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Preface

With great pleasure we announce volume 64 of our book series “Methods and
Principles in Medicinal Chemistry.” The volume editors Friedlieb Pfannkuch
and Laura Suter-Dick present an excellent book dedicated to predictive toxicol-
ogy, a highly important research area with prime impact on the quality of com-
pounds from drug discovery and development projects. Therapeutic use of any
new compound is in demand of a thorough identification and profiling of its
safety. Protection of human safety is a primary objective of toxicology research
and risk assessment.
Toxicology is the study of the adverse effects of drugs and other chemicals on

living systems and the means to prevent or at least minimize such effects. Toxicol-
ogy is a multifaceted field, overlapping with biochemistry, histology, pharmacology,
pathology, and several others. Subdisciplines of toxicology include clinical, regula-
tory, forensic, and occupational toxicology as well as risk assessment.
Poor pharmacokinetics, side effects, and compound toxicity are frequent causes

of late-stage failures in drug development. A safe in silico identification of adverse
effects triggered by drugs and chemicals would be highly desirable as it not only
bears economic potential but also spawns a variety of ecological benefits.
The drug development industry has undertaken significant efforts to identify

toxic events at the earliest opportunity during the development process, moving
from a predominantly observational science at the level of disease-specific mod-
els to a more predictive model focused on target-specific mechanism-based bio-
logical observations. The growth in such Early Safety Assessment initiatives has
driven the need for more reliable, cost-effective high-throughput in vitro toxicity
assays capable of predicting toxic liabilities prior to investment in more costly
preclinical and clinical trials.
In silico toxicology studies can help to focus in vitro and in vivo experiments

to make the latter highly efficient. In some cases, in silico studies might even
replace particularly expensive, lengthy, uninformative, or offensive in vitro or
in vivo experiments. Moreover, by virtue of being computer-based and, hence,
inexpensively replicable, in silico toxicology can vastly expand the applicability
and availability of toxicological analysis [1–6].
The ultimate goal for predictive toxicology would be the ability to go from visual-

izing the chemical compound structure to predicting its safety profile. The major
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challenge is to translate the tremendous scientific progress in this field into practical
use or general acceptance. Scientists are using biological data very effectively –
whether it is gene expression data or even data from proteomic or other profiling
techniques – to gain a sense of whether a drug is having off-target effects or other-
wise adversely impacting the system. As technologies become more mechanism-
based and as more data accrue, it should enable predictions with better accuracy
and decrease occurrences of false negatives and false positives.
Chapters of this comprehensive volume consider all topic areas relevant in the

field of predictive toxicology, such as in silico approaches, data management, and
bioinformatics (Chapters 2–4), omics technologies and biomarker development
(Chapters 5–10), advanced in vitro systems (Chapter 11), models for cosmetic
products (Chapter 12), use of stem cells with focus on neurotoxicology and tera-
tology (Chapters 13 and 14), immunogenicity of protein therapeutics (Chapter 15),
and finally aspects on acceptance by Drug Regulatory Authorities (Chapter 16).
The series editors are grateful to Friedlieb Pfannkuch and Laura Suter-Dick for

organizing this volume and collaborating with excellent authors. Last but not
least, we thank Frank Weinreich and Heike Nöthe from Wiley-VCH for their
valuable contributions to this project and to the entire book series.

Düsseldorf Raimund Mannhold
Weisenheim am Sand Hugo Kubinyi
Zürich Gerd Folkers
October 2014
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A Personal Foreword

Knowingly or unknowingly, toxicology affects most parts of our society. There is
clear public interest in only accepting products with a well-characterized safety
profile in the market. There is also a requirement for several industries such as
pharmaceutical, chemical, and cosmetic industries to perform a battery of
in vitro and animal studies in order to avoid harm to the general public, volun-
teers in clinical trials, patients, workers in production plants, and the
environment.
Toxicology is a multidisciplinary science for evaluation of risk/benefit ratio

and takes its methods from other sciences such as chemistry and pharmaco-
logical chemistry, pharmacology, pathology, biochemistry, clinical medicine, and
forensic medicine.
The spectrum of toxicity assays comprises computational (in silico) methods

as well as the testing of chemicals with in vitro methods and in selected labora-
tory animal species to describe the dose–effect relationship over a broad range of
doses in order to detect secondary (harmful/unwanted) pharmacological effects
and adverse (toxic) effects.
The final goal must be the extrapolation and prediction of adverse effects to

humans. The challenge is to identify a safe dose in humans and setting exposure
limits (ceiling), if required. In this context, potential target organs of toxicity and
reversibility of potential side effects should be identified and meaningful parame-
ters for (clinical) monitoring should be chosen. Finally, the discipline should
contribute to the elucidation of mechanisms of toxic/adverse effects.
Industry’s activities are driven by national, regional, and global regulatory

requirements [1–4], strategic and commercial aspects, and scientific and techno-
logical state of the art. These aspects are the main driving forces for advances in
toxicology. In addition, there is an increasing public pressure to refine, reduce,
and replace animal testing (“3Rs” [5]) for ethical reasons.
The scientific and regulatory environment is changing rapidly. The introduc-

tion of new technologies (e.g., for testing of biologics or new approaches to
improve carcinogenicity testing) and the trend toward perfectionism (e.g.,
including as many investigation parameters as possible) have caused the exten-
sion of the existing study programs and a dramatic increase in the investment of
human and financial resources.
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However, we have relied for decades on the use of animal studies (in vivo toxi-
cology) with generally unsatisfactory predictive performance (acknowledged by
many and summarized by Olson et al. [6]). In particular for the pharmaceutical
industry, several products have caused serious adverse reactions despite having
been through a battery of mandatory toxicity tests. The consequences of this
suboptimal predictive performance are often disastrous for the patients and for
the pharmaceutical industry.
Thus, for the past few decades, predictive approaches other than studies in

animals have been considered and employed with varying degrees of success.
Among the more commonly used approaches are in silico tools, in vitro assays
with primary cells and cell lines combined with specific endpoints, omics tech-
nologies, and the use of stem cell-derived cells.
The diversity of technologies and scientific knowledge that flows into the

advanced approaches used currently to predict toxicity require a new type of
biologist, different from the one traditionally recruited for performing toxicology
testing. They must have an in-depth knowledge of the applied technological
advancements, biological networks, and adverse outcome pathways, and, most
importantly, a thorough understanding of the contextual relevance of the biolog-
ical findings in relation to toxicology and pathology, and ultimately to the effect
on the human population.
Any future activity, however, must focus on the improvement of the predictiv-

ity of toxicology/safety testing, since identification of potential safety issues
upstream in the drug discovery process is a major bottleneck in drug develop-
ment. New technologies may play a central role in this respect.
The final goal must be to combine the results from new technologies and clas-

sical toxicology methodology in a scientifically sound way in order to gain accep-
tance by Regulatory Authorities and we strongly hope that this book is
contributing to this challenge.
The aim of this book is to provide a comprehensive overview of the latest

scientific developments in the field of “predictive” toxicology and their applica-
tions in safety assessment. The topics have been tackled by selected expert scien-
tists, who are familiar with the theoretical scientific background as well as with
the practical application of methods and technologies. To ensure scientific excel-
lence related with practical application of the contributions, we have invited sci-
entists active both in the academic and in the industrial toxicology research.
Finally, we want to acknowledge the pleasant collaboration with Dr. Heike

Noethe and Dr. Frank Weinreich from Wiley-VCH for their constant support
during all steps of editing this book.

Basel Friedlieb Pfannkuch and Laura Suter-Dick
October 2014
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1
Introduction to Predictive Toxicology Tools and Methods
Laura Suter-Dick and Friedlieb Pfannkuch

1.1
Computational Tools and Bioinformatics

1.1.1

In Silico Prediction Tools

Computational tools are used in many life sciences research areas, including tox-
icity prediction. They take advantage of complex mathematical models to predict
the effects caused by a given compound on an organism. Due to the complexity
of the possible interactions between a treatment and a patient and the diversity
of possible outcomes, models are applied to well-defined and specific fields, such
as DNA damaging potential, estimation of the necessary dose to elicit an effect
in a patient, or identification of relevant gene expression changes.
In silico tools make use of information regarding chemical structures and the

immense data legacy that allows inferring interactions between chemical struc-
tures, physicochemical properties, and biological processes. These methods are
farthest away from traditional animal studies, since they rely on existing data-
bases rather than on generating experimental animal data.
Due to the complexity of this task, there are a fairly small number of endpoints

that can be predicted with commonly employed in silico tools such as DEREK,
VITIC, and M-Case with acceptable accuracy. In order to improve the current
models and to expand to additional prediction algorithms, further validation and
extension of the underlying databases is ongoing.
Similarly, modeling and simulation (M&S) can generate mathematical models

able to simulate and therefore predict how a compound will behave in humans
before clinical data become available. In the field of nonclinical safety, complex
models allow for a prediction of the effect of an organism on a compound
(pharmacokinetic models) as well as, to some extent, pharmacodynamic
extrapolations, based on data generated in animal models as well as in in vitro
human systems.
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1.1.2

Bioinformatics

In addition to the in silico and modeling tools described above, the dramatically
increasing amount of toxicologically relevant data needs to be appropriately
monitored and collected. All “new” technologies produce very high volumes of
data and thus having and using bioinformatics tools that can collect data from
diverse sources and mine them to detect relevant patterns of change is vital. For
this purpose, large databases are necessary, along with bioinformatics tools that
can deal with diverse data types, multivariate analysis, and supervised and
unsupervised discrimination algorithms. These tools take advantage of advanced
statistics, combined with the large data sets stored in the databases generated
using technologies such as omics or high-content imaging.

1.2
Omics Technologies

The omics technologies arose with the advent of advanced molecular biology
techniques able to determine changes in the whole transcriptome, proteome,
or metabolome. These powerful techniques were considered the ultimate
holistic approach to tackle many biological questions, among them toxicologi-
cal assessment. Several companies have invested in these areas of toxicologi-
cal research.

1.2.1

Toxicogenomics (Transcriptomics)

Toxicogenomics is the more widespread of the omics technologies. Predictive
approaches are based on databases with compounds (toxic/nontoxic) generated
by (pharmaceutical) companies as well as by commercial vendors in the 1990s.
All share the same focus of investigation: target organ toxicity to the liver and
the kidney.
In addition, gene expression data are often the basis for mechanistic under-

standing of biological processes in several fields, including toxicology, pharma-
cology, and disease phenotype. Thus, transcriptomic data can be used as a
merely predictive tool, as a mechanistic tool, or as a combination of both.
Subsequent to global gene expression analysis, assays can then be developed

for a relatively small subset of genes relevant to specific toxicities and toxic
mechanisms. Such assays can be used for screening and problem solving in toxi-
cology studies and may also play a role in efficacy studies in preclinical and clini-
cal research.
In addition, the modulation of gene expression through toxicants has also

been used as a method for the discovery of putative biomarkers. In particular in
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the kidney, gene expression changes detected after renal injury led to protein
assays in urine that could be measured noninvasively.
In the last few years, the ease with which full genome sequencing and mRNA

sequencing can be performed has led to other ways to analyze samples and tis-
sues. Sequence information from different species is also more readily available
and allows for better interpretation of genomic and proteomic data, in particular
when extrapolating to humans. The usefulness of this approach to predict the
drug effects in humans and the latest developments in the field, the next-
generation sequencing (NGS), will be discussed in this book in more detail.
Also, the role of DNA methylation, and of a variety of small noncoding RNA

molecules, such as miRNAs, is gaining importance in toxicological assessment
and biomarker discovery.

1.2.2

Proteomics

Proteomics is probably the oldest of the omics technologies and arguably the
most relevant from a biological point of view, since protein expression and pro-
tein posttranslational modifications are the executors of cellular processes. From
a knowledge point of view, there are large, publicly available databases with pro-
tein sequences that can be used for the identification of proteins.
However, proteomics is also probably the most technologically challenging of

the three omics, mainly due to the large diversity in proteins, in particular in
terms of abundance and physicochemical properties. This poses a massive chal-
lenge since it requires a technology with a dynamic range of several orders of
magnitude as well as separation methods able to deal with extreme differences
in lipophilicity.
Protein expression changes (or modifications such as phosphorylation) that

can be detected are valuable pieces of information and can be used to under-
stand biological pathways and to discover new biomarkers.

1.2.3

Metabolomics

Similarly to toxicogenomic databases, metabolomic databases were generated by
pharmaceutical companies, academia, and commercial providers. Metabolomic
data were mainly generated using 1H NMR and chromatography coupled with
mass spectroscopy methods. The most commonly used fluids are urine and
plasma, although tissue or cellular extracts can also be analyzed.
The main advantage of metabolomics is that the sampling of body fluids can

be performed noninvasively. Thus, there were high expectations of using metab-
olomics for the discovery of new translational biomarkers. However, delivery has
been slower than anticipated and much of the research to date has been descrip-
tive rather than predictive [1].
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1.3
Data Interpretation and Knowledge Management

An increasing number of molecular biology technologies related to toxicology
research are available. In addition to genes, proteins, and metabolites, we have
now the means to analyze many other factors that regulate and/or influence the
expression of genes and proteins, as well as the secretion of metabolites. For
example, it has been recognized that we should pay closer attention to DNA
methylation status and miRNA expression, factors that profoundly regulate gene
and protein expression, respectively.
Regarding the interpretation of the data in the context of safety assessment,

there is still a lack of understanding of changes that occur during normal adap-
tive variations in physiology as opposed to changes due to alterations in pharma-
cology, so toxicity-related changes can be difficult to untangle.
The concept of “adverse outcome pathway” currently indicates the interest in

identifying changes that will lead to a clinically relevant effect. To this end, it is also
becoming apparent that the greatest benefit can be obtained by integrating these
newer technologies with information from conventional toxicology and pathology.

1.4
Biomarker Development

The integration of highly sensitive molecular biology technologies with the well-
established pathology assessment also provides a means to identify putative
novel biomarkers. These markers not only may indicate toxicity but can also be
used as markers for specific disease conditions.
Ideal biomarkers would allow monitoring onset, progression, and reversibility

of adverse events and be translational, enabling their use in both preclinical and
clinical settings [2–4].
For safety assessment, it is a major endeavor of toxicology research to identify

sensitive and specific biomarkers, ideally translational across species and prodro-
mal, for example, able to predict toxicities that may arise after prolonged expo-
sure. As indicated above and although the omics technologies can identify many
candidate markers, the amount of work and time required to validate these puta-
tive biomarkers is extremely challenging.

1.5
Advanced In Vitro Systems and Stem Cell Research

1.5.1

Advanced In Vitro Testing

In vitro toxicology is not a new concept and the advantages of cell cultures are
manifold, including the possibility of screening at low cost and the reduction in

4 1 Introduction to Predictive Toxicology Tools and Methods



animal experimentation, supporting the 3Rs concept (refine, reduce, and replace
animal experiments).
However, in the same way that the determination of an LD50 in animals is not

really a sensitive and meaningful endpoint for side effects in humans, simple
cytotoxicity assays will not be very informative to the outcome in a whole orga-
nism. This widely accepted fact has led to the development of a plethora of
in vitro systems that can be applied in toxicology. These systems are designed to
provide mechanistic answers related to specific organ toxicities, rather than to
determine the overall safety profile of a drug candidate or a chemical.
They span from simple bacterial cellular systems (e.g., the well-established

Ames test) to novel organotypical multicellular systems that are still largely
under development. These advanced in vitro test systems try to combine cell
culture conditions that are relevant to the target organ under investigation
with advanced endpoints, such as high-content imaging or molecular mark-
ers. Besides the well-known cell lines grown traditionally in monolayers, par-
ticular attention is currently being given to the tissue architecture of the
cultures. The most commonly investigated systems address liver, kidney,
CNS, and heart.
Two major ways of improving the relevance of the cultures are currently at

work. On the one hand, major efforts are devoted to generate 2D/3D cultures
with several cell types that should better mimic the physiology of the organ,
including aspects such as cell–cell interactions [5]. On the other hand, a large
amount of research is focused on producing and characterizing the most rele-
vant cells. For example, some cell lines have been engineered to resemble more
closely the hepatocyte.
In addition to the use of mammalian cell systems, the use of nonmammalian

species such as the zebrafish has produced interesting results that can be applied
to several toxicology fields. One of the advantages of using whole organisms is
clearly that it provides the largest degree of complexity, since it gives access to
all organs and their interplay. The small size of the zebrafish enables screening-
type testing.
Using a non-mammalian animal, the extrapolation to humans becomes more

difficult. However, for specific endpoints such as teratogenicity, zebrafish has
proven very reliable.
A future challenge for in vitro toxicology for safety assessment remains the

exposure levels in vitro and their relevance to the in vivo situation. Compound
concentration, protein binding, and time of exposure of the cell cultures in rela-
tion to the toxicity outcome and the expected in vivo plasma and organ concen-
trations should be taken into account.

1.5.2

Stem Cell Research

Also, taking advantage of the exciting developments in stem cell research and
reprogramming of somatic cells for the generation of pluripotent cells (induced

1.5 Advanced In Vitro Systems and Stem Cell Research 5



pluripotent stem cells (iPSCs)), many researchers are investigating the use of
human stem cell-derived cells (embryonic stem cells (ESCs) or iPSCs) to avoid
the need to extrapolate across species.
Stem cells are pluripotent; thus, they have the potential to differentiate into

any cell in the organism. Until 2006, stem cells were obtained from embryos,
either from animals (mainly mouse: mESCs) or from supernumerary embryos
from in vitro fertilization (IVF) programs (human: hESCs).
The use of hESCs has technical limitations and is burdened with ethical issues.

Technically, it is not possible to define or select the genotype of the hESC line
and there are a limited number of sources. Ethically, it is clear that working with
human embryos has brought up moral issues, leading to legal restrictions in
some countries. A way to circumvent the use of hESCs was made possible in
2006, when Takahashi and Yamanaka [6] published their work on the generation
of iPSCs from mouse. A year later, Thomson and coworkers published a similar
method to obtain human iPSCs [7], which opened amazing opportunities for
in vitro research as well as in regenerative medicine.
In the field of toxicology, stem cells (either ESCs or iPSCs) are being increas-

ingly used. Some of these systems are already advanced, for example, the terato-
genicity screening using mouse or human ESCs and the cardiotoxicity screening
using hESC- or iPSC-derived cardiomyocytes.
Some of the major technical issues of stem cell-derived cell types concern the

efficient reprogramming and the appropriate differentiation into the cell type of
interest. At present, the reprogramming protocols are becoming more and more
robust, but still quite some work needs to be done in the targeted differentiation,
including the upscaling to produce sufficient number of cells of homogeneous
quality. A major problem remains the differentiation efficiency, with sometimes
only a small percentage of cells differentiating into a cell type under investiga-
tion, giving rise to hard to control cocultures. Also difficult to tackle is the ade-
quate characterization of the differentiated cells (when do you consider them
terminally differentiated?) and their stability (how long do they keep the differ-
entiated state in culture?).
Despite these issues inherent to any new technology, great results have been

published with differentiated cardiomyocytes and neuronal cells. Also, and of
immense relevance for the toxicology field, hepatocyte-like cells are being made
and the protocols are being optimized.

1.6
Immunogenicity

In the last decade, the biopharmaceutical drug market has expanded with a
faster growth rate than that of classical “small molecule” drugs. To date,
more than 20 therapeutic monoclonal antibodies (mAbs) have been released
to the market for the treatment of several diseases and many more are in
development.

6 1 Introduction to Predictive Toxicology Tools and Methods



These biopharmaceutical macromolecules pose very specific challenges to
safety assessment. On the one hand, it is assumed that through their extremely
high specificity, there will be no off-target activity that might lead to unspecific
side effects. On the other hand, macromolecules can trigger very strong
reactions in the immune system, which might lead to reduction in efficacy or to
serious adverse events.
Although immune reactions in general and immunogenicity in particular are

one of the major concerns when assessing the safety of macromolecules, small
chemical entities can also trigger immune responses. Some of these immune
reactions have been shown to lead to hepatotoxicity. The immune responses
are usually triggered either by own immunogenic capacity of the small molecule
(e.g., halothane) or through covalent modification of macromolecules in
the host. Also, it has been postulated that an immune component underlies the
so-called idiosyncratic hepatotoxicity.

1.7
Integration and Validation

1.7.1
Use of Omics for Toxicology Testing

The immense expectations of the omics technologies to solve all problems were
probably naïve and have proven to be unrealistic. Some technical aspects were
the first stumbling blocks. For toxicogenomics (transcriptomics), there was
initially a question of its robustness with regard to the methodology and repro-
ducibility between different platforms, but this has been largely overcome.
Proteomic technologies are still not at a stage where many low-abundance pro-
teins can be isolated and identified. The initial metabolomic experiments suf-
fered from a lack of sensitivity and changes in the metabolic profile of fluids
such as urine can be confounded by physiological variation due to changes in
diet or energy metabolism during weight loss at toxic doses.
In addition to the technical aspects that have been more or less solved in the

last 10–15 years, the interpretation of the data and their relevance to biological
processes in a given organism remain complex. However, knowledge of techno-
logical limitations together with increased understanding of involved pathways
has made omics very useful tools for mechanistic toxicology studies.

1.7.2

Integration of “New” Technologies into Risk Assessment

Despite the thrilling scientific advances, extreme care must be taken to correctly
integrate the new type of data into a risk assessment process. Over the past few
decades, the predictivity of toxicology has become very reliable in certain areas,
for example, mutagenicity and reproduction toxicity. On the other hand, the

1.7 Integration and Validation 7



relevance of nonclinical results for predicting potential hazards in humans was
and is fundamentally under investigation and discussion.
Introduction of any new method will depend on its progress/contribution/

reliability regarding the prediction of unwanted/adverse effects in humans.
Thus, the use of newer technologies must be validated against the “classical” tox-
icological methods or approaches. Significant staff time and effort will be needed
to follow up possible “signals” and novel biomarkers.
For this purpose, senior scientists/biologists are required to help interpret the

data with an open-minded, yet critical attitude, in order to assess the relevance
of the data. This will certainly require additional training so that opportunities
and pitfalls of the newer technologies can be recognized by all stakeholders of
drug development and integrated in a realistic way.

1.7.3

Use of Human-Derived Cellular Systems

The combination of both, human-derived cells and organotypical culture sys-
tems, together with appropriate endpoints to monitor cellular processes (such as
high-content imaging), may revolutionize the field of in vitro toxicology in the
near future.
This advancement is making possible the widespread use of human material

for toxicity assessment, obliterating altogether the need for extrapolation of
results in different animal species to humans. Despite the fact that there are
many open questions with regard to validation of such data, it can be foreseen
that its relevance will strongly contribute to the safety assessment for the target
of prediction, the human being.
There are few compounds with a specific toxic potential to humans only and

they may thus serve as positive controls in prospective validation experiments.
On the other hand, there are a number of substances that display species-
specific toxicities in animals only and for which respective human data are lack-
ing. Thus, the definition of false-positive and false-negative results may need to
be revisited.

1.7.4

“General” Acceptance – Translation into Guidelines

Safety assessment of drugs and chemicals is highly regulated by national and
international guidelines. The scientific officers in the regulatory authorities of
the different countries or regions take the responsibility to allow only products
with a well-characterized safety profile on the market/in the public.
Developing, adapting, or modifying the existing regulatory requirements/

guidelines is a highly responsible task and a long-lasting process. Officers of
regulatory authorities are heavily relying on solid data, and they are very inter-
ested in getting state-of-the-art results from academia and industry to base their
decision on.
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1.8
Research Initiative/Collaborations

The fast pace of scientific and technological advances in the field of toxicology
generates amazing opportunities. However, to make the best out of this, a large
amount of financial and scientific resources and time are necessary. Thus, rather
than generating core information in individual research groups or companies,
research can be performed in consortia, taking advantage of synergies and opti-
mizing the use of the funding.
There has been major public funding in Europe (e.g., EU Research Framework

Programs, Innovative Medicines Initiative - IMI) as well as in the United States (e.g.,
Critical Path Institute. The Toxicology in the 21st Century (Tox21) program, a fed-
eral collaboration involving the NIH, Environmental Protection Agency (EPA), and
Food and Drug Administration (FDA).) and Japan (e.g., The Toxicogenomics Con-
sortium, TGP). Many of the funding schemes also involve funding from industry
(pharmaceutical, chemical, cosmetics, and consumer products). Thus, there is great
interest of society as a whole in promoting science in support of predictive toxicol-
ogy. Specific consortia are discussed in more detail in several chapters of this book.

1.9
Concluding Remarks

Over the past three decades, there was a dramatic increase in knowledge in the
field of biological sciences and we are in the middle of a phase where this prog-
ress will translate into practical paradigm changes regarding toxicity testing and
safety assessment of chemicals and (bio-)pharmaceuticals.
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2
In Silico Toxicology – Current Approaches and Future
Perspectives to Predict Toxic Effects with Computational
Tools
Thomas Steger-Hartmann

2.1
Introduction

In silico prediction tools in toxicology have significantly evolved in the last dec-
ade and a few systems for specific toxicological endpoints have found their entry
into regulatory risk assessment [1]. However, rather than completely replacing
both in vitro and in vivo toxicological methods [2], in silico tools have proven to
be complementary to the standard testing approaches and an independent field
of “computational toxicology” is yet not broadly established [3]. This chapter will
analyze the current situation and provide a comprehensive overview of available
approaches and uses of in silico tools in toxicology. It will also critically discuss
the existing limitations and inroads to overcome these. Although the mathemati-
cal approaches are similar in the field of ecotoxicology, this overview will limit
itself to the use of predictive tools in mammalian or human toxicity assessment,
because deriving mechanistic conclusions and assessing exposure significantly
differ between these two fields. Therefore, in silico tools for ecotoxicology are
outside the scope of this chapter.

2.2
Prediction of Hazard

2.2.1
Definition of Hazard and Its Use

A basic question for the use and application of any toxicological method is
whether it will serve for hazard identification or risk assessment. This also
applies for in silico predictive systems. There is no unambiguous internationally
accepted definition of the term “hazard” [4]; however, the broadly accepted use
in toxicology refers to the intrinsic toxic properties of a compound, that is, the
question whether a compound causes an adverse effect. Whereas the strength of
the effect may play a role in the hazard classification (e.g., whether a compound
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is a weak or a strong sensitizer), hazard identification is generally independent of
the actual exposure and thus unrelated to concentrations or doses.1)

Hazard identification is sufficient for labeling compounds. For example, the
Globally Harmonized System (GHS), which replaces the R-phrases, classifies
the risk of acute toxicity into five hazard categories based on LD50 or LC50 values
for dermal, oral, and inhalation routes of exposure. However, for the assessment
of the factual risk inherent to a compound, the exposure information, that is, the
applied dose or even the measured plasma levels, are indispensable. Construct-
ing in silico tools for the prediction of hazard is a much simpler task than pre-
dicting risk. In the case of hazard prediction, one basically only needs to collect
chemical series for which the toxicological endpoint of interest has been investi-
gated. The chemicals and their measured effects can be sorted according to their
substructures, which are known or suspected to cause the toxic effects. From
the substructures, so-called “structural alerts” [5] can be defined and imple-
mented in a computational expert system. Alternatively, the structures could be
dissected into chemical descriptors that could then be statistically analyzed
for correlation with the biological effect, resulting in a quantitative structure–
activity relationship (QSAR) tool. Transformed into computer algorithms both
approaches will result in the prediction of the hazard potential for a new com-
pound in a binary fashion (yes or no), but will not provide substantial informa-
tion whether there is a significant risk of harm to an organism if it is exposed to
a specific concentration or dose. At most, such a QSAR tool will predict whether
a compound will cause a weak or a strong effect, if it is constructed in a way that
the chemical structures are correlated with the quantitative readout of the
biological assay.

2.2.2

Prediction of Mutagenicity

The above-described binary outcome of an in silico prediction is sufficient in
such fields of toxicology where some kind of zero tolerance policy is established.
This is the case for DNA-reactive mutagens, because the toxicological theory of
the so-called one-hit model assumes that only one genetic change is required to
transform a normal cell into a cancer cell, and therefore a single molecule of a
genotoxic (DNA-reactive) carcinogen presents a minute but finite risk of can-
cer [6]. The theory has experienced various modifications and the scientific
debates together with profound data analysis have resulted in the introduction
of the threshold of toxicological concern (TTC) even for compounds predicted
to be mutagenic [7]. The TTC concept was originally developed for food con-
taminants using a linear extrapolation of carcinogenic potency data from rodent
carcinogenicity assays. An exposure below the calculated thresholds (TTCs)

1) In a strict sense and from an experimental perspective, this only applies to mutagenicity testing,
where there are no thresholds for evaluation of positive (mutagenic) effects. Many other assays for
hazard identification have threshold levels that have to be passed in order to classify an effect as
adverse or to attribute different toxic classes.
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defines the level for any unstudied chemical that will not pose a risk of significant
carcinogenicity. From these potency data sets, structural alerts were derived,
which are now also applied to chemicals beyond the field of food contaminants [8].
The original theory for mutagenic effects resulting in a binary answer (muta-

genic – yes or no?) still makes an in silico approach relatively attractive for this
endpoint. Together with the good understanding of the mechanistic causes of
mutagenicity and the availability of large data sets [9], this paradigm has laid the
ground for the successful establishment of in silico tools for hazard prediction
in genetic toxicology. Both expert systems (e.g., DEREK Nexus, ToxTree) and
QSAR tools (e.g., MultiCase, Sarah Nexus, TopKat, Leadscope Model Applier)
are used in the toxicological community for the prediction of mutagenicity.
Especially in such cases where a structure represents an impurity of a manufac-
turing process that cannot be isolated in amounts sufficient for experimental
testing, these systems meanwhile play a pivotal role. Most of these systems are
constructed in a rather transparent way and can provide a certain level of valida-
tion, which led to the acceptance of such tools in the regulatory assessment of
genotoxic impurities [10,11]. Prediction of DNA-reactive impurities currently
remains the only situation where the outcome of an in silico tool alone deter-
mines regulatory decision making, that is, setting the specification to a limit of a
predicted genotoxic impurity in the drug substances to a value of 1.5 μg/day/
person.

2.2.3

Prediction of Phospholipidosis

Phospholipidosis (PLP) is not a toxic effect per se, but rather an adaptive histo-
logical alteration, caused either by direct inhibition of the phospholipid degrada-
tion pathway (i.e., phospholipase inhibition) or formation of complexes between
chemicals and phospholipids, which block the access of phospholipase. Depend-
ing on the extent and duration, PLP may cause secondary tissue damage or
functional disorders. Drug-induced PLP is described for some approved pharma-
ceuticals. It is debatable whether the histological alteration per se is harmful and
the correlation between preclinical in vivo results and the human effects is ques-
tionable [12]. On the other hand, the chemical properties that lead to PLP are
well understood and can be derived directly from the structural formula [13].
The majority of PLP-causing compounds are cationic amphiphiles, meaning that
besides carrying a positive charge, they have both a lipophilic and a hydrophilic
structural component. These properties are clearly related to the mechanism:
their amphiphilic nature will allow them to migrate through the lipid bilayer of
biomembranes and the cationic charge will lead to trapping in lysosomes that
have an acidic pH. The available in silico models generally show a reasonable
predictivity for the in vivo situation, that is, occurrence of foamy macrophages
and/or confirmation of PLP in electron micrographs [14]. In addition, the pre-
dicted results show a high concordance with in vitro assays, allowing to gradually
eliminate the PLP properties in chemical series already in early drug development.
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Such a strategy lowers the chance for critical preclinical in vivo findings that
would necessitate additional mechanistic investigations or cumbersome monitor-
ing during clinical trials, which is the reason why many pharmaceutical compa-
nies have such predictive tools in place even without guideline requirement or
regulatory recommendations.

2.2.4

Prediction of Carcinogenicity

The concept of structural alerts is also implemented for carcinogenicity predic-
tion. The broadest data source for assessing carcinogenicity stems from the
US National Toxicology Program and consists of the results of the rodent
carcinogenicity bioassay. Chemicals that showed carcinogenic effects in the
animal studies were analyzed for structural commonalities from which struc-
tural alerts were derived [15]. These alerts together with further literature results
are implemented in several predictive systems (DEREK Nexus, OncoLogic,
ToxTree, HazardExpert, and MultiCase). ToxTree has included a refinement of
the structural alerts by integrating local quantitative models for aromatic amines,
which often deliver ambiguous results, if the prediction is exclusively based on
structural alerts [16].
All these systems identify a hazard, which is helpful in situations where an

exposure of a potentially carcinogenic compound has to be strictly avoided
because accidental exposure has no benefit for the consumer. In the field of
pharmaceuticals, however, the situation is different: depending on the benefit for
the patient, a carcinogenic hazard is not necessarily prohibitive (this is particu-
larly true for oncology drugs), but it is important to know the potency of the
carcinogenic effect and the expected exposure. In addition, the difference
between genotoxic carcinogens, for which a no-effect threshold is difficult to be
established, and nongenotoxic carcinogens, which clearly have thresholds below
which an effect is unlikely to occur, is important for risk assessment. Whereas
genotoxic carcinogens are already identified with the above-mentioned mutage-
nicity prediction tools, the prediction of a nongenotoxic carcinogenic hazard
might perhaps be helpful for deriving mechanistic hypotheses in cases where
proliferation and/or hyperplasia are observed in animal studies, but it will most
probably not replace the in vivo risk assessment for drugs in the near future.

2.2.5

Prediction of Skin Sensitization

Sensitization of skin and lung due to exposure of chemicals is mainly due to
reactions of chemical (sub)structures with proteins, which in turn may elicit
the formation of antibodies, a process called haptenization. Besides the capa-
bility for forming protein conjugates, skin resorption and skin metabolism
are further important parameters that affect the allergic potential of a
compound. Skin resorption is mainly influenced by the physicochemical
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properties, such as size and fat solubility (lipophilicity) of the molecules.
Through the combination of algorithms predicting both reactivity and physi-
cochemical properties, reliable predictions may be obtained for skin sensitiza-
tion (Figure 2.1) [17].
In a review of existing in silico tools for the prediction of allergic contact sensi-

tization, the authors conclude that the models that are based on mechanistic
models generally perform better than those that are based on purely statistical
models. Independently of the approach, the potency of a sensitizer is inadequately

Figure 2.1 An illustration of how a combina-
tion of structural alerts with predicted physi-
cochemical data may influence prediction for
skin sensitization. Geraniol is a known skin
sensitizer and consequently triggers the
structural alert for terpenoids in DEREK Nexus
(Version 3.0.1). If a sugar backbone is added

to geraniol, the terpenoid structure is still
recognized but due to the fact that the
calculated permeability log Kp is below �5 this
hypothetical structure is assumed to have
low skin permeability and thus the overall
prediction for skin sensitization is set to
“doubted.”
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predicted by all modeling approaches [18], that is, again the tools are limited to
hazard identification.

2.2.6
Prediction of Skin and Eye Irritation

For the assessment of skin irritation, the analysis of structure–activity relation-
ship is recommended in the relevant experimental testing guidelines before
embarking into an in vivo study [19]. First rule-based approaches to identify skin
and eye irritants were implemented in the in silico decision support system by
the German Federal Institute for Health Protection of Consumers and Veteri-
nary Medicine (BgVV) [20]. The rules were subsequently included and advanced
in the open source software ToxTree [21]. The sensitivity of such systems, that
is, the power to identify an irritant or corrosive compound, is considered to be
acceptable. However, it is also clearly stated in the quoted guideline that “nega-
tive data from studies of structurally related substances or mixtures of such sub-
stances do not constitute sufficient evidence of noncorrosivity/nonirritancy of a
substance under the sequential testing strategy,” which will consequently result
in experimental testing. The example of in silico prediction of skin irritation
reveals some general principles for in silico tools. The guideline sets three pre-
requisites for a meaningful use of an SAR tool, which can be generalized for
other endpoints, too:

1) Availability of sufficient human and/or animal data.
2) Structural relationship of the substances for which data are available with

the compound under question.
3) Indication of corrosion/irritancy potential.

It is certainly debatable at what point prerequisite no. 1 is fulfilled, that is, when
is the required data “sufficient.” For mutagenicity data or, more strictly speaking,
for data from the Salmonella reverse mutation assay, there are certainly abundant
data sets in the public domain. The number of data sets for skin irritation tests
(usually the Draize test according to OECD Guideline No. 404) is significantly
lower. At the end, the answer to the question of how much data are needed
depends mainly on the diversity of the chemical series that have to be predicted.
This leads to prerequisite no. 2, that is, structural relationship. The first step to
assess a structural relationship is certainly the expert’s eye, but tools have been
developed to assist in the task to determine similarity between the test compound
and the compound to be predicted. Similarity is not limited to a comparison of
the graphical representation of the chemical, but implies that “structurally similar
molecules are expected to exhibit similar properties or similar biological activi-
ties” [22]. It is beyond the scope of this chapter to summarize the different
approaches for assessing structural relationship. A look into the structure and the
identification of substructures will probably suffice for mechanistically simple
endpoints, such as mutagenicity or skin irritation. For these endpoints, the
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biological effect is related to chemical reactivity, which in turn can be derived
from the structural components. For endpoints that have slightly more complex
mechanism, for example, micronucleus formation, this approach might be too
short sighted. Micronucleus formation can be caused by direct DNA cleavage
(clastogenic effect), but it may also be caused by impairment of the spindle fiber
apparatus. This in turn may be elicited by influences on tubulin polymerization/
depolymerization or the attachment of the spindles to the kinetochores. These
different mechanisms may be caused by completely different (sub)structures and
will only be depicted if effect data sets are correlated with several chemical
descriptors and not just the analysis of similarity of the graphical structure.
The word “potential” is not used in an unambiguous way, but it often implies

some level of quantitative information for the biological effect. As an example,
for dermal irritation or corrosion this is reflected in the grading of the observed
skin reaction as outlined in the guideline [19]. However, this information, only
available in the original reports, is not always available for the construction of in
silico systems. In some cases, chemicals tested for specific endpoints are binned
in a binary or tertiary system with “yes and no” or “no, mild, or severe.” In con-
trast to the original data, this information can be derived from the Globally Har-
monized System classification (which replaces the former R-phrases). The
chemicals in each bin can then be searched for structural commonalities and the
derived alerts can be programmed into a computer system [23]. Toxicity studies
for hazard classification are performed according to guidelines, which often
require application of fixed doses or concentrations that have to be applied in
the assays (e.g., for eye irritation studies, the dose is set to 0.5 ml of liquid or
0.5 g of solid or paste that is to be applied to the test site; for acute oral toxicity
classification, animals are dosed in a stepwise procedure using the fixed doses of
5, 50, 300, and 2000 mg/kg). As a consequence, there is inherently some level of
exposure information in the final classification result, even though internal expo-
sure, that is, plasma or organ levels, is normally not determined, but without
access to the original data of the study, this potency information may get lost in
the binning approach described above; that is, potency prediction is currently
underdeveloped in most of the available systems.

2.2.7

Approaches to Systemic Toxicity Prediction

2.2.7.1 The Cramer Classes
The Cramer classes represent a system to rank chemicals of unknown toxicity
into three toxicity classes (low, moderate, and serious). It is intended for decid-
ing on the priority of toxicity investigation and thus still plays an important role
in the context of safety evaluation of industrial chemicals that have not already
been notified or regulated. The approach dates back to 1978 and can be seen as a
prototype of an expert system [24]. It is based on a decision tree, where ques-
tions mainly related to chemical reactivity are posed, for example, “Does the
structure contain elements other than carbon, hydrogen, oxygen, nitrogen, or
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divalent sulfur?” The answers are provided in a binary way based on the struc-
tural constituents of the compound under question. The Cramer decision tree
and the structural alerts together with some refinements are implemented in
ToxTree and the OECD QSAR toolbox. In the original publication, Cramer and
coworkers correlated the three classes with no observed adverse effect levels
(NOAELs) of investigated compounds falling into each class. From this correla-
tion, they derived a “protection index” (PI) based on daily per capita intake of
consumers. Even though this is an approach to derive risk estimated from hazard
identification via NOAELs, the high level of uncertainty included into the PIs
prevented a widespread use of this procedure in risk assessment of chemicals.

2.2.7.2 Predicting Toxic Doses of Drugs
An alternative approach to predict systemic toxicity was followed by Contrera
et al. [25] to predict human toxicity of new drug candidates. From prescription
information of marketed drugs, the authors collected the values for the maxi-
mum recommended daily dose (MRDD, provided as mg/kg/day), assuming that
this dose limits the therapeutic window. Consequently, toxic effects have to be
expected if it is surpassed. The chemical structures representing the drugs were
then analyzed for occurrence of a broad variety of descriptors and these in turn
correlated with the MRDD values. The reported concordance, specificity, and
sensitivity values for the resulting QSAR are all above 75%, thus indicating a
reliable statistical correlation. The drawback of this black-box approach though
is that it does not allow for a conclusion on the mechanism of a potential effect,
that is, is it caused by an off-target toxicity of the drug candidate or is toxicity
due to excessive pharmacodynamics? However, information of a potential mech-
anism of toxicity and the affected organ or tissue are important aspects in order
to assess how well a potential toxicity can be monitored in a clinical trial. In
addition, the QSAR does not directly provide a prediction of a no-effect level.
The latter is important to derive a safe starting dose for the first-in-human clini-
cal trials during drug development, which is currently still based on the results of
the preceding animal studies. Consequently, the system has not found routine
entry into drug candidate evaluation before the first clinical trial.

2.2.7.3 Predicting Organ Toxicity
Theoretically, the techniques described in Section 2.2.2 can also be applied to
develop models for organ toxicity; that is, descriptors for the chemical structures
that cause liver, heart, or kidney toxicity can be correlated with their toxicologi-
cal effect. The caveat here is that the observed toxicity can be caused by a multi-
tude of individual mechanistic steps, and each of them can be affected by the
molecule under consideration or its metabolites. As a consequence, models
based only on chemical descriptors usually show poor performance in the pre-
diction of organ toxicity, as demonstrated for the prediction of drug-induced
liver toxicity [26]. However, if the correlation is based on existing in vivo toxicity
data, the mere chemical approach can be refined by adding additional results
from these systemic studies in order to better represent the whole system.
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Essentially, the selection of the parameters to be added can be done in the same
way as a toxicologist would assess organ toxicity based on the results of an
in vivo study. For example, if the liver of an animal is enlarged or shows a weight
increase, this represents a first hint for liver toxicity. The enlargement could as
well be due to the induction of metabolizing enzymes. To assess the weight of
evidence of liver damage, additional data are therefore required, primarily the
histopathological assessment (signs of inflammation, fibrosis, steatosis, cholesta-
sis, hyperplasia, etc.). Histopathology is still the gold standard for organ toxicity
evaluation. In addition, further parameters may be considered for constructing
models, such as elevation of transaminases, increase of total bilirubin, and
changes in blood coagulation parameters, to increase the weight of evidence and
thus predictivity as depicted in Figure 2.2.
The advantage of this approach lies in the fact that assessment criteria, which

are well established in the field of toxicology, such as “an elevation of transami-
nase activities (alanine aminotransferase and/or aspartate aminotransferase)
higher than threefold the upper limit of normal accompanied by an at least two-
fold increase above the upper limit of normal total bilirubin concentration may
indicate functionally significant liver damage,” can be implemented into such a
system [27]. However, the fundamental drawback is the lack of abundant well-
curated, harmonized data. Results of liver transaminase values are not easily
available in the public domain and the terminology for these enzymes is not

Figure 2.2 A depiction of how data from systemic in vivo studies could be used to build mod-
els for predicting organ toxicity. It is expected that the predictivity of such models increases
when more endpoints are used to build the models due to an increase in weight of evidence.
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always harmonized, not to speak about histopathology, where standardized terms
are even less common. These deficits are still one of the main reasons why in
silico systems based on preclinical in vivo toxicity data are currently not available.

2.2.7.4 Adverse Outcome Pathways and Potential for Prediction
The search for alternatives to animal testing and the limitations of the purely
descriptive classical toxicological study designs triggered the evolution of the
adverse outcome pathway (AOP) analyses. The idea behind AOP is to dissect
the observed toxic effect into individual steps or sequences that can each be
assigned to a specific mechanistic event as displayed in Figure 2.3.
The advantage of this procedure is that the individual steps are amenable to

in silico or in vitro experimental assessment and might therefore replace or
reduce animal experimentation, if they are fully understood and elucidated. The
implementation of an adverse outcome pathway for a specific toxicity is, how-
ever, not trivial, especially if the pathway leading to the organ response is
branched or also affected by metabolites. For chemically induced skin sensitiza-
tion, a dissection of the observed effect into individual steps has been proposed
as displayed in Figure 2.4 [29].
The dissection illustrates which part of the pathway can be investigated by

in silico or in vitro models; for example, the electrophilic nature of a compound
can be predicted by in silico tools, whereas activation of dendritic cells may be
tested by in vitro assays. As soon as sufficient experimental data become availa-
ble for the individual biological descriptors, these can in turn be modeled
in silico. This may eventually result in a multilevel model (see Figure 2.5), where
the individual results are integrated into an overall organ toxicity prediction by
either sophisticated reasoning or multiparameter statistical approaches. Skin
sensitization is currently probably the most advanced AOP due to the needs of
the cosmetic industry; however, there is rapid progress also for other endpoints,
such as cholestasis, liver fibrosis, and steatosis [30].
The in silico approach depicted in Figure 2.5 currently exists only on a conceptual

level. However, there is first evidence that the way forward is feasible as recently
shown for the endpoint drug-induced liver toxicity: the combination of chemical
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descriptors with data from hepatotoxicity-specific cellular responses obtained with
high-content imaging clearly outperformed the pure chemistry approach in pre-
dicting the liver effects [26]. As already stated above, availability of sufficient exper-
imental data is still the major hurdle for rapid progression of this concept.

2.3
Prediction of Risk

2.3.1

Risk Definition and Some Basic Considerations

The United States Nuclear Regulatory Commission provides the following defi-
nition for risk: “The combined answer to three questions that consider (1) what

Figure 2.5 Strategy for in silico modeling based on the adverse outcome pathway.
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can go wrong, (2) how likely it is, and (3) what its consequences might be” [31].
Applied to toxicological risk assessment “what can go wrong” is the “hazard” as
defined further above, whereas the likelihood and the consequences of an effect
are determined by the level of exposure of the animal or the human being for
which the risk assessment is to be performed. In a simplified version, the rela-
tionship can be described by the following formula:

Risk � Hazard � Exposure:

In Section 2.2, it has been described how in silico tools can be built including
some level of potency or exposure information to progress from hazard to risk
prediction. Defining a threshold below which no toxic effect is expected repre-
sents such an approach. If a TTC is determined, one can back-calculate the max-
imum dose or exposure that would be acceptable in order to stay below this
threshold. Alternatively, the doses in the experimental studies are kept fixed,
thus assuming a fixed range of exposures, in order to derive toxic classes of com-
pounds. However, all these approaches have shortcomings. The TTC concept
can estimate a threshold risk but is barely able to quantify the risk if exposure
occurs above the threshold, because it contains no information on the steepness
of the dose–response curve. The fixed dose approach to derive toxic classes in
the OECD studies is able to differentiate between very toxic and less innocuous
compounds, but will not predict the level of effect at a specific exposure. These
shortcomings become particularly obvious if one considers the design of toxico-
logical studies performed during drug development. These studies have the main
objective to determine the safe first-in-human dose for clinical trials. The sys-
temic toxicity studies are designed in a way that they identify key thresholds
such as the “no observed effect level” (NOEL), the NOAEL, the lowest observed
effect level (LOEL), and the maximum tolerated dose (MTD). These thresholds
are subsequently used for deriving the first safe dose in humans. The doses
administered in these studies are selected on the basis of available in vivo phar-
macological results, previous dose range-finding studies, considerations of bio-
availability, expected human therapeutic dose or exposure, and feasibility of
maximum application volume. The thresholds are determined by the observa-
tions made for the different endpoints investigated in these studies, that is, clini-
cal observations (behavior, body weight, food and water consumption), clinical
chemistry, hematology, blood hemostasis, gross morphology, and histopathology.
All of these endpoints also including histopathological findings have a quantita-
tive component (severity, grading, number of animals affected). Observed
changes in an endpoint are considered to be compound-related, if the following
criteria are met:

� the changes show a dose–effect relationship (i.e., occur at a low dose and
increase with augmenting dose),� the changes are significantly different from the vehicle or control group,� the size of the change is of biological relevance (some changes might be
statistically significant, but too small to be of biological relevance),
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� the changes pass a certain level or magnitude (e.g., twofold elevation of liver
transaminases) or the changes rise above levels of historical control data.

The assessment of observations and the determination of effect levels are
always based on expert judgment, which usually involves several toxicological
disciplines. Although the effect levels are generally expressed as administered
dose per body weight, systemic toxicity studies usually also harness toxicokinetic
information, that is, the internal exposure (plasma or serum levels). For the cal-
culation of the safe human starting dose, the definition of an NOAEL is in most
cases based on an effect that would be unacceptable if produced by the initial
dose of a therapeutic in a phase I clinical trial conducted in adult healthy
volunteers [32].
It is clear from the procedure described above that a binary or tertiary binning

or identification of different toxic classes as used for hazard assessment is not
feasible for predicting risk from in vivo toxicity data. The data are far too hetero-
geneous for such a simplified approach. As a consequence, there are currently no
in silico systems available, which predict the risk of adverse effects for humans or
animals upon exposure to an unknown compound, based on data derived from
in vivo toxicity data.

2.3.2

Data Availability

Shortcomings in computational power or lack of mathematical procedures are
not the main reason for the lack of such in vivo prediction system. The key hur-
dle is certainly data availability. In vivo toxicity data are published since decades
in scientific journals, but the difficulty is to bring these data sets into a meaning-
ful structure. In addition, the endpoints for which the data are collected need
some level of comparability; that is, the methods that were used to, for example,
measure transaminases in clinical chemistry need to be known and ideally be
performed according to harmonized protocols. This demand has long been
raised and is not unique for in silico tools. As a consequence, numerous guide-
lines have been implemented for harmonized performance of in vivo studies
(e.g., OECD, ICH, NTP). Available databases such as the National Toxicology
Program [33] contain abundant toxicity data, but the query functions for struc-
tures or specific endpoints are often limited. Such limitations and restrictions of
the publicly or commercially available toxicological databases were analyzed by
the Structure–Activity Relationship Database Project Committee under the
auspices of the International Life Sciences Institute (ILSI) in 2005. To improve
data availability and retrieval, the committee proposed a pilot for toxicology
information source with the name International Toxicology Information Cen-
tre [34]. The pilot was subsequently populated with data from NTP, the EPA
Gene-Tox database, the Carcinogenicity Potency Database (“Gold” database) [35],
and IUCLID (European Chemical Notification database) [36]. The mentioned
data sets were selected because they are publicly available and reported at a level
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of granularity that is close to the original observed data performed according to
internationally agreed guidelines. A similar approach was undertaken by the
Fraunhofer Institute of Toxicology and Experimental Medicine in their database
RepDose [37]. RepDose currently covers around 2300 subacute to chronic toxic-
ity studies, performed mainly on industrial chemicals in rats, mice, or dogs with
oral or inhalation exposure. The field of pharmaceuticals has been less well cov-
ered in both databases, mainly due to the fact that the majority of the toxicologi-
cal data of drug candidates that failed during development are usually not
published. The toxicological data for approved drugs are only available as sum-
mary in public assessment reports but not in databases. To overcome this short-
age of searchable toxicology data on pharmaceutical compounds, the European
pharmaceutical industry organized in EFPIA (European Federation of Pharma-
ceutical Industries and Associations) together with the European Innovative
Medicines Initiative founded the eTOX project (“electronic toxicity”). Thirteen
pharmaceutical companies started to share preclinical safety data and to further
develop a database for read-across, data mining, and modeling [38]. Besides set-
ting up a modified database and work streams for safe data sharing (more than
5000 reports on systemic toxicities studies have already found their entry into the
eTOX database), the main achievement of the project is a series of ontologies for
the different endpoints investigated in in vivo studies. Even though most of the
studies are performed according to harmonized protocols, reporting usually
occurs on an individual basis, making comparison of findings between companies
rather difficult. For example, for one and the same finding in histopathology dif-
ferent terms may be reported in different companies. Therefore, such ontologies
are key for usability and interoperability of databases. Ontology development in
eTOX went hand in hand with similar approaches of FDA originating for clinical
data. The Clinical Data Interchange Standards Consortium (CDISC) [39] has
extended its activity toward preclinical data, the activity being called Standard for
Exchange of Nonclinical Data (SEND). The developed standards will soon
become mandatory for preclinical data exchange with FDA during IND and dos-
sier submission.
eTOX is not the only initiative collecting toxicity data and making it accessible

for read-across and creation of new in silico tools. Another example is the
Japanese Hazard Evaluation Support System (HESS) that was initiated by the
Japanese Ministry of Economy under participation of the National Institute of
Health Science focusing rather on industrial chemicals but with the same objec-
tives to gather data and create integrated platforms for the prediction of risk of
new chemicals [40]. Aligning the different initiatives will certainly be a valuable
objective for the near future.

2.3.3

Database Structure and Data Curation

Two main issues have to be resolved during the construction of a database. First,
a decision on the level of data granularity has to be made. Second, the collected
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results have to be curated in order to harmonize differences in the description of
findings. The first issue is mainly influenced by the data sources: if only summa-
ries of toxicological data are available for the construction of the database, the
depth of data will not reach very deep. If, however, the original data of a regula-
tory 4-week toxicity data are the starting point, the data can be extended to indi-
vidual values for body weight, food consumption, transaminase elevation, and so
on. Since such studies may consist of data sets of several hundred pages, a prag-
matic limit has to be set in order to allow data extraction from these reports
within meaningful time and with reasonable effort. Ideally, the database will be
structured in such a way that a query will result in answers a toxicologist would
raise for a new compound:

� Which target organ was affected?� At what dose did the effect first occur?� Was the effect treatment related or a chance finding?� Was there a correlation between organ weight changes, histopathology, and
organ-specific biomarkers (e.g., transaminases)?

These questions determine not only the complexity of the data collection but
also the required query functions of the database. Searching for structures includ-
ing substructure or similarity search is mandatory but not sufficient to accommo-
date the needs of complex queries. Complex queries need to combine structural
features with individual findings connecting via ontologies allowing also to differ-
entiate between “treatment-related findings” and “non-treatment-related find-
ings.” The latter is an important aspect in the population and curation of a
database: the original findings in a systemic toxicity study are usually assessed by
a team of experts, which carefully decides whether a finding is to be attributed to
the compound under investigation or whether it is a chance finding. However,
chance findings should not be omitted from the database because when mining
large data sets, chance findings might also reveal interesting trends. Figure 2.6
provides an example for a search in the eTOX database for compounds carrying a
diphenylmethyl substructure, which also show treatment-related cellular lipid
accumulation vacuolation, an effect that may be related to phospholipidosis.
The result table illustrates how important the curation of the collected data is.

The finding “foamy macrophages” is a description of what is seen during lipid
accumulation in the context of drug-induced phospholipidosis. It could also be
described as lipid accumulation, phospholipidosis, or something similar. Without
any ontology, which relates these different terms, a database with this level of
detail would be almost worthless and certainly not helpful for data mining. The
need for ontologies relates to all endpoints covered in the database. Standard
nomenclature exists for the transaminases measured in clinical pathology; how-
ever, for histopathology these solutions have just started to emerge. Regulatory
agencies have also identified the need of such standardized terms and therefore
extend their existing activities in the field of harmonizing clinical data into the
development of preclinical ontologies [39].
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The advent of large toxicological databases with rather detailed result record-
ing together with ontologies for the recorded endpoints in place should greatly
facilitate complex searches for read-across purposes or data mining. It could
even be envisaged that such searches reveal underlying relationships not yet
detected, because the previously existing data sets were too small and therefore
the effects did not surpass the signal-to-noise ratio.

2.3.4

Approaches to Model and Predict Risk

One of the headers for data section in Figure 2.6 lists toxicokinetics, that is, the
database includes not only the dose information but also serum or plasma levels.
Thus, the database fulfills one key prerequisite to model risk, which is the expo-
sure information. Unfortunately, approaches to build predictive systems using
this information are still in their infancy and it would be premature to provide
an overview here. Generally, the idea of how to combine the hazard prediction
with exposure assessment is to include additional tools that predict exposure
based on physiologically based pharmacokinetic (PBPK) models. PBPK models
are quantitative descriptions of the absorption, distribution, metabolism, and
excretion (ADME) [41], where each predicted ADME parameter relies on differ-
ent physicochemical or biochemical descriptors. For example, prediction of
absorption could solely rely on the physicochemical characterization of a chemi-
cal, but it could also include first in vitro permeability assessment in colon carci-
noma cell lines (CaCo-2 model). PBPK models are not restricted to the

Figure 2.6 Screenshot of the eTOX database
(database version v2014.1) result table as
viewed through VITIC Nexus (Version 2.5.0,
provided by Lhasa Ltd.) for a complex query
including a structural component, the search
of a specific histopathological finding, and the

question whether the finding is treatment
related or incidental. The query results in a
compound for which foamy macrophage
aggregates were observed in the high-dose
group (ellipse) in 4 out of 10 animals. The find-
ing was considered to be treatment related.
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prediction of serum or plasma exposure, but rather they can predict exposure of
individual organs or tissues. Such an exposure is usually not assessed in systemic
toxicity studies. Thus, these models bear great potential in the context of the
above-described adverse outcome pathways, where effects on individual cells or
tissues may be identified as causative trigger for organ toxicity. However, up to
now PBPK models are mainly used to predict therapeutic human exposure, for
example, for the planning of a first-in-human study during drug development.
The combination of such models with hazard prediction still exists only on a con-
ceptual frame [42]. It remains to be seen whether the broad availability of solid
and well-curated in vivo data will result in meaningful models for risk prediction.

2.4
Thoughts on Validation

With a more widespread use of in silico tools, discussion started on how to vali-
date such systems in order increase the level of certainty regarding reliability of
prediction and applicability of the tools. In 2007, the OECD published a guid-
ance document setting some minimum requirements for validation [43].
According to the guidance, the cornerstone of validation is provision of informa-
tion on the following aspects of an in silico model:

� Definition of the predicted endpoint.� Unambiguous algorithm.� Appropriate measures of goodness-of-fit, robustness, and predictivity.� Definition of the domain of applicability.� Mechanistic interpretation, if possible.

Whereas the fulfillment of these requirements is still conceivable for a model
with a simple endpoint such as mutagenicity, there are currently no validated
models for more complex endpoints. Broad consensus exists about the determi-
nation of goodness-of-fit (how well does the model perform on compounds it
was trained with) and the measures for the external predictivity (how well does
the model perform on compounds that were not included in the training set).
The most common parameters are summarized in Table 2.1.
The applicability domain defines the area of chemical space inside which it can

reliably make predictions. It is generally determined by the chemical space of the
model training set. The procedures for defining the applicability domain are less
well agreed upon. The most common approach is the definition directly from
the chemical structures of the training series, but other procedures were pro-
posed that may be more meaningful depending on the nature of the model [44].
Validation of models must always be seen as a coevolutionary process with
model development. There are currently no fully validated models for regulatory
purposes, but it is clear that a maximum of transparency and documentation will
provide the best foundation for a validation.
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2.5
Conclusions and Outlook

Currently, reliable in silico models are available for only a few endpoints and
robust prediction of in vivo toxicity or adverse events affecting specific organs
are not at hand. Whereas decades ago the application of complex algorithms
was limited by the available computer power, this hurdle has now been over-
come. The limiting factor for modeling organ or in vivo toxicity is currently
access to abundant, high-quality, and well-curated data. Several consortia have
been formed to overcome this limitation and it is hoped that the consortia and
data sets will merge in the future. Data availability per se is already a major asset
for read-across approaches, but it is also expected that new in silico systems and
tools will be developed based on improved data accessibility. This will also apply
to endpoints that have not been discussed in this chapter because in silico
approaches are scarcely developed (e.g., for reproductive toxicity). In addition, it
is warranted to anticipate significant contributions of these new systems to ani-
mal welfare and 3R (reduce, refine, and replace). The rise of in silico toxicology
has just begun.
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3
In Silico Approaches: Data Management – Bioinformatics
Arnd Brandenburg, Hans Gmuender, and Timo Wittenberger

3.1
Introduction

With the rapid advances of various high-throughput technologies, the generation
of omics data has been established as standard methodology in almost every bio-
medical field. High-throughput technologies are routinely used for research in
basic science, in efforts to understand and treat human diseases, as well as in
understanding and prediction of toxic effects of drugs. Omics technologies
such as toxicogenomics, which deals with the effects of compounds on gene
expression patterns in target cells or tissues, are emerging as key approaches
for understanding the mode of action (MOA) of already existing drugs and in
screening new drug candidates. Applying omics technologies may reveal, for
example, genetic or protein signatures that can be used to predict the short-
and long-term biological effects of the exposure to a drug and to identify
potential toxic mechanisms with small amounts of compound material at an
early stage during drug discovery. Such assessments allow characterizing the
mode of action of known compounds and more rapid stop–go decisions dur-
ing early development stages of new drugs. In addition, toxicogenomics will
complement traditional pathology and toxicity studies especially when the
clinical outcome of a drug takes a long time to be manifested. Another key
step of toxicogenomics is the setup of reference compendia with compounds
from different toxicological classes, to classify drug candidates into such refer-
ence compendia and to predict their toxicity.
However, as a consequence the amount of biological data is exploding, both in

size and in complexity, and large data sets are being generated that have to be
stored, statistically analyzed, and interpreted with regard to systems toxicology,
not only for each single omics technology but also involving different omics
technologies. In addition, such omics data should be correlated with conven-
tional data in order to complete the overall picture of toxic effects. Therefore,
increasingly sophisticated computational techniques, efficient means for storing,
searching and retrieving data, and powerful algorithms and statistical tools are
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required. In this chapter, some aspects of the complexity of such systems toxi-
cology approaches will be discussed.

3.2
Experimental Setup and Statistical Power

Before starting experiments, some critical points concerning the experimental
setup should be addressed. A major challenge for the selection of the adequate
omics technology is to be able to accurately detect analytes present at very differ-
ent concentrations. In biological samples, transcripts, proteins, and metabolites
can be present at concentrations ranging across several orders of magnitude.
Repeated experiments help to increase the reliability simply because an observed
effect can be confirmed with other biological replicas. More specifically, the sta-
tistical power, that is, the chance to reject the null hypothesis (there is no statis-
tically significant difference between sets of given observations) if it is actually
false, generally increases with the number of replicas. The number of replicas
needed in a given study depends on the size of the effects to be detected and the
desired significance level and power of the test. Technical replicas, on the other
hand, allow testing the reproducibility of the chosen platform, but nowadays
many techniques are usually highly developed and reproducibility is often no
longer an issue. However, technical replicas may increase the reliability allowing
to average the outcomes and to test for platform-inherent variances. Because the
usage of high numbers of biological and/or technical replicas may be limited for
economical reasons, great attention should be given to the quality of the sam-
ples. Experiments of poor quality detected at any step of the sample preparation
process should be eliminated or at least identified. In this context, it is very criti-
cal to apply standardized quality assessment protocols and to define quality
parameters and thresholds beforehand.
A critical point for assessing the potential toxicity of compounds is a suit-

able study design with the inclusion of meaningful time points and com-
pound concentrations at which changes of, for example, gene expression are
expected. For an adequate selection of concentrations, it has to be considered
whether primary, causal, and subtle responses to the drugs should be meas-
ured, or secondary responses that are not necessarily compound specific but
rather more general reactions of the system to perturbances (e.g., adverse
outcome pathways). Determining such optimal parameters and reducing the
effects of distorting environmental influences and sources of technical arti-
facts will help to optimize the quality, reproducibility, and power of the stud-
ies. Finally, one should not forget to include suitable positive and negative
controls (e.g., stress, vehicles). However, omics technologies and protocols
have changed and will continue to evolve over time, hence presenting the
challenge of combining and analyzing data from different development stages
of a given platform. For example, RNA isolation and hybridization protocols
as well as the design of microarrays have changed and were improved over

34 3 In Silico Approaches: Data Management – Bioinformatics



time. Such changes should be taken into account when comparing results
from different periods.

3.3
Properties of Different Omics Data

3.3.1

Next-Generation Sequencing Data

Deep sequencing is now frequently used to quantify total mRNA abundance
levels, as its wide dynamic range and high signal-to-noise ratio facilitate the
quantification of low-abundance transcripts [1]. Whole-transcriptome analysis
using next-generation sequencing (NGS) technologies, that is, RNA-seq, repre-
sents a new possibility to analyze gene expression. In several gene expression
studies, microarrays are now being replaced by RNA sequencing-based methods,
which can identify and quantify rare transcripts without prior knowledge of a
particular gene and can provide information regarding alternative splicing and
sequence variations in identified genes. The variety of NGS technologies makes
it likely that multiple platforms will coexist in the future, with some having clear
advantages for particular applications over others. A challenge will be to inte-
grate and analyze NGS and microarray data together. For microarrays, the abun-
dance of transcripts is measured as fluorescence intensities, which is a
continuous response, whereas for next-generation sequencing data the abun-
dance is measured as count data (number of reads). Therefore, procedures that
are successful for microarray data analysis are not directly applicable to NGS
data. Similar to the MicroArray Quality Control (MAQC-III) consortium
effort [2], projects comparing NGS and microarray data (e.g., SEquencing Qual-
ity Control (SEQC)) are underway. The goal is to determine whether the two
platforms have a similar ability to detect differences between various perturbed
biological systems. The questions are whether both technologies perform
unequivocally or whether one outperforms the other in a certain range. Another
question, specifically interesting for systems toxicology, is whether the cross-
platform concordance is highly dependent on the transcription response caused
by the compound. Is the overlap of differentially expressed genes between the
two platforms larger in a more disturbed system? Has NGS less difficulties to
accurately quantify low expression?
Different data types imply also different statistical characteristics of the data

sets. While microarray data are assumed to follow a normal distribution, NGS
data are count data and hence not normally distributed but follow a Poisson or
negative binomial distribution. Therefore, log transformations usually applied to
gene expression intensities derived from microarrays should not be carried out
with NGS data, in particular because the information about zero counts would
be lost. Appropriate statistical methods that implement the correct assumptions
about the data distributions should be used. Popular statistical tests to look for
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differential expression of RNA-seq data include the edgeR [3] and DESeq [4]
algorithms. In addition, specific normalization methods have to be applied, for
example, to correct for different library sizes (number of sequenced fragments).

3.3.2

DNA Methylation Data

Another application of NGS is genome-wide DNA methylation profiling. It is
well established that epigenetic hyper- or hypomethylation of, for example, pro-
moter regions may regulate gene expression. Deep sequencing of bisulfite-
treated DNA allows for the quantification of changes in the methylation status
of CpG islands at base-pair resolution [5,6]. Bisulfite sequencing examines cyto-
sine DNA methylations at nucleotide resolution along single DNA strands, yield-
ing single-nucleotide resolution information about the methylation status of a
segment of DNA. Treatment of DNA with bisulfite converts cytosine residues to
uracil, but leaves 5-methylcytosine (and 5-hydroxymethylcytosine) residues
unaffected. The distribution of methylation levels is usually expressed as
β-values (percentages of methylation) or M-values (log2 ratios of the intensities
of methylated versus unmethylated probes). The β-value has a more intuitive
biological interpretation (% methylation) but shows severe heteroscedasticity;
therefore, it is proposed that M-values are statistically more valid. The relation-
ship between the β-value and the M-value is a logit transformation [7]. DNA is
mainly either fully hypermethylated or fully hypomethylated, but seldom in-
between; therefore, methylation data do not follow a normal distribution.

3.3.3

miRNA Data

Nowadays it is well established that biological systems use a variety of mecha-
nisms to maintain their functions after environmental and genetic perturbations.
Increasing evidence suggests that microRNAs (miRNAs) interfere with biological
processes by controlling posttranscriptional gene expression, reinforcing tran-
scriptional programs, and attenuating aberrant transcripts, and they may help
suppress random fluctuations in transcript copy number [8]. Specific microar-
rays as well as sequencing allow the measures of miRNAs and such measure-
ments may also help to understand and interpret biological processes.

3.3.4

CNV and SNP Data

Low-depth quantitative DNA sequencing enables a rapid analysis of copy num-
ber variations (CNVs), both at whole genome level and at gene level [9,10], as
well as the detection of chromosomal rearrangements. Alignment of DNA
sequence reads to a reference genome further allows for identification of single-
nucleotide polymorphisms (SNPs), InDels, and mutations, of both germline
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(with only low read depth needed) and somatic origin (high read depth
required). Characterization of SNPs is usually a two-step process, involving
“SNP calling” to identify variable sites and “genotype calling” to determine the
genotype [11,12].

3.3.5

ChIP-seq Data

ChIP-seq, which combines chromatin immunoprecipitation (ChIP) with NGS,
will probably replace ChIP-chip technologies and allows interrogating whole-
genome protein–DNA interactions as, for example, histone–DNA or transcrip-
tion factor–DNA interactions. In a ChIP-seq experiment, the DNA fragments
from binding sites of a target protein are enriched through immunoprecipitation.
Sequenced reads of such immunoprecipitated DNA fragments are aligned to a
reference genome to identify sites of enrichment. A special case of ChIP-seq is
MeDIP-seq, by which methylated DNA is precipitated and sequenced.

3.3.6

Gene Expression Microarray Data (Affymetrix)

In this section, we will mainly discuss Affymetrix gene expression microarrays;
other vendors provide their own solution for the transformation of fluorescence
intensities into gene expression values.
Affymetrix GeneChip technology measures gene expression using hybridiza-

tion of cRNA to 25-mer oligonucleotides. Typically, a mRNA molecule of inter-
est (usually related to a gene) is represented by a probe set composed of 11–20
probe pairs of these oligonucleotides. Each probe pair is composed of a perfect
match (PM) probe, a section of the mRNA molecule of interest, and a mismatch
(MM) probe that is created by changing the 13th base of the PM with the inten-
tion of measuring nonspecific binding.
Summarizing the probe intensities of probe sets is a critical preprocessing step

for the expression analysis based on Affymetrix GeneChip technology. A great
variety of condensing algorithms based on different approaches exist. A popular
representative is the statistical condensing algorithm (MAS5, microarray suite)
provided by Affymetrix in its analysis software [13]. It is a single-array condens-
ing algorithm using the PM and MM intensities for each probe on the arrays. An
advantage is that it can be applied independent of the data sets. Li–Wong con-
densing is an alternative that condenses simultaneously sets of chips [14]. The
key idea of this condensing is that probe weights are learned from the input data
and a weighted average of the probe sets is computed. RMA (robust multiarray
analysis) condensing is also inspired by this idea, but represents an improvement
in that the model is designed to be more robust against outliers. The authors of
the RMA model have demonstrated using an example data set that RMA con-
densing is superior to Affymetrix statistical and Li–Wong condensing [15–17].
They conclude that a condensing algorithm should only rely on the PM

3.3 Properties of Different Omics Data 37



intensities and not use the MM intensities, since the latter have frequently a
large contribution due to hybridizations to target genes. Furthermore, they find
that the contributions of the different PM probes should be weighted in order to
cope with the different hybridization affinities and cross-hybridizations of the
PM probes within a probe set. RMA condensing learns these probe weights
from the input data and the expression index is never negative. They achieve
this by using a Bayesian model for the hybridization intensity. The GC-RMA
condensing is a modification of the RMA condensing that uses the GC content
of probes to determine the background. A disadvantage of the simultaneous con-
densing algorithms is that new samples cannot be added seamlessly to an exist-
ing data set, but the new data set has to be condensed again as a whole.
In addition to the well-established expression analysis microarrays, Affymetrix

and others also provide, for example, whole-transcript expression arrays, tiling
arrays, exon arrays, and so on that need in general different or slightly different
condensing and analysis algorithms.
A further point to be considered is the annotations of the probes or probe sets.

The annotations will change over time gaining new insights into the genomic
information of a species. Therefore, it cannot be avoided that microarray data
should be recondensed from time to time because the changing combination of
probes to probe sets and the varying annotations may lead to different gene
expression level results.
Standard interpretations of statistical tests such as the Student’s t-test assume

that the data are sampled from normal populations with equal variances. Expres-
sion data from microarrays are usually not normally distributed, but a logarith-
mic transformation can lead to an approximate normal distribution and is
therefore a recommended procedure before performing statistical tests [18].

3.3.7
Mass Spectrometry Data

Mass spectrometry has become an important technology to obtain high-quality
data on metabolites and proteins in body fluids or tissues. For metabolomics,
LC–MS and GC–MS are the primary technologies. For proteomics, LC–MS/MS
is widely used for a range of applications. The principles of the main processing
steps are quite similar for the different data types and technologies and are also
largely independent of the specific machine that produces the data, but clearly
the most suitable algorithms and parameters have to be adapted to the case at
hand. The processing of the raw profile data should start with the removal of
noise and background signals. To reduce the noise, three strategies can be
applied: data smoothing, chemical noise subtraction, and small structure removal.
Data smoothing helps to remove possible irregular peak profiles across scans.

If chromatograms have been generated from blank samples, they can be sub-
tracted from the chromatograms of the biological samples. Electronic noise,
manifesting itself by small structures in m/z and RT coordinates, can easily be
identified and removed. Chemical noise can be generated, for example, by
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column bleeding and is identified by the increased background level in RT direc-
tion at several m/z values. To remove this RT background, an estimation of its
level can be performed by computing a specified quantile value in a window cen-
tered at the subtraction position. The remaining noise can additionally be fil-
tered by removing a constant intensity value. An adequate noise subtraction step
is critical for correctly removing the noise while preserving the relevant signals
and thus allowing their correct identification.
Due to nonexact reproducibility of the chromatography across experiments,

the cleaned data need to be aligned so that peaks generated by the same com-
pound are shown at the same position in different chromatograms. A correction
for retention time shifts between chromatograms can be achieved by applying a
(nonlinear) transformation to each individual retention time, mapping the origi-
nal time onto a common universal retention time. For LC–MS and GC–MS
metabolomic experiments, the resulting RT corrections are often quite small,
while for proteomic data sets the RT corrections can be large. Shifts in m/z val-
ues across chromatograms can be corrected by using lock masses, if available.
Detection of peaks can be performed on the result of averaging all data points

across samples. The detected peaks should then be grouped into isotope clusters,
for LC–MS metabolomic data best by using a library of compounds as a refer-
ence for the possible isotopic envelopes. The library can be generated, for exam-
ple, from the HMDB database (the Human Metabolome Database, www.hmdb.
ca/), which can also serve as the source for the compound identification step. If
fragment MS/MS spectra are available or in the case of GC–MS data, spectral
libraries of known compounds can be used to identify metabolites by comparing
the measured spectra with the entries in the libraries [19]. A number of such
libraries are available from a variety of sources: the NIST Library for GC spec-
tra [20], the Fiehn Library [21], and the Golm Metabolome Database [22] are
some popular examples. Each measured spectrum is compared against each
library spectrum and for each of the comparisons a score is computed that quan-
tifies the similarity of the spectra.
One notable difference between metabolite data and proteomic data is the

occurrence of highly charged peptides in the latter, leading to more complex
isotope cluster patterns of definite charge. If available, theoretical peptide isotope
intensity profiles can be used to improve the clustering.
The secondary MS/MS scans form the basis of the identification of the

peptides and proteins. The fragment scans can be compared with a library
of peptide fragment spectra. Popular library search engines offering customiz-
able options for choosing the relevant organism, the methods for matching of
the spectra, acceptance thresholds, and so on include Mascot (Mascot search
engine, www.matrixscience.com/), Sequest (Sequest homepage, http://fields
.scripps.edu/sequest/), and X!Tandem (X! search engine, http://www.thegpm
.org/tandem/). Posttranslational modifications of proteins can be detected in
this way as well.
The absolute abundance of an isotope cluster can be estimated by taking the

maximal signal intensity of all peaks in the cluster, by summing up all measured
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intensities within the boundaries of all contributing peaks, or by calculating the
sum of the volumes of all contributing peaks.
If multiple clusters are annotated with the same compound name, possibly due

to peak splitting but potentially also due to mismatches, the corresponding
intensities should be summed together. To quantify the abundance of a peptide,
the different charge states should be grouped together and the intensities should
be summed up.
Finally, a logarithmic transformation should be applied before further data

analysis steps are taken, since MS data are approximately log-normally
distributed.

3.3.8
Missing Values and Zero Values

It is common that some probes or spots on microarrays cannot be measured
resulting in missing values. The number of missing values can even increase if
different filters are applied to the data, such as filtering out saturated spots,
probe sets below the so-called detection p-value threshold from MAS5, spots
with very high background, and so on. For data acquired by mass spectrometry,
missing values can result from the logarithmic transformation of zero values
generated by noise reduction steps. In some cases, it is useful to replace such
missing values by imputing. In the row mean imputation, for each row of the
data matrix an average value (usually the geometric mean or the median) is cal-
culated from the non-missing values and all missing values in the row are
replaced by this average. Many more sophisticated imputation methods have
been invented [23]. As briefly discussed earlier, zero values from count data
should not be treated as missing values since they contain important information.

3.3.9

Data Normalization

There are many reasons why data have to be normalized, including, for example,
unequal quantities of starting RNA, differences in labeling or detection efficien-
cies, batch effects, and systematic biases in the measured expression levels.
Typically, the first transformation applied to expression data adjusts the individ-
ual hybridization intensities to balance them appropriately so that meaningful
biological comparisons can be made. There are many approaches possible to
normalize data. One of the simplest assumes that approximately the same num-
ber of labeled molecules from each sample should hybridize to the arrays and the
total hybridization intensities summed over all elements in the arrays should be
the same for each sample. A central intensity normalization scales the individual
intensities so that the geometric mean or median intensities are the same across
all arrays. Another common normalization procedure transforms absolute inten-
sities into relative data by dividing, for example, the intensities of a group of
samples after a treatment with the average of a time-matched control group
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(relative normalization). More sophisticated normalization procedures are
LOWESS normalization, Z-transformation, quantile normalization, median pol-
ish, and so on. The LOWESS (locally weighted regression and smoothing scatter
plots) normalization applies a nonlinear correction to the selected data matrix. A
local polynomial regression model is fitted to each point and the points close to
it. The method is also sometimes referred to as LOWESS smoothing. The
smoothed data usually provide a clearer picture of the overall shape of the rela-
tionship between the x and y variables [24]. The Z-transformation transforms
the log expression profile of each gene in such a way that it follows a normal
distribution with zero mean and a standard deviation equal to 1. Quantile nor-
malization is a technique for making two distributions identical in their statisti-
cal properties. As normalization it can often be used to remove small differences
between measured distributions when there is a common underlying distribution
(based on theoretical arguments or based on analysis of the data). Taken to the
extreme, it can also transform any given data vector such that its data follow a
given model distribution [15]. The median polish algorithm [25] iteratively sub-
tracts the row and column medians of the data matrix until the residual values
stabilize. In general, normalization is a critical step in the analysis of omics data.
It should, however, always be checked carefully if the underlying assumptions of
a given normalization method are fulfilled by the data at hand. For example, sub-
sets of genes selected based on some biological criteria may violate the assump-
tion of a common median expression across all samples.

3.4
Statistical Methods

3.4.1
Data Overviews

There are some useful analyses to get an overview of data sets, to detect outliers,
and to detect structures in the data. Such structures or clusters can be due to
artifacts such as batch effects, fluorescent dye effects, and so on, but also due to
factors relevant for further analyses, such as sex, chemical measures, phenotypic
anchoring such as histopathology, drug concentration and/or time effects, and so
on. Such random or fixed factors can be taken into consideration by performing,
for example, linear models or for a stratification of the data set. Analyses provid-
ing data overviews are, for example, histograms displaying the distribution of
expression values, box plots displaying the distribution of the values for each
experiment, bar charts, clustering methods such as hierarchical clustering (and
using heat maps for visualization), and so on. For clustering methods, there are
different possibilities to measure distances, for example, correlation, Euclidean,
normalized Euclidean, and Manhattan, and to determine the linkages, such as
complete, average, single, and so on. Quite often, principal component
analyses (PCA) are very informative. PCA is a classical means of unsupervised
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(i.e., non-hypothesis driven, in contrast to, for example, partial least square anal-
ysis) dimensionality reduction and visualization of multivariate data. It involves a
mathematical procedure that transforms the covariance matrix into a diagonal
form. The new coordinates are called principal components. The first principal
component accounts for as much of the variability in the data as possible, and
each succeeding component accounts for as much of the remaining variability as
possible. Restriction to the first two or three principal components often is suffi-
cient for capturing dominant structures of the data and uncovering important
relationships between individual experiments or groups of experiments.

3.4.2

Null Hypothesis/Type I and Type II Errors

In omics experiments, thousands of features (genes, proteins, metabolites, etc.)
are measured simultaneously across different experimental conditions. Two
important issues arise in identifying differentially expressed items: Which items
are differentially expressed? What is the quantitative statistical evidence for the
possible differential expression of the items?
The standard tools to answer these questions are as follows: rank the items by

computing p-values using a suitable test statistic and use multiple testing meth-
ods to assess the error rates in a given list of items (false positives and false
negatives).
The p-value of a statistical test is the probability that random data yield a value

of the test statistic that is equal to or more extreme than the observed value. For
example, in the case of a t-test, the (two-sided) p-value is the probability of get-
ting a value for the t-statistic from random data that has an absolute value equal
to or larger than the observed one. In this way, the null hypothesis H0, which
states that there is no effect in the data, is tested. For the t-test, the null hypothe-
sis states that the mean values of the two groups are equal. The type I error or
false-positive rate (often denoted by α) corresponds to the probability that H0 is
rejected although it is true. The type II error or false-negative rate (denoted by β)
corresponds to the probability that H0 is accepted although it is false. In the
context of microarray data, a large false-positive rate means that many truly null
genes are classified as being differentially expressed, while a large false-negative
rate means that many interesting differentially expressed genes are not identi-
fied. The power or sensitivity of a test is given by 1� β and corresponds to the
ability of the test to reject the null hypothesis (to find interesting genes) when it
is actually false (when these genes are actually differentially expressed).

3.4.3

Multiple Testing Methods

The larger the number of items tested for differential expression, the more
important it becomes to apply multiple testing methods. In the special context
of microarray analyses and more general in all cases where the number of
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unchanged items is large compared with the number of changed items, it turns
out that the so-called false discovery rate (FDR) is an appropriate error rate. It is
defined as the ratio of the number of genes that are called significant although
the null hypothesis is true and the total number of genes that are called signifi-
cant. Both quantities depend on the p-value threshold one sets. The numerator
can be estimated in different ways. The most common method is due to Benja-
mini and Hochberg [26]. The estimate of Storey and Tibshirani [27] is a modifi-
cation that constitutes a less conservative estimate of the FDR. As a rule of
thumb, one can keep in mind that for a total number of m genes and a p-value
threshold Θ, the number of genes from a random distribution that have a
p-value below Θ is equal to mΘ. If the actual number of genes with p-value
below the chosen significant threshold is not well above that number, the FDR
will be very high for that group of genes.
In addition to the previously described methods, an estimate of the FDR based

on permutations (balanced or not balanced) of the experiments can be made.

3.4.4

Statistical Tests

If it can be assumed that the data are normally distributed with equal variances,
a t-test or an ANOVA (analysis of variance) is the most commonly used method
to evaluate the differences in means between two or more groups, respectively.
The p-level represents the probability that the observed – or a more extreme –
value of the test statistic is due to chance, provided the null hypothesis is true.
As described earlier, the larger the number of genes tested for differential
expression, the more important it becomes to apply multiple testing methods.
The Welch test generalizes the t-test by dropping the assumption that the vari-
ance is identical in both groups. Nonparametric tests use ranks rather than the
actual measured values. The Wilcoxon test (also known as the Mann–Whitney
test) works for two groups and computes as test statistics partial rank sums. This
type of test makes no assumptions on the distribution of values within the
groups. The Kruskal–Wallis test represents an extension of the Wilcoxon test to
more than two groups. Finally, the Kolmogorov–Smirnov test tests whether the
distribution of values in the two groups differs. It makes no assumption on the
distributions itself and is therefore very general. However, the disadvantage is
that this test requires more input data than, for example, the t-test.
As mentioned earlier, NGS data are not normally distributed and therefore

more adequate tests should be applied to analyze such data.

