake. The temporary file is stored by QTemporaryFile
beneath the temporary directory used by Qt. This directory’s location is revealed
by the static method QDir::tempPath(). As soon as the QTemporaryFile object is
deleted, the temporary file associated with it is also automatically deleted.

QProcess is also based on QIODevice. This class enables processes to be started
with additional arguments and permits communication with them via the QIODe-
vice methods. In addition the class can selectively manipulate the environment
variables of the process.

11.1.2 Opening I/O Devices

Every QIODevice must first be opened before it can be used. The open() method
is available for this purpose, and its arguments describe in detail how the device
in question is to be accessed, for example, whether the program (and thus the
end user as well) should have only write or only read permissions. This method is
therefore similar to the POSIX function open().

Table 11.1:

Parameters of the

QIODevices::open()

method

Flag Value Description

QIODevice::NotOpen 0x0000 Device is not open (not a useful detail
for open())

QIODevice::ReadOnly 0x0001 Device is opened for reading

QIODevice::WriteOnly 0x0002 Device is opened for writing

QIODevice::ReadWrite ReadOnly |
WriteOnly

Device is opened for reading and
writing

QIODevice::Append 0x0004 Device is opened in append mode and
all data added to the end

QIODevice::Truncate 0x0008 If possible, all previous contents are
deleted when device is opened

QIODevice::Text 0x0010 When reading text, line breaks are
converted to the system-specific
end-of-line indicators (Windows: \r\f,
Unix/OS X: \r) and vice-versa when
writing

QIODevice::Unbuffered 0x0020 Direct access, all buffers under device
are ignored

Table 11.1 shows the possible access flags represented as powers of base 2, so that
they can be combined in any way you like (at least theoretically) by using a logical
OR operator (|). With ReadWrite, Qt does this itself: This flag combines ReadOnly

319

11 Input/Output Interfaces

and WriteOnly. Since each device may ignore individual flags that do not apply to
it, there is little risk that the device does not behave exactly to the programmer’s
expectations. In this case, you should check the API docs for exceptions.

This means that there is no reason not to make use of the very finely structured
access methods. In plain language, if you only want to read from a file, then
you should open the file with ReadOnly. The operating system can under certain
circumstances manage without resource-intensive locking, and the program will
get the files it wants much more quickly. In addition the application does not run
any danger of overwriting files by accident when reading.

11.2 Access to Local Files

The QFile class was used to open files a number of times in the preceding chapters.
When doing this we passed the file to be opened as an argument in the construc-
tor and then opened the file. Below we have a new situation, in which we open
traditional FILE pointers with QFile.

To demonstrate this we will write a small program that removes all the empty lines
and comment lines from a file. The hash symbol (#) at the beginning of a line is
assumed to be the comment sign.

Our program is invoked from the command line and expects the name of the file
to be analyzed as the first argument. If there is a second argument, it writes the
output to the file named there. Otherwise, the modified file appears on the console
via the standard output, stdout.

It is remarkable that we do not even require a QCoreApplication object for this
example, since QFile is not dependent on an event loop.

In the main() function we first check whether there is at least one argument apart
from the name of the executable. Then we try to open the file for reading. If it does
not exist, open() announces an error due to the ReadOnly access, which we catch
with an error message. Thanks to the Text Flag, QFile converts the line endings
when reading to the corresponding Unix conventions if necessary, for example,
under Windows (see Table 11.1):

// extractessentials/main.cpp

#include <QtCore>

#include <iostream>

#include <stdio.h>

using namespace std;

int main(int argc, char* argv[])

{
if (argc < 2) {

320

11.2 Access to Local Files

cout << "Usage: " << argv[0] << " infile [outfile]" << endl;

return 1;

}

QFile in(argv[1]);

if(!in.open(QIODevice::ReadOnly|QIODevice::Text)) {
cerr << "File " << argv[1] << " does not exist" << endl;

}

QFile out;

if (argc >= 3) {
out.setFileName(argv[2]);

if (out.exists()) {
cerr << "File" << argv[2] << " already exists" << endl;

return 1;

}
if(!out.open(QIODevice::WriteOnly|QIODevice::Text)) {

cerr << "Failed to open file " << argv[2] <<

" for writing" << endl;

return 1;

}
}
else

if(!out.open(stdout, QIODevice::WriteOnly|QIODevice::Text)) {
cerr << "Failed to open standard output for writing" << endl;

return 1;

}

while (!in.atEnd()) {
QByteArray line = in.readLine();

if (!line.trimmed().isEmpty() &&

!line.trimmed().startsWith(’#’))

out.write(line);

}

in.close();

out.close();

return 0;

}

Then we check whether there is at least one more parameter supplied on the com-
mand line. Whether or not there is one, we require a second QFile instance, which
we allocate on the stack without passing an argument to the constructor. If the
second parameter exists, then we pass it to the QFile object, via setFileName(), as a
filename. Before we overwrite the file, using the QIODevice::WriteOnly parameter,
we use the exists() method to warn the user and exit the program. Only now do we
open the file.

If the user has not passed a second parameter to the program, we direct the output
to the standard output. To do this we use an overloaded variation of open(), which
apart from the access permissions, expects a FILE pointer as the first argument. The

321

11 Input/Output Interfaces

C Include stdio.h defines a series of FILE pointers, including stdout, which points to
the standard output.

In the following loop we read out the contents of the file named by the first
command-line argument, line by line. For each line, we check whether the line
is empty or if it begins with a comment sign. trimmed() additionally removes all
whitespaces at the beginning and end of a line so that the program will also rec-
ognize lines consisting of forgotten empty spaces as empty lines and indented
comments as comment lines.

All lines that do not match the criteria for exclusion land in out, which is either the
standard output or a new file, depending on the parameters.

Finally we close both files, to be on the safe side. However, as long as we place the
QFile object on the stack or ensure that objects located on the heap are deleted
before the program terminates, an explicit close() is not necessary, because the
QFile destructor does this for us.

11.3 Serializing Objects

In C++, data is usually represented as an object. When data is in this form, pro-
grams cannot save it in files or send it across the network directly. Instead, the
developer must first specify which properties of an object he wants to save and in
what sequence he wants to send them.

What is involved is taking the objects apart and placing their basic components
“on a conveyor belt.” To restore them, data is taken from the conveyor belt and
packed back into an object. These procedures are referred to as serializing and
deserializing. (In interprocess communication, where this procedure is also applied,
the terms marshalling and demarshalling are also used.)

The QDataStream class is responsible in Qt for the serialization of all data types. It
therefore works on all QIODevice classes. On page 243 we used the class to pack a
list of string lists into a QByteArray used for a drag-and-drop operation:

QByteArray encodedData;

QDataStream stream(&encodedData, QIODevice::WriteOnly);

The alternative QDataStream constructor used here simplifies handling the QByteAr-
ray, whereas the main constructor demands, as an argument, a pointer to the
QIODevice with which it is to operate. The above code therefore corresponds to
the following code that uses the standard constructor:

QByteArray encodedData;

QBuffer buffer(&encodedData);

buffer.open(QBuffer::WriteOnly);

QDataStream stream(&buffer);

322

11.3 Serializing Objects

To serialize the data of a QByteArray, therefore, you essentially use a QBuffer. We
already know one application of this from Section 8.8: sending data between pro-
grams via drag and drop.

So that this can also function across network connections, for example, the format
of QDataStream is platform independent. Thus, a stream serialized on a PowerPC
can therefore be transferred back to an object on an Intel computer without any
problem.

The QDataStream format has changed several times throughout the development
of Qt, however, and will continue to do so in the future. This is why the class has
different version types: If you try to bind a QDataStream to a specific version using
setVersion(), then it will be sent correctly in this format, even in later Qt versions,
and will be readable on the other side.

In order to read data into a datastream you use its << operator:

QByteArray encodedData;

QDataStream stream(&encodedData, QIODevice::WriteOnly);

QString text = "Now comes a timestamp";

QTime currentTime = QTime::currentTime();

stream << text << currentTime;

We can observe how QDataStream is used in practice to save data to a file in the
following example, in which datasets are represented by a Dataset class defined as
follows:

// record/record.h

#ifndef RECORD_H

#define RECORD_H

#include <QString>

#include <QDataStream>

#include <QDebug>

class Dataset

{

private:

QString m_surname;

QString m_name;

QString m_street;

int m_streetnumber;

int m_zip;

QString m_locality;

public:

Dataset(QString name, QString surname, QString street,

int streetnumber, int zip, QString locality)

323

11 Input/Output Interfaces

{
m_name= name;

m_surname = surname;

m_street = street;

m_streetnumber = streetnumber;

m_zip = zip;

m_locality = locality;

}

Dataset() {}

QString name() const { return m_name; }
QString surname() const { return m_surname; }
QString street() const { return m_street; }
int streetnumber() const { return m_streetnumber; }
int zip() const { return m_zip; }
QString locality() const { return m_locality; }

void setName(const QString& name) { m_name = name; }
void setSurname(const QString& surname) { m_surname = surname; }
void setStreet(const QString& street) { m_street = street; }
void setStreetnumber(int streetnumber) { m_streetnumber =

streetnumber; }
void setZip(int zip) { m_zip = zip; }
void setLocality(const QString& locality) { m_locality = locality; }

Record(const Record& r) {
m_surname = r.m_surname;

m_name = r.m_name;

m_street = r.m_street;

m_streetnumber = r.m_streetnumber;

m_zip = r.m_zip;

m_locality = r.m_locality;

}

Record& operator=(const Record& that) {
m_name = that.m_name;

m_surname = that.m_surname;

m_street = that.m_street;

m_streetnumber = that.m_streetnumber;

m_zip = that.m_zip;

m_locality = that.m_locality;

return *this;

}
};

Each field in the dataset has a get method and a corresponding set method. It
is important that the get methods are always declared as const. This is not only
better for the compiler, but it also helps us when serializing data. In addition we
require the copy operator dataset(const dataset& ds) and the assignment operator
operator=, since we must copy the class in a value-based manner.

324

11.3 Serializing Objects

11.3.1 Defining Serialization Operators

Finally, we define operator<<() for serializing, which transfers a dataset into a
QDataStream. The code shows the reason the get methods name(), surname(), and
so on must be declared as const: The dataset instance is declared to be const:

// record/record.h (continued)

QDataStream& operator<<(QDataStream &s, const Record &r)

{
s << r.name() << r.surname() << r.street()

<< (qint32)r.streetnumber() << (qint32)r.zip() << r.streetnumber();

return s;

}

In the operator definition we now only need to specify the order of the data ele-
ments in the stream. In addition, we must cast primitive data types (PODs), such as
integers, to a platform-independent type definition here, at the latest. An overview
of all these type definitions can be found in Section B.6 in Appendix B on page 422.

We now define the opposite operator>>(), which converts data from a QDataS-
tream into a dataset object. To do this we instantiate a QString and a qint32 and
use these to read data in the order in which they were read in by operator<<().
Then we fill the respective property of the passed dataset instance using the corre-
sponding set method. Finally we pass on the datastream using return, even though
we have not changed it in this method:

// record/record.h (continued)

QDataStream& operator>>(QDataStream &s, Record(&r))

{
QString data;

qint32 number;

s >> data;

r.setName(data);

s >> data;

r.setSurname(data);

s >> data;

r.setStreet(data);

s >> number;

r.setStreetnumber(number);

s >> number;

r.setZip(number);

s >> data;

r.setLocality(data);

return s;

}

#endif // RECORD_H

325

11 Input/Output Interfaces

11.3.2 Saving Serialized Data to a File and Reading from It

Now that we have defined the dataset data structure and its serialization opera-
tors, we can write a small example program to work with them: It provides the
saveData() and readData() functions so that suitable data can be stored to a file or
read out from it.

saveData() opens the output file initially in write mode, installs the QDataStream
instance ds on top of this, and sets the version to the most current version (at
press time, QDataStream version 4.0). To ensure that the file has been written by
our program, we reserve the first 32 bits for a so-called Magic Number. We also
include information on the version in a second field (here, 1). Then we serialize
each data set in the list, write it to the file, and then close it:

// record/main.cpp

#include <QtCore>

#include <iostream>

#include "record.h"

using namespace std;

void saveData(const QList<Record> &data, const QString &filename) {
QFile file(filename);

if (!file.open(QIODevice::WriteOnly)) return;

QDataStream ds(&file);

ds.setVersion(QDataStream::Qt_4_0);

// Magic number

ds << (quint32)0xDEADBEEF;

// Version

ds << (qint32)1;

foreach(Record r, data)

ds << r;

file.close();

}

The readData() function has the task of opening a file (the name of which it is given
as a string), analyzing the contents, and reading them out. In this case we again
open the file, but this time in read mode, and we again install theQDataStream
and set the desired datastream version. Now we check, using the Magic Number,
whether the file really does originate from us, and we also check the self-defined
version. If everything is correct, we can now read out the information in the file
dataset by dataset, to its end, close it, and provide the data structure we obtained
to the requester:

// record/main.cpp (continued)

QList<Record> readData(const QString &filename) {

326

11.3 Serializing Objects

QFile file(filename);

file.open(QIODevice::ReadOnly);

QDataStream ds(&file);

ds.setVersion(QDataStream::Qt_4_0);

// Magic number

quint32 magic;

ds >> magic;

if (magic != 0xDEADBEEF) {
qWarning("Wrong magic!\n");

return QList<Record>();

}
// Version

qint32 version;

ds >> version;

if (version != 1) {
qWarning("Wrong version!\n");

return QList<Record>();

}
QList<Record> recordList;

Record record;

while (!ds.atEnd()) {
ds >> record;

recordList.append(record);

}
file.close();

return recordList;

}

Now we have everything we need for a main program that we can use to try out
the functionality of our methods. We first create two datasets, which we will insert
into a typed QList. We pass this, with a filename, to saveData(). Then we delete
all the entries in the list, so that afterward it can be refilled with the results from
readData():

// record/main.cpp (continued)

int main()

{
QList<Record> data;

data.append(Datensatz("Tilda", "Tilli", "Rosenweg", 4, 20095,

"Hamburg"));

data.append(Datensatz("Lara", "Lila", "Lilienweg", 14, 80799,

"Munich"));

saveData(data, "file.db");

data.clear();

data = readData("file.db");

foreach(Record record, data)

cout << qPrintable(record.surname()) << endl;

return 0;

}

327

11 Input/Output Interfaces

If we now output the last names from each dataset read, the standard output will
display the strings Tilli and Lila on the screen.

The helper function qPrintable() provides support in outputting QString objects,
making use of the toLocal8Bit() method internally.

11.4 Starting and Controlling Processes

Now and again you may want to make use of the services of command-line based
programs, particularly on Unix-based operating systems. QProcess is responsible
for executing and controlling such external processes. Because it inherits from
QIODevice, this class is in a position to read the output of processes and to create
inputs. In addition it has methods for manipulating the environment variables of a
process.

QProcess belongs to the group of asynchronous devices: As soon as data is waiting
or other events occur, the class sets off a signal. The corresponding call returns
immediately. You can use QProcess for operations that are short enough not to
block the GUI, or even use them synchronously in threads. This behavior applies in
the same way for all asynchronous, QIODevice-based classes.

11.4.1 Synchronous Use of QProcess

In the following example we can look at the contents of archive files, created us-
ing the system tool tar, in a QListWidget (Figure 11.2). Each file in the tarfile
should form a separate entry in the list. We pass the archive to the program as
a command-line argument; if this argument is missing, we terminate the program
immediately:

// showtar/main.cpp

#include <QtGui>

int main(int argc, char* argv[])

{
if (argc < 2)

return 1;

QApplication app(argc, argv);

QProcess tar;

QStringList env = QProcess::systemEnvironment();

env.replaceInStrings(QRegExp("ˆLANG=(.*)"),"LANG=C");

tar.setEnvironment(env);

QStringList args;

args << "tf" << argv[1];

328

11.4 Starting and Controlling Processes

Otherwise, we instantiate QApplication and QProcess. Then we ensure that tar
displays its output in English—localized output would irritate our parser. For this
purpose we look for the LANG variable in the environment variables of the process,
which we can obtain from the systemEnvironment() method as a string list, and
replace it with LANG=C, the standard locale.

Figure 11.2:

showtar displays the

contents of a .tar

archive.

Once we have passed the new environment to the process with setEnvironment(),
we collect the arguments with which we want to invoke tar into a string list: Given
the flags tf, the tar program lists the contents of an archive file, which we also
include here as the second argument to tar.

We pass on the finished argument list, together with the program name tar, to the
start() method, which now runs the command tar tf filename:

// showtar/main.cpp (continued)

tar.start("tar", args);

QByteArray output;

while (tar.waitForReadyRead())

output += tar.readAll();

Since this method returns immediately, yet we want to work synchronously, we
use waitForReadyRead() to wait until the first data arrives. We collect this in a
QByteArray and continue waiting until the process is finished delivering data.

We now begin to parse the output by chopping up the line ends and putting them
first into a string list:

// showtar/main.cpp (continued)

QStringList entries = QString::fromLocal8Bit(output).split(’\n’);

entries.removeLast();

QListWidget w;

QIcon fileIcon = app.style()->standardIcon(QStyle::SP_FileIcon);

QIcon dirIcon = app.style()->standardIcon(QStyle::SP_DirClosedIcon);

329

11 Input/Output Interfaces

foreach(QString entry, entries) {
if (entry.endsWith(’/’))

new QListWidgetItem(dirIcon, entry, &w);

else

new QListWidgetItem(fileIcon, entry, &w);

}

w.show();

return app.exec();

}

The 8-bit encoded data is converted by the fromLocal8Bit() method to Unicode, as
it can be understood by QString. We remove the final entry, as it is empty, because
the final line of the tar output also ends with a \n.

We now instantiate the QListWidget in which we want to display the contents of
the tar archive. We pack each entry into a QListWidgetItem in such a way that
we can distinguish between directories and files: We embellish them with different
icons, which we can take from the Style used. This has a series of standard icons,
especially for input/output operations. We can access the current QStyle object via
the QApplication method style(). All we have to do now is display the list widget
and pass on control to the event loop.

The result should look similar to that shown in Figure 11.2. If you try out this exam-
ple, you will realize that you hardly notice the delay at the beginning, particularly
with smaller archives. Things are different with processes that perform more com-
plex operations, such as searching directories, which can take a while even on very
modern hard drives.

11.4.2 Asynchronous Use of QProcess

The following example demonstrates the asynchronous use of QProcess: The Line-
ParserProcess class reads out the output of a process asynchronously and stores
it, just as in the previous example, as items in a QListWidget. We implement it as
a subclass of QProcess. The only slot we require here is called readData(). In this
we must access the instance of QListWidget, which is why we make provision for a
corresponding member variable:

// lineparserprocess/lineparserprocess.h

#ifndef LINEPARSERPROCESS_H

#define LINEPARSERPROCESS_H

#include <QProcess>

class QListWidget;

330

11.4 Starting and Controlling Processes

class LineParserProcess : public QProcess

{
Q_OBJECT

public:

LineParserProcess(QListWidget*w, QObject *parent=0);

protected slots:

void readData();

protected:

QListWidget *listWidget;

};

#endif // LINEPARSERPROCESS_H

In the constructor we first connect the readyRead() signal to our new slot. Then we
again ensure that the output of the process is not in localized form:

// lineparserprocess/lineparserprocess.cpp

#include <QtGui>

#include <QDebug>

#include "lineparserprocess.h"

LineParserProcess::LineParserProcess(QListWidget *w, QObject *parent)

: QProcess(parent), listWidget(w)

{
connect(this, SIGNAL(readyRead()), SLOT(readData()));

QStringList env = systemEnvironment();

env.replaceInStrings(QRegExp("ˆLANG=(.*)"),"LANG=C");

setEnvironment(env);

}

void LineParserProcess::readData()

{
QByteArray line;

while (!(line = readLine()).isEmpty())

new QListWidgetItem(QString::fromLocal8Bit(line), listWidget);

}

In readData() we read in all data to the final line break in the datastream, with
readLine(), line by line. This procedure is safe, because we know that \n is the
last character to be read in the output, and sooner or later we have read all the
characters anyway. When there is no more new data, line remains empty and the
program returns for the time being to the event loop, until readyRead() signals that
new data is arriving.

Now we convert the 8-bit encoded lines, as in the previous example, with from-
Local8Bit() to a QString and insert the contents into a QListWidgetItem. Since we

331

11 Input/Output Interfaces

specify the parent widget as the second argument, this is immediately included in
the list widget.

Now we can use the class, for example, to list a directory tree recursively with ls. As
before, we expect to receive the starting directory as a command-line argument.
After we have ensured that an argument has been passed, we instantiate a QList-
Widget (apart from the obligatory QApplication object) and a LineParserProcess
(which contains a pointer to the instance of the QListWidget):

// lineparserprocess/main.cpp

#include <QtGui>

#include "lineparserprocess.h"

int main(int argc, char* argv[])

{
if (argc < 2) return 1;

QApplication app(argc, argv);

QListWidget w;

LineParserProcess process(&w);

process.setWorkingDirectory(QString::fromLocal8Bit(argv[1]));

process.start("ls", QStringList() << "-Rl");

w.show();

return app.exec();

}

Instead of passing the original directory as an argument to ls, we change the pro-
cess’s current working directory to the corresponding directory with setWorkingDi-
rectory(). Then we start the process; the argument -Rl ensures a recursive and
detailed listing of all filenames beneath the current path. Finally we display the
widget and enter the event loop.

If you try out this example, you will notice that the GUI does not lock while it is re-
ceiving new data from the process started. This type of asynchronous programming
is also referred to as event loop programming.

11.5 Communication in the Network

Network functionality in Qt is also based to a large extent on QIODevice. This is not
a component of the QtCore package but is stored in a library called QtNetwork. To
make this accessible to a Qt application, the .pro file must contain the following
line:

QT += network

There is also a separate meta-include file for the QtNetwork library that contains
all the other headers. The following line is sufficient to integrate this into the
application source code:

332

11.5 Communication in the Network

#include <QtNetwork>

The module consists of the QIODevice subclasses QAbstractSocket, QTcpSocket, and
QUdpSocket, and also contains a class QTcpServer that enables the implementation
of TCP-based services. In addition the QtNetwork also contains full implementa-
tions, in the classes QHttp (see page 361) and QFtp, two of the most common
Internet protocols. In additon, the QHostAddress class, which encapsulates host
names and IP addresses, is already IPv6-capable.

Thanks to the QNetworkProxy class, the module has had a Socks-5 proxy imple-
mentation for UDP and TCP as well as proxy support on the user layer for HTTP and
FTP since Qt 4.1. The classes QHttp and QTcp thus contain methods for specifying
an application proxy, without the need to instantiate QNetworkProxy manually.

11.5.1 Name Resolution with QHostInfo

The QHostInfo class is responsible for simple name resolution. The static method
QHostInfo::fromName() provides information on the specified address as an in-
stance of QHostAddress, but in doing so blocks the event loop. If you want to
avoid this, you should make use of the static method lookupHost(), which expects
a slot as an argument that operates further on the QHostAddress object passed.
The following code . . .

QHostInfo::lookupHost("www.example.com",

this, SLOT(doSomething(const QHostInfo&)));

. . . therefore looks up the host www.example.com in the DNS and delivers the result
to a slot called doSomething().

11.5.2 Using QTcpServer and QTcpSocket

To become familiar with the way the network classes work, we shall implement a
small service that binds itself to a port and returns the current time in ISO format
to every inquirer. The client should acknowledge that it has processed the string,
with ACK (not to be confused with the ACK packet of TCP).

The server uses the event loop of the system to do this: Each call, therefore, returns
immediately, and results are delivered via signals, which we have to match up to
slots accordingly.

As can be seen in the declaration, we only require one additional slot for this ex-
ample, since the remaining functionality can be inherited from QTcpServer:

333

11 Input/Output Interfaces

// timeserver/timeserver.h

#ifndef TIMESERVER_H

#define TIMESERVER_H

#include <QTcpServer>

class TimeServer : public QTcpServer

{
Q_OBJECT

public:

TimeServer(QObject *parent = 0);

protected slots:

void serveConnection();

};

#endif // TIMESERVER_H

In the constructor we connect the newConnection() signal to this slot, called serve-
Connection(). With nextPendingConnection() the slot retrieves the client connec-
tion closest to the socket. Each active connection is represented by a QTcpSocket
object.

