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PREFACE 

The School of Mathematics and Applied Statistics at the University of 
Wollongong played host to the International Conference on Statistics, Com­
binatorics and Related Areas and the Eighth International Conference of the 
Forum for the Interdisciplinary Mathematics (SCRA2001-FIMVIII). This con­
ference took place from December 19-21, 2001 and it was cosponsored by 
the International Association of Statistical Computing and the University of 
South Alabama. 

The Forum for Interdisciplinary Mathematics, FIM is an international 
society of scholars working in mathematical, statistical, information and sys­
tem sciences. By the means of organizing international conferences, FIM is 
attempting to effectively integrate all quantitative areas of modern times. 

The Forum for Interdisciplinary Mathematics (FIM) was formed in 1975 
by a group of academicians at the University of Delhi under the leadership of 
Bhu Dev Sharma. Despite his leadership role as the current president of the 
Hindu University of America, Bhu Dev continues to provide direction in the 
growth of FIM. FIM leaders over the years include J. K. Ghosh, D. D. Joshi, 
C. R. Rao, M. M. Rao, D. K. Ray-Choudhuri, S.S. Shrikhande, N. M. Singhi 
and J. N. Srivastava. Satya Mishra is the current president of FIM and has 
been influential in organizing FIM's international conferences since 1997. 

The following scholars served on the International Organization Com­
mittee (IOC) for this conference: Michel Deza, E.J. Dudewicz, Prem Goel, 
Michael Greenacre, C.C Heyde, Sadanori Konishi, J.C. Lee, Bryan Manly, 
K.V. Mardia, John Rayner, C. R. Rao, P.K. Sen, B.D. Sharma, Kunio 
Shimizu, N M. Singhi and M. S. Srivastava. We are very grateful to IOC 
and the following scholars for organizing the symposia in their respective re­
search areas of expertise: Olcay Akman, S.B. Bagchi, Anoop Chaturvedi, 
Peter Cerone, Susmita Datta, David Edelman, Sat Gupta, Malcolm Hudson, 
Bing Li, Bryan Manly, Toshio Sakata, Ashis SenGupta, Takashi Seo, Bikas 
Sinha, Ross Sparks, David Steel, Walter Wallis and Alan Wan. Although 
events of September 11, 2001 stirred many cancellations, over 200 delegates 
from 25 countries took part in the conference activities and they were the true 
reason for its success. 

During the conference festivities, three outstanding statisticians were 
recognised for their life-long and profound contributions to the field of Statis­
tics: Professor P.K. Sen of USA, Professor Joe Gani of Australia and Professor 
Minoru Siotani of Japan. Each one has contributed profusely to the profession 
in their own countries as well as on the world stage. 

VII 



V I I I 

Prior to the conference, Professor C. R. Rao was awarded an Honorary 
Doctor of Science degree by the University of WoUongong. It was his twenty 
seventh such award. He is the recipient of many other awards and honours. On 
June 12, 2002, he was given a National Medal of Science by President George 
W. Bush at the White House. We are delighted that he could contribute to 
this volume. 

The programme comprised 6 Plenary Sessions, 32 Invited Sessions, 6 Con­
tributed Sessions, 2 Students Competition Sessions, and one Poster Session. 
A total of 117 papers were presented at the invited sessions, with 32 papers at 
the contributed sessions, 9 papers at the FIM student competition sessions, 
and 3 papers at the poster session. 

At the conclusion of the Conference, student competition session awards 
were presented to the nine participating students from Australia, India, Japan 
and USA. Papers were judged by a panel of judges with Professor Joe Gani 
as chair and Ashis SenGupta as the major force behind the organization of 
the competition. To them we say thank you! Tomohiro Ando (Kyushu Uni­
versity), Riccardo Biondini (University of WoUongong), and Yee Hwa Yang 
(University of California, Berkeley) shared the first prize pool of $600. Papers 
by Tomohiro Ando and Riccardo Biondini are included in this volume. 

Some papers from this conference are included in a special issue of the 
Journal of Applied Mathematics and Decision Sciences, Vol. 6, Number 4. We 
wish to record our special thanks to John Best for his involvement in editing 
and seeing through this whole project. 

We wish to express our sincerest thanks to the following referees for their 
help in the reviewing process: Raid Amin, Dheeraj Bansal, Adrian Baddeley, 
S. Bagui, John Best, Jennifer Brown, Martin Bunder, Pam Davy, Somnath 
Datta, Susmita Datta, Carol Feltz, Joe Gani, Prem Goel, Alister Gray, David 
Griffiths, Sat Gupta, Markus Hegland, Jim Hill, Bing Li, Liwan Liyanage, 
Xiao Ping Lu, Geoff MacLachlan, Bryan Manly, Denny Meyer, A. Nanthaku-
mar, Mantong Ncube, Rod Nillsen, Shelton Peiris, Ken Russell, Olivier Thas, 
Daniel T. Voss, Alan Wan, Neville Weber and Susan Wilson. Their effort has 
resulted in a considerable strengthening of many of the papers. We also take 
this opportunity to thank Riccardo Biondini for his considerable hard work 
in the conversion of files to the format required by the publishers. 

Members of the local organizing committee (LOC) deserve special thanks 
for looking after the delegates at the conference. Included in the LOC, be­
sides members of School of Mathematics and Applied Statistics, were Kevin 
Donegan, Janette Green, Kevin Price and Yong-Goo Lee. Eric Beh looked 
after delegates accommodation and travel with meticulous planning. Janette 
Green acted as treasurer of this conference. In this task, she interacted with 



IX 

most of the delegates and sponsors with utmost diligence and promptness. 
Yong-Goo Lee joined LOC activities in Wollongong upon arrival in early De­
cember. Kevin Price was the helping hand for many of the delegates and 
this trio took over many responsibilities of helping the delegates during the 
conference, which in turn drew special praise from the conference delegates 
for their dedication and untiring prompt help during the conference. Without 
their efforts, this conference would have been a bit less enjoyable. Yong-Goo 
Lee (having worked on LOC of ISI, Seoul 2001) was puzzled at the many 
menial tasks performed by LOC and remarked that in Korea such tasks will 
be carried out by students rather than academic staff. However, he, along 
with other members of LOC carried out such tasks with smile. We wish to 
record our appreciation for Carol Rayner (assisted by Glen and Vanessa) for 
her untiring work in arranging the logistics of morning and afternoon teas. 

Some photos taken by Anne Porter during the conference can be viewed 
at http://www.uow.edu.au/informatics/maths/statconference/files/photos 
/photos.html. Financial sponsors for the conference included the University 
of South Alabama (College of Arts and Sciences, Department of Mathematics 
and Statistics and Vice President for Research), IMMACS, and School of 
Mathematics and Applied Statistics at the University of Wollongong. We 
thank all our sponsors for their impressive support. 

Editors 

Chandra Gulati Yan-Xia Lin Satya Mishra John Rayner 
UOW, Australia UOW, Australia Mobile, USA UOW, Australia 

July 31, 2002 

http://www.uow.edu.au/informatics/maths/statconference/files/photos
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EFFICIENT ESTIMATORS OF DIFFERENT TYPES FOR 
DOMAINS 

M.C. AGRAWAL 

Department of Statistics 
University of Delhi 

Delhi 110007, India 
E-mail: mc-agrawal@yahoo.com 

CHAND K. MIDHA 

Department of Statistics 
University of Akron 

Ohio, USA 

In this paper, we have proposed efficient unbiased estimators of three types -
direct, synthetic and composite - for the domain mean (or total), and compared 
them with certain customary ones to establish their viability, superior performance 
and practicability. 

Keywords: domain (small area) estimation, direct estimators, synthetic estimators and 
composite estimators. 

1 Introduction 

Estimation at the levels of small domains and areas has been engaging the 
attention of survey practitioners for quite some time. It would be apt to stress 
that the estimation for small domains has to be geared from the point of view 
of precision, validity and applicability. In the context of the estimation of 
the domain mean, we may underscore the point that the structuring of the 
estimators with the intent of exploiting the available data in totality should be 
deemed to be a desirable feature (see Sarndal et al, 1992, p.387). In essence, 
special methods are required to provide reliable estimators for small domains. 

2 Two efficient estimators of the domain mean 

Consider a population P of size N which contains a small domain, say, d of 
interest having size Nj. A simple random sample of size n is drawn from this 
population. Let S4 denote the sample of rid units, which belong to domain d, 
from amongst the n units, i.e., n<i units are common to s and d. If the study 

1 

mailto:mc-agrawal@yahoo.com


2 

variable y assumes the value yi on the ith unit (i = 1, 2, . . . , N), then the 
domain mean Yd and the domain variance S% are given by 

To estimate Yd, the estimator 

ifc = - 5 > (n
d>i) (i) 

is the usual one that has been considered in the literature (see Hedayat and 
Sinha (1991, pp.342-345) and Sarndal et al. (1992, pp.392-93)). This es­
timator is unbiased for nd > 1 and its large-sample variance is expressible 
as 

vm= ^ ) ^ + ^si= ±-± # i + -^- ( 2) 

where 

and 

N) Qd npQd
 d \n N) Qd\ ^ nQd 

„ Nd nd n 
0 d = AT' ad = W f=N 

V^d) = [l-~)f3^^ (Qd = i-Qd). N)J nQd' 

Another estimator of Yd (when Nd is known) is obtained as 

Td = fr- (3) 

where 

_* = }_ v ^ * * _ jVi, Hied 
V nl_,Vn y * - i 0 , otherwise. 

It is unbiased and its large-sample variance is 

Vm=i!n^)h{SUWl) (4) 

For related details, the readers are referred to the literature as indicated 
above in the context of yd. It may be verified that, in practice, the estimator 
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yd which does not exploit the knowledge of Nd scores over y*d in virtually all 
sampling situations. Interestingly, when Nd is not known, the estimator 

—* —* 
y y 

where 

if i G d 

otherwise , 

has been treated by Hedayat and Sinha (1991, pp. 344-45) as a ratio-type 
estimator with distinct entity, while, as a matter of fact, y*d* and yd are 
exactly the same. Here, it would be apt to add that, when Nd is not known, 
the existing estimator of the domain total (say, Yd) is obtainable from (3) as 

Yd* = Ny* (5) 

whose large-sample variance is expressible as 

V(V) = TV2 ( I - 1 ) Qd{Sl + QdY
2
d) 

A generalized direct estimator and its efficiency 

We propose 

yd = -p-ffijv* {nd ~l) (6) 

as an unbiased estimator of the domain mean Yd where /?i and fa a r e suitable 
weights, the other notations having already been defined in Section 2. Note 
that, when Nd is not known, we may consider the following twin special cases 
arising from (6): 

(i) for estimation of the domain mean Yd, choose 02 = 0 (0i ^ 0), thus 
yielding yd given by (1); 

(ii) for estimation of the domain total Yd, choose 0\ = 0 (02 ^ 0), thus 
culminating in Yd =• Ny* given by (5). 

Besides, yd reduces to yd given by (3), when Nd is known, for 0\ = 0 

(02 7̂  0). The estimator yd ' reflects the desirable statistical properties when 
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we consider (a) n = N and (b) Nd = N. The variance of this estimator can 
be expressed as 

vtf?) l 
(/3 + / ) 2 Ndj Nd 

/ ( l - / ) o 2 , o « 1 ~ / c 2 

V(ad){Yd-^\+(32V(yd) 

•si + W^r-si (7) 

However, the optimum value of /3 that minimizes the variance of yd is given 

Nd
 a " N, 

where /? = fa/fa- We can choose a suitable (3 which renders V(yd ') < V(yd). 

He 

by 

lJopt — J I pi 

where Cd is the square of the coefficient of variation for domain d defined by 

SI r2 

The coefficient of variation being a stable quantity over the time-space facil­
itates the computation of j3opt because an idea about Cd from the past data 
would not generally be a problem. Further, since Cd, virtually in all practical 
sampling situations, would not exceed Nd, we can expect (and hence assume) 
Popt > 0. Now, expressing the variance of yd in terms of (3opt as 

mm[Vd ) " (3opt + f - V[Vd) [n-Nj ( / V + / ) NdQd^ 

we conclude the yd ' is superior to yd. However, we present below the per­

formance sensitivity of yd ' in the face of perturbations in the exact value of 
Popt-

Performance - sensitivity of yd 

Let Pi be the proportional inflation in the variance of yd if we employ 
some /?(> 0) other than (3opt, i.e., 

*min\\}d ) 
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wherein we consider 

/?• 

Popt 
P = (1 + v)Popt 

as the proportional deviation in / 3 o p t , thus leading to 

Popt \ 
Pi = G\l 

1v(iopt ( - - jj) -NQtSd 

(0*opt + vPopt)2) fe + i ' M W y ^ ) 
(8) 

(i) where G is the gain in the efficiency of yd ' over yd, i.e., 

G V{Vd) ~ VminiVd 

Vmin (Vd ) 

O h 

and /?*pt = /3 o p t + / . It is evident that , for v > 0, the proposed estimator y^ 
will continue to perform better than yd despite deviations in popt because the 
proportional inflation Pi would never exceed G for v > 0 as reflected by (8). 
However, for v < 0, we note tha t (3 > 0 =>• v > — 1 , and, then, the condition 
tha t follows from (8) to ensure Pi < G is 

Popt + / 

2/3opt 

which, in combination with v > — 1, yields 

/ < Popt 

0) 

(10) 

- a condition that is usually found to hold in practice. Hence, whenever 
Popt > / i Vd c a n D e looked upon as being robust to deviations in Popt (as 
envisaged and spelt out above) in the sense of maintaining its superiority 
vis-a-vis yd whatever be v tha t ensures some ft > 0. 

Unbiased variance-estimation and conditional variance 

An unbiased variance-estimator of yd ' is 

V{yd
1]) 

l 

(P + f? Vd &) V(ad) 
nd J 

P2 -
1 

nd 

1 
4 

+ Nd
 Sd + W 

1 - / 

where 

4 
" d 3 i E fo« Vd)2-

i&s,i 
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In the context of estimation for domains, it would be apt to consider, for a 
fixed nd, the conditional variance of yd given by 

Interestingly, the optimum value of (3 (= Pi/fc) with a view to minimizing 
the conditional variance is attained at ad = / , and this yields 

Vc,mm{yd
l)\nd) = ^ - ± - \ s 2

d = Vc(yd\nd) 

where Vc(yd\nd) is the conditional variance of yd for a fixed nd. 

A predictive synthetic estimator and its efficiency 

To arrive at a synthetic estimator, we start by splitting the population 
total as 

zep ied j6rf ied ied ieP i€d 

and then, to estimate Yd, we proceed as 

F = X>-X> (n) 

where d is the complement of d and yj(f G P) and yj(i G d) are the respective 
predictors of yt(i G P) and yj(i G d). Against this backdrop, it is sensible to 
use 

in = y(i e P), in =17s(i G d) 

and, thus, (11) leads to 

Yd = Ny-(N-Nd)yd^fd = ^ - 1 - ^ y d = yd
2\ say (12) 

where yd is the sample-based mean of the non-domain (d) given by 

d iesflSd 

which unbiasedly estimates the population mean of d, i.e., Yd defined as 

F 3 = ^ = E ^ • Nd = N-Nd. 
d . _-j 



7 

i(2) ; , The estimator yd is unbiased, and its approximate variance is 

1 1 
n ~N, 

V^m z-irr){s2~^-Q<i)sl} 

= V(yd 
Q^sl+(l-

n NJ nQYa ' V" NJ QdQd 

1 
(Y-Yd) (13) 

where S | and S2 are, respectively, the variances of the non-domain (d) and 
the population defined by 

i€rf ieP 

In keeping with the spirit of synthetic estimation which is involved when the 
characteristics of the domain and those of the population are not different, 
we can expect Yd to be close to Y. Thus, in the case when Yd = Y, it can 
be concluded from (13) that yd ' will fare better than yd. Otherwise, the 
condition 

2^Q2
d(l-Y/Yd)

2 

Cd~ ^ ' 

which will hold if n is large, is required to be met for the superiority of yd 

over yd. The variance-estimator of yd ' is 

in^)\ VW) = n . 
_L_ 

^){«a-(i-<M*§> 

where s | and s are the estimators of 5 | and S , respectively, defined by 

1 1 " 

4 = ^T3i E fo - ^)2' s2 = ^ n Eto - )̂2 

d jesnsrf j=i 
/In efficient composite estimator 

In order to arrive at a composite estimator, we combine the synthetic esti-
mator yd with the direct estimator yd (defined in Section 2), thus obtaining 

v^)^w{h-{1^fI)+{l-wryd (14) 

where W is a suitably chosen weight. It can be verified that yd ' is unbiased. 
As a matter of fact, if we decide to exploit the available data relating to the 



sample s, the domain d and the non-domain d in an optimal fashion with a 
view to achieving minimum variance and unbiasedness, we are led to yd>. T o 

demonstrate this, let us consider 

yf = Ay + Byd + Cyd 

where A, B and C are the constants to be suitably determined. The condition 

yields 

C = -AQd, B = -A{l-Qd) 

of unbiasedness for yd yields 

This renders 

Vd
4) = MV - (i - Qd)vd} + (i - AQd)yd 

which is the same as yd . Now, we find the variance of yd as 

m W2 

Q - jj) {S2 - (1 - (MS?) + (1 - WfV{yd) 

+ '&-"( ; -sW (15) 

To obtain the optimum value of W which minimizes the variance of yd , we 
can either proceed with the variance expression given by (15) by differentiating 
it and equating to zero, or, alternatively, invoke a zero function defined by 

z = y-{l- Qd)y*d ~ Qdyd 

and apply the necessary and sufficient condition 

Cov(yd
3\z)=0 

to arrive at the requisite optimum value of W. The solution for optimum W 
can be worked out as 

w. - —&* opt — o i 

nQd{l-YIYdy + QdCl 

leading to the minimum variance 

Vrmniyf) = Cov{yf ,y) = V(yd) - Wopt (v(yd) n NJ Qd 

v{Vd) _ _J"~t!gffi*J2 n*Qd(l-Y/Yd)* + nQdC%Yd 
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implying thereby that yd is more efficient than yd if W is optimally chosen. 

Besides, yd fares better than yd ' if 

( i - F / F d ) 2 \ 
ci<Ndn _2 f . 

However, if y/F<i < Qd, then yd always performs better than yd '. 

Performance-sensitivity of yd ' 

In a manner analogous to the one followed with regard to yd , we examine 
/ q \ 

the performance-sensitivity of yd by appraising the proportional inflation for 

yd defined by 

Pi 
V{yd

i]) -Vmin{yT) 

Vmin {Vd J 

which, after some algebra, simplifies to 

Pi = v'2G' 

where 

and 

i^)\ 
Ct =

 Vyi-Vrmn{yd') 

^min\yd ) 

u'=W J¥opt^W = {l + u')Wopt 
Wopt 

are, respectively, the gain in efficiency of yd over yd and the proportional 
deviation in Wopt- Thus, the estimator yd , despite the use of some W(> 0) 
other than Wopt, will continue to fare better than yd provided P[ < G' =>• 
v'2 < 1, i.e., some W different from Wopt that results in proportional deviation 
of upto 100% will still ensure superiority of yd vis-a-vis yd. This, indeed, 

puts a premium on the use of the proposed estimator yd in preference to the 
conventional estimator yd. 

3 Numerical illustration 

To illustrate the findings of the preceding section, we consider the following 
example from Sarndal et al. (1992, pp. 414-415). 
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Example: The following data relate to the study variable y (number of con­
servative seats in Municipal Council) of a Swedish population that comprises 
three regions (domains): 

Region 

1 
2 
3 

Nd 

47 
50 
45 

Eft 
ied 
349 
437 
194 

YLvi 
3375 
4159 
1000 

For the purpose of application of the results of Section 2, we consider the 
region 1 as the domain d of our interest. The following quantities relate to 
the above population or the region 1: 

N = 142, Y = 6.9014, Yd = 7.4255, S2 = 12.5576, Sj = 17.0324 and 
Qd = 0.3310. 

Taking a sample of size 15, we compute the variances of estimators -
_ _ (1 ) _ (2 ) , _ (3 ) 
2/d> Vd > Vd a n d % a s 

V(yd) = 3.4816, V(yd
1}) = 3.4592 (based on 0opt = 1.6866), V(yd

2)) = 3.1422 
and V(y(

d
3)) = 3.1309 (based on Wopt = 0.8482), 

thus concluding that the estimator y(
d
] is the best followed, in decreasing order 

of efficiency, by yd
2\y(

d
] and yd. It would be apt to add that choice of some 

W (different from Wopt) for continued superiority of yd
3) can be regulated by 

the findings of Section 2. 
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NEURAL NETWORK NONLINEAR REGRESSION 
MODELING A N D INFORMATION CRITERIA 
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Graduate School of Mathematics 

Kyushu University, 6-10-1 Hakozaki 
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We consider the problem of constructing nonlinear regression models, using multi­
layer perceptrons and radial basis function network with the help of the technique 
of regularization. Crucial issues in the model building process are the choices of 
the number of basis functions, the number of hidden units and a regularization 
parameter. We consider the properties of nonlinear regression modeling based on 
neural networks, and investigate the performance of model selection criteria from 
an information-theoretic point of view. 

K e y w o r d s : information criteria, model misspecification, multilayer perceptrons, radial 
basis function networks, regularization. 

1 Introduction 

Recently, intensive investigations have been made concerning the problem of 
constructing various types of nonlinear models such as neural networks, kernel, 
splines, etc. In the field of artificial neural networks multilayer perceptrons 
and radial basis function networks have emerged as multilayer networks, and 
the advantages and disadvantages have been pointed out both in theoretical 
and practical aspects (Bishop (1995), Ripley (1996), Webb (1999), Yee and 
Haykin (2001) and the references given therein). The purpose of the paper 
is constructing nonlinear regression models based on these two networks with 
the help of the technique of regularization. 

The problems still remain in constructing neural network regression mod­
els from a finite and noisy data; determining the number of hidden units in 
the multilayer perceptron network, the number of basis functions in the radial 
basis function network and choosing an appropriate value of a regularization 
parameter. Cross validation (Stone (1974)) is often referred in the neural net­
work literature. An advantage of cross validation lies in its independence of 
probabilistic assumptions. The computational time is however enormous for 
a large sample size due to the use of nonlinear optimization schemes. Neural 
networks often treat a huge amount of data, so we take an analytical ap-

11 
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proach to determining the adjusted parameters from an information-theoretic 
viewpoint. 

Murata et al. (1994) introduced a network information criterion (NIC) to 
evaluate artificial neural network models under a general loss function includ­
ing a regularization term. Ando et al. (2001) proposed nonlinear regression 
models based on radial basis function networks with hyperparameter, and 
presented an information-theoretic criterion for evaluating network models 
estimated by regularization. 

We consider the properties of nonlinear regression modeling based on 
the multilayer perceptron and the radial basis function network, and investi­
gate the performance of model selection criteria from an information-theoretic 
point of view. This article is organized as follows. In Section 2, we briefly 
review the two types of network modeling strategies through a nonlinear re­
gression with Gaussian noise. Section 3 describes model evaluation and se­
lection criteria for network statistical models. In Section 4, we conduct a 
Monte Carlo experiment to investigate the performance of model evaluation 
criteria through the radial basis function network Gaussian and non-Gaussian 
regression models. 

2 Neural Network Nonlinear Regression Modeling 

Models 
Suppose we have n independent observations {(ya,xa);a = 1,2, . . . ,n}, 

where ya are random response variables and xa are vectors of d-dimensional 
explanatory variables. In order to draw information from the data, we use 
the Gaussian nonlinear regression model 

Va = u{xa) + ea, a = l,...,n, (1) 

where u(-) is an unknown smooth function and errors sa are independently 
and normally distributed with mean zero and variance er2. The problem is 
how to estimate the function u(-) from the observed data, for which we use 
multilayer perceptrons and radial basis function networks. 

EMultilayer perceptrons 

The multilayer perceptron with a single hidden layer is of the form 

m / d \ 

uMhP(x;w) = ^2/3kipk ( ccfco + ^Ta/ciXi 1 + /?0, (2) 
fc=i \ «=i / 

where x = (x\,...,Xd)T is a vector of d-dimensional input variables, a^. are 
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weight parameters for A;-th hidden unit in hidden layer, (3k are weight pa­
rameters for output unit, and m represents the number of hidden units. The 
nonlinear function ipk(-) is usually taken to be the logistic form ipk(x) = 
1/{1 + exp(— x)}. The Gaussian nonlinear regression model based on the 
multilayer perceptron is then given by 

m 

y<* = ^2M\ {ako + alxa) + (30 + ea, a = l,...,n, (3) 
fc=i 

where a*; = (ak\, ...,akci)
T. The network parameters to be estimated in the 

model is w - (aw,aj, ...atmo^^, /30, ••-, (3m)T, the {(d+ 1) x m + m + 1}-
dimensional vector. We also have to determine the number of hidden units. 

ERadial basis function networks 

The radial basis function network is expressed as a linear combination of 
radially symmetric nonlinear basis functions and takes the following form; 

m 

URBF(X-W) = '^2wk<pk(x)+w0, (4) 
fc=l 

where w = (WQ, ...,wm)T and 4>k{x) are a set of basis functions. Ando et al. 
(2001) introduced the Gaussian basis functions with hyperparameter u given 
in the following; 

(j)k(x;fj,k,ak,iy)=exp{-\\x-nk\\
2/(2iyal)}, k = l,...,m, (5) 

where fik is the d-dimensional vector determining the center of the radial 
basis function for unit k, ak is the width parameter and || -1| is the Euclidean 
norm. The hyperparameter v adjusts the amount of overlapping among basis 
functions so that the estimated regression function captures the structure in 
the data over the region of the input space. 

Among possible strategies for determining the centers and widths of the 
basis functions we use a fc-means clustering algorithm. This algorithm divides 
the input data set {xa; a = 1,..., n} into m clusters Ax,..., Am that correspond 
to the number of the basis functions. The centers and width parameters 
are then determined by ck = EQGAfe

 xa/nk, s2
k = £c.eJ4fc ||JCQ - ck\\

2/nk, 
respectively, where nk is the number of the observations which belong to the 
fc-th cluster Ak. By replacing the center /xfc and the width parameter ak in (5) 
by Cfe and sk respectively, we have the radial basis function network regression 
model with hyperparameter v in the form 

m 

y<* = ^2wkexp{-\\xa -ck\\
2l(2vs2

k)} +ea, a = l,...,n. (6) 
fc=i 
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In order to implement this modeling strategy we must estimate the weight 
parameters w = (WQ: ...,wm)T and choose the hyperparameter v and the num­
ber of basis functions. For radial basis function network we refer to Broom-
head and Lowe (1988), Moody and Darken (1989), Poggio and Girosi (1990), 
Bishop (1995), Webb (1999), Yee and Haykin (2001). 

Model parameter estimation 

The log-likelihood function of the Gaussian nonlinear regression model 
may be in general expressed as 

n 

l(w, a2) = ~n log(2ir<72)/2 - J^{ya - u{.)(xQ;w)}2/(2a2). 

In fitting data with complex structure and high-dimensional data, the max­
imum likelihood method does not yield satisfactory results, since it often 
involves overfitting and yields unstable parameter estimates. We therefore es­
timate the unknown weights and the error variance by regularization. Instead 
of maximizing the log-likelihood function, the network parameter vector w 
and the error variance a2 are estimated such that they maximize the penal­
ized log-likelihood function 

nX 
lx(w, a2) = l(w, a2) - —wTQw, (7) 

where A is a regularization parameter and Q is a known positive semidefinite 
matrix. The regularization parameter A and the matrix Q have an effect on 
reducing the variances of the network parameter estimates. 

In the multilayer perceptron network (3) the unknown parameters are 
estimated by employing a nonlinear optimization scheme, so the computation 
time is excessive and a careful initialization of parameter values is required. 
In contrast to the multilayer perceptron, the maximum penalized likelihood 
estimates of the weight parameters in the radial basis function network model 
(6) are explicitly given by 

w = (^l^ + nPQ)~1^y, 

where $„ = {(j)(x1),...,(j){xn))
T', (f>(xa) = (l,<^(a:a;i/), ...,<j>m(xa; v))T, y = 

(2/1, •••, yn)
T and j3 = ACT2 is a regularization parameter. Hence the radial basis 

function network model is free from the nonconvergence and identification 
problems. 

After estimating the network parameters, the error variance a2 is esti­
mated by <T2 = YZ=i {Vc* ~ Vo}2 ln where ya = u^(xa;w). The statistical 
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model constructed by the regularization method is then 

f(ya\xa;0) = (27r<T2)"1/2exp [- {ya - U{.}(xa;w)}2 /(2«r2)] , (8) 

where 6 — (wT,a2)T. 
The regression models (3) and (6) with small number of parameters might 

not have enough flexibility to capture the nonhnearity in the data. The 
model with too many parameters adapts too closely to the observed data. In 
these cases the estimated regression models do not produce acceptable predic­
tion values for future observations. Concerning the regularization parameter, 
smaller values will produce a curve with too much fitting and lager values 
lead the network regression model to be underfitted. In general, as the model 
complexity is increased, the variance of the estimated model tends to increase 
and the bias tends to decrease, and conversely as the model complexity is 
decreased. 

The problem is how to choose the regularization parameter A, the number 
of basis functions m and the hyperparameter v in the radial basis function 
network, and the number of hidden units in the multilayer perceptron network 
by a suitable model evaluation criterion. 

3 Information criteria 

Akaike's (1973, 1974) information criterion AIC provides a useful tool for con­
structing statistical models. AIC is, however, a criterion for evaluating models 
estimated by the maximum likelihood method, and it can be derived under 
the assumption that the true distribution belongs to the specified parametric 
family of probability distributions. Hence the criterion AIC is not theoreti­
cally justified for the evaluation of a model estimated by regularization, even 
if the neural network model encompasses the true structure. 

Information-theoretic criteria may be constructed as estimators of the 
Kullback-Leibler measure of discriminatory information (Kullback and Leibler 
(1951)) between the true model, g{y\x), and the fitted model f(y\x;0) or, 
equivalently, the expected log-likelihood 

V [9 • f(y\x; 0)J = / g(y\x) log f(y\x; ff)dy 0) 
(see, e.g., Konishi and Kitagawa (1996)). Ando et al. (2001) obtained an in­
formation criterion for evaluating the radial basis function network regression 
model estimated by regularization under model misspecification. Let 

ip{ya\xa\9) = \ogf(ya\xQ;0) - XwTQw/2, (10) 
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where 0 denotes the parameter included in the model. Then the result is 
given by 

n 

GIC(m, A,u) = - 2 £ l o§ f(y°\x°> 0) + 2 t r fa JG1) > (11) 
Q = l 

where 7G and J G are (m + 2) x (m + 2) matrices given by 

1 ^ a^(yq|8a;e)aiog/( | /a |8a,e) , I ^ d2ip(ya\xa;0) 
'<* - n 2^ 36 d9T ' ° n ^ ddddT ' 

a = l a = l 

This criterion was obtained by correcting the asymptotic bias of the log-
likelihood £)™= 1 log/(ya |a:Q ;0)/n in estimating the expected log-likelihood 
(9). 

Murata et al. (1994) proposed the network information criterion NIC. 
For evaluating the radial basis function network regression model estimated 
by regularization, NIC is given in the following; 

n 
NIC(m, A, i/) = - 2 ^ ip(ya\xa; 0) + 2tr (INJ^) 

"n1 _ (12) 
= -2^2 ^°sf(ya\xa;6) +n\wQw + 2tr ( / ^ J ^ 1 ) , 

a = l 

where Iff and Jff are (m + 2) x (m + 2) matrices given by 

_ 1 ^ dip{ya\xa;0) dij}(ya\xa;0) l A ^ ( g / J a v . e ) 
N n ^ 90 9 0 T ' ^ n ^ 5030 T " 

The adjusted parameters A, v and m are determined as the minimizer of 
GIC or NIC. A comprehensive survey of model selection was given by Rao 
and Wu (2001). 

4 Numerical results 

Monte Carlo experiments were conducted to examine the performance of the 
information criteria GIC in (11) and NIC in (12) through the radial basis 
function network Gaussian and non-Gaussian regression models estimated by 
the maximum penalized likelihood method. 

Gaussian nonlinear regression models 

In the Monte Carlo simulations, data sets {(xa,ya)\a = l , . . . ,n} are 
repeatedly generated from the true regression model ya ~ u(xa) + ea for 
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xa = (2a - l)/(2n). For the true function, u(x), we arbitrarily assumed 
the following functions: (a) u(x) = sin(27rx), (b) u(x) — —4a: (1 - x) + 
sin(47rx)/4, (c) u(x) = exp(-2x) sin(47ra;)/4. The errors sa are assumed to be 
independently distributed according to a mixture of two normal distributions 

»(*«) = 7-J-4ir) + (i-7)M!r), (13) 

G\ \ 0 \ ) (72 \Ol) 
where (j>(x) denotes the density function of a standard normal distribution 
and the standard deviations are taken as o\ = 0ARw and at = 1.2RW with 
Rw being the range of u(x) over [0,1]. 

The Gaussian nonlinear regression model in (8) is estimated based on a 
data set generated from the true model with the mixture density (13). In the 
modeling process, the weight parameters are estimated by maximizing the 
penalized log-likelihood function (7) with penalty term ^yiL2(^

2wj)2 where 
A is a difference operator such as AWJ = Wj — Wj-\. In this case positive 
semidefinite matrix Q in (7) can be represented by Q = DJD2 where D^ is 
(m — 1) x (m + 1) matrix representation for the difference operator A2 . 

The bias of the log-likelihood in estimating the expected log-likelihood is 
given by 

nb{G) = Eg(y\X) 

E9(y\x) 

n 

n 7ni72+(l — 7)n<T^ 1 ^ , , , „T,, •>-.•; 
- 3 + ' V

2>2 ' 2+^ ^2{u(xa)^wT<Kxa;v)Y 
a=l 

Figure 1 plots the true bias and the asymptotic bias estimates of GIC 
and NIC respectively given by equations (11) and (12) for values of a mixing 
proportion 7. The exact values of the bias were calculated numerically by 
using a Monte Carlo simulation with 100,000 repetitions. 

We observe from Figure 1 that the log-likelihood of a fitted model has 
a significant bias as an estimate of the expected log-likelihood, and that the 
bias increases with the deviation from normality that is reflected by the value 
of a mixing proportion 7. The difference becomes larger as the deviation from 
normality increases with the value of 7. In the case of n = 100, GIC and NIC 
yield almost the same bias estimates. The bias estimates of GIC converge to 
the true bias, while the bias estimates of NIC tend to overestimate the true 
bias, increasing with the number of the sample size n. 

Table 1 compares the average squared error ASE = S^= 1{ '«(a:Q ) -y a} 2 /n 
between the true and estimated functions. The simulation results were ob­
tained by averaging over 100 repeated Monte Carlo trials. It may be seen 
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- Estimated asymptotic biasfGIC) 
- Estimated asymptotic bias(NIC) 

0.0 0.2 0.4 0 6 0.8 1.0 

GIC (n = 100) 

0.0 0.2 0.4 0.8 1.0 

NIC (n = 100) 

- Estimated asymptotic bias(GIC) 

GIC (n = 400) 

- Estimated asymptotic bias(NlC) 

00 02 

NIC (n = 400) 

Figure 1. The true bias ( ) and the asymptotic bias estimates of GIC and NIC (—) for 
values of a mixing proportion 7. 

from Table 1 that the radial basis function network Gaussian regression 
models evaluated by GIC is superior to those by NIC in all of the situations; 
it gives the smallest mean value for ASE. In detail, the regularization 
parameter chosen by NIC was relatively smaller than that of GIC and 
leads to overfitting of the model. Similar comparisons were made for other 
combinations of sample sizes and true regression functions. We found the 
results described above to be essentially unchanged. 
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Table 1. Comparison of the average squared errors. 

7 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

n 
100 
100 
100 
100 
100 
100 

200 
200 
200 
200 
200 
200 

True function (o) 
GIC 
0.2206 
0.1488 
0.1242 
0.0963 
0.0671 
0.0410 

0.1089 
0.0806 
0.0736 
0.0553 
0.0356 
0.0207 

NIC 
0.2421 
0.1658 
0.1317 
0.1083 
0.0747 
0.0439 

0.1112 
0.0878 
0.0821 
0.0613 
0.0394 
0.0232 

True function (6) 
GIC 
0.0728 
0.0609 
0.0564 
0.0453 
0.0326 
0.0194 

0.0375 
0.0343 
0.0294 
0.0213 
0.0156 
0.0084 

NIC 
0.0785 
0.0681 
0.0616 
0.0536 
0.0400 
0.0212 

0.0405 
0.0380 
0.0311 
0.0285 
0.0187 
0.0100 

True function (c) 
GIC 
0.0931 
0.0765 
0.0602 
0.0477 
0.0373 
0.0219 

0.0533 
0.0425 
0.0288 
0.0234 
0.0158 
0.0088 

NIC 
0.1131 
0.0853 
0.0710 
0.0559 
0.0422 
0.0248 

0.0591 
0.0469 
0.0322 
0.0278 
0.0207 
0.0111 

Non-Gaussian regression model 

A simulation study was conducted to assess the performance of the radial 
basis function network logistic regression model given by 

f(yQ\xa;w) = Tr(xa)
v"(l-n(xa))

1~y", a=l,...,n, (14) 

where ir(xa) = 1/ [l + exp{ —wT4>(xa;v)}] is the conditional probability. 

We generate the binary observations {ya, (x\a,X2a)',ct — l , . . . ,n} accord­
ing to models: (a) pr(Y — \\x) = 1/ [1 +exp{-sin(27rx1) - cos(27r:r2)}], 
(6) pr(Y = l|a:) = 1/ [1 + exp{ — exp(a:i) sin(7nE2)}] and (c) pr(Y = l\x) = 
1/ [1 + exp {— x\ sin(7ra2)}], where the design points are uniformly distributed 
in [0,2] x [0,2]. 

We first fit the radial basis function network logistic regression model to a 
set of the 0-1 response data shown in Figure 2, which were generated from true 
structure (a). The adjusted parameters were chosen by using the criterion 
given by (11). Figure 3 compares the true surface with fitted conditional 
probability. We see that our modeling strategy captures the true structure 
well. 
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In Table 2 we compare the average squared errors ASE = 52a=i{Pr(ya = 
l\xa) — Tc(xa)}'2/n between the true and estimated conditional probabilities, 
in which the fitted functions are obtained using GIC and NIC. The simulation 
results were obtained by averaging over 100 repeated Monte Carlo trials. Ta­
ble 2 shows that the radial basis function network logistic regression models 
evaluated by GIC is superior to those by NIC in all of the situations; it gives 
the smallest mean value for ASE. 

CM 
X 

x1 
Figure 2. A set of the 0 - 1 response data generated from the true model (a) pr(Y = l|a:) 
1/ {1 + exp {— sin(27rxi) — cos(27ra;2)}}. 

Table 2. Comparison of the average squared errors ASE = Yj _ 1 {p r (ya — l|a!a) 
w(xa)}

2/n. 

True model (a) True model (b) True model (c) 

n GIC NIC GIC NIC GIC NIC 

100 0.0412 0.0465 0.0247 0.0263 0.0216 0.0227 

200 0.0289 0.0318 0.0098 0.0110 0.0133 0.0148 
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True probability: (o) pr(Y = l|ac). Estimated probability: f{ya\
xa',w). 

Generated data and contour image. Estimated contour image. 

Figure 3. Fitting radial basis function network logistic regression model f{ya\xa;w) in 
(14) for the true model (a) pr(Y = l|a:) = 1/{1 + exp {— sin(27r:ri) — cos(27TX2)}}. 
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The Pearson chisquared test of fit for discrete distributions may be improved by 
partitioning the test statistic into useful components. Examples will be given to 
demonstrate the improvement possible. A brief simulation study will look at the 
small sample distribution of components for testing for the Poisson distribution. 
This paper updates material in Rayner and Best (1989). 

Keywords: grouping data, orthogonal polynomials, partititon of chisquared, Poissonness. 

1 Introduction 

An excellent summary of chisquared goodness of fit tests is given by Moore 
(1986). Here we briefly discuss how to improve these tests of fit by partitioning 
the chisquared statistic when the categories are ordered. 

Pearson (1900) used examples of ordered categories multinomial data in 
his famous paper introducing the chisquared goodness of fit test. Since then 
there have been many applications of such goodness of fit tests presented in 
scientific publications. A large number of these applications have concerned, 
as did the original examples in Pearson (1900), testing for normality when 
only pre-categorized or pregrouped data are available. The availability of the 
chisquared approximation to the distribution of Pearson's test statistic is an 
advantage for it when compared to competitor goodness of fit tests. 

The main theme in this expository paper will be to suggest that the 
Pearson test can be improved by partitioning the test statistic into useful 
components. Colleagues have commented that this means we have a problem 
with significance levels, because we are not using one but many tests. As with 
analysis of variance, we suggest the utility of the components outweighs any 
necessity to stick to rigid rules of inference. The components have convenient 
approximate chisquared distributions, and their ready interpretation gives 
deep insight into the hypotheses of interest. 

We emphasise that for ungrouped continuous data it may be better to 
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use a goodness of fit test that does not take the risk of losing information by 
grouping the data. In this paper our interest centres on discrete data. 

2 Definitions 

Suppose we wish to test the hypothesis that n observations come from an 
ordered categories multinomial distribution F. If there are k + 1 categories 
and counts Nj, j - 0,1, . . . , k, then the familiar Pearson goodness of fit test is 
based on the statistic 

k 

3=0 

where pj is the probability under F of an observation lying in the jth category, 
j = 0, l,...,fc, and where n — No+...+Nk- Ifthepo,Pii—iPfc are unknown then 
they are functions of the unknown parameters of the underlying hypothesised 
distribution. The maximum likelihood estimation of these parameters often 
requires iterative techniques. When this is so the easier to calculate method 
of moments estimators could be used. Yet another method of estimating the 
parameters requires the definition of the components of X2, and this we now 
give. 

Suppose we associate a score Xj with the jth category or class. Put 

fe 
XjPj and /j,r = 2~](xj ~~ vYPj f° r ^ — 2, 3, E 

j=0 j=0 

-0.5 / 2 \ —U.O 

If a = f \x\ - ^ - [i%\ define the first three orthonormal polynomials by 

goixj) = l,gi(Xj) = {^0- and g2(Xj) = a{(Xj - nf - {Xj ~ M)M3 - fi2\ 

These polynomials are orthonormal on the probabilities poiPi, •••,Pk-
Higher order orthonormal polynomials ffc(a;j),...,</*(ZJ) can be derived by 
using the recurrence relation in Emerson (1968) or the determinant formula 
of Lancaster (1969, p.49). If the categories or classes are equiprobable then 
the formulae simplify and we can use tables of orthogonal polynomials such 
as those in Fisher and Yates (1963). Quenouille, in the discussion of Watson 
(1958), gives another method of partitioning X2 based on weighted regression 
which seems to be equivalent to what we suggest. See Appendix 1. Cramer 
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(1966, p.441) also suggests a similar idea based on an Edgeworth series for 
the special case of the categorized normal distribution. 

Continuing with our orthogonal polynomial approach, take 

k 

Vm = X ] Njgm{xj)ly/n, m = 1,..., k. 
j=o 

It may be shown, as for example in Lancaster (1953), that X2 may be parti­
tioned using the Vm, so that 

m=l 

We usually call the Vm components of X2. 
If r parameters need estimation then estimates can be obtained by setting 

the first r Vm to zero and solving r (often nonlinear) equations. We conjecture 
that the remaining Vm are asymptotically independent standard normal. If 
moment or maximum likelihood estimators are calculated from the ungrouped 
data, then the first r Vm are not necessarily zero, and to get a statistic with an 
approximate chisquared distribution with k — r degrees of freedom we should 

r 
use (X2 - ^ Vm), a s suggested by Quenouille in the discussion of Watson 

m=l 
r 

(1958). Often Y^Vm 
is negligible, but this needs checking for each data 

set. We also conjecture that the k — r remaining Vs are again asymptotically 
independent standard normal. The paper by Best and Rayner (2002) gives 
a simulation verification of this for the Geometric distribution. A similar 
verification for the ordered categories discrete uniform is given by Best and 
Rayner (1997a). Appendix 2 of this paper gives a brief simulation verification 
for the Poisson distribution. Best and Rayner (1997b) discuss the applicability 
of the asymptotic distributions for the binomial but further work is needed to 
verify this applicability for other distributions. 

In practice data often seem to be consistent with alternatives that fall 
into three or four dimensions in the parameter space. Such alternatives are 
said to be of "low order"; see Rayner and Best (1989, section 4.3). For these 
alternatives the important components are often the first few. We are also 
interested in residuals to see if further components need to be calculated. For 
example, for the Poisson we focus on the residual R = X2 - V2 - Vf - V2. 
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3 Three examples 

We now give three examples that demonstrate the utility of our approach. 
We obtain p-values using the approximate chisquared distribution. The jus­
tification for this was outlined in the penultimate paragraph of the previous 
section. 

Cordial drink preference example 

Best and Rayner (1997a) give an imaginary market research example 
where 40 consumers were asked for their colour preference of five orange-
mango cordial drinks. The five drinks had different orange colours ranging 
from "pale" orange to "deep" orange. We may wish to test for no preferences 
between colours: that is, to test the fit of an ordered categories discrete uni­
form distribution where we associate a score of j with the j t h class. The data 
were: 

~0 1 2 3 T 
5 10 11 10 4 

where the first row is the score and the second row gives the frequencies. 
We find X2 = 5.25 (p-value 0.26) and V2

2 = 5.14 (p-value 0.02). If we had 
used only a X2 test we would have concluded that there was equal preference 
for the orange colours. Similarly, if we apply the Anderson-Darling statistic 
A2, as discussed in Choulakian et al. (1994), we find A2 — 0.89, again an 
insignificant value. 

The significance of V2
2 suggests departures in variance or dispersion from 

what is expected for a discrete uniform distribution, although some caution 
is needed in placing too much weight on this suggestion as it is possible to 
get large Vi due to the effects of higher order moments; see, for example, 
Rayner et al. (1995). In the present case inspection of the data would also 
seem to indicate there is a significant lack of preference for both pale and 
deep orange, implying a variance different to that of the discrete uniform. 
There are no other effects as the residual X2 - V2 = 0.11, which is clearly 
nonsignificant. Power comparisons in Best and Rayner (1997a) indicate the 
chisquared components are often good tests of fit for the discrete uniform 
distribution. 

The tables of orthogonal polynomials given, for example, by Fisher and 
Yates (1963) could be used to calculate V2 m this particular case of equal null 
probabilities. However, in general the formulae above are needed and we now 
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give some detail of their calculation for the present example-
First we find n = 3, fi2 = 2, /U3 = 0, /i4 = 6.8 and a = 0.5976. Thus 

9l(J) = 0.70710' - 3) and 5 2(j) = 0.5976(j2 - 6j + 7). 

We are given {NUN2,N3,N4,N5) = (5, 10, 11, 10, 4) and n = 40. We then 
find Vi = -0.2236 and V2 = -2.2678. 

Radioactive counts example 
Rayner and Best (1989, p.94) quote the following data from a Rutherford 

and Geiger experiment relating to radioactive decay counts of Polonium. 

Count: 
Frequency: 
Count: 

Frequency: 

0 
57 
8 
45 

1 
203 
9 
27 

2 
383 
10 
10 

3 
525 
11 
4 

4 
532 
12 
0 

5 
408 
13 
1 

6 
273 
14 
1 

7 
139 

Douglas (1994) and Best and Rayner (2002) both suggest grouping the 
data so that class expectations are greater than unity. There are two purposes: 
first, to ensure that the chisquared approximations for X2 and its components 
are adequate, and second, that there is no great loss of information. As 
data-dependent classes have been constructed, this procedure will affect the 
distributions of the components and of X2. However, simulations we have 
looked at to date suggest this effect is minimal. For example, see Appendix 2 
below and simulations in Best and Rayner (2002). 

In testing for a Poisson distribution with the Poisson parameter estimated 
by the mean of the ungrouped data, 3.87, we find X2 = 12.98 (p-value 0.30, 
11 degrees of freedom) when classes are pooled so that all expectations are 
at least unity. Further, V? = 0.001, V2

2 = 3.26 (p-value 0.07), V3
2 = 0.16 (p-

value 0.69), V? = 5.07 (p-value 0.02), R = 3.49 (p-value 0.90). Spinelli and 
Stephens (1997) find the Anderson-Darling statistic A2 = 1.25 with associated 
p-value 0.03 for these data. The large V2 and V4 values indicate the spread of 
the observed distribution does not match that of the Poisson. The value of R 
indicates there is likely to be at most one other large V value. As expected 
from the power studies in Best and Rayner (1997a), A2 is sensitive for this 
data set as V2 is large, and A2 weights the early components more than the 
latter. The omnibus X2 weights all of its components equally, and so is not as 
sensitive here as A2. It appears that the effect of a few large Vm is diluted by 
the many nonsignificant Vm. Cramer (1966, p.436) also looked at these data 
and found a similar X2 and p-value. However, he did not look at components 
and concluded that the Poisson was a good model for the data. 
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Best and Rayner (1989, pp.94-96) examined this data set using smooth 
tests of fit and also concluded there were dispersion and kurtosis deviations 
from the Poisson assumption. However, a problem with the smooth tests 
for the Poisson is that very large sample sizes are needed for the asymptotic 
distributions to be useful. 

Dice data example 
Pearson (1900) and Rayner and Best (1989, p.12), among others, consider 

Weldon's dice data where the number of 5s or 6s is counted for 26,306 throws 
of 12 dice: 

Count: 
Frequency: 
Count: 

Frequency: 

0 
185 
6 

3067 

1 
1149 
7 

1331 

2 
3265 
8 
403 

3 
5475 
9 
105 

4 
6114 
10 
14 

5 
5194 
11 
4 

12 
0 

Rayner and Best (1989, p.136) test for a binomial with parameters N = 12 
and p = 1/3, using Krawtchouk polynomials. However these are a special case 
of the polynomials, gm(xj) defined above. Using the above formulae, V\ = 
5.20 (suggesting a mean change) and V2 = 0.75. Clearly the data support 
a binomial parameter p greater than expected for a binomial distribution. 
Power comparisons in Best and Rayner (1997b) indicate that the chisquared 
components are often good tests of fit for the binomial distribution. 