3.4.5

Linear Models and Linear Mixed Models

The linear model analysis allows to describe data by a linear combination of
experimental factors and to study the impact of each of these factors on the
quality of the model. These can be so-called fixed factors, the levels of which the
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scientist “fixed” when designing the experiment in order to learn about their
influence on the data, random factors that are often uncontrollable and also
called “nuisance” factors, or covariates that are concomitant variables that con-
tribute to the variation in the data. The effects of the factors and their interac-
tions are estimated and p-values are computed for the null hypothesis that states
that, roughly speaking, a certain factor has no influence on the data. The linear
model analysis is a very flexible and powerful statistical method that includes as
special cases the ANOVA for an arbitrary number of factors, with or without
interactions, the analysis of covariance (ANCOVA), and linear regression. Batch
effects can be modeled as random factors in a linear mixed model. In this way,
their influence on the interesting fixed factors can be eliminated. An advantage
over batch removal via explicit data transformation methods is that in linear
mixed models the degrees of freedom are correctly taken into account in the
computation of the p-value. Paired designs are also covered by linear models,
with the pairing variable (e.g., patient) simply treated as a random factor.
Further generalizations of linear models are the so-called generalized linear

models. They allow modeling the data by nonlinear relationships between the
estimated mean and the covariates and also with non-Gaussian fluctuations
around the mean. Important applications are statistical tests for count data
obtained in RNA-seq experiments. Here, a so-called log-linear model is used
that guarantees that the estimated mean is positive, together with the assump-
tion that the fluctuations around the mean follow a negative binomial distribu-
tion. In addition, so-called offsets can be included that account for different
library sizes as well as an additional scaling normalization [3,4,28].

3.5
Prediction and Classification

3.5.1

Overview

One approach in systems toxicology is to build a database of expression signa-
tures for known compounds. As the goal is to profile novel compounds against
this reference compendium, it is important to have several members of each tox-
icological class represented. There is no limitation to the number of compounds
that can be profiled, and as long as the experimental procedure and the type of
microarrays used are not significantly changed, one can continuously add more
compounds to the database to improve and enlarge its predictive quality. Under
certain circumstances, it is even possible to include not only gene expression,
but also proteomic data as long as values of the data sets are comparable. Not
only gene expression patterns but also additional information from blood sam-
ples, phenotypic observations, tissue sections, clinical outcomes, and so on
should be stored because this information may be very useful to build classes for
classification algorithms and for the interpretation of gene expression patterns.
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A basic distinction for constructing a reference compendium can be made
between methods that take into account all the available expression data and
methods that use only a limited number of previously determined marker genes.
The advantage of using a method with no restriction on the number of genes is
that more genes and pathways can be utilized for toxicological predictions as the
list of compounds extends. Therefore, to get as much information as possible,
such “unlimited” approaches should be preferred whenever possible. However,
not every laboratory will have the resources for large arrays with thousands of
genes, and some toxicology laboratories may turn to smaller, customized chips
or qRT-PCR on subsets of genes for large-scale studies. A compromise may be
to use large arrays to determine an optimal set of genes that allow to classify a
large variety of compounds, and to switch later to a smaller, customized array
with that set of genes. Marker gene selection should be based on unbiased com-
putational methods employing algorithms to select genes with high discrimina-
tory power between different compound classes. The advantage of using such a
method is that even uncharacterized pathways are taken into consideration.
However, previously acquired knowledge on the effects of compounds on cellular
pathways can be used to enrich the set of statistically determined marker genes.
Once a reference compendium has been established and cross-validated, it can

be applied to classify novel compounds. Matching a gene expression profile of a
new drug candidate to profiles of known compounds can then reveal whether it
will most probably show undesired side effects. Novel compounds that have
been unequivocally classified and properly annotated can then be added to the
reference compendium, provided that the quality of the experiments is at
the same high level as for those used to construct the reference compendium.
The cycle is repeated until the compendium achieves a robustness that allows
it to reliably classify novel compounds or even compound mixtures.

3.5.2

Generating a Reference Compendium of Compounds

For a given toxicological endpoint, such as liver necrosis, replicate experiments
are performed for a multitude of compound dosages and treatment times. Two
basic approaches exist for structuring such large and complex data sets as they
occur in toxicogenomic experiments – unsupervised learning methods and
supervised learning methods.
In unsupervised learning methods, no assumption is made about the structure

of the data. Two-dimensional hierarchical clustering is an example of
unsupervised learning. If genes that distinguish between toxic MOAs have been
carefully selected, the results of such analyses can be displayed as “toxic finger-
prints.” However, this approach may lead to unsatisfactory results if effects due
to the experimental setup (technical or biological influences that result in exper-
imental noise) override compound-specific effects.
The second approach, supervised learning, takes into account the available

information from well-established compounds. This approach has been shown
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to structure toxicogenomic data meaningfully. Automated prediction of toxicity
relies on classification algorithms that use the expression data obtained from
treated tissues to make reliable predictions. Furthermore, gene selection algo-
rithms allow researchers to focus on genes that are indicative of the toxic effects
of interest, thereby optimizing the predictive strength.
Classification can follow two different strategies. The first strategy uses as

many genes as possible – preferably all available genes on a microarray. A classi-
fication algorithm is applied that works well in high-dimensional spaces, is
robust, and remains insensitive to experimental noise. When processing such a
high-dimensional gene space, supervised learning algorithms select planes that
optimally separate the compound classes. A prominent example of such a classi-
fier is the support vector machine algorithm [29]. Generalized forms of linear
discriminant analysis, K-nearest neighbors, and decision trees can also be used
as classifiers. The support vector machine algorithm is based on constructing
separating hyperplanes with a maximal margin. In principle, misclassifications of
training set elements are allowed, which is controlled by a penalty parameter. It
determines the amount with which the misclassification of a training set element
is penalized. The second strategy employs an emphasis on careful gene selection.
Genes can be selected manually according to biological knowledge or with the
help of statistical algorithms. There is no universal answer to the question which
of the two strategies is better. Dispensing gene selection altogether is certainly
the concept that is easier to extend, because when using a restricted set of
marker genes, an update of the reference compendium will probably change the
marker gene set significantly. On the other hand, the gene selection approach
might give further insight into the nature of the cellular processes involved. A
strict decision for the first or second strategy is not recommended. Instead, it is
recommended to work with a substantial arsenal of classification algorithms and
gene selection methods and to experimentally determine the strategy and the
algorithms that best suit the data.
Experience has shown that employing the first strategy using all the genes and

then subsequently reducing the number of genes using statistical algorithms
until an optimal gene set is found is a promising approach. For gene selection, a
standardized algorithmic approach is less biased than a subjective gene selection
based on established knowledge of marker genes. Gene selection algorithms
range from simple univariate tests, such as one-way analysis of variance, to
highly sophisticated ones, for example, recursive feature elimination [30].

3.5.3

Cross-Validation

Cross-validation is an important technique for deciding which classification algo-
rithms are optimal. Furthermore, cross-validation can help to discover
unexpected relationships between MOAs. A classifier separates, based on training
data, the gene expression space into regions, the domains of the different groups.
In a cross-validation step, the data of one or several experiments are taken out of
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the training data set and the classifier is recomputed. If the experiment that was
excluded is reassigned to its original MOA class, the assignment is considered
“stable under cross-validation.” Another experiment, after removing and recom-
puting, may be assigned to a different class indicating a “cross-validation error.”
Several methods of cross-validation are available. The “leave-one-out” cross-vali-
dation method removes one experiment at a time. With “n-fold” cross-validation,
a randomly selected fraction of experiments is removed and reclassified. For toxi-
cological experiments, “subgroup” cross-validation can be employed when further
categorizing and classifying experiments. An example for “subgroup” classifica-
tion is to classify in the first round according to histopathological endpoints and
in the second round according to compound MOA classes. Especially if replicas
are available, removing the replicas as a group results in a more realistic cross-
validation, because the probability that an experiment classifies into the correct
category may be much higher if only one experiment of the replicas is removed
and reclassified. Using cross-validation methods, the experiments that fail to clas-
sify correctly are used to calculate the cross-validation error rate. By systemati-
cally assessing various classification and gene selection methods, one is then in
the position to find the combination of classifier and gene selection method, as
well as the size of the gene set, with the optimal predictive power. The reference
compendium derived from an optimal set of marker genes and an optimal classi-
fication algorithm can then be used to classify novel compounds.

3.5.4

Selection Bias

If the selection of genes is based on the same data as the data on which the mis-
classification rate is estimated, the problem of a selection bias will be encoun-
tered. If one selects, for example, the top-scoring ANOVA genes and then
calculates the misclassification rate on the same experiments, the estimate of the
misclassification rate will usually be much smaller than the error rate one would
get on independent experiments.

3.6
Combining Different Omics Data and Biological Interpretations

The ultimate goal of systems toxicology is obviously to combine different omics
technologies into an overall picture of biological processes and to understand in
detail the mode of actions as effect of the perturbances of, for example, a drug.
However, this is still not a task that can be fully automated. Searching for corre-
lations between methylated DNA regions and gene expression, or gene expres-
sion and correlated protein levels, may give some hints but surely not the full
picture. It can well be that gene expression is increased but not reflected at the
measured protein level. Therefore, the inevitable method is in most cases to gen-
erate a working hypothesis based on markers from a given omics technology and
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to integrate in usually rather laborious detailed work additional pieces of infor-
mation obtained from other omics data or other markers (see Refs [31–33]).
Possibilities to interpret omics data are, for example, analyzing promoter regions
for transcription factor binding sites, searching for hyper- or hypomethylated
CpG islands, searching for CNVs, SNPs, and miRNAs with potential regulation
capacities, and so on. In this context, it has to be mentioned that standard proce-
dures to validate omics results with other technologies such as PCR, Western
blot, and so on are very common and indispensable.
However, many analysis and visualization tools have been developed in parallel

to the development of the omics technologies. In recent years, the focus in
expression data analysis has shifted from single gene to the gene set level analy-
ses. This change has been motivated by realizing that many diseases are associ-
ated with regulations in a set of related genes rather than an increase in a single
gene [34]. Gene set analyses are also expected to facilitate the interpretation of
lists of differentially expressed genes. Several recent reviews provide overviews of
the developed methods for such gene set analysis [35,36]. The methods can be
categorized as “self-contained” or “competitive.” Self-contained methods analyze
the association between the phenotype and expression in the gene set of interest
while ignoring genes not in the gene set. Competitive methods compare the gene
set with its complement in terms of association with the phenotype. Examples
include the popular GSEA algorithm [34], GSA (gene set analysis) [37],
SAFE [38], and random set methods [39]. There are many sources providing
gene sets such as gene ontology (GO) categories, metabolic pathways, signaling
pathways, information about protein–protein interactions, and so on.
A generic method to find associations between groups of differentially

expressed genes and gene sets defined by some common property is Fisher’s
exact test. It yields the probability that observed counts in a so-called contin-
gency table are due to pure chance and thus allows a rejection of the null
hypothesis (independence of regulated genes and a given biological category) on
the basis of a p-value threshold. It belongs to the class of exact tests, so called
because the significance of the deviation from the null hypothesis can be calcu-
lated exactly using combinatorics, rather than relying on an assumption about
the null distribution of the data.

3.7
Data Management

Often it is not the limited availability of omics data that prevents the scientific
community from making optimal use of published studies (or, to mention
another example, companies from making optimal use of their legacy data).
Rather, it is the description of the data, the experimental design, and the availa-
bility of other non-omics data that are difficult to interpret, incomplete, or erro-
neous. Public efforts to standardize such metadata have greatly facilitated the
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reuse of data within the scientific community, but are mainly focused on tech-
nologies such as microarrays (MIAME, http://www.mged.org/Workgroups/
MIAME/miame.html) or proteomics (PRIDE XML, http://www.ebi.ac.uk/
pride/help/archive/submission/pridexml). The tranSMART initiative (http://
transmartfoundation.org), on the other hand, develops a platform for the organi-
zation of all clinically relevant data, including omics, while diXa (http://www
.dixa-fp7.eu) has a similar approach for toxicogenomic data sets, both enabling
data analysis across multiple studies (meta-analyses) on a molecular or pathway
level, respectively. Finally, the ISA-TAB framework (http://www.isa-tools.org)
implements a standard for metadata organization that is applicable across
a wide variety of application domains and platforms. It is implemented in
EBI’s BioInvestigation Index (http://www.ebi.ac.uk/bioinvindex) and currently
adopted for more specific domains, such as nanotechnology (https://wiki.nci.nih
.gov/display/ICR/ISA-TAB-Nano). All of these approaches rely on the use of
standardized vocabulary, and accordingly there are a large variety of domain-
specific ontologies.
The generic problem addressed by all metadata approaches is one of data

organization: The data analyst needs to understand the experimental design, the
(biological and chemical) entities, their function and use in a study, and the factors
that – intentionally or confounding – influence the measurement results. The
metadata also have to describe the exact relationship between data and study enti-
ties (e.g., protocols used on samples derived from study subjects to obtain the data).
The following paragraphs outline the generic use cases and specifications of an

infrastructure that supports data organization in that sense.
For users with a data analysis focus, the description of the study design has to

include the data relevant for analysis and interpretation. Such a user will primar-
ily use the metadata to document all parameters that are intentionally varied, or
controlled, within a given study. Other parameters (such as the concentration of
a given buffer) are kept constant and will not be relevant for data analysis in
most cases; a reference to a protocol might suffice here. However, if it turns out
that another parameter influences the outcome of the experiment, this con-
founding variable needs to be used in the analysis process as well. Therefore,
flexible adaptation of the metadata with new parameters (or treatment sched-
ules) is necessary.
A user interested primarily in data organization might have a much broader

interest in data and information associated with a given study. This might
include also raw data, technical parameters such as batch IDs and instrument
settings, and other (constant) experiment protocol parameters. Users might want
to “collect” these data, or they might want to “drill down” these data on request.
Some core functionalities of a system supporting these use cases are as follows:

� Definition/creation of study design layouts (using data types below).� Organization of data:
– Assignment of data sets to study objects.
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– Assignment of annotation data to study objects.� Management of study design and annotation data:
– Storage of data.
– Import from external sources.
– Validity and consistency checks, including controlled vocabulary/

ontologies.� Data browsing and searching (including study design visualization).� Data export and download:
– Study design data.
– Annotation data.
– Measurement data.� Support for structuring data sets:
– Loading of annotation (also inherited from higher-order entities).
– Grouping of data sets.
– Selection of factors for analysis.

Apart from general study design information, that is, treatment, sampling, and
measurement protocols, the system needs specifically to keep track of study
design parameters and factors relevant for the data analysis. Further, all non-
omics measurements, including patient data, have to be managed in a way that
they can be used either as (numerical or categorical) annotation during analysis
of omics data (e.g., as phenotypic anchors) or as data matrices to be analyzed in
parallel to the omics data.
Such a data management system consists of several components:

� A database to manage the metadata and the access to measurement data
(but not necessarily the measurement data themselves, since these are often
stored in pre-existing repositories).� A “study design wizard” that facilitates the reporting of study information
and metadata.� Data upload/submission/importing tools.� Data searching/browsing/exporting tools.� File format converters.� APIs to link to external data storages and ontologies.

The effort needed by data submitters to report metadata completely and
structured is probably the biggest hurdle to overcome. However, these efforts
are still low compared with the curation efforts needed on unstructured or
even incompletely reported metadata, if reuse by others can be achieved
at all.
The ISA-TAB tools collection (http://isatab.sourceforge.net/tools.html)

encompasses most of the components above, including “IsaCreator” helping
data submitters to report their metadata well organized and standardized.
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4
Role of Modeling and Simulation in Toxicology Prediction
Antje-Christine Walz, Hans Peter Grimm, Christophe Meille, Antonello Caruso,

Neil Parrott, and Thierry Lavé

4.1
Introduction

The consideration of drug metabolism and pharmacokinetics (DMPK) and phys-
icochemical properties as part of the drug discovery and development process
has substantially improved the quality of drug candidates with respect to phar-
macokinetic properties. The main reason for attrition in development is now
related to safety and efficacy, and the current challenge is to establish a relation-
ship between pharmacokinetic and pharmacological/safety endpoints starting
from early discovery stages. Mechanism-based pharmacokinetic/pharmaco-
dynamic (PK/PD) modeling for both efficacy and safety assessment is being suc-
cessfully employed throughout all discovery and drug development stages for
data interpretation, study design, and enhanced decision making. Mechanism-
based PK/PD models range from simple PK/PD models to physiologically based
pharmacokinetic/pharmacodynamic (PBPK/PD) models, as well as more com-
plex systems biology. Because the models are developed to describe the under-
lying biology and pathways, they provide the opportunity to separate system-
specific parameters from compound-specific parameters [1,2]. They also enable
extrapolation from in vitro to in vivo settings, from animals to humans, from
healthy volunteers to a disease population, and from one compound to other
similar compound. In addition, unlike empirical models, the model parameters
in a mechanism-based PK/PD model can be experimentally measured and in
some cases estimated in silico.
The specific set of questions to be addressed using PK/PD modeling depends

on the stage of drug development. For late-stage preclinical and clinical
development, PK/PD modeling is used to impact selection of dose regimens
and more generally to support optimal study design for preclinical (e.g., toxi-
cology) and clinical studies. For the discovery and early development stages,
the understanding of the PK/PD relationship helps to better define the target
profile and support the selection of lead compounds to advance into clinical
studies based on the separation between efficacy and safety, the estimation of
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safe and efficacious dosing schedules for animals and humans, and the pre-
diction of safe starting doses for first-in-human studies. It also provides a
basis for optimal design of proof-of-concept (PoC) studies (usually phase IIa)
in relevant patient populations.
This chapter is focused on the application of predictive modeling and simula-

tion approaches and more specifically of mechanism-based PK/PD modeling
during discovery and early drug development supported by specific case studies
as well as examples from the literature.

4.2
The Need to Bring PK and PD in Predictive Models Together

A vast amount of pharmacokinetic, pharmacological, and safety data is used to
drive decision making for compounds to be progressed into development.
Successful integration of discovery data is key to selecting promising compounds
for development.

4.2.1

Physiologically Based Pharmacokinetic Modeling

We suggest integrating all available preclinical data into a single interpretable
context by using physiologically based pharmacokinetic modeling, further inte-
grating pharmacology and safety data into the model. The PBPK/PD approach
can incorporate a diverse set of physicochemical, pharmacokinetic, and pharma-
codynamic data and it is scientifically driven, relying on validated mechanistic
models and thereby eliminating a large portion of the usual bias in data
interpretation.
Such biological mechanism-based models built on the basis of physiologi-

cally relevant parameters provide the opportunity to translate in silico,
in vitro, and in vivo preclinical data into knowledge that is relevant to the
situation in humans.
As a simple example, take a measured value for the solubility of a compound.

By itself, this data item tells us little about the absorption of the compound in
humans. Only when combined with permeability, pKa, and other physico-
chemical properties can one start to make predictions; that is, the first necessary
step is data integration. And yet, without any model (be it physiology based or
statistics based), the data make little sense; that is, the second step must be the
construction of a suitable model. With appropriate data and a trustworthy
model, predictions can be attempted. However, in order to gain additional confi-
dence, comparison of model predictions and in vivo outcomes in animal species
should be attempted. After this third step, predictions can be made with reason-
able confidence.
As another example, consider an in vivo test fundamental for the evaluation of

CNS compounds, namely, the induction of locomotor activity (LMA) or variants
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thereof. Per se, a dose–response analysis of LMA in mice is of little value
when it comes to predictions of efficacy against a psychiatric condition in
humans. On the one side, LMA needs to be linked to receptor occupancy
in vitro and to measured target affinity; this allows to account for species
differences, for example, in protein binding and affinity. On the other side,
the LMA needs to be related to a functional experiment in animals that in
turn has been linked to the psychiatric disorder under investigation, possibly
based on other compounds (e.g., competitor information in the public
domain). Ultimately, this knowledge has to be combined with pharmaco-
kinetics. Modeling is indispensable as the “glue” between these pieces.
Furthermore, mechanistic/physiologically based models have the capability to
capture strong inherent nonlinear processes that are often problematic in
purely statistics-driven approaches.

4.2.2

Mathematical (PBPK, PK/PD) Modeling

Mathematical (PBPK, PK/PD) modeling enforces the explicit formulation of
hypotheses. Based on a given set of hypotheses, predictions can be made and
later – ideally – tested. Several hypotheses can coexist and the resulting predic-
tions delimit the range of likely outcomes. In this way, models offer the possibil-
ity of explicitly incorporating uncertainty into the decision-making process and
translating that uncertainty into a measure of confidence in the simulation and/
or prediction. Unlike other empirical models, the assumption and the uncer-
tainty in a mechanistic PK/PD model may be reduced by further experimental
data collection. Quantifying key uncertainties and providing a range of possible
outcomes based on the current knowledge of the PK properties of the com-
pound will allow for more informed decision making. In addition, biologically
based mechanistic models offer a platform for incorporating the known variabil-
ity between different patient populations [3].
One of the most powerful applications of mechanism-based modeling and

simulation is the integration of information from different studies, especially the
findings from clinical studies, to advance the best compounds at preclinical
development. Mechanism-based PK/PD models allow separation of system-spe-
cific parameters from compound-specific parameters; thus, the same system
parameters from studies of other compounds in humans on the same pharma-
cology or disease process can be used to model similar compounds in the same
system. This is particularly useful, considering the challenge of translating
research from the animal model to human efficacy and safety.

4.2.3

Predictive Tools

In preclinical discovery and development, the key activity is to use “predictive
tools” and “evaluation tools” to help screen out the candidates most likely to
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have serious undesired side effects and identify those most likely to become safe
and effective treatments. Because of the predictive nature of the modeling
needed in preclinical development, such models ideally would be mechanistic as
opposed to empirical. That is, the mechanistic model can provide better capacity
for credible extrapolations. For example, in silico models based on large clinical
safety database such as adverse drug reactions (ADRs) are now used in pre-
clinical development [4]. The learning–confirming cycles of drug development
as defined by Sheiner and Steimer [5] also apply to feeding the learnings from
clinical data and clinical experience back into drug discovery to better design
predictive models at the preclinical stage. There are vast amounts of clinical
data from compounds with similar structure/class that can help in the selection
of lead compounds or backup molecules at early development. Model-directed
drug development processes should be bidirectional. Successful prediction and
application of a preclinical model for phase 1 and early PoC clinical studies
should not be seen as an end in itself. As compounds move through subsequent
development stages, new learning from the clinical study of compounds should
be incorporated into the model, and an updated model should be a better “pre-
dictive” model for the backup program or similar class of targets. In summary,
the mechanistic PK/PD model provides a quantitative framework for translation
and systematic integration of data and learning from clinical studies to pre-
clinical development.

4.3
Methodological Aspects and Concepts

4.3.1

“Cascading” Drug Effects

The principle of cascading models to relate processes on the causal path
between drug administration and response has been described recently [1,2].
With this approach, the effect of drugs from one process in the chain of events
to the next can be described. With such an approach, pharmacokinetics can be
used to estimate target exposure that can then be related to pharmaco-
dynamics. Target effect considerations represent the initial steps of PK/PD
model building, which can then be extended to include downstream effects
such as molecular target activation, physiological and pathophysiological mea-
sures, and clinical ratings [1,2,6] as drug candidates move through the discov-
ery and development process. The relationships between the various processes
are solely dependent on the functioning of the biological system and are there-
fore independent of the drug.
Mechanism-based PK/PD modeling constructed on the basis of cascading

models constitutes, therefore, the scientific basis for prediction of the ultimate
clinical effects of novel drugs based on the response obtained at the various
stages of the chain of biological events.
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4.3.2

Linking Exposure and Effect

In many cases, PK predictions can be made with reasonable confidence for small
molecules using, for example, physiologically based models [7]. Physiologically
based models are useful to simulate exposure in plasma and in individual tissues,
including target tissues. The target exposure can be linked to efficacy parameters
measured in vitro in order to estimate receptor occupancy that provides the link
between exposure and effect. Lack of solid understanding of target exposure can
invalidate prior PK/PD modeling. Target exposure can be challenging to esti-
mate when active transport processes are involved, for example, in tissue uptake.
Recently, improved estimation of the transporter Michaelis–Menten parameters
in the in vitro assay for quantitative predictions of transporter dynamics in vivo
has opened the door for the possibility of incorporating transporter kinetics in a
PBPK model for improved prediction of target tissue concentration [8].
Many biological responses can show a delay relative to drug concentrations in

plasma, which is often referred to as hysteresis. When distribution to the site of
action becomes rate limiting and determination of drug concentration at the tar-
get site is difficult, the effect compartment model (or so-called link model), for
example, provides a useful way for estimating the concentration at the effect
site [9]. The model assumes that drug in the effect compartment does not con-
tribute to the pharmacokinetics of drug in plasma. The effect compartment
modeling is useful when response delays are due to drug distribution from
plasma to the effect site. The use of the effect compartment allows collapse of
the hysteresis loop and estimation of effect concentration at the target site and
subsequently leads to an improved estimation of in vivo potency of compounds.

4.3.3
Receptor Occupancy/Enzyme Inhibition

The potency (i.e., the EC50) and the intrinsic activity (i.e., maximal effect, Emax) of a
drug are functions of compound-specific (i.e., receptor affinity and intrinsic effi-
cacy) and system-specific properties (i.e., the receptor density and the function
relating receptor occupancy to pharmacological effect). Classical receptor theory
explicitly separates drug-specific properties and system-specific properties as deter-
minants of the drug concentration–effect relationship and therefore constitutes a
theoretical basis for the prediction of this relationship. Not surprisingly, receptor
theory is increasingly applied in mechanism-based PK/PD modeling to explain and
predict (variability in) in vivo drug concentration–effect relationships [1,2].

4.3.4

Transduction into In Vivo Response

Transduction refers to the processes of the translation of the receptor activation
into the ultimate pharmacological response. Specifically, the binding of a drug to
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a biological target initiates a cascade of biochemical and/or electrophysiological
events resulting in the observable biological response [1,2]. When transduction
is fast (i.e., operating with rate constants in the range of milliseconds to seconds),
relative to the rate constants governing the disposition processes (typically min-
utes to hours), the transduction process does not influence the time course of
the drug effect relative to the plasma concentration. In vivo transduction can
also be slow, operating with rate constants on the order of hours to days, in
which case transduction becomes an important determinant of the time course
of drug action [1,2].

4.3.4.1 Indirect Response Models
A widely used mechanism-based modeling approach for describing delayed bio-
logical response is the indirect response (IDR) model. The IDR model is based
on the concept of homeostasis; that is, physiological entities (e.g., proteins or
body temperature) are kept in dynamic equilibrium by balancing their buildup
and their loss. Pharmacological activity can either stimulate or inhibit either of
these processes as nicely reviewed by Mager et al. [10].

4.3.4.2 Transit Compartment Models
Models have been proposed in which transduction is modeled mechanistically
on the basis of intermediary processes between pharmacokinetics and response.
The so-called transit compartment model (TCM) has been proposed for this
purpose. This model relies on a series of differential equations to describe the
cascade of events between receptor activation and final response [11–13]. As
with the IDR, traditional TCMs are motivated physiologically but are often phe-
nomenological descriptions of pharmacodynamic response.
An interesting application of transduction models in drug development is the

model for describing the time course of myelosuppression [14]. The model con-
sists of a proliferating, drug-sensitive compartment, a series of transit compart-
ments representing maturation, and a compartment of circulating blood cells. A
key feature of this model is the separation of fixed system-specific parameters
(such as proliferation and transit time) and a small number of drug-related
parameters that have to be estimated. The model, “calibrated” with known com-
pounds, can be used to translate the myelosuppression of new compounds from
animals to humans. Clearly, the model is semi-phenomenological in the sense
that it does not aim at profound understanding of the complex processes in
blood cell maturation. It is rather tuned with a minimum of parameters required
to capture the most important aspects of interindividual differences as well as
drug action.
Transit compartment models are also used to characterize the antitumor

effect in in vitro [13] and in vivo experiments [15,16]. The response of anti-
cancer drugs is delayed relative to the time course of drug exposure. Semi-
mechanistic models relate the tumor growth inhibition time course to the PK
of the drug by separating system-specific (e.g., tumor size and growth rate)
from drug-specific (e.g., potency and drug-induced kill rate) properties [15,16].
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These models allow for the estimation of a concentration resulting in tumor
stasis, which can be regarded as a reference concentration to be achieved for
attaining significant anticancer activity in humans. Rocchetti et al. have shown
a good correlation with the predicted concentration required for tumor stasis
and the reported efficacious exposure for select chemotherapeutic agents in
cancer patients [17]. Modeling the time course of anticancer effect as a func-
tion of the dosing protocol enables to predict intermittent dosing regimen
reaching equivalent antitumor efficacy compared with chronic dosing.

4.3.5

Disease Modeling

One of the key challenges in early drug discovery and development, especially
for novel first-in-class compounds, is that we often do not know whether a
highly potent compound that inhibits specific receptor function or alters spe-
cific pathway bears any relevance to efficacy in the disease population (e.g.,
modulation of disease progression or symptomatic relief). Without any
doubt, the effort in development of new compounds is directed toward drugs
that can halt or alter disease progression. Therefore, it is important that
PK/PD modeling can also be extended to include the effects on disease pro-
gression. Understanding disease progression is critical as the optimal phar-
macodynamic response needs to be defined in the context of their effects on
the processes of disease progression. In early drug discovery and develop-
ment, compounds that target a specific pathway are often assumed to have
impact on the ultimate disease process. For a complex disease, this target
could be difficult to validate until a proof-of-concept study in a disease pop-
ulation is performed.
Disease progression modeling was listed in the Critical Path Initiative by the

US FDA [18]. Development of new biomarkers for disease processes was identi-
fied as the highest priority for scientific effort and quantitative modeling of the
disease process, incorporating what is known about biomarkers, would be an
obvious next step. Disease progression modeling has been applied in modeling
of clinical studies, such as Alzheimer’s disease, Parkinson’s disease, and viral
dynamics in HIV- or HCV-infected patients [19,20].
In the context of antiviral drugs, PK/PD models have been developed to

describe the effect of compounds on viral replication using empirical Emax mod-
els [21], as well as PK/PD disease models to link the viral and cell dynamics in
patients as a function of time. Useful disease models for viral dynamic changes in
patients have been reported recently for compounds targeting HIV and
HCV [20,22,23]. The development of a HCV viral dynamic model to describe
viral load changes in patients has helped understand the mechanism of the anti-
viral efficacy of interferon-alpha and ribavirin [21–23]. Subsequently, these ini-
tial models were extended to account for the presence of both wild-type virus
and low level of telaprevir-resistant variants in estimating the required treatment
duration to eradicate the virus [24].
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The following section describes and illustrates with selected examples the
application of predictive modeling and simulation approaches focusing on PBPK
and PK/PD modeling for safety and efficacy along the discovery and develop-
ment process.

4.4
Application During Lead Optimization

During the lead optimization phase, high-throughput chemistry generates
numerous compounds and the physicochemical, pharmacokinetic, and pharma-
cological properties targeted within a particular project need to be defined. Since
PK/PD models integrate all properties in a single framework, they can be
extremely useful to define the range of properties needed to achieve a desired
clinical outcome in terms of extent and duration of effect.

4.4.1

Example 1: PK/PD Modeling for Identifying the Therapeutic Window between
an Efficacy and a Safety Response

This example demonstrates the use of PK/PD modeling in a lead optimization
stage project to determine the relationship between plasma concentrations and
both an efficacy and safety PD effect to determine which candidate compound
has a large enough margin of safety for clinical success. Investigators have shown
that selective agonists of the alpha 1a receptor can cause increased pressure in
the urinary tract [25], which could lead to decreased symptoms from stress uri-
nary incontinence (SUI). However, agonism of the alpha 1a receptor can also
cause increased blood pressure (e.g., the alpha 1a agonist, midodrine, treats
orthostatic hypotension, but can cause dangerously increased supine blood pres-
sure if taken too soon before bedtime). Blood pressure is a carefully regulated
physiological phenomenon, and, at low doses of an alpha 1a agonist, as the blood
pressure increases the heart rate rapidly decreases to compensate, resulting in no
net change in blood pressure. But with increasingly high doses of an alpha 1a
agonist, the ability of the heart rate to compensate is overcome and the blood
pressure will start to increase. The project described here was aimed at develop-
ing an alpha 1a partial agonist that could increase pressure in the urinary tract
while avoiding any increase in blood pressure effects, which could be a promis-
ing medicine for stress urinary incontinence [26].
The first compound evaluated, referred to as compound 1, had been used in a

clinical trial to demonstrate that this class of compounds has the potential to
improve the symptoms of SUI [26]. Data pertinent to cardiac safety for com-
pound 1 in humans (i.e., heart rate and supine systolic blood pressure) were
available [23,26]. A preclinical model, the conscious minipig, showed increased
urethral tone at low doses with candidate partial agonists as determined using a
catheter that determined pressure throughout the length of the urethral tract.

60 4 Role of Modeling and Simulation in Toxicology Prediction



With increasing doses of compound 1, the conscious minipig showed first a
decreased heart rate and then eventually an increased blood pressure, as
observed in humans [23,26]. To assess the predictability of the preclinical animal
model, PK/PD modeling was used to compare cardiac safety of the compound in
clinical development, compound 2, in both the minipig model and humans.
Once the predictability of the model was verified, the model was used to assess
the margin of safety in lead optimization candidates to determine which com-
pounds to move forward into clinical development.
The PK/PD analysis began with plotting PD response as a function of plasma

concentrations for individual minipigs. No hysteresis was observed for intraure-
thral pressure (IUP), blood pressure (BP), or heart rate (HR) indicating that the
time course of the effect could be related to the time course of plasma concen-
trations. The data for multiple animals and dose levels were pooled to establish
the PK/PD relationship. The following Hill equations were used to fit the
observed data for PD effects (i.e., ΔIUP, ΔHR, and ΔBP, where the Δ symbol
indicates change from baseline) as functions of plasma drug concentration (Cp):

ΔIUP � Emax;IUP � Cγ
p= ECγ

50;IUP � Cγ
p

� �
;

ΔBP � Emax;BP � Cγ
p= ECγ

50;BP � Cγ
p

� �
;

ΔHR � Emax;HR � Emax;HR � E0;HR
� � � Cγ

p= ECγ
50;HR � Cγ

p

� �
:

The resulting models were used to determine the plasma concentrations that
would result in an efficacious response (i.e., a high enough value of ΔIUP to
result in efficacy) or that would result in a 5 bpm drop in HR or a 5mmHg
increase in BP, which would be considered an unacceptable change in heart rate
or blood pressure.
This PK/PD assessment was useful for the project for several reasons. First, the

modeling allowed a clear assessment of compound efficacy and the safety win-
dow between the plasma concentrations required for efficacy and those that
would result in cardiac safety issues. For compound 1, the safety margin was
about ninefold, that is, the Cp resulting in a 5 mmHg ΔBP was about nine times
higher than the Cp required for efficacy. For candidate compound 2, the safety
margin was lower (5.9) than that for compound 1, but for all other candidates
the margin of safety was higher. Second, the PK/PD modeling could be com-
bined with a human PK extrapolation to provide a clear prediction on whether
efficacy could be achieved in the clinic while avoiding the cardiac safety effect.
For example, compound 3 had rapid clearance and initially there were doubts as
to whether it would be a suitable clinical candidate. But using the PK/PD models
coupled with a prediction of human PK for the compound, it was determined
that the margin of safety was high enough that even with a large peak-to-trough
ratio, compound 3 not only would be efficacious in the clinic, but would also
have a large margin of safety. These parameters have been used to select com-
pounds for preclinical development. Finally, the PK/PD modeling was used to
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provide guidance for the design of some clinical studies. For this guidance, a PK
model was combined with the PK/PD models to simulate certain dose regimens
and dose levels to determine an optimal clinical trial design.

4.5
Application During Clinical Candidate Selection

PK/PD has a great potential to assist clinical candidate selection where numer-
ous factors must be considered and data related to the PK and PD of a com-
pound need to be combined and compared in a rational way. This potential is
illustrated below with a number of examples. Examples are also available in the
literature. For example, Parrott et al. [27] demonstrated the use of combined
PBPK and PK/PD modeling to select the best clinical lead from among five can-
didates. The preclinical data for the five candidates were integrated and the effi-
cacious human doses and associated exposures were estimated (Figure 4.1). The
PBPK models were linked to a PD model so that the dose resulting in a 90%
effect could be identified. This example showed that the PBPK approach facili-
tates a sound decision on the selection of the optimal molecule to be progressed
by integrating the available information and focusing the attention onto the
expected properties in humans. Importantly, the method can include estimates
of variability and uncertainty in the predictions to allow decisions to be based
on significant differences between the compounds.
In another example, a mechanism-based PK/PD model incorporating target-

mediated binding and clearance of the antibody was developed for the candidate
selection stage of backup molecules for omalizumab [28]. The challenge
addressed by the modeling was to understand the relationship between dose,
in vitro affinity, and in vivo efficacy in humans for the follow-up compounds.
The PK/PD model was developed based on clinical data of omalizumab and
in vivo efficacy was based on a surrogate marker of maximum reduction in free
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Figure 4.1 Simulations of exposures at the efficacious human doses for the five candidates.
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IgE level. Unlike other empirical models, the construction of such a mechanism-
based model makes it easy to separate the system/disease parameter from the
drug parameter. As such, the model was flexible enough to account for different
properties from another antibody, including different interactions of the anti-
body in the system including on/off rates from the antigen and capacity-limited
distribution and elimination of antibody. A critical learning based on the sensi-
tivity analysis of the model was that similar maximum reduction of free IgE
could be achieved by half the dose if the antibody affinity for IgE was 5–10-fold
higher than that for omalizumab. Further increase in affinity would not increase
in vivo efficacy. This insight from the modeling could avoid expensive affinity
maturation steps. The resulting model was able to help clinical lead selection of
backup mAb. In addition, the model could be easily adapted for other follow-up
compounds and used to model different disease populations (e.g., different base-
line IgE levels).

4.5.1

Example 2: Translational PK/PD Modeling to Support Go/No Go Decisions

This example summarizes a translational PK/PD approach to rank compounds
based on the anticipated therapeutic window in humans in order to select the
most promising candidate for entry-into-human (EIH) testing. The aim of the
translational PK/PD model was to project the QRS widening in humans at a
concentration that is 30-fold higher than the expected human therapeutic
exposure.
Five drug candidates, which were developed for the same therapeutic indica-

tion, were investigated for cardiovascular adverse effects after oral administra-
tion by gavage in beagle dogs. Telemetry systems were implemented to monitor
cardiovascular parameters with minimal animal disturbance. Baseline subtrac-
tion and normalization by vehicle/placebo were employed to determine the pure
drug effects. QRS widening was apparent for all five compounds. In order to
quantitatively compare the compounds, a PK/PD model was built to relate the
concentration–time course profile to the QRS data. In the second step, the con-
centration was corrected for the unbound fraction and used to simulate the QRS
widening as a function of the free plasma concentration. This allowed to assess
the anticipated therapeutic window in humans, which in turn supported the
decision on testing in humans.
QRS data were modeled assuming a direct and saturating concentration–effect

relationship. An Emax model with Hill coefficient was used:

ΔQRS � Emax � Cγ
p

Cγ
p � Cγ

50
;

where ΔQRS is the increase in QRS duration expressed as individual time-
matched percent change from vehicle, Emax is the maximum effect, C50 is the
concentration associated with half-maximal response, and γ is a slope parameter
(Hill coefficient). Compartmental modeling was applied to describe the PK.
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As a result, the drug potency (C50) in the dog was found to be similar when
accounting for the differences in plasma protein binding. Conversely, the maxi-
mum response (Emax) was found to vary considerably between the drugs, sug-
gesting differences in their intrinsic capacity to produce QRS widening [29]. By
plotting the concentration–response curves for each drug candidate (after cor-
rection for interspecies differences in free fraction), it was possible to visualize
the separation between QRS effects and human target exposures (Figure 4.2).
The efficacious human exposure was based on first human PK prediction to
cover EC90 (∼100 nM or ∼50 ng/ml) over 24 h and corrected for the unbound
fraction. Significant QRS changes were apparent for all the tested compounds at
a 30-fold multiple of the expected efficacious concentrations (corrected for the
unbound fraction).
Assuming that the unbound plasma concentration–QRS response relationship

is similar in the beagle dogs and humans [29], this PK/PD modeling approach
enabled the prediction of QRS widening at selected concentrations that were of
interest, namely, 30-fold the expected human therapeutic exposures. It showed
that the therapeutic index of all tested compounds was less than the 30-fold
multiple, which was considered as reasonable safety margin for humans. In con-
clusion, the translational PK/PD modeling approach led to the decision that
none of the drug candidates were amenable to further development.

Figure 4.2 Simulated QRS widening effects
of compounds 3–7 in the beagle dogs
expressed as percent change from vehicle.
Lines: unbound plasma concentration–QRS

response relationships for the five candidates.
Shaded areas: expected human efficacious
concentration range and its 30-fold multiple.
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4.6
Entry-into-Human Preparation and Translational PK/PD Modeling

Translational PK/PD is a continuous process starting with human projections
during preclinical development and stretching as far as into phase II. While
compound selection is the focus at discovery stages, the attention for EIH shifts
more to questions of safety and study design. In particular, regulatory toxicology
studies (GLP-compliant; phase 0), single ascending dose/multiple ascending dose
clinical trials (SAD/MAD, phase I), and PoC (phase II) studies are concerned.

4.6.1

Selection of Safe and Pharmacologically Active Dose for Anticancer Drugs

Phase I entry-in-human studies with anticancer drugs differ from other phase I
studies in that they are mainly evaluated in patients whose disease condition is
progressive and fatal. The FDA guideline for anticancer pharmaceuticals defines
“the goal of selecting a starting dose is to identify a dose that is expected to have
pharmacological effects and is reasonably safe” [30]. Translational PK/PD
modeling is useful to improve the study design for EIH trials as illustrated in the
examples below. Example 3 shows how biomarker information is collected and
integrated into a model-based approach to project the pharmacological response
in humans. Since most anticancer drugs have a narrow therapeutic window, the
profiling of the therapeutic window in preclinical studies and the prediction to
humans is a critical step. Example 4 illustrates how a translational PK/PD model
for both safety and efficacy can be applied to select the most favorable dosing
regimen in humans.

4.6.1.1 Example 3
Compound X is a monoclonal antibody developed to treat cancer patients. A
PK/PD study was conducted and analyzed to predict the exposure–response
relationship in the cross-reactive species. The proposed PKPD model was scaled
to humans in order to support dose selection and to improve the study design.
Compound X is a noncompetitive antagonist that binds to the receptor Y. In

the absence of drug, the endogenous ligand L binds to its receptor Y and triggers
a signaling cascade that ultimately promotes tumor growth. When drug X is
bound to the receptor, the ligand–receptor interaction is inhibited. The pharma-
cokinetics and pharmacodynamics of compound X were assessed in cynomolgus
monkeys at various dose levels. Compound X showed a nonlinear PK profile
suggesting a target-mediated elimination pathway. An increase in ligand L was
observed after single and repeat administration of compound X and served as a
PD marker to quantify the exposure–response relationship. Receptor-mediated
elimination was assumed to be the major elimination pathway of the ligand,
which is blocked when compound X binds to the receptor. The time course of
the ligand kinetics in cynomolgus monkeys was modeled using a turnover
model. In the absence of drug, a constant baseline level of the ligand is assumed
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due to equilibrium between the zero-order synthesis rate and the first-order loss
rate (kout). The drug action is assumed to block the receptor-mediated elimina-
tion of the ligand. In order to scale this pharmacological effect to humans, the
drug-related parameters (IC50 and Imax) were assumed to be the same between
monkeys and humans. For the ligand baseline level in humans, literature data
were considered and the elimination rate of the ligand was scaled allometrically.
For selection of a start dose, simulation of human PK (Figure 4.3) and PD
(Figure 4.4) responses was performed.

Figure 4.3 Simulated PK response in humans at different dose levels based on a translational
PK/PD model built on monkey data.

Figure 4.4 Simulated PD response in humans at different dose levels based on a translational
PK/PD model built on monkey data.
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The translational PK/PD model was used to design the EIH trial. Selection of
the starting dose and the dosing regimen was supported by the model-based
human PD response prediction. PK and PD sampling time points of the EIH
trials were selected based on the simulated PK and PD profiles to ensure an
informative study design, which allowed to quantitatively assess the PK/PD rela-
tionship in humans.

4.6.1.2 Example 4
Compound A is a targeted anticancer drug with a new mechanism of action.
Antitumor clinical activity has been demonstrated with compound A; however,
prolonged daily administration was poorly tolerated and resulted in treatment
interruptions. Main adverse events in patients were neutropenia and thrombocy-
topenia. Compound B, a backup molecule that exhibits the same mechanism of
action as compound A, was profiled in preclinical studies and thrombocytopenia
was observed as dose-limiting toxicity. A translational PK/PD model was devel-
oped to describe the time course of the drug-induced thrombocytopenia by sep-
arating system-specific (e.g., platelet baseline level, maturation time, rate of
progenitor production, feedback regulation) and drug-specific (e.g., drug
potency) parameters. Human PK of compound B was predicted using a PBPK
model and the time course of drug-induced thrombocytopenia in humans was
simulated by accounting for system-specific differences while assuming drug
potency to be the same between animals and humans [31]. For this simulation
exercise, various dosing schedules were tested, which were predicted to pro-
vide similar anticancer effect. The efficacy projection was based on a semi-
mechanistic PK/PD model that described the time course of drug-induced
tumor growth inhibition in tumor-bearing xenograft mice. As a result, a dos-
ing regimen of 5-day treatment followed by 23-day period of drug holiday per
cycle was predicted to be most favorable in humans and was subsequently
implemented in the EIH trial.

4.6.2

PK/PD for Toxicology Study Design and Evaluation

Among the different observations made in toxicology studies, often only few are
amenable for PK/PD modeling and even less can be predicted beforehand to
improve the toxicology study design. Therapeutic proteins and monoclonal anti-
bodies in particular are an important exception to that rule, since toxicity is
often driven by exaggerated pharmacology.

4.6.2.1 Example 5
For compound A, target-related toxicity was anticipated based on observations
from different compounds sharing the same or similar mechanism of action.
However, the signs of toxicity seen in the study appeared later and were much
less pronounced than expected. Retrospective comparison with two similar com-
pounds showed that (1) for compound B, which has ∼10× higher affinity than
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compound A, the time of appearance of toxicity seemed to decrease with dose
(with a lag of ∼2 months at the lowest dose); and (2) for compound C, which
has more than 100× higher affinity than compound A, the time of appearance of
toxicity did not depend on dose and was similar to that reported for the highest
dose of compound B (1–2 weeks), suggesting that the appearance of this type of
toxicity depends on the ratio of exposure and the dissociation constant at the
target, that is, on target occupancy.

4.6.2.2 Example 6
Compound M, a monoclonal antibody, depletes its target from the blood.
The original toxicology study was planned with a 13-week duration with
weekly dosing at 100mg/kg and a 13-week wash-out/recovery phase. With
the available data from a single-dose PK study, in which the target was moni-
tored and compared with existing models for similar compounds, it was pos-
sible to construct a turnover model for the target with a stimulated depletion
by the compound. With this model, it was shown that the clinical observa-
tion had to extend until at least week 40 of the study to see partial recovery
of the target, which was later confirmed. This showed furthermore that the
slow recovery of the target is not due to any unexpected toxicity but is likely
to be the normal result of pharmacological activity. This knowledge can be
somewhat counterintuitive and would have been difficult to predict without
quantitative modeling.

4.6.2.3 Example 7
Rich PK/PD data are usually available in telemetry studies monitoring cardiac
safety. Accurate interpretation of such studies is complicated by interindividual
variability of PK, interindividual variability of PD baseline values and PD suscep-
tibility, circadian baseline variations, and time lag of the PD response with
respect to PK. A PK/PD modeling approach was used in two recent projects
with the benefit of objectively quantifying the exposure–response relationship.
In this example, the compound was efficacious in an animal model of depression
and pain. The compound was found to be a moderate inhibitor based on an
in vitro hERG assay and estimated to have sufficient safety margin. However, the
compound showed a tendency to prolong QTc interval in a dog telemetry study.
The challenge was to understand the mechanism of QT liability and to devise a
strategy/screening assay for the backup compounds. There appeared to be some
dissociation between concentration profile of parent compound (Tmax: 1–2 h)
and onset of QT effect (7–8 h postdose). A major metabolite was identified (30–
40% of the parent in dogs), where the QT effect more closely coincided with the
metabolite exposure profile.
The impacts of PK/PD modeling on the investigation into key mechanistic

effects in this example can be seen from several aspects. Perhaps most signifi-
cantly, the compartment modeling collapsed the hysteresis loop (effect versus
concentration profile of parent compound) resulting in a profile more closely
related to the concentration–time profile of the metabolite. Hence, this analysis
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strongly supported the key hypothesis that the metabolite was responsible for
the observed QT effect in vivo.

4.7
Justification of Starting Dose, Calculation of Safety Margins, and Support of Phase I
Clinical Trial Design

Dose selection crucially depends on safety and efficacy projections. For example,
the EMEA guideline regarding the first dose in humans [32] states “The estima-
tion of the first dose in human is an important element to safeguard the safety of
subjects participating in first-in-human studies. All available information has to
be taken in consideration for the dose selection and this has to be made on a
case-by-case basis.” At the simplest level, this is done by projecting PK (using
PBPK or other approaches) and relating Cmax and AUC for safety (typically from
the no observable adverse effect level (NOAEL), adjusted for species differences
and with additional safety factors applied) or Cmin and AUC for efficacy (typi-
cally inferred from an animal model). Even though quantities such as Cmin for
efficacy might be derived from PK/PD in animal models, this approach does not
deserve the label of PK/PD since it falls short of many important aspects of drug
action. PK/PD modeling using safety endpoints has been used successfully to
analyze ECG alterations during telemetry studies in animals as described in the
previous section.
With respect to compounds for which “factors of risk” have been identified

according to the EMEA Guideline on Strategies to Identify and Mitigate Risks
for First-in-Human Clinical Trials with Investigational Medicinal Products [32],
dose calculation should additionally rely on the MABEL (minimal anticipated
biological effect level). Even without such known risks, health authorities have
requested the calculation of MABEL in some recent examples of therapeutic
proteins. The guideline specifies “The calculation of MABEL should utilize all
in vitro and in vivo information available from pharmacokinetic/pharmaco-
dynamic (PK/PD) data such as:

1) target binding and receptor occupancy studies in vitro in target cells from
human and the relevant animal species;

2) concentration–response curves in vitro in target cells from human and the
relevant animal species and dose/exposure–response in vivo in the relevant
animal species.

3) exposures at pharmacological doses in the relevant animal species.

Wherever possible, the above data should be integrated in a PK/PD modelling
approach for the determination of the MABEL.”
Limited practical experience shows that a unique estimate of MABEL is often

difficult to achieve due to disparities between, for example, in vitro receptor
binding, in vitro cellular assays, and in vivo animal models. Taken to the letter,
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that is, when the above-mentioned “factors of risk” have been identified, the low-
est of these values is relevant and additional safety factors may be applied. In
other cases, these estimates may seem exceedingly low considering the following
limitations: technical (difficulty to provide formulations at very low doses, diffi-
culty to assess exposure), ethical (if the study is done in patients, many patients
are treated without likely benefit), operational (difficulty to recruit additional
cohorts, especially if the study is done in patients), and economical (long dura-
tion of trials).
At this stage, all available preclinical (in vitro and in vivo) information is consid-

ered to estimate an efficacious dose for humans. If a PK/PD model can be estab-
lished to relate exposure at the target site and target effects (as inferred from
in vitro assays) in animal models, then this model can be used for translation to
humans by adapting the species-specific factors such as metabolism, protein bind-
ing, receptor affinity, and so on. Ideally, if receptor occupancy as calculated from
target organ exposure, protein binding, and receptor affinity adequately predicts
the outcome of a behavioral test in animal models, there is a certain degree of con-
fidence that a useful prediction of the efficacious dose in humans can be made by
predicting receptor occupancy in humans. An obvious premise to do so is that the
animal model in question can be considered relevant for the human disease.
The first hurdle to take is the estimation of the exposure at the target site. In

the cases where the target compartment is in rapid exchange with circulating
blood, it is assumed that the effect is driven by the unbound concentration of
compound in the blood. This becomes critical in cases where the relevant phar-
macological concentrations are impossible or difficult to assess either because of
low penetration or because the pharmacological activity is driven by a
(unknown) fraction of the compound present in the organ/tissue. This situation
can be found when targeting the brain with small molecules (unknown free frac-
tion) or with therapeutic proteins (unknown penetration), targeting tumors (lim-
ited by binding barrier, interstitial fluid pressure, “mechanical”), and targeting
liver (unknown transport, metabolism, protein binding). Where this information
is missing, mechanistic models have been built to estimate relevant exposure and
possible delays of drug action and to identify limiting factors with large differ-
ences between species, phenotype, or influence of comedication.
At the target level, species differences of binding affinity at the target need to

be taken into account. Furthermore, often only unbound compound confers
pharmacological activity, and factors such as plasma protein binding have to
be considered.

4.8
Outlook and Conclusions

In summary, the consideration of DMPK and physicochemical properties as part
of the drug discovery and development process has substantially improved
the quality of drug candidates, especially their pharmacokinetic properties. The
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main reason for attrition in development is now related to safety and efficacy,
and the current challenge is to establish a relationship between pharmacokinetic
and pharmacological/safety endpoints starting from early discovery stages. Histori-
cally, empirical models were applied to address these questions. However, we sug-
gest that more mechanism-based models are needed to support preclinical drug
discovery and early development. In this chapter, several PK/PD models were pre-
sented that have been applied from drug discovery up to phase II. These mathe-
matical models represent an important component of translational research,
improving the efficiency of drug discovery and early development stages.
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5
Genomic Applications for Assessing Toxicities
of Liver and Kidney Injury
Philip Hewitt and Esther Johann

5.1
Introduction

5.1.1

Toxicogenomics in Drug Development

The scientific field of classical toxicology investigates the potential adverse
effects resulting from exposure to chemical, biological, or physical agents. In
drug development, these effects are evaluated by various short- and long-term
exposures in different species and multiple endpoints, including organ weights
or biochemical or histopathological alterations. These harbor inherent disadvan-
tages, such as being time and cost intensive, as well as limited extrapolation
power to humans, thus forming the chokepoint in drug discovery and develop-
ment processes. In addition, these current observations provide only limited
information about the underlying mechanism of a drug’s toxicity.
The complete understanding of the adverse effects a drug may cause can only

be achieved with the knowledge of its mode of action. It is expected that drugs
can interact with a variety of molecules in an organism or specific tissue, includ-
ing hitting various pathways that may cause alterations in gene expression levels
and the subsequent modifications of the translated protein. These alterations
finally lead to a pathological outcome, which can be either reversible or not.
These adverse response molecular mechanisms are much more sensitive com-

pared with the classical endpoints of pathological observations. Furthermore, it
has to be emphasized that changes in gene expression levels caused by a drug do
appear much earlier, meaning that for toxicological investigations, fewer doses
and treatment times may be needed. Together with the development of innova-
tive technologies, as well as the increasing knowledge in genomics, these
approaches raise the hope for a much improved, cost-effective and time-saving,
and thus more efficient drug development process (Figure 5.1).
The combination of gene expression profiling technologies and toxicology

has led to the scientific discipline of toxicogenomics [1,2]. Toxicogenomic
approaches allow a more complete understanding of the underlying mechanisms
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of both pharmacology and toxicology than the classical toxicological assessment
strategies.
These new technologies, when taken together with new bioinformatics tools

that have been developed to analyze the flood of gene expression data, allow the
comparison of thousands of genes. This results in the gathering of extraordinar-
ily large amounts of data in just one single experiment, for example, the compar-
ison of treated and untreated groups, thus providing an integrated retrieval of all
cellular responses to drug exposure. Many researchers have been working on
comparing expression profiles of drug candidates with those of toxicologically
well-characterized reference compounds to classify new drug candidates and
help prioritize the most promising structures [3].
One key drawback of measuring expression levels of genes alone is that no

simple extrapolation to the levels of the encoded proteins is possible, since the
“one gene–one protein” hypothesis is outdated. The mRNA of an expressed
gene does not necessarily result in one protein due to a variety of modifications
at different levels of processing that may lead to proteins with various functions
or even a lack of transcription by silencing RNA (siRNA) or microRNA
(miRNA). Therefore, the field of toxicogenomics is inseparably linked to other
omics disciplines, focusing on what happens after expression, namely, proteo-
mics and metabol(n)omics (Figure 5.2). Proteomics, for example, deals with the
separation, quantitation, functional characterization, and regulation of all aspects
of expressed proteins. Metabol(n)omics deals with physiological profiling and

Figure 5.1 Network of toxicokinetics (uptake, distribution, and metabolism of a drug) and
toxicodynamics (drug- or metabolite-induced responses and changes). Toxicogenomics may
help to get deeper insights into the variabilities within this network on different levels.
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the metabolome can be considered to be the collection of all endogenous metab-
olites in a biological cell, tissue, organ, or organism, which are the end products
of all cellular processes.
These technologies have great utility in preclinical test strategies since

repeated administrations of low doses, mimicking the therapeutic range of a new
drug, as well as of high doses for the distinct identification of toxic effects are
tested in early phases of drug development. Thus, genomic (transcriptomic, pro-
teomic, and metabolomic) data of low-dose applications provide a promising
tool for the detection of the relationship between changes in gene expression
and a pathological outcome. Any alterations of specific, key molecules either at
the messenger RNA (mRNA) level or at the protein level can then be linked to
the toxicological and/or pharmacological endpoints observed in classical in vitro
and in vivo studies. By the comprehensive evaluation of these large amounts of
data, hypotheses about the mode of action can be generated.
Besides the enormous advantages provided by these different genomic

approaches, these are also challenges in utilizing these types of data, and will be
addressed later on in this chapter.
In the following sections, the different mRNA expression array methods are

introduced and subsequently the feasibilities and limitations of these technolo-
gies are discussed for the assessment of adverse effects in two of the major
affected organs due to drug exposure, namely, the liver and kidney.

5.2
Toxicogenomic Approaches

5.2.1
High-Throughput Expression Profiles and DNA Microarrays

The increasing availability of whole-genome sequence information from various
species has allowed the development of a multitude of DNA microarrays. These
arrays enable one to quantitatively compare the transcriptional activity of poten-
tially tens of thousands of genes between any biological samples, for example,

Figure 5.2 Overview of the different molecular levels of omics technologies and the strong
linkage between these.
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drug treated versus untreated. Nowadays, a variety of vendors offer microarray
platforms, and although different technical platforms exist, they all follow similar
basic principles of array technology. The basic setup of a DNA microarray is a
small, solid chip, onto which numerous (hundreds to tens of thousands) oligonu-
cleotides or copy DNAs (cDNAs) are covalently bound. Each nucleotide
sequence thus represents an individual gene and is placed at a defined position
on the chip. Isolated RNA, either mRNA or total RNA, from the tissue and spe-
cies of interest can then be converted to cDNA by reverse transcription, fluores-
cently labeled, and hybridized to the microarray. Despite all of the potential
problems associated with sample isolation and preparation, there are also other
aspects, which may affect gene expression data. For instance, the experimental
conditions under which the model systems (in vivo and in vitro) are kept are of
importance. Factors such as age, gender, feeding state, or medium composition
have an influence on gene expression levels. It is important to consider all these
sources of variation when performing gene expression profiling.
Detailed descriptions of these techniques and their applications are given else-

where [4–8].

5.2.2

Data Analysis

The successful application of toxicogenomics for the better understanding of
organ toxicities highly depends on proper data analysis. Regarding the tens of
thousands of data points generated by one high-density microarray, the major
challenge is using the correct analysis. A variety of different bioinformatics tools
exist and generally the analysis of such large amounts of data can be done by
using several methods. It is possible to not only detect the genes related to sub-
stance-induced toxicity, but also perform class comparisons of different expres-
sion profiles induced by different classes of toxicants. For the prediction of
possible hepatotoxic effects, these applications are important and the use of
training databases constructed from gene expression profiles of known toxicants
is needed. Training sets can be created by microarray analysis of tissues exposed
to various toxicants with known toxic profiles compared with untreated controls.
New and unknown compounds can then be tested in the same tissues and the
expression patterns compared. Therefore, it is important to have rigid/controlled
experimental conditions, since these may have a significant influence on the
gene expression changes and subsequently any potential classification. The so-
called unsupervised techniques do not need previously generated data of known
hepatotoxicants. These techniques are used to find expression patterns and rela-
tionships in data sets without classifying them.
One of these techniques is called principal component analysis (PCA), an

approach used to reduce the dimensionality of these complex data sets [9].
Generally, three components can be used to visualize samples on three-
dimensional plots and similarities of gene expression between different biologi-
cal samples observed as clusters. A very common approach is the hierarchical
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clustering method, which can be very useful to characterize the number of clas-
ses of genes represented by the treatments (class discovery).
An example of a bioinformatics technique widely used for the prediction of

complex data sets is the “support vector machine” (SVM) algorithm. SVMs are
supervised learning models with associated learning algorithms that analyze data
and recognize patterns, and are used for classification and regression analysis. A
SVM training algorithm can build models that then classify new samples into
one category or another, already defined by the user.
Another approach is given by relevance networks, which analyze microarray

data at the genome level by comparing genes in a pairwise manner and sub-
sequently calculating correlation coefficients and threshold values. Pairs above
the threshold values are then kept and posed as nodes. Thus, a gene could
be directly or indirectly linked to other genes as well as to phenotypes.
Combining these different techniques for the analysis of high-quality data will
identify specific expression patterns of classes and also the classification of
unknown compounds.
To aid in the proper evaluation of these new techniques, the Food and Drug

Administration (FDA) set up the MAQC (MicroArray Quality Control) Consor-
tium. The first phase (MAQC-I) was set up to provide QC tools to avoid proce-
dural failures, as well as to provide guidelines for microarray data analysis. In
addition, the advantages and disadvantages of the various platforms and analysis
methods were evaluated [10]. The second phase of the MAQC project (MAQC-
II) aimed to assess methods in developing and validating microarray-based pre-
dictive models. “Best practices” for such predictive models were established and
published a few years later [11].

5.3
Specific Applications of Toxicogenomics

5.3.1

Mechanistic Toxicogenomics and Risk Assessment

The knowledge of how a compound exerts its pharmacological and toxicological
effects and how to distinguish between these is of major importance in drug
development. There exist many difficulties for revealing relevant mechanistic
information, for example, the determination of time and doses at which changes
are meaningful. In addition, it is important to be aware that for a given time
point more than one relevant mode of action might be present (on-target, off-
target) and it should also be kept in mind that one expression profile only
resembles a snapshot in time within the cell/organ/organism. The elucidation of
a compound’s mechanism can also be used to predict the toxicity of a com-
pound, being possible by the identification of signatures caused by model toxi-
cants and comparing expression patterns of unknown compounds. Therefore, it
is important to generate these signatures based on an extensive training set of
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model compounds with well-defined outcomes. The mechanistic understanding
of a new drug’s toxic liability has become more important for the risk assessment
process. By working together with pathology and toxicology, the changes in
expression levels can be used to create a meaningful context to help explain any
pathological changes observed.

5.3.2

Toxicogenomic Profiling of Hepatotoxicity

5.3.2.1 Hepatotoxicity in Drug Development
The liver is the major organ of endogenous metabolism and it is also responsible
for the metabolism of xenobiotics and facilitates the detoxification of toxicants.
Therefore, the liver itself is often more exposed to xenobiotics than other organs
and remains one of the main targets of many potential adverse effects. Drug-
induced hepatotoxicity is a common issue in drug development and frequently a
cause of liver injury, and accounts for a large proportion of acute liver failures
worldwide. In addition, drug-induced idiosyncratic hepatotoxicity is the most
common cause of postmarketing drug withdrawal, emphasizing that it is critical
to identify potential signals of hepatotoxicity early in preclinical and early clinical
trials during drug development.
Due to this sensitivity to adverse drug reactions, toxicogenomic approaches

provide a useful tool for the early and sensitive detection of changes in gene
expression caused by drug candidates prior to pathological manifestations, at
subtoxic doses. The investigation and understanding of how drug-induced hepa-
totoxicity develops on a molecular level can now be performed in a routine and
well-controlled manner.
The fast emerging platforms of commercial vendors also allow the comparison

of expression responses to xenobiotic exposure across species, thus providing a
more comprehensive analysis, which is important for toxicological assessments,
as animals (e.g., rodents and dogs) are used. When it comes to the liver, the
hepatic transcriptome is complex and functional genomic approaches have led
to the identification of issues in investigating the liver and its drug-induced path-
ogeneses with focus on the molecular pathways subsequently leading to hepato-
toxicity. These investigations also help clinicians to better adapt therapies, since
different phenotypes may have a greater or lower risk for adverse effects.
In the following sections, the functional and structural properties of the liver are

briefly discussed and toxicogenomic approaches are summarized subsequently.

5.3.3

Functional and Structural Properties of the Liver

The overall conception is that changes in gene expression profiles may indicate
toxicity at an early stage due to xenobiotic-mediated changes in gene expression
levels, which are mostly detectable prior to pathological alterations [12]. Second,
the detection of gene expression changes occurs not only at toxic doses but also
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at subtoxic doses, which has the potential advantage of identifying those com-
pounds that cause chronic hepatotoxicity. Toxicogenomic investigations con-
cerning hepatotoxicity have been in focus, since the liver is the main organ of
xenobiotic metabolism.
In addition to the complexity and variety of functions of the liver, its architec-

ture is unique, macroscopically divided into lobes and lobules that appear to
have the same histological morphology consisting of multiple units defined by a
central vein, surrounded by four to six portal areas [13]. These structural units
consist of up to 15 different cell types and differing functional properties
depending on the localization within the lobule. Keeping these fundamental
properties in mind is essential for the understanding of liver function as well as
of response processes leading to toxic effects. Due to these unique properties,
the liver transcriptome is not yet fully understood and shows high complexity
regarding the fact that it includes up to 40% of the approximate 50 000 mamma-
lian genes [14], thus making toxicogenomic approaches complicated. Many
interactions may be context specific, depending on different components that
are active at certain cellular stages, polymorphisms, and/or the present composi-
tion of cell types. In addition, the transcriptome of the liver can double or triple
in a diseased state or a state of drug response.
Exogenous factors such as age, gender, nutritional state, or alcohol intake can

have a remarkable impact on the hepatic gene expression. All these factors may
have an influence on genomic data and therefore pose as possible confounding
factors that should be taken into account when analyzing gene expression data.

5.3.4

Liver Morphology

The blood supply is provided by two main vessels, hepatic artery and portal
vein, and the blood flow to or from the lobe can underlie individual varia-
tions in different species [15]. Differences in the primary source of blood
flow have an influence on the hepatic response to drug exposure [16]. For
instance, the variation of localization of the blood flow may have an impact
on the distribution of nutrients, xenobiotics, and their metabolites within the
liver lobes, which may lead to lobe variations [17–19]. An example for this is
the lobe-specific accumulation of heavy metals during diseases and liver
development [20–22] as well as the lobe-specific differences in the develop-
ment of liver cirrhosis [23], and the differential response to several carcino-
gens has also been reported [24].
This has also been shown using toxicogenomics, where transcriptional

profiling of controls and acetaminophen (APAP)-treated rats also elucidated a
clear lobe–lobe variation [25]. Malarkey et al. [26,27] could also detect a lobe
variation in the severity of APAP-induced necrosis. This clearly shows that the
tissue areas from which the samples for gene expression profiling are taken
could have a significant influence on the data interpretation and potentially gen-
erate false conclusions.
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5.3.5

Cell Types

For the analysis of hepatogenomic data, the proper understanding of the differ-
ent cell types present in the liver is essential when considering the fact that each
cellular compartment has a different gene expression. Furthermore, the cell
composition can alter during a diseased state, thus having an impact on the tran-
scriptome. There are at least 15 different cell types present in the liver [26,27],
which can be separated into two main groups: parenchymal and nonparenchy-
mal cells. Hepatocytes display the parenchymal part and represent about 60% of
the total liver cells, whereas a variety of nonparenchymal cells are present having
different functionalities, for example, Kupffer cells, hepatic stellate cells, or
sinusoidal endothelial cells. All these different cell types influence the transcrip-
tome depending on the different proportions during healthy or diseased states,
thus having an influence on genomic data.

5.3.6

Functional Gradients

Due to the unique architecture of the liver, it has to be taken into account that
functional gradients exist, which may have an impact on genomic data [16,28].
Most xenobiotics are metabolized to either detoxified or active metabolites,
most commonly by cytochrome P450s (CYPs), of which a large number of iso-
enzymes exist. Jungermann and Katz [29] could determine that CYP expression
levels vary within the microstructure of the liver, with a higher preference of
CYPs in centrilobular hepatocytes. This may explain the regionally differing sus-
ceptibilities to hepatotoxicity in response to certain drug treatments.
There are also differences in certain physiological properties, such as oxygen

saturation and metabolic activity [30], which can have an impact on gene expres-
sion profiles. In addition, it has also been reported that number, size, and meta-
bolic activity of nonparenchymal cells vary regionally and again can influence
any transcriptional changes.

5.4
Toxicogenomic Applications for the Better Understanding of Hepatotoxicity

5.4.1

Mechanistic Toxicology

In response to injury, the changes at the mRNA and protein levels precede the
response at the physiological level. The mechanisms leading to toxic endpoints
at the physiological level may be reconstructed by the examination of gene
expression changes [31–33]. The early toxicogenomic studies demonstrated its
value for the elucidation of the mechanisms of response to toxicants [34–37].
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For example, Burczynski et al. [38] distinguished two mechanistically un-
related classes, cytotoxic anti-inflammatory drugs and genotoxic agents, based
on a cluster-type analysis of expression patterns in HepG2 cells exposed to vari-
ous compounds, thus establishing an approach for toxicogenomics-based dis-
crimination of mechanisms.
The question whether genotoxic carcinogens lead to deregulation of genes

involved in common pathways at an early time point of drug exposure was inves-
tigated by Ellinger-Ziegelbauer et al. [39] in order to get a better insight into
mechanisms leading to tumor formation in the liver. Here, rats were exposed to
four different carcinogens and all four compounds led to responses to DNA
damage, detoxification, and survival/proliferation pathways. In addition, necrotic
inflammatory response at the gene expression level correlated with histological
findings of necrosis and inflammation for two compounds. Thus, the identifica-
tion of a particular combination of mechanisms for the characterization of the
early response to this class of compounds could be detected.
McMillian et al. [40] investigated drug-induced oxidative stress in the rat liver

by using toxicogenomic approaches. They established expression signatures of
macrophage activation using a training compound set. Subsequently, these
expression patterns were used to identify macrophage activator (MA)-like com-
pounds, such as CCl4, gadolinium, coumarin, and several nonsteroidal anti-
inflammatory drugs (NSAIDs).
By using this strategy, expression patterns for peroxisome proliferators (PPs)

were also investigated. For the discrimination of expression signatures of oxida-
tive stress, a large number of training compounds were used, since oxidative
stress is induced by different pathways and also many different forms exist
(reactive metabolites, redox cycling, glutathione (GSH) depletion, phase II
induction, etc.). In addition, these authors reported that many genes involved in
the response to oxidative stress were regulated by one single transcription factor,
nuclear factor-like 2 (Nrf2), which binds to the antioxidant response element
(ARE). ARE is known to play an important role in the induction of phase
enzymes as well as in the management of oxidative stress [41]. By the use of
these oxidative stress signature genes, the macrophage activator-like compounds
clustered together, but away from the oxidative stress signature. Correspond-
ingly, oxidative stress samples were discriminated from most other samples by
using a set of six Nrf2-inducible genes, whereas MA samples generated different
expression patterns and peroxisome proliferators were close to the control sam-
ples. Using the MA set, some PP-treated samples clustered together, but away
from MA-treated samples, mostly due to opposite regulation of genes involved
in β-oxidation of fatty acids.
Taken together, toxicogenomic approaches provide important insights into the

possible mechanisms involved in the toxic pathways of hepatotoxicants,
although additional studies are needed to better define and understand these
mechanisms of toxicity.
Several other publications have confirmed the value of toxicogenomics to con-

firm various mechanisms of liver toxicity – especially in the rat. These include
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mechanisms related to changes in fatty acid β-oxidation and lipid metabolism,
peroxisome proliferation, oxidative stress and glutathione depletion, disruption
of mitochondrial homeostasis, or hypoxia [42–46]. Blomme et al. [47] worked
on understanding the mechanism underlying drug-induced microvesicular stea-
tosis caused by cyclopropane carboxylic acid (CPCA) using transcriptomic tech-
niques. In the liver of rats treated with CPCA, but not the butyrate derivative,
genes encoding enzymes involved in mitochondrial β-oxidation, including acyl-
coenzyme A, dehydrogenase, and carnitine palmitoyltransferase I, were strongly
downregulated. CPCA treatment upregulated several genes involved in apopto-
sis, for example, c-myc, cytochrome c, and Bax. These data confirmed previous
studies that demonstrated that mitochondrial damage is an important mecha-
nism for the development of microvesicular steatosis [48,49].
Suter et al. [50] generated microarray data of Ro 65-7199-treated rats. Ro 65-

7199 is a serotonin receptor 6 (5HT-6 receptor (5-hydroxytryptamine 6 recep-
tor)) agonist used for the treatment of cognitive disorders. This receptor is
mainly expressed in the brain, but has also led to fatty liver changes in rats.
Microarray data revealed a downregulation of genes involved in lipid homeosta-
sis and an upregulation of CYP2B2. Using the same compound, investigations
have been made in an in vitro approach using primary rat hepatocytes [42].
They also observed a downregulation of genes involved in β-oxidation and upre-
gulated expression of CYP2B2. Thus, this is a good example for how toxicoge-
nomics can be used for discovery research; in particular, it may provide a basis
for screening approaches in preclinical drug development.

5.4.2

Class Identification

The use of toxicogenomics leads to the possibility for a more advanced under-
standing of how drugs modulate gene expression levels, thus leading to organ
toxicities. Structurally differing compounds may induce the same response path-
ways leading to similar toxic endpoints. Based on this principle, intensive investi-
gations are being made using expression profiles of chemically different
compounds and comparing these signatures according to their toxicological
endpoints. For example, Hamadeh et al. [34,36,37] were one of the first groups
to try this approach and focused on a rat model. Different chemical classes were
included and cluster analysis demonstrated a close similarity of expression pat-
terns for peroxisome proliferator inducers, but which clustered away from the
pattern of the cytochrome P450 inducer, phenobarbital. This suggests that it
might be possible to implement these approaches for the classification of novel
compounds with other specific hepatotoxicity mechanisms. These authors also
addressed the question whether it is possible to distinguish unknown com-
pounds by comparison of the two chemical classes and investigated blinded liver
samples of Sprague Dawley rats treated with chemicals and four known com-
pounds as a training set. Data analysis revealed that 22 genes clearly exhibited
different expression patterns between the two classes of compounds. With this
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approach, they could successfully identify the classes of 12 out of 13 blinded
samples. McMillian et al. [51] used this approach and classified three classes of
hepatotoxicants successfully by their gene expression signatures. These studies
demonstrated the possibility of both the prediction of properties using gene pro-
filing and the prediction of the class of unknown compounds by using toxicoge-
nomic methods.

5.4.3

Predictive Toxicology

This approach assumes that similar treatments leading to the same toxic end-
points may show the same changes in gene expression. Therefore, compound
groups or classes (classified by properties such as structure, toxic endpoint,
mechanism of action, or target) may induce characteristic expression patterns
leading to the assumption that toxicogenomic approaches are able to predict
toxic effects of unknown compounds. A strong correlation between classical
endpoints of toxicity and gene expression changes has been reported [52]
and additionally cDNA microarray analysis confirmed the observed histo-
pathological findings such as necrosis and hyperplasia in a dose-dependent
manner [34,36,37].
Ruepp et al. [53] constructed a large database with liver gene expression pro-

files from vehicle and treated samples, and a SVM algorithm was used to gener-
ate classification “rules.” Using this approach, toxicity was detectable at an early
stage of drug response before any other toxicological changes occurred. Based
on histopathology and clinical chemistry, five classes were identified:

� Controls.� Direct acting.� Cholestasis.� Steatosis.� Peroxisome proliferation.

Using the SVM-based model, Ruepp et al. [53] identified a potential hepato-
toxic response of tacrine after 6 h from gene expression profiles prior to patho-
logical findings. But toxicogenomic assessment did not reveal toxicity after 24 h,
which implies the need for time course studies in order to better assess the out-
come of toxicogenomic studies.
Zidek et al. [54] used a bead-based Illumina oligonucleotide microarray con-

taining 550 liver-specific genes to establish a predictive screening system for
acute hepatotoxicity in vivo (rat). Differential gene expression profiles of well-
known hepatotoxic (6) and nonhepatotoxic compounds (6) were generated
from liver of Sprague Dawley rats after 6, 24, and 72 h. Based on leave-one-out
cross-validation analysis, gene expression profiling allowed the accurate dis-
crimination of all model compounds, 24 h after high-dose treatment. During
the regeneration phase, CCl4, α-naphthyl isothiocyanate (ANIT), and APAP
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were predicted to be hepatotoxic, where only these compounds showed histo-
pathological changes. Furthermore, 64 potential marker genes responsible for
class prediction were identified, which reflected typical hepatotoxic responses.
These models are able to classify hepatotoxicants into distinct classes, but in

reality hepatotoxicity caused by chemicals often consists of a mixture of toxicities.

5.4.4

In Vitro Classifiers of Hepatotoxicity

Cha et al. [55] have recently identified a classifier for hepatotoxicity predic-
tion, specifically for NSAIDs by analyzing differential gene expression profiles
in HepG2 cells. A hepatotoxicity prediction model based on eight positive
compounds was built and 77 specific genes identified as being predictive.
These genes and pathways, commonly regulated by hepatotoxicants, may be
indicative of the early characterization of hepatotoxicity and possibly predic-
tive of later hepatotoxicity onset. Four test compounds, including hepatotoxic
and nonhepatotoxic NSAIDs, were used for validating the prediction model
and the accuracy was 100%. Even though these results are promising, the
gene expression of HepG2 cells does vary greatly from the situation in the
liver. The reliability of this small data set and the relevance of the gene sig-
nature for the situation in hepatocytes or in vivo will have to be confirmed in
the future. Chen et al. [56] published a study in which a cell-based molecular
predictor of hepatotoxicity was developed (based on in vivo rat and in vitro
human data), and tested this signature against data from more than 160
diverse compounds. They were able to predict in vivo acute hepatotoxicity
from an in vitro cell model.
In a recent publication, in vitro and molecular techniques were combined to

establish a new in vitro model for toxicological screening [57]. Similar tech-
niques have been reported before; however, the combination used here was
novel and the data set used was more comprehensive than other smaller studies,
which addressed only very specific questions [58,59]. The key objective of this
study was to determine whether it is possible to distinguish between hepatotoxic
and nonhepatotoxic compound-based gene expression data from long-term
exposed in vitro cultured rat hepatocytes.

5.4.5
Biomarker Identification

Drug-induced hepatotoxicity is a common cause for liver injury and specific
biomarkers, which indicate these alterations, are a useful tool to monitor
the possible occurrence of liver injury in the clinic. The traditional biomarkers
in the clinic are serum alanine transferase (ALT) and aspartate amino-
transferase (AST) [60]. However, these biomarkers are neither very sensitive
nor specific, since changes may occur only after long dosing periods or may
be influenced by other factors. The current biomarkers represent clinical
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chemistry endpoints, which display secondary effects of toxicities at late
stages. Second, these biomarkers are mostly based on single molecules that
can also be altered depending on factors such as age, nutritional state, and
alcohol intake. Genomic biomarkers are more reliable and sensitive and com-
binations of functional and morphological markers would represent an
attractive approach for the detection of hepatotoxicity at early stages or in
short-term studies. Therefore, toxicogenomics could provide a more sensitive
identification and characterization of specific biomarkers, preferably after
exposure to low doses and in early stages of drug exposure.
The development of new biomarkers requires an appropriate repository,

including the gene expression patterns of multiple, structurally different com-
pounds with similar modes of toxicity as well as nontoxic compounds. Computa-
tional algorithms can then be used to train a set for the identification of genes
specifically deregulated by the compound class. Validation and the understand-
ing of accuracy, sensitivity, and specificity can be achieved via the generation of
new gene expression profiles using compounds not used in the training of the
model [61].
Heijne et al. [62] investigated bromobenzene-induced hepatic necrosis and

revealed altered gene expression levels and metabolites related to the severity of
necrosis, thus providing putative novel biomarkers. Therefore, some effects on
the expression levels were identified early (6 h) after treatment when no other
marker indicated hepatotoxicity. The combined analysis of expression changes
and plasma metabolomics showed its ability to detect hepatotoxicant-related
changes more sensitively. Since toxicogenomic approaches display a variety of
effects, it is essential to understand whether an effect is specific and also associ-
ated with toxicity. For the investigation of specificity, Heijne et al. [62] compared
the gene expression pattern of low-dose bromobenzene with those of model
hepatotoxicants, bromobenzene and acetaminophen at high doses. Expression
changes in response to low-dose bromobenzene were related to pathways of bio-
transformation as well as physiological pathways such as fatty acid and choles-
terol metabolism, thus showing a substantial overlap with those of high-dose
bromobenzene and acetaminophen. This shows that comparing low-dose
responses with those of high-dose model hepatotoxicants aids in the identifica-
tion of new biomarkers.
Biomarkers also display a useful tool to provide better mechanistic under-

standing. For instance, Ruepp et al. [53] investigated genomic classifiers for stea-
tosis derived from expression profiles of rat livers exposed to various model
compounds. Three proprietary antidiabetics were identified as steatotic using
these markers. Histopathology showed steatotic alterations for two compounds,
whereas the third compound was further investigated by various chemical assays,
which confirmed the steatotic liability. Furthermore, a repeated dose study in
dogs revealed a steatotic potential for the third compound.
This illustrates that these markers are able to identify the adverse potentials of

a compound at early stages as well as provide an improved extrapolation of toxic
effects across species.
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5.5
Toxicogenomic Profiling of Nephrotoxicity

In addition to the liver, the investigation of possible adverse effects of a drug on
the kidney is also of major concern during drug development due its variety of
functions in homeostasis and the excretion of drug metabolites and endogenous
waste products. The kidney performs a wide range of functions, being essential
for the regulation of a constant extracellular environment as well as the mainte-
nance of metabolic homeostasis. Therefore, the kidney is one of the routinely
assessed organs during preclinical safety assessment.
However, during preclinical development only 7% of drug candidates fail due

to nephrotoxicity [63]. In contrast, the incidence of patients developing acute
kidney injury (AKI) in intensive care units is between 30 and 50% [64], leading
to the assumption that nephrotoxicity may be underestimated during preclinical
development. Therefore, the data generated in preclinical phases have to be as
detailed as possible in order to support clinicians and minimize the risk of acute
kidney injury. AKI is defined as an abrupt and sustained decrease in renal func-
tion, resulting in the retention of waste products as well as the deregulation of
electrolyte homeostasis. AKI is mostly estimated by a low glomerular filtration
rate and a high serum creatinine (SCr) level; however, there are major limitations
for the use of these parameters.
The high incidence of AKI in the clinic is also aggravated by the fact that the

current biomarkers used for the monitoring of kidney function have some cru-
cial limitations. The classical parameters for the monitoring of patients in clini-
cal studies are primarily based on SCr and blood urea nitrogen (BUN), which
remain the gold standard. However, these biomarkers have both poor sensitivity
and specificity for the detection of early and acute stages of kidney injury. In
addition, SCr and BUN are not applicable for a more specific insight into either
the location or the type of injury. Therefore, new biomarkers are needed not
only for an earlier detection of AKI but also for the definition of its origin or
subtype of AKI.

5.5.1

Toxicogenomic Approaches in Nephrotoxicity

Toxicogenomic approaches can help to solve the two major problems in the clinic:

� Identification of high-risk patients.� Advanced biomarkers for monitoring kidney function.