As a subclass of QIODevice, QTcpSocket() is able to send data to the client or to
receive data from it. We delegate the socket to a helper class called Connection-
Handler, which looks after everything else:

// timeserver/timeserver.cpp

#include <QtCore>

#include <QtNetwork>

#include "timeserver.h"

TimeServer::TimeServer(QObject *parent)

: QTcpServer(parent)

{
connect(this, SIGNAL(newConnection()),

SLOT(serveConnection()));

}

void TimeServer::serveConnection()

{
QTcpSocket *socket = nextPendingConnection();

if (!socket)

return;

new ConnectionHandler(socket);

}

The ConnectionHandler first sends off the date and then waits for new data, which
it checks in the confirm() slot. We use a QTimer, in case the client doesn’t respond.

334

11.5 Communication in the Network

This class provides a timekeeper which—in contrast to the timerEvent() procedure
from Chapter 7—calls calls a signal when its timeout expires.

If it is intended to set the timeout off once, as in this case, the static method
singleShot() is sufficient; it expects the time to the timeout in milliseconds, as well
as the object and the slots calling it, as arguments. Finally, we save the slot in the
private member variable socket. After a timout we inform the client that we are no
longer waiting and terminate the connection:

// timeserver/connectionhandler.h

#ifndef CONNECTIONHANDLER_H

#define CONNECTIONHANDLER_H

#include <QtCore>

#include <QtNetwork>

#include <QDebug>

class ConnectionHandler : public QObject

{
Q_OBJECT

private:

QTcpSocket *socket;

public:

ConnectionHandler(QTcpSocket *socket, QObject *parent=0)

: QObject(parent)

{
QString dt = QDateTime::currentDateTime().toString(Qt::ISODate);

socket->write(dt.toUtf8());

connect(socket, SIGNAL(readyRead()), SLOT(confirm()));

QTimer::singleShot(10000, this, SLOT(timeout()));

this->socket = socket;

}

protected:

void closeConnection() {
socket->close();

delete socket;

deleteLater();

}

protected slots:

void timeout() {
socket->write("ERROR: Timeout while waiting for

acknowledgement\n");

closeConnection();

}
void confirm()

{
QByteArray reply = socket->readAll();

if(reply == "ACK\n")

closeConnection();

335

11 Input/Output Interfaces

else

socket->write("ERROR: Unknown command\n");

}

};

#endif // CONNECTIONHANDLER_H

In the confirm() slot we check whether the client has sent an ACK followed by a line
break. If this is not the case, we send the client an error message, and otherwise
we close the connection without comment. Closing in both cases is taken over by
the closeConnection() method. It simply closes the socket.

So that the ConnectionHandler is also deleted, we call deleteLater(). QObject-based
objects must never be deleted directly with delete. deleteLater() ensures that the
application, as it enters the event loop again, deletes the object.

We could have passed the QTcpServer object here as the parent object and then
waited for the class to be deleted when the program ends. For an application that
oversees several thousand connections, and therefore just as many Connection-
Handler objects, memory usage would be enormous. For this reason, we first delete
the QTcpSocket, which is no longer needed.

To try out our new program, we instantiate a TimeServer object, set it to listen to
port 4711, and bind it to all network interfaces. If you just want to bind your service
to the loopback interface, you would just use the address QHostAddress::LocalHost
instead of QHostAddress::Any. Finally we enter the event loop, and our server is
ready:

// timeserver/main.cpp

#include <QtCore>

#include "timeserver.h"

int main(int argc, char* argv[])

{
QCoreApplication app(argc, argv);

TimeServer ts;

ts.listen(QHostAddress::Any, 4711);

return app.exec();

}

336

12 Ch
ap

te
r

Threading with QThread

If a program needs to use parallel processes or perform resource-intensive jobs
without blocking the GUI, there are only two alternatives: forking or threading.

With forking, the operating system creates an exact copy of the current process.
The new process can execute along a separate code path, for example, to make
calculations while its parent performs some other task. Some form of interprocess
communication is also required between the original process and its fork. Although
this procedure is quite normal on Unix-based operating systems, support for fork-
ing under Windows is not so good, and it is very time consuming to carry out
there.

Since Qt places an emphasis on platform-independent programming, threading is
seen here as the means of choice. Here several threads, also called lightweight
processes, run simultaneously within a process. It is a relatively simple matter to
create new threads and to switch between them, since a thread merely has a stack
and a copy of the processor registers. As can be seen in Figure 12.1, the threads in
a process must share all other resources, such as the heap.

337

12 Threading with QThread

12.1 Using Threads

The QThread class represents threads in Qt. Even if you do not explicitly create any
lightweight processes, QCoreApplication always creates a main thread internally. In
connection with QApplication, we also talk about the GUI thread. This is entrusted
with a very special task: Only the GUI thread can create widgets or draw with
QPainter.

Figure 12.1:

Threads in a process

have their own

register set and a

separate stack, but

they share everything

else.

In the first example we will modify the timeserver from Section 11.5.2 (page 333)
from asynchronously handling requests by using the event loop to using QThread.
To do this we reimplement QTcpServer, but instead of connecting signals to slots
in the constructor, which this time remains empty, we override the incomingCon-
nection() method. This accepts an argument, socketDescriptor, which is a number
identifying a TCP socket. QTcpServer makes a call to the incomingConnection()
method for each incoming connection, in which socketDescriptor references the
socket for the connection:

// threadedtimeserver/timeserver.h

#ifndef TIMESERVER_H

#define TIMESERVER_H

#include <QTcpServer>

class TimeServer : public QTcpServer

{
Q_OBJECT

public:

TimeServer(QObject *parent = 0)

: QTcpServer(parent) {}
protected:

void incomingConnection(int socketDescriptor);

};

#endif // TIMESERVER_H

338

12.1 Using Threads

In the implementation we create a separate thread for each incoming connection.
After this thread has done its work, it should delete itself, which we implement
by connecting the finished() signal to the deleteLater() slot. Once it is started, the
thread prepared in this way alternates with the other existing threads at regular
intervals:

// threadedtimeserver/timeserver.cpp

#include <QtCore>

#include <QtNetwork>

#include "timeserver.h"

#include "connectionthread.h"

void TimeServer::incomingConnection(int socketDescriptor)

{
ConnectionThread *thread = new ConnectionThread(socketDescriptor);

connect(thread, SIGNAL(finished()), thread, SLOT(deleteLater()));

thread->start();

}

The actual work is done by the ConnectionThread class. As a Qt thread, it inherits
from QThread and must therefore implement, in addition to the constructor, the
purely abstract run() method. run() is a protected method that is called by start(),
so it must implement the functionality of the thread:

// threadedtimeserver/connectionthread.h

#ifndef CONNECTIONTHREAD_H

#define CONNECTIONTHREAD_H

#include <QThread>

#include <QTcpSocket>

class ConnectionThread : public QThread

{
Q_OBJECT

public:

ConnectionThread(int socketDescriptor, QObject *parent = 0);

void run();

private:

int socketDescriptor;

};

#endif // CONNECTIONTHREAD_H

The constructor also remains empty here, and we only initialize the socketDescrip-
tor and initialize the QThread base class with parent:

339

12 Threading with QThread

// threadedtimeserver/connectionthread.cpp

#include <QtCore>

#include <QtNetwork>

#include "connectionthread.h"

ConnectionThread::ConnectionThread(int socketDescriptor, QObject* parent)

: QThread(parent), socketDescriptor(socketDescriptor)

{
}

In run() we generate a QTcpSocket object and pass the descriptor to it. If something
should go wrong during this step, we issue a warning and cancel the procedure:

// threadedtimeserver/connectionthread.cpp (continued)

void ConnectionThread::run()

{
QTcpSocket tcpSocket;

if (!tcpSocket.setSocketDescriptor(socketDescriptor)) {
qWarning("ERROR: %s", qPrintable(tcpSocket.errorString()));

return;

}
QDateTime time = QDateTime::currentDateTime();

tcpSocket.write(time.toString(Qt::ISODate).toUtf8());

forever {
if (!tcpSocket.waitForReadyRead(10*1000)) {

tcpSocket.write("ERROR: Timeout while waiting for ACK\n");

break;

}
QString reply = tcpSocket.readAll();

if (reply.isEmpty()) {
qWarning("ERROR: %s", qPrintable(tcpSocket.errorString()));

break;

}
else if (reply == "ACK\n")

break;

else

tcpSocket.write("ERROR: Invalid command\n");

}

tcpSocket.disconnectFromHost();

if (!tcpSocket.waitForDisconnected(1000))

qWarning("WARNING: Could not disconnect");

}

If you need more precise information at this point about the error, you can call the
QTcpSocket method error(), which returns a member of the SocketError enumerator.

340

12.2 Synchronizing Threads

As in the example from Section 11.5.2, we now obtain the current date and time
and write both as a QString to the socket. The write() call immediately returns.
However, since we want to process one call after another in the thread, we use the
waitFor* methods, which we already used on page 329 for blocking calls.

Directly after the write() we enter into an infinite loop. Just like foreach(), forever
is a keyword defined by Qt, and it corresponds to while(true). In the loop we first
wait for data with waitForReadyRead(). In the argument we can specify a timeout
in milliseconds, which we set here to 10 seconds. If the method returns false, the
timeout has been exceeded. In this case we notify the client that we will no longer
wait and leave the loop with break.

Otherwise, data has been received from the client and we read it out. If the returned
byte array is empty, that means an error has occurred, and we close the connection
to be on the safe side. If its contents correspond to the ACK string, we close
the connection. Otherwise, we complain to the client about receiving an invalid
command and wait for another reply.

After issuing the call to close the connection with disconnectFromHost(), we wait
a second for possible errors and give a warning if one occurs. However, the run()
method then terminates, so tcpSocket is deleted and the connection is closed au-
tomatically at this point anyway.

The main() method of this threaded TimeServer is no different from the one on
page 336. We again create a QCoreApplication and a server object, get it to listen
to a port, and start the event loop:

// threadedtimeserver/main.cpp

#include <QtCore>

#include "timeserver.h"

int main(int argc, char* argv[])

{
QCoreApplication app(argc, argv);

TimeServer ts;

if (!ts.listen(QHostAddress::Any, 4711))

qWarning("Server cannot listen on this port!\n");

return app.exec();

}

12.2 Synchronizing Threads

In the example just displayed, each thread only manipulates the data on its stack
(i.e., its local variables). If threads need to share data, problems can arise because
the operating system can put one running process to sleep and execute another
in its place at any time. For instance, a thread might be in the middle of chaging

341

12 Threading with QThread

shared data when being sent to sleep. In this case, the next thread would operate
on that inconsistent data, leading to unpredictable results.

To master this situation we must protect each critical section in the code to ensure
that only one thread can execute it at any given time. A critical section is a portion
of code that needs to run consecutively without being interrupted.

Other threads that want to run though this code section will just have to wait.
This exclusive access is guaranteed by the QMutex class. The name mutex stands
for mutual exclusion, and, as its name suggests, if a thread is executing a section
of code protected by a mutex, then any other thread wanting to enter the criti-
cal section must wait until that thread leaves the critical section and releases the
mutex.

A thread that has to wait for access to shared resources should be able to put itself
to sleep for a while, without the system having to continually keep track of its
status (busy-waiting). For this purpose, there is the QWaitCondition class: It can
be used to put a thread to sleep until a certain condition occurs.

12.2.1 The Consumer/Producer Pattern

The two principles described above are put to good use in the so-called con-
sumer/producer use-case, in which a producer thread makes data available for
processing by a consumer thread. To move data from one thread to the other, the
producer places it in a queue, from which the consumer takes them out.

As a shared resource, the queue must be protected by a mutex before it is accessed
by either the producer or the consumer. If the consumer works more quickly than
the producer, it is possible that the queue will become empty. If the producer works
faster than the consumer, the queue may fill up. In either case, one of the two
threads has to sleep: the consumer until more data are available, or the producer
until the queue has free space.

We implement this scenario below using only Qt tools. To do this we first declare
a few global variables: As the data structure for the g_queue queue in which we
save integer data, we use the QQueue class, explained in more detail in Appendix B
on page 404. This contains the methods enqueue(), which places a datum into the
queue, and dequeue(), which reads out the oldest datum.

The integer g_maxlen specifies the maximum number of elements in the queue,
and the mutex g_mutex will protect the code sections that access the queue. The
wait condition g_queueNotFull should wake the sleeping producer thread when
the queue has free space. Likewise, g_queueNotEmpty wakes the sleeping con-
sumer when there are elements available in the queue:

// producerconsumer/producerconsumer.cpp

#include <QtCore>

342

12.2 Synchronizing Threads

#include <QDebug>

QQueue<int> g_queue;

int g_maxlen;

QMutex g_mutex;

QWaitCondition g_queueNotFull;

QWaitCondition g_queueNotEmpty;

First, we will look at the producer. The run() method enters an infinite loop in which
it alternates between producing a message and then going to sleep for three sec-
onds. The actual functionality is implemented here in produceMessage(). We use
the mutex to protect sections of code that access g_queue by calling the mutex’s
lock() method immediately prior to the section and its unlock() method immedi-
ately after:

// producerconsumer/producerconsumer.cpp (continued)

class Producer : public QThread

{
public:

Producer(QObject *parent=0)

: QThread(parent) {}

protected:

void produceMessage()

{
qDebug() << "Producing...";

g_mutex.lock();

if (g_queue.size() == g_maxlen) {
qDebug() << "g_queue is full, waiting!";

g_queueNotFull.wait(&g_mutex);

}

g_queue.enqueue((rand()%100)+1);

g_queueNotEmpty.wakeAll();

g_mutex.unlock();

}

void Producer::run()

{
forever {

produceMessage();

msleep((rand()%3000)+1);

};

}
};

In the critical section we check whether there is still room in the queue. If this is
not the case, the wait condition comes into force. Since the mutex must not be
blocked during the waiting period, we hand it to be looked after by the g_mutex

343

12 Threading with QThread

method. This unlocks the mutex, provided the thread is waiting. In consequence,
you need to ensure that there is room in the queue if you want to wake up the
thread, and then wake up the consumer thread via the relevant wait condition
object.

If the thread has been woken, or if the queue in this cycle was not full, we add
a random number between 1 and 100. Since there is now at least one element
in the queue, we can wake Consumer threads that have gone to sleep if the key
was empty before the enqueue() call, and wait for a change in the wait condition
g_queueNotEmpty. Now we no longer need to access g_queue, so we can unlock
the mutex.

We leave the other side, the consumer, to sleep a little longer in run() than the
producer, to obtain a full queue. To lock the mutex in this case we use a QMu-
texLocker, which simplifies this task. The constructor of the class calls up lock(),
while its destructor releases the mutex with unlock(). In this way it is out of the
question that you could forget an unlock(), thus provoking a deadlock. In such a
case, neither thread can any longer get through to the critical sections protected
by the mutex—then the program hangs.

Now the consumer first tests to see if any entries have been stored in the queue. If
this is not the case it goes to sleep, but in contrast to the producer thread, it uses
the wait condition g_queueNotEmpty. If the thread is woken up again after this or
if the queue was previously not empty, we remove an element from the queue and
then wake any producer threads that might be sleeping and waiting for data:

// producerconsumer/producerconsumer.cpp (continued)

class Consumer : public QThread

{
public:

Consumer(QObject *parent=0)

: QThread(parent) {}

protected:

int consumeMessage()

{
qDebug() << "Consuming...";

QMutexLocker locker(&g_mutex);

if (g_queue.isEmpty()) {
qDebug() << "g_queue empty, waiting!";

g_queueNotEmpty.wait(&g_mutex);

}
int val = g_queue.dequeue();

g_queueNotFull.wakeAll();

return val;

}

void run()

{

344

12.3 Thread-dependent Data Structures

forever {
qDebug() << consumeMessage();

msleep((rand()%4000)+1);

}
}

};

To test the consumer/producer scenario, we will write a small main() function in
which we restrict the number of elements in the queue to ten, create a producer
and a consumer, and start them both:

// producerconsumer/producerconsumer.cpp (continued)

int main()

{
g_maxlen = 10;

Producer producer;

Consumer consumer;

producer.start();

consumer.start();

producer.wait();

consumer.wait();

return 0;

}

Since start() returns immediately, but we do not enter into any event loop, we
wait for the end of the respective thread, with wait(). Since both threads never
return from run(), the program must be ended at this point from the outside, using✞✝ ☎✆Strg +

✞✝ ☎✆C , because the return statement will never reach the program.

12.3 Thread-dependent Data Structures

If you want to store data in a thread context, the solution is to be found in the
QThreadStorage template class. Because of compiler limitations it can only take in
pointer-based objects, which is why data structures stored in it must be allocated
using new.

A small example should explain the common usage of this class: Assume we
want each thread to maintain its own list with timestamps. Since the content of
QThreadStorage has to be a pointer, we declare the class as QThreadStorage<QList<
QTime>*>:

// threadstorage/storingthread.cpp

#include <QtCore>

#include <stdlib.h>

345

12 Threading with QThread

#include <QDebug>

class StoringThread : public QThread

{

private:

QThreadStorage<QList<QTime>*> storage;

public:

StoringThread(QObject *parent=0)

: QThread(parent) {}

protected:

void StoringThread::run()

{
forever {

if (!storage.hasLocalData()) {
storage.setLocalData(new QList<QTime>);

qDebug() << objectName() << ": Creating list."

<< "Pointer:" << storage.localData();

}
storage.localData()->append(QTime::currentTime());

qDebug() << objectName() << ":"

<< storage.localData()->count() << "dates collected";

msleep((rand()%2000)+1);

};

}
};

In run() we check in each thread, first with hasLocalData(), whether QThreadStorage
has already been initialized here. If this is not the case, we create the list.

Now we can insert the current time in each loop pass. The debug output shows
the amount of data currently collected by this thread. To be able to differentiate
between the results of the threads, we select a random waiting time between 1 and
2,000 milliseconds before we again enter the loop. Now the execution sequence of
the threads has been moved to a random one.

Now we will write a small test program with three threads. They are all given
names—also a way to distinguish them in the debug output. Then we start them
and ensure, with wait(), that they remain in their infinite loop:

// threadstorage/storingthread.cpp (continued)

int main()

{
StoringThread thread1;

StoringThread thread2;

StoringThread thread3;

thread1.setObjectName("thread1");

thread2.setObjectName("thread2");

346

12.4 Using Signals and Slots Between Threads

thread3.setObjectName("thread3");

thread1.start();

thread2.start();

thread3.start();

thread1.wait();

thread2.wait();

thread3.wait();

return 0;

}

The debug output on the console shows that each thread in the QThreadStorage in-
stants really does find a different data structure. We can see this from the different
address for the respective pointer each time:

"thread3" : Creating list. Pointer: 0x8051b80

"thread2" : Creating list. Pointer: 0x8052090

"thread1" : Creating list. Pointer: 0x80573f0

Even after a few seconds there are also differences in the amount of data collected:

"thread2" : 4 dates collected

"thread1" : 7 dates collected

"thread3" : 6 dates collected

For each process, Qt allows a maximum of 256 QThreadStorage objects. In most
cases this is not a problem. It is more important to know that the class automati-
cally deletes the data for a thread as soon as this thread is ended.

12.4 Using Signals and Slots Between Threads

In Qt 4 it is possible to connect signals and slots across threads. This can be done
thanks to so-called queued connections, which exist in Qt 4 in addition to the
traditional direct connections.

By direct connections we mean connections within a thread or process, as you
learned in Chapter 7. With queued connections, possible arguments of signals
are copied, and these are handed over to the recipient thread on the next thread
change. Usually, worker threads emit signals containing messages in the form of
the arguments, which are taken up by a slot in the main thread. The reverse is also
possible, but then the worker thread requires its own event loop (see Section 12.5
on page 350).

We can demonstrate this principle by extending the thread variation of the Time-
Server example from Chapter 12.1 (page 338) so that the worker threads emit
messages that arrive in a window in the GUI thread.

347

12 Threading with QThread

To do this we insert the following signal into the two declarations of the worker
thread class ConnectionThread and the TimeServer class:

void message(const QString& message);

Now we adjust the ConnectionThread so that it triggers the message() signal with
an error description for every possible error. In order to identify the connection, we
obtain the host name of the client, using peerAddress():

// threadedtimeserverslots/connectionthread.cpp

void ConnectionThread::run()

{
QTcpSocket tcpSocket;

if (!tcpSocket.setSocketDescriptor(socketDescriptor)) {
emit message("ERROR: "+ tcpSocket.errorString());

return;

}
QByteArray error;

QString peerHostName = tcpSocket.peerAddress().toString();

emit message("INFO: "+ peerHostName + " connected.");

QDateTime time = QDateTime::currentDateTime();

tcpSocket.write(time.toString(Qt::ISODate).toUtf8());

forever {
if (!tcpSocket.waitForReadyRead(10*1000)) {

error = "ERROR: Timeout while waiting for ACK";

tcpSocket.write(error+"\n");

emit message(peerHostName+": " + error);

break;

}
QByteArray reply = tcpSocket.readAll();

if (reply != "ACK\n") {
error = "ERROR: Invalid command: " + reply.simplified() ;

tcpSocket.write(error+"\n");

emit message(peerHostName+": " + error);

}
else

break;

}

tcpSocket.disconnectFromHost();

}

We now extend the TimeServer class so that it forwards the message of each thread
via its own message() signal: Since this connection crosses thread boundaries, it is
a queued connection:

348

12.4 Using Signals and Slots Between Threads

// threadedtimeserverslots/timeserver.cpp

#include <QtCore>

#include <QtNetwork>

#include "timeserver.h"

#include "connectionthread.h"

TimeServer::TimeServer(QObject *parent)

: QTcpServer(parent)

{
}

void TimeServer::incomingConnection(int socketDescriptor)

{
ConnectionThread *thread = new ConnectionThread(socketDescriptor);

connect(thread, SIGNAL(message(const QString&)),

SIGNAL(message(const QString&)));

connect(thread, SIGNAL(finished()), thread, SLOT(deleteLater()));

thread->start();

}

Figure 12.2:

Signals overcome the

thread barrier: The

log window receives

its messages via a

queued connection

from the connection

threads.

We modify the main() function so that it now instantiates a QApplication—we want
to have a graphical log window, after all. We implement this as a QTextBrowser and
give it a window name:

// threadedtimeserverslots/main.cpp

#include <QtGui>

#include <QDebug>

#include "timeserver.h"

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

QTextBrowser logWindow;

logWindow.setWindowTitle(QTextBrowser::tr("Log window"));

349

12 Threading with QThread

TimeServer ts;

QObject::connect(&ts, SIGNAL(message(const QString&)),

&logWindow, SLOT(append(const QString&)));

if (!ts.listen(QHostAddress::Any, 4711))

qWarning("Server cannot listen on port 4711!\n");

logWindow.show();

return app.exec();

}

After we have instantiated the server we connect its message() signal to the ap-
pend() slot. This involves a direct connection, since the TimeServer is in the same
thread as the log window. Now we can start the server with listen() and display the
log window. The result after a few connections is shown in Figure 12.2.

12.5 Your Own Event Loops for Threads

Each thread can have its own event loop and thus make use of classes that can
only work in an event loop, such as QTimer or QHttp. Threads with event loops
may have slots, which function as recipients of queued signals. Furthermore, direct
connections also function within such a thread-dependent event loop.

To start an event loop in a thread, the last method in run() must be exec(). The loop
is therefore started with the same blocking call as in the case of QApplication. The
event loop of threads can also be terminated by the quit() slot or the exit() function.
These function calls correspond exactly to those in QApplication.