Kemp and Kemp (1991) observe that Rayner and Best (1989, p.136) give 
an incorrect formula for h2(x;p) and so incorrectly give V2 = 1.54. The correct 
formula replaces the term Npq by Np2. Guttorp (1992) observes that a likely 
reason for p > 1/3 is that "the markings of the faces of dice is commonly done 
using little indentations ... (which) change the center of gravity toward faces 
with fewer dots (and) implies an increased probability of the event (5 or 6)". 

If p is estimated from the ungrouped data using maximum likelihood 
estimation, then p = 0.3377. If counts are pooled so that all cell expectations 
are at least one, then there are 12 cells and X2 = 12.67 with 10 degrees of 
freedom. The p-value is 0.24. Further V1 = -0.001, V2 = 0.638, V3 = 0.060 
and VA = 0.148, none of which are significant. 

4 Conclusion 

We suggest X2 and its components are useful statistics for testing goodness 
of fit for discrete distributions. The components give indications of possible 
deviations from the hypothesised discrete distribution. We have given applica-
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tions involving testing fit of the ordered categories discrete uniform, binomial 
and Poisson distributions. Convenient chisquared approximate distributions 
are available for X2 and its components for these distributions. Goodness 
of fit for any univariate discrete distribution could be tested for fit via our 
methods for the ordered categories multinomial distribution. However further 
work needs to be done to verify the applicability of the chisquared approx­
imations for other distributions. Although we do not give details here, we 
conjecture that the power of X2 and its component tests can be well approx­
imated using noncentral chisquared distributions. Best and Rayner (1997a) 
discuss this conjecture for the discrete uniform distribution. Rayner (2002) 
considers some categorized normal examples using a different method of par­
titioning. However, using the approach of this paper gives components almost 
identical to his. Further work needs to be done to establish the reason for 
this. 

Appendix 1 
Quenouille, in the discussion of Watson (1958), suggested partitioning X2 

using weighted polynomial regression. The approach given was to take 
Vj = {Nj — npj)/(npj),Xj = j , and weights Wj = npj. 

Suppose then that the regression coefficient, b say, for a straight line 
regression is estimated by weighted least squares so that 

b = Yjvj^j - *)(&• - y)/Ylwi(xi ~ * )2 

i i 

in which x = Y^WJXJ/^WJ = Y^JPj = A» and y = ^wjyj/^Wj = 0. 
3 3 3 3 3 

Further 

b = Y,U ~ l*)(Nj - nPj)/Y^npj(j - (J,)2 

3 3 

= ^2NJU - tilYnpjtJ - M)2 

3 3 

= J2N3'(J - M)/(«M2) = VL/v/n/TJ. 
3 

The usual regression sum of squares is b2^2vjj(j - /i)2, which as we have 

3 

just seen, is nfj,2b
2 = V?. Thus the Quenouille approach is seen to be identical 

to an orthogonal polynomial approach for finding the first component. 
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Appendix 2 
As a check on the validity of the chisquared approximation to the dis­

tributions of X2, V2, V32, and R = X2 - V2 - V2 in the case of testing for 
a Poisson distribution, Table 1 gives test sizes, based on 1,000 simulations, 
for a nominally 0.05, for a sample size n of 50, and for various values of the 
Poisson parameter lambda. As in Douglas (1994), the number of classes used 
in calculating X2 varies so that each class has an expectation of at least one. 
An approximate standard error for the sizes in Table 1 is 0.007. 

Table 1. Sizes for various statistics, A as shown, n = 50 and nominal a = 0.05. 

A 
0.5 
0.75 
1.0 
1.5 
2.0 

X2 

0.04 
0.05 
0.04 
0.05 
0.04 

y'i 
0.04 
0.05 
0.05 
0.05 
0.05 

vi 
0.05 
0.05 
0.05 
0.05 
0.04 

R 
-

0.04 
0.05 
0.05 
0.05 
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In traditional finance theory, there is the underlying assumption that risk in both 
cash and futures markets is constant over time, thus disregarding the possible 
dynamic (time-varying) nature of the distribution of the asset returns. The im­
plication of such an assumption is that the resultant hedge ratio will be constant 
through the hedging period. This article examines the criteria under which dif­
ferent hedging strategies are optimal from the perspective of a bona-fide hedger. 
The ability of dynamic approaches to minimise risk is compared to the static pro­
cedures of naive and conventional hedging. It is shown that if the hedge ratios are 
unstable, allowance for such stochastic movements will significantly increase hedg­
ing effectiveness by reducing the volatility of the hedged portfolio. Noting that the 
forecasted hedge ratio provides a constant alternative to the conventional hedge, 
a hedging rule is determined which enables a comparison of two constant hedge 
ratios, bypassing the need for transaction cost considerations. It is shown that the 
conventional hedge does not necessarily provide the most effective constant hedge. 

Keywords: dynamic hedge, hedging effectiveness, futures markets. 

1 Introduction 

The most common method for determining the hedge ratio is known as the 
conventional hedging strategy, whereby the ratio is determined by dividing the 
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(unconditional) covariance between cash and futures returns by the (uncondi­
tional) variance of the futures returns. The hedge ratio may be equivalently 
obtained by regressing the returns to holding the spot asset AS on the returns 
to holding the futures asset AF . The resultant slope parameter provides the 
hedge ratio. In such a strategy both cash and futures positions are assumed to 
be held without adjustment during the cash-holding period. The hedger's sub­
sequent position will remain unchanged (i.e. one would have a perfect hedge) 
provided the cash and futures returns both change by the same proportions. 
The assumption that the hedge ratio is constant over time translates to the 
covariance matrix being constant through the post-sample period (equal to 
the in-sample period's unconditional covariance matrix). 

Dynamic hedges may be more effective than static techniques since the 
time path of the conditional correlation matrix may reveal information that 
cannot be obtained by simply computing the sample correlation statistic. In 
such situations static approaches fail to provide adequate hedging performance 
by failing to incorporate the dynamic interaction between cash and futures re­
turns. Static hedging approaches therefore cannot generally produce optimal 
hedge ratios, giving rise to important concerns regarding the risk-reduction 
properties of such models and forcing market participants to consider the 
application of dynamic strategies in managing price risk. Dynamic hedge ra­
tios have been shown to provide more optimal hedges by Bollerslev (1987) 
and Park and Switzer (1995) for stock index futures, Cecchetti, Cumby and 
Figlewski (1988) for treasury bonds, Baillie and Myers (1991) and Myers 
(1991) for commodities, Kroner and Sultan (1993) for foreign currency and 
Gagnon and Lypny (1995) for banker acceptances. However, Watt (1997) 
concluded that a static hedging strategy may indeed be the most effective 
hedging technique even though dynamic models may be found to have supe­
rior explanatory power. 

The motivation behind this paper is to determine the conditions under 
which a particular hedging strategy provides a more optimal (in terms of risk-
reduction) hedge. Specifically, in the case of constant hedging the conventional 
technique is shown to not necessarily be the most optimal constant hedge. A 
hedge based on the forecasting curve of future hedge ratios may provide an 
alternative static hedge to the conventional hedge in certain instances. This 
will depend upon appropriately modelling the in-sample data and obtaining 
an appropriate forecasting curve. This is referred to in this paper as the 
forecasting hedge. 

The conventional hedging rule will not be optimal in cases where the basis 
is not constant. The reason is that the slope parameter from the conventional 
approach is merely a ratio of the unconditional covariance between cash and 
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futures returns to the unconditional variance of the futures returns. However, 
in situations where the basis is time-varying, the covariance and variance in 
the optimal hedging rule are clearly conditional moments that depend on in­
formation available at the time the hedging decision is made. A preferred 
alternative to static hedging is a generalised approach that takes proper ac­
count of relevant conditioning information. Employing ex-post data will not 
correctly estimate the ex-ante risk-minimising hedge ratios when the basis is 
not constant through the post-sample period. The calculation of the hedge 
ratio via the traditional method precludes dynamic updating of the hedge 
as circumstances change and new information arrives over time. Structural 
shifts between cash and futures returns are accountable for a general failure 
of static hedging approaches. The time-varying residual variances and covari-
ances should be allowed to respond to price shocks and changes in volatility 
by systematically allowing the covariance matrix to be updated over time as 
new information arrives at the marketplace. Improvements to hedging per­
formance may be made through the implementation of strategies that involve 
more than simply buying and holding a fixed futures position over the entire 
cash-holding period. 

This paper is organised as follows. Section two outlines the notation used 
in the analysis, section three provides a mathematical comparison of different 
hedging strategies. In section four a constant alternative to the conventional 
hedge is proposed based on the forecasted hedge ratios. Section five provides 
an example of constant hedge comparisons via practical data and section six 
concludes. 

2 Notation 

The GARCH model is basically a time-dependent conditional variance model 
which allows the second moment of the distribution of returns to change 
through time (Bollerslev, 1986). In such models, the variance of the series 
is stationary over the long-term (i.e. it does not increase or decrease ad infini­
tum, or trend). However the variance does deviate from this stationary process 
in the short term. The time-varying residual variances and covariances are 
allowed to respond to price shocks and changes in volatility by systematically 
allowing the covariance matrix to be updated over time as new information 
arrives at the marketplace. GARCH models have been employed successfully 
in modelling dynamic volatilities and correlations by not only incorporating 
heteroscedasticity observed in economic and financial data but also having the 
advantage of capturing the tendency for such data to exhibit leptokurtosis, 
skewness and volatility clustering. 
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GARCH models extended to the multivariate setting are known as 
MGARCH models. Such models are often invoked to estimate dynamic corre­
lations of financial assets. The MGARCH model (for the bivariate case) will 
now be introduced in detail. Define yt as an observable 2 x 1 vector process 
of the returns on the cash and futures positions. This implies that extension 
of the univariate model must take into account time-variability not only of a 
vector of conditional means, but also of the 2 x 2 covariance matrix H t . A 
simple model of the interaction between the returns is given by 

yt=H + et, et~N{0,Ht) 

where /z is a 2 x 1 vector of constants, et = [ei,t £2,t}' (' denoting transpose) 
is a 2 x 1 vector of errors and H t defines the symmetric (2 x 2) conditional 
covariance matrix between the returns where 

H = I ^n'1 Hi2,t \ 
\H2l,t H22,t / 

The next section will outline the situations under which various hedging 
strategies may be accepted as more optimal than others. 

3 Comparison of hedging methods 

Comparison of hedging methods centres on the calculation of the portfolio 
return at each post-sample period t. The portfolio return at time t is denned 
by 

ASt - htAFt, 

where ht is the hedge ratio determined given information available at time 
t. The (unconditional) variance of these returns is then calculated and the 
hedging method which leads to the smallest variance of portfolio returns is 
regarded as the optimal hedging method. Furthermore, within this period 
it may be possible to ascertain certain time periods where various hedging 
strategies are likely to provide more optimal hedges. Hedging effectiveness is 
traditionally calculated by taking unconditional variances. The novelty of this 
analysis is that conditional variances will also be analysed, the logic behind 
this is that a certain hedging method may be optimal in certain periods but 
not in others. 

In the case of naive hedging, ht = 1 for all t. Therefore the conditional 
variance of such a hedged portfolio is 

Vart.^ASt - AFt) = Hn,t - 2H12,t + H22,t, 
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where Hnj denotes the conditional variance of cash returns at time t, H\2,t 
denotes the conditional covariance between cash and futures returns at time 
t and H22it denotes the conditional variance of futures returns at time t. 

The conditional variance of a portfolio hedged by the conventional 
minimum-variance procedure is 

Van-^ASt - huAFt) = H1U - 2hisHlu + h2
lsH22,u 

where his is the hedge ratio obtained via the conventional (least-squares) 
technique. 

Where the hedge is constructed via time-varying techniques, ht = 77^7 • 
The conditional variance of the resultant hedged portfolio is 

H2 

Vart-1(ASt-htAFt) = H1i,t-1^: (1) 
• "22 , t 

The quantity on the right-hand side of (1) will be smaller as H2
2t

 aP~ 
proaches HnttH22j. Therefore the portfolio variance decreases as the condi­
tional (dynamic) correlation between cash and futures returns increases. This 
correlation, according to Hegde (1982), is expected to rise during periods of 
increased volatility. 

The conventional technique provides a more optimal hedge than the naive 
strategy if 

(hi. + l)i/22,t - 2#1 2 , t > 0, 

subject to his < 1. If #12,t ~ #22,t then the conventional strategy is approx­
imately equivalent to the naive technique. 

A dynamic hedging strategy is assumed to produce a more effective hedge 
than the naive technique if 

-(H12,t - H2U)2 < 0. (2) 

Since the left-hand side of (2) is always negative, a dynamic hedge is never 
less effective than the naive hedge. In the case where H\2<t ~ H22,t for all 
t (i.e. when the time-varying hedge ratio is approximately equal to 1 for all 
t) both the dynamic and naive techniques are equally effective, otherwise the 
time-varying hedge is closer to being optimal than the naive hedge. 

A dynamic technique provides a better hedge than the minimum-variance 
technique if 

H2 

Hn,t - 7 7 ^ - Hlu + 2hlsHl2<t - h2
lsH22,t < 0 

•"22,* 
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which may be simplified to 

-(?/&-hu)*<0 (3) 

since the quantity H22,t is strictly positive for all t. Since the left-hand side of 
(3) is always negative, the time-varying hedge is never less effective than the 
minimum-variance hedge. A dynamic hedge is only equally effective as the 
minimum-variance hedge when the quantity H

12'f is approximately constant 
for all t. 

Similarly a dynamic technique provides a more optimal hedge than any 
constant hedge ratio h if 

ti22,t 

since the quantity H22,t is strictly positive for all t. 
From the above comparisons it may be concluded that if the conditional 

ratio H
12,t is approximately equal to 1, in some defined interval from time 

to to time t\, the naive hedge is effective. If, however, the ratio H
12,t is 

approximately equal to a constant (not necessarily 1) a static hedge ratio h 
(not necessarily the conventional hedge) will be effective during the period 
from to to t\. If, however, the hedge ratios are not stable over time then 
dynamic techniques would be the preferred method for hedging a desired 
cash position. In this case, a plot of the quantity j — ^ - is likely to reveal 
nonstationarity and thus the optimal hedge will not remain constant during 
the life of the hedge. How effective a dynamic hedge is with respect to each of 
the constant hedging strategies will depend upon the extent that the optimal 
hedge ratio -JT^- is unstable over time. 

Criteria will now be introduced to compare constant hedges. This criteria 
will be utilised in Section 5 where a comparison between different hedging 
strategies is conducted. Specifically, two constant hedges will be compared. 
The criteria allows the hedger to determine which of the two constant hedge 
ratios should be applied. Assume there is the choice of two available hedge 
ratios, h\ and h2, both of which are constant. Furthermore assume that 
hi > h2. Under such conditions h\ is determined to be superior to h2 if 

(hi - h2)((hi + h2)H22it - 2H12,t) < 0. 

Therefore whether hi is accepted to be superior to h2 depends upon 
whether the quantity (hi+h2)H22tt-2Hi2<t is less than zero. Since ht — jj^t, 
this rule may be simplified to determining whether ft'+^ < ht. If so, hi is 



38 

accepted to be closer to optimal than /12. This makes intuitive sense as it is 
known the optimal hedge ratio at any time period is ht. In practical situa­
tions this hedge ratio cannot be altered frequently due to transaction costs. 
Therefore between two constant hedge ratios, hi and /12, one should choose 
the hedge ratio that is closer to ht for the majority of time periods. 

In the next section a constant hedge ratio is proposed, calculated to be 
the limit of the forecasting curve of the hedge ratio (available at the present 
time, t). This constant hedge ratio will then be compared to the constant 
hedge ratio obtained via the conventional technique. 

4 Forecasting hedge rat ios 

This section will derive a method for determining an alternative constant 
hedge ratio. The motive behind this is that the conventional hedge ratio may 
well not be the most optimal constant hedge ratio (and there may exist an 
alternative constant hedge ratio which, if invoked, will reduce the risk of the 
hedged portfolio). 

A constant alternative to the conventional approach may be taken to be 
the limit of the forecast of conditional covariance of cash and futures returns 
(Hi2,t) divided by the forecast of conditional variance of the futures returns 
(H22,t)- Define the present time by t and the resulting /-step ahead forecast 
as 

Ht+f = Et(et+fe't+f), 

where Et denotes the conditional expectation given information available at 
time t and A, B and C are matrices in the MGARCH specification, then 

H t + 1 = Et(et+1e't+1) = C'C + A'etejA + B'H tB, 

The / - th step ahead forecast of the conditional variance can be written 
in the general form 

/ - 1 

Ht+f = Et(et+fe't+f) = £ ( A ' + B')k * C'C * (A + B)k (4) 

+ (A' + B ' ) / - 1 (A ' e ; e t A)(A + B)^1 + (A' + B ' ) / - 1 ( B ' H t B ) ( A + B ) ' " 1 , 

where * denotes element-by-element multiplication, e.g. 

(A' + B') * C'C * (A + B) = A'C'CA + B'C'CB 

(A' + B')2 * C'C * (A + B) 2 = A'2C'CA2 + A'B'C'CBA 

+ B'A'C'CAB + B'2C'CB2 , 
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since the ordering of the multiplication matters. 
It can intuitively be seen that, assuming the determinant |A + B | is less 

than one, the limit of the second and third terms of (4) tend to zero as 
/ approaches infinity. Therefore as / increases, Ht+f will increasingly be 
impacted by the expression £fc=o(A ' + B')fe * C'C * (A + B)fe, although the 
impact of the individual terms of (A' + B')fc * C'C * (A + B)fc diminishes 
over the longer lag period (i.e. the limit of (A' + B')fe * C 'C * (A + B)fe as k 
approaches infinity is equal to 0). 

The next section will apply different hedging strategies to real-life data 
and, based on the application of the criteria developed in the previous section, 
will determine an appropriate hedging strategy. 

5 Example 

This example will demonstrate that, in the case of constant hedging, the 
conventional hedge is not necessarily the most optimal hedge. There may 
exist other constant hedge ratios which provide greater variance reduction of 
the hedged portfolio. Furthermore, via application of an alternate strategy 
(which involves the alternating of constant hedging ratios), it is seen that 
hedging effectiveness will significantly increase and will even be greater than 
that obtained using dynamic techniques. 

To gain an understanding of the potential strength of the constant fore­
casting hedge, hedging effectiveness is compared between four types of hedges; 
the naive hedge, the conventional hedge, the forecasting (constant) hedge and 
the time-varying hedge (where this dynamic hedge is rebalanced every day). 
By rebalancing daily the dynamic hedge provides the optimal hedge ratio, ht, 
based upon information available at t. To compare the performances of various 
hedging techniques, daily returns are constructed as implied by the computed 
hedge ratios and the variance of the returns of the constructed portfolios are 
calculated over the entire sample period. For the sake of completeness, the 
portfolio variance for the unhedged investor is also reported. 

The cash and three month forward rates of the New Taiwanese Dollar 
are examined (vis-a-vis the United States Dollar). All data are obtained from 
DATASTREAM. The data period examined is from December 31, 1996 to 
December 31, 1999 inclusively. The period January 1, 1999 to December 31, 
1999, is then withheld from the sample (and subsequently used for post-sample 
estimation) and all relevant hedge ratios are estimated over the December 31, 
1996 - December 31, 1998 period. The returns (i.e. the difference of the 
natural logarithms) are analysed. 

The time series plots of the return series are both time-varying (although 
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they appear to have a constant mean), with significantly more volatility in 
the second half of both series. Analysing the mean, median, skewness and 
kurtosis it may be concluded that both series are not normally distributed, 
the mean and median appear slightly different, the skewness is not zero, the 
kurtosis is not equal to 3, the Jarque-Bera and Shapiro-Wilk statistics for 
both series are both significant (the p-value is always 0). Strictly speaking, the 
Jarque-Bera and not the Shapiro-Wilk test should be invoked in this instance 
since the sample size is less than 2000. Therefore the null hypothesis that 
the distributions are normal may be rejected at the 1% level of significance. 
The signs for skewness are all positive, indicating the distribution for the rate 
of return is skewed right. Similarly, all the signs for kurtosis are positive, 
which indicates that the distributions of both cash and futures returns are 
heavy-tailed. 

The attention now focusses on possible heteroscedasticity in the variances 
of the returns. The Box-Ljung {BL) test is used to test for such heteroscedas­
ticity in the variances of the cash and futures returns respectively. For p = 24, 
the BL(p) statistic for squared returns is significant, indicating the variance 
for cash returns is indeed heteroscedastic. Similarly, the Lagrange-Multiplier 
test is applied to both cash and futures returns. The test statistic is signifi­
cant, thus rejecting the null hypothesis that the variances are homoscedastic. 

A MGARCH model with an ARIMA(3,3) specification for the conditional 
mean and an ARIMA(1,1) specification for the conditional variance is fitted to 
the cash and futures returns, as this yields the lowest value of the AIC statistic 
(the resultant optimisation algorithm converges). All possible combinations 
up to an including order 4 of p and q were fitted to the conditional mean, the 
lowest AIC statistic was obtained when p = q = 3. The resultant estimates 
of each of the parameters in the MGARCH model are as follows; 

^ /0.2788 -0.8505 \ f 0.8989 0.2142 \ _ /0.0012 0.0000 \ 
V 0.0500 1.1870 J ' ~~ ^-0.0033 0.6801 J ' ~ 1^0.0012 0.0000 J ' 

The variances of both cash and futures returns are affected by shocks 
to the system. The shocks are permanent in nature since, extracting the 
coefficients from the matrices A and B, \Au + Bn\ > 1 and \A22 + -822! > 1. 
The effect of these shocks on the covariance between cash and futures returns 
is transitory as \A\2 + B12I < 1 and \A2\ + B2i\ < 1. A hedge ratio of 0.8502 
is obtained via the conventional hedging strategy. The forecasted hedge ratio 
is equal to 0.5112. 

The variance of the unhedged portfolio is equal to 0.00000284. Via imple­
mentation of the naive hedge the portfolio variance is reduced by 15.8%. The 
hedging effectiveness via the conventional technique is equal to 37.9% and the 
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Table 1. Hedging Effectiveness of various hedging strategies for the New Taiwanese Dollar. 

Hedging Strategy 

No Hedge 
Naive 

Minimum Variance 
Constant Forecasting 

Time-varying 

Variance of 
Hedged Portfolio 

0.00000284 
0.00000239 
0.00000176 
0.00000125 
0.00000121 

Hedging 
Effectiveness 

-
0.157901 
0.379058 
0.561104 
0.574264 

effectiveness of the forecasted hedged portfolio is 56.1%. The dynamic hedge 
results in a reduction of 57.4% of the variance. The dynamic hedge is based 
upon the fitting of the ARIMA(3,3) model at each post-sample period. In 
reality it is not known whether this model yields the lowest AIC statistic at 
each period (and it is impractical to determine this). If the most appropriate 
ARIMA model is fitted at each period the hedging effectiveness of the dy­
namic technique will, in all likelihood, increase, e.g. when the ARIMA(2,0) 
model is fitted at each period the hedging effectiveness value increases to 
62.2%. The results for various hedging strategies are included in Table 1. 

The relationship between any constant hedge ratio and the effectiveness 
of a hedge is shown in Figure 1. The forecasting hedge yields a hedging 
effectiveness value of 56.1%. The maximum variance reduction a hedger can 
obtain via the implementation of a constant hedge is 56.3%. This is attainable 
when the hedge ratio is equal to 0.54. The forecasting hedge ratio is closer to 
the optimal (constant) hedge ratio than the conventional hedge. 

The difference in conditional variance between the conventional technique 
and the constant forecasting strategy for the post-sample period is plotted in 
Figure 2. From this plot it may be seen that even though the conditional 
variance of the conventional technique is less than the conditional variance of 
the constant forecasting strategy for the majority of time periods, the larger 
deviations from zero occur in the positive direction (i.e. where the conditional 
variance of the conventional approach is greater than that via the forecasting 
hedging technique). This is also seen through the mean value of the difference 
of conditional variances which is equal to 0.00000030. It may therefore make 
intuitive sense to initially adopt the conventional approach until such time the 
difference between conventional and forecasting strategies becomes significant 
so as to warrant a change in regime. This is an interesting issue to discuss 
but is beyond the scope of this paper. 

The hedger may want to switch from the conventional technique to an im-
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Figure 1. Relationship between any constant hedge ratio and hedging effectiveness for the 
New Taiwanese Dollar. 

plementation of the forecasting strategy if the difference between conditional 
variances reaches 0.000005 (and similarly switch back to the conventional 
strategy once the difference becomes smaller than -0.000005). If this strategy 
is adopted the effectiveness of the hedge will increase to 63.7%, as the hedge 
will change from the conventional to the forecasting hedge strategy at approx­
imately t = 50. Such effectiveness is not even obtained via the updating of 
the hedge at each time period. The hedger would not only minimise their risk 
(via the minimisation of the variance of the hedge portfolio) but also reduce 
the cost of implementation of the hedge since a smaller proportion of the cash 
portfolio is hedged in the futures market. The hedge ratio via this strategy 
would only have to be updated once during the post-sample period. This 
quasi-static hedging strategy proves to be the most optimal strategy in this 
instance. 

6 Conclusion 

Conditional hedging techniques make an over-simplified assumption of a con­
stant covariance matrix between cash and futures returns, leading to sub-
optimal hedging decisions. The implication of incorrectly assuming constant 
variability of returns are a loss of efficiency in terms of portfolio allocations 
and inappropriate decisions in terms of hedging the associated risk. There-
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8 & 

Figure 2. Conditional variance of the conventional hedge minus the conditional variance of 
the forecasting hedge for the New Taiwanese Dollar. 

fore, in order to achieve optimal hedge ratios, allowance should be made for 
possible dynamic characteristics of the variances of cash and futures returns. 
This paper has shown tha t the conventional hedge does not necessarily pro­
vide the most effective constant hedge and tha t a constant hedge based on 
the limit of the forecasted hedge ratios may provide greater variance reduc­
tion. Furthermore this paper has also shown tha t it may be possible to obtain 
further variance reduction via the switching of (constant hedge) regimes from 
the conventional technique to the forecasting hedge strategy (or vice-versa). 
It may also be pointed out tha t as futures are derivative instruments with 
symmetric pay-offs, the hedging problem is far less pronounced than say, for 
hedging with options, as options have asymmetric pay-offs. Further research 
would involve the extension of the proposed methodology to cover the problem 
of dynamic hedging (i.e. delta hedging) with options. 
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The composition of a transect through a two-phase particle has a probability dis­
tribution which depends on the shape, composition and phase structure within the 
particle, as well as the type of randomness used to generate the transect. This pa­
per will illustrate how the transect composition can be simulated in Mathematica 
for some simple geometric models. In particular, the liberation index suggested by 
Davy (1984) will be evaluated for two-dimensional models, thereby extending the 
results of Coleman (1991). 

Keywords: geometric probability, random secant. 

1 Introduction 

For a population of two-phase particles with phases denoted by 0 and 1, Davy 
(1984a) introduced the index of liberation defined by 

_ SjXoXJEiX*) 
d £{X0X)S{X1X) 

where £(•) denotes expectation, X denotes length L, area A or volume V for 
d = 1, 2 or 3 respectively, and Xt (i = 0,1) denotes the portion of X that 
belongs to phase i (Xo + X\ = X). The index is symmetrical with respect 
to the two phases and ranges in value from 0 (when X±/X is constant) to 1 
(when the only possible values of X\ are 0 and X). It is therefore a measure of 
variation of particle composition within the population. The index evaluated 
within lower dimensional cross-sections or transects tends to be higher than 
that of the original populatiion, as will be demonstrated in Section 5. 

Consider a fixed two-dimensional convex body K with area A and perime­
ter B, divided into two phases by a random line. Four different types of ran­
dom line will be discussed in Section 2. For any such line, the two possible 
allocations of phases 0 and 1 are assumed to be equally likely, and therefore 
Ao and Ai = A — Ao have the same distribution. 

The two-phase particle is then probed by an independent random line, 
resulting in a transect of length L = LQ + L\. Let a and j3 denote the 
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types of randomness of the interphase boundary line and the transect re­
spectively. £a(-), £p(-) and £a,(}(-) will denote expectation with respect to 
a-randomness of the interphase boundary line, /3-randomness of the transect 
and joint (a,/3)-randomness. Similarly A2(a) and Ai(a,/3) denote liberation 
indices with respect to the specified types of randomness. 

By symmetry, 

£a(AoA) = ea(AiA) = \A2 

and therefore 

A2(a) = 1 - ^ (1) 

In other words, 1—A2(a) is twice the probability that two independent uniform 
random points of K, lie in different phases. 

By a similar symmetry argument 

A.^L^Wii (2) 

2 Random secants 

The intersection of a random line with a non-empty, compact convex body K 
in an n dimensional Euclidean space is called a random secant of K. Before 
any statistical properties involving random secants may be calculated, the 
type of randomness defining the secants must be specified. Several authors 
have discussed random secants, including Bate and Pillow (1947), Kendall and 
Moran (1963), Horowitz (1965), Kingman (1965, 1969) and Coleman (1969). 
Four particular types of randomness will be considered in this paper. 

The diagrams following each definition show two simulated random se­
cants in a unit square (circle), and their intersection (or not) with a random 
interphase boundary line. 

2.1 d - Randomness: surface radiator randomness 

A secant of a convex body /C is denned by a point on its surface and a direction. 
The point and direction are from independent uniform distributions. 

2.2 A - Randomness 

A secant is defined as the straight line through two points chosen uniformly 
and independently in the interior of K. 
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Figure 1. d - random secants 

Figure 2. A - random secants. 

2.3 \i - Randomness: mean free path randomness (Isotropic Uniform 
Randomness) 

A secant is defined by its distance from the origin and the direction of its 
normal. For a disc, the distance and direction are independently and uni­
formly distributed. For general /C, a secant is generated by intersection with 
a /^-random secant within a disc containing K. 

2.4 v - Randomness: interior radiator randomness (also I 
randomness) 

A secant is defined by a uniform random point in the interior of /C and an 
isotropic direction. 
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Figure 3. /i - random secants 

Figure 4. u - random secants 

3 Mean random lengths 

Let 

Fa(l) --= P{L < l\a — randomness}, a G {v, fj., A} 

and let 

Fa = l-Fa{l) 

with corresponding probability density function fa{l). 
Kingman (1969) has shown that 

/„ (0 ex If^l) a i / A (Z) 

where n is the dimensionality of /C and the proportionality constant depends 
only on /C. 

(3) 
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Coleman (1969) summarises random paths through a disc of unit radius 
by defining 

CJm« 
Ul) = f^i 

(0 < Z < 2). (4) 

The corresponding expected values, together with those for a square with unit 
side are shown in Table 1. 

Table 1. Expected secant lengths for unit circle and unit square 

a Ca ma £a(L) (circle) £a(L) (square) 

d 

V 7 

1 
7T 

1 
4 
1 

27 
J_ 
6-7T 

0 

1 

2 

4 

7T 

IT 

2 
16 
3TT 
256 
45TT 

31og(l + V 2 ) - V 2 + 1 

7T 

4 
4 [31og(l + v^) - V2 + 1] 

3TT 

log(l + \/2) + 
2 + V2' 

4 Theoretical liberation indices 

For some types of randomness, theoretical expressions for liberation indices 
can be derived. In the case of a /U-random interphase boundary line, the prob­
ability that two points of /C belong to different phases is just the probability 
that the line segment between the two points is intersected by the interphase 
boundary line. For ^ measure, this probability is just the ratio of the "perime­
ter" of the line segment to the perimeter of K. By using the interpretation of 
A2 immediately following (1), 

A2(/x) = 1 
4£(R) 

B 

where R is the distance between two independent uniform random points of 
K,. From Enns and Ehlers (1978), this can be re-expressed as 

A2(/x) = 1 2£\(L) 
B 

(5) 
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The corresponding numerical values are 0.424 for a circle and 0.479 for a 
square. 

Similarly, the probability that a secant of length L intersects a /z-random 
interphase boundary is given by 

PM(secant is composite \L) = — 
2L 
B 

Conditional upon the secant being composite, the interphase boundary point 
is uniformly distributed over the interval (0, L). Therefore 

£M(Lo-£alcomposite secant of length L) — 
I? 
6 

If we assume /3-randomness for the random transect, 

f(L*\(2L\\_£(){L3) 

6 J V B J J W 

For a /U-random transect, Crofton's Theorem (See, e.g., Santalo, 1976) 
£M(L3) = ZA2/B yields 

ZwiLoLi) = —2 
B2 

Substituting this value into (2) gives 

AI(M,fJ.) = 1 - c , r 9 , D 2 = 1 
£M(L2)B2 ir£„(L)B 

Davy (1984b) proved the inequality 

07T V 7T 

so that 

A i ( M , M ) < l - ^ • (6) 

In the case of the disc, the upper bound is achieved exactly with a numerical 
value of Ai(n,fi) = 0.625. For a square, Ai(/i,/z) = 0.664 which is very 
close to the upper bound of 0.668. For both the circle and the square, the 1-
dimensional liberation index exceeds the 2-dimensional index by large margin. 
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5 Simulations of the liberation index 

A series of random trials using each of the above forms of randomness in a 
two-phase particle in the shape of a square and a circle were simulated. The 
average secant length L and corresponding theoretical result £p(L) from Table 
1 are tabulated in Table 2, together with the 1-dimensional Liberation Index. 
(Each trial was run 1000 times.) 

The simulations confirmed the theoretical 1-dimensional (fi,fi) indices 
found in the previous section, and showed relatively minor differences between 
indices for the circle and square. Coleman (1991) simulated //-random linear 
transects through capped spheres of fixed composition, and likewise found a 
large discrepancy between 1-dimensional and full dimensional indices. 

Table 2. Simulated liberation indices 

Randomness 

a,0 

d,d 

d,d 

H,n 

M.M 

V, V 

K 

Square 

Circle 

Square 

Circle 

Square 

L 

0.71593 

1.26557 

0.78803 

1.57739 

0.94580 

ML) 

0.710 

1.273 

0.785 

1.571 

0.946 

Ai 

0.68387 

0.69537 

0.66593 

0.66720 

0.64692 

v,v Circle 1.69300 1.698 0.64358 

A, A Square 1.0394 1.043 0.62361 

A, A Circle 1.80960 1.811 0.62207 
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6 Conclusion 

For the simple phase structure considered in this paper, the liberation index 
obtained from a linear transect is much greater than the corresponding two-
dimensional index, but does not vary greatly between circles and squares. 
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The solution to many problems in applied probability requires the evaluation of 
Riemann-Stieltjes integrals involving the convolution of cumulative distribution 
functions. Closed form expressions for the solution are very rare indeed. In this 
paper we examine the evaluation of the Stieltjes integral, which plays a fundamental 
role in the numerical solution of Volterra-Stieltjes integral equations that appear 
frequently in renewal theoretic problems. The evaluation of Stieltjes integrals on 
which this paper concentrates is thus, it is argued, germane to the solution of such 
problems. A generalised trapezoidal rule is utilised and a priori error bounds are 
determined in the current development. 

K e y w o r d s : Riemann-Stieltjes integrals, Ostrowski, trapezoidal, three-point rules, bounds, 
Volterra-Stieltjes integral equations, renewal. 

1 Introduction 

The complete solution to many problems in applied probability requires eval­
uation of convolution integrals of the form 

F(t — x) dG (x) (a, f3 finite or infinite), (1) 
/ 
J a 

where F and G are cumulative distribution functions (c.d.f.) (see, Tortorella, 
1990). Closed form expressions for the convolution (1) are available in a very 
few special cases. There is, therefore, a strong motivation for developing tech­
niques for evaluating the convolution of c.d.f.'s numerically (see, Tortorella, 
1990). 

The Stieltjes integral 

rb 

f(x)du(x), (2) 
/ 

where / and u are density functions, is also of considerable importance in prob­
lems of reliability theory (see, Boehme et al., 1991). Boehme et al. (1991) 
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proceed to apply the evaluation of the Stieltjes integral to the numerical solu­
tion of Volterra-Stieltjes integral equations that appear frequently in renewal 
theoretic problems. 

The evaluation of the Volterra integral equation of renewal type 

I r(t) = h(t)+ r(t- x) dF (x) (3) 

has been, and continues to be of great interest. For h(t) = F (t), a life distri­
bution, r (t) is the renewal function which has a rich history with may fruitful 
applications in a variety of fields, including reliability, inventory management, 
queueing, insurance and many other industrial engineering and operations re­
search problems. Baxter (1981) gives a review of the numerical solution of 
Volterra integral equations of convolution type as applied in the reliability 
arena. Xie (1989) evaluates integrals of the form (3) but does not provide an 
explicit expression for a bound on the error. 

The evaluation of Stieltjes integrals on which this paper concentrates is 
thus, it is argued, fundamental to the solution of such problems. 

For two functions / , u : [a, b] -> R and x G [a, b], consider the generalised 
Ostrowski functional (see, Dragomir, 2000): 

9 (/, u- a, x, b) := [u (b) - u (a)} f (x) - f f (t) du (t), 
J a 

where the Riemann-Stieltjes integral Ja f (t) du (t) is assumed to exist. 

(4) 

In Dragomir, (2001), the second author proved the following inequality 

\9{f,u;a,x,b)\<H 2 (P-a) + a + b 
r b 

V(«) (5) 

for all x G [a, b], where / : [a, b] -> R is of r-H- Holder type, u a function of 
bounded variation and V a (u) i s i t s t o t a l variation on [a, b}. We recall this to 
mean, 

\f (x) - f (v)\ < H \x - y\r for any x,y£[a,b]; (6) 

H > 0, r G (0,1] are given. He has also shown that the constant \, the 
coefficient of (b - a), is the best possible for all r G (0,1]. 

Dragomir (2000), by the use of a different technique, has proved the fol­
lowing complementary result 

\0(f,u;a,x,b)\<H (x-ay\/(f) + (b-x)r\/(f) (7) 



55 

< { 

H [{x - a)r + {b - x)r] 

H [(x - a)qr + (b- x)qr 

H[\{b-a) + \x-^\]r\JU), 

a 

I 
<l 

V(/)-V(/) 
a x 

. (Y ( / ) ) ' + (H P . 
where p > 1, ± + A = i; 

provided / is a mapping of bounded variation and u is of Holder type with 
the constant r G (0,1] and H > 0. 

Dragomir et al. (2000) have also considered another approach in approx­
imating the Riemann-Stieltjes integral. Namely, they introduced the gener­
alised trapezoid functional 

GT (/, u; a, x, b) := [u (x) - u (a)} f (a) + [u (b) - u (x)} f (b) - f f (t) du (t) 
J a 

(8) 
and using the identity 

G T ( / , u ; a , x , 6 ) = / (u(t) - u(x))df (t) 
J a 

they proved the result 

\GT(f,u;a,x,b)\<H {>--a) + x -
a + b' 

2 V(/)> 

(9) 

(10) 

provided u is of r-H—Holder type (H > 0, r G (0,1]) and / is of bounded 
variation. Here the constant | , the coefficient of (b — a), is also sharp. A 
partitioning of the interval of integration allowed the estimation of the error 
to be determined, enabling a priori knowledge for a desired accuracy. 

In Sections 2 and 3, further bounds are obtained for the generalised trape­
zoid functional GT (/; u, a, x, b). The work is extended to three point rules, 
the results of which are shown to recapture earlier Ostrowski results involving 
function evaluation at an interior point. The trapezoid results are also shown 
to be particular cases of the three point rules. 

2 Results for trapezoidal type rules 

We start with the following result: 
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Theorem 1 Let f : [a,b] -> R be a function of r-H-Holder type and 
u : [0,6] —> R a function of bounded variation on [a, 6]. Then we have the 
inequality: 

< { 

\GT(f;u,a,x,b)\<H 

#V*(«) 

H 

(x-a)r\/(u) + (b-xY\/(u) (11) 

a+b 

b — a 
{b-af, 

(v»y+(v, («)) j [(f^) +(&) 
w/iere a > 1, 1 + 1 = 1-

if 1 v/6 
Va(«) + 5 

(b-a) 

1 

/or all x G [a, 6]. 
Proof: It is easy to see that 

-GT(f;u,a,x,b)= f f(t)du(t)+ f f(t)du(t) 
J a J x 

(12) 

J X 

f(b) / du(t)-f(a) / du(t) 
Ja 

= f [/ (*) - / («)] <*« (*) + f [f(t)-f (b)} du (t), 

for all x € [a, b]. 
Taking the modulus in (12), we obtain 

\GT(f;u,a,x,b)\< fX[f(t)-f(a)}du(t) + f [f(t)-f(b)]du(t) 
J a J x 

(13) 

We know that if m : [a,b] —> R is continuous and n j [a.J] ^ R is of 
bounded variation, then the Riemann-Stieltjes integral J m (t) dn (t) exists 
and we have the inequality: 

I 
Ja 

m (t) dn (t) < sup \m(t)\\/(n). 
te[o,b] 

(14) 

Now, using the inequality (14) and the fact that / is r-H-Holder, we may 
state that 

[X{f(t)-f(a)}du(t) < sup \f(t)-f(a)\\f(u)<H(x-a)r\/(u), 
Ja te[a,x] a a 

and, in a similar way, 
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/ [f(t)-f(b)]du(t) 
J x 

<H(b-x)r\/(u). 

Thus, utilising (13), we deduce the first inequality in (11). 
Denote by J (x) the expression, 

J(x):=H 

We observe that 

J (x) < H max {(x - a)r , (b - x)r} 

b 

(x-a)r\J(u) + (b-x)r\/(u) , x € [a, b). 

V(«)+V(u) 
a. 

= i? [max {a; - a, b - x]\r \J (u) = H 
1 
2 + 

a+6 

6 — a 
(b-a)r\J{u) 

proving the first part of the second inequality in (11). 
Using Holder's discrete inequality for a > 1, £ + ^ = 1, we may state 

that 

J(x)<H[(x-a)ar + (b-x)arY' 

H 

V(«) + V(«) 

= if 
, ar / L \ ar-\ 

x — a\ fb — x 
b — a b — a V(«) + \/(«) ( 6 - a ) r , 

proving the second part of the second inequality in (11). 
Finally, we observe that 

J (x) < H max j \ / (u), \ / (u) I [(s - a ) r + (6 - z) r] 

H Iw+k V(")-\/(w) 
x — a \ lb — x 

+ 6 — a 6 — a 
( 6 - a ) r 

and the last part of (11) is proved. 

Corollary 1 If u is as in Theorem 1, but f is L—Lipschitzian, then, 

\GT{f,u;a,x,b)\<L (x-a)\/(u) + (b-x)\/(u) (15) 
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GT(f,u;a,±±±,b) < ^H\J (U) (b - a)r 

Remark 1 If u is as in Theorem, 1, but f is L-Lipschitzian, which is ef­
fectively 1-L—Holder type satisfying (6), then simplification of the result (11) 
occurs. 

If in (11) we take x — 9^, then we get the tightest bounds, 

(16) 
a 

for / of r-#-H61der and, if / is L-Lipschitzian, 

1 b 

<-L(b-a)\/(u). (17) 
a 

Another particular case of interest may be obtained from Theorem 1. 
If Xo € [a, b] is a point for which we have 

xo b 

\J{u) = \J{u), (18) 

GT[f,u;a,^-,b 

then we have from (11) 

1 b 

\GT(f,u;a,x0,b)\<-H\f(u) 

and, if / is L—Lipschitzian, then 

xo — a 
b — a 

b-x0 

b — a 

i b 

\GT(f,u;a,x0,b)\<-L\J(u)(b-a). 

{b-af (19) 

(20) 

Now, if we assume that u : [a, b] —> R, u (t) = Jag (s) ds where g : [a, b] 
R is continuous, then 

/ f(t)du(t)= f f(t)g(t)dt, 
J a J a 

-GT(f,u;a,x,b)= f f(t)g(t)dt 
Ja 

=:({f,g;a,x,b). (21) 

f(a) f g(s)ds + f(b) J g(s)ds 
Ja Jx 

Also, we have 

\ / ( « ) = / W(s)\ds= f \g(s)\ds. 
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We may now state the following corollary in approximating the integral of the 
product of two functions. 

Corollary 2 Assume that f : [a, b] —> R is as in Theorem 1 and g : [a, b] —> R 
is continuous on [a,b]. Then 

Kif,9;a,x,b)\ < 
rx rb 

x — a)r I g (s) ds + (b — x)r I g (s) ds 
Ja J x 

(22) 

< < 

Hfb
a\g(s)\ds + b—a 

(b-a) 

H 

H 

-i — i 

(j:\9(s)\dSf+(jb
x\g(s)\dsy " [ ( f E a ) a P

+ ( ^ ) t t P ] ; i ( 6 _ a ) ' 

l rb 

£\g(3)\ds+L E\g(a)\d8-£\g(s)\d, 

for all x € [a, 6]. 

Remark 2 If f is L—Lipschitzian, then replacing H by L and rbyl produces 
some simplification, especially for the last inequality in (22). 

If x = £±$, then, obviously from (21) 

C ( / , 9 ; a , - 7 T - ' 6 

L a-\-b t 

f f(t)g(t)dt-f(a) f 2 g(s)ds-f(b)[ g(s)ds 
Ja Ja Jzi± 

and so from (22) of Corollary 2 we may write 

C ( fi9;a,—r—,b < ^ ( » - . ) ' / \g(s)\ds, 

which, for an L—Lipschitzian function / , specialises to 

rb 
C ( f,g;a,—r—,b <^L(b-a)J \g(s)\ds. 

(23) 

(24) 

Further, if x0 € [a,b] is a point for which J^° \g(s)\ds = J \g(s)\ds, 
then we have 

\((f,g;a,x0,b)\ 

< 5"jftowl ds 

pb pxu rb 
I f(t)g(t)dt-f(a) g(s)ds-f(b) g(s)ds 

Ja Ja J xo 

xr, — a\r (b — XQ 

b-a b — a 
(b-ay (25) 
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In particular, if / is L—Lipschitzian and x$ is as above, then 

\C(f,g;a,x0,b)\<±L(b-a)J \g(s)\ds. (26) 

3 Results for three point rules 

In this section it is demonstrated that the generalised trapezoid functional 
GT(f,u;a,x,b) defined by (8) may be utilised to obtain three point rules 
which involve function evaluation at the ends of the interval and at an interior 
point. Let the generalised Simpson functional be defined by 

GS (/, u; a, x, z, y, b) = [u (x) - u (a)} f (a) + [u (y) - u (x)} f (z) (27) 

+ [u(b)-u{y)]f(b)- [ f(t)du(t), 
J a 

where a<x<z<y<b. We note that if u(t) =t,x= ^ ^ , y = 9d^k and 
z — ^y^, the traditional Simpson rule results. 

It may be easily shown that 
GS (/, u; a, x, z, y, b) = GT (/, u; a, x, z) + GT (/, u; z, y, b) 

and hence since GT(f,u;a,x,b) satisfies identities (9) and (12) we have that 

GS(f,u;a,x,z,y,b)= f (u(t) - u(x))df (t)+ f (u(t) - u(y))df (t) (28) 
J a J z 

and 

-GS(f,u;a,x,z,y,b)= [ (f(t)-f(a))du(t)+f (f(t)~f(z))du(t) 
•J a J x 

+ f (f (t) - / (*)) du (t) + I (f(t)-f (b)) du (t). (29) 
Jz J y 

The following two theorems are obtained by utilising identities (28) and 
(29) respectively. 

Theorem 2 Let f : [a,b] —+ R be a function of bounded variation on [a, b] 
and u : [a, b] —> R be of r-H-Holder type. We then have 

z b 

\GS(f,u;a,x,z,y,b)\<H Mr (x-a,z-x)\J (/) + Mr (y - z,b - y)\J (/) 
a z 

b 

< H [max{x-a, z-x,y-z,b- y}}r \ / ( / ) , (30) 
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where M (A,B) = ±& + J^=M. 
Proof: We have from (28) using the triangle inequality 

z b 

\GS(f,u;a,x,z,y,b)\< sup \u (t) - u (x)\\J (f) + sup \u(t)-u(y)\ \J (/) 
te[a,z] a te[z,b] z 

z b 

<H sup \t-x\r\/(f) + H sup \t-y\r\/(f) 
te[a,z] a te[z,b\ z 

since u is r-H—Holder and so satisfies (6). 
Now, using the fact that for w e [c, d], sup \t - w\r = [max {w - c, d - w}]r 

te[c,d] 
gives the first result in (30) as stated. The coarser bound is obvious. 

Theorem 3 Let f : [a, b] —> R be a r-H-Holder type and u : [a, b] —» R be a 
function of bounded variation. Then we have 

\GS(f,u;a,x,z,y,b)\ (31) 

< H 

< { 

(x-af\/(u) + (z-x)r\/(u) + (y-z)r\/(u) + (b-y)r\/(u) 
a x z y 

b 

H [max {x - a, z — x, y - z, b - y}]r V (u); 
a 

H [(x - a)ar + (z- x)ar + (y- z)ar + (b - y)ar^ ( V («) 

+ (V(«)>) + f V ( « ) > ) + | V ( « ) 1 wherea>l,± + % = V, 

H [(x-a)
r+(z-x)r+(y - z)r + (b-y)r] max i V («). V («). V («), V («) \ 

^ a x z V ) 

Proof: The proof follows that of Theorem 1 closely upon utilising (29) and 
the triangle inequality. 