In the last decade, many different investigations have been made using toxico-
genomics together with classical evaluation in order to discover the risk of
patients as well as novel biomarkers, thus providing the clinicians better possibil-
ities to assess renal injury.
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5.5.2

Finding Genes that Matter in AKI

Regarding a patient’s risk to develop AKI, the understanding of epithelial, vascu-
lar, and immune responses makes it likely that genetic variation in the regulatory
elements of these responses plays a major role. For instance, genetic variations in
inflammatory cytokines such as TNF-α (tumor necrosis factor alpha) and IL-6
(interleukin 6) have been proposed as risk factors for AKI [65,66] due to the role
of inflammatory mediators in the pathophysiology of acute kidney injury. How-
ever, it is complicated to determine which variations are truly associated with
AKI. Different investigations have been made in order to reveal any relationship
between genetic polymorphisms and the risk to develop AKI. Isbir et al. [67] as
well as Chew et al. [68] reported that carriers of the apolipoprotein E (ApoE) e4-
allele had a decreased risk for the development of AKI after surgery in indepen-
dent studies.
Several other studies have focused on genes involved in oxidative stress,

inflammation, vasomotor stress, and gene–gene interactions, but they did not
find any significant consensus, although some trends were revealed. For exam-
ple, Perianayagam et al. [69–71] investigated the association of NADPH (nico-
tinamide adenine dinucleotide phosphatenicotinamide adenine dinucleotide
phosphate) oxidase and catalase polymorphisms with susceptibility to AKI. The
carriers of the T-allele of the p22phox subunit of NADPH oxidase showed the
trend to have a higher risk for chronic dialysis, although there was no signifi-
cance. In contrast, Isbir et al. [67] focused on whether a relationship between
angiotensin-converting enzyme (ACE) I/D polymorphism and AKI exists. They
showed that carriers of the ACE D-allele have an increased risk for developing
AKI. However, no association of this polymorphism was found in other
studies [72].
The possible role of both inflammatory and anti-inflammatory genes was

investigated by Jaber et al. [65], who showed an increased risk for high
producers of TNF-α, which is a proinflammatory cytokine. In contrast, this
study also revealed a decreased risk for individuals who produce high levels
of interleukin 10 (IL-10), which suppresses the acute immune response.
Other studies could not find any clear association between these mediators
and susceptibility to AKI [72,73]. This is also an example of how gene–
gene interactions may play a role, since the combination of low TNF-α and
high IL-10 phenotypes would possibly have the lowest risk. Polymorphisms
of IL-10 were also studied by Wattanathum et al. [74], who could separate
three polymorphisms that are associated with a higher susceptibility. This
has led to the hypothesis that the lower IL-10 production by these individ-
uals is associated with a higher risk due to the anti-inflammatory properties
of IL-10.
However, all these studies could not reveal that any single polymorphism can

be conclusively associated with an increased risk for developing AKI.
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5.5.3

Searching for New Biomarkers of Kidney Injury

Next to genomics-based investigations focusing on high-risk patients, toxicoge-
nomic approaches have specialized in the discovery of novel biomarkers for the
early and reliable detection of AKI. Ideally, new biomarkers should have the fol-
lowing properties [75]:

� Noninvasive or minimally invasive sample collection (blood, urine).� Higher sensitivity at earlier stages (e.g., absence in healthy kidney).� More specific identification of damaged area (prerenal, intrarenal,
postrenal).� Easy analysis, and rapid and reliable measurement with standard equipment.

For this urgent need, several initiatives and consortia have addressed this issue
and worked on the identification of novel biomarkers using toxicogenomic
approaches. The Predictive Safety Testing Consortium (PSTC) was the first
group to formally submit and have qualified a novel set of biomarkers by the
regulatory agencies (in this case for acute rat nephrotoxicity) [76]. Seven renal
safety biomarkers were qualified for limited use in nonclinical and clinical drug
development to help guide safety assessments. Of specific significance were
KIM-1 (kidney injury molecule-1), clusterin, and albumin, which were shown to
individually outperform the old gold standard blood urea nitrogen and serum
creatinine assays as early diagnostic biomarkers of drug-induced acute tubular
necrosis. In addition, urinary TFF3 (trefoil factor 3) can add information. Total
urinary protein, cystatin C, and β2-microglobulin are better early diagnostic bio-
markers of acute drug-induced glomerular alterations or damage resulting in
impairment of kidney tubular reabsorption.
The ILSI/HESI (International Life Sciences Institute’s Health and Environmen-

tal Sciences Institute) Nephrotoxicity Working Group was founded in 1999 with
the aim to identify renal-specific biomarkers at the transcriptomic and proteomic
levels, including microarray analysis. Initially, gene expression data of three rat
toxicity studies of known model compounds (puromycin, gentamicin, and cis-
platin) were generated and compared with classical histopathological and clinical
chemical parameters [77,78]. As a result, many genes showed altered expression
in treated animals and were initially considered as being potentially novel bio-
markers. Subsequently, an initial validation process was initialized in order to
elucidate valuable associations between biomarker and injury. Subsequently, the
group investigated 10 compounds, out of which 8 are well-known nephrotoxi-
cants and 2 hepatotoxic compounds served as negative controls. In this study,
23 potential new urinary biomarkers and many transcriptional biomarkers were
identified. The validation has led to seven biomarkers (an eight was later quali-
fied), which have been qualified by regulatory authorities (FDA, European Medi-
cines Agency (EMA), and Product Development and Management Association
(PDMA)) for the supportive use in short-term rat toxicity studies up to 14 days.
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KIM-1 is a transmembrane glycoprotein, which is not detectable in healthy
kidney tissue or urine, but is highly expressed in human and rodent proximal
tubule cells after ischemic or toxic injury [79]. It has been reported that KIM-1
is upregulated 24–48 h postischemia in rat kidneys and Han et al. [80] detected
that KIM-1 is measurable in urine of patients suffering from acute tubular
necrosis, thus facilitating the early diagnosis of proximal tubule injury. The
major advantage of KIM-1 as a novel biomarker is its noninvasive detection,
since the ectodomain is spliced off and thus present in the urine. Bonventre [81]
defined KIM-1 as an attractive biomarker due to various reasons:

� Absence in healthy kidney.� Significant upregulation in damaged tubules.� Persistence until the cell has recovered.� Noninvasive detection of temperature stability of ectodomain for ex vivo
analysis.

Cystatin C is a cysteine protease inhibitor that is synthesized by all nucleated
cells and is freely filtered by the glomerulus and completely reabsorbed by proxi-
mal tubule cells. In contrast to serum creatinine, the levels of cystatin C are not
affected by age, gender, race, or muscle mass and it was found out that this
emerging biomarker is able to detect acute kidney injury almost 2 days earlier
compared with SCr in high-risk patients [82]. Koyner and Parikh [83] also
reported that urinary cystatin C seems to be a promising biomarker for AKI fol-
lowing cardiac surgery by being detectable within 6 h after surgery.
NGAL (neutrophil gelatinase-associated lipocalin) is a protein of the lipocalin

family, mainly expressed by neutrophils and epithelia including proximal tubule
cells. Supavekin et al. [84] identified NGAL as one of the most rapidly upregu-
lated genes in the postischemic mouse kidney, which is also extensively detect-
able in mouse urine after cisplatin treatment [85]. NGAL is a useful and early
predictor of AKI, also having prognostic value for clinical endpoints [86]. How-
ever, limitations of this biomarker have also been identified and extrarenal gen-
eration may occur due to systemic stress, thus increasing the urine level of
NGAL in the absence of AKI.
Vinken et al. [87] investigated the characteristics of traditional (SCr and

BUN) and novel (KIM-1, NGAL, clusterin, etc.) biomarkers in a 14-day study
in male Sprague Dawley rats treated with 1mg cisplatin/kg/day. Urinalysis,
blood analysis, and histopathology as well as immunohistochemistry were
compared. The traditional biomarkers did not occur before day 5 of treatment,
whereas urinary clusterin as well as tissue KIM-1 increased significantly after
1 day of dosing before any histopathological changes occurred and urinary
KIM-1 was detectable at day 3. Together with traditional histopathology,
KIM-1 and clusterin could be defined as early, specific and sensitive bio-
markers for acute kidney injury in rats. However, in this study, NGAL did not
show this early significant increase before day 5 and levels of significance were
lower than those of SCr and BUN.
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Identification of novel early markers of calcineurin inhibitor (CNI) nephro-
toxicity depends on understanding of the early biological response of stressed
kidney tissue. Recently, transcriptomic analysis of in vitro models of CNI neph-
rotoxicity has identified two original molecular mechanisms that may play a role
in early CNI-induced nephrotoxicity and serve as early recognition markers: the
epithelial-to-mesenchymal transition (EMT) and endoplasmic reticulum (ER)
stress [88].
A limited number of papers have been published describing in vitro efforts to

combine omics analysis and understanding nephrotoxicity. Wilmes et al. [89]
investigated the added benefit of integrating transcriptomic, proteomic, and
metabolomic data streams for the application to predictive in vitro toxicology
and safety assessment, in relation to the nephrotoxicity of cyclosporin A (CSA).
Cultured human renal proximal tubule cells were treated with the immuno-
suppressive and nephrotoxic compound CsA for 1, 3, and 14 days in a 24 h
repeated dose testing regime. The integrated analysis of these data showed that
15 μM CsA, but not 5 μM (therapeutic level), induced mitochondrial distur-
bances and activated the Nrf2-mediated oxidative stress pathway and the
unfolded protein response. In addition, both the Nrf2 and PERK/ATF4 signa-
tures were clearly present in all omics data methods. These authors concluded
that their study was the first to really show that the combination of different
omics techniques has great potential for deciphering and understanding the
mechanisms of compound-induced cell stress.

5.6
Limitations of Toxicogenomics

The applications of toxicogenomic approaches display many benefits, not only in
drug development but also for all aspects in biological and medical research.
However, toxicogenomics has some limitations as well, since it is not applicable
for all questions. In addition, the half-life of mRNA can be quite short and thus
some features may be missed. The following briefly describes two important
limitations.

5.6.1

Idiosyncrasies

Idiosyncratic toxicity is defined as an unpredictable, characteristic adverse
reaction of an individual, usually occurring at very low frequencies. These
unpredictable effects pose a major issue in all phases of clinical drug devel-
opment and especially during postmarketing phases. Idiosyncratic reactions
occur only in a small proportion of individuals exposed to therapeutic
doses, usually ranging from 0.1 to 0.01%, thus not occurring until a vast
number of patients have been exposed to the drug (clinical phase III,
postmarketing).

90 5 Genomic Applications for Assessing Toxicities of Liver and Kidney Injury



This explains why idiosyncrasies are the most common reason for postmarket-
ing warnings, so-called black-box warnings, as well as for withdrawals and about
10% of acute liver failures are due to idiosyncratic hepatotoxicity. In general,
these effects are not related to the pharmacological target of a drug and the
underlying mechanisms are not fully understood. It is assumed that both
genetic and environmental factors account for these reactions; in addition, it
is assumed that the immune system plays an important role in these rare
adverse effects. The application of toxicogenomics in this field is quite diffi-
cult and has limited utility. The revelation of genetic risk factors does not
elucidate the functional interaction among individuals and also the study of
environmental factors is not possible.

5.6.2

Epigenetics

The discipline of epigenetics concerns all interactions between the genome of an
organism and the environment. This includes all processes that lead to different
gene activities and thus a different outcome (phenotype). However, these alter-
ations do not occur at the base pair level, meaning that the DNA sequence itself
is not affected. The key mechanisms of epigenetic change lie within DNA meth-
ylation, histone modifications, and miRNAs, which lead to altered activity of
sequence areas. For instance, in toxicology, epigenetic alterations may act as
early biomarkers for genotoxic and nongenotoxic carcinogens. Furthermore, the
gene regulation of transporters, phase I and phase II metabolizing enzymes, and
transcription factors is epigenetically encoded, thus emphasizing the role of envi-
ronmental influences and the importance in potentially differing drug responses.
The field of epigenetics therefore addresses how tissue-specific gene regulations
interact with environmental stimuli, having the potential to explain the different
and individual responses to drug treatment. Epigenomic approaches help to
identify these modifications, for example, by labeling methylations gaining
knowledge of how an alteration may be related to a specific phenotype.
However, although investigations in this field may help complete the complex

puzzle of interactions between an individual and a xenobiotic, it has to be kept in
mind that these investigations display a snapshot in time and thoughts such as
individual profiling of every patient remain unfeasible at present due to the com-
plexity of these processes and have limited applicability in the field.

5.7
Conclusions

Toxicogenomics is a relatively new scientific field, with several years of technol-
ogy optimization and subsequent gaining of experience by multiple researchers.
Overall, toxicogenomics helps the toxicologist to study xenobiotic-mediated
gene expression changes, especially at subtoxic, therapeutic doses. The focus
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thus lies on the revelation of changes in the gene expression levels prior to path-
ological changes. These applications can enable a better understanding of mecha-
nisms leading to toxicities and can help to better predict possible adverse effects of
unknown compounds. Furthermore, toxicogenomic research helps to define mech-
anism-based, tissue-specific biomarkers and compound classification based on
expression signatures. Therefore, the overall aim is to systematically understand a
biological response to a toxicant prior to its pathological outcome. This can be
summarized as making drug development more efficient by supporting the classi-
cal “gold standard” methods and also circumventing their known limitations.
In addition to the strengths and benefits, toxicogenomic applications also have

limitations and potential pitfalls. One of the major challenges lies in the proper
incorporation and implementation of toxicogenomic technologies. The dimen-
sions of such extraordinarily large amounts of data display a new dimension of
possible errors, including proper strategies of probe annotations and data compar-
ison across different platforms. The proper interpretation is also a challenge since
not all significant expression changes are physiologically relevant and the exper-
tise of the scientists is essential for a full and appropriate data interpretation.
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6
Use of Toxicogenomics for Mechanistic Characterization
of Hepatocarcinogens in Shorter Term Studies
Heidrun Ellinger-Ziegelbauer

6.1
Introduction

6.1.1

Rodent Carcinogenicity Testing

Carcinogenicity testing of drugs in development, but also of environmental and
other chemicals, currently still relies on lifetime studies in rats and mice, often
abbreviated as 2-year rodent bioassays. For over 50 years now, this assay has
been the regulatory standard for prediction of potential human cancer hazard [1].
The recommended study design, which has been refined and detailed over time,
is rather similar for all chemicals that require regulatory testing, for example,
environmental, agricultural, industrial, or pharmaceutical chemicals. These study
designs are laid down in “International Conference on Harmonisation” (ICH)
guidelines S1A, S1B, and S1C for pharmaceuticals [2–4] and in “Organization
for Economic Co-operation and Development” (OECD) guidelines in general [5].
Normally, two species must be studied, with at least one study, in general the rat,
in a long-term (2-year) setting. The second study may be a 2-year bioassay in
mice, but may also be a 6-month study in a transgenic mouse model. For the
2-year rat bioassay, sufficiently large sample sizes must be selected to ensure 25
live animals per sex per dose level at the end of the study after 2 years (summa-
rized in Ref. [6]). Three dose levels and at least one control should be included.
Specific doses need to be selected in prior subchronic, that is, 13-week, studies.
Criteria for dose determination are described in ICH S1C(R2) [4].
Overall, the requirements for the number of animals, time, and budget are

considerable. For these and other reasons, including animal welfare and scientific
aspects, recent initiatives have reevaluated the wealth of data now available from
such 2-year bioassays in comparison with data from shorter term studies and
other knowledge with respect to carcinogenic risk assessment of human pharma-
ceuticals. One of the first evaluations was performed by the Pharmaceutical
Research and Manufacturing Association (PhRMA) suggesting the so-called Neg-
ative for Endocrine, Genotoxicity, and Chronic Study Associated Histopathologic
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Risk Factors for Carcinogenicity in the Rat (NEGCARC) approach [6–8]. It is
suggested in this approach that only little value is gained from a 2-year rat bio-
assay for compounds that lack (1) histopathological risk factors for rat neoplasia
in chronic, mostly 6-month, toxicology studies, (2) evidence of hormonal pertur-
bation, and (3) positive genetic toxicology results [8]. Depending on the exact
details, 82–88% of the compounds predicted as noncarcinogens were true nega-
tives, that is, did not show any tumor induction after 2 years in the rat. For the
18% false-negative compounds, it was concluded that the 2-year study findings
were of rather questionable human relevance [8]. Overall, this would have saved
2-year studies for 40% of the drugs.
These insights, including potential shortcomings of the NEGCARC approach,

have been taken up by regulatory authorities, who have made their own assess-
ments (summarized in Ref. [9]). Finally, the ISH steering team published a con-
cept paper in 2012 proposing a change to the current S1 guidelines [10], and the
ISH S1 expert working group released a regulatory notice document proposing
changes to rodent carcinogenicity testing of pharmaceuticals in August
2013 [11], based on the retrospective analysis of various data sets (PhRMA, Food
and Drug Administration (FDA), Japanese Pharmaceutical Manufacturers
Association (JPMA), and European Medicines Agency (EMA)). This document
suggests a weight of evidence assessment to predict the outcome and value of a
2-year rat bioassay based on consideration of several factors, including, among
others, genetic toxicology results, target pharmacology, data from chronic rodent
and nonrodent studies, knowledge of potential hormonal perturbation, and
results from special studies and endpoints. The goal is to reduce the need for
the 2-year rodent carcinogenicity study, through a waiver request by the drug-
developing company in cases where the 2-year study would not add real value
for human cancer risk assessment. The ICH regulatory document proposes to
evaluate carcinogenic assessment documents (CADs) for a period of about 2
years during which sponsors would submit CADs to drug regulatory authorities
(DRAs) based on weight of evidence factors. These would be assembled before
completion of the 2-year bioassay, which would be reported after review of the
CAD by the DRA. This prospective evaluation procedure would simulate the real
situation and thus would enable the DRA to gain experience and critically assess
the currently proposed changes to ICH S1.
The ICH proposal for changes to the current carcinogenicity assessment sug-

gests weight of evidence factors that include results from special studies and
endpoints. These may comprise new biomarkers or results from emerging tech-
nologies, and mechanistic insight derived from alternative tests. Omics profiling
could contribute such insight and allow better evaluation of rodent findings with
respect to human relevance. In this respect, the following will review several
aspects of the use of toxicogenomics for the characterization of hepatocarcino-
gens in shorter term studies, including mechanistic and predictive analyses, the
potential of databases recently made available for public access [12], transcrip-
tional benchmark dose modeling [13], and the experience gained from several
years of especially transcriptomic analyses in studies with rodent carcinogens.
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6.1.2

Classes of Carcinogens

Carcinogens are generally divided into two major categories, genotoxic and non-
genotoxic, based on the overall mode of actions, which also has implications for
regulatory aspects [14,15]. Genotoxic carcinogens (GCs) interact directly with
DNA, mostly after being metabolized in to the ultimate carcinogen, are therefore
mutagenic when the mutation is fixed by at least two rounds of DNA replication,
and are thus involved in the initiation of tumor formation. They are usually
detected with in vitro and in vivo genotoxicity assays. Their dose response is
assumed to be linear; thus, a threshold dose is supposed to be absent. Nongenotoxic
carcinogens (NGCs) do not directly interact with DNA and act via multiple mecha-
nisms, including nuclear receptor activation, immune suppression, hormonal per-
turbation, and induction of cellular damage leading to regenerative hyperplastic
effects. They likely promote tumor formation by, for example, supporting clonal
expansion of initiated cells and induction of cell proliferation or inhibition of apopto-
sis. In general, they need to be present for prolonged times and at rather high doses
to exert their promoting effect, show nonlinear dose responses, and thus are associ-
ated with a threshold dose [14,15]. The gene expression studies summarized in the
following sections support this overall classification, but also indicate that there are
cases in between, and that some compounds show aspects of both mechanisms.

6.2
Toxicogenomics

Toxicogenomics in a broader sense represents the application of “omics” tech-
niques to toxicological research and risk assessment [16]. In the following, exam-
ples for mechanistic and predictive toxicogenomic studies used to characterize
and classify rodent hepatocarcinogens in shorter term studies will be described,
including their limitations. Recently, several databases containing transcriptomic
profiles after treatment of rats with different classes of carcinogens have been
released into the public, opening up new opportunities for various analyses.
Finally, a rather pragmatic approach using benchmark dose (BMD) modeling
applied to gene expression data to derive mechanistically defined threshold doses
for rodent carcinogens will be described. This approach was developed by
Thomas and coworkers [17] and indicates that the strength of toxicogenomics
lies in the area of mechanism investigations.

6.2.1

Mechanistic Toxicogenomic Analysis after Short-Term Treatment with Rodent
Hepatocarcinogens

Most studies investigating toxicogenomic profiles after treatment with carcino-
gens or other compounds employed transcriptomics as a profiling method.
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Initially, the mRNA expression changes induced by GCs were characterized.
Although GCs are in general recognized with genotoxicity testing, and their
molecular mechanisms of action are in principle defined, their analysis allowed
to test the profiling method including the interpretations that can be drawn, and
in fact defined a relatively clear profile of a DNA damage response that can be
used to clearly distinguish GCs from NGCs, or reveal partial genotoxic-like
responses of NGCs, which are still different from directly DNA-reactive
genotoxins.
In one study, molecular changes induced by N-nitrosomorpholine (NNM), a

classical rat genotoxic hepatocarcinogen, were investigated during a 7-week
treatment period followed by 43 weeks without exposure, that is, a total observa-
tion period of 50 weeks with eight analysis time points [18,19]. Gene expression
profiles, which were measured with Affymetrix rat RG-U34A microarrays,
revealed an early DNA damage response characterized by clear upregulation of
target genes of the p53 tumor suppressor, accompanied by increased expression
of mRNAs encoding anti-apoptotic proteins and proteins such as neuregulin and
cyclin D1 that altogether may result in cell survival (see Figure 3 and Table 1 in
Ref. [18]). Necrotic changes that were also induced by NNM during the treat-
ment period were likely reflected in the stress response genes found upregulated
during treatment. Interestingly, at the two latest time points (30 and 50 weeks)
more than 20 weeks after treatment had stopped, mRNA encoding glutathione
S-transferase P1 (GSTP1) and the H19 imprinted maternally expressed tran-
script were found to be increased relative to time-matched controls. In the case
of GSTP1, which is a well-known marker of preneoplastic and neoplastic
lesions [20], this correlated with protein expression and the area fraction of
GSTP-positive foci of altered hepatocytes (see Figure 8 in Ref. [18]). The H19
genomic locus is an imprinted region whose expression from the parental alleles
is regulated by differential DNA methylation [21]. Increased expression of this
gene later on after treatment with NNM may thus indicate epigenetic changes of
the DNA methylation status.
A shorter term study investigating liver mRNA profiles in rats treated with

four genotoxic rodent hepatocarcinogens, 2-nitrofluorene (2-NF), dimethylni-
trosamine (DMN), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and
aflatoxin B1 (AB1), extracted a rather similar DNA damage response in the
rodent liver indicated (Figure 6.1) by upregulation of several characteristic p53
target genes, including the cyclin-dependent kinase inhibitor 1A (Cdkn1a, also
known as p21), cyclin G1 (Ccng1), ubiquitin E3 ligase Mdm2, pleckstrin
homology-like domain family A member 3 (Phlda3), and B-cell translocation
gene 2 (BGT2). Furthermore, mRNA encoding O6-methylguanine-DNA methyl-
transferase (Mgmt) was upregulated by essentially all GCs examined [22–24].
Although Mgmt is known to be induced by genotoxic stress in vivo and in vitro,
it does not appear to be a classic p53 target gene. Mgmt expression was found to
be regulated by transcription factors also activated by DNA damage, such as
nuclear factor κB (NF-κB), with p53 still having a modifying influence [25]. A
very similar DNA damage response pattern at the gene expression level was

100 6 Use of Toxicogenomics for Mechanistic Characterization of Hepatocarcinogens in Shorter Term Studies



observed in vitro, when cells containing wild-type p53 were treated with a com-
parable selection of GCs for just 4 h [26,27]. A “survival” response as mentioned
above for NNM was seen with all four liver GCs, yet clearly with different
strength of expression deregulation (Figure 6.1). The four liver GCs showed
additional gene expression changes, which were mostly compound specific, for
example, increased expression of genes indicating inflammation following the
necrosis induced by DMN (see Figure 1 in Ref. [23]).
In another study, the liver expression profiles induced by four liver GCs (2-

acetylaminofluorene (2-AAF), 2,4-diaminotoluene (2,4-DAT), 2-nitropropane
(2-NP), and 2-nitro-p-phenylenediamine (2-NpP)) after 28 days of treatment
were measured on a custom oligonucleotide microarray and compared with
those induced by structurally similar, yet noncarcinogenic isomers (4-acetylami-
nofluorene (4-AAF), 2,6-diaminotoluene (2,6-DAT), 1-nitropropane (1-NP), and
4-nitro-o-phenylenediamine (4-NoP)) [28]. Cluster analysis with significantly

Figure 6.1 Major biological processes
affected by the two major classes of
carcinogens, as analyzed for the GCs 2-NF,
DMN, NNK, and AB1, and the NGCs MPy, DES,
Wy, and PBO. To calculate the normalized n-
folds for these diagrams, the expression of
each single gene (average fold deregulation
versus time-matched control average) was
normalized over all samples by dividing the
value in a particular sample through the

maximum deregulation found for that gene in
all samples, resulting in fold deregulation
values from �1 to 1. Then the mean of the
normalized values was calculated for each
single sample from all genes belonging to the
toxicological categories indicated above each
diagram. Thus, this mean represents the
overall response of the genes representing a
particular pathway or pathway combination.
(Modified from Figure 3 in Ref. [24].)
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deregulated genes, previously selected with statistical and ratio cutoffs between
treated and time-matched control samples, revealed the following pattern: a
cluster of the three clear GCs 2-AAF, 2,4-DAT, and 2-NP, and a looser cluster
of all four isomers. 2-NpP grouped with the noncarcinogenic isomers, which was
not completely unexpected since this compound appears to induce liver cancer
only in female mice, but not in rats of both sexes. Several of the genes upregu-
lated specifically by the GCs were again Mgmt and p53 target genes such as
p21and Ccng1, in agreement with the studies mentioned above for GCs, and
many other studies not cited here. Overall investigation of gene expression
changes in rodent liver after treatment with GCs defined a clear DNA damage
response with rather short-term induction of several characteristic genes and
suggested in addition a positive effect on “survival” signaling by rodent genotoxic
hepatocarcinogens.
Quite a few studies evaluated NGC-induced profiles in rat and mouse livers,

sometimes in comparison with GCs and/or noncarcinogens. In one of the early
studies [29], B6C3F1 mice were treated with oxazepam and Wyeth-14,643 (Wy),
which are both nongenotoxic rodent hepatocarcinogens. Iida et al. [29] summa-
rize evidence that both induce oxidative stress that may be involved in tumor
induction. Gene expression analysis after 2 weeks and 6 months of treatment
with a cDNA array revealed induction of, for example, mRNAs encoding phase I
biotransformation enzymes of the cytochrome P450 2b and 4a family and the
stress-responsive growth arrest and DNA-damage-inducible, beta (GADD45b)
mRNA by both compounds. Yet there were also several mRNAs increased by
oxazepam or Wy only, letting the authors to suggest that the early carcinogenic
pathways between these compounds are different [29]. Extending this work, gene
expression was analyzed in mice that were treated for 2 weeks with three known
carcinogens, including oxazepam, o-nitrotoluene, and methyl eugenol, and the
noncarcinogens p-nitrotoluene, eugenol, and acetaminophen [30]. Again, only
few genes were commonly deregulated by the carcinogens, although there was
some resemblance between o-nitrotoluene and methyl eugenol, which both
induced p21 and Ccng1, whereas oxazepam was clearly different at least at the
early time point examined. Concerning the noncarcinogens, eugenol induced
some of the same genes as methyl eugenol, although with a lower deregulation
ratio, but did not lead to downregulation of two genes strongly decreased by
methyl eugenol, which may indicate reduced apoptosis in case of methyl euge-
nol. Decreased apoptosis is in fact a mechanism supposed to be involved in can-
cer induction. The reason for the quantitative differences in the effects of methyl
eugenol and eugenol may be a more efficient metabolism in case of the latter,
thus suggesting the existence of a threshold for cancer induction in this com-
pound class. Differences in metabolism were also suggested for the pair o-nitro-
toluene and p-nitrotoluene to explain why the latter does not induce liver
tumors [30]. Although in these studies the genes deregulated by the carcinogens
only partially overlapped, there were indications that cell cycle and apoptosis
functions were affected by all carcinogens already 2 weeks after treatment. Over-
all, these first studies with different carcinogens also suggest that clearly defined
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carcinogens at least with respect to the major mechanisms, that is, GC versus
NGC, are needed to be able to select gene groups suggesting functions that may
be disturbed early on in the progress of cancer induction.
To investigate whether rodent liver NGCs, similar to GCs, deregulate certain

sets of genes or at least affect similar functions, which can be deduced from the
affected genes, gene expression patterns were investigated in liver after treat-
ment of rats with several rodent liver NGCs, including methapyrilene hydro-
chloride (MPy), Wy, diethylstilbestrol (DES), and piperonyl butoxide (PBO), in
comparison with the GCs 2-NF, DMN, NNK, and AB1 [24]. Characteristics of
the gene deregulations by four of these GCs were described earlier. NGC-
induced expression profiles represented cell cycle progression, pathways likely
involved in regeneration such as protein synthesis, and responses to oxidative
DNA or protein damage. These functional alterations, indicated by the gene
expression changes, showed different time course patterns depending on the
NGC class. For example, upregulation of cell cycle progression genes either was
transiently induced or increased with time, likely reflecting either direct mito-
genic effects or regenerative hyperplasia following cytotoxic cell damage. The
former was observed for Wy, DES, PBO, and also TAA, and the latter for MPy
(Figure 6.1). The MPy-associated gene expression profile also suggested induc-
tion of apoptosis and inflammation, as expected for a compound inducing regen-
erative hyperplasia. The different NGCs were overall associated with different
combinations of affected functions and pathways, in agreement with the various
mechanisms suggested to contribute to cancer induced by NGCs. In addition,
the NGCs also showed compound-specific gene expression changes that may or
may not contribute to carcinogenicity. Gene expression analysis thus allowed to
molecularly characterize early events following NGC exposure, including at least
some of the suggested mechanisms. They also revealed that MPy as an NGC did
induce a partial DNA damage response (Figure 6.1a) that may be explained by
oxidative or other stress secondarily leading to DNA damage. On the other
hand, DMN as a GC also increased cell cycle progression (Figure 6.1d) starting
at day 7 after treatment. This can be explained by regenerative hyperplasia since
DMN also induced necrotic damage to the liver.
A time-dependent increase in cell cycle progression in the liver after treatment

of rats with NGCs was confirmed by searching the Ingenuity Pathway Analysis
(IPA) knowledgebase for over- and underrepresented biofunctions within the
gene expression data. Furthermore, activated or inhibited transcription factors
predicted from the gene expression profiles of their known target genes sug-
gested activation of the tumor suppressor gene TP53 by GCs, corresponding to
a DNA damage response directly activated by this class of carcinogens. For
NGCs, the transcription factors Myc and FoxM1 were predicted as activated.
Both transcription factors are known to induce transcription of various genes
involved in cell cycle progression [31–33].
Overall, the characteristic profiles obtained after short-term treatment could

discriminate genotoxic and nongenotoxic rodent liver carcinogens from noncar-
cinogens, at least for the compounds investigated.
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A preliminary comparison of the gene expression changes induced in the rat
liver by carcinogens with those induced in the kidney (unpublished) by two
kidney GCs and one kidney NGC revealed that the kidney GC signature at the
gene level is rather similar to the liver GC signature concerning the DNA dam-
age response. The kidney NGC also showed induction of cell proliferation at
the gene expression level with the time dependence of deregulation reflecting
the primary mechanism. Although other responses were not as conserved at the
gene level, they still were reflected in the gene expression changes, for example,
regeneration and dedifferentiation, which one would expect to employ different
genes specific for the differentiation state of a certain organ. Similar to these
findings with liver and kidney gene expression profiles, Thomas et al. also
observed that certain gene expression profiles associated with carcinogen expo-
sure are conserved across several tissues [13].

6.2.2

Approaches for Prediction of Potential Hepatocarcinogens
Based on Gene Expression Profiling

Already early on, when transcriptomics was applied in toxicological studies, it
was suggested that gene expression profiles measured after short treatment with
compounds may predict their chronic toxicity effects, including, for example, a
potential for induction of carcinogenicity. This was based on the general
assumption that toxicants induce characteristic early molecular changes that are
reflected in their gene expression responses. It was also based on data of early
toxicogenomic investigations in the hepatotoxicity area, which, in addition to
the studies described above, had shown that, for example, rat liver expression
profile clustering could distinguish between hepatotoxins with different mecha-
nisms of toxicity after 3 days of treatment [34], and 1-, 3-, and 14-day rat liver
mRNA profiles could classify samples derived from rats exposed to enzyme
inducers versus those exposed to peroxisome proliferators [35]. Based on up to
14-day liver expression profiles after treatment with 25 different compounds and
matched controls, Steiner et al. [36] could discriminate between hepatotoxic and
nonhepatotoxic compounds with 90% true positive prediction, and even between
four classes of liver toxins (cholestasis, steatosis, and direct-acting peroxisome
proliferator-activated receptor α (PPAR-α) agonists) with reasonable accuracy.
Several limitations were discussed by Steiner et al. [36], which in principle

apply to all toxicity predictions based on compound-induced gene expression,
especially when complex toxicities are considered. For calculation of the predic-
tion accuracies, so-called external cross-validation was applied by Steiner et al.,
which removes expression profiles representing all samples derived from one
compound at a time, uses the remaining as a training set to calculate a classifier,
and then predicts the left out samples, that is, one compound. After iterative
cycles, this then estimates the prediction accuracy of the classifier. Although this
approach is still less biased with respect to performance estimates than, for
example, internal cross-validation, it is still too optimistic and not as stringent as
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prediction of an independent test set. Also, to train classifiers for complex toxic-
ities such as hepatotoxicity, which applies even more to nongenotoxic carcinoge-
nicity, the compound database should cover all possible mechanisms.
Nevertheless, since prediction of especially nongenotoxic carcinogenicity with
short-term assays would offer new opportunities concerning carcinogenicity
testing, and since theoretically such a prediction should be conceivable if the
profiles cover important mechanisms and relevant doses and time points, predic-
tion approaches for carcinogens were evaluated by several groups (Table 6.1).
Major efforts will be summarized in the following.
In one of the first studies, 1-day expression profiles of rats treated with 24

NGCs and 28 noncarcinogens were profiled on cDNA arrays representing 1471
genes selected by literature searching and prior performance [37]. The 24 non-
genotoxic carcinogens included some targeting organs other than the liver.
Doses used were in general highly toxic ones corresponding to 30–50% LD50

(lethal dose 50%) values. Genes were selected by a univariate t-test between
treated and control groups, and by multivariate methods employing several algo-
rithms. The genes from the different analyses were combined and subjected to a
10% cross-validation, meaning that at each iteration 10% of the samples were
used as a test set. This yielded six genes that identified NGCs with 88.5% predic-
tion accuracy estimated by cross-validation, including “correct” prediction of
several extrahepatic NGCs. The available gene expression profiles were also ana-
lyzed for the molecular mechanism of nongenotoxic carcinogenicity using the
125 genes derived from the univariate t-test. This revealed connections of the
deregulated genes to the c-Myc proto-oncogene and to fibronectin (FN)-regu-
lated, integrin signaling pathways [37]. A limitation to consider here is the rather
high dose used in comparison with the 2-year cancer study, which may overesti-
mate the NGC potential for a compound; that is, at this dose animals would not
survive for 2 years, whereas at lower doses, tumors may not be induced. The
prediction of extrahepatic NGCs with liver gene expression data was explained
by the fact that in some cases disturbed metabolism in the liver may increase or
decrease levels of metabolites or hormones that then exert nongenotoxic tumor-
inducing effects in other organs. Although this is true in some cases, one may
also interpret this result as nonspecific.
In a similar rather short-term approach, Fielden et al. [38] evaluated rat liver

expression profiles after an up to 7-day exposure to rat liver NGCs and nonhe-
patocarcinogens using the “CodeLink” RU1 BioArray containing 30-mer probes
for 9911 rat genes. Compounds were classified as rat liver NGCs or noncarcino-
gens based on clear rules, with NGCs, for example, being positive in the 2-year
bioassay in at least one rat strain or gender and believed to induce cancer via a
nongenotoxic mechanism according to available data, and with noncarcinogens
being negative in the 2-year bioassay in either gender of rats [38]. Profiles for 147
compounds were available in the toxicogenomic reference database DrugMa-
trix [44], of which 25 NGCs and 75 nonhepatocarcinogens were used as a train-
ing set, and the remaining 47 chemicals (21 positives and 26 negatives) set aside
as a test set. A discriminating gene signature was derived from 3-, 5-, or 7-day
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profiles with a certain linear model algorithm (adjusted sparse linear program-
ming (A-SPLP)), which simultaneously trained a classifier. Functional annotation
of the 37 signature genes including consideration of their direction of
deregulation indicated pro-proliferative and anti-apoptotic effects as expected
for NGCs. Cross-validation within the training set estimated a sensitivity of 56%
and a specificity of 94%. Application of this classifier on the test set profiles
yielded a sensitivity of 86% and a specificity of 81%. This was compared with
other parameters; for example, increased liver weight and serum ALT had a sim-
ilar (81%) or even higher (89%) specificity, respectively, but a lower sensitivity of
48 and 57%. Based on clustering of the expression of the 37 signature genes into
four clusters, the authors suggested that at least four distinct modes of action of
liver tumor formation were represented, that is, toxicity and regeneration effects,
hormonal effects, xenobiotic receptor-mediated effects, and peroxisome prolifer-
ators. Although the compounds clearly clustered in this way, it is noted that the
37-gene profile of these cluster groups as visualized with a heat map did not
appear to be clearly different between these compound groups to be able to
deduce corresponding modes of action. The clustering was based on impact
scores, which also considered a certain weight added to each gene. One would
need to apply other gene selection and classifier algorithms to check the stability
and thus importance of the signature genes and classifier in this data set.
In an effort to evaluate a genomic signature for prediction and mechanistic

assessment of rat liver NGCs, the Predictive Safety Testing Consortium (PSTC)
of the Critical Path Institute made use of the two data sets described above
abbreviated as the J&J [37] and Iconix [38] data sets and signatures [39]. Each
data set was classified with the other signature, and in addition a data set from
GSK was used as a test set for both signatures. The latter was derived from a 1-
day and a 4-day treatment of rats. Compounds were excluded from test sets
when they overlapped with compounds used for the respective training sets.
Adjustments of the expression data were also made to account for differences in
the dynamic range of the different microarray platforms used. Thus, the 37-gene
Iconix signature was used for the classification of the J&J and GSK test sets, and
the 6-gene J&J signature was employed for the classification of the Iconix and
GSK test sets. The accuracies of the predictions, and especially sensitivity and
specificity, were clearly dependent on both the signature and the test set. The
37-gene Iconix signature resulted in relatively higher sensitivities for both the
J&J and GSK test sets (100 and 73%, respectively) compared with specificity val-
ues (63 and 60%, respectively), whereas the 6-gene J&J signature showed rela-
tively higher specificity of 74% (versus 53% sensitivity) with the Iconix data set,
but a completely different picture with only 36% specificity and 96% sensitivity
with the GSK data set. These data, being derived from different laboratories
using different study designs, microarray platforms, and processing protocols,
represent realistic performance values of the two signatures.
Although the overall accuracy of 72% for one combination (Iconix signature,

J&J test set) indicated significant classification accuracy, prediction accuracies
for the other combinations were lower (down to 55%). Reasons for these
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discrepancies are likely differences in the animal study design, microarray plat-
form, and protocol, data processing and analysis, and classification of the com-
pounds into positive and negative samples with respect to, for example, some
positive findings. To control at least for the gene expression measurement plat-
form and protocol, it was decided to rederive a signature on a qPCR platform,
which is in general more cost effective and standardized and may be more read-
ily accessible than a microarray platform. The objective of this further effort was
not to replace the 2-year bioassay, but rather to guide internal decision making,
allow prioritization of chemicals for chronic testing, and/or enable a more rapid
understanding of the mode of action [40]. The selected gene set for the qPCR
included 11 genes from the 37-gene Iconix signature, the 6-gene J&J signature, 3
normalizer genes, and 10 genes from the GC signature described previously [23]
to distinguish genotoxic from nongenotoxic modes of action. To develop the
qPCR signature, RNAs from the Iconix rat liver samples representing 72 com-
pounds after 1-, 3-, 5-, and 7-day treatments were reanalyzed. For development
of the qPCR signature and the classifier model, samples from all 72 compounds
(23 NGCs and 49 nonhepatocarcinogens) were used after an initial evaluation of
a model developed from training and test sets of these 72 compounds. This
model was then tested on an independent test set representing 15 rat liver
NGCs and 51 nonhepatocarcinogens. The test set contained a broad array of
samples from a variety of studies performed at several laboratories, several of
which were derived from different study designs, rat strains, and/or compound
classes in general. The qPCR signature developed with the 72 compounds
retained 22 of the original 27 genes, with peptidylprolyl isomerase A as a nor-
malizer gene. Applying the classifier model with the 22-gene signature on the
test set resulted in 67% sensitivity and 59% specificity [40]. Such sensitivity may
be acceptable, depending on the use of the prediction, yet the specificity was
rather low. Detailed examination of the contribution of the different data sets to
these values indicated that the reduced sensitivity and reduced specificity were
driven by the J&J and the NTP data sets. Samples for both data sets were derived
from rather different overall study designs. For example, the 1-day only and
rather high-dose exposure of the J&J data [37] may have introduced variable
false-positive gene expression changes that after a few more days may have been
compensated by protective responses. The NTP data [41] were derived from
F344 rats, in contrast to Sprague Dawley rats used in all other cases, and
employed primarily nontherapeutic chemicals that may work via modes of action
not reflected in the training data set derived mostly from therapeutic com-
pounds. Concerning the performance of the qPCR and the microarray models,
no major differences were observed.
Overall, this evaluation confirmed the suggestions that for a classification

approach test samples should be generated with protocols rather similar to those
used for the training set and that although short-term treatments can be used,
they should include periods of 3 days or more, when the very early gene expres-
sion changes have been stabilized or become compensated. It is also recom-
mended to check the signature for mechanistic content. Although the signature
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genes are selected for optimal prediction performance, they should also repre-
sent the underlying biology of the compound classes. The final 22 qPCR signa-
ture developed here, despite not representing complete pathways, did contain
genes that by literature mining and pathway analyses are associated with path-
ways suggested to be involved in carcinogenesis, such as growth regulation,
DNA repair, and oxidative stress [40].
The authors mention an important point, which should be considered in any

prediction exercise: The quality of prediction models for a certain phenotype
depends not only on the applicability of the technology and study design of the
training samples, but also on the accurate classification of the samples with
respect to the phenotype to be modeled. Concerning rodent hepatocarcinogenic-
ity, the outcome of the 2-year bioassay also shows some variability depending on
several study factors, such as strain and gender. Thus, the accuracy obtained for
the genomic signature is determined not only by the intrinsic variation in the
gene expression assay, but also by the variation in the benchmark phenotype
that is to be modeled by the gene expression assay. Therefore, the sensitivity and
specificity values calculated are not an absolute measure of performance, but
rather should be seen as a composite estimate for these measures. In this respect,
a predicted potential to induce cancer via a NGC mode of action based on com-
pound-induced gene expression changes always needs to be evaluated in the
context of dose response, pathological changes, results from genotoxicity testing,
and any mechanistic data.
A further attempt to derive gene expression signatures for classification of

compounds with respect to their potential to induce cancer in the rat liver also
incorporated mechanistic considerations as a basis to evaluate the signatures [22].
With a training set of five GCs (two time points per compound), five NGCs (two
time points per compound), and three noncarcinogens (four time points per
compound), a three-class classifier was derived from rat liver gene expression
profiles after up to 14 days of treatment with three replicate animals per expo-
sure group. The rationale for dose selection was based on those reported to
induce liver tumors in the 2-year rat bioassay, and the exact time points (two
per carcinogen) were selected from a prior mechanistic analysis of the gene
expression patterns induced by these compounds. GCs were included to distin-
guish their mode of action clearly represented in the gene expression profiles [23]
from those suggested for the NGCs, and the exact NGCs included were com-
pounds likely associated with different NGC modes of action [24]. Three differ-
ent algorithms, including recursive feature elimination (RFE), support vector
machine (SVM), and analysis of variance (ANOVA), were used to determine
three sets of discriminant genes, abbreviated as #2(256)RFE, #3(512)SVM,
#4(2048)ANOVA, which all yielded similar cross-validation accuracies [22].
These three and an additional mechanistic set of 141 genes representing path-
ways and functions previously found to distinguish between several rodent liver
GCs and NGCs [24] were then employed to classify an independent test set of
four GCs, six NGCs, and six noncarcinogens, with samples derived from four
time points per compound (1, 3, 7, and 14 days). With compounds assigned to
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either the GC or NGC class even when just one sample per compound was clas-
sified as such, prediction accuracies ranged from 75 to 88%, depending on the
gene set used (Table 6.1). For a mechanistic evaluation of the discriminant genes,
a Fisher’s exact test was applied to extract over- and underrepresented biological
pathways/functions associated with the genes in these groups (Figure 6.2). At
least an oxidative stress/DNA damage response, which is characteristic for GCs,
and cell proliferation, which is characteristic for NGCs, were encoded by all gene
groups irrespective of how exactly they were selected. Genes encoding phase I,
II, and III biotransformation enzymes and proteins were also found overrepre-
sented in the gene lists derived from gene ranking. They may distinguish these
two classes of carcinogens based on the fact that the GCs appear to upregulate a
defined set of such genes, whereas the NGCs affect the corresponding mRNAs in
a more compound-specific manner. Thus, the discriminant genes do represent
biological processes that according to current knowledge likely contribute to
early cancerogenesis.
Interestingly, ethionine, which is mentioned in the literature as NGC, since it

is negative in the Ames test, was predicted as GC based on expression profiles of
rat liver samples after 3 days of treatment, likely due to induction of an observed
DNA damage response at the gene expression level. Based on current under-
standing, the ethionine prediction obtained here had to be interpreted as false
positive. Although being negative in the Ames test, ethionine was reported to be
positive in the in vivo micronucleus assay, a genotoxicity assay detecting genome
and chromosomal mutations. Such a positive result should by no means be taken
as strong evidence for direct genotoxicity, yet together with the induced gene
expression pattern it may indicate a genotoxic mode of action in the rat liver,
potentially due to a metabolite generated in this organ. In fact, S-vinyl

Figure 6.2 Biochemical functions/pathways
represented by the gene groups used for pre-
diction. Overrepresented functions/pathways in
the gene groups used for predictions [22] as
determined by a Fisher’s exact test. (IPA soft-
ware) Over- or underrepresentation is indicated

by + and �, respectively, and the degree
thereof by parentheses, or one or two signs.
Effects at the cell and/or tissue level, which
result from alterations of these pathways and
which are characteristic of one or the other
carcinogen class, are indicated on the left.
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homocysteine was suggested as a possible proximate carcinogenic metabolite
already in 1979 [45], since S-vinyl homocysteine is highly mutagenic for the
TA100 strain of Salmonella typhimurium. Overall, the results derived from the
gene expression data including the hint from classification and especially a closer
investigation of the gene expression changes in a mechanistic sense suggest that
the carcinogenic mechanism of ethionine needs further clarification.
The Toxicogenomics Project in Japan developed a Genomics-Assisted Toxicity

Evaluation System (TG-GATEs), which is based on gene expression profiles
derived from livers of rats after treatment with hepatotoxicants at three different
dose levels for 3, 6, and 9 h, and for 1, 3, 7, 14, and 28 days [42] (see also
Section 6.2.4). The compound list contained several carcinogens of different
classes. To derive a model for rodent liver NGCs, profiles of six NGCs known to
be also associated with hepatocellular necrosis/degeneration (high dose, 28 days)
were used as positive training “necrotic NGC” data, with 54 nonhepatocarcino-
gens (low and middle doses, 28 days) as a negative training set. The test set
included (1) the remaining middle and low doses and earlier time points of the
positive necrotic NGCs, (2) GCs, (3) NGCs whose carcinogenic mode of action
is suggested to be related to liver enzyme induction, peroxisome proliferation,
and hormonal perturbations, and (4) nonhepatocarcinogens. A classifier training
approach using SVM combined with a certain gene selection method yielded 82
top-ranked genes for differentiation between necrotic NGCs and nonhepatocar-
cinogens, which were reduced to a signature of nine genes using fivefold cross-
validation [42]. The derived nine-gene classifier was associated with a sensitivity
and specificity of 99 and 97%, respectively. It is to be kept in mind that these are
the data from cross-validation within the training set, which represents 6 posi-
tive (high dose!) and 54 negative (middle and low dose!) compounds, and do not
represent an independent test set. Test set samples predicted as positive were
several of the other doses and time points of the “necrotic” NGCs, including
middle-dose samples after 28 days of treatment with two of these compounds,
and high-dose samples after 8 and 15 days (two NGCs) or 15 days (one NGC) of
treatment. None of the low-dose or 1- and 3-day samples of the necrotic NGCs
were predicted as positive with the nine-gene classifier. Furthermore, none of the
other NGCs in the test set with a non-necrotic mode of action were predicted as
positive. However, test set samples from the longer treatments of three rodent
liver GCs were classified as “necrotic” carcinogens. The authors suggest that
although the primary mode of action between GCs and NGCs is different, gene
expression profiles after 28 days of treatment with GCs and necrotic NGCs may
reflect commonly affected processes. A preliminary pathway analysis with the 82
discriminant genes derived from the first step selected networks around the
stress-responsive kinase p38 and the proto-oncogene c-Myc, with an extensively
described role in tumorigenesis at least for the latter.
The TG-GATEs approach with a training NGC group of a rather closely

defined mode of action and the predictions obtained for different carcinogen
classes highlights that one must be very clear what is being modeled, including a
close consideration of the chosen time points and gene deregulations with their
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represented functions observed at these time points, to be able to interpret the
classifier output. As pointed out earlier, it is therefore necessary to perform a
functional interpretation of the signature genes. The nine genes of the final sig-
nature appear too few to derive a clear mode of action hypothesis, so this exer-
cise was performed with a prior gene list selected in the first step. Overall, the
data may be enhanced by a more detailed prior mechanistic analysis of the gene
expression profiles over time, which are associated with the different classes of
NGCs in comparison with the GCs.
A huge number of chemicals are present in the environment that should be

assessed concerning their carcinogenic properties. Up to now, the National Tox-
icology Program (NTP) has been able to test about 1485 chemicals using the 2-
year bioassay with a standard NTP protocol based on F344 rats. Yet many more
chemicals would need to be tested; for example, over 75 000 chemicals are listed
in the US EPA’s Toxic Substances Control Act Inventory (summarized in
Ref. [41]). Considering these numbers, it is obvious that efficient methods are
needed to determine the carcinogenic potential of these many chemicals, includ-
ing methods to prioritize them for chronic testing. Therefore, SVM classification
models build with liver gene expression profiles of male F433 rats after treat-
ment with hepatocarcinogens and nonhepatocarcinogens for 2, 14, or 90 days
were evaluated on an independent test set of alkylbenzene flavoring agents with
a range of hepatocarcinogenic properties. The training set included different
chemical structures and represented three nonhepatocarcinogens and four car-
cinogens, of which three were Ames-positive GCs. The test set, however,
included only alkylbenzenes, three of which were shown to induce and three not
to induce rodent liver cancer, and two of which were not yet tested for their
carcinogenic properties. All of the alkylbenzenes in the test set were Ames-nega-
tive. Methyl eugenol, one of the alkylbenzenes, was used at a higher dose as a
training sample and at a lower dose as a test sample. The different SVM models
were built using combinations of profiles derived from different time points and
resulted in models with almost only 0% cross-validation errors. For the indepen-
dent test set, error rates ranged from 10 to 47%, depending on the exact model
and the exposure duration of the test compound. With the models calculated for
this data set, performance increased with increasing exposure duration. An anal-
ysis of the pathways that were affected at the different time points suggested cell
proliferation, DNA repair, and apoptosis to be increased after 14 days of expo-
sure to carcinogens, whereas at the 90-day time point genes related to xenobiotic
metabolism showed higher expression in the carcinogen-derived samples. From
their results, the authors suggest that longer exposure times, for example, 90
days or more, are required to induce gene expression changes in the liver that
are clearly indicative of hepatocarcinogenic potency [41]. A possible interpreta-
tion of this apparent contrast to other classification approaches summarized
here, which in several cases delivered reasonable predictions accuracies with
shorter treatment durations, will be given the end of this chapter.
Quite a few environmental and/or industrial chemicals induce lung cancer in

mice, as observed in NTP studies using B6C3F1 mice. As mentioned earlier,
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since huge numbers of chemicals are still untested for their cancer-inducing
characteristics, more efficient ways of safety testing are required, as, for example,
listed in the report of the US National Research Council (NRC) on “Toxicity
Testing in the 21st Century” [46]. To evaluate whether a shorter term alternative
to the standard 2-year bioassay would be feasible, researchers in the environ-
mental toxicity area investigated whether gene expression changes in mouse
lung obtained after a 13-week treatment could predict increased lung tumor
incidence [43]. A 13-week and not shorter treatment duration was chosen based
on the rationale that earlier the gene expression changes induced by different
carcinogen classes, especially NGCs, would be rather transient and thus less
robust, whereas over, for example, a 13-week time course, gene expression
changes would evolve to a profile comparable between carcinogens irrespective
of primary class. A total of 26 chemicals were profiled over a period of 3 years, of
which approximately half had produced lung tumors in mice. The chemicals
were rather diverse concerning route of exposure, chemical structures, and
results from genotoxicity tests, that is, represented both GCs and NGCs that
were all classified as carcinogens. Batch effects, which are inevitable in micro-
array studies when testing is performed over longer periods of time [47], were
removed based on matched controls run in parallel to treatments. For calcula-
tion of classification models with the endpoint “increased lung tumor incidence”
in the mouse 2-year bioassay, a broad array of feature selection and classification
algorithms was tested in conjunction with a range of cross-validation conditions.
The average accuracy obtained for the best-performing models was 77.5% with
generally higher specificity than sensitivity, that is, less prediction of false posi-
tives than false negatives. This study also investigated how many compounds are
likely required to produce a robust classification model from their associated
gene expression profiles. A learning curve analysis revealed that model perform-
ance reached a plateau at 25 chemicals; that is, adding more chemicals did not
improve the classification in this data set.
One important conclusion from the investigations summarized in this sec-

tion is that the gene signatures derived by any algorithm need to be checked
for their mechanistic content. They should then only be used for classification
if they represent functions and pathways relevant for the phenotype to be
modeled. An earlier review of toxicogenomic investigations in the area of
carcinogenicity characterization and prediction, based on several data sets
available at that time [48], had come to the conclusion that gene expression
profiles in such studies can reflect underlying modes or mechanisms of action
and may therefore be useful in the prediction of chemical carcinogenicity in
conjunction with conventional short-term genotoxicity studies. This conclu-
sion again highlights the importance of mechanistic background in the pro-
files, which may also help to interpret the somewhat contrasting suggestions
by different research groups of using either subacute (1–14-day) or sub-
chronic (90-day) studies to derive gene expression profiles indicative of a
potential for tumor induction in a certain organ. Both study durations may
be reasonable, depending on what is to be modeled. To capture differences
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between NGCs and GCs, earlier profiles may be more useful, whereas if one
wants to model carcinogenic properties of compounds in general, gene
expression profiles from somewhat longer duration studies may be more suit-
able, since by then the elicited changes should have been settled to a more
robust profile comparable between carcinogens irrespective of primary class.
It may be helpful to include a GC class when the goal is to specifically model
NGCs, simply to differentiate NGCs from real GCs. This might have helped
in case of the TG-GATEs approach where the model built with necrotic
NGCs versus nonhepatocarcinogens also predicted GCs as necrotic NGCs.
Thus, in any case, the compounds need to be well defined concerning the
class of toxicants they should represent, and it could make sense to subdivide
training set NGCs into classes with different primary modes of action, for
example, necrosis/regenerative hyperplasia versus directly mitosis inducing.
Furthermore, the number of different compounds per class should not be
overly biased toward one versus the other class, and there should be a ratio-
nale for dose and time point selection. It may also generally be helpful to
perform a mechanistic analysis in parallel.
Based on the various toxicogenomic investigations now published in conjunc-

tion with other developments in the regulatory area concerning carcinogenicity
assessment in both the pharmaceutical and environmental/industrial chemical
areas, the use of such analyses in these areas may be reevaluated. As described
in Section 6.1.2, the ICH proposal for changes to the current carcinogenicity
assessment of pharmaceutical suggests a flexible weight of evidence approach
that considers all available data up to 6 (or 12)-month studies to decide on
the value of actually performing a 2-year bioassay. Toxicogenomic analyses
may be helpful here to clarify mechanisms and in this way potentially evaluate
human relevance. In contrast, in case of environmental/industrial chemicals,
where huge numbers of compounds are still untested, a predictive approach
may be useful for prioritization of compounds to be tested in the 2-year bio-
assay for which high-sensitivity classification models would be desirable [43].
In this respect, Thomas et al. [43] made calculations about the requirements
for a predictive approach in case of environmental/industrial chemicals. From
NTP records, it can be derived that developing gene expression biomarkers
for a combination of eight organs from rats and mice of specific sexes would
identify nearly 80% of all positive chemicals in the rodent cancer bioassay.
Based on their additional analysis that model performance reached a plateau
at 25 chemicals, 8 (for the most important organs) times 25 (compounds per
organ), that is, 200, chemical exposures may be required to develop these gene
expression prediction models. If the same compound would induce tumors in
several of these eight organs, even less studies may be needed. A further sec-
tor where short-term prediction models in conjunction with mechanistic eval-
uation could assist, for example, in compound ranking for safety evaluation
may be in the agrochemical area, where the 2-year cancer bioassay will likely
remain to be mandatory [5,49], since there are currently no discussions com-
parable to ICH S1.
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6.2.3

Recent Developments: Transcriptional Benchmark Dose Modeling
Based on Functional Analyses

As already alluded to above, classifier models should be built on mechanistically
based signatures, otherwise they may not be robust enough to classify indepen-
dent test compounds. A more recently developed approach also founded in
mechanistic interpretation of compound-induced gene expression changes is to
apply benchmark dose modeling on gene expression profiles at the single gene
and functional category levels to aid in quantitative risk assessment [50,51].
Starting with gene expression profiles derived from samples after exposure of a
biological model to at least three doses of a compound for a certain duration,
genes showing a dose-dependent expression response are identified with, for
example, ANOVA. The profiles of these genes are then fitted to a selection of
standard statistical models, for example, linear or polynomial. With the model
that best describes the data, one can estimate the benchmark dose at which the
expression of the gene significantly deviates from that in control animals. After
matching each gene with its corresponding functional category, for example,
gene ontology (GO) categories, and calculation of summary values per category,
a BMD level for the treatment-dependent change of a function can be
derived [17]. Uncertainty factors, which are usually applied to “no observed
adverse effect levels” (NOAELs), can also be applied to BMDs for the most sensi-
tive category/function, to derive reference doses (RfDs) [52].
This approach was first applied and developed with gene expression data from

nasal epithelium after a 6 h inhalation exposure of rats to four different concen-
trations of formaldehyde up to 15 ppm [51]. Formaldehyde is a major industrial
chemical that in rodent models can induce regenerative cell proliferation and
DNA–protein cross-links together with an increased incidence of nasal squa-
mous cell carcinoma after longer term exposure with doses from 2 to 15 ppm.
Controversy exists on the dose dependence of genotoxicity versus regenerative
cell proliferation in case of formaldehyde-induced tumors (summarized in
Ref. [51]). From the gene expression data in the above-mentioned study, average
BMDs and benchmark dose lower confidence limits (BMDLs) were calculated
for each GO category. Interestingly, the BMDs estimated for categories related
to cell proliferation and DNA damage were similar to BMDs for induction of
DNA–protein cross-links and DNA synthesis measured in prior labeling studies.
Overall, the integration of BMD and gene expression analysis allowed to reveal
dose-dependent effects of a compound at the molecular level and to derive RfDs
for alterations of particular cellular processes. This is expected to greatly
enhance chemical risk assessment. Thomas et al. continued to develop and
expand that approach by applying it to further gene expression studies with lung
and liver carcinogens in mice [52,53] and liver, bladder, and thyroid carcinogens
in rats [13]. Based on these investigations, they finally developed a flowchart for
the application of transcriptomic data to chemical risk assessment for both non-
cancer- and cancer-related apical endpoints. Overall, this represents a pragmatic
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approach to derive provisional point of departure (POD) dose values for chem-
icals without published RfDs. These studies also revealed that transcriptional
perturbations do not occur at significantly lower doses than apical responses.
Such a BMD modeling for transcriptional responses was also applied to

furan-induced gene expression changes in B6C3F1 mouse liver after 3 weeks
of treatment with noncarcinogenic and carcinogenic doses [54]. The postu-
lated cancer mode of action for furan includes regenerative hyperplasia fol-
lowing chronic cytotoxicity and inflammation, and a dose-response study for
both 3 weeks and 2 years suggested the POD for carcinogenicity in B6C3F1
mice between 2 and 4 mg/kg [55]. The BMDLs calculated for hepatocellular
carcinoma and adenoma as observed in the NTP mouse study, 0.92 and
1.57 mg/kg, respectively, were close to the suggested cancer POD, and the
BMDLs for transcriptional responses representing pathways consistent with the
postulated mode of action, for example, oxidative stress response, inflammation,
and cell survival and growth, were also in this range [54]. This observed consist-
ency between transcriptional responses and cancer data again demonstrated the
applicability of toxicogenomics in quantitative risk assessment for environmental/
industrial chemicals.

6.2.4
Recent Opportunities: Publicly Available Data

A prerequisite to perform toxicogenomic analysis is well-annotated gene expres-
sion data from sufficiently documented studies. Not only for predictive toxicoge-
nomics, but also for mechanistic investigations and biomarker searching, it is
helpful to have access to readily comparable data from the same biological
model treated with various compounds. Two of the largest toxicogenomic data-
bases were recently made public: TG-GATEs from the Toxicogenomics Project
in Japan [56] and DrugMatrix, originally generated by Iconix Pharmaceuti-
cals [44] (Table 6.2). Both databases contain gene expression profiles of mostly
the liver after treatment of male Sprague Dawley rats and of hepatocytes in vitro,
with compounds representing to a major part marketed drugs including several
GCs and NGCs. Major advantages of the two databases compared with other
publicly available data are (1) their uniform experimental design; (2) the availa-
bility of extensive metadata for classical toxicological endpoints; (3) the inclusion
of a large number of profiled marketed drugs, which should allow an assessment
of whether gene expression profiles measured in preclinical models can help pre-
dict human toxicity; and (4) the presence of in vivo and in vitro gene expression
profiles after treatment with the same compounds, which should help to define
the capabilities and limitations of in vitro systems. Apart from many commonali-
ties between the two databases enabling meta-analyses across databases, for
example, use of the same rat strain and an overlap in 73 compounds, two key
differences need to be considered: (1) the microarray platform differs for a con-
siderable part of the expression data, and (2) the determination of the MTD for
dosing is different [12].
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Overall, the public availability of these comprehensive data is expected to
stimulate renewed analysis and development of novel data mining tools leading
to a more detailed insight into mechanisms of action. This may also enable the
derivation of connections between genes and pathways relevant for the develop-
ment of certain toxic phenotypes and may eventually allow distinction between
adaptive and adverse effects at the molecular level. Since some of the com-
pounds represent different mechanistic classes of carcinogens, these data may
also be investigated to obtain further insight into early molecular effects of these
compound types.

6.3
Conclusions and Outlook

The principal hypothesis underlying a toxicogenomic strategy is that chemical-spe-
cific patterns of altered gene expression can be revealed using high-density micro-
array analysis of tissues from exposed organisms. Analyses of these patterns should
allow classification of toxicants and provide important mechanistic insights.
Many publications in this area have shown that gaining mechanistic insight is

clearly possible, which will be further enhanced by application of newly devel-
oped analysis tools such as causal reasoning that infers upstream molecular
events causing the observed gene expression changes [57–60]. Mechanistic tox-
icogenomics is now used in various research areas, for example, case by case for
detailed analysis of observed phenotypes in drug development and for explora-
tion of the mode(s) of action of environmentally important chemicals. In the
latter area, toxicogenomic analyses may also help to prioritize compounds for
further chronic testing, and together with benchmark dose modeling may even
be used in risk assessment for derivation of reference doses.
Concerning its application as a predictive tool, its use is still rather selective.

The reported studies in this area including those summarized above do highlight
that for a predictive approach apart from a requirement of quite many data
derived from uniformly performed studies, several other prerequisites need to be
taken into account. One prerequisite appears to be that the selected signature
genes represent functions and pathways likely involved in the endpoint to be
modeled. The data available now in the public databases will allow revisiting sev-
eral aspects in a more rigorous manner. It is clear from an investigation by the
MAQC Consortium [61–63] that some endpoints can be modeled well whereas
for others prediction accuracies will remain moderate.
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7
Discovery and Application of Novel Biomarkers
Timothy W. Gant, Emma L. Marczylo, and Martin O. Leonard

7.1
Introduction

Biomarkers can be defined in various ways. In pathophysiology, a biomarker is a
molecule that is an indicator for tissue damage that cannot be measured directly,
or quantitated accurately. In this case, the molecule measured acts as a surrogate
for the actual process of interest that cannot be measured directly, a latent varia-
ble. The US National Institutes of Health (NIH) defines a biomarker as “a char-
acteristic that is objectively measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or pharmacological responses to a
therapeutic intervention.” New technologies, including high-throughput omics,
have provided novel high-throughput methods for rapidly discovering and
assessing changes in DNA (genetics and epigenetics), RNA (mRNA and
miRNA), metabolites, proteins, and lipids. Some of these changes can also be
biomarkers of past exposure or prognostic for future events. As such, there is a
need to expand this biomarker definition beyond the present to include the bio-
logical measures indicative of something that has happened in the past or will
happen in the future, for example, exposure to an environmental chemical that
has been cleared from the body but has left behind a mark of its presence on the
cellular macromolecules such as DNA and proteins. This is analogous to the
fossil of a soft-bodied organism that lived long ago. The body of the organism
has decayed, but a mark has been left in the rock that is indicative of its pres-
ence. In this scenario, the measured parameter is a marker of a past exposure or
event. Are such biomarkers a realistic proposition? The potential has yet to be
fully realized, but the science of epigenetics has revealed one example. Through-
out life our DNA is epigenetically modified to induce changes in gene expression
that enable us to adapt to our environment. Such epigenetic marks have the
potential to act as indicators of past exposure. Other novel biomarkers can be
prognostic biomarkers for future events. These are perhaps among the most val-
uable biomarkers because they allow the possibility of intervention before the
adverse event occurs, or avoidance altogether. For example, a good prognostic
biomarker of liver failure outcome from acetaminophen overdose would allow
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prediction of those patients where liver failure was likely to occur and thus iden-
tify patients requiring aggressive treatment with N-acetylcysteine to try and alter
the development or severity of the liver failure. Similarly, a gene polymorphism
may have no adverse consequence for the carrier under normal conditions, but
may be adverse after exposure to a drug or chemical. In this scenario, assessment
of the polymorphic marker would allow active steps to be taken to avoid expo-
sure and thus prevent an adverse outcome. Later in this chapter we will return to
specific examples in all of these scenarios utilizing, in the main, genomics (analy-
sis of events at the gene level), although many of the points considered are also
applicable to proteomics and metabolomics.
In summary, biomarkers can be divided into three time-based classes: past,

present, and future. Past markers are exposure biomarkers and indicate that an
exposure has taken place even if there is no adverse consequence from that
exposure. Present markers are those that indicate an ongoing process, such as
pathophysiology. Future markers are prognostic. They indicate something that is
likely to happen but has not yet happened (Figure 7.1).
For all the above classes, there are common properties that are required for a

successful biomarker. These are sensitivity, specificity, accessibility, ease of assay,
and, for a biomarker that is a surrogate for the latent variable of interest, a linear
relationship to the latent variable.

7.1.1

New Technologies Give Rise to Novel Opportunities for Biomarker Discovery

Over the past 15 years, omics technologies have been developed. There are vari-
ous types, but they have one aspect in common, high-throughput analysis. Such
methods started with the development of automated capillary sequencing that
enabled the relatively rapid sequencing of mRNA libraries, providing access to
many more gene probes than had been available previously. The techniques of
the time that utilized such probes to measure gene expression, primarily the
Northern and dot blot, did not have the capacity to permit the high-throughput
usage of these large numbers of new gene probes. A new method had to be
found, and it was the microarray. In essence, microarrays are simply a solid

Figure 7.1 Division of biomarker classes into past, present, and future.
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hybridization surface on which a large number of probes can be deposited, for
the first time allowing the simultaneous assay of many different genes in the
same experiment. Further developments in high-throughput sequencing (HTS),
where many millions of DNA bases can be sequenced in a single run, have now
largely replaced microarrays. However, the underlying principle remains the
same: the simultaneous determination of the expression of many genes within
one sample. Indeed, the capacity of the HTS machines has now increased to
such an extent that whole genomes can be sequenced in a single run.
Consequently, the cost per human genome has fallen from $300 000 000 in 2003
for the sequencing of the first human genome to now a claimed $1000 per
genome (http://www.illumina.com/systems/hiseq-x-sequencing-system.ilmn).
Such advances have enabled the high-throughput study of a wide range of
genome and epigenome changes in addition to gene expression, including poly-
morphisms and alterations in DNA methylation and histone modifications. Fur-
thermore, it is not just analysis at the nucleic acid level that has reached the
high-throughput level by the introduction of new technology. Developments in
mass spectrometry analysis and nuclear magnetic resonance spectroscopy have
had a similar effect on the analysis of proteins and metabolites. Together these
technologies have given rise to three major branches of omics screening: geno-
mics, proteomics, and metabolomics (nucleic acids, proteins, and metabolites,
respectively). This has provided a wealth of opportunities for the discovery and
validation of novel biomarkers, the subject of this chapter.

7.2
Novel RNA Biomarkers

7.2.1
The Complex RNA Biomarker in Cancer

One of the first applications of the new genomic technologies was in the
development of the complex RNA biomarker (transcriptomic biomarker),
particularly for distinguishing between various types of cancer that were diffi-
cult to differentiate pathologically. This was first described by Golub et al. in
a landmark paper in Science in 1999 [1]. Here the authors showed for the
first time how a complex gene expression profile could be used to separate
acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML)
without any prior knowledge of the tumor type. This approach was subse-
quently applied to solid tumors, including diffuse large B-cell lymphoma,
where complex gene expression profiles were able to separate four distinct
subtypes of tumor that could not be identified by other means [2,3], and car-
cinoma of the bladder where gene expression profiles were able to identify
three major stages and further subgroups of one of these stages [4]. Such
transcriptional profiling work has since been extended to a wide range of
other tumor types, further demonstrating how complex transcriptomic
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biomarkers of gene expression can be used to distinguish between closely
related pathologies.
Use of the transcriptomic biomarker for the pathological identification of

tumors would fit within the NIH biomarker definition as it is a marker of an
ongoing process, or within the terminology introduced here, a present bio-
marker. However, transcriptomic biomarkers have also been shown to have util-
ity as prognostic or future biomarkers. One of the earliest and best examples of a
prognostic transcriptomic biomarker was identified in a breast cancer study car-
ried out by van’t Veer et al. in 2002 [5]. From 78 primary breast cancers, a gene
expression profile of 5000 differentially expressed genes was developed. From
these 78 patients, 34 developed distant metastases within 5 years of diagnosis,
while 44 continued to be disease free. The gene expression profile of 5000 differ-
entially expressed genes was subject to a supervised clustering, which identified a
gene expression profile of 70 genes that could separate the tumors with good
prognosis (no metastases at 5 years) from those with poorer prognosis (metasta-
ses within 5 years). This gene signature was validated over a number of years,
eventually resulting in the diagnostic profile named the MammaPrint [6]. The
MammaPrint gene set has shown validity in predicting both the time of remain-
ing free from distant metastases and the time of overall survival, and is now
licensed as a valid diagnostic test using microarrays as the testing platform.
Many other such studies have also been performed, for example, in nervous sys-
tem embryonal tumors [7], but none have yet been transferred from the labora-
tory to the clinic as effectively as the MammaPrint.
The potential utility of such transcriptomic biomarkers to not only predict a

current state, such as pathology, but also act as a prognostic marker for future
outcome is in many ways quite remarkable. Solid tumors such as breast carcino-
mas and others are not a single cell type but consist of a multitude of cancer and
noncancer cell types. All of the noncancer cell types within the tumor, such as
blood vessels, stroma, and inflammatory cells, will dilute the overall gene signa-
ture. Yet, a gene signature indicative of the phenotypic characteristics of the
tumor can survive the dilution effect and still be adequately detected.
Another remarkable aspect of this type of complex gene expression signature

is that it works even though many genes are dynamically regulated and respond
to the individual environments in which they are located. The fact that a set of
genes such as the 70 genes corresponding to the MammaPrint are commonly
regulated across a set of tumors and contribute to a specific outcome suggests
that they are differentially expressed as a result of a change in the underlying
tumor genotype that is relatively stable. One such genome change is gene dupli-
cation and deletion. These are structural alterations that commonly occur in the
DNA of tumor cells. Gene duplication and deletion events can thus also act as
novel present and future biomarkers, and are easily detected using microarray-
based comparative genome hybridization.
A disadvantage of RNA-based gene expression methods is their dependence

on a reference. Levels of gene expression at the RNA level cannot be analyzed
alone and interpreted by comparison with a historic reference level in the same
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manner as, for example, enzyme activity. RNA can only be measured by refer-
ence to something else. The MammaPrint depends on a standard reference.
Standard references can be difficult to reproducibly manufacture and may not
be standard across laboratories, raising the possibility that a gene expression
profile generated in one laboratory may not match that generated in another
laboratory. For these reasons, the MammaPrint assay is undertaken in one spe-
cialist laboratory [8]. Furthermore, RNA is sensitive to degradation through con-
tamination with environmental RNases. These drawbacks have the very real
possibility of limiting the widespread application of such biomarkers to just a
few specific testing laboratories. Another disadvantage of this method is that it
requires a sample of tissue. While this may be accessible at initial diagnosis, it
makes following the tumor, particularly during treatment, challenging.

7.2.2

The Complex RNA Biomarker in Toxicology

The same approach as that used in oncology has been used to develop transcrip-
tional biomarkers of exposure to toxins, adverse outcomes, and pathological
changes in the field of toxicology. Several consortia have been involved in such
work, one example of which is the FP6 PredTox [9], although there are others.
Most of these studies have been with in vivo animal or in vitro models and there-
fore have the advantage of a control sample for comparison. These approaches
can, without doubt, identify gene expression profiles indicative of events. How-
ever, the analysis of results has proven more difficult than that for cancer. Com-
monly, the gene expression profile has been identified from tissues where there
is already a pathological change underway as a result of the chemical insult. This
can make it difficult to discern those gene expressions that are due to the toxico-
dynamics of the chemical from those due to the pathological change in the
organ. One of the most popular early analysis methods of such genomic data
was so-called phenotypic anchoring. Here the definition of phenotypic anchoring
is the linkage of gene expression change(s) with a current pathological change. It
is also possible to link gene expression change(s) with a future outcome, an anal-
ysis method better referred to as prognostic anchoring. The use of phenotypic
anchoring is demonstrated in the early work of Moggs et al. [10]. Work such as
this is elegant and indicates the close relationship between specific pathology
and gene expression in a similar manner to that found in cancer. However, a
difficult question has to be asked: What do data such as these actually tell us?
The gene expression profile may inform on the mechanism by which the pathol-
ogy occurs and may be able to differentiate pathologies not easily distinguished
by histopathology, but it does not generally predict the occurrence of a toxic
event before it actually takes place. This is not a criticism of the early work.
Linking the data to a pathological change did provide a means to make some
sense of the large genomic data sets generated. Indeed, we have performed simi-
lar analyses ourselves [11,12], as have many others. If, however, we return to the
study of Moggs et al. [10], it could be argued that the blotted uterine weight was
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a more sensitive biomarker of the estrogenic effect than the gene expression pro-
file. Phenotypically anchored studies are therefore scientifically interesting, can
inform on pathology, and provide a greater insight into that pathology than his-
tology alone, but usually do not provide a transcriptomic biomarker of a toxic
event that cannot be discerned by another analysis method in the tissue itself.
Where they do have utility though is in the identification of changes that may be
detected in biofluids distant from the pathophysiological change. This then pro-
vides an opportunity for finding a biomarker that can be measured away from
the site of toxicity, which indicates the ongoing process without a need to sam-
ple the tissue. These biomarkers are valuable because they allow a continuous
monitoring of the processes.
While gene expression analysis offers advantages to histopathology [13], the

limitation of the transcriptomic biomarker is again tissue accessibility. Consider,
for example, oncology. As previously mentioned, at first diagnosis biopsy or sur-
gically removed tumor may be available. Such tissue samples are unlikely to be
available subsequently if the tumor progresses, precisely the time when a bio-
marker would be particularly useful for monitoring the process that cannot be
measured directly, tumor progression and development. The same is true in tox-
icology where it is even less likely that there will be tissue available from the
damaged organ, particularly in cases of human toxicity. A transcriptomic bio-
marker of tissue damage in a readily accessible tissue is therefore of even more
importance. Intuitively, it might be anticipated that gene expression changes giv-
ing rise to a transcriptomic biomarker would be limited to the organ in which
the damage was located. However, it was elegantly demonstrated by Bushel et al.
that this is not necessarily the case [14]. Here the authors monitored mRNAs in
the blood of rats undergoing acetaminophen-induced liver toxicity, comparing
the predictive power of four gene expression models with that of three indepen-
dent pathologists, clinical chemistry and hematology. In each case, the mRNA
profiles were found to outperform the more traditional biomarkers.
To conclude, the transcriptional biomarker has utility in the pathological anal-

ysis and quantitation of that pathology, can inform on pathological mechanisms,
and may be linked to an outcome, such as propensity to metastasize. In this
respect, it has the potential to act as a prognostic biomarker. Its analytical com-
plexity, however, can be limiting, and consideration has to be given as to
whether it truly outperforms the traditional biomarkers, particularly the cellular
change that is ongoing at the time of tissue sampling.

7.2.3

Connectivity Mapping with the Complex RNA Biomarker for Hazard Identification

Connectivity mapping is a method first published by Lamb et al. in 2006 [15]
and further adapted by others [16,17]. The concept is very simple. It provides a
method to link a gene expression profile with others in a database. As such, it
requires a gene expression signature of interest, a database of other gene expres-
sion signatures that are linked to other metadata such as chemical name/type,
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pathological change, tissue or cell type, and an algorithm to link the gene expres-
sion signature of interest with those in the database. The database generated by
the Broad Institute used four cell lines treated with 1309 chemicals largely,
although not exclusively, at one dose level. There are obvious limitations to this
approach, in particular the lack of dose response. Nevertheless, the method was
shown to be effective, initially for recognizing estrogen receptor agonists using a
gene expression signature from cells treated with estrogen. Perhaps more inter-
estingly, the method was also able to easily detect estrogen receptor antagonists
by utilizing the exactly opposite gene expression signature [15,17]. The estrogen
receptor is, however, a transcription factor in its own right with a specific DNA
binding site. Therefore, it would be anticipated to create quite a specific gene
expression biomarker that would have utility in an approach such as connectivity
mapping. What about a target less specific for transcriptional gene regulation
than a nuclear receptor; will the method still work? Recently, Caiment et al.
have shown that mutagens and carcinogens, with no defined receptor, can also
be identified using this approach [18]. The database can also be used in another
way. By grouping chemicals that cause similar changes in gene expression, com-
mon patterns or signatures may be recognized that are indicative of mecha-
nisms. For example, all mutagens in the database may be grouped and then by
looking for genes common to the group that are differentially expressed com-
pared with other groups a transcription biomarker may be identified that is
indicative of mutagens.

7.2.4

miRNA Biomarkers

First discovered in Caenorhabditis elegans in 1993 [19], miRNAs are 21–25-
nucleotide nonprotein-coding RNA species that are transcribed from non-
protein-coding regions of the genome under the same control mechanisms as
protein-coding genes that utilize RNA polymerase II [20]. They are primarily
located in separate parts of the genome under their own transcriptional pro-
moter, in introns, or less commonly in exons (Table 7.1). In the latter two cases,
they are under the control of the promoter for that protein-coding gene. In all
cases, they are spliced from a longer primary miRNA transcript by the RNase
enzyme DROSHA and then exported as precursor miRNAs from the nucleus by
the active transport pump EXPORTIN5. They are then further processed by the

Table 7.1 Genomic location of miRNAs in four species.

Genomic location Human Mouse Rat Dog

Intergenic 396 (52%) 405 (62%) 359 (76%) 225 (64%)
Intronic 308 (40%) 235 (24%) 112 (24%) 107 (31%)
Exonic 58 (8%) 12 (2%) 0 (0%) 18 (5%)

From Ref. [21].
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RNase enzyme DICER before being incorporated onto the RISC complex from
which they modulate translation by either suppressing translation or leading to
cleavage and thus degradation of their target mRNA strand [20].
miRNAs are important in toxicology because they control rapid protein trans-

lation from mRNA strands and can therefore be utilized to provide a very rapid
change in protein levels in response to cellular stress [22]. They can also act as
biomarkers in one of the two ways: first in the tissue in the same manner as
mRNA because their transcription is regulated and can be modulated in
response to cellular stress, and second as biomarkers in tissue fluids.
Remarkably, miRNAs are found in all body fluids (Table 7.2), are relatively

stable to degradation, and are comparatively easily assayed. This has led to an
interest in them both as biomarkers of toxicity within the target organ and as
distant markers in an accessible body fluid. One of the first studies to exploit
these properties was that published by Wang et al. in 2009, which used the
established acetaminophen model of liver injury in rats and microarrays to assess
differential levels of miRNAs in the plasma of these animals [23]. A number of
miRNAs were shown to be altered, several of which demonstrated substantial
changes up to approximately 450-fold over control. The two plasma miRNAs
with the greatest increase in concentration were miRNA-122 and miRNA-192.
Both of these miRNAs are known to be highly expressed in the liver, therefore
supporting a hypothesis that these are released into the circulation as a result of
liver damage [24]. These workers also performed a time and dose response for
both of these miRNA species using four doses of acetaminophen from 0 to 300
mg/kg and two time points of 1 and 3 h postexposure. These analyses showed
that both miRNA species were more sensitive than the traditional biomarker
ALT for the detection of acetaminophen-induced liver damage. A similar analy-
sis has been carried out in human subjects suffering from acute liver injury
(ALI) [25]. Circulating miRNA-122 was significantly elevated from baseline in

Table 7.2 Detectable miRNAs in bodily fluids.

Body fluid Number of detectable miRNAs

Amniotic fluid 359
Breast milk 429
Bronchial lavage 260
CSF 212
Colostrum 386
Peritoneal fluid 397
Plasma 349
Pleural fluid 210
Saliva 458
Seminal fluid 436
Tears 320
Urine 204

From Ref. [26].
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patients suffering from both acetaminophen-induced and non-acetaminophen-
induced ALI, while circulating miRNA-192 was significantly elevated only in
patients suffering from acetaminophen-induced ALI. This suggests that miRNA-
122 was indicative of general liver damage, while miRNA-192 was specific to
acetaminophen-induced liver injury. Thus, like transcriptomic biomarkers,
miRNA expression profiles rather than single miRNAs may prove to be most
useful as biomarkers of specific pathologies.
Cardiovascular development has been one of the most investigated physiologi-

cal systems for determining the role of miRNAs in physiology, and multiple
studies have revealed that miRNAs are critical to many areas of this process [27].
Not surprisingly, therefore, the utility of miRNAs as biomarkers of cardiovascu-
lar disease has been extensively investigated. One of the first studies was that of
Fichtlscherer et al., which used a microarray profiling method to identify candi-
date miRNAs altered in the plasma of patients suffering from cardiovascular dis-
ease, and then further analyzed these candidate miRNAs with a quantitative real-
time PCR assay on a hypothesis testing basis in a validation patient cohort [28].
Most of the miRNAs identified were decreased rather than increased in expres-
sion during cardiovascular disease.
Downregulation of miRNA species in plasma as a biomarker of a pathophysio-

logical event is something that requires some additional thought and discussion.
There are two aspects: first a downregulated miRNA runs counter to the expect-
ation that a biomarker will be released from a tissue on damage, and second the
measurement space (see below) that can be assigned to this event. Fichtlscherer
et al. had this same thought and offered the hypothesis that the miRNA was
being lost to the plasma because of uptake into atherosclerotic lesions [28]. How-
ever, they provided no experimental evidence in support of this hypothesis. Even
if this is a reasonable explanation, it still renders downregulated miRNA bio-
markers difficult to deal with analytically. There are two reasons for this: first
they become progressively more difficult to measure as they decrease in abun-
dance and are therefore of less value, and second their range for change is limited
to between 1 (unchanged) and 0 (completely lost). In practice, limits of detection
would most likely reduce this range even further. In contrast, an upregulated
miRNA is not only easier to envisage hypothetically as being due to release from
damaged tissue, but also progressively easier to measure and has an unlimited
range for change from 1 to infinity. Therefore, given a choice between a bio-
marker that is upregulated upon tissue damage and one that is downregulated,
the biomarker that is increased in expression offers many more advantages.
Returning to the work of Starkey Lewis et al. investigating miRNA biomarkers

for the detection of acetaminophen-induced ALI, the data also showed that the
candidate miRNA biomarkers were neither more sensitive nor more specific
than the traditional biomarker ALT [25]. The question that then obviously arises
is: Do these miRNA biomarkers have greater utility than the ALT marker that is
well established for liver injury? From these data, the answer at the moment
would have to be no. While this appears a harsh judgment on the science, it is
important to consider that this field is relatively early in the research process.