Below we will create a thread that writes the messages coming from the indi-
vidual ConnectionThread instances to a file. This thread receives a public slot for
this purpose, called append(), which we later connect in the main() method to the
message() signal:

// threadedtimeserverslots/loggerthread.h

#ifndef LOGGERTHREAD_H

#define LOGGERTHREAD_H

#include <QThread>

#include <QFile>

class LoggerThread : public QThread

{
Q_OBJECT

public:

LoggerThread(const QString& fileName, QObject *parent = 0);

void run();

350

12.5 Your Own Event Loops for Threads

public slots:

void append(const QString& message);

private:

QFile file;

};

#endif // LOGGERTHREAD_H

In the constructor we specify the filename for the file but do not open it. In run()
we only start the event loop of the thread via exec(). append() opens the file for
each incoming message, writes the contents of message, together with a line wrap,
and closes the file again. Although this is not very efficient, we can assume that
our output will immediately appear in the log file:

// threadedtimeserverslots/loggerthread.cpp

#include <QtCore>

#include <QtNetwork>

#include <QDebug>

#include "loggerthread.h"

LoggerThread::LoggerThread(const QString& fileName, QObject* parent)

: QThread(parent)

{
file.setFileName(fileName);

}

void LoggerThread::run()

{
exec();

}

void LoggerThread::append(const QString& message)

{
file.open(QIODevice::WriteOnly|QIODevice::Append);

file.write(message.toUtf8()+’\n’);

file.close();

}

Then we insert the following lines in front of the ts.listen() call in the main() method
from page 349:

LoggerThread logger("timeserver.log");

QObject::connect(&ts, SIGNAL(message(const QString&)),

&logger, SLOT(append(const QString&)));

QObject::connect(&app, SIGNAL(lastWindowClosed()),

&logger, SLOT(quit()));

351

12 Threading with QThread

The first line creates a logger instance, while the second one forwards the message()
signal to the append() slot. This also is a queued connection that accepts the
recipient thread, thanks to the event loop.

12.5.1 Communication via Events Without a Thread-based
Event Loop

It is still possible to use the method employed in Qt 3 to send messages to ob-
jects in other threads via events. In this process the QCoreApplication::postEvents()
method unloads the event in the correct thread, because it is generally risky to call
a QObject-based object from another thread than the one in which it was created.

To avoid problems, you should establish a connection to another thread only via
postEvent(), via queued signal/slot connections, or via mutex-protected buffers.
How postEvent() functions is described in Chapter 7 on page 185.

352

13 Ch
ap

te
r

Handling XML with QtXml

File formats based on the Extensible Markup Language (XML) are becoming more
and more common. In the QtXml module, Qt provides not one, but two APIs for
handling XML files, each of which makes use of a different approach: the Simple
API for XML (SAX) and the Document Object Model (DOM).

DOM, probably the more well-known representative of XML APIs, is a standard
of the W3C. Here the contents of an XML document are transferred to an object
model, a tree-like structure, which precisely mirrors the structure of the document.
All modern web browsers use the Document Object Model internally, for example,
because they can access any element whatsoever of the XML tree and read it out.
But other applications also use DOM because a DOM tree in memory can be trans-
ferred back to an XML document. But this also means that the DOM is not suitable
for large XML documents, due to its not inconsiderable memory memory needs.
DOM is specified at various levels, whereby the Qt implementation complies with
the standards of DOM level 2.1

1 See http://www.w3.org/DOM/.

353

13 Handling XML with QtXml

When parsing an XML document, on the other hand, SAX sets off various events,
for example, each time it comes across an opening or closing tag. Each event is
represented by a method. The programmer has to reimplement the methods and
can decide which tags or attributes he or she wants to save. The fact that the
results in this case lie in data structures defined by the user means that SAX is by
design a purely reading API, in contrast to DOM. Its strengths come to the fore in
its efficient analysis of large documents. The specification of SAX has now been
taken over by the SAX Project.2

If you want to use the functionality of either of these two APIs, you must in-
struct qmake, with the following directive, to link the QtXml module to the current
project:

QT += xml

Class implementations and declarations in which classes from the QtXml module
are to be used can either use the class names as includes, or instead use the meta-
include QtXml:

#include <QtXml>

This chapter will explain both APIs in detail and will look at important differences
between the guidelines of the W3C and the SAX Project. A more in-depth treat-
ment of the two standards is not possible at this point, however, due to the high
complexity of the subject.

13.1 The SAX2 API

We shall first turn our attention to the SAX API. It corresponds as far as possible
to the reference implementation of the SAX Project, which is in Java. The name
conventions have been slightly adjusted by Trolltech, however, to fit in with the
names given by Qt.

13.1.1 How It Works

The SAX API parses XML source text on an event basis. For example, the parser sets
off events when it comes across a tag or text. As a practical example we will look
at the following extract from an XML-based XHTML document:

2 See http://www.saxproject.org/.

354

13.1 The SAX2 API

<p>Click here</p>

The SAX parser triggers the following events from this extract:

Start tag found (<a>)

Start tag found ()

End tag found ()

Start tag found (<p>)

Text found (Click here)

End tag found (</p>)

End tag found ()

The parse results are caught by implementing certain methods in handler classes.
We are interested here in two of the most frequently used classes: the QXmlCon-
tentHandler, which operates on tag and text events, and the QXmlErrorHandler,
which goes to work as soon as the parser finds syntactical errors in the XML.

You need the QXmlDTDHandler and QXmlDeclHandler classes less often. Both treat
(different) events that trigger the Document Type Definition (DTD) of an XML doc-
ument. In addition you can operate on XML entities with the QXmlEntityResolver
class, whereas the methods of the QXmlLexicalHandler class are triggered by lexical
events. These are not discussed here. The homepage of the SAX Project does have
a detailed interface documentation, however.

All methods of the handler classes are designed as interfaces, that is, they are purely
virtual. To spare programmers the burden of implementing each method and each
handler individually, QXmlDefaultHandler exists. It inherits from all handlers and
implements their methods in such a way that all events are ignored. It is now the
task of the programmer to intercept the events he or she requires and to process
them.

13.1.2 Reimplementing a Default Handler to Read RSS Feeds

How you reimplement a default handler and use it for your own purposes is demon-
strated in the following example, in which we will write a parser for the well-known
RSS format.3 We deliberately do not evaluate all the tags. A typical RSS file looks
something like this:

3 The abbreviation stands for Really Simple Syndication. This format has been used for some
time to publish blog entries or news articles in XML.

355

13 Handling XML with QtXml

<?xml version="1.0" encoding="utf-8"?>

<rss version="2.0">

<channel>

<title>Feed title</title>

<link>Web link</link>

<description>Short feed description</description>

<language>en-en</language>

<copyright>copyright information</copyright>

<pubDate>creation date</pubDate>



<item>

<pubDate>Creation time</pubDate>

<title>Title of first article</title>

<link>Link to to article on the web page</link>

<author>Author of article <email address></author>

<description>A short article summary</description>

</item>

<item>

...

</item>

</channel>

</rss>

The root tag <rss> can consist of one or several channels, specified by the <chan-
nel> tag. The channel is seen as the actual newsfeed.

In addition to its content, a channel contains a series of descriptive details, such as
its title or an image. The actual blog or news entries in the channel are wrapped in
<item> tags. Each item in turn contains the time of publication, a title, a link to
the complete content, the name of the authors, and a teaser (specified with the
<description> tag), which can contain either a summary or the entire entry.

Our RssHandler will fill a QStandardItemModel (see page 249) with data on the cur-
rent feed. It inherits from QXmlDefaultHandler and intercepts the events startEle-
ment(), endElement(), and characters(), which originate from QXmlContentHandler,
as well as fatalError() from QXmlErrorHandler. The errorString() function also orig-
inates from the error handler, but this does not represent any event:

// rssreader/rsshandler.h

#ifndef RSSHANDLER_H

#define RSSHANDLER_H

#include <QXmlDefaultHandler>

#include <QString>

#include <QModelIndex>

356

13.1 The SAX2 API

class QDocumentModel;

class QStandardItemModel;

class QXmlParseException;

class RssHandler : public QXmlDefaultHandler

{
public:

RssHandler(QStandardItemModel *model);

bool startElement(const QString &namespaceURI,

const QString &localName, const QString &qName,

const QXmlAttributes &attributes);

bool endElement(const QString &namespaceURI,

const QString &localName, const QString &qName);

bool characters(const QString &str);

bool fatalError(const QXmlParseException &exception);

QString errorString() const;

private:

bool rssTagParsed, inItem;

QStandardItemModel *itemModel;

QString errString;

QString currentText;

};

#endif // RSSHANDLER_H

We require the Boolean variables rssTagParsed and inItem so that we can remember
states: If you look at the RSS format, you will see that it uses some tag names in
multiple contexts; for example, title is used both to describe the feed (i.e., the <rss>
root) and to describe a news entry (i.e., an <item>). We use the status variables to
differentiate the two functions.

currentText helps here to collect the text between a pair of opening and closing
tags, and errString saves an error message. The implementation of errorString()
will return this value if one of the methods returns false.

In the constructor we initialize the member variable itemModel with the standard
model passed and all status variables with false. In addition we add headers to the
first two columns in the model: The contents of the <title> tag should later be
found in the first one, and the second one is reserved for the contents of <pub-
Date>.

// rssreader/rsshandler.cpp

#include <QtXml>

#include <QtGui>

#include <QDebug>

#include "rsshandler.h"

357

13 Handling XML with QtXml

RssHandler::RssHandler(QStandardItemModel *model)

{
itemModel = model;

rssTagParsed = false;

inItem = false;

model->setHeaderData(0, Qt::Horizontal, QObject::tr("Title"));

model->setHeaderData(1, Qt::Horizontal, QObject::tr("Date"));

}

Plausibility checks take place in particular in the startElement() method, which is
called as soon as an opening tag is being hit by the SAX parser. This is also respon-
sible for appropriately setting status variables, together with endElement(), which
runs as soon as the parser arrives at closing tags:

// rssreader/rsshandler.cpp (continued)

bool RssHandler::startElement(const QString & /* namespaceURI */,

const QString & /* localName */,

const QString &qName,

const QXmlAttributes &attributes)

{
if (!rssTagParsed && qName != "rss") {

errString = QObject::tr("This file is not an RSS source.");

return false;

}

if (qName == "rss") {
QString version = attributes.value("version");

if (!version.isEmpty() && version != "2.0") {
errorStr = QObject::tr("Can only handle RSS 2.0.");

return false;

rssTagParsed = true;

} else if (qName == "item") {
inItem = true;

itemModel->insertRow(0);

}
currentText = "";

return true;

}

The first two arguments involve the treatment of the namespace. Since RSS does
not use any namespaces, we can ignore this. qName contains the name of the tag,
and the QXmlAttributes class encapsulates any existing attributes.

The first lines of the method contain a plausibility check: If the variable rssTag-
Parsed still has the value false, as set in the constructor, and the current tag is not
<rss>, there must be an error, because the root tag in the document must be <rss>.
Once we can find the <rss> tag, we set rssTagParsed to true later in the code. In
this way we have formulated the condition “the root node must be <rss>,” using

358

13.1 The SAX2 API

a status and two comparisons. If this is not the case we set an error message and
return from the method with false.

If, on the other hand, we come across <rss>, we first check the version number.
We only support RSS version 2.0 (or a subset of this). We therefore reject other
versions as a preventive measure. Now it is also time to set rssTagParsed to true so
that we are not wrongly rejected by the first check on elements that we parse later.

If we come across <item>, then we change the status of inItem to true to distin-
guish the context of the tags, as described above. We also add a new line to the
model, which we will then fill with values.

If a new tag starts, we should also empty currentText, since this variable should
only contain the text between a pair of start and end tags.

Next, the characters method is used to read in the data that lies between a pair
of start and end tags. If the parser interprets this text as several consecutive texts,
for example, a normal text and a CDATA section in which data may be enclosed in
diamond operators, without it being interpreted as XML, we combine all the texts
into one. Since no error can arise here from our perspective, we return true in all
circumstances:

// rssreader/rsshandler.cpp (continued)

bool RssHandler::characters(const QString &str)

{
currentText += str;

return true;

}

We insert the text collected in this way in endElement() into the ready-to-use line
of the model. Again we are not interested in namespaces, but merely in the current
tag, which is waiting in the qName variable:

// rssreader/rsshandler.cpp (continued)

bool RssHandler::endElement(const QString & /* namespaceURI */,

const QString & /* localName */,

const QString &qName)

{
if (qName == "item") {

inItem = false;

} else if (qName == "title") {
if (inItem) {

QModelIndex idx = itemModel->index(0,0);

itemModel->setData(idx, currentText);

}
} else if (qName == "pubDate") {

if (inItem) {
QModelIndex idx = itemModel->index(0,1);

359

13 Handling XML with QtXml

itemModel->setData(idx, currentText);

}
} else if (qName == "description") {

if (inItem) {
QModelIndex idx = itemModel->index(0,0);

QString preview;

if (preview.length() >= 300)

preview = currentText.left(300)+"...";

else

preivew = currentText;

itemModel->setData(idx, preview, Qt::ToolTipRole);

itemModel->setData(idx, currentText, Qt::UserRole);

}
}
return true;

}

If we come across an <item> tag, we leave the context of an item, and we therefore
set <inItem> back to false. If we are currently looking at the contents of the tags
<title>, <pubDate>, or <description>, we must be sure in each case that we are
located within an item, which is why we also need to check inItem in these cases.

Since we insert the data into line zero—after all, we inserted the new element into
this line as well—we will specify the model index in column zero as the title. There
we set currentText, that is the text read in, as the content between the tags. The
same is done with pubDate, except that we select the first column here.

We proceed in two ways with the description from <description></description>.
On one hand, we arbitrarily cut off the first 300 characters to provide a text preview
in the tooltip. To indicate that the text continues, we attach an ellipsis (. . .) to it.4

In addition, we place data for the first time in the UserRole, in this case the com-
plete contents of <description>. We will use this later to display the contents of
the current entry in a QTextBrowser.

In the final part of the RssHandler implementation, we take a look at error handling.
On page 357 it was briefly mentioned that errors that trigger the implementation
of our class is retrievable for the parser via errorString(). This is why this method
simply returns the last error description, written to the variable errorString:

// rssreader/rsshandler.cpp (continued)

QString RssHandler::errorString() const

{
return errString;

}

4 Since we are in the middle of an HTML tag, there is no guarantee that the user will actually see
the three dots. A proper feed reader would have to use a better algorithm to cut the text.

360

13.1 The SAX2 API

This error, as well as fatal errors that originate from the parser itself, and which
prevent the continued processing of the document, sets off a call to the fatalError()
method, but only on the first parser error, unless we return true. Events are not
processed further after an error has occurred:

// rssreader/rsshandler.cpp (continued)

bool RssHandler::fatalError(const QXmlParseException &exception)

{
QMessageBox::information(0, QObject::tr("RSS-Reader"),

QObject::tr("Parse error in line %1, columne %2:\n %3")

.arg(exception.lineNumber())

.arg(exception.columnNumber())

.arg(exception.message()));

return false;

}

We pass the error on to the user by means of QMessageBox. The parameter excep-
tion provides details on the error that has occurred.

13.1.3 Digression: Equipping the RSS Reader with a GUI and
Network Capability

Now our parser can be built into a feed reader that uses an HTTP address to down-
load an RSS feed, parse it, and display it. Figure 13.1 shows how the application is
constructed: The line edit waits for the address of the feed, the contents of which
are displayed by a QTextView on the left-hand page. On the right we see the article
selected from the list in a QTextBrowser.

Figure 13.1:

The SAX-based RSS

reader displays the

blogs of KDE

developers.

To download the file from a webserver, we use the QHttp class, which enables
asynchronous communication with webservers. This is one of the network classes
introduced in Chapter 11, but we have not yet discussed it in more detail. We also

361

13 Handling XML with QtXml

come across the QBuffer class again, where we temporarily store the contents of
the RSS file. Later on we need the integer jobId in connection with QHttp. Our
window is based on QMainWindow, among other things, because we will use its
status bar:

// rssreader/mainwindow.h

#ifndef MAINWINDOW_H

#define MAINWINDOW_H

#include <QMainWindow>

class QLineEdit;

class QTextBrowser;

class QTreeView;

class QHttp;

class QBuffer;

class QModelIndex;

class MainWindow : public QMainWindow

{
Q_OBJECT

public:

MainWindow(QWidget *parent=0);

protected slots:

void readResponse(int id, bool error);

void retrieveRss();

void showArticle(const QModelIndex& index);

void showRss();

private:

QHttp *http;

QLineEdit *lineEdit;

QTextBrowser *textBrowser;

QTreeView *treeView;

QBuffer *rssBuffer;

int jobId;

};

#endif // MAINWINDOW_H

In the constructor we give the window a name and arrange the subwindow in a
table layout. Here we drag the line edit over one line and two columns, which
can be seen in the fourth and fifth parameters of the first addWidget() details. We
insert the tree view and the text browser in the second line, in the first and second
columns respectively:

// rssreader/mainwindow.cpp

#include <QtGui>

362

13.1 The SAX2 API

#include <QtXml>

#include <QtNetwork>

#include "mainwindow.h"

#include "rsshandler.h"

MainWindow::MainWindow(QWidget *parent)

: QMainWindow(parent), jobId(0)

{
setWindowTitle(tr("RSS Reader"));

QWidget *cw = new QWidget;

QGridLayout *lay = new QGridLayout(cw);

lineEdit = new QLineEdit;

lay->addWidget(lineEdit, 0,0,1,2);

treeView = new QTreeView;

treeView->setRootIsDecorated(false);

lay->addWidget(treeView, 1,0);

textBrowser = new QTextBrowser;

lay->addWidget(textBrowser, 1,1);

setCentralWidget(cw);

rssBuffer = new QBuffer(this);

rssBuffer->open(QIODevice::ReadWrite);

http = new QHttp(this);

connect(lineEdit, SIGNAL(returnPressed()), SLOT(retrieveRss()));

connect(treeView, SIGNAL(activated(const QModelIndex&)),

SLOT(showArticle(const QModelIndex&)));

connect(treeView, SIGNAL(doubleClicked(const QModelIndex&)),

SLOT(showArticle(const QModelIndex&)));

connect(http, SIGNAL(requestFinished(int, bool)),

SLOT(readResponse(int, bool)));

statusBar()->showMessage(tr("Welcome to RSS Reader!"));

}

The entire layout lies on a simple QWidget by the name of cw, which we insert into
the main window as the central widget. Finally, we generate a buffer and open it
for read and write access.

In addition we create the QHttp object. This class works in a purely asynchronous
manner, so there is not even the theoretical possibility of placing the object on
the stack, which would block processing until an event is present. Instead, all calls
immediately return. When the QHttp object has treated the request, it sends out a
signal.

For this reason, we create signal/slot connections at the end, the last one of which
is connected with the QHttp instance. As soon as the user sets off the inputs in the
line edit with

✞✝ ☎✆Enter , retrieveRss() begins downloading the file. The second and third
connect() calls connect a key action or a double-click to an entry in the list view
with the showArticle() method, which displays the corresponding article. Finally,

363

13 Handling XML with QtXml

we connect the requestFinished() signal, which triggers QHttp after an operation
has been completed, with the slot we have written ourselves, readResponse().

In retrieveRss() we transfer the text from the line edit into a QUrl object. It tries
automatically to parse a URL from the text passed to it:

// rssreader/mainwindow.cpp (continued)

void MainWindow::retrieveRss()

{
QUrl url(lineEdit->text());

if(!url.isValid || url.schema() != "http") {
statusBar()->showMessage(tr("Invalid URL: ’%1’")

.arg(lineEdit->text());

return;

}
http->setHost(url.host());

jobId = http->get(url.path(), rssBuffer);

statusBar()->showMessage(tr("Getting RSS Feed ’%1’...")

.arg(url.toString()));

}

If the text does not yield a valid URL (i.e., isValid() returns false) or if the scheme
(i.e., the protocol) is not http://, we do not need to continue, and return without
leaving behind an error message. We now set the name of the server from which
we want to obtain the RSS feed, using setHost(). The matching hostname is already
stored for us by url.host().

Because of the asynchronous nature of QHttp, all method calls that work on the
server are arranged into the queue and performed one after the other. Each method
call returns a job ID. As soon as a job has been processed, QHttp emits the re-
questFinished() signal, the first argument of which is the job ID.

For this reason we make a note of the job ID (in the member variable jobId) for the
Get request to the server. As arguments, the get() method demands the path to the
file and a pointer to a QIODevice where it can store the retrieved file. Finally, we
inform the user that we are downloading the RSS feed.

In the readResponse() slot we fetch only the result of the Get job. The second
parameter specifies whether an error occurred during the file download, perhaps
because the server was not available or the path was incorrect. If this is not the
case, we process the data via showRss() and issue a three-second success message
in the status bar. Otherwise, an error message will appear for the same length of
time:

// rssreader/mainwindow.cpp (continued)

void MainWindow::readResponse(int id, bool error)

{

364

13.1 The SAX2 API

if (id == jobId) {
if (!error) {

showRss();

statusBar()->showMessage(

tr("RSS-Feed loaded successfully"), 3000);

}
else

statusBar()->showMessage(

tr("Fehler while fetching RSS feed!"), 3000);

}
}

showRss() does the actual work. Here we create a standard model with two columns
that we later pass on to RssHandler:

// rssreader/mainwindow.cpp (continued)

void MainWindow::showRss()

{
QStandardItemModel *model = new QStandardItemModel(0, 2);

RssHandler handler(model);

QXmlSimpleReader reader;

reader.setContentHandler(&handler);

reader.setErrorHandler(&handler);

rssBuffer->reset();

QXmlInputSource source(rssBuffer);

if (!reader.parse(source))

return;

delete treeView->model();

treeView->setModel(model);

}

QXmlSimpleReader is responsible for parsing the file using the RssHandlers. Since
RssHandler inherits from QXmlDefaultHandler, and thus from all handlers, but we
have implemented only the functionality of QXmlContentHandler and QXmlEr-
rorHandler, we must register the RssHandler as both a content and error handler
with the reader object.

As the document source for QXmlSimpleReader, the QXmlInputSource class is used,
which obtains its data from a QIODevice. But before we instantiate such an input
source, passing on the buffer as an argument at the same time, we must set the
read position in the buffer to the beginning of the internal QByteArray with reset(),
so that the content just written can be read out. reader.parse() now starts the
actual parsing process.

If this runs successfully, we first delete any already existing model linked to the tree
view, and then pass our model, equipped with fresh content, to the view.

In the final step we now need to implement the showArticle() slot to display the
entry selected in the tree view in the text browser. To do this we access the data()

365

13 Handling XML with QtXml

method of the active model. We obtain the index of the current entry from the
argument of the slot. As the role we select UserRole, where we previously stored the
complete contents of the<description> tag. We now convert this, using toString(),
from a QVariant back to a QString and pass this to the text browser as HTML:

// rssreader/mainwindow.cpp (continued)

void MainWindow::showArticle(const QModelIndex& index)

{
QVariant tmp = treeView->model()->data(index, Qt::UserRole);

QString content = tmp.toString();

textBrowser->setHtml(content);

}

Now our rudimentary RSS reader is finished. The obligatory main() method instan-
tiates QApplication, and the MainWindow object displays the window and sets it
to an initial size of 640 × 480 pixels. The application then enters the event loop:

// rssreader/main.cpp

#include <QtGui>

#include "mainwindow.h"

int main(int argc, char *argv[])

{
QApplication app(argc, argv);

MainWindow mw;

mw.show();

mw.resize(640, 480);

return app.exec();

}

This simple example already demonstrates that SAX2 allows you to parse docu-
ments with comparatively small outlay. But the more exact the checks become, the
more complex the code. If you want to avoid this complexity, and you only process
small documents anyway, you should take a look at the Document Object Model,
which follows a completely different approach.

13.2 The DOM API

QDom, the DOM API of Qt, is a very convenient way of accessing XML files. The
QDomDocument class here represents a complete XML file. Its setContent() method
is capable of generating DOM trees out of XML files and conversely writing the
contents of a DOM tree to an XML document.

The DOM tree itself consists of DOM elements (QDomElement). Their start tags may
contain attributes. Between the start and end tag, DOM elements may contain text

366

13.2 The DOM API

or child elements. In this way the DOM tree is built up from the XML structure, and
its elements are without exception DOM nodes (QDomNodes).