Remark 3 We note that ifx, z and y are taken at their respective midpoints, 
then from (30) and (31) the tightest bounds are obtained 

~n ( , 3 a + 6 a + b a + 36 , 
GS I / , u; a, —-—, — — , —-—, 6 

< < 
H ' ( V ) V (/) i / °f bounded variation, u ofr — H — Holder 

a 

H • i^^Y V (u). vice versa. 
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These bounds may be noticed to be sharper than the tightest bounds from the 
Ostrowski and trapezoidal results from (7), (8), (10) and (11) 

/ a + b \ f a + b \ (H.(^)r\Jb
a(f), 

Remark 4 If we take x = y = z, then we reproduce the results for 
the trapezoidal type rules of Section 2. On the other hand, taking 
x = a and y = b recaptures the Ostrowski type results (5) and (7). 
That is, GS{f,u;a,z,z,z,b) = GT(f,u;a,z,b) and GS{f,u;a,a,z,b,b) = 
9(f,u;a,z,b). 

Finally, the above results may be utilised to obtain composite rules by 
partitioning the interval [a, b] so that a = £o < £i < . . . < £„_i < £n = b with 
Xi S [iu &+i] i = 0 , . . . , n - 1. The bounds for GT (/, £ i + i) are then 
used to give a priori error estimates over the entire interval. 
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1 Introduction 

In the new millennium, the challenge is using sequenced genomes to predict 
how living systems function. Genomics is now a data-driven science in which 
the complete genetic blueprint enables all RNA and protein levels in the cell 
(i.e. RNA and protein profiles) to be determined in microbial systems (De-
Risi, Iyer and Brown, 1997). The promise of genomics is to integrate all of 
this information about DNA, RNA, and proteins to understand complex traits 
like development, sex, biological clocks, RNA, and pathogenicity in microbial 
systems initially. The challenge of genomics is to integrate all of the infor­
mation about DNA, RNA, and proteins on a cell to summarize and predict 
these complex traits and to compute emergent properties of microbial systems 
from chemical reaction network models of DNA, RNA, and proteins (Bhalla 
and Iyengar, 1999). These models will be identified by fitting them to the 
observed RNA and protein profiles of microbial species with the result that 
genomics is shifted from data-driven discovery to hypothesis-driven science. 
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One of the keys to this transformation of genomics is developing new 
statistical models and tools for the analysis of transcriptional profiling data 
(Eisen et al., 1998). In microarray studies, the expression levels of thousands 
of genes are studied simultaneously in terms of the abundance of the mRNA 
level during transcription at various time points (as a biological process pro­
gresses). The resulting longitudinal data for a gene will be referred to as 
its expression profile or transcriptional profile. Transcriptional profiling data 
will serve two roles. One, complex living systems have many components that 
are hierarchically arranged and many interactions between these components 
and environmental inputs. Transcriptional profiling data will be key to iden­
tifying topologies of reaction networks and regulatory hierarchies structuring 
an organism's adaptive response or reaction norm (Pilpel, Sudarsanam and 
Church, 2001). For example, information flow in the cell is hierarchically ar­
ranged along the pathway of the Central Dogma: DNA to RNA to protein. 
An environmental signal like a sugar may signal the cell to turn on certain 
genes, which produce RNA, which in turn produce certain proteins (like those 
on the glycolytic pathway and Kreb Cycle) to metabolize glucose, and some 
other proteins which may activate/repress other genes involved in glucose uti­
lization or the utilization of alternate sugars. What genes come on over time 
as indicated by their RNA profiles gives clues to their function and with whom 
they and their products interact (DeRisi et al., 1997). So, the RNA profiles 
become a useful tool to infer the topology of metabolic networks. 

Secondly, in some reaction networks sufficient genetic and biochemical 
information has accumulated that an initial topology for the reaction network 
is available like with glucose utilization (DeRisi et al., 1997). Other examples 
include the lac operon (Jacob and Monod, 1961), trp operon (Yanofsky and 
Kolter, 1982), GAL cluster (Johnston, 1987), qa cluster (Geever et al., 1989), 
lytic-lysogenic cycles of phage A (Ptashne, 1992), cell cycle (Sveiczer et al., 
2000), biological clock (Lee et al., 2000) and others. In this setting the RNA 
profile becomes the data input for fitting and testing formal models describing 
a particular reaction network. RNA and protein levels can be measured after 
perturbing the system in varied ways including knocking out components of 
the network (genes or proteins) or by altering the environmental signal. In 
this setting the RNA transcriptional profiles are part of the measured response 
of the cell, which the biochemical network must correctly predict, in much the 
same way as electronic circuits must match specified outputs in their design 
given specified inputs. 

The purpose of this paper is to present some comparisons of a number 
of well known statistical clustering and classification techniques in grouping 
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genes by functional roles utilizing RNA profiles. This clustering or classifica­
tion of genes by their similarity of their transcriptional profiles in turn can be 
used to validate a reaction network in hypothesis-driven genomics. 

2 Microarrays 

Several thousand genes are arrayed robotically on glass slides or nylon mem­
branes on a precise grid and intensities are scanned on and off the grid under 
one experimental condition in which the treatment mRNAs are compared to 
the control mRNAs. Minimally there are four intensities per gene (red or green 
on or off the grid). In the case of the yeast experiments 6118 genes are arrayed, 
and 4 intensities per gene are recorded (http://cmgm.stanford.edu/pbrown). 
The 2 intensities off the grid are used to "adjust" the 2 signal intensities on 
the grid. For example, the off-grid intensities might be subtracted from the 
on-grid intensities. Then the adjusted treatment intensity is "normalized" 
with respect to the adjusted control intensity and transformed. For example 
adjusted treatment intensity (red) might be divided by the adjusted control 
intensity (green) and then log of the ratio taken. This final transformed ratio 
is measured then on all of the arrayed genes. In the yeast experiments over 
6000 transformed ratios of adjusted intensities are available under different 
experimental conditions during the diauxic shift or sporulation. Each trans­
formed ratio of adjusted signal intensities is a measurement of the relative 
expression of a particular gene. 

The whole experiment is thus repeated under different treatment condi­
tions. For example, the final data matrix is then G x C in dimensions, where 
G is the number of arrayed genes and C, the number of treatment conditions. 
In the sporulation example, there were at least 7 time points (conditions). 

The process of statistical analysis begins with visualizing and manipu­
lating the raw data matrices or more typically with manipulations of the 
final single G x C data matrix with the transformed and normalized ratios 
of expression for each gene. Both the genes (rows) and treatment conditions 
(columns) can be permuted to highlight the similarities and differences in the 
patterns of gene expression (Ross-McDonald et al., 1999) or for displaying the 
effects of independent variables like time since the diauxic shift or position 
during the cell cycle. The G x C data matrix itself becomes a data-rich vehicle 
for the display of all subsequent analyses (Tufte, 1983). 

An excellent account on data normalization that should be done to remove 
systematic bias prior to any statistical analysis is given in Yang et al. (2001). 

http://cmgm.stanford.edu/pbrown
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3 Sporulation data 

We consider a well known experiment on the yeast genome and the resulting 
microarray data. The experiment (Chu et al., 1998) was designed to study the 
changing expression patterns of nearly all genes during meiosis and sporulation 
in S. cerevisiae (budding yeast). The meiotic cell cycle is fundamental to 
most eukaryotes in which diploid cells give rise to haploid germ cells (spores 
in the case of yeast), and this example illustrates how transcriptional profiling 
illuminates an emergent property of a living system, reproduction. 

About 6 thousand yeast genes (nearly 97% of all known or predicted 
genes) were arrayed on glass slides and used to assay the levels of mRNAs at 
various time points in the biological process of sporulation. Changes in the 
mRNA levels from each genes were measured at seven time points (t — 0, 0.5, 
2, 5, 7, 9, 11.5 hours). 

Over 1000 genes show significant changes in mRNA levels over time. 
About half of these gens were expressed and the rest were depressed dur­
ing sporulation. There is a striking pattern to the expression profiles of these 
genes during the cell cycle. Chu et al. (1998) grouped the positively ex­
pressed genes into 7 clusters in an ad hoc way on the basis of similarity of 
their expression profiles to genes known to be involved in sporulation. 

These 7 clusters give clues to genes function in sporulation and which 
genes work together. One cluster of 158 "Middle genes" during the middle 
induction of the cell cycle responded like target genes under the regulatory 
control of a master regulator gene, Ndt80. It was confirmed that 70% of these 
158 target genes had at least one upstream DNA sequence that acts as the 
switch by which Ndt80 turns on a target gene. Additional experiments were 
done to confirm that when Ndt80 was experimentally turned on at the wrong 
time, then two-thirds of the target genes were turned on at the wrong time as 
well. In this way transcriptional profiling was used as a means to specify part 
of the circuit controlling sporulation. A formal circuit is under construction 
for the cell cycle in yeast (Sveiczer et al., 2000). 

Some clues to how genes function and their role in the circuit were eluci­
dated in other stages of sporulation. As an example during mid-late induction, 
61 genes came on. Over a third of these genes had the Ndt80 on/off switch, 
suggesting the formal possibility that a repressor gene may be present de­
laying the expression of some genes. A formal test of this hypothesis can 
be performed by constructing a circuit with such a repressor present and by 
additional perturbation experiments to the circuit to identify such a repressor. 

Prior to the completion of these transcriptional profiling only 50 genes 
were implicated in sporulation. Now there are over 500 genes implicated in 
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controlling the complex trait of sporulation. In addition the global pattern of 
expression confirmed the presence of two major stages, meiotic prophase in 
which recombination operates and meiotic division and gamete morphogenesis 
in which genes involved in division and spore formation operate. 

4 Compar ison of clustering me thods 

Even in well studied model systems like the yeast S. cerevisiae or bacterium 
Escherichia coli (found in our waste and sewage) approximately half of the 
genes are of unknown function. If genes of unknown function can be associated 
with genes of known function, then clues as to the roles of the unknown 
genes are the result. It is, therefore, desirable to exploit available tools for 
clustering from numerical taxonomy and statistics (Sokal and Sneath, 1963, 
and Hartigan, 1975). 

Initial efforts have utilized standard clustering tools like UPGMA (Un­
weighted pair group method using arithmetic averages) and K-Means to re­
order the transcriptional profiling data matrix by rows so that genes with sim­
ilar profiles appear next to each other (Eisen et al, 1998, Ross-McDonald et 
al., 1999). These two examples fall into two classes of clustering algorithms, 
"distance-based" clustering tools like UPGMA that use the data matrix to 
compute distances between cases and "character-based" clustering tools that 
utilize the data matrix more directly. In either approach the results can be dis­
played by overlaying the clusters on the transcriptional profiling data matrix 
or some lower dimensional representation of the data matrix like the principal 
components associated with the transcriptional profiling data matrix. 

We reanalyze this data set (sporulation) using a number of existing statis­
tical clustering techniques. Instead of clustering only the positively expressed 
genes (Chu et al., 1998) we cluster all differentially expressed (positively or 
negatively) genes satisfying the same variation filter as in Chu et al. (1998). 
Overall, we select ten clusters which is larger than what Chu et al. (1998) 
had used. These extra clusters were used to accommodate some additional 
expression profiles resulting from the negatively expressed genes. 

The following clustering techniques were considered. S-plus implementa­
tion of all these techniques are available in the library MASS and are described 
in Venables and Ripley (1999). 

(i) Hierarchical Clustering with Correlation: This is perhaps the most 
commonly used clustering techniques with microarray data and uses a distance 
or dissimilarity measure. We choose one minus absolute correlation between 
two genes for this purpose. 

(ii) Clustering by K-Means: Usually another clustering algorithm, such as 
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the one above is run to determine the cluster centers to be used in the K-means 
algorithm. The algorithm then assigns the observations into various clusters 
in order to minimize the within-class sum of squares from these centers. 

(iii) Model Based Clustering: The idea behind model based clustering is 
to regard the data as coming from a mixture (say of multivariate normal) 
distribution. The unknown group levels are then selected by the methods like 
maximum likelihood. 

(iv) Fanny: It uses fuzzy logic and produces a probability vector for 
each observation. A hard cluster is determined by assigning an observation 
to a group which has the highest probability. (See Kaufman and Rousseeuw 
(1990) for the details). Typically, relatively fewer clusters are produced by 
this method. Like distance based methods, one has a choice of using a general 
dissimilarity measure. We have used the L\ distance which is more robust 
than the Euclidean distance. 

(v) Diana: It is a divisive clustering method where initially all the ob­
servations are clustered together. Subsequently, the bigger groups are broken 
down into smaller groups so that genes with larger distance or dissimilarity 
are placed in different clusters. 

The results are shown in Figure 1. These plots are useful for a visual 
comparison. As expected, there are some differences in the results of the 
various algorithms. Overall, K-means and Diana seem to be most effective in 
achieving distinct class boundaries. 

5 Classification 

In the language of machine learning, classification is referred to as "supervised 
learning" since one has a "training" or representative set with known group 
membership. 

One of the major challenges of any genome project (Bennett and Arnold, 
2001) is the annotation of sequence data. As a variety of sequence, RNA, 
and protein information accumulate on model systems, one is faced with the 
daunting task of annotating all of the 35,000 human genes in this very large 
periodic table of life (Venter et al, 2001). How do we organize the table? 
As the wealth of sequence information has come online, a variety of classifi­
cation systems have arisen to classify genes by function. One of these is the 
EGAD system (http://www.tigr.org/tdb/egad/egad.shtml), and the other is 
the MIPS system (http://mips.gsf.de/mips/sitemap/). The MIPS system is 
more detailed. One approach to assigning genes to such a classification is on 
the basis of sequence similarity (Altschul et al., 1990, 1997), but transcrip­
tional profiling information provide another avenue of classification. 

http://www.tigr.org/tdb/egad/egad.shtml
http://mips.gsf.de/mips/sitemap/
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First principal component First principal component First principal component 

First principal component First pnnclpal component 

Figure 1. Clustering of all differentially expressed genes during sporulation. 

A classification system requires the availability of prior information to 
train the "classification function". One approach is to relate sequences in one 
target organism to those in a model organism like E. coli, S. cerevisiae, C. 
elegans, or D. melanogaster. When sequence comes available in the target 
organism, similarity searches against these model systems can then yield an 
initial classification of genes within the target organism. Second, functional 
studies in the target organism may provide the prior information. Typically 
this approach leads to the classification of at most 50% of the genes in the 
target organism (Prade et al, 2000). With a training set in hand, then one 
can use transcriptional profiling data as a classification tool to group the 
remaining genes of unknown function. 

Alternatively, one may be interested in some particular process like 
fermentation and or sporulation and have a small training set based on 
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Figure 2. Classification of positively expresses yeast genes during sporulation and their 
average temporal pattern. 

prior experiments or have created an initial clustering of genes by prior tran­
scriptional profiling experiments or by means of experiments distinct from 
transcriptional profiling. The goal is then to classify genes by function not in 
the training set. 

We investigate how standard statistical methods such as the linear dis­
criminant analysis (LDA) and nearest neighbor (NN) work with the sporula­
tion data. We consider the set of handpicked genes with known functions as 
given in Chu et al. (1998) to be the training set. Since all of these genes are 
positively expressed, we restrict our attention to positively expressed genes in 
the classification illustration. After classification, the average temporal pro-
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files of each of the seven classes are compared with the model profile (Figure 
2)-

All three classification tools yield similar results (Fig. 2). The 3NN-
nearest neighbourhood may give the most distinct cluster boundaries (results 
not shown). The average temporal profiles resemble the model profile to a 
reasonable degree given the training set is small. 

6 Validation 

The dataset considered here is one of the first reliable and publicly available 
microarray data. Perhaps due to the heavy cost involved, the experiment 
was not replicated. As we all know, replication is important and essential 
in accessing the variability and validation of a statistical procedure. The 
relatively recent microarray studies incorporate at least two replications. A 
cross validation type approach can be formulated for checking the consistency 
of a grouping procedure in the case of replicated dataset. In the case of the 
sporulation data set of Chu et al. (1998), the data for a single time may be 
deleted to formulate a cross validation approach. Some interesting finding 
emerge with this approach whose details will appear elsewhere. 

7 Concluding remarks 

We have provided an introduction to a microarray experiment and a well 
known publicly available dataset on S. cerevisiae. We illustrated how sta­
tistical clustering and classification techniques are used to group genes in 
functional classes on the similarity of their expression profiles. Five existing 
statistical clustering algorithms and two classification algorithms have been 
considered for a comparative study. 

These techniques can also be used to group tissue samples instead of genes 
using the entire set of gene expression levels (considered as a multivariate 
data of a rather large dimension) for each tissue sample (McLachlan, et al. 
2002; Weinstein, J. N., 1992). For example, a cancer cell can be clustered or 
classified based on the expression profile of all the genes for that sample. 

Clustering and classification techniques provide helpful preliminary guid­
ance regarding a global picture of the relative similarity of the expression 
profiles. However, for studying the interactions between genes and to find 
the regulatory networks, additional statistical techniques such as partial least 
squares are needed (Datta, 2001a). The number of papers dealing with sta­
tistical methods for microarray data has been steadily increasing. A partial 
overview can be obtained in Datta (2001b). 
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The number of papers dealing with good validation strategies for cluster­
ing algorithms is rather limited at the moment. We are pursuing this issue 
and the results will appear elsewhere. 
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Boosting, bagging and other ensemble classifiers are all based on the idea of fitting 
multiple classification rules and then applying a voting scheme to determine a 
consensus. In some methods, the individual classifiers are trained sequentially, so 
that the occurrence of misclassification errors in earlier iterations can be used to 
adapt later iterations. It is therefore of interest to consider the sequences of correct 
and incorrect classifications for individual observations. The edge, or in other 
words the voting weight assigned to incorrect classes, can be evaluated for each 
observation after each iteration. A scatter plot based on the mean and variance of 
the edge over all iterations turns out to be a useful diagnostic tool. 

Keywords: boosting, ensemble voting. 

1 Introduction 

Consider a classification problem for which the final classification rule is ob­
tained by applying a voting scheme to a sequence of m individual classifiers. 
Examples of base classifiers include decision trees and neural networks. The 
usual method of obtaining variation among individual classifiers is to modify 
the training by reweighting, resampling or relabelling responses. An alterna­
tive approach is to randomise some aspects of the fitting algorithm, a typical 
example being the random initialisation of weights in a neural network. In 
some schemes such as bagging (see Breiman, 1996), the individual classifiers 
can be fitted in parallel, so that there is no inherent order in the m iterations. 
Other schemes such as boosting (see Breiman, 1996) involve adaptive mod­
ifications to the training set based on earlier iterations. Although this rules 
out the possibility of parallel computation, adaptive schemes generally result 
in better performance, as discussed by Bauer and Kohavi (1999). 

The individual classifiers are sometimes given equal voting weights, or can 
be assigned different weights based on classification performance within the 
training set. The ensemble classification rule usually selects the class with the 
largest weighted sum of votes, but other variations are also possible. 

Although the final classification rule and its performance on unseen data 
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are arguably the most important outcomes of a particular application, from 
a diagnostic point of view it is also of interest to track the evolution of the 
ensemble classifier over successive iterations and to identify any problem ob­
servations within the training set. Despite the best efforts expended in the 
data cleaning phase of data mining, outliers and anomalies are a reality in 
most real data sets. Adaptive classification schemes can try very hard to ac­
commodate such anomalies, often at the expense of performance within the 
remainder of the dataset. 

2 Edge behaviour of a fixed observation 

The edge of an observation in the training set used for an ensemble classifica­
tion problem is the total voting weight assigned to incorrect classifications (see 
Breiman, 1995). For a particular observation, let Z = (Z\,..., Zm)' be the 
vector of indicator variables identifying misclassification for the m individual 
classifiers. After k iterations, the edge of this observation can be expressed in 
the form X^=i ckjZj, where c^j is the voting weight given to the j t h classifier 

CL*J=I
 ckj = !)• In matrix notation, we may express the vector of m edge 

statistics as CZ where 

. . . 0 

... 0 

Note that C I = 1. 
The mean edge of this particular observation over the m iterations is given 

by /x'Z and the variance is Z'SZ where 

n=-Ci (l) 
m 

and 

E = — C ( I - —J^ C. (2) 
m \ m J 

Here I is an m x m identity matrix and J is an m x m matrix of ones. 
Since C l = 1, it follows that 

H'l = - l ' C l 
m 

m 
= 1 (3) 
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and 

S I = - C fI - - j ) 1 
m \ m J 

= - c ' ( i - i ) 
m 

= 0 (4) 

For any binary vector Z, 

/ / ( l - Z) = /i'l - n'Z 

= 1 - M'Z (5) 

and 

(1 - Z)'S(1 - Z) = l ' S l - 2 l 'SZ + Z'SZ 

= Z'SZ. (6) 

For a two-class classification problem, identities (5) and (6) have a simple 
interpretation in terms of "mirror" observations. Consider two observations 
with an identical sequence of predictions for the m classifiers, but with op­
posite class labels. This would be the case if the observations were identical 
except for the response variable, but could also occur if the predictor vari­
ables differed only in details considered unimportant by the boosting algo­
rithm. Whenever a classifier correctly predicts one of these observations, it 
misclassifies the other. The edge statistics for one observation can therefore 
found by subtracting the edge statistics of the other observation from 1, and 
likewise for the mean edge. However the variance of the edge will be identical 
for the two observations. On a scatter plot of variance versus mean, these two 
observations will appear as mirror images about mean edge = 0.5. 

Wheway (2001) has constructed mean-variance edge plots for a variety 
of datasets, using 10 boosting iterations and C4.5 (see Quinlan, 1993) as 
the base classifier. Initially all observations are given equal weights. In the 
(j + l)th iteration, the weight of each observation misclassified in iteration j 
is multiplied by the weighted odds ratio of correct classification. Attention 
is thereby focussed on difficult observations. The final ensemble classifier is 
found by allocating voting weights proportional to the weighted log odds ratios 
of correct classification. In particular, Figures (1) and (2) show the resulting 
plots for the colic and hearth datasets from the UCI (see Blake and Marz, 1988) 
repository. The labels inside the plot are observation identification numbers. 
These plots, like others not shown here, display a characteristic pattern. The 
majority of observations lie in the low mean/low variance corner of the plot, 
and display a positive relationship between mean and variance. A minority of 
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points display either high variance and/or high mean, with a clear negative 
relationship between mean and variance. A finer scale banded structure is 
also evident. 

From a diagnostic point of view, high mean edge indicates intractable 
observations, while high edge variance indicates instability as iterations con­
tinue. The presence of observations with high mean edge is mostly due to the 
nature of the underlying data, while high edge variance is due to the sensitiv­
ity of the base classifier to changes induced by the boosting algorithm. The 
recurrence of the same type of pattern in the mean-variance edge plots of dif­
ferent datasets may seem surprising at first, and the reasons will be explored 
in the next section. 
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Figure 1. Mean-variance edge plot for the colic data set 
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Figure 2. Mean-variance edge plot for the hearth data set 
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3 Mean-variance s ta te space 

For m iterations, there are 2m possible binary vectors Z. In any particu­
lar application, only a subset of these possibilities will actually be realised. 
However in order to obtain a better understanding of the underlying ensem­
ble classification algorithm, it is of interest to plot the entire state space. In 
other words, each possible pair of mean edge and edge variance values can be 
plotted, irrespective of whether such values were actually observed within the 
dataset and irrespective of whether Figure (3) shows such a state space plot 
for equal voting weights, in which case 

/ l 0 . . . 0 \ 

m m ' m 

For unequal voting weights, the corresponding plot (not shown here) shows 
similar qualitative behaviour. Note the symmetry of the state space plot, 
which is a consequence of mirror pairs as discussed in the previous section. 
Other features include the "forbidden zone" above the horizontal axis, the 
negative trend on the left side of the plot, and the fine-scale pattern of curved 
bands. 

Of course there are many other ways of displaying 2m binary vectors in 
two dimensions, including a 2a x 2m~a rectangular lattice. The advantage of 
this particular representation is that it leads to direct interpretations relating 
to the underlying dataset and the behaviour of the ensemble algorithm. By 
comparing the state space plot to Figures (1) and (2), it can be observed that 
the boosting algorithm avoids regions of high mean edge. 

Further understanding can be obtained by plotting subsets of the state 
space. 

For example, Figures (4) and (5) show the regions of state space occu­
pied by observations which are misclassified in the first and final iterations 
respectively. Clearly the observations misclassified on the first iteration tend 
to have higher mean edge than observations misclassifed at later iterations. 
This is because the initial misclassification contributes to all of the m edge 
statistics, while a misclassification at iteration j only contributes to m + l—j 
edge statistics. A misclassification at the final iteration only contributes to 
the final edge statistic, so the mean-variance edge plot for observations mis­
classified in the final iteration looks very similar, although less dense, to the 
plot of the entire state space shown in Figure (3). Note that Figures (3), (4) 
and (5) all depict possible states rather than realised states for a particular 
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Figure 3. Complete state space for mean-variance edge plot 

dataset, and therefore show more points in the high mean edge region of the 
plot than would be expected in particular applications. 

In order to understand the basic structure of the state space plot, it is 
useful to consider the variance of the edge as a function of Z\, the misclassifi-
cation indicator for the initial classifier. Let /x* denote the vector obtained by 
omitting the first element of fi, and £* denote the matrix obtained by omit­
ting the first row and column of S . Also let Y ' = (Z2 - Zx ... Zm - Z\). 
As S I = 0, we may express the variance as 

Z 'SZ = ( Z - Z i l ) ' S ( Z - Z i l ) 

- Y ' S . Y (7) 

The ratio of quadratic forms Y'/i*M*Y /Y'£*Y achieves a maximum value of 
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^ . E V* when Y = £„ 1/i*. Therefore 

Y ' E . Y > Y'li*H'*Y 
(8) 

But / / „Y = /i'Z - Zx and 

1 1 
M*£* A** = —lT O-lC*C* (I m -1 J m - l ) _ (C»)~ C „ l m _ i 

= I m - l l ^ m - 1 + J m - l ) l m - l 

= m — 1 

Hence 

Z 'SZ > (/i'Z - Zi) 2 / (m - 1) (9) 

In other words, the variance is bounded below by the parabola mean2/(m — 1) 
for Z\ = 0 and by the parabola (mean- l ) 2 / ( m - 1 ) for Z\ = 1. This explains 
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Figure 5. Mean-variance state space for observations misclassified by final classifier (m = 
10, Zm = 1 

the positive and negative trends between mean and variance on the left and 
right sides of the plot respectively. 

4 Conclusion 

For each observation in the training set, the edge statistic can be recomputed 
as each new iteration of an ensemble classification algorithm is completed. A 
scatter plot of the mean and variance of the edge over all iterations is useful 
both for identification of anomolous data points and for understanding the 
nature of an adaptive algorithm such as boosting. The removal of right-hand 
mirror points from the training set has been found by Wheway (2001) to result 
in simpler classifiers (i.e. decision trees with fewer nodes) without degradation 
of generalisation error. 

If a test set is available, the sequence of missclassification indicator vari-
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ables can be computed for each test observation, and the mean and variance 
of the edge can be found using the same voting weights used in the training 
set. Test points can then be plotted on the same mean-variance edge plot as 
the training points, using a different colour or marker. One avenue of future 
research involves the comparison of mean-variance edge plots for different en­
semble classifiers applied to the same dataset. The underlying state space 
will vary as the voting weights change, and different algorithms will tend to 
concentrate realised test and training points within different regions of the 
available state space. 
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Numerical evaluation of the Cauchy principal value (CPV) integral, is encountered 
in many areas of Applied Mathematics such as the crack problems in plane elas­
ticity, the singular eigenfunction method in neutron transport, in airfoil theory, 
in electromagnetic scattering in waveform encoding of binary signals, in visualiza­
tion of cardiovascular velocity maps and in demultiplexing of interferometrically 
interrogated fiber Bragg Gratings etc. In the present paper, by the use of Hermite-
Hadamard inequality for convex functions, we establish some error bounds for the 
approximation of the CPV integral of a differentiate function whose derivative is 
convex. Some numerical experiments are performed as well. 

Keywords: Cauchy principal value, Hilbert transform, convex functions. 

1 Introduction 

Let fi = (a, b) be an open interval of real numbers. The usual C1— space with 
respect to the Lebesgue measure A restricted to the open interval fi will be 
denoted by C1 (Q). 

We define a linear operator T (see Okada and Elliott, 1994) from the 
vector space £ 1 (Q) into the vector space of all A-measurable functions on fi 
as follows. Let / G C1 (fi). The Cauchy principle value integral 

iPvrmiT=tim\r+fb}^L.dT (1) 
7T J a T-t E|0 ya ^ + £ J 7T (T - t) V ' 

exists for A-almost every t e f i . 
We denote the left-hand side of (1) by (Tf) (a,b;t) for each t G 9, for 

which (Tf) (a, b; t) exists. The so-defined function Tf, which we call the 
finite Hilbert Transform of / , is defined A-almost everywhere on Q and is 
A-measurable; (see, for example, Butzer and Nessel, 1997, Theorem 8.1.5). 
The resulting linear operator T will be called the finite Hilbert transform 
operator. 
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Now, if we assume that the mapping / : (a, 6) —> R is convex on (0,6), 
then it is locally Lipschitzian on (a, b) and then the finite Hilbert transform 
of / exists in every point t£ (a, 6). 

The following result holds (see Dragomir et ai, 2001). 

Theorem 1 Let f : (a, b) —> R be a differentiable convex function on (a,b). 
Then we have the inequality 

f(t)-f(a)+f'(t)(b-t) + f(t)\n 
b-t 

<(Tf)(a,b;t) 

< 
1 
7T 

f(t)ln 
b-t 

t — a 
f(b)-f(t) + f'(t)(t-a) 

for all t € (a, 6). 

In this paper, by the use of the well known Hermite-Hadamard integral 
inequality for convex functions, we point out some inequalities for the finite 
Hilbert transform of functions whose first derivatives are convex. Some nu­
merical experiments for particular examples of such functions are performed 
as well. 

2 The main results 

Firstly, we recall that the following integral inequality 

'<•-¥)*> l— [ f(t)dt 
a Ja 

< 
f(a) + f(b) 

where / : [a, b] —* R is convex, is well known in the literature as the Hermite-
Hadamard inequality. 

The following lemma holds. 
Lemma 1 Let g : [a,b] —> R be a convex function on [a, b] and t,r € [a, b] 
with t ^ r. If 0 = Ao < Ai < . . . < An_i < A„ = 1, then we have the 
inequality: 

n - l 

i=0 
i + l Ai)ff 

Aj + Aj+i \ A, + Aj+i 
1 — 11 -\ • r (2) 

< 
^ ["•"•> 

du 



ra-1 

<\J2 (Ai+! " Ai) {g K1 - A') * + A'TJ + 5 [(1 " A*+i) * + Ai+1r]} . 

Proof: Consider the partitioning of [t, T] (if t < r ) or [T, i] (if r < i) given by 

J„ : Xj = (1 - Xi) t + AjT, (i = 0 , 1 , . . . , n - 1). 

Then, obviously, 

xt + xi+1 = / _ A, + Aj+i \t+>* + **+! . Ti (i = o , l , . . . , n - l ) 

and 

CCJ+I - a* = (T - *) (Ai+1 - Aj), (i = 0 , 1 , . . . , n - 1). 

Applying the Hermite-Hadamard inequality on [a;*, xi+i] (i — 0 , 1 , . . . , n - 1), 
we may write that 

Aj + Aj+i A Aj 4- Aj+i 
1 r I * H • T 

< 
(r - t) (A i+i - A* 

/ g{u)du 
J Xi 

<^{9 [(1 - Ai) * + A<T] + 5 [(1 - A i+i) t + Xi+1r}} 

for any i = 0 , 1 , . . . , n — 1. If we multiply by Aj+i — Aj > 0 and sum over i 
from 0 to n — 1, we deduce the desired inequality (2). 

The following theorem holds. 

Theorem 2 Assume that f : (a, b) —» R /«as iis derivative convex on {a,b). 
Then for all n > 1, and 0 = Ao < Ai < . . . < An_i < A„ = 1, we Ziawe the 
inequality 

^ In + ] T (Ai+i - A*) (3) 

/ ; ( 1 _ A , + A W V + A, + A W ^ 

A, + Aj+i \ A, + Aj+i 
1 11 H • a <(Tf)(a,b;t) 

< — {A! (6 - a) / ' (<) + (1 - A„_!) [/ (b) - f (a)]} 
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b — a 
n-l 

+ — £ (Ai+i - AO [/; (1 - Xi) t + XA (1 -Xi)t + Xia] 
i = 0 

+ fJ)Jb-< 
ir \t — a 

for any t G (a, b). 

Proof: If we write the inequality (2) for / ' , then we have 

n - l Xi + Xi+i \ Aj + Aj+i 
1 I * -I r • T 

< 

; r > i + i - A i ) / ' 
i=0 

/(r)-/ft) 
r - t 

1 7 1 — 1 

< - £ (A i+1 - A^ {/' [(1 - A,) t + Air] + / ' [(1 - A i+1) t + A i+1r]} 
z i=o 
~ ' 7 1 — 1 

= j A i / ' (*) + E (Ai+! " Ai) f K1 " A0 * + A<T] 
L i = l 
n - 2 

+ £ (Ai+i - Ai) / ' [(1 - Ai+1) t + X1+1T] + (1 - A„_i) / ' (r) 
i=0 

1 T n—1 
- 9 A J ' (t) + Y, (Ai+i - Ai) / ' [(1 - Ai) t + V ] + (1 - A„_!) / ' (r) 

(4) 

Applying the P ^ over t, i.e., lim (J a
 e + ft+e) to the inequality (4), we 

deduce 

S (Ai+i - A,) P F / r ( i 
i=o ^ a L V 

/ 
Ja 

Xi + Ai+i \ , , Ai 4- Ai+i 
t -\ • T dr (5) 

<PVI mzmdT T-t 

< Aj (b - a) / ' (t) + J2 (Ai+i - A,) PV f f [(1 - Ai) t + XiT} dr 
i=\ Ja 

+ ( l - A n _ ! ) ( / ( 6 ) - / ( a ) ) 
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Since 

PV 
J a 

- / 

Aj + A , + i \ Aj + Aj+i 
1 11 -\ • r 

1 -

(b-a) / ; i 

2 y " ' 2 
Ai + Aj+i \ . , Â  + Aj+i 

«>, 

dr 

•b 

1 _ Aj + Aj+i \ A; + Aj+i 

2 y " ' 2 
Ai + Aj+i \ , , At + Aj+i 

1 A; + Aj+i \ At + At+ i 

and 

PV f f [(1 -Xi)t + XiT} dr = (b- a) [/; (1 - At)t + Xtb, (1 -Xt)t + A<a], 
./a 

then by (5) we deduce the desired inequality (3). 
The following corollary also holds. 

Corollary 1 Assume that f : (a, b) —> R fulfills the hypothesis of the above 
theorem. Then for n > 1 we have: 

n \t — a 
b — a 

2 « - i 
f;[l-±.)t+l-b,(l--p\t+l-a 
•" l 2" / 2 n V 2™ / 2™ 

b — a ^ 1 
7T ^ 2 ™ - 1 

t = l 
/ ; [ 1 - 2 ^ ) * + 2 ^ 6 , ( l - ~ ) * + ^~a 

<(Tf)(a,b;t) 

1 f(b-a)f'(t) 1 
- 2 ^ \ 2 - 1 + 2 l / ^ - / ( a ) ] 

+^r^-i 2?r V 2 n ~ 2 

n - l 

f->[1-^)t+^b,(l--^)t + -±Ja 

+3 
b — a 

2TT ^ 2™- l + 1 

t=2 

" -1 1 

/ • - O n — t /; (1 - ;rM t + —b, (l - -^-) t + - L a 
1 2 " - * / 2™-J \ 2™-*/ 2 n _ J 

f(t\lnfb-t 

IT \t — a 
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for any t € (a, b). 

The proof follows by Theorem 2 applied for Ao — 0, A, = ^r, i = 1 , . . . , n. 
We omit the details. 

3 Numerical experiments 

For an equidistant partitioning of [a, b], let us define the following bounds 

, , , x I - O ^ J L / . 1\ t-a x (. 1 \ b-

i = l 

+mj*-A 
IT \t — a, 

called the lower bound and 
f(b)-f(a) + f'(t)(b~a) 

Un (/, a, b;t) : = 

n - l 
b — a i—^ 

+ V 

2n-K 

t — a b — t 
f;t-i ,t + i +mn 

t — a 

called the upper bound for the Finite Hilbert Transform (Tf) (a, b; t). We also 
define the left error LErn (/, a, b; t) 

LErn (/, a, 6; t) := (T/) (a, 6; t) - Ln (/, a, 6;«) > 0 

and the right error RErn (/, a, 6; i) 

fl£rn (/, a, b; t) := f/n (/, a, 6; t) - (T/) (a, 6; t) > 0 

and will investigate them numerically for different functions / and natural 
numbers n. 

If we consider the function / : [—1,1] —> R,f(x) := exp(x), then the 
exact finite Hilbert transform provided by Maple 6, is 

(Tf) ( - 1 , 1 ; t) = {exp{t)Ei(l -t)- exp(t)Ei(-t - 1))/TT, t £ [-1,1]. 

If we plot in the same system of co-ordinates LErn (/, a, 6; t) and 
RErn (/, a, b; t), for n = 100, then we observe that the distance between 
the exact Hilbert transform and its lower bound is smaller than the distance 
between the same Hilbert transform and its upper bound (see Figure 1). A 
theoretical investigation on this fact is conducted in Dragomir (2002). 
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Figure 1. 
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This paper extends some earlier random allocation models where either susceptibles 
or infectives, but not both, among needle sharing IVDUs are nonhomogeneous. We 
begin with a brief review of earlier results, illustrated by an example of vaccination. 
We then consider the case where there are two types of susceptibles and two types 
of infectives. This leads to unwieldy algebra; a model with successive waves of 
infectives exchanging needles with two types of susceptibles is outlined. 

Keywords: infective, susceptible, needle sharing, random allocation model. 

1 Introduction 

Gani (1991), (1993) was able to develop some random allocation models for 
needle sharing among intravenous drug users (IVDUs); in these, both sus­
ceptibles and infectives were homogeneous. Gani and Yakowitz (1993) used 
these models to describe the spread of HIV among IVDUs. More recently, 
Gani (2001), extended the models to the case where the infectives are ho­
mogeneous, but there are two or more types of susceptible. In later work, 
two types of infective exchanged needles with homogeneous susceptibles. The 
present paper extends these models to a situation in which there are two 
types of infective and two types of susceptible. This model can be generalized 
further, but leads to unwieldy algebra. The paper concludes with a model 
in which successive waves of infectives exchange needles with vaccinated and 
unvaccinated susceptibles. 

In Gani (2001), it was shown that if there are i infectives exchanging 
needles with n\ susceptibles of type 1 with probability p > 0, and n2 of type 2 
with probability q = 1 - p > 0, then the joint probability generating function 
(pgf) of the newly generated infectives of type 1 and 2 respectively is 

Vi;nin2{u,v) = ] T f l J p y - V j m ( u ) < f t - j r i 2 ( U ) - i1) 
3=0 V J / 
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The pgfs on the right hand side satisfy the respective difference-differential 
equations 

u(l -u)dipjni 

v(l-v)d<pi-Jna , _ 

<Pi- j+ln2(v) = ^ +V<pi-jn2. 

where these pgfs can be expressed explicitly for 1 < r < j + 1 in the form 

1 

(2) 

Vj + lnxfa) = W'3 «J + l(j + 1) + • 

+ ,-+i_rgr(j + l) 
n^ 

V ni/ V rii / + 

(3) 

with aj+1(j + 1) = ai(j + 1) = 1, and a r(j + 1) = rar(j) + ar-iO')- These 
coefficients have been derived explicitly in terms of products of known ma­
trices. A similar expression holds for ipi-j+in2(v). While (3) holds on the 
assumption that n\ > j , the equation is equally valid for n\ < j. It was also 
shown in the same paper that for the newly generated infectives Yy-tjni and 
^2;j-jn2 °f respective types 1 and 2, the expectations are given by 

771! = £(yiy n i ) = «i (l - ( l - ^ - ) J \ 

m2 = E(Y2;i-jn2) = n2 ( 1 - ( l - — J 

Their variances are 

1 \J 

(4) 

^ ( l ^ B l ) - m ? = n i ( n i - l ) ( l - - ) + »i ( l - ~ ) ~nl(l--) , 
1 \2J 

2 \*-i 
E(Y&-ina) ~m2

2 = n2(n2 - l ) ( l - —) + n 2 ( l - —) 
n2, 

n2> 

1 \*-J 

n2, 

(5) 

We now give an example of this case, where the two types of susceptible are 
unvaccinated and vaccinated individuals, in order to illustrate the effect of 
vaccination on the spread of infection. 
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2 The effect of vaccination 

Let us consider the special case of n susceptibles of two types, of which n^ 
are unvaccinated against a particular disease (hepatitis, say) and n — ri\ are 
vaccinated. We evaluate the effect of vaccination after an exchange of needles 
between the i infectives and the n susceptibles. We assume that the i ini­
tial infectives exchange needles at random with the susceptibles, so that the 
probabilities of exchange with the unvaccinated and vaccinated susceptibles 
are respectively 

n\ n — Hi 
p— — and q = . 

n n 

Then, from Equation (1), on the assumption that the vaccinated individuals 
are immune to the disease, setting v = 1, we see that the pgf of the newly 
generated infectives is 

3=0 

The pgf ipjni(u) satisfies the first difference-differential equation in (2), with 
the expectation and variance of Yi-jm, the newly generated infectives, as in 
(4) and (5). 

It follows from (4) and (6) that the total expected number of newly gen­
erated infectives is given by 

gO)(^(-^r-o-(>-^)=-(i-(i-=),)'(7' 
while the variance of the total number of new infectives is 

» . ( » . - . ) ( l - ? ) ' + » 1 ( l - i ) ' - ^ ( l - ? ( l - 5 L ) ) ' . (8) 

We note that when i = en, where c is some constant, and both i and n 
are large, we can derive the following asymptotic results for the expectation 
and variance respectively: 

ni(l-e-c) and n ^ m - l)e~2c + n^0 - n f e " 2 ^ 1 - ^ . (9) 

It is clearly desirable to keep the number of new infectives to a mini­
mum; thus if we require the average proportion of new infectives among the 
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n susceptibles to be no greater than some value a (0.05, say), then 

n i ( i - ( i -^y)-° n ' 
or for large i and n 

n(l — e~cj < an. 

To illustrate this, we consider in Table 1 the exact and asymptotic results 
for n = 1000 and % = en, where c = 0.1, 0.3, 0.5, 0.7, 0.9, and a = 0.05. 

Table 1. Proportions of unvaccinated not to be exceeded 

c 
Exact 

Asymptotic 

0.1 0.3 0.5 0.7 0.9 
0.5252 0.1928 0.1270 0.0993 0.0842 
0.5254 0.1929 0.1271 0.0993 0.0843 

We note that these sets of figures agree up to the third decimal point; 
thus to keep the expected number of new infectives below 5% of the initial 
number of susceptibles, we need to vaccinate at least the following percentage 
of n = 1000. 

c 
% to be vaccinated 

0.1 0.3 0.5 0.7 0.9 
47.5 80.7 87.3 90.1 91.6 

3 Two types of infectives and two types of susceptibles 

Let us now consider the case where there are two types of infectives numbering 
ii and i2 respectively. The i\ will have respective probabilities p n , p\2 of 
preference for the n\ susceptibles of type 1 and n-2 of type 2, with the i2 

having respective probabilities p2 i , P22 of preference for the n\ susceptibles of 
type 1 and n2 of type 2, with pu + p12 = P21 + P22 = 1- Then from (1), the 
pgf of the numbers sn , s12 of new infectives among the suceptibles of types 
1 and 2 due to ij > 0 infectives of type 1 and 13 = 0 infectives of type 2 is 

¥ ,ii0;n1na(«l,«2) = J2 \ j ) P l lP l2~Vj iu (•U1)(pil-jn2 (u2), (10) 

where (pjni(ui) and (p^-jn^u?) satisfy the difference-differential equations 
(2) with ui replacing u in the first, and u2 replacing v in the second. 
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Similarly, for i\ = 0 and i2 > 0 infectives, the pgf of the numbers s2i, s22 
of new infectives among the susceptibles of types 1 and 2 is 

<P0i2;n1n2(v1,V2) = Yl [j ) P^lPW^i m (vi)<fii2-j n2 (v2), ( H ) 

where (pjm(vi) a n d ¥>i2-jn2(
v2) satisfy the difference-differential equations 

(2) with v1 replacing u in the first, and v2 replacing v in the second. 
As simple examples, we can readily calculate the following pgfs: 

<PlO;nin2(ui,U2) = P n « l + Pl2"2, <P0 l;nm2 (
u l , ^ ) = P21«l + P22^2, 

^ O i m n j ^ l , ^ ) = — « l ( l - W l ) + - I 1 W 2 ( l - ' » 2 ) + (PllWl + P l 2 " 2 ) 2 , 
n i n2 

2 2 
V02;n1n2(wi,W2) = — « l ( l - ^ l ) + — U2(l ~ ^2) + (P21«l + P 2 2 ^ ) 2 - (12) 

nx n2 

The formulae become rather unwieldy for larger values of i j , i2. We shall 
see that both the pgfs (10) and (11) are required to build up the general pgf 

iPhi2;n1n2{ui,u2,vl,v2) ii > 0, i2 > 0, (13) 

of new infectives «n , s\2 among the initial susceptibles n\ of type 1 and n2 

of type 2 due to the i\ > 0 infectives, and s2i, S22 due to the i2 > 0 infectives. 
We proceed to show how this can be done. 

We first define pSllsl2s2is22{iii ^2! ni, n2) a s the probability 

^ < 

•siii s2i n e w infectives among 
the ni susceptibles, and 

S12, S22 new infectives among 
the n2 susceptibles due 

to type 1 and type 2 infectives 
respectively 

i\, i2 infectives and 
n\, n2 susceptibles initially > . 

(14) 
We shall assume that if a susceptible is first attacked by a type 1 infective, 

a later attack by either a type 1 or type 2 infective will not modify the initial 
type 1 infection. Likewise, a susceptible first attacked by a type 2 infective 
will not be modified by a later infective attack of type 1 or 2. 

Note that the probabilities 

PsllSl2oo(ii,i2 = 0; 712,7*2), Poos2is22(7i =0 ,7 2 ; n 1 , n 2 ) 

have the respective pgfs 

(ui,u2), (vi,v2) 
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of (10) and (11). We now derive a recursive equation for the probability (14). 
It is clear that if one increases the number of infectives i\ or i2 by 1 with 

respective probabilities p and q, where 0<p<l, p + q = l, then one can 
readily derive the recursive equation for nonzero sn, Si2, S21, s22 as 

PSHS12S21S22 {hJ2',n1,n2) = 

,. 1 . s( SX1+S21 S12 + S22\ 
PPsus12s2ls22(n - M 2 ; « l , r a 2 ) l p i l + P 1 2 1 

v Ti\ n2 ' 
, . . , •.( * 1 1 + S 2 1 , S l 2 + « 2 2 \ 

+qPs11s12s21s22(ii^2 - l ; n i , n 2 ) ( p 2 i + P22 ) 

,. 1 . , (. S U + S 2 1 - 1 \ 
+ P P s i l - l 8 l 2 S 2 1 « 2 2 ( l l _ 1 ^ 2 ; « l , « 2 ) P l l ( l I 

V Tl\ / 

C 1 • \ {1 S12 + S22 - l \ 
+PPsllSl2-is21s22(n - i-^2;n1,n2)p12[l I 

V n2 1 

»ii + S21 - 1 

-9Psiisi2s2iS22-i(ii^2 - l ; n i , n 2 ) p 2 2 ( l — )• (15) 
\ Tin J 

+qPsllsl2s21-iS22{'l\,i2 -i-;ni,n2)p2\[l J 

S\2 + 322 - 1 

n2 

This leads directly to the difference-differential equation 

<Pi1i2;n1_n2(ui,U2,V1,V2) = 

p(pilUi +Pl2U2)(fil + 9 ( P 2 1 « 1 + P 2 2 U 2 ) V t i » 2 - l ,™i™2 

+P 
P l l ^ l / 1 N d y » i - l i 2 ; n i n 2 . P l l ^ l /-, N ^ V t i - 1 » 2 ; n m 2 / 1 \ " ^ 1 1 - 1 1 2 T11712 , f H " ! , , N 

, ^ 1 2 ^ 2 , . . ^ V 3 i i - l i 2 ; n i n 2 . ^ 1 2 ^ 2 ^ x <9<Pn- l i2;nm2 
H ( 1 - W2) 1 ( 1 - W 2 ) -\ ^ l " ^ / O 1 V-"- " ^ / r\ 

n2 ou2 n2 ov: 
P21V1 Q _ x ^ y i i » 2 - l ; " i r t 2 , P21M1 ^ _ ^ < ^ i l ! j 2 _ i ; r a i „ 2 

(16) 

ni <9ui m 9ui 
1 P 2 2 ^ 2 ^ N ^ n t 2 - l ; n i n 2 , P 2 2 « 2 / , x ^ t i i 2 - l ; n i n 2 H 11 ~~ w2; 5 1 (1 — v2) n2 dv2 n2 du2 

which holds for all ii, i2 > 0. We see that when ii = 1, i2 > 1, 

fli2;nin2(ui,U2,Vi,V2) 

wMdependon(p0i2.nin2{u1,U2,v1,v2)a.nd(pli2_1.nin2(u1,u2,v1,v2). Ifz2 = 1 
as well, then the latter pgf will be ipio-,n1n2(ui,u2,vi,v2); these are given in 
equation (12). 