7.2 Novel RNA Biomarkers 137



Most of the data generated have been in animal models, so a great deal of work
needs to be done to establish the utility, or lack thereof, of these miRNA bio-
markers in the diagnosis of clinical disease and toxicology. Such work is actively
ongoing and it is beyond the scope of this chapter. However, a literature search
indicates that serum miRNAs are of interest in many disease types and in normal
life processes such as aging and pregnancy. It is therefore likely that over time
new candidate miRNA biomarkers will emerge and be validated, which will
either have a greater utility than existing biomarkers or fulfill a need where there
is no current biomarker.

7.3
DNA as a Biomarker

There are potentially three forms of DNA alteration that can act as biomarkers
of toxicological events. The first of these is a future prognostic biomarker. This
will take the form of some alteration in the genome leading to an alteration of
gene function or expression that has a phenotypic outcome in the future. For
example, a DNA polymorphism can be predictive of a future disease state such
as breast cancer or of susceptibility or resistance to an environmental exposure.
The second and third are biomarkers of exposure, so indicative of something
that has happened in the past. These are DNA adducts and epigenetic changes.
Both of these DNA alterations indicate that an exposure has taken place. They
may also be indicative of a future adverse outcome, though not necessarily so.
The advent of high-throughput sequencing has led to a substantial increase in

the number of known DNA polymorphisms and other DNA alterations such as
deletions and duplications. These data are increasing at a substantial rate due to
genetic variant analysis projects, such as HapMap [29] and 1000 Genomes
(http://www.wellcome.ac.uk/Funding/Biomedical-science/Funded-projects/
Major-initiatives/WTDV029748.htm), in addition to individual efforts estimated
to have generated 30 000 human genomes by the end of 2011 [30]. These proj-
ects are starting to give some indication of the genetic biodiversity in the human
population. As this diversity becomes associated with phenotypes, it can act as
prognostic biomarkers of future events. For example, a number of genetic poly-
morphisms such as BRCA1 mutations are prognostic for the development of
cancer [31].

7.3.1

DNA Polymorphisms as Future Biomarkers of Disease and Xenobiotic Susceptibility

Many genes are involved in the response of cells to xenobiotics, including initial
interaction(s), metabolism and excretion, response to cellular stress, repair of
damage, or as a last resort induction of cell death processes. There is therefore
substantial opportunity for variation in the susceptibility of individuals or subpo-
pulations to particular xenobiotics as a result of genetic polymorphisms that
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cause alterations in either the activity or abundance of the proteins involved in
these processes.
For example, polymorphisms in the coding sequences of genes associated with

xenobiotic metabolism can affect the manner in which these xenobiotics are
metabolized. This has been demonstrated for various genes and compounds in
an extensive number of publications. Johansson and Ingelman-Sundberg have
reviewed some of these examples, including warfarin, where a knowledge of
DNA polymorphisms in specific cytochrome p450 genes can be used to predict
those that might have adverse sensitivity [32]. It is not just the metabolic genes
that are important in determining sensitivity. Once metabolized to hydrophilic
derivatives, metabolites often have to be moved across membranes and this can
require active transport. One set of proteins responsible for this are the ATP
binding cassette genes that utilize ATP to actively excrete such metabolites. This
diverse family of proteins has many known polymorphisms, some of which lead
to disease phenotypes and others to alteration in susceptibility to chemicals and
drugs [33].
Polymorphic gene variations that confer susceptibility are not restricted to a

single base sequence change, but also encompass structural variations such as
copy number. Changes in the copy number (including both insertion and dele-
tion) of genomic regions are potentially of more significance for conferring phe-
notype and differential sensitivity to xenobiotics than DNA polymorphisms.
While polymorphisms affect the function and expression of one gene, copy
number variations can affect whole stretches of DNA and the expression of
many genes within that region. Copy number variation is also very common in
both humans and experimental animals, although the full landscape of the varia-
tion has still to be explored in both [34,35].
These are just two examples of many DNA alterations that could be cited to

indicate the ability of DNA to act as a biomarker of susceptibility to xenobiotic
exposure. The purpose here is not to provide an extensive review but rather to
highlight the area. The developments in DNA sequencing will reveal a great
many more polymorphisms and structural variations in DNA. A proportion of
these will not have relevance for either disease or toxicology, but others will.
Being able to recognize these pathologically relevant alterations within the back-
ground data will be challenging, particularly as these variations might be rare,
affecting subpopulations not represented in model species and test systems.
Arguably, the only way forward is to develop a much greater understanding of
specific mechanisms of toxicity, including recognition of the important genes
associated with these mechanisms – and the metabolism and excretion of the
xenobiotic. Large-scale genome projects will provide a rich source of informa-
tion about genetic variation in the population, such as frequency of specific vari-
ations and identification of rare variants. Similarly, data will be available on the
genetic differences between humans and model species. With knowledge of
mechanisms of action, these data can be utilized to make predictions of suscepti-
bility or resistance and thus genomic data will act as a future prognostic bio-
marker of differential effect(s).
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7.3.2

DNA and Protein Adduct Biomarkers

DNA adducts are formed after activation of a xenobiotic to an electrophile that
reacts with nucleophilic sites on DNA, of which the most common is the N7 of
the guanine base [36]. Depending on the nature and site of the DNA adduct, it
either is repaired or leads to mutagenesis [37]. There are many examples of such
chemicals and among the “classics” are benzo[a]pyrene, 2-acetylamino fluorine,
and the estrogen receptor antagonist drug tamoxifen [38–40]. As these adducts
are removed and repaired from the DNA with a half-life that is tissue and type
dependent (see Refs [41,42] as two examples of many), they can be measured and
act as historical biomarkers of past exposure. Indeed, fetal DNA adducts induced
by benzo[a]pyrene in the fetus can act as a biomarker of maternal smoking [43].
A similar process can be used with adducts formed on proteins [44]. The use of
these DNA and protein adducts as biomarkers of past exposure has been greatly
facilitated by the recent rapid developments in mass spectrometry methods, which
now enable low parts per billion resolution and sensitivity in adduct detection.

7.3.3

Epigenetic Biomarkers

Epigenetic marks are chemical changes to either DNA or the histone proteins
around which DNA is packaged that alter gene expression without a change in
DNA sequence. The most abundant epigenetic mark on DNA is 5´-methylcytosine
(5mC). This mark, or one of its derivatives, is found at a frequency of approxi-
mately 1–2% across the genome. In general, 5mC is a repressive mark that, when
present within the promoter or enhancer regions of genes, leads to the reduced
expression of that gene [45]. 5mC is recognized by the MECP2 protein, which
directly binds 5mC and suppresses transcription. 5mC is initially deactivated by
conversion to 5´-hydroxyl methylcytosine (5hmC). 5hmC is not recognized at
DNA replication by the DNMT enzymes responsible for methylating DNA, and
thus ultimately leads to loss of the DNA methylation mark. In contrast, 5mC can
be transferred through mitotic and meiotic divisions, and is thus passed from
mother cell to daughter cell in somatic tissues and also from parent to child via
the gamete. Therefore, changes in methylation marks due to chemical or drug
exposure can be transferred across cell and organism generations, and are thought
to be the mechanism by which adaptive DNA changes can be passed from parent
to child. This mechanism is thought to be behind the evolutionary inheritance
of acquired traits proposed by Jean-Baptiste Lamarck. The modern epigenetic
Lamarckian inheritance proposes that a beneficial phenotypic adaptation to the
environment could be captured through the epigenetic modification of gene expres-
sion and passed onto the offspring via the germline so that any resulting children
also benefit from the adaptation. A more traditional genetic mechanism involving a
change in the DNA sequence itself would be too slow to enable such adaptive
inheritance across a single generation. Such adaptive epigenetic inheritance has
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been demonstrated in a rat model of carbon tetrachloride-induced fibrotic liver
damage, where the progeny of rats with a history of such liver damage showed
corresponding epigenetic and transcriptomic alterations in fibrosis-related genes
and were more resistant to fibrogenesis when exposed to the same carbon tetra-
chloride regimen [46]. Such epigenetic processes could also enable the inheritance
of detrimental phenotypes, and are thought to explain the transmission of some of
the adverse disease outcomes described by numerous independent research groups
in response to a wide range of environmental exposures. Indeed, in rats poor
maternal care in early postnatal life has been associated with heritable epigenetic
modifications in neuronal genes, altered neuronal gene expression, and adverse
behavioral responses [47]. As a result of the stability of DNA methylation marks
across multiple generations, they have been postulated to be potentially useful as
biomarkers of past exposures. Perhaps even more interestingly, the putative involve-
ment of such marks in the mechanism(s) of phenotypic inheritance may lead to the
development of novel epigenetic biomarkers of present effect(s) and/or future
pathologies.
It needs to be noted here that the ideas of Jean-Baptiste Lamarck have not been

fully embraced by the scientific community and there is an active debate with
respect to their significance in relation to multigenerational toxicity. This is
explored in reviews by Youngson and Whitelaw [48] and Morgan et al. [49]. In
both reviews, the authors make the valid point that there is a short period in early
development when the primordial germ cells, the cells that give rise to the gametes,
are formed and undergo extensive global epigenetic reprogramming. This means
that there may be a limited time window during which chemicals and drugs could
influence the removal and reestablishment, and thus inheritance, of such epige-
netic marks. This perhaps explains why the majority of multigenerational effects
assigned to these drugs and chemicals to date have utilized in utero exposure dur-
ing the first trimester [50]. However, the studies in fibrotic response to liver dam-
age and maternal care, where the adaptation was passed through generations
without in utero exposure, suggest that there are wider mechanisms involving
more than just a short vulnerable window in in utero exposure at play [46,47].
Histones carry modifications on the tails that extend from the core of the his-

tone protein. There are five common modifications (acetylation, sumoylation,
methylation, ubiquitination, and phosphorylation), of which the most common
are methylation and acetylation (for a review see Ref. [51]). These marks can be
added and removed by relatively dynamic processes in comparison with DNA
methylation marks. This makes them of interest in mechanisms of toxicity, but
arguably less suitable as biomarkers. They will therefore not be considered fur-
ther in this chapter.
In 2008, ECETOC held a workshop that considered the use of epigenetic

events as biomarkers of exposure. This workshop was very much a horizon scan-
ning activity as good studies were not available at the time, and the mechanisms
and consequences of such epigenetic events were still being established (ECE-
TOC Workshop Report 09, 2009). Nevertheless, this workshop did serve to raise
interest in the area, which is now starting to be realized.
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Can epigenetic change act as a historical biomarker of past exposure? In the
absence of a complete knowledge about the control mechanisms that lead to the
establishment of epigenetic marks, one place to start is the biochemistry of cyto-
sine methylation. The methyl group used for the methylation of both DNA and
protein is derived from S-adenosyl methionine (SAM), which in turn derives its
methyl group in a series of reactions from homocysteine utilizing methyltetrahy-
drofolate (MTHF) (Figure 7.2a). It is apparent from this biochemical pathway
that an adequate supply of SAM is required for establishment of methylation
marks and this could be influenced by nutritional factors as well as chemicals
that interfere in the pathway.
One of the earliest and most influential studies in the nutrition field was that

of the children of Dutch mothers malnourished during their first trimester in the
postwar years of 1945–1946. Epidemiological studies of the children of these
mothers have established that they have increased rates of obesity, and, in
daughters, overall mortality, compared with those that might have been
expected [52,53]. This is hypothesized to be due to an alteration in the epige-
netic methylation marks on the DNA resulting from nutritional deprivation dur-
ing the early stages of life when critical processes are underway to reestablish
methylation patterns from the mother and father in the primordial germ cells.
Indeed, further analysis of methylation imprinting in this cohort suggested the
mechanism leading to increased obesity could be due to hypomethylation of the
Insulin Growth Factor II (IGF-2) gene [54]. Demethylation of this gene could be
detected six decades after the event suggesting that hypomethylation of IGF2 can
act as a past biomarker of early life malnutrition [54].
Among the most established compounds shown to cause epigenetic change

are the metals, in particular arsenic. Arsenic exposure has occurred extensively

Figure 7.2 The SAM pathway (a) and metabolism of arsenite to monomethylarsonous acid
and then dimethylarsinous acid using SAM (b). THF is tetrahydrofolate and MTHF is
methyltetrahydrofolate.

142 7 Discovery and Application of Novel Biomarkers



in Southeast Asia, but also in other regions of the world as a result of water
extraction from rock layers containing arsenic. It is estimated that more than
100 million individuals are exposed to levels greater than the 10 μg/dl permitted
by the US Environmental Protection Agency (EPA) and recommended by the
World Health Organization (WHO). As with nutritional effects, we have an
understanding of the likely mechanism. Arsenic is metabolized first to a mono-
methyl form (monomethylarsonous acid) and then to a dimethyl form (dimethy-
larsinous acid) using SAM as a substrate (Figure 7.2b). It is therefore a small step
to hypothesizing that arsenic exposure could lead to a depletion of SAM and
therefore lack of substrate for the methylation of DNA. This has been demon-
strated in both mice and rats where arsenic exposure led to a global hepatic
DNA demethylation (hypomethylation) [55–58]. Similar effects have been seen
in a number of cell lines reviewed by Ren et al. [59]. Conversely, a cohort study
of 114 paired maternal and umbilical cord blood samples from mothers and
infants in Southeast Asia showed an increased methylation at LINE-1 elements
in both the maternal and cord leukocytes, which positively correlated with arse-
nic measured in the mother’s urine [60]. This was hypothesized to be due to
altered folate intake. A similar study in a Bangladeshi population that looked at
histone modifications also showed ambiguous results, with increased histone
methylation in females and decreased histone methylation in males. The authors
hypothesized that this might have been due to the estrogen sensitivity of histone
methylation marks [61]. Furthermore, the authors suggested that increased levels
of the histone methylation mark H3K9me2 could lead to the increased methyla-
tion of LINE-1 elements that have been correlated with arsenic exposure.
Using the nongenotoxic carcinogen phenobarbital, Lempiäinen et al. demon-

strated that increased hepatic expression of Cyp2b10 mRNA is related to a spe-
cific hypomethylation in the promoter region of this gene [62]. Demethylation
was confirmed to occur in the liver but not in the kidney, resulting in an
increased expression of Cyp2b10 mRNA in the liver but not the kidney. It is
now necessary to build on this work and determine if other compounds in the
same toxicological class as phenobarbital, namely, CAR agonists and nongeno-
toxic carcinogens, are able to similarly alter the promoter methylation and sub-
sequent expression of Cyp2b10. If this promoter methylation is shown to have
specificity for CAR agonists or nongenotoxic carcinogens, it could act as a spe-
cific and longer term epigenetic biomarker of exposure to these agents.
What is apparent is that methylation marks on DNA and histones have the

potential to act as biomarkers of exposure, but there is some way to go before
their potential is fully realized.

7.4
Novel Biomarkers: Beyond Nucleotide-Based Discovery

Much of the focus on biomarker discovery to date has centered on the identifi-
cation of new protein- and nucleotide-based indicators of association, as detailed
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here and elsewhere in this book. These biomarkers, together with other less well-
explored targets and strategies, are likely to have a large impact on the develop-
ment of more accurate, detailed, and informative dysfunction classification
endpoints beyond the currently used diagnostic and toxicity assessment tools
[63,64]. We will describe some of these new approaches covering a wide selec-
tion of strategies in order to highlight the diverse options that could be devel-
oped and integrated into future discovery programs.
Metabolites as biomarkers are not new. On the contrary, they were often the

first discovered markers associated with disease and dysfunction. Serum levels of
the metabolites creatinine [65] and bilirubin [66] are still used as clinical indica-
tors of kidney and liver function, respectively. However, some of these metabo-
lites may not be ideal for detecting subtle injury or disease, exemplified by the
fact that considerable damage to the kidney needs to occur for changes in serum
creatinine to appear. New approaches to identifying metabolites or metabolite
profiles that better predict or associate with various levels of tissue injury or dis-
ease state are continuously being developed [67]. These involve ever increasingly
sensitive platforms based around HPLC, MS, and NMR technologies and to date
have identified important metabolic signatures of pathophysiology ranging from
diabetes to environmental cadmium exposure [68–72]. Given that many injury
biomarkers are released from damaged cells on cell death and represent an
injury that has already occurred, the advantage of metabolomic screening may
lie in the ability to detect metabolic profiles that represent changes in cellular
function that occur prior to actual damage. Characterization of such profiles
may allow better prediction of injurious conditions. Following on from this,
technologies involving magnetic resonance imaging (MRI) and position emission
tomography (PET) of radiolabeled metabolites to detect tissue injury and disease
are a focus of many new approaches for biomarker evaluation. One such exam-
ple involves the visualization of 13C-labeled glutathione by MRI in human sub-
jects and in rat models of liver injury to indicate oxidative stress within the
tissue [73]. Imaging of phosphorous-containing metabolites in tissues using
31P-MRS (magnetic resonance spectroscopy) has also been used to identify
potential biomarkers of injury and disease [74,75].
Developments in technology are at the forefront of biomarker discovery, but

their application to less well-characterized biological outputs may also be an
interesting avenue for target discovery in the future. One example of such an
approach is the increased analysis of exhaled air for biomarker characterization
with exhaled nitric oxide and carbon monoxide among those currently being
examined for their associative potential with exposure [76,77]. While these and
many other well-studied analytes are continuing to be explored, it is clear that
scope exists for the application of high-throughput technologies to screen for
new biomarkers in exhaled air. This has been investigated for the analysis of
metabolites/volatile organic compounds (VOCs) by GC/MS in the diagnosis of
lung cancer with some success [78]. Indeed, electronic nose devices to detect
these VOCs in the clinic are being developed, with the aim to provide finger-
prints of different diseases by sampling exhaled air [79]. The application of other
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technologies for similar analysis may bring further knowledge and better targets
in the future. As previously discussed, extracellular or exosomal vesicles in bio-
logical fluids represent another potential source of biomarkers, which have not
been fully explored to date. These vesicles in blood or urine, for example, can
also contain specific protein molecules in addition to RNA that are indicative of
specific injury or disease [80,81]. It is also important to consider older approaches
to biomarker discovery that may not necessarily involve new technologies but
involve new thinking surrounding pathophysiology and tissue injury. Such an
approach has been used recently to suggest circulating giant macrophages as
potential biomarkers of solid tumors [82] and circulating brain microvascular
endothelial cells as biomarkers for blood–brain barrier injury [83]. Finally, we
want to highlight the potential for integration of information from different high-
throughput screening and characterization approaches as an important further
step forward in biomarker discovery. Such approaches have been used to reveal
mechanistic insights and more detailed understanding of biological responses
that may allow for better selection of candidate biomarkers for future valida-
tion [84–86]. With modern analysis strategies, identification of changes in stress
response pathways is a basic output from biomarker screening and integrative
approaches [87,88]. Focusing on these changes represents an important goal for
biomarker discovery in the future as these pathways have the potential to be used
as predictors of tissue injury and disease before actual injury occurs.

7.5
Summary and Outlook

Transcriptomic biomarkers are extensively described in the literature, but few
are validated. Although they have a role to play, they suffer from requiring a
comparator for evaluation and a sample of tissue. Of arguably greater functional-
ity will be circulating RNA species such as miRNAs. These have already shown
their value as present biomarkers of effect and are likely to be of use in both
clinical and toxicological studies. Structural changes in DNA have already
proven their versatility as prognostic biomarkers for many disease states. The
output of genome sequencing projects will provide a rich source of information
that is likely to lead to many of these DNA changes being validated and adopted.
Perhaps uniquely, differential DNA methylation has the potential to act as a bio-
marker of past exposure, a present biomarker of effect, and a future biomarker of
a subsequent event or prognosis. Although the dynamic nature of these marks,
cell specificity, and technical challenges of measurement mean that a substantial
amount of research will likely be required before any DNA methylation changes
are established as reliable biomarkers, their potential has already been demon-
strated. Downstream of the genome, metabolites offer substantial opportunities
for both single-molecule and complex biomarkers. The discovery and use of
these is being driven forward, as with genetics, by technology development.
Finally, there are the biomarkers beyond the micromolecular level that include
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further macromolecules and cells. This chapter highlights the many exciting and
varied options for the continued development of novel biomarkers that will help
to improve the biomonitoring of exposure, effect, and prognosis within humans
and human biomaterials.
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8
Predictive Toxicology: Genetics, Genomics, Epigenetics, and
Next-Generation Sequencing in Toxicology
Tobias Heckel and Laura Suter-Dick

8.1
Introduction

Genetics is the study of the genome with information stored in the DNA
sequence of an organism. Under normal conditions, this information is consid-
ered to remain stable throughout the life span of an individual. However, there
are multiple outcomes coded by these sequences that enable the development of
a complex organism from a single totipotent cell through a series of exquisite
spatiotemporal regulation steps. Thus, for a thorough understanding of molecular
mechanisms in biological processes including toxicological studies, there is a
need to understand changes in the genetic information as well as in its regulation.
This requires the study of the DNA sequence as well as of its regulatory mecha-
nisms, taking into consideration interindividual and interspecies differences. The
availability of reference genomes allows systematic comparisons across species for
any gene or protein involved in pharmacology or toxicology. They also provide
the basis for the development and application of tools for genome-wide expres-
sion profiling and association studies of single-nucleotide polymorphisms (SNPs),
deletions, amplifications, or epigenetic modifications. Several genes and pathways
are involved in susceptibility to adverse events. In particular, the study of intra-
species differences in metabolism is at the forefront of genotyping studies, since
they are often directly associated with side effects in humans.
Many of the genetic control mechanisms are achieved through epigenetic

changes, a concept dating from 1942 to describe the differentiation of cells with
the same genetic information from their initial totipotent state to highly special-
ized cell types during the embryonic development. It is now well recognized that
the regulation of the gene expression by epigenetic mechanisms is influenced not
only during the embryological development but also under pathological condi-
tions and as a result of toxic insult. Molecular mechanisms leading to these epi-
genetic effects include DNA methylation, chromatin remodeling, and regulation
through noncoding RNAs (ncRNAs, such as microRNAs (miRNAs)). In toxicol-
ogy, there has been an increasing interest in the interactions of xenobiotics with
the genome (e.g., specific polymorphisms that influence susceptibility and
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metabolism), the transcriptome (e.g., toxicogenomic evaluations), and the epige-
nome (e.g., DNA methylation and chromatin conformation changes).
The advances in understanding the genetic and epigenetic phenomena under

normal and toxicological/pathological conditions and their consequences in an
organism have recently been made possible by the technological advances in
molecular biology. The new technologies and the increased understanding of the
molecular mechanisms underlying toxicological events have enabled the fast
evolution of molecular toxicology. After the advent of the microarray in the
1990s, which made toxicogenomic research possible, next-generation sequencing
(NGS) enables now the sequencing of a genome or a transcriptome.

8.2
Technological Advances

Moore’s law is the computer industry’s trend of doubling the number of transis-
tors on an integrated circuit and thus the computing power every 2 years. Until
the year 2008, continuous advances in DNA sequencing technology reduced the
sequencing costs by a factor of 2 or 3 each year, only to outpace Moore’s law
thereafter [1]. Somewhat analogous to miniaturization and integration of elec-
tronic components in microprocessors, miniaturization, parallelization, and inte-
gration enabled DNA sequencing systems to work at greater speed, at lower cost,
and with more samples and less reagents.
Until the introduction of NGS systems, Sanger’s chain termination chemistry

was the most widely used sequencing method. It improved gradually over three
decades introducing fluorescently labeled nucleotides, parallelization of electro-
phoresis in independent capillaries, and general automation [2]. Prerequisite for
Sanger sequencing is an amplified DNA template from plasmids or PCR ampli-
cons. Iterative cycles of template denaturation, primer annealing, primer exten-
sion, and stochastically incorporation of fluorescently labeled, chain-terminating
dideoxynucleotides (ddNTPs) generate a mixture of end-labeled extension prod-
ucts, which are size separated in a capillary-based polymer gel. The resulting
sequence ladder has an average length of 700 bases. Raw accuracies of Sanger
sequencing are between 99.4% [3] and 99.999% per base [4,5]. This performance
is the reason why this method is still frequently used for small-scale validation
studies, despite its low throughput.
For higher throughput studies, Sanger sequencing has been replaced by next-

generation sequencing strategies that were built based on miniaturization in
microfluidic flow cells or picoliter chambers allowing parallelization of millions
of sequencing reactions. The DNA template for these sequencing reactions is
sheared into fragments and then clonally amplified by emulsion PCR on beads
(Roche/454, Ion Torrent, ABI/SOLiD) or bridge PCR on surface-linked oligonu-
cleotides (Illumina). Sequencing reactions are spatially separated through
immobilization in picotiter or microwell plates (Roche/454, Ion Torrent) or
onto flow cell surfaces (Illumina, ABI/SOLiD).
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The systems of Roche/454 [3] and Ion Torrent [6] use the sequencing by
synthesis method generating either a chemiluminescence signal or a hydrogen
ion-sensitive potential change. This signal is proportional to the number of
incorporated nucleotides, which in turn makes these systems prone to homo-
polymer-length sequencing errors (insertion–deletion errors) [7,8]. The per-base
raw accuracies are around 99.5% for Roche/454 [8,9] and 98.897% for Ion Tor-
rent within the first 100 bases [6].
The Illumina sequencing system [10,11] is based on single-base extensions with

fluorescently labeled nucleotides that are also reversible chain terminators. In this
case, after each sequencing cycle, the fluorophore is removed, and the nucleotide
can be extended in ensuing cycles. The limitations of this system are shorter read
lengths and a lower raw accuracy of 98.5% [5] concomitant with a higher suscep-
tibility to single-base substitution errors. These errors can be caused by in-
complete extension and insufficient removal of reversible terminators [12–15].
The ABI SOLiD system uses DNA ligase to sequentially incorporate several

fluorescently labeled oligonucleotide octamers [5,16]. Progressive rounds of
octamer ligation enable sequencing of two adjacent bases central to the octamer
rather than one. In addition, each base is interrogated in two different ligation
reactions. Although substitutions are the most common error type of the SOLiD
system, its two-base encoding method contributes to high raw accuracies of
99.94% [17] at the limitation of very short read lengths.
The next technology leap in next-generation sequencing is single-molecule

sequencing using DNA templates without any amplification. Pacific BioSciences
has commercialized a single-molecule real-time sequencing (SMRT) by synthesis
technology recording the incorporation time of fluorescently labeled nucleotides
into single surface immobilized DNA polymerases [18]. These polymerases are
Poisson-like distributed over a SMRT cell, a chip consisting of thousands of
nanometer-scale wells. Benefits of the SMRT system are long read lengths of
thousands of bases in one stretch, the high sequencing speed, and in principle
the ability to detect chemical DNA modifications such as methylation [19]. The
per-base raw accuracy of this method is low with 83% due to extremely short
interphase intervals between nucleotide incorporation events [20]. Low yield
ratios of polymerase-occupied wells further limit the throughput.
All next-generation sequencing platforms benefited tremendously by minia-

turization and massive parallelization, whereas the different systems trade off
the length of sequenced nucleotide reads for the total number of reads that can
be simultaneously acquired. These simultaneous measurements are key features
of NGS technologies, because they allow not only qualitative sequence analysis
but also digital counting of the sequenced reads. In general, the rapid progress
in NGS technologies made this process so fast, robust, and cost effective that it
increases the feasibility of a wide spectrum of systematic biological studies ana-
lyzing genome and genetic variation, RNA expression, splice variant expression,
translation of mRNA sequences bound to ribosomes (ribosome profiling),
protein–DNA interactions, epigenetic DNA modifications, and DNA/chromo-
somal structural variations.
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Since NGS methods are confined to the analysis of DNA sequences, RNA or
epigenetic sequencing applications require more sophisticated pretreatments of
samples before sequencing. For RNA sequencing, several methods exist that
enrich or deplete certain RNA species before reverse transcription into DNA
and subsequent sequencing. Those methods employ, for example, polyA-based
capture beads for mRNA enrichment, selective biotinylated probes and strepta-
vidin beads to remove ribosomal RNA, or RNase incubation and size exclusion
chromatography to purify ribosome-protected RNA fragments [21]. For epige-
netic applications, affinity-based enrichment techniques and bisulfite treatments
are most commonly used. Affinity enrichment techniques employ methyl-
binding domain (MBD)-containing proteins, chemical tagging, for example,
streptavidin purification of selectively labeled hydroxymethylcytosines, or anti-
bodies specific for epigenetic modifications, such as 5-methylcytosine or 5-
hydroxymethylcytosine. Although similar in approach, these enrichment meth-
ods target different regions of the genome. While immunoprecipitation capture
approaches are biased to bind more methylated regions with low density of cyto-
sine–guanine dinucleotide (CpG)-rich sequences, MBD-based approaches favor
high-CpG-density regions. However, inclusion of multiple elution steps with
increasing salt concentrations in MBD capture protocols can enrich moderately
methylated regions, making it more useful compared with immuno-
precipitation [22]. Bisulfite treatment or oxidative bisulfite treatment is the pri-
mary technology used to identify 5-methylcytosine or 5-hydroxymethylcytosine,
respectively, because of its single-base or regional resolution in the genome. By
using optimal conditions, unmethylated cytosines are deaminated to uracils,
while methylated cytosines remain unconverted. Subsequent PCR amplification
will replace all uracils derived from unmethylated cytosines with thymine, and in
this way an epigenetic methyl mark is converted into a genetic difference detect-
able by next-generation sequencing [22,23]. However, this method is costly and
effort intensive, especially for large number of samples.

8.3
Applications in Toxicology

8.3.1

Genome Sequencing and Sequence Level Comparisons

The fact that all living organisms use the same oligonucleotide chemistry, be it
DNA or RNA, makes genomics a versatile tool that can be applied to any indi-
vidual or species relevant for toxicology. This is the reason why genomics is per-
ceived as having the greatest impact on toxicology in the identification of species
and interindividual differences.
The biggest success of genomics, and especially of next-generation sequencing

technologies, is in the field of genome sequencing since cost and time required
to sequence one haploid genome (∼3Gb) have dropped dramatically after
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completion of the Human Genome Project (Table 8.1). Thus, next-generation
sequencing paved the way to generate comprehensive sets of reference
genomes for humans and all major animal models used in preclinical research
to identify differences at the level of genes, predicted proteins, and genome
architecture (Figure 8.1).
Comparing orthologous sequences of DNA, mRNA, and proteins across mul-

tiple species at varying evolutionary distances allows the identification of
sequences that are unique for a given species as well as of those that are con-
served between experimental models and humans. Such ortholog comparisons
have proven useful in drug target prediction mainly in the fields of pharmacol-
ogy but also in toxicology, as they enable the study of translational aspects. They
are based on the assumption that evolutionary conservation of sequences corre-
lates with conservation of function [35]. Since sequence similarities provide only
limited inferences about gene and protein functions across species, additional
knowledge about functional domains, protein structure, gene regulatory sites,
and binding affinities is needed.
Furthermore, tissue- and cell type-specific expression levels in the adult as well

as during the development should be integrated whenever possible to select the
most relevant preclinical models. This integrated knowledge can help to discrim-
inate better between responder and nonresponder species, and to uncover
potential mechanisms of exaggerated pharmacology, lack of efficacy, and toxic-
ity. For example, comparative genetics has been performed on genes coding for
possible pharmacological targets. One of them is the trace amine-associated
receptor 1 (TAAR1) that has proven to be an important modulator of the dopa-
minergic system and is considered a promising target for the treatment of

Table 8.1 Overview on genome sequencing projects of humans and different animal species.

Technology Project/Species Year(s) Cost References

Sanger sequencing Human Genome
Project

1990–
2003

USD 3× 109 [24]

Mouse (C57BL/6J) 2002 USD
130.5× 106

[25]

Rat (Brown Norway) 2002 USD
118.5× 106

[26]

Boxer dog 2005 USD 30× 106 [27]
Rhesus monkey 2007 USD 22× 106 [28]
Common marmoset 2010 Undisclosed [29]

Next-generation
sequencing

Human (James
Watson)

2008 USD
1.5× 106

[30,31]

Cynomolgus monkey 2011 USD
<100 000

[20,32,33]

Beagle dog 2013 Undisclosed [34]
Ellegaard Göttingen
minipig

2013 Undisclosed [34]
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neuropsychiatric disorders. Sequencing of the TAAR1 gene revealed incomplete
and poorly conserved coding regions between the dogs and humans, due to sev-
eral frameshift mutations resulting in an uncompensated loss of function. This
finding has a profound impact in the selection of species for pharmacological
and toxicological investigations, since it disqualifies the dog as a pharmacological
model [36].
Another type of comparative study compared the DNA sequences of dioxin

response elements (DREs) – binding sites for the aryl hydrocarbon receptor
(AhR) – in human, mouse, and rat genomes. Such gene regulatory elements
tend to be conserved through evolution for common expression responses, but
the integrated analysis of positionally conserved DRE sequences showed inter-
species differences between rodents and humans: of the mouse–rat orthologous
genes with a DRE close to transcription start sites (+/� 1500 bp), only 37% had
an equivalent human ortholog. These results suggest that AhR-mediated gene
expression may differ between species, which has direct implications in human
risk assessment [37]. These results enable the prediction of species-specific dif-
ferences in responses and enable toxicologists to evaluate the data in a relevant
context to perform scientifically based human risk assessment.
Furthermore, sequence comparisons across individuals in specific target genes

and in genome-wide association studies (GWAS) have been very successful in

Figure 8.1 Reference genomes and estimates
of evolutionary divergence times. Comprehen-
sive sets of reference genomes for humans
and all major preclinical animal models (box)
allow the assessment of species similarities at
the level of genes, predicted proteins, gene
regulatory elements, and genome

architecture. Animals from left to right: beagle
dog, minipig, mouse, rat, cynomolgus monkey,
rhesus monkey, and chimpanzee. Estimates of
evolutionary divergence time based on
sequence identity are indicated at each node.
Values taken from Refs [25,26,28,32] and www.
timetree.org/.
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identifying interindividual genetic differences that predict disease susceptibility
or drug response not only in human populations, but also in animals. In humans,
GWA studies on drug-induced liver injury (DILI) identified human leukocyte
antigen (HLA) variants as risk factors for hepatotoxicity with the antibiotic flu-
cloxacillin. These variants resulted from data obtained from 51 DILI cases and
282 controls for which around 1 million SNPs were genotyped [38]. It is also
known in dogs that certain breeds are prone to develop spontaneously latent
diseases. This fact is important for toxicologists to discriminate findings of spon-
taneous diseases from drug-induced injuries, especially in cases where a genetic
predisposition may influence the outcome of a study.
In this context, recent GWA studies have been very successful in dogs due to

the fact that the majority of dog breeds have been created few hundred years
ago. Such a breeding system leads to large-size haplotype blocks within a breed
due to extensive linkage disequilibrium. This in turn makes dog GWAS easier to
perform, as it requires smaller sample size and less marker SNPs than human
studies [39]. A recent study with 81 affected dogs and 57 controls and only
around 15 000 SNPs identified five loci associated with canine systemic lupus
erythematosus and steroid responsive meningitis–arteritis (SRMA) in the Nova
Scotia duck tolling retriever [40]. Since SRMA, which is also known as beagle
pain syndrome, is overrepresented not only in the Nova Scotia duck tolling
retriever but also in other dog breeds including the pharmacologically relevant
beagles, such loci can serve as predictive genetic biomarkers so that dog cohorts
can be tested and stratified regarding disease predisposition.
Finally, genetic background is a more and more important experimental varia-

ble to explain interindividual variability in cynomolgus monkeys, one of the most
widely used nonhuman primate species in biomedical research and drug testing.
These animals live in highly diversified and genetically distinct continental and
insular areas where they are captured and used to found stocks in breeding cen-
ters [41,42]. Their geographic origin has been found to be associated with phe-
notypes such as variability in tissue expression profiles [32], different immune
genetics [43], susceptibility to retroviral infection [44], and spontaneous origin-
dependent pathologies [45–47]. Thus, thorough understanding of findings in the
cynomolgus monkey must take into consideration the genetic background of the
animals. An example of the influence of genetic background has been published
by Liu et al.; their data showed that polymorphisms of the CD3epsilon T-cell
coreceptor in cynomolgus monkeys result in variable binding affinities of
CD3epsilon targeting biologics. This had a major impact in the interpretation of
the data as it confounded the determination of the lowest observed effect level
(LOEL) [48].

8.3.2

Genotype and Metabolism

Interindividual differences in expression or function of genes responsible for
drug metabolism and transport are caused by genetic, epigenetic, physiological,
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and environmental factors. Primarily screening of target genes for polymor-
phisms, but also increasingly genome-wide association studies have improved
our understanding of the contribution of genetic polymorphisms to the high var-
iability in metabolism.
Polymorphisms in drug metabolizing enzymes and transporters can have con-

siderable impact on the pharmacokinetic properties of drugs and have been best
studied in humans to optimize drug treatment, particularly in the areas of oncol-
ogy, cardiovascular disease, infection, and psychiatry [49]. These polymorphisms
affect protein expression, activity, or both as illustrated in the following exam-
ples. Many drugs are metabolized by cytochrome P450 (CYP) enzymes. Within
this large protein family, polymorphisms have been identified for CYP2B6,
CYP2C9, CYP2C19, and CYP2D6 [50,51].
For example, a set of SNPs for the CYP2B6 gene, the CYP2B6*6 haplotype,

leads to an enzyme with slower metabolic activity. As a consequence, CYP2B6*6
homozygous HIV patients treated with the antiretroviral reverse transcriptase
inhibitor efavirenz had high plasma concentrations, which are associated with
central nervous system (CNS)-related adverse reactions. In this case, a genotype-
based dose reduction would be beneficial for the patients and greatly improve
the clinical outcome [52].
The antiplatelet agent clopidogrel is a prodrug mainly activated by CYP2C19.

Carriers of the CYP2C19*17 haplotype are found to have increased enzyme
activity concomitant with enhanced response to treatment after acute myocar-
dial infarction, but at the cost of increased risk of bleeding. Contrarily, carriers
of defective CYP2C19 alleles, such as the CYP2C19*2 haplotype, show poor pro-
drug metabolism, resulting in a black-box warning by the US Food and Drug
Administration (FDA) with respect to reduced effectiveness in homozygous
patients [53].
A similar trade-off between efficacy and safety is well described for the vitamin

K1 epoxide reductase (VKORC1) inhibiting anticoagulant warfarin. Here candidate
gene and GWA studies have consistently shown that about 30–40% of the total
interindividual variation in the final warfarin dose can be explained by genotypes
of the drug target VKORC1 and the main metabolizing enzyme CYP2C9 [54].
After an FDA recommendation on genotype-specific dose ranges, the effec-

tiveness of this predictive dosing strategy is currently being investigated in clini-
cal trials [55].
In addition to anticoagulants, antidepressants and antipsychotics are promi-

nent examples of drug classes for which genetic polymorphisms significantly
affect pharmacokinetic parameters, which are partly associated with the 30–40%
failure rate with initial depression treatment [56]. Many antipsychotics and anti-
depressants are known CYP2D6 substrates and plasma levels of these drugs at
the same dosage can vary 5–20-fold among individuals. This variability com-
monly results from splice site defects, small deletions or nonsynonymous poly-
morphisms associated with the phenomenon of poor or intermediate
metabolizers, and, in rarer cases, from CYP2D6 copy number variations of ultra-
rapid metabolizers. With respect to tricyclic antidepressants such as amitripty-
line and nortriptyline, which are mixed serotonin and norepinephrine reuptake
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inhibitors, CYP2D6 ultrarapid metabolizers have a higher probability of therapy
failure due to subtherapeutic plasma concentrations.
Differently, CYP2D6 poor metabolizers are more likely to suffer from adverse

effects such as anticholinergic, CNS, or cardiac effects due to elevated tricyclic
plasma concentrations. Since CYP2D6 genotypes are highly predictive for
enzyme activity and success of therapy, guidelines for dose adjustment or recom-
mendations of alternative agents on the basis of the genotype have been formu-
lated, but have not yet been tested prospectively in clinical trials [56]. Besides
prominent CYP polymorphisms, clinically relevant genetic variants have also
been found in other drug metabolizing enzymes and in transporters.
Variants in the promoter region of the drug metabolizing enzyme UGT1A1

result in a dose adjustment recommendation by the FDA for the DNA topo-
isomerase I inhibitor irinotecan used for the treatment of colon cancer. Individ-
uals with the common UGT1A1*28 haplotype express lower enzyme levels and
therefore have a reduced capability to detoxify the active metabolite of this pro-
drug. Since many anticancer drugs are used near cytotoxic doses, these drugs
usually have a narrow therapeutic range so that patients are at higher risk of
suffering an adverse drug reaction such as severe diarrhea and neutropenia [57].
Interestingly, the UGT1A1*28 haplotype was also shown to be associated with
elevated unconjugated bilirubin levels in patients receiving tocilizumab, a
monoclonal antibody inhibiting the IL-6 receptor for the treatment of rheu-
matoid arthritis. Due to this genetic association, the observed hyperbilirubine-
mia is with high probability not related to drug-induced hepatotoxicity, but
to underlying pharmacodynamic effects. These effects probably arise from
tocilizumab-mediated inflammation suppression, which in turn can impact
UGT1A1 expression levels, especially in patients with the UGT1A1 variant,
hampering the UGT1A1-mediated elimination of bilirubin. Another hypothe-
sis is that increased hemoglobin production in tocilizumab-treated patients
with the variant may lead to increased bilirubin [58].
In the case of the cholesterol-lowering drug simvastatin, candidate gene and

retrospective GWA studies have revealed a strong association between a single
SNP in the organic anion transporter gene (SLCO1B1) and drug-induced myop-
athy. This finding led to the creation and confirmation of a mechanistic link to
additional SLCO1B1 amino acid changing SNPs, which cause impaired statin
uptake into hepatocytes, reduced hepatobiliary excretion, higher plasma levels of
statins, and myopathy due to statin-mediated interference with the mevalonate
pathway in muscle [59,60].
Laboratory animal species also exhibit polymorphisms affecting several drug

metabolic pathways, but this has been much less extensively researched than in
humans. In rats, interstrain variability in drug metabolism has been observed in
Dark Agouti, Lewis, and Sprague Dawley strains proposing them as models for
human CYP2D6 poor (Dark Agouti) and extensive (Lewis, Sprague Dawley)
metabolizer phenotypes, respectively [61,62]. Furthermore, interindividual varia-
bility in the Wistar strain has been associated with a CYP2D3 genetic polymor-
phism and differences in the metabolism of diazepam, a positive allosteric
modulator of GABAA receptors [62].
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In beagle dogs, genetic polymorphisms have been identified in a group of drug
metabolizing CYPs, of which CYP1A2 polymorphisms have been shown most
impactful on pharmacokinetics. In this case, large interindividual differences
in the plasma concentrations of the phosphodiesterase type IV inhibitor,
YM-64227, could be attributed to a beagle CYP1A2 deficiency genotype [63].
In cynomolgus monkeys, Jacqz et al. have reported a polymorphic phenotype

with a frequency of poor metabolizers of 14% for the antihypertensive drug
debrisoquine, probably mediated by polymorphic cynomolgus CYP2D17 and
CYP2D44 isoforms, which are similar to human CYP2D6 [64,65].
Due to the advancement in next-generation sequencing technologies, the

comprehensive characterization of animal genotype–phenotype associations is
about to change as shown by a recent comparison of genomes of 28 rat strains.
This study led to the identification of disease loci that overlap with previously
mapped loci for related traits in humans, indicating shared pathways underlying
these phenotypes in rats and humans [66]. Thus, the study of interspecies, inter-
individual, or interstrain differences as a surrogate for interindividual differences
can be of value to bridge the gap between animal research and human risk
assessment and to determine human relevance not only for disease models, but
also for metabolism of drugs and toxic substances.

8.3.3

Mechanistic Toxicology and Toxicogenomics

As illustrated in the preceding section, sequence and expression changes in
known key genes coding for proteins involved in xenobiotic metabolism can
have a major impact on the toxicity outcome. Thus, these genes have been thor-
oughly investigated and susceptibility genotypes have been identified to treat
patient populations adequately. However, the reductionist approach focusing on
well-described, distinct phenotypes with high penetrance is not suited for the
investigation of unexpected toxicity. Unpredicted toxicities usually involve com-
plex biological processes in which several organs and pathways are affected in a
yet not fully elucidated manner. Many toxicological findings fall into this cate-
gory and can therefore not be sufficiently addressed by the study of single genes.
Toxicogenomics, defined as the parallel measurement of a high number of tran-
scripts, is therefore a suitable approach for the comprehensive analysis of toxic-
ity-related drug-induced changes in a given tissue.
The widespread use of microarray technologies in the 1990s and 2000s deliv-

ered large data sets of gene expression changes associated with toxic insult, some
of which were part of large undertakings in industry, regulatory bodies, and
consortia such as the European Predictive Toxicology Project (PredTox) or
Japanese Toxicogenomics Project (TGP) with its database TG-GATES (Toxico-
genomics Project – Genomics Assisted Toxicity Evaluation System). The data
sets allowed the generation of predictive models using advanced multivariate
analysis and biostatistical tools (for a complete listing, see Chapter 6). However,
the causal relationships between the toxicity phenotype and the modulation of
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gene expression could not be elucidated as readily as expected because the func-
tional relationship of many of these transcripts was not known.
Further developments in the field of toxicogenomics led to the incorporation

of additional technologies such as proteomics and metabolomics as well as bio-
informatic network modeling approaches, to get a better grasp on the functional
and biological consequences of drug-induced transcriptional changes. The inte-
grated analysis of these endpoints led to the generation of data-based mechanis-
tic hypothesis involving a discrete number of relevant pathways or major hubs in
networks. These identified key players in pathways or networks can then be
studied in a more targeted approach and therefore provide biologically meaning-
ful mechanisms.
Specific examples of the use of genomic technologies for the rational selection

of pathways and mechanistic toxicology have been published, several of them
addressing liver hypertrophy. This phenotype is relatively common in response
to xenobiotic exposure but remains of relevance as it is often associated with
liver tumor formation in the 2-year carcinogenicity studies in rodents. In the
work published by the PredTox Consortium, for example, gene expression anal-
ysis identified two distinct mechanisms underlying the common liver hypertro-
phy phenotype:

1) A marked increase in the expression of xenobiotic metabolizing enzymes
(XMEs) leading to proliferation of smooth endoplasmic reticulum (SER).

2) A marked upregulation of genes involved in peroxisomal fatty acid oxida-
tion, associated with peroxisome proliferation.

Although both mechanisms were not mutually exclusive, liver hypertrophy
was caused mainly by the proliferation of either SER or peroxisomes [67]. Simi-
larly, transcriptomic data led to the identification of Cyp2b10 mRNA increase as
biomarker for rodent-specific constitutive androstane receptor (CAR) activation
accompanied by liver weight increases and hepatic tumors as observed, for
example, after long-term exposure to the cholesterylester transfer protein
(CETP) inhibitor dalcetrapib [68]. The results support the use of genomic tech-
nologies to foresee the outcome of such long-term studies, as the induction of
Cyp2b10 can be observed early – in general after 2-week in vivo exposure – and
is fairly predictive of the long-term outcome in the liver. In addition to the iden-
tification of relevant pathways and biomarkers in the liver, toxicogenomic plat-
forms are useful to identify pathways associated with organ toxicity. This is
particularly interesting when searching for specific biomarkers or translating
in vivo and in vitro results within or across species. In an interesting study char-
acterizing two histamine H3 receptor inverse agonists, the transcriptomic data
generated after in vivo exposure of rats identified a strong effect on the choles-
terol synthesis pathway accompanied by the prediction of liver toxicity. A subset
of relevant genes was thus analyzed using qRT-PCR in the livers of the exposed
animals as well as in rat and human hepatic cell cultures. The dysregulation of
cholesterol synthesis, drug metabolism, and glutathione metabolism in rats
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in vivo could be confirmed. Moreover, key enzymes of the cholesterol synthesis
pathway, such as squalene epoxidase and HMG-CoA reductase (HMGCR), were
induced in the cultured hepatocytes of both humans and rats. In summary, the
results showed good concordance between in vivo and in vitro, were used for
safety assessment, and thus led to the discontinuation of the compound, as the
findings in the rodents are likely to be relevant to humans [69].
Thus, 20 years after the boom of toxicogenomics, researches have generally

moved away from its use as a black-box predictive tool to a more scientifically
driven tool to identify key biomarkers, pathways, or major hubs of networks that
can be understood, bear biological relevance, and can be used as indicators of a
toxicological response across biological systems. This change in mindset,
together with technological advances from microarray to next-generation
sequencing technologies (described above), has also promoted the incorporation
of additional molecular parameters that aid the identification and understanding
of toxicologically relevant events, for example, the assessment of the expression
of miRNAs, DNA methylation, or other epigenetic changes.

8.3.4

Epigenetic Changes and miRNAs

There is an increasing body of evidence for the involvement of epigenetic pertur-
bations in human disease and in response to environmental factors such as diet
and exposure to xenobiotics. This fact adds a dimension of complexity to the
study of adverse events, since persistent changes in DNA methylation and his-
tone modification patterns may elicit a disease phenotype or an adverse event
that becomes evident later in time. Thus, the study of acute and subchronic tox-
icity may not be suitable to reflect all possible adverse outcomes.
DNA methylation changes have been associated with several diseases such as

schizophrenia, lupus erythematosus, type 2 diabetes, and cardiovascular diseases
besides the well-established role of aberrant DNA methylation in cancer. The
fact that the DNA methylation status is a dynamic process affecting postmitotic
cells in the adult organism as well as proliferating and differentiating cells during
embryogenesis has greatly expanded the possible implications in toxicology [70].
This fact is promoting the development of new approaches for the assessment of
the DNA methylation status, such as genome-wide or locus-specific molecular
methylation analysis methods or 3D quantitative DNA methylation imaging,
which combines the detection of demethylated DNA with the phenotypic conse-
quence of chromatin decondensation [71].
Although at present little data are available, some substances such as ethanol,

inorganic arsenic, the DNA methylation inhibitor 5-azacytidine, or the anticon-
vulsant drug and histone deacetylase inhibitor valproic acid are known to cause
DNA hypomethylation. Also, cigarette smoke has been shown to induce the
demethylation of the oncogene synuclein-gamma through the downregulation of
the DNA methyltransferase DNMT3B in lung cell lines, leading to a metastatic
phenotype [72]. Of great concern is the fact that DNA methylation changes
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might have a long-lasting or even irreversible impact on an organism, including
cellular, physiological, and behavioral effects. This is highly relevant for the
safety assessment of pharmaceuticals specifically interfering with DNA methyla-
tion and histone deacetylation, which could cause unspecific silencing of tumor
suppressor genes, dysregulated oncogene expression, or submicroscopic geno-
mic rearrangements via hypomethylated repetitive elements. Hence, epigenetics
becomes particularly important in the study of cancer, since the initiating events
leading to carcinogenesis may include temporal accumulation of genetic and epi-
genetic changes. Classic mechanisms inducing tumors involve direct interaction
with DNA and cause changes in the DNA sequence (mutagens) or in the DNA
structure (clastogens). Other substances might interfere with the chromosomal
segregation during cell division and lead to an uneven distribution of the chro-
mosomes in the daughter cells (e.g., aneugens).
All these mechanisms of genotoxicity are reasonably well understood as direct

damage of the DNA sequence or structure is causative of the event. In addition
to the agents causing direct DNA damage, nongenotoxic carcinogens are much
less understood. Here, the initiation effects involve transcriptional regulation as
well as epigenetic mechanisms such as DNA methylation changes, histone post-
translational modifications, and altered gene regulation by ncRNAs.
Thus, nongenotoxic carcinogens are much more difficult to detect and their

molecular mechanisms are still not fully understood. One of the most studied
examples is the anticonvulsant drug and partial GABAA receptor agonist pheno-
barbital (PB), a very well-known nongenotoxic carcinogen that causes liver
tumors in rodents after long-term exposure (e.g., in mandatory rodent carcino-
genicity studies) [73]. The understanding of the underlying molecular mecha-
nisms of these types of substances is vital for appropriate risk assessment, as
many nongenotoxic carcinogens (including PB) are rodent specific and will not
cause the same effects in humans. Liver tumor promotion in rodents by PB is
dependent on the activation of the transcription factor CAR, as CAR activation
has been demonstrated and CAR knockouts are not sensitive to these pleiotropic
effects, namely, gene expression changes, including the induction of Cyp2b iso-
forms (Cyp2b10 in mice and Cyp2b2 in rats), hepatocellular hypertrophy,
increased hepatocyte proliferation, and ultimately the appearance of adenomas
and carcinomas [74–76]. In addition to CAR, PB also activates the pregnane X
receptor (PXR) [77], which has overlapping functions with CAR to regulate
xenobiotic metabolism and detoxification in liver [78]. In recent publications,
Thomson, Lempiainen, and coworkers elegantly investigated the temporal
sequence of PB gene regulation in mice using a battery of molecular biology
techniques assessing not only gene expression patterns but also protein expres-
sion, ncRNA species, DNA methylation profiles, and SNPs [79,80]. In their work,
they show that early PB-induced molecular responses include staged epigenetic
perturbations, increased expression levels of Cy2b10, and the progressive
increase in hepatic expression of long noncoding RNAs (lncRNAs) and miRNAs.
The majority of the induced miRNAs are transcribed from the Dlk1-Dio3
imprinted genomic cluster, which has been identified as a hallmark of
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pluripotency and proliferation. In addition to the miRNAs, the lncRNAs Meg3
and Rian from the maternal allele were also induced due to the treatment with
PB. The Dlk1-Dio3 locus has further been associated with hepatic carcinogenesis
as overexpression of the transcription factor HNF4α in human hepatocarcinoma
cells resulted in vitro in elevated levels of miRNAs from the miR-379–656 clus-
ter, which is located in the DLK1-DIO3 locus on human chromosome
14q32 [81]. Thus, results from epigenetic perturbations, gene expression, ncRNA
expression, and SNP analysis for allele differentiation gave a clear indication of
the complex molecular events of the CAR/PXR-dependent mechanism.
Besides the clear involvement in carcinogenesis, miRNAs are involved in pro-

cesses related to toxicity and acute liver injury. This finding is particularly inter-
esting since miRNAs are secreted, detectable in circulation, and highly conserved
across species. This makes them extremely attractive translational, noninvasive
biomarkers. In particular for the liver, the association between levels of circulat-
ing miR-122 and liver damage has been well established. This association has
been observed in rodents and in humans. Elevation of miR-122 in serum in
response to liver injury was first observed in mice exposed to hepatotoxic doses
of cyclooxygenase inhibitor and analgesic drug acetaminophen. Moreover, serum
miR-122 was significantly higher in patients presenting with acute liver injury
caused by exposure with high doses of acetaminophen as well as by different
etiologies. In addition, patients exposed to nontoxic levels of acetaminophen do
not show increased miR-122 in the circulation. Thus, these results indicate that
the increase of miR-122 is associated with hepatocellular toxicity rather than
with exposure to acetaminophen. Also, the fact that mice and humans and also
rats show increased miR-122 after exposure to hepatotoxins makes this non-
coding RNA a putative sensitive, tissue-specific, and translational biomarker that
might outperform the traditionally measured transaminases [61]. Additional
investigations are necessary to improve our understanding of the causal relation-
ship between increased miRNAs in circulation and tissue-specific events. The
mechanisms by which miRNAs are specifically released from injured tissues
need to be established as well as the dynamics of the signal upon damage pro-
gression and recovery.

8.4
Summary and Outlook

As described in this chapter, there is growing evidence on the relationship of
genetic and genomic changes in the development of toxicological side effects.
Also, interindividual and interspecies differences have a profound impact on the
efficacy of medicines. Thus, the genetic background has a major impact on drug
efficacy and toxicity, and therefore in safety assessment (Figure 8.2). In addition,
the acknowledged relevance of epigenetic mechanisms in toxicity further pro-
motes the study of genetic, genomic, and epigenetic changes in a concerted
manner. This is only attainable by combining state-of-the-art technologies such
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as advanced sequencing approaches, expression measurements, DNA methyla-
tion patterns, and imaging tools. The general trend is to employ high-through-
put, information-rich technologies to assess direct effects on specific genes or
pathways and clinically relevant outcome. Currently, the identification of path-
ways of toxicological relevance and the integration and interpretation of the data
remain the main challenge to improve safety assessment based on molecular
biology tools.
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9
Biomarkers as Tools for Predictive Safety Assessment:
Novel Markers of Drug-Induced Kidney Injury
Angela Mally

The paramount aim of predictive toxicology in drug discovery and development
is to assess the safety of drugs for use in humans. Although the concept of pre-
dictive toxicology has always been part of the drug development process, the
past decade has seen an enormous revival of the field mainly for two reasons:
first, it has been recognized that drug safety issues have replaced unfavorable
pharmacokinetics as a leading cause of drug attrition [1]; second, significant
advances in science and availability of new technologies such as genomics, prote-
omics, and metabolomics have opened up unprecedented opportunities to study
drug toxicity and to utilize this knowledge for improved safety assessment.
Biomarkers, which can be defined as “physiological or molecular measurements

that indicate or predict the outcome of testing in animals or of a clinical endpoint
in therapeutic trials” [2], are recognized as valuable tools that can be applied at all
stages of drug development to identify drugs with unacceptable levels of toxicity
earlier or with greater sensitivity or specificity than traditional approaches.
Thus, considerable efforts are being invested to identify novel biomarkers of

toxicity and to develop tests based on biomarkers that can be used to diagnose
and monitor drug-induced injury in major target organs, for example, the kid-
ney, liver, and cardiovascular system, and to bridge between species and in vitro/
in vivo systems. Thanks to these efforts, significant progress has been made par-
ticularly in the field of biomarkers of nephrotoxicity. This chapter will use drug-
induced kidney injury as an example to illustrate the value and limitations of
novel biomarkers by providing an overview of their (patho)physiological role
and mechanistic link to toxicity, performance in experimental toxicity studies,
approval by regulatory bodies, and application to preclinical decision making.

9.1
Need and Search for Novel Biomarkers of Kidney Injury

Due to the high blood flow rate, which causes delivery of high concentrations of
drugs to the kidney, and the presence of active transporters and drug metaboliz-
ing enzymes, which enable uptake and bioactivation of xenobiotics, the kidney
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and in particular the proximal tubule epithelium presents one of the key target
sites of drug-induced injury.
Traditional markers of renal function such as serum creatinine and blood urea

nitrogen (BUN) are inherently insensitive as they indicate kidney injury only
when large amounts of the renal epithelium have been lost. Advances in omics
technologies, in particular toxicogenomics and proteomics, have enabled the
identification of genes, proteins, and more recently also miRNAs that are altered
in response to kidney injury and may present more effective indicators of a drug’s
potential to cause nephrotoxicity than the traditional functional parameters.
Predictive biomarkers that can be measured noninvasively, that is, in urine, are

recognized as particularly valuable in drug development, since they may be used
in preclinical and clinical studies to continuously monitor target organ injury in
real time without the need of tissue biopsies. Thus, most research efforts have
been dedicated to the identification, development, and qualification of urinary
biomarkers of kidney injury. In principle, increased urinary excretion of a marker
in response to injury can reflect altered renal handling of substances, including
low molecular weight proteins produced at other sites, due to functional impair-
ment of tubule cells, leakage from injured tubule cells, or increased formation,
for example, through upregulation of gene expression, and subsequent active or
passive release into urine (Figure 9.1).

9.2
Urinary Biomarkers of Drug-Induced Kidney Injury

9.2.1

Structure and Function of Novel Urinary Biomarkers

9.2.1.1 Kidney Injury Molecule-1
Perhaps the most widely studied urinary kidney biomarker is kidney injury mole-
cule-1 (KIM-1) encoded by the gene Havr1 (hepatitis A virus cellular receptor 1).
KIM-1 is a 104 kDa type 1 transmembrane glycoprotein that is expressed at low
levels at the apical membrane of proximal tubule cells but is markedly induced
in response to proximal tubule injury. It contains an N-terminal T-cell immuno-
globulin domain, a mucin domain, a single transmembrane domain, and a C-
terminal cytoplasmic domain with a tyrosine kinase phosphorylation motif [3].
The functional roles of KIM-1 in tissue injury and repair are not fully under-

stood. Like other members of the T-cell immunoglobulin mucin (TIM) family,
KIM-1 contains a phosphatidylserine (PS) binding pocket within its N-terminal
immunoglobulin domain. This allows proximal tubule cells expressing KIM-1 to
recognize PS exposed on the outer membrane of apoptotic cells and to internal-
ize apoptotic bodies and cell debris [4].
Upregulation of KIM-1 thus confers phagocytic capacity on proximal tubule

cells and appears to be an important mechanism to prevent tubular obstruction,
limit inflammation, and facilitate tissue regeneration through clearance of cell
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debris. Release of KIM-1 from injured proximal tubule cells involves shedding of
its 90 kDa ectodomain, which is excreted in urine and can be measured as a
noninvasive marker of kidney injury. Shedding of soluble KIM-1 appears to be
mediated by metalloproteinases [5], but the precise signaling pathways that regu-
late KIM-1 release remain to be elucidated. Studies in proximal tubule cell cul-
ture models demonstrate that shedding of constitutive KIM-1 is stimulated by
the proinflammatory cytokine tumor necrosis factor α (TNFα), human serum
albumin, and by activation of extracellular signal-related kinase (ERK) and p38
mitogen-activated protein kinase (MAPK) [5,6].

9.2.1.2 Clusterin
Clusterin, also known as apolipoprotein J, testosterone-repressed prostate mes-
sage-2, or sulfated glycoprotein-2, was originally identified as a protein causing
clustering of Sertoli cells [7]. It is a secreted 75–80 kDa heterodimeric glyco-
protein that is constitutively expressed in a wide range of tissues and is present
in body fluids such as plasma, milk, urine, and semen [8].
It is composed of an α- and a β-chain that are held together by five disulfide

bonds. Following dimer assembly and glycosylation in the Golgi apparatus, clus-
terin is secreted from secretory vesicles. In addition to the fairly well-characterized
secreted form, truncated intracellular forms of clusterin resulting from alternative
splicing that are targeted to the nucleus have been reported [9,10].
The functions of clusterin are diverse. Secreted clusterin is thought to act as a

constitutive cytoprotective extracellular chaperone that forms complexes with a
range of binding partners, including lipids, β-amyloid, immunoglobulins, compo-
nents of the complement system, heparin, and leptin [8]. It has been implicated
in cytoprotection at fluid–tissue boundaries, hormone and lipid transport, mem-
brane recycling, and regulation of complement-mediated cell lysis. Clusterin is
also involved in the regulation of cell–cell and cell–matrix interactions and thus
contributes to tissue remodeling in response to injury. In contrast to the pre-
dominantly cytoprotective role of secreted clusterin, the truncated nuclear form
of clusterin has been shown to act as a death signal and to trigger apoptosis [9].
Given the plethora of functions ascribed to clusterin, it is considered to play

important roles in nearly all fundamental biological processes, including devel-
opment and reproduction as well as during injury and diseases. Clusterin expres-
sion is induced in response to oxidative, thermal, or mechanical stress and in a
range of pathological conditions, including neurodegeneration, arteriosclerosis,
myocardial infarction, cancer, and acute and chronic kidney diseases such as glo-
merulonephritis, lupus-like nephritis, obstructive nephropathy, polycystic kidney
disease, kidney tumors, ischemia–reperfusion injury, and acute and chronic
nephrotoxicity [8,11–18].
In acute and chronic kidney diseases, upregulation of renal clusterin expres-

sion and secretion into the tubule lumen enable detection of clusterin in urine
as a urinary biomarker that correlates with the severity of kidney injury [19].
Concentrations of clusterin in the systemic circulation may increase in response
to damage to other organs, for example, in drug-induced liver injury [20].

174 9 Biomarkers as Tools for Predictive Safety Assessment



Importantly, clusterin may be cleaved into its α- and β-chains, which may be
able to pass the glomerulus [21], resulting in increased urinary concentrations of
clusterin even in the absence of renal injury [20].

9.2.1.3 Cystatin C
Cystatin C is a protein expressed by virtually all nucleated cells. It is secreted into
the extracellular space where it functions as an inhibitor of cysteine proteases of
the cathepsin family. Due to its low molecular weight (13 kDa), cystatin C is
freely filtered in the glomerulus, reabsorbed by proximal tubule cells via megalin-
mediated endocytosis, and degraded in lysosomes [22].
An increase in the concentrations of cystatin C in serum reflects reduced glo-

merular filtration and thus serum cystatin C is increasingly being used in the
clinical setting as an alternative to serum creatinine to estimate glomerular filtra-
tion rates [23]. In contrast, tubular dysfunction or injury to proximal tubule cells
impairs uptake and degradation of cystatin C, resulting in increased excretion of
cystatin C in urine.
Although cystatin C is not mechanistically linked to kidney injury, increased

urinary cystatin C due to altered renal handling of cystatin serves as a sensitive
marker of tubular dysfunction and toxicity.

9.2.1.4 β2-Microglobulin
β2-Microglobulin is a low molecular weight protein (11.8 kDa) that is expressed
by all nucleated cells. It is a component of the major histocompatibility complex
(MHC) class I, which functions to display peptides generated from degradation
of cytosolic proteins to cytotoxic T cells. β2-Microglobulin is noncovalently
linked to the α-chain of MHC I, which contains a plasma membrane-spanning
domain, and appears to be necessary for localization of MHC I at the cell sur-
face. It is shed from the surface of nucleated cells and can be found in plasma
and other body fluids. Like cystatin C and other low molecular weight proteins,
β2-microglobulin is freely filtered in the glomeruli and reabsorbed and degraded
by proximal tubule cells [24]. Thus, levels of β2-microglobulin in urine are nor-
mally low. Tubular dysfunction or injury, however, results in reduced absorption
of low molecular weight proteins and thus increased urinary excretion of β2-
microglobulin.

9.2.1.5 Liver-Type Fatty Acid Binding Protein
Liver-type fatty acid binding protein (L-FABP) is a 14.4 kDa cytoplasmic protein
that belongs to the calycin superfamily. It forms a β-barrel structure that facili-
tates high-affinity binding and transport of hydrophobic ligands, including long-
chain and very long-chain fatty acids, fatty acyl-CoAs, eicosanoids, cholesterol,
and bile acids [25].
Its functions include cellular uptake and intracellular transport of fatty acids to

mitochondria and peroxisomes for fatty acid oxidation [25]. L-FABP has also
been implicated in the transcriptional regulation of lipid metabolism [26]. L-
FABP was shown to exert cytoprotective function against oxidative stress [27,28].
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Although its name indicates that it is synthesized in the liver, L-FABP may also
be expressed in other tissues, including the proximal tubule epithelium. Circulat-
ing L-FABP released from cells is filtered by glomeruli, taken up into proximal
tubule cells via megalin-mediated endocytosis, and degraded to amino acids in
lysosomes [29]. Increased excretion of L-FABP due to altered renal handling can
thus be used as an indicator of proximal tubule dysfunction. In contrast to some
of the other low molecular weight proteins that serve as markers of kindey
injury, L-FABP also appears to be mechanistically linked to tubular injury as L-
FABP gene expression may be upregulated in proximal tubule cells in response
to stress and may protect against renal injury [30–32].

9.2.1.6 Neutrophil Gelatinase-Associated Lipocalin
Neutrophil gelatinase-associated lipocalin (NGAL, lipocalin-2, LCN2) is a 25 kDa
protein that belongs to the lipocalin superfamily, which shares a structural ele-
ment that allows binding and transport of low molecular weight hydrophobic
ligands. NGAL was initially discovered in activated neutrophils as a novel pro-
tein covalently bound to human gelatinase/matrix metalloproteinase-9, hence
the name [33]. It is an acute-phase protein that is expressed not only in neutro-
phils but also in a wide range of cells and tissues, including epithelial cells in the
colon, bile ducts, lung, and kidney, in response to cellular and inflammatory
stress [34].
Its functions are not completely understood. NGAL participates in host innate

immune defense by binding bacterial siderophores to limit bacterial iron acquisi-
tion. Expression of NGAL at possible sites of bacterial entry and rapid induction
of NGAL transcription may thus serve as a first line of defense against bacterial
infections. There is some evidence to suggest that NGAL may also play a role in
cell proliferation and protection from apoptosis [34]. Like other low molecular
weight proteins, NGAL circulating in plasma passes the glomerulus and is reab-
sorbed into proximal tubule cells by receptor-mediated endocytosis. In proximal
tubule cells, NGAL localizes to lysosomes, where it is catabolized to amino acids.
Thus, only low baseline levels of NGAL are normally detectable in urine.
Marked induction of NGAL during systemic inflammation or tissue injury and

release of high amounts of NGAL into the systemic circulation may, however,
overwhelm the capacity for tubular reabsorption and result in a state of overflow,
where NGAL is excreted in urine. In the kidney, NGAL may be rapidly upregu-
lated at sites of injury and secreted into urine and plasma via the apical and
basolateral membrane of epithelial cells, leading to increased urine and plasma
concentrations of NGAL. Impaired proximal tubule reabsorption due to damage
to the proximal tubule epithelium may further augment urinary NGAL
excretion.

9.2.1.7 Others
In addition to the markers of nephrotoxicity summarized above, a number of
other urinary proteins have been put forward as potential markers of proximal
tubule injury. These include vanin-1, an epithelial glycosylphosphatidylinositol-
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anchored pantetheinase that appears to play a role in oxidative stress response
and may leak from kidney tubule cells [35], glutathione S-transferase alpha
(GST-α), a cytosolic phase II drug metabolizing enzyme that is passively released
from injured proximal tubule cells into urine, vascular endothelial growth factor
(VEGF), calbindin, albumin, trefoil factor 3 (TFF3), fibrinogen [36], osteopontin,
and tissue inhibitor of metalloproteinases-1 (Timp-1), which are also regulated
in the kidney in response to proximal tubule damage and are outlined below
(see Section 9.3).

9.2.2

Experimental and Clinical Support for the Use of Novel Urinary Biomarkers for the
Detection and Prediction of Acute Kidney Injury

9.2.2.1 Performance of Novel Urinary Biomarkers in Preclinical Models of Renal Injury
Since urinary proteins such as KIM-1 first came into light as novel biomarkers of
nephrotoxicity about 10 years ago [37], there has been an ever-increasing num-
ber of experimental studies in laboratory animals addressing the performance of
individual urinary markers or biomarker panels in detecting (drug-induced) kid-
ney injury.
KIM-1, for instance, has been shown to be increased in rat urine in response

to treatment with a range of nephrotoxins, including cisplatin [37–47], gentami-
cin [17,35,40,48–50], vancomycin [43], ochratoxin A [17,51], melamine and cya-
nuric acid [52], cadmium [53], mercury [48], chromium [48], paraquat [54], and
glyphosate-based herbicide [55]. Although the experimental study designs and
degree of kidney injury induced by the treatments greatly varied between studies,
urinary excretion of KIM-1 was generally reported to be an early and sensitive
indicator of nephrotoxicity that correlated well with the onset, progression, and
recovery from proximal tubule injury and the severity of lesions.
Frequently, receiver operating characteristic (ROC) analyses were carried out

to demonstrate that KIM-1 outperforms traditional clinical chemistry such as
BUN and serum creatinine in terms of sensitivity and specificity in detecting
kidney injury in rats. Considering the continuously growing body of data in rats,
it is, however, surprising that – with the exception of a recent study on poly-
myxin B nephrotoxicity across multiple species (rats, dogs, and monkeys) [56] –
there are no (published) reports on the performance of KIM-1 in nonrodent pre-
clinical species.
Similar to KIM-1, numerous authors investigated the suitability of urinary

NGAL and urinary clusterin to monitor drug-induced kidney injury in rodents.
Increased urinary excretion of clusterin was demonstrated in response to kidney
injury induced, for example, by cisplatin [39,41,43,44,46,57–59], gentami-
cin [17,18,40,49,50,58], vancomycin [43], melamine and cyanuric acid [52], and
lisinopril and rosuvastatin [60], while the ability of urinary NGAL to detect kid-
ney injury was confirmed in rats treated with cisplatin [35,39,40,43,46,47], genta-
micin [17,35,40,49,50], vancomycin [43], and ochratoxin A [17]. Urinary NGAL
was also found to be a sensitive biomarker of acute kidney injury in gentamicin-
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and polymyxin B-induced nephrotoxicity models in dogs [56,61], demonstrating
its potential value for cross-species translation. Similarly, a recent study in a
population of dogs suffering from renal injury due to leishmaniasis suggests that
urinary clusterin may be a suitable renal injury marker in dogs [62].
The relative performance of individual urinary biomarkers in detecting drug-

induced kidney injury was assessed in a range of studies using combinations of
individual assays or multiplex assays for the simultaneous analysis of biomarker
panels [17,40,43,52,57–59,63,64]. From these studies, it is evident that the indi-
vidual biomarker responses may vary depending on the type of nephrotoxin
under investigation [17,40]. While KIM-1 was frequently found to outperform
other markers in terms of sensitivity and specificity [17,40,63–65], there are also
a number of examples where impaired tubular reabsorption of low molecular
weight proteins such as cystatin C, NGAL, or β2-microglobulin was an earlier
indicator of drug-induced proximal tubule injury that enabled detection of the
prodromal stage of toxicity [17,40]. For instance, increased urinary concentra-
tions of cystatin C and NGAL were observed in rats treated with the aminogly-
coside gentamicin before changes in urinary KIM-1 were evident [17]. Similarly,
NGAL was given preference over KIM-1 to screen novel kidney-sparing
polypeptide-based antibiotics in rats [56].
Mechanistically, the superior performance of low molecular weight proteins

compared with tubule injury proteins such as KIM-1 may be explained by com-
petitive inhibition of receptor-mediated tubular uptake by drugs such as amino-
glycosides and polymyxin analogs, which are also substrates of the megalin
transporter and may displace low molecular weight proteins from renal brush
border binding sites. It is therefore plausible that increased urinary excretion of
low molecular weight protein markers may occur even in the absence of proxi-
mal tubule toxicity.
On the other hand, it is critical to recognize that (in contrast to KIM-1, which

is specifically induced in kidney epithelial cells in response to injury) low molec-
ular weight protein markers show some lack of specificity. Increased systemic
concentrations due to production/release at other sites, for example, during sys-
temic inflammation, drug-induced liver injury, and muscle injury, may over-
whelm the capacity of tubular reabsorption and lead to increased excretion of
low molecular weight proteins in urine [20,64]. Glomerular injury leading to
leakage of proteins into urine may also result in increased urinary biomarker
levels due to protein overload in the tubules.

9.2.2.2 Clinical Support for Novel Urinary Kidney Injury Biomarkers
Acute kidney injury, which is characterized by a rapid and sustained decrease in
kidney function, presents an increasing and challenging clinical problem. Thus,
there has been an enormous interest by clinicians to utilize emerging urinary
kidney injury markers for the (differential) diagnosis, prognosis, and manage-
ment of acute kidney injury in the clinic.
KIM-1, for instance, was shown to provide a sensitive indicator of acute kidney

injury in patients suffering from acute kidney injury after cardiac surgery,
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ischemia, obstructive nephropathy, acute paraquat intoxication, in renal trans-
plant recipients, and in the critically ill [66–73].
The utility of NGAL as a novel urinary marker for the diagnosis of acute kid-

ney injury was investigated in transplant patients [74,75], after adult and pediat-
ric cardiac surgery [76,77], in critically ill children with septic shock [78], in
neonates [79,80], in critically ill multiple trauma patients [81], and in patients
treated with cisplatin [82], to name just a few. These studies generally show that
measurement of urinary NGAL can improve early diagnosis of acute kidney
injury in patients, leading some authors to propose NGAL as a “renal tropo-
nin” [77], in analogy to cardiac troponin, a highly sensitive and specific marker
of acute myocardial injury.
However, there are few clinical data on the specificity of NGAL and other

emerging markers of renal injury. There is also no consensus as to which bio-
marker may be the most appropriate for each purpose and how new biomarkers
may be incorporated into routine practice to improve clinical outcomes. Regard-
less of these constraints, results from a large number of studies in patients with
acute kidney injury support the potential value of novel renal injury biomarkers
as translational markers for early detection of drug-induced kidney injury in
clinical studies during drug development and efforts are currently underway to
qualify novel kidney injury biomarkers for use in clinical trials (http://www.imi-
safe-t.eu/).

9.3
Genomic Biomarkers

It is well established that cells sense and respond to cellular stress and toxicity
through up- and downregulation of gene expression. It is also accepted that per-
turbation of pathways of toxicity can cause changes in gene expression in the
target organ even in the absence of overt toxicity, for example, as an adaptive
means to increase mechanisms of cell defense and maintain tissue homeostasis.
Although tissue biomarkers are invasive and – in contrast to urinary markers –
not amenable to the clinic in general, it has been reasoned that alterations in
gene expression may encompass truly predictive markers of nephrotoxicity that
precede cytotoxicity and may add to the preclinical safety toolbox. Since the
introduction of toxicogenomics, substantial efforts have thus been invested to
identify individual genes or signatures of genes that are deregulated in response
to nephrotoxic drugs and might serve as early mechanism-based indicators of
drug-induced kidney injury.

9.3.1

Individual Genes

Many of the above-mentioned protein markers had been originally detected
based on genomic approaches. Transcription profiling identified KIM-1 (Havr1),
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clusterin (Clu), NGAL (Lcn2), Timp-1, osteopontin (Spp1), vimentin (Vim), and
heme oxygenase 1 (Hmox-1) as genes frequently upregulated in response to
drug-induced kidney injury [83–85].
Timp-1 inhibits the proteolytic activity of matrix metalloproteinases and has

been implicated in regeneration and protection from apoptosis. Vimentin is an
intermediary filament that is expressed in dedifferentiated cells with a mesenchy-
mal phenotype and is thus considered to present a marker of regeneration.
Similarly, osteopontin, which can be detected primarily in dedifferentiated

tubule epithelial cells in response to injury, is thought to play a role in tissue
regeneration.
Heme oxygenase-1 has cytoprotective antioxidative functions and is rapidly

upregulated under conditions of oxidative and cellular stress.
Time- and dose-dependent changes in the expression of these putative bio-

markers were generally found to correlate well with the severity of histopath-
ological lesions and preceded effects on traditional clinical parameters
indicative of impaired kidney function [51,86]. Induction of KIM-1 mRNA
was often one of the earliest and most prominent responses observed. How-
ever, it is important to recognize that (with the exception of heme oxygenase-1)
all of these markers are mechanistically linked to degeneration and regeneration,
and there is no evidence to suggest that any of these markers precede tissue
injury and may be truly predictive of nephrotoxicity. Dramatic upregulation of,
for example, KIM-1 even in just few affected cells, which may not be noticed
during histopathological evaluation of random tissue sections, may give rise to a
prominent gene expression signal that enhances the ability to detect even mini-
mal lesions. Changes in the expression of kidney injury marker genes such as
KIM-1 – albeit not predictive – may thus be a more objective and quantifiable
measure than routine histopathology and valuable addition to the diagnostic
toolkit.

9.3.2

Biomarker Panels and Gene Signatures

Besides differential expression of individual kidney injury marker genes, it has
been speculated that prediction models based on gene expression profiles
induced by nephrotoxic compounds may allow identification of drugs with
nephrotoxic potential earlier than routine histopathology.
Although several gene expression signatures predictive of nephrotoxicity have

been reported, it is important to emphasize that the experimental study design of
these early toxicogenomic studies was often such that allowed (early) diagnosis
of injury based on profiling of gene expression changes associated with renal
injury, but not necessarily prediction of future onset toxicity [83,84,87–89].
Not surprisingly, kidney injury marker genes such as KIM-1, clusterin, NGAL,

and osteopontin were frequently part of such gene panels. The close link of the
molecular changes to tissue injury is also evident from gene ontology analysis of
genes contained in the signatures, which primarily include genes involved in
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degenerative and regenerative processes, including inflammation, coagulation,
cell growth, and tissue remodeling. A cross-study comparison of kidney gene
expression profiles induced by three nephrotoxic drug candidates also revealed
modulation of the complement system as a common effect associated with
drug-induced kidney injury [89].
More recently, Minowa et al. identified a gene signature consisting of 19

probes that allowed prediction of future onset of proximal tubule injury in rats
with high accuracy [90]. This multigene-based toxicogenomic model, measured
24 h after a single dose of each nephrotoxicant before histopathological changes
could be detected, was able to predict repeated dose toxicity of a wide range of
nephrotoxicants with a sensitivity of 93% and a selectivity of 90% [90]. In con-
trast to a previous diagnostic model by the same group [88], this signature was
enriched with genes involved in DNA replication, cell cycle control, apoptosis,
and response to chemical/oxidative stress, that is, genes that may reflect pertur-
bation of toxicity pathways rather than overt toxicity.

9.3.3

MicroRNAs

MicroRNAs (miRNAs) are short (20–22 nucleotides in length), highly conserved
noncoding RNAs involved in the complex network of gene regulation. miRNAs
control gene expression at the posttranscriptional level through binding to com-
plementary sequences in the 3´-untranslated region (3´UTR) of target mRNAs,
resulting in repression of translation or mRNA.
miRNAs thus play an essential role during both normal and pathological pro-

cesses, and aberrant expression of miRNAs has been linked to a wide variety of
pathological conditions, including neurodegeneration, allergy, rheumatoid arthri-
tis, autoimmune disorders, osteoporosis, diabetes, cardiovascular diseases, pulmo-
nary diseases, and a variety of cancers. Not surprisingly, miRNAs have also been
implicated in human kidney diseases such as acute kidney injury [91,92], poly-
cystic kidney disease [93], lupus nephritis [94], diabetic nephropathy [95], and
renal cell tumors [96,97].
It was recently discovered that miRNAs are contained within exosomes. Exo-

somes are small cell-derived extracellular vesicles that participate in intercellular
communication and immune regulation through shuttling of molecules between
cells. Since exosomes are present in most body fluids, including urine, there is
growing interest to utilize urinary exosomes as a source for renal biomarker
discovery [98,99].
In a recent study investigating the expression and excretory profile of miR-

NAs during acute kidney injury, miR-21, miR-155, and miR-18a were found to
be among the most upregulated miRNA species in rat kidney following ische-
mic or toxic insult [92]. Urinary excretion of exosomal miR-21 was increased
by about twofold in response to reperfusion injury, whereas decreased levels
of miR-21 and miR-155 were observed in a model of gentamicin nephro-
toxicity. A slight but statistically significant increase in urinary miR-21 and
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decrease in urinary miR-155 were detected in patients diagnosed with acute
kidney injury compared with healthy individuals, leading the authors to specu-
late that miR-21 and miR-155 may have potential as translational biomarkers
for acute kidney injury [92].
Based on the functional analysis of predicted mRNA targets, it appears that

miR-21 and miR-155 are mechanistically linked to apoptosis and cell prolifera-
tion [92]. In addition, there is evidence from the literature that miR-21 and miR-
155 play a role in the regulation of inflammation [91,100,101].
In another study employing renal ischemia–reperfusion and streptozotocin

(STZ)-induced renal injury in the mouse as models of acute and chronic kidney
injury, urinary excretion of miR-10a and miR-30d was found to be significantly
elevated in response to kidney injury [102]. The levels of miR-10a and miR-30d
in urine correlated with the severity of renal lesions and outperformed BUN in
detecting kidney injury [102].
Since these miRNA species are relatively enriched in kidney tissue compared

with other tissues, it has been speculated that urinary miR-10a and miR-30d may
serve as noninvasive, sensitive, and specific markers for the detection of kidney
injury [102].
Clearly, further research is needed to understand the function, expression, and

release of miRNAs during renal diseases and to further explore their potential as
novel diagnostic or even predictive biomarkers of kidney injury. However, these
studies highlight the utility of urinary exosomes as a valuable resource for bio-
marker discovery.