QDomNodes know the principle of parenthood: If they are inserted in another part
of the tree, they are not copied, but change their location in the tree. The node
into which a QDomNode is inserted now functions as its new parent node. Not
every node may posess child nodes, however. If you try, for example, to give a
child to an attribute node, the object will insert the new node as a sibling node of
the attribute node. This deviates from the DOM specification, which at this point
divergently demands that an exception should be thrown.

Here a general distinction from the DOM specification can already be seen: Qt does
not use exceptions to announce errors, but either uses return values or chooses an
alternative behavior. This is why it is recommended that you exclude cases of error
in advance of a call by making as many checks as possible in the method’s code,
and also check return values of methods after calls.

13.2.1 Reading in and Processing XML Files

The following HTML file is written in XHTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>

<title>Title</title>

</head>

<body>

<p>

Example.com

Example.net

Example.org

</p>

</body>

</html>

We want to load this into a test application in a QDomDocument and work with it
in order to observe different aspects of QDom. For this purpose we open the file
with QFile and read out its contents. Then we instantiate a QDomDocument and
pass the byte array read out of the file to the QDomDocument with setcontent().
We use using namespace std; to simply write cout (instead of std::cout) to display
data on the standard output.

// xhtmldomparser/main.cpp

#include <QtCore>

#include <QtXml>

367

13 Handling XML with QtXml

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{
QCoreApplication app(argc, argv);

QFile file("index.xml");

if (!file.open(QIODevice::ReadOnly))

return 1;

QByteArray content = file.readAll();

QDomDocument doc;

QString errorMessage;

int line, col;

if (!doc.setContent(content, &errorMessage, &line, &col))

{
cout << "Error in Line " << line << ", column " << col

<< ":" << qPrintable(errorMessage) << endl;

return 1;

}

setContent() parses the input and returns a false if there is a parser error. If—like
us—you want to learn more about the error, you pass to this function, apart from
the bytearray, a pointer to a QString and two integers. If there is an error, the
function fills these last three values with the problem description, as well as the
relevant line and column in the document.

Figure 13.2:

Every object in the

DOM tree generated

from the XML is a

QDomNode as well.

368

13.2 The DOM API

The DOM tree parsed in this way is shown in Figure 13.2. We will now work with
this. First we read out the name of the document type and the tag name of the
root element in the document. docType() provides us with the document type in a
QDomDocumentType object. Its name—that is, the part which stands directly after
DOCTYPE—is called html in this case. This is revealed to us through the name()
method:

// xhtmldomparser/main.cpp (continued)

QDomDocumentType type = doc.doctype();

cout << "Document type: " << qPrintable(type.name()) << endl;;

QDomElement root = doc.documentElement();

if (root.hasAttribute("xmlns")) {
QDomAttr attr = root.attributeNode("xmlns");

cout << "xmlns: " << qPrintable(attr.value()) << endl;

}

if (root.hasAttribute("lang")) {
QDomAttr attr = root.attributeNode("lang");

cout << "lang: " << qPrintable(attr.value()) << endl;

}

QDomNode node = root.firstChild();

while(!node.isNull())

{
if(node.isElement()) {

QDomElement elem = node.toElement();

cout << "Child of root node: " << qPrintable(elem.tagName()) <<

endl;

cout << "Its text: " << qPrintable(elem.text()) << endl;

}
node = node.nextSibling();

}

We obtain the root element and save it as a QDomElement via the QDomDoc-
ument method documentElement(). The attributes of elements are provided by
attributeNode(). In the example we extract the attributes xmlns and lang. If the
file does not contain them, attributeNode() would return an empty QDomAttr ob-
ject. This is why we check whether the element has a corresponding attribute at
all, using hasAttribute(). Finally, using value(), we obtain the value of the attribute.

Then we read out all the child nodes of the root element. We use firstChild() to
give us the first DOM node (that is, head), and all the others (here, just body)
we obtain with nextSibling(). If this is just an element, we convert the node to a
QDomElement. If we come across an attribute or comment node, this will not work,
of course. To obtain the name of a QDomElements, we use the tagName() method.

The text() method collects the text nodes of an element and its child elements in
a QString. Here we receive the text of the headers from the head element, and on

369

13 Handling XML with QtXml

the next loop pass the texts of all three reference elements (<a>) beneath the body
element.

We now fill the node variable with the next sister nodes and repeat the procedure.
If no more sister nodes are available, then nextSibling() returns a null node, which
no longer fulfils the loop condition. The output of the above example therefore
appears as follows:

Document type: html

Root tag: html

Document type: html

xmlns: http://www.w3.org/1999/xhtml

lang: en

Child of root node: head

Its text: Title

Child of root node: body

Its text: Example.comExample.netExample.org

The conversion of the QDomNodes returned by firstChild() and nextSibling() into
QDomElements can be left out, by the way, if you use firstChildElement() and
nextSiblingElement() instead. The procedure used here makes particular sense if
you want, for example, to filter out additional comments (represented by QDom-
Comment) or text (represented by QDomText and QDomCDATASection).

13.2.2 Searching for Specific Elements

Now that we have seen how we navigate in a DOM tree, we will look at the methods
we can use to search specifically for certain elements. DOM provides the elements-
ByTagName() function for this purpose. It expects the name of an element type. If
you call it as a method of a QDomDocument instance, then it will look through all
the elements in the entire document, whereas the method of the same name in the
QDomElement class looks through all the elements beneath the element receiving
the method call.

Both functions return a QDomList. This is not a type definition for QList<QDomNo-
de> but is a different kind of data structure, which is specified in the DOM spec-
ifications. We can therefore not process this list with foreach(). Instead we use a
for() loop to iterate through the list, as shown here:

// xhtmldomparser/main.cpp (continued)

QDomNodeList anchors = doc.elementsByTagName("a");

for(uint i = 0; i < anchors.length(); i++) {
QDomElement anchor = anchors.at(i).toElement();

QString href = anchor.attribute("href");

cout << qPrintable(href) << endl;

}

370

13.2 The DOM API

The number of elements is determined by the length() method. Before we can
read out the attributes from the current DOM node, we must convert it back to
an element. The DOM API always provides only one QDomNodeList for lists. The
attribute("href") call is a short form for attributeNode("href").value() and returns
the value directly as a QString. The output for our example accordingly appears as
follows:

http://www.example.com

http://www.example.net

http://www.example.org

The QDomNode::childNodes() method returns all subnodes, also in a QDomNodeList.

13.2.3 Manipulating the DOM Tree

Of course, we can also insert new elements into the tree or eliminate existing ones.
To delete a DOM node from the tree, you call the removeChild() method of the par-
ent node, which can be determined by parentNode(), and pass the node in question
to this method as a QDomElement:

// xhtmldomparser/main.cpp (continued)

QDomElement examplecom = anchors.at(0).toElement();

examplecom.parentNode().removeChild(examplecom);

We now want to convert the remaining links into a nonclickable text, but the text
should still be emphasized, for which we use a tag. Ideally, we would there-
fore change the tag name of the element and remove the href attribute with the
following code:

// xhtmldomparser/main.cpp (continued)

for(uint i = 0; i < anchors.length(); i++) {
QDomElement anchor = anchors.at(i).toElement();

anchor.setTagName("b");

anchor.removeAttribute("href");

}

Alternatively we could have created a new element, copied the text, looked for the
parent node with parentNode(), and from there replaced the href tag using the
replaceChild() method. As arguments, this expects the node to be replaced and
then the new node.

Next we create a new partial tree and insert it into the DOM tree. As a basis for
partial trees, the class QDomDocumentFragment can be used to save trees that

371

13 Handling XML with QtXml

do not have to contain well-formed XML. This means that such a partial tree may
contain several direct child elements, whereas in a QDomDocument, one element
at the most, the root element, may exist.

QDomDocumentFragments play a special role in methods such as appendChild(),
insertBefore(), or insertAfter(): If these contain a fragment as a parameter, then
they insert all its sub-nodes.

To create a node (that is, one based on a QDomNode subclass), we must use one of
the factory methods from QDomDocument, which all start with create. The only
exception is the QDomDocument itself, which we can instantiate directly. If you
just instantiate a node without initializing it using the appropriate factory method,
then it is considered to be undefined. This behavior represents a source of errors
that is not easy to detect.

In the following code we will generate a fragment and insert in it an italic element
(i). Into this element we place a text node by first creating a QDomText and then
appending it to the italic element with appendChild(). After this we create an
XML comment (QDomComment) and insert both the new italic element and the
comment into the document fragment:

// xhtmldomparser/main.cpp (continued)

QDomDocumentFragment fragment = doc.createDocumentFragment();

QDomElement italic = doc.createElement("i");

QDomText text = doc.createTextNode("some links for you:");

italic.appendChild(text);

QDomComment comment = doc.createComment("converted links:");

fragment.appendChild(italic);

fragment.appendChild(comment);

QDomNode para = doc.elementsByTagName("p").at(0);

para.insertBefore(fragment, para.firstChild());

To enter both elements in our document above the links, we locate the first p
element and insert the fragment’s components as children, via insertBefore(), in
front of what was the first child until now.

13.2.4 The DOM Tree as XML Output

The tree obtained up to this point can again be displayed by QDocument as an
XML structure. The methods toString() and toByteArray() can be used for this. The
latter is of particular interest if you want to write the XML file back to a QIODevice.
The parameter specifies the number of empty spaces that should be used when
indenting the XML structure. If this is missing, Qt sets the indent depth to one
empty space per level.

In the following example we will write the current status of the DOM tree into the
file opened for writing, out.xml. Then we close this and send it to the standard

372

13.2 The DOM API

output with toString(). In both cases we use two empty spaces per level when
indenting the elements in the output:

// xhtmldomparser/main.cpp (continued)

QFile outfile("out.xml");

if (!outfile.open(QIODevice::WriteOnly)) {
cout << "Could not write file: "

<< qPrintable(outfile.fileName()) << endl;

return 1;

}
QByteArray data = doc.toByteArray(2);

outfile.write(data);

outfile.close();

// unicode string representation

QString string = doc.toString(2);

cout << qPrintable(string) << endl;

return 0;

}

373

14 Ch
ap

te
r

Internationalization

Many programs today are intended to reach users in many different countries. For
this reason it is very important that an application can be modified easily and flex-
ibly to the particularities of another language. One aspect of this is the translation
of all visible texts into the target language. The direction of text flow, on which the
arrangement of widgets is based, is also of central importance.

In this chapter we will first translate the application CuteEdit, which we created in
Chapter 4 using the tools of Qt. In addition we will get to know a few useful classes
which, when used during the development process, will help to avoid problems later
on when translating the software to another language.

14.1 Translating Applications into Other Languages

Qt includes several mechanisms to prepare application programs for translation
into other languages later on (see page 50 and also page 123).

375

14 Internationalization

We now repeat once again the two most important points: All translatable strings
in the program code must always be enclosed by the QObject method tr(). In ad-
dition, variables in strings may never be directly concatenated, since it would be
impossible to produce the correct word order in the target language, as the follow-
ing English-to-German sentence conversion illustrates:

QString filename = "file.txt";

QString message = tr("Could not save ") + filename;

In the German translation, the word order should be “Could file.txt not save,” but
the expression used to construct the message assumes English word order and so
cannot produce the desired phrase. To do the translation correctly, you need to use
placeholders, as shown below.

QString filename = "file.txt";

QString message = tr("Could not save %1.").arg(filename);

Now tr() is able to translate this sentence with the correct inverted (relative to
English) word order, Could %1 not save. We will now explain how this works.

14.1.1 Preparing the Application

The CuteEdit version used here is different from the one in Chapter 4, in that it uses
English strings in the code. This is not necessary but it does make sense, as English is
normally used as the lingua franca, allowing external programmers whose mother
tongue is not German to work on the program.

For the translation of Qt-based applications, Qt provides the programs lupdate,
linguist, and lrelease. The translation process is not a separate task, completely
isolated from the code development, but is integrated into the Qt project manage-
ment. If our project file up until now looks like this:

#cuteediti18n/cuteediti18n.pro

TEMPLATE = app

SOURCES = main.cpp mainwindow.cpp

HEADERS = mainwindow.h

FORMS = mainwindow.ui

RESOURCES = pics.qrc

then all that is missing is the entry for TRANSLATIONS, which expects one or more
translation files as arguments. Adding translation support for German, French, and
Italian will look like this:

376

14.1 Translating Applications into Other Languages

#cuteediti18n/cuteediti18n.pro (continued)

TRANSLATIONS = cuteedit_de.ts \
cuteedit_fr.ts \
cuteedit_it.ts

Using the lupdate tool, we extract these files from the project sources, the files
registered under SOURCES, HEADERS, and FORMS. The following command is suf-
ficient to do this:

lupdate cuteediti18n.pro

This extracts all the strings in the sources that need to be translated. These trans-
lation sources are now available in an XML-based format.

If new strings are added during further program development, lupdate cuteed-
iti18n.pro updates the translation sources, and translators can work on the new
strings.

14.1.2 Processing Translation Sources with Linguist

The most convenient way to open and edit translation sources is with the program
Qt Linguist. This work can be done by people working independently of the Qt
software developers, such as freelance translators.

Figure 14.1 shows the main window of the Linguist after it has loaded the file cute-
edit_de.ts. The context dock window on the left-hand page gives an overview of
the translation context, and it usually displays the name of the class in which a
string appears.

If you select a context, the strings for translation in this context will appear. The
field in the center provides space for an individual translation.

Since there are standard translations for many commonplace phrases and menu
items, you can find suggestions from so-called phrasebooks. Qt provides such
collections of suggestions for many common languages under Phrases → Open
Phrasebook. . . . If these are loaded, suggestions will appear in the lower-right win-
dow if Linguist finds similarities to the word(s) being translated.

Untranslated strings are given a blue question mark, and translated ones an orange
question mark. If Linguist discovers an inconsistency in the translation, such as
missing “. . . ” in menu items, it places a red exclamation mark in front and displays
the problem in the status bar. If you are satisfied with a translation, you confirm it
with

✞✝ ☎✆Ctrl +
✞✝ ☎✆Enter . It is then given a green checkmark.

377

14 Internationalization

Figure 14.1:

Using phrasebooks,

the Qt Linguist helps

you to find matching

translations and

checks these for

consistency.

When all strings are translated, the results just need to be saved: The .ts file now
contains the translated strings. The command

lrelease cuteediti18n.pro

creates files from (complete or partial) translation sources in a special binary format
that the Qt program can use. In our case these are cuteedit_de.qm, cuteedit_fr.qm,
and cuteedit_it.qm.

14.1.3 Using Translations in the Program

Loading the correct translation when the program starts is the task of the QTrans-
lator class. It will search for the translation files in the working directory of the
application if it is not given a path as the second argument when it is called.

To determine the name of the translation file for the respective system environ-
ment, we use QLocale::system(). The static method outputs a QLocale object with
information on the current system locale. The name() function returns the locale to
us as a string, consisting of a language code and a country code in capitals, which

378

14.1 Translating Applications into Other Languages

for Germany would be de_DE. Therefore, our filename is cuteedit_de_DE, and this
is turned into cuteedit_de_de as a precaution, using toLower():

// cuteediti18n/main.cpp

#include <QApplication>

#include "mainwindow.h"

int main(int argc, char *argv[])

{
QApplication a(argc, argv);

QTranslator cuteeditTranslator;

filename = QString("cuteedit_%1").arg(QLocale::system().name());

filename = filename.toLower();

cuteeditTranslator.load(filename);

app.installTranslator(&cuteeditTranslator);

QTranslator now looks for the filename according to a fixed pattern: First it adds
.qm to the file, then it tries without this extension. If it has still not found anything,
it removes all the numbers from the end of the name up to the first underscore or
dot, and tries again. In our case the search sequence would look like this:

cuteedit_de_de.qm

cuteedit_de_de

cuteedit_de.qm

cuteedit_de

cuteedit.qm

cuteedit

The algorithm already found something in the third step. Through the country
code, localization is also possible between countries that use the same language
but with differences in vocabulary or usage. Thus en usually matches American
English, whereas the application would make adjustments aimed toward the lan-
guage customs of Great Britain if the locale were set to en_UK.

If we include the translation in our QApplication instance with installTranslator(),
the application shows a translated user interface after show() has been called.

In addition we install a QTranslator, which contains all the strings of the Qt library.

// cuteediti18n/main.cpp (continued)

QTranslator qtTranslator;

QString filename("qt_%1").arg(QLocale::system().name());

filename = filename.toLower();

qtTranslator.load("qt_" + QLocale::system().name());

app.installTranslator(&qtTranslator);

379

14 Internationalization

QCoreApplication::setOrganizationName("OpenSourcePress");

QCoreApplication::setOrganizationDomain("OpenSourcePress.de");

QCoreApplication::setApplicationName("CuteEdit");

MainWindow mainWindow;

mainWindow.show();

return a.exec();

}

The directory $QTDIR/translations contains the raw translation sources in the file
qt_untranslated.ts, together with a series of translations for different languages,
such as qt_de.ts and qt_de.qm for Germany. All you need to do is copy the cor-
responding files to the current directory so that the QTranslator object will find
them.

Since the organization and application name, as well as the domain, are used in
the path for configurations files, these strings should not be translated.

14.1.4 Adding Notes for the Translation

If a string’s meaning is not unique, for example because it just consists of one word,
this can lead to problems in translations. For instance, the translator who just sees
the word as a single word, and not in its entire usage context, has no clues as to
whether the word stop means “stop the current operation” or “bus stop.” For this
reason the tr() method allows a translation comment to be placed as the second
argument. The code

QString busstop = tr("Stop", "bus stop");

QString stopaction = tr("Stop", "stop action");

generates two different strings with corresponding comments, after lupdate has
been run on the translation source.

14.1.5 Specifying the Translation Context

For strings occurring in global functions that do not belong to any class, there is
no class to use as a default translation context. It is nevertheless possible to assign
a context to such a string by calling the actual static method tr() of a particular
class:1

1 The QApplication method translate() always demands details of the translation context anyway
(see page 50).

380

14.1 Translating Applications into Other Languages

void global_function(MyWidget *w)

{
QLabel *label = new QLabel(MyWidget::tr("foo"), w);

}

lupdate then accepts the label “foo” in the correct correct translation context (in
this case, MyWidget).

14.1.6 Internationalizing Strings Outside Qt Classes

For reasons of space, certain data is often stored in a static array. In order that
lupdate can also record entries from such char arrays, they must be enclosed by
the macro QT_TR_NOOP. tr() then searches for its translations as before from the
catalog.

This is illustrated in the following example, in which we store several city names
in a static, null-terminated array. After we have instantiated the QCoreApplication
object and installed the translator there, the program displays the localized city
names, via the tr() instruction, as soon as a translation file is available:

// trnoop/main.cpp

#include <QtCore>

#include <QDebug>

int main(int argc, char* argv[])

{
static const char* cities[] = {

QT_TR_NOOP("Cologne"),

QT_TR_NOOP("Munich"),

QT_TR_NOOP("Rome"),

0

};

QCoreApplication app(argc, argv);

QTranslator translator;

filename = QString("trnoop_%1").arg(QLocale::system().name());

filename = filename.toLower();

translator.load(filename);

app.installTranslator(&translator);

int i = 0;

while (cities[i])

qDebug << QObject::tr(cities[i++]);

return 0;

}

381

Appendixes

A A
pp

en
di

x
Debugging Help

Error analysis, often referred to as debugging, is one of the most time-consuming
activities in software development. Apart from using a debugger, the method of
choice is to augment the code with instructions that produce debug output (e.g.,
the calculations of algorithms) at strategically chosen points. You can also recon-
struct how and when various program parts are called by using selected output
messages.

A.1 Debugging Functions

There are two different approaches to outputting debugging code, reflecting the
differences between C and C++. C developers work predominantly with printf(),

385

A Debugging Help

whereas C++ programmers prefer to send output through streams, via cout and
cerr, since no format string is required in this case.

Both approaches cause problems as soon as program development is finished: Prior
to each release, the debugging output must be deactivated, although certain criti-
cal messages possibly should remain.

Qt allows an alternative approach that supports both of the commonly used meth-
ods and also solves the aforementioned problems: It suppresses debug messages if
the QT_NO_DEBUG_OUTPUT macro is defined during the compiling process. This is
automatically the case if you build the Qt program without debug support. This is
ensured by inserting the CONFIG -= debug line in the project file.

To use the functions and macros described below, no additional includes are neces-
sary—apart from files that otherwise manage without Qt elements. In this case you
must include the QtGlobal header:

#include <QtGlobal>

If QT_NO_DEBUG_OUTPUT is undefined, what is done with the error messages de-
pends on the operating system. Under Unix-type operating systems such as Linux
or OS X, the output appears on the standard error output, better known to Unix afi-
cionados as stderr. On Windows machines this output lands in the debugger. If you
want to divert the output elsewhere, you can define your own message handler, as
described in Section A.1.3 on page 388.

Qt provides three functions that are responsible for the debug output and imple-
ment the aforementioned debugging output behavior: qDebug(), qCritical(), and
qFatal(). They only vary in terms of their effects, but they are used in an identical
manner. Their signatures show close similarities with the C function printf(). They
even use the same format options.

A.1.1 Simple Debug Output

qDebug() is the tool of choice for “normal” debug output:

void qDebug (const char * msg, replacement_values_for_format_strings)

This function is used, for example, to examine data structures at runtime. The
following instruction displays the number of entries in the QList object list:

qDebug("Amount of list entries: %d", list.size());

In this case qDebug() replaces the formatting placeholders, which are prefixed by
the percentage sign, with the actual parameters that have been supplied after the

386

A.1 Debugging Functions

message string, one by one—in this example, thanks to the %d format specifier,
qDebug() outputs the number of list entries as a decimal number. The parameter
list can be any length at all. Under no circumstances should you specify a variable
as the first argument and assume that qDebug() will produce a proper output,
since qDebug() accesses the system-dependent printf() for the output, and several
printf() implementations first expect a formatting string.

QStrings or byte arrays convert the helper function qPrintable() into C-compliant
strings (const char *) that qDebug() can output directly:1

QString str = "Hello, world!";

qDebug("My first application printed ’%s’.\n", qPrintable(str));

A considerably more pleasant and more modern type of output is available if you
include the <QtDebug> header. Then there is hardly any need for manual serial-
ization,2 since many Qt types already provide serialization operators for use with
qDebug(). For example,

qDebug() << "Brush:" << myQBrush;

displays all the properties of the myQBrush paintbrush. This works for all major
Qt types, so that qDebug() can also display strings and byte arrays without the
diversion via qPrintable(). The concept is very similar to redirecting output using
cerr, but differs from this in two important points: On one hand, qDebug() adds a
space between the various outputs, and on the other hand, it takes care of the line
wrap, without a endl having to be explicitly serialized as the final element, as is the
case with the C++ operator cout. The serialization operators are defined only for
qDebug(), but not for the functions described below.

A.1.2 Errors and Warnings

For error messages occuring during program execution, Trolltech provides the qCrit-
ical() method. This works exactly like qDebug(), according to the conventions used
for the printf() command:

void load(const QString &fileName)

{

1 qPrintable() corresponds to the call str.toLocal8Bit().constData(), which returns a const char *.
However, the result is only valid for as long as the underlying string remains unchanged. If you
require a C string that persists while the Qt string changes, then you must duplicate the result
with qstrdup() and delete the created C string later, with free().

2 Serialization is understood as the conversion of an object to a datastream according to a well-
defined encoding. This is necessary here if you want to list all the relevant object properties in
the debug output.

387

A Debugging Help

QFile file(fileName);

if (!file.exists())

qCritical("File ’%s’ doesn’t exist!", qPrintable(fileName));

}

Nevertheless, qCritical() does not release the programmer in the slightest from
building graceful error-handling capabilities into the application’s interface, be-
cause (for a graphical application in particular) it cannot be assumed that when
something goes wrong, a user will be looking at console output—or, under Win-
dows, even have a debugger running. For this reason, errors should be passed on
to the user as often as possible in a comprehensible form, such as via a dialog box.