To illustrate the use of these equations, we derive 

<Pll;n1n2(
ul,U2,V1,V2) = P l l P 2 l ( l W ^ l + P12P22U )u2V2 

\ n\) \ n2I 
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^PllP22UlV2 + Pl2P2lU2Vl 
pvi + qui pv2 + qu2 , , 

\-P11P21 I-P12P22 1 , (i-i) 
n\ n2 

and 

<Pl2;nin2 (U\,U2,V1,V2) = 

p (p i l « l +P12U2)\P21V11^L +P22V2L^ + (P21V1 +P22V2)2 j> 

+ q(P2lVl +P22V2)\pilP2l(l - ~)U^V^ +Pl2P22^1 ~ ^ ) M 2 « 2 

+PllP22Wl«2 \P\2P2\U2V\ +P11P21 

+P12P22 
pf 2 + g^2 1 

" 2 

+ P i P l l « l 
1 — Ui 

"1 

' 9 1 — 2^i „ . ' 
P21 + 2P2l(P2lVl +P22V2) 

+P12U2 

^q\P2\V\ 

1 — u2 r 2 1 — 2^2 

" 2 

1 - W l 

P52 1" 2p22(P21«l +P22U2) 
n 2 

+P21W1 

+P22«2 

+P22«2 

P11P21 

" 1 

1 — f 2 

n 2 

1 - « 2 

P11P21 

P12P22 

n2 

K) 
) u 2 

n 5 / 

, P11P21 
u\ + P12P21M2 + P 

Til/ nl 

, P l lP2l ' 
«i +PnP2iv2 + <? 

n i / n i . 

P12P22 
u2 +P11P22M1 + P 

n 2 / n2 

M - \ , 1 P12P22' 
P12P22 1 )«2 +P12P21W1 + q 

n 2 / « 2 • 

(18) 

The pgf (̂ 2 i ;nin 2( u i i "2,^1,^2) can be found similarly, or by symmetry. 
The pgfs for higher values of ii ,i2 can also be derived, but rapidly become 
algebraically unwieldy, though they remain manageable for relatively small 
values of i\ ,^2-

Likewise, it is possible to consider several types of infectives, as well as 
several types of susceptibles, but the equations then become intractable. 

4 T w o w a v e s of infect ives 

The model in §3 is clearly difficult to handle with any ease. We shall there­
fore consider a simpler model extending the vaccination model of §2 in which 

file:///-P11P21
file:///P/2P2/U2V/
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nx unvaccinated and n-ni vaccinated susceptibles are subject to two waves 
of infectives. In the first wave, ix infectives carrying a benign form of the 
infection exchange needles with the susceptibles. This has the effect of "vac­
cinating" the newly generated infectives against the second wave in which i2 

infectives, carrying the virulent form of the infection, exchange needles with 
the n initial susceptibles. We evaluate the expected number of newly infected 
susceptibles now carrying the virulent infection. 

We have already seen in §2 that the expected number of newly generated 
infectives, now immunised against the more virulent infection of type 2 is 

„,(:-(!-I)*) 

Thus the remaining expected number of " unvaccinated" susceptibles will be 

„ = „ , - « , ( l - ( l - I ) * ) ^ ( l - i ) * (19) 

In exactly the same way, we can argue that when zj unvaccinated and 
n — z\ "vaccinated" individuals exchange needles with ii virulent infectives, 
the expected number of newly generated infectives will be 

«Hi-;r)-*(-;)' ,0-(1-;)*)• <20> 
Hence the expected number of remaining unvaccinated susceptibles will 

be the difference between (19) and (20), or 

/ l \ n + « 2 , x 

niV~n) ' ( 2 1 ) 

precisely the same as if there had been i = i\ + ii homogeneous infectives. 
Note that this is an approximate result, in terms of expected values, since z\ 
may not turn out to be an integer. 

To illustrate the effect of these two waves of infectives, we give an example 
where n = 1000, the initial number of unvaccinated individuals is n\ = 500, 
and the numbers of infectives of types 1 and 2 are i\ = i-2 = 100, 300 and 500. 
We calculate (21) to obtain: 

h + «2 
Expected number of remaining 

unvaccinated susceptibles 

200 600 1000 
409.32 274.32 183.84 
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Fractionally integrated processes are a class of linear processes which lay between 
stationary autoregressive and unit root series in terms of their properties. Recent 
work on transformations of random walks have not been completely extended to 
1(d) series, but some results are available and are presented. It is noted that if 
the input shocks to the models have a positive mean, the process will have a non­
linear trend in mean. Most economic "examples" of 1(d) processes are positive 
series and so should have such trends, but as these are not observed, it follows that 
long-memory models hardly ever occur in economic. An alternative is stationary 
models with breaks. 

K e y w o r d s : Unit root, fractionally integrated processes, non-linearity, breaking processes, 
trends in mean. 

1 Introduction and some definitions 

It is convenient to start with a stationary process I t , with zero mean, (con­
stant) variance = a1 and autocorrelation pj = corr(Yt,Yt-j) and spectrum 

1 2 Y 
fY{w) = - + - £ p exp(ijw). (1) 

The process is called long memory if 

lim f(w) = oo. (2) 
u;-+0 

The definition can be extended to certain linear non-stationary processes in 
the following way: Suppose that Xt is a stationary series, mean zero, constant 
variance a\ and spectrum fx{w) with the property fx(0) = C, C > 0. Let 
g(B) be a polynomial in the backward operator B, which is called a filter, 
with the property that 

9(1) = 0 
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so that if g{B)Xt has a spectrum that is zero at zero frequency. If Yt is 
generated by 

g(B)Yt = Xt (3) 

where Xt is stationary, with positive spectrum at zero frequencies, then Yt 

can be called long-memory as the spectrum of Yt can be written 

Mw)=wSh (4) 

as shown in Zygmond (1959). Note that fy(W) has the long memory property 
because of the unit root property of g(B). It should also be noted that a 
consequence of (1) and (2) is that 

lim Y^PJ = °° (5) 
k—>oo 

so that the sequence of pj is diverging. 
From the Wold representation, ignoring any deterministic components, 

one has 

oo 

J=0 

where et-j is a zero mean, white noise (that is, serially uncorrelated) process. 
It follows from (3) that 

y* = £ c ^ (7) 

where the sequence cj declines, if at all, slowly to achieve (5). 
Although there are many possible long memory processes, two have re­

ceived virtually all the attention in the literature: 

a The unit root process 

g{B) = {\-B) (8) 

corresponding to fy(w) = cw~2 for small w and cj = constant, for all j . 
Yt is denoted as 1(1) and integrated of order one, in this case. The 1(2) 
process, with g(B) = (1 - B)2 and cj = cj has received some attention, 
where now /y(to) = cw~4 for small w. 
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b The fractional unit root process 

g(B) = (1 - B)d, 0 < d < 1 (9) 

corresponding to fy{w) = cw~2d, for small w. The notation Yt = 7(d) is 
used. The properties of this process are noted below. 

The phrase long-memory has little implication except that there is nat­
urally interest in processes that have autocorrelations, and thus relationship, 
over long horizons. The concept of persistence is better formulated in the mov­
ing average representations (7). It tells how an old shock is remembered or 
still influences current values. In the 1(2) model, old shocks increase in impor­
tance and dominate new shocks, which makes it less appealing for economists. 
For an economist, not only is the mathematics and statistical properties of 
a model interesting but also the interpretation in terms of real activities and 
the potential usefulness of the model for decision makers. This is a theme to 
which I will return. 

It is important to distinguish between generating mechanisms that pro­
duce long memory processes and the properties that such processes have. 
Equations (3) and (7) are examples of generating mechanisms and equation 
(5) and the spectrum being unbounded at zero frequency are examples of 
properties. However, it should be noted that the properties do not determine 
the generating mechanism as several alternative generating mechanisms pro­
duce similar properties. Thus, for example, it has been common to link long 
memory with 1(d) processes on a one-to-one form, but this is not correct as 
will be indicated later. 

2 Fractionally integrated processes 

I will consider just the properties of the process 

(1 - B)dYt = et (10) 

where et is a zero mean, uncorrelated process (or Martingale difference). More 
generally, et is replaced by a stationary series Xt with a spectrum that is 
bounded above and is positive at the zero frequency. In this more general case, 
the properties of the process are quantitatively similar but more complicated 
to state. Details can be found in Bailie and King (1996) and Beran (1998). 
Using power series expansions of (1 - B)d and assuming that the process 
started at time t = 0, gives the representations: 

1. Moving Average 
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Yt = $ > e t _ j (11) 

where Cj = (T(d)) 1jd 1 for j large. 
2. Autoregressive 

y t = ^ a f c Y t _ f c + £ t (12) 

where afc « (T(-d)) Jfc d *. The spectrum has the form 

and for w small fy{w) ~ cw~2d. The variance of the process is 

, v , jct2d-1 if d > 0.5 , . 
V a r ( y t ) = \ c l o g W i f d = 0.5 ( 1 3 ) 

both for t large, where throughout c is some constant, but var (Yt) —> finite 
value a s i | i f 0 < d < 0.5. The values of d that are > 0.5 are called the 
non-stationary region in the literature. This is only correct if the mean of the 
inputs et is zero. If E[et] = m ^ 0, in (10), then 

E[Yt) = mtd-1 (14) 

and so the first moment produces non-stationarity. 
If m = 0 and 0 < d < 0.5, autocorrelations will exist and take the form 

Pk= corr(r t ,F t_ f e) ^ c / c 2 ^ 1 . (15) 

They are seen to decline with k, but at slower than the exponential rate 
observed with a stationary autoregressive process. 

The class of long-memory processes so far considered, the 1(d) processes, 
by no means exhausts the possibilities. Granger and Ding (1996) discuss some 
others, including using the filter 

g(B) = [L(l-B)-lY (16) 

where L(x) is a slowly-varying function, so that for any k ^ 0, 

lim ^ 4 = 1. 
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An example is log x. The process generated by 

Yt = [L(l - B ) - a ] - £
£ t (17) 

is called a generalized integrated process of order 0 + , denoted GI (0 + ) . In the 
case where L(x) = log a;, the spectrum is proportional to (logw)2q for small 
w. It follows that this process is dominated by 1(d) for any d > 0, however 
small, in the sense that the spectrum of 1(d) goes to infinity faster than that 
for the Gl(0+) process. Very little attention has been given to this process 
as its autocorrelations are small and it will be very difficult to detect. As 
any divergent series inserted into the moving average (7) will produce a long 
memory series, the range of possible, simple models is seen to be large. 

The substantial interest in the 1(d), 0 < d < 1, processes seems to arise 
because of the mathematical properties of this class which lie between station­
ary and unit root processes and because of associated statistical problems. 
The low frequency part of the spectrum is particularly important and new 
information accumulates slowly, partly because of the long-memory, so that 
estimation can be slow to converge and tests have to be carefully constructed. 
Peter Robinson, of the London School of Economics, has many papers in these 
areas. 

A particularly interesting case, which has been little studied, is I(^) 
as it represents the bifurcation mark for moving from stationarity to non-
stationarity in variance. For d < \ the variance tends to a constant, for d > \ 
it tends to i 2 d _ 1 and for d = \ to log*. Tanaka (1999) consider the Xt ~ j \ 
process with input innovations that have zero mean, are stationary, and with 
finite variance and shows that 

7kfYt^mci) (18) 

and 

plim -Xj=2(yt - y t - i ) 2 - c2 (19) 

where ci, c2 are finite constants. If the innovations are iid with variance a2, 
then ci = — and Co = 4—. 

3 Generalizations 

In moving from standard ARMA models to those involving unit roots is the 
first small step in moving from an assumption of stationarity to starting con­
sideration of non-stationary models. This is all done with a basic assumption 
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of linearity of the system. Econometricians developed tests for 1(0) versus 1(1), 
with an untested background assumption of linearity. Within this framework, 
many economic series were deemed to be 1(1) or, strictly, the null hypothesis 
of 1(1) was not rejected against an alternative if 1(0). 

Confusion soon began when non-linear questions arose such as: Can a 
bounded variable, such as a positive variable (an interest rate, for example) 
be 1(1)? Similarly, if Xt is 1(1), will X2

t be 1(1)? Will it be the same for other 
instantaneous transforms? 

It should be noted that some aspects of the 1(0) versus 1(1) classification 
have a natural linear orientation. The most important is that the difference 
of an 1(1) is 1(0) as the difference is a linear operator, Yt - Yt-\. It follows 
that 1(1) can be distinguished as being a process whose difference is 1(0). A 
question remains, what is 1(0)? It might also be noted that the properties 
of 1(0), 1(1) (and 1(d)) processes are usually stated in terms of their linear 
properties; i.e., the means, variances, auto-covariances, and autocorrelations 
that arise when the process is regressed linearly on a set of past values of 
interest. Although these are valuable measures of the properties of a process, 
they are less helpful in describing a nonlinear process. 

Amongst linear processes, a general definition of an 1(0) process is an 
ARMA 

a(B)Yt = c(B)et 

such that a(l) ^ 0, c(l) ^ 0 so that the spectrum of Yt at zero frequency is 
bounded above and is positive. This definition of 1(0) does not easily trans­
late to nonlinear univariate models. A more general definition, proposed by 
Davidson (1999) is: Xt is 1(0) if its accumulation 

t 

Yt = Y,Xt-j t = 0 , . - - , T 
3=0 

obeys the Functional Central Limit Theorem. That is, if a new variable is 
defined by 

QT(T) = -^Yt-j if ¥ < r < f 

(with QT(1) = ^jfYT, QT(Q) = 0, a = var(Xt)) so that r < 1, then 

XT(r) - • W(r) as T T oo 

where W(r) is a Weiner process in continuous space [0,1). 
Although theoretically this definition appears to be generally acceptable 

and to have a number of advantages there remains the substantial practical 
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problem that there exists no test for whether or not an accumulation Yt obeys 
the functional central limit theorem. [I will not discuss the equally potential 
disturbing problem of how one can define a linear time series introduced by 
the results of Bickel and Bwhlmann (1996).] 

4 Transformation of random walks 

If a random walk Xt is the classical form of long memory or process with 
persistence, then a simple transform, such as Yt = T(Xt) + et may well also 
have long memory of some form. Park and Phillips (1999, 2001) consider 
various aspects of such transformations, including estimation questions for 
any parameters involved. The first paper considers sums of the form 

1 " 
- ^ T ( X ( ) as n Too (20) 

t=i 

where ./V is a suitable normalization. The results depend on the property of 
the function T(x) and require the use of mathematics different from that used 
with linear random walks. Three classes of functions are considered: 

(i) Class I (integrable) 

/ T(n)dx finite for any t; (21) 
Jo 

(ii) Class H (homogenous) 

T{Xx) = v(\)H(x) + R(x, A) (22) 

where H(x) is integrable; 
(iii) Class E (exponential) 

T(x) = E{x) + R{x) 

where E(x) is monotonic. 
In (ii) and (iii) the remainder term R is dominated by the first term for 

\x\ large. (These are not the precise definitions used.) It should be noted that 
some functions do not fall into these classes. 

The new concept needed is that of local time, L(t,s) which is the prob­
ability of a Brownian motion W(r), 0 < r < 1, falling into the small region 
around s given by 

1 /•« 
L(t, s) = lim — / I{\W(r)-s\<e}dr (23) 
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so that, in the limit W(r) is near s. One get the useful property 

/ T(W{r))dr= / T(s)L{t,s)ds (24) 

if T is locally integrable. An example of the results obtained is: 
If T{x) ~ H, then 

1 n poo 

\im—^YT(Xt)± H(s)L(t,s)ds (25) 
n-*oc nv{n) ^ J_00 

where, in the integral, H(s) is not random but L(t, s) is. If T(x) ~ E, the 
equivalent result is found to be path-specific. 

The results, when applied to the question of estimation of a by OLS in 
the model 

Yt = aT(Xt) + ut 

where Ut is stationary, gives specific results for bias which are stochastic and 
have a specific normalization. 

As might be expected, it is shown that to obtain mathematical results 
even in fairly simple simulations becomes considerably more complicated when 
functions of random walks are considered. 

An alternative approach is taken by Karlson, Mykelbust, and Tjostheim 
(1999). They consider a class of relationships 

Zt = f(Xt) + Wt 

where Xt is persistent so that f(Xt) is also persistent and thus Zt also. Wt 

is stationary, such as a moving average. Here persistence is defined as null-
recurrent. In a Markov chain some states can occur once and then there 
is a zero probability that it will re-occur, then this state is null-recurrent. 
For example, a random walk with continuous iid inputs, the probability of 
returning to any particular value is zero, unlike a stationary series with mean 
reversion, which will return to states near the mean often. 

However, even though a persistent process, such as a random walk does 
not recur, it may come close occasionally to a previous state. Denote s to 
be the recurrence time, from the initial state to the process being close to it 
again, in some sense. 

Suppose 

Prob(s > n) 
n^ 
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For a random walk L = \, but L will take other values for different 
processes. The authors show that the function f(Xt) can be well estimated 
using a non-parametric kernel of the form 

Khn(v)=h-lK{u/kn) 

where, for example, K(u) = 0.75(1 - u2), -1 < u < 1. The kernel provides 
a window through which the underlying curve can be viewed and then esti­
mated. The width is determined by hn which is taken to be - 1 > k0/2, where 
_ is given above. It is shown that if 

YH=aKhn{.Xt) 

then 

n 

hnY,KK{Xt) 
t=o 

where a^ is the variance of the shock and the final term is a constant depend­
ing on the shape of the kernel. The result suggests that a non-parametric 
technique should work well in the estimation of a nonlinear relationship be­
tween persistent variables. 

5 Transformations of fractionally integrated processes 

Although considerable progress has been made with functions of unit root and 
other persistent processes, only incomplete theoretical results, complimented 
by simulation results, are available for transformations of 1(d) processes. The 
results are for Gaussian processes and the available theorem is: 

Theorem 1: If Xt « 1(d), 0 < d < \ and if g(.) is a univariate transfor­
mation that can be written as the finite sum of Hermitic polynomials Hj(.); 

k 

9(x) = 9 + Y^9jHj(x) 

with I < J < k < oo and gj ^ 0. Here J is called the Hermitic rank. 
Then g(xt) is a long memory process is a long memory process 1(d) with 
d = max(0, (d - 0.5) J + 0.5). 

Some illustrations: 
This table shows d values for transformed series 

f(x)-f(x) -+N(0,CT. •I" (u)du) as n CO 
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g(x) Original Original 
and rank d = 0.2 d = 0.4 

X (Rank 1) 0.2 0.4 
X 2 (Rank 2) 0 0.3 
X 3 (Rank 1) 0.2 0.4 
X 4 (Rank 2) 0 0.3 

X 3 - 3X (Rank 3) 0 0.2 
X 4 - 6X2 (Rank 4) 0 0.1 

The theorem and simulations supporting the above theoretical results can 
be found in Dittman and Granger (2002). The theorem was originally shown 
in a different from by Taqqu (1979) who also established a functional central 
limit theorem for g(xt). 

For 1(d), 0.5 < d < 1 mainly simulation results are available in Dittman 
and Granger (2002) but it is shown that X 2 is 1(d) asymptotically (at least 
an empirically equivalent form of 1(d)). This suggests that this is at least 
approximately true for the other transforms shown in the above table where 
the estimated d value for the transformed series is slightly below the d of the 
original series for d = 0.6 and 0.8, although there does appear to be a slippage 
as the rank increases. For example: 

Estimated d 
Original Original 
d = 0.6 d = 0.8 

X'6 (Rank 1) 055 078 
X 3 - 3X (Rank 3) 0.54 0.77 
X 4 - 6X2 (Rank 4) 0.50 0.75 

It is clear that the Hermitic rank is having very much less influence for 
d > 0.5 than it did for the d < 0.5 case. 

Simulations were also conducted for a few transcendental transformations, 
sin(x), cos(x), exp(z), and the logistic = (1 + e x p ( X - 1 ) ) - 1 . The first three 
did not give monotonically increasing estimates of d as the d of the input 
series increased from 0 to 1, whereas d for the logistic was close to the input 
d in all cases except for d = 1 where it was rather low (around 0.8). 

6 The economists' viewpoint - empty boxes 

I believe that it is relevant to ask the questions: why do we, or should we, 
study long-memory processes? There is surely the intellectual curiosity in 
working on unsolved questions, particularly if they prove to be mathematically 
interesting. To econometricians, the area is potentially important, we expect 
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the economy to produce series that are both non-stationary and non-linear, 
and this is an immense and largely unexplored area. The papers by Karlson 
et al. (1999) and by Park and Phillips (2001) and some others, are virtually 
the first attempts to enter this difficult but promising section of the research 
map. 

Parts of this research involve the introduction of specific techniques and 
models, such as the fractionally integrated or 1(d), which is then investigated 
in terms of its properties, estimation methods, and how to relate to other 
models. However, as an economist, there is a pragmatic criterion of consid­
erable importance that needs to be considered - are there any examples in 
the actual economy where this model occurs? One can always argue that the 
model has some interesting, sensible, properties but if it never happens in 
reality it becomes merely a toy, something to play with in one's spare time. 
Situations or theories on topics which never occur are said to belong in an 
empty box, an idea which is described in an entry with that name in the New 
Palgrave Dictionary of Economics, (McMillan, 1987). 

A case can be made that the 1(d) process is an empty box in economics. 
It should be noted that to estimate d sufficiently well so that the capturing 
values of 0 and 1 can be rejected requires a large sample, too large for most 
time series in economics apart from those from speculative markets. By far 
the strongest evidence, in terms of autocorrelations and spectral shapes as 
well as estimates of d, come from consideration of absolute returns, possibly 
raised to some power, \rt\

e. Using stock market returns, commodity prices, 
exchange rates, and interest rates, significant d values were often found and 
long, positive, and significant autocorrelation sequences indicated. All of the 
second-moment evidence clearly suggested an 1(d) process, but ignores the 
first-moment. If Xt is a positive series and is 1(d), it will have a trend in 
mean of order ctd, where c is a constant. For a sample of several thousand, 
such a trend will be visible but none of the absolute return series in finance 
contain such a trend. The conclusion is that these best-examples cannot be 
fractionally integrated. As there are few, if any, other compelling examples it 
seems that for economists 1(d) belongs in the empty box. I have no opinion 
about other series but the evidence for positive series and lack of trend in 
mean needs to be considered. 

An alternative model which produces the same covariance long-memory 
results is a short-memory stationary series with occasional random breaks in 
mean (random in location, size, and sign). The unit root model still remains 
in active duty in economic and econometrics, although its use with positive 
series has not been discussed explicitly, to the best of my knowledge. 
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We focus on a test for a two-component Normal mixture model / by assessing 
its "closeness", in terms of L2 distance, to a Normal distribution fu. If the L2 
estimate is in a specified "indifference zone", the two distributions are asserted 
to be "close enough" and by parsimony f^ is preferred over / . This approach is 
applicable in both Bayesian and frequentist frameworks and is easily generalised to 
a test for more than two components in a mixture. Results are extended to model 
selection using predictive densities under a Bayesian approach and are illustrated 
by example. 

Keywords: Bayesian approach, indifference zone, L2 distance, model selection, Normal 
mixture distribution, predictive distributions. 

1 Introduction 

Testing for the number of components, k, in a mixture of the form T^=lpifi(x) 
is difficult because of the geometry of the parameter space and the number 
of expressions that contribute to a null hypothesis. Popular approaches to 
testing include likelihood methods, Bayes factors and reversible jump MCMC 
(Richardson and Green, 1997). An alternative test based on the distributional 
distance between two models was proposed by Mengersen and Robert (1996). 
Here, the null hypothesis HQ of no mixture is accepted if d(f, /*) < a, where 
^(/i /*) is the Kullback-Leibler (KL) distance between a two-component mix­
ture / and a Normal distribution /*, and a is a pre-specified "indifference 
zone" (IZ, Gupta and Panchapakesan, 1979). The IZ may be considered to 
be the maximum distortion that we are prepared to allow in the shape of 
a Normal distribution, due to an additional component, before we select a 
two-component Normal mixture as a more adequate distribution. 
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A noted difficulty with the approach of Mengersen and Robert (1996), 
however, was the failure to derive a closed form expression for the KL dis­
tance which led to difficulties in developing the IZ. In the present paper we 
propose a remedy to this problem by considering the use of the L2 instead 
of the KL distance measure. The derived test is applicable in both frequen-
tist and Bayesian paradigms. Although it is developed in the context of a 
two-component Normal mixture, it is easily extended to situations of general 
k and non-Normality. In a Bayesian setting, we investigate an adaptation of 
the test based on posterior predictive distributions which are arguably more 
interesting in this context. 

2 Testing for a mixture 

Without loss of generality, consider a standardised two-component Normal 
mixture f=pN(0,1) + (1 -p)N{6,a2), 6 > 0,er > 1,0.5 < p < 1. Denote by 
/AT = N(e,w2) the closest Normal distribution in that e and LJ2 are derived to 
minimise the L2 distance given by 

+ 2p{1-p)eXp\ ~62 11 (1) 
+ v / l T ^ P l 2( l + <r2)JJ- ( i j 

The behaviour of L2(f,fN) over the region defined by — 3 < 6 < 3 and 
0.1 < a < 20 is illustrated in Figure 1 for p = 0.5. Similar behaviour is 
observed for other values of p, although as p increases, there is a slow down 
in the rate of increase in L2(f, /jy) with increasing |#| and a. 

It remains now to define an IZ based on L2(f, /w). Below we consider two 
approaches. Whereas the first is appropriate in both Bayesian and frequentist 
settings and provides a binary decision rule for HQ, the second builds on the 
Bayesian paradigm to provide a posterior probability of H0. 

2.1 Approach 1 

In order to test HQ, it is necessary to construct a reference measure. By 
considering the L2 distances (2) between the standardised mixture and the 
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V^2^ 

Figure 1. L2 distance between 2-component Normal mixture and closest normal with p=0.5 

standard normal distribution, fsN, as the parameters p, 6 and cr vary, the 
boundary of the IZ could represent a measure of the maximum amount of 
distortion that we are prepared to allow in the shape of the standard normal 
distribution due to an additional component, before we accept / as the more 
adequate distribution. 

L2(f,fsN)=J(f-fN)2dx 

( P - 1 ) -02 /2(l+<7-2) (2) 

Here we consider the volume V under the L2(f,fsN) region from 
min(Z2(/, f^)) where (p = 1,6 — 0, a = 1) to an arbitrary (po, 6Q, en), denned 
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by 

/•l r-6a ran 

V(Po,60,ao) = / / L2(f,fN)d(7d0dP. (3) 
Jpo JO Jl 

Under H0, interest is focused on small LI values. For fixed p, the 
maximum region of interest in L2 may thus be defined as extending from 
min(L2(/, /w)) to values of 6 and a corresponding to the point of inflexion 
in V . For all p and fixed a, the value of 6 at the inflexion in V occurs at 
#o = \ / l + a2. It can be shown that at this point of inflexion ao = 1.69. 
Hence from (3), max(V) = V(0.5,1.96,1.69) = 0.0081. 

In the simplest case, the test of the null hypothsis can be defined in terms 
of V, with the IZ arbitrarily nominated as ay = cV, 0 < c < 1. The test may 
then be described as follows. 

Step 1 Decide on IZ by nominating ay. 

Step 2 Estimate / = pN(0,1) + (1 - p)N(ji,a2) and the closest Normal /AT = 
N{e,u2). Compute L2{f,fN). 

Step 3 Compute the corresponding V* = V(p,8,&) from (2) and (3). 

Step 4 If V* < a, L2 is in the IZ so the null hypothesis of no mixture is accepted 
and /N is chosen. Otherwise / is chosen. 

Note that V* does not have an analytic solution but can be computed 
numerically in the same procedure that estimates e and w. Other decision 
rules can be constructed from V, according to appropriate loss functions. 

2.2 Approach 2 

For the mixture / , consider a joint prior distribution, pp say, on (p,0,cr). 
A prior distribution, L2p say, may be constructed by drawing samples from 
PP, deriving /jv corresponding to the realised / and calculating L2(f,/AT). 
Imposition of a prior on Ho of 0.5, which conforms to the usual application 
of Bayes Factors, provides an obvious choice for a as otp — median L2p. 

The posterior distribution n = Tr(p,6,a\X,f) may be estimated numeri­
cally using Markov chain Monte Carlo (MCMC) for example. After appropri­
ate burn-in, at each iteration, a realisation of (p,6,a) is drawn from 7r, from 
which the posterior / , f^ and L2 may be derived. The result is a sequence 
of posterior estimates L2(-1\L2^2\ ...,L2^\ ...,L2(-m\ where m is arbitrarily 
large. 

A test of HQ may be described as follows. 
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Step 1 Determine ap based on pp as described above. 

Step 2 Simulate posterior estimates of L2<-1\L2^2\ ...,L2(-i\...,L2(-m'> as de­
scribed above. 

Step 3 Estimate Pr(L2(/,/jv) < aP), by T,^I{L2^ < aP), where / is the 
indicator function. 

Note that the outcome from this test is the posterior probability of be­
ing in IZ. This is argued to be more informative than Approach 1 in making 
choices between / and /JV- The price of this added information is computa­
tional, both in the derivation of ap and the computation of n. 

3 Testing predictive distributions 

In a Bayesian context, predictive distributions may be more comparable 
than posterior distributions for model assessment (Box, 1980; Berger, 1985). 
Gelfand et al. (1992) consider issues of model adequacy and model choice 
for predictive distributions using cross-validation methods. Gelfand and Dey 
(1994) provide a definition for a general predictive density and compare dif­
ferent forms of Bayes factors that can be used for model choice. 

Although the L2 distance between the predictive densities g and g^ say, 
of a Normal distribution and a two-component Normal mixture, respectively, 
can be written down, it does not behave in such a fashion as to allow the 
construction of a closest predictive Normal distribution as in Section 2. For 
example, the mean of gx may not be centred about the weighted mean of the 
two components of g when the sample mean is close to the prior mean. 

Two alternative approaches are considered here. First, with conjugate 
priors on the parameters of the two-component mixture model, the predictive 
density g is a four-component mixture of ^-distributions. This might reason­
ably be approximated by a Normal density g', say. In this case we can proceed 
as in Section 2.1 or 2.2 by constructing the closest Normal density g'N to g' 
and the corresponding L2(g',g'N). 

A second approach avoids this approximation and such a heavy reliance 
on the choice of the prior distribution on g. Here we follow McCullogh and 
Rossi (1992)who proposed a method for computing a Bayes Factor which 
compares the expected values of the likelihood with respect to a prior over 
the restricted and unrestricted parameter space, respectively. The method 
proceeds by imposing a prior pg on g and then inducing a prior pgN on 
9N by projecting draws from the space of pg onto the restricted space of 
pgN. Here, the minimum L2(g,g^) is defined as the projection function. 
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This approach is highly computational and indeed leads naturally into the 
more elegant Reversible Jump MCMC algorithm described by Richardson 
and Green (1997). 
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Figure 2. (Top) Histogram for protozoon data (Bottom) Estimated mixture density 
0.65N(19.96, 4.62) + 0.35N(26.16, 7.62) and closest Normal N(21.21, 13.71) 
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4 Example 

Consider a dataset introduced and studied by Pearson (see Everitt and Hand, 
1981) which contains the length in micrometers of 1000 parasitic protozoon 
called trypanasome. The data comprise measurements from two strains of 
protozoon. It is of interest to assess whether the data are best described 
by a two-component Normal mixture or can be adequately summarised by a 
Normal distribution. Figure 2 depicts a histogram of the data, the estimated 
mixture density 0.65iV(19.96,4.62)+0.35JV(26.16,7.62) and its closest Normal 
density iV(21,21,13.71) in terms of L2 distance. The respective standardised 
distributions are / = 0.65iV(0,1) + 0.35JV(2.89,1.65) and fN = AT(0.58,2.97), 
with an Ul distance of 0.0104. 

Using Approach 2 in Section 2, values for (p, 0, cr) in / were generated from 
priors p ~ £/[0.5,1], 9 ~ U[0,3], a ~ U[l, 3]. The upper limits of the intervals 
are reasonably arbitrary in this example, although sensitivity analyses (not 
shown here) indicated a high degree of robustness in decision-making. Note 
that if the upper limits are increased, a will also increase. 

With 10,000 simulations from the prior distribution, the induced value of 
aP = median(L2P) was 0.0018. Since 0.0104 > 0.0018, the observed L2(f, fN) 
is not in the IZ. We conclude that the data are not reasonably described by a 
Normal distribution and hence we choose the two-component Normal mixture. 
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A decision analysis framework for risk models for health state transitions and 
valuations is described. Emphasis is placed on the sensitivity of choices among 
treatments to the absolute level of risk and the risk profile of the individual. The 
uses of Clinical Trials databases to inform decision aids is considered. We employ 
Markov models with Q-TWiST valuation of health states histories and examine the 
requirements for effective valuations of treatment alternatives for the individual. 

K e y w o r d s : decision analysis, breast cancer, survival, trade-offs, quality of life 

1 Introduction 

The better choice of treatment for a health condition depends on the health 
experience that follows it, together with the individual valuation of that health 
state history. Since any future course of health states or health events is 
uncertain we cannot know exactly what history will eventuate. It may be 
useful for a new individual making a choice among treatment options to be 
presented with simulations of future health states selected from health state 
histories that have occurred in similar individuals on the same treatment in 
clinical trials. These realizations determine corresponding simulated histories 
for the new individual. The treatment option valued best on average might 
be preferred (leaving aside cost considerations). 

Even in life threatening conditions, factors other than survival gains may 
be important in the decision. This decision may depend on individual cir­
cumstances, age and risk profile attributes. The risk profile determines a net 
valuation accounting for benefits, costs and harms. Risk profile attributes 
determine: 

• how trade-offs between different dimensions in outcomes are valued by 
doctor and patient; e.g. willingness to trade-off quality of life or other 
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treatment effects for increased survival. 

• the relative valuations of alternative health states; 

• willingness to entertain the possibility of prolonged low quality states in 
anticipation of longer term benefits in health; 

• the discounting applied to the future as against the present. 

Uncertainty as to future health states leads to uncertainty in the valuation 
which is best allowed for in repeated simulations of future histories (or real­
izations) applicable to the new individual. Different valuations may lead to 
different treatment preferences among patients. 

In two examples considered below, clinical trials data is available and fur­
ther population data (e.g. cohort data) may be gathered to provide param­
eters necessary for decision making informing appropriate treatment choices 
for a new individual. Our goal is to develop a decision framework that uses 
survival, quality of life and risk profile data from clinical trials to assist choice 
among treatment options. The method might find use in providing valuations 
from the perspective of an individual or of the community. 

With event rate data (occurrence or non-occurrence of nominated events 
during some fixed time interval), crucial parameters in the decision are the 
absolute risks for this individual and relative risks of treatment outcome (the 
increases in event rates of a 'benefit' such as a cure, and the increase in event 
rate of a 'harm' such as a toxicity of treatment) may be determined in the 
trial. In many cases a risk ratio or relative risk is estimated. Reduction in 
the risk of an adverse event, a benefit, can be offset by potential increased 
occurrence of harms, such as side-effects and treatment toxicity, creating a 
tradeoff between potential benefits and harms. 

Example Prophylactic warfarin to prevent stroke 
Prophylactic warfarin is a treatment option for preventing stroke among 

individuals at high risk of stroke (e.g. following an initial stroke). Controlled 
clinical trials can provide event rates in groups prescribed warfarin relative 
to event rates in untreated individuals. While warfarin carries a benefit in 
reducing fatal stroke, it also carries harms in (i) increasing the event rates 
of non-fatal but disabling stroke; (ii) introducing a risk of death due to fatal 
bleeds, a side effect of warfarin. When the rates of non-fatal stroke are in 
proportion to rates of fatal strokes we can expect a net benefit provided fatal 
stroke is considered to be a worse outcome than disabling stroke and that 
provided the risk of bleeding is not too great. The risk of bleeding is, however, 
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largely unrelated to the absolute risk of stroke. A decision as to the net benefit 
for an individual of warfarin treatment will depend on the tradeoff between 
benefits and harms. Decision analysis (see e.g. Kirkwood, 1997, Chapter 
4) will allocate utilities to each outcome (fatal stroke, disabling stroke, fatal 
bleed, recovery) and using known risk probabilities the expected utility is 
calculated for each treatment option: 

E(U) = Y,uiP* 

where the sum is over all outcomes i: This calculation requires not only elic­
iting the utility relativities {ut} of the individual but also the probabilities of 
each potential outcome for this individual. A key point is that the compari­
son of expected utilities will depend on relative risk of stroke (assessed from 
clinical trials of warfarin) and the absolute risk of stroke for this individual 
(if untreated). 

Table 1 provides an example of this calculation. The category "No stroke" 
refers to neither stroke nor bleed. In the Table p3 = 1 - p\ — P2, p3 = 
\—p\—p'2— p'4 and / is the risk ratio of total or disabling stroke for warfarin 
relative to no treatment. We assume no change with Warfarin treatment in 
the distribution of outcomes among individuals experiencing fatal or disabling 
stroke. 

Table 1. Utility calculations for Warfarin therapy following stroke 

Outcome Utility Probability Utility increment 
i Ui Untreated Warfarin UiApi 
Fatal stroke 0 p\ p\ = f p\ 0 
Disabling stroke 0.25 p2 p'2 — f P2 -0.25 p2(l — / ) 
No stroke 1 p3 p'3 (pi +p2)(l - f) - p\ 
Fatal bleed (3 0 p\ 0 

Suppose Warfarin has a risk ratio / = 0.33 and that the baseline risk, 
without Warfarin, is 6 fatal strokes and 12 disabling strokes per thousand. 
Then the events rates with Warfarin are 2 fatal strokes and 4 disabling strokes 
per thousand. With 10 fatal bleeds per thousand, the two alternative treat­
ments have almost equal expected utility (or average quality of life valuation). 
For this event rate of fatal bleeds, Warfarin would be preferred for an indi­
vidual at higher risk of stroke than the average in this population. On the 
other hand, if the individual's risk is less than average withholding treatment 
would be preferred. 
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Note that we do not require an assumption that the new individual is a 
representative member of the trial patient population. It can be demonstrably 
untrue that a population of individuals similar on all measured prognostic risk 
factors to the control population of the clinical trial has the same event rates 
experienced in the trial. Some trials show a similar effect to the well-known 
'healthy worker effect1 in epidemiology. Accrual rates suggest trial partici­
pants are healthier than a comparable individual in the general population. 
In other trials, where treatment may carry severe side effects for uncertain 
benefit, entry to the trial may be highly selective toward those with poor 
prognosis. While our analysis does not assume event rates from the trials are 
indicative, an assumption of homogeneity in the risk reduction within a com­
parable trial group is required, i.e., the risk ratio (comparing treatment with 
control) for the new individual should remain unchanged from the risk ratio 
of a participant in the trial (or the risk ratio determined from meta-analysis 
of related trials). 

In many context there will be prognostic factors that adjust the absolute 
risk of an outcome, and therefore the appropriate decision. For example, in the 
treatment of stroke there are many other factors that play an important role 
in deciding the treatment, e.g. age. A number of drugs are known to interact 
with warfarin. There are also disease conditions where use of warfarin might 
prove harmful, e.g. liver disorders, vitamin K deficiency, thrombocythaemia. 
Clinical trials can generally provide prognostic indices which may be used to 
adjust baseline risk (as well as the estimates of relative effects). Prognos­
tic factors will not normally affect the essential methodology or vitiate the 
assumption made above. Analysis needs only uniformity (homogeneity) of 
treatment effect as provided in relative risks, relative hazards or risk ratios. 
That is, we require absence of effect modification in subgroups. Treatment 
decisions based on these estimates may be expected to apply well under con­
ditions for which warfarin therapy is considered good practice (e.g. those 
defining trial eligibility). 

If the assumption of homogeneity is unsatisfactory, the relative risk used 
in the decision analysis must be adjusted according to the subgroup of the 
new individual. 

The following section introduces a second example of a more complex 
decision analysis, and methodology that applies to health state progression. 

2 Management decisions in early breast cancer 

Consider now a management problem in the treatment of breast cancer. This 
decision analysis is not only important in its own right, e.g. Langlands (1983), 
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NIH Consensus (1983), but argues the importance to decision making of clin­
ical trials including data on quality of life and risk taking behaviour. 

Management of early breast cancer 
Women diagnosed with early breast cancer are entitled to choose between 

mastectomy and breast conservation if they wish to be involved in the man­
agement decision. 

Mastectomy (often referred to as total mastectomy) involves removal of all 
breast tissue and some of the breast skin carrying the nipple areola complex. 
At the same time and through the same incision the glands in the axilla are 
removed. At present, studies are in progress to try to determine whether it is 
necessary to remove the glands in every case. Women undergoing mastectomy 
will find an average of up to seven days in hospital, during which time the 
wound will require drainage. Once discharged a woman can expect to be back 
to more or less normal activity in 4-6 weeks. 

When the breast is conserved only the tumor with a small margin of 
normal tissue is removed through a small incision directly over the tumor. The 
main criterion for this procedure is that doctors agree that this excision will be 
possible and will leave a good cosmetic result. For the procedure to have the 
highest chance of success the pathologist must confirm that the excision has 
removed all the tumor with a (safety) margin of normal tissue. Occasionally 
it is necessary to undergo a second excision to obtain that margin. In breast 
conservation the remainder of the breast tissue has to be treated to equate 
with its removal in mastectomy. The remainder of the breast is treated by 
radiation. 

The course of radiation therapy following breast conservation usually 
takes 6-7 weeks. A daily visit to the hospital is required for scanning and 
treatment on 30-35 occasions. Treatment of the breast takes less than 15 
minutes and side-effects are non life-threatening. 

Follow-up of the conserved breast is done clinically and by mammography. 
Early detection of recurrence allows its treatment by mastectomy without 
survival being compromised. The risk of recurrence, leading to mastectomy is 
one case per hundred women per annum. This means that a woman choosing 
breast conservation has a 90% chance of avoiding mastectomy over the next 
ten years. 

Management decisions as to form of surgery will involve survival compar­
isons and further considerations summarised in Table 2. 

Once the breast has been treated, whether by mastectomy or conserva­
tion, a second treatment decision is necessary. That decision is based on the 
pathological examination of the breast tumor and the lymph glands from the 
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Table 2. Breast cancer management considerations in early stage disease 

Outcome Considerations 
Mastectomy Short overall treatment time 

No necessity for radiation unless stage 2 disease 
Body image and sexuality may be strong considerations 
Cosmetic result worse than for a conserved breast 

Conservation Body image and sexuality less adversely affected 
Longer overall treatment time and inconvenience 
Necessity for radiation therapy 
Necessity for regular mammographic checks for recurrence 
Occasional requirement for a second operation 

axilla. It is unaffected by the woman's choice of mastectomy or conservation. 
This second decision is whether further treatment by chemotherapy 

and/or hormone therapy is necessary. Where there is major involvement 
of the glands from the armpit additional radiation may be advised equally 
for mastectomy and breast conservation cases. See references contained in 
Jefford et al. (2001) and Shapiro and Recht (2001). 

Role of decision analysis in breast cancer management 
Informed decision making finds application in assisting clinicians to advise 

premenopausal women whose tumour offers the prospect of breast conserva­
tion on their decision as to treatment (Liberati, 1987). 

With treatment options as described above - mastectomy or breast con­
serving surgery - expected survival would appear to be very similar following 
breast conservation, though reduced by the small attendant risk of cancer re­
currence in the breast not being detected sufficiently early. Apart from this 
small risk, the comparison of benefits will depend on the risk of a second oper­
ation, and balance benefits in body image against duration and convenience of 
treatment as well. Note highly subjective attitudes, such as those to gambling 
and risk taking, will be significant. 

The second stage decision as to whether to initiate adjuvant chemotherapy 
and/or hormonal therapy requires knowledge of toxicity, disease free survival, 
relapse durations and quality of life. A well established natural history and 
clinical progression applies in breast cancer, following key events (nodal in­
volvement, tumour recurrence, etc.) in the disease process. See Carter et al. 
(1989), Koscielny et al. (1989). 

Data on which to base the decision analysis is available in a number of 
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current studies being conducted by ANZ BCTG and NHMRC Clinical Trials 
Centre examining (i) axillary nodes vs. sentinal node disection in surgery, 
(ii) conserving breast surgery with and without radiotherapy, or (iii) use of 
adjuvant chemotherapy [ANZ BCTG study 20]. When risk and quality of 
life data is supplemented by attitudinal (utility) data from each individual in 
trials, it is possible to value different outcomes, derive net clinical benefit using 
quality adjusted survival and other measures, and to evaluate the decision 
model formulation. 

Health state transitions 
A significant aspect of this decision problem is that it involves disease 

progression through a number of states. Methods for valuations of complex 
outcomes involving transitions between health states are reviewed next. 

3 Statistical Methods 

QALY and Q-TWiST When outcomes develop over time, a common ap­
proach to valuation requires specifying a health state process, where health 
states (such as TOX, TWiST and REL, referring to periods of toxicity from 
treatment, time without symptoms or toxicity, and period following relapse) 
may define distributions of durations in health states. These correspond to the 
absolute risks of the Warfarin example. Treatment effects will be summarised 
in hazard ratios for relative benefits or harms of treatments, corresponding to 
relative risks. 

The simple but effective statistical summary of Glasziou et al. (1990) 
known as quality adjusted life years (QALY) weighs years spent in different 
health states according to coefficients specifying relative quality of life for 
each state. For instance, in advanced breast cancer, ratings of outcomes 
such as pain, appetite, nausea and vomiting may contribute to assessing the 
quality of life coefficients for TOX and REL. It is conceptually and statistically 
convenient to calculate QALY from areas under survival curves with defined 
times from randomization, e.g. duration of toxicity, recurrence free survival, 
total survival. The method is easily adapted to censored survival data. It also 
provides a simple discounted analysis (see Eliciting Utilities), requiring only 
a corresponding transformation of the time axis. 

In the Q-TWiST analysis of Gelber et al (1995) an accelerated failure 
time model for state durations is used to generalise this approach. Accelerated 
failure time modelling permits inclusion of other covariate information, such 
as patient attributes, in survival models. An important difference between 
Q-TWiST and QALY analysis is the need, in Q-TWiST, to specify the dis-
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tribution (conditional on the sequence and durations of preceeding states) of 
the duration of each succeeding health state. In contrast, analysis of clinical 
trials data normally proceeds through modelling time from randomization to 
event. When censoring occurs the difference introduces new difficulties. 

Eliciting utilities involving valuing future events 
Valuations of relative quality expected in different health states are nec­

essary to the decision. After these weightings have been considered, there 
remains the need to assess risk taking attitudes affecting gambling. 

It is necessary for effective decision analysis that weightings elicited ac­
curately reflect the patient's response to outcomes they will experience in a 
health state and that these relativities remain unchanged over the history that 
follows treatment. Clinical trial data can be very effective here in letting us 
explore the relationship between initial and later weightings. 

Beyond the relative preferences for a progression of health states that 
may eventuate, a Q-TWiST or other analysis will need to elicit risk taking 
attributes of the individual and the discount that they apply to the future as 
against the present. 

There are significant issues (McNeil et al., 1982; Martin et al., 2000) in 
the phrasing and framing of questions used to elicit patient preferences. With 
care, preference data may be obtained in trials using appropriate instruments, 
e.g. Lumley et al. (2001), or even outside trials by examining alternative 
scenarios, e.g. McNeil et al. (1981). These methods assist in eliciting utilities 
attached by patients to states. This then provides the quality of life weightings 
for calculating benefits of alternative treatments. 

Monte-Carlo Evaluation of Utilities in Health States 
It is not always convenient, or appropriate, to apply QALY or Q-TWiST 

analyses. An important example not covered by such theory is one where 
the weights specifying quality of life valuations cannot be assumed constant 
throughout a health state. It is therefore useful to consider another general 
approach. 

We propose a methodology to evaluate the predictive distribution of the 
utility U(Y) specified in any model. The expected utility E(U) is obtained 
as the average valuation of repeated realizations of Y, whose components 
represent both survival durations and weights, from their joint distribution. In 
the simple case with fixed weights, the components of Y represent the history, 
a sequence of health states and corresponding survival durations. The joint 
distribution is adjusted for the individual's baseline risk (or the distribution 
of uncertainty about this). Individual weights and time varying weights can 
be included in each realized history and its valuation. 
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Besides the advantages of providing simulations of outcomes, the gen­
eral applicability will be helpful where analytic utility calculations are not 
available. The utility function is itself complex, a non-linear function of sur­
vival time and weights, and models involving correlation between survivals 
and weights are realistic. The Monte-Carlo substitution of an average for 
expected value is then useful. 

Simulating health state histories 
Consider a survival model with baseline hazard function, h(t;(3o), de­

pending on a parameter /3o, for time to some health state transition (out­
come). A relative hazard exp(/3i) adjusts this baseline in the treated group. 
More generally, when covariates, z, adjust baseline hazard, the Cox model, 
h(t; (3) = ho(t) exip((3Tz), appears suitable for many studies, or Accelerated 
Failure Time models may be considered. Estimates of relative hazards are 
commonly available in clinical trials. For simplicity of exposition we spec­
ify only two covariates: z\ an indicator of treatment and z^ a (trial derived) 
prognostic index (PI). The PI is used to predict the adjustment to relative 
hazard appropriate for known prognostic risk factors. 

The Monte-Carlo (MC) generation of a health state history we propose 
begins by fixing the baseline risk parameter /3Q, thereby specifying the hazard 
function h(t; 0o) for the population. Then: 

i. Sample the hazard ratios for treatment and for a unit change in prognostic 
index from a bivariate distribution specifying uncertainty in each effect. 
The adjusted hazard is then h(t;p0)exp(/3Tz), where z = (21,22) has 
components z\ indicating new, versus standard, treatment and Z2, the 
standardised prognostic index. 

ii. Sample a hazard ratio adjustment (such as for frailty) and adjustments 
to each coefficient of this hazard to provide the risk for the new individ­
ual. Coefficients are sampled from prespecified distributions. The hazard 
function for the sampled duration before outcome becomes 

h(t; fa) exp(pTz) exp(£0 + £Tz), 

where the three components of exp(£) allow for random effects intro­
ducing individual frailty: individual variation from baseline hazard; an 
individual adjustment to hazard ratio (otherwise uniform) applying with 
treatment; and, individual adjustment of the hazard associated with unit 
change in PI. 

iii. Simulate survival duration Y consistent with the hazard in [ii] for treat­
ment of interest z\ and the individual's PI, 22-



129 

iv. Adopt a model of observable QoL experience, W, (conditional on time to 
outcome, treatment group, PI and the utility parameters elicited from the 
individual for this health state). Using this model, generate a realization 
W of observable QoL and any other risk profile parameters required for 
valuation of the health state history. For the realization generated, a 
valuation U(Y, W) of the corresponding individual history Y may now be 
calculated. The utility calculated can either use the individual's elicited 
utility preferences or use values adjusted for changes over time in these 
preferences as occurs in trials data. 