9.4
Qualification and Use of Novel Kidney Injury Biomarkers in Preclinical Safety
Assessment

9.4.1

Biomarker Qualification and Regulatory Acceptance

Following careful analytical validation and evaluation of the performance of
novel urinary biomarkers in drug toxicity studies in rats, the Predictive Safety
Testing Consortium’s (PSTC) Nephrotoxicity Working Group, a pharmaceutical
industry public–private partnership, submitted a recommendation to the US
Food and Drug Administration (FDA) and the European Medicines Agency
(EMA) for the use of novel urinary biomarkers of kidney injury in regulatory
decision making [103].
This biomarker qualification process led to the regulatory acceptance of a set

of seven urinary markers (KIM-1, albumin, total protein, β2-microglobulin, cys-
tatin C, clusterin, and trefoil factor 3) as early diagnostic biomarkers of drug-
induced acute kidney tubular and glomerular alterations in the rat [103].
In a subsequent biomarker qualification submission initiated by the Interna-

tional Life Sciences Institute’s Health and Environmental Sciences Institute
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(ILSI/HESI), the US FDA and EMA issued approval for two additional urinary
renal safety biomarkers (renal papillary antigen-1 and clusterin) for use in
detecting acute drug-induced renal tubule alterations in the rat [104].
Recently, L-FABP was approved as a new tubular biomarker by the Japanese

Ministry of Health, Labour and Welfare [30]. Clinical qualification of several of
these novel urinary markers is ongoing.

9.4.2

Application of Novel Renal Safety Markers to Preclinical Decision Making

Despite significant scientific progress and successful regulatory qualification of
urinary renal safety biomarkers, there is still uncertainty within the scientific
community and drug industry as to which and how many urinary and/or geno-
mic markers should be used and how they are best applied to drug safety
assessment.
One of the few published examples of how novel urinary biomarkers can

improve preclinical decision making involves the in vivo differentiation of chem-
ical polymyxin analogs (a class of antibiotics essential for the treatment of life-
threatening infections with Gram-negative bacteria) with varying nephrotoxic
potential based on measurements of acute kidney injury biomarkers [56,63]. In a
rat study, Keirstead et al. investigated the in vivo toxicity of polymyxin deriva-
tives with different cytotoxicity profiles in HK-2 cells using novel renal safety
biomarkers and found good correlation between the in vitro data and rat in vivo
data, demonstrating the value of integrating novel safety markers into a screen-
ing cascade to facilitate identification of polymyxin class antibiotics with
improved renal safety profiles [63].
Similarly, Burt et al. applied a cross-species biomarker-driven strategy for

selection of polymyxin analogs with more favorable kidney toxicity profiles [56].
In this study, the performance of novel kidney biomarkers for the detection of
acute kidney injury induced by polymyxin B (the parent compound of this class)
was first investigated across multiple species (rats, dogs, and monkeys), whereby
urinary KIM-1 and NGAL were identified as the most sensitive indicators of
polymyxin nephrotoxicity. In a 2-day rat toxicity study, analysis of urinary
NGAL was then used as a sensitive indicator of tubular toxicity to screen and
rank novel polymyxin analogs to aid compound selection [56].
These examples not only highlight how novel biomarkers can successfully be

incorporated into predictive toxicological screening approaches during early
stages of drug development but also offer a strategy for the selection of the most
appropriate biomarker(s) on a case-by-case basis. Since NGAL was found to be
superior to other renal injury markers in detecting nephrotoxic effects of poly-
myxin antibiotics, it appears that routine analysis of the entire panel of novel
biomarkers would create large amounts of unnecessary data and drive up the
costs without further improving compound selection. In addition, conflicting
results from different markers will pose a challenge for toxicologists and regula-
tors in terms of safety assessment.
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9.4.3

Technological Aspects

A wide range of commercially available assays and technology platforms are now
available for the analysis of urinary and genomic renal safety biomarkers, partic-
ularly for rats as the most widely used preclinical animal species during early
drug development.
Besides gene expression microarrays such as Affymetrix GeneChips or Illu-

mina BeadArrays, these include multiplex qRT-PCR assays that allow simulta-
neous analysis of a panel of selected renal injury marker genes in a single run.
SABiosciences Corporation, for instance, has developed the Nephrotoxicity RT2

ProfilerTM PCR array, a SYBR Green qRT-PCR assay that measures up to 84
kidney marker genes in a 96- or 384-well format, whereas Althea DX4 provides
a qRT-PCR assay for the detection of kidney injury based on a set of 33 genes,
including KIM-1, clusterin, Hmox-1, SPP1, and Vim. Compugen Ltd offers
qRT-PCR-based analysis of a combination of four biomarkers combined with
a random forest classification model for early detection of drug-induced
nephrotoxicity.
With the exception of a recent exploratory study that suggests that the Com-

pugen model may have predictive value [105], there are, however, no publicly
available data to show how these genomic biomarker assays perform in practice.
Urinary protein-based biomarkers can be analyzed by single or multiplex

immunoassays. Several providers offer enzyme-linked immunosorbent assays
(ELISAs) for the detection of single analytes in rat urine, such as the rat KIM-1
ELISA test kits available from Argutus Medical Ltd, R&D Systems, BioVendor
R&D, or Abcam, the Clusterin Rat ELISA assay from BioVendor R&D, or NGAL
ELISA assays from BioPorto. Recently, the H-RENA StripTM Lateral-Flow Tests,
a dipstick assay that allows rapid analysis of urinary KIM-1 within 15min, has
become available.
Multiplex immunoassays utilizing, for example, Luminex xMAP (Luminex)

or MULTI-ARRAY (MesoScale Discovery) technologies enable analysis of com-
binations of urinary biomarkers in a single run.
Fixed kidney injury biomarker panels such as the MesoScale Discovery Kid-

ney Injury Panels 1 (albumin, KIM-1, NGAL, osteopontin) and 2 (albumin, KIM-
1, NGAL, osteopontin, α-GST, clusterin) or the Argutus AKITM Test, which cov-
ers GST-α, GSTY1b, and RPA-1, are currently marketed.
The previously available WidescreenTM Rat Kidney Toxicity Panels 1 and 2

provided by Merck Millipore that each included five kidney markers (KIM-1,
VEGF, calbindin, clusterin, and osteopontin and calbindin, clusterin, NGAL, cys-
tatin C, and osteopontin, respectively) were recently discontinued and replaced
by the MilliplexTM MAP Rat Kidney Toxicity Magnetic Bead Panels 1 and 2,
which offer the customer the flexibility to select from a list of analytes and
design a biomarker panel tailored to the specific needs.
For most kidney biomarkers, commercially available single or multiplex tests

for analysis of human samples allow translation to the clinical situation.

184 9 Biomarkers as Tools for Predictive Safety Assessment



In contrast, only a limited number of assays for urinary biomarker analysis in
preclinically relevant species other than rats are currently available. These
include the Canine kidney injury molecule 1 (Kim-1) ELISA Kit, a Clusterin
Canine ELISA test (BioVendor R&D), NGAL ELISA assays for dogs, pigs, and
monkeys (BioPorto), and the MilliplexTM MAP Canine Kidney Toxicity
Magnetic Bead Panel 1 (Merck Millipore), which covers KIM-1, clusterin, and
cystatin C.
Comparative assessment of the most widely used platforms shows overall good

concordance between the ability of the MesoScale Discovery and Luminex mul-
tiplex technology-based assays to detect drug-induced kidney injury [43,46,106].
However, absolute concentrations of individual biomarkers were shown to

vary between platforms, demonstrating the importance of defining platform-
specific baseline levels and cutoff values. Critical issues such as sampling and stor-
age conditions that may negatively affect the stability of biomarkers in urine and
hence performance of assays have received only little attention so far [107,108].

9.5
Summary and Perspectives

Scientific advances and tremendous efforts in the field of biomarker discovery
and development have led to the establishment of a set of novel biomarkers that
can be used to improve early detection of acute drug-induced kidney injury in
preclinical safety studies.
In particular, novel protein-based biomarkers that are excreted in urine and

can thus be measured noninvasively have emerged as a valuable addition to the
diagnostic toolkit and several such candidates have gained regulatory acceptance
subsequent to a biomarker qualification process. Most markers show good cor-
relation with the degree of kidney injury.
Although individual novel kidney injury markers may occasionally detect

prodromal stages of tubular toxicity that may not be apparent by histopatholog-
ical evaluation, it is important to recognize that most of the genomic and urinary
markers are mechanistically linked to tubular injury and dysfunction, and there-
fore present sensitive diagnostic rather than truly predictive markers.
Improved understanding of mechanisms of drug-induced kidney injury and

mapping of toxicity pathways as proposed by the Toxicology in the 21st Century
(Tox21) program may eventually lead to the identification of biomarkers that
can predict future onset toxicity.
Advances in science and technology (e.g., microRNAs, next-generation

sequencing) may also offer unique opportunities for the discovery of predictive
biomarkers. Despite a wealth of data on the performance of individual bio-
markers in experimental toxicity studies, there is no consensus as to how these
novel biomarkers are best utilized, for example, which biomarkers or combina-
tions of biomarkers should be included into the test battery. This is in part due
to the observation that the relative performance of individual biomarkers may
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depend on the compound under investigation. In practice, biomarker selection
tailored to the specific problem may thus prove most advantageous and cost
effective.
Efforts to translate novel biomarkers of acute kidney injury into other preclini-

cally relevant species and humans for use in clinical trials are currently underway
(http://www.imi-safe-t.eu/). Further research is needed to establish whether novel
acute kidney injury biomarkers also show value for the detection/prediction of
chronic nephrotoxicity and carcinogenicity.
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10
The Use of Renal Cell Culture for Nephrotoxicity
Investigations
Anja Wilmes and Paul Jennings

10.1
Introduction

The kidneys are vital organs, which continuously filter plasma into their tubules
and reabsorb essential substances such as sodium, glucose, and amino acids,
while waste products and excess substances are eliminated in the urine. In
this way, the kidney finely regulates the constituents and volume of the blood
and is the main regulator of whole body homeostasis. Due to the multitude of
transporting and metabolizing systems required to perform these tasks, cells of
the kidney interact with a wide variety of chemicals entities. This, coupled with
its ability to concentrate compounds, makes it second only to the liver as the
organ most adversely affected by xenobiotics. Detection of renal injury processes
is complicated by the fact that it has a very large functional reserve. Thus, renal
injury is difficult to detect before this functional reserve has been breached.
Unlike the liver, the kidney has limited regenerative capacity. Also, since there is
no de novo nephrogenesis in adults, nephrons are continually lost throughout
life. The incidence of chronic kidney disease (CKD) is rising due to factors
including higher prevalence of diabetes and cardiovascular disease, obesity, and
aging populations [1,2].
The kidney is a highly complex organ with an estimated 15 morphologically

distinct cell types [3,4]. The cells of the nephron exhibit a high degree of physio-
logical, morphological, and biochemical heterogeneity. Due to the discrete prop-
erties of the individual cells and their immediate environment, nephron
segments exhibit site-specific sensitivities to xenobiotics. Of these, the glomeru-
lus and the proximal tubule are the most frequent nephron regions injured by
drugs and chemicals and thus are the most studied in the context of disease and
drug safety assessment. The glomerular filtration barrier is composed of micro-
vascular endothelial cells, the glomerular basement membrane (GBM), and
visceral epithelial cells, also known as podocytes. The properties of these compo-
nents produce a glomerular filtrate devoid of cells and with a minor protein con-
tent. Podocytes have a key role in maintaining the integrity of the glomerular
filter. They produce and secrete the proteins of the GBM including laminin and
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collagen IV and form a 40 nm diameter filtration barrier through their interdigi-
tated foot processes, which is spanned by the slit diaphragm [5,6]. They also pro-
duce the integral slit diaphragm proteins nephrin and podocin. Podocytes
secrete important paracrine factors, such as vascular epithelial growth factor
(VEGF) and angiopoetin-1, that influence the growth and phenotype of neigh-
boring endothelial cells by promoting angiogenesis and vascular fenestration [6].
Due to the deep involvement of podocytes in glomerular filtration, any stimulus
that disturbs their function will disrupt the filtration barrier leading to protein-
uria and glomerular lesions. Protein overload will also damage the cells of the
proximal tubule. Glomerular disease (or glomerulonephritis (GN)) is major con-
tributor to CKD.
The glomerular filtrate passes directly into the lumen of the proximal tubule,

where water and solutes are reabsorbed isoosmotically, from the lumen to the
interstitium. In addition, specific metabolites are passed from the interstitium
into the lumen and excreted in the urine. Up to two-thirds of the filtered water
and solutes is reabsorbed along this nephron segment [7]. This efficient
reabsorption is initiated by basolateral Na+/K+-ATPases, which lower intra-
cellular Na+ concentration allowing secondary active reabsorption, together with
Na+ in the apical membrane, or in exchange for Na+ at the basolateral mem-
brane. Proximal tubule cells possess a high content of mitochondria to fuel this
highly energetically demanding process. The proximal tubule also recovers most
of the filtered protein, through receptor-mediated endocytosis [8]. The proximal
tubule expresses high amounts of organic anion transporters and organic cation
transporters, which have broad substrate specificity [7,9–11]. In addition, they
possess several ABC transporters, peptide transporters, nucleoside transporters,
and copper transporters, all of which have been implicated in specific xenobiotic
uptake [12,13]. The proximal tubule also expresses a wide variety of phase I and
phase II metabolizing enzymes, including cytochrome P450 enzymes, glutathi-
one S-transferases, cysteine-S-conjugate β-lyase, γ-glutamyl transferase, sulfo-
transferases, UDP-glucuronosyltransferases, flavin-containing monooxygenases,
NADPH-cytochrome P450 reductases, epoxide hydrolases, and carboxylester-
ases [14–16]. The ability of the proximal tubule to transport a wide variety of
chemical entities together with its ability to metabolize them makes it a very
frequent target for drug-induced injury.
While there are other renal cells that are also important players under certain

disease states and are adversely affected by xenobiotics, in this chapter we will
focus predominately on podocytes and proximal tubule cells.

10.2
In Vitro Renal Models

Historically, in vitro methods to investigate physiological and pathophysiological
aspects of the kidney have included techniques such as the isolated perfused kid-
ney, isolated nephron segments, and kidney slices. For a number of reasons,
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these methods have been largely replaced with cell culture techniques. Cell cul-
ture has several advantages, including the ability to conduct long-term exposures
and precisely control the microenvironment. In addition, molecular biology
techniques, including transcriptomic, metabolomic, and proteomic approaches,
are very well suited to cell culture [17]. Furthermore, the ability to genetically
modify cells in culture by introduction of modified proteins or by suppression of
native genes allows the investigation of gene and protein functions under well-
defined conditions. This is especially advantageous in unraveling networks and
understanding mechanisms underlying the initiation and progression of disease
states and adverse reactions to xenobiotics.
Renal cell culture whether it be a primary cell culture or a cell line originates

with the isolation of cells from human or animal kidney tissue (Figure 10.1). The
technique to isolate cortical renal cells involves removal of the renal capsule and
mincing of the outer renal cortex into small pieces [18]. These pieces can be plated
and cultured directly, usually leading to a high contribution of proximal tubule
cells, as they are in highest abundance in the cortex [19]. This protocol has several
add-ons in order to increase purity or select non-proximal tubule cells. The next
step often involves enzymatic separation of the tissue pieces, for example, with
collagenase, liberating glomeruli and breaking up the remaining nephron into frag-
ments and/or cells depending on the length of digestion. Isolated glomeruli can be
selected by differential sieving of the digested tissue, discarding material above
∼180 μm and retaining material above ∼100 μm (for humans and rats) [18].
Isolated glomeruli can then be plated onto collagen- or fibronectin-coated dishes
in standard medium, for example, RPMI with FCS [20]. Glomerular microvascular
endothelial cells, mesangial cells, and podocytes grow out from the glomeruli over
the subsequent days; however, podocytes are usually the most numerous cell type.
Where specific external antigens are known (e.g., CD31 for endothelial cells), anti-
bodies can be used to enrich target cells or deplete unwanted cells by magnetic
activated cell sorting (MACS) or fluorescent activated cell sorting (FACS).
Alternatively, or in addition to this technique, density centrifugation using, for

example, Percoll can be applied to separate glomerular and tubular fragments
from the collagen-digested renal material [18,21]. Washed tubular fragments can
be plated on collagen- or fibronectin-coated plates in specialized medium consist-
ing of low-glucose-containing DMEM/Ham’s F-12, supplemented with epithelial
growth factor (EGF), hydrocortisone, insulin, selenium, and transferrin [21,22].
Proximal tubule cells are the major outgrowths and will form a monolayer with
dome-forming capacity. Domes are visualized as an out-of-focus area when
viewed under a phase contrast microscope and represent an area of cells that have
lifted slightly from the plate due to vectorial transport of water and solutes [22].

10.2.1

Characterization

Detailed characterization of primary cells and cell lines is essential in order to
demonstrate that the correct cell type has been selected and also to determine
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the level of (de)differentiation. It is unfortunately inevitable that cells will
dedifferentiate and important factors to consider for improved differentiation
status will be discussed later.
Podocytes have several properties that can be used to discriminate them from

other glomerular cells, which may contaminate the cultures. Also, the expression
of several markers is a good indication of a differentiated podocyte phenotype.
The unique structures, such as the foot process and slit diaphragms, express
podocyte-specific proteins and podocyte-specific protein combinations. The foot
processes, which are connected via a contractile apparatus, express F-actin, myo-
sin II, α-actinin-4, and synaptopodin [23]. The specialized slit diaphragm, which is
essentially a modified adherens junction, contains zonula occludens 1 (ZO1/TJP1),
P-cadherin (CDH3), CD2-assocciated protein (CD2AP) [24,25], glomerular epithe-
lial protein 1 (GLEPP1) [26–28], nephrin [29–32], and podocin [33–35]. The pres-
ence of other proteins has been additionally used to identify podocytes in culture,
including α-actinin-4 [36], ezrin [37], the transcription factor WT1 [38], and
podocalyxin [39,40]. WT1 is also expressed in the developing kidney and is dis-
cussed in more detail later. Podocytes also secrete signaling molecules such as
VEGF [41] and prostaglandins [42] and respond to external stimuli including
angiotensin II, sodium nitroprusside, and natriuretic peptide [43,44].
Proximal tubule cells in vivo have a well-developed brush border, which pos-

sesses high activities of the brush border enzymes alkaline phosphatase, leucine
aminopeptidase, and γ-glutamyl transferase [45,46]. While the brush border is
usually not as well developed in vitro, cultured proximal tubule cells retain high
activities of these enzymes. In addition, proximal tubule cells possess Na+/K+-
ATPase activities, Na+-dependent glucose, and p-aminohippurate transport.
Proximal tubule cells are sensitive to parathyroid hormone (PTH) but not to
arginine vasopressin (AVP) and this can be measured by increased cAMP levels.
This property is often used to distinguish proximal from distal cells, a potential
contaminating cell type [22]. Due to their role in acid–base metabolism, proxi-
mal tubule cells exhibit a pH-dependent ammoniagenesis, which can be assessed
in vitro [22,47]. While proximal tubule cells in vivo perform gluconeogenesis,
this capability is usually lost in cell culture [48,49]. The main function of proxi-
mal tubule cells is the constitutive transport of water and solutes; thus, they have
a relatively permissive paracellular route due to the expression of the pore-
forming claudins 2 and 10 [50,51]. These claudins can be measured directly at a
protein level or functionally by measuring transepithelial electrical resistance
(TEER). TEER measures predominantly paracellular conductance, which is typi-
cally in the region of 100Ω cm2 for proximal tubule cells, but over 1000Ω cm2

for more distal regions.

10.2.2

Immortalization of Primary Cells

Since primary cells have a limited life span, it is necessary to continually repeat
the isolations. This raises certain problems such as tissue availability,
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uncontrolled variability in human donors, and increased workload due to the
need for batch characterization. Thus, most researchers favor the use of cell lines
and use primary cells for verification when needed.
Normal somatic cells enter replicative senescence due to critical shortening

of the telomere, the tandemly repeated hexamers at the end of mammalian
chromosomes [52]. This process is governed by the p53 pathway and thus
interference with telomere shortening or p53 inhibition can induce immor-
talization. In the intact organism, such events are associated with cancer [53].
The most widely used renal cell lines were those that arose due to unknown
events during cell propagation. This is sometimes referred to as spontaneous
immortalization and includes the cell lines LLC-PK1 (Hampshire pig) [54,55],
JTC-12 (cynomolgus monkey) [56,57], and OK (American opossum) [58].
These cell lines exhibit certain characteristics of the proximal tubule, but we
do not know their true origins. In order to be more certain about the origin,
it is possible to immortalize cells of known origin by permanently or condi-
tionally interfering with p53 activation. This can be achieved by the introduc-
tion of viral oncogenes, including simian virus 40 (SV40) T antigen (TAg),
Epstein–Barr virus (EBV), adenovirus E1A and E1B, and human papillomavi-
rus (HPV) E6 and E7 genes. The most widely used human renal proximal
tubule cell line to date, HK-2 cells, was generated by transduction of human
primary proximal tubule cells with HPV E6/E7 genes [59]. The problem with
this type of immortalization, however, is that p53 is required for the mainte-
nance of DNA and chromosomal integrity and also for the regulation of
energy metabolism. Thus, cell lines generated in this way are highly gly-
colytic, highly proliferative, and accumulate chromosomal aberrations over
time. An improvement to this method is to express the viral oncogene con-
ditionally. For example, the introduction of the tsA58 thermolabile SV40
TAg (SV40tsA58) allows the expression of the T antigen under permissive
conditions at 33 °C, but it is not expressed at temperatures over 37 °C (usu-
ally 39.5 °C is recommended). Thus, cells under so-called nonpermissive con-
ditions stop proliferating and increase their differentiation properties.
However, the inhibition of p53 during proliferation and amplification will
still allow chromosomal aberrations to accumulate. In addition, the culture
of cells at 39 °C is far from ideal for toxicological investigations due to the
overexpression of heat shock proteins. A better way to develop human cell
lines is to overexpress the catalytic subunit of telomerase [22]. This enzyme
maintains telomere length, so that telomeres never reach the threshold point
for p53 activation. Since human somatic cells express extremely low levels of
this enzyme, re-introduction effectively prevents replicative senescence with-
out interfering with the p53 pathway. The human proximal tubule cell line,
RPTEC/TERT1, was generated with hTERT introduction alone and it has
been demonstrated that the cells exhibit normal activation of the p53 path-
way [22,60]. In addition, RPTEC/TERT1 cells maintain a normal diploid kar-
yotype (46, XY) with no gross chromosomal aberrations, even at high
passages [22].
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10.2.3

Available Podocyte and Proximal Tubule Cell Lines

A number of proximal tubule and podocyte cell lines exist from various different
species. However, for the most part, human cell lines are preferred. Here follows
a short description of some of the most widely used renal cell lines. All of the
proximal tubule cells mentioned are available from ATCC or other commercial
sources. However, until now the commercial availability of podocyte cell lines
has been limited and currently none is available from ATCC. Nonetheless, a
number of studies have been published utilizing animal and human podocyte
cell lines. Human podocyte cell lines have been developed by transfection of
primary cells with SV40TAg or SV40tsA58 alone or in combination with
hTERT [61–63]. The cell line originally reported by Saleem et al. was generated
from glomerular isolates and subsequent SV40tsA58 transfection from a
nephrectomy specimen taken from a 3-year-old child [63]. They demonstrate
that switching to the 37 °C nonpermissive temperature induced growth arrest
and the expression of podocyte markers such as nephrin, podocin, CD2AP, and
synaptopodin [63]. Sakairi et al. utilized exfoliated cells in human urine to gener-
ate primary isolates and subsequent cell lines, with podocyte characteristics,
from two healthy volunteers and two patients with focal segmental glomerulo-
sclerosis [62]. The cell lines were generated by cotransfection with SV40tsA58
and hTERT and all expressed synaptopodin, nestin, and CD2AP. However,
podocin was absent in all cell lineages [62].
The following paragraphs describe lines that are used as proximal tubule epi-

thelial cell models. LLC-PK1 cells originate from a male Hampshire pig. They
express activities of typical brush border membrane enzymes [64], express the
enzymatic machinery for vitamin D metabolism [65,66], and exhibit Na+-
dependent apical transport of glucose, amino acids, and phosphate [67–69].
LLC-PK1 cells exhibit vectorial transport and form domes when cultured on
solid supports. They exhibit a TEER of ∼120Ω cm2 when cultured on micro-
porous supports and have well-developed cell–cell contacts [70]. However, they
do not express claudin-2, which is present in the proximal tubule in vivo [71,72].
They lack other typical proximal tubule characteristics such as p-aminohippurate
transport [73] and PTH sensitivity [74].
NRK-52E cells are a clone from the so-called normal rat kidney cell line and

are proposed to be of proximal tubule origin [75]. However, they lack several
key proximal tubule characteristics including vectorial transport as they do not
form domes. In addition, they are non-barrier forming (TEER∼ 12Ω cm2) and
lack the expression of claudin-2 and several other ubiquitous claudins [76]. They
are also highly glucose dependent, a characteristic not shared by proximal tubule
cells in vivo.
HK-2 cells are a human kidney-derived cell line, which was immortalized by

introducing the human papillomavirus 16 (HPV-16) E6/E7 genes [59]. HK-2
cells are positive for the brush border enzymes alkaline phosphatase, γ-glutamyl
transpeptidase, and leucine aminopeptidase and they express Na+-dependent,
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phlorizin-sensitive glucose transport and responsiveness to PTH [59,77]. How-
ever, some of these characteristics may have altered over time in culture. For
example, hormonal sensitivity to PTH seems to have been lost in later passages,
where AVP sensitivity was acquired [22]. A big disadvantage with these cells is
that they do not become contact inhibited, do not form domes, and generate
only a weak transient TEER of ∼20Ω cm2 [21,22]. In addition, they lack expres-
sion of proximal tubule typical claudins (unpublished observation).
RPTEC/TERT1 cells were one of the first epithelial cell types generated by the

overexpression of catalytic unit of telomerase alone (hTERT) [22]. These cells
have similar characteristics to their parent cell, including PTH responsiveness,
lack of responsiveness to AVP, pH-dependent ammoniagenesis, brush border
enzyme activity, and vectorial transport of water and solutes [22]. In addition,
they exhibit an extremely stable expression of genes once fully contact inhib-
ited [60]. The cells express the appropriate proximal tubule claudins, including
claudins 2 and 10, and exhibit a TEER between 100 and 150Ω cm2 [22,76]. In
addition, once contact inhibited they exhibit a decreased glycolytic activity, an
increased oxidative capacity, and reexpress several markers of proximal tubule
cells in vivo [60].

10.3
Stem Cells

Stem cells (SCs) are capable of indefinite self-renewal and are able to give rise to
progenitor cells that can differentiate into various cell lineages that lose their
capacity of indefinite self-renewal. During embryogenesis, pluripotent embryonic
stem cells (ESCs) can give rise to cell lineages of all three germ layers. However,
even in the adult organism, several multipotent or monopotent SCs reside at
various niches throughout the body [78]. These adult SCs can typically differen-
tiate into several different lineages and supply an important pool of cells to
replace senescent cells or cells that have been damaged after injury. Examples
for adult SCs niches include the hippocampus area, intestinal crypts, the canals
of Hering, hair bulges, skeletal muscle fibers, and the bone marrow [78]. In the
mammalian kidney, no postnatal stem cells have been reported that can give rise
to all cell types of the nephron and embryonic nephron progenitor cells are
exhausted before birth [79]. Therefore, de novo nephrogenesis cannot occur after
birth. However, in the event of renal injury, repair responses and replacement of
damaged cells have to be initiated. There is currently a debate whether this
replacement of damaged cells is dependent on or independent of a progenitor
cell population. In the last decade, evidence for an adult mammalian renal pro-
genitor cell has been reported [80–82]. It is believed that these renal progenitors
localize in the Bowman’s capsule, and they have been reported to express
CD133, a stem cell antigen, PAX2, a transcription factor that is normally
expressed during renal development, and the glycoprotein CD24 [80,82]. How-
ever, these progenitor cells show only limited self-renewal and exhibit limited
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differentiation properties. On the other hand, it has been shown that surviving
epithelial cells can replace damaged tubular epithelium after acute kidney injury,
completely independent of any progenitor line [83,84]. Humphreys et al. showed
that after renal injury, nearly all renal proximal tubule cells were capable of pro-
liferation. In addition, these proliferating cells re-expressed PAX2, which has
previously been shown to be re-activated upon renal injury [84]. Another poten-
tial role in renal repair is the recruitment of external SCs that reside outside the
kidney, for example, mesenchymal SCs [85–87]. There are several potential ways
the kidney can repair cells in the nephron after injury, but it cannot replace lost
nephrons. Thus, the kidney has only limited options of self-repair mechanisms,
compared with the liver that is capable of self-regeneration, highlighting the
importance of early detection of renal toxicity.
The potential use of SCs, especially adult-derived SCs, as a source for the pro-

duction of differentiated target cell lines is alluring. The advantages of such a
possibility would be enormous. It would allow an unlimited supply of source
material, would include the possibility of including genetic variability, and allow
us to readily culture target cells from diseased individuals (Figure 10.1). The
stem cell field was revolutionized in 2006, when Takahashi and Yamanaka
showed that mouse fibroblasts could be reprogrammed into inducible pluri-
potent stem cells (iPSCs) by addition of the four transcription factors Oct3/4,
Klf4, Sox2, and c-Myc [88]. One year later, they described the first iPSCs that
had been reprogrammed from human fibroblasts [89]. Several other sources of
somatic cells have been used to develop iPSCs, including exfoliated renal epithe-
lial cells found in the urine [90]. Improvements and optimization of iPSC proto-
cols are ongoing and include the development of nonintegrating techniques such
as the use of non-nuclear Sendai virus delivery and small-molecule strategies.
The major challenge now is to develop reproducible differentiation strategies to
generate target cells of, among others, proximal tubule epithelial cells and podo-
cyte phenotypes. In order to be able to do that, we need to understand the pro-
cesses involved in kidney development.
In the mammalian embryo, the first step of gastrulation is the formation of the

primitive streak. Growth factors proposed to induce this event include members
of the transforming growth factor beta (TGFβ) families and the Wnt families.
The primitive streak can develop into both mesoderm and endoderm, and in
mouse ESCs, Wnt and low levels of activin induce the posterior streak (meso-
derm), whereas high levels of activin induce the anterior streak (endoderm) [91].
In addition, bone morphogenetic protein 4 (BMP4) also contributes to anterior
visceral endoderm development [92]. The definitive mesoderm can then develop
into the paraxial mesoderm (PM), the intermediate mesoderm (IM), and the lat-
eral plate mesoderm (LPM). The IM will eventually give rise to the urogenital
system. While the exact mechanism of IM formation remains unclear, it is
believed that the IM arises in response to BMPs that are secreted by the ecto-
derm and by activin A and other molecules secreted by the PM [93]. From the
IM, three types of kidneys develop: the pronephros develop at days 21–22 post-
coitum (pc) in humans and represent a transient state, the mesonephros begin to
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form at day 25 pc in humans and represent the functional embryonic kidney, and
finally the adult permanent form, the metanephros, begins to form at day 30 pc
in humans [94]. Pronephros are the type of kidney that is present in adult lower
vertebrates, including fish and amphibians. These early stages of renal develop-
ment depend on retinoic acid (RA) [95]. The mesonephros already contain
glomeruli and convoluted proximal tubule-like structures but are then replaced
during development by the metanephros, initiated with the outgrowth of the
ureteric bud into the metanephric mesenchyme (MM) [96]. During this out-
growth, branches are formed and mesenchymal cells close to the tips of these
branches begin mesenchyme-to-epithelial transitions, whereas mesenchymal
cells at other parts form interstitial stroma [96]. The ureteric bud develops into
the collecting duct, whereas mesenchymal cells at the tips develop into renal
tubules. The outgrowth of the ureteric bud is regulated by glial cell line-derived
neurotrophic factor (Gdnf) as well as by other growth factors including BMP2/7
and TGFβ [97]. In addition, fibroblast growth factor 2 (FGF2) is present at the
tips of the branches and has been proposed to be involved in metanephric mes-
enchyme development [98].
A number of genes have been identified to be activated during early kidney

development. One of the earliest genes expressed is the TF odd-skipped
related 1 (Odd1) that can be detected in undifferentiated kidney precursor
tissue [94]. Another early gene detected is Lim1, which is present in the vis-
ceral endoderm, anterior mesendoderm, IM, and LPM [99]. Later on, the IM
specific markers PAX2 and PAX8 are expressed and all of the above, Odd1,
Lim1, and PAX2/8, are necessary for correct development of the kidney [96].
After that, genes that regulate the outgrowth of the ureteric bud, including
the tyrosine kinase receptor RET and its ligand Gdnf, and the coreceptor
GFRα-1 are expressed [100]. The HOX family, in particular HOX11, seems
to play a particular important role in anterior–posterior patterning and dele-
tion of HOX11 resulted in disturbances of Gdnf expression and ureteric bud
formation [101]. Two additional genes that are necessary for MM induction
are Six1 and Eya1 [102]. Other genes that are involved in regulation of ure-
teric bud outgrowth and highly expressed in the MM include Wilms tumor
suppressor gene WT1 and Sal1 [96].
Several studies have reported the differentiation of mouse ESCs or embryoid

bodies (EBs) into renal progenitor-like cell lineages [103–105]. Addition of the
combination of activin A and RA to murine EBs increased PAX2 and WT1 levels
more than 20-fold and at the same time the loss of the pluripotent gene Oct4
was observed [104]. In addition, RA increased the gene expression of Six2, Gdnf,
and Eya1. Further treatment with BMP7 suppressed PAX2 and WT1 and
increased the expression of Eya1, Gdnf, lim1, and cadherin 6. Cadherin 6 is
believed to be an early marker of proximal tubule precursors [104]. Injection of
these in vitro generated renal progenitor cells into developing kidneys
in vivo [104] or into newborn mouse kidneys ex vivo [105] showed their ability
to generate renal proximal tubule structures. Recent approaches have built on
this approach [106,107], using a stepwise differentiation with specific subsets of
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growth factors. Takasato et al. initially induced posterior primitive streak forma-
tion by addition of high BMP4/low activin A for 2–3 days [106]. In the second
step, IM was induced from the posterior primitive streak by addition of FGF2
or FGF9 for 4 days. More than 80% of cells expressed the IM markers LHX1
and PAX2. In the final step, the combination of FGF9, BMP7, and RA was
applied for further 11 days to induce MM that expressed Six2, WT1, Gdnf, and
HOXD11. After 18 days, cells were resuspended into single cells and cultured
to allow self-aggregation. After another 4 days of culture, differentiation into
podocytes, expressing synaptopodin, and proximal tubule cells, expressing aqua-
porin 1 (AQP1), could be observed [106]. Xia et al. used a two-step protocol to
commit pluripotent SCs into ureteric bud progenitor-like cell lines. Initial expo-
sure of BMP4 and FGF2 for 2 days to induce mesoderm-committed cells was
followed by RA, activin A, and BMP2 exposure for another 2 days to generate
IM. After 4 days, these cells expressed OSR1 (also known as Odd1), LHX1,
PAX2, and GATA3 [107].
While these studies mainly focused on generating renal progenitor-like cells,

another promising approach is to direct differentiation of pluripotent SCs to
podocytes or proximal tubule cells directly in vitro. Recently, Narayanan et al.
reported differentiation of human ESCs into renal proximal tubule-like
cells [108]. They grew ESCs on MatrigelTM in a renal epithelial growth medium
supplemented with FBS, EGF, hydrocortisone, insulin, triiodothyronine, and
transferrin for 20 days [108]. Differentiation of ESCs into proximal tubule cells
was initiated by addition of BMP2, BMP7, activin A, and RA. Upregulation of
PAX2 and AQP1 was observed after 10 days. Interestingly, the combination of
BMP2 and BMP7 alone was sufficient to differentiate the cells into proximal
tubule-like cells. However, the highest yield of AQP1-positive cells (∼38%) was
achieved when all four factors were combined. To characterize the AQP1-
positive cells, several proximal tubule markers were analyzed, including kidney-
specific cadherin, megalin, glutamyl transferase (GGT), aminopeptidase N
(CD13), and several proximal tubule-specific transporters. In addition, functional
characterization was carried out by measuring water transport, ammonia pro-
duction, and response to parathyroid hormone [108].
Song et al. demonstrated the possibility of human iPSC differentiation into

podocyte-like cells [109]. Differentiation of iPSCs was induced by growing them
in DMEM/Ham’s F-12 supplemented with FBS, nonessential amino acids,
β-mercaptoethanol, activin A, BMP7, and RA for 10 days. iPSC-derived podo-
cyte-like cells showed upregulation of the podocyte-specific markers podocin,
nephrin, and WT1 and downregulation of Oct3/Oct4. Functional characteriza-
tion was analyzed by studying uptake of albumin and contractile response to
angiotensin II [109].
More work will be required to optimize these approaches for podocyte and

proximal tubule differentiation from iPSCs. Until now no method has been pub-
lished to differentiate iPSCs into a proximal tubule phenotype. It is likely that the
ESC method developed could also be applied to iPSCs, but this has to be investi-
gated and adopted appropriately. In addition, protocols will have to be optimized
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to increase yield, purity, and obviously differentiation status. Finally and proba-
bly most importantly, the protocols must be robust and reproducible if they are
to be applicable to drug safety assessment.

10.4
Optimal Cell Culture Conditions

If we are to be successful in applying SCs to drug safety regimes, we should not
ignore the enormous amount of work that has been conducted using traditional
renal primary cell cultures and renal cell lines. There are certain factors that we
know to be critical for differentiation status, but they need to be implemented
and optimized.
Lessons have already been learned from cell culture medium development and

SC researches were early adopters of advanced cell culture medium. Epithelial
cell cultures were originally developed for the propagation of viruses for vaccine
development and thus medium was designed primarily for the selection of pro-
liferating cells without any regard to differentiation. These cells were (and many
still are) typically grown in a base medium such as DMEM or RPMI with 10%
fetal calf serum (FCS) and antibiotics. However, it has been known for some
time that FCS addition is not optimal for maintenance of differentiation. In addi-
tion, FCS is not standardizable and can be problematic for certain downstream
applications due to its animal origin. Thus, efforts to develop kidney cells under
more defined serum-free medium began decades ago. DMEM/Ham’s F-12 is one
of the more complete base media, containing amino acids, vitamins, fatty acids,
and nutrient sources and thus is the most common medium used for serum-free
application. Studies conducted in the developing cortex extracted from human
fetal kidneys have shown that EGF, insulin, and transferrin have a synergistic
role in cell proliferation [110] and that hydrocortisone also acts as a mito-
gen [111]. Other studies have demonstrated that transferrin and prostaglandin
E1 were necessary for optimal growth and that prostaglandin E1 was necessary
for maximal metanephric differentiation [112]. Prostaglandin E1/E2 has also
been demonstrated to increase brush border activity of cultured human proxi-
mal tubule cells [113]. A medium consisting of DMEM/Ham’s F-12 with insulin,
transferrin, selenium (ITS), hydrocortisone, triiodothyronine, and EGF could
support proliferation of rat proximal tubule cells [114]. A number of human
proximal tubule cells have been developed under similar serum-free conditions,
including the HK-2 and RPTEC/TERT1 cells [22,59]. In our laboratory, we tend
to favor DMEM/Ham’s F-12 supplemented with ITS, EGF, and hydrocortisone
for growth of both primary human proximal tubule cells and human proximal
tubule cell lines [21,60,115]. Serum is also avoided in stem cell culture due to
the amount of uncontrolled growth factors and cytokines. DMEM/Ham’s F-12
with defined growth factors such as bFGF and TGFβ1 is also now the standard
for proliferation of pluripotent stem cells and is the constituent of commercial
SC media such as mTeSR [116].
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Another important factor in cell culture is oxygen tension. There is the fre-
quent misconception that cells in culture are exposed to too high oxygen as for
practical reasons standard cell culture incubators only control carbon dioxide
tension. Thus, there is 21% oxygen in the cell culture headspace. However, the
diffusion rate of oxygen through the medium to the oxygen-consuming cells is
often neglected. For adherent cells, this can be a limiting factor and many adher-
ent cell cultures may experience actual oxygen tensions in the hypoxia range.
This is due to a higher oxygen consumption rate of cells at the bottom of the
Petri dish than the oxygen diffusion rate through the liquid column [117]. The
extent of hypoxia will depend on the cell type and cell density. Renal proximal
tubule epithelial cells are particularly responsive to alterations in oxygen ten-
sions. It has been demonstrated that alterations in medium volume, which effec-
tively alters oxygen delivery rate, can also markedly affect cell metabolism [118].
In addition, oxygen tension is an important regulator of glomerulogenesis and
nephrogenesis in the developing kidney, through HIF-1α and HIF-2α activa-
tion [119]. Thus, it is likely that hypoxia may play a critical role in temporal
development of specific cell lineages.
The kidney is a highly perfused organ and both podocytes and proximal tubule

cells experience permanent perfusion conditions. These perfusion conditions are
important for cell and tissue functions and are also important for how the cells
are exposed to xenobiotics. Under conventional culture, there is no perfusion as
medium is simply replenished every 2–3 days. Medium composition is continu-
ously modified by the cells and thus toward the end of the feeding cycle is very
different from that of fresh medium. These conditions are not conducive to a
stable phenotype and time of replenishment of medium can cause huge altera-
tions in cell gene regulation [115]. Continuous perfusion of medium solves some
of these issues [120,121], although this inevitably increases experimental com-
plexity and thus decreases assay throughput considerably. Medium perfusion
with improved oxygenation can improve proximal tubule phenotype. We have
shown, for example, that LLC-PK1 cells cultured in an oxygenated perfusion sys-
tem increased oxidative metabolism and mitochondrial volume [120]. In recent
years, there has also been an increase in the development of microfluidic systems
that allow greater control of medium flow and have the possibility to use online
sensors [122]. There are a number of advantages of microfluidic systems, includ-
ing the possibility to interconnect different compartments with different cell
types. Also since flow itself is an inducer of differentiation of endothelial and
epithelial cell types, such devices may greatly improve differentiation of primary
cells, cell lines, and potentially also iPSC-derived cells. It has recently been dem-
onstrated that primary human proximal tubule cell culture in a microfluidic
device exhibited enhanced polarization and primary cilia formation, and
increased albumin and glucose transport [123]. In addition, this study demon-
strated the applicability of the microfluidic device to nephrotoxicity testing using
cisplatin as a model compound.
There has been a lot of interest and discussion regarding the topic of 2D ver-

sus 3D cell culture. Some cell types, such as hepatocytes, do much better in 3D
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cultures as it reflects better their structural organization in the liver in vivo. For
example, HepaRG cells cultured in hanging drops form 3D aggregates and
showed increased production rates of albumin and glucose, as well as CYP2E1
activity, compared with 2D cultures [124]. Excellent results have also been
achieved for neuronal cells by cultivating cells in aggregate form, allowing a
more natural brain architecture with several distinct cell phenotypes and thus
reaching a high level of structural and functional maturity [125,126]. Both of
these systems have been shown to be suitable for toxicity testing studies. Aggre-
gation, however, is not well suited to renal epithelial cells, as renal cells are
exposed to apical and basolateral fluids in vivo and culture in aggregate form
negates this possibility. However, it is possible to induce tubule formation of
renal epithelial cells in vitro. A recent study has shown improved differentiation
and increased sensitivities to nephrotoxins when human proximal tubule cells
were cultured as 3D tubules [127]. This was achieved by seeding the cells in col-
lagen/Matrigel gels [127]. A major disadvantage of this approach, however, is
that there is no way currently to perfuse the tubules and thus compounds (and
nutrients) can only be basolaterally applied. Also, this method is not well suited
for transport studies and it is questionable whether the lumens are fluid filled at
all. A tried and tested way to overcome many of these issues is the culture of
renal cells on microporous supports. This has a major advantage in that
nutrients are supplied from both the apical and basolateral sides. For toxicologi-
cal studies, this is also important as compounds can also be applied in both com-
partments. Culturing cells in this way can also increase polarization and
differentiation [128,129]. In addition, the growth of cells on filters allows the
measurement of barrier function via TEER, which is an excellent parameter for
assessing barrier integrity. Using microporous supports also allows different
coculture options. For example, we have shown an increased complexity of
interaction when proximal tubule cells were cultured on one side of a filter and
microvascular endothelial cells on the other [21,130].

10.5
In Vitro Nephrotoxicity Assessment

The use of kidney cells in in vitro studies has been successfully utilized to inves-
tigate many clinically important nephrotoxins [12], as well as nephrotoxic com-
pounds found in the environment and in food [131,132]. As with other tissues,
classical approaches for in vitro nephrotoxicity have relied mostly on the quanti-
fying viability or cytotoxicity parameters, including loss of cytosolic contents
(e.g., lactate dehydrogenase), dye exclusion (e.g., trypan blue), or certain meta-
bolic activities (e.g., MTT, resazurin). In addition, several sensitive assays for
quantifying apoptosis are now routinely employed, including measurement of
caspase 3 activity. Assays tailored to nephron-specific events include the mea-
surement of proximal tubule-specific brush border enzymes in the supernatant
medium and functional parameters such as TEER. TEER is in particular a very
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sensitive endpoint of toxicity as only a small amount of cell death can lead to a
collapse in barrier function. However, none of these assays provide deep mecha-
nistic insights into drug-induced injury, since many different cellular events can
result in apoptosis or necrosis. For this reason, there has been a shift away from
the exclusive use of cytotoxicity assays, in order to focus on earlier events, which
are likely to provide deeper mechanistic information. For example, using molecu-
lar biological tools, we have demonstrated that cyclosporin A (CsA)-induced
ROS production results in senescence of cultured human renal proximal tubule
cells, via activation of the p53 pathway [133]. Furthermore, cells can sense and
react to molecular perturbations primarily through the activation of stress
response pathways. A large number of these stress response pathways are acti-
vated through transcription factor master regulators, including p53, Nrf2, Hif-1α,
ATF4, MTF1, and XBP1 [134]. The activation status of these pathways can be
measured utilizing transcriptomics, real-time PCR, or reporter assays and pro-
vides extremely useful mechanistic information, which can aid in chemical classi-
fication and identification of molecular initiating events. For example, the Nrf2
pathway is activated in renal proximal tubule cells under ischemic conditions
or when exposed to several nephrotoxins [17,135,136]. The increased expression
of hemeoxygenase-1 (HO-1), NQO1, thioredoxin reductase 1 (TXNRD1), and
glutamate-cysteine ligase, modifier subunit (GCLM) can be used as reporters of
Nrf2 activation [17,135,136].
We have recently investigated a multi-omics approach based on transcriptom-

ics, proteomics, and metabolomics, in an attempt to elucidate the cellular pertur-
bations induced by CsA [17]. In long-term exposures of differentiated
microporous cultured RPTEC/TERT1 cells, we could demonstrate that CsA
induces both oxidative stress and ER stress, potentially due to mitochondrial dis-
turbances. Utilizing cyclophilin B secretion and pharmaco-kinetics of CsA in the
in vitro model, we could also demonstrate that the stress effects were not related
to primary pharmacology [17]. This study demonstrates the suitability of renal
cell cultures to drug safety assessment, especially since primary pharmacology
could be separated from toxicological events and tissue concentrations could be
calculated.

10.6
Outlook

Renal cell cultures are promising tools for nephrotoxicity studies and drug safety
evaluation. The ability to create human-derived cell lines by hTERT overexpres-
sion, and thus without introducing viral oncogenes, is a major development as it
allows the investigation of the effects of compounds on contact-inhibited differ-
entiated cells [17,60]. This combined with the advances in high-content omics
approaches will allow us to develop better, more sensitive systems for drug safety
evaluation [17]. By conducting integrated transcriptomic, proteomic, and metab-
olomic investigations into cellular perturbations, we will be able to (a)
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understand better how cells react to specific noxious stimuli and (b) develop
mechanistic markers for these pathways [17]. It would be advantageous if
some of those markers were released from cells and could also be measured
in urine. Such translational markers could bridge the gap between preclinical
and clinical testing. Engineering developments such as those used to create
microfluidic devices will likely allow more organotypic cultures and organ–
organ interactions. One can envisage a system with a liver, a renal, and a car-
diac module, all interconnected with microfluidic circulation. New biological
developments such as iPSCs allow the possibility of creating renal cells from
specific individuals and thus allow us to study genetic variability and individ-
ual susceptibilities to compounds. This technology may even usher in an era
of personalized toxicology, which could entirely change how pharmaceuticals
are developed and tested.
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11
The Zebrafish Model in Toxicology
Natalie Mesens

11.1
The Need for a Physiologically Relevant Organ Model in Drug Toxicity Testing

The current challenges facing the pharmaceutical industry are unprecedented in
its history. Whereas it has had a significant positive impact on the health and
longevity of humans at the end of the twentieth century, nowadays, in the early
twenty-first century, the pharmaceutical industry is pressurized by increasing
costs and timelines of drug development, while the number of drugs that reach
the market is decreasing. Approval rates of NCEs (new chemical entities, new
drugs) by the US FDA are lower than those at any other time. Recent data indi-
cate that the average success rate for all therapeutic areas is approximately 11%,
or only one in nine compounds makes it through development [1]. This large
attrition in development not only jeopardizes the ability to address unmet med-
ical need, but also often compromises human safety. A recent investigation
examines the root causes of compound attrition in the clinical development [1].
In 1991, adverse pharmacokinetic and bioavailability results were the most sig-
nificant cause of attrition, and accounted for 40% of all attrition. By 2000, these
factors had dramatically reduced as a cause of attrition in drug development,
and contributed less than 10%. The major causes of attrition in the clinic in
2000 were lack of efficacy (accounting for approximately 30% of the failures)
and safety (toxicology and clinical safety accounting for a further approximately
30%). On the one hand, preclinical attrition due to toxicity is high [2]. On the
other hand, a considerable number of drug candidates fail because of safety
problems in humans in the clinical phase of evaluation despite having passed
the entire toxicity testing program [1]. A recent survey identified three major
toxicities as the main clinical adverse events reported: hepatic toxicity (14%),
cardiovascular toxicity (16%), and neurological toxicity (22%) [3]. The increas-
ing rate of failures due to toxicity demonstrates an urgent need for more pre-
dictive models. Identifying and eliminating drug candidates with toxic liabilities
earlier from the development cycle is a preferred strategy. The pharmaceutical
industry tries to take advantage of the molecular knowledge generated over the
past few years underlying organ toxicities by developing high-throughput
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in vitro screening assays for detecting these pathways of toxicity. Whereas great
improvements have been made in the past few years, the predictive capacity of
these in vitro assays toward true organ toxicity remains poor and the extrapola-
tion from cytotoxicity in vitro toward risk of developing human drug-induced
organ toxicity continues to be a challenging task. In a way of avoiding
unnecessary use and cost of performing mammalian studies early in develop-
ment, a possible solution to the limitations of cell-based screening is the use of
a small animal species in the screening strategy. As genes, receptors, and
molecular processes are highly conserved across animal phyla, studies with
other animal species could be representative for higher, more complex ani-
mals [4]. Examples of model invertebrate organisms are Drosophila mela-
nogaster and Caenorhabditis elegans, while model vertebrate organisms include
Danio rerio (zebrafish). Of these small, well-characterized surrogate animals, D.
rerio is preferred because its cardiovascular, nervous, and digestive systems are
similar to the mammalian counterparts at the anatomical, physiological, and
molecular levels [5].
Zebrafish have several inherent advantages for drug screening: due to the

small size of the embryo, the amount of compound required for toxicity assess-
ment is much less compared with mammalian models. This is important in view
of the fact that identified lead compounds are usually available in limited
amount. In addition to its small size, the availability of a large number of zebra-
fish embryos allows toxicity screening to be performed in microwell plates; this
makes the system amenable to automation in a high-throughput manner [6,7]. It
is a major advantage since the low throughput of mammalian models creates a
major bottleneck to assessing the numerous “hits” identified from in vitro
screening [8]. Zebrafish larvae might thus fill the gap between high-throughput
in vitro screening and low-throughput mammalian toxicity testing (Figure 11.1).
Zebrafish embryos allow toxicity to be assessed in the context of a complex
dynamic growing organism. This may be an important consideration when
compared with cell-based models such as embryonic stem cell models advo-
cated for in vitro toxicity screening [9]. This is especially important in the
context of pharmacology and toxicology when many of the potentially tar-
geted organ systems, for example, the nervous, cardiac, digestive (liver in par-
ticular), immune, musculoskeletal, vasculature, and kidney, are functional in
the late embryonic and early larval stages of the zebrafish. This has further
led to the proposal of the use of zebrafish as a model for assessing off-target
drug effects, which in recent times is recognized as a cause of drug attri-
tion [10]. According to the current European Directive 2010/63/EU [11], the
zebrafish larva is viewed as an embryo or eleutheroembryo and is considered
as an in vitro model until it reaches the state of exogenous feeding. More-
over, the availability of many transgenic lines with fluorescing organs/tissues
developed by introduction of fluorescent (e.g., green fluorescent protein or
GFP) reporter genes under a tissue-specific promoter allows real-time moni-
toring and high-resolution qualitative and quantitative assessments of specific
organ/tissue toxicity [12].
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11.2
Extensive Knowledge about Genetics, Development, and Physiology of D. rerio

The zebrafish has long been used as an experimental model to study chemical
toxicity ranging from mutagens, carcinogens, teratogens to direct toxicants since
1950s [13]. One reason for the long history is that fish acute toxicity testing has
been an important, if not mandatory, component in the base set of data require-
ments for ecotoxicity testing [14], which involved several fish species including
zebrafish. From 1980s to mid-1990s, the zebrafish became a premier vertebrate
model for developmental and genetic studies, and within the next decade it posi-
tioned itself as a biomedical model for various human disorders that could aid in
discovering novel therapeutics. This led to a number of studies employing zebra-
fish for drug discovery. The large genomic resources, availability of “omics” plat-
forms, and amenability to various molecular and bioimaging techniques provide
versatility of investigating toxicity at different levels. Toxicity in zebrafish can be
investigated from the morphological to the molecular levels, from a single bio-
molecule to hundreds of them simultaneously, and from a single cell type or
organ to multiorgan systems including the whole organism. The availability of
zebrafish models of human diseases that could aid in drug discovery makes it
more attractive for drug toxicity screening. This is because pathology, pharma-
cology, and toxicology can now be performed within the same organism, facili-
tating tractability, comparison, and connectivity of data and findings between
these experiments.

Figure 11.1 Incorporating zebrafish into pre-
clinical toxicity screening. Zebrafish could
enhance preclinical toxicity screening by its
strategic placement between in vitro cell-
based and mammalian models along the drug
development pipeline. It can be employed for

toxicity screening in early stages along the
development pipeline. This could alert
researchers of potential hazards and help
remove candidate compounds with significant
safety liabilities at earlier stages, thereby
reducing drug attrition costs. (From Ref. [8].)
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11.3
Studies of Specific Organ Toxicities in Zebrafish Embryos and Larvae

11.3.1
Cardiotoxicity

Cardiac repolarization abnormalities, often leading to life-threatening arrhyth-
mias, represent one of the most important types of drug toxicity [15–17].
Drugs that cause clinical arrhythmias are often associated with prolongation of
the QT interval measured on the electrocardiogram. The majority of drugs that
result in clinical problems interfere with repolarization by blocking the rapid
component of the delayed rectifier potassium current (IKr). This can be cap-
tured in an in vitro assay (hERG assay); however, in vitro hERG inhibition has
been limited in its predictive value [18–21]. The lack of utility of current assays
and the failure of these assays to detect drug effects on other targets that may
modulate hERG indirectly are a result of the intrinsic complexity of the myo-
cardial substrate and the involvement of extracardiac factors in the genesis of
actual toxic arrhythmic events [22–25]. Partly because of the feasibility of char-
acterizing the toxicity at every level – from the individual ion channels through
to integrated physiology – this area has been one of the most extensively stud-
ied in zebrafish toxicology.
In zebrafish, the heart is the first organ to develop and function and a beating

heart forms by 22 h postfertilization (hpf). By 48 hpf, the cardiovascular system is
fully functional and exhibits a complex repertoire of ion channels and metabolic
processes [26]. Zebrafish ERG is expressed in the early stages of zebrafish devel-
opment and the amino acid sequences of the pore-forming domain of the zebra-
fish ERG and human ERG are 99% conserved [27]. Although zebrafish and
mammalian hearts differ in structure and zebrafish lack a pulmonary system,
they exhibit similar functional characteristics, including (1) blood flow from a
major vein into an atrium, (2) blood moves through a muscular ventricle for
delivery to the aorta, (3) valves direct blood flow, (4) a specialized endocardium
musculature drives a high-pressure system, (5) an electrical system regulates
rhythm, and (6) heartbeat is associated with pacemaker activity [27]. Knocking
down the zERG gene in the zebrafish (hERG ortholog) results in a characteristic
arrhythmia, with two atrial beats coupled to each ventricular beat. Known QT-
prolonging drugs when tested in 3 days postfertilization (dpf) embryos cause this
specific arrhythmia in a concentration-dependent manner with lower concentra-
tions inducing bradycardia and higher concentrations leading to 2 : 1 decoupling
followed by, in some cases, a more pronounced decoupling, irregular arrhythmia,
or a complete ventricular block [27,28]. This atrial–ventricular decoupling effect
was able to detect QT-prolonging drugs known to block hERG as well as indirect
QT-prolonging drugs, suggesting that this may be taken as a surrogate signaling
QT prolongation [29]. Using these simple heart rate responses, investigators have
been able to establish an excellent correlation with known adult human
repolarization cardiac toxicity and recapitulate clinically relevant drug–drug
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interactions [29]. Even dramatic effects on cardiac function are well tolerated by
the larvae, which can survive for 4–5 days without an active circulation.
Measurements of heartbeat (number of atrial and ventricular contractions)

over a period of 15–20 s are determined either manually (by eye) [30] or by using
customized software applications. In the latter scenario, video imaging using
transmitted light with wild-type larvae [27] or fluorescence imaging with trans-
genic larvae expressing green fluorescent protein in the myocardium [31] has
been reported. Both software applications offer relatively high-throughput read-
outs by identifying changes in average pixel density in the region of the atrium
and ventricle, and when plotted over time, the number of contractions for each
chamber and average heart rate are automatically determined. It also proved feasi-
ble to define a range of sophisticated second-tier assays with higher resolution and
lower throughput that have been used in series to optimize the overall sensitivity
and specificity of the approach. These assays include calcium imaging and optical
voltage mapping that enable characterization of integrated myocardial electro-
physiology at a resolution comparable to that in current “state-of-the-art” canine
or rabbit models. Using the zebrafish, investigators have also been able to define
action potential prolongation in the setting of QT-prolonging drugs, known ion
channel mutations, or novel genes recently implicated in cardiac repolarization.
Currently published studies show promising results in predicting dangerous

QT prolongation [11,28]. Using the same assays, a blinded screen of FDA-
approved compounds predicted 20 of 23 known agents that cause the drug-
induced arrhythmia (torsades de pointes) and also successfully reproduced a broad
range of relevant drug–drug interactions; however, a number of false negatives
were reported, mainly due to poor absorption [29]. The recapitulation of these
canonical multiorgan interactions, which are inaccessible in vitro, demonstrates a
major advantage of in vivo modeling [32]. As noted, these data suggest robust
functional conservation between humans and zebrafish at multiple levels, and they
have formed the basis of commercial assays for cardiotoxic drugs using screening
technologies in larval fish. Similarly, panels of drugs known to perturb contractility
and/or vasomotor tone have been tested and found to recapitulate very accurately
the physiological effects observed with the same agents in humans [33].

11.3.2

Neurotoxicity

Drug-induced neurological effects are remarkably common and are among the
most frequent reasons for poor drug compliance, even in the context of well-
established benefits. The sheer complexity of the nervous system makes in vivo
modeling attractive, and several groups have pioneered neurological assays in the
zebrafish. The overall organization of the zebrafish brain is similar to other ver-
tebrates, having matched defined areas such as the hypothalamus and olfactory
bulb, encompassing structures of the lateral pallium, which appear to be homol-
ogous to the mammalian hippocampus [34]. In addition, the main neuro-
transmitter systems such as the cholinergic, 5-hydroxytryptaminergic,
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dopaminergic, and noradrenergic pathways are also present and have been
mapped throughout the brain [35,36]. Zebrafish larvae have recently become the
focus of neurobehavioral studies as they display learning, sleep, drug addiction,
and neurobehavioral phenotypes that are related to those seen in humans [37].
Transgenic lines are created to study neurological disorders such as Alzheimer’s
disease [38–40] and Huntington’s disease [41]. Similarly, genetic and chemical
effects on each of these behaviors in humans can be recapitulated in the zebra-
fish. However, large-scale chemical screens exploiting these assays have only just
begun to be undertaken [42]. An alternative approach, focusing on a single neu-
rological circuit, but adapting this for much higher throughput, has led to the
characterization of the neurological effects of tens of hundreds of small mole-
cules [43]. This strategy suggests not only that effectively clustering neuroactive
drugs using robust quantitative metrics is possible, but also that such clustering
will extend to potential neurotoxicity. Ongoing work in screens of truly inte-
grated behaviors will shed additional light on the utility of the zebrafish for the
study of neurotoxicity.
From a safety pharmacology perspective, drug candidates are screened for

CNS side effects, which include seizure liability and sedative or stimulant effects.
A number of sedatives were tested in the zebrafish and caused hypomotility, in
concordance with the effects seen in humans [37]. Recently, Winter et al. [44]
conducted a convulsant activity assay in which 25 compounds were tested on
their ability to increase the swimming pattern of zebrafish. Thirteen of the sev-
enteen convulsants were positive in the zebrafish locomotor assay and five of
eight negative compounds were negative. The authors suggested that many of
the false-negative compounds were not absorbed well by the zebrafish, but this
possibility was not investigated in depth. The false positives are of greater con-
cern. This might be due to the fact that the blood–brain barrier of the larval
zebrafish is not fully formed until 10 dpf. Therefore, the assessment of CNS-
mediated effects in larvae may erroneously identify compounds that are excluded
from the brain in older fish and in mammals [45].

11.3.3

Hepatotoxicity

Drug-induced liver injury (DILI) accounts for approximately 11–13% of acute
liver failure cases in the United States and is the most common cause of death
related to this condition [46,47]. Although DILI is implicated in acute liver fail-
ure and results in black-box warnings, withdrawal from the marketplace, or
restriction of its use after marketing approval has been obtained [48,49], many
agents cause DILI during preclinical or clinical development that never make it
to the marketplace. Conventional cytotoxicity assays have been used for the
detection of hepatotoxicants [50], but can be very limited in their sensitivity to
detect hepatotoxic liability because they typically utilize a single cell type.
Although screening for specific hepatic pathologies, such as steatosis, can also
be employed [51], compounds that cause injury through more complex
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mechanisms (e.g., immune-based injury or those of an idiosyncratic nature) are
often missed as a result of the simplicity of the cell model systems being used
early to screen compounds. Despite these known limitations, recent advances in
cell-based screening models have shown good sensitivity and specificity using
high-content screening (HCS) methods that employ endpoints relevant to mech-
anisms of hepatocellular injury [52]. The sensitivity of these cell-based models
can be further increased when cultured hepatocytes are incubated with inflam-
matory cytokines concurrently with the test agent [53,54]. These results illustrate
the power of simulating the complex microenvironment of the liver even
in vitro, rather than the “standardized” tissue culture environment. In vivo mod-
els may also permit probing the microenvironment of the “primed” liver. Several
specific animal models (e.g., endotoxin-stimulated hepatotoxicity model) [55]
and the heterozygous Sod2+/� mouse [56,57] have been purported to identify
hepatotoxicants of clinical concern. However, these models have mostly been
employed in retrospective investigations, rather than prospectively, as an in vivo
screening model early in drug discovery. These are mostly the result of
impractical drug supply requirements and associated higher costs of animal test-
ing. As such, relatively less expensive alternative whole animal models, such as
the zebrafish, are currently being investigated.
The zebrafish liver develops from anterior endodermal progenitor cells and is

identifiable by 22 hpf. Expression of genes indicative of hepatocyte function is
first detectable by 32 hpf, and hepatic outgrowth begins at 72 phf. At 5 dpf, bile
production, serum protein secretion, glycogen storage, lipogenesis, and xeno-
biotic metabolism are fully operational [58]. The teleost liver has distinguishable
histological characteristics compared with that in mammals. The portal veins,
hepatic arteries, and large biliary ducts are distributed stochastically within the
hepatic parenchyma but are not grouped in portal tracts as in the mammals.
Hepatocytes are arranged as tubules that enclose small bile ducts rather than as
bilayered hepatocyte plates in the human liver. The intrahepatic bile ducts are
derived from the bile canaliculi and form a network that is collected in the gall
bladder through large ducts and an extrahepatic biliary system [59,60]. Despite
cellular and anatomical architectural differences, hepatocytes and biliary duc-
tules maintain the same functions. Mutations have identified mutants with fea-
tures of liver diseases and a model for hepatic steatosis, choledochal cysts, and
cholestasis has been established [61]. Treatment with carcinogens generated
liver tumors [62] and γ-hexachlorocyclohexane, thioacetamide, and alcohol can
induce hepatic steatosis [63–65]. CYP3A4 and CYP2D6 enzymes, catalyzing the
majority of known drug metabolizing reactions, have zebrafish orthologs.
CYP3A4 and CYP2D6 functional activity assays have been performed in zebra-
fish using human CYP-specific substrates and similar responses have been iden-
tified, indicating a potential similar metabolism in zebrafish and humans [66].
Because zebrafish larvae are virtually transparent, the liver of a 120–144 hpf larva
can be viewed dorsolaterally anterior to the gut and posterior to the pericardium
with simply a stereomicroscope and transmitted light. At this age, the liver is
perfused with circulating blood cells, is fairly globular in structure, and has a
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clearly recognizable periphery against the neighboring tissues [67]. Initial hepa-
totoxicity assays were created to assess morphological endpoints of toxicity after
treatment with different compounds, which, unlike mammalian studies, had no
reliance on dissection and histology. However, it should be noted that when
viewed in transverse section, hepatic tissue can appear to surround the esopha-
gus, so each larva needs to be assessed in various orientations to appropriately
screen the whole liver [68]. At 120 hpf (after a 48 h incubation), larvae were anes-
thetized in MS-222 (tricaine) and screened for three specific phenotypic end-
points of hepatotoxicity: changes in liver size (i.e., hepatomegaly), liver
abnormality (i.e., tissue degradation), and yolk retention (an endpoint for liver
dysfunction, as yolk is utilized through the liver and utilization is diminished if
the liver is impaired) (Figure 11.2). As an example, the typical phenotype
induced by a hepatotoxicant (i.e., changes in the texture and color of the liver
were documented with tissue becoming amorphous and darker than controls
with a brown and gray hue) has been reported previously for brefeldin A [69]
and certain zebrafish liver mutants [59]. Two independent studies revealed good
predictive capacity of this assay [68,70] toward known hepatotoxicants; however,
the advantages to a single cell-based assay could not be identified [68]. In addi-
tion, He et al. [70] showed that the drug-induced liver degeneration, liver size
change, and yolk sac retention could be quantitatively assessed using an image-
based morphometric analysis. Furthermore, to confirm that the visual observa-
tion of hepatotoxicity induced truly represents pathological liver damage, larvae
treated with acetaminophen (APAP), aspirin, tetracycline HCl, sodium valproate,
cyclophosphamide, and erythromycin were assessed histologically and all
six hepatotoxic drugs induced zebrafish liver degeneration. As demonstrated in
Figure 11.3, liver from zebrafish treated with APAP showed loose cell-to-cell
contact and the cells were dissociated and irregular in shape with various grades
of tiny and large vacuoles, and the number of hepatic parenchyma cells was
decreased. True hepatocellular necrosis, however, was absent. Further histologi-
cal confirmation of major mechanisms of drug-induced liver injury was per-
formed by Driessen et al. [71] through histological analysis after exposure to
prototypical hepatotoxicants inducing cholestasis, steatosis, and apoptosis. His-
tological evidence of cholestasis was absent, steatosis was identified as the
appearance of large vacuoles, but also appeared during treatment of a cholestasis
inducer, and true apoptosis was also absent. On the other hand, marks of cell
death, particularly chromatin condensation and cytoplasmic eosinophilia, were
observed, although more compound than class specific. Additional observations
were chromophobic and eosinophilic vacuolization. In summary, the final histo-
pathology of hepatotoxic effects was likely related to life stage-dependent capa-
bility of hepatocytes, and hepatotoxic responses were less specific as anticipated.
Microarray analysis of whole larvae also revealed a diversity of changed path-
ways, but liver specificity was difficult to prove due to the potential interference
of other organ effects.
The above studies shed light not only on the possibilities but also on the com-

plexity of the zebrafish larvae as a screening model for assessing drug-induced
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Figure 11.2 Visual phenotype of
hepatotoxicity in zebrafish at 120 hpf after
exposure to drugs/compounds from 72 to
120 hpf (a). Vehicle-treated larval zebrafish
exhibited a clear, healthy liver (i). Larval
zebrafish treated with mammalian
hepatotoxic drugs exhibited liver tissue
degradation, hepatatrophia, and yolk sac
retention (iv–ix). Two mammalian
nonhepatotoxic compounds sucrose and

biotin did not show any adverse effect on
zebrafish liver (ii, iii). Part (b) shows the liver
sections of representative figures indicating
normal liver in control zebrafish and liver
degeneration in zebrafish treated with APAP.
L: liver; Y: yolk sac; (i) vehicle control (0.1%
DMSO); (ii) biotin; (iii) sucrose; (iv) APAP; (v)
aspirin; (vi) tetracycline HCl; (vii) valproate
sodium; (viii) cyclophosphamide; (ix)
erythromycin. (From Ref. [70].)
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hepatotoxicity. In our hands, we obtained the same preliminary conclusions. We
developed a hepatotoxicity screening assay in transgenic zebrafish larvae
expressing a liver-specific fatty acid binding protein (fabp10)-driven dsRED pro-
tein. Analysis of hepatotoxic effects can then easily be assessed using high-
throughput imaging by analyzing the reduction or increase in fluorescence by
automated image analysis of the treated larvae, allowing semi-high-throughput
assessment of DILI in drug discovery. However, due to the current lack of con-
cordance between the responses of the embryonic immature zebrafish liver and a
mammalian liver, extensive validation of hepatotoxicity screening assays with
prototypical DILI inducers will be necessary in the future to gain confidence in
the power of zebrafish larvae for predicting human DILI.

11.3.4

Teratogenicity

According to regulatory guidelines, each drug in development for administration
to women of child-bearing potential must be tested for embryotoxic and terato-
genic potential in a rodent and a nonrodent species. Depending on the phase
within the drug development process, the indication, and the related target
group, the drug development plan may require limited or more extensive animal
data in order to move forward [72,73]. Ultimately, achieving registration of a

Figure 11.3 Representative histological pic-
tures of larval zebrafish at 120 hpf after treat-
ment with testing drugs. Pictures labeled as
(a) and (a´) were the liver histopathology from
vehicle (0.1% DMSO)-treated zebrafish and the

pictures labeled as (b) and (b´) were the liver
histopathology from zebrafish treated with a
mammalian hepatotoxic drug APAP. (From
Ref. [70].)
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drug translates into the use of a large number of animals, generally rats and rab-
bits, for the teratogenicity safety assessment [74], which is not in line with the
current trend of applying the 3R principle, that is, replacement, reduction, or
refinement of animal use, in general. Looking at alternative testing methods, the
larval zebrafish seems to be a promising model for the evaluation of adverse drug
reactions and a zebrafish developmental toxicity assay could be used to identify
compounds harmful to embryofetal development early in drug development.
Zebrafish development has been well characterized [75]. The eggs remain

transparent from fertilization up to and beyond pharyngulation when the tissues
become dense and pigmentation is initiated. This allows unobstructed observa-
tion of the main morphological changes during earlier developmental stages.
Furthermore, zebrafish embryos that are malformed, lack organs, or display
organ dysfunction can usually survive well beyond the time at which those
organs normally start to function in healthy individuals [4]. In addition, fish are
sensitive to chemical exposure during early development [76]. These character-
istics make the zebrafish an attractive candidate for screening of teratogens and
the elucidation of mechanisms thereof [4]. As an example, the primary target of
the strong human teratogen thalidomide was recently elucidated by the use of
zebrafish larvae [77].
The teratogenic potential of compounds can then be predicted quantitatively

by ranking zebrafish embryos based on a scoring system for phenotypic changes
that is conceptually similar to morphological assessments conducted using
in vivo embryofetal development of mammals (Table 11.1; Figures 11.4
and 11.5) [78,79].
A number of groups have reported exploratory studies with the zebra-

fish [9,82–85]. Although different incubation periods were used and different
endpoints for teratogenicity were scored, overall zebrafish teratogenicity assays
have been shown to correctly classify in vivo teratogens and nonteratogens with
overall concordance of 72–92% [86]. A recently developed zebrafish teratogenic-
ity assay was shown to have successfully categorized 87% of the 31 test com-
pounds as in vivo teratogens or nonteratogens, with only 2 false positives and 2
false negatives [80]. A meeting convened to address the use of zebrafish and
other in vitro models (i.e., embryonic stem cells and rodent whole-embryo cul-
ture) of developmental toxicity found that zebrafish has the potential to provide
a level of predictivity that is as good as or better than these current models [79].
In our hands, the zebrafish developmental toxicity assay appears to be a rea-

sonably sensitive assay for screening for developmental anomalies of our internal
Johnson & Johnson library compounds. If rat data alone are used for compari-
son, and rabbit and/or mouse data ignored from the mammalian testing, 86%
sensitivity is calculated, whereas if rabbit data alone are taken into account for
these calculations, no false-negative results are obtained (100% sensitivity) [81].
But since it is unclear whether rat, rabbit, or multiple species represent the best
predictive value for human teratogenesis, a combined sensitivity of 75% for com-
pounds of the Janssen portfolio, established by comparing the zebrafish results
with the outcome of all available mammalian in vivo studies, may be more
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Table 11.1 Example of morphological characteristics evaluated as measurements for the teratogenic
potency of a test compound at designed time points: comparison between three test setups.

Brannen et al. [80] Van den Bulck et al. [81] Selderslaghs et al. [82]

Morphological
endpoint

Method of assessment Morphological endpoint: ter-
atogenic endpoints

Morphological
endpoint:
zebrafish embryo

Body lengtha) Measured in millimeters Developmental retardation/
arrest

Egg coagulation

Body shape Morphological score and
description

Body shape abnormal Somites

Viability Percent incidence in treat-
ment group

Eye abnormalities Tail detachment

Head–trunk anglea) Measured in degrees Ear otolith abnormalities Otolith
Otic vesicle lengtha) Estimated distance between

eye and otic vesicle
Brain/spinal cord
abnormalities

Eyes

Somite numbera) Somite pairs counted Heart morphology Heartbeat
Somite morphology Morphological score and

description
Anemia Blood circulation

Notochord
morphology

Morphological score and
description

Angiogenesis Morphological endpoint:
zebrafish larvae

Tail morphology Morphological score and
description

Pigment abnormalities Skeletal abnormalities

Fin morphology Morphological score and
description

Jaw abnormalities Sidewise position

Heart morphology Morphological score and
description

Dorsal/caudal fin
abnormalities

Active swimming
(upon stimulation)

Cardiovascular
function

Normal/abnormal and
description

Pectoral fin abnormalities

Facial structure
morphology

Morphological score and
description

Morphological endpoint:
embryotoxic endpoints

Brain morphology Morphological score and
description

Reduced motility/touch
response

Jaw and pharyngeal
arch morphology

Normal/abnormal and
description

Hyperactivity

Motility Normal/abnormal and
description

Unhatched

Pigmentation Normal/abnormal and
description

Necrosis

Swim bladdera) Normal/abnormal and
description

Necrosis and cranial edema

Stomacha) Normal/abnormal and
description

Necrosis and enlarged liver

Intestine Normal/abnormal and
description

Heart function abnormal

Livera) Normal/abnormal and
description

Pericardial edema

Yolk Normal/abnormal and
description

Circulation slow or absent

Heart ratea) Counted in beats per minute Skin abnormalities
Gut abnormalities
Necrosis, nephric cysts
Yolk abnormalities, yolk sac
edema

a) Evaluated for possible use as teratogenic endpoint but not retained in the final scoring system.
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applicable. This outcome is comparable to the sensitivity recently reported in
previous studies using this model; however, to use this screen as a valuable and
reliable tool in drug selection and development, adequate specificity is a pre-
requisite, which is not achieved for the Janssen set of compounds based on the
evaluation of the current set of zebrafish endpoints, even when corrected for bio-
analysis (43, 50, and 38% specificity for all mammalian data, rat-only data, and
rabbit-only data, respectively). The reason for the lower specificity of the test
system when compared with literature data remains unclear. The chemical class
of compounds, uptake and possible metabolism, and the mode of action of the
drugs are important factors to take into account for the interpretation of these
results. The large set of endpoints scored may also account for the discrepancy.
Historically, both the number of endpoints assessed and the length of the expo-
sure and assessment period varied considerably, although there is a tendency for

Figure 11.4 Morphology of the 5 dpf
zebrafish larva. (a) Lateral view of the 5 dpf
zebrafish. Bracket (bottom) defines the head–
tail region measured for larva length.
fb: forebrain; mb: midbrain; hb: hindbrain;
df: dorsal fin; cf: caudal fin; vf: ventral fin;
nc: notochord. (b) Close-up of anterior region.
olf: olfactory region; uj: upper jaw; lj: lower

jaw; ar: pharyngeal arches; ht: heart; li: liver;
s: stomach; sb: swim bladder; i: intestine. (c)
Larva with normal pigmentation level and
melanophore pattern (arrows). (d) Larva with
reduced pigmentation but normal
melanophore pattern (arrows). (From
Ref. [80].)
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less endpoints and a longer exposure period starting shortly after fertilization.
For example, the new OECD guidelines for the fish embryo toxicity (FET) test
drafted in 2006 [87] include observations at 24 and 48 hpf and only four apical
endpoints: embryo coagulation, irregular somite formation, nondetachment of
the tail, and lack of heartbeat. In a similar fashion, Selderslaghs et al. [82] also
assessed these endpoints prehatch (up to 72 hpf), but also scored the otic vesicle
and otoliths, eyes, and blood circulation during this period, and then evaluated
larval motility, skeletal deformities, and body position at 144 hpf (Table 11.1). In
our current assay, we opted for daily evaluation of vitality and developmental
assessment with binomial scoring of a series of endpoints at 96 hpf (Table 11.1).
In contrast, a quantitative method was described by Brannen et al. [80], in which
similar anatomical structures as in our assay were assessed at 120 hpf, together
with cardiovascular function and motility. Larval body length, head–trunk angle,
and eye–otic vesicle distance were measured, as well as scoring of the severity of
each phenotype (Table 11.1). Overall, that study protocol seemed to be more
comparable to the OECD 212 test guideline [88], which additionally included
assessments on behavior, hatching success, yolk sac absorption, and survival

Figure 11.5 Examples of craniofacial and
visceral dysmorphology with assigned
morphological scores. Bracket defines the
lower jaw in (a)–(e). (a) Anterior lateral view of
a control 5 dpf larva with normal morphology
(scores= 5). (b) Larva treated with BMS-4
(endothelin receptor antagonist) with subtle
reduction in the size of the lower jaw (scores
= 4). (c) Larva treated with BMS-4 presenting
definitive deficiency of the lower jaw (scores
= 3). (d) Close-up of craniofacial region of a
normal control larva with normal spacing
(black arrow) found between the optic (op)
and otic (ot) vesicles; short bracket:

forebrain/olfactory region/upper jaw (scores of
all structures= 5). (e) Close-up of the cranio-
facial region of a larva exposed to a CB-1
antagonist, BMS-7, presenting marked or
severe dysmorphology of various structures.
Short bracket: significantly reduced forebrain,
olfactory region, and upper jaw. Irregularly
shaped and shortened lower jaw (lj) (upper
and lower jaw scores= 1); heart (circled) with
swollen pericardial sac and irregularly shaped
chambers (scores= 1); narrowed spacing
(black arrow) between optic and otic vesicles;
and reduced optic vesicle (op) size (facial
scores= 2). (From Ref. [80].)
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as well as length and weight measurements. Future collaborations should work
on defining the exact endpoints and exposure times toward the harmonization
of a global zebrafish teratogenicity protocol before the assay can be used in
safety assessment.

11.3.5

Future Directions: ADME Studies and Future Explorative Research

11.3.5.1 Absorption and Distribution
Defining the effects of ADME on drugs and their metabolites in the zebrafish
will be vital as the organism becomes more widely used in toxicology. Although
it has been shown that zebrafish toxicological assays can attain a good level of
predictivity, false negatives and false positives have been found to compromise
the sensitivity and specificity of the assays used. These studies, while sporadic in
nature, underscored a neglected understanding of the absorption, distribution,
metabolism, and excretion (ADME) profile of drugs between zebrafish and
human or other mammalian models. The ADME profile of a drug in turn is
affected by factors such as the route of administration, physicochemical propert-
ies of the drug, and physiology of the fish. To fully realize the potential of zebra-
fish as a drug toxicological model, the knowledge gap in ADME needs to be
addressed. In using zebrafish embryo as a high-throughput screening system, the
most common route of drug administration is by immersion of embryo into a
medium that contains the solubilized drug. Researchers should bear in mind the
fact that the immersion technique for dosing of drugs to zebrafish is analogous
to depot injection in the mammalian model as absorption and continuous
exposure of the biological system to the drug are present in both cases. This
information is important for selecting a suitable mathematical model for phar-
macokinetic study in zebrafish. The drug is then absorbed by the embryo across
the chorion enveloping the embryo (if the drug fails to absorb through the cho-
rion, then the chorion can be removed chemically or manually). In the larvae or
adult fish, drug absorption occurs through the skin, gill, and gut, out of which
dermal uptake may contribute to 50% of the total uptake of compounds that are
hydrophobic [89]. Realizing the importance of ascertaining the extent to which a
drug is absorbed by zebrafish embryo to circumvent erroneous pharmaco-
kinetic–pharmacodynamic correlation, researchers would benefit if there exists a
set of rules comprising cutoff molecular weight, log P, or polar surface area, such
as Lipinski’s rule of five for the determination of druglikeness of compounds [90],
to help predict whether a compound can be absorbed into the zebrafish embryo.
Evaluation of the uptake of a wide range of compounds would be required in
order to derive such rules. As a recommendation, in vivo drug absorption studies
might have to be conducted prior to toxicological testing using zebrafish. Alter-
natively, to increase throughput, drug absorption studies could be conducted
only for potential hits that yielded negative results in the toxicological assay. The
extent of the distribution of a drug to a particular organ or tissue is of impor-
tance, especially when studying specific organ toxicity. Distribution of drug is
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affected by blood flow rate, binding to plasma/tissue proteins, permeability
across membrane barriers, and interaction with transporters. It has been shown
that the total concentration of plasma protein as well as qualitative properties of
individual protein classes differs between fish and mammals [89]. This difference
would certainly impact the drug distribution between the plasma and tissue com-
partments in zebrafish compared with mammals. Equilibrium dialysis methods
may be used to investigate the plasma protein binding of drug in zebrafish. How-
ever, one must be mindful of the possible challenge in obtaining sufficient vol-
ume of zebrafish blood to conduct such experiments. Investigation of drug
distribution in zebrafish using a panel of model drugs with diversified physico-
chemical properties is a necessary step forward in future studies. Drug absorption
from aqueous media by the larval fish is highly dependent on pH, so care must
be taken to ensure that the media for chemical screens are suitably buffered. The
physicochemical properties of most small molecules can be used to predict
absorption, and these properties correlate with the usual attributes of successful
drugs. The objective measurement of drug absorption as well as drug distribution
can be readily assessed using fluorescence or radioactive assays [91,92].