Another debugging tool option is to use warnings. These strings, issued via qWarn-
ing(), always appear whenever QT_NO_WARNING_OUTPUT is not activated during
compilation of the program. If you also set an environment variable by the name of
QT_FATAL_WARNINGS, the program will close the first time a qWarning() is issued.

If the program also is to terminate in the release version when a particular behavior
occurs, you can use the function

void qFatal (const char * msg, ...)

In this case the value 1 is returned. In the debug version the behavior depends on
the platform: Under Unix the program tries to generate a core dump, whereas un-
der Windows it announces a _CRT_ERROR, giving the debugger a clue. An example
of an error that it would be useful to treat using qFatal() is division by zero:

int divide(int a, int b)

{
if (b == 0) // Error!

qFatal("Division by zero is not allowed!");

return a / b;

}

For each of the debug helper functions with C printf()–style semantics—that is,
qDebug(), qFatal(), qWarning(), or qCritical()—the internal character buffer is re-
stricted to 8,192 bytes. This includes the terminating \0 character. In addition,
Trolltech warns that passing (const char *)0 as a parameter can lead to the program
crashing on some platforms. The reasons are flawed implementations of printf(),
the function which Qt accesses for debugging functions.

A.1.3 Customizing the Output of Debugging Functions

Under Windows, Qt sends all debug output to a debugger. Developers who are used
to the command line and don’t work with Visual Studio sometimes have a problem

388

A.1 Debugging Functions

with this. However, Qt allows you to divert debug messages to wherever you want
by using so-called message handlers.

The following code indicates how to implement your own message handler in case
the application is running under Windows. It uses the macro Q_WS_WIN, which
only exists in Qt for Windows:

int main(int argc, char* argv[])

{
QApplication app(argc, argv);

#ifdef Q WS WIN

qInstallMsgHandler(debugWinMsgHandler);

#endif

...

}

This include guard ensures that the handler really is only accessed under Windows.3

In general, there is nothing to stop you from activating the handler on all platforms
on which console output is preferred. A debug handler that displays debug output
in a separate window could look like this, for example:

void debugWinMsgHandler(QtMsgType type, const char *msg)

{
static QTextEdit *edit = new QTextEdit();

edit->setWindowTitle("Debug window");

edit->show();

switch (type) {
case QtDebugMsg:

edit->append(QString("Debug: \%1").arg(msg));

break;

case QtWarningMsg:

edit->append(QString("Warning: \%1").arg(msg));

break;

case QtCriticalMsg:

edit->append(QString("

Critical: \%1").arg(msg));

break;

case QtFatalMsg:

QMessageBox::critical(0, "Debug - Fatal", msg);

abort();

}
}

The signature of the method, as is usual with callbacks, is defined in advance, but
the function name can be freely chosen. It is important only that qInstallMsgHan-
dler() specifies the callback method with its correct name, and also without brackets

3 Alternatively, there exist the macros Q_WS_MAC for Mac OS X, Q_WS_X11 for X11-based plat-
forms, and Q_WS_QWS for the embedded variants of Qt. See http://doc.trolltech.com/4.1/qtglo
bal.html for a list of all compiler- and platform-dependent macros.

389

A Debugging Help

and arguments. You can think of a callback as a pointer to a function. Whoever
holds the pointer can invoke the function from an abitrary place in the application
at any given time. However, this assumes that the caller knows which arguments
the callback function takes. In this case, the required arguments for the message
handler callback function are documented in the Qt documentation.

The core of our handler consists of a switch statement that distinguishes between
the message types (the QtDebugMsgs given out by qDebug(), the QtFatalMsgs gen-
erated by qFatal(), etc.) so that they can be treated specifically.

Our simple implementation shows all debug output in a QMessageBox text window.
Since the edit pointer is declared as static, new is used for initialization only on the
first cycle. This removes the need to declare global variables and makes a separate
class unnecessary. Each time it is invoked with a message, the function ensures
that the window is visible and that the new message appears in the window.

Since QTextEdit can understand primitive HTML, we take advantage of this in the
code for our debug window to format the text clearly. Only fatal errors, which
cause the program to be immediately terminated, are shown by the routine in a
modal message box that blocks the rest of the application. If the user confirms
such a message by clicking OK, the program terminates immediately.

The routine suggested here does have a small disadvantage, however: The program
only terminates when the debug window has been closed by hand.

A.2 Ways to Eliminate Errors

C and C++ already have a wide range of methods for sniffing out errors. Qt adds a
few other useful ones, which replace existing functions with more portable varia-
tions.

A.2.1 Checking Assertions

The C function assert() interrupts programs compiled in the debug mode if the
expression specified in brackets (the assertion) evaluates to false. It only works if
the NDEBUG macro is not defined and requires an additional #include, usually of
assert.h.

Qt has the Q_ASSERT() macro, which interrupts the program just like assert() if
certain conditions are not fulfilled. It is often used to test preconditions or post-
conditions for specific code segments of methods. In contrast to assert(), the Qt
variant distinguishes between the release and the debugging versions4 of a pro-
gram: In the debug version, Q_ASSERT() breaks off with an error message.

4 How you compile a program as a debug or as a release variation is described starting on page
27.

390

A.2 Ways to Eliminate Errors

The following Qt assertion instruction, for example, checks whether the program
was given one or more arguments:

Q_ASSERT(argc > 1);

If this is included in the main() function in line 12 of the file main.cpp, the program
will output the following to the command line if there is an error:

ASSERT: ’argc > 1’ in file main.cpp, line 12

If we compiled the program in debug mode, the program will then terminate.

In addition to reporting filenames and line numbers, it is often also useful to specify
a context that provides information on the purpose of the assertion. Qt has the
macro Q_ASSERT_X() for this purpose:

Q_ASSERT_X(argc > 1, "main()", "No arguments passed!");

This makes the program considerably more verbose and specifies the context for
the assertion:

ASSERT failure in main(): ’No arguments passed!’,

file main.cpp, line 12.

A.2.2 Checking Pointers

Unpleasant surprises can often wait in store for developers of portable programs,
particularly when you need to allocate large amounts of memory or to reference a
pointer across library boundaries. Let’s look at the following program extract:

char *lots_of_memory= new char[1024*1024*1024];

Q_CHECK_PTR(lots_of_memory);

If a pointer allocation goes wrong, new sets the pointer to the value 0 (the null
pointer). In this case, the Q_CHECK_PTR() macro used here reacts with an error
message as shown below, and terminates the program:

In file main.cpp, line 14: Out of memory

If you use this macro whenever you require very large amounts of memory, you will
save a great deal of work when searching for the causes of memory bottlenecks.
This is of immense importance particularly in porting to architectures with little
main memory.

391

A Debugging Help

Since Q_CHECK_PTR(), just like Q_ASSERT and Q_ASSERT_X, is only executed in
debug mode, it is important that you don’t use it to carry out operations that
may, under some circumstances, influence the normal running of a program. Such
operations, also called side effects, can in particular cause the program to only
work correctly in debug mode. For example, the following variation of our above
example will most likely always crash in the release version:

char *lotsofmemory;

Q_CHECK_PTR(lotsofmemory= new char[1024*1024*1024]);

This is because the pointer to the new memory area is never initialized in the release
version. That means that any access to lotsofmemory will then be invalid, which
will cause the program to crash.

A.2.3 Common Linker Errors

If the linker announces errors containing the keywords vtbl, _vtbl or _ _vtbl, you
should first search for the problem in the meta-object compiler moc. It generates
an additional file for all classes containing the line Q_OBJECT, which must be linked
to the project.

qmake may “forget” about this because of an incorrectly set system time (which
can also trigger many other problems, since the build system relies on having the
correct timestamps on the source files), but there are also other causes. In this case
the problem can be solved by calling qmake by hand.

392

B A
pp

en
di

x
Tulip: Containers and Algorithms

Anyone who wants to program complex algorithms in C++ will often make use
of the Standard Template Library (STL), a collection of algorithms and contain-
ers that implement data structures. Containers are usually created as a template
class, whereas algorithms operate either on containers or are themselves template
functions that work with the data type required in each case.

Yet even now, the STL has various disadvantages: A number of compilers, partic-
ularly older ones, do not fully implement some library parts, or implement them
incorrectly. Also, since loop contents have to stand in a separate function, some
algorithms cannot be expressed in an intuitive manner, as demonstrated in the
following code, which outputs to the screen each element of the vector v via the
print_element() function:

393

B Tulip: Containers and Algorithms

// stl/main.cpp

#include <iostream>

#include <vector>

using namespace std;

void print_element(int element)

{
cout << element << endl;

}

int main()

{
vector<int> v;

v.push_back(1);

v.push_back(2);

v.push_back(3);

for_each(v.begin(), v.end(), print_element);

return 0;

}

Trolltech therefore provides a lightweight addition to the STL with the name of
Tulip.1 Tulip is STL-compatible, so it includes all the necessary methods, such as
push_back(), but in addition it also has equivalent functions with more intuitive
names. Thus push_back() is merely a synonym for append().

In addition, Tulip containers make use of Java-style iterator concepts. They provide
their own data structures and matching algorithms for this purpose, which are
somewhat easier to handle than those of the STL.

B.1 Iterators

When the elements of a list need to be accessed, many developers use the tradi-
tional index-based access within a for loop:

QStringList list;

list << "Dog" << "Cat" << "Mouse";

for (int i = 0; i < list.length(); i++)

{
qDebug() << list[i];

}

1 The name is derived from the English term Tool Lib (tool library).

394

B.1 Iterators

This has a number of disadvantages. Basically, iterating via index access is slow for
many data structures, especially for structures that do not allow direct addressing
via indices (such as some list types, or in trees).2

This is why we have iterators.3 These are objects specialized for use in traversing
data structures. They point to an element of a data structure and at the same time
provide methods to move around within the data structure, starting off from the
current element. In this way they abstract the data structure from the iteration,
thus avoiding code that uses direct indexed access

Another advantage is that iterators allow the concrete implementation of the data
structure on which they operate to be replaced without the need for the iteration
code to be modified. If you realize that an embedded list is better for certain
problems than a normal pointer-based QList, you can simply substitute the new
implementation without this change having any influence on code that uses the
iterator.

In addition, iterators provide a certain amount of protection from coding errors
that arise because of changes in the container on which they are working. For
example, if an element is added to the beginning of a list as the consequence of
an iteration (which is often the case in the specialized list QQueue), index-based
addressing returns the wrong element on the next access unless the code has been
written to adjust the index variable to account for the insertion. This extra care is
often unnecessary when writing code that uses iterators to move around the data
structure.

Tulip makes a distinction between two iterator typyes: STL-style and Java-style,
which are based on different concepts.

B.1.1 STL-Style Iterators

The most well-known iterators in the C++ environment, STL-style iterators are im-
plemented by Tulip in all container classes. STL iterators always point to elements.
If they reach the end of the container and are advanced past the final element,
they then point to a nonexistent element. If you then try to access the element
pointed at by the iterator, the result is undefined.

Using a QStringList, which is basically just a specialized QList<QString>, the exam-
ple above will look like this:

// foriterator/main.cpp

#include <QtCore>

#include <QDebug>

2 A good example of this is the QLinkedList discussed on page 398.
3 In database circles these are known as cursors.

395

B Tulip: Containers and Algorithms

using namespace std;

int main() {
QStringList list;

list << "dog" << "cat" << "mouse";

QStringList::iterator it;

for (it = list.begin(); it != list.end(); ++it)

{
qDebug() << *it << endl;

}
return 0;

}

If you apply the * operator to it, you will reach the list element to which the iterator
currently points, since Qt overloads the operator * for iterators for this purpose.

In such for loops you must remember to use the pre-increment operator (++it)
instead of the usual it++: This operator works without an unnecessary temporary
object for each for loop.

If the elements accessed in the loop should only be read but not modified, a
const_iterator is used, which ensures improved performance.

B.1.2 Java-Style Iterators

Apart from the STL iterators, Qt also has Java-style iterators. Those are self-con-
tained classes which Trolltech has named according to the pattern Qcontainer-
nameiterator.

Conceptually, Java iterators are fundamentally different from STL iterators in a
number of ways. For one thing, they point between two elements of a data struc-
ture, and not to one of them. This results in Java iterators often being easier to
handle, but somewhat slower than their STL-compatible colleagues.

Another difference is that by default they do not allow write access to the data
structure, in contrast to their brothers of the same kind in the STL world. There
are two reasons for this. On one hand, data structures are more often read than
written during traversal. An immutable (that is, an unchangeable) Java iterator
or const iterator (STL) saves time through this. On the other hand, an immutable
iterator ensures that the data cannot be changed by an error in the program.

To obtain write access to the elements of the data structure, changeable iterators,
or mutable iterators, are used. For QList-based lists the changeable iterator is
called, for example, QMutableListIterator.

The following example shows how Java-style iterators are handled. It operates on
an existing integer QList called list:

QListIterator<int> i(list);

396

B.1 Iterators

while(i.hasNext())

{
cout << i.next() << endl;

}

hasNext() checks whether the next element exists. next() not only jumps forward,
but also returns the next value. After this, the iterator is located after this element,
since Java-style iterators always “stand in the spaces between elements.” If you only
want the value of the next element, without moving the iterator, you should use
peekNext().

In the same way, hasPrevious(), previous(), and peekPrevious() also exist, allowing
iteration in the opposite direction. toBack() takes the iterator just beyond the final
element, and toFront() takes it in front of the first one.

Furthermore, findNext() allows searching for elements with a specific value. If such
an element exists, the function returns a true value, just like hasNext(), and posi-
tions the iterator after the element found. Likewise we have findPrevious(), which
if successful places the iterator in front of the value found. If no element is found,
the iterator lands beyond the final element, or before the first one. This is demon-
strated by the following code:

// qlistdemo/main.cpp

#include <QtCore>

#include <QDebug>

int main() {
QList<int> intlist;

intlist << 2 << 5 << 2 << 4 << 2;

int findings = 0;

QListIterator<int> it(intlist);

while (it.findNext(2))

findings++;

qDebug() << findings; // output: 3

// Iterator is positioned after the last ’2’ element

while (it.findPrevious(2))

findings--;

qDebug() << findings; // : 0

// Iterator is positioned before the first ’2’ element

return 0;

}

In addition to this, changeable iterators can insert an element at the current posi-
tion with insert(), and then jump to its destination. This is illustrated by the next
example: It jumps beyond the final element, where it adds a further 2. Because the
iterator now stands after this last 2, the algorithm comes up with four matches:

397

B Tulip: Containers and Algorithms

// mutableiterator/main.cpp

#include <QtCore>

#include <QDebug>

int main() {
QList<int> intlist;

intlist << 2 << 5 << 2 << 4 << 2;

QMutableListIterator<int> mit(intlist);

mit.toBack();

mit.insert(2);

qDebug() << intlist; // output: (2, 5, 2, 4, 2, 2)

int findings = 0;

while (mit.findPrevious(2))

findings++;

qDebug() << findings; // output: 4

return 0;

}

The following operations appear somewhat strange, as they violate the immutabil-
ity principle of Java iterators: They manipulate or inspect elements, although the
iterator in fact never directly points to one of them. The operations remove(),
value(), and setValue() therefore operate on the final element to be jumped over.
The following example deletes all elements with the value 2:

// mutableiterator2/main.cpp

#include <QtCore>

#include <QDebug>

int main() {
QList<int> intlist;

intlist << 2 << 5 << 2 << 4 << 2;

QMutableListIterator<int> mit(intlist);

while (mit.findNext(2))

mit.remove();

qDebug() << intlist; // output: (5, 4)

return 0;

}

B.2 Lists

Lists represent fundamental data structures for most applications. Qt has three
different types: QList, QLinkedList, and QVector.

398

B.2 Lists

These are templates that in their basic form are not specialized to a specific data
type. Consequently, you can make a list type out of nearly every class. The class only
needs to be assignable, that is, to have a copy operator as well as an assignment
operator:

class Assignable

{
public:

Assignable() {}
Assignable(const Assignable &other); // copy operator

Assignable&operator=(const Assignable &other); // assignment operator

private:

...

};

Tulip containers are value based, but they can also handle pointers, since a pointer
is, first of all, nothing more than an integer value, namely a memory address. This
means that

QList<QDate> myDateList;

is just as permissible as

QList<QDate*> myDateList;

It must be remembered here that Qt does not delete the elements behind the point-
ers when it deletes the list of pointers. This shortcoming is rectified by the helper
function qDeleteAll() (see Section B.5.7 on page 418), which accepts either a com-
plete container or two iterators as arguments. In the latter case it only deletes
the elements between the start and end iterator, including the element to which
begin() points (the last iterator is invalid anyway).

The pointers themselves remain, however. If you want to use the list again—as in
the case of the following code—they must additionally be deleted with clear():

// listpointerdemo/main.cpp

#include <QtGui>

#include <QDebug>

int main(int argc, char* argv[]) {
QApplication app(argc, argv);

QList<QWidget*> widgetList;

for (int i = 1; i < 10; i++)

{
widgetList.append(new QWidget);

399

B Tulip: Containers and Algorithms

}
// the following is equivalent to qDeleteAll(widgetList);

qDeleteAll(widgetList.begin(), widgetList.end());

// delete all now invalid pointers

widgetList.clear();

// append new item, this is now the first list item

widgetList.append(new QWidget);

return 0;

}

If you want to save yourself a lot of typing where containers are concerned, you can
define your own names for the desired list types, using the C++ keyword typedef:

typedef QList<QDate> QDateList;

For read access to list elements, it is advisable to use not the index operator ([]), but
the at() method. For code such as

QList<QImage> list;

...

QImage image = list[i];

the index operator returns only a const reference for a const-declared method. In
all other cases it returns a normal reference. Even though this is actually a good
thing (after all, const correctness4 helps you to write more efficient programs),
you may not always want to immediately generate a complete copy. This problem
does not occur if you use the at() method:

QImage image = list.at(i);

B.2.1 Simple List (QList)

STL programmers frequently use a std::vector because this—in contrast to the STL
list container, which is implemented as a linked list—is very fast to iterate over.
The QList, the list container most frequently used in Qt, is, from the perspective of
implementation, an array of pointers that point to objects, in contrast to std::list.
Provided that you want to access objects directly, this solution is quicker than an
embedded list. Inserting at both ends of a list using prepend() and append() is also
very fast—for lists with up to a thousand entries, QList is usually the fastest solution
of all those provided by the Qt and STL classes.

4 const correctness refers to the use of the const keyword for reference parameters of functions
and for member functions that do not modify the object(s) with which they are called. Access
methods that pass the internal state of an object to the outside should therefore always be
declared as const, for example.

400

B.2 Lists

B.2.2 Linked List (QLinkedList)

If you frequently need to insert elements into large data collections, you are better
off with a QLinkedList (see Figures B.1 and B.2). This class is implemented as a
linked list. It has the disadvantage, however, that access to large lists by means of
the index operator or at() can become very slow. This is explained by the way a
linked list works: Each element contains a pointer to the next one, and therefore
in order to access the element with a specified index, the container must visit all
elements from the first one to the one being sought.

Figure B.1:

To insert an element

into a linked list, only

one pointer (the

longer line) needs to

be moved to the new

element . . .

Figure B.2:

. . . and another

pointer is added, that

points from the new

element to the one

that followed until

now.

B.2.3 Vectors (QVector)

A QVector is particularly suitable if you need contiguous memory. If needed, space
for new data elements is only allocated immediately after the existing memory.
The class thus ensures that the data always lies adjacent in memory. The data()
method makes use of this fact: It provides an array of the same data type as the
one used to declare the vector.

Figure B.3:

QVector provides a

dynamic array, like

std::vector.

A vector behaves like a variable array: Internally, the data structure always reserves
slightly more memory than currently required, which is why append operations at
the end of the vector are very fast (Figure B.3).

401

B Tulip: Containers and Algorithms

The following example doubles every value stored in vector:

// vectordemo/main.cpp

#include <QVector>

#include <QDebug>

int main()

{
const int n = 10;

QVector<int> vector(n);

int *data = vector.data();

// fill vector

for (int i = 0; i < n; ++i)

data[i] = i;

for (int i = 0; i < n; ++i) {
data[i] *= 2;

qDebug() << vector.at(i);

}

The resources used in the second for loop are the same as those used to access a
normal C array. In addition only constant costs are caused by the call of data(),
since QByteArray works internally with a C++ array. The result of data() is therefore
valid only until the size of the vector changes.

The index operator returns a reference to the element at the requested position,
provided that the index specified is not larger than the number of elements in the
vector. With vectors that are not declared as const, and which are therefore freely
writable, you can thus fabricate the following code:

// vectordemo/main.cpp (continued)

QVector<QString> strvector;

strvector.append("short string");

if (strvector[0] == "short string")

strvector[0] = "extra loooong and verbose string";

qDebug() << strvector;

return 0;

}

Access to a vector element is denoted in the same way as a read access to an array,
which—as is familiar from C++—begins at index 0. Here we insert the first element
into the vector using append() instead of allocating ten entries in the constructor,
as in the previous example with vector(n). This is less efficient than using a QList,
but it is still possible.

To be absolutely sure that you never access an index position in write mode by
mistake, even if the element is not declared as const, you should use at() instead of
the index operator.

402

B.3 Stacks and Queues

B.3 Stacks and Queues

B.3.1 Stacks (QStack)

Stacks are data structures that work according to the so-called LIFO principle (last
in, first out). As with a real stack, you can only remove the top element, that is,
the last element placed on the stack.

Figure B.4:

QStack looks like a

vector turned on its

side by 90 degrees,

and the class actually

does inherit from

QVector.

Placing a value on a QStack is done by the push() method, which expects an in-
stance of the type used as the QStack type parameter. Conversely, pop() takes the
top element from the stack and returns it. The following program outputs the digits
entered in reverse:

// stackdemo/main.cpp

#include <QStack>

#include <QDebug>

int main()

{
QStack<int> stack;

stack.push(1);

stack.push(2);

stack.push(3);

while (!stack.isEmpty())

qDebug() << stack.pop(); // output: 3, 2, 1

return 0;

}

top() returns a reference to the top element without taking it from the stack. This
could be used, as described in Section B.2.3, to look deeper into the stack, since
it is actually only a vector (Figure B.4). This would violate the semantics of the

403

B Tulip: Containers and Algorithms

stack data structure, however. For this reason it is recommended that you use the
methods provided directly by QStack.

As a Java-style iterator, QVectorIterator is used; it functions with the semantics of
the QVector base class.

B.3.2 Queues (QQueue)

In many applications you will not be able to avoid having to use a queue. The
possibilities are wide ranging—queues are used to implement buffers,5 as temporary
memory for tree-based algorithms such as breadth-first search, and much more.

Qt provides the QQueue class for queues. This is merely a specialization of the QList.
It is easy to see the thinking behind this design decision, because a QList performs
well when inserting and deleting at the beginning and end of the list.

To get a value into the front of the queue, the enqueue() method is used. As a
parameter it expects a value of the type that was used as the type parameter in the
declaration of the queue. dequeue() removes the last element from the queue and
returns it.

As a Java-style iterator, the iterator of the base class is used (in the same way as
QStack), that is, QListIterator.

B.4 Associative Arrays

At first glance, the container classes QMap and QHash seem to serve the same pur-
pose: They save a list of key-value pairs in which access to the resulting collection
of values is usually performed by specifying not an index, but a key. Nevertheless,
there are differences between the two classes, both in their implementation and in
their performance in specific circumstances.

B.4.1 Dictionaries (QMap)

QMap provides a dictionary and is the slower of the two data structures, but it
also sorts the key-value pairs automatically. This is of particular relevance to the
programmer if he wants to iterate over the data structure: When using QMap
iterators, the output is already sorted by key.