Hence to estimate expected utility of survival in each health state, repeat­
ing this sequence we obtain a sample of outcomes Y, W (survival times and 
summaries of QoL experience). Then an overall valuation is provided by 

LJ2Ut^E{U(Y;W)}. 
t=\ 

The Monte-Carlo method first samples the health state realization, providing 
survival times for given health states, then the quality experience during each 
health state for that health state history. These stages utilise parameters (and 
their standard errors) established in clinical trials. The sampling also involves 
other parameters (3Q and those specifying the distribution of £, which cannot 
be established in the trials. These require pre-specified values or distribution 
(e.g. a betting odds distribution for this patient). 

Discussion 
This approach provides a framework for Monte Carlo computation of 

utility in health state modelling. Adaption may be necessary to capture all 
features of the application, particularly in the following areas: 

1. Multi-state modelling such as a semi-Markov process of health state tran­
sitions will be necessary to generate full histories. Then the subject's 
weights for each state's quality of life must be elicited. The expected val­
uation is the sum of increments valuing separate health state durations, 
so few additional difficulties are introduced. 

2. Uncertainty in utility and survival characteristics of the individual will 
affect both the utility function itself (e.g. risk parameters for the individ­
ual) and the expected utility calculation. For example, while it may be 
reasonable to set £i = £2 = 0, and E£0 = 0, the variability of individual 
relative hazard, exp(£0), requires specifying a variance ai . 
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3. While regression adjustment for covariates (e.g. using a PI) provides one 
method to place the new individual at an appropriate level of risk relative 
to a standard, another approach might define a window defining compa­
rable individuals from the trial. A /c-nearest-neighbour or classification 
method might then be considered. Corresponding sampled histories from 
matched individuals in the Clinical Trial database could simulate the fu­
ture experience of this new individual. 

4. Comparisons of utilities are required. The MC method will need to be 
conducted in a way suitable to determine the boundary of equal util­
ity (threshold analysis) in the parameter domain specifying utility and 
survival characteristics of the individual. 

4 Conclusion 

There are many questions raised by the structure of the modelling employed 
in this paper. It may serve to provoke other views. 

First there is the question of whether it is feasible to elicit reliable infor­
mation from patients capturing their valuation of health states yet to occur. 
If this is not possible it may still be helpful to those presenting options (e.g. 
clinicians) and to patients making the decision to present information not 
only on health state transitions and statistics but also on other patients' de­
cisions, experiences, valuations and the way these change over the course of 
treatment. Information on how decisions made may vary with other factors 
such as age of patient are also useful to consider. 

Certainly, it appears that information on a key question, 'What is my 
risk?' may not be presented to patients because of guidelines that emphasise 
evidence on relative risks. The question as to what reduction in survival would 
be sufficient to alter one's decision is also important. 

For further issues in the decision methodology itself the reader is referred 
to the Discussion of Cole et al. (1994). 

It is then interesting to consider whether trials or other protocols can 
provide representative decision making parameters for a general population. 
Trials admit patients under very specific entry criteria and patients attitude 
to risk may influence their availability to participate. When trials are not 
feasible, there is the option of decision analysis based on consumer research 
in the general population. Consumer research has determined very strong 
preferences in studies of community approval of renal transplants, for example. 
This approach may be criticised because of the lack of engagement with the 
medical condition among those participating. 
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Decision aids developed may provide clinicians with tools to chart the ex­
pected benefits of proposed treatments involving a number of uncertain stages 
of treatment. An effective follow up would provide the patient with material 
providing scenarios about the future course of the illness. Clinician and pa­
tient might use such scenarios to adjudge the uncertainties involved and the 
competing benefits and risks. This approach may not require explicit individ­
ual valuation of the various scenarios presented, but introduce the pertinent 
information. 

Clinicians may also require education in presentation of treatment options 
so as not to bias valid treatment options, nor to recommend decisions through 
guidelines merely used as a recipe. Appropriate training would emphasise how 
to take account of information rather than prescribing the option to be taken. 
Presentation of tradeoffs in risks and benefits is an important component in 
such education. 

We have introduced a strategy using clinical histories from patients suf­
fering from an identified disease condition to judge the outcome for a a new 
patient who might suffer from a similar disease condition. The effectiveness 
of such an approach needs study. While our procedure offers the prospect to 
adjudge (and maybe quantify) overall quality of life for a patient after a par­
ticular disease treatment, the process has not yet been tested to understand 
its feasibility and practicability. Such testing is an ongoing project being 
strongly pursued within our group. Research is needed in this area to provide 
decision models for specific treatment management issues and contexts, where 
survival outcomes and quality of life valuations are available; determine what 
information is practical to collect and what is necessary; model observed util­
ity data gathered in clinical trials; and, test such models in new cohorts of 
patients. 
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Moberg, et al. (1980) adaptive M-estimation procedure depends heavily on the 
measures of skewness and kurtosis. The sensitivity of Moberg et al. procedure 
to the skewness measure was shown using a particular bimodal distribution for 
errors in linear regression. Properties of this particular distribution have been 
exploited and investigated; for this type of errors distribution we developed an 
alternative procedure for choosing the appropriate classification function. Results 
and performance of the procedure are presented via simulation. 

Keywords: bimodal distribution, linear regression, adaptive M-estimator, skewness. 

1 In t roduc t ion 

The multiple linear regression problem assumes a model of the form; 

Y = XB + e (1) 

where Y is an n x 1 vector of random variables, X an n x k matrix of known 
constants Xij, B is a k x 1 vector of unknown parameters which are to be 
estimated, and e is n x 1 vector of independently and identically distributed 
random errors. M-estimation method is one of the robust methods that can 
provide ample protection from the influence of outlying observations. To apply 
M-estimation to the regression case, for any estimates 6, denote the residual 
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values by 

k 

ri(b)=Yi-YlXijbj, t = l ,2 , . . . ,n , (2) 
J = I 

and the M-estimates of (3 are defined to be the solutions of the following k 
equations; 

E^r)*« = 0' i = i ,2, ...,fc, (3) 

where ip is one of the appropriate functions (see Andrews et al. 1974), that 
could be chosen depending on the data's distribution, s(b) is the scale estimate 
that could be determined simultaneously with b. 

Adaptive M-estimation procedures have been suggested by many authors 
such as Kelly (1992 and 1996), Maronna and Yohai (1981), Crisp and Bur-
ridge (1993), Hennig (1995), Yang and Van Ness (1995), Kent and Tyler 
(1996), Barnett and Lewis (1994), and Mckean, et al. (1993). Most of these 
papers focused on the determination and limitation of some special form of 
ip function, while others discussed the uniqueness and robustness of the esti­
mators. In this paper we will concentrate on Moberg et al. (1980) adaptive 
M-estimators procedure suggested for selecting the ip function depending on 
the measures of skewness and Kurtosis of the errors distribution rather than 
the true data distribution. 

Certainly, Moberg et al. classification was suitable for unimodal where 
the selection of ip function depends on the degree of skewness of the errors 
distribution. Jajo and Hussain (1989) intuitively speculated the use of a 
reverse scheme of Moberg et al. (1980) classification in the case of bimodal 
distribution which we believed it needed more study, attention and validation. 

To explore the problem more precisely we will use a common bimodal dis­
tribution (Slippage model) for errors. In Section 2, the properties of bimodal 
distribution are given, and the sensitivity of the Moberg et al. (1980) ap­
proach to skewness measure is shown. In Section 3, the proposed alternative 
Moberg et al. classification is presented. Section 4 contains the simulation 
technique that illustrates the robustness of this rule. Conclusions will be given 
in Section 5. 

2 Bimodal distributions 

To illustrate our alternative procedure let us consider a simple linear regres­
sion, this procedure can be extended to multiple linear regression in a standard 
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way. Let 

Yi=pQ+p1Xi + ei i = 1,2, ...,n, (4) 

be a simple linear regression model with e, as iid random errors having dis­
tribution JV(0,1) with probability P and N(k, 1) with probability (1 - P) , 
where 0.5 < P < 1 and k ^ 0. The pdf of e is given by 

m = i P e x p ( - ^ ) + ( l - P ) e x p ' (£ k) 
(5) 

(a) k=9,1-p=0.05. sk=2.92 (b) k=9,1-p=0.10, sk=2.20 (c) k=9,1-p=0.15, sk=1.71 

0 5 10 15 0 5 10 15 

(d) k-9,1-p=0.20, sk=1.34 (e) k=9,1 -p=0.30, sk=0.80 (f) k=9,1-p=0.40, sk=0.38 

0 5 10 15 0 5 10 15 

Figure 1. The relationship between skewness and tailweight 

Figure 1 provides some pdf of e for various P values of the tailweight. 
The moment generating function for e can be found as 

Mc(t) = Pexp ( M + (1 - P) exp (kt+t-). (6) 

Proposition 1: For e as defined in (2.5), 

1. Ee = (l- P)k; 
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2. Ee2 = (1 - P)k2 + 1; 

3. Ee3 = fc(l-P)(fc2 + 3). 

This proposition can be proved as Eer = ^ ( M e ( 0 ) ) r = M( r )(0), where 
r - 1,2 and 3. 
Proposition 2: For e as denned in (2.5), with n2 = E(e - Ee)2 and ^3 = 
E(e - Ee)3, 

1. /x2 - Pk2(l -P) + l; 

2. M3 = Pfc3(l-P)(2P-l). 

Using M2 = £(e - Ee)2 = Ee2 - (£e)2 , / i3 = E{e - Ee)3 = Ee3 - ZEeEe2 + 
2(Ee)3 and Proposition 1, we can easily prove this proposition. 
Using Proposition 2 we can conclude that the common skewness measure of 
the pretense distribution is: 

fr= ^ ^Ffc3(l-P)(2P-l) 

M2/2 ( P f c 2 ( 1 " P ) + 1 ) 3 / 2 

For P > 0.5 and k > 0 the distribution of e in (2.4) is skewed to the right. 
Moberg et al, (1978 and 1980) suggested adaptive procedures, see section 

3, based on the estimates or the empirical measures of the third and forth 
moments of the data, Q3 and Q4 defined below. These measures were used to 
select one of the five classification functions(V')for the M-estimation procedure. 
Qz and Q4 are also a traditional estimators for skewness and tailweight of the 
data. 

_ 0(0.05) - M(.5) _ #(.05) - £(.05) 
Q3~ M( .5) -L( .05) ; t7( .5)-Z(.5) ' 

where £(7), M(7) and U("i) are the arithmetic means of the smallest, middle 
and largest N~j of the ordered residuals z\, Z2, ... ,.2/v obtained from (1.2) 
with k — 1 zero residuals deleted and Â  = n - f c + l i s the number of these 
ordered residuals. 

In bimodal distribution, the case we are concerned with, the commonly 
used skewness measure sk is a misleading and improper measure as it decreases 
in value when the area of the tail (1 - P) increases. For example, for k = 9 
and a = 1, when 1 — P increases from 0.05 to 0.40, sk decreases from 2.92 
to 0.38 (see Figure 1). Clearly sk, and therefore its empirical measure (Q3), 
used by Moberg et al. (1980) approach for choosing ip function is critical and 
not suitable for the bimodal case. 
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In the above situation the skewness measure need to be based on the 
number of outliers and their distance from the main body of the data, i.e. 
the values of P and k in e's distribution. So, we suggest that Q3 should be 
replaced by an alternative measure of skewness as in the following form 

ALQ3 = Cnak(l - P), 

where C = 1 and 0 < a < 0.5 (a = 0.45 is usually recommended). 
The usefulness and efficient performance of the alternative measure of 

skewness ALQ3 compared to Q3 was clearly noticeable in our example in 
section 4. 

3 Alternative regression procedure 

The procedure we use depends on examining the residuals by calculating their 
Qi and ALQ3 and identifying the position of (Q4, ALQ3) point on a parti­
tioned positive quarter of Q4-ALQ3 plane to determine which t/j function 
should be selected. Figure 2 is a partitioned quarter for classification when 
n = 10 and 20. It is quite similar for a general n. 

Our classification scheme can be described by the five lines that divides 
the positive quarter of Q4-ALQ3 plane into five areas. These lines, shown 
below, are similar to those given by Moberg et al. (1978 and 1980) with some 
modifications. 
LI: Q 4 = 5.46 - (21.6/N) - (1.7 - 9/N)^LQ3 

L2: Q4= 2.09 - 2/N 
L3: Q4= 3.09 - 9/N 
L4: Q4= (0.75 - 1/N)ALQ3 + (1.65 - 2/N) 
L5: Q4= (0.5 - 1/N)ALQ3 + (1.25 - 1/N). 
The selection of the ip function is determined by the area where the point 
(Q4, ALQ3) is located among the five areas (shown in Figure 2). Specifically 
if the point (Q4, ALQ3) is in: 
Area I, choose class 1 
Area II, choose class 2 
Area III, choose class 3 
Area IV, choose class 4: 
Area V, choose class 5 

ip(u) = 3. 

tp(u) = u; 
T/>(U) = 2 .25U/(U 2 + 0 .5S 2 ) ; 

ip{u) = 5.1«/[(« + 0.74s)2 + 0.87s2]; 
tl>(u) = 3.3u/[(u - 0.54s)2 + 0.23s2]. 

Classes 1 and 2 corresponds to symmetric distributions while classes 3, 4 and 
5 are for distributions with light, moderate and heavy skewness respectively. 
The proposed scale estimate is s = [F^x(.75) - F^1(.25)]/1.35, where FN 

is the empirical cdf based on the ordered residuals, s can also be computed 
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using the interquartile range (IQR) as mentioned in Swallow and Kianifard 
(1996). 

The effectiveness of our adaptive rule is that we can select a suitable tp(-) 
for either case of bimodal or unimodal distribution without having to know the 
true distribution of the data. We also found that the larger the sample size, 
the better the performance of our suggested adaptive procedure. Simulation 
example in the following section demonstrates the excellent performance of 
our technique. 

4 Simulation example 

Based on the model Yt = 2+Xi+e.u z = 1,2,..., n, 100 samples of n = 10 and 20 
observations were generated by simulation. The values of x's are fixed for each 
sample which is generated from uniform [7(1, n + 10) while e's are generated 
from iV(0,1) distribution with probability P and N(k, 1) distribution , k ^ 0, 
with probability (1 — P). 

Classification partition: n=10 Classification partition: n=20 

0 1 2 3 4 0 1 2 3 4 

Q4 Q4 

Figure 2. Classification scheme 

Table 1 gives the relative sum of squares for errors for each of the 100 
simulations when n = 10 and 20 with k=9 and 15 and various values of P. 
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Table 1. The efficiency and statistical measures for different criteria 

n 

10 

20 

k 

9 

15 

9 

15 

P 

0.9 
0.8 
0.7 
0.9 
0.8 
0.7 

0.95 
0.90 
0.85 
0.95 
0.90 
0.85 

Efficiency 

c3 
Po 

1.95 
1.24 
1.05 
2.06 
1.37 
1.09 
9.29 
27.8 
7.18 
3.68 
9.82 
5.80 

0i 
2.21 
1.45 
1.10 
2.67 
1.75 
1.20 
8.96 
19.3 
7.33 
3.52 
7.01 
4.78 

Gi 

00 
2.41 
1.66 
1.40 
2.46 
1.56 
1.28 
6.29 
19.5 
7.61 
2.51 
7.44 
6.05 

0i 
2.48 
1.92 
1.43 
3.15 
2.00 
1.38 
11.9 
21.7 
8.20 
4.66 
8.15 
5.64 

c5 
0o 

2.82 
2.02 
1.74 
2.82 
1.76 
1.47 
3.55 
10.5 
7.11 
1.41 
4.04 
4.79 

0i 
2.72 
2.18 
1.67 
3.58 
2.26 
1.55 
9.30 
17.5 
8.69 
3.65 
6.67 
5.80 

Measures 
Qi 

3.83 
2.37 
1.67 
4.18 
2.41 
1.72 
6.01 
4.06 
3.04 
6.99 
4.35 
2.77 

Q3 

5.15 
5.15 
8.13 
8.63 
8.56 
13.6 
4.91 
4.79 
4.61 
7.59 
7.93 
7.66 

ALQ3 

2.53 
5.07 
7.60 
4.22 
8.45 
12.7 
1.73 
3.46 
5.19 
2.88 
5.77 
8.66 

n 

10 

20 

k 

9 

15 

9 

15 

P 

0.9 
0.8 
0.7 
0.9 
0.8 
0.7 

0.95 
0.90 
0.85 
0.95 
0.90 
0.85 

Selecting criteria 
DR 

ALQ3 

3 
5 
5 
4 
5 
5 
3 
4 
5 
3 
4 
5 

DR 

4 
5 
5 
5 
5 
5 
3 
4 
4 
3 
5 
5 

MC 

3 
3 
1 
3 
3 
1 
3 
3 
3 
3 
3 
3 

Class of 
high effi. 
00 
5 
5 
5 
5 
5 
5 
3 
3 
4 
3 
3 
4 

0i 
5 
5 
5 
5 
5 
5 
4 
4 
5 
4 
4 
5 

The efficiency of /?o and Pi are defined respectively by 

ESC&-2)' E^C^-i) 2 ' 
where 0Q and 0\ are the ordinary least squares estimates of /?o and 0\ respec­
tively, while /?o and (3\ are the estimates of the same parameters obtained by 
using Moberg et al. (1980) adaptive M-estimation method. Since the model 
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we used is not symmetric and it is skewed to the right, so the procedure 
should concentrate on one of the classes 3, 4 or 5. The results are given in 
Table 1 under the efficiency columns C3, C4 and C5. To obtain the adaptive 
M-estimations, we need to solve the equations in (1.3) iteratively. Gaussian-
Newton iterative method (Agee and Turner, 1979) was applied using Theil 
estimates for n — 10 and Modified Kilda for n — 20 as suggested starting 
values for (30 and ft (Hussain and Sprent 1983). 

The chosen class of ip function is usually determined by the highest ef­
ficiency of the parameter estimates. For example, the highest values of the 
estimated efficiency in the presence of one outlier when n = 10, k = 9 and 
P = 0.9 are 2.82 and 2.72 for estimating /30 and ft respectively. These two 
values are shown in the efficiency column C5 of Table 1, hence class 5 is clas­
sified as being of high efficiency, and recorded in the last column of Table 1 
as a selected class of high efficiency for that particular case. 
Table 1 summarizes the information of the simulation study for different n, 
k, and P. It also gives the statistical measures Q4, Q3 and ALQ3 and their 
determined class, which are based on the location of the points (Q4, ALQ3) 
and (Q4,Qs) on their respective planes as shown in Figure 2. 
The following key words were used in Table 1 to refer to different selecting 
criteria: 

DR(Q4,ALQ3) = Dropping the points (Q^ALQs) on Q4-ALQ3 plane. 

DR(Q4 ,Q3) = Dropping the points (Q4,Qs) on Q4-Q3 plane. 

MC = Moberg et al. (1980) criteria. 
To compare these criteria we present the following bar plots (Figure 3) 

showing the probability of success for each procedure with different number 
of outliers. 

Th b KVt [ •*•' ^ * n e n ^ n e m c i e n c y c l a s s is t n e chosen one; 
= { 0.33, if the chosen class is either 3, 4, or 5; of success I „ , ' ' ' 

^ U, otherwise. 

From Table 1 and Figure 3 we notice that for both n=10 and n=20 with 
various values of k and P, the suggested measure ALQ3 has always the highest 
probability of success while using MC has the lowest, especially as P decreases. 
When P =0.7 the probability of success is zero and there are no observations 
in the bar plot. This example demonstrates the adequacy and superiority of 
ALQ3 over the MC method of using Q3, it also shows the accuracy obtained 
by dropping the points on Q4 - Q3 plane rather than using Moberg et al. 
(1980) inequalities. 
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1 

0.8 

J : 
0.2 

0 

• DRALQ3 

• DRQ3 

BMC 

NO. of outliers 

Probability of Success, r<=10 S k=9 

1 2 3 

No. of outliers 

Probability of Succes, n=20 & k=9 

1 
0.8 

= 
0.2 

0 

• DRALQ3 
ODRQ3 

1 2 3 
No. of outliers 

Probability of Success, n=10 & K=15 

Probability of Succes, n=20 & k=15 

Figure 3. Plots of the probability of success. Note: 1, 2 and 3 (on the x-axis) indicates the 
number of the outliers determined by using the corresponding P values. 

5 Conclusion 

The principle aim of this work was to devise an adaptive regression estimation 
procedure for bimodal distributions. The adaptive procedure described is 
competitive with other robust procedures given in the literature and it is 
superior when the underlying distribution is bimodal. As mentioned in Section 
2 the results in the previous section can be extended to a more general form 
of linear models in which same results and conclusions can be obtained. 
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In epidemiological studies, observed data are often collected subject to misclassi­
fication errors. In this paper, we discuss the Bayesian estimation for contingency 
tables with misclassification errors. Employing the exact Bayesian computations to 
obtain posterior means as estimates, we are faced with computational difficulties. 
In order to find the posterior distribution, we apply the data augmentation(DA) 
algorithm to misclassified categorical data. 

K e y w o r d s : Bayesian estimation, contingency table, data augmentation algorithm, mis­
classification, posterior means. 

1 Introduction 

In epidemiological studies, observed data are often collected subject to mis­
classification errors. Such misclassification errors cause bias of estimation 
and reduce efficiency in the analysis of contingency tables. Many investiga­
tors have discussed how to adjust for the effects of misclassification, see, for 
example, the review papers Chen (1989) and Walter and Irwig (1987). Es­
peland and Odoroff (1985) discussed the maximum likelihood estimation for 
a recursive system of log-linear models based on double sampling schemes 
by the EM algorithm. Espeland and Hui (1987) applied the Fisher scoring 
algorithm to evaluate variances and covariances of estimates. 

From the Bayesian viewpoint, Geng and Asano (1989) considered estima­
tion methods for misclassified categorical data making use of prior informa­
tion and double sampling schemes, and obtained posterior means as estimates. 
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Viana (1994) applied Bayesian computations based on the matrix of misclas-
sification probabilities to small-sample multinomial data. Evans et al (1996) 
discussed the implementation of the Gauss- Jacobi quadrature and the Gibbs 
sampling algorithm for the posterior analysis of binary response data with 
misclassification. 

In this paper, we present a Bayesian approach that utilizes prior knowl­
edge about misclassification and incorporates this prior knowledge with obser­
vations subject to misclassification. Although the EM algorithm or the Fisher 
scoring algorithm are often applied to estimating model parameters, these al­
gorithms can not evaluate posterior distributions on the model parameters. 
Furthermore, these algorithms do not apply to our estimation problem because 
of the unidentifiability of the model parameters. However, our Bayesian ap­
proach, assuming a prior distribution on the model parameters, can overcome 
these problems. In order to find the posterior distribution of model param­
eters and calculate posterior means as estimates of them, we use the data 
augmentation(DA) algorithm of Tanner and Wong (1987). 

In Section 2, we discuss the Bayesian computation to find a posterior 
distribution given misclassified observed data. In Section 3, we give the DA 
algorithm to approximate the posterior distribution, because of difficulties 
with the calculation of the posterior distribution. Section 4 presents two 
numerical experiments to examine the performance of the DA algorithm. 

2 Misclassified observed data and Bayesian computation 

Let X and Y be categorical variables having / and J categories, respectively, 
and let Y' be a misclassified variable of Y having K categories. We assume 
that two types of misclassified data are observed: (i) data for X and Y', 
denoted as n = {rij+fc | i G {1, . . . , /} ,& G { 1 , . . . ,K}}, and (ii) data for 
Y and Y', denoted as m = {m+jk \ j G { 1 , . . . , J}, k G { 1 , . . . , K}}, where 
the symbol "+" means the sum over corresponding variables, for example, 
"i+fc = Jljnijk- Let pijk denote a probability for (X,Y,Yf) — (i,j,k) and 
OXYY' = {Pijk I i £ { 1 , . . . , / } , j G { 1 , . . . , J},k G {l,...,K}} denote a set of 
probabilities. 

In this paper, the goal is to find the posterior distribution of model pa­
rameters OXY = {Pij+ | i € { 1 , . . . , / } , j G { 1 , . . . , J}} which are the marginal 
probabilities of X and Y, and obtain the posterior means of OXY as estimates. 

Assume that n and m have independently multinomial distributions with 
parameters 9XY> = {Pi+k | i G { 1 , . . . , / } , A; G { 1 , . . . , K}} and 6YY' = {p+jk | 
j G { 1 , . . . , J}, k G { 1 , . . . , K}}, respectively, that is, 
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*"' - ' = r t t "fir, /<-1 ̂ ) = n ^ b n-» "•(') 
and that the prior distribution of OXYV is a Dirichlet distribution which has 
the density function 

la I 'i r [ Q : + + + ] T T "i j-fc-l / 9 N 

. ( ^ l a m O ^ ^ p ^ j l l ^ • (2) 

where a ^ y y = {aijfc | t G { 1 , . . . , / } , j G {1, • • •, J}, k G { 1 , . . . , K}} is a set 
of hyper-parameters of the prior distribution of OXYY'-

From the equations (1) and (2), we obtain the mixture posterior distri­
bution given n and m. The posterior density is given by 

•K{0XYY' I n, m) 

oc f(n | 9XY>)f(m \ Oyy.) n(6XYY> I *XYY>) = YIPT+V Rp^t U $£"' 
i,k j,k i,j,k 

- n {n j : T $ & n j : ^ « - — » - } . <*> 
fe ^ i n ( n ) •'••'•J J J Q(m) - 1 " ^ J 

where ^2Q,n\ denotes the sum over all possible {hijk} under the conditions 
fiijk > 0 for all i, j and k, and ^ . n ^ = nj+fc, and JZnfm) denotes the sum 
over all possible {rhijk} under the conditions m ^ > 0 for all i, j and k, and 
E i ^ j f c =m+jk-

However, the posterior density (3) is a very complicated function. It is 
extremely difficult to calculate exactly the posterior distribution and these 
calculation may take a long time when the observed data set is moderately 
large. 

For cases where the incomplete-data posterior density is as complicated 
as equation (3) and the complete-data posterior density is relative easy to 
handle and draw from, the DA algorithm is very suitable. 

In the next section, we present the DA algorithm to approximate the 
posterior distribution and estimate posterior means of model parameters &XY-

3 D A algorithm for misclassified data 

The DA algorithm consists of iterating between the imputation-step and the 
posterior-step. 
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For this misclassified multinomial model, the DA algorithm is given by 
the following iterative scheme: 

Imputation-step: Repeat the following two steps for I = 1 , . . . , L to obtain 
the imputed data of n and m such as n = {n^k \ i € {1, • • •, I}, j £ 
{l,...,J},k G {l,---,K},Y,jnijk = ni+k} and rh = {mijk \ i G 
{ 1 , . . . , I},j € { 1 , . . . , J}, k G { 1 , . . . , K}, £ \ rhijk = m+jk}-

1. Generate cell probabilities {p*jk} from the current estimate of the 
posterior distribution, 

2. Generate the imputed data n ^ and # from the predictive distri­
butions which have the conditional multinomial distributions, given 
n and m, with densities 

f(n\{ph^) = Ur^IlpTi?> 
iik lljn^k- ijk 

/(™i{p^}.™)=nTT^Tn^r. 

W h e r e Pj)i,k = P*ijk/Pi+k a n d Pi\j,k = P*ijk/P*+jk-

Posterior-step: Update the current approximation of the posterior distribu­
tion of OXYY'I given these imputed data n'1 ' and fhSl\ for I = 1,... ,L, 
by the Monte Carlo method, 

1 L 

ir(6XYY' \n,m) = J^2TT(0XYY' | n ( i ) ,m ( i ) ) . 
( = 1 

Until the approximated distribution converges to a stationary distribu­
tion, the imputation-step and the posterior-step are iterated. 

In obtaining a stationary distribution, the values of L may be increased 
to improve the accuracy with respect to the Monte Carlo method. 

We can then find the posterior distribution of 6XY and easily obtain their 
posterior means and variances. Furthermore, it is possible to calculate the 
highest posterior density(HPD) region that is the Bayesian analogue of the 
confidence intervals. 

4 Numerical experiments 

We provide two numerical experiments to examine the performance of the DA 
algorithm described in the previous section. 



147 

Comparison of estimates and exact values 

In the following numerical experiment, we compare the estimates obtained 
by the DA algorithm with the posterior means using the exact Bayesian cal­
culation given by Geng and Asano (1987) regarding the data from Diamond 
and Lilienfeld (1962). Their data reported a case-control study concerning 
the circumcision status of male partners of woman with and without cervical 
cancer. 

The study sample was categorized by cervical cancer status, X (Case and 
Control), and self-reported circumcision status, Y' (Yes or No), in the left 
side of Table 1. 

In order to gain the information on the degree of misclassification of cir­
cumcision status, the supplemental sample concerning the relationship be­
tween actual circumcision status, Y (Yes or No), and Y' was gathered from 
the separate population shown by in the center of Table 1. 

Espeland and Hui (1987) described that, for the misclassified multinomial 
model, the conditional independence model between X and Y given Y' from 
the class of hierarchical log-linear models was appropriate, since no observed 
data for X, Y and Y' were obtained. 

Furthermore, for the conditional independence model, Geng and Asano 
(1989) gave the hypothetical prior information shown in the right side of Table 
1. 

Table 1. Data from Diamond and Lilienfeld (1962) and hypothetical prior information 
aXYY> 

Y' 

Yes 

No 

Y 

Yes 
No 
Yes 

No 

Study Sample 

Case 

5 

95 

X 
Control 

14 

86 

Supple. Sample 
X 

Unknown 
37 

19 
47 

89 

Hypothetical prior 

Case 
80 

20 
40 

10 

X 
Control 

10 

40 
20 

80 

We use their prior information as hyper-parameters ctxYY' = {aijk | 
i € {Case, Control}, j £ {Yes, No}, A; G {Yes, No}} and then obtain a pos­
terior distribution and estimates of &XY — {Pij+ I i £ {Case, Control}, j € 
{Yes, No}} for X and Y by posterior means. 

In this numerical experiment, we evaluate the accuracy of the estimates 
using the DA algorithm in comparison with the exact posterior means given 
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by Geng and Asano (1989). Table 2 shows the exact values, and the posterior 
means, the standard deviations(SDs) and the posterior 95 % credible inter-
vals(CIs) of 0XY obtained from simulated 10,000 samples after a burn-in of 
1,000 samples. It can be seen that the estimates have approximately three-
digit accuracy for the exact values. From the numerical results, we can see 
that the DA algorithm works quite well in estimating the posterior means. 

Table 2. Posterior means and SDs and 95% CIs using the DA algorithm and the exact 
posterior means given by Geng and Asano(1989) 

X 

Case 

Control 

Y 

Yes 
No 
Yes 
No 

Exact Bayes 
Posterior means 

0.3794 
0.1116 
0.0921 
0.4169 

DA 
Posterior means 

± S D 
0.3786 ± 0.0127 
0.1134 ± 0.0159 
0.0927 ± 0.0107 
0.4152 ± 0.0113 

CI 
(lower-upper) 

0.3512 - 0.4017 
0.0838 - 0.1460 
0.0737 - 0.1142 
0.3916 - 0.4364 

Performance of the DA algorithm 

In this experiment, we examined the performance of the DA algorithm 
in comparison with the EM algorithm and the Fisher scoring algorithm. We 
apply the DA algorithm to the double sampling data from Hochberg (1977). 
The data were the highway safety research data relating the seat-belt usages to 
driver injuries. The main sample was of 80,084 accidents that were recorded 
by police subject to misclassification errors. The subsample was of 1,796 
accidents that were recorded by both imprecise police reports and precise 
hospital interviews. Then, by the double sampling design, the subsample was 
randomly selected from the main sample. Thus, the subsample and the main 
sample have independent and identical distributions. 

The main sample and the subsample in Table 3 were categorized by four 
variables X, X', Y and Y', where X and Y denote precise personal survey for 
seat-belt usages and driver injuries, and X' and Y' denote imprecise police 
reports for them. 

In this experiment, we estimated model parameters under the saturated 
multinomial model, because our purpose is to investigate whether the DA 
algorithm is applicable to estimate model parameters, but not to analyze the 
misclassified observed data. 

For these data we assume that the main sample data and the subsample 
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data have independent and identical multinomial distributions with 

OXX'YV = {Pijki | i G {Yes, No}, j G {Yes, No}, 

fee {Yes, No},Z€{Yes, No}}, 

where ptjki = Pr(X = i, X' = j,Y = k,Y' = I) and the prior distribution 
for Oxx'YY' has the Dirichlet distribution with hyper-parameters OLXX'YY' = 
{aijM | i G {Yes, No}, j € {Yes, No}, k G {Yes, No},/ G {Yes, No}}. 

Then the model parameters are marginal probabilities of X and Y, 

OXY = {Pi+k+ I i G {Yes, No}, k G {Yes, No}}, 

where Pi+k+ = ^2-jiPijk- We utilize the subsample in Table 3 as hyper-
parameters axx'YY' and obtain estimates of 9XY by the DA algorithm. Table 
4 shows the estimates and the SDs of 9XY obtained by the DA algorithm, the 
exact Bayesian calculation, the Fisher scoring algorithm and the EM algo­
rithm. 

Table 3. Data of highway safety research (Hochberg, 1977) 

Y' 

Yes 

No 

Y 
Yes 

No 
Yes 

No 

A' 
Main 

' = Yes 

1196 

7151 

Sample 
X' = No 

13562 

58175 

X 
X' = 

= Yes 
17 

3 
16 

100 

= Yes 
X 

Subsamp 

= No 
3 

4 
3 

13 

X 

le 
X ' = 

= Yes 
10 

4 
25 

107 

No 
X = No 

258 

25 
194 

1014 

Table 4. Estimates and their SDs of OXY 

X 

Yes 

No 

Y 

Yes 
No 
Yes 
No 

Exact Bayes 
Posterior means 

± SD 
0.0397 ± 0.0043 
0.1293 ± 0.0065 
0.2558 ± 0.0079 
0.5752 ± 0.0093 

DA 
Posterior means 

± SD 
0.0389 ± 0.0041 
0.1311 ± 0.0073 
0.2577 ± 0.0078 
0.5722 ± 0.0092 

Fisher scoring 
Estimates 

± S D 
0.0394 ± 0.0045 
0.1190 ± 0.0076 
0.2563 ± 0.0103 
0.5870 ± 0.0116 

EM 

0.0394 
0.1294 
0.2559 
0.5752 

The estimates using the DA algorithm can be found from simulated sam­
ples 100,000 after a burn-in samples 10,000 in two chains. The exact values 
of estimates of OXY using the Bayesian calculation are given by Geng and 
Asano (1989) who assumed the Jeffreys noninformative prior. The estimation 
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using the Fisher scoring algorithm were carried out with HEM developed by 
Vermunt (1997). 

From these numerical results, it can be seen tha t the DA algorithm has 
the equivalent performance of the EM and the Fisher scoring algorithm in 
comparison with these estimates and SDs. 

The E M and the Fisher scoring algorithms have disadvantages such tha t 
it is impossible to find the posterior distribution of model parameters, these 
algorithms may not be applied owing to unidentifiability of the model, and 
it may be difficult to calculate the Fisher information matrix needed in the 
Fisher scoring algorithm. 

5 C o n c l u d i n g remarks 

In this paper, we discussed the DA algorithm to estimate model parameters 
for misclassified categorical data . We gave the posterior distribution by exact 
Bayesian computation. To avoid complicated calculation, we used the DA 
algorithm and find the posterior distribution. It is easily seen tha t the DA 
algorithm is the iterative simulation version of the EM algorithm in which the 
imputat ion-step corresponds to the E-step and the posterior-step corresponds 
to the M-step. 

In order to explore the possibility of parameter estimation by the DA 
algorithm, we provided two numerical experiments. In the first experiment, 
we evaluated accuracy of estimates in comparison with exact values. In the 
second experiment, we examined the performance of the DA algorithm. The 
results of both numerical experiments showed the advantage of applying the 
DA algorithm in terms of accuracy of estimates and in terms of algorithm 
simplicity to find the posterior distribution. 

For the inference of multidimensional contingency tables, the Bayesian in­
ference by the DA algorithm can be easily extended and also widely utilized. 
Then we may need to take account of conditional independence between vari­
ables in the models. For parameters assuming the conditional independence 
model, a prior Dirichlet distribution that has hyper Markov laws by Dawid 
and Lauritzen (1993) is very suitable. A future problem is how to incorpo­
rate prior information with the hyper-parameters of a hyper Dirichlet prior 
distribution without consistency. 
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The aim of this paper is to establish the well-posedness of the global solution of 
an initial value problem for the damped Boussinesq equation 

uu — 2butxx ~ -otuXxxx +uxx + P(f(u))xx, 

where x £ (—oo, oo), t > 0, a and b are positive constants, /? is a real constant and 
/ G C°°. For the case a > b2, our result reduces to the well-posedness theorem 
obtained by Varlamov (1996). 

K e y w o r d s : Boussinesq equation, initial value problem, global solution, existence. 

1 In t roduct ion 

In the 1870's, Boussinesq derived various equations for modelling propagation 
of long waves with small amplitude on the surface of water. These equations 
were found to possess solutions of traveling waves known as solitary waves. 
Boussinesq also gave a scientific explanation on the existence of the waves, 
and proposed to use the so-called Lyapunov function to describe the stability 
of the waves. 

The classical Boussinesq equation can be written as 

Utt = -<XUxxxx + Uxx + /3(u2)xx, (1) 

where u(x, t) is the elevation of the free surface of fluid, the subscripts denote 
partial derivatives, and the constant coefficients a and /3 depend on the depth 
of fluid and the characteristic speed of the long waves. Some interesting 
comments on the history of the derivatives of (1) can be found in the review 
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articles Miles (1980) and Milewski and Keller (1996). Various versions of 
the Boussinesq equation discussed in the literature can be obtained in the 
way similar to that proposed in Milewski and Keller (1996). They all possess 
one common characteristics, namely, they are perturbations of the linear wave 
equation that take into account the effects of small nonlinearity and dispersion. 

Various generations of the classical Boussinesq equation have been studied 
in various aspects, such as the well-posedness of the Cauchy problem for the 
following equation 

utt ~ ~uxxxx + uxx + \f\u))xx- (2) 

In Tsutsumi and Matahashi (1991), the local and global well-posedness has 
been proved by firstly transforming the problem into a system of nonlinear 
Schrodinger equations. In Bona and Sachs (1988), it has been established that 
the special solitary wave solutions of (2) are nonlinearly stable for a range of 
wave speeds. The authors also drew a conclusion that the initial data lying 
relatively close to a stable solitary wave evolves into a global solution of the 
equation. This contrasts with the blow-up results obtained in Kalantarov 
and Ladyzhenskaya (1978) and Levine and Sleeman (1985), which show that 
certain solutions of the Cauchy problem cannot exist for all time in general, 
and casts some additional light on the results obtained for (1) by Deift, Tomei 
and Trubowitz (1982) via the inverse scattering theory. 

In Varlamov (1996), an initial value problem for the following damped 
Boussinesq equation was considered 

uu - 2butxx = -auxxxx + uxx + /3(u2)xx, (3) 

where the second term on the left-hand side is responsible for dissipation, a 
and b are positive constants, (3 = constant € R. The global solution of a 
small initial data problem for equation (3) was obtained in Varlamov (1996) 
under various assumptions regarding the smoothness of initial data. 

In this paper, we study the existence of global solution of the initial value 
problem for the following damped Boussinesq equation 

utt - 2butxx = -auxxxx + uxx + (3(f(u))xx, (4) 

where the constants are the same as those in (3). 
Let C([0, T], HS(R)) denote the Sobolev space with norm defined by 

| |u| | s = sup \\u\\Hs(R), 
te[o,T] 

where 

/

oo 

< £ > 8 | « ( £ . * ) l 2 d £ . 
oo 
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1 f°° 
F[u] = u^,t) = — e-ix*u(x,t)dx, 

^7r J-oo 

<e> = (i + ieiT-
We also require that the nonlinear term f(u) satisfies 

\\f{u)\\Hm<C\\u\\ 

where p> 1, j = s or j = s +2, s > ^ • 
The main result obtained in our study is presented in the following section. 

The work can be regarded as the extension of the existence theorems discussed 
in Varlamov (1996) and Tsutsumi and Matahashi (1991). It should also be 
addressed that the methods used in this study are different from those used 
in Varlamov (1996) and Tsutsumi and Matahashi (1991). 

2 Existence theorem 

We pose the Cauchy problem for equation (4) adding the following initial 
conditions 

u(x, 0) = E(p(x), ut(x,o) = £ip(x), a; £ (—00,00), (5) 

where £ is a small positive parameter. As our main tool for solving (4) - (5) 
is the Fourier transform in a;, we assume that <p(x) € HS+2(R) and ip(x) £ 
HS(R). In addition, we let 

Xs(t) = C([0,T},Hs+2(R)) nCl([0,T},Hs(R)), 

with 

Xs(oo) = C([0,oo],H'+2(R))nC1([0,oo],H''(R)). 

Theorem 1 Suppose that <p(x) £ HS+2(R) and tp(x) £ HS(R), s > \, a > 
b2 > 0 and f(u) satisfies condition (*). For a small EQ > 0, if Q < \E\ < e0 <C 
1, there must exist an u(x,t) £ Xs(°°) which solves the initial-value problem 
(4)-(5). 

Proof: Taking the Fourier transform with respect to x, we can obtain the 
following equations from (4)-(5) 

utM, t) + 26^t(£, t) + (<4+e) m = p e r n , 
fi(£,O) = e0(£), 

fit(f,0)=^(0. 
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Solving above equations, we get 

cos(ai) + b£ 2
 sin(<ri) „.^. sin(ai) ? . . . 

^ - / exp [-6^2(£ - r)] sin(<7(i - r))/0T)dr, 

where c = £-\/k£2 + 1> & = a - b2 > 0. 

(6) 

Let 

u0 = eF-1 -b£2t cos(crt) + b£ 2
sm(at) „ ,„ . sin(<r£) ? . , , 

<p(0 + —^-MO (7) 

where F x is the inverse transform of F. We immediately have 

||«o||.+2 <£(\\il>\\a+2+H\\.)=eA. 

Now, we introduce the sequence {un} as follows: 

n(£, *) = «o / exp [-b£,2(t - r)] sin [<r(t - T)] / (w n_i)dr 
"• Jo 

( n = l , 2 , 3 , . . . ) 

It then follows, from (8), that 

(8) 

KIU+2 <£^ + - j^- IKL+ 2 

< £v4 
kb 

•{s Af, 

where Co is independent of e. Choosing e to be sufficiently small such that 

have 

^ M r - . < i , 

||«i||.+2 < 2eA 

Choosing £ to be suitably small such that 

*-w^-1 < \-
we have 

IIW2IU+2 < 2eA 
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By induction, we can easily derive that 

K | | s + 2 < 2 e A (9) 

In the same proof as that of (9), we deduce that 

| | ^ « n | | s < 2 e A (10) 

Therefore, we can conclude that there exists a sub-sequence {unk} of 
{uk}, and that {unk} is a Cauchy sequence in the space Xs(°°). Since Xs(°°) 
is complete, there exists an u £ Xs(o°) such that unk(x, t) uniformly converges 
to u in the space Xs(°°)- Clearly u(x,t) satisfies (4) and (5). This completes 
the proof of the theorem. 
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The Wald statistic for testing equality of corresponding variances from multiple 
covariance matrices is introduced. The test is asymptotically optimal and derived 
under the assumption of independent and Normally distributed parent populations. 
The empirical size of the test in small samples is investigated via a Monte Carlo 
study. Use of the statistic is illustrated with a motivating example. 

K e y w o r d s : asymptotically optimal test, empirical size study, variance homogeneity, Wald 
statistic. 

1 Introduction 

The problem we consider is motivated by a specific example, relating to data 
collected by Hermon Bumpus (1898). Eight morphological measurements were 
taken of sparrows injured in a storm. It is of interest to compare the corre­
sponding variances of the survivors' and the nonsurvivors' covariance matrices, 
with the covariances considered as nuisance parameters; that is, not specified 
by the null and alternative hypotheses. An overall reduction in variance for 
the survivors would support the notion of stabilizing selection. The lower 
triangular part of the survivors' covariance matrix based on a sample of size 
21 and given here to three decimal places is 

/11.040 
9.100 17.500 
1.557 1.910 0.531 
0.860 1.306 0.189 0.173 
0.816 1.313 0.257 0.155 0.263 
0.045 0.078 0.016 0.007 0.013 
0.532 0.460 0.145 0.022 0.017 

\ 

0.001 
0.003 0.110 

\ 1.279 0.895 0.244 0.134 0.043-0.0010.089 0.576/ 
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The lower triangular part of the non-survivors' covariance matrix based on a 
sample of size 28 and given here to three decimal places is 

/15.070 \ 
17.190 32.550 
2.243 3.398 0.728 
1.750 2.938 0.468 0.434 
1.442 2.425 0.484 0.400 0.520 
0.101 0.195 0.029 0.028 0.028 0.002 
0.914 1.546 0.291 0.227 0.284 0.015 0.213 

\ 2.931 4.042 0.554 0.505 0.516 0.034 0.3411.323/ 

The variables, in order, are total length, alar extent, length of beak and head, 
length of humerus, length of femur, length of tibio-tarus, width of skull, length 
of keel of sternum. All measurements are in millimetres. It should be noted 
that some previous analyses of the data have contained certain discrepancies. 
For example, the treatment found in Manly and Rayner (1987) analyses the 
data with some of the variables measured in millimetres and others in inches. 
The copy of the data found in Manly (1985) provides some measurements 
in inches and others in millimetres. We have made an effort to convert all 
measurements to millimetres before conducting our analysis; hence the covari­
ance matrices given in this paper may appear somewhat different from those 
in other publications. The scale invariance property of our proposed Wald 
statistic makes our test indifferent to any such discrepancy. However we pre­
fer to convert all variables to the one unit of measurement for clarification. 

If the population covariance matrices are Eg and E# , then we test the 
null hypothesis H: (Es) u u = (EJV)«UI f° r u = 1,. - . , 8, against K: not H. 
Testing hierarchically, Manly and Rayner (1987) found that the corresponding 
covariances (correlations) are collectively not equivalent when testing at the 
0.1% level. Their hierarchic test would have proceeded to assess corresponding 
variances had corresponding covariances been judged collectively equal. 

Section 2 of the paper defines the general problem that we wish to in­
vestigate and introduces the proposed Wald statistic; Section 3 provides the 
results from a preliminary simulation study and Section 4 illustrates use of 
the test statistic with the data collected by Bumpus (1898). 

2 Formal testing 

In the scenario we envisage we have k random samples from p-variate Normal 
populations iVp(/ij, Ej) for i = 1 , . . . , k. The ith random sample, X i , . . . , X n i , 
is of size m. We wish to test H: (Ei)„„ = . . . = (£*)„„, for u = l,...,p, 
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against K: not H. 
In the univariate case we have k populations and we wish to test for 

homogeneity of variance. If Sf = ^ {Xij - Xt) / (n* - 1) in which Xx = 

^Xij/rii, put 

•2 5? 

\S2J 

C = 

(I - 1 0 
0 1 - 1 

o o ••• 

o \ 
0 

0 
and * = C V . 

\ 0 ••• 0 1 - 1 / 

The Wald statistic for testing H against K is $ ( C o v * ) # . The usable 

form has substituted the maximum likelihood estimators of the parameters 
in the inverse of the covariance matrix of # , or estimators that are as effi­
cient. Finding this statistic requires the nontrivial inversion of the tri-diagonal 
matrix 

Cov<& 

fvi+v2 -v2 0 

—V2 V2 + V3 -V3 0 

0 -v3 v3 + u4 -Vi 

0 

0 

\ 

V 0 
-Vk-2 Vk-2 + Vk-1 -Ufc-1 

0 -Vk-1 Vk-1+Vk/ 

where 

Vi = Var(5f) 2 at 
t = l . .,k. 

r i i - l 

The ultimate form of the Wald statistic for k univariate samples is 

ZE^r + l)(ns + l)(S2
r-S

2
3)

2/(StSJ) 
Wi r—1 s>r 

2 ^ ( n r + l ) / 5 r
4 

r = l 
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With k = 2 this reduces to 

~ (S?-S|)2 

W l _ 2 ( 5 f / ( n 1 + l) + S2
4/(n2 + l))' 

as derived in Rayner (1997). 
These usable forms of the Wald statistic use optimal estimators of the 

af, r = 1, . . . ,&. Using the well-known Rao-Blackwell theorem, it follows 
that unique estimators having minimum variance in the class of unbiased 
estimators are 

at = (m-ySf/ini + l), r = l,...,fe. 

It is not necessarily the case that such estimators will result in tests with 
achieved size close to the nominal size, or with greater power than tests that 
use other estimators. However, in large samples these tests should not be 
inferior to those that use other estimators. 

When the data are p-variate rather than univariate and when there are k 
populations to be compared, let S%r be the unbiased sample variance of the 
uth variable in the rth population. Define 

k— 1 k 

£ £(n r + !) ("- + 1) (Sl ~ Si)2/ (Si St) 

2 £ K + i)/$jr 

to be the univariate Wald statistic in the wth of p variables when sampling 
from k populations. The Wald statistic for k p-variate samples can be shown 
to be 

W.p = Wn + ... + Wpl. 