11.3.5.2 Metabolism
As metabolism is one of the causes of drug-induced toxicities, it is imperative to
characterize biotransformation capabilities of zebrafish and compare it against
human or a current preclinical model such as a rodent. It is also equally impor-
tant to validate the ability of zebrafish to generate reactive metabolites that have
been shown to be responsible for causing drug-induced toxicities [93]. Without
this knowledge, researchers will not know, as in most cases when using zebrafish
assays, whether the toxicity observed is caused by a parent drug or a reactive
metabolite from the drug, and if the latter, whether this reactive metabolite will
also be formed in humans. At present, in response to this knowledge gap, the
functional activities of phase I enzymes such as CYPs and phase II enzymes such
as SULT and UGT are being evaluated [94–98]. Even so, these few studies have
only just begun to unravel the similarities and differences of metabolism and
bioactivation of drugs between zebrafish, human, and rodent models. In the past
decade, drug transporters have been intensely studied as the awareness of their
impact on the absorption, distribution, excretion, and toxicity of drugs has
increased [99]. However, little work has been done in the field of drug trans-
porter research in zebrafish. A total of 41 ATP binding cassette (ABC) transport-
ers have been identified in the zebrafish genome [100]. In a proof-of-concept
experiment, Scholz et al. demonstrated that cyclosporin A inhibition of ABC
transporter caused accumulation of rhodamine B in zebrafish larvae [101]. This
study reinforced the importance of characterizing drug transporters and evaluat-
ing their role in zebrafish.

11.3.5.3 Harmonization and Validation
The lack of harmonization of protocols for the various toxicity tests conducted
using zebrafish limits the reproducibility of results between experiments and
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laboratories. Experimental details (e.g., temperature, pH of media, and choice of
solvent/vehicle that could affect ADME of drugs) and toxicological assessment
approaches should be standardized in order to validate objectively the accuracy
of zebrafish as a predictive toxicological model. The developmental stage of the
zebrafish at the time of the experiment initiation is yet another important con-
sideration. If the pharmaceutical scientist is interested in investigating direct tox-
icity from parent drug, presence of a mature liver may not be crucial. However, a
mature metabolizing liver may be critical when a toxic electrophilic metabolite is
suspected. Finally, a scaling factor for the in vivo–in vivo correlation between the
zebrafish and human or rodent models is unavailable. Without a scaling factor,
scientists cannot make a meaningful correlation between the toxic dose observed
in zebrafish and humans or rodents. It is hoped that with rigorous ADME
screening of the zebrafish model using a wide range of drug compounds, scaling
factors and chemical rules on drug ADME specific to the zebrafish larvae can be
derived. The Zebrafish Consortium comprising pharmaceutical companies such
as Bristol-Myers Squibb, Pfizer, and AstraZeneca has started to formulate har-
monized teratogenicity assays using the zebrafish model [102] and it is hoped
that this will extend to other toxicity assays as well. While not required for
screening purposes, thorough validation of the harmonized assays is a pre-
requisite step in the application of the 3R principle.
According to the ECVAM (European Centre for Validation of Alternative

Methods) principles, a new developed assay needs to flow through different
stages of performance, applicability, and predictivity before the assay can be
accepted as a valid test [103]. The first module, the test (model) definition,
includes the establishment of a test protocol and the definition of the endpoint
predicted to set up a test model, the zebrafish assays. The models need to be
trained with a training set of compounds, a selected set of reference compounds,
for which the mechanism of action is known. A training set of compounds
allows testing the provisional domain of applicability on different pharmaceutical
in-house chemistries. Both sets of compounds are too small to validate the assay
(numbers are smaller than or equal to around 50, see below) but will provide
valuable predictivity indices to start with and insights into important mecha-
nisms of drug-induced toxicity in the zebrafish. This should then result in the
definition of a prediction model. Within-laboratory variability, transferability,
and between-laboratory variability are the next steps that need to be performed.
Predictive capacity is a very important stage, as the data set will need to be
enlarged to further explore the predictivity indices of the zebrafish model. As a
training set consists of only 50 compounds, specificity and sensitivity indices are
not representative for a scenario in which 500 compounds would be tested. It
could be calculated that for an expected specificity of 90% (the zebrafish assays
would detect 10% false positives) a data set of almost 500 compounds evenly
distributed between toxic and nontoxic compounds would be needed to obtain a
lower confidence limit of 80%, meaning that while repeating the experiment, the
actual specificity will vary between 90 and 80% [104]. This calculation only dem-
onstrates the challenges associated with introducing new predictive tests into the

11.3 Studies of Specific Organ Toxicities in Zebrafish Embryos and Larvae 233



area of toxicology. In addition, the application domain will also be a very impor-
tant follow-up project, as the applicability of the test model will need to be
enlarged to the whole pharmaceutical compound libraries. Finally, performance
standards can be explored, when there is interest from regulatory authorities for
this specific test. This includes not only incorporation into an ECVAM valida-
tion, but also interest from FDA and EMEA in accepting alternative tests for
studying drug-induced toxicity, in addition to or instead of the traditionally per-
formed animal testing for assessing embryotoxicity of chemicals in the REACH
program, for example.

11.3.5.4 Future Explorative Research
The zebrafish occupies an important niche between more traditional representa-
tive animal models and tractable lower organisms or in vitro systems (Figure 11.1).
Although often viewed as a cheap alternative to rodents, the zebrafish offers com-
prehensive vertebrate pathway and cellular context on a scale hitherto feasible
only in cell culture. If we are to maximize the utility of the zebrafish in discovery
mode, we will require a much more nuanced understanding of the parallels
between the zebrafish and higher organisms in health and in disease. It will be
essential to develop more global screening assays, focused not just on previously
described toxicities, but also on detecting the unforeseen. An unbiased pheno-
clustering strategy combining multichannel organ-specific reporters, functional
genomics, and automated image analysis may be feasible in the near future, and
this would offer significant advantages over current low-throughput toxicity stud-
ies in inbred rodent strains. The resultant prospect of systematic exploration of
gene–drug, drug–drug, and drug–environment interactions is highly attractive.
The ability to predict specific toxicities and to define the modifying effects of
genome, microbiome, epigenome, and environment is a major milestone in realiz-
ing the vision of predictive toxicology. As these goals are attained, the role of the
zebrafish as a tool for annotation of chemical libraries is likely to expand, moving
its use to earlier in the drug discovery pipeline. It is conceivable that with parallel
efforts in zebrafish disease modeling drug discovery and predictive toxicology may
eventually occur in parallel, thus enabling direct optimization of therapeutic effi-
cacy and toxicity for each disease context. A robust zebrafish screening platform
may be one of the few approaches able to deliver on these promises, but it will
require large investments in the coming years to fill the remaining gaps and
unravel the true predictive power of this small fish.
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12
Predictive Method Development: Challenges for
Cosmetics and Genotoxicity as a Case Study1)

Gladys Ouédraogo, Fabrice Nesslany, Sophie Simar, Smail Talahari, Doris Lagache,

Eric Vercauteren, Lauren Nakab, Astrid Mayoux, Brigitte Faquet, and Nicole Flamand

12.1
Introduction

This chapter addresses different research aspects of alternative/predictive meth-
ods in the context of the current legislative arena for cosmetics in Europe. It
does not address the regulatory acceptance or the use of these tools for safety
assessment. They are described elsewhere in the literature and in the monograph
“The SCCS’s Notes of Guidance for the Testing of Cosmetic Substances and
Their Safety Evaluation” [1] and in Ref. [2].
On July 11, 2013, the European Cosmetics regulation EU Regulation 1223/

2009 [3] replaced the Cosmetics directive of 1976 [4]. The ban on animal testing
as stated since 2003 remained unchanged in this new regulation. In brief, it stip-
ulates a marketing ban in Europe for cosmetics tested on animals:

� Since September 11, 2004, for finished products.� Since March 11, 2009, for ingredients tested on short-term toxicity end-
points such as skin irritation, eye irritation, genotoxicity, and acute toxicity.� Since March 11, 2013, for ingredients tested on long-term toxicity endpoints
such as skin sensitization, repeated-dose systemic toxicity, toxicokinetics,
and reproductive toxicity.

To address this regulatory context for cosmetics in the European Union (EU),
different research initiatives are being led by the European Personal Care
Association – Cosmetics Europe – for different endpoints such as skin irritation,
skin corrosion, skin sensitization, genotoxicity, and repeated-dose systemic
toxicity. For the latter, it is worthwhile highlighting the SEURAT-1 initiative
(2011–2015), which is being funded by both the European Commission and

1) The views presented here are those of the authors and do not necessarily reflect the opinion of the
company the author is working for.
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Cosmetics Europe and aims at seeking mode-of-action-based approaches to
address repeated-dose systemic toxicity. Cosmetics Europe has been committed
for over two decades to the development of alternative methods to animal test-
ing and to fostering their acceptance and use [5].
Also, several tools are being investigated by different stakeholders. The over-

view given here is far from being comprehensive and will address different types
of tools: in silico tools and in vitro tools (biochemical, 2D cellular assays, and
organotypic tools).
Replacing animal studies by alternative methods is a major challenge. It

requires great investment in terms of time, budget, and human resources. A
key point to consider upfront is problem formulation: Will the tools be used
for prioritization for further testing as stand-alone or in combination with
other information? Will they contribute to a weight-of-evidence (WoE) process
for decision making? Depending on the scope, the level of uncertainty accept-
able may vary.
Experience of several years has shown that a one-by-one replacement of

in vivo assays with alternative/predictive tools is not possible. Moreover, Adler
et al. concluded that a full replacement of the animal tests used for repeated-
dose/reproductive and developmental toxicity testing is not available and the
time frame for a full replacement cannot clearly be estimated [6]. The direction
is toward building integrated testing strategies (ITS) for different purposes. To
build confidence, the methods developed are based on mechanistic considera-
tions, rather than just being descriptive. This is of utmost importance as these
mechanistic features may help explain differences observed between in vivo and
in vitro situations and/or interspecies differences. These considerations are
in agreement with the recommendations given in the well-known document
“Toxicity Testing in the 21st Century” of the National Academy of Sciences
(NAS) [7], a vision and a strategy calling for a change of paradigm in toxicity
testing. According to this report, hazard and risk assessment can become time
and cost effective if we move from descriptive to predictive (mechanistically
based) toxicology.
Problem formulation is key when addressing the development of novel tools.

Several building blocks need to be considered when engaging in the develop-
ment of alternative methods:

1) Basic research on the biological models.
– Need for well-characterized, standardized, and biologically relevant

models.
– Need for a toolbox of models to choose from depending on endpoint/

mechanism and intended use.
– Need for affordable and readily accessible models.

2) A toolbox of methods.
– To address the physical–chemical diversity of substances.
– To cover a variety of mechanisms of action: molecular initiating events

(MIEs) and key events.
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3) Integrated strategies.
– For building approaches to prioritize chemicals for further testing.
– To support decision making.

Several research initiatives have addressed or still are addressing the develop-
ment of alternative/predictive methods for different purposes. A few examples of
such initiatives are SEURAT-1 [8], Carcinogenomics [9], Comics [10],
ToxCast [11], Tox21 [12], HESS [13], ChemScreen [14], and RISK21 [15].
This chapter will focus on the building blocks for developing predictive

approaches. A genotoxicity assay using an organotypic model will be used to
illustrate this type of method development.

12.2
The Toolbox of Predictive Methods

12.2.1

In Silico Tools

A wealth of data was generated by several companies and organizations world-
wide. Information systems have evolved and now are able to handle and process
billions of data at once. The next move (which has already started) would be to
share data in order to make the best use of what have been done in the past and
build the toxicology of the future. Data can be shared within consortia with a
confidential and a well-defined legal framework [16]. Building quantitative struc-
ture–activity relationships (QSARs) is a way to secure the knowledge generated
for decades with different in vivo and in vitro assays. These models are useful for
prioritizing chemicals for further testing. Also, they can guide the choice of the
follow-up assay. In addition to safeguarding knowledge and data gap filling,
in silico models are also hypothesis-generating tools [17,18].
The Organisation for Economic Co-operation and Development (OECD) has

provided guidelines for developing transparent and mechanistically based mod-
els. So, there is a consensus by all stakeholders (modelers, toxicologists, regula-
tors, and scientists in different fields) on the properties of such models. In
addition, the OECD has been working on a QSAR toolbox (the first version was
released in 2008 [19]) for Registration, Evaluation, Authorization, and Restric-
tion of Chemicals (REACH) [20]. This toolbox hosts not only (Q)SAR models
but also databases for forming categories and read-across.
More and more stakeholders are using or recommend the use of the in silico

tools, provided they comply with the recommendations given in the OECD guid-
ance document, namely,

1) a defined endpoint;
2) an unambiguous algorithm;
3) a defined domain of applicability;
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4) appropriate measures of goodness of fit, robustness, and predictivity;
5) a mechanistic interpretation, if possible.

Currently, the vast majority of in silico data cannot be used as stand-alone.
They are complemented by experimental data.
Typically, in silico data can support a weight-of-evidence approach and/or feed

into adverse outcome pathway (AOP) approaches. Some in silico models cover
MIEs or key events [21].
Several in silico models are currently available as either freely accessible or

commercial tools. They cover different endpoints such as genotoxicity, carcino-
genicity, skin sensitization, and phototoxicity. Others address physical–chemical
features such as solubility at a given pH, log P, log Kow, some ADME (absorp-
tion, distribution, metabolism, and excretion) properties such as skin/intestinal
permeability, plasma protein binding, and metabolism, or pharmacological tar-
gets (interactions with receptor) [22–24]. Careful consideration should be given
to their fitness for the purpose they are used for. Their use is restricted to sub-
stances with a defined structure.
In silico tools are also used in more complex systems such as physiologically

based pharmacokinetic models and virtual tissues to bridge in vitro results with
in vivo effects [25,26].

12.2.2

Biochemical (In Chemico) Assays

These assays are usually performed in order to get an insight into some molecu-
lar interactions of a test agent with a given (panel of) target(s): receptors or
enzymes. They can shed some light on MIEs. In chemico data are one piece of
information in a WoE approach [27,28].
There are different ways to approach biochemical assays:

� Several targets (receptors and/or enzymes) can be screened at once, when
there is nothing specific to focus on or when the objective is to explore
widely the ability of a compound to interact with the targets [29]. Usually,
this is performed at a given concentration. A follow-up dose–response study
is performed for those targets where enzyme activity is reduced by half or
where a binding affinity of at least 50% to receptors is achieved. Once the
results are generated, the profiles of the test agents can be compared with
those from existing substances. This is another way to group chemicals.� If a specific organ is targeted, the focus can be on a reduced set of targets
directly in dose response [30].

In addition, in chemico data cannot by themselves inform on a hazard poten-
tial of a chemical. Care should be taken to check features such as the bio-
availability of the test agent: penetration in the body (by dermal, oral, or
inhalation route) and ability to cross biological barriers (e.g., blood–brain barrier
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and intestinal permeability). Toxicokinetics can help derive relevant doses. The
level of details needed depends on the objective that is pursued.
When large data are generated, they can feed into in silico models [31].

12.2.3

In Vitro 2D Assays

Several 2D assays are currently available. They may be based on primary cells,
cell lines, or stem cells. Cell lines are usually easy to handle and readily accessi-
ble. Attention should be paid to the genotype of the cell line that can interfere
with the endpoint monitored. This is the case for genotoxicity. Primary cells can
be expensive and difficult to obtain. In addition, ethical considerations may pre-
vent the use of the latter. Stem cells hold the promise of offering a source of a
variety of cell types with diversified genotypes and at different life stages. While
this holds true for some cell types [32,33], a lot of effort is still ongoing to obtain
fully mature cells such as stem cell-derived hepatocytes. Several R&D initiatives
are ongoing in the stem cell area [34–36].
The cells can be engineered and sensors can be included in the tissue culture

environment [37]. Different culture conditions are also available: static,
dynamic, microfluidic devices, media with or without serum, specific gas sup-
ply, temperature, and humidity conditions. Depending on the purpose, it is
important to explore the strengths, limitations, and physiological relevance of
the cell/tissue type.
For in vitro testing, technologies such as omics (toxicogenomics, transcrip-

tomics, proteomics, and metabolomics), high-content screening (HCS), and
high-throughput screening (HTS) can help investigate the molecular mecha-
nisms leading to specific endpoints [38–44]. They provide an insight into cellular
pathways that are perturbed by the test agent. These pathways can be further
investigated by follow-up assays to better characterize qualitatively and quantita-
tively the nature of the changes.
Coculturing different cells can be an option to address issues where the func-

tion of one cell type depends on the presence of another one. This is the case
with keratinocyte–melanocyte cocultures [45].
Technologies such as toxicogenomics, HCS, and HTS can help investigate the

molecular mechanisms leading to specific effects. In the literature, several stud-
ies aiming at using toxicogenomics for predicting genotoxicity and carcinogenic-
ity can be found [46–49]. HCS-based in vitro micronucleus assays are available
using automated image analysis platforms [50,51]. Combining different in vitro
approaches such as toxicogenomics, HCS, HTS, and binding to nuclear recep-
tors holds great promise in terms of unraveling molecular events. This is one of
the goals of the US EPA ToxCast program [52]. However, analyzing the large
amount of data generated in this type of project is a real challenge and collabora-
tive effort is needed to do so.
There is a need for a toolbox of models/methods to choose from depending

on the endpoint/mechanism that is addressed. A variety of biological models are
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now available: primary cells, cell lines, and stem cells (embryonic and induced
pluripotent stem cells (IPSCs)).

12.2.4
Organotypic Models

They range from spheroids, reconstructed tissues, micropatterned cells, bio-
printed tissues to more sophisticated models such as microfluidic bioreactors. In
most cases, the culture conditions of organotypic models provide them with
additional features that are not present under two-dimensional conditions (long
shelf life and functionality of some enzymes). These models are used to perform
assays where a response closer to a physiological situation is needed. The
American Interagency Partnership on Tissue on a Chip (NCATS, DARPA, and
FDA) is an example of such an initiative that aims at eliminating toxic/ineffective
drugs early in the drug development process [53].
Building such complex models requires the multidisciplinary expertise of

bioengineers, biologists, and toxicologists [54]. Rather than collecting and
integrating pieces of information from different assays, the results from orga-
notypic models provide information taking into account the complexity of
the system. In some cases, they can bring added value in a weight-of-evi-
dence approach.
As these models can retain their phenotype and functionality over several

weeks, they can be used to perform repeated dosing studies in vitro. They are
useful for performing toxicity assays (related to cell viability or vital cellular
function [55–57]) or assays on ADME issues [58–60]. The ADME data can be
used to derive toxicokinetic information [61,62]. The latter is useful to extrapo-
late information from in vitro to in vivo [63–65]. At the moment, the vast major-
ity of these models are in a research and development stage.
Results obtained using these models can help bridge the gap between in vitro

and in vivo.

12.3
Genotoxicity as a Case Study

2)

Genotoxicity is usually addressed early in the safety assessment process of chem-
icals for regulatory purpose. Gene mutation and chromosomal damage are the
two endpoints that are usually investigated. Although several in vitro assays are
currently available, challenges still remain in using the results derived from these
assays to support risk assessment. The main reason for that is the low specificity
(many in vitro positives are irrelevant to human) of the in vitro genotoxicity
assays [66]. This issue has been discussed by several organizations (European
Centre for the Validation of Alternative Methods (ECVAM), European Centre

2) The experimental work presented here was performed at the Institut Pasteur de Lille (IPL).
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for Ecotoxicology and Toxicology of Chemicals (ECETOC), European Cosmetic
Trade Association – Cosmetics Europe, International Life Sciences Institute’s
Health and Environmental Sciences Institute (ILSI/HESI), International Work-
shops on Genotoxicity Testing (IWGT), and International Conference on Har-
monisation of Technical Requirements for Registration of Pharmaceuticals for
Human Use (ICH)) and different projects aimed at bringing solutions are
ongoing.
Recently, the Scientific Committee on Consumer Safety (SCCS) has issued an

amendment to the 8th revision of its note of guidance for the testing of cosmetic
substances and their safety evaluation. This document is focused on genotoxicity
and carcinogenicity. A two-test battery is recommended as a starting point for
testing: a bacterial reverse mutation test (OECD Guideline 471) as a test cover-
ing gene mutations and an in vitro micronucleus test (OECD Guideline 487) as a
test for both structural (clastogenicity) and numerical (aneugenicity) chromo-
somal aberrations. As follow-up assays for genotoxic substances, the comet and
the micronucleus assay on reconstructed tissues are seen as promising.
Different points that can potentially contribute to improving the performances

of in vitro genotoxicity assays have been or are being addressed: choice of cell
type [67,68], toxicity measurement [69], top concentration [70], and use of 3D
reconstructed tissues [71–75].
To address the need for predictive methods in the context of the European legis-

lation (7th amendment to the European Cosmetics directive, REACH), an in vitro
micronucleus/comet assay using a human reconstructed skin model and target
cells grown beneath the skin has been developed. This coculture system aims at
improving the relevance of exposure conditions in in vitro genotoxicity assays for
topically applied compounds. In this context, Episkin (SkinEthic SNC, Lyon,
France) is used as a metabolically active tissue and a physiologic barrier. Indeed,
Episkin is an in vitro reconstructed human epidermis from normal adult human
keratinocytes cultured on a composite collagen matrix at the air–liquid interface.
This biological model is histologically similar to the in vivo human epidermis and
is already used in safety assays (skin corrosion testing, skin irritation assay, and
acute and chronic skin irritation for topical formulations) and in efficacy assays
(skin permeability and metabolism, effects of UVA and UVB irradiation/UVB pro-
tection, bacterial adhesion for screening antibiotics, and genomic and transcrip-
tomic signatures). Episkin was exposed to test items topically applied. At the
harvest time, keratinocytes were mechanically and enzymatically isolated for the
comet assay. The comet assay performed at pH �13 allows the detection of alkali-
labile sites that can be converted to single-strand breaks (SSBs), incomplete base-
excision repair sites, DNA–protein (interstrand) and DNA–DNA (intrastrand)
cross-links, and apoptotic cells. Concurrently to the exposure to different concen-
trations of the different substances, TK6 cell cultures were cocultured for a period
sufficient to undergo at least one mitosis for the micronucleus test.
The in vitro micronucleus assay is a genotoxicity test system for the detection

of chemicals or physical mutagens that induce the formation of small mem-
brane-bound DNA fragments, that is, micronuclei in the cytoplasm of interphase
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cells. These micronuclei may originate from acentric fragments (chromosome
fragments lacking a centromere) or whole chromosomes, which are unable to
migrate with the rest of the chromosomes during the anaphase of cell divi-
sion [76]. The purpose of the in vitro comet assay following the alkaline version
(pH >13) developed by Singh et al. [77] is to identify agents that induce DNA
damage such as SSBs or double-strand breaks (DSBs), alkali-labile sites, DNA–
DNA/DNA–protein cross-linking, and SSBs associated with incomplete excision
repair sites, in one or several target organs under these experimental conditions.
The single-cell gel electrophoresis (SCGE) assay, also known as the “comet
assay,” is a rapid, simple, visual, and sensitive technique for measuring and ana-
lyzing DNA breakage in mammalian cells [77–79], even at low levels.
Concurrently to the comet assay, the nondenaturating fast halo assay (FHA)

was performed; this assay allows discriminating apoptotic from nonapoptotic
cells bearing DNA single strand breaks [80]. The reconstructed human skin
model presents advantages for human risk assessment of a test item applied on
the skin. Indeed, Episkin reconstitutes a model that is very close to human skin
(histological structure and metabolic activity) and cells are more easily isolated
from Episkin than from human skin. Otherwise, the production of Episkin is
standardized and is more reproducible than human skin. Furthermore, test
results on human model are more pertinent in the assessment of possible human
hazard. Several papers were published on this model as a model for genotoxicity
testing [71,72,81]. Regarding TK6 cell line, it is a continuous human lymphoblas-
toid cell line with a normal and stable p53 status (p53+/+). This cell line is rec-
ommended in the OECD Guideline 487 for the in vitro micronucleus test [82].
In order to assess and validate the coculture model Episkin/TK6, 13 reference

compounds were tested in both assays. These substances were chosen in accord-
ance with the list published by Kirkland et al. [83]. Among these molecules, (1)
in vitro and in vivo genotoxins were chosen: 7,12-dimethylbenzanthracene
(DMBA), ethylnitrosourea (ENU), dimethylnitrosamine (DMN), and hydro-
quinone; (2) non-DNA-reactive chemicals (including nongenotoxic carcinogens)
that have been reported to induce positive results in vitro (CA, MLA/TK), often
at high concentrations or at high levels of cytotoxicity: curcumin, o-anthranilic
acid, D,L-menthol, sulfisoxazole, benzyl alcohol, and ethionamide; and (3) non-
DNA-reactive chemicals (including nongenotoxic carcinogens) that give negative
results in in vitro mammalian cell genotoxicity tests: ampicillin trihydrate,
D-mannitol, and phenanthrene.
Furthermore, the micronucleus assay was also performed on reconstructed

human epidermises (RHE; SkinEthic SNC, Lyon, France) on D,L-menthol.

12.3.1

Materials and Methods

12.3.1.1 Episkin
Episkin is a human epidermis reconstructed in vitro from normal adult human
keratinocytes, cultured on a collagen matrix composite at the air–liquid interface
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(Figure 12.1). The biological model is histologically similar to human skin in vivo
and was already used in safety testing and efficacy.
Episkin 1.2 cm2 skin equivalents were purchased from SkinEthic SNC (Lyon,

France). Upon receipt, the reconstructed skin inserts were transferred into 12-
well plates containing 2ml of Episkin “maintenance” medium and kept in an
incubator at 37 °C under 5% CO2 and 95% humidity. The following day, the
medium was replaced by 2ml of Episkin “treatment” medium according to
manufacturer’s instructions.

12.3.1.2 RHE
RHE 0.5 cm2 skin equivalents were purchased from SkinEthic SNC (Lyon,
France). Upon receipt, the reconstructed skin inserts were transferred into
24-well plates containing 1ml of Skinethic “maintenance” medium and kept in
an incubator at 37 °C under 5% CO2 and 95% humidity. One hour later, the
medium was replaced by 1ml of Skinethic “treatment” medium containing cyto-
chalasin B (3 μg/ml) according to manufacturer’s instructions.

12.3.1.3 TK6 Cells
The TK6 human B-lymphoblastoid cell line was obtained from the American
Type Culture Collection (Rockville, MD). TK6 cells were isolated from a culture
of the spontaneously immortalized splenic lymphoblasts WIL2 that possess a
stable genome, with a normal and stable p53 status (p53+/+).
A stock was cryopreserved in liquid nitrogen at the laboratory. Each new batch

of cells was tested to confirm the absence of mycoplasma contamination.
The cells were maintained in suspension at 37 °C in a humidified 5% CO2

atmosphere in RPMI 10 medium (RPMI 1640 growth medium (RPMI 0 medium)
supplemented with 10% (v/v) heat-inactivated horse serum, 200U/ml penicillin,
50 μg/ml streptomycin, 2.5μg/ml amphotericin B, 200μg/ml L-glutamine, 200μg/
ml sodium pyruvate, and 500 μg/ml pluronic acid). During the period of cell
expansion, cells were maintained at an average density of 3× 105 to 7× 105 cells/
ml by counting and diluting cells every 2–3 days. Cell culture was never left
unattended for longer than 3 h and never used at a density of more than 9× 105

cells/ml. The doubling time of TK6 cells was 16–18h.

Figure 12.1 An engineered epidermis made of human keratinocytes. (Courtesy of SkinEthic
Laboratories.)
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12.3.1.4 Episkin + TK6 Cells Coculture
After an overnight period in maintenance medium, the Episkin inserts were
placed in 12-well plates containing a fresh suspension of TK6 cells
(150 000 cells/ml) in Episkin “treatment” medium (Figure 12.2).

12.3.2
Chemicals

The test chemicals are listed in Table 12.1 with the corresponding abbreviations,
CAS registry numbers, sources, purities, their known genotoxic status, and IARC
classification. All chemicals were dissolved in dimethyl sulfoxide (DMSO).

12.3.3

Treatment Schedules

12.3.3.1 Episkin + TK6 Cells Coculture
Two assays were implemented: in the first assay, the epidermises and the TK6
cells were harvested 4 and 54 h after the application of the test item, respectively,
given that a recovery period of 27 h was observed before harvesting TK6 cells. In
the second assay, the epidermises and TK6 cells were both harvested 27 h after
the topical exposure. In each assay, the test item was applied at different doses
with 50 μl/well on the upper side of the wells using a mesh to allow a better
diffusion of the test item to the whole surface of the epidermises. After the 27 h
treatment period, the TK6 cells were transferred into 15ml tubes, centrifuged
for 6min at 1000 rpm, and poured off to discard the supernatant. The cells were
washed twice with PBS. After the washing, cells were resuspended in 2ml of
RPMI 10, transferred into 12-well plates, and then incubated for 27 h (first assay
S9 – 27 h/+27 h) or were harvested (second assay S9 – 27 h/+0 h).
Concurrently, wells were treated under the same conditions with the solvent

only (untreated controls). Mitomycin C at a concentration of 7 μg was used as a
positive control for the micronucleus assays on TK6 cells and methyl methane-
sulfonate (MMS) 200 and 20 μg final doses were used as positive controls for the

Figure 12.2 The Episkin/TK6 coculture. (Courtesy of SkinEthic Laboratories.)
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comet assay on keratinocytes for both the short and the continuous expression
time, respectively.

12.3.3.2 RHE
The treatment schedules are those described by Curren et al. [71].
The test item was topically applied three times at 24 h interval at different

doses. Fifty microliters per well were deposited using a mesh to allow a better
diffusion of the test item to the whole surface of the epidermises. The medium
was replaced every day by fresh medium containing cytochalasin B.
At the harvesting time (24 h after the third treatment), cells from the basal

layer and stratum spinosum of the models were harvested and prepared for slide
analysis as described by Curren et al. [71].
For tissues, cytotoxicity was assessed by both the MTT assay and the

FHA [117,118]. For the MTT technique, the inserts were transferred into 12-
well plates containing 2ml of MTT (0.5mg/ml in medium without phenol red).
The plates were then incubated for at least 90min in a CO2 incubator at 37 °C.
After this contact time, the epidermises were punched and placed in Eppendorf
tubes containing 1ml of a mixture of isopropanol/HCl (1/23, v/v). The Eppen-
dorf tubes were then placed at room temperature, protected from light, for one
night. At the end of this period, the tubes were agitated and 2× 0.1ml per well
were transferred into a flat-bottom plate. Absorbances were determined using
Diagnostic Pasteur LP400 equipment at 550 nm with a reference wavelength of
620 nm. The relative toxicity was calculated for each concentration using the
ratio: [(mean absorbance at the tested concentration)/(mean absorbance of the
negative control)]× 100. A test item was considered cytotoxic below 50% of rela-
tive survival rate. FHA is a sensitive and reliable method to detect DNA strand
breakage induced either by various genotoxic agents or secondary to apoptotic
DNA cleavage [119]. In this procedure, the electrophoresis step was omitted
from the comet assay procedure. After incubation in fresh electrophoresis buffer
for 20min at room temperature, the slides were directly washed in neutralization
buffer without electrophoresis. This method avoids excessive migration of highly
unwound DNA. DNA from cells having heavily damaged DNA appears as a
“halo” and the distinction between normal, necrotic, and apoptotic cells was pos-
sible. One hundred randomly selected individual cells were analyzed on two
slides per concentration (200 cells per concentration).
Cytotoxicity on TK6 cells was assessed through the determination of the rela-

tive population doubling (RPD), calculated as described in the OECD Guideline
487: [(number of population doublings (PD) in treated cultures)/(number of PD
in control cultures)]× 100, with PD= [log(concentration of harvested cells/
concentration of treated cells)]/log 2. The maximum concentration generally
produces a RPD �50 ± 5%. In RHE cells, the percentage of binucleated cells
(OECD Guideline 487) at each dose of test chemical is compared with the
solvent or untreated control. The highest concentration to be analyzed should
not produce no more than a 70% decrease in binucleated cells compared with
the control.
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12.3.3.3 Micronucleus Assay

In Vitro Micronucleus Assay on TK6 Cells
At the end of the treatment period, the cells were transferred into 15ml tubes
and were centrifuged for 6min at 1000 rpm. The supernatants were hence
removed, the cell pellets loosened with agitation, and 2ml of a mixture of RPMI
0/distilled water (1/1, v/v) was slowly added. After 4min at ambient tempera-
ture, 0.5ml of cold ethanol/acetic acid mixture (3/1, v/v) was slowly added to
pre-fix the cells. The cell suspensions were centrifuged at 1000 rpm for 6min,
the supernatants were removed, and 2ml of cold ethanol/acetic acid mixture
was added under agitation. The cell suspensions were stored at 2–8 °C for
one night and then centrifuged at 1000 rpm for 6min. Each supernatant was
removed, the cell pellets loosened, and a sufficient volume of cold ethanol/
acetic acid mixture was added. To end, cell suspension was dropped onto a
clean, dry microscope slide. Two slides were prepared from each culture.
Once completely dried, slides were stained with Giemsa (4% in mineralized
water) for 10min. After coding slides, the cells were examined under the
microscope and screened for micronuclei in mononucleated cells (MNCs).
The micronuclei of at least 1000 mononucleated cells per slide were counted
(2000 mononucleated cells/culture).

In Vitro Micronucleus Assay on RHE
Tissue-containing inserts were removed from the treatment plates, their bottoms
blotted to remove excess medium, and placed into individual wells (each con-
taining 5ml PBS) of a 12-well plate for 5–15min at room temperature.
The inserts were then transferred (after blotting) to another well (containing

5ml EDTA 0.1%, at room temperature) in a 12-well plate and allowed to sit for
15min.
The inserts were once more blotted and transferred to another well of six-well

plates, which contain 1ml warm (37 °C) trypsin–EDTA solution. An additional
0.5ml of the same solution was added to the top surface, and the tissues were
allowed to sit for 15min at room temperature.
Each tissue was carefully separated from the supporting membrane by lifting

the edge of the tissue with fine forceps, transferred to a new well in six-well
plates, and exposed to 1ml of fresh trypsin–EDTA for 5min. To capture cells
still adherent to the membrane of the insert, the insert (containing any remain-
ing trypsin–EDTA) was placed in the same well as its matching tissue.
After 5min, the insert was thoroughly rinsed (four to six times) to collect the

trypsinized cells. The tissue was then agitated to release any remaining attached
cells, and the resulting cell clumps and tissue additionally disrupted by repeat-
edly drawing into a pipette and expelling the solution. The single-cell suspension
(1.5ml) was transferred into a 15ml conical tube containing 8.5ml of warm
MEM with 10% FBS to neutralize the trypsin.
A 1ml sample of cells was diluted with 1ml trypan blue solution (or less,

depending on sample volume) and counted using a hemocytometer. The
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remaining cell suspension was centrifuged at 100× g for 5min. After the centrif-
ugation, the supernatant was carefully removed, the cell pellet loosened with agi-
tation, and 1ml of warm (37 °C) KCl (0.075M) solution was slowly added. 0.5ml
of cold methanol/acetic acid (3 : 1) was added immediately. After 1min, 3ml of
cold methanol/acetic acid (3 : 1) was added to fix the cells, and the solution
mixed. The cell suspension was centrifuged at 100× g for 5min. The supernatant
was removed, the pellet loosened, and 3ml of cold methanol/acetic acid (3 : 1)
was added. All but a small portion of the supernatant was then removed, the cell
pellet loosened, and a drop of the cell suspension was pipetted onto a clean, dry
microscope slide. One slide was prepared from each tissue. Once completely dry,
slides were immersed in AO solution (100 μg/ml) for 10min. Slides were then
scored using a fluorescence microscope. The micronuclei of at least 500
binucleated cells per culture were counted (1000 binucleated cells/dose). Micro-
nuclei were identified according to the criteria of Fenech [119,120].
Statistical analysis of the results obtained in the cells treated at each dose level

was performed using the χ2-test in comparison with those in control groups.

12.3.3.4 In Vitro Comet Assay Protocol
At the end of the treatment, transwells were removed and the epidermises were
punched. The epidermis was then mechanically detached from the collagen sup-
port and placed in a new 12-well plate. The epidermises were thoroughly
scraped in 1ml of trypsin/EDTA 0.125% (previously heated at 37 °C) and placed
in a cell incubator for 20min at 37 °C under 5% CO2 with 95% humidity. Agita-
tion was regularly done. At the end of this period, 0.5ml of trypsin/EDTA
0.125% was added, and the plates were placed in a cell incubator for 10min at
37 °C. The enzymatic digestion was stopped by adding 300 μl of fetal calf serum
(Sigma). The resulting cell suspension was transferred into a 15ml tube and cen-
trifuged for 6min at 1000 rpm. The cell pellet was then ready for the cytotoxicity
assay and/or for the comet assay procedure.
The comet assay was performed as previously described by Singh et al. [77]

with slight modifications. Briefly, in a light-free room, 5× 104 cells were sus-
pended in 150 μl of molten 0.5% low melting point agarose (LMPA; Bio-Rad,
France) in PBS without calcium or magnesium. Seventy-five microliter aliquots
of the cell suspension were rapidly spread on each of the two slides (Touzard et
Matignon, Courtaboeuf, France) precoated with 85 μl normal agarose (0.8% in
Ca2+/Mg2+-free PBS) and then covered with coverslips (24mm× 32mm). After
the agarose was allowed to solidify for 10min at 0 °C, the coverslips were
removed. The slides were then placed in a tank filled with lysis solution (2.5M
NaCl, 0.1M EDTA, pH 10, 10% DMSO, and 1% Triton X-100 both freshly
added) at +4 °C. After 1 h, the slides were removed from the lysis solution and
incubated in fresh electrophoresis buffer (0.3M NaOH and 1M EDTA, pH >13)
for 20min at room temperature for unwinding of DNA. Electrophoresis was
then carried out at room temperature in the same electrophoresis buffer for
20min at 0.7 V/cm and 300mA. After electrophoresis, the slides were washed
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twice for 10min in fresh neutralization buffer (0.4M Tris–HCl, pH 7.5), fol-
lowed by dehydration in absolute ethanol.
The slides were next stained with 20 μl of propidium iodide (20 μg/ml) and

covered with a coverslip. For each treatment concentration, 50 randomly chosen
cells from each of two slides (100 cells per culture, 200 cells per dose) were ana-
lyzed. Slides were examined with a 200× magnification, using a fluorescent
microscope (Leica Microsystems SAS – DM 2000, Heerbrugg, Switzerland),
equipped with an excitation filter of 515–560 nm and a barrier filter of 590 nm,
connected through a gated monochrome CCD IEEE1394 FireWire video camera
(Allied Vision Technologies) to the Comet Assay IV Image Analysis System,
version 4.11, with Windows XP Pro Software (Perceptive Instruments Ltd,
Suffolk, UK).
Ghost cells morphology was indicative of highly damaged cells often associ-

ated with severe genotoxicity, necrosis, and apoptosis. They were identified visu-
ally, as nuclei with small heads and large tails located at a distance from the
head, as described by Fairbairn et al. [121], Kizilian et al. [122], and Olive
et al. [78], and were enumerated independently.

12.3.3.5 Statistical Analysis
Before analyzing the median of the Olive tail moment (OTM) of the treated
and control groups, the absence of statistically significant differences between
group variances was verified. The group variances were compared using the F
of Snedecor at the 0.05 significance level. When differences between group
variances were not found to be significant, the parametric, one-way ANOVA
test was performed on the median of OTM. The parametric t-test was then
applied to compare each of the doses tested with the vehicle control in order
to determine statistical significance of differences in group median values
between each group and the solvent control. When differences between group
variances were found to be significant, the one-way Kruskal–Wallis non-
parametric test was performed on the median of OTM. The nonparametric
Mann–Whitney U-test was then applied to compare each of the doses tested
with the solvent control.
Statistical analysis of the results obtained for the number of ghost cells was

performed using the χ2-test in comparison with the control group.

12.3.4
Results

12.3.4.1 In Vitro and In Vivo Genotoxins
Table 12.2 summarizes the results obtained in the Episkin/TK6 coculture system
by performing the micronucleus test on TK6 cells and the comet assay in kerati-
nocytes isolated from the tissues.
ENU or DMBA induced statistically significant levels of DNA primary

damage in keratinocytes harvested 4 or 27 h after their application, as
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revealed by the alkaline comet assay, with values for the medians of OTM
reaching 25.2 with 250 μg of ENU/epidermis in the 4 h expression time ver-
sus 2 in the control and 13.2 at the dose of 50 μg of ENU/epidermis in the
long expression time versus 0.44 in the control. The application of DMBA
gave values for the medians of OTM of 2.8 and 11.2 versus 0.67 and 0.44,
respectively, in the short and long expression times at 2500 and 1250 μg of
DMBA/epidermis, respectively.
Furthermore, statistically significant increases in the number of micromono-

nucleated cells (MMNCs)/1000 MNCs were also observed: 16 and 17 MMNCs/
2000 MNCs were observed in TK6 cells 27 h after the application of either 12.5
or 50 μg of ENU/epidermis, respectively, in the first and the second assay. The
dose of 625 μg of DMBA/epidermis induced the appearance of 16 and 17
MMNCs/2000 MNCs in TK6 cells 27 h after the application followed or not by
a recovery period, respectively, versus 6 in the respective controls.
DMN assessed in the comet assay induced a slight increase in the median of

OTM after a long expression time, only at the lowest dose assessed of 1250 μg/
epidermis with a value for the median of OTM of 0.33 versus 0.01 in the relative
control. This effect was considered as equivocal and should be confirmed at
lower doses. DMN also induced a statistically significant increase in the number
of micronucleated TK6 cells when using a long-term exposure, without recovery
period with 18 MMNCs/2000 MNCs at 1250 μg/epidermis versus 8 in the
respective control.
The comet assay performed 4 h after exposure to hydroquinone appeared to

be more efficient in the in vitro genotoxic assay with a maximum value for the
median OTM of 20.2 at 160 μg/epidermis versus 2.8 in the untreated control.
When considering the results of the micronucleus test on TK6 cells, 27 h after
topical application of hydroquinone followed by a 27 h recovery period, the
genotoxic potential of the this substance was highlighted with a maximal value
of 21 MMNCs/1000 MNCs at 20 μg/epidermis. In contrast, when the micro-
nucleus assay was performed 27 h after application without recovery period, no
significant effect was seen.

12.3.4.2 Non-DNA-Reactive Chemicals (Including Nongenotoxic Carcinogens)
That Give Negative Results in the In Vitro Mammalian Cell Genotoxicity Tests
As expected, with ampicillin and phenanthrene, in the alkaline comet assay, no
primary DNA damage was observed 4 or 27 h after their application. Moreover,
no statistically significant increase in the frequency of micronucleated TK6 cells
was seen in any of the assays. A statistically significant decrease, with no mean-
ing in terms of genotoxicity, was noted 27 h after the application of ampicillin
(2500 μg/epidermis).
In the comet assay performed with D-mannitol, a slight but statistically signifi-

cant increase in the DNA fragmentation was noted 4 h after the topical applica-
tion. However, when increasing the time of expression, no DNA damage was
observable. Therefore, D-mannitol was considered nongenotoxic. In the in vitro
micronucleus test, D-mannitol was not genotoxic either.
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12.3.4.3 Non-DNA-Reactive Chemicals (Including Nongenotoxic Carcinogens)
That Have Been Reported to Induce Positive Results In Vitro (CA, MLA/TK),
Often at High Concentrations or at High Levels of Cytotoxicity
o-Anthranilic acid demonstrated genotoxicity in the in vitro comet assay on ker-
atinocytes, either 4 or 27 h after application at the doses analyzed from 1000 to
2500 μg/epidermis. However, the biological relevance of the results remains to be
demonstrated, as it is noteworthy that the doses retained for comet analyses
were found to be toxic for the TK6 cells. Furthermore, when increasing the
duration of expression in the comet assay up to 27 h, the intensity of genotoxic
activity decreased. In particular, at the highest dose assessed (2500 μg/epider-
mis), the values of the medians of OTM decreased from 39.6 to 3.9 in the 4 and
27 h expression times, respectively.
In the in vitro micronucleus test on TK6 cells, no clear positive results with o-

anthranilic acid were seen either with or without recovery period at doses rang-
ing from 312.5 to 1000 μg/epidermis.
Curcumin was considered as genotoxic in the in vitro comet assay on epider-

mises, exclusively following a short expression time. When increasing the dura-
tion of expression, no DNA damage was observed anymore. Indeed, whereas the
value for the median at the dose of 156.25 μg/epidermis of OTM reached a max-
imal value of 8.1 in the short expression time, it decreased to 2.1 in the long
expression time, versus 0.9 and 1.4 in the corresponding untreated controls.
Furthermore, an equivocal to slight genotoxic activity was noted in the in vitro
micronucleus test on TK6 cells, only when applying a recovery period; a maxi-
mum of 14 MMNCs/2000 MNCs were observed versus 6 in the corresponding
solvent control.
Sulfisoxazole, ethionamide, and benzyl alcohol were investigated in the second

step using the most relevant schedule, that is, harvesting the cells 27 h after topi-
cal exposure for both the micronucleus test and the comet assay. The three sub-
stances were genotoxic in the comet assay with values for the medians of OTM
reaching top values of 2.1, 2.9, and 13.9, respectively, versus 0.7 in the negative
control. In contrast, in the micronucleus test on TK6 cells, no genotoxic activity
was noted in presence of sulfisoxazole or ethionamide (maximum of 18 and
17 MMNCs/2000 MNCs versus 10 MMNCs/2000 MNCs in the negative con-
trol). Benzyl alcohol was considered as genotoxic in the micronucleus assay,
with 20–25 MMNCs/2000 MNCs.

D,L-Menthol induced a statistically significant increase in the number of
MMNCs with a total of 17 MMNCs, only at the intermediary dose assessed of
195.3 μg/epidermis, versus 6 in the respective solvent control in the in vitro
micronucleus test following a 27 h treatment without recovery period. This effect
was not observed in the second assay, without recovery period. No genotoxic
activity was demonstrated in the comet assay on keratinocytes whatever
the expression time [93]. As no increase in the DNA damage was observed with
D,L-menthol while the micronucleus assay on TK6 cells was equivocal, the
micronucleus assay was implemented on epidermal cells isolated from the tis-
sues. In this assay, three applications at 24 h intervals were done, following the
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protocol by Curren et al. [71]. The results are presented in Figure 12.3. No statis-
tically significant increase in the number of micronucleated keratinocytes among
binucleated cells was noted at the doses assessed from 3.125 to 25μg/tissue.

12.3.4.4 Discussion
The current validation study was performed with the use of two complementary
endpoints, that is, the chromosomal aberrations by the means of the micro-
nucleus test in human TK6 cell line and primary DNA damage with the imple-
mentation of the alkaline comet assay in isolated keratinocytes using a coculture
system. The first step was carried out on 10 compounds with different classes of
genotoxicity: (1) in vitro and in vivo genotoxins, (2) non-DNA-reactive chemicals
(including nongenotoxic carcinogens) that give negative results in in vitro
mammalian cell genotoxicity tests, or (3) non-DNA-reactive chemicals (includ-
ing nongenotoxic carcinogens) that have been reported to induce positive results
in vitro (CA, MLA/TK), often at high concentrations or at high levels of
cytotoxicity.
Regarding the first class of compounds, ENU, DMBA, DMN, and hydro-

quinone, the Episkin/TK6 coculture system was able to reveal the genotoxic
activity of all these well-known in vitro and in vivo genotoxic substances.
Globally, the sensitivity of the current model was better evidenced when using a
long-term expression time without recovery period, as particularly demonstrated
by the results obtained with DMN. In return, the micronucleus test revealed the
genotoxic activity of hydroquinone when applying a longer recovery period.
Specificity was also demonstrated toward nonreactive DNA compounds ampicil-
lin, phenanthrene, and D-mannitol. As expected, no positive results were
obtained, except for mannitol that induced a slight increase in DNA fragmenta-
tion after the 4 h expression time. However, this effect was not considered as
relevant as it was not reproduced after the 27 h recovery period. An increased
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Figure 12.3 D,L-Menthol: micronucleus assay on epidermal cells isolated from the tissues.
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expression time in the comet assay on keratinocytes gives more reliable results
as noted with D-mannitol.
When analyzing the data gathered with D,L-menthol, o-anthranilic acid, or

curcumin, the specificity of the coculture system was also evidenced when
using a 27 h expression time, for both endpoints. When focusing on each
experimental condition, it is noteworthy that o-anthranilic acid turned out to
be genotoxic in the in vitro comet assay on keratinocytes, following either a 4
or a 27 h expression period. As for curcumin, it was considered as genotoxic in
the in vitro comet assay on epidermises, exclusively following a short-term
expression period. However, it is well accepted that o-anthranilic acid is not
carcinogen in vivo [100], and it was previously demonstrated that the in vitro
genotoxic activity of o-anthranilic acid is rather attributed to its toxicity than
to an intrinsic genotoxic potential. Indeed, only high concentrations and/or
toxic concentrations induce positive response in regulatory assays (i.e., in vitro
micronucleus test, MLA/TK, or chromosomal aberrations) [93,109,110]. On
the other hand, it is well known that curcumin induces positive response
through apoptosis [115]: this effect is considered as an irrelevant positive event
in genotoxicity tests. Therefore, when studying a 27 h expression time in both
the in vitro comet and micronucleus assays, the Episkin/TK6 coculture system
provides reliable outcomes about the genotoxic potential of curcumin and
o-anthranilic acid.
The study using the micronucleus test on TK6 cells performed 27 h after

application of D,L-menthol revealed a weak genotoxic activity. However, D,L-men-
thol is not carcinogenic in vivo [100], and several papers demonstrated that the
in vitro genotoxicity observed in the presence of D,L-menthol is rather attributed
to its toxicity than to an intrinsic genotoxic potential [106]. Indeed, only high
concentrations and/or toxic concentrations induced positive or inconclusive
responses in regulatory assays (i.e., MLA/TK [93] or in the chromosomal aberra-
tion assay [106]). Therefore, it seems that the comet assay on keratinocytes fol-
lowing a 27 h expression time demonstrated a better specificity toward this
compound, rather than the micronucleus test. Under these conditions, and
always in the perspective of developing alternative models for cosmetic purposes,
D,L-menthol gave unexpectedly positive results in the micronucleus test on TK6
cells after a 27 h treatment. It was assessed for its genotoxic potential in another
skin model, that is, RHE. This model presents the advantage of having dividing
cells allowing the implementation of the micronucleus test on keratinocytes iso-
lated from the tissues. The assessment of the genotoxic potential of D,L-menthol
by the micronucleus test in this model yielded clear negative data. This promis-
ing result warrants further investigation.
When considering the overall results, one out of the four in vivo genotoxins

(i.e., DMN) that should be detected as positive in the in vitro mammalian cell
genotoxicity tests and one out of the three non-DNA-reactive chemicals (i.e.,
D-mannitol) that should give negative results in the in vitro mammalian cell gen-
otoxicity tests need a long-term expression time to be evidenced. The 27 h
expression time demonstrated a better specificity with regard to all the three
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non-DNA-reactive chemicals (i.e., D,L-menthol, o-anthranilic acid, and curcu-
min). In the second step of the current validation study, the 27 h expression
time, which seems to be the most promising and specific schedule of treatment,
was used to assess the genotoxic potential of sulfisoxazole, ethionamide, and
benzyl alcohol. These three compounds that are non-DNA-reactive chemicals
should give negative results in vitro [100]. The complementary data in the
micronucleus test on TK6 cells following a 27 h treatment demonstrated once
again the relevance of the coculture system Episkin/TK6 under these experimen-
tal conditions. Otherwise, the results on sulfisoxazole and ethionamide met the
previous data that demonstrated only weakly positive or inconclusive response in
the MLA/TK assay and negative response in the chromosomal aberration test
(sulfisoxazole), or positive response in the chromosomal aberration test, but at
concentrations that induced toxicity or precipitation (ethionamide). In contrast,
benzyl alcohol remained clearly genotoxic in both endpoints, whereas in further
studies [84] authors concluded it as an irrelevant positive compound with a weak
mutagenic activity in MLA/TK and chromosomal aberration tests, only at high
concentrations. However, when tested on another target organ using the cocul-
ture model, both a local (on epidermises) and a systemic (on TK6 cells) geno-
toxic effect were found. Further studies should be implemented to ensure that
benzyl alcohol displayed no genotoxic hazard in vivo when exposed via the skin.
(This is clearly not an option for the cosmetic industry).

12.3.4.5 Conclusions
In order to improve the relevance of the in vitro genotoxicity assays, the use of
three-dimensional reconstructed skin models appeared as a good complement. It
may be considered as a follow-up to the current existing models for in vitro gen-
otoxicity assays that present gaps regarding the relevance to human extrapola-
tion, with numerous irrelevant positive results, whereas in vivo genotoxicity
assays do not demonstrate any alert. Indeed, reconstructed tissues are physiolog-
ically and structurally similar to human skin and metabolically active. Otherwise,
they are already successfully used in models for skin corrosivity and skin irrita-
tion, and ought to be used for genotoxicity testing as relevant results were noted
in the current validation study. Therefore, the assessment of the genotoxic
potential of a product could be done through the comet assay on Episkin and
the micronucleus test on TK6 cells in the coculture system upon the optimal
treatment schedule (i.e., 27 h treatment for both endpoints), and if necessary
(e.g., positive results in only one out of the two endpoints), in a second intent,
the implementation of the micronucleus test on RHE. However, data on the con-
centrations of tested products in culture medium, that is, in contact with TK6
cells, should be determined to know the actual level of test item and to evaluate
the barrier capacity of the epidermises and its metabolic capacity. Furthermore,
one should pay attention to the relevance of the results at toxic doses. In partic-
ular, data from the comet assay should be carefully analyzed especially when
toxicity is demonstrated on TK6 cells at the same dose levels or if clear cyto-
toxicity occurs at expression time.
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12.3.4.6 Related Initiatives
At Cosmetics Europe, different research projects covering the genotoxic end-
points are being performed since 2007. One of them addressed the improvement
of the existing assay by investigating the cell type, the cytotoxicity assays, and
human relevance of cell type [67–69]. Another one is based on the use on 3D
skin models to perform the comet assay and the micronucleus assay [75,123]. As
metabolism can play an important role in genotoxicity, the metabolic capabilities
of the tissues were also investigated [124,125]. As stated previously, Cosmetics
Europe is committed not only to developing predictive methods, but also to fos-
tering their acceptance and use [126].

12.4
The Way Forward: Combining In Silico and In Vitro Tools

Another way to tackle this issue would be to combine in silico and in vitro tools.
It is worthwhile pointing to the fact that while performances of in vitro assays
are usually checked, those of in vivo ones are not readily available. Similarly to
in vitro assays, the bioassays are providing information on hazard and not risk.
So, why are in vitro results not used for risk assessment? Exposure data, toxico-
kinetics, and proper metabolic capability are lacking in simple cell systems.
These are some of the types of information needed in addition to in vitro geno-
toxicity assays in order to perform risk assessment. The ILSI’s Genetic Toxicity
Technical Committee (GTTC) is currently investigating ways to obtain quantita-
tive information for genotoxicity [127].
Most of the models (including the in vivo ones) do not provide information

about the sequence of events leading to the observed endpoints: they are descrip-
tive. What has been identified as key to using alternative methods is getting insight
into mechanisms [128]. According to this report, risk assessment can become time
and cost effective, if we move from descriptive to predictive (mechanistically
based) toxicology. One such application has been recently described by Adeleye
et al. [129]. The approach is AOP based and exemplified with two case studies.
Huge amounts of data have been generated by several companies and agencies

worldwide. Information systems have evolved and now are able to handle and
process billions of data at once. The next move (which has already started)
would be to share data in order to make the best use of what have been done in
past and build the toxicology of the future. Data can be shared within consortia
with a well-defined legal framework. Building (Q)SARs is a way to secure the
knowledge generated for decades with different in vivo and in vitro assays. These
models are useful for prioritizing chemicals for further testing. Also, they can
guide the choice of the follow-up assay: a chemical triggering an alert in muta-
genesis and not in chromosomal damage will be tested, for example, in the Ames
test rather than both Ames test and the micronucleus assay.
An example of the so-called integrated testing strategy combining in silico and

in vitro approaches is illustrated by the work of Gubbels-van Hal et al. [130].
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Combining in silico with in vitro data may be a way to move toward animal-
free genotoxicity and carcinogenicity testing. Effort is ongoing in the in silico as
well as the in vitro areas. Initiatives such as REACH and 7th amendment of the
Cosmetics regulation in EU, HPV (High Production Volume) program in the
United States, and the DSL (Domestic Substances List) in Canada are incentives
for seeking alternatives to animal testing.
Rather than having a defined framework, a flexible approach with an insight

into the mechanistic pathways will be needed in order to generate relevant data.
The AOP-based approach is leading toward this direction [131]. Collaborative
effort is needed in obtaining not only qualitative but also quantitative informa-
tion to support decision making.

Abbreviations

ADME absorption, distribution, metabolism, and excretion
AOP adverse outcome pathway
CA chromosomal aberration
DMBA 7, 12-dimethylbenzanthracene
DMN dimethylnitrosamine
ECETOC European Centre for Ecotoxicology and Toxicology of Chemicals
ECVAM European Centre for the Validation of Alternative Methods
ENU ethylnitrosourea
FHA fast halo assay
HCS high-content screening
HTS high-throughput screening
ILSI/HESI International Life Sciences Institute/Health and Environmental

Sciences Institutes
ITS integrated testing strategies
MLA mouse lymphoma assay
MMNCs micronuclei in mononucleated cells
MMS methyl methane sulfonate
MNCs mononucleated cells
OECD Organisation for Economic Co-operation and Development
OTM Olive tail moment
PD population doubling
QSAR quantitative structure–activity relationship
REACH Registration, Evaluation, Authorization, and Restriction of

Chemicals
RPD relative population doubling
SCCS Scientific Committee for Consumer Safety
SCGE single-cell gel electrophoresis
TK thymidine kinase
WoE weight of evidence
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13
Using Pluripotent Stem Cells and Their Progeny as an
In Vitro Model to Assess (Developmental) Neurotoxicity
Lisa Hoelting, Marcel Leist, and Luc Stoppini

13.1
Introduction

Embryonic stem cells (ESCs) are self-renewing pluripotent cells derived from the
inner cell mass (ICM) of blastocyst of the developing embryo [1]. In vitro, ESCs
have an indefinite proliferation potential while maintaining the capability to dif-
ferentiate into theoretically any cell type in the body [2]. Neural stem cells
(NSCs) not only exist in the developing embryo but are also present in specific
regions of the adult human brain. Once isolated, adult NSCs have a more limited
proliferation potential and their differentiation capacity is restricted to neurons,
astrocytes, and oligodendrocytes [3,4].
During the past 30 years, stem cells (SCs) have become a promising research

tool for disease modeling and regenerative medicine. Over the years, much effort
has been spent on the generation of disease-pertinent somatic cells to investigate
in vitro molecular mechanism of disease-specific pathophysiologies and their
progression. This may lead to a better understanding of the disease and offers
new therapies [5–7]. Further important progress was obtained by the newly
achieved success in generation of induced pluripotent stem cells (iPSCs). Over-
expression of a set of transcription factors (OCT-4, SOX2, KLF4, and v-myc) can
reprogram somatic cells into pluripotent stem cells [8]. The new technology ena-
bles the production of patient-specific iPSCs to study diseases such as amyo-
trophic lateral sclerosis, familial dysautonomia, or Huntington’s disease [9–11].
Tremendous improvements have been made in quality and efficiency of in vitro
differentiation and numerous protocols have been established to differentiate
human ESCs or patient-specific iPSCs into clinically relevant somatic cell types
such as cardiomyocytes [10,12,13], hematopoietic cells [14], megakaryocytes [15],
insulin-producing cells [16–19], and neurons [20–22]. However, the aim to use
these cells to treat diseases such as diabetes mellitus, Parkinson’s disease, and
Alzheimer’s disease by transplanting in vitro-generated human SC-based cells
into the patient and thereby replacing dysfunctional cells is still challenging and
many difficulties have to be overcome to routinely use SCs for safe therapies in
the future [23–25]. Currently running clinical trials on the use of retinal pigment
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epithelial cells to treat dry macular degeneration are, however, promising and
the reported side effects are only minor [26].
In contrast, much more success is expected in the short run by using stem

cells for pharmacological and toxicological purposes [27]. Only a minority
(∼2%) of publications on ESCs focus on the use of stem cells for drug and toxic-
ity screenings, and high-impact journals tend not to publish such work. Never-
theless, researchers have gained much knowledge from the field of disease
modeling and biomedical research [28,29]. For instance, SCs have proved to be
one of the most important tools to assess (developmental) neurotoxicity [30,31].
Neurotoxicity (NT) is defined as adverse effects of industrial and environmen-

tal chemicals, pharmaceutical drugs, food ingredients, and cosmetics on the ner-
vous system during development and adulthood [32]. The nervous system is a
very complex organ that can be anatomically divided into the central nervous
system consisting of brain and spinal cord and the peripheral nervous system
comprising afferent and efferent nerves. The peripheral nervous system is func-
tionally divided into motor, sensory, and autonomic functions; the central ner-
vous system serves many more functions, and therefore many different types of
neurotoxicity can be observed. For instance, degeneration of peripheral neurons
may result in disruptions of motor or sensory functions and central nervous
effects may manifest chronically by reduced cognitive function or attention
span, or acutely by dizziness, nausea, and disorientation [33]. In particular,
in utero or postpartum exposures to toxic compounds during sensitive stages of
the development of the nervous system can lead to impaired nervous system
function, even long time after removal of the original stimulus [34–36]. In the
United States, one of six children is being born with neurodevelopmental dis-
orders such as attention deficit disorders, reduced intellect, mental retardation,
autism, and cognitive and behavior alterations [37]. Over the past few decades,
epidemiological studies and clinical evidence have revealed a link between neu-
rodevelopmental disorders and exposure to chemicals during early fetal develop-
ment [38,39]. The developing brain is more vulnerable to hazardous influences
than adult brain. Since it is impossible to predict adverse effects of compounds
on the developing nervous system based on their direct neurotoxicity potential,
special attention is paid to the use of developmental neurotoxicity (DNT) studies
in human health risk assessment [40,41]. In 2007, the Organisation for Economic
Co-operation and Development (OECD) adopted the developmental neuro-
toxicity guideline (TG426) to assess environmental and industrial chemicals for
their potential to cause DNT [42,43]. In 2009, a review pointed out that merely
100 compounds have been tested using the DNT guideline. Most of them were
pesticides and only eight industrial chemicals have been examined [40]. Another
survey investigated the DNT potential of 174 compounds by using neuro-
behavioral risk assessment [44].
Currently used methods to analyze DNT are based on animals, which were

exposed to chemicals during critical prenatal and early postnatal periods of
the nervous system development. Offspring was then tested under the DNT
guideline, containing functional, behavioral, and neuropathological analyses of
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the nervous system. However, evaluation of gross neurological and behavioral
parameters such as physical development, behavioral ontogeny, motor activity,
learning, and memory and postmortem evaluation of brain weights were time
and cost intensive in terms of animal use, laboratory equipment, and materials.
Thus, due to high cost of animal studies (3 billion dollars per year) and low
throughput, the DNT capability of the majority of compounds is still undeter-
mined [31,45,46].
In the field of toxicity assessment, neurotoxicity and in particular DNT is one

of the most challenging disciplines [47,48]. Adverse effects on neurodevelopment
could, among others, result in altered neuronal cell population in the absence of
cell death and thus may not be detected by routine screens. Moreover, there are
differences in the brain development of humans and animals. For instance, the
human nervous system development at the end of the second trimester of gesta-
tion correlates to the brain developmental stage of a newborn rat [49]. Moreover,
toxicity studies dealing with the question how one species models for another
have shown that rats and rabbits predict each other in only 60% of the tested
chemicals. It can be assumed that the correlation among the different species is
higher than the correlation between these animals and humans [50,51]. Thus,
uncertainty factors have to be included into human health risk assessment based
on animal data. Experiences in the past in the field of drug design have shown
that a large number of new drug candidates failed in clinical trials despite exten-
sive testing in animal studies [52], and a sizable number of already marketed
drugs had to be withdrawn due to late-appearing side effects [53].
In order to improve the quality and the efficiency of human DNT risk assess-

ment, a paradigm shift in the field of toxicology took place. Great effort is spent
on the understanding of cellular and molecular mechanisms that trigger neuro-
development impairment. According to the National Research Council report of
its vision of toxicity testing in the twenty-first century (Tox21), knowledge on
basic cellular and molecular toxicity mechanisms should be used to develop a
new in vitro test system [54,55]. In particular, in the field of (developmental)
neurotoxicity, in vitro test systems should be modeling crucial events of the
in vivo neurodevelopment, containing endpoints representing mechanisms of
(developmental) neurotoxicity or specificity of a nervous system response [31].
Human stem cells are the most promising source of human cells that fulfill these
criteria and are therefore a promising tool to assess human-specific (develop-
mental) neurotoxicity [56–59].
In this chapter, we will focus on the use of (human) pluripotent stem cells

(PSCs) and their progeny to assess (developmental) neurotoxicity.

13.2
Neurodevelopment In Vivo

In humans, the nervous system develops from a single cell layer during early
embryogenesis into a complex functional neuronal circuit in young adults.
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Inhibition of bone morphogenetic protein (BMP) signaling by the neural induc-
ing factors noggin, follistatin, and chordin induces neurodevelopment in a part
of the ectodermal layer [60–62]. In combination with the activation of the
fibroblast growth factor (FGF), WNT, and insulin-like growth factor (IGF)
signaling [63,64], the neural plate is formed and develops further into the
neural groove that folds up into the neural tube at approximately week 4
postfertilization [65,66].
The neural tube is formed by neuroepithelial progenitor (NEP) cells. These

primary neural stem cells are the origin of nearly all neurons and glial cells of
the brain and spinal cord. The newborn neurons have to migrate from their
place of origin to their terminal destination, undergo neuritogenesis and synap-
togenesis, and assemble a functional circuit to communicate with both nearby
and distant cells [67–70]. The process of neurulation is highly controlled and
has to take place within a critical time window during embryogenesis. Thus,
neural tube closure is very susceptible to even small disturbances that may result
in a wide spectrum of morphological malformations [71]. The most common
neural tube defects are spina bifida and anencephaly [72]. Although more than
200 genes have been identified that are associated with neural tube defects in
animal models, the mechanism by which these genes in combination with envi-
ronmental factors affect neural tube closure is still unknown [73]. Drugs may
disturb this complex signaling. For instance, multiple prospective and retrospec-
tive studies have demonstrated that the consumption of the antiepileptic drug
valproic acid (VPA) during pregnancy is associated with a significantly increased
incidence of neural tube defects [74].
During neural tube closure, another neural stem cell class arises. At the lateral

border of the neural plate, neural crest stem cells (NCSCs) undergo an epithe-
lial-to-mesenchymal transition (EMT). They delaminate from the neuroepithe-
lium and start to migrate along stereotypical pathways. NCSCs contribute to a
variety of different cell types of neuronal and non-neuronal origin. For example,
NCSCs give rise to cells of the peripheral nervous system, melanocytes, smooth
muscle cells, and cells forming bone and cartilage [75,76]. Impairment of key
developmental processes during neural crest development, such as differential
cell proliferation, apoptosis, migration, and differentiation, is associated with a
wide range of birth defects [77,78]. For instance, disturbance of vagal NCSC
migration may result in Hirschsprung’s disease, which is characterized by a con-
genital malformation of the hindgut due to the absence of parasympathetic
intrinsic ganglion cells in the submucosal and myenteric plexuses [79,80].
Besides genetic defects, also xenobiotics can affect NCSCs. Ethanol or the pesti-
cide triadimefon are among these compounds [81,82].
Due to inaccessibility of the human embryo, studies of early human develop-

ment are limited. Detailed knowledge of human neurodevelopment is not availa-
ble, or it is only inferred from studies performed on animals. Even though the
human nervous system differs from that of model organisms, in terms of size,
complexity, folding, and period of development, there are also similarities with
respect to the highly orchestrated neurodevelopment. Uncommitted progenitor
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cells have to proliferate and differentiate in a temporally and spatially restricted
sequence to produce specific neuronal and glial subtypes in defined quantities
at stereotyped positions within the nervous system. One fundamental princi-
ple of neurodevelopment is a progressing differentiation from multipotent
neural stem cells with a broad development potential to distinct lineage-com-
mitted cell types, which are highly specialized. The basic mechanism coordi-
nating these complex developmental programs relies on time-dependent
exposure to gradients of different types and concentrations of growth factors,
vitamins, metabolites, or soluble or tethered ligands. Within each cell, a vari-
ety of signals are processed, and they activate cognate cascades of transcrip-
tion factors, which further trigger defined cellular changes for specific cell fate
determinations [83,84]. Deregulation of these precise processes is associated
with several neurodevelopmental disorders. For example, holoprosencephaly
and other congenital malformations could be associated with altered sonic
hedgehog (shh) signaling during development [85–87]. Moreover, there is
strong evidence that diseases such as schizophrenia or autism are caused by a
combination of genetic and environmental factors that trigger early neurode-
velopment impairment [88,89].
Neurodevelopment takes place over a long period of time, as complete

maturation and synaptogenesis are not finished until young adulthood. Under-
standing processes and mechanism of neurodevelopment is a prerequisite to
understand the cellular and molecular basis of neurodevelopmental diseases
such as autism or schizophrenia as well as toxicity-induced pathologies.

13.3
Main Principle of In Vitro Test Systems to Model DNT

Common methods to assess developmental neurotoxicity rely on high-dose test-
ing in experimental animals. Although these test methods are labor and time
intensive and have uncertainties in their prediction for human-specific toxicity,
they are still required and accepted by regulatory authorities. During the past
few decades, an immense improvement in the field of molecular biology, bio-
technology, and bioinformatics has led to a better understanding of fundamental
molecular and cellular mechanisms of human neurodevelopment. However, tak-
ing advantage of this knowledge to improve developmental neurotoxicity risk
assessment for human health is a long-lasting process, which has started only a
few years ago [90,91].
Turning away from the standard “black-box” animal experiment, the concept

of pathways of toxicity (PoT) was introduced. According to this concept, and
based on the assumption that cellular and molecular mechanisms and signaling
pathways are shared by various biological processes, screening of chemicals is
performed to identify interaction between substances of interest and pathways
controlling important cellular functions. In the case of developmental neuro-
toxicity, the perturbation of specific pathways results in altered cellular functions
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leading to impaired neurobehavioral and/or neuropathological effects. Alterna-
tively, the concept of adverse outcome pathways (AOPs) is used. This concept is
built on a link between a chemical of interest and a macromolecule resulting in
an altered function, which is relevant for human risk assessment [92]. A pre-
requisite for these screening approaches is known pathways of toxicity or con-
firmed molecular targets. However, the mode of action of DNT-causing
chemicals is mostly unknown and toxicity in cellular model systems can also be
caused by nonselective interactions with biomolecules. To address this issue, the
concept of toxicity endophenotype (TEP) has been developed [30,56]. In contrast
to the above-described concepts, TEP uses a “backward approach.” In the case of
the nervous system, neurodevelopment is assumed to have resulted from a set of
key developmental processes that can be recapitulated in vitro. Thus, to assess
chemical-induced phenotypic changes, researchers have established in vitro
assays to model such processes. They comprise proliferation and apoptosis, dif-
ferentiation, migration, neuritogenesis, synaptogenesis, and myelination. Also
desirable or undesirable functional changes in neuronal excitability or neuroin-
flammation can be modeled. Alterations in neurobehavioral functions due to
exposure to xenobiotics can occur in the absence of neuropathological evidence
of structural damage. This challenges the in vitro assessment, but recently the
first attempts showed a successful translation of neurobehavioral endpoints of
DNT into in vitro assays and readouts [31,93]. To replace the OECD test guide-
line TG426 for DNT testing, it would require an in vitro test battery of DNT
responses to provide adequate data to predict the adverse effect of chemicals on
human health [48,94]. In order to optimize an integrated set of tests as a basis
for a reproductive/developmental test battery with a predictive power for toxico-
logical safety assessment, ReProTect, an integrated project of the EU, was funded
within the 6th Framework Programme. At the end of the project, a blinded test-
ing approach showed that this novel approach for hazard and risk assessment of
reproductive toxicity is feasible [95].
Using new testing approaches and technologies (e.g., transcriptomics or

metabolomics) in a more integrated way, (developmental) neurotoxicity data will
have a stronger scientific foundation and therefore can be extrapolated with a
great certainty to expected human response [94,96]. This leads to an improved
risk assessment for human health of industrial and environmental chemicals and
hence supports regulatory decisions [97].

13.4
Requirements of an In Vitro Test System for DNT/NT

To replace the traditional animal-based tests, alternative in vitro test systems
require a high predictivity of adverse neurotoxic effects in the (developing) brain.
In comparison with animal tests, they should be faster, cheaper, easier to per-
form, and adaptable to high-throughput analysis (HTA) and high-content analy-
sis (HCA). In addition, the sensitivity and specificity of the alternative in vitro
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methods should be higher than those of the classical in vivo test according to the
guideline TG426.
Since the past few years, human stem cells (hSCs) are a promising source of

human cells for mechanistically oriented DNT/NT safety assessment [27,31,46,98].
There is growing evidence that cells from human origin improve the predictivity
of adverse effects on the developing human brain [99,100]. Due to their extensive
proliferation potential, hSCs offer the opportunity for large-scale production of
human cells for HTA and HCA [29]. Over the years, an enormous gain of knowl-
edge in the field of stem cell biology, developmental biology, and neurobiology has
contributed to constantly growing numbers of SC-based in vitro test systems for
(developmental) neurotoxicity assessment [101]. Much work has been done on
comparison of in vitro mouse ESC differentiation with embryonic and fetal mouse
in vivo development [102]. For example, global gene expression analyses have
shown similarities between in vitro neuronal differentiation of embryonic stem
cells and in vivo embryonic neural tube development. Moreover, the authors
observed an apicobasal cell polarity, active Notch signaling, and accurate develop-
ment of neurons and glia similar to the in vivo equivalent [103,104]. Due to a lack
of accessibility of human early development, only few data are available, compar-
ing in vitro neuronal differentiation of human embryonic stem cells (hESCs) with
their in vivo counterpart. Recently, it was demonstrated that hESCs could be dif-
ferentiated in vitro toward medium-sized spiny neurons by undergoing a three-
step protocol composed of induction, regionalization, and terminal differentiation.
By means of protein expression analysis, it was shown that these phases resemble
in vivo neurodevelopment of the ventral telencephalon [105]. Considering the fact
that stem cell differentiation in vitro recapitulates crucial neurodevelopmental
events in vivo, they are an ideal tool to assess adverse effects of chemicals on the
developing and mature nervous systems (see Table 13.1) [68,106–109].
In vitro systems should cover crucial processes, which are essential to set up

the human nervous system, such as cell proliferation, apoptosis, differentiation,
migration, neuritogenesis, synaptogenesis, or neuronal excitability (Figure 13.1).
Based on epidemiological studies and neurological diseases, growing evidence
suggests that these processes, once destroyed, lead to impaired nervous system
functions. Therefore, modeling these processes with in vitro-based test systems
should provide a good alternative for DNT/NT assessment.
For a successful application of human SC-derived cells for DNT/NT testing,

the in vitro test systems have to be thoroughly assessed [30]. The golden rule
“Know the system you are working with and understand what affects it” is of
prime importance. This is well described in the principles of good cell culture
practice (GCCP) published by the European Union Reference Laboratory of
Alternative Methods to Animal Testing (ECVAM) [150] or in more general test
system guidance [151].
Before biological systems can serve as in vitro test systems, they have to be

intensively characterized. Establishing a hSC-based in vitro system requires the
assessment of pluripotency of stem cells and characterization of the differentia-
tion process toward a defined cell type. Such a quality control is achieved by a
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Table 13.1 In vitro models for (developmental) neurotoxicity: in vivo processes and the corresponding
in vitro models and endpoints.

In vivo
processa)

In vitro systemb) Endpointc) Referenced)

Proliferation
and cell death

2D; the mouse embryonic
stem cell test (EST)

Separation of cell death and
differentiation

[110]

2D; ReNcell CX (immor-
talized human neural pro-
genitor cell line)

Proliferation (BrdU incorporation); via-
bility (propidium iodide exclusion)

[111]

3D; hNPCs (human neural
progenitor cells)

Viability (CellTiter-Blue assay); cell
death (LDH assay); apoptosis (caspase
3/7 activity, TUNEL assay); prolifera-
tion (measuring spheres diameter,
counting the number of cells/sphere)

[112]

3D; hESCs (WA09 and
abBG02)

Proliferation (BrdU incorporation,
determine neurosphere area); differen-
tiation (neurite formation by measuring
neurite length)

[113]

Differentiation 3D; differentiating hESCs
toward neural progenitors
and neuronal precursors
within neurospheres

Gene expression (q-PCR) [114]

2D; differentiating hESCs
toward NEPs

Gene expression (microarray expres-
sion profiling, q-PCR); quantification of
GFP expression in hESCs expressing
GFP under the Hes5 promoter cell line
(flow cytometry)

[28]

2D; differentiating hESCs
toward neuronal
progenitors

Gene expression (q-PCR) [115]

2D; hESCs Metabolomics [116,117]
2D; EST
3D; whole embryo culture

Toxicogenomics [118]

2D; neural differentiation
of mouse ESCs

Use of biological categories (GO) [119]

2D; neural differentiation
of mouse ESCs

Use of defined intervention for rescue
of effect and proof of pathway; demon-
stration of shift from one lineage to
another

[120]

2D; neural differentiation
of mouse ESCs

Demonstration of shift from one line-
age to another; link to disease-specific
genes

[87]

2D; differentiating hESCs
toward NEPs

Highly resolved concentration
response; use of superordinate biologi-
cal processes for toxicity index

[121]

2D; neural differentiation
of mouse ESCs

Calcium signaling [122]

Migration 2D; hESC-based neural
crest cell

Counting cells in a beforehand area,
based on Hoechst and calcein-AM
staining

[81]
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3D; hNPCs Measuring the distance of migration of
neural progenitor cells out of
neurospheres

[112]

Neuritogenesis 2D; teratocarcinoma-
derived hNT2 cells

Neurite growth with automated
microscopy

[123]

2D; SH-SY5Y Measuring neurite network formation [124]
2D; LUHMES cell line Measuring simultaneously neurite

growth and viability by automated
high-content image analysis

[125,126]

2D; primary cultures of
embryonic rat sympathetic
neurons derived from
superior cervical ganglia
(SCG)

Quantifying axonal and dendritic
growth

[127,128]

Synaptogenesis 2D; ex vivo brain slices Measuring electrical activity and post-
synaptic protein level

[129]

2D; ex vivo brain slices;
PC12 cells
3D; hippocampal slice
cultures

Measuring electrical activity and post-
synaptic protein level; measuring vesic-
ular catecholamine release and
intracellular Ca2+

[130,131]

2D; dissociated cortical
networks from embryonic
rats

Measuring circuit assembly (MEA) [132]

Synaptogenesis 2D; cocultures of develop-
ing cochlear explants and
hESC-derived neural
progenitors

Presynaptic contacts (ICC: synapsin 1) [133]

2D; rodent primary mixed
cortical cultures

Morphometric measurements from
automated image analysis (dendrite
length, puncta per neuron, puncta per
cell body, puncta per dendrite length)

[134]

Myelination 3D; rat reaggregating brain
cell culture

Protein kinase C activation [135]

3D; rat reaggregating brain
cell culture

Gene expression (q-PCR); cytotoxicity
(LDH release); glucose consumption;
the rate of total RNA synthesis

[136]

Neuronal
excitability

2D; fetal rat cortical neu-
ronal networks

Measuring electrical activity (MEA) [137]

2D; rat cortical cultures Measuring spontaneous activity in net-
works of cortical neurons (multiwell
MEA)

[138]

2D; rat primary cortical
neurons, rat hippocampal
slice cultures
3D; rat aggregating brain
cell cultures

Measuring electrical activity (MEA) [139–141]

2D; primary cultures of rat
cortical neurons

Measuring spontaneous network activ-
ity (MEA); individual action potential
spikes, groups of spikes (bursts) in neu-
ronal networks

[93]

(continued)
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set of specific markers relying on different methods and readouts [98]. For
instance, gene expression profiling is a common tool to carefully assess the bio-
logical system by analyzing cells at several time points during differentiation.
This is crucial to determine which in vivo developmental stage and which funda-
mental biological process are modeled by the system. Based on these data, an
appropriate set of functional markers and their adequate level of expression over
time are defined. Furthermore, the characterization should include the determi-
nation of the time point of appearance and the level of enrichment of a desired
progenitor cell population during in vitro differentiation [30,98,152]. If later

Table 13.1 (Continued )

In vivo
processa)

In vitro systemb) Endpointc) Referenced)

2D; primary cortical
cultures

Analytical “fingerprinting” using PCA
and chemical class prediction using
support vector machines (SVMs) to
classify chemical effects based on MEA
data from 16 chemicals

[142]

2D; hESC-derived neuro-
nal cell networks

Measuring spontaneous electrical net-
work activity (MEA)

[143]

Glia support of
neuronse)

3D; rat aggregating brain
cell culture

Gene expression (q-PCR); activity of
microglia and astrocytes (ICC); MAP
kinase pathway activation
(immunoblotting)

[144]

2D; mouse ESC-derived
astrocytes

CD95 ligand-induced apoptosis, NO
production, IL-6 expression, NF-κB
activation, gene expression (q-PCR)

[145]

2D; human monocyte-
derived macrophages, rat
microglial cells

Phagocytic recognition and removal of
dying cells

[146]

2D; mouse oligodendro-
cytes isolated from a pri-
mary mixed brain cell
culture

Oligodendrocyte–microglia interaction
in neuroinflammation

[147]

2D; primary murine astro-
cytes; microglial cell line
BV-2

Astrocyte–microglia interaction in
neuroinflammation

[148,149]

a) Key biological processes of human nervous system development that are modeled in vitro and tested for
disturbance by chemicals.

b) Examples for stem cell-based in vitro test systems based on the corresponding in vivo process. Also, a few
test systems using rodent cells are listed to indicate what types of models may be used in the future based
on human pluripotent cell-derived cultures.

c) Analytical endpoints are listed where relevant together with the type of disturbed process that is intended to
be measured.

d) Exemplary work without intention to be complete or fully representative.
e) Models of neuroinflammation (failed or inverted glial support) and of phagocytic removal (overall tissue

function of glia) are included here.
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stages of neurodevelopment are supposed to be modeled, the functionality of the
SC-derived neurons has to be proven by, for example, determination of electro-
physiological activity. Further quality control measurements are quantification of
axon formation, neurite growth, and presence of ion channels. They facilitate the
creation of acceptability criteria for the use of individual cell batches for toxicity

blastocyst

neuroepithelium

neural tube

migration

proliferation

patterning

apoptosis

differentiation

glia cellsneurons

myelination

neuritogenesis

synaptogenesis

neuronal excitability

Figure 13.1 Important stages and processes during neurodevelopment. Schematic represen-
tation of crucial neurodevelopmental stages and processes in vivo, which can be modeled
in vitro by differentiation of human pluripotent stem cells.
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testing and thereby increase the intra- and interlaboratory reproducibility [98].
The characterization of the system provides the basis for its usage in (develop-
mental) neurotoxicity-specific endpoint assessment and helps define the right
time window of exposure.
In the next step, the neurotoxicity-specific endpoints of the in vitro system

have to be evaluated. One example is the “tandem approach,” whereby the speci-
ficity of the assay is determined by comparing the response to a toxic compound
and the response to a related nontoxic/less toxic chemical analog (substance tan-
dem). Alternatively, the concept of “cell-type tandems” can be applied, which
compares a sensitive cell type with a resistant cell type [30]. An alternative
approach is to specifically block the toxicity of a compound by interference with
an expected pathway of toxicity. This approach is still rarely used [120,153],
although it produces a high level of confidence and plausibility. Since the quality
of the new in vitro test system depends on a careful selection of tool compounds,
the initial setup of an assay and the further testing is optimally performed with
reference compounds that cover a range of chemical classes with known toxicity
profiles and mechanisms. Two classes exist to determine the sensitivity of the
test system: the “mechanistic tool compounds” (i.e., pathway-specific controls)
and the “gold standard compounds” (i.e., compounds with proven effect on
humans). The mechanistic tool compounds (e.g., pathway inhibitors) are known
to alter the toxicity endpoint of interest. Therefore, they are also classified as
“endpoint-specific controls.” Gold standard compounds are highly important, as
they are known to be (developmental) neurotoxic to humans, but their mode of
action is often poorly characterized (e.g., methylmercury, arsenic, and lead com-
pounds, ethanol, toluene, and polychlorinated biphenyls (PCBs)) [30,36]. To
determine the specificity, negative control compounds are chosen that do not
affect the endpoint that is quantified as readout of the test sys-
tem [111,125,126,154]. Demonstrating that the test system is able to rapidly and
efficiently screen a large number of chemicals with a high sensitivity and speci-
ficity, a larger set of test compounds should be chosen. For this, experts have
made lists of chemicals that can be used for verification of the new test system.
Based on several publications, and on data from humans and nonhuman pri-
mates as well as other laboratory mammals, chemicals are chosen that have an
impact on nervous system function after developmental exposure [91]. In addi-
tion, lists are available for negative controls, pathway-specific compounds, and
generally cytotoxic compounds [30]. To accelerate the development of new
in vitro systems for DNT, experts from the field have published a document pro-
viding recommendations for developing alternative in vitro methods. In the pub-
lication, 15 guidance items have been outlined, which enable the evaluation and
comparison of predictability and efficiency between several test assays and inter-
and intralaboratory reproducibility [91]. A broader overview, also applying to
neurotoxicity testing and other toxicological areas, is also available [151]. Due to
the small number of compounds, also alternative strategies of compound collec-
tion have been explored, as, for instance, in the test battery designed by the EU
ESNATS Consortium [155].
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For regulatory acceptance, the in vitro test system still needs validation
according to the guidelines, described by ICCVAM, OECD, and ECVAM
[43,156–160]. The validation modules (test definition, within-laboratory variabil-
ity (reliability), transferability (reliability), between-laboratory variability (reliabil-
ity), predictive capacity (relevance), applicability (relevance), and performance
standard) provide the required information to evaluate the validity of the test
system [161,162], but new and faster forms of evaluation are being considered at
the moment [48,163].