The following example shows how a QMap that associates a string to an integer
value is created:

5 Not to be confused with QBuffer, which represents an input/output device; see Chapter 11.

404

B.4 Associative Arrays

// mapdemo/main.cpp

#include <QMap>

#include <QMapIterator>

#include <QDebug>

int main()

{
QMap<QString, int> map;

map["one"] = 1; // insert using the [] operator

map["two"] = 2;

map.insert("seven", 7); // insert using insert()

qDebug() << map["seven"]; // read using the [] operator

qDebug() << map.value("seven"); // read using value()

QMapIterator<QString, int> i(map);

while (i.hasNext()) {
i.next();

qDebug() << i.key() << ":" << i.value();

}
return 0;

}

With the help of the index operator or by using insert(), we fill up the dictionary
map with values. The argument in brackets or the first argument to insert() is the
key, for which, in this case, we use values of the QString type. It is worth your
while to use insert() rather than the index operator, by the way: The latter is often
significantly slower when inserting entries.

Caution must be used when accessing the QMap, however. The value() method and
the index operator behave in the same way only with objects declared as const.
Otherwise, the index operator has a sometimes nasty side effect: If the key being
sought is missing, it creates a new empty entry. As a result, an instance of QMap
can become hugely inflated, particularly after many ad hoc queries have been made
against it, in which thousands of unsuccessful accesses take place. Accessing the
QMap by means of value() protects it from this side effect.

At the end of the example a QMapIterator goes through the list entry by entry. In
contrast to the iterators introduced until now, this one has the methods key() and
value() to do justice to the nature of the data structure.

Data types that you define must fulfill special conditions in order to be used as
keys in dictionaries. A data type whose values will appear as keys in a QMap must
implement the less-than operator (operator<()) to allow the members of the QMap
to be sorted. We carry this out in the next example using a dataset class that
provides a record with fields for an employee’s first and last name:

405

B Tulip: Containers and Algorithms

// customvaluedemo/datensatz.h

#ifndef DATENSATZ_H

#define DATENSATZ_H

#include <QString>

#include <QHash>

class Record {
public:

Record(const QString &surname, const QString &forename)

{
m_forename = forename;

m_surname = surname;

}

QString forename() const { return m_forename; }
QString surname() const { return m_surname; }

private:

QString m_forename;

QString m_surname;

};

Now we implement the required less-than operator:

// customvaluedemo/datensatz.h (continued)

inline bool operator<(const Record &e1, const Record &e2)

{
if (e1.surname() != e2.surname())

return e1.surname() < e2.surname();

return e1.forename() < e2.forename();

}

The following program saves some datasets in a QMap, together with an ID that
displays the personnel number:

// customvaluedemo/main.cpp

#include "datensatz.h"

#include <QHash>

#include <QMap>

#include <QSet>

#include <QDebug>

int main()

{
Record d1("Molkentin", "Daniel");

Record d2("Molkentin", "Moritz");

406

B.4 Associative Arrays

Record d3("Molkentin", "Philipp");

QMap<int, Record> map;

map.insert(0, d1);

map.insert(1, d2);

map.insert(2, d3);

QMapIterator<int, Record> mi(map);

while (mi.hasNext()) {
mi.next();

qDebug() << mi.key() << ":"

<< mi.value().surname() << mi.value().forename();

}

We require the QHash header file for the extensions on page 410, where we will
make our class compatible with hashes.

Requirements of Key Elements

As we have just seen, because a QMap keeps its entries sorted according to key
value, the class that is used as the key type must have a less-than operator (here,
<), so that the container can set up an ordering of its elements. If you try to define
a QMap using a class without such an operator for the key type parameter, the
compiler complains that the less-than operator is not defined.

B.4.2 Allowing Several Identical Keys (QMultiMap)

QMap has a further limitation that may be a disadvantage in some situations: It
does not allow distinct entries in a container to have keys with the same value.
(Thus, the sequence of key values in the sorted container is strictly monotone.) If
a second call to insert() is made using an already existing key value, the data value
currently associated with the key value is overwritten with the new data value.

But what happens in the following scenario? A sawmill receives daily deliveries of
different tree trunks. A worker is tasked to record the number of trunks and the
type of wood. However, it is important for the operator to save individual deliveries
as separate datasets for later statistical evaluation. A QMap is inadequate here,
because it could only represent the most recent deliveries of each type of wood.6

Trolltech provides the QMultiMap class for this. This varies considerably from QMap
in a number of respects. A QMultiMap can contain several datasets all having the
same key value. Also, QMultiMap dispenses with the index operator for technical

6 Admittedly, in reality such a problem would probably be solved with an SQL database. If you are
interested in database access, we refer you to Chapter 9, where the subject of SQL databases is
treated in more detail.

407

B Tulip: Containers and Algorithms

reasons. Also, value() and replace() operate on the element that was last inserted
into the QMultiMap instance.

To read out all datasets covered by a specific key, values() is the method of choice.
When given a specific key value as a parameter, it returns a QList of all values
associated with that key.

The following code implements the sawmill example with the help of a QMultiMap.
Each insert() instruction inserts a new element without overwriting a possibly ex-
isting key. The integer list beech, which is created using values(), contains all the
incoming beech trunks starting with the value last inserted:

// multimapdemo/main.cpp

#include <QMap>

#include <QDebug>

int main()

{
QMultiMap<QString, int> trunks;

trunks.insert("Beech", 100);

trunks.insert("Umbrella pine", 50);

trunks.insert("Maple", 50);

trunks.insert("Beech", 20);

trunks.insert("Fir", 70);

trunks.insert("Beech", 40);

QList<int> beeches = trunk.values("Beech");

qDebug() << beeches; // output: 40, 20, 100

return 0;

}

QMultiMap also provides the addition operators + and +=, which can be used to
combine several associative tables into one single one. For our example this means
that we can very simply summarize the incoming goods from several different mills
by summing the corresponding QMultiMaps. In this case it may also be worthwhile
to make a type definition for the specialization of QMultiMap that is in use:

typedef QMultiMap<QString, int> TrunkCountMultiMap;

...

TrunkCountMultiMap mill1result = mill1.incoming();

TrunkCountMultiMap mill2result = mill2.incoming();

TrunkCountMultiMap mill3result = mill3.incoming();

TrunkCountMultiMap total = mill1result+mill2result+mill3result;

We assume here that the already defined objects mill1, mill2, and mill3 have a
incoming() method, which returns a TrunkCountMultiMap. After the code executes,
the total QMultiMap contains the combined goods from all factories.

408

B.4 Associative Arrays

B.4.3 Hash Tables with QHash

The data structure QHash is very similar to the QMap in how it functions. However,
whereas a QMap sorts its entries by key value, QHash uses a hash table internally
to store its entries. This means that a QHash is unsorted. Compensating for this, it
is slightly faster than QMap when searching for entries with specified keys.

The APIs of the two data structures are almost identical, and so we can rewrite the
QMap example from page 404 to use QHash instead just by making some simple
substitutions in the code:

// hashdemo/main.cpp

#include <QHash>

#include <QHashIterator>

#include <QDebug>

int main()

{
QHash<QString, int> hash;

hash["one"] = 1; // insert using [] operator

hash["two"] = 2;

hash.insert("seven", 7); // insert using insert()

qDebug() << hash["seven"]; // value using [] operator

qDebug() << hash.value("seven"); // value using value()

QHashIterator<QString, int> i(hash);

while (i.hasNext()) {
i.next();

qDebug() << i.key() << ":" << i.value();

}
return 0;

}

As with QMap, the index operator in QHash is dangerous, since it inserts a new
entry into the container if the key value is not found. A remedy is again provided
by the value() method. This generates an empty entry if the value is missing in the
hash, but it only returns it, and does not insert it into the hash.

Things become interesting when you start creating your own classes to use as
keys. Such classes must implement an equality comparison operator (operator==())
as well as a helper function by the name of qHash() that implements the hash
function.

Let’s re-implement the example program from page 406. The index operator is
quickly implemented: It compares the first and last name strings of both data sets,
and returns true if they are equal; otherwise, it returns false.

Calculating a good hash value is much more difficult, because this number must

409

B Tulip: Containers and Algorithms

distinguish the element as much as possible from other elements in a QHash in-
stance. Too many elements with the same hash value result in performance penal-
ties. Since the qHash() helper method is implemented for primitive data types and
those specified by Qt, we can make use of the specific hash function of the QString
class to calculate a hash value for first and last names (instead of doing the calcu-
lation entirely from scratch). Combining the results using an exclusive or (^) in turn
generates one unique hash value for the entire record from the hash values for the
two parts of the record:

// customvaluedemo/datensatz.h (continued)

inline bool operator==(const Record &e1, const Record &e2)

{
return (e1.surname() == e2.surname())

&& (e1.forename() == e2.forename());

}

inline uint qHash(const Record& key)

{
return qHash(key.surname()) ˆ qHash(key.forename());

}

#endif // DATASET_H

Now we can use our data structure with QHash in exactly the same way as we did
with QMap. For demonstration purposes, the example here also displays the hash
value for each entry in the hash:

// customvaluedemo/main.cpp (continued)

QHash<int, Record> hash;

hash.insert(0, d1);

hash.insert(1, d2);

hash.insert(2, d3);

QHashIterator<int, Record> hi(hash);

while (hi.hasNext()) {
hi.next();

qDebug() << hi.key() << ":"

<< hi.value().surname() << hi.value().forename();

qDebug() << qHash(hi.value());

}

Just like QMap, QHash also has a subclass that allows distinct entries with identical
keys to be recorded. It is called QMultiHash, and it changes the behavior of insert()
so that it no longer overwrites an already existing entry with a specified key, and
it also reimplements replace() so that it replaces the most recently inserted entry if
several entries in the hash table have the same key.

410

B.4 Associative Arrays

Like QMultiMap, QMultiHash also allows you to combine several QMultiHashes into
one hash with the + operator.

B.4.4 Hash-based Amounts with QSet

If what you need is not an associative array, but just a simple list that does not
have to be sorted and is very fast to search, then QSet may be the best choice.

QSet is implemented internally as a QHash, but it provides many of the semantics
of QString, such as cycling through all elements with foreach().

We can illustrate this using our dataset example, in which we first insert some
previously generated entries into a customized QSet. To do this we use the <<
operator. We cycle through the list itself with foreach():

// customvaluedemo/main.cpp (continued)

QSet<Record> set;

set << d1 << d2 << d3;

foreach(Record d, set)

qDebug() << d.surname() << ":" << d.forename();

return 0;

}

In addition, QSet provides all the basic operations for sets known from mathemat-
ics, such as set union and set difference. The following example first creates two
sets and then forms the set difference of one of the two sets in terms of the other
one. The subtract() method responsible for this operates directly on the set object
that receives the call, which in this case is set1. It removes from this set all the
elements that also exist in the set passed to it as an argument, here set2:

// setdemo/main.cpp

#include <QSet>

#include <QDebug>

int main()

{
QSet<int> set1;

set1 << 1 << 2 << 3 << 4 << 5 << 6;

QSet<int> set2;

set2 << 4 << 5 << 6 << 7 << 8 << 9;

set1.subtract(set2);

// output: 1, 2, 3

qDebug() << "set1 remainders:" << set1;

411

B Tulip: Containers and Algorithms

return 0;

}

In the same way there are the methods unite(), for the union, and intersect(), for
making intersections. These also change the QSet instance with which they are
called.

B.5 Algorithms

B.5.1 The foreach Keyword

As an alternative to const iterators, there is the foreach() macro:

// stringlistdemo/main.cpp

#include <QStringList>

#include <QDebug>

int main()

{
QStringList names;

names << "Patricia" << "Markus" << "Uli";

foreach(QString name, names)

qDebug() << name;

return 0;

}

Those who do not like to taint the C++ namespace (C++ inventor Stroustrup is
working on a native foreach keyword in the coming language versions) can instead
use the synonym Q_FOREACH(). The macro is slightly slower than a const iterator,
but this is only noticeable with very large data structures.

In addition Q_FOREACH supports all the validation characteristics for variable dec-
larations that for() also has. This means that a variable declared in the loop header
is no longer valid outside the loop for ISO-compatible compilers.

It is important to bear in mind that foreach() creates a copy of the data structure.
In the loop shown here, any modification of the list therefore has no effect on
the original list. If you are worried that Qt makes a complete copy of the list, you
needn’t be: Even with lists, Qt makes use of implicit sharing (see page 40).

The fact that foreach() creates copies of the data structure has even more positive
aspects:

foreach(QString results, results())

...

412

B.5 Algorithms

If results() contains an operation with cost k before returning the data structure
and the function returns a container with i entries, a total cost would arise, with
a normal for loop of k ∗ i. The copy ensures that there is a caching effect, which
brings down the cost for k to a expenditure of k + i with costs of O(1) for k,
because results() is only called once.

B.5.2 Sorting

Tulip also contains functions for sorting data inside containers. The most frequently
used of these is called qSort() and expects a container as an argument, which it
sorts with the heap sort algorithm.

// listdemo/main.cpp

#include <QList>

#include <QDebug>

int main()

{
QList<int> values;

values << 1 << 10 << 5 << 6 << 7 << 3;

qSort(values);

qDebug() << values; // output: (1, 3, 5, 6, 7, 10)

return 0;

}

This is also very efficient with large amounts of data, as it works in linear-logarithmic
time (O(n log n)).

During the steps of the sorting process, the qSort() function makes use of the C++
comparison operator operator<() to determine whether two elements should be
swapped. If two objects are equal for the purpose of comparison, it is left up to the
implementation of qSort() whether they are swapped or not. If operator<() does
not compare all object properties, the result may vary subtly.

For this reason there is an additional function qStableSort(), which is also imple-
mented by means of the heap sort algorithm. In contrast to qSort(), however, it
ensures that elements that are “equal” to one another always remain in their orig-
inal sequence in the final, sorted list.

Both functions also have an overloaded variation: Instead of a complete container,
they alternatively expect two iterators, the first of which points to the first element
to be sorted and the second to the element after the last object to be sorted.
This variant can accept a function pointer that references a function implementing
a comparison operation other than operator<() to be used during the sort. This
comparison function must accept and compare two parameters of the same type:

// sortdemo/main.cpp

413

B Tulip: Containers and Algorithms

#include <QStringList>

#include <QDebug>

bool caseInsensitiveLessThan(const QString &s1, const QString &s2)

{
return s1.toLower() < s2.toLower();

}

int main()

{
QStringList list;

list << "AlPha" << "beTA" << "gamma" << "DELTA";

qSort(list.begin(), list.end(), caseInsensitiveLessThan);

qDebug() << list; // ("AlPha", "beTA", "DELTA", "gamma")

return 0;

}

B.5.3 Sorting in Unsorted Containers

To find a value in a container, Tulip has the function qFind(). This finds the value
specified as the third argument, starting from the element to which the iterator
named as the first argument points. The last element of the search area is the
element in front of (that is, before) the object to which the iterator passed as
the second argument points. The function returns an iterator pointing to the first
matching object if the search value is found, otherwise it returns the iterator value
end().

The following example searches in a list of fruit names first for the word Pear and
then for Orange:

// finddemo/main.cpp

#include <QStringList>

#include <QDebug>

int main()

{
QStringList list;

list << "apple" << "pear" << "banana";

QStringList::iterator i1 = qFind(list.begin(), list.end(), "pear");

// i1 == list.begin() + 1

QStringList::iterator i2 = qFind(list.begin(), list.end(), "orange");

// i2 == list.end()

return 0;

}

414

B.5 Algorithms

After this code has run, the iterator i1 remains on the second element, whereas
i2 points to end(), which according to STL iterator logic is the (undefined) element
after banana.

B.5.4 Copying Container Areas

The qCopy() function allows several elements to be copied from one container to
another. Here the function expects two iterators, specifying the first element to
be copied and the object after the last element to be copied. The third parameter
names the position at which the first copied element should appear in the target
container:

// qcopydemo/main.cpp

#include <QStringList>

#include <QVector>

#include <QDebug>

int main()

{
QStringList list;

list << "one" << "two" << "three";

QVector<QString> vect(list.size());

qCopy(list.begin(), list.end(), vect.begin());

qDebug() << vect; // output: ("one", "two", "three")

return 0;

}

qCopyBackward() is almost identical to qCopy(), but expects the position of the
last element to be copied as the third parameter, rather than the first. It inserts
the values to be copied from the specified elements of the second container from
back to front, so that when read forward they retain their correct order:

// backwardcopy/main.cpp

#include <QStringList>

#include <QVector>

#include <QDebug>

int main()

{
QStringList list;

list << "one" << "two" << "three";

QVector<QString> vect(5);

qCopyBackward(list.begin(), list.end(), vect.end());

qDebug() << vect; // output: ("", "", "one", "two", "three")

415

B Tulip: Containers and Algorithms

return 0;

}

The example shows that the target container must already have sufficient space
before the specified insertion point to hold all of the elements that are copied from
the source container. Here, this is ensured for the target QVector by passing the
constructor the list size 5 before the call to qCopyBackward() that copies the three
elements in the QStringList. This is required because the Tulip algorithms commonly
do not allocate extra items.

B.5.5 Binary Search in Sorted Containers

If a list is sorted, the cost of searching it can be reduced from linear (O(n)) to
logarithmic (O(log n)) time with the help of the binary search algorithm. qBina-
ryFind() implements binary search in Qt. The function expects the list to be sorted
in ascending order, and it takes as parameters two STL iterators, which must point
to the positions at the beginning and just after the end of the area to be searched.
A third parameter is the value to be searched for. (To sort a list in ascending order,
qSort() is ideal; see page 413.)

The following example looks through a list of numbers for the number 6, and the
iterator returned as the result of the call to qBinaryFind() points to the third ele-
ment:

// binaryfinddemo/main.cpp

#include <QList>

#include <QDebug>

int main() {
QList<int> numbers;

numbers << 1 << 5 << 6 << 7 << 9 << 11;

QList<int>::iterator it;

it = qBinaryFind(numbers.begin(), numbers.end(), 6);

// it == numbers.begin() + 2

qDebug() << *it; // 6

As soon as several values occur that are recognized as equal by the operator<()
used, problems arise, however, since it is not defined as to which of the (same)
values the returned iterator points:

// binaryfinddemo/main.cpp (continued)

numbers.clear();

numbers << 1 << 6 << 6 << 6 << 9 << 11;

it = qBinaryFind(numbers.begin(), numbers.end(), 6);

416

B.5 Algorithms

// it == numbers.begin() + 1 or

// it == numbers.begin() + 2 or

// it == numbers.begin() + 3

qDebug() << *it;

return 0;

}

This does not matter if any element matching the search value will suffice, but it
becomes crucial to have a well-defined result if the location of the element found
will be used to determine the insert position for a new element. For such cases
there are the methods qLowerBound() and qUpperBound(). They both expect the
same parameters as qBinaryFind() and also perform a binary search. But after this
they behave differently.

qLowerBound() returns an iterator pointing to the first occurrence of the search
element. If the element sought does not exist in the container, the iterator remains
after the insert position deemed to be suitable. In either case, a subsequent insert()
inserts the value into the correct position, as the following examples show:

// upperlowerbound/main.cpp

#include <QDebug>

#include <QList>

#include <QVector>

int main()

{
QList<int> list;

list << 3 << 3 << 6 << 6 << 6 << 8;

QList<int>::iterator it;

it = qLowerBound(list.begin(), list.end(), 5);

list.insert(it, 5);

qDebug() << list; // output: (3, 3, 5, 6, 6, 6, 8)

it = qLowerBound(list.begin(), list.end(), 12);

list.insert(it, 12);

qDebug() << list; // output: (3, 3, 5, 6, 6, 6, 8, 12)

it = qLowerBound(list.begin(), list.end(), 12);

list.insert(it, 12);

qDebug() << list; // output: (3, 3, 5, 6, 6, 6, 8, 12, 12)

In contrast to qLowerBound(), qUpperBound() places the iterator after the value
found. Otherwise it shares all the properties of qLowerBound(). If the search value
was not found, the iterator that was passed as first argument is returned.

qUpperBound() and qLowerBound() can thus be used to bracket elements of the
same value from both sides, as shown in the following example, which copies a run
of equal values into a new container:

417

B Tulip: Containers and Algorithms

// upperlowerbound/main.cpp (continued)

QVector<int> vect;

vect << 3 << 3 << 6 << 6 << 6 << 8;

QVector<int>::iterator begin6 =

qLowerBound(vect.begin(), vect.end(), 6);

QVector<int>::iterator end6 =

qUpperBound(vect.begin(), vect.end(), 6);

QVector<int> vect2(end6-begin6);

qCopy(begin6, end6, vect2.begin());

qDebug() << vect2; // output: (6, 6, 6)

By subtracting the two iterators from each other we obtain the number of equal
elements. We require this to create a vector with a sufficient number of empty el-
ements, because qCopy() does not insert any new elements into the data structure.

B.5.6 Counting the Number of Occurences of Equal Elements

The qCount() method counts how often an object or value occurs within a con-
tainer. As the first parameter it expects an iterator pointing to the first element to
be tested, followed by an iterator pointing to the element after the last element
to be tested and an iterator pointing to the object to be counted. This must be of
the same type as the type stored in the container. As the last argument, qCount()
expects an integer variable in which it saves the number of occurrences. The fol-
lowing example illustrates how qCount() works, using a list of integer values:

// upperlowerbound/main.cpp (continued)

qCount(vect.begin(), vect.end(), 6, count6);

qDebug() << count6; // output: 3

return 0;

}

B.5.7 Deleting Pointers in Lists

For Qt containers, such as a QList, that are filled with pointers to objects, a simple
list.clear() is not sufficient, since this only removes the pointers from the list and
does not delete the list or free the objects that are referenced by the pointers.

For this purpose, the qDeleteAll() method is used, which exists in two variations.
One expects a container filled with pointers and deletes all the objects that are
pointed at by the container’s elements. The other expects two iterators and deletes
the objects pointed at by the container elements between the two iterators.

The following code example removes from memory all the objects pointed at by
the elements in a list of pointers, and then empties the list itself:

418

B.5 Algorithms

...

QList<Fruits *> list;

list.append(new Fruits("pear"));

list.append(new Fruits("apple"));

list.append(new Fruits("orange"));

qDeleteAll(list);

list.clear();

...

B.5.8 Checking that Data Structures Have Identical Elements

Sometimes it is necessary to compare two lists that, although they are two differ-
ent data structures, maintain contents of the same type. One example of this is
provided by the data structures QStringList and QVector<QString>. The string list
corresponds to QList<QString>, so that here, values of the same data type (namely,
QString) lie in two different containers.

The qEqual() function is in a position to compare portions of two such structures
with one another. In order to do this, it expects three parameters: two STL iterators,
one of which marks the beginning of the area in the first data structure containing
the elements to be compared, and the other, which marks the end of this area.
The third parameter is an iterator on the second data structure and points to the
element from which the comparison (which comes to a stop at the end of the
container) should start.

The following program accordingly creates two containers and compares all the
elements for equality:

// qequaldemo/main.cpp

#include <QStringList>

#include <QVector>

#include <QDebug>

int main()

{
QStringList list;

list << "one" << "two" << "three";

QVector<QString> vect(3);

vect[0] = "one";

vect[1] = "two";

vect[2] = "three";

bool ret = qEqual(list.begin(), list.end(), vect.begin());

qDebug() << ret; // output: true

419

B Tulip: Containers and Algorithms

return 0;

}

If we now change one of the elements in one of the data structures (such as in the
vector, as follows):

vect[2] = "ten";

then qEqual() will detect inequalities.

B.5.9 Filling Data Structures

Sometimes it is necessary to fill certain parts of a list with a value. In Qt this is
done by the qFill() function, which expects two iterators as parameters: the first
one specifies the beginning of the area to be overwritten, and the second specifies
the end of the area. The third parameter specifies the value to be filled in.

If we want to overwrite the complete list, we use the begin() and end() iterators of
the list:

// fillzero/main.cpp

#include <QList>

#include <QDebug>

int main()

{
QList<int> values;

values << 1 << 4 << 7 << 9;

// content of values: 1, 4, 7, 9

qFill(values.begin(), values.end(), 0);

qDebug() << values; // output: (0, 0, 0, 0)

return 0;

}

If we use a QVector instead of a QList, we can also use the QVector method fill()
instead of qFill(). Usually, QVector is the better choice when filling parts of a con-
tainer with a specified value is necessary.