Under the null hypothesis, W.p follows the xl(k-i) distribution. 

3 Simulation study 

Small samples versus asymptotics 

Wald statistics asymptotically follow the x2 distribution; different Wald 
statistics will converge to their asymptotic distribution at varying rates. For 
particular Wald statistics, the question arises of how large a sample size is 
required for the x2 distribution to be satisfactory. To investigate this, we 
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conducted a Monte Carlo assessment of the empirical size of the statistic for 
nominal 5% level tests. 

For various combinations of p, k, and n, we generated k random samples 
of equal size n; each sample is generated from a standard p-variate Normal 
parent population with zero mean vector and identity covariance matrix. The 
simulations discussed here are purely preliminary; more complex considera­
tion as to the effects of nuisance parameters, etcetera will be given in later 
simulations. For each combination of p and k considered, the sample sizes 
were taken to be n — 5, 10 (10) 100. The Wald statistic for the generated 
data is calculated and compared with the xttk-i) ^% critical value. For each 
p/k/n combination, this process was repeated 10,000 times and the empiri­
cal size calculated as the proportion of statistics that exceeded the Xptk-i) 
critical value. The empirical size of the Wald statistic was then plotted as a 
function of n. The graphs in Figure 1 below show a cross-section of the results 
obtained, for various values of p and k. 

As expected, the minimum sample size required for the empirical size 
to converge to the nominal size (5%) depends strongly on the number of 
variables (p) and the number of samples (k). It is evident that for fixed p, 
there is more variation in the empirical size for different values of k than there 
is for different values of p given fixed k. Although both p and k affect the 
rate of convergence of the empirical size, it seems k has a greater affect of the 
two parameters. For a smaller number of samples, a sample size of around 
50 seems large enough for the \ 2 distribution to accurately approximate the 
Wald statistic's distribution; however, for larger k, sample sizes of up to 150-
200 may be required. As a rough rule of thumb it seems that if p k < 20, 
a sample size of at least 30 gives reasonable agreement between actual and 
nominal size, based on the results given. 

Competitors 

It is also of interest to compare the above performance of the Wald statis­
tic with other competitor tests available in the literature. Here we only con­
sider the comparison in the univariate (p = 1) case when the data are Normal. 
Two competing tests were chosen: the Likelihood Ratio (LR) test (more com­
monly known as Bartlett's test) and Levene's test. The LR test, like the 
Wald, is an asymptotically optimal test derived under Normality. For two 
samples, the LR test reduces to the well-known quotient of the sample vari­
ances 5f /5§ and is Uniformly Most Powerful Unbiased for given significance 
level. Bartlett's test appears to be the most popular choice of test when 
Normality may be safely assumed. Levene's test has been proposed as a ro­
bust alternative to the LR test and is one of the more common choices when 
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Figure 1. Empirical size of the Wald test for various p and k 

Normality is in doubt. Levene's test performs a one-way AN OVA on resid­
uals. The version employed here uses the sample mean in calculation of the 
residuals. 

Figure 2 shows the empirical size of all three tests for two and six sam­
ples. It is obvious from the graphs that, unlike the Wald test, the LR test 
does not require any minimum sample size for its empirical size to match the 
nominal size of 5%. This is largely because the LR test employs a "Bartlett 
correction", a scaling constant derived solely to improve the approximation 
of the statistic's distribution in small samples. Our Wald test, as it stands, 
does not employ such a correction. However, we expect that once derived, 
the corresponding "Bartlett correction" for the Wald statistic will greatly im­
prove the x2 approximation in small samples. We would then expect the size 
performance of our corrected test to be comparable with that of the LR. Note 
that for small samples, the empirical size of Levene's test is inferior to that 
of the LR test: Levene's test is an alternative to the LR test and is best 
recommended for situations involving non-Normality, see Levene (1960). 

Bootstrapping 

It has become evident that for small sample sizes, the x2 approximation 
to the distribution of the Wald statistic is inaccurate. In such samples, what 
difference, if any, does bootstrapping the test statistic make? For many of 
the p/k combinations considered above, and small to moderate sample sizes: 
n = 10 (20) 70, random standard Normal samples were generated and used 
to bootstrap the Wald statistic. For each p/k/n combination investigated, 
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Figure 2. Empirical size of all three tests 

100 random samples were generated and used to produce 100 pairs of (x,y) 
p-values. First, the Wald statistic was calculated on the random data and the 
p-value found using the xf,tk-i) distribution. This is our x abscissa in Figure 
3. Second, the data were resampled 99,999 times to obtain 99,999 values of the 
bootstrapped Wald statistic using method B l described in Section 4 below, 
resampling from the k samples separately. The associated bootstrapped p-
value is then the proportion of times the statistics exceeded the value of the 
Wald statistic from the original data. This is our y ordinate in Figure 3. For 
each p/k combination, a graph of the y-values versus the z-values for each of 
the four sample sizes considered was produced; it is of interest to see how the 
bootstrapped p-values compare with those obtained from the x2 distribution. 

The two graphs for p = 5, k = 6 and sample sizes of 10 and 30 are shown 
below in Figure 3. If there is perfect agreement between the two approaches, 
all points will lie on the line y = x. To aid in determining how large a sample 
size is required before the bootstrapped p-values closely match the x 2 p-values, 
this line is displayed on each graph. For a sample size of ten, there is a notice­
able difference between the p-values; those obtained using the x2 distribution 
tend to be smaller than the p-values found from bootstrapping. In particular, 
the majority of significant x2 p-values possess non-significant bootstrapped 
counterparts. For a sample size of 30, there exists closer agreement between 
the two sets of p-values. There was found to be little improvement obtained 
from increasing the sample size to 50 or 70. The most noticeable difference in 
agreement is that obtained by an increase in n from ten to 30. 

The larger the sample size, the closer we expect the p-values to agree; the 
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aim here is to find the minimum n such that the agreement is satisfactory and 
such that increasing n further does not result in a significant improvement. 
Relating back to our rough rule of thumb from Section 3.1, here we have p k = 
30 > 20 and hence we would expect a slightly larger sample size is needed 
in order to use the x2 distribution. For this particular p/k combination, we 
recommend bootstrapping the Wald test statistic for sample sizes that are 
smaller than around 40. Of course, this recommendation does depend on 
the values of the p and k parameters: for an increased number of samples 
we recommend a larger sample size before bootstrapping fails to result in a 
significant improvement over using the x2 distribution. We conclude that 
using the x2 distribution to obtain a p-value with small sample sizes inflates 
the chance of committing a Type I error, due to the inaccurate approximation 
of the x2 distribution and recommend bootstrapping the statistic in this case. 

Figure 3. Bootstrapped p-values versus x2 p-values 

4 Example 

We now revisit Bumpus' motivating example. Simply by eye-balling each 
of the diagonal elements in the two covariance matrices, we see that each 
variable has a larger variance in the sample of non-survivors. If we apply 
the Wald test to formally test for a difference in the variances between the 
two samples, we find the statistic has a value of 21.047. The associated p-
value, assuming the statistic is distributed as xh ^s 0.0070. This is obviously 
significant at the 1% level. However, bearing in mind the poor performance of 
the x 2 approximation for small sample sizes, we used simulation to calculate 
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the empirical size of the test as in Section 3.1. The empirical size at the 
nominal 5% level was calculated under Normality for the parameters present 
in the Bumpus problem: p = 8, k = 2, m = 21, n2 = 28. It was found to be 
0.0227; roughly half the nominal size. This suggests use of the \ 2 distribution 
with the present parameters may be inadequate and bootstrapping the test a 
preferable alternative. 

Table 1 shows a summary of p-values for the Wald test obtained from five 
different methods: using the x2 distribution, two methods of bootstrapping, 
a randomisation test and empirically from Monte-Carlo simulations. Method 
B l bootstraps the test statistic by resampling the data from the two samples 
of survivors and non-survivors separately; B2 bootstraps by resampling from 
an aggregated data pool formed by combining the survivors and non-survivors 
together. R is a standard randomisation test: the two samples are combined 
into one and 21 observations randomly selected to constitute the survivors; 
the remaining 28 form the sample of non-survivors. The three data-based 
methods used 99,999 resampling repetitions each to obtain their associated p-
values. To calculate the empirical p-value, 1,000,000 standard Normal random 
data sets were generated using the Bumpus values of the p, k, m and n2 

parameters given above. For each data set, the Wald statistic was calculated. 
The empirical p-value is then the proportion of statistics which exceed the 
value of the Wald statistic from the Bumpus data: 21.047. Examining the 
results, the two bootstrap methods resulted in similar p-values to one another 
and agree closely with the p-value obtained using the x2 distribution. While 
the empirical p-value is slightly smaller, all four of these methods result in 
p-values that are significant at the 1% level. The p-value obtained using 
the randomisation test, while inflated compared to the other p-values, is still 
significant at the 5% level. 

We conclude there is evidence of a difference in the variances of the eight 
morphological measurements between the survivors and non-survivors. Com­
paring the two covariance matrices, it appears that the variances are larger in 
the population of non-survivors. Our conclusion is consistent with Bumpus' 
hypothesised stabilizing selection phenomenon. The findings presented are 
in agreement with other analyses of the data contained in the literature; see 
Manly (1985) and Manly and Rayner (1987). 

Table 1. p-values for the Bumpus data 

Method p Bl B2 R empirical 
p-value 0.0070 0.0054 0.0079 0.0263 0.0011 
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5 Conclusion 

Monte Carlo investigation of the Wald statistic's empirical size in small sam­
ples found the x 2 approximation to be unsatisfactory. Bootstrapping the test 
statistic is instead recommended for small samples. The minimum sample 
size required for the x2 distribution to serve as an accurate approximation is 
dependent upon the number of variables, p, and the number of samples, k. 
For most cases however, a sample size of 40-50 is recommended in order to 
use the x 2 distribution. We stress that the simulation results presented in 
this paper are strictly preliminary; we expect future work involving extensive 
simulations to reveal further properties of our test statistic. For example, 
power and aspects such as the effect of nuisance parameters are yet to be con­
sidered. As previously mentioned, we expect to derive a "Bartlett correction" 
for the Wald statistic and anticipate this will greatly improve the x 2 approxi­
mation to the small-sample distribution of the statistic, just as the correction 
did for the Likelihood Ratio test. We further hope to break down our Wald 
statistic into individual "components" and conduct least significant difference 
comparisons, which will allow us to ascertain which variables in what samples 
contribute to an overall rejection of the null hypothesis. 

REFERENCES 

Bumpus, H.C. (1898). The elimination of the unfit as illustrated by the 
introduced sparrow, passer domesticus. In Biology Lectures. Woods Hole: 
Marine Biology Laboratory, 209-226. 

Levene, H. (1960). Robust tests for equality of variances. In Contributions to 
Probability and Statistics: Essays in Honor of Harold Hotelling, Olkin, I., 
Ghurye, S.G., Hoeffding, W., Madow, W.G. and Mann, H.B. (editors). 
Palo Alto, Calif.: Stanford University Press, 278-292. 

Manly, B.F.J. (1985). The Statistics of Natural Selection on Animal Popula­
tions. London: Chapman and Hall. 

Manly, B.F.J, and Rayner, J.C.W. (1987). The comparison of sample covari-
ance matrices using likelihood ratio tests. Biometrika 74, 841-847. 

Rayner, J.C.W. (1997). The asymptotically optimal tests. J.R.S.S., Series 
D (The Statistician) 46, 337-346. 



CONTEXTUAL IMAGE FUSION BASED ON MARKOV 
R A N D O M FIELDS A N D ITS APPLICATIONS TO 

GEO-SPATIAL IMAGE E N H A N C E M E N T 

Y O J I M O R I S A K I 

Graduate School of Engineering 

Hiroshima University, Kagamiyama 1-7-1 

Higashi-Hiroshima 739-8521, Japan. 

E-mail: morisaki@mis.hiroshima-u. ac.jp 

RYUEI NISHII 

Faculty of Integrated Arts and Sciences 

Hiroshima University, Kagamiyama 1-7-1 

Higashi-Hiroshima 739-8521, Japan. 

E-mail: nishii@mis.hiroshima-u.ac.jp 

Consider contextual data fusion of multispectral spatial imagery with different 
spatial resolutions. We introduce a new method for image enhancement based 
on Markov random fields so as to take contextual information into account. The 
low-resolution data are corrected by the high-resolution data and by the clustering 
result of the pixels. Our method is applied to geo-spatial data sensed by an artificial 
satellite, and shows a good performance. 

K e y w o r d s : data fusion, ICM algorithm, image segmentation, MAP estimate. 

1 Introduction 

Data fusion with multispectral images with different spatial resolutions is an 
important and basic technology in satellite image analysis. The technology is 
widely required because many satellites are equipped with sensors of different 
resolutions. In this article, we consider a problem to improve multispectral 
low-resolution images by multispectral high-resolution images. The numbers 
of spectral bands with low resolution and with high resolution are set to t and 
h, respectively. 

As an example, consider the case such that multispectral low-resolution 
data and panchromatic high-resolution data are given, i.e., I > 3 and h = 1. 
For instance, the spatial resolution of visible lights of the satellite IKONOS 
is 4m, whereas that of the panchromatic sensor is lm. In this case, £ — 3 
and h — 1. Also, the resolutions of SPOT are respectively 20m and 10m 
(£ = 3, h = 1), and those of LANDSAT 7 are 30m and 15m (I = 6, h = 1). 
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The panchromatic images aim to supply supplementary information for the 
low-resolution images. 

The commonly-used method for the enhancement of colored images is 
based on the Hue-Saturation-Value (HSV) transform Smith (1978). The three-
dimensional data corresponding to the visible lights are converted to HSV, 
after which the values are replaced by the panchromatic values of the higher 
resolution. Then, the result is transformed back, and an enhanced colored 
image is obtained. However, the HSV method reduces spectral information, 
and is valid only when the number of low-resolution images is three. We note 
that the HSV is a non-linear method. 

For the enhancement of images, linear methods are proposed, see e.g., 
Nunez et al. (1999). Many references can be found therein. These methods 
may keep local information and preserve the spectral information better than 
the HSV method. Another method for image correction is based on non-
contextual clustering Zhukov et al. (1995). This method may be powerful, 
but needs much computation and overfits to the data. A Bayes method is 
found in a review paper Zhukov et al. (1999). A fully-statistical approach 
is proposed by Nishii et al. (1996). They derived a predictor based on the 
conditional expectation given the high-resolution data. However, this method 
also overfits to the data. A common drawback of these methods is that spatial 
information, which is important for geo-spatial data, is ignored. To take spa­
tial information of images into account, another statistical approach so-called 
cokriging is proposed by Morisaki and Nishii (2000). 

In this paper, we propose a new enhancement method taking contex­
tual information into account through Markov random fields (MRFs), which 
provide a theoretically robust and mathematically tractable way of character­
izing contextual information. MRFs are widely used in image segmentation 
and restoration, see, e.g., Chapter 13 of McLachlan (1992). The application 
of MRF for the clustering of multispectral magnetic resonance images is illus­
trated in McLachlan et al. (1996). 

Our enhancement method is as follows. First, we classify all pixels into 
one of clusters by using Gaussian MRFs (GMRFs). Then, the low-resolution 
data are corrected by predictors based on parameters of the clusters. 

In Section 2, we introduce notations and distributional assumptions on 
spectral data. In Section 3, predictors for low-resolution geo-spatial data 
based on the conditional distribution are derived. In Section 4, MRFs for 
contextual clustering are reviewed. In Section 5, a contextual prediction pro­
cedure based on the ICM (iterated conditional modes) algorithm due to Besag 
(1986) is presented. In Section 6, the proposed procedure is examined through 
the actual LANDSAT data, and compared with the standard methods. In 



169 

Section 7, conclusions are given. 

2 Distributions of spectral data 

Our aim is to correct low-resolution data at a pixel by using high-resolution 
data in its neighborhood. So, we focus our attention on a local window, and 
move it in the whole image. Figure 1 illustrates two neighborhoods consisting 
of four or eight pixels. They will be referred as W4 and W8 in the sequel. 
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Figure 1. Neighborhoods of the pixel 0 Figure 2. Local regions R\& 
left: Four-adjacent-pixels window (W4), 
right: All-square-pixels window (W8) 

Suppose that images with two spatial-resolutions are given. We will 
derive the method to correct low-resolution data at a fixed pixel by using 
high-resolution data observed in the neighborhood W4 or W8. Then, the 
method is applied to all pixels by shifting the window. 

Let 

Z i = ( l j ) : ( / l + ^ ) x 1 ' * = 0 ,1 , . . . , 8 , (1) 

be a random vector corresponding to spectral data at the ith pixel, where 
Hi : h x 1 and Li : I x 1 represent random vectors in a local window of 
the images. Suppose that observations on Hi are available, say hi, i — 
0 ,1 , . . . , 8 , whereas individual random vector Li are not exactly observed. 
Only smoothed vectors, say £i, are available. Henceforth, the observed vectors 
hi and £i are respectively called by high-resolution data and low-resolution 
data. 

Here, we regard the low-resolution vector £Q is an observation of average 
vector X^=o A?'/5 = L5 or 5ZJ=o Ljl$ — -̂ 9 corresponding to the window W4 
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or W8. We also assume that each pixel belongs to one of g clusters C\,...,Cg. 
A label of the cluster at the pixel i is denoted by yi(i = 1 , . . . ,g). The label 
Hi is supposed to be a realization of a discrete random variable Yit and the 
distribution is discussed in Section 4. In Sections 2 and 3, we assume that all 
labels Yi = yi are given. 

Suppose that the conditional distribution of ( i f / ,L-) ' given Yi = yt is 
an (h + £)-variate normal distribution with mean vector (n(yi)', v(yi)')' and 
common variance-covariance matrix £ denoted by 

Hi 
y% ~ Nh+e , S , E = (2) 

Further, we assume that they are independent. 

3 Contextual prediction for low-resolution data 

We will propose a predictor for low-resolution data by clustering all pixels. 
Prediction at the center of a local window 
Consider the window W4 of Figure 1 consisting of four pixels. Un­

der the normality assumption (2) and the conditional independence of 
(Jfj,ij)'|2/j for i — 0 ,1 , . . . , 4 , the conditional distribution of the vec­
tor Z = (Ho, L'0,..., H'A, L'4)' : (bh + 5£) x 1 given label vector y5 = 
(!/0)2/ii • • • ijto)' is again a normal distribution with mean vector £ = 
(/j,(yo)', u(yo)',..., ti(yi)', u(yi)')' and variance-covariance matrix A = S ® ^ , 
where ® and / denote the Kronecker product and the identity matrix respec­
tively. 

We shall derive the joint distribution of LQ and all random vectors whose 
observations are available. The random vector (HQ,H[,...,HA,5L5,LQY : 
(5h + 2£) x 1 is expressed by a linear mapping AZ with a matrix A denned by 

A 

(IhOOO-
OOIhO-

O O O O • 
0 ItO If 

\0 IfO 0 • 

• 0 0\ 
• 0 0 

•ho 
•Oh 
• o o) 

(5h + 2£) x (5h + 5£). (3) 

Hence the random vector AZ given label vector y5 follows the multivari­
ate normal distribution with mean vector A£ and variance-covariance matrix 
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AAA', i.e., 

/HoX 

\L0J 

3/5' ^N 5h+2f 

/ / M W \ 

M(j/4) 

\V^(yo)/ 

/s. / l / l 

o 
Efh Sf/i 5E« E« 

O E« S « / / 

(4) 

where f5 = Y^j=o u(yj)/^- Using the joint distribution (4), we can derive the 
conditional distribution of LQ as follows. The covariance matrix AAA' in (4) 

is partitioned as AAA' = f S1 1 |;12J with size S n : (5/i + £) x (5/i + £) and 

2i2 '• (5/i + £) x £. After some algebra we have 

H^iHn1 = - ( 4 E ^ E ^ , 

E« - H 2 iH n Hi2 = 4S«.fe/5, 

E ^ E 

E« . / j 

\ f t ' - - - ' "~ s ^ s f c f c ' ^ ) ' 

E« - E ^ E ^ E ^ , 

(5) 

(6) 

where E«.h denotes a conditional variance-covariance matrix. From the dis­
tribution (4) and the relations (5) and (6), the conditional distribution of Lo 
is derived as 

L0 \{ho,hi,.. .,h,4,£0,y5} 

_ 4 
A(y0) - A 5 , -S«. f e (7) 

where h5 = J2j=0hj/b, A(k) = v(k) - E ^ E ^ V ( ^ ) (k = l,...,g), A 5 = 

Hj=oA(yj)/5, and jZ5 = Y1IJ=Q^{VJ)I^- The vector A(k) : £ x 1 means the 
residual vector such that the mean vector v(k) of low-resolution data is ap­
proximated by the regression due to the mean vector ji{k) of high-resolution. 
It is obvious that the conditional expectation of (7) minimizes the mean 
squared prediction errors. Thus, a predictor for LQ at the center pixel is 
proposed by 

Wi £o + ^eh^hh C1" hB) + A(y0) - A 5 . (8) 

We note that the predictor due to Nishii, Kusanobu and Tanaka (1996) 
was proposed by the same conditional distribution (7) as 

£ o = 4 + E ^ E - h
1 ( / i 0 - h 5 ) . (9) 

They did not consider the categories, and assumed that the term A(yo) — A5 
is negligible. This reduction may cause the predictor (9) to overfit the data 
when the dimension h is large. 
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Next, we consider spectral data observed in the window W8, see the right 
hand side of Figure 1. By the similar discussion leading the formula (8), the 
predictor at the center pixel of W8 is given by 

Lws = £0 + ZehZhliho ~ hg) + A(y0) - A 9 , (10) 

where hg and Ag are similarly defined as the window W4. 
The predictors (8) and (10) are proposed for improving the predictor 

(9). Hence they were derived under the same assumption of homogeneous 
covariance matrices, as assumed in Nishii, Kusanobu and Tanaka (1996). 

Prediction in non-overlapping square regions 
In the previous subsection, we take a pixel in the image at first, then, we 

consider its neighborhood. So, neighborhoods of adjacent pixels overlap each 
other, which means that two predictors use common high-resolution data. 
We consider here another degradation setup of low-resolution images. We 
partition the whole region into non-overlapping squares consisting of m(= 22 

or 42) pixels. Then, we suppose that the low-resolution images are obtained 
by the averaging process in each region. 

Let Rm be a square region with m pixels. Figure 2 shows the local region 
i?i6- It is assumed that each random vector H is observed for i = 1,2,. . . , m. 
Concerning Li, however, only averaged vector YlT=i ^Jjlrn = Lm is observed 
in the region Rm. Observations of Hi and Lm are respectively denoted by 
hi and £m. Under these assumptions, we derive the predictor for Li by 
incorporating mean vectors on respective clusters as follows: 

Li =lm + ^eh^hh C1* ~~ hm) + A(j/j) - Am for i = l,...,m, (11) 

where hm and A m are similarly defined as in the previous subsection. 
Note that all predictors proposed in this section can be derived without 

normality assumption. Our predictors give the minimum mean prediction 
error as long as moments of the feature vectors up to second degree are same 
as the normal distribution assumed here. 

4 Spatial distributions due to MRFs 

In this section, we consider a spatial model due to MRF for contextual clus­
tering. We suppose that there is a rectangular scene S consisting of n pixels. 
All pixels in S are numbered from i = 1 to n. We define the following vectors 
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with all high-resolution data or labels by 

(Hl\ (Yl\ 
H=\ : : hn x 1, Y = : and Y^ = Y with deleted Y*. (12) 

\Hn) \YnJ 
By the distributional assumption (2), it follows that H^yi ~ 

N/i(/i(yj),Ehfc) and they are independent for i = 1 , . . . , n. Hence, the con­
ditional density of all high-resolution vectors is given by the product of the 
cluster-conditional densities as 

n n 

n ^ ^ l S ' * ) = I I |27rE f c f c | -1/2exp[-{/» i-/*(y i)}'S^{/»i-/*(y«)}/2]. (13) 

Further, we assume that the cluster-label vector Y follows a locally-dependent 
MRF, i.e., the conditional probability of Y* given all labels except j/j is given 
by 

Pr{Y, = k\y_i} 

= expi- /3 Yl £ ( ^ ) l / £ e x P i - / 3 ] T D(k',yA (14) 
[ jeu,.(i) J fc'=i ( j€t/r(i) J 

for /? > 0 and r = l ,>/2, . . . , where D(k,k') = {ti{k) ~ n(k')}'E^l 
{n{k) — fj,(k')} denote the squared Mahalanobis distance between the nor­
mal populations Ck and CV for k, k' = 1 , . . . ,g, Ur(i) indicates a set of pixels 
whose distance between the pixel i does not exceed a constant r (radius), and 
V-i : (n — 1) x 1 denotes a realization of Y_j, see (12). Figure 3 illustrates 
the neighborhood U\{i) with radius r = 1. The parameter /? is a measure of 
spatial dependency of the MRF. 

5 Prediction by the adaptive ICM algorithm 

In the framework of the previous section, the problem is to estimate the label 
vector Y of the scene S by using the observed feature data h of high resolution. 
Then, it is possible to correct the low-resolution images by the predictor (8) or 
(10) or (11) based on the estimated categories. The estimation of the label vec­
tor can be performed by maximizing the posterior probability Pr{ Y = y | h} 
(MAP estimate). The maximization problem is clearly formidable because 
there are gn possible vectors of y. Simulated annealing due to Geman and 
Geman (1984) can be used to approximate the MAP estimate. However, this 
algorithm needs much computation and it is known that the precise estimate 
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of the spatial parameters does not necessarily result in good estimates, see 
Aykroyd and Green (1991) and Besag et al. (1991). In this paper, we use 
the iterative conditional mode (ICM) algorithm due to Besag (1986) instead. 
MAP estimates are obtained by the following adaptive ICM algorithm. 

First, fix the parameters (3 and r. (We will find the optimal parameters 
(3 and r by the grid search.) Let y(0) be the initial estimate of cluster label 
y obtained by a non-contextual rule. In our case, the If-means clustering 
algorithm Jain and Dubes (1988) is used for the initial segmentation of the 
given scene. Let y^ be the estimate after completion of the t-th cycle of the 
ICM algorithm. The (£ + l)-st cycle for the iterative estimate of y and the pre­
dictions for low-resolution data are performed in the following EM algorithm 
with prediction step (EMP algorithm). 

(i) E-step: The mean vectors /x^(fc) and i/W(fc) for k — l,...,g and the 
/EW E W\ 

common covariance matrix I W? W are estimated by using the current 
\peh s « / 

estimate y"', the high-resolution data and the low-resolution data. 

(ii) (a) M-step: Using the ordinary ICM algorithm, we update the current 

estimate j/W to y(t+1) based on fi^(-) and E ^ . 

(b) Prediction-step: The low-resolution data at respective pixels are 
corrected consecutively by the predictor (8) or (10) or (11) with 
the mean vectors fi^(-) and v^(-), and the regression matrix 

The algorithm is repeated until the image obtained by the prediction step 
converges. Note that the converged image depends on /? and r because 
they are used in the M-step. Put the estimated label vector by y(/3,r) = 
(yi(/?, r) , ...,j/n(/?, r)) ' . 

Next we consider selection of optimal parameters (3 and radius r. (Con­
sequently we get the enhanced image based on the clustering result due to 
the selected parameters.) Besag (1986) took the pseudo-likelihood approach 
for this purpose, see Chapter 13.6 of McLachlan (1992). In this article, we 
maximizes the product of the following posterior probabilities. 

In general, the posterior probability of the label Yt = k given the high-
resolution vector hi and the label vector y_{ except ith label is given by 

p.{* = *l»,....}= /<M*>M* = *l»-,} , (15) 

£/(ft,|*')Pr{y, = fc'|y_,} 
fc' = l 
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, - _ 
r») 

Figure 3. Neighborhood Ui(i) of Figure 4. RSSE (-o-) and posterior p(0, -\/8) 
a pixel i with radius r = 1 ( _ x _ ) versus the parameter (3 for spatial 

dependency 

where /(-|-) is the cluster-conditional density defined by (13) and the con­
ditional probability Pr{Yj = k' | y _ J is given by the formula (14). Thus we 
assess the accuracy of the classification yi(/3, r) given hi and y_j(/3, r) through 
the marginal posterior (15) with y = y(fj, r), say p,(/3, r). Then, the parame­
ters /? and r are determined by the product of the marginal posteriors pt (0, r) 
as 

n 

(/?, f) = arg maxp(/3, r) , where p(/3, r) = J\pi(0, r)lln. (16) 

Thus, we can derive the MAP estimate (J3, r). Finally, the enhanced image 
based on the optimal label vector y(/3, r) is supposed to be the best enhanced 
image by the high-resolution data. 

6 Contextual enhancement of geo-spatial images 

We apply our methods to LANDSAT 7 data of Hasselt, Belgium taken on Oct. 
18, 1999 sensed by ETM+ sensor. Our aim is to improve the color image of 
30m resolution by the panchromatic image with 15m resolution. The proposed 
predictors given by the formulas (8), (10) and (11) are compared with the HSV 
method, the conditional expectation (9) due to Nishii et al. (1996) and the 
cokriging method Morisaki and Nishii (2000). 

In order to compare the results numerically, we simulate images as follows. 
The original panchromatic image with resolution 15m and the visible bands 1 
to 3 with resolution 30m are degraded to 30m and 60m resolution respectively. 
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Using the high-resolution panchromatic image, we correct the low-resolution 
multispectral images of size 150 x 150. The results are evaluated through the 
ratio of sums of squared errors (RSSE): 

3 1502
 0 3 1502

 9 

b=l i = l 6=1 «=1 

where i j ', Li and L> denote respectively original values to be predicted, 
averaged values of the original values by 2 x 2 pixels, and the predicted values 
at pixels i in the whole square image. Here, b(= 1,2,3) is an index for spectral 
bands corresponding to visible lights. 

Table 1 tabulates optimal parameters /? and maximum averaged posterior 
probabilities p(/3, r) defined at (16) under the given radius r. RSSEs due to 
the proposed and the standard methods are also shown there. We note that 
the number of clusters selected in this application is five (g = 5). This table 
shows that our method derived by the region R4 with r = y/8 and /? = 0.8 is 
best. We also see that the best result gives the maximum averaged posterior 
probability in the third column of the table. 

Figure 4 shows RSSEs and averaged posterior probabilities p((3, \/8) for 
varying /3 = 0.0(0.1)2.0. We see from this figure that averaged posterior 
probability increases as RSSE decreases. These results imply that our strategy 
for choosing the optimal parameter succeeded in finding the optimal clustering 
result. 

Figure 5 shows a panchromatic image of size 120 x 120 portion of the 
town of Hasselt, which includes urban area, arable land and river. 

Figure 5. Panchromatic LANDSAT 7 image of size 120x120 courtesy ESA 1999 -
distribution Eurimage, Hasselt, Belgium. 

Five further color figures of the same region, namely: 
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Table 1. The ratios of sums of squared errors due to correction methods through the images 
of Hasselt of size 150x150. 

r 

1 

V2 
2 

75 
y/B 
3 

vTo 
N/13 

p(r) 
1.0 
0.4 
0.6 
0.9 
0.8 
0.6 
0.2 
1.0 

p(J3(r), r) 
50.42 
89.49 
95.88 
97.38 
97.87** 
97.73* 
95.71 
97.51 

RSSE (%) 

W4 

87.83 
87.17 
87.18 

87.01* 
87.01 
87.00** 
87.04 
87.11 

W8 

95.87 
95.09 
95.12 

94.96** 
95.00* 
95.00* 
95.09 
95.11 

Conditional expectation 
Cokriging 

HSV 

R4 

84.32 
83.51 
83.80 
83.48* 
83.39** 
83.65 
83.67 
83.70 

85.73 
88.86 
261.84 

** and * denote the best and the second best values. 

(b) the true colored image of size 120x120, 

(c) the 2x2 averaged image of (b), 

(d) the corrected image by our method with g — 5, r = \ /8, /? = 0.8, 

(e) the corrected image by Nishii et al. (1996), 

(f) the corrected image by the HSV method 

can be obtained at "http://www.mis.hiroshima-u.ac.jp/~nishii". Using the 
panchromatic image (a), we correct the low-resolution colored image (c) by the 
three methods and obtain the figures (d), (e) and (f). The optimal parameters 
r = V8 and (3 = 0.8 of the proposed method are chosen by maximizing the 
posterior probabilities (16). The number of clusters g — 5 is pre-assigned. 

We see that the figure (f) due to HSV is quite different to the true image 
(b). The RSSE 261.85 % of (f) listed in Table 1 exceeds 100 %, which means 
that (f) is worse than the averaged image (c). On the other hand, both of 
the figures (d) due to our method and (e) due to Nishii et al. 1996) seem to 
be very close to the true image (b). By Table 1, it is shown that RSSE's are 
respectively given by 83.39 % and 85.73 %. Thus, our method shows a good 
performance. 

http://www.mis.hiroshima-u.ac.jp/~nishii
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7 Conclusion 

In this paper, we proposed a new method for data fusion based on GMRF. 
The features of our approach are as follows. 

• We considered two degradation cases of imagery, and proposed the pre­
dictors (8), (10) and (11) corresponding to the respective cases. 

• The linear predictors for low-resolution data are derived in terms of the 
high-resolution data as well as the clusters of the pixels. 

• The clustering method based on the adaptive ICM algorithm is em­
ployed and the spatial dependency parameter and radius of the locally-
dependent MRF are successfully chosen by maximizing the averaged pos­
teriors. 

• Our methods were applied to LANDSAT data, and showed better per­
formance than the standard methods. 

We have proposed several predictors for image enhancement. Hence, the 
problem for selecting an appropriate predictor for given imagery still remains. 
The most important but difficult problem is to estimate the regression matrix 
Heh^hh u s e d in our predictors because there is no exact observation on Li it­
self. The predictor based on the better estimate would improve our approach. 
Further, we need to consider predictors under the case with heterogeneous 
covariance matrices. 
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We consider Markov chains of order d that satisfy a conditional constraint of the 
form E(a#(X.i-i, Xi) | X i - i ) = 0, where X i _ i = ( A ' i _ i , . . . , Xj_d). These com­
prise quasi-likelihood models and nonlinear and conditionally heteroscedastic au-
toregressive models with martingale innovations. Estimators for i? can be obtained 
from estimating equations ^ " W ^ ( X j _ i ) T a ^ ( X j - i , A ' j ) = 0. We review dif­
ferent criteria for choosing good weights W^(Xj_ i ) . They usually lead to weights 
that depend on unknown features of the transition distribution and must be es­
timated. We compare the approach via estimating functions with other ways of 
constructing estimators for -d, and discuss efficiency of the estimators in the sense 
of Hajek and LeCam. Analogous comparisons may be made for regression models. 

K e y w o r d s : generalized quasi-likelihood, extended quasi-likelihood, ARCH model, gener­
alized method of moments, conditional least squares, influence function, gradient, variance 
bound. 

1 Introduction 

Let X i _ d , . . . ,Xn be observations from a homogeneous and geometrically er-
godic d-order Markov chain on some arbitrary state space. Write Xj_i = 
(X%-i,..., Xi-.fi), and assume that the chain meets the conditional constraint 

E(ai,(Xi-1,Xi)\Xi-.1) = Q, (1) 

where a^(x, y) with x = (xi:..., xd) is a known fc-dimensional vector of func­
tions involving an unknown p-dimensional parameter 0. We are interested in 
optimal estimators of -d. 
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In Section 2 we derive an asymptotic lower bound for estimators of i? 
in the sense of Hajek and Le Cam, and give a characterization of efficient 
estimators. 

In Section 3 we consider estimating equations for i? of the form 

n 

^vMXi- i ) T MXi- i , * i ) = o, 
i = l 

with W#(x) a k xp matrix of weights. The weights minimizing the asymptotic 
covariance matrix depend, through conditional expectations of certain func­
tions, on the unknown transition distribution of the chain. Hence the optimal 
estimating function cannot be used as it stands for estimating i?. We indicate 
that replacing the optimal weights by appropriate estimators does not change 
the asymptotic covariance matrix, and show that the resulting estimating 
function with estimated optimal weights is efficient. We also introduce gener­
alized quasi-likelihood estimating functions, replacing the optimal weights by 
parametric models for the conditional expectations. These estimating func­
tions are easier to calculate, but inefficient both for correctly specified and for 
misspecified conditional expectations. 

We discuss these findings in more specific situations. A particular class of 
examples of constraints (1) are quasi-likelihood models, with real state space 
and parametric models for the conditional means and variances, 

£?(X i |X i _ 1 ) = r t f(X<_1)1 (2) 

E((Xi - miXi))2 | Xi_i) = V X i - i ) . (3) 

Then a^(x,y) = (y - r^(x), (y - r#(x))2 - v#(x))T. 
Quasi-likelihood models can be written as 

Xi = r*(Xi_i) + MX*- i ) 1 / 2 £ i , (4) 

with innovations £, that are martingale increments, Efe | Xj_i) = 0, and that 
satisfy J5(e? | Xj_i) = 1 for identifiability. The submodel with independent 
innovations £, is called nonlinear and heteroscedastic p-order autoregressive 
model. We indicate that the estimating function with (estimated) optimal 
weights is not efficient in this submodel because it does not use the information 
that the innovations are independent. 

2 Efficiency 

In this section we derive a characterization of efficient estimators of i? in the 
rf-order Markov chain model constrained by (I). 
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Consider first the nonparametric d-order Markov chain model, without 
constraint (1). Write Q(x,dy) for the transition distribution of Xi given 
X»_i = x, and assume that the chain is geometrically ergodic under Q. Let 
7r(dx) be the stationary law of X»_i. Write (it ® Q)(dx, dy) = 7r((ix)<3(x, dy) 
for the joint law of (Xj_i,Xj), and Q(x, / ) = / Q(x,dy)/(x,y) for the con­
ditional expectation of / (Xi_ i , Xi) given Xj_i = x. Whenever the argument 
x is omitted, we find it convenient to use the shorter notation Qf for Q(-, f). 

The nonparametric model is locally asymptotically normal in the following 
sense. Introduce (Hellinger differentiable) perturbations 

Qnfc(x, dy) = Q(x, dy){\ + n~1 /2^(x, y)), 

with h in the tangent space 

H = {he L2(TT <g> Q) : Q(x, h) = 0 for all x} . 

Since h may take large negative values, we cannot simply define Qnh replacing 
= by an equality sign. There are three ways to take care of this problem: 
truncation of h, transformation of the density, or, simplest, restriction to 
bounded h (which are dense in H). The condition Q(x,h) = 0 is required 
for Qnfl to be a transition distribution. Write Pnh and Pn for the joint law 
of X i _ p , . . . , Xn under Qnh and Q, respectively. The log-likelihood ratio has 
the stochastic expansion 

\ogd^ = n-1/*J2h(Xi„1,Xi)-±(n®Q)(h2)+oPJl). 
n i=\ 

For bounded h see Penev (1991). For general Hellinger differentiable per­
turbations, the stochastic expansion may be obtained by modifying Hopfner 
(1993a). See also Hopfner, Jacod and Ladelli (1990) and Hopfner (1993b). By 
a martingale central limit theorem, n~1/2 J27=i MXj- i , -Xj) is asymptotically 
normal with variance (n <g) Q)(h2). 

Now suppose that the model is constrained by (1). Relation (1) may 
be written Q(x, a$) = 0. The perturbed transition distribution Qnh must 
also fulfill the constraint, possibly with perturbed parameter, say i9nu = •§ + 
n-l'2u: 

0 = Q„h(x, a#nu) = Q(x, a*,) + n~1 / 2(Q(x, a#h) + Q(x, a#)u). (5) 

Hence the tangent space of the constrained model is the union, call it H*, of 
the affine spaces 

Hu = {h € H : Q(x, a#h) = -Q(x , a#)u for all x} . 
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We recall the following definitions and results from Le Cam's and Hajek's 
theory of efficient estimation. The standard reference for the i.i.d. case is 
Bickel, Klaassen, Ritov and Wellner (1998); for Markov chains see also We-
felmeyer (1999). A p-dimensional functional t(Q) is called differentiable at Q 
with gradient g if g £ Hp and 

n1/2(t(Qnh)-t(Q))^(n®Q)(gh) for h £ H.. (6) 

The canonical gradient g* is the componentwise projection of g onto the tan­
gent space i7*. An estimator i for t(Q) is called regular at Q with limit L 
if 

n1 /2(£ - t(Qnh)) =4> L under Pnh for h£ H*. 

The Convolution Theorem says that if t is regular for t(Q) with limit L, then 

L = (IT <g> Q){g*gJ)1/2N + M in distribution, 

where TV a p-dimensional standard normal random vector, and M a random 
vector independent of TV. This justifies calling a regular estimator efficient 
for t(Q) if its limit is 

L = (n <8> Q)(g*gJ)1/2N in distribution. 

An estimator t for t(Q) is called asymptotically linear at P with influence 
function / if / G Hp and 

n 

na/2(i - t(Q)) = n-1'2 Y, /(X,_i, X,) + oPn (1). (7) 
i=l 

Such an estimator is asymptotically normal with covariance matrix (TT ® 
Q)(ffT). We have the following two characterizations. 

1. An asymptotically linear estimator for t(Q) is regular if and only if its 
influence function is a gradient for t(Q). 

2. An estimator for t(Q) is (regular and) efficient if and only if it is 
asymptotically linear with influence function equal to the canonical gradient 
of t(Q). 

Now we apply these results to estimation of $. Consider the parameter •d 
as a functional of the transition distribution by setting t(Q) = i? if Q(x, a#) = 
0. We have 

n1/2(t{Qnh) - t(Q)) = n 1 ' 2 ^ - 0) = u for h £ Hu. 

Hence, by (6), the canonical gradient is characterized as the vector g+ £ Hi 
such that 

(TT <8> Q){g*h) = u for h £ H, 
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We show that the canonical gradient is 5* = J 1£ with 

t{x,y) = -Q(x ,aJ )Q(x ,a^aJ ) _ 1 a^(x ,y ) , 

J = ( T T ® Q ) ( ^ T ) = 7r(QojQ(a«oJ)~1Qatf). 

We have 

Q(x, a#eT) = -Q(x , d^). 

Hence the j - th component £j of £ is in Hej, where ej denotes the j-th p-
dimensional unit vector. It follows that I and hence J~xt is in Hi. Further­
more, for h G Hu, 

{Tv®Q)(J"1£-h) = -niQdjQiaoa^^Qav)-1 •K{QalQ{a^alylQ{a^h)) 

— u. 

This completes the proof that J~1£ is the canonical gradient of •&. Using the 
above characterization of efficient estimators, we arrive at the following result. 

Characterization. The canonical gradient of d is g* = J~l£. Hence an 
estimator 1? for 1? is regular and efficient if and only if 

n V 2 ( 0 _ 0 ) = J - l n - l / 2 £ £ ( : ^ _ l i X . ) + O p B ( l ) . (8) 

*=1 

Its asymptotic covariance matrix is J " 1 . 

We see that £ and J play the roles of score function and Fisher information 
for •&. 

The characterization sketched in this section is analogous to that ob­
tained in Miiller and Wefelmeyer (2001b) for the corresponding regression 
model, with i.i.d. observations (Xi,Yi) meeting the conditional constraint 
E(ag(Xi,Yi) I Xi) = 0. A (different) derivation of the asymptotic variance 
bound J^ 1 is already sketched in Chamberlain (1987), with generalizations 
in (Chamberlain, 1992). Reviews are Newey (1990, 1993). Similar arguments 
as above are used in Miiller and Wefelmeyer (2001a) for models with i.i.d. 
observations Xi satisfying an unconditional constraint Ea^(Xi) = 0. Estima­
tors of the stationary law IT in our model (1) are constructed in Schick and 
Wefelmeyer (1999). 

3 Estimating functions 

The characterization (8) of efficient estimators for -d suggests to construct an 
efficient estimator as a one-step Newton-Raphson improvement of an initial, 
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inefficient, estimator iJ, 

n *•—' 

with appropriate estimators J and I for J and I. This construction does 
however not take advantage of the special feature of our model and is not 
recommended. 

The conditional constraint (1) says that a#(Xi_i,X,) is a martingale 
increment. This suggests estimating d by solutions i} of martingale estimating 
equations 

n 

TTiWi,(yU-i)Ta*fri-uXi)=0, (9) 

with Wtf(x) a A; x p-matrix of weights. The asymptotic distribution of •& is 
obtained from a Taylor expansion 

n n 

t=l i= l 

with a^(x, y) the k x p-matrix of partial derivatives of a#(x, y) with respect 
to •&. Here we have used that W^(X i_1)Ta^(Xj_1 , Xj) is a martingale incre­
ment and therefore negligible. If (n <g> Q)(Wja.g) is invertible, we obtain the 
stochastic approximation 

1 n —l 

nW0 _ tf) = _ (_ £ W#(X4_1)
Td#(Xi_1, Xi)) 

i=l 
n 

n - 1 / 2 ^ W < , ( X i _ 1 ) T a # ( X i _ 1 , X i ) + opB(l). (10) 
x=i 

By ergodicity, we may replace the average in (10) by its mean (n <S> 
Q)(Wja$). Then & is seen to be asymptotically linear (7) with influence 
function 

/ (x ,y) = -(7r<8>g)(W f l
Td^~1l^(x)Ta1 ,(x,y). 

Hence •& is asymptotically normal with covariance matrix 

(n®Q)(Wjdi,)-1(Tr®Q)(Wjai,a1)Wi)){n®Q)(a#Wj)-1 

= niWjQd^TriWjQia^W^niQdJW^y1. (11) 
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By the Cauchy-Schwarz inequality, the optimal weights are 

Wrf(x) = W|(x) = Q(x, o t foT)-1Q(x,d t f). (12) 

For these weights, the covariance matrix (11) is 

7r(<3aJ<3(a0fflJ)-1Qatf)-1. 

This is the asymptotic variance bound J - 1 obtained in Section 2. 
Minimizing the matrix (11) is also suggested by the non-asymptotic opti­

mally criterion of Godambe (1985) and Godambe and Heyde (1987). 
The average £ £ " = 1 W^(Xi-1)

Ta^(Xi-1,Xi) in (10) may also be re­
placed by ^ X ] " = i ^ ( ^ » - i ) T ( 3 ( ^ « - i ' " * ) - The asymptotic optimality cri­
terion of Godambe and Heyde (1987) suggests minimizing the matrix 

( ^ W ^ ( X i _ 1 ) T Q ( X , _ 1 , a 1 ? ) ) 
4 = 1 

71 

£ Wtf (X i _i ) T Q(X i _i , atfoJ)Wr
1,(Xi_i) 

n - l 

( 5 ] Q ( X i _ i ) a t f )
T W ^ ( X i _ i ) ) . (13) 

i = l 

This leads to the same optimal weights. We refer to Heyde (1997) for uses of 
this criterion. 

The optimal weights depend, through (5(Xj_i,a^aJ) and Q(Xj_i,a,j), 
on the unknown transition distribution of the Markov chain. Hence the cor­
responding optimal estimating function cannot be used as it stands for esti­
mating •d. We will call such an estimating function undetermined. 

Generalized method of moments. The martingale estimating equation (9) 
results in an estimator that is asymptotically equivalent to the GMM estimator 
obtained from the generalized method of moments, the minimizer § of 

n. n 

^ a t f ( X i _ 1 , X i ) T W 4 X ^ 1 ) M n ^ W 4 X i _ 1 ) T a t f ( X i _ 1 , X i ) , (14) 
»=1 i=\ 

where Mn is a random symmetric p x p matrix converging to a deterministic 
matrix M, say. To prove the asymptotic equivalence, we write the GMM 
estimator as solution of an estimating equation. Taking partial derivatives 
with respect to #, we see that d solves 

J ] ^ ( X i _ 1 , X i )
T W ^ ( X i „ 1 ) M „ J ] M ^ ( X i _ 1 ) T s ( X , - i , X i ) 
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n n 

+ £ ^ ( X i - ! , X i)
TW^(X i_i)Mn £ W^Xi-^a^Xi-uXi) = 0. 

i = l t = l 

Again, the term involving W^ is negligible because W^(Xj_i)Ta#(X.j-i,Xj) 
is a martingale increment. Using this argument repeatedly, we obtain by a 
Taylor expansion, 

n n 

0 = J2 M X i - i , X i)
TW l 9(X i_1)M„ Y, ^ ( X ^ 1 ) T a 4 X i „ 1 , Xt) 

i = l i= l 
n n 

+ ^ a ^ ( X i „ 1 , X i )
T M ^ ( X i _ 1 ) M „ ^ W ^ ( X i _ 1 ) T a ^ ( X i _ 1 , X i ) ( i ? - i 9 ) . 

i = i »=i 

If M and (TT ® Q)(Wjae) are invertible, we obtain 

nl,20 - 0 ) = - ((TT ® Q)(ajw*) • M • (TT ® Q)(w5"d#)) 
n 

(TT ® g ) ( 4 w « ) • M • n - 1 / 2 £ l ^ ( X i „ 1 ) T a ^ ( X i _ 1 , Xt) 
t = i 

+oP„(l) 
n 

= - ( 7 T ® Q ) ( ^ T
( i i ? ) - l n - l / 2 ^ W - i ? ( X . _ i : ) T a i 5 ( X . _ i ! X . ) 

»=1 

+op„(l). 
Hence the GMM estimator has the same influence function as the estimator 
obtained from estimating equation (9). The optimal weights are therefore 
again given by (12). The generalized method of moments was developed 
by Hansen (1982, 1985). The optimal weights for this method were first 
obtained by Newey (1993). For reviews see Newey and McFadden (1994) and 
Wooldridge (1994). Note that the influence function of the GMM estimator 
does not involve the matrix M. Hence the random matrix Mn in (14) plays 
no role. 

Generalized quasi-likelihood. One way of dealing with the problem of undeter­
mined estimating functions is to specify parametric models for the conditional 
expectations involved in the optimal weights: 

Etf (x) = Q(x, a#al) and Ag(x.) = Q(x, a#). 