13.5
Modeling of Disease and Toxicant-Induced Damage

Conventionally, animal models are used to study mechanism and pathologies of
human diseases. However, these model systems do not reflect the human in vivo
situation. Many diseases do not occur in animals and have to be artificially
induced [6]. For example, in animal models of toxicity-induced Parkinson’s
disease (PD), disease-specific symptoms and pathology are caused by injection
of methylphenyltetrahydropyridine (MPTP), 6-hydroxydopamine (6-OHDA),
paraquat, or rotenone [164]. Although in vitro neurotoxicology studies were per-
formed to investigate the mode of action of environmental neurotoxins potentially
playing a role in human neurodegeneration, the majority of them rely on models
based on rodent primary cell cultures or have been performed in human (SH-
SY5Y) or rodent (PC12) transformed cell lines that do not reflect the true state of
neural cells in vivo [136,165]. Species-specific differences result in uncertainties in
the extrapolation of results based on animal studies to the in vivo situation in
humans. This may contribute to only a small number of therapeutic compounds
that succeeded in clinical trials [166,167]. The breakthrough discovery of iPSCs
has created new opportunities to study human development and disease directly
in affected cell types [168,169]. Fibroblasts or other somatic cell types from
healthy and diseased individuals can be converted into iPSCs, expanded, and dif-
ferentiated into the desired neuronal cell type or alternatively directly converted
into proliferating neural precursor cells (NPCs) or induced neuronal cells (iNCs)
without an intervening stem or progenitor cell stage [170–172].
This circumvents species-specific differences and inaccessibility of neural tis-

sue, and therefore provides a valuable tool to get new insights into human-
specific disease mechanisms, progression, and pathology in different genetic
backgrounds. In addition, it seems to be a promising platform for drug discovery
and may enhance the likelihood for clinical success of new therapies [173–176].
A prerequisite for so-called “disease in a dish” models is an assessable altera-

tion in the cellular or molecular phenotype in either the derived iPSCs or their
differentiated progeny. Here, we discuss the current state of research with
respect to neurological diseases. The most successful results have been achieved
by studying monogenetic diseases, since a disease-associated genotype can be
directly linked to the disease (cellular) phenotype. For example, spinal muscular
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atrophy (SMA) is characterized by a progressive degeneration of motor neurons
due to a mutation in the gene encoding for the survival of motor neuron protein.
In vitro neuronal differentiation of SMA patient iPSC lines resulted in a specific
loss of motor neurons, which could be rescued by VPA and tobramycin treat-
ment similarly to the in vivo situation [177].
In another study, iPSCs were generated from Rett syndrome patients. In vitro

differentiation of patient-specific iPSCs into GABA (γ-aminobutyric acid)-ergic
neurons is characterized by disease-specific pathogenesis such as a decrease in
the number of dendritic spikes and synapses, impaired intracellular calcium sig-
naling, and electrophysiological defects [175,178,179].
Familiar dysautonomia (FD) is a disorder of the autonomic nervous system,

which is caused by impaired neural crest cell migration due to a mutation in the
gene encoding for IκB kinase complex-associated protein (IKBKAP). Generation
of iPSCs from FD patients and in vitro differentiation into neural crest cells
resulted in reduced migration and disrupted neurogenesis. Furthermore, it was
shown that this model could be used as a discovery and screening platform to
achieve new insights into the molecular and cellular mechanisms of the disease
and to detect promising drug candidates to ameliorate migration and neuronal
differentiation [11].
In addition, using iPSC technology to model spinocerebellar ataxia (Machado–

Joseph disease (MJD)) demonstrated that reprogramming of patient-specific
somatic cells and subsequent differentiation into the neuronal linage enables the
study of late-onset neurodegenerative diseases in a cell-specific manner. Koch
et al. highlighted that the disease-specific phenotype was exclusively found in
neurons and was not present in iPSCs, glia, and fibroblasts [180].
For modeling Parkinson’s disease (PD) in vitro, several iPSC lines have been

generated from PD patients with defects in the LRRK2 gene. IPSC-derived mid-
brain dopaminergic neurons recapitulated several aspects of PD pathology
in vitro, such as a reduced number of neurites and neurite branches per neuron,
less resistance to oxidative stress, and impaired autophagy functions [181,182].
In addition, it could be shown that gene correction or inhibition of extracellular
signal-regulated kinase 1/2 (ERK1/2) phosphorylation ameliorated neurodegen-
eration, neurite outgrowth, and dysregulation of genes, which are involved in
other neurodegenerative pathologies [7].
Taken together, all these disease-specific iPSC lines are contributing to a bet-

ter understanding of molecular and cellular mechanisms of diseases and link dis-
ease-associated genotypes to a disease-specific phenotype. However, a large
percentage of neurological diseases are caused by the interaction of extrinsic fac-
tors and mutations in several genes. Despite the fact that it is much more chal-
lenging to develop “disease in a dish” models for complex nervous system
disorders, the first models already have been published [173,176]. For instance,
in 2011 Brennand et al. established a model for schizophrenia, a complex genetic
psychiatric disorder. They identified crucial key signaling pathways of the disease
phenotype. The disturbed pathways could be rescued by treatment with an anti-
psychotic drug [183]. Also, in a recent publication by Lancaster et al., iPSCs
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generated from one patient with microcephaly due to a mutation in the
CDK5RAP2 gene were used to generate minibrains. The striking results were
that the differentiation of these minibrains in vitro resembled the disease pheno-
type. The data also help to generate the hypothesis that the microcephalic phe-
notype developed due to premature neuronal differentiation at the expense of
proliferation of neuronal progenitor cells [108].
One has to keep in mind that differences between the generated iPSC lines

affect the differentiation and proper recapitulation of the disease. The cell lines
vary, for instance, in their gene expression profile, genetic instability, X-
inactivation, differentiation potential, and their epigenetic profile [184,185].
Another issue to be considered is that in vitro-derived neurons are often in an

immature fetal stage and may lack full functionality, which may be suitable to
investigate early-onset diseases in vitro. Indeed, to model late-onset diseases
such as PD, cells were artificially aged by treating them with an environmental
stressor to uncover a neurodegenerative phenotype in disease-derived dopamin-
ergic neurons [6,7,181]. Alternatively, researchers are focusing on developing
more complex long-term differentiation systems. The group of Livesey devel-
oped a human SC-based system that recapitulates crucial steps of the human
cortical development in vivo, such as the formation of cortical stem cells and
progenitor cells, a long period of neurogenesis (up to 100 days), a late phase of
gliogenesis, acquirement of electrophysiological activity, synaptogenesis, and net-
work formation. Since this system enables the generation of several classes of
electrophysiologically active cortical projection neurons that form a functional
excitatory synaptic network, it offers the potential to study complex neuro-
psychiatric disorders such as epilepsy, autism, schizophrenia, or neurodegenerative
diseases [186].
Another major challenge for successful disease modeling is disease-associated

phenotypes that emerge from non-cell autonomous interactions of two different
cell types. For example, although one of the first patient-specific iPSC lines has
been generated from amyotrophic lateral sclerosis (ALS), motor neurons derived
from these cells lacked an obvious disease-specific phenotype [9]. However,
coculture experiments with disease-specific glial cells (mutated in the SOD1
(superoxide dismutase 1) gene) revealed motor neuron degeneration [21].
The aim of the SC-based models is to recapitulate in vitro human neurodevel-

opment and diseases approximately closely to the in vivo equivalent (Figure 13.2).
This emphasizes the need of developing in vitro three-dimensional (3D) systems
to capture complex in vivo tissue physiology. In particular, during nervous sys-
tem development cell–cell and cell–environment interactions play an essential
role. The basic mechanisms of cell fate decisions during neurodevelopment rely
on integration of external signals from extracellular matrix (ECM) components
and gradients of mechanical and chemical stimuli from neighboring and distant
cells [83]. Studies have demonstrated that gene expression profiles and cellular
functionality of cells growing in 3D cell systems are more similar to the gene
expression levels in vivo than to their two-dimensional (2D) counterpart [187].
First approaches to generate human nervous tissue in vitro already have been
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successfully performed, for example, by using an air–liquid interface system
(Figure 13.3). Advantage of this technique is an improved gas exchange between
tissue and air that enables differentiation into macroscopically 3D organized
human neural-like tissue without hypoxic cell death [188]. In vitro-generated tis-
sue consisted of neurons, astrocytes, and oligodendrocytes and resembled parts
of early nervous system development [189]. Furthermore, a 3D SC-based system
was established that recapitulates early dorsal telencephalic development in
humans [190]. Recently, Lancaster et al. published the generation of cerebral
organoids based on pluripotent SCs. This 3D organoid culture system enables
the differentiation into different interdependent nervous system regions. More-
over, this system modeled microcephaly by differentiating patient-specific iPSCs
and thereby contributed to a better understanding of the disease [108].

in vitroin vivo
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Figure 13.2 Differentiation of embryonic
stem cells into neural cells in vitro mimics fetal
brain development. The different neural stem
cell populations that can be obtained in vitro

correspond to stage-specific neural progeni-
tors present at defined in vivo developmental
stages and share the same markers and
properties.
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Since the cellular milieu of the 3D tissue has been suggested to exhibit an
in vitro microenvironment similar to the in vivo compartment, performance of
toxicological and pharmacological screenings in these systems has the potential
to identify in vivo toxicity. Forced by the need for quantitative and physiologi-
cally relevant in vitro systems, primary rat reaggregating brain cell cultures were
used to assess neurotoxicity of heavy metals [191–194], neuron-specific toxi-
cants [195–197], or organophosphorus compounds [198]. In addition, since
these systems provide a microenvironment for key events during early neurode-
velopment, they were also used to test for developmental neurotoxicity [192,199–
202]. However, rat reaggregating brain cell cultures still bear the limitation of
species differences. Currently, the differences are assessed between human and
rodent SC-based systems [165]. Although human 3D ESC- or iPSC-based sys-
tems, or systems making use of committed fetal neural stem cells, enable the
combination of in vivo-like complexity with an effective testing strategy, only a
few systems have been published to assess relevant DNT endpoints such as via-
bility, proliferation, migration, differentiation, neurite growth, and apopto-
sis [112,114,165,203,204]. However, due to the size and cell heterogeneity of 3D
cell culture systems, it is more difficult to assess cell morphology and phenotype
during differentiation, and therefore these systems are classified as low-throughput

Figure 13.3 3D air/liquid neural cultures
derived from human embryonic stem cells.
(a) Scheme of 3D neural tissue grown onto
porous membrane at the air/liquid interface.
(b) Phase contrast photomicroscopy of a
6-month-old 3D neural tissue (bar= 500mm).

(c) Immunofluorescent staining of a transver-
sal section of the 3D neural tissue shown in
(b). (d) Electron microscopy microphotography
of a 14-month-old 3D neural tissue showing a
synapse (arrow).

13.5 Modeling of Disease and Toxicant-Induced Damage 295



systems [205]. Nevertheless, they provide a promising tool to investigate organ-
specific developmental processes such as migration and differentiation, which
should be incorporated into tiered testing strategies [165].

13.6
Using Stem Cells to Assess (Developmental) Neurotoxicity

13.6.1

Proliferation and Cell Death

During neurodevelopment, the process of neurogenesis and gliogenesis occurs
highly coordinated directly after neural tube closure. The NEPs of the ventricu-
lar zone undergo symmetric cell division to increase the pool of NEPs. Later,
they convert into radial glia (RG) and basal progenitors that are more restricted
in their differentiation capacity. First, RG cells undergo symmetric cell division,
followed by asymmetric cell division to produce neurons or glia [68,69]. Inde-
pendent of their specific role during development, neural progenitor cells are
responsible for the production of the correct number of a defined cell type (glia
versus neurons; neuronal subtypes) in a spatially and temporally correct man-
ner [206]. Besides proliferation, an enormous wave of cell death contributes to
correct brain development. Thus, 20–80% (dependent on the population) of the
developing cells undergo programmed cell death [207]. Since alteration of the
cell number, due to intoxication, may result in nervous system abnormalities,
proliferation and cell death are highly relevant biological endpoints [208,209].
Both can be modeled in vitro.
In one of the first attempts, an in vitro system based on the immortalized

human neural progenitor cell line (ReNcell CX) was developed to assess
chemical effects on proliferation (BrdU incorporation) and viability (propi-
dium iodide exclusion) using high-throughput approaches. A training set of
16 compounds that included compounds known to cause DNT and noncyto-
toxic chemicals demonstrated the feasibility to screen chemicals for their
DNT potential [111].
Besides 2D in vitro test systems, a few 3D human neurosphere systems have

been developed that modeled key developmental processes such as proliferation,
differentiation, migration, and apoptosis. These systems showed that neurotoxi-
cant-induced modulations of these basic processes were quantifiable in vitro.
They are able to assess the effect of potential DNT compounds on proliferation
and apoptosis and provide the possibility to be used for medium-throughput
screenings [112]. For example, an increase in proliferation potential has been
measured in human neurospheres derived from ethanol-treated hESCs [113].
However, it has to be considered that compounds that have an effect on only a

specific subgroup of cells cannot be detected by these traditional readouts. For
example, neonatal treatment of rats with the antiproliferative agent methylazox-
ymethanol inhibited the proliferation of the neural progenitor cells but
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simultaneously stimulated the survival of the newborn granular cells, resulting in
an overall increase in cell numbers [210].

13.6.2
Differentiation

Although the detailed differentiation mechanism of individual cell fate specifica-
tion may differ, they have some general principles in common. In particular, the
tremendous diversity of neural cell types is based on the combination of spatially
and temporally regulated lineage and environmental mechanisms. Once a cell
has integrated all extrinsic and intrinsic cues at a defined time point during dif-
ferentiation, specific transcriptional cascades are activated that regulate the cor-
responding program of differentiation [211].
Adverse effects of chemicals on neural differentiation are commonly analyzed

by gene expression analysis [212]. Based on these data, alterations associated
with a specific neurodevelopmental disease can be identified. It has been proven
that this approach is useful to analyze time and concentration effects of chemi-
cals, classify chemicals with regard to their toxicogenomic response, and com-
pare in vivo and in vitro data as well as data among different species. Currently,
guidelines are being developed for experimental and technical setup as well as for
bioinformatics and statistical analysis to improve the quality of toxicogenomic
studies. This will contribute to an integration of toxicogenomic approaches in
the field of developmental neurotoxicity [212,213]. A smaller subgroup of thor-
oughly chosen marker genes has the potential to detect several developmental
stages in vitro under physiological and toxic conditions [46,87,120]. Moreover, in
contrast to normal cell lines, stem cell-based differentiation systems are dynamic,
with continuously differentiating cells. This facilitates the assessment of chemi-
cals that cause DNT by an “inhibition of a developmental function” in the
absence of cytotoxicity [31]. Thus, changes in gene expression may be caused
either by an acute effect of the chemical on a biological process, for example,
alteration of signaling pathways, or by impaired differentiation.
To date, several in vitro systems have been established that recapitulate differ-

ent stages of the early neural development. In most of the studies, methylmer-
cury exposure or other manipulations (withdrawal of differentiation factors,
addition of specific neural pathway inhibitors) were performed to demonstrate
that disturbances of neural differentiation could be assessed by selected differen-
tiation markers, such as neurite length, the neural transcription factor OTX2, or
expression of neural genes such as TH or TUBB3 [28,114,115]. Using two sepa-
rated exposure intervals enables the identification of the compound-specific sen-
sitive phase of neurogenesis [115]. In addition, differentiating murine ESCs into
morphologically and functionally mature neurons and glia-like cells offers the
detection of cell type-specific toxicity by analyzing expression levels of cell type-
specific marker genes. Even effects on small subpopulations and potential shifts
of populations may be detected by this approach [120]. Recently, it was shown
that the differentiation of hESCs toward NEPs was altered upon VPA treatment.
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The observed transcriptional and epigenetic changes were linked to an altered
neural development. Thus, the system might be used as a model to study drug-
induced neurodevelopmental diseases [28]. Furthermore, an established 3D
hESC-derived in vitro neurosphere system revealed distorted expression of neu-
ral differentiation markers due to polyethylene nanoparticle exposure. Therefore,
the system may be used to investigate chronic nanotoxicity on developing NPCs
and neuronal precursor cells, as the entire differentiation process takes over 32
days and can be followed based on multiple stage-specific markers [114]. Little
attention has been paid to concentration-dependent effects yet. Several studies
by the Piersma group used zebrafish or neurally differentiating murine ESCs for
more than one concentration of a toxic compound, and some statistical analysis
is available [119,214,215]. The first study approaching this phenomenon more
comprehensively used human ESCs exposed to a large range of valproic acid
concentrations. Interestingly, nontoxic, developmentally neurotoxic, and cyto-
toxic concentrations were clearly separated by gene expression patterns, and a
DNT toxicity index was developed on this basis [121].
Proteomic as well as reporter gene technologies have been used to identify

murine molecular toxicity signatures [216]. They may be transferred to a hESC-
based system to screen for embryotoxicity and neurotoxicity in the future [217].
Furthermore, metabolomics has entered the field of toxicology. This technology
enables the assessment of instantaneous alterations of cell homeostasis and pro-
vides information on toxicity-induced changes [96,218]. Studies in a hESC-based
system showed that changes in levels of endogenous molecules due to teratogen
exposures could predict human developmental toxicity [116,117]. Those studies
indicate that this technology has the potential to identify DNT-specific bio-
markers during neural differentiation of hESCs in vitro or primary reaggregating
brain cell cultures.
During differentiation of hESCs toward neurons, the differentiating cells

undergo several developmental stages with unique molecular and cellular char-
acteristics that may contribute to differential sensitivity to certain compounds.
Therefore, chemicals have to be tested during different developmental stages to
facilitate the identification of the susceptible time window of specific DNT
compounds [87].

13.6.3

Migration

Newly produced neurons and glia migrate from their place of origin to their final
destination to establish a functional neuronal network and contribute to the
architecture of the nervous system. Thus, specific neuronal populations have to
undergo extensive radial and/or tangential migration over long distances to their
distinct locations [219,220]. At the same time, also neural crest cells undergo
extensive migration and follow stereotypical pathways to invade different types
of tissues. All these processes are regulated by a multitude of extrinsic and
intrinsic signals. To respond to guidance cues, the expression of appropriate
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receptors at the right time is required [221]. For initiation, maintenance, and
termination of migration, a coordinated assembly and rearrangement of actin
and microtubule cytoskeleton is needed [222].
To evaluate potential DNT compounds that impair migration, an in vitro hSC-

based test system was established to observe and quantify neural movement. For
example, neurospheres consisting of fetal human neural stem cells were plated
onto a coated cell culture surface to trigger migration of neural progenitor cells
out of the neurosphere. The distance of migration was determined by measuring
the distance between the edge of the neurosphere and the farthest migrated
cell [4]. Environmental toxicants and inhibitors of physiological signaling path-
ways were also tested in a hESC-based neural crest cell system. Here migration
of the cells was quantified by counting cells in a defined area. The results indi-
cated a good sensitivity/specificity with regards to DNT compound identifica-
tion [81]. Different alternatives to assess migration have been developed to
enable the adaptation to high-throughput screenings.

13.6.4

Neuritogenesis

Correct and effective wiring of the nervous system requires the extension of
axons and dendrites and finally their correct interconnection. After cells have
migrated to their destination, they are exposed to a variety of signals from the
extracellular environment that initiates neuritogenesis. In particular, gradients
of guiding cues promote or inhibit neurite growth, branching, and adhesion.
The underlining signals have to be transduced correctly into axonal growth
patterns, mainly by cytoskeleton rearrangement. The growth cone, a special-
ized structure characterized by a dynamic cytoskeleton at the tip of axons,
navigates the axons along a defined path to their appropriated target [223].
Alterations in this neurodevelopmental process have for a long time been sug-
gested to be closely linked to DNT [36,224,225]. In vitro systems based on
primary neurons and cell lines have been established using neurite growth as
endpoint [123,125,126,154]. First approaches to assess neurite growth in vitro
were based on low-density cultures. For example, teratocarcinoma-derived
hNT2 cells were used to measure neurite growth with automated micros-
copy [123]. In another approach, SH-SY5Y neuroblastoma cells were plated
onto a specialized surface to standardize the length of the neurite intercon-
nections and neurite network formation was manually assessed [124]. More
recent methods enabled the use of high-density cultures to measure neurite
growth in LUHMES (Lund human mesencephalic) human neuronal precursor
cells [226,227]. They have been used in an assay that simultaneously assessed
neurite growth and viability by automated high-content image analysis. This
approach allows the discrimination of compounds causing unspecific cyto-
toxicity and neurite-specific toxicity [125,126]. As automated microscopy is
the underlying technique, the described test systems have the potential to be
used in high-throughput screenings.
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13.6.5

Synaptogenesis and Neuronal Excitability

As soon as the extending axon has reached an appropriated postsynaptic cell, the
growth cone receives a defined signal to stop growing and to form a presynaptic
terminal. At the same time, the target cell starts to build a postsynaptic site,
which enables the establishment of a specialized connection between the cells,
the synapse. Synapses transfer neuronal activity by transmitting patterns of elec-
trochemical activity into neurotransmitter release [228]. One important feature
of the human nervous system is the activity-dependent change in synaptic con-
nectivity, called synaptic plasticity. It describes the mechanism of resculpting and
rewiring of the neuronal network to alter thoughts, feelings, and behavior due to
an experience [229]. The correct innervation of a given circuit requires that
post- and presynaptic cells express the appropriate guidance receptors and
intrinsic effectors to acquire the specific responsiveness to incoming sig-
nals [230]. The process of synaptogenesis includes the expression and the proper
recruitment of specialized proteins for the stabilization of the initial synaptic
contact, scaffold proteins for the specialized organization of both cells,
rearrangement of the cytoskeleton, and endosomal tracking of synaptic growth
signaling complexes. Disturbances in these processes result in early synapse loss,
which is associated with several neuropsychiatric disorders such as autism, schiz-
ophrenia, and intellectual disabilities [3]. Moreover, neurons acquire the com-
plete cellular and molecular equipment for functional activity. Excitability covers
the process of signal reception, conversion, and transmission. Disturbances, for
example, in the intracellular ion concentrations, in the integrity of ion channels
and receptors, and in action potential generation, directly result in impaired neu-
ronal excitability and can appear without other changes in biochemistry or mor-
phology. Thus, neuronal excitability provides an important functional endpoint
to assess (developmental) neurotoxicity [138]. Traditionally, synaptic plasticity
has been analyzed in ex vivo brain slices by measuring electrical activity and
postsynaptic protein levels [129,130]. Moreover, Ca2+ signaling is used as a func-
tional endpoint in vitro, since intracellular Ca2+ concentrations regulate neuro-
transmission in vivo [231,232]. Recently, an in vitro model based on a coculture
of hESC-derived neural progenitor cells with cochlear explants has been estab-
lished to study synaptogenesis by measuring electrical activity and synaptic con-
tact by immunohistochemistry [233]. Alternatively, microelectrode arrays
(MEAs) are used to assess circuit assembly in different cell types [93,132,139,140].
As methods have been developed to assess synaptic plasticity in vitro that have
the potential for higher throughput format, and hESC-based differentiation pro-
tocols emerge to model synaptogenesis and synaptic plasticity in vitro, a combi-
nation of both fields is expected in the future and will be beneficial for the
establishment of new hSC-based in vitro models to detect DNT.
Furthermore, several studies have shown that MEA-based assays can be used

to assess potential compounds affecting neuronal excitability and network for-
mation with a high selectivity and sensitivity [137,138]. The MEA approach
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enables the simultaneous recording of extracellular field potential in large popu-
lations of neuronal cells, which represents the spatial and temporal spike activi-
ties of multiple single neurons [133,234]. Electrophysiological activity is in fact
one of the most sensitive and neuronal specific endpoints. It is providing high-
information content on the neuronal tissue functional behavior. In the early
1980s, advancements in microfabrication technologies enabled the introduction
of a new generation of devices, MEAs, which allowed in vivo [235] and
in vitro [236,237] multisite, long-term recordings of the electrical activity of neu-
ronal populations as well as the stimulation from one or more electrodes of the
array. Planar substrates for in vitro experimentation, MEA-based neuroelec-
tronic interfaces are now a well-accepted technique in basic and applied electro-
physiology, enabling experimental investigations of collective dynamics,
spatiotemporal patterns, and computational properties of neuronal assemblies in
manners that were inaccessible before [238,239]. The use of this MEA approach
for neurotoxicological studies [240] allows the distinction between neuronal
cytotoxicity (irreversible damage and cell loss) and functional neurotoxicity
where only the electrical signal propagation is affected by impaired or blocked
transmission leaving cells metabolically intact. A recent study carried out by the
group of Schafer on rat cortical neural networks shows that MEA data are useful
for the separation of different chemical classes into effects classes (analytical
“fingerprinting”) of chemicals on neural networks [142].
The first series of neurotoxicological screening was performed using hESC-

derived neuronal cell networks exhibiting spontaneous electrical activity by the
group of Narkilahti [143]. Their results show that exposure for 72 h with 500 nM
MeHgCl decreases the electrical signaling and alters the pharmacological
response of hESC-derived neuronal networks in delayed manner, whereas effects
cannot be detected with qRT-PCR, immunostaining, or proliferation measure-
ments. The authors conclude that human cell-based MEA platform is a sensitive
method for neurotoxicological screening. Human induced pluripotent stem cell
(hiPSC)-derived neurons may also be effectively used as an effective method for
drug discovery and neurotoxicological studies. However, compared with rat neu-
rons, hiPSC-derived neurons seem to require longer time to mature function-
ally [241]. Finally, Suzuki et al. describe the development of planar carbon
nanotube (CNT)-MEA chips that can measure both the release of the neuro-
transmitter dopamine and electrophysiological responses such as field post-
synaptic potentials (fPSPs) and action potentials (APs). They successfully
measured synaptic dopamine release from spontaneous firings with a high sig-
nal-to-noise (S/N) ratio. Therefore, these CNT-MEA chips might be accurate
tools for in vitro assessment of potential neurotoxic effects of chemicals when
used in combination with neural cell networks derived from human stem
cells [242].
Moreover, measuring electrical activity in MEA-based assays has been shown

to be a suitable endpoint for the detection of DNT-causing compounds after
chronic exposure to low concentrations [139,140]. The production of multiwell
MEAs and development of new methods for MEA data analysis facilitate
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screening and prioritization of higher amounts of compounds for (developmen-
tal) neurotoxicity testing [243].

13.6.6
Myelination

Oligodendrocytes in the CNS and Schwann cells in the PNS generate myelin to
wrap the axons of the neighboring neurons with a myelin sheath. This enables a
fast and efficient flow of electrical impulses along myelinated axons and is essen-
tial for intact nervous system functions [244]. Interactions between axons and
myelin-producing cells have several functions; for example, they control and
modulate axonal growth, neuronal survival, and myelination [245,246]. As
abnormalities in myelination are associated with several diseases such as multi-
ple sclerosis, psychiatric diseases, and diverse peripheral neuropathies, several
hESC-based in vitro protocols have been developed to generate oligodendrocytes
and to model their interaction with neural and glial cells [112,189,205,247].
Studies in reaggregating brain cell cultures have shown that interactions between
the different cell types (neurons, astrocytes, and oligodendrocytes) provide an
environment facilitating neuronal differentiation leading to development of syn-
apses and myelin [248]. Besides one study that solely investigates the effect of
protein kinase C activation on myelination in 3D cultures [135], the cellular
composition of the aggregates is usually assessed by analyzing changes in gene
expression, as, for example, in the ACuteTox project [136]. Although human
SC-based in vitro test systems exist that cover all three cell types of the brain,
using myelination as an endpoint to assess (developmental) neurotoxicity in
hESC-based in vitro systems is still challenging.

13.6.7
Neuroinflammation

Toxic compounds can directly or indirectly cause neurotoxicity. The term direct
neurotoxicity describes phenomena in which the target cell of the toxic com-
pound undergoes neurotoxicity-induced changes [249]. Any cell type of the
brain can be the potential target of a certain compound. In contrast to direct
toxicity, indirect neurotoxicity mainly occurs due to neuroinflammation caused
by astrocytes and microglia [250]. Neuroinflammation is characterized by an
increase in expression levels and/or release of proinflammatory cytokines
(TNFα, IL-1β, and IL-6) and chemokines, reactivity of astrocytes and microglia,
activation of inducible NO synthase (iNOS), and activation of MAPK and NF-κB
signaling [251]. Several methods are available to assess these processes in vitro,
for example, by analyzing the reactivity of microglia and astrocytes by immuno-
cytochemistry, quantifying the expression levels of cytokines, chemokines, and
iNOS on mRNA level, and determining the activation of MAP kinase pathway
by Western blot [144,145,148,149]. In addition, gene expression of cytokines and
chemokines as an endpoint for neuroinflammation would be adaptable to high-
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throughput screening. However, since cell–cell interaction and maturational
stages of the glial cells influence the neuroinflammatory response, an appropriate
in vitro system has to be carefully chosen. To date, serum-free brain aggregate
cell cultures are used to study neurotoxicity-induced neuroinflammation [250].
As protocols for human SC-based organoid cultures or neuron–glia cocultures
are being established, and the feasibility to generate the cells in high quantities
emerges, the methods to assess neurotoxicity-induced neuroinflammation can
be easily transferred.

13.7
Limitations

Assessing (developmental) neurotoxicity in hSC-based in vitro test systems is
contributing continually to a better understanding of molecular and cellular
mechanisms of toxicity-induced phenotypic alterations. Since these in vitro test
systems lack metabolic activity, only the primary toxic effect of a compound can
be assessed. While in vivo, metabolism of xenobiotics by non-neural tissue (e.g.,
liver) or in the brain (e.g., astrocytes) may result either in a detoxification or in a
bioactivation of the foreign compound. Thus, the in vivo metabolism of foreign
compounds has to be carefully checked to avoid an underestimation or an over-
estimation of toxicity [32]. For example, in vivo n-hexane is biotransformed into
the neurotoxic metabolite 2,5-hexanedione, parathion into paraxone, heroin
deacetylated into morphine, and retinol into retinoic acid. Another example is
MPTP, a model compound to induce neurotoxicity in animals. After administra-
tion, MPTP is converted by astrocytes into the neurotoxic compound MPP+,
which can be taken up by dopaminergic neurons [252]. Hence, an in vitro neuro-
toxicity test system may not be suitable for identification of parent compounds
that act by active metabolites. However, there are different strategies to incorpo-
rate biotransformation [30].
In vitro test systems facilitate the detection of potential (developmental) neu-

rotoxic compounds in a controlled system. However, compound actions in such
test systems are isolated from physiological (in vivo) homeostasis mecha-
nisms [32]. Since the prediction of neurotoxicity is related to the concentration
at the target site, in vitro toxicokinetic models have to be developed. These also
need to predict effects of the blood–brain barrier (BBB). For instance, the group
of Cecchelli has developed a convenient approach to explore the importance of
BBB permeability in neurotoxicity assessment of compounds by combining a
BBB model with a neuronal cell line [222].
Besides the BBB, the placental barrier and binding to plasma proteins or to

other non-neural tissue regulate in vivo chemical disposition. These defense
mechanisms are mostly not present in in vitro test systems. Moreover, although
hESC lines highly express the multidrug transporter ABCG2 to protect the cells
against foreign toxic compounds, the differences in defense mechanisms influ-
ence the extrapolation of in vitro data to in vivo conditions. This has to be
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included in the process of defining toxicologically relevant doses [32,253]. Pre-
dictions are also difficult, as the BBB is not fully developed until 6 months after
birth. Moreover, the fetal liver does not exhibit the same detoxification mecha-
nism as the adult liver [254].
From technical and practical points of view, physicochemical properties of

compounds that influence the bioavailability have to be considered prior to
in vitro testing, as it is challenging to evaluate chemicals that are insoluble in
cell culture medium at neutral pH, or that are volatile and evaporate quickly.
Moreover, direct chemical interaction may alter culture condition (pH shift,
osmolarity), which influences the viability of the SC and their progeny. Binding
of compounds to nutrients or other cell culture compounds may change the
microenvironment of cells in vitro that do not mimic the in vivo situation [32].
Thus, the application domains for in vitro assays are still limited by technical

constraints, and additional work is required to expand their utility for the predic-
tion of a potential hazard toward the real prediction of risk [48].
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14
Stem Cell-Based Methods for Identifying Developmental
Toxicity Potential
Jessica A. Palmer, Robert E. Burrier, Laura A. Egnash, and Elizabeth L.R. Donley

14.1
Introduction

There is an increasing need for reliable, high-throughput in vitro developmental
toxicity screens in both the pharmaceutical and chemical industries. Establishing
predictive human cell-based assays to aid in the early discovery-phase detection
of potential developmental toxicants is strongly warranted as these tests could
reduce product development time and costs. Human embryonic stem (hES)
cells are a relevant in vitro model for developmental toxicity testing, since
they are derived from the developing embryo. In addition, the pathways that
are important for human development are active in hES cells. The combina-
tion of hES cell culture with metabolomics, which can measure the complete
set of small molecules (metabolites) in a sample, creates a unique model sys-
tem for measuring changes in metabolite levels following toxicant exposure.
This approach not only provides a prediction of toxicity potential but also
mechanisms of toxicity. This chapter will cover the current tests used to iden-
tify developmental toxicity potential, the need for new testing strategies, tech-
nologies that can be used to develop these strategies, and the alternatives in
development that are based on hES cells.

14.2
Developmental Toxicity Screening: Past and Present

14.2.1

Definition and Scope of the Problem

There is evidence that people have been interested in teratology, or the study of
structural birth defects, dating back to as early as 6500 BC, although the current
field of teratology has origins in the 1930s, when the first reports of birth defects
induced in a mammalian species were published [1,2]. Prior to these studies, it
was believed that the mammalian embryo was protected from harmful
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environmental factors by the placenta. The related field of developmental toxi-
cology is broader, encompassing the study of the pharmacokinetics, mechanisms,
pathogenesis, and adverse outcomes resulting from the exposure of the develop-
ing fetus to harmful agents or conditions. The term “developmental toxicology”
was first presented in the 1970s by James Wilson, which was also when he
proposed his “six principles of teratology” that are still accepted today
(Table 14.1) [2–5]. Developmental toxicity is classified into four categories:
(1) embryonic lethality, (2) dysmorphogenesis or structural abnormalities,
(3) intrauterine growth restriction, and (4) functional toxicities. Some birth
defects can be clinically diagnosed prior to or at birth, such as spina bifida,
whereas others may not be identified until later in life (i.e., kidney malformations).
Approximately 3% of all infants in the United States are affected by a major

defect at birth, increasing to 6–7% by 1 year of age [2,6]. Globally, it is esti-
mated that every year 7.9 million children are born with a serious defect of
genetic origin and hundreds of thousands more are born with birth defects
caused by maternal exposure to environmental teratogens [7]. Major birth
defects have been the leading cause of infant mortality in the United States for
more than 20 years, leading to more than 20% of all infant deaths in 2011 [8,9].
Approximately 3% of all birth defects are attributed to in utero exposure to
toxic chemicals and physical agents (including environmental factors) and 25%
of birth defects are believed to be the result of a combination of genetic and
environmental factors [5]. However, 50–65% of birth defects still have unknown
causes [5,10].
It has been estimated that more than 70 000 man-made chemicals are circulat-

ing in the environment. This is in addition to the thousands of drugs on the
market with hundreds more being added each year [11]. This extensive chemical
space poses a significant risk to the safety of pregnant women and the developing
fetus. Only a small percentage of these chemicals have been evaluated for devel-
opmental toxicity [5]. Approximately 4100 chemicals have been tested for terato-
genicity potential in animals, of these 66% were nonteratogenic in the species

Table 14.1 Wilson’s six principles of teratology.

1. Susceptibility to teratogenesis depends on the genotype of the conceptus and the manner in
which this interacts with environmental factors

2. Susceptibility to teratogenic agents varies with the developmental stage at the time of
exposure

3. Teratogenic agents act in specific ways (mechanisms) on developing cells and tissues to initi-
ate abnormal embryogenesis (pathogenesis)

4. The final manifestations of abnormal development are death, malformation, growth retarda-
tion, and functional disorder

5. The access of adverse environmental influences to developing tissues depends on the nature
of the influences (agent)

6. Manifestations of deviant development increase in degree as dosage increases from the no-
effect to the totally lethal level
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tested, 7% were teratogenic in two or more species, 18% were teratogenic in the
majority of species tested, and 9% produced equivocal experimental results [12].
In contrast, only about 50 chemical or physical agents are known to cause devel-
opmental toxicity in humans [11,13]. The current developmental toxicity testing
methods are not amenable to screening the backlog of chemicals due to cost and
time, presenting a need for new high-throughput screens.

14.2.2

Historical Strategies and the Need for New Human-Based Models

The thalidomide tragedy in the 1960s increased public awareness of develop-
mental toxicants and the importance of developmental toxicity testing. Prior to
this, chemicals had been tested for toxicity in adult animals, and were only spo-
radically tested in pregnant animals. As a result of this disaster, more systematic
requirements for developmental toxicity testing were put into place by regula-
tory agencies around the world. The current requirements for developmental
toxicity testing have been in place for over 40 years and require a new test com-
pound to be evaluated for effects on embryofetal development in two animal
species, one rodent and one nonrodent species. Unfortunately, no animal species
have been viewed as ideal for developmental toxicity testing and the majority of
studies are conducted in rats and rabbits [14]. In 2008, nearly 12 million animals
were used for experimental and other purposes in the Member States of the
European Union [15]. Almost 9% of these animals were used for toxicology stud-
ies [15]. These preclinical models have varying degrees of concordance with
observed developmental toxicity in humans, having approximately 70–80% con-
cordance to known human teratogens [16]. These “segment II” in vivo animal
models require a large number of animals, kilogram quantities of test com-
pound, and are both time consuming and expensive. Although these animal
models are, and have long been, considered the regulatory gold standard, differ-
ences in species response to a compound may lead to missed signals of develop-
mental toxicity and biological misinterpretation.
There is a growing initiative to reduce and replace the use of animal models in

toxicity testing, due to the ethical concerns regarding animal welfare and the
cost of performing these tests. This is especially important in light of the current
initiatives in Europe (Registration, Evaluation, and Authorization of Chemicals
(REACH)) and the United States (Tox21) to screen thousands of chemicals cur-
rently in circulation for toxicity potential. In the report “Toxicity Testing in the
21st Century: A Vision and Strategy” (Tox21c), the United States National
Research Council (NRC) presents a vision for the future wherein toxicity testing
is done largely in vitro using human cell lines [17]. The opportunity for alterna-
tive toxicology models is favored by the REACH and Tox21 initiatives, which
strongly support the use of in vitro testing for the first phase of compound anal-
ysis. Alternative toxicology models will not be able to replace experimental ani-
mals altogether because certain in vivo systemic interactions that are relevant
for toxic outcomes cannot be anticipated in vitro. Nonetheless, in vitro testing
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using human cell lines may serve as a better predictor for human response
in certain cell types and contribute to refining and reducing the use of animals
in research.

14.3
Pluripotent Stem Cells

14.3.1

Definition

Pluripotent stem (PS) cell research dates back almost 40 years to the early
1970s, when the first mouse embryonic carcinoma (EC) cell lines were estab-
lished. These cells are derived from the stem cells of germline tumors (i.e.,
teratocarcinomas) and are able to differentiate into derivatives from each of
the three germ layers: ectoderm, mesoderm, and endoderm [18,19]. The initial
work in EC cells led to the isolation of embryonic stem (ES) cells from
the inner cell mass (ICM) of mouse blastocysts in 1981 [20,21] and human
blastocysts in 1998 [22]. ES cells are pluripotent, self-renewing cells that
have the ability to recapitulate embryonic development in vitro, differentiating
into numerous cell types derived from the three primary germ layers, as
well as the extraembryonic tissues that support development (Figure 14.1)
[19,23–25]. In addition, ES cell-derived somatic cells are able to function in a
manner similar to their in vivo counterparts following transplantation into
animal models [23,25,26]. This unique feature makes ES cells an invaluable
resource for research pertaining to early human development and its critical
pathways.
The groundbreaking development of induced pluripotent stem (iPS) cells

from mouse somatic cells in 2006 [27] and human cells a year later [28,29]
has opened the floodgates to new possibilities in pluripotent stem cell
research and application, without the ethical controversies that surround hES
cells. Since 2006, iPS cells have become one of the most competitive and
fast-paced fields in life science research. Human iPS cells share many key
properties with hES cells, such as morphology, pluripotency, self-renewal,
and similar gene expression profiles [30]. The first human iPS cell lines were
derived by reprogramming somatic cells with the retrovirus- or lentivirus-
mediated induction of just four transcription factors: Oct4, Sox2, Klf4, and
c-Myc [28] or Oct4, Sox2, Nanog, and Lin28 [29]. Several new techniques to
induce pluripotency in somatic cells have been developed with the goal of
avoiding the integration of undesired viral DNA into the host genome.
The new techniques include repeated transfection of plasmids or minicircle
DNAs [31–33], the episomal approach [34], the use of excisable viral vector
systems [35–37], as well as methods that use proteins [38–43], mRNA
[44–47], microRNA [48,49], small molecules, or chemicals [50–59]. In com-
parison with mES and even hES cells, iPS cell research is still in its infancy
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and there is still a lot to learn. Recent research has revealed that numerous
subtle, but important, molecular differences exist between ES and iPS
cells [60]. These differences need to be fully understood before iPS cells can
be viewed as a replacement for ES cells in research.

14.3.2

Ethical Considerations

The embryonic origin of human ES cells is the major reason that research in this
field is a topic of great scientific interest and vigorous public debate, influenced
by both ethical and legal positions. Derivation of hES cell lines requires the
destruction of human embryos, which to some means destroying a potential
human life [61]. Using hES cells has furthered our understanding of human
development and disease in ways otherwise not possible.

Figure 14.1 Embryonic stem cells are derived from the ICM of a blastocyst and differentiate
into all cell types in the body.
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14.4
Metabolomics

14.4.1
Definition

Metabolomics is the analysis of the complete set of small molecules (metabo-
lites) present in a biological sample that are required for growth, maintenance,
or normal function in a specific physiological state [62]. Metabolites are natu-
rally occurring compounds with a molecular mass of less than 1 kDa that are
diverse in their chemical structure and include lipids, sugars, and amino acids,
to name a few [63]. Metabolites are generated from the action of enzymes and
are the intermediates or end products of cellular regulatory processes. The
metabolome is the entire collection of endogenous metabolites within a biologi-
cal system and is analogous to the terms genome, transcriptome, and proteome.
In addition, the metabolome can be measured at every level of complexity, that
is, the organism as a whole, tissues, cells, or cell compartments [64]. Metabolites
can be a part of the intracellular and/or extracellular metabolome (endometabo-
lome and exometabolome, respectively) [65]. Analysis of the extracellular metab-
olites is also known as metabolic footprinting, whereas analysis of the
intracellular metabolites is referred to as metabolic fingerprinting [66,67]. Gene
expression and protein expression are predictors of what can happen in a cell,
but the metabolites are a result of what is actually taking place, giving a more
current view of a system’s phenotype. The metabolite profile more closely
reflects the present state of the cellular environment that is constantly changing
due to nutrition, drug and pollutant exposures, and numerous other exogenous
factors that influence health [63,68]. The concentration of metabolites is not
simply a product of gene expression, but is the result of the interaction of the
system’s genome with its environment. The metabolic profile can provide impor-
tant information about the health or disease state of the cellular sample [68].
The metabolome is more sensitive to perturbations than the transcriptome and
proteome [67]. Metabolites can be mapped to biochemical pathways and serve
as biomarkers for early identification of disease or chemical insult. They are
biochemical features that can be altered and used to predict, diagnose, or mea-
sure the progress of disease or toxic response. In addition to biomarker identifi-
cation, metabolomics can be used to identify the specific mechanisms of disease
and toxicity. The measurement and analysis of the metabolic profile of a sample
provides new insight into changes induced by external stimuli (i.e., drug treat-
ment) and the metabolic phenotype [69].

14.4.2

Methods

Metabolite identification has been studied for more than 50 years, although
the term “metabolomics” was not introduced until the late 1990s [68,70].
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Metabolomic research has exploded over the past 10 years, due to the develop-
ment of spectroscopic techniques with higher sensitivity, which is critical for
metabolite identification. Mass spectrometry (MS) and nuclear magnetic reso-
nance (NMR) spectroscopy are most commonly employed analytical tools for
metabolite profiling. NMR spectroscopy is advantageous for identifying structural
information of metabolites, but is relatively insensitive when compared with MS
(10�5 M versus 10�12 M) [69,71]. NMR sample analysis has a shorter acquisition
time, but can typically identify only 20–50 metabolites per sample [63]. In addi-
tion, the amount of sample required for NMR is comparatively larger than that
required for MS analysis (500 μl versus 10 μl, respectively) [63]. However, MS is
not without its disadvantages. A major limitation of MS is the effects of ion sup-
pression that arise from high concentrations of buffers and salts [63,72,73]. MS
methods are also unable to differentiate chemical isomers with identical mass-to-
charge ratios and provide little information on the structural components of
the compounds identified. Tandem mass spectrometry (MS/MS) is able to pro-
vide more information on the structural characterization of metabolites, making
it the “cornerstone” technique for metabolite identification [72]. The advantages
and disadvantages of each method are summarized in Table 14.2.
Mass spectrometry is generally preceded by liquid chromatography (LC) or gas

chromatography (GC), which separate the complex biological samples. In gas

Table 14.2 Comparison of techniques commonly used in metabolomic studies.

Detection
technique

Separation
technique

Advantages Disadvantages

MS Direct infusion 1. High throughput
2. Minimal sample preparation

1. Ion suppression limits
detection

Liquid
chromatography

1. Broad coverage of metabolite
classes

2. Gradient separations reduce
ion suppression for ESI-MS

3. High sensitivity
4. Moderate cost

1. LC and MS parameters and
instruments vary across
laboratories

2. Can be biased by choice of
sample preparation methods

3. Lengthy LC separations
4. Limited detection of volatiles

Gas
chromatography

1. Well developed
2. Standard databases for

metabolite identification
3. High sensitivity
4. Moderate cost

1. Requires extensive sample
preparation/derivatization

Capillary
electrophoresis

1. High chromatographic
resolution

2. Sensitive

1. Underdeveloped technique
2. Lengthy CE separations

1H NMR Flow injection 1. Minimal sample preparation
2. Quantitative
3. Reproducible

1. Low sensitivity
2. Specialized staff required
3. Costly to purchase and

operate
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chromatography, samples must be derivatized prior to analysis. Derivatization
chemically decreases the polarity of a compound to aid in separation on the col-
umn. Liquid chromatography is advantageous as it does not require this pro-
cess [74,75]. The process of derivatization can be very harsh and adds the
possibility of artifact formation, due to the alteration in compound structure. Use
of LC–MS tools has increased in the field of metabolomics, as they provide higher
sensitivity and a wider range for identifying the molecular mass of a com-
pound [75,76]. In LC, the sample is introduced into a column, which can separate
metabolites based on their chemical and physical interactions with the chromato-
graphic packing material. The retention time of the metabolite (the time that it
takes for a metabolite to elute) is a unique characteristic of each metabolite.
After separation on a LC column, a mass spectrometer identifies the mass and

abundance of metabolites present in the sample. Atmospheric pressure ioniza-
tion (API) sources have brought MS to the forefront of analytical tools for
metabolomics, as they generate intact molecule ions at high sensitivity and allow
coupling of MS instruments with normal- and reverse-phase chromatogra-
phy [71,72]. There are a number of different API sources that can be used, such
as electrospray ionization (ESI), atmosphere pressure chemical ionization
(APCI), and atmospheric pressure photoionization (APPI). ESI-MS has become
the method of choice for many researches for metabolite identification [73,77–
79]. Prior to detection by the mass spectrometer, metabolites need to be con-
verted into gas-phase ions. In ESI, this is accomplished by applying an electric
field, which disintegrates a flowing liquid into a spray of fine, highly charged
droplets [72]. The solvents quickly evaporate from these droplets before intro-
duction into a mass analyzer [80]. This allows the mass-to-charge ratio (m/z) of
solvent-free analyte ions to be determined. Ionization can be performed in posi-
tive or negative mode, which will produce protonated or deprotonated forms of
the metabolite, respectively. The m/z that is measured can be converted into the
molecular weight of the metabolite, aiding in metabolite identification.

14.4.3

Untargeted versus Targeted Metabolomic Approaches

Metabolomic methodologies fall into two distinct groups: targeted and un-
targeted. Targeted metabolomic experiments measure the concentrations of
specific, chemically characterized and biochemically annotated metabolites, gen-
erally focusing on one or more related pathways of interest [81]. Developing
hypotheses for these experiments requires researchers to utilize the comprehen-
sive understanding of a vast array of metabolic enzymes, their kinetics, end prod-
ucts, and the known biochemical pathways to which they contribute [79]. Unlike
untargeted metabolomics, targeted metabolomics can use isotopically labeled
internal standards of the metabolite(s) of interest to quantitate a change in
metabolite levels between biological samples. The use of internal standards for
absolute quantitation helps to control the effects of ion suppression that can
occur in untargeted metabolomic experiments [79]. The two most commonly
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used approaches in targeted metabolomics are (1) selective extraction of the
metabolites of interest in the biological sample and (2) setting up the detector
system to selectively measure the metabolites of interest [81]. MS-based meth-
ods, followed by NMR, are the most commonly used approaches for targeted
metabolomics because of their specificity and quantitative reproducibility [82].
Triple quadrupole (QqQ) MS methods are highly sensitive and robust, and are
able to measure multiple metabolites with relatively high throughput. Addition-
ally, they can quantitate low-concentration metabolites that are difficult to detect
with less sensitive methods, such as NMR [82]. Although targeted metabolomic
experiments are unable to identify unknown metabolites and metabolic pertur-
bations, novel associations between the metabolites of interest may be illumi-
nated in the context of specific physiological states.
The goal of untargeted metabolomics is to detect as many metabolites as pos-

sible within a specific range of mass values between different samples without
bias [82,83]. Untargeted metabolomic experiments measure a wider breadth of
metabolites, which can lead to the formation of new hypothesis based on metab-
olites that would not have been measured in a direct or targeted approach. Given
the large number of metabolites measured, it is not possible to rely on isotopi-
cally labeled internal standards for quantitation, as is done in targeted metabolo-
mic experiments. Quantitation is instead based on the mass ion intensity (i.e.,
the signal an ion generates at the detector) [83]. Since ion intensity can be
impacted by other metabolites in a sample (i.e., ion suppression), it is important
to compare samples that are as similar as possible. It is also important to try and
analyze all samples on the same day using the same instrument and under the
same set of conditions. This is particularly important in LC–MS experiments,
which can have deviations in retention time between samples as a result of col-
umn degradation, sample carryover, and fluctuations in room temperature and
mobile-phase pH [82]. Even with these drawbacks, LC–MS has become the
method of choice in untargeted metabolomic experiments since it enables the
detection of the most metabolites compared with other technologies (e.g.,
NMR) [82]. Using LC–MS, thousands of peaks, or metabolite features, can be
identified in a biological sample, each having a unique m/z and retention time.
Unfortunately, the structure and function of a large number of metabolites are still
unknown and typically only about 25% of metabolite features can be tentatively
identified [84]. These unknown metabolites can be identified using MS/MS and
NMR methodologies; however, these experiments are time intensive. These draw-
backs are outweighed by the potential of untargeted metabolomics to enhance our
understanding of biochemistry and metabolism in biological systems.

14.4.4

Metabolomics in Toxicology

In the late 1990s, metabolomics was introduced as a new tool available to toxi-
cologists. Since then, it has become an accepted methodology and incorporated
as a part of the process aimed toward understanding toxicological profiles of
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exogenous chemicals. This is expected to continue, particularly for com-
pounds or classes of compounds where unexpected or unexplained findings
arise, or if a specific finding calls for a deeper exploration of the biochemistry
and pathophysiology. Since the metabolome closely reflects the activities of
the cell at a functional level, metabolomic approaches can measure the final
outcome after a toxic exposure in a cascade of events [85]. A metabolomic
approach has the potential to rapidly identify a compound’s potential targets
as well as improve our understanding of the compound’s mode of action [85].
Research groups in the pharmaceutical and chemical industries are using
metabolomics in early in vivo toxicity screening to identify potential toxico-
logical modes of action early in the compound discovery and development
process, as reviewed by Robertson et al. [86] and Bouhifd et al. [87]. Other
groups have utilized metabolomic approaches to understand the mechanisms
of a compound-elicited toxic response and understand differences in response
between genders, strains, age, and species [87]. An interesting study by Sum-
ner et al. [88] measured the metabolite profiles in urine of pregnant CD rats
and their pups following exposure to butylbenzyl phthalate (BBP). The meta-
bolic profiles of the pups could differentiate male from female, pups exposed
to the vehicle, low BBP dose, or high BBP dose, and pups with observable
adverse reproductive effects from pups with no effects. The authors were able
to map significant metabolites to biochemical pathways, providing insight into
the mechanisms involved in BBP toxicity.
Metabolomic approaches continue to prove their utility and evolve from a

basis for hypothesis generation to directed tools aimed at answering specific
questions. The convergence of the metabolomic and toxicology fields has the
potential to provide solutions toward meeting the sizeable challenge put forth
by the NRC’s Tox21c report [17]. It is envisioned that in the future the field
of toxicology will come to rely more on human cell-based assays in the
assessment of compound safety. To this end, metabolomics can help create a
new generation of compound safety assays and continue to play a part as a
methodology for understanding toxicity mechanisms. In striving to meet the
goals of Tox21c, metabolomics can be used as a tool to identify model systems
that can predict safety outcomes that in the future may be used together as a
safety panel of assays.
Cell-based metabolomic approaches have already gained recognition in the

toxicology field. These approaches are advantageous in that they are easier to
control, less expensive, and easier to interpret than in vivo approaches [89]. In
addition, both extracellular and intracellular metabolites can be measured, which
can be associated with biomarkers from biofluids (extracellular samples) and
provide information on the toxic mechanisms at a cellular level (intra-
cellular) [87]. Intracellular metabolomic analyses have shown promising results
in assessing neurotoxicity [90], renal toxicity [91], hepatotoxicity [92], mitochon-
drial toxicity [93], lung toxicity [94], and the toxicity of cell-penetrating pep-
tides [95]. A major obstacle remains extrapolation of in vitro findings to in vivo.
While the relationship between the two is still poorly understood, there are
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ongoing efforts to better define this relationship and it is likely that a panel of
cell-based assays will be needed to interpret results on a broader scale.

14.5
Stem Cell-Based In Vitro Screens for Developmental Toxicity Testing

14.5.1

Mouse Embryonic Stem Cell Test

The basis of using embryonic stem cells for developmental toxicity testing was
pioneered in the 1990s with the development of the mouse embryonic stem cell
test (mEST) [96]. This method combines changes in cardiomyocyte differentia-
tion of mouse ES cells with differences in sensitivity between embryonic and
adult tissues to cytotoxic damage in response to compound exposure. The
mEST has been evaluated by the European Centre for Validation of Alternative
Methods (ECVAM) and is considered a validated assay for embryotoxicity test-
ing. However, the assay is relatively low throughput, requiring labor-intensive
manipulations, long exposure periods, and the culture of two cell lines [97]. In
addition, differentiation into specific lineages may limit an assay’s potential for
predicting teratogens that affect a different developmental lineage. Recent modi-
fications to the mEST have been aimed at increasing throughput, adding addi-
tional developmental endpoints, and implementing molecular endpoints in place
of subjective evaluation (reviewed in Ref. [98]). Multiple research groups have
used a toxicogenomic approach (the application of genomics within toxicology)
to understand the mechanisms of action of various developmental toxicants,
such as triazoles [99] and valproic acid [100]. Additional studies have combined
toxicogenomic methodologies and the mEST to build models for predicting
developmental toxicity potential. These first initiatives focused on evaluating
markers involved in cardiomyocyte differentiation [101,102]. Implementation of
toxicogenomics-based assessments into the mEST using predetermined gene
sets resulted in improved predictivity and the ability to discriminate between
classes of developmental toxicants with distinct modes of action (reviewed in
Refs [103,104]).
However, none of these modifications can overcome one of the biggest disad-

vantages of a developmental toxicity screen that utilizes animal cells, the possi-
bility of species-specific differences in response to compound. There are multiple
functional and morphological differences between hES and mES cells. To remain
in an undifferentiated state, hES cells require basic fibroblast growth factor
(bFGF), compared with leukemia inhibitory factor (LIF) in mES cells. In addi-
tion, hES cell cardiomyocyte differentiation takes longer and is less efficient than
that for mES cells. In culture, hES cells grow as flat colonies, whereas mES cells
form tight, rounded, multilayer colonies. The average population doubling time
for hES cells is longer than that for mES cells (∼30–35 h versus 12–15 h, respec-
tively) [105]. Human ES cells form mainly cystic embryoid bodies (EBs), in
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contrast to mES cells, which form both simple and cystic EBs. There are addi-
tional differences in the proteoglycans and stage-specific antigens expressed in
hES and mES cells. These differences between hES and mES cell growth and
differentiation indicate differences in key pathways during embryonic develop-
ment, which could lead to differing response to compound exposure.

14.5.2

Human Embryonic Stem Cell-Based Developmental Toxicity Tests

The field of toxicology has been tasked by the NRC to transition from the tradi-
tional in vivo models that have been used for decades in toxicity testing to a new
paradigm utilizing human cell-based assays [17]. Human ES cells and their deriv-
atives hold great potential to provide functionally relevant cells for these new
assays compared with traditional in vitro cell-based models, namely, immortal-
ized cell lines and primary cells. Both immortalized cell lines and primary cells
can be problematic in producing efficient and reproducible results. Immortalized
cell lines do not represent normal cells found in vivo, while primary cells are
expensive and have a very limited life span in vitro [106]. In comparison, hES
cells are a more biologically relevant in vitro model system, especially for evalu-
ating the developmental toxicity potential of chemicals. In addition, a develop-
mental toxicity test based on hES cells reduces the risk of false negatives due
specifically to interspecies differences in developmental pathways and pharmaco-
kinetics [106,107]. The similarities between human ES and iPS cells may permit
the use human iPS cells in place of hES cells in developmental toxicity assays,
providing a less controversial model system. The use of hES cells in safety phar-
macology and toxicology has received a lot of interest from both the pharmaceu-
tical and chemical industries, which is illustrated by the collaborative projects
and consortiums focused on developing hES cell-based assays, such as the con-
sortiums Stem Cells for Safer Medicine (SC4SM; http://sc4sm.org/) and Embry-
onic Stem Cell-Based Novel Alternative Testing Strategies (ESNATS; www
.esnats.eu/).
Several research groups have begun evaluating hES cells as a model for devel-

opmental toxicity testing. Proof-of-concept studies have been performed to eval-
uate the effects of various known developmental toxicants on the viability and
integrity of undifferentiated hES cells and hES cell differentiation [108–118].
Adler et al. studied the effects of all-trans-retinoic acid, 13-cis-retinoic acid, val-
proic acid, dimethyl sulfoxide, and 5-fluorouracil on hES cells, hES cell-derived
progenitors (excluding 5-fluorouracil), and human fibroblasts [108,109]. Since
cytotoxicity alone is not sufficient for determining developmental toxicity poten-
tial, the authors developed a method for testing compound effects on hES cell
cardiomyocyte differentiation by measuring gene expression changes. The gene
markers identified in this study could be used as objective endpoints in a
humanized version of the EST [108].
Another group developed an assay that assesses developmental toxicity poten-

tial by measuring cell proliferation following compound exposure (busulfan,
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hydroxyurea, indomethacin, caffeine, penicillin G, and saccharin) in hES cells,
hES cell-derived EBs, and human fibroblasts [111]. In addition, the assay eval-
uated the effects of compound on lineage-specific markers in differentiating EBs.
A similar study by Pal et al. tested the effects of penicillin G, caffeine, and
hydroxyurea on multiple endpoints, including hES cell adhesion and morphol-
ogy as well as EB formation, viability, lineage-specific gene expression, and hor-
mone secretion [117]. These studies demonstrate that hES cells can be used as a
model to evaluate the embryotoxic effects of chemicals and that alterations in
transcript levels of early lineage-specific markers can be correlated with known
embryotoxic effects caused by drugs or chemicals. One of the drawbacks to
these studies is the need for differentiation over an extended period of time.
Unfortunately, differentiation can be variable in hES cells even when the same
cell culture conditions are used. Moreover, these studies have evaluated only a
very limited number of compounds, so while the assays show promise for devel-
opmental toxicity testing, it is still not known how predictive these methods will
be in comparison with the currently employed in vivo and in vitro assays.

14.5.3

Combining Human Embryonic Stem Cells and Metabolomics: A Powerful Tool for
Developmental Toxicity Testing

Metabolomics and hPS cell-based assays, independently, are exciting new
approaches that can advance the field of developmental toxicity screening
toward the directive put forth by the NRC’s Tox21c report. Combining these
two approaches offers a unique opportunity to understand the metabolic mecha-
nisms involved in developmental toxicity at the earliest stages of human devel-
opment [119–122], since hES cells are metabolically similar to embryonic
epiblast cells at gastrulation. In addition, this combination can be used to build
assays to predict the developmental toxicity potential of new chemical entities
using a human-based model [121–123].
The developmental toxicity assays described here utilize an untargeted

metabolomic platform that measures changes in hES cell metabolism in the
spent cell culture medium (i.e., cell culture supernatant) following compound
exposure, which is a functional measurement of cellular metabolism referred
to as the secretome. The “secretome” is comprised of media components,
metabolites passively and actively transported across the plasma membrane,
and those produced through extracellular metabolism of enzymes. Changes in
the secretome following compound exposure are a metabolic signature of tox-
icity that is related to alterations that occur both in the endometabolome
(inside the cell) and in the extracellular matrix. A hPS cell-based assay com-
bined with an untargeted metabolomic approach for developmental toxicity
testing is advantageous for several reasons. (1) Changes in metabolite levels in
response to toxicant exposure are a sensitive and quantitative measurement,
enabling more objective data-driven decisions. (2) Multiple biochemical
pathways can be assessed simultaneously, reinforcing the robustness of the
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model when applied to drugs with a variety of mechanisms of toxicity.
(3) Metabolic endpoints can be rapidly integrated with protein, DNA, and
RNA targets for further pathway-based investigation. (4) Since the prediction
is based on multiple independent variables, it is possible to detect teratogens
exhibiting complex changes in metabolic patterns. (5) The assay measurements
are predictive independent of cytotoxicity.
West et al. [122] performed the initial proof-of-concept study using low

throughput, six-well tissue culture plates that are the standard culture platform
for hES cells. The predictive model developed using these methods was 88%
accurate in predicting the developmental toxicity potential of an independent
test set of eight compounds [122]. However, the methods used in this study are
not ideal for high-throughput evaluation of test compounds. The assay was
migrated to 96-well plates to increase throughput and reproducibility. This new
assay was evaluated using a blinded subset of 11 chemicals selected from the
Environmental Protection Agency (EPA)’s ToxCastTM chemical library. Using
the predictive model trained on 23 pharmaceutical agents (i.e., the training set)
of known human developmental toxicity, the assay predicted the blinded com-
pounds with 73% accuracy in concordance with animal data. Retraining the
model with data from one concentration level of each of the unblinded com-
pounds increased the predictive accuracy to 83% for the remaining concentra-
tions [121]. The untargeted metabolomics-based developmental toxicity assay is
able to identify metabolic pathways that play a role in the test compound’s
mechanism of toxicity. A subset of the significantly enriched metabolic pathways
is listed in Table 14.3. Many of these pathways had been previously suggested
to underlie developmental toxicity. The results obtained in the untargeted
metabolomics-based developmental toxicity assay can be used to identify a com-
pound’s or compound class’ mechanisms of toxicity and aid in understanding
the biochemical pathways affected by a toxic insult.
An untargeted metabolomic approach is able to simultaneously predict

developmental toxicity with a high degree of accuracy and provide information
on the metabolic pathways perturbed by the toxic compounds. However, it is
still relatively low throughput given the amount of time required to analyze
each sample using a lengthy chromatographic separation method and perform
the data analysis and interpretation. To address this, a targeted biomarker-
based assay was developed based on two predictive biomarkers, ornithine and
cystine, that were identified in the untargeted metabolomic studies [123].
Ornithine is secreted by the hES cells, whereas cystine is present in the cell
culture media. Changes in the biochemical pathways that contain ornithine
and cystine as reactants or products have been experimentally associated with
mechanisms of teratogenesis. Ornithine is formed as a product of the catabo-
lism of arginine into urea, is critical to the excretion of nitrogen, and is a pre-
cursor to polyamines. Increased ornithine secretion inhibits polyamine
synthesis [136], which could have a negative impact on cellular growth and
differentiation during human development, since polyamine metabolism is crit-
ical to these processes [137].
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In recent years, the role of cystine has been investigated with regard to its
capacity to modulate cell growth, proliferation, apoptosis, and other cellular
events. This has led to an understanding of cystine’s role in numerous biological
functions critical to human growth and development. Extracellularly, or within
the secretome, cystine predominates over cysteine due to the oxidative state of
the medium. Cystine is rapidly converted to cysteine once it is imported into the
intracellular environment where it is a part of the cystine/cysteine thiol redox
couple and used for many purposes, including the synthesis of glutathione, syn-
thesis of proteins, and as a precursor for many other metabolites (Figure 14.2).
The cystine/cysteine thiol redox couple is a critical component of a cell’s regula-
tory capacity to handle reactive oxygen species (ROS). A broad spectrum of tera-
togens including pharmaceuticals, pesticides, and environmental contaminants
are suspected of creating ROS or disrupting cellular mechanisms that maintain
the appropriate balance of a cell’s redox state, which can lead to adverse effects
on developmental regulatory networks as a mechanism of action of developmen-
tal toxicity [138,139].
The predictivity and reproducibility of ornithine and cystine were initially

evaluated using the untargeted metabolomic methods. Individually, ornithine
and cystine were each able to classify the training set with 83% accuracy. When
the metabolites were combined in a ratio of the ornithine fold change divided by
the cystine fold change (i.e., the o/c ratio), the training set was predicted with

Table 14.3 Metabolic pathways perturbed in hES cells following developmental toxicant
exposure.

Alanine, aspartate, and
glutamate metabolism

Members of this pathway are important for brain development and
regulation of normal neurogenesis and apoptosis [124], as well as
learning, memory, and cognition [125]

Arginine and proline
metabolism

Includes observed elevations in asymmetric dimethylarginine
(ADMA), which is an inhibitor of nitric oxide synthase (NOS). Nitric
oxide (NO) formation is required for neural tube closure [126]

Citrate cycle
(TCA cycle)

Metabolites in this pathway are key intermediates in energy produc-
tion and impairments in this function result in neurological
symptoms [127]

Cysteine and
methionine
metabolism

A broad pathway including cysteine, cystine, and cystathionine is
involved in oxidative stress and other biochemical processes impor-
tant for normal development (see Figure 14.2)

Glutathione
metabolism

Decreased levels of the antioxidant glutathione cause limb malfor-
mations and embryopathy in animals [128,129] and are also related
to neurodegenerative disease [130], pulmonary disease [131], and
preeclampsia [132]

Nicotinate and
nicotinamide
metabolism

Nicotinate and nicotinamide are precursors of NAD+ and NADP+,
which, when reduced, are important cofactors in many redox
reactions. Mutations in nicotinamide N-methyl transferase (NNMT)
have been associated with increased risk of spina bifida [133]

Pantothenate and
CoA biosynthesis

Maternal pantothenate deficiency causes fetal resorptions, edema,
cerebral, and eye defects [134,135]
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91% accuracy. A targeted metabolomic method was developed to measure spe-
cifically ornithine and cystine using a shorter data acquisition time in a single
ionization mode, increasing instrument throughput eightfold. Since in toxicology
it is a well-accepted premise that “the dose makes the poison,” the targeted bio-
marker assay was developed using a nine-point dose–response curve to deter-
mine the exposure level at which a compound exhibits teratogenicity potential.
The assay also includes a cell viability endpoint for determining whether changes
in the o/c ratio are a direct result of cell death or due to metabolic changes
unrelated to cytotoxicity. This novel assay was 77% accurate in identifying
potential developmental toxicants in an independent test set. Two compounds
that have been tested in the targeted biomarker assay are presented in Fig-
ure 14.3. Carbamazepine is a known human teratogen that is correctly predicted
as a teratogen in the targeted biomarker assay (Figure 14.3a). The o/c ratio pre-
dicts carbamazepine to be teratogenic at 0.9 μM, a concentration well below the
therapeutic Cmax. In addition, carbamazepine elicits a response in the o/c ratio in
the absence of cytotoxicity, demonstrating the sensitivity of a metabolic end-
point. Doxylamine, on the other hand, is nonteratogenic in humans. When hES
cells are exposed to concentrations of doxylamine equivalent to the therapeutic
Cmax, there is no change in the o/c ratio (Figure 14.3b). However, at concentra-
tions significantly higher than the Cmax, doxylamine exposure causes a change
in the o/c ratio indicative of teratogenicity, demonstrating the importance of
incorporating the expected human exposure level in the prediction of toxicity.
The targeted biomarker assay can help define exposure ranges where response
may be expected as well as those where a response would not be expected
to occur.

Figure 14.2 Cystine transporter mecha-
nisms, cystine/cysteine redox, and the major
cellular processes impacted by cystine trans-
port and downstream metabolism. Abbrevia-
tions: Glu, glutamate; Cys, cysteine;

HomoCys, homocysteine; Gly, glycine; SAM,
S-adenosyl methionine; GSH, glutathione;
ROS, reactive oxygen species; xCT, cystine/
glutamate antiporter.
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14.5.4

Drawbacks of In Vitro Models

There has been significant advancement in the development of in vitro bio-
marker-based assays for developmental toxicity, although as with other biologi-
cal model systems, they cannot fully recapitulate the in vivo biology. The in vitro
models do not include biology associated with the effects of absorption, distribu-
tion, metabolism, and excretion (ADME), which make it difficult to extrapolate
doses, tissue/cellular compound delivery, and duration of exposure. Prior knowl-
edge of compound metabolism may provide an opportunity to assess known
metabolites in addition to the parent compound and provide information as to
the relative toxicities of the metabolically related compounds, which is more dif-
ficult to ascertain using in vivo systems.
The “pathways of toxicity” concept suggests that validation of in vitro toxicity

assays should include sufficient compounds to challenge all of the possible path-
ways. Without a map of all the relevant pathways, it is difficult to know whether
models will be inclusive. Assays that include broad metabolic evaluation or rely
on identified nodes of metabolism associated with toxicity such as the
biomarker-based hES cell assay described here will be the most informative
and predictive.

Figure 14.3 Illustration of results obtained
using the targeted biomarker assay. The dose–
response curves for the viability analysis (solid
black curve, circle points) and o/c ratio (bro-
ken black curve, square points) are shown for
the human teratogen carbamazepine (a) and
human nonteratogen doxylamine (b). The x-
axis is the concentration (μM) of the com-
pound. Both the cell viability measurements
and o/c ratio measurements exist on the same
scale represented by Δ on the y-axis. The y-
axis value of the o/c ratio is the ratio of the
reference treatment normalized (fold change)
values (ornithine/cystine). The y-axis value for

the viability measurement is the treatment cell
viability RFU normalized to the reference
treatment cell viability RFU. The vertical bro-
ken dark gray line indicates the compound-
specific Cmax and the horizontal solid black
line indicates the teratogenicity threshold
(0.88). The filled black circle represents the
concentration that a compound is predicted
to have teratogenic potential. The light gray
and dark gray shaded areas represent the con-
centrations where the compound is predicted
to be nonteratogenic or teratogenic, respec-
tively. The points are mean values and error
bars are the standard error of the mean.

14.5 Stem Cell-Based In Vitro Screens for Developmental Toxicity Testing 337



The uniqueness of using pluripotent stem cells addresses the biology of the
early developing embryo; however, toxicities associated with differentiation and
organogenesis may not be captured well. Additional aspects of maternal–fetal
interactions, environment, genetics, and prenatal care (nutrition, drug use, etc.)
also go beyond the scope of current in vitro assays. However, one of the advan-
tages of using an in vitro assay is the ability to separate adverse outcomes due to
compound from outcomes due to maternal toxicity from compound exposure.
Understanding the full potential and risks of a compound to induce develop-

mental toxicity is important to efficiently moving compounds down the develop-
ment path and the use of in vitro assays as screens with high throughput,
reasonable cost, and reduced animal usage is an opportunity that should not be
overlooked. It is also recognized that the current focus should be on replacing
toxicity testing procedures with panels of predictive tests that can be done rap-
idly and efficiently [140,141]. Given the physiological relevance of hES cells to
human development, developmental toxicity testing in cells derived from human
embryos is likely to generate more reliable in vitro prediction endpoints than
endpoints currently available through the use of animal models or other in vitro
nonhuman assays.

14.6
Summary

A developmental toxicity assay that uses hPS cells and metabolomics, as
described here, was highly predictive in identifying potential developmental toxi-
cants with several advantages over other assays. The untargeted metabolomic
approach allows the researcher to infer mechanistic information based on
metabolite and pathway perturbations, while a targeted method focusing on spe-
cific biomarkers enables high-throughput capability. The use of a metabolomic
approach gives the researcher two options for compound evaluation that can be
used independently (or combined) for developmental toxicity prediction and aid-
ing in compound prioritization: (1) using targeted biomarkers for a fast turn-
around, simple prediction or (2) elucidating mechanisms or pathways of toxicity
by surveying a wide breadth of metabolite changes with an untargeted approach.
In addition, these cell-based assays offer a lower cost, more rapid turnaround,
and reduced compound requirement compared with prior methods. This assay
can help reduce or eliminate species-specific misinterpretations, since human
cells are used, reduce the need for a second species in developmental toxicity
testing, and could be included as part of a panel of in vitro assays aimed at defin-
ing where potential adverse responses in human populations may exist. Using an
untargeted metabolomic endpoint, there is an opportunity to identify potential
pathways of toxicology, which is a key concept in the Tox21c report published
by the NRC [17]. Another key concept is to develop assays that can determine
chemical concentration ranges where a toxic response may be observed. This
question can begin to be addressed by designing assays that use a multiexposure
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approach, as was done when the targeted biomarker assay was developed. The
ongoing initiatives to move away from animal testing and develop in vitro mod-
els relevant to human biology are especially important in light of the Tox21 and
REACH programs in the United States and Europe. The technologies and assays
described in this chapter have the potential to address these needs.
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15
Immunogenicity of Protein Therapeutics:
Risk Assessment and Risk Mitigation
Harald Kropshofer

15.1
Introduction

In 1982, insulin was the first therapeutic protein that was approved for the treat-
ment of humans. Since then, more than 150 therapeutic proteins have entered
the marketplace worldwide [1,2]. Therapeutic biologics offer the advantages of
increased specificity and reduced toxicity compared with small molecules. How-
ever, while small molecules easily escape recognition by the human immune
system, protein therapeutics often surpass the thresholds for activating T and
B lymphocytes, thereby becoming immunogenic.
Currently, protein therapeutics hold an expanding place among medicinal

products: recombinant growth factors, cytokines, enzyme replacement proteins,
monoclonal antibodies, and fusion proteins have been approved for use in the
treatment of human diseases. As a consequence of the increasing number of
protein therapeutics under development, adverse effects associated with
immune responses to protein therapies became a subject of concern. For
example, anti-therapeutic antibodies (ATAs) that develop in response to a
therapeutic protein may alter the drug’s pharmacokinetic profile and abrogate
its pharmacodynamic effect (neutralizing activity) [3,4] or may cause safety
concerns, such as hypersensitivity reactions [5]. ATA formation may rely on
activated CD4+ T cells or may be independent of them. T-cell-independent
ATA responses may be generated when B cells recognize a repeated pattern
(motif) of the therapeutic protein. Those B cells may respond by transiently
producing low-affinity, predominantly IgM antibodies [6]. Antibodies that are
generated in conjunction with T-cell help are referred to as T-cell-dependent
or thymus-dependent ATAs. The latter process involves a complex interplay
among antigen-presenting cells (APCs), T cells, secreted cytokines, and B cells.
Hence, the presence of the IgG type of ATAs indicates that T cells are
involved in the immune response to a therapeutic protein. Moreover, a num-
ber of clinical studies now suggest that high levels of T-cell-driven IgG ATAs
have the potential to cross-react with the endogenous counterpart, an adverse
effect that can have serious consequences [3–6]. These types of serious
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outcomes resulting from cross-reactive ATAs have inspired the development
of a multitude of in vitro methods for measuring the presence of ATAs, which
have been carefully reviewed in several white papers [7–10]. In addition, meth-
ods for identifying drivers of T-cell-dependent immune responses have also
expanded and have been described in a number of publications in the past
decade [11–14].
Most recently, the European Medicines Agency (EMA) has published a

“Guideline on Immunogenicity Assessment of Biotechnology-Derived Thera-
peutic Proteins” [15], in which factors influencing the immunogenicity of
therapeutic proteins were classified into patient-, disease-, or product-related
categories. The patient- and disease-related categories describe factors that
may predispose a particular individual to an undesired immune response. In
contrast, product-related factors, that is, factors intrinsic to the final drug
product itself that contribute to immunogenicity, may include modifications
in the glycosylation profile, biophysical and biochemical attributes, or factors
introduced during formulation [16–19]. Table 15.1 summarizes some of these
patient-, disease-, and product-related factors that have the potential to influ-
ence immune responses to a biological therapeutic. Many of these factors

Table 15.1 Aspects increasing the immunogenic risk of a therapeutic protein.

Context Aspect Rationale

Patient Genotype � HLA haplotype: binder of T-cell epitopes
� Predisposition to allergy

Other medication � Premedication giving rise to cross-reactive ATA
Others � Age and sex

� Pre-existing ATA

Disease Immune status � TH2 status in allergic diseases
� Proinflammation in autoimmunity

Genotype � Expression of susceptibility factors, for example, par-
ticular HLA haplotypes

Product Drug substance � Sequence: neo T-cell epitopes
� Nonhuman glycosylation pattern
� Formation of aggregates in situ
� Mimic of nonredundant endogenous protein

Delivery � Intermittent dosing
� s.c. injection: erroneous exposure to dermis

Formulation � Excipients with costimulatory potential
� Extreme pH difference to neutrality
� Chelating agents

Manufacturing+ storage � Contamination with host cell proteins
� Manufacturing side products
� Impurities, leachates (e.g., silicone, etc.)
� Oxidation, deamidation, isomerization, and so on

Target � Receptor on immune cells
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have been identified as “critical quality attributes” in the FDA-sponsored
Quality-by-Design initiative that focuses on manufacturing “process
development” [20].
To better control the immunogenic potential of protein therapeutics, more

attempts are required to predict, mitigate, and monitor unwanted immune
responses during both the preclinical and the clinical development, in particular
in those cases where immune responses are suspected to give rise to safety
issues. This chapter will discuss current approaches and the strategies of how to
mitigate the immunogenicity risk in the clinical development of next-generation
protein therapeutics.

15.2
The Central Role of CD4+ T Cells

Typical immune responses to therapeutic proteins can be divided into two
categories: (i) activation of the classical adaptive immune system by so-called
foreign proteins, such as immune responses against pathogens or vaccines;
therapeutic proteins that replace endogenously lacking proteins would be
viewed as “foreign” to the immune system of an individual who is missing, in
whole or in part, the endogenous counterpart; and (ii) breakage of B- and/or
T-cell tolerance, for example, the response elicited to self-proteins in certain
autoimmune diseases. The underlying mechanisms are less well defined, but
may include epitope mimicry, cross-reactive T cells, and presence of activa-
tors of the innate immune system, such as toll-like receptor agonists and/or
aggregated proteins.
With regard to the classical immune pathway, production of ATAs is the cul-

mination of a series of events that leads to B-cell activation and subsequently to
differentiation into plasma cells that secrete ATAs. ATAs may be generated
under the control of CD4+ T cells or independent of T cells [21]. B cells are
activated in a T-cell-independent manner when particular structural patterns,
such as repeats of structural elements or carbohydrate molecules, directly induce
activation of B cells by cross-linking of the B-cell receptor. The resulting ATA
response is limited in both isotype (mainly IgM) and affinity; memory B cells are
either not generated or short-lived [21]. In contrast, CD4+ T-cell-dependent
activation of B cells is characterized by class switching (IgM to IgG) and devel-
opment of memory B cells that produce high-affinity and long-lived ATA
responses. The development of ATAs of the IgG type following the administra-
tion of a therapeutic protein generally indicates that the therapeutic is driving a
T-cell-dependent immune response.
Likewise, CD4+ T-cell help is required for the class switch from IgG ATA to

IgE ATA responses, which result in hypersensitivity reactions, such as type I
allergy, mediated by cross-linking of drug-specific IgE on the surface of mast
cells and/or basophils (Figure 15.1).
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15.3
Generation of T-Cell Epitopes

15.3.1

HLA Restriction

CD4+ T-cell-dependent ATA responses, by definition, are restricted by the
recognition of therapeutic protein-derived linear peptide fragments in the con-
text of human leukocyte antigen (HLA) class II molecules. These peptide frag-
ments are denoted as “T-cell epitopes” and are generated by APCs in the course
of protein antigen processing [22]. To this end, the therapeutic protein is taken
up by APCs and proteolytically processed into small peptides. Peptides that have
a length of at least 13 amino acids and a motif of so-called anchor amino acid
side chains, which fit into dedicated specificity pockets in the sole HLA peptide

Figure 15.1 The cellular orchestra giving
rise to hypersensitivity reactions triggered
by therapeutic proteins. A therapeutic pro-
tein that is injected subcutaneously may
have access to dermal dendritic cells that
are able to endocytose and cleave the pro-
tein into peptides. Peptides may form HLA-
DR–peptide complexes that – upon move-
ment of the respective dendritic cells into
dermal lymph nodes – may activate CD4+ T
cells. Interaction of these activated T cells
with the same HLA-DR–peptide complexes

on B cells may trigger B-cell differentiation
and production of anti-drug antibodies
(ATA). ATA generation may, eventually,
switch from the initial IgG to IgE production.
IgEs bound by Fcε receptors on mast cells
or basophils may be cross-linked by the
therapeutic protein they are specific for,
leading to secretion of histamine, tryptase,
prostaglandin D2 (PD2), and leukotriene C4,
which give rise to a hypersensitivity
reaction, for example, type I allergy or
anaphylaxis.
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binding cleft, may form HLA–peptide complexes (Figure 15.2). The appropriate
set of anchor residues is a guarantee for the formation of high-stability HLA–
peptide complexes, thereby facilitating sustained presentation of the respective
HLA–peptide complexes on the APC cell surface in order to activate CD4+ T
cells [22]. As human populations express a huge variety of different allelic var-
iants of HLA class II molecules, each peptide may bind to more than one HLA
allelic variant and, likewise, a single HLA allotype may form complexes with
more than one candidate T-cell epitope. The genetic polymorphism of the HLA
class II loci and its impact on the binding of specific peptide ligands make the
HLA genotype of patients a major determinant controlling immune responses to
protein therapeutics.
CD4+ T-cell recognition of a specific HLA–peptide complex, combined with

costimulatory signals delivered by the APCs, culminates in robust T-cell activa-
tion that, in turn, facilitates a mature ATA response. In the absence of activated
T helper cells, naïve B cells do not fully mature, and activated antigen-specific B
cells are rendered anergic or undergo apoptosis. Therefore, T-cell recognition of
peptide epitopes derived from protein therapeutics is a key determinant of CD4+

T-cell-dependent ATA formation.
A typical T-cell-dependent ATA response to a therapeutic protein antigen can

occur after one or two administrations of the respective protein therapeutic,
often persists for prolonged periods of time, and ultimately may neutralize the
therapeutic protein. Such an immune response is underlying the induction of
ATAs directed against blood replacement factor VIII (FVIII) in hemophilia
patients. Although the incidence and intensity of the immune response to FVIII
can vary depending on the extent to which endogenous FVIII is expressed in the
individual patient, ATA responses to FVIII are controlled by particular T-cell
epitopes [23].