B.5.10 Swapping Values

The qSwap() function exchanges the values of any two data containers of the same
type, including ordinary variables:

int a,b;

a = 1; b = 2;

420

B.5 Algorithms

qSwap(a,b);

qDebug() << "a=" << a << "b=" << b; // output: a=2 b=1

B.5.11 Minimum, Maximum, and Threshold Values

To determine the larger of two elements in terms of value, Qt provides the template
functions qMin() and qMax(). Each takes two arguments, both of which must be
of the same type. If this type is not a POD7 but a value-based class, the class must
implement the operator < in a valid fashion:

// qmindemo/main.cpp

#include <QList>

#include <QDebug>

int main()

{
// compare instances of a POD and look for minimum

int max = qMax(100, 200); // max == 200

// compare instances of a class (QString): looks for

// the lexicographic minimum

QString s1 = "Daniel";

QString s2 = "Patricia";

QString min = qMin(s1, s2);

qDebug() << min; // output: "Daniel"

}

If it is essential for a value to lie within a specific range, qBound() can be used.
This template function takes three arguments: a lower bound, a test value, and an
upper bound. It returns the upper or lower limit value if the test value is larger
than the upper bound or smaller than the lower bound, respectively. Otherwise,
the test value is returned.

The following method for a hypothetical radio tuner class ensures that the user
cannot select any frequencies outside the UKW frequencies valid for Europe:

int Tuner::createValidFreq(qreal freq)

{
return qBound(87.5, freq, 108.0);

}

Neither qBound() nor qMax() and qMin() change the input data. They return a const
reference to the value determined by the function in each case.

7 Plain Old Datatype, that is, all data types defined by the language such as int or bool.

421

B Tulip: Containers and Algorithms

B.5.12 Determining Absolute Value

The C library enables the absolute value of an integer value to be calculated via the
abs() function. In the same way that the fabs() function calculates the absolute
value for floating-point numbers, Qt defines the qAbs() method, which can calcu-
late the absolute value for all PODs. This works with all classes that implement the
unary minus and the comparison operator >= and allows comparison to an integer
0 as the neutral element. The method itself does not allow the programmer to
specify a neutral element.

The following code example, which could appear in a window manager class, en-
sures that the top right point of a window cannot lie above the point (0, 0), that
is, the top right corner, and assumes that positive values were actually intended:

void WindowManager::placeWindow(WId win, const QPoint& topRight)

{
...

QPoint actualPosition = qAbs(topRight);

...

}

B.6 Qt-specific Type Definitions

To ensure that Qt has the same properties on all supported platforms, the library
uses its own definitions for most PODs. More detailed information on the require-
ments for platform-independent data types is provided in a book by Brian Hook.8

Trolltech defines all these types with the typedef command, so it uses no macros.
This has the advantages that the compiler can work with such definitions better
and that error messages refer to the Qt types, simplifying error searches.

B.6.1 Integer types

Signed types

qint8 variables are 8 bits wide (value range: −128 to +127).

qint16 values occupy 16 bits (value range: −32 768 to +32 767).

qint32 integers use 32 bits (value range: −2 147 483 648 to +2 147 483 647).

8 Write Portable Code by Brian Hook (No Starch Press, 2005).

422

B.6 Qt-specific Type Definitions

qint64 values are 64-bit values (value range: −232 to +232 − 1). To generate
such large values as literals, the Q_INT64_C() macro exists, since a number of
compilers do not support 64-bit literals directly:

qint64 value = Q INT64 C(932838457459459);

qlonglong is a synonym for qint64.

Unsigned types

quint8 values are 8 bits in size (value range: 0 to 255).

quint16 values take up 16 bits (value range: 0 to 65 535).

quint32 values are 32 bits wide (value range: 0 to 4 294 967 296).

quint64 integers take up 64 bits (value range: 0 to +264−1). To generate 64-bit
literals, you should use the Q_UINT64_C() macro, because a number of compilers
do not support such large integer literals directly:

quint64 value = Q UINT64 C(932838457459459);

Similar to qlonglong, qulonglong is a synonym for quint64.

B.6.2 Floating-point Values

With qreal, Qt defines a floating-point number of double precision. This corre-
sponds to the C++ type double.

B.6.3 Shortcuts for Common Types

The following definitions do not improve platform independence, but merely spare
the work of having to enter unsigned, for those who do not use the POD type
definitions employed by Qt:

uchar corresponds to unsigned char.

uint corresponds to unsigned int.

ulong corresponds to unsigned long.

ushort corresponds to unsigned short.

423

Index

Symbols
-= (operator) 28
= (operator) 28

defining 324
&

in labeling 90
. . .

in menu entries 108
[] see index operator
>> (operator)

defining 325
<< see serialization operators
< (operator) 407
16-bit integer

signed see qint16
unsigned see quint16

32-bit integer
signed see qint32
unsigned see quint32

64-bit integer
signed see qint64
unsigned see quint64

8-bit integer
signed see qint8
unsigned see quint8

A
about box 117, 173

modal 118
abs() 422
absolute value

determining 422
abstract classes 211
accelerator 107

vs. shortcut 109

accept() (slot) 71, 162
access control

for objects 63
accessibility 209
AccessibleDescriptionRole

in Interview 209
AccessibleTextRole

in Interview 209
action see QAction
Action Editor

of the Designer 108
Active-X components 47
ActiveQt 47
addition operator

QMultiHash 411
QMultiMap 408

addStretch() 148
addWidget() 30, 32, 34, 144, 145

in QGridLayout 148
with splitters 150
with stacked layouts 157

algorithms 412–422
binary search 416–418
copy 415–416
heap sort 413
search 414–418
sort see sorting

aligning
DisplayRole data 209
on a grid see QGridLayout
horizontally see QHBoxLayout,
145
text 105
vertically see QVBoxLayout
widgets in QSplitter 150

alpha blending 311
alpha channel 274, 297
alpha transparency 312
alternating background color

in tables 233
Amarok 264
ampersand see &
animation

in SVG 302
anti-aliasing 277
apparent crashes 186
append() 394
application

calling 29
determining name of 169
generating with qmake 28
without GUI 44
quitting 36

Aqua style 88
Arabic characters 40
ARGB32 297, 310
arranging

on a grid see QGridLayout
horizontally see QHBoxLayout
vertically see QVBoxLayout
widgets 29

artifacts
due to opaque resizing 151

ASCII 114
assert() see assertions
assertions 390–391
assignment operator

defining 324
Assistant 47–48

start page 59

425

Index

use as documentation browser
43, 46

asynchronous device 328, 330
at() 229
attaching

elements to a list 400
attributes

of an XML element 369, 371
autoDefault (property) 87

B
background color

alternating (in tables) 233
in views 209

backslashes
in regular expressions 70

backward compatibility
with Qt3 see Qt3Support

base class 56
details in class documentation
60

Bezier curve 309
Bidi 156–157
bidirectional languages see Bidi
binary number

converting to string 72
binary search

in sorted containers 416–418
blind persons

alternative description for 209
blocking calls

with waitForDisconnected()
341
with waitForReadyRead() 329,
341

breadth-first search 404
Buddy 90
buffer 318, 323, 404
button

honoring style guide for 83
push see QPushButton
radio see QRadioButton
tool see tool button

ByteArray see QByteArray

C
callback functions 35

Cancel button 162
canceling

program in case of error see
qFatal()

casting
of objects see qobject cast
primitive data types 325
for QKeyEvent 193
for QTimerEvent 189

CDATA see QDomCDATASection
centering text 202
central widget 92, 101, 363
cerr 386, 387
changing size

opaque 151
channel

with RSS 356
characters

counting 123
replacing 123

checkbox 234–237
in front of actions see QAction,
selectable

checking inputs see validator
CheckStateRole 234

in Interview 209
child objects

and automatic memory man-
agement 31

Chinese characters 40
circle, drawing 278
class

documentation 59
name 92

clear mode 314
clicked() (signal) 36
clip region 308
clipboard 201–205
clipping 280, 307–308, 315
closing windows automatically 62
CMYK 274
Code::Blocks 52
collapsible widgets 150
color see QColor

available options 272
for DisplayRole data 209
predefined see GlobalColor

(enumerator)
selection dialog see QColorDia-
log
transparent 272

color gradient
linear 288, 310
radial 287

color palette 298
defining your own 276

color spaces
CMYK see CMYK
HSV see HSV
RGB see RGB

coloring in QPixmap 277
column numbers

in the QGridLayout 34
combo box 214

editable 247
command-line program

with Qt 44
running 328

comment lines
removing in a file 320

comments
reading out from XML docu-
ments see QDomComment

comparing
list contents 419
objects 290
QStringList with QVec-
tor<QString> 419

comparison operator 409
compatibility

with Qt3 see Qt3Support
compiler

affecting length of compiling
44

compiling
Qt 23, 259
a Qt program 27–29
a Visual Studio project 29

compositing
Porter-Duff 310–315

composition operators 310
.config 136
CONFIG (qmake variable) 386
configuration dialog 161

426

Index

implementation in KDE 157
with QStackedLayout 34

configure 23
connection

closing 336
delayed see queued connec-
tions

connectSlotsByName() 97
const

as argument type 71
correctness 400
declaration of get methods 325
and inheritance 227
iterator 396, 412

const char * 387
as reason for crashing 388

const cast 247
consumer-producer pattern 342–

345
container see Tulip
content handler

registering with QXmlSim-
pleReader 365
for SAX see QXmlCon-
tentHandler

contents
reading out of a vector 401

context
in translations 51, 377, 380

control see widget
element see widget

conversion
QPixmaps in QImages 297

converting
to local 8-bit encoding see
toLocal8Bit()
to Unicode see fromLocal8Bit()

coordinate system
of the grid layout 34
scaling 292
transforming see QMatrix

coordinates
storing see QPoint

copying container areas 415–416
counting identical elements 418
Courier 106
cout 386

crash
apparent 186
due to const char * 388
during Interview programming
225
due to invalid indices 225
only in the release version 392
when using Designer-generated
classes 93

critical errors
defining see qCritical()

critical messages see error, dialog
CRT ERROR

generating 388
cursor (database) 395
custom widget 99
Cyrillic characters 40

D
data structures

filling 420
thread-dependent 345–347

database see QtSql module
drivers 258
support 42, 43, 45
temporary 265

dataChanged() (signal) 229, 237
datastream see QDataStream
date details see QDate
DB2 database driver 258
DBus 43, 47
deadlock 344
debug libraries

generating in Windows 28
installing in Unix 28

debug version
for an application 64
generating 28

debugging 385–392
your own model 227

debugging functions
changing output of see mes-
sage handler
Qt-dependent 386

DecorationRole
in Interview 209

default button 68, 87

setting 69
default size

defining see sizeHint()
delegate 210, 228, 245–247

for database queries 267
QItem 234

DELETE statement (SQL) 262
deleting QObject-based objects 336
demarshalling 322
demo programs

included 58
deserializing 322
Designer 48–49, 81–100

Action Editor 108
deleting widgets 82
enabling dock window mode
81
file format 49
Property Editor 56, 109
Resource Editor 58, 99
working with view classes 214–
216

Designer-generated file see ui files
destination mode 311
DestinationAtop mode 313
DestinationIn mode 312
DestinationOut mode 312, 314
DestinationOver mode 311
device

asynchronous 328, 330
dialog see QDialog

closing 71
color selection see QColorDia-
log
creating with Designer 82
for critical messages see error,
dialog
editor see Designer
file selection see QFileDialog
hiding see hide()
for information see QMessage-
Box
as main window 62
for messages see QMessage-
Box
modal 161–162
non-modal 163–164, 176

427

Index

print see QPrintDialog
for questions see question dia-
log
ready-made 166–184
semi-modal 164
vs. status bar 124
for uncritical messages see in-
formation dialog
for warnings see warning dia-
log
your own file selection 214–
221

dictionary see QMap
dimensions

setting see setGeometry()
storing see QSize

direct connections 347
Direct Object Model see DOM
directory

default icon 330
listing contents 332
operations see QDir
selecting 178

directory hierarchy
presenting 212–214

DisplayRole
font type 209
in Interview 209, 224
text alignment 209
text color 209

division
by zero 388

DLLs
of the Qt debug libraries 28

DNS name resolution see
QHostInfo

dock window 101, 130–136
dock window mode

enabling in Designer 81
Document Object Model see DOM
document type

determining from XML files
369

documentation 47
browser see Assistant
start page 59
on the Web 59

DOM 43, 45, 353, 366–373
element see QDomElement
nodes see QDomNode
SVG manipulation 46, 301

dotted lines 295
double 423
double buffering 282

switch off 283
drag and drop 194–201, 323

bug in Qt 4.1.2 245
of images 194
implementing in models 241–
245

drawing
with Qt 271–317
re- ˜ a widget 296
re-˜ the screen 280
on widgets 280–283

drawing path see Painter paths
drop actions

types 244
DTD

handling in SAX see QXmlDTD-
Handler

dynamic text
generating 124

dynamic cast 248

E
ECMA script

in SVG 301
editor

Kate 55
widget see QTextEdit

EditRole
in Interview 209, 225

element-based views 251–255
ellipse

drawing 278, 295
filling with pattern 295

ellipsis in menu entries 108
embedded databases 264
embedded version 20
emit (signal designator) 78
empty lines

removing in a file 320
empty space

removing at the beginning and
end of line 322

encapsulation 95, 96
Enter key see Return key
enum 105
enumeration types

alignment 105
CheckState 209
DockWidgetFeatures 131
EchoMode 181
format 297
orientation 224
policy 146
SocketError 340

environment
influencing ˜ of a process 328

environment variable
influencing ˜ of a process 319,
329
LANG 329
QT FATAL WARNINGS 388
QT NO DEBUG OUTPUT 386
QT NO WARNING OUTPUT 388
reading out ˜ of a process 329

error
critical see qCritical()
dialog 173
fatal see qFatal()
issuing 387–388
linker 392
in multiple inheritance 97
non-integrated layouts 67
searching for see debugging
staticMetaObject 65
unknown signals or slots 64
unresolved signals or slots 79
unresolved symbols 65, 79
vtbl-linker error message 392

error handler
registering with QXmlSim-
pleReader 365
for SAX see QXmlErrorHandler

error messages
issuing 174

error source
with QMap usage 405

Esc key 162

428

Index

assigning 168
/etc/xdg 136
event filter 190, 247
event handler 35, 97, 186–190

for drag and drop 202
for dropping 199

event listener 35
event loop 26, 31, 185–186, 320

ending 26, 36
for non-graphic programs 44
programming 332
starting in dialogs 162
for threads 350–352

events 35, 185–201
occurring when dropping 198–
199
in threads 352
triggering manually 188

example (directory) see example
programs

example programs
included 58

exclusive Or see XOR
exec() 26, 162
Extended Markup Language see

XML

F
fabs() 422
factory method 153
fatal error

defining see qFatal()
father see parent widget
FiFo container see QQueue
file

access 320–322
default icon 330
dialog see QFileDialog
format see format
open 113, 320
restricting selection to directo-
ries 178
save see saveFile()
selecting individual 175
selecting several 177

FILE pointer 113, 320, 322
file selection dialog see QFileDialog

your own 214–221
filename

selecting 178
fill() 420
filling data structures see qFill()
filtering 212

data in models 231
of datasets 234

Firefox
non-modal dialogs 164

flicker
avoiding see double buffering
screen 283

floating dock windows 133
floating number see floating-point

types
floating-point inputs see getDou-

ble()
floating-point types

in Qt 423
font metrics see QFontMetrics
font selection dialog see QFontDia-

log
font type

changing 106, 251, 253
for DisplayRole data 209

FontRole
in Interview 209, 251

fopen() 113
for loop 394–396
foreach 151, 411–413

and QDomList 370
foreign key relations

resolving 266
forever 341
forking 337
format

images 297
QDataStream 323
QImage 297
RSS 355
translation sources 377

format strings
for debug functions 386
in debug output 386

FORMS (qmake variable) 49
forward declaration 63, 122

fractions
entering see getDouble()

frame shape 85
free text

reading in 181
freedesktop.org 43
fromLocal8Bit() 330, 331
FTP see QFtp

client 45

G
GCC

undefined symbols 65
unresolved symbols 79
for Windows 52

get method 56
getDouble() 180
getInteger() 179
GIF support 23
GlobalColor (enumerator) 272
GNOME 83
Google Earth 19
GPL

version for Windows 52
gradient

linear 288, 310
radial 287

graphics
integrating 57
MIME encoding 195
scaling 100

graying
actions 129

grid layout see QGridLayout
groups

of actions 128
in configuration files 138

GUI
avoiding locking 332, 337
design via mouse click see De-
signer
editor see Designer
thread 338

GUI classes
integrating 43
not integrating 43

429

Index

H
handle 34
handler

classes for SAX 355–361
for events see event handler

handles 125
adjusting 153

hanging
because images are too large
305

hash table 409–411
hash value

calculating 410
hash-based amounts 411
hash-based sets 412
hasNext() 397
hasPrevious() 397
header columns

for table and tree views 211,
233

header file 26, 43
adding to projects 106
multiply included see include
guards

HEADERS (qmake directive) 64, 106
heap

generating objects on 32
with threads 337

heap sort 413
Hebrew characters 40, 156
height

reading out ˜ of splitter widgets
151
setting see setGeometry()

help
browser see Assistant
longer help text 110, 129

hexadecimal number
checking as input value 70
converting to string 72

hide() 304
home directory

determining 176
horizontally

aligning 145
arranging see QHBoxLayout

host name 333

HSV 273
color selection dialog 275

HTML 354, 367
centering text 202
in QMessageBoxes 171, 390
for tables 226
in tooltips 226

HTTP see QHTTP
client 45

I
I/O 317–336
icon bar see toolbar
icons 125

for input/output operations
330
in Interview 209
selecting for actions 127, 129
selecting for message boxes
167
standard 330
in the status bar 121

identity matrix see unit matrix
images see graphics
implicit sharing 40, 412
include guards 62, 104
index operator 229, 400

access to QLinkedList 401
access to QVector 402
with QHash 409
with QMultiMap 408
vs. value() 405, 409

individual preferences see user
scope

infinite loop
with forever 341

info box see QMessageBox
on the program 117, 173

information dialog 171–172
inheritance

multiple see multiple inheri-
tance
sequence 97

input
checking 70
dialogs see QInputDialog
fields for line-by-line input see

QLineEdit
restricting 70

input/output interfaces 317–336
opening 319

input/output operations
icons for 330

INSERT statement (SQL) 262
installation path

defining for Qt 24
integer inputs see getInteger()
integer types

in Qt 422
integer values

accepting see getInteger()
checking during input 70
converting strings to 72, 73

inter-process communication 337
InterBase

database driver 258
internationalization 375–381
interprocess communication 322
intersection

forming 412
Interview 207–255

and database access 258, 265–
270

introspection 97
invisible widgets

causes of 67
IP addresses 333
IPv6 333
isNull() 176
ISO 8859-1 114
ISO Latin 1 114
item 207, 251

cloning 254
sorting 255

item-based display 207
iterator 394–398

immutable 396
Java-style 396–398, 404
mutable 396
for QMap 405
for QQueue 404
for QStack 404
STL-style 395–396
unchangeable 396

430

Index

J
JavaScript in SVG 301
JUnit 46

K
Kate 55
KDE

Amarok 264
implementation of configura-
tion dialogs 157
media URL 200
non-modal dialogs 164
QMimeData with several URLs
200
Run dialog 164
style 88

KDevelop 53
key binding

application-wide 109
keyboard usage 107
Konqueror

Hebrew 156

L
label see QLabel
labeling text 85
landscape (print format) 306
LANG (environment variable) 329
languages oriented from right to

left see Bidi
layout

adding widgets to see addWid-
get()
automatic see layout system
grid see QGridLayout
horizontal see QHBoxLayout
inserting other layouts into
149–150
manual 141–143
nested 65–68, 149–150
removing in Designer 84
stretch 67, 83
vertical see QVBoxLayout

layout system 29, 141–161
advantages 31

LCD display see QLCDNumber
lettering see labeling text

adjusting for labels 86
libQtCore debug.so 28
library

generating with qmake 28
LiFo container see QStack
lightweight processes see threads
line drawing see QPen
line edit see QLineEdit
line numbers

in the QGridLayout 34
line wrap

preventing 106
removing 123

Linguist 49–51, 376–378
linker

frequent errors 392
problems with undefined ˜ sym-
bols 104
problems with unresolved ˜
symbols 79

Linux
printing large images 305

list view 157–159, 210
without Interview see QList-
Widget
selecting column from the
model 227
string-based 207, 221

lists see QList
changeable iterators 396
filling 420
linked see QLinkedList
QQueue see QQueue
QStringList see QStringList
QVector see QVector
swapping values 420
your own 400

locale 188
determining 378
forcing default 331
forcing standard 329

localization
of an application 49
of images 58
influence on the layout 143
of shortcuts 110, 127

loopback interface

using 336
lrelease 49, 376
ls, calling as external program 332
lupdate 49, 376, 377

recording entries outside classes
381

M
Mac OS X

.plist files 136
project files 53
Qt installation 23
special features of qmake 53
storing settings 137

macros
foreach see foreach
forever see forever
NDEBUG 390
platform-dependent 389
Q ASSERT 390, 392
Q ASSERT X 391, 392
Q CHECK PTR 391–392
Q FOREACH 412
Q UNUSED 223
Q WS MAC 389
Q WS QWS 389
Q WS WIN 389
Q WS X11 389
QT TR NOOP 381

Magic Number 326
main widget 26

central widget 105
creating with Designer 82
separating page list from 153
size grip 118
status bar 118

main window see main widget
class see QMainWindow

MainActor 19
make 29
Makefile

generating with qmake 28
Makefile.DebugPackage 28
Makefile.ReleasePackage 28
marshalling 322
matrix

inverse 291

431

Index

singular 291
maxima

determining 290, 421
maximum size

setting 151
memory

allocating 391
bottleneck 391

memory management 31–33
automatic 31, 68
of item classes 251

menu bar 101
adding in Designer 107–108
inserting actions into 127

menu entry
clicking 112
defining font 129

menu separator 108
message bus 43, 47
message dialog see QMessageBox
message handler 388

installing 389
message window see QMessageBox
meta-object compiler see moc
MFC 47
Microsoft

SQL server database driver 258
styleguide 169
Visual Studio see Visual Studio
Windows see Windows (Mi-
crosoft)

MIME type
for the clipboard 201
for drag and drop 194–195,
242
your own 194

MinGW 24, 52
minima

determining 290, 421
minimum size

defining 289
setting 143, 145, 150

moc 56–57, 64, 79, 392
problems 392
and RTTI 248

moc file 56
modal dialogs see dialog, modal

modality of a dialog 162
model 208

for database usage 265–270
making writable 227

model-view concept see Interview
monitor

flicker 283
monospaced font

setting 106
Motif 47
mouse

events triggered by see
QMouseEvent
wheel 293, 296

mousePressEvent() 295
moving see translation
Mozilla-like splitter handle 153
multiple inheritance

of Designer-generated inter-
faces 95
restrictions 97

multiple selection of files 216
mutable iterator 396
mutex 342
MySQL 45

database driver 258
establishing connection 260
making queries 261
problems with stored proce-
dures 263

N
name

of a class created in Designer
92
determining an application’s
169
resolution 333

namespace
Qt 105

NDEBUG (macro) 390
network

integrating ˜ support 43, 332
programming 42, 45, 332–336

new operator 31
newsfeed 356
next() 397

nmake 29
note

yellow see tooltip
number() 72, 73

O
object cast see qobject cast
objectName (property) 92
objects

counting equal 418
generating on the stack 32, 33
hierarchy of 31–33
names of 85
serializing 322–328
tree structure of 31

ODBC database driver 258
OK button 162
Online help see documentation
opaque 273, 274

resizing 151
OpenGL support 42, 45
OpenSUSE

installing SQL support 259
operators

-= 28
= 28, 324
<< see serialization operators
addition ˜ for associative arrays
411
addition ˜ for dictionaries 408
addition ˜ for QMap 408
assignment 399
comparison 409
composition 310
copy 399
defining assignment 324
defining serialization 325
index 229, 405, 408, 409
less than 405–407
new 31
operator==() 409
operator>>() 325
operator<() 405, 406, 413
operator<<() 325
serialization 387