This leads to the estimating equation 
n 

53 J4< , (X i_i)TE*(X i_i)- 1a f l (X i_ 1 )X< ) = 0. (15) 
i = l 
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We call the estimating function on the left (score function of the) generalized 
quasi-likelihood. 

If £# and A# are correctly specified, this amounts to an additional restric­
tion on the model. In this case, we can find new estimating functions besides 
(9) by using, in addition to a#(Xi_i,Xj), further martingale increments 

a^(Xi-_i,Xj)a^(Xi_i,Xi)T - S^(X,_i) and d^(Xj_i, Xi) - ^ ( X j - i ) . 

Hence the generalized quasi-likelihood is inefficient, in general. 
If £# and A# are misspecified, then the generalized quasi-likelihood still 

gives a consistent estimator, but is again inefficient, in general, now in model 
(1), since the weights will be different from the optimal ones. 

We note that since Q(x, a^aj) is k x k and symmetric, and Q(x, d#) is 
k xp, the generalized quasi-likelihood requires modeling up to \k(k +1) + kp 
functions in addition to the k components of a#. 

We can summarize the above discussion in the following statement. 

Dichotomy. The estimating equation (9) with optimal weights (12) is unde­
termined; the generalized quasi-likelihood (15) is inefficient. 

Another, more satisfactory way of dealing with the problem of unde­
termined optimal weights is to replace them with estimators. It is not 
difficult to see that the stochastic approximation (10) remains valid if we 
replace the weights W , J ( X J _ I ) by appropriate estimators ^ ( X j - i ) . The 
reason is that the weights are predictable. This argument is well known: 
n~~1/2 Z)"=i(Wo(X»-i) ~ Wtf(Xi_i))a,j(Xi_i,Xj) is (approximately) condi­
tionally centered with negligible terms, and therefore negligible. For het-
eroscedastic linear models Y^ — ^Xi+H^x^Eij and Yy = i?Txi+H('0TXi)£ij 
with unknown function H see Carroll (1982). For quasi-likelihood models (2) 
and (3) see Wefelmeyer (1996, 1997). For nonparametric regression models 
Y% = g(fiTXi) + v(g{"d>TXi))l/2£i with unknown function v and unknown or 
known function g see Chiou and Miiller (1998, 1999). We arrive at the fol­
lowing result. 

Estimated weights. If W^ (x) is an appropriate consistent estimator (possibly 
depending on •&) for 

W£(x) = Q(x, a t faJ)~1Q(x, a#), 

then an efficient estimator for $ is obtained from the estimating equation with 
estimated optimal weights, 

n 

^ ^ ( X i _ 1 ) T a ^ ( X i _ 1 , X i ) = 0 . 
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Miiller and Wefelmeyer (2001b) obtain an analogous result for the 
corresponding regression model, with i.i.d. observations (Xi,Yi) satisfying 
E(a$(Xi,Yi) | Xi) = 0. Let us briefly sketch two specific methods of esti­
mating the optimal weights W|(x) . 

Kernel estimators and penalized empirical variance. The optimal weights 
W^(x) involve conditional expectations. One way of estimating them is to 
use kernel estimators £#(x) and ^ ( x ) for Q(x,a^a^) and Q(x, o#). Such 
estimators require fairly large sample sizes. A different approach is developed 
by Li (2000, 20001), exploiting ideas of Lindsay (1985). Li considers i.i.d. ob­
servations (Xi,Yi) with E(Yi | Xi) = ni^Xi) and E((Yi-n('dT Xi))2 \ Xi) = 
u{-dTXi). For our constrained model (1), the approach consists in determin­
ing, for fixed il, weights W^(x) that minimize the appropriately penalized 
empirical version of the covariance matrix (11), 

( i J2 wVXi-i)TMXi-i, x^)_1 

2 = 1 

1 " 
( - ^ ^ ( X i - 1 ) T a ^ ( X ^ 1 , ^ ) a t f ( X i _ 1 , X i ) T ^ ( X i _ 1 ) + A/) 

i = l 

(i^d t f(X i_1,X i)
T^(X i_1))~1. 

i = l 

In the following we illustrate the above remarks on optimal estimating 
functions with five examples. 

Quasi-likelihood. Suppose the state space is real, and we have a parametric 
model for the conditional mean of the Markov chain, 

E(Xi\X4-1) = rt(X4-1). (16) 

This is a conditional constraint with a^(x, y) = y — r#(x). 
A simple estimator for § is the conditional least squares estimator, the 

minimizer •& of 
n 

^(Xi-rAXi-i))2-
i=l 

See Klimko and Nelson (1978) and TJ0stheim (1986). Taking partial deriva­
tives with respect to •&, we see that i? solves 

n 

^ r ^ ( X i „ 1 ) T ( X i - r ^ X i - a ) ) = 0. 
i = l 



190 

Here f#(x) is the row vector of partial derivatives with respect to •&. 
The martingale estimating equations (9) corresponding to model (16) are 

^ ^ ( x i _ 1 ) T ( ^ - ^ ( x i - i ) ) = o, 

with W# a p x 1 vector of weights. Here Q(x, a#) = -r,?(x) does not involve 
the (unknown) transition distribution Q. The optimal weights (12) are 

W**(x) - - ( y Q ( x , d y ) ( y - ^ ( x ) ) 2 ) r*(x). 

An efficient estimator for 1? is obtained from the estimating function 

n 

Y,+*(Xi-i)TMXi-irHXi - r*(Xi-i)) = 0, (17) 

with v#(x) an appropriate estimator of the conditional variance J Q(x, dy)(y— 
r,j(x))2; see Wefelmeyer (1997). The quasi-likelihood estimator replaces va(x) 
by a parametric model 

v4x)=JQ{x,dy)(y-r«tx))2. (18) 

The discussion of estimating equation (15) has shown that the quasi-likelihood 
estimator does not use the information about § in the additional specification 
(18). 

Extended quasi-likelihood. Suppose the state space is real, and we have para­
metric models (16) and (18) for the conditional mean and variance of the 
Markov chain. Then a$(x,y) = (y — r#(x), (y - r^(x))2 - v^(x))T . Hence 

«--.T)=tt)«(,r-M.,')' 
where /x,(x) = f Q(x,dy)(y - r^(x)) J , j = 3,4, are the third and fourth 
centered conditional moments of the chain. An efficient estimator for •& is 
obtained from the corresponding estimating equation with estimated optimal 
weights; see Wefelmeyer (1996). It requires estimators for /i3(x) and Hi{x). 
The extended quasi-likelihood estimator replaces these moments by paramet­
ric models; again it does not use the information about •& in the additional 
specifications. For the extended quasi-likelihood estimator in the case when 
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//3(x) = 0, see Crowder (1986, 1987), Godambe (1987), and Godambe and 
Thompson (1989); for the general case see Heyde (1987, 1997). 

Nonlinear autoregression. A submodel of the Markov chain model with para­
metric specification (16) of the conditional mean is the nonlinear d-order 
autoregressive model 

Xi = r^(Xj_i) + £j, 

where the innovations are i.i.d. with density / having mean 0 and variance a2, 
say. Then Q(x, dy) = /(y-r#(x))d?/. The conditional variance / Q(x, dy)(y— 
r#(x))2 reduces to a2, and the optimal estimating equation (17) simplifies to 
the equation defining the conditional least squares estimator, 

n 

J]r t f(X i_ 1)T(X i-r #(X i_i)) = 0. 
i = l 

This estimating equation does not require estimators for the weights. It is 
not efficient because it does not use the information that the innovations are 
i.i.d. Efficient estimators for •& are constructed in Hwang and Basawa (1993), 
Jeganathan (1995), Drost, Klaassen and Werker (1997), and Koul and Schick 
(1997). 

Nonlinear and heteroscedastic autoregression. A submodel of the quasi-
likelihood model (16) and (18) is the nonlinear and heteroscedastic d-order 
autoregressive model 

Xi = r<j(Xi_i) +v#(Xi-i)1/2£i, 

where the innovations are i.i.d. with density / having mean 0 and variance 1. 
Then 

«**> = ;*W'(^)* 
Q(x,a^) ( ^ ( X ) 3 / 2 M 3 ^ ( X ) 2 ( M 4 _ 1 } ) -

where ^ and /i4 are the third and fourth (centered) moments of the innovation 
distribution. The optimal weights are therefore easy to estimate: simply 
replace fij by the empirical estimator 

1 " 
&* = - Y,(Xi - MXi-i)) ' , 3 = 3,4. n *—' 
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Then the estimating equation with estimated optimal weights is 

(X, - ^ (X^) ) 2 - «,(X<_i) J ^ U- l i y J 

Again this estimator is not efficient. See Drost, Klaassen and Werker (1997) 
for efficient estimators of 1?. 

ARCH. A special case of the heteroscedastic (i-order autoregressive model is 
the ARCH(d) model 

d 

X i = ^ ( X i _ i ) 1 / 2 e i with v#(x.)=do + J2Vix 2 

with (d + l)-dimensional parameter •& = (#0, • • • ,$<*)• The innovations are 
again assumed i.i.d. with mean 0 and variance 1. It is convenient to intro­
duce Yi_i = (1, * ? _ ! , . . . ,*?_,,). Then M X i - i ) = 0 T Y 4 _i . The optimal 
estimating equation (19) reduces to 

n 

Y,WTVi-i)~2Vi-i(Xi - ^TYi-i) = 0. 
i=l 

Since the weights (i?TYj_i)~2 depend on •&, we cannot solve the equation 
explicitly. However, as seen above, we may replace the weights by estima­
tors without changing the influence function of the solution of the estimating 
equation. A simple estimator for •& is the conditional least squares estimator 

{jz^i-^uy1j:xilY^. 

^ Y ^ r ' Y i - x Y l ^ ^ Y t - . J - ' x l i Y i - ! . 

•d 

t = l » = 1 

The solution of the estimating equation with estimated optimal weights is 
n ., n 

1?. 

= 1 i = l 

For a direct derivation see Chandra and Taniguchi (2001). The estimator is 
not efficient. For efficient estimators see Engle and Gonzales-Rivera (1991), 
Linton (1993), and Drost and Klaassen (1997). 
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This paper introduces a class of density estimators having both of parametric part 
and nonparametric factor. A plug-in parametric estimator is seen as an initial 
guess of the true density, and the proposed estimator is built up by adding a 
nonparametric adjustment factor and the initial estimator. Asymptotic theory is 
developed, and comparisons with the traditional kernel estimator and a multiplica­
tive estimator are also reported. 

K e y w o r d s : adjustment, density estimation, kernel, local fitting. 

1 Introduction 

Let Xi,...,Xn be independently and identically distributed with density / . 
There are two main approaches for estimating / from the data. One is called 
parametric approach. Under the assumption that the underlying / is exactly 
in a prepared parametric model {g(x, 6) : 0 € 0 } ruled by a finite dimensional 
parameter 6 in © c Rp, or at least in the neighborhood of it, estimating the 
density function / is replaced by estimation of 9 in the model. And we finally 
obtain a parametric density estimator f(x) = g(x, 6), by plug-in, where 0 is an 
estimator of 6. Another approach is called nonparametric. The kernel method 
is well known and representative nonparametric approach which can be uti­
lized without the structural assumption such that the underlying structure is 
controlled or captured by finite dimensional parameter (cf. Wand and Jones, 
1995). Thus nonparametric methods have attractive flexibility, however it 
is hard to throw away the parametric model since well-estimated structure 
by a parametric approach provides a clear understanding of the underlying 
structure. 

In the present approach, a plug-in parametric density estimator g(x, 6) is 
utilized, but it is seen as a crude guess of / . And we aim to adjust this initial 
parametric approximation by g(x, 6) + £, where £ is called the adjustment 
factor. The adjustment factor £ is determined by the minimization of the 
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empirical version of a function 

\f(t)-{g(t,6) + 0? Q{x,S\a) = JKh(t-xY- dt, 
9(t,0)a 

with respect to £, where a is a real number called index. This method is called 
the local Li-fitting criteria with index a. Here, K(z) is a symmetric density 
and Kh{z) = K(z/h)/h. The symmetric density K makes the adjustment 
locally around the target point x. This local approach is based on a simple 
intuition that an observed data which is far from the target point x does not 
have information about the adjustment. 

In the next section, a class of density estimators is constructed and be­
havior of a typical estimator in the class is investigated. It will be seen that 
the elegant feature of the bias function enables us to find the best estima­
tor in the class. Theoretical AMISE comparisons of new estimators with 
kernel estimator JK{X) = n*1 Y17=i ^hi-^i — x) a n d multiplicative estima­
tor /HG(X) = n~l

 YH=I 9(x, 6){Kh(Xi - x)/g(Xi,0)} proposed by Hjort and 
Glad (1995) are implemented for normal mixture densities in Section 3. Monte 
Carlo simulation study is reported in Section 4. In Section 5, some remarks 
and discussions are given in conjunction with our future works. Outline proof 
of a theoretical result is put on Section 6. 

2 Es t imators and the i r behavior 

For a fixed target point x, the adjustment factor is obtained by minimization 
of the empirical version of Q(x,£\a) (omitting an irrelevant term), 

QnMa)=e lKf-*]dt-2Z (Kf-x)(dFn{t)-g{t,9)dt) 
J g{t,6)a J g(t,6)a v / 

with respect to £, where Fn is the empirical distribution function. The mini-
mizer is 

£ = t (x) = fKh(t- x)g(t, §)-a{dFn(t) - g(t, 6)dt) 

jKh(t-x)g(t,6)-"dt 

which gives the proposed estimator 

; = g + lKh(t-X)g(t,e)-HdF(t)~g(t,6)dt} 

fKh(t-x)g(t,e)-"dt ^ ^ 

Different values of a produce different estimators, so that fa forms a class 
of estimators. When we deal with densities, the multiplicative adjustment 
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seems to be natural and in fact, /HG is a typical example. But, there is a 
simple statistical result which provides a viewpoint of the additive adjustment. 
Under some regularity conditions, a statistic Tn, the standardized version of 
the sum of i.i.d data, has an asymptotic expansion of the density: 

(d/dx) Pr {Tn <x} = 4>{x) [l + n-1/2p(x)] + o(rj-1/2) (2) 

= <j>(x) + n^2p{x)cP(x) + o(n^2), (3) 

for sufficient large n, where p(x) is some polynomial and <p(x) is the standard 
normal density (see, Bhattacharya and Rao, 1976). Both (2) and (3) express 
adjustments of the asymptotic density <j>(x): (2) is multiplicative, and (3) is 
additive. Further, as an earlier work, Olkin and Spiegelman (1987) discussed 
an estimator constructed by a convex combination of a plug-in parametric 
estimator and JK, which also can be seen as an additive adjustment. This pa­
per, however, does not focus on their estimator, since it seems to be somewhat 
less attractive than JHG-

In the following, we investigate behavior of fa, which is depending on that 
of 6 included in the initial estimator g{x,6). For estimating 6, we utilize a 
functional estimator 6 — H(Fn) for a certain smooth functional H satisfying 
some regularity conditions, and having the influence function / (see, Shao, 
1991). Using this functional expression, the least false value is defined as 
#o = H(F) which yields the best parametric approximation go(x) — g(x,9o) 
to / among g(x,0), 6 G 0 , where F is the cumulative of / . Notations fie — 
f zeK(z)dz and R(K) = J K(z)2dz are used throughout. Further we need 
the following assumptions: the densities / and gQ are such that their first 
and second derivatives are continuous, square integrable. Then we have the 
following. 

Proposition 1 As n —> oo, h —> 0, 

h2 

Biasfa(x) = —fi2 
90{x)a \ {f{Xl(xpa)) ~ {fix) -^)}(9o(x)^Y' 

+0{h4 + ̂ + X 

n n 

"-'•<*>=*>>-*F+°(^) 
Outline proof of Proposition 1 is included in Section 6. The essential difference 
of asymptotic behavior of fK, fHG and fa appears in the bias, since the 
leading terms of their variances are the same. We see h2-teim of the bias is 
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vanished if / is in the model, that is, f(x) = go(x). Further, an important 
point is that the bias can be rewritten as 

9o(x)a | ( ^ ^ 0 ^ - ) " ~ </(*) - 9o(x)}(9o(x)-a)"\ = h(x) - ab2(x), 

where 

9o(x) \ 61 (x) = / (x)- g0 (x) and b2{x) = 2{ / (a;) - g0{x)} 
9o{x) 

So the bias is linear in a and this fact yields the following theorem. 
Theorem 1 As n —> 00, h —> 0, the leading term o/MISE of fa is 

AMISE 

which is minimized on a at 

where 

fa] = ^ {Cia2 - 2C2a + C3} + ^ , 

^ 2 / . , . 
«opt = ^ - , (4) 

C\ = / b2(x)2dx , C2 = / 62(a;)6i(a;)rfa; and C3 = / 6i(x)2dx. 

3 AMISE comparison in normal mixture 

In this section, we compare / a with fx and / # G by AMISE. The comparison 
by AMISE is acomplished by comparing 1Z(fa) = C\a2 — 2C2a + C3 with 
the integrated squared biases of JK and /HG respectively given as TZ(/K) = 
f{f"(x)}2dx and 'rZ(fHG) = J {go(x)(f{x) / go{x))"}2dx, since these variances 
are the same as mentioned before, where Ci{i = 1,2,3) are those in Theorem 
1. Here we adopt the normal mixture f(x) = Yli=iPi^cri(x ~~ M») a s the true 
density, where pi > 0(i = 1,2,..., k), YLi=\Pi = 1 a n d ^crO^-/") designates the 
normal (Gaussian) density with mean \i and variance a2. For fa and / K G , we 
use a normal density as an initial parametric model and MLE for estimation of 
#o, which is corresponding to the use of <j>ao(x~fi0) as go(x), where ^0 and a2, 
are given as /x0 = £ t = i ViVi and a\ = ^*=i PiWi + (Mi - Mo)2}, respectively. 
Direct calculations mimicking those in Hjort and Glad (1995) give concrete 
expressions of Ci(i = 1,2,3) for this normal mixture and normal start case. 
Detailed calculations are found in Naito (1998). The comparison is done for 



200 

Table 1. Values o{a0TZ(fK)1/5, <T0TZUHG)1/5 and a0TZ(fa)
1/5 on a = 0,1,2,3, <xopt 

for normal mixture densities ( # 1 ~ #15) utilized in Marron and Wand. Values of 
aopt obtained by (4) are also tabulated in the last column. 

/ 

# 1 
# 2 
# 3 
# 4 
# 5 
# 6 
# 7 
# 8 
# 9 

# 1 0 
# 1 1 
# 1 2 
# 1 3 
# 1 4 
# 1 5 

5K 

0.7330 
0.8921 
5.6070 
3.8664 
2.3201 
1.1183 
2.0215 
1.3753 
1.5600 
3.5571 

12.4450 
6.4350 

11.1149 
14.8802 

9.6259 

/HO 

0 
0.6739 
5.5985 
3.8354 
2.2088 
1.0615 
1.9579 
1.3468 
1.5335 
3.5421 

12.4447 
6.4382 

11.1147 
14.8807 

9.6261 

a = 0 
0 

0.7519 
5.6069 
3.8657 
2.3095 
1.1403 
2.0301 
1.3787 
1.5681 
3.5570 

12.4450 
6.4350 

11.1149 
14.8802 
9.6259 

a = l 
0 

0.7824 
5.6110 
3.8513 
2.2748 
1.1533 
2.0595 
1.4102 
1.5813 
3.5608 

12.4451 
6.4457 

11.1151 
14.8831 
9.6333 

/« 
a = 2 

0 
0.9102 
5.6368 
3.8383 
2.2756 
1.2631 
2.2199 
1.5325 
1.6616 
3.5937 

12.4458 
6.4800 

11.1162 
14.8930 

9.6602 

a = 3 
0 

1.0431 
5.6833 
3.8269 
2.3119 
1.4038 
2.4318 
1.6857 
1.7789 
3.6525 

12.4472 
6.5365 

11.1181 
14.9099 

9.7058 

a = a „ p t 
0 

0.7433 
5.6058 
3.7935 
2.2706 
1.1304 
2.0214 
1.3751 
1.5639 
3.5550 

12.4449 
6.4350 

11.1149 
14.8802 

9.6257 

B o p i 

0.3099 
0.3135 
9.1711 
1.4766 
0.3939 
0.3198 
0.2395 
0.3299 
0.3719 
0.3591 
0.0588 
0.2833 
0.0896 
0.1186 

representative normal mixture densities utilized in Marron and Wand (1992). 
See Hjort and Glad (1995) for the expressions of 1Z(fx) and TZ(fnG)-

Table 1 tabulates the values for comparison. # 1 is the case where / is 
exactly in the parametric model utilized, so that fa with any values of a 
are superior to fx- faovt surpasses /#• in all cases except # 6 and # 9 . /o is 
also superior to or at least competitive to fx- Multiplicative fjjG is good for 
almost all cases, but /o is marginally better than JHG in #12, #14 and #15. 
It can be concluded from these observations that / „ is indeed an efficient class 
of density estimators. 

4 Finite sample performances 

The results of simulations are reported in this section. Normal mixture den­
sities listed in Table 1 were again adopted here as true densities. In each 
case 1000 samples of size n = 500 were generated. The estimators compared 
in this study are those in Table 1. For a given bandwidth h, each density 
estimate was calculated on a grid of 301 points on [-3,3], and the numerical 
integral was done to obtain an approximation of ISE(/i). The MISE(/i) value 
is estimated by the average of these 1000 realizations of ISE(/i). In order 
to obtain precise approximation to the minimum MISE, a grid search of the 
bandwidth was implemented. This is done after an initial screening has pro­
vided a suitable h interval containing the minimum. The Gaussian kernel was 
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Table 2. 105 times the values of estimated min^MISE based on 1000 simulations 
with sample size n = 500 for normal mixture densities (#1 ~ #15). 

/ 

#1 
#2 
#3 
#4 
#5 
#6 
#7 
#8 
#9 
#10 
#11 
#12 
#13 
#14 
#15 

fK 

170 
266 
1401 
1312 
1700 
237 
341 
313 
301 
1163 
412 
969 
669 
1523 
1441 

SHO 

68 
207 
1401 
1302 
1611 
232 
332 
315 
301 
1163 
407 
975 
670 
1528 
1443 

a = 0 
68 
216 
1401 
1312 
1691 
247 
344 
318 
307 
1163 
421 
970 
672 
1523 
1441 

Q = 1 
56 
219 
1402 
1301 
1645 
244 
347 
323 
309 
1163 
418 
973 
668 
1528 
1443 

/a 

a = 2 
51 
256 
1411 
1291 
1643 
266 
377 
357 
332 
1177 
441 
996 
676 
1540 
1450 

a = 3 
51 
294 
1429 
1282 
1677 
296 
416 
399 
363 
1194 
471 
1035 
691 
1558 
1463 

a = a0pt 
— 
210 
1400 
1248 
1638 
241 
342 
315 
304 
1162 
416 
969 
669 
1524 
1441 

used throughout. The results are tabulated in Table 2. 
We can observe from Table 2 that fa is the best in fa for almost 

all cases, which justifies Theorem 1. / 2 and fz are very good in # 1 . In 
ten densities from # 2 to #11 , fHo is the best for six cases. But faor,t is 
remarkably better than JHG in #4 . Among four cases from #12 to #15, 
both of /o and / j are marginally better than fua in #12, #14 and #15. 
A suggestion from this simulation is that / a ' s axe good not only in the case 
where the initial parametric model is correct (#1), but also in the case where 
it is remarkably different in shape (#11 ~ #15). 

5 Discussion 

It is easy to prove by its derivation that £a(x) is a consistent estimator of 
f(x) — go(x) irrespective of the value of a, and hence fa also has consistency 
even when we utilize an incorrect model g(x,8). It is noted that fa provides 
not only a density estimator but also a statistic £Q which can be used to 
check the parametric model. For example (a = 0), the plot of £o{x)2 = 
{IK(X) — JKhit — x)g(t,0)dt}2 against a; is a graphical tool to assess the 
goodness of fit. Weak convergence of £o(x) as a stochastic process under the 
hypothesis H : f(x) € {g(x,9),0 € 6 } can be easily proved, from which we 
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can construct goodness of fit test. We defer such a theory to later work. 
Data-based choice of the index a is practically important like the band­

width selection problem (see, e.g., Wand and Jones, 1995); it is, however, also 
deferred to future work. The choices a = 0 or a = 1 are recommended for 
practical use, see the last column of Table 1. 

6 Proof outline 

Behavior of fa will be shown to be dominated by that of /* in (5), and hence 
we need the following which can be obtained by Taylor expansion. 
Lemma 1 Let 

r M _ n M | fKh(t-x)g0(t)-
a{dFn(t)-gQ(t)dt} 

f ^ ~ 9 ^ + fKh{t-x)9o{t)-°dt " ( 5 ) 

Then as n —* oo, h —> 0, 

h2 

Biasf*(x) = —ix2 
90{Xr 1 ( / ( l (** ( g ) )" ~ U(X) " 9o{x)]{9o{x)~a) | 

+0 (h4), 

Outline Proof of PROPOSITION 1. Let us define 

£o(x\a) = J Kh(t-x)g0(t)-
adt, Ci(z|a) = f Kh(t - x)u0(t)g0(t)-

adt, 

(2(x\a) = f Kh{t - x) {U0(t) - au0(t)u0{t)'}g0(t)-
adt, 

where u0(x) = {d/d6)logg(x,60) and UQ(x) = (d2/d6d6')\ogg{x,90). Taylor 
expansion of 6 around Oo gives that 

fa(x) = f*(x) + (§- 6Q)'Bn(x) + 1(0 - 60yCn(x)(§ - 90) + op{n-1), 

where f*(x) is in (5), Bn(x) = (1/n) £?= i Bt(x), Cn{x) = (1/n) Ylti &(x), 

Bi(x) = Kh(Xl-x)g0(Xi)-
a f—SL—hWa) - ^L-Uo(Xi) 

[Co{x\ay Co(x\a) 
a(a(x\a-l), , ,_, 1 - q 

/- / i \2—Ci(^ «) ~ > / i Xi{x\a - 1), 
Co(z|a) Co(z|a) 
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Ci{x) = 
Kh(Xi 

9o(Xi)" 

2a2 

ah(x\(,a) - —-—-^(i(x\a)u0(Xi)' 
(o(x\ay 

a 
(0(x\a) 

a(l-a) 

{UoiXi) - auoiXJMXi)'} 

1 -
(i(x\a)(i{x\a - 1)' 

a(0(x\a- l)h(x\(,a) 

-(2{x\a-l), 
'Co(z|a)2 ' , 'LV~ l"7 ' , lv~ l~ ^ (o(x\a) 

and h(x\C,a) = {2aCi(x|a)Ci(a;|a)' + (0{x\a)(2(x\a)}(0{x\a)-3. 
From the theory of M-estimator, we have the representation 9 — QQ = 

H(Fn) - H(F) = Y™=1Ii/n + b/n + e„, where en = Op(l/n) with mean 
0(l/n2), b/n is the essential bias of 6 and 7, = I(Xi) is the influence function 
of H with zero mean (see, Shao, 1991). Using this i.i.d. expression and some­
what tedious calculations yield that E[Bi(x)] = 0(h2), E[Bi{x)Ii] = 0(h2) 

and E[d{x)} = 0(h2). From these we have E [(<? - 6>0)'£„(:r)j = 0(h2/n + 

n'2) and E \{9 - 60yCn(x)(6 - «0) | = 0(h2/n + n~2). Since the bias of /* is 

given in Lemma 1, we have the bias term of fa in Proposition 1. The expres­
sion of variance can be obtained from similar calculations with referring to 

Var [(§ - 90yBn(x)] = 0(h4/n2), Var [(§ - Oo)'Cn{x){9 - 0o)] = 0(h4/n2) 

and Cov /„(x), (9 - 9o)'Bn(x) = 0(h2/n + n~2) . Detailed calculations are 

found in Naito (1998). 
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Box and Draper (1974) reported five m-factor D-optimal minimum-point second 
order designs for m = 2 , . . . , 5. The m, coordinates of each of the n design points 
lie in the interval [—1,1]. This paper describes a method of constructing these 
designs and compares new designs with those of Box and Draper. 

Keywords: computer-aided designs, D-optimality, second-order designs. 

1 Introduction 

A second-order response surface fitted for an experimental design with n runs 
and TO explanatory variables may be written as: 

m m m 

3 = 1 j=lj'=j 

where i = l , . . . , n ; y is the response variable; and the m x's are scaled 
predictor variables. The minimum-point second order design problem can be 
formulated as being to find n design points (x^,..., £jm), i = 1 , . . . , n such 
that: (i) the coordinates of each design point lie in the interval [—1,1]; (ii) n 
equals the number of parameters in the model, i.e. (m + l)(TO + 2)/2; and (iii) 
\X'X\ should take its maximum value where X is the n x n matrix whose ith 
row is x\ = ( l ,Xi i , . . . ,xirn,xf1,xilXi2,... ,x^m^ixim) (see Box and Draper, 
1974). 

The following example describes a possible use of a minimum-point 
second-order design. In chocolate manufacture, conching converts the re­
fined powdery ingredient mix into a suspension with the characteristic flow 
and flavour properties of chocolate. Over time, shear forces and heat combine 
to coat the suspended particles in fat and to release and develop essential 
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and flavour properties of chocolate. Over time, shear forces and heat combine 
to coat the suspended particles in fat and to release and develop essential 
flavours. Problems faced by the chocolate manufacturer include minimizing 
the (costly) cocoa butter addition, reducing processing time and assessing 
new equipment while still maintaining product quality. A second-order de­
sign might be required to study the effects of four factors on the chocolate 
quality indices. These factors are (i) conching time (10-20 hours), (ii) mix­
ing temperature (60°-80°C), (iii) mixing speed (100-500 RPM) and (iv) cocoa 
butter addition (25%-40%). While no restriction is put on the number of levels 
of each of the mentioned factors, the company aims to have the optimization 
results within one month during which a total of 15 runs could be completed. 

2 Method of construction 

A cyclic-coordinate exchange algorithm (CCEA) was used to construct the 
required designs. In a sense this algorithm is a hybrid of the adjustment 
algorithm (AA) of Donev and Atkinson (1988) and the CCEA of Meyer and 
Nachtsheim (1995). The new CCEA starts with a non-singular D-optimal 
starting design D with points in { — 1,0, l } m . This design can be constructed 
by any of the conventional D-optimal design exchange algorithms (see Nguyen 
and Miller (1992)). The new CCEA then follows the following steps: 

• For each row i of D, pick a coordinate Xij, (j — 1 , . . . , m) at random and 
perturb this coordinate by an amount a. Calculate M = X'X + el, \M\ 
and M~1 where e is a very small positive number say 1.0e-5. Note that 
the choice of n perturbations is empirically based and the the purpose 
of adding el to X'X is to avoid possible singularity caused by these 
perturbations. 

• Pick a coordinate x^, (i = 1 , . . . , n; j = 1 , . . . , m) at random among the 
nm coordinates of D. 

• Remove the ith row x\ from X. Update \M\ and M _ 1 by the formula: 

\M - x ^ = |M|(1 - x'.M^Xi), 

(M - x^)-1 = M~l + Uiu'i/(1 - x'iUi) 

where ut = M~xXi (see Equations 3.3 and 3.4 of Nguyen and Miller 
(1992). 

• Reinstate the deleted ith row x\ of X with the coordinate x^ replaced 
by a value which circles from - 1 to +1 in with step length a. Let x*- be 
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a value which gives the biggest increase in x'iM~lXi where x\ is now the 
reinstated row with x^ replaced by x*j. Update \M\ and M"1 by the 
formula: 

\M + Xix[\ = |M|(1 + x'iM~1xl), (M + Xix'i)-1 

= M~l - Uiu'J{l + x'^i) 

where w, = M~lXi (see Equations 3.1 and 3.2 of Nguyen and Miller 
(1992). 

Steps 2-4 are repeated until the number of coordinates is exhausted and 
no further improvement in \M\ is found. In these steps, a is first set at 
1 and then at 0.1 and finally at 0.01. Prom our experience, there is no 
further gain in decreasing a further. 

• Remove the effect of e in step 1 by recalculating |X'X|. 

The five steps of the above CCEA correspond to a single try. Several tries 
are made for each (m, n) combination and the try which corresponds to the 
highest |X 'X| will be chosen. 

Remark: 
1. Both the AA and the CCEA of Meyer and Nachtsheim (1995) use a 

different starting design for each try. The new CCEA uses the same starting 
design for all the tries. This approach saves time as we only have to construct 
the starting design once. Note that there is a resemblance of this approach and 
the approach used in Nguyen and Williams (1993) where different row-column 
designs are constructed from a single incomple block design by shuffling the 
treaments in each block of this block design. 

2. With the AA, the candidate set for each coordinate £,_,- of D is {xij — 
a,Xij + a}. With the CCEA, the candidate set for each coordinate x^ of D 
is { -1 , -1 +cr , . . . , -<T,0,<T, . . . ,1 - <T,1}. 

3. While the new CCEA works with all the n points, the one of Meyer and 
Nachtsheim (1995) only works with k (k < n) points which has the minimum 
x'iM~lXi. While this practice saves some computer time, there is a substantial 
risk that their CCEA misses the best design. 

4. While steps 3 and 4 in the new CCEA are separate steps, they are 
combined into single step in the one of Meyer and Nachtsheim (1995). Basi­
cally, they attempted to replace simultaneously row x\ with another one with 
the coordinate xtj replaced by x*j. The update of \M\, unlike (2) and (4) 
requires more calculation (see Equations 3.5-3.9 of Nguyen and Miller (1992). 
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Table 1. Standardized |X'X| for various designs, 2 < m < 5 

m 

2 
3 
4 
5 

n 

6 
10 
15 
21 

Box& 
Draper 

5.74e-3 
1.85e-4 
3.89e-7 

3.39e-ll 

Dubova k. 
Federov 

5.72e-3 
1.85e-4 
3.37e-6 

-

Donev & 
Atkinson 

5.74e-3 
1.85e-4 
2.94e-6 
8.46e-8 

Nguyen 

5.74e-3 
1.85e-4 
3.45e-6 
1.15e-7 

3 Discussion 

Table 1 presents the standardized \X'X\ (= \X'X\/np) for minimum point 
second-order designs for m = 2 , . . . , 5 of Box and Draper (1974), Dubova and 
Federov (1972), Donev and Atkinson (1988) and new ones. 

The new designs for m=2 and m=3 have a pattern similar to the cor­
responding ones of Box and Draper (1974). The new design for m—4 have 
a pattern similar to the corresponding one of Dubova and Federov (1972) 
(see Table 2 of Box and Draper, 1974)) except that the values of of the co­
ordinates which are different form - 1 or +1, i.e. (a, (3,7, 5, e) are set at 
(-0.22,-0.27,-0.63,0.04,-0.04). Note that there was a misprint in Table 
2 of Box and Draper (1974). The first coordinate of the first factor in this 
Table should be 1 instead of - 1 . If both 5 and e are set to 0, the maximum 
number of levels for each factor of this design (with the standardized \X'X\ 
equal to 3.44e-6) will be reduced from five to four. This is actually the design 
recommended for the experiment discussed in the Introduction. Table 2 gives 
the new design for m=5. 

Each factor of the new designs in Table 1 has at most five levels. Note 
that the standardized \X'X\ for the corresponding D-optimal minimum-point 
second order designs in {-1,0, l } m for m = 2 , . . . ,5 are 5.49e-3, 1.33e-4 , 
2.67e-6 and 7.89e-8. Hence, if there is no restriction to three level for each 
factor, the new designs in Table 1 are highly recommended. 

As an additional note, the new CCEA improves \X'X\ of seven out of 17 
designs (and matches \X'X\ of the remaining designs) in Table 1 of Donev and 
Atkinson (1988). The standardized \X'X\ of designs for (m,n)=(3,14),(3,16), 
(3,20), (4,15), (4,24), (5,21) and (5,26) in this table are 4.531e-4, 4.136e-4, 
4.650e-4, 2.941e-6, 1.340e-5, 8.465e-8, 2.283e-7. The ones of the corresponding 
designs constructed by the new CCEA are 4.553e-4, 4.162e-4, 4.670e-4, 3.454e-
6, 1.352e-5, 1.1474e-7 and 2.324e-7. 
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Table 2. Design for m=5f 

Xi X2 £3 Xi X5 

-1 
^-1 

1 
1 
1 
1 
1 
1 
1 

-1 
-1 
-1 
-1 
-1 
a 
1 

-/? 
-1 
7 

-1 
-1 

-1 
1 

-1 
1 
1 
1 
1 

-1 
-1 
1 
1 

-1 
-1 
-1 
-a 
-1 
1 

P 
-1 
-7 
1 

-1 
1 
1 

-1 
1 
1 

-1 
1 

-1 
-1 
-1 
1 
1 

-1 
-1 
-a 

P 
1 
1 

-7 
1 

-1 
1 
1 
1 

-1 
1 

-1 
-1 
-1 
1 

-1 
1 

-1 
1 
1 
a 
-1 

-P 
7 
1 

-1 

-1 
1 
1 
1 
1 

-1 
-1 
-1 
1 

-1 
1 

-1 
1 
1 

-1 
-1 
-1 
-1 
6 
5 

-e 
t(a, 0,7,5, e)=(0.31,0.14,0.01,0.06,0.17) 

In this paper, minimum-point second-order designs have been constructed 
in order to illustrate the performance of the new CCEA. However, this CCEA 
should work with any practical values of m and n. The use of this CCEA in 
constructing large designs of the cyclic family such as cyclic incomplete block 
designs and Alpha designs will be discussed elsewhere (see John and Williams 
(1987) Chapters 3-4 for the discussion of these types of designs). The byte 
code of the Java program implementing the CCEA discussed in this paper is 
available free of cost from the author. 
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The mathematical foundations of statistics as a separate discipline were laid by 
Fisher, Neyman and Wald during the second quarter of the last century. Subse­
quent research in statistics and the courses taught in the universities are mostly 
based on the guidelines set by these pioneers. Statistics is used in some form or 
other in all areas of human endeavor from scientific research to optimum use of 
resources for social welfare, prediction and decision-making. However, there are 
controversies in statistics, especially in the choice of a model for data, use of prior 
probabilities and subject-matter judgments by experts. The same data analyzed 
by different consulting statisticians may lead to different conclusions. 
What is the future of statistics in the present millennium dominated by information 
technology encompassing the whole of communications, interaction with intelligent 
systems, massive data bases, and complex information processing networks? The 
current statistical methodology based on simple probabilistic models developed for 
the analysis of small data sets appears to be inadequate to meet the needs of cus­
tomers for quick on line processing of data and making the information available 
for practical use. Some methods are being put forward in the name of data mining 
for such purposes. A broad review of the current state of the art in statistics, its 
merits and demerits, and possible future developments will be presented 

K e y w o r d s : Bayesian analysis, cross validation, data mining, decision theory, estimation, 
hypothesis testing, large data sets, machine learning. 

1 Statistics as a separate discipline 

1.1 A paradigm for statistical theory and methods 

The word statistics was coined by the German Scholar Gottfried Achenwall 
about the middle of the eighteenth century in the context of collection, pro­
cessing and use of data by government. 

During the nineteenth century, statistics acquired a new meaning as ex­
traction of information from data for decision making. The need arose es­
pecially in testing hypotheses or making predictions or forecasts based on 
information in the observations made on natural phenomena or generated 
through well designed experiments. It was realized that the information con­
tained in particular data, however well they are ascertained, is subject to some 
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uncertainty and consequently our conclusions based on observed data could 
be wrong. How then can we acquire new knowledge? We have to evolve a 
new methodology of data analysis with a view to estimate the amount of un­
certainty in extracted information and to formulate rules for making decisions 
with minimal risk. The equation 

Uncertain 
knowledge 

Knowledge of the extent 

of uncertainty in it 
Useable 

knowledge 

is used as a new paradigm for statistical theory and methods. Thus, statistics 
acquired the status of a new discipline of study for 

* acquiring data with maximum possible information for given cost, 

* processing data to quantify the amount of uncertainty in answering par­
ticular questions, and 

* making optimal decisions (subject to minimal risk) under uncertainty. 

The first systematic efforts for the development of statistical methodol­
ogy began only in the beginning of the 20-th century, and it is only in the 
first half of the century the basic concepts of statistical inference were intro­
duced, (Table 1), which enabled rapid developments to take place for possible 
applications in all areas of human endeavor ranging from natural and social 
sciences, engineering and technology, management and economic affairs, to 
arts, literature, medicine and legal problems. Knowledge of statistics was 
considered to be essential in all fields of inquiry. Courses in statistics were in­
troduced in the curriculum of social sciences. Specialized books dealing with 
the applications of statistics in particular areas were written as guidance to 
research workers. Referring to the ubiquity of statistics, Sir Ronald Fisher 
(1953), in his presidential address to the Royal Statistical Society in 1952, 
made the optimistic statement: 

/ venture to suggest that statistical science is the peculiar aspect of 
human progress which gives to the twentieth century its special char­
acter; and indeed members of my present audience will know from 
their own personal and professional experience that it is to the statis­
tician that the present age turns for what is most essential in all its 
more important activities. 
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Table 1. Mathematical foundation of theoretical statistics 

Pre-1900 

T. Bayes 1764 Bayes Theorem 

1900-1950 

K. Pearson 1900 Chi-square test 

W.S. Gosset 1908 Students' t-test 

F.A. Fisher 1915 Exact distributions of statistics 
1922 Estimation (maximum likelihood) 
1923 Analysis of Variance 
1926 Design of Experiments 

J. Neyman 
E.S. Pearson 

E.J.G. Pitman 

H. Jeffreys 

A. Wald 

P.C. Mahalanobis 
M. Hansen 

A. Wald 

C.R. Rao 

A. Wald 

1928 
1933 

1937 

1939 

1943 

1944 

1947 

1948 

1950 

*Likelihood ratio test 
Testing of hypotheses 

Nonparametric tests 

Bayesian statistics 

*Asymptotic test 

Sample surveys 

Sequential tests 

* Score test 

Decision theory 

* The three general asymptotic tests are referred to as the Holy Trinity. 
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GOVERNMENT 

Policy Decisions, Long range planning, 
Services (weather, pollution monitoring, etc), 
Dissemination of information 

INDUSTRY & BUSINESS 

Quality control, Efficient 
mangement, Demand 
forecasting, R & D 

MEDICINE 

Diagnosis, Prognosis, 
Clinical Trials 

RESEARCH 

Hard sciences, Soft sciences, 
Arts, Literature, Archaeology, 
Economic History 

LAW 

Statistical evidence (disputed 
paternity, DNA testing, 
criminal investigation) 

Lifetime decisions, Wise investments, Daily Chores, 
Participation in country's democratic processes 

LAYMAN 

Figure 1. The Ubiquity of Statistics 

The scope of statistics as it is understood, studied and practiced today 
extends to all areas of human activity as shown in Figure 1. 

The layman uses statistics (information obtained through data of vari­
ous kinds and their analyses published in newspapers and consumer reports) 
for taking decisions in daily life, or making future plans, deciding on wise 
investments in buying stocks and shares, etc.. Some amount of statistical 
knowledge may be necessary for a proper understanding and utilization of 
all the available information and to guard oneself against misleading adver­
tisements. The need for statistical literacy in our modern age dominated by 
science and technology was foreseen by H.G. Wells: 

Statistical thinking will one day be as necessary for efficient citizen­
ship as the ability to read and write. 

For the government of a country, statistics is the means by which it can 
make short and long range plans to achieve specified economic and social 
goals. Sophisticated statistical techniques are applied to make forecasts of 
population and the demand for consumer goods and services and to formulate 
economic plans using appropriate models to achieve a desired rate of progress 
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in social welfare. 
In scientific research, statistics plays an important role in the collection 

of data through efficiently designed experiments, in testing hypotheses and 
estimation of unknown parameters, and in interpretation of results. 

In industry, extremely simple statistical techniques are used to improve 
and maintain the quality of manufactured goods at desired levels. Experi­
ments are conducted in R. k D. departments to determine the optimum mix 
(combination) of factors to increase the yield or give the best possible per­
formance. It is a common experience all over the world that in plants where 
statistical methods are exploited, production has increased by 10% to 100% 
without further investment or expansion of plant. In this sense statistical 
knowledge is considered as a national resource. It is not surprising that a 
recent book on modern inventions lists statistical quality control as one of the 
great technological inventions of the last century. 

In business, statistical methods are employed to forecast future demand 
for goods, to plan for production, and to evolve efficient management tech­
niques to maximize profit. 

In medicine, principles of design of experiments are used in screening of 
drugs and in clinical trials. The information supplied by a large number of 
biochemical and other tests is statistically assessed for diagnosis and prog­
nosis of disease. The application of statistical techniques has made medical 
diagnosis more objective by combining the collective wisdom of the best pos­
sible experts with the knowledge on distinctions between diseases indicated 
by tests. 

In literature, statistical methods are used in quantifying an author's style, 
which is useful in settling cases of disputed authorship. 

In archaeology, quantitative assessment of similarity between objects has 
provided a method of placing ancient artifacts in a chronological order. 

In courts of law, statistical evidence in the form of probability of occur­
rence of certain events, such as similarity of DNA, is used to supplement the 
traditional oral and circumstantial evidences in judging cases. 

There seems to be no human activity whose value cannot be enhanced 
by injecting statistical ideas in planning and by using results for feedback 
and control. It is apodictic to claim: If there is a problem to be solved, seek 
for statistical advise instead of appointing a committee of experts. Statistics 
and statistical analysis can throw more light than the collective wisdom of the 
articulate few. 

In the book on Statistics and Truth by Rao (1997b) numerous examples 
are given in Chapters 5 and 6 of applications of statistical techniques to a 
variety of problems ranging from disputed authorship, disputed paternity, 
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seriation of Plato's works, foliation of manuscripts, dating of publications and 
construction of language trees, to weather forecasting, public opinion polls 
and extra sensory perception. 

1.2 What is statistics? 

Is statistics a science, a technology, or an art? Statistics is not a subject 
like the basic disciplines of mathematics, physics, chemistry or biology. Each 
of these disciplines has a subject matter of its own and problems of its own 
which are solved by using the knowledge of the subject. There is nothing like 
a statistical problem which statistics purports to solve. Statistics is used to 
solve problems in other disciplines and appropriate methodology is developed 
for any given situation. The following Table 2 from a paper by Box (1980) 
shows how most of the important concepts in statistics were motivated by 
practical problems. In course of time, the subject matter of statistics grew 
from isolated methods applied to particular problems to the consolidation of 
different methods under a unified theory based on the concepts of probability. 
The basic problem of statistics is viewed as quantification of uncertainty, which 
may be considered as the subject matter of statistics for study and research. 
As it is practiced today, statistics appears to be a combination of science, 
technology and art. 

It is science in the sense that it has an identity of its own with a large 
repertoire of techniques derived from some basic principles. These techniques 
cannot be used in a routine way; the user must acquire the necessary expertise 
to choose the right technique in a given situation and make modifications, if 
necessary. Further, there are philosophical issues connected with the founda­
tions of statistics - the way uncertainty can be quantified and used - which can 
be discussed independently of any subject matter. Thus in a broader sense 
statistics is a separate discipline. 

It is technology in the sense that statistical methodology can be built into 
any operating system to maintain a desired level and stability of performance, 
as in quality control programs in industrial production. Statistical quality 
control is described as one of the great technological inventions of the 20th 
century. Statistical methods can also be used to control, reduce and make 
allowance for uncertainty and thereby maximize the efficiency of individual 
and institutional efforts. 

Statistics is also art, because its methodology which depends on inductive 
reasoning is not fully codified or free from controversies. Different statisticians 
may arrive at different conclusions working with the same data set. There are 
frequentists, Bayesians, neo-Bayesians and empirical Bayesians among statis-
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Table 2. Practical problems motivating general statistical concepts (George Box (1980)) 

Practical problem 

Analysis of Asteroid Data.How 
far is it from Berlin to Potsdam? 

Are planetary orbits randomly 
distributed 

What is the population of France? 

How to handle small samples of 

Investigator 

Gauss 

Daniel 
Bernoulli 

Laplace 

Gosset 

Derived general 
concept 
Least squares 

Hypothesis testing 

Ratio estimators 

t-test 
brewery data 

Improving agricultural practice Fisher 
by using field trials 

Do potato varieties and fertilizers Fisher 
interact? 

Design of experiments 

Analysis of variance 

Accounting for strange cycles in 
U.K. wheat prices. 

Economic inspection (of ammun­
ition). 

Need to perform large numbers of 
statistical tests in pharmaceutical 
industry before computers were 
available 

Yule 

Wald 
Barnard 

Wilcoxon 

Parametric time series 
models 

Sequential tests 

Nonparametric tests 

Advanced estimates of 
agricultural production 

Mahalanobis Sample surveys* 

* not quoted by Box 

ticians each one advocating a different approach to da ta analysis. (A familiar 
quote on statistics: / / there are 3 statisticians on a committee, there will be 4 
minority reports. See also Van den Berg (1992) who conducted a survey and 
found tha t statisticians with different backgrounds used different methods for 
the analysis of the same data.) There is usually more information in given 
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data than what can be extracted by available statistical tools. Making fig­
ures tell their own story depends on the skill and experience of a statistician, 
which makes statistics an art. Perhaps, statistics is more a way of thinking 
or reasoning than a bunch of prescriptions for beating data to elicit answers. 

While mathematics is the logic of deducing consequences from given 
premises, statistics may be regarded as a rational approach to learning from 
experience and the logic of identifying the premises given the consequences, 
or inductive reasoning as it is called. Both mathematics and statistics are 
important in all human endeavors whether it is in the advancement of natural 
knowledge or in the efficient management of our daily chores. 