α1 β1
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Figure 15.2 Binding of a T-cell epitope to a
HLA-DR molecule. Sequence of the immuno-
dominant influenza virus hemagglutinin T-cell
epitope that is promiscuously binding to
many allotypes of HLA-DR molecules (as
shown by the two subunits α1 and β1). The
HLA-DR molecule carries four specificity

pockets, denoted as P1, P4, P6, and P9, which
accommodate side chains of the peptide epit-
ope, denoted as “anchor residues”: Y, Q, T, and
L fit into pockets P1, P4, P6, and P9, respec-
tively. The residues up- and downstream of
the anchor residues are potential contact sites
for the interaction with the T-cell receptor.
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15.3.2

T-Cell Epitopes Controlling Immunogenicity

The presence versus abundance and the number of T-cell epitopes of a thera-
peutic protein can be exploited, in a first approximation, to assess the immuno-
genic risk. The underlying assumption is that the more stable the HLA–peptide
complexes formed the higher the likelihood that naïve CD4+ T cells will be acti-
vated and, subsequently, the more likely it is that B cells will generate ATAs [24].
This assumption in most instances leads to overprediction of immunogenicity, as
several aspects that are not taken into account by the T-cell prediction approach
may limit the formation of ATAs: (i) some T-cell epitopes may not give rise to
HLA–peptide complexes as they are never formed during antigen processing
(e.g., due to lack of protease cleavage sites), or they are formed but subsequently
destroyed by proteolysis; (ii) some T-cell epitopes may be removed from the HLA
binding cleft by the peptide editor HLA-DM as a consequence of kinetic proof-
reading [24]; (iii) some HLA–peptide complexes may not activate CD4+ T cells
due to lack of costimulatory signals, lack of appropriate T-cell receptors, or due
to peripheral T-cell tolerance; and (iv) some HLA–peptide complexes may acti-
vate CD4+ T cells that fail in activating B cells due to lack of costimulation, lack
of appropriate B cells, or due to B-cell tolerance. Hence, the localization of T-cell
epitopes within therapeutic protein sequences may be relevant as a first estima-
tion of the immunogenic potential of a protein therapeutic [16,18,24]. Other con-
siderations may have to follow in order to achieve a more meaningful assessment.
Importantly, the contribution of regulatory T cells (Tregs), which may produce
inhibitory signals in response to particular T-cell epitopes, has gained apprecia-
tion in the recent past. Methods for discriminating between regulatory and helper
T-cell responses (Treg and T helper, respectively) are discussed below.

15.4
Tolerance to Therapeutic Drugs

The absence of an immune response to autologous proteins is attributed to cen-
tral tolerance to proteins of an individual’s proteome. This is due to the fact that
during thymic development, T cells that respond to epitopes derived from
autologous proteins expressed in the thymus undergo deletion or are rendered
anergic [25]. However, tolerance to autologous proteins is incomplete: autoreac-
tive T cells do exist in the periphery in the context of autoimmunity and are also
present in the circulation of healthy individuals. Natural regulatory T cells
(nTregs) are generated in the thymus and circulate in the periphery. Upon acti-
vation, CD4+CD25+FoxP3+ nTregs are able to suppress bystander effector
T cells directed against unrelated antigens [26,27]. It is tempting to assume that
nTregs also control immune responses to therapeutic proteins that mimic or are
identical to autologous proteins, such as erythropoietin, thrombopoietin, or
glucagon-like peptide.
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Adaptive Tregs, developed in reaction to foreign antigens to which central tol-
erance may not exist, are an additional source of control over immune
responses [25]. Sustained tolerance (to exogenous proteins) may require the
existence of these “adaptive” or “induced” Treg cells (aTreg, also known as
iTreg) [26], with the same antigen specificity as the self-reactive effector T cells.
Administration of antigen in the absence of an innate immune stimulator (dan-
ger signal) can lead to tolerance; this approach has been used for the induction
of tolerance to allergens. A strong link connecting HLA, presentation of T-cell
epitopes (both regulatory and effector) in the context of HLA, and the mainte-
nance of peripheral tolerance has been described [28]. The implications of
immune control by nTregs and the induction of tolerance via aTregs will be dis-
cussed in greater detail below.

15.5
Tool Set for Immunogenicity Risk Assessment

Given the complexity of aspects that apparently control T-cell-dependent ATA
responses against protein therapeutics, immunogenicity assessment involves a
multistep approach. The first step may be to analyze the amino acid sequence of
the protein of interest for the presence of T-cell epitopes. Subsequent steps may
exploit a variety of human cell-based methodologies, including HLA/peptide
binding assays, assays based on whole blood-derived cells, or humanized mouse
models.

15.5.1

Epitope Determination

15.5.1.1 In Silico Screening
While the medium length of HLA-associated T-cell epitopes is 15–16 amino
acids, the core that mainly defines the stability of HLA–peptide complexes has a
length of only 9–10 amino acids [29]. As a consequence, algorithms localizing
potential T-cell epitopes based on the amino acid sequence of a protein have
been developed. Databases such as the Immune Epitope Database Analysis
Resource (IEDB; www.tools.immunoepitope.org) provide the raw material for
developing T-cell epitope prediction tools [30]. A common denominator among
these tools is the ability to quickly screen large data sets, including whole
genomes or proteomes, for putative T-cell epitopes. The vast majority of
in silico tools used in pharmaceutical development focus on T-cell epitopes
restricted by HLA-DR molecules, mainly because there is no evidence that the
other two types of HLA class II molecules, HLA-DQ or HLA-DP, contribute
substantially to the immunogenicity of therapeutic proteins.
The computational approach to localize helper T-cell epitopes is well accepted

in vaccine discovery efforts [31] and in approaches to identify epitopes that con-
tribute to autoimmunity [32]. In the context of therapeutic proteins, several

15.5 Tool Set for Immunogenicity Risk Assessment 353

http://www.tools.immunoepitope.org


studies have demonstrated the predictive potential of these in silico algo-
rithms [33,34]. In parallel, tools have been developed to rank therapeutic pro-
teins according to their T-cell epitope content [35] and to define means of
modifying the epitope content of therapeutic proteins [36]. Application of
in silico tools reduces downstream in vitro testing and provides an opportunity
in early development to decrease the immunogenic potential of protein thera-
peutics. As the currently available in silico algorithms do not take into account
proteolytic destruction of potential T-cell epitopes, competition at the HLA level
by endogenous peptides, or failures in the cellular generation of T-cell epitopes,
in silico screening performed in isolation is known to be overpredictive, leading
to false positives. However, in silico tools provide the advantages of high
throughput, low cost, and the ability to reduce the search space for downstream
testing, such as HLA binding, antigen processing, and T-cell assays that comple-
ment in silico testing.

15.5.1.2 Peptide Elution
An assay that overcomes the issue of overprediction of in silico tools is the
MAPPs (MHC-associated peptide proteomics) technology [29]. It is based on
human dendritic cells that are coincubated with the therapeutic protein of
choice in vitro and subsequent mass spectrometry-based sequencing of peptides
after elution from HLA-DR molecules [37]. This technology allows the identifi-
cation of truly processed and presented peptide epitopes derived from the cellu-
lar source, human dendritic cells, which are responsible for priming of CD4+

T cells in vivo. The MAPPs approach led to the identification of novel helper
T-cell epitopes in the context of tumor antigens [38] and T-cell epitopes of the
therapeutic protein Betaseron, which are supposed to give rise to neutralizing
ATA responses (unpublished results). While the MAPPs technology allows
derisking those T-cell epitopes that are predicted by in silico tools rather than
being presented to T cells, there is still room for improvement with regard to
sample throughput and cost, thereby making this approach less attractive for
screening purposes.

15.5.2

HLA Binding Assays

In vitro HLA class II binding assays can be used to confirm the T-cell epitopes
located by in silico screening and peptide elution. Different test principles are
available, as outlined in the following.

15.5.2.1 Competition Binding Assay
Here, peptides supposed to be T-cell epitopes are tested for their ability to
compete against a labeled peptide that is known to be a cognate T-cell epit-
ope in association with the respective HLA class II molecule [39]. A nonlinear
regression analysis is used to calculate the IC50 (concentration of test peptide
required to compete off 50% of the target peptide). Binding assays can be
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performed for a broad representation of HLA alleles to cover the ethnic
groups of interest [39]. One drawback of this method is that the resulting
affinity values are relative to a standard reference peptide. As the reference
peptides differ from HLA allele to allele, the outcome of this analysis is rela-
tive affinities and a true comparison is valid only for the same HLA allele but
not across HLA alleles.

15.5.2.2 Real-Time Kinetic Measurements
This technology determines the rate at which peptides interact with HLA mole-
cules in vitro. Protocols based on fluorescence polarization are suitable for
kinetic studies, allowing multiple readings to be taken throughout the binding
reaction [40]. In addition, surface plasmon resonance methods may be employed
to measure peptide binding to HLA class II molecules in real time [41].
In summary, HLA binding assays may improve the accuracy of immunogenic-

ity predictions when applied in a stepwise process after in silico screening of
whole protein sequences and before the conduct of a biological assay, such as
enzyme-linked immunosorbent spot-forming (ELISpot) assays or a T-cell activa-
tion assay.

15.5.3
T-Cell Activation Assays

In vitro assays involving peripheral blood-derived T cells have been used in
transplantation research to assess the risk of engrafted T cells reacting against
host tissue (graft-versus-host disease (GvHD)). Adaptation of these assays to
the development of protein therapeutics adds another level of scrutiny to pre-
clinical assessment of the risk of immunogenicity. Several surrogate markers
for T-cell activation have been established for these in vitro assays, such as
cytokine secretion, surface markers of activation, signal transduction events,
and proliferation.

15.5.3.1 Cytokine Release
Enzyme-linked immunosorbent assay (ELISA) and ELISpot are two related
methods for measuring cytokines secreted by activated T cells (i.e., IFN-γ, IL-2,
IL-4, and IL-10) [42]. The ELISA is used to qualitatively and quantitatively ana-
lyze the cytokines in culture supernatants generated under conditions of T-cell
stimulation. The ELISpot assay provides information regarding the number of
cytokine-producing cells (down to one cell per million) within a cell population
stimulated ex vivo. The ELISpot assay is considered to be more sensitive and
quantitative than the ELISA.
Intracellular cytokine staining measured by flow cytometry is another method

for detecting cytokines and linking their expression to the phenotype of individ-
ual cells [43]. The flow cytometry test can be used to accurately measure T-cell
functionality relative to the phenotypic classification of CD4+ T cells based on
cell surface markers.
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15.5.3.2 T-Cell Proliferation
T-cell proliferation in response to stimulation by a HLA–peptide complex can
be measured either by the incorporation of tritiated thymidine into the DNA of
dividing cells or by the dilution of a fluorescent dye, carboxyfluorescein succini-
midyl ester (CFSE), that decreases in fluorescence intensity by half with each
round of cell division, as determined by flow cytometry. In addition to CFSE
labeling, cells can be costained for expression of markers that allow differentia-
tion of regulatory versus (Th1/Th2) effector T-cell phenotypes.
To address the HLA diversity of a given patient population, the number of

individual blood samples that need to be tested is quite large (n> 40), and the
blood volume per sample ranges from 15ml to more than 50ml. Hence, mainte-
nance of a large supply of blood samples from prequalified donors is mandatory.

15.5.3.3 Tetramers
Fluorescently labeled tetrameric complexes of HLA class II molecules loaded
with the peptide of interest (i.e., “tetramers”) can be used to quantitatively ana-
lyze T cells recognizing a particular T-cell epitope.

15.5.3.4 Naïve T-Cell Assay
Naïve peripheral blood mononuclear cells (PBMCs) are being used to assess the
immunogenicity potential of therapeutic proteins [11,14,44]. It was postulated
that the higher the frequency of precursor T cells that recognize a certain T-cell
epitope, the higher the immunogenic potential of the respective T-cell epit-
ope [45]. Antigen stimulation, sometimes over several weeks, is often required
to expand sufficient numbers of T cells. What is not known is how expansion
affects the ratio of regulatory and effector T cells.

15.5.3.5 T-Cell Stimulation by Whole Therapeutic Proteins
The recognition of whole therapeutic proteins requires the presence of an APC
that is capable of processing and presenting peptides derived from the pro-
tein [14]. Human monocyte-derived dendritic cells revealed to be very useful
with regard to antigen processing in vitro closely reflecting antigen processing
by professional APCs in vivo.

15.5.3.6 T-Cell Responses in Artificial Lymph Nodes
Several artificial lymph node (ALN) systems have been developed to mimic, in
three-dimensional structures, the natural lymph node environment of T-cell
responses [46,47]. Typically, human blood-derived dendritic cells are cultured
in transwells partitioned by human vascular endothelial cells. Addition of
autologous CD4+ T cells to the coculture allows the migration of activated
APCs through the transwells, mimicking the migration of APCs from the
periphery to the lymph nodes. CD154, IFN-γ, IL-2, IL-5, and IL-17 are surro-
gate markers for activated CD4+ T cells. A good correlation between previ-
ously established immune responses in vivo and ALN immunogenicity has
been observed, at least for protein-based vaccines [48]. Currently attempts are
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underway to exploit ALN models for the prediction of immunogenicity of
therapeutic proteins.

15.5.4
Mouse Models

To overcome species barriers that limit the translation of results obtained in
mice to humans, numerous activities are currently in progress to develop
improved murine in vivo models. These attempts will be discussed in Sec-
tions 15.5.4.1 and 15.5.4.2.

15.5.4.1 HLA Transgenic Mice
The HLA transgenic lines are generated by incorporation of human HLA class II
genes into murine MHC class II-deficient mice, generating mouse strains that
express selected HLA class II molecules [49,50]. These mice present epitopes in
the context of human HLA molecules, and their T cells recognize epitopes pre-
sented by HLA class II molecules. HLA transgenic mice are most useful when
directly comparing two proteins that are very similar (such as FVIII and versions
of FVIII that have fewer epitopes or new glycosylation variants) [36]. A direct
correlation has been found between epitopes that elicit T-cell responses in
infected humans and those that induce T-cell responses in immunized HLA
transgenic mice [51,52].
HLA transgenic mice were successfully used in combination with in silico

T-cell epitope screening for deimmunizing a therapeutic protein, as reported
recently [36]. An in silico algorithm localized immunogenic peptides within the
C2 domain of the therapeutic protein FVIII. Amino acid changes were intro-
duced within the T-cell epitopes to abolish or at least reduce binding to the
human allotype HLA-DR3, as confirmed in a HLA binding assay. Subsequently,
HLA-DR3 transgenic mice were used to demonstrate that immunization with
the deimmunized epitopes gave rise to significantly reduced immune immunoge-
nicity while the original epitopes were immunogenic [53].
In conclusion, this is a good example of how a combination of in silico screen-

ing, in vitro testing, and HLA transgenic mice can be applied early in develop-
ment to mitigate the immunogenicity risk of a therapeutic protein that is known
to impose an unacceptable immunogenicity risk in its original version.

15.5.4.2 Humanized Mouse Models
Mice engrafted with a functional human immune system, denoted as “human-
ized,” are currently explored to study, among other aspects, human hematopoie-
sis, stem cell function, and immunogenicity. Immunocompromised SCID/NOD/γ
chain�/� or RAG2�/�/γ chain�/� mice, utilized as recipients to facilitate accep-
tance of human tissue, are engrafted with functional human CD34+ hematopoi-
etic stem cells, human liver, and human thymus [54]. The result is a cohort of
mice in which human myeloid and lymphoid lineages are reconstituted from a
single human donor, and the interactions of these cells in a complex biological
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environment can be studied. XenoMouse and the humanized mice such as
NOD/Shi-scid/IL-2Rγnull mice (NOG), NOD/scid/IL-2 receptor gamma chain
knockout mice (NSG), bone marrow, liver, and thymus mice (BLT), and bone
marrow transplanted mice (BMT) have all been used as animal models to evalu-
ate human immune responses [54–57].
While humanized mice provide functional and testable elements of the innate

and adaptive human immune system without putting patients at risk [58], cer-
tain aspects of a fully functional human immune system critical for immunoge-
nicity risk assessment are lacking: the ability to elicit the complete spectrum of
B-cell antibody responses or the ability to proteolytically process antigens in the
way human endosomal/lysosomal proteases do. Likewise, the humoral immune
response in the XenoMouse is restricted by murine MHC and T-cell help but is
not as robust as in wild-type mice, potentially due to inefficient signal transduc-
tion and isotype switching mediated by accessory factors that are necessary for
B-cell maturation. Hence, the utility of such a model to study immune responses
to human proteins remains somewhat limited.
In conclusion, more work is required to leverage mouse models to accurately

reflect human immune responses before they can become routine tools to assess
the immunogenic potential of therapeutic proteins.

15.5.5

Case Studies

15.5.5.1 Translation of In Silico and In Vitro Data into Clinical Context
Koren et al. demonstrated a correlation between the in silico evaluation of
T helper epitope content of a protein therapeutic and its observed immunoge-
nicity in a clinical trial [33]. The therapeutic protein was a recombinant Fc
fusion protein (FPX) consisting of human germline Fcγ fragment with two iden-
tical, biologically active, 24-amino-acid peptides attached to the amino-terminal
end of the Fc fragment. Clinically, a single subcutaneous or intravenous adminis-
tration of the fusion protein resulted in a robust ATA response: high-affinity
binding antibodies were found in 40 and 33% of total individuals, respectively.
Based on a retrospective in silico analysis, the carboxy-terminal region of the

peptide scores high for binding to five of eight common HLA molecules, sug-
gesting that this peptide carries considerable immunogenic potential. In parallel,
T-cell-mediated recall responses to the therapeutic protein were assessed
in vitro: PBMC activation by the FPX peptide and the amino-terminal and car-
boxy-terminal fragments thereof was measured as a function of the number of
IFN-γ and IL-4 spot-forming cells (SFCs) in a standard ELISpot assay. The cyto-
kine data supported the in silico data and correlated with the ATA data obtained
in a clinical trial.
Immune responses both in vivo and in vitro to different regions of the protein

and to different HLA-DR allotypes also support the in silico predictions: the car-
boxy-terminal region of the FPX peptide showed the highest MHC binding score
in the context of the HLA-DRB1*0701 allele. T-cell and antibody responses to
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this fragment were observed in vitro and in vivo, respectively, for individuals
sharing the HLA-DRB1*0701 allele. In contrast, the DRB1*0301 allele had very
low MHC binding scores, and patients who expressed the DRB1*0301 molecule
but not any of the other high-binding alleles demonstrated low responses in
ELISpot and no evidence of an ATA response. The immunogenicity of the FPX
fragments and the association between clinical results and the HLA class II
alleles were supported in the naïve blood T-cell assay in further studies per-
formed by Jawa and coworkers [14,33].
In summary, the in silico prediction of immunogenic T helper cell epitope(s)

within the carboxy-terminal region of the FPX peptide and the data obtained
in vitro with T-cell activation assays correlated in qualitative and quantitative
terms with ATA responses observed in clinical trials.

15.5.5.2 Link between HLA Haplotype and Immunogenicity: In Vivo versus In Vitro

An association between the HLA-DRB1*0701 allele and a strong ATA response
to recombinant IFN-β was reported in a cohort of multiple sclerosis patients [59].
Potential IFN-β T-cell epitopes were identified using a peptide library and a HLA
binding assay, involving B-cell lines expressing the relevant HLA-DR alleles.
Peptides were synthesized as overlapping 17-mers covering the entire sequence
of IFN-β and grouped into 10 peptide pools. Recall responses from patients
subjected to IFN-β therapy were assessed in vitro by utilizing an IFN-γ ELISpot
T-cell assay. T cells from ATA-positive subjects (HLA-DRB1*0701/HLA-
DQA1*0201) secreted high levels of IFN-γ in the presence of 2 of the 10 peptide
pools tested, while antibody-negative subjects showed no response. Peptide
pools could be deconvoluted to identify the minimal T-cell epitope recombinant
IFN-β and HLA-DRB1*0701 to be the restricting HLA class II allele.
Stickler et al. have observed that the DRB1*1501/DQB1*0602 haplotype is

associated with a high potential of naïve CD4+ T cells to react against human
IFN-β in vitro [60]. In accordance, the C-terminal IFN-β peptide 147–161 was
eluted from HLA-DR molecules after IFN-β exposure of human dendritic cells
expressing the DRB1*1501 allele (H. Kropshofer, unpublished). Due to limita-
tions in the number of subjects tested, a clinical correlation with the HLA-
DRB1*1501 allele could not be detected in the previous study [59].

15.6
Immunogenicity Risk Mitigation

Several different preclinical approaches to mitigate the immunogenicity of thera-
peutic proteins are currently under consideration: (i) modification of the thera-
peutic protein by pegylation and/or glycosylation to mask potential T-cell
epitopes, thereby reducing recognition by the immune system; (ii) modification
of immunodominant T-cell epitopes to remove anchor residues critical for HLA
binding, denoted as “deimmunization,” thereby disrupting their potential to acti-
vate T cells; and (iii) strategies to tolerize the immune system to the therapeutic

15.6 Immunogenicity Risk Mitigation 359



protein. The concepts of deimmunization and tolerization will be discussed in
more detail. Clinically, it is often feasible to balance aspects that are known to
impact the immunogenicity risk, such as the purity of a drug product or the
mode of administration, as discussed below.

15.6.1

Deimmunization

The first published attempt to deimmunize a protein involved the introduction
of alanine substitutions into the protein staphylokinase, leading to a reduction of
the potential to both activate T cells in vitro and trigger ATA responses
in vivo [61]. This pioneering approach was followed by a number of further dei-
mmunization studies [62–65]. Ongoing efforts include deimmunization of botu-
linum neurotoxin type A, lysostaphin, and factor VIII [36].
It is obvious that the utility of this approach depends on the location and

extent of amino acid changes and the impact of those changes on the phar-
macological activity of the modified protein. A compromise between the
number of residues necessary to abolish HLA binding while maintaining the
pharmacological activity of a therapeutic protein may eventually lead to less
immunogenic proteins while preserving their therapeutic potential. Several
deimmunized therapeutic proteins are currently in clinical evaluation [61];
hence, future clinical trial results will reveal whether deimmunized biothera-
peutic proteins display acceptably low incidences of immunogenicity and
associated safety events.

15.6.2

Tolerization

Active interference with CD4+ T-cell responses to protein therapeutics by
inducing tolerance to the drug is an approach that has attracted significant
interest in the recent past. Tolerance induction may be achieved by the use
of nondepleting anti-CD4 antibodies [66,67]. An alternative approach
employed IVIGs (intravenous immunoglobulins): IVIGs induce tolerance in
solid organ transplantation [68], in the context of neutralizing ATAs against
FVIII [69], and to inhibit ATA formation in Pompe patients undergoing
Myozyme treatment [70]. De Groot et al. have identified a set of natural,
human regulatory T-cell epitopes (“Tregitopes”) present in the Fc and Fab
domains of IgG that have also been shown to induce tolerance to coadminis-
tered proteins [62]. When incubated with PBMCs in vitro, Tregitopes activate
CD4+CD25+Foxp3+ T cells and increase expression of regulatory cytokines
and chemokines [62]. Methods for coadministering Tregitopes with protein
therapeutics are currently under development. However, as yet, it is open
whether Tregitopes are suitable to induce tolerance against therapeutic pro-
teins in humans when Tregitopes are utilized outside their intrinsic IgG
sequence context.
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15.6.3

Clinical Control of Immunogenicity Risk Factors

Risk minimization at the preclinical stage is of key importance since only then
it is feasible to implement deimmunization and tolerization approaches, as
described above. However, also at the clinical development stage it is important
to set up risk mitigation strategies prior to running proof-of-concept studies.
In most instances, the indication, the patient population, and the PK/PD of the

drug predetermine a number of immunogenicity risk factors, while other risk
aspects are still variable, depending on the exact design of a clinical study. For
example, in type 2 diabetes (T2D), the genotype and the pre-/comedication of
patients are expected not to impose an elevated risk for immunogenicity, nor is
this the case from the perspective of typical T2D targets that are unrelated to the
immune system. As a consequence, even a combination of subcutaneous
administration of a protein therapeutic and intermittent dosing at moderate
dose levels may be uncritical with regard to the immunogenicity risk. A success-
ful risk mitigation strategy, however, should not accept additional risk factors,
for example, formulation-related risk factors such as particular excipients, an
elevated likelihood of formation of aggregates in situ, or elevated levels of
impurities, such as host cell proteins or manufacturing side products.
In conclusion, immunogenicity risk mitigation starts with the amino acid

sequence and the final structure of a therapeutic protein, but there is a need to
continue with risk mitigation efforts during early- and late-stage clinical devel-
opment by balancing risk factors related to the design of the formulation, the
manufacturing process, and the clinical studies per se.

15.7
The Integrated Strategy of Risk Minimization

Given the potentially severe impact of unwanted immunogenicity on the devel-
opment of therapeutic protein drugs, there is increasing interest at both the
preclinical and clinical stages to have in place an integrated strategy of im-
munogenicity risk mitigation. A multitiered approach promises most success
and is outlined here (Figure 15.3).

Tier 1: HLA association (during lead selection)
At the lead selection stage, the drug candidates shall be subjected to a com-

bination of in silico screening and in vitro HLA binding or, alternatively, the
MAPPs approach. Such a combinatorial approach is mandatory for proteins
that are not identical in structure to endogenous proteins, even if only a single
amino acid has been changed compared with the native molecule. In case of
human or humanized monoclonal antibodies, primarily the CDR regions need
to undergo an in silico screen or a MAPPs assay [71]. Synthetic peptides
reflecting the regions identified as potential T-cell epitopes by the in silico test
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need to be synthesized and tested in a HLA binding assay (covering at least
10–15 major HLA haplotypes) to confirm their true nature as T-cell epitopes.
In case T-cell epitopes have been identified by the HLA binding assay, these
peptides need to be subjected to tier-2 testing. In case no T-cell epitopes were
found in tier 1, there is no need for tier-2 testing – tier-3 considerations will
apply then (see below).
Tier 2: T-cell activation (during lead selection)

The set of potential T-cell epitopes identified in tier 1 need to be tested for
T-cell activation, preferentially in the context of blood cells derived from a
representative set of patients rather than healthy volunteers. It is recom-
mended to utilize at least two independent readouts of T-cell activity to
ensure a balance between specificity and sensitivity. The added value of the
T-cell activation assay is threefold: (i) the use of whole therapeutic protein
rather than peptides only may enable the evaluation of processing-associated
changes, such as posttranslational modifications, misfolding, or storage-related
changes, such as deamidation or oxidation or formation of aggregates; (ii) the
use of fully formulated therapeutic protein may allow the detection of formu-
lation-related effects; and (iii) the use of patient-derived T cells and antigen-
presenting cells may help to better understand disease-specific characteristics
that may impact the immunogenicity risk. In case the therapeutic protein tests
positive in tier 2, a deimmunization effort may need to be taken into consider-
ation in order to reduce the immunogenicity risk. If a deimmunization cannot
be carried out, because of otherwise negative consequences on the biological
activity, more emphasis needs to be put onto tier 3.

HLA Association
- in silico screening

- peptide elution (cell-based)

- HLA binding in vitro

T-Cell Activation

- healthy volunteers versus patients
- use of formulated drug product

negativepositive

positive negative

TIER 1:
(pre-
clinical)

TIER 2:
(pre-
clinical)

Enhanced Risk Control
- consider deimmunization

- tight balancing of risk factors
- thorough ATA monitoring

- thorough safety monitoring

TIER 3:
(clinical)

Conventional Risk

Control

- conventional ATA monitoring
- thorough safety monitoring

Figure 15.3 The integrated strategy of risk minimization.
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Tier 3: Risk control (during clinical development)
The risk mitigation strategy during clinical development needs to be based

on the outcome and follow-up activities of the preclinical tier-1 and tier-2
approaches: for example, in case a deimmunization was carried out, the risk is
lower compared with the situation when a protein tested positive in tier 1 and
tier 2, but a deimmunization could not be done. Likewise, a low ATA inci-
dence (�10%) in phase I/II indicates a lower risk, while ATA incidences
>25% may impose an elevated immunogenicity risk for phase III clinical trials
so that the implementation of a risk mitigation plan is more obvious. Depend-
ing on which other factors are suggestive of an elevated risk during the devel-
opment program, for example, presence of a nonredundant endogenous
counterpart of the protein drug, target is a structure on immune cells, drug
will be dosed lifelong, and/or drug will be used in an autoimmune indication,
the risk mitigation plan needs to be designed differently.

15.8
Summary

Since unwanted immunogenicity of therapeutic proteins may trigger serious
adverse events – though rare in incidence – FDA and the EMA are recommend-
ing that each development program be accompanied by an immunogenicity risk
assessment strategy [19]. The recent EMA guidance mentions “predictive immu-
nogenicity” as an approach sponsors could consider in their preclinical studies
[19]. The historical focus has been on measurement of ATA responses as the
readout for immunogenicity, supported by the obvious consequences of ATA
responses on the pharmacokinetics, efficacy, and safety of therapeutic proteins.
At present, drug developers are applying strategies to assess and modulate

humoral and/or cell-mediated immune responses directed against protein thera-
peutics at both the preclinical and clinical phases of development. Guidelines for
standardizing immunogenicity testing of protein therapeutics across the industry
are emerging from these activities. Efforts to reduce the immunogenic potential of
protein drugs are also becoming more and more common – drugs that have been
deimmunized or tolerized are expected to enter the clinic within the next few years.
A wide range of immunogenicity testing tools are available for determining

whether or not a protein therapeutic is more or less likely to elicit a detrimental
immune response in patients. Given the complexity of the immune system, com-
binations of multiple methods need to be employed to most closely estimate and
mitigate immunogenicity risk. As yet, we have leveraged considerably the possi-
bility to localize immunogenicity hotspots within proteins. The next challenge
will be to deepen our understanding on what factors link ATA incidence to
safety-related events, such as hypersensitivity or infusion reactions. Further
evolving tests and the elucidation of safety biomarkers will eventually impact
drug development by reducing drug failure, costs to pharmaceutical industry,
and risks to patients.
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16
Regulatory Aspects
Beatriz Silva Lima

16.1
The History of Medicines Regulations in Brief

16.1.1

United States of America

The history of drug regulation in the United Sates and Europe has been shaped
by accidents with medicinal products. The sulfanilamide disaster was decisive for
the amendment of the US Food and Drug Act dated 1906. In 1937, around
107 deaths, mostly children (the target population), occurred following the use
of a sulfanilamide liquid formulation containing polyethylene glycol as solvent.
The new Federal Food, Drug, and Cosmetic (FDC) Act of 1938 contained a new
request for proof of safety of new drugs before reaching the market [1]. Subse-
quently, the thalidomide disaster, which occurred in Europe in the late 1950s,
had a major impact on the US drug regulations. Thalidomide was synthesized in
1954. In 1958, it headed the over-the-counter sales in West Germany as new
sedative pills, and in 1961 it was marketed in 46 countries throughout Europe,
also used to reduce nausea in pregnant women. The drug-induced birth defects
occurred in about 13 000 babies, mostly in Germany and England. Babies were
without hands, feet, toes, or fingers, like flippers growing out of their shoulders
and trunk (phocomelia). Although not marketed in the United States (it was
refused by FDA, thanks to Dr. Frances Kelsey), it had been distributed out of
market, seeming that 40 malformed babies were born [2]. Triggered by thalido-
mide, in 1962 the Kefauver Harris amendment quoted that animal models be
used to predict human response and avoid another tragedy [3]. Thalidomide ter-
atogenicity could not be reproduced in the rat and the mouse, and was only
observed in the rabbit, although not in all strains [3]. Consequently, the rabbit
(or a nonrodent species) has been included as one of the two species for terato-
genicity studies of all new drugs. This request still persists, at least for new small
molecules. Interestingly, while triggering this quote, it is worth referring that
animal predictivity for thalidomide teratogenicity is poor, even the White
New Zealand rabbit demonstrated phocomelia only at a dose between 25 and
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300 times that given to humans [3], and in multiple studies and species, thalido-
mide has revealed teratogenicity only occasionally [4]. Following the Second
World War, the FDA recommended an extensive battery of tests for chemicals
relying on animal toxicity studies, justified by the inevitability of exposure to
novel synthetic chemicals (Table 16.1).
Only in 1955 specific guidance pertaining to medicinal products was incorpo-

rated in the FDA guidance [6]. Studies requested for marketing authorization of
medicines and chemicals were aligned. Later in 1962, carcinogenicity studies had
been established and guidelines for toxicity tests for all drugs were written
(known as the Lehman Guidelines) to assist the pharmaceutical industry to com-
ply with the new law. The standardized carcinogenicity protocols developed
were the basis for the current 2-year rodent carcinogenicity studies [6].

16.1.2
Europe

In European countries, before the thalidomide tragedy, it was not mandatory to
submit proofs of safety, efficacy, or quality data to Health Authorities prior to
marketing of medicinal products. The thalidomide disaster led to the reshaping
of the regulatory system in countries such as Germany (where the manufacturer
of thalidomide was based) and the United Kingdom [7]. In the European Union,
the harmonization of the requirements for drug approval started in 1965 with
the introduction of several Council Directives [8–11]. Through the latter, the
Committee for Proprietary Medicinal Products (CPMP) was established as an
advisory committee to the European Community. These directives were the
starting point for the “common market” for medicines. In 1993, the European
Medicines Evaluation Agency (EMEA) was created, with the CPMP, currently
CHMP (Committee for Human Medicinal Products), to formulate the Agency
opinions on centralized applications and granting marketing authorizations [12].
Harmonized guidelines on nonclinical safety requirements for marketing
medicinal products in the European Community were published in 1989 [13].

Table 16.1 Preclinical tests required by the Division in “Procedures for the appraisal of the
toxicity of chemicals in foods,” September 1949 [5].

A. Pharmacodynamics Including measurements of blood pressure, respiration, and heart
rate. The results of these studies could be used to plan further tests

B. Acute toxicity The determination of this index involved compiling a dose–response
curve, using a minimum of three species for comparison of symptoms

C. Subacute toxicity Daily doses to be given to one or more species for 6–12 weeks to be
used as a guide in the design of chronic experiments

D. Chronic tests Chronic tests, three or more species to be used, one for the duration
of its lifetime (rats suggested)

E. External effects External effects, sensitization, skin irritation, and so on
F. Special studies Special studies such as reproduction, hematology, absorption, and

excretion
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The main nonclinical studies in the document were in line with those estab-
lished in the United States, including single- and repeated-dose toxicity,
genotoxicity, reproductive toxicity, carcinogenicity, and pharmacokinetic and
metabolic studies.

16.1.3

The International Conference on Harmonisation

The harmonization of the requirements for medicines approval achieved in the
European Community has evidenced its feasibility and led to the expansion
across the major regions of the world. The International Conference on Harmo-
nisation (ICH) started in 1990 aiming at overcoming discrepancies in the
requirements for the marketing authorization applications in the United States,
Japan, and Europe [14]. The most reasonable, scientifically sound approaches are
adopted based on the state of the art and the shared experience among the
stakeholders: Pharmaceutical Industry Associations/Regulatory Agencies in the
United States (Pharma/FDA), Europe (EFPIA/EMA), and Japan (JPMA/PMDA).
Major achievements have been reached through harmonized guidelines, which
facilitated the development and marketing of medicinal products in all regions
involved, based on the same data. The harmonized preclinical paradigm cur-
rently in place is well defined in the ICH M3(R2) guideline, which addresses all
the nonclinical safety studies needed to support the clinical trials and marketing
authorization of medicinal products. The core study program determined in the
ICH M3(R2) guideline involves (i) pharmacodynamic studies to characterize the
primary, secondary, and safety pharmacology performed in vitro and in vivo,
including animal models of disease; (ii) pharmacokinetic studies in multiple spe-
cies; (iii) general toxicity studies (repeated-dose toxicology studies) conducted in
rodents and nonrodents, whose durations depend on the duration and type of
clinical trials (3–6 months in rodents and up to 9 months in nonrodents);
(iv) reproductive toxicity studies; and (v) carcinogenicity studies when applicable
(e.g., for drugs to be used more than 3 months in a lifetime). In addition, other
studies may be needed addressing, for example, neurotoxicity, immunotoxicity,
and phototoxicity, anticipated by specific molecular attributes or from findings
observed in the core studies. Despite the advances reached within ICH, few
changes were introduced in the design and content of the basic preclinical para-
digm, in place in the United States since 1955/1962 and in the European Union
since 1983/1989. Indeed, the main changes introduced in the last half-century
are mostly adjustments of study protocols, criteria for species selection, intro-
duction of innovative biochemical parameters, or new study requirements, such
as immunotoxicity or toxicokinetics, or the exploratory clinical trials. Therefore,
the ICH requirements mostly reflect the technological advances incorporating,
for example, imaging, analytical tools, omics, and so on, but the mostly animal-
based test battery has not substantially changed. One area that is under revision
and may undergo substantial changes is the carcinogenicity (ICH S1 topic),
based on the experience gained by industry and regulators with the rodent
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carcinogenicity studies, and the mechanisms identified as well as new tools
under development (in vitro, for example, omics). The revised strategy faces the
prediction rather than the observation of tumors in rodents and the human rele-
vance of eventual positives, taking into consideration the human benefits and
risks. The carcinogenicity assessment would/will be based on an integrated eval-
uation of the drug attributes, its structural features, biological activity, mitogenic
properties, promoting activity, and so on, through, for example, well-established
in vitro systems, together with the accumulated knowledge on multiple targets
and their associated effects (drug pharmacology). The “weight-of-evidence”
approach, which puts together all collected evidence, would/will desirably super-
sede the lifelong rodent study. Adding to these innovative proposals, omics-
based approaches, based on the identification of cancer biomarkers, are the sub-
ject of dedicated projects, as is the case for the IMI-sponsored MARCAR project
“Biomarkers and molecular tumour classification for non-genotoxic carcinogen-
esis” [15]. Therefore, the value of conducting lifelong rodent studies to assess
carcinogenicity as a default is being challenged, and in many situations it could
be waived. Such approach is already accepted for biologics (Section 16.4.1). Also,
some innovative approaches for clinical trials, potentially affecting the preclinical
paradigm, have been incorporated in the ICH M3(R2) guideline [16]. Those tri-
als are exploratory in nature, and can be used during the screening phases for
selecting lead candidates. The main protocols are summarized in Table 16.2.
These new type of proof-of-concept clinical studies constitute an important

modernization of the current paradigm, opening the opportunity for including
human data in the preclinical phases, supported by adapted and reduced pre-
clinical study packages compared with the “classical” phase I–III clinical studies.
They may provide information on pharmacodynamics/pharmacokinetics rele-
vant for drug selection or development, for example, testing safety or efficacy
biomarkers. In the context of ICH, safety discussions are regularly organized to

Table 16.2 Design of exploratory clinical trials according to ICH M3(R2) guideline.

Designation Trial design

Approach 1 Total dose �100 μg (no interdose interval limitations) and total dose �1/100th
of the NOAEL and �1/100th of the pharmacologically active dose (scaled on
mg/kg for i.v. and mg/m2 for oral)

Approach 2 Total cumulative dose �500 μg, maximum of five administrations with a wash-
out between doses (six or more actual or predicted half-lives) and each dose
�100 μg and each dose �1/100th of the NOAEL and �1/100th of the pharma-
cologically active dose

Approach 3 Single-dose studies at subtherapeutic doses or in the anticipated therapeutic
range

Approach 4 Dosing up to 14 days in the therapeutic range but not intended to evaluate clin-
ical MTD

Approach 5 Dosing up to 14 days and not to exceed duration of dosing in nonrodents; in
therapeutic range but not intended to evaluate clinical MTD
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evaluate strategies and to work on new opportunities for guidance adaptations or
innovations, in line with technological and scientific advances. However, the
hurdle is high. Indeed, any modifications of existing requirements, based on new
paradigms, can only be accepted by the Regulatory Authorities if there is proof
of at least similar predictive potential for human effects, or other type of advan-
tages in line with the principles of reduction, refinement, or replacement of the
existing animal tests (3Rs).

16.2
Impact on Drug Success of the Current ICH Nonclinical Testing Paradigm

The expectations for ICH-based regulatory harmonization to improve drug
development and reduce attrition have not transferred to reality. High attrition
rates are still observed at late stages of drug development, during phase II or III
clinical trials or in the postmarketing setting. In a study where the causes and
incidences of reasons for drug failure during the development were identified
and discussed, based on data collected between 1991 and 2000 [17], the authors
concluded that the probability of a drug candidate passing from preclinical
stages (i.e., the first GLP toxicity study) to market is 6% or less. The most com-
mon factors resulting in project failure were (i) a lack of efficacy (25%), (ii) clini-
cal safety concerns (12%), and (iii) toxicological findings in preclinical evaluation
(20%). A survey covering attrition rates for 2011–2012 in phase II and III studies
suggests that the rate for failure at phase II has increased (success rates were
below 20%) while that at phase III has decreased, which suggests that studies
might be designed to lead to earlier termination, if needed. Global reasons for
failure were higher for efficacy than for safety [18]. As extensively described in
the previous chapters, from implementation of drug preclinical requirements
until now, a relevant number of disciplines such as omics, molecular biology,
and technologies such as imaging and computational tools associated with
improved analytical methods have emerged, and have been incorporated in the
study protocols to improve their accuracy and predictive properties. At a high
level, it can be commented that, in the past 50 years, the drug development pro-
cess became more complex but underwent a few major changes in its general
format. However, the study has shown that, in contrast to efficacy and safety,
the attrition rate due to pharmacokinetics has clearly decreased in the period
analyzed. Indeed, the introduction and use of in vitro systems to characterize
metabolism, in vitro and in silico models to simulate, predict, and characterize
the absorption and biodisposition, and the creation of the innovative exploratory
clinical studies for screening (in ICH M3(R2) guideline) led to improved pre-
diction of human pharmacokinetics. The implementation of these clinical stud-
ies illustrates that paradigm adjustments based on modernized innovative
approaches are possible and useful. In conclusion, paradigm harmonization
through ICH appears highly beneficial to avoid study repetitions and align with
state of the art, but is not resulting in a substantial format change, despite its
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enrichment with technological innovations and new disciplines. It is therefore
not surprising that high attrition rates persist.

16.3
Actions Taken for Increasing the Drug Development Success

To reduce the attrition rates in the pharmaceutical field, identifying the under-
lying reasons is crucial. The predictive value of animal models for relevant
human toxicities (HTs) in clinical trials has been analyzed by Olson et al. [19]. A
multinational pharmaceutical company survey analyzed the concordance
between the HTs of pharmaceuticals during development leading to project ter-
mination and those observed in animals during the preclinical development. The
highest rate of project termination due to HTs was related to (in order) urogeni-
tal, cutaneous, hepatic, and cardiovascular side effects. More than 50% of the
projects were terminated due to HTs at a late stage of development, 39% in
phase I, 43% in phase II, and 10% in phase III. Furthermore, a high percentage
of those HTs had been due to the exaggerated pharmacology, in 35% of the cases
in phase I, 39% in phase II, and 43% in phase III. The need for a better under-
standing of the pharmacological pathways is clear from these data. Concordance
between human and animal data was seen in 63% of nonrodent studies (primar-
ily the dog), 43% of rodent studies (primarily the rat), and 70% for one or more
preclinical animal model species (either in safety pharmacology or in safety toxi-
cology) showing target organ toxicity in the same organ system as the HT. The
less predicted toxicities were liver and cutaneous (hypersensitivity). In Europe, an
extensive long-term consultation with stakeholders in the biomedical R&D pro-
cess commenced in October 2004, organized by the European Commission in
Brussels to address the causes of delay or bottlenecks. The R&D bottlenecks
have been identified as (i) predicting safety, (ii) predicting efficacy, (iii) bridging
gaps in knowledge management, and (iv) bridging gaps in education and training.
A Strategic Research Agenda (SRA) has been prepared describing the recom-
mendations to address those bottlenecks and a plan for their implementation [20].
With respect to safety and efficacy, increased basic and clinical knowledge as well
as strategic measures were discussed as summarized in Table 16.3.
It has been concluded that, for improving the prediction of drug efficacy and

safety, increased basic knowledge on several areas is needed; for example, basic
mechanisms of disease and involved targets, target biology and associated cas-
cades, target crosstalk, and cascade interconnection would need to be explored.
Furthermore, additional and/or alternative preclinical models beyond animal
models would be needed. The advances in knowledge and methodologies for
cell culturing, including human cells, stem cells, and induced pluripotent stem
cells, were considered as potentially providing new testing systems to explore
drug safety components. Simultaneously, the developments in the area of geno-
mics, metabolomics, and proteomics are also offering the possibility to explore
predictive tools to be used in animals and/or humans to better anticipate or
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monitor drug efficacy and safety. All these possibilities would drive the involve-
ment of basic scientists from academia to help in setting and exploring new basic
science-based approaches to improve drug development success, implying the
sharing of precompetitive knowledge by pharmaceutical companies. In line with
these thoughts, joint actions emerged putting together scientists from academia
and industry working with regulatory scientists from regulatory agencies in
exploring these innovative ideas and the Innovative Medicines Initiative (IMI)
has been created. IMI consists of a public–private partnership sponsored by the
European Commission and the EFPIA, to sponsor research aiming to generate
strategies and knowledge toward faster discovery and development of better
medicines for patients and enhancing Europe’s competitiveness [15]. Impressive
outcomes were reached with the first 5-year grants, as basis for innovative strate-
gies for drug development, including modeling and simulation, in vitro systems
with human cells, search for predictive animal and human safety biomarkers
(including rodent carcinogenicity), identification of disease targets for CNS, dia-
betes, and other diseases, and conceiving new approaches for clinical develop-
ment in identified areas. The IMI project is planned for additional 10 years (IMI
2), in expanded areas under discussion [15]. In the United States, in 2006 the
PSTC (Predictive Safety Testing Consortium) has been formed, bringing
together pharmaceutical companies to share and validate innovative safety

Table 16.3 Measures to improve the predictivity of safety evaluation [20].

Nonclinical Clinical

Framework to develop biomarkers to indicate
the human relevance and regulatory utility of
early laboratory findings

Optimize data resources and strengthen the
evidence base in pharmacovigilance

Study the relevance of rodent nongenotoxic
carcinogens

Explore the implications of intractable toxicity
in animals for human risk

In silico methods for predicting conventional
and recently recognized types of toxicity

Develop and strengthen methodologies and
networks for pharmacovigilance

Develop better understanding of disease
mechanisms

Develop novel methods of risk prediction and
benefit–risk assessment

Develop in vitro and in vivo models predictive
of clinical efficacy

Train and educate health care professionals
and patients

Develop in silico simulations of disease
pathology

Stimulation of translational medicine in an
integrated fashion across industry and
academia
Creation of disease-specific European imaging
networks (for standards, validation of imaging
biomarkers)
Creation of disease-specific European centers
for the validation of omics-based biomarkers
Developing national patient networks and
databases (pan-European organization for
patient selection and clinical trial analysis)
Partnership with regulators
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testing methods under the advisement of the FDA, EMA, PMDA (Japanese Phar-
maceutical and Medical Devices Agency), and more than 250 participating scien-
tists (industry and academia). The mission of PSTC is to identify new and
improved safety testing methods and submit them for formal regulatory qualifi-
cation by the FDA, EMA, and PMDA. Preclinical and clinical safety biomarker
programs include six working groups, cardiac hypertrophy, kidney, liver, skeletal
muscle, testicular toxicity, and vascular injury, and have a strong translational
focus to select new safety tools applicable across the drug development spec-
trum [21]. FDA and EMA qualification has been granted for several urinary pro-
tein renal safety biomarkers, for their use in preclinical rodent studies as markers
of specific sites for renal toxicity [22,23]. The qualification implies the regulatory
assessment and acceptance of the biomarker for the claimed purposes. In total,
the output from those and many other initiatives is outstanding and ultimately is
expected to lead to the modernization of the development paradigm, with a shift
toward more human-relevant approaches.

16.4
Innovative Drugs: Impact on Nonclinical Development Strategies

16.4.1

Biopharmaceuticals

In the last two decades, biopharmaceuticals emerged as innovative therapeutics
based on human-specific proteins, for example, insulin, or the human-specific,
target-specific monoclonal antibodies (mAbs). The human specificity of those
molecules has created difficulties in the selection of relevant animal models to
fulfill the existing preclinical paradigm, due to poor activity or differences in the
target function or involvement in the intended disease. Rodents and dogs are
often not suitable for toxicity testing of biologics, and many assessments are per-
formed in the nonhuman primates (NHPs). Also, since many of those products
are immunogenic in animals, the duration of toxicity studies became limited by
the emergence of anti-drug antibodies and long-term toxicity studies, even in the
NHPs, as well as carcinogenicity studies were unfeasible in many situations.
Paradigm adaptations had therefore to be processed, and a specific ICH topic
addressing the preclinical development of biotechnology-derived medicinal
products was created (ICH S6) in 1995 [24]. Since then, the experience gained
so far has shown that mostly the safety concerns are associated with immunoge-
nicity or with excessive pharmacology, and can be predicted, making animal test-
ing less necessary [25]. Carcinogenicity studies are often not feasible, but based
on the understanding of the mode of action (MoA) and target involvement, it
has been recognized that carcinogenicity can still be predicted mostly taking
into consideration the general knowledge and the pharmacology of the mole-
cules. The inadequacy of the classical paradigm to support the estimation of the
starting dose in first-in-human (FIH) clinical trials with biopharmaceuticals
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became apparent with the mAb TGN1412 incident in 2006. Following the
administration of the first human dose calculated based on the NOAEL from a
NHP toxicity study, a massive cytokine release (storm) occurred in all the six
subjects in the FIH trial. Later, it has been recognized that full receptor occu-
pancy had been reached with the FIH dose used (calculated using the mAb–
target binding parameters). The need to reformulate the criteria for judging
species relevance as well as the usefulness of pharmacodynamics for human
safety estimation became clear with this incident. A new guideline by the EMA
on strategies to mitigate the risk in first-in-human clinical trials was pub-
lished [26]. Furthermore, based on experience gained since 1995 with biophar-
maceuticals, updates were introduced in the preclinical requirements in general
leading to an addendum to the ICH guideline (ICH S6(R1)) [24]. For instance,
for carcinogenicity assessment, alternatives to in vivo lifelong rodent study can
be used, integrating the knowledge on the mode of action, pharmacology, and
other relevant molecular and functional attributes with the data from other stud-
ies (such as the general toxicity). If a positive risk is anticipated, mechanistic
studies and mitigation strategies are considered more adequate than the classical
2-year rodent study. In conclusion, although still based on the same principles,
the classical animal-based paradigm used for small molecules was adapted for
biopharmaceuticals. Also, in vitro only strategies may be acceptable to support
the introduction of a molecular entity into humans, when the animal species will
prove irrelevant [24].

16.4.2

Advanced Therapy Medicinal Products

Following biopharmaceuticals, innovative therapies based on cells (cell therapy
medicinal products (CTMPs)), engineered tissues, or gene modulation (gene
therapy medicinal products (GTMPs)) are emerging with innovative scientific
challenges that are difficult to address based on the current paradigm. In con-
trast to the small chemical entities, the advanced therapy medicinal products
(ATMPs) involve quality, preclinical, and clinical aspects, which cannot be
studied in sequence due to high degree of interconnection. For instance, sev-
eral quality attributes overlap or greatly affect the biological activity of the
medicinal product, and therefore need to be discussed and studied also under
the preclinical and clinical settings. Examples are the cell migration or prolif-
eration properties in a CTMP, or the integrative properties of a viral vector
used for a GTMP. Due to the specific scientific aspect of those products, a
new committee, the CAT (Committee for Advanced Therapies), was created
at the EMA, to deal with all scientific and regulatory aspects of ATMPs,
including the preparation of guidelines and the assessment of marketing
authorization applications, together with the CHMP [27]. With regard to the
preclinical development plans for ATMPs, based on the recognition that the
classical paradigm would not be applicable in many cases, the risk-based
approach has been created [28]. This is defined as a strategy aiming to
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determine the extent of quality, nonclinical, and clinical data to include in the
Marketing Authorization Application (MAA), in accordance with the respec-
tive scientific guidelines, and to justify any deviation from the technical
requirements as defined in Annex I, Part IV of Directive 2001/83/EC. The
risk-based approach consists of “predictive” rather than “reactive” thinking
and can be considered closer to a paradigm shift. Based on the existing/built
knowledge of the ATMPs, the safety assessment plan is designed to address
and clarify the anticipated risks, taking into consideration different product-
related factors (Table 16.4).
The safety assessment of any ATMP is therefore based on risk profiling,

defined as a methodological approach to systematically integrate all available
information on risks and risk factors, in order to obtain a profile of each individ-
ual risk associated with a specific ATMP. Four steps are proposed for risk profil-
ing: (1) identify risks associated with the clinical use of the ATMP; (2) identify
product-specific risk factors contributing to each identified risk; (3) map the rel-
evant data for each identified risk factor against each of the identified risks; and
(4) conclude on the risk factor–risk relationships. The risk-based approach is
flexible, less standardized compared with the classical paradigm, and leads to
case-based programs, still under GLP principles. It requires a high knowledge of
the new therapeutic entity, obtained in anticipation, and will mostly allow the
prediction of adverse effects in a faster and more reliable way, compared with
the standard animal tests, for which the basis is mostly the observation of effects,

Table 16.4 Examples of risk factors that can be associated with ATMPs [28].

Cell therapy medicinal products Gene therapy medicinal products

Origin of cell (autologous or allogeneic) The potential of the vector for and its extent of
chromosomal integration

Ability to migrate from the site of
application

The capacity of the vector for latency/reactivation
and/or mobilization

Ability to engraft in ectopic sites, prolif-
erate, and differentiate

Its potential for recombination/reassortment and
biodistribution to nontarget sites

Ability to initiate immune response Expression of the therapeutic or any other trans-
gene delivered and duration of expression.

Level of cell manipulation (in vitro/ex
vivo activation/genetic manipulation)

Replication – incompetence or competence of a
vector and its capacity to inadvertently replicate
after complementation by a respective wild-type or
helper virus

Aspects of the manufacturing process Patient-related risks
Noncellular components Disease-related risks
Mode of administration
Ex vivo perfusion, local, systemic
Duration of exposure (short to
permanent)
Patient-related risks
Disease-related risks
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not their prediction. A product-specific strategy is often built for those products,
under discussion with Regulatory Authorities, for example, through EMA and/or
FDA Scientific Advice Procedures [29]. Similarly to biologics, Regulatory
Authorities do recognize that animal-based studies can be irrelevant or redun-
dant in some cases for ATMPs, and other approaches can be used to address
safety assessment, involving, for example, in vitro systems, based on human-
derived cells/tissue systems, followed by appropriate, safely conducted, studies in
humans [28]. The increased knowledge gathered from cell and gene therapies is
helping to build new human cell-based systems (stem cell-derived systems) for
studying, for example, the mode of action, potential efficacy, or the toxicity of
innovative medicines. A contribution for paradigm modernization is possible.

16.4.3

Nanopharmaceuticals

Nanotechnology-based products have added new challenges to the classical
preclinical paradigm. In silico systems, including modeling and simulation,
using the intended attributes of the nanosystems are used to shape their spe-
cific targeting attributes (e.g., target access, tissue and intracellular access, and
distribution) and biodisposition including elimination characteristics, subse-
quently confirmed in vitro using imaging techniques for tracking particles
intracellularly. By acknowledging that the innovative delivery system or the size
of the drug (nano)particles may affect the activity at multiple levels, including
potency, local of action, (intra)cellular distribution, and so on [30], it is recog-
nized that innovative tests are needed, which are not necessarily in line with
the classical paradigm.
The benefit gained from the full therapeutic potential of nanosized formula-

tions still depends on further basic knowledge on cell and molecular biology at
intracellular level, to fully understand how the nanoparticles are presented to
organs, cells, and organelles, according to the different mechanisms of intra-
cellular trafficking and its consequences. Toxicological aspects of nano-
medicines have been highlighted with focus on long-term toxicity. Carbon
nanotubes, quantum dots, and other nonbiodegradable and potentially harmful
materials need close attention, whether associated with medicines or diagnos-
tics. A dedicated set of standards is needed in the global regulatory environ-
ment for the nanosystems being developed. In fact, some regulatory elements
have already been produced, and new dedicated guidance documents, the so-
called reflection papers, have been prepared and published by the EMA in col-
laboration and under interaction with Regulatory Authorities from the United
States and Japan, addressing aspects to consider for the development of differ-
ent types of nanopharmaceuticals, including the preclinical safety characteriza-
tion. By recognizing the need to produce specific guidance for these products,
the Regulatory Authorities implicitly recognize the need for adaptations of the
current standard preclinical paradigm to address/predict their bioactivity in
humans [31].
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16.4.4

Biosimilar Medicinal Products

A guideline addressing the preclinical and clinical development of biosimilar
mAbs has recently been issued by the European Medicines Agency [32], which
deviates from the animal in vivo studies for proof of biosimilarity. It is recog-
nized that animal studies to compare the toxicity or the pharmacological activity
of the biosimilar and the reference product are not sufficiently powered to iden-
tify small differences in specific key attributes. A staged approach focusing first
on quality characterization, followed by in vitro analysis of the mAb bioactivity
on its targets, is more appropriate (Table 16.5). The decision on the need for
animal studies depends on the level of (un)certainty reached with those studies,
or on other factors, for example, impurities, among others.
The low, if any, relevance of animal studies for proof of biosimilarity, particu-

larly with mAbs, again shows that alternative strategies to the standardized ani-
mal-based paradigm are possible and needed, and can be planned in a case-based
manner, taking benefit of advances in in vitro and in silico (modeling) systems, in
a prospective rather than reactive manner. Also in this case, the stepwise strategy
aligns with the risk-based approach. It proposes that the nonclinical studies are
performed based on a previously identified rationale, appropriately justified:
in vitro followed by in vivo if needed, performed before the clinical development,
in line with the acceptance by Regulatory Authorities in a case-based manner.

16.4.5

Innovative Small Chemical Entities

Despite that the need for classical preclinical paradigm change or adaptation has
been driven by the reduced value of at least some of the inherent established
approaches, as was the case for species selection for biopharmaceuticals, exemp-
tion for long-term studies or carcinogenicity, no need of genotoxicity testing,
and so on, also the development of innovative small chemical entities is raising,

Table 16.5 The stepwise approach for nonclinical testing of mAbs [32].

First step Comparative in vitro studies to assess differences in binding or functions
Second step Decide whether additional in vivo nonclinical work is warranted
Third step Study plan and conduct

In vitro studies: comparative studies including those available from quality-related assays, for
example,

• Binding to target antigen(s)

• Binding to Fc gamma receptors (FcγRI, FcγRIIA, FcγRIIB, FcγRIIIA, and FcγRIIIB), FcRn, and
complement

• Fab-associated functions (e.g., neutralization, receptor activation, or receptor blockade)

• Fc-associated functions (e.g., ADCC and CDC assays, complement activation)
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in many cases, supportive evidence for the possibility of using alternatives to the
classical paradigm, more prospective, less reactive. Indeed, small molecular enti-
ties are increasingly being designed to be specifically interacting with an estab-
lished target, for which a relevant amount of knowledge has been generated,
including its role in the disease, the associated cascades, cascade crosstalks, and
so on. Even in situations where the target might be less known, companies
devote huge efforts to characterize the cellular cascades associated with the
mode of action, which leads to the possibility of anticipating multiple aspects of
efficacy and safety. As a consequence of the target specificity, pharmacologically
driven adverse effects are also increasingly being identified with small molecules,
raising the question of whether many of the principles that have been applied to
the biopharmaceuticals, deviating from the classical paradigm for preclinical
safety testing, or ATMPs (e.g., the risk-based approach) should also be applied to
those new developing molecules/candidates in general. Indeed, as an example,
such way of thinking is behind the revision of the ICH S1 topic (see
Section 16.1.3). While the understanding of the mode of action in the past may
have been at a superficial stage when lead candidates were selected to pursue the
development, the current advances in molecular biology and genetics/genomics,
associated with the huge technological advances, are making possible to collect a
very high amount of information with regard to the cellular effects of drugs, their
targets, the cascades directly and indirectly associated with the molecular activity,
the crosstalk with other cellular/target cascades, and so on, irrespective of
whether they are biologics or small molecules. With this knowledge in place, it is
expected that the potential for pharmacology-related effects might be anticipated
and/or monitored for their occurrence. For small molecules, the structure-related
toxicity is a concern, but the currently existing or “under construction” databases
will provide a basis for predicting the toxicity unrelated to the MoA. A prospec-
tive approach, rather than a reactive one, may also make sense for most if not all
of these molecules. These reflections point toward a risk-based approach-based
paradigm to be applied also to small molecules.

16.5
Envisaging a Paradigm Change

16.5.1
The Present

It can be considered that the application of the current paradigm on drug devel-
opment starts with the lead candidate selection, using screening approaches aim-
ing to reach the most effective, bioavailable, most appropriately biodistributed,
and potentially safe molecule. The lead candidate selection involves high-
throughput screening assays mostly in sílico and in vitro, to exclude the mole-
cules for which some unacceptable safety attributes in the context of the
intended therapeutic use are identified, such as genotoxicity (in cells and
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bacteria), cardiotoxicity (in transfected cells or cardiomyocytes), cytotoxicity (in
multiple types of cells such as hepatocytes and others), and embryotoxicity (in
zebrafish embryos or embryonic stem cells). Also, exploratory clinical trials, for
example, with microdoses (microdose studies) for the characterization of, for
example, intended target binding, bioavailability, or any efficacy biomarker can
help in the selection process.
Following its selection, the development of the lead candidate is a stepwise

process that, after the first set of short-term studies supportive of the phase I
clinical trials, includes multiple studies aimed at supporting the safety of the
patients involved in clinical trials up to market. The core preclinical develop-
ment program can be seen as a strategy to respond to a set of questions aiming
at characterizing the biological activity and the consequences for the body (phar-
macodynamics and toxicity), as well as the body actions over the product (phar-
macokinetics and metabolism). The study program is expected to respond,
mostly in nonhuman models, among others, to the following questions:

� How is the drug–target interaction?� How does the target modulation affect the intended disease?� Is the molecule able to affect any body function relevant for life, for exam-
ple, the central nervous system or the cardiovascular system, with, for exam-
ple, proarrhythmic effects?� Which are the additional targets and what is the consequence of their
modulation?� How does the body work on the molecule? (ADME)� How and how long does the drug distribute or accumulate in different
organs and tissues?� Is the drug inducing toxicity at any organ or tissue?� Is the drug toxic for the reproductive function?� Is the drug carcinogenic?� Are there any other types of toxicity, for example, over the CNS, the
immune system, or the skin and eyes due to light activation?

The human risk is subsequently assessed based on the interpretation of the data
collected (systems’ responses) taking into account the limitations of the models
used for the human situation, the conditions at which the toxic effects were seen,
and the conditions of human use, making the balance between the expected bene-
fits and risks. Often, additional studies of mechanistic nature are needed for the
understanding of the human relevance of the effects judged as important.

16.5.2

The Basis for a Paradigm Change

The use of the current paradigm for nonclinical safety testing of pharmaceuticals
for the half-century has produced an enormous knowledge and experience with
the models used, mostly animal-based models, and the understanding and
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identification of their value and limitations in predicting human safety and effi-
cacy. The enrichment of the standard paradigm with innovative technologies has
not helped to improve the success of dug development. On the other hand, the
growing availability and experience with the more sophisticated and advanced
technologies used in the screening predevelopment phases, combined with out-
comes of paradigm adjustments triggered by innovative therapies (biologics,
ATMPs, nanopharmaceuticals, and biosimilars), clearly suggest that an extensive
reformulation of the current preclinical development plan is possible. This trend
is further reinforced by the impressive output of multiple joint research initia-
tives in the EU or the United States, involving academia, industry, and regula-
tors, mostly based on in silico and in vitro predictive systems of human origin.
While the use of animal models of disease for potential efficacy testing has
proven useful although limited in multiple situations, for example, diabetes,
hypertension, some genetically driven diseases, and so on, it is less efficient or
even inefficient for other situations, such as CNS diseases, stroke, cancer, and so
on. Therefore, additional disease-related models reflecting the human conditions
are needed. In addition to new animal models obtained by genetic manipulations,
multiple approaches are being developed to provide cell-based systems derived
from different human conditions/diseases in cocultures or three-dimensional
organotypic cultures still under improvement but promising for the understand-
ing of disease-related aspects and identification of mechanisms for overcoming
associated dysfunctions. Also, such human cell-based systems are being consid-
ered and developed for toxicity assessment (e.g., STEMBANCC (Stem Cells for
Biological Assays of Novel Drugs and Predictive Toxicology)) [15]. The efforts
being put forward to obtain multiple lineages of human cells derived from non-
embryonic stem cells (the induced pluripotent stem cells) with standardized pro-
cedures will be a major advance in this direction. Mostly because these initiatives
will allow the access to cell systems derived from different types of patients and
from healthy volunteers, target characterization, drug–target interactions in
healthy and diseased cells/organotypic systems, cascade crosstalk, and so on will
be the basis for the understanding of mode of action and pharmacologically
driven safety aspects. The use of modeling approaches will make possible in the
future to anticipate the conditions for some predicted effects to occur in
humans/patients, and might allow the faster progress from preclinical testing to
clinical trials, starting with exploratory studies (ICH M3(R2)), avoiding or drasti-
cally reducing the animal testing. Aspects for replacement of animal studies are
also considered by, for example, the European Regulatory Authorities [33].
Putting together the advances generated by built-for-purpose strategies in the

EU, United States, and other regions of the world, involving academia, industry,
and regulators, it can be anticipated that a number of tools are becoming availa-
ble to be combined in different models to predict the following:

1) Potential efficacy of candidate molecules: based on their activity at relevant
targets, taking into consideration the target relevance and involvement
in the disease (previously studied). Relevant for the identification of
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disease-associated targets and other relevant disease-modulated phe-
nomena are the induced pluripotent cell-derived cell systems, collected
from different types of patients, which may provide “human” or “human-
ized” tools to study potential efficacy, in addition or alternatively to animal
models of disease.

2) Pharmacokinetic attributes: based on, for example, molecular structure
and in vitro systems addressing, for example, absorption, transport, and
metabolism; based on primary and secondary target distributions allowing
the prediction of target organs; and based on exploratory clinical trials
such as the microdosing studies, anticipating some pharmacological, phar-
macokinetic, or even safety attributes in humans at very low doses.

3) Potential safety aspects: based on the molecular attributes and structure–
activity relationships captured from existing and building databases (for
toxicities such as genotoxicity, hepatotoxicity, cardiotoxicity, nephro-
toxicity, neurotoxicity, etc.); based on the mode of action (class-related
effects), the relevant target(s) binding attributes, and target involvement in
multiple cellular, tissue, and organ functions, as known or identified in
human cell cultures or other systems; and based on the characterization of
the effects in vitro (using multiple organotypic systems, for example, mim-
icking the kidney, lung, liver, heart, CNS, etc.). The integration of the dif-
ferent levels of information obtained in vitro and in silico using
computational tools, including modeling and simulation, is the basis for
the systems pharmacology and toxicology, which may form the basis for
the potential paradigm shift, allowing a faster progress to human studies.

4) Preliminary human pharmacokinetic, pharmacodynamic, and safety attrib-
utes in vivo (exploratory clinical trials): the transposition of the data
obtained in alternative in silico and in vitro human cell-based test systems
into the first-in-human study will/would constitute a critical step for which
measures need to be implemented to allow the anticipation of any relevant
safety aspect, which might derive from the first application of the investi-
gational molecule. For this purpose, the advances in the imaging and bio-
marker fields will contribute decisively to the success of the preclinical to
clinical translation, irrespective of the preclinical paradigm that might have
been followed. Highly sensitive and specific predictive safety biomarkers
are needed, and many are being investigated, to enable the anticipation of
any emerging toxic events before histopathological changes of the affected
organs have occurred, as well as the monitoring of the reversibility. When
sufficiently sensitive and specific, these biomarkers will allow the earlier
initiation of human investigations of innovative drugs in safe conditions,
with early tracking of signals on organ toxicity, before any structural/func-
tional damages have occurred. Hopefully, these new tools, when success-
fully implemented, will reposition the exploratory human studies in the
drug development process, and the need and the usefulness of at least
some animal-based preclinical studies, which could be reduced, adapted,
or ultimately eliminated.
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16.5.3

Vision of a Renewed Paradigm

An innovative paradigm, to be accepted, should provide early anticipation of the
lack of efficacy of any developing candidate despite promising nonclinical tests,
as well the potential for unacceptable adverse drug reactions.
A new paradigm, where multiple steps/components, not necessarily sequential,

could be described, somehow in line with the risk-based approach proposed for
ATMPs, appears to be emerging from the ongoing scientific and technological
advances, as follows:

1) Comprehensive characterization of the molecular candidate:
– Structural features, physical and chemical attributes.
– The relevant primary and secondary targets, their functionalities and

distribution across human cells and systems of different tissues and
organs.

– The biodisposition of the molecule and attributes of relevant human
metabolites using in vitro systems and modeling and simulation
approaches.

2) Activity profiling: anticipation of effects, either wanted or adverse, related
to the primary and the secondary pharmacology of the molecule and its
relevant metabolites through the integrated information from the bullet
points above (qualitative and quantitative).

3) Risk profiling:
a) General risk prediction: use of in silico tools to anticipate structure-

related toxicity profile, for example, genotoxicity, hepatotoxicity, neph-
rotoxicity, neurotoxicity, cardiotoxicity, dermatotoxicity, or eye toxicity
(due to phototoxicity).

b) Experimental risk testing: test the anticipated toxicities based on point 2
in in vitro human cell-based systems, from healthy or diseased subjects.
Those cells will be under organotypic cultures, interconnected through
microfluidic circulation (human organs on a chip in projects such as
NCATS’s “Re-engineering Translational Sciences”) [34].

4) Translation for human safe starting testing conditions: integrative treat-
ment of the full data to anticipate the pharmacological dose, toxicological
dose, and the safe starting dose for an exploratory first-in-human study
(microdosing study), together with identification of which functions/sys-
tems to monitor mainly through predictive biomarkers.

5) Further clinical study designs of exploratory nature (as of ICH M3(R2)
proposals) might allow to pursue with repeated dosing, still under close
monitoring of subjects using appropriate tools, including the appropriate
setting of omics markers to screen for the emergence of anticipated toxic-
ities or new ones not predicted.

6) Further investigations: any findings from first or subsequent clinical studies
would trigger further investigations, experimental or clinical, in vitro
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(animals not being excluded) to provide the knowledge and the conditions
for safe continuation of the clinical investigation. A spectrum of general
safety and safe conditions of use of the investigational product should be
obtained through this strategy, driving research back and forth from bench
to bed to bench. Strategies or new approaches for clinical trials are not to
be discussed in this section, but will need to be considered together with
any shifts of the nonclinical paradigm.

7) Specific risk prediction: questions as posed with the classical nonclinical
safety paradigm will still need to be responded, as are the cases for carci-
nogenicity and reproductive toxicity. Both topics are under discussion with
respect to the possible introduction of innovative approaches limiting the
burden of animal studies in both situations. For reproductive toxicity,
while aspects might be able to be addressed using in silico and in vitro sys-
tems, for example, germ cells, embryos, and embryonic stem cells, together
with hormonal effects of drugs, among others, it is recognized that terato-
genicity is a very sensitive aspect that will take time to be resolved through
alternative approaches to those currently in place, based on two animal
species, the rat and the rabbit. However, for cases where such species
prove irrelevant, for example, the case of monoclonal antibodies for which
the nonhuman primate is often the only relevant species, the study design
has been changed and adapted, as stated in ICH S6(R1) guideline. In con-
clusion, based on the progress currently in place, it can be expected that in
the future the preclinical safety paradigm will be undergoing extensive
changes, moving from a “reactive”, sequential, animal-based approach to a
“proactive”, in vitro and in sílico human-based approach, in a more
dynamic “bench to bed to bench . . .” strategy, hopefully leading to a sig-
nificant reduction in the (late) attrition rates, and to safe and faster access
of patients to more efficacious medicines.

16.6
Regulatory Actions Needed to Shift the Animal-Based Paradigm

In this chapter, it has been attempted to provide a historical overview of the
preclinical safety testing paradigm, from its implementation until its current for-
mat and content, emphasizing the scientific advances that have been occurring
and their potential impact on future modifications toward a possible shift of the
current design.
However, the paradigm is based on a large number of concepts and studies

heavily regulated by national or regional laws (Europe, United States, Japan,
ICH, etc.) through a large number of guidelines and regulations that are manda-
tory. The ultimate goal of the process is to protect the health of subjects in clini-
cal trials and of treated patients. In this context, any paradigm change will need
to be supported by data showing that, compared with the existing one, no addi-
tional risks are introduced with the new processes.
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Most regulatory changes and updates in the preclinical setting have been
achieved based on studies where innovative strategies are compared with the
existing ones, often implying the validation of new tests against the existing
ones, often animal-based tests. This process “perpetuates” the positioning of
the animal testing, if the approach is not changed. Although not extensive, in
some areas in vitro tests have been recognized as prone to replace in vivo stud-
ies, and were implemented in the corresponding guidelines. An example is the
use of hERG channel assay as a predictor of proarrhythmogenic potential. Rec-
ognizing that multiple in vitro test systems are under development and others
are being used by pharmaceutical companies in their screening predevelopment
programs, a guideline on 3Rs has been produced by the EMA, which is cur-
rently being updated [35]. However, if a paradigm shift away from the animal-
based strategies is developed, the full strategy will have to be tested against the
existing one, in global, and not in a “study-by-study” manner, due to the large
differences in the approaches. For instance, the prediction of general toxicity
based on the new paradigm will incorporate a multitude of approaches (e.g.,
pharmacodynamically based approaches and in vitro and in silico human-based
approaches), which will not be possible to compare with each single outcome of
the full repeated-dose toxicity study. Indeed, the latter will mostly provide
effects in animals, while the former will be mostly based on human systems.
Therefore, any new paradigm validation will need to be based on full compara-
tive data derived from “old” and “new” paradigms. One way to achieve this goal
could be by using available data from already fully developed molecules for
which experience is available, and introducing them in innovative paradigm,
using a blinded approach, where the researchers would not know the testing
molecule. A stepwise approach starting with the testing program to support a
first-in-human study could be a starting point. The Regulatory Authorities
(together with the pharmaceutical industry) are experienced with processes
such as certification of predictive safety biomarkers, as models for this exercise.
New or adapted guidance will be needed to allow the harmonization and stan-
dardization of the different set of (new) studies. A new paradigm will have to be
as trusted as the existing one by all stakeholders, regulators, industry, patients,
and the society in general. The ICH will most possibly be the ideal forum for
undertaking and processing these actions, in line with other ongoing initiatives
such as the S1 topic update. In conclusion, with a note of optimism, it is worth
mentioning that, although no important changes have been introduced in the
general format of the preclinical paradigm for drug development, some updates
in the study requirements have been introduced in line with modernizations
triggered by innovative techniques, some of which use alternative approaches
to the classical animal studies. These updates are substantiated in guidance
changes, showing the awareness and willingness of Regulatory Authorities to
adapt the current paradigm, provided that the new strategies bring advantages
relative to the previously existing ones. By changing the current paradigm into
an innovative, more efficient one, it is expected that the drug development pro-
cess in general will become more fast and efficient and the cost involved will be

16.6 Regulatory Actions Needed to Shift the Animal-Based Paradigm 387



considerably reduced due to a substantial reduction in the late attrition rates
leading to a global benefit for public health.

References

1 FDA (1938) Significant Dates in US Food
and Drug Law History, Available at
http://www.fda.gov (last accessed February
2014).

2 Rice, E. (2007) Dr. Frances Kelsey:
Turning the Thalidomide Tragedy into
Food and Drug Administration Reform.
Research paper.

3 Greek, R., Shanks, N., and Rice, M.J.
(2011) The history and implications of
testing thalidomide on animals. J. Philos.
Sci. Law, 11, 1–32.

4 Schardein, J.L. (1976) Drugs as Teratogens,
CRC Press.

5 Lehman, A.J. et al. (1949) Procedures for
the appraisal of the toxicity of chemicals in
foods. Food Drug Cosmet. Law Q., 4 (3),
412–434.

6 Jacobs, A.C. and Hatfield, K.P. (2012)
History of chronic toxicity and animal
carcinogenicity studies for
pharmaceuticals. Vet. Pathol., 50 (2),
324–333.

7 Rägo, L. and Santoso, B. (2008) Drug
regulation: history, present and future, in
Drug Benefits and Risks: International
Textbook of Clinical Pharmacology, revised
2nd edn (eds C.J. van Boxtel, B. Santoso,
and I.R. Edwards), IOS Press and Uppsala
Monitoring Centre.

8 European Commission (1965) Council
Directive 65/65/EEC of 26 January 1965
on the approximation of provisions laid
down by law, regulation or administrative
action relating to medicinal products. Off.
J. L, 22, 369.

9 European Commission (1975) Council
Directive 75/318/EEC of 20 May 1975 on
the approximation of the laws of Member
States relating to analytical, pharmaco-
toxicological and clinical standards and
protocols in respect of the testing of
proprietary medicinal products. Off. J. L,
147, 1–12.

10 European Commission (1987) Council
Directive 87/22/EEC of 22 December 1986

on the approximation of national
measures relating to the placing on the
market of high-technology medicinal
products, particularly those derived from
biotechnology. Off. J. L, 015, 0038–0041.

11 European Commission (1975) Second
Council Directive 75/319/EEC of 20 May
1975 on the approximation of provisions
laid down by law, regulation or
administrative action relating to
proprietary medicinal products. Off. J. L,
147, 0013–0022.

12 European Commission (1995)
Commission Regulation (EC) No 540/95
of 10 March 1995 laying down the
arrangements for reporting suspected
unexpected adverse reactions which are
not serious, whether arising in the
Community or in a third country, to
medicinal products for human or
veterinary use authorized in accordance
with the provisions of Council Regulation
(EEC) No 2309/93. Off. J. L, 055,
0005–0006.

13 European Commission (1989) The Rules
Governing Medicinal Products in the
European Community. Catalogue No. CB-
55-89-706-EN-C, Office for Official
Publications of the European
Communities, Luxembourg.

14 ICH, About ICH: History. Available at
www.ich.org (last accessed February 2014).

15 Innovative Medicines Initiative, Ongoing
Projects: MARCAR. Available at www.imi.
europa.eu (last accessed February 2014).

16 EMA (1995) ICH Guideline M3(R2) on
Non-Clinical Safety Studies for the
Conduct of Human Clinical Trials and
Marketing Authorisation for
Pharmaceuticals. EMA/CPMP/ICH/286/
1995. Available at www.ema.europa.eu
(last accessed February 2014).

17 Kola, I. and Landis, J. (2004) A survey of
pharmaceutical companies comparing
reasons for attrition. Nat. Rev. Drug
Discov., 3, 711–715.

388 16 Regulatory Aspects

http://www.fda.gov
http://www.ich.org
http://www.imi.europa.eu
http://www.imi.europa.eu
http://www.ema.europa.eu


18 Arrowsmith, J. and Miller, P. (2013) Phase
I and phase II attrition rates 2011–2012.
Nat. Rev. Drug Discov., 12, 569.

19 Olson, H., Betton, G., Robinson, D.,
Thomas, K., Monro, A., Kolaja, G., Lilly,
P., Sanders, J., Sipes, G., Bracken, W.,
Koen Van Deun, M., Smith, P., Berger, B.,
and Heller, A. (2000) Concordance of the
toxicity of pharmaceuticals in humans and
in animals. Regul. Toxicol. Pharmacol., 32,
56–67.

20 Innovative Medicines Initiative (2008) The
Innovative Medicines Initiative (IMI)
Research Agenda. Creating Biomedical
R&D Leadership for Europe to Benefit
Patients and Society, Version 2.0.

21 Goodsaid, F.M., Frueh, F.W., and Mattes,
W. (2007) The Predictive Safety Testing
Consortium: a synthesis of the goals,
challenges and accomplishments of the
critical path. Drug Discov. Today Technol.,
4 (2), 47–50.

22 Sistare, F.D., Dieterle, F., Troth, S., Holder,
D.J., Gerhold, D., Andrews-Cleavenger, D.,
Baer, W., Betton, G., Bounous, D., Carl, K.,
Collins, N., Goering, P., Goodsaid, F., Gu,
Y.-Z., Guilpin, V., Harpur, E., Hassan, A.,
Jacobson-Kram, D., Kasper, P., Laurie, D.,
Silva-Lima, B., Maciulaitis, R., Mattes, W.,
Maurer, G., Obert, L.A., Ozer, J., Papaluca-
Amati, M., Phillips, J.A., Pinches, M.,
Schipper, M.J., Thompson, K.L.,
Vamvakas, S., Vidal, J.M., Vonderscher, J.,
Walker, E., Webb, C., and Yu, Y. (2010)
Towards consensus practices to qualify
safety biomarkers for use in early drug
development. Nat. Biotechnol., 25,
446–454.

23 Dieterle, F., Sistare, F., Goodsaid, F.,
Papaluca, M., Ozer, J.S., Webb, C.P., Baer,
W., Senagore, A., Schipper, M.J.,
Vonderscher, J., Sultana, S., Gerhold, D.L.,
Phillips, J.A., Maurer, G., Carl, K., Laurie,
D., Harpur, E., Sonee, M., Ennulat, D.,
Holder, D., Andrews-Cleavenger, D., Gu,
Y.-Z., Thompson, K.L., Goering, P.L.,
Vidal, J.M., Abadie, E., Maciulaitis, R.,
Jacobson-Kram, D., Defelice, A.F.,
Hausner, E.A., Blank, M., Thompson, A.,
Harlow, P., Throckmorton, D., Xiao, S.,
Xu, N., Taylor, W., Vamvakas, S., Flamion,
B., Lima, B.S., Kasper, P., Pasanen, M.,
Prasad, K., Troth, S., Bounous, D.,

Robinson-Gravatt, D., Betton, G., Davis,
M.A., Akunda, J., McDuffie, J.E., Suter, L.,
Obert, L., Guffroy, M., Pinches, M.,
Jayadev, S., Blomme, E.A., Beushausen,
S.A., Barlow, V.G., Collins, N., Waring, J.,
Honor, D., Snook, S., Lee, J., Rossi, P.,
Walker, E., and Mattes, W. (2010) Renal
biomarker qualification submission: a
dialog between the FDA-EMEA and
Predictive Safety Testing Consortium.
Nat. Biotechnol., 28, 455–462.

24 EMA (1998) ICH Guideline S6(R1):
Preclinical Safety Evaluation of
Biotechnology-Derived Pharmaceuticals.
EMA/CHMP/ICH/731268/1998. Available
at www.ema.europa.eu (last accessed
February 2014).

25 van Meer, P.J., Kooijman, M., van der
Laan, J.W., Moors, E.H., and Schellekens,
H. (2013) The value of non-human
primates in the development of
monoclonal antibodies. Nat. Biotechnol.,
31, 882–883.

26 EMA (2007) Guideline on Strategies to
Identify and Mitigate Risks for First-in-
Human Clinical Trials with Investigational
Medicinal Products. EMEA/CHMP/SWP/
28367/07. Available at www.ema.europa.
eu (last accessed February 2014).

27 Schneider, C.K., Salmikangas, P., Jilma, B.,
Flamion, B., Todorova, L.R., Paphitou, A.,
Haunerova, I., Maimets, T., Trouvin, J.H.,
Flory, E., Tsiftsoglou, A., Sarkadi, B.,
Gudmundsson, K., O’Donovan, M.,
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