Or
exclusive see XOR

432

Index

orientation enumerator 224
overwriting

areas in data structures see
qFill()

P
page bar

separating from main widget
153

page margins
taking into account when print-
ing 306

paint event 280, 283
forcing 296

paintbrush see QBrush
Painter paths 280, 309–310, 314
paintEvent() 280–282
palette see color palette
parent widget 30
PDF

generating 306
peekNext() 397
peekPrevious() 397
pen see QPen
phrasebook

for translations 377
pie chart 283
Plastique style 88
.plist files

generating 136
plugins

for database driver 259
PODs in Qt 325, 422
pointer

between two elements 396
checking validity of 391–392
deleting in lists 418

polygon see QPolygon
Porter-Duff 310
porting

Qt 3 programs to Qt 4 46
Portland project 175
position

defining for a widget 152
setting for a widget see setGe-
ometry()

Post-It note see tooltip

PostgreSQL 45
database driver 259
integrating drivers 260

preferences
saving 136–140
system-wide see system scope
user-defined see user scope

preview
in the Designer 88

previous() 397
print dialog see QPrintDialog
print interface see QPrinter
printf() 385, 386, 388
printing 302, 305–307
.pro file see project file
problems with moc 392
processes

controlling 328–332
starting 319, 328–332

processing logic
separating from GUI 74–76

program crash see crash
program names

defining application-wide 137
determining 169

progress bar
during a download 119
in the status bar 121

project creation see qmake
project file

generating with qmake 27
integrating Designer files 49
integrating GUI descriptions 49
for Mac OS X 53
for Microsoft Visual Studio 52
specifying Qt libraries to be
linked 43
for Xcode 53

properties 56, 85
in class documentation 60
of QAction 109–110
of QMessageBox 166
of QSplitter 150
of QTextEdit 106
querying 56, 85
setting 56, 85
size of 143, 150

of views 216
Property Editor 56, 85, 109
proxy 333
proxy model 231, 270

designing 237–241
public (objects) 63
push back() 394

Q
Q ASSERT (macro) 390, 392
Q ASSERT X (macro) 391, 392
Q CHECK PTR (macro) 391–392
Q FOREACH (macro) 412
Q INT64 C() (macro) 423
Q OBJECT (macro) 63, 64, 104
Q UNUSED (macro) 223
Q WS MAC (macro) 389
Q WS QWS (macro) 389
Q WS WIN (macro) 389
Q WS X11 (macro) 389
QAbstractButton 42, 87
QAbstractItemDelegate 245
QAbstractItemModel 211, 266
QAbstractItemView 211
QAbstractListModel 211
QAbstractProxyModel 212, 231
QAbstractScrollArea 211
QAbstractSocket 318, 333
QAbstractTableModel 211
QAction 108–110, 126–128

choose icon 109
grouped 128
select icon 127, 129
selectable 128
shortcuts 110
signal when clicking 112
toggling 126, 129

QActionGroup 128
qApp 112
QApplication 26

base class for 44
and QDesktopWidget 304
quit() 36
translate() see translate()

QAssistantClient 46
qBound() 421
QBoxLayout 42, 145

433

Index

QBrush 277
defining color 277
tiled pattern 295

QBuffer 318, 323, 361, 404
setting read position to begin-
ning 365

QButtonBox 83
QByteArray 114, 139, 318
QCheckBox

in the Qt inheritance hierarchy
42

QClipboard 201–205
QColor 40

in the Qt inheritance hierarchy
42

QColorDialog 275–276
QComboBox see combo box
qCopy() 415
qCopyBackward() 415
QCoreApplication 44, 320, 338
qCount() 418
qCritical() 386–388
QDataStream 243, 322–327

defining version of the format
323, 326
reading in line by line 331

QDate 179, 189
qDebug() 152, 386–388, 390

displaying database errors 261
qDeleteAll() 399, 418
QDesktopWidget 304
QDialog 161–184

avoiding bloating 164
classes inherited from ˜ as main
window 62
extensions 164

QDir 176
QDirModel 212–214

overloaded index() method 213
QDomCDATASection 370
QDomComment 370
QDomDocument 366, 367, 370
QDomDocumentFragment 371
QDomDocumentType 369
QDomElement 366, 369, 370
QDomNode 367
QDomText 370

qEqual() 419
QErrorMessage 174
qFatal() 386, 388, 390
QFile 113, 318, 320–322
QFileDialog 113, 175–178

flags 175
qFill() 420
qFind() 414
QFont 182
QFontDialog 182–183
QFontMetrics 288
QFrame 41, 42
QFtp 333
QGridLayout 33–34, 148–149, 303,

362
addWidget() 34
column numbers 34
coordinate system 34
with Designer 84
line numbers 34
in the Qt inheritance hierarchy
42

QHash 283, 409–411
qHash() 409
QHBoxLayout 33

in Designer 84
in the Qt inheritance hierarchy
42

QHeaderView 211
QHostAddress 333
QHostInfo 333
QHttp 333, 350, 361, 363
QIcon 127
QImage 40, 297–300

composition modes 310–315
converting in QPixmap 297

QInputDialog 179–182
qInstallMsgHandler() 389
qint16 422
qint32 422
qint64 422
qint8 422
QIntValidator 70
QIODevice 317–320, 322

network subclasses 333
opening 319

QItemDelegate 210, 228, 234, 245

QItemSelectionModel see selection
model

QLabel
aligning text 105
assigning shortcuts 90
displaying pixmap 197, 278
displaying strings 38
markup 102
properties 85
in the Qt inheritance hierarchy
41
setAlignment() 105
setNum() (slot) 38
setPixmap() 197, 277
setText() 38, 56, 124
setting image 197, 278
setting new value 38
setting text 56, 85, 124
text (property) 56
text() 56

QLayout 42, 143–144
addLayout() 67
addStretch() 68
in the Qt Designer 84

QLCDNumber 186
QLinearGradient 288, 310
QLineEdit

changing input 73
EchoMode enumerator 181
restricting input 70
setValidator() 70
textChanged() (Signal) 71
textChanged() (signal) 234

QLinkedList 398, 401
access via index operator 401

QList 398–402
as base class for QQueue 404
mutable iterator 396

QListView 210
QListWidget 157, 251
QListWidgetItem 157, 330, 332
QLocale 378
qlonglong 423
qLowerBound() 417–418
QMainWindow 101–140, 362

setCentralWidget() 105
qmake 27–29, 51–56, 392

434

Index

choosing Qt libraries to be
linked 43, 257
FORMS variable 49, 91
generating application with 28
generating library with 28
generating Makefile with 28
HEADERS directive 106
help when inheriting from QOb-
ject 64
including an SQL module 257
integrating Designer files 49,
91
libraries to be linked by default
43
and moc 56
QT variable 43
RESOURCES directive 57
SOURCES directive 28, 106
special features on Mac OS X
53
special features on Windows
28
TEMPLATE directive 28, 106
TRANSLATIONS directive 376

QMAKEFLAGS (environment vari-
able) 28

QMap 404–407
QMapIterator 405
QMatrix 290–295
qMax() 290, 421
QMenu 127
QMessageBox 116, 166–173, 390

modal 118, 168
QMimeData 194
qMin() 290, 421
QModelIndex 208, 218, 219
QMouseEvent 186
QMultiHash 411
QMultiMap 407–408
QMutableListIterator 396
QMutex 342
QMutexLocker 344
QNetworkProxy 333
QObject 39–40

and automatic memory man-
agement 68
connect() 36, 38

deleting ˜-based objects 336
deriving from 104
inherited classes 31
inheriting from 39, 63–65
and moc 56
property() 56
setProperty() 56, 85
tr() see tr()

qobject cast 247
QPaintDevice 276, 302
QPainter 276–278, 280, 282–290
QPainterPath see Painter paths
QPen 277

defining color 277
defining thickness 277
drawing dotted line 295

QPixmap
converting in QImage 297
extracting from data stream
200
filling with color 277
making screenshots 304
vs. QImage 297

QPoint 278
floating-point variants see
QPointF

QPointF 279
QPolygon 279, 308

defining smallest possible rect-
angle 279
floating-point variants see
QPolygonF

QPolygonF 279
qPrintable() 328, 387
QPrintDialog 302, 306
QPrinter 276, 302, 305–307
QProcess 319, 328–332

asynchronous usage 330–332
synchronous usage 329

QProxyModel 212, 231
QPushButton 35

clicked() signal 36
clicking on 36
converting to a toggle button
166
default button 87
in the Qt inheritance hierarchy

42
setDefault() 69
size policy 144

QQueue 342, 395, 404
QRadioButton

in the Qt inheritance hierarchy
42

qrc file 57
qreal 423
QRect 278–279

floating-point variants see
QRectF
moving 288
shrinking 280

QRectF 279
QRegExpValidator 70
QRgb 272, 275
QSet 411–412
QSettings 136, 151
QSize 278

floating-point variants see
QSizeF

QSizeF 279
QSizeHint 209
QSlider 38

set value 38
setValue() (slot) 38
value change see value-
Changed() (Signal)
valueChanged() see value-
Changed() (Signal)

qSort() 413
QSortFilterProxyModel 231, 232
QSpinBox 38, 180

set value 38
setValue() (slot) 38
value change see value-
Changed() (Signal)
valueChanged() see value-
Changed() (Signal)

QSplitter see splitter
QSplitterHandle 153
QSqlDatabase 260
QSqlError 261
QSqlQuery 261
QSqlRecord 262
QSqlRelationalDelegate 245, 267

435

Index

QSqlRelationalTableModel 266, 268
problems in Qt 4.1 270

QSqlTableModel 265–266, 268
qStableSort() 413
QStack 403–404
QStackedLayout see stacked, lay-

out
QStackedWidget see stacked, wid-

get
QStandardItemModel 212, 247,

249–250, 356, 357, 365
QStatusBar 118

addPermanentWidget() 121
addWidget() 120
clearMessage() (slot) 120
showMessage() (slot) 120

QString 40
arg() 123
checking if it is empty 182
converting 8-bit text to/from
see fromLocal8Bit()
converting to number values
72
internal encoding 114
outputting via cout 328
in the Qt inheritance hierarchy
42

QStringList 395
comparing with QVec-
tor<QString> 419

QStringListModel 212, 221
QStyle 330
QSvgRenderer 301
QSvgWidget 301
qSwap() 420
Qt

contents of individual libraries
42
German translation sources
380
information box about 173
installing 23
open source edition for Win-
dows 24
size 42
source code 23

QT (qmake variable) 43, 257, 301,

332, 354
Qt 4.0 42
Qt 4.1 43
Qt 4.2 43
Qt Assistant see Assistant
Qt Designer see Designer
Qt Linguist see Linguist
Qt Solutions 47
Qt-3 classes 46
Qt3Support 43, 46
QT FATAL WARNINGS (environment

variable) 388
QT NO DEBUG OUTPUT (environ-

ment variable) 386
QT NO WARNING OUTPUT (envi-

ronment variable) 388
QT TR NOOP (macro) 381
QTableView 211
QTableWidget 251, 253
QtCore 42, 44, 332

debug variations 28
QTcpServer 333, 338
QTcpSocket 40, 318, 333, 334, 340
QtDBus 43, 47
QtDebug 387
QTemporaryFile 318
QTestLib 43, 46
QTextBrowser 349, 361
QTextCodec 114
QTextDocument 123

redo 117
undo 117

QTextEdit 106, 115, 142
open new document 116
preventing line wrap 106
setDocument() 116
setting font type 106
size policy 144
text format 114
undo see QTextDocument

QtGlobal 386
QtGui 42, 44–45
QThread see threads
QThreadStorage 345–347
QTime 188
QTimer 334, 350

singleshot timer 304

QTimerEvent 188, 189
QtNetwork 42, 45, 332
QtOpenGL 42, 45
QTranslator 378, 379
QTreeView 210
QTreeWidget 251, 252
QtSql 43, 45, 257–270

displaying database errors 261
establishing connection 260
making queries 261
model for Interview 265–270
temporary database 265

QtSvg 43, 46
QtXml 43, 45, 353–373
QUdpSocket 318, 333
question dialog 169–171

vs. information dialog 171
questions

asking 169
queued connections 347, 348
queues see QQueue
quint16 423
quint32 423
quint64 423
quint8 423
quit() 26, 36, 112
qulonglong 423
qUpperBound() 417–418
QUrl 195, 364

converting to file path 200
QValidator 70
QVariant 135, 200

converting into native data
types 138
converting to a string 366

QVBoxLayout 30, 144–145
addWidget() see addWidget()
creating in Designer 84
in the Qt inheritance hierarchy
42

QVector 401–402
filling 420

QVector<QPoint> 279
QWaitCondition 342
qWarning() 341, 388
QWidget 304

as a basis for all control ele-

436

Index

ments 40
and layout 141, 143
resize() 105
setWindowTitle() 69, 105

QXmlContentHandler 355, 356
QXmlDefaultHandler 355–361
QXmlDTDHandler 355
QXmlEntityResolver 355
QXmlErrorHandler 355, 356
QXmlInputSource 365
QXmlLexicalHandler 355
QXmlSimpleReader 365

R
rcc 57–58
reading

from right to left see Bidi
rectangle see QRect
redo 117
reference system

fixed 280, 281
reflection 97
Registry

create path 136
saving application data 136

regular expressions
allowing during filtering 234
in Qt 70
in validators 70

reject() (slot) 71, 162
relational databases see QtSql

module
release version

generating 28
repaint 280
resize() 143
resizeEvent() 143
Resource Editor see Designer
resource file 109
resources

choosing icons for actions from
109
compiler see rcc
external 57–58, 99
file 57
localization of images 58

RESOURCES (qmake directive) 57

restricting the view to specific
datasets see filtering

retranslateUi() 92
Return key

assigning 168
RGB

vs. CMYK 274
color selection dialog see
QColorDialog

right alignment 145
roles 135

AccessibleDescriptionRole 209
AccessibleTextRole 209
CheckStateRole 209, 234
DecorationRole 209
DisplayRole 209, 224
EditRole 209, 225
FontRole 209, 251
SizeHintRole 209
StatusTipRole 209
TextAlignmentRole 209
TextColorRole 209
ToolTipRole 209, 225, 251
UserRole 209
WhatsThisRole 209

root element
determining in XML files 369

rotation 293
of the coordinate system 295

RSS parser 355–361
RTTI 248

S
saveFile() 115
saveFileAs() 115
saving

a file see saveFile()
splitter positions 151
under new name see save-
FileAs()

SAX 45, 353–366
default handler see QXmlDe-
faultHandler

scaling 292
screen

redrawing 280
screen size

and stretch factors 153
screenreader 209
screenshot 302–305
scroll wheel 293, 296
search

in sorted containers 416–418
for specific datasets see filter-
ing
in unsorted containers 414–
415

SELECT queries (SQL) 262
displaying results 267

selectable entries see checkbox
selection model 217
selectionMode (property) 216
semi-modal dialogs see dialog
separator

in menus 108
sequential connections 318
serialization 322, 387
serialization operators 387

defining 325
set difference 411
set method 56
set object see QSet
set operations 411
setGeometry() 141
setupUi() 92, 111
sharing

implicit 40, 412
shearing 293
shortcuts 109

assigning with Designer 90
for labels see Buddy
window-wide 107

show() 163, 164
side-effects

in debug instructions 392
signal

binding to slots by name con-
vention 97
declaring 77
sending 78

SIGNAL() 36
signals and slots 35

connecting with Designer 88
number of arguments 39

437

Index

sequence of function call 38
with thread usage 347–350

simplified() 123
singleshot timer 304
size

changing 87
defining fixed 281
fixing 142
saving a window’s 139
storing see QSize

size grip
for main windows 118

size hint
providing a see sizeHint()

size policy 144, 146
sizeHint() 143, 289

for SVG files 301
SizeHintRole

in Interview 209
Skype 19
slider see QSlider
slot 36

binding to signals by name con-
vention 97
declaring 71–72

SLOT() 36
socket

communication via 318, 334,
338

Socks 5 333
sorting 212, 413–414

data in models 231
items in view widgets 255
with QMap 405

sorting indicator
in tree views 233

source mode 311
SourceAtop mode 313
SourceIn mode 312
SourceOut mode 312
SourceOver mode 311
SOURCES (qmake directive) 28, 106
spacer 82

in Designer 82
spaces

distributing with stretches 67,
83

removing from beginning and
end of string 123

spin box see QSpinBox
splitter 34, 130, 150–157

defining size of ˜ widgets 151
saving position of 151

SQL databases
support in Qt see QtSql

SQLite 45
compiling support 259
database driver 259
integrating drivers 260
using 264–265

stack
generating objects on 33

stacked
layout 34, 157–160
widget 157

stacks see QStack
standard connection (database)

260
standard locale

forcing 329, 331
standard output

directing output to 321
Standard Template Library see STL
standard widgets

manipulating 99
standard-error output see stderr
static cast 189, 193
status bar 101, 110, 114, 118–124

data to be displayed in Inter-
view 209
normal message 119, 120
permanent message 120, 121
temporary message 119, 120

status line see status bar
status tip

setting 127
StatusTipRole

in Interview 209
stderr 386
STL

compatibility with Qt 393
iterators 395–396

stored procedures 263
and SQLite 264

stretch 67, 83, 152
stretch factor 146–148

in the QGridLayout 148
and screen size 153
in the splitter layout 152

string
converting to numbers 72, 73
with dynamic elements 124
list see QStringList
objects see QString
reading 181

string-oriented connections 318
strings

selecting 181
style 88, 330
styleguide

on headers in question dialogs
169
Microsoft 169

sub-tree
inserting XML into 372

SVG 43, 46, 300–302
Basic 301
file loading 301
supported profiles 46
Tiny 301

swapping
values 420

Sybase Adaptive Server
database driver 259

synchronous processes 329
system scope

for preferences 136, 137
system time see time

T
tab order 192
tab sequence 48, 87, 89
tab-completion 245
table layout see QGridLayout
table view

of data 211
of SQL tables 265–266
without Interview see QTable-
Widget

tabulator see tab sequence
tags 366

438

Index

tar archive
listing contents 328

TEMPLATE (qmake directive) 28,
106

temporary data
storing 318

temporary database 265
temporary directory

determining 176, 319
temporary file 318
temporary memory 404
test cases 43, 46
Testing

inverted Layouts 157
text

color for DisplayRole data 209
document see QTextDocument
dynamically generating 124
editor 101, see QTextEdit
files for Unix and Windows 114
window for messages see
QMessageBox

TextAlignmentRole
in Interview 209

textChanged() (Signal) 73
textChanged() (signal) 234
TextColorRole

in Interview 209
threads 40, 337–352

synchronizing 341–345
working with QSettings 136

tiled pattern 295
time

current system 188
determining 333

time object see QTime
timer 188, 189, 295

signal call after timeout 335
timeserver 336
title bar see window title
toggling

actions 126, 133
dock windows 133
via QPushButton 166

toInt() 72, 73
toLocal8Bit() 328
tool button 214

toolbar 101, 125–126
adding in the Designer 109

tooltip 110, 209, 251, 360
setting for actions 129

ToolTipRole
in Interview 209, 225, 251, 360

top-level widget 86, 162
tr() 50, 105, 376

dynamic text parts 123
transactions (database) 264
transformation matrix 290
translate() 50
translation 288, 291

of applications to other lan-
guages 49, 375–378
context see context
of the coordinate system 295
sources 377

TRANSLATIONS (qmake directive)
376

transparency
as color 272
of pixels 297

traversing 395
tree structure

of Qt classes 31
tree view 210

of SQL tables 265
without Interview see
QTreeWidget

tree-based algorithms 404
Tulip 393–423
type conversion

with signal/slot connections 38
types

PODs 325, 422
Qt-specific 422

typewriter font see monospaced
font

U
Ubuntu

installing SQL support later on
259
problems with qmake 27

uchar 423
UDP 318

ui files
format 49
integrating in projects 91–97

uic 49, 92
uint 423
ulong 423
undo 117

stack 117
undocumented features

event filter 247
Unicode 40, 114

converting local 8-bit encoded
data to 330, 331

union 135
of sets 412

unit matrix 291–292
unit tests 43, 46
Unix

behavior of qFatal() 388
unsigned char

short form 423
unsigned int

short form 423
unsigned long

short form 423
unsigned short

short form 423
UPDATE statement (SQL) 262
URL see QUrl
usability

accelerators 107
arranging menu bar entries
126
avoiding bloated dialogs 164
defining the default button 87
with drag and drop 197
headers in question dialogs
169
localizing shortcuts 110
non-modal dialogs 163
push buttons for information
dialogs 171
status message vs. dialog 124
stretch factor and screen size
153
tab sequence 89
when using QMessageBox 116

439

Index

yes-no questions 170
use case

consumer/producer 342–345
user input see input
user interface compiler see uic
user scope

for preferences 136, 137
UserRole

in Interview 209, 360, 366
ushort 423
UTF-8 see Unicode

V
validator 70
value ranges

of floating-point types 423
of integer types 422

value()
vs. index operator 405, 409

valueChanged() (Signal) 38
values

limiting 421
vector see QVector

graphics with SVG see SVG
vendor details

defining application-wide 137
version control 28
vertically arranging a layout see

QVBoxLayout
view 208

background color 209
editing entries 246
element-based without model
251
restricting to specific datasets
234
selectable entries see checkbox

view widgets see element-based
views

viewMode (property) 216
viewport 211
Visual Studio 51, 52

compiling a Qt application with
29

Visual Studio project
compiling 29
generating from qmake project

file 27

W
WA QuitOnClose 62
wait condition 342–344
warning dialog 172
warnings 388
webserver

asynchronous communication
with see QHttp

What’s This? help 110, 129, 209
WhatsThisRole in Interview 209
whitespace 123
whole number see integer types
widget 29

adding to a layout see addWid-
get()
changing properties in the De-
signer 48
changing size 105
collapsible 150
creating with Designer 82
drawing on 280, 283
removing in the Designer 48
your own 42

width
reading out ˜ of splitter widgets
151
setting see setGeometry()

wildcard
using when filtering 234

window
changing size 87, 105, 118
dockable see dock window
for messages see QMessage-
Box
saving size 139

window title
setting 69, 86, 105

Windows (Microsoft)
behavior of qFatal() 388
development environment for
open source projects 52
forking 337
GPL version 52
line end of text files 114
message handler for 389

open source edition 24
platform-specific extensions
47
Registry see Registry
special features of qmake 28
text encoding 114

Windows-XP style 88
words

counting 123
worker threads 347
working directory

changing to 332
determining 176

writing
allowing in a model 227

WYSIWYG GUI editor see Designer

X
X11

and QImage 297
Xcode 53
XHTML 354, 367
XML 42, 43, 45, 301, 353–373

determining document type
369
determining root element 369
integrating support for 43
parser 45
reading files 367
reading out attributes 369
translation source format 377

XOR 410
mode 314

Xt 47

Y
yellow note see tooltip
yes-no questions 170

Z
zero

division by 388
object 200

zero string
checking for see isNull()

440

	The Book of QT 4: The Art of Building QT Applications
	Contents
	Introduction
	Preparations
	Chapter 1: Basics, Tools, and First Code
	Chapter 2: The Tools Needed to Create Dialogs
	Chapter 3: GUI Design Using the Qt Designer
	Chapter 4: Developing a GUI Application Based on a Main Window
	Chapter 5: Laying Out Widgets
	Chapter 6: Dialogs
	Chapter 7: Events, Drag and Drop, and the Clipboard
	Chapter 8: Displaying Data Using "Interview"
	Chapter 9: The QtSql Module
	Chapter 10: The Graphics Library "Arthur"
	Chapter 11: Input/Output Interfaces
	Chapter 12: Threading with QThread
	Chapter 13: Handling XML with QtXml
	Chapter 14: Internationalization
	Appendixes
	A: Debugging Help
	B: Tulip: Containers and Algorithms
	Index