1.3 Fisherian framework 

In his fundamental paper on mathematical foundations of theoretical statis­
tics, Fisher (1922) stated three methodological aspects of statistics: 

• Specification (choice of a stochastic model for data) 

• Estimation (of unknown parameters in the chosen model) 

• Testing of hypotheses (seeking evidence from data for possible rejection of 
a specified hypothesis or theory) 

Fisher's framework has been and still is the basis for the development of 
statistical methods. However, there are difficulties in using these concepts 
and methods based on them in statistical analysis of real data. 

First is the specification, or the choice of a stochastic model for data: 
Fisher did not specify any statistical method for model selection. He ac­
knowledged the usefulness of Karl Pearson's chi-square test for specification, 
only as a method for possible rejection of a given model and not for its accep­
tance. Reference may be made to Inman (1994) for a review of the controversy 
between Pearson and Fisher on the role of the chi-square criterion in accepting 
or rejecting a specified model for data. 

In recent years, several model selection criteria have been suggested such 
as AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), 
and GIC (General Information Criterion), an extensive review of which can 
be found in a paper by Rao and Wu (2001). These methods are not directly 
related to the performance of the estimated models for it is known that differ­
ent models may have to be used in the analysis of the same data for different 
purposes as shown by Rao (1977, 1987). Further, model selection by using 
AIC, BIC and GIC depends on the sample size; a larger sample size may 
choose a more complex model. 
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Recent studies in chaos theory show that there are difficulties in distin­
guishing between sequences of observations produced by deterministic and 
random mechanisms. Attempts are beginning to be made for modeling a 
sequence of variables such as time series as a combination of deterministic 
and random components. (See Cox (1990), Lehmann (1990) and Rao (1997b, 
pp.26-28)). 

In real situations scientists are looking for what may be called working 
hypotheses (which may not be strictly true) which enable prediction of events 
with reasonable accuracy. So the main question should be to ask how good a 
proposed model or theory is in explaining the observed data and in predicting 
future events, and not whether the proposed model is true or false. A working 
hypothesis is rejected if a better working hypothesis is found. This is how 
science progresses creating useful knowledge from time to time. 

Fisherian framework provided the basis for the development of theoretical 
statistics during the first half of the 20-th century as shown in Table 1. Ney-
man and Pearson (1933) developed a theory of testing of hypotheses using the 
concept of the power function of a test (with respect to possible alternatives 
to the given hypothesis) for comparing different test criteria and choosing 
the one with some optimum properties for the power function. The theory 
provided a justification of some of the test criteria introduced by Fisher on 
an intuitive basis. Pitman (1937) developed nonparametric tests which do 
not depend on any stochastic model for data. Wald (1950) formulated esti­
mation and testing of hypothesis in a decision theoretic set up considering a 
loss function as an input into the problem. Wald (1947) also developed the 
theory of sequential testing. General asymptotic test criteria, called the Holy 
Trinity, were introduced by Neyman and Pearson (1928), Wald (1941) and 
Rao (1949). 

It is relevant to mention that Fisher introduced the basic concepts of 
statistical inference and developed the related statistical methodology when 
computers capable of performing complex computations were not available 
and there were serious limitations on acquisition of data. Under these re­
strictions, the statistical methodology developed was mostly model oriented, 
i.e., under the assumption that the observed data is a random sample from 
a population belonging to a specified family of distributions functions. Of­
ten a simple stochastic model was chosen, like the normal distribution, to 
provide exact results (closed form solutions to problems) involving minimum 
computations. 

Tables of limited percentage points of test statistics were constructed 
(using desk computers) choosing the normal as the underlying distribution 
and rules were laid down for rejection of hypotheses at the tabulated levels 
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of significance, usually 5% and 1%. Limitation on the sample size made it 
difficult to verify model assumptions. [Commenting on the mistrust of British 
statistical methods by continental statisticians, Buchanan-Wollaston (1935) 
says, "The fact that British methods "work" is due to prevalence in Nature 
of distributions similar to Gaussian rather than to any peculiar value in the 
methods themselves"}. 

Second is the method of estimation: The method of maximum likelihood 
introduced by Fisher is valuable in the estimation of parameters when the 
model for data is known and the sample size is not small. However, it is 
not robust for slight departures from the specified model and for outliers in 
data. Robust methods of estimation known as M-estimation and associated 
tests of hypotheses have received much attention. A variety of procedures 
have been introduced (without any guidance on what to choose) to eliminate 
or minimize the influence of outliers or contamination in data. The theory 
is mostly asymptotic and the performance of M-estimates in small samples 
has not been adequately examined. The character of research in this area is 
described by Tukey (1993) as asymptotitise. 

There are also controversies in expressing the precision of an estimator. 
Fisher suggested the conditional variance of an estimator given an ancillary 
statistic as a measure of precision. But, as pointed out by Basu (see Ghosh, 
1988, pp.3-19), there are difficulties in such a procedure. First there is, in gen­
eral, no maximal ancillary statistic and different choices of ancillary statistics 
lead to different expressions for precision, and there is no way of choosing one 
in preference to the other. Basu also gives examples where the conditional 
distribution given an ancillary statistic becomes degenerate (Ghosh, 1988, 
pp.161-167), and uninformative about the parameter. 

Third is testing of hypotheses: Fisher considered a test of significance 
using an appropriate criterion as a method which can lead to possible rejection 
of a given hypothesis, but not for establishing a given hypothesis as certainly 
true. He used tests of significance in an ingenious way, an example of which is 
the discovery of the Rhesus factor described in Fisher (1948). It is a brilliant 
example of how hypothesis testing can be of help "in fitting one scrupulously 
ascertained fact into another, in building a coherent structure for knowledge 
and seeing how each gain can be used as a means for further research. Fisher 
also used tests of significance to detect irregularities in data such as lack of 
randomness, recording errors or bias in sampling. In this connection, reader 
is referred to Fisher (1936), where he shows that Mendel's data on his genetic 
studies are probably faked and to Fisher (1934) where he studies the effects 
of different methods of ascertaining data in genetic studies of inheritance of 
diseases. 
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There is, however, some debate among statisticians on the usefulness of 
tests of significance. The null hypothesis Ho as formulated in many problems 
is known to be wrong and no test of significance is needed. What is of interest 
is to determine to what extent the true hypothesis can differ from HQ, which 
is a problem of estimation rather than of testing a hypothesis. Prank Yates, 
a long time associate of R.A. Fisher, mentioned in the obituary published in 
Biographical Memoires of the Royal Society that Fisher laid too much stress 
on hypothesis testing. He said that if we are comparing the yields of two 
varieties of corn, it is useful to ask what the difference in yields is rather than 
whether they have the same yield, which is seldom true. 

In Fisher-Neyman framework of testing a null hypothesis, there is some 
controversy about the level of significance of a test. From the early use of 
tests of significance by Fisher and the axiomate set up by Neyman, by level 
of significance is meant "the frequency with which the hypothesis is rejected 
in repeated sampling of any fixed population allowed by the hypothesis". In 
his last book, Fisher (1956, p.91) disassociated himself from such a view by 
saying: "This intrusive axiom, which is foreign to the reasoning on which 
tests of significance were in fact based seems to be a real bar to progress". On 
p.77, Fisher says: "the population in question is hypothetical, that it could be 
denned in many ways..., or, that an understanding, of what the information 
is which the test is to supply, is needed before an appropriate population, if 
indeed we must express ourselves in this way, can be specified". Fisher has 
not made explicit how the level of significance can be ascertained given the 
data. 

The well known mathematical statistician, J. Wolfowitz (1967) reviewing 
a popular book on testing of hypotheses made the following critical comment. 

"... the history of testing of hypothesis is an example of collaboration 
between theoreticians and practical statisticians which has resulted in 
greater obfuscation of important statistical problems and side tracking 
of much statistical effort." 

Wolfowitz believed that a useful approach to statistical analysis of live data 
is Decision Theory as developed by Wald (1950), which needs inputs such as 
the class of alternative hypotheses, prior probabilities and losses associated 
with different possible decisions. Such a procedure of choosing a hypothesis 
to minimize the expected loss can be implemented in certain situations like 
acceptance sampling (such as accepting or rejecting batches of goods produced 
in a factory), but does not seem to be applicable in scientific research. 

When a test is applied to test a hypothesis, there are two possible scenar­
ios: 
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1. the hypothesis is rejected as not being true; 

2. the hypothesis is not rejected, but this does not mean that it is accepted 
as true. 

In either case, the scientist has to continue his search for an alternative hy­
pothesis. Does statistics help in the search for an alternative hypothesis? 
There is no codified statistical methodology for this purpose. Text books on 
statistics do not discuss either in general terms or through examples how to 
elicit clues from data to formulate an alternative hypothesis or theory when a 
given hypothesis is rejected. 

Imagine the following scenario of a possible dialogue between Einstein 
and some contemporary statisticians. 

Einstein: / have a new theory for explaining some natural phenom­
ena. Can statisticians help in testing it? 

Neyman and Pearson respond: Einstein, you have to do your 
own experiment, give us your data and also tell us what the possi­
ble alternatives are to your theory. We can then tell you the most 
powerful method of verifying your theory. 

Einstein: Alternative theories! There may be but I do not know. 

Fisher responds: I can give you the design of a perfect experiment 
to perform. The results can reject your theory if it is wrong and 
cannot confirm it if it is true. 

Einstein : / am disappointed, you cannot confirm it if it is true. 

Wald and Wolfowitz respond: We would like to review your prob­
lem in terms of decision theory. Apart from other inputs, we need 
to know the losses involved in accepting and rejecting your theory. 

Einstein: "If my theory is proven successful, Germany will claim 
me as a German and France will declare that I am a citizen of the 
world. Should my theory prove untrue France will say that I am 
German and Germany will declare that I am a Jew". [ This is a true 
statement made by Einstein in an address at the Sorbonne.] 

Fisher (1935) also introduced nonparametric tests based on permutation 
distributions using the randomization principle, which was hailed as an impor­
tant contribution by Neyman and others. Unfortunately, the randomization 
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principle is not without logical difficulties (see the paper by Basu on pp.290-
312 in Ghosh (1988)). 

A notable contribution to nonparametric testing is Efron's (1979) boot­
strap, which has become popular with the enormous computing power we 
now have. However, its theoretical justification is again based on asymptotics 
and the consequences of bootstrapping in small samples have not been fully 
examined. A related method is Jackknife which Tukey (1977) recommends 
as an alternative. Efron (1979) gives a comparative study of bootstrap and 
Jackknife techniques. 

1.4 Bayesian analysis 

Some of the inconsistencies in the classical methods described in previous sec­
tions of this paper, which depend on properties based on repeated sampling 
from a population, led several statisticians to use Bayesian methods in data 
analysis. References to papers emphasizing the need for Bayesian analysis 
are Berger (2002) and Basu's contributions reproduced in Ghosh (1988). It 
is argued that in classical statistics of Fisher, Neyman and Wald, statistical 
methods for drawing inferences on unknown parameters are judged by their 
(average) performance in repeated sampling from a population. Such a proce­
dure ignores the fact that all samples are not equally informative and inference 
on unknown parameters should be made conditional on the observed sample, 
which makes the use of Bayesian analysis inevitable. 

Other arguments advanced by Bayesians against classical testing proce­
dure refer to the interpretation of p-values and paradoxes associated with it. 
Lindley (1957) gave an example in which the p-value is fixed at .05, but as 
the sample size increases, the Bayesian posterior probability that the null hy­
pothesis is true approaches unity. It is also shown that for a large class of 
priors 

p = p(T > Tobs\H0) < Kff0 |Data) 

where HQ is a null hypothesis and T is a test statistic. The above inequality 
shows that the use of p-values exaggerates significance. 

Bayesian analysis depends on Bayes theorem 

p{x) 

where p(s) is the prior probability distribution on the space S of specified 
family of models, p(x\s) is the probability density of the observation x for 
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specified s £ S, p{x) is the overall probability density of x, and p(s\x) is the 
posterior probability of s given x. 

An attractive feature of Bayes theorem is that we can make probability 
statements about the probability models in the light of observed data x using 
the posterior density p{s\x). But the question is: Where does p(s), the prior 
probability come from? Berger (2002) lists five different approaches to the 
problem "each of which can be of great value in certain situations and for 
certain users": 

• Objective (non-informative or default priors, maximum entropy and refer­

ence priors) 

• Subjective and partly subjective and partly objective 

• Robust priors 

• Frequentist-B&yes 

• Quasi-Bayes 

• Empirical Bayes (strictly not a Bayesian analysis) 

However, it appears that there is no unified approach to Bayesian analysis. 
How can Bayesian analysis be implemented in the context of a customer, who 
generates data to throw light on a particular problem, approaches a statistical 
consultant for analysis of data. Who supplies the input on prior? Surely, not 
the consultant, but should he (or she) accept the customer's prior? Reference 
may be made to Cox (2000) for further comments on Bayesian analysis. 

1.5 Likelihood principle 

It is generally agreed by statisticians belonging to different schools of thought 
that the likelihood function introduced by Fisher (1922) plays a pivotal role in 
statistical inference. The ideal situation is the combined use of the prior distri­
bution and likelihood function to derive the posterior distribution. Attempts 
have been made in the case of a single parameter 6, to suggest plausible ranges 
of the parameter, without using priors, using only the ratio r = L(8\x)/L(Q\x), 
where L(9\x) is the likelihood function of 6 given the observation x and 6 is 
the maximum likelihood estimate of 6. Fisher, Jeffreys and Royall suggested 
ranges of r as given in Table 3 for the classifications very plausible, somewhat 
implausible and highly implausible. 
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Table 3. Ranges to classify 6 

9 Classification 
Very plausible 
Somewhat implausible 
Highly implausible 

Fisher 
r e (1,2) 
r e (2, 5) 
r e (5,15) 

Jeffreys 
r G (1,3) 
r e (3,10) 
r e (10,100) 

Royall 
r e (1,4) 
r e (4,8) 
r e (8,32) 

It is not clear how these ranges are obtained and how they could be used 
in practice. When the full likelihood cannot be used due to nuisance parame­
ters, several modified versions have been suggested such as, partial likelihood, 
pseudo likelihood, quasi-likelihood, empirical likelihood and a predictive likeli­
hood. For further details on the likelihood principle, reference may be made 
to Ghosh (1988, pp.313-320) and Reid (2002). 

It is surprising that Fisher, who in his early research work emphasized 
tests of significance based on a test statistic and the p-value in the tails of 
its distribution, recommended in his last book (Fisher (1956)) the use of 
likelihood ratio without any reference to its probability distribution. 

There is another problem about the use of likelihood which is often re­
ferred to as Rao's paradox in sample surveys (see Rao (1971), Cox (1997) and 
Smith (1997)). Consider a finite population defined by the set {(Yt,Xi), i = 
1 , . . . , N}, where Y» is a label identifying the i-th member and Xi is, in a gen­
eral set up, a random variable with probability density fi(X,0i) depending 
on an unknown parameter 0{. A sample is a selection of n pairs 

(yi,xi),... ,(yn,xn) 

drawn from {Yi, Xi}, where yt takes one of the values (Yi, . . . , Y„) and Xi is an 
observation on Xi. The problem is that of estimating a function of 6\,... ,8^. 
The probability density at the observed values {(yi,x%)}, i-e., the likelihood 
of the parameters based on the sample is 

n 1 

i=l 

where the i-th pair in the sample corresponds to the unit labeled r, with 
parameter 0j. The above likelihood function contains only n of the parameters 
(# i , . . . , 0JV) and has thus no information on the rest of the N - n parameters. 
In such a case the likelihood approach based on the entire sample is not 
applicable. 
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However, if we disregard the labels and retain only (xi,... , xn), then the 
likelihood based on (xi,... ,xn) under random sampling is 

n 1 N 

i = l r = l 

which contains all the unknown parameters. If one wants to use the likelihood 
principle, it may be necessary to throw away part of the data). This raises new 
problems on the choice of statistics (functions of the sample) for setting up 
the likelihood function without loss of information. 

2 Statistics in the information age 

2.1 Limitations of the current statistical methods 

Mostly model oriented. Where does the stochastic model for data come from? 
This question has often be debated. From whoever it may come, either the 
customer who may have some knowledge of the data and the mechanism 
generating the data, or the statistical consultant from his previous experience 
of similar data, there is no reasonable statistical procedure for validating it 
for use on current data. The reader is referred to a recent paper by Breiman 
(2001) and the discussion by Cox, Efron, Parzen and others. The author 
mentions two cultures, data modeling (practiced by 98% of all statisticians) 
and algorithmic modeling (practiced by 2%) and makes a strong case for model 
free analysis using techniques such as neural networks, genetic algorithms, 
machine learning (support vector machines of Vipnik). 

In the author's opinion, a combination of both cultures will be ideal. If 
one can succeed in getting a model, at least an approximate one, character­
izing the source and the mechanism generating data, it may contribute to 
expansion of natural knowledge. One way of achieving this is to use a model, 
wherever it may come from, and validating it by algorithmic modeling. In 
this connection, it is interesting to note what Fisher (1956, 1960, Sec.21.1 at 
the end of Chapter 3) said about nonparametric tests which Fisher himself 
introduced round about 1935: 

The utility of such nonparametric tests consists in their being able 
to supply confirmation whenever, rightly or, more often, wrongly it 
is suspected that the simpler tests have been appreciably injured by 
departures from normality. 
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Lack of firm basis for measurement of uncertainty. There are various 
methods of expressing uncertainty such as the variance of estimators con­
ditional on a certain configuration of the sample, confidence limits, fiducial 
limits, plausible limits based on the likelihood function or posterior probability 
and so on, which are all subject to debate. 

Lack of methodology for distinguishing between random noise and chaos. 
The reader is referred to examples given in Rao (1997b, pp.26-28). 

Methodology based on asymptotics. Current contributions to statistical 
theory are based on asymptotic behavior of estimators and tests (as the sample 
size tends to infinity) without examination of their usefulness in small samples. 

2.2 Limitations of statisticians 

In the early days of the development of statistics as a method of extracting 
information from data and taking decisions, research in statistics was moti­
vated by practical problems in biological and natural sciences, as indicated in 
Table 2. Methods developed for use in one area found applications in other ar­
eas with minor modifications. Gradually, statistics came to be adopted as an 
inevitable instrument in all investigations scientific or otherwise as discussed 
in Section 1 of this paper. Then the need arose for training professionals in 
statistics to help the government and research organizations in the collection 
and analysis of data. Statistics was introduced as a compulsory subject in the 
curriculum of courses in some scientific and technological disciplines. 

Gradually, universities started separate departments of statistics where 
statistical theory and methodology is taught without any serious focus on 
applications. Venues of interaction between faculty members in statistics 
and other departments have gradually closed, and the lack of contact with 
live problems has impeded the expansion of statistics in desired directions or 
sharpening of the existing tools. 

Students graduating in statistics learn statistics as a set of rigid rules 
without acquiring any knowledge of their applications to practical problems. 
The students are not made aware that statistics is a dynamic and evolving 
discipline and fertile research in statistics can result only by collaborative 
work with researchers in other sciences. 

Statistics Departments in the universities generally tend to produce statis­
ticians as a separate breed of scientists, which is detrimental to their useful­
ness as professionals helping research workers in natural and social sciences 
in data collection and its analysis. They teach statistics as a deductive disci­
pline of deriving consequences from given premises. The need for examining 
the premises, which is important for practical applications of results of data 
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analysis, is seldom emphasized. 
It is also surprising that in many universities courses in design of experi­

ments and sample surveys are not given, or listed as optional. Knowledge of 
these two methodological aspects of data collection is extremely important in 
all investigations. 

Further, students specializing in statistics do not acquire in-depth knowl­
edge of any basic discipline and are therefore unable to collaborate with sci­
entists in research work. There has been some thinking on the education 
and training of statisticians, but no attempts have been made to change the 
present system (see Kettenring (1995), Parzen (1997), Rao (1997a) and other 
references in these papers.) 

It is also relevant to add here what Fisher (1938) said on who should 
teach statistics. 

I want to insist on the important moral that the responsibility for the 
teaching of statistical methods in our universities must be entrusted, 
certainly to highly trained mathematicians, but only to such mathe­
maticians as have had sufficiently prolonged experience of practical 
research and of responsibility for drawing conclusions from actual 
data, upon which practical action is to be taken. Mathematical acute-
ness is not enough. 

This is generally disregarded in the recruitment of faculty members of statis­
tics departments at the universities. 

Regarding research work in statistics published in journals, S.C. Pearce 
says: 

In many fields of statistics numerous techniques have been published 
with little to guide the practical man as to their spheres of influence. 

Current research in statistics should be directed to and made available for 
immediate use in problems waiting to be solved "rather than getting published 
in archival journals", as the editors of the newly started journal Biostatistics 
put it. 

2.3 Needs of customers 

Who needs statistics? The scientists use statistics in a marginal way. Current 
technology enables scientists to make measurements with a high degree of 
accuracy and generate large amounts of data under identical conditions. In 
such a situation, it may not be necessary to use sophisticated methods of data 
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analysis. There appears to be no substantial evidence in scientific literature 
of any major discovery being directly attributed to results or insight provided 
by statistical analysis. Let us look at the following quotations. 

If your experiment needs statistics, you ought to have done a better 
experiment. 

- Lord Rutherford (1871-1931) 

A theory can be proved by an experiment but no path leads from 
experiment to theory. 

- A. Einstein (1879-1955) 

It is safe to say that no discovery of some importance would have 
been missed by lack of statistical knowledge. 

- F.N. David (1909-1993) 

All these statements do not imply that observational data cannot provide 
clues to scientific discovery. Perhaps, lack of interest in using statistical meth­
ods in scientific research may be due to the limited role of hypothesis testing 
as formulated by statisticians in knowledge discovery. The aim of statistical 
analysis should be not only to answer specific questions but also to raise new 
questions and indicate what further investigations are needed to answer them. 

Perhaps, the greatest beneficiaries of statistics are the national govern­
ments (responsible for socio-economic development, optimum utilization of 
national resources, protecting the environment and providing essential public 
services), industry (in maintaining quality of manufactured goods, increasing 
productivity) and business (in efficient management and working out opti­
mal strategies). Is the current statistical methodology adequate to meet the 
demands of customers in these areas? 

With computerization of all activities in science, commerce and govern­
ment, we will have access to unprecedented quantity and variety of data. We 
also have enormous computing power. These provide us an opportunity to 
meet the customer's demands for timely and useful information on a wide 
variety of issues. 

There is need to develop new statistical methods for managing large data 
sets, on line automatic processing of data (OLAP) to judge the performance 
of existing practices (working hypotheses), extracting new information use­
ful to customers rather than to answer specific questions, decision making 
and assessing the risks involved, and making automatic adjustments for miss­
ing or contaminated data. The limitations of the current statistical methods 
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Figure 2. KDD: Knowledge Discovery in Database 

in handling large data sets for extracting useful information have led com­
puter scientists, engineers and operations research workers to suggest what is 
claimed to be a different approach to data analysis called Data Mining much 
to the surprise of statisticians. 

3 Data mining 

3.1 What is data mining 

Is Data Mining (DM) a form of statistics or a revolutionary concept? Adriaans 
and Zantinge (1996, p.5) describe DM or a more general concept known as 
KDD (knowledge discovery in databases) as 

the non-trivial extraction of implicit, previously unknown and poten­
tially useful knowledge from data. 

It is conceived as a multidisciplinary field of research involving machine learn­
ing, database technology, statistics, expert systems and visualization (see Fig­
ure 2). 

Some statisticians think that the concepts and methods of DM have their 
basis in statistics or already subsumed under current statistical methodology. 
We shall review the current literature on DM, examine to what extent they 
meet the needs of customers compared to the available statistical methodology, 
and comment on possible developments in the future. 
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3.2 Massive data sets 

What motivated and made DM popular is the availability of large data sets 
which are automatically generated, stored and easily retrievable for analy­
sis. They are high dimensional in terms of features, cases and classes. The 
stochastic model for the observations is generally not fully known. There may 
be some missing values and contaminated data. (See Table 4 for examples 
of such data sets). Generally, data relating to business transactions, services 
provided by the government and even scientific programs like the genome 
mapping and sky surveys in astronomy run into multi-gigabytes. 

Conventional statistical methods of testing of hypotheses and building 
models for prediction may not be suitable. Every conceivable hypothesis or 
model is bound to be rejected when a large data set is available. Even the 
computation of test statistics and estimates of parameters such as the sam­
ple median may pose difficulties. What can we do when large data sets are 
available? 

The characteristics of a large sample are, by asymptotic consistency the­
orems, close to that of the population on which observations are made. As 
such, inferences drawn from a sample will have a low degree of uncertainty. 
Further, the amount of uncertainty itself can be estimated with a high degree 
of precision by double cross validation (revalidation) as explained in Section 
3.4 without any model assumptions, which cannot be achieved with small data 
sets. 

3.3 Data mining versus traditional data base queries 

Using traditional data analytic methods, we can estimate certain parameters 
of interest and examine the performance of certain decisions (or hypotheses) 
formulated on the basis of previous studies or some theoretical considera­
tions. Such an analysis is often called on-line analytical processing (OLAP) 
or providing answers to certain queries. 

In DM, through the use of specific algorithms or search engines as they are 
called, attempts are made to discover previously unknown patterns and trends 
of interest in the data and take decisions based on them. We shall examine 
some of the methods reported in the literature on DM which is described by 
Wegman (1998) as 

"exploratory data analysis with little or no human intervention using 
computationally feasible techniques, i.e., the attempt to find interest­
ing structures unknown a priori." 
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Table 4. The number and type of features, classes and cases used for training, cross valida­
tion (Test 1) and revalidation (Test 2) in seven data sets. 

Dataset 
Medical 
Telecom 
Media 
Control 
Sales 
Service 
Noise 

Train 
2079 

62414 
7133 
2061 

10779 
4826 

20000 

Cases 
Testl 

501 
34922 
3512 

685 
3591 
2409 
5000 

Test2 
522 

34592 
3672 
685 

6156 
2412 
5000 

Features 
Num. 

33 
23 
87 
22 

127 
215 
100 

Type 
Num+Binary 
Num+Binary 

Num 
Num 

Num+Binary 
Binary 
Num 

Classes 
2 
2 
2 

Real 
3 
2 
2 

3.4 Cross validation and revalidation 

When a large data set, say with 5 cases, is available, we can divide it into 
subsets with Si and S2 cases which are also sufficiently large. We can use 
the subset S\ to formulate a certain decision rule R based on the discovery of 
patterns through a search engine. The second set S2 can be used to evaluate 
the performance of R through some loss function. In view of the largeness of 
52, we expect to get a precise estimate of the average loss. This procedure 
known as cross validation is well known in statistical literature, but its appli­
cation in small samples through methods such as LOO (leave one out) may 
not be effective. 

There are other possibilities when a large sample is available, especially 
when the search engine suggests several possible rules Ri, R2,... based on the 
subset Si of cases. We then divide 52 into two subsets 521 and 522, and use 
cross validation on rules Ri, R2,... on 521 and choose the rule R* with the 
minimum loss. Now, we can compute the loss in applying R* on the second 
subset 522- We thus have an unbiased estimate of loss in using the rule R*. 
This method may be described as revalidation. (See Table 4 where different 
divisions of the available cases as Train (Si), Test 1 (52i) and Test 2 (522) 
are given in some real large data sets.). 

As new data come in. we have a chance to evaluate the performance of 
rules in current practice and update if necessary. 
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3.5 Data mining techniques and algorithms 

Visualization 
The use of graphs in exploratory data analysis (for understanding the 

nature of observations and choosing an appropriate model), and in reporting 
the results of statistical analysis is well known in statistical literature. (See 
Fisher (1967, Chapter 2), Tukey (1977).) With increase in computing power 
and possibilities of viewing high dimensional data through parallel coordinates 
(Wegman (1990), Wegman and Luo (1997), Wilhelm, Symanzik and Wegman 
(1999)), projections in different directions (Friedman and Tukey (1974)), and 
data reduction by canonical coordinates (Rao (1948a)), principal components 
(Rao (1964)), correspondence analysis (Benzecri (1992) and Rao (1995)), and 
multidimensional scaling (Kruskal and Wish (1978)), graphical analysis is 
becoming a valuable tool in discovering patterns in data. 

3.6 Finding associations 

A typical problem is that of finding association between items purchased by 
customers in a grocery shop (e.g., those who purchase bread also buy butter). 
In the abstract, the problem may be stated as follows. We have a set of 
vectors with zeros and ones such as (10010...), where 1 denotes the presence 
of a specific characteristic (such as purchase of an item) and 0 otherwise. 
The object is to find whether there is a high percentage of vectors with all 
l 's in certain positions. A fast algorithm for this purpose was developed by 
Agrawal, Imielinski and Swami (1993). 

3.7 Clustering, pattern recognition and decision trees 

These methods first introduced in statistical literature and developed by com­
puter scientists and engineers for specific purposes are extensively used in data 
mining. 

3.8 Machine learning, neural networks and genetic algorithms 

Suppose the problem is that of predicting a target (or class) variable y us­
ing a concomitant vector variable x (called features). In statistics, we gen­
erally start with a probability model for the variables {x,y) and estimate 
the conditional distribution of y given x, on the basis of observed samples 
(xi,yi),..., (xn, yn)- We can then use the conditional distribution of y given 
x to predict y. In machine learning, we do not explicitly use any probability 
model. We use an algorithm to find a function /(•) such that 
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m 

^2<l>[yi-f(xi)] 
i=l 

is minimized, where <f> is a given loss function and m(< n) is the number 
of samples set apart for learning. This is done by specifying a wide class of 
functions for / and using a search method like neural networks or genetic 
algorithms. The efficiency of an estimated function / is judged by cross vali­
dation, i.e., applying it on the remaining (n — m) samples and computing the 
average loss 

n 

(n-m)-1 ^2 <j>[yi - f(xi)}. 
m+l 

If the computed loss is large, we alter the class of functions / and search for 
an optimal solution. The final solution is obtained by a series of iterations. 

4 Some final thoughts 

We view this pile of data as an asset to be learned from. The bigger 
the pile, the better - if you have the tools to analyze it, to synthesize 
it and make yourself more and more creative. 

- Britt Mayo 
Director of Information Technology 

Statistics is a broad based scientific discipline with theory and methods 
developed through the calculus of probability for taking optimal decisions un­
der uncertainty. During the last century, research in statistics was directed 
to the concepts laid down by Fisher, Neyman and Wald. As pointed out in 
Section 1 of this paper, there are difficulties in formulating the problems to be 
solved and in applying these concepts to practical problems. [There has been 
an uncharitable criticism that statisticians are providing exact solutions to 
the wrong problems, where as in practice, what is needed is an approximate 
solution to the right problem]. Current statistical methodology has no satis­
factory rules governing the choice of the inputs needed such as data modeling, 
prior probabilities, and expression of uncertainty in decision making. Data 
mining methods, applied on large datasets, seem to bypass stochastic con­
siderations, and derive decision rules using "machine learning" methods and 
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evaluate their performance through cross validation. The techniques used in 
data mining problems such as pattern recognition, decision trees, clustering 
and cross validation have their roots in statistics, but perhaps not actively pur­
sued by statisticians. We may agree with what Weiss and Indurkhya (1998) 
say: 

Statistical models are competitive with those developed by computer 
scientists and may overlap in concept. Still, classical statistics may 
be saddled with a timidity that is not up to the speed of modern 
computers. 

In conclusion, I believe DM is a form of much needed statistics neglected by 
statisticians. 
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Comment 

CHALLENGES FACING STATISTICS FOR THE 21ST 
CENTURY 

C.C. Heyde 
Australian National University and Columbia University 

Australia 
E-mail: chris@wintermute.anu.edu.au 

1. Introduction 
I am pleased to have the opportunity to join Professor Rao in commenting 

on what future there may be for statistics. He has an unrivalled perspective 
on the core content of the discipline while my vision is principally from the 
probabilistic side of the subject. But we are very much in agreement on the 
many challenges facing statistics and that the warning signs should not be 
ignored. 

Prof. Rao has chosen a title for his paper which suggests that he has 
looked deeply into his crystal ball to see the possible future form for statistics, 
although in the text he hardly extrapolates beyond the present. He starts 
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from a deep perspective of what statistics is, and what are its principal tools. 
He then goes on to sketch current limitations, firstly of the methods, which 
are mostly model oriented, and secondly of the limitations of statisticians 
themselves, as a consequence of a training which all too frequently omits 
key topics and any serious focus on applications. He questions the extent 
to which the needs of statistical customers are being met. Finally, he notes 
that statisticians have been less than wholehearted in their acceptance of the 
opportunities offered by the power of modern computers, and he flags data 
mining as a "form of much needed statistics neglected by statisticians". 

These are timely warnings to which I will add my own perspective. We 
must be aware of the possible future if the statistical profession maintains its 
current attitudes and practices. Much of this discussion is an abridged version 
of the lecture Heyde (2002) given at a NSF workshop in Washington D.C. in 
May 2002. 

2. The current situation 
At a superficial look, statistics is thriving as a profession. The Ameri­

can Statistical Association (ASA) has around 17,500 members and 21 special 
interest sections. The Royal Statistical Society (RSS) has 6300 members in­
cluding a professionally accredited membership of some 1500. The societies, 
national and international, have an ever expanding list of programs reflect­
ing the increasing importance of applications. And there is no shortage of 
jobs for statisticians. In some areas, for example biostatistical jobs in the 
pharmaceutical industry, the demand for new recruits is considerable. 

However, if one looks at membership over time, the societies are pretty 
much static, save for special cases such as the International Statistical Insti­
tute (ISI). The RSS has been declining slowly in recent times, for example 
dropping by 100 in 2000. Its last big jump in membership was in the 1970s 
when it grew by 20%. Since then, if one corrects for the merger with the 
Institute of Statisticians (IOS), it has been static or in decline. The ASA has 
increased its membership by a little over 10% in the last 20 years. Statistical 
societies elsewhere have had roughly comparable experiences. For example, 
the membership of The Statistical Society of Australia peaked at 735 in 1973; 
5 years later it had slipped to 650 and it has since stayed around this level. 
Whether these membership numbers are in line with a general downturn in 
participation in community type organizations (e.g Putnam (2000)) is an open 
question. Certainly the societies need to maintain their vitality and integrity 
of purpose, and to avoid excessive fragmentation. And unfortunately many 
new graduates are not joining. 

Ageing of the societies is another issue. For example in the case of the 
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International Statistical Institute (ISI), the median age of members in June 
1996 was 55 and by December 2000 it had grown to 59! Somewhat more than 
10% of newly elected members are resigning after 3 or 4 years of membership. 

Table 5. INTERNATIONAL STATISTICAL INSTITUTE (ISI) 

Members by Age June 1996 Dec. 2000 

Over 70 14.6% 17.2% 
Over 60 34.2% 45.2% 
Over 50 71.9% 83.5% 
Below 50 28.1% 16.5% 

It would be instructive to examine age profiles in a wide variety of settings 
to aid in the assessment of general health. 

A useful measure of activity in statistics is provided by the number of 
papers and books listed in the annual Current Index to Statistics published 
by ASA and IMS. Details are given in the following table. It should be 
noted that there was rapid growth in the 1970s but that numbers have now 
levelled out to around 8500 - 9000/year. This is coming from a list of core 
journals, currently numbering around 110 and expanding at the rate of around 
2/annum, roughly 400 non-core journals and some 1500+ edited books and 
proceedings. Some details are given in Table 6 below and the numbers do 
suggest a hollowing out of core statistics as the diverse applications literature 
expands. 

Table 6. Papers listed in Current Index to Statistics 

1976 4300 
1978 7500 
1980-89 82591 
1990-98 85658 
1999 8585 

It is instructive to look at the case of Data Mining, a major growth area 
whose importance for statistics has been reviewed by Professor Rao. Current 
Index to Statistics first recorded the title in 1996, and then flagged the subject 
with a heading in 1997, in which year 17 papers were listed. This came 
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about through the creation of a new (international) journal Data Mining and 
Knowledge Discovery published by Kluwer, with 4 issues/year. As of late April 
2002 the Current Index to Statistics database produced 93 articles in response 
to a search for data mining articles. By contrast, a look at Ingenta Search 
(http://www.ingenta.com) on the same day produced 1256 articles spanning 
the period 1995-2002. It is clear enough that Statistics is not embracing Data 
Mining even though a few statistics departments seem to be acknowledging 
that it represents a new market niche. 

Rather similar comments can be made about Bioinformatics, although 
many more statisticians are taking a research interest in aspects of this sub­
ject. 

Perceptive professionals can discern the trends before they show up clearly 
in the literature. So, by and large, can the students. Indeed, the striking 
recent growth in Mathematical Finance has been largely fueled by student 
demand. Many faculty who were drafted into teaching courses in the area 
have subsequently developed a corresponding research interest. 

The slow growth of the literature masks a slow decline in submissions 
to the key journals. This is proceeding in tandem with the creation of new 
journals, often of a quite narrow specialization. To quote some examples, the 
annual submissions to Annals of Statistics (AOS) have been 345, 344, 283, 
292 over 1997-2000 compared with stable levels of 10+ years back of around 
375. Those for Annals of Probability (AOP) have slipped from 242 and 219 in 
1997 and 1998 to 200 in 2000. Those for Annals of Applied Probability slipped 
from 170 in 2000 to 136 in 2001. The journals Journal of Applied Probability 
and Advances in Applied Probability had its submission numbers peak around 
450 in the early 1990s and these have slipped to 330 in 2001. 

Sales of the key journals are also slipping. From 1998 to 2000 the total 
subscriptions of AOP dropped 11% from 2287 to 2039, while those of AOS 
dropped 7% from 3619 to 3358. The drop in each case has been worse amongst 
members than non-members. 

We must note this slippage against a background of there being 200+ new 
PhDs a year in the USA in "Math."Statistics and perhaps half that number 
elsewhere. It is clear that many, perhaps most, of these people are essentially 
being lost to the statistical profession as it is now constituted. They are ending 
up in kindred disciplines for which their research skills are very relevant. 

3. The future of university statistics 
It is my feeling that statistics may need to be recast into a broader dis­

ciplinary setting. The autonomous university statistics department, as we 
now know it, could easily disappear in the forseeable future, but at the same 
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time there will be an increase in the number and diversity of university pro­
grams that have a serious statistical component. The amount of statistical 
work being done by those who do not identify with the statistical profession 
is increasing much more rapidly than that being done by those who do iden­
tify with the profession. However, the integrity of the profession cannot be 
sustained by a diverse collection of applications in the absence of adequate 
attention to the methodological core of the subject and the continuing devel­
opment of deep and broadly applicable results. 

When I joined academia 40 years ago it was an expansionary time for the 
tertiary education sector. Statistics departments were new, or being newly 
created, across the world. Statistics was acknowledged as an important dis­
cipline and a necessary component of a well rounded education in any dis­
cipline with a quantitative basis. Service courses were generally taught by 
statisticians and this fueled the growth of the new departments. But over 
the intervening years the report card has not been so good. Failure to pro­
vide client departments with what they wanted and competitive pressures on 
departments to generate revenue from student numbers have resulted in the 
loss of many of these courses. Statistics departments have contracted as a 
consequence and this has meant, not uncommonly, loss of autonomy through 
amalgamation with another department, usually Mathematics. Some depart­
ments have escaped through, for example, fortuitous location, institutional 
prestige, or niche marketing. 

All disciplines now find themselves in a market driven environment. In­
ternationally there has been a substantial decline in student numbers in the 
Physical Sciences. Mathematical Sciences has been significantly affected, but 
not as much as Physics and Chemistry. Some universities have closed Physics 
departments (three in the UK); there is no guaranteed core any more. The 
first private university in Australia closed (sold) its whole Science Faculty. 
Statistics departments will need to make their choices in a very competitive 
environment. 

I would like to think that statistics can retain its traditional strengths and 
add to them with optional courses, differing from institution to institution, in 
reflection of important application areas and interests and expertise of the fac­
ulty. The universities have generally responded well to the recently emergent 
market niche in quantitative finance. We can, in principle, respond similarly 
to other market opportunities. Admittedly this is not painless against a back­
ground where staff numbers are often declining, for one has to take the risks, 
and offer the new courses, before the student numbers grow, and the payoff 
can be harvested. Adjuncts and other departments need to be enlisted as part 
of the process. 
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4. Historical roots and possible transformation 
Our tradition is largely that of inference based on probabilistic models, 

as Professor Rao has noted. This places us squarely in the mathematical sci­
ences. We have never sought a broad role in the information sciences, and 
even less in information technology. Indeed, computing has been a rather in­
cidental statistical tool. But now much data is automatically recorded. There 
is no shortage of contexts where there are no real limitations of sample size. If 
one is studying network traffic models then 50,000 observations are routinely 
available. It is inevitable that fields such as Data Base Management have 
evolved. By default probably, rather than design, the statistical profession 
did not seek to embrace such things. The rationalizations are clear, the sub­
ject is fundamentally non-stochastic, it is technical rather than scientific etc 
etc. This attitude has been marginalizing the statistical profession in the mar­
ketplace, both commercial (and nowdays as a consequence) academic. There 
is no doubt in my mind that we are becoming less influential and that other 
data oriented sciences are taking customers, students and jobs away from us. 

I see this very clearly at Columbia University where my principal role 
is that of Director of the Center for Applied Probability (CAP), a cross-
campus, cross-disciplinary enterprise concerned with chance and risk in all 
their manifestations. Some 25 faculty across 10 university departments belong 
to this center, and I find that my closest colleagues there are based in disciplies 
outside Mathematics and Statistics, via Engineering and Business Schools. 
They do probability and statistics under other auspices and they have no real 
identification with the statistical profession, even though they have often been 
trained through mathematics or statistics departments. People like this can 
help to provide vital links to other kindred disciplines. On the whole, these 
links are tenuous. Half of the CAP postdocs have come from Mathematics and 
Statistics departments, have rebadged themselves into Quantitative Finance, 
and are likely to be lost to Statistics. 

The term statistics has negative social connotations. So there may be a 
case for trying to reinvent and reinvigorate the subject under a new name 
which has a better image, and is suggestive of a broader spectrum of activity 
than hitherto. I do not have a really good name to suggest. Statistical Sciences 
seems better than Statistics. We need to embrace uncertainty, risk and chance 
as well as statistics. A new word in the spirit of " Stochastic" might be created. 
I think "data" should be kept out of the title. And what we do is a science 
rather than a technology. One difficulty is that for any prospective title there 
are likely to be other players who want to defend their perceived territory, and 
perhaps partnerships or amalgamations are the only way forward. There are 
certainly precedents, such as the merger of the Operations Research Society 
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of America and The Institute of Management Science in 1994/5. 
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Rejoinder 

I want to thank Professor Heyde for his comments on my paper. He 
expressed some concern about the slow rate of growth of statistical societies 
(decline in some) in terms of membership, the ageing of societies, the slow 
rate of growth of literature in statistics judged by submission of papers to the 
core journals, and a general decline of student numbers in statistics. [In many 
advanced countries, the ratio of local to foreign students studying statistics 
in the universities is declining.] 

The title of my paper may sound pessimistic. It was chosen to highlight 
what I see as a crisis in statistics, the way it is taught in the universities 
more as exercises in mathematics than demonstrating its usefulness in solving 
practical problems, and the way it is practiced by consultants using rou­
tine statistical methods, depending on available software, to answer specific 
questions rather than cross examining data to solicit whatever information is 
available on the problem under study. 

I hope the reflections on the past and visions for the future as discussed in 
my paper and professor Heyde's comments, " we are becoming less influential 
and other data oriented sciences are taking customers, students and jobs away 
from us", will promote discussions at national and international conferences 
on the future of statistics and the way it should be developed to retain its 
status as a separate discipline of fundamental importance. [A Dean of the 
Pennsylvania University while addressing the statistical faculty remarked that 
if there is a budget cut, statistics will be one of the departments to be closed 
down.] 

mailto:cchl8@columbia.edu


245 

I would like to take this opportunity to provide some additional references 
expressing similar concerns. 

Under Kolmogorov, Fisher and Neyman set up, specification of the prob­
ability model for given data is essential for data analysis. They have not, 
however, provided guidelines for the choice of an appropriate model. [A large 
number of papers are published in well known journals offering solutions to 
problems using unjustifiable or unrealistic models simply because they lead 
to easy solutions.] It is quite possible that the methodology based on some 
standard models which are easy to work with are somewhat robust against 
possible alternatives. It was believed that the inference based on the normal 
probability model will be valid for small to moderate departures from normal­
ity. It was shown by Tukey, Huber and others that even a slight departure 
from normality and contamination in data may lead to wrong analysis. How­
ever, there are widely different opinions ranging from completely discarding 
models [Breiman (2001) with the discussion], emphasizing the distinct roles 
of stochastic models in data analysis [Cox (1990), Lehmann (1990)], to the 
use of imprecise probability models [Walley (2002), Zadeh (2002)]. I believe 
that modeling should be an integral part of data analysis, and not something 
chosen a priori. Successful modeling might throw a new light on the prob­
lem. One should also recognize situations where model free analysis is called 
for. It may be of interest in this connection to refer to Tukey (1980), where 
he talked about exploratory and confirmatory data analysis and to Box and 
Draper (1987) who refer to two types of modeling, empirical (or interpolatory) 
used as a guide to action, often based on forecasts of what to expect from 
future observations, and explanatory (or mechanistic) involving the search 
for the basic mechanism underlying the process being studied leading to a 
fundamental understanding of the problem. [Do we have codified statistical 
methodology for explanatory modeling?] 

There is some confusion between scientific and statistical methods. A 
recent paper by Mackay and Oldford (2000) clarifies the situation. They de­
scribe the statistical method as represented by five stages: Problem, Plan, 
Data, Analysis, Conclusion (PPDAC). This is a broadly acceptable descrip­
tion, but the questions to be addressed at each stage have to be properly 
formulated depending on the problem, on which there may be differences of 
opinion. [From where do the problems arise? The source is from other fields, 
but not statistics]. Analysis should not be confined to just tests of significance 
at a conventional level of significance and estimation of parameters as taught 
in the statistical courses. It should be aimed at extracting all the information 
contained in the data about the problem. 

I have mentioned in my paper the need for statisticians to play a ma-



246 

jor role in what has come to be known as data mining which is essentially 
statistical analysis of large data sets which are becoming available in commer­
cial transactions, human genome studies and web pages consisting of textual 
and multimedia information that are used by millions of people. We have to 
evolve new statistical methodology of large data sets taking advantage of the 
available computing power. [See Table 4 in the paper]. Otherwise we may 
lose a large number of customers to computer scientists and engineers who 
are already actively engaged in data mining. 
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A generic approach to the comparison of treatments in many experimental designs 
is to exhibit the data in a contingency table that is at least partially ordered, 
construct a model for the table of counts, and derive an omnibus test statistic 
and its components. For several important experimental designs the components 
are asymptotically chisquared distributed and assess moment differences between 
treatments. Often the initial components are the basis for well-known nonpara-
metric rank tests such as the Kruskal-Wallis and Spearman tests. Further de­
compositions of the components to obtain LSD comparisons are easily derived. 
We usually recommend combining the higher moment components into a residual. 
The approach is demonstrated for three designs. 

K e y w o r d s : balanced incomplete block design, completely randomised block design, or­
thogonal polynomials, partition, randomised block design. 

1 Introduction 

For many experimental designs the data many be entered into a contingency 
table that is at least partially ordered. The objective may be to simply com­
pare treatment means, but nevertheless it will often be possible to formu­
late a general model and derive an omnibus test to compare treatments. In 
the designs we consider below, when there are no ties the test statistic is a 
simple multiple of Pearson's chisquared statistic. The omnibus statistic is 
then decomposed into components that are asymptotically independent and 
asymptotically have the chisquared distribution. These components assess 
the presence or abscence of location, dispersion, and higher univariate mo­
ment differences between treatments for singly ordered data, and of bivariate 
moment differences between treatments for doubly ordered data. 

The distributional assumptions for the models proposed are minimal, and 
some of the lower order tests based on the components are well-known rank 
tests such as the Wilcoxon, Kruskal-Wallis, Friedman, Durbin and Spearman 
tests. The tests based on the higher order components are extensions of these 
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tests and are often new to the literature. Their convenient null distributions 
mean they are simple to use, and they are easy to interpret. Collectively they 
provide a depth of insight into the statistical analysis not previously possible. 
This general approach allows the development of new nonparametric tests, in 
particular for many of the more complicated experimental designs for which 
nonparametric analogues of the traditional parametric test statistics have not 
yet been developed. 

In the following we focus on data analysis for three designs: the completely 
randomised design, the randomised block design, and a balanced incomplete 
block design. Details of the derivation of the analyses may be found in Rayner 
and Best (2001). A new book focusing on the analysis of sensory data, Rayner 
and Best (2002), is in preparation. 

2 Overview of the analysis derivation 

The analysis for the designs presented here assumes that it is possible to 
construct a partially or completely ordered contingency table of counts, {Nij} 
say. For such a table Pearson's Xj, may be expressed as a quadratic form, the 
matrix of which may be diagonalised to ultimately give X\ — Ci+C2+---+Cd, 
where the number of components, d, depends on the design. This arithmetic 
decomposition makes no distributional assumptions, and has no distributional 
consequences. Typically the decomposition utilises the orthonormal functions 
{gr(xj)} on the marginal proportions from the table, where {XJ} are the scores 
assigned to the marginal classification. Common scores used are the natural 
scores Xj — j for all j , and the midrank scores. Using orthonormal functions 
results in components that are asymptotically independent. 

For example, for the completely randomised design with no ties, the data 
may be initially organised as ordered observations corresponding to each treat­
ment, and then aggregated into a table of treatments and observations, with 
the j t h ranked observation being in the (i,j)ih position if it is an observation 
of treatment i. All other elements of this column are zero. From this table it 
is routine to construct a table of counts {Nij}, with N^ being the number of 
times treatment i receives rank j . When there are no ties the column totals 
will all be one, and the row totals will be the number of times each treat­
ment is observed. The column marginal proportions are all i , where n is the 
total numbers of observations. In this situation the well-known orthogonal 
polynomials for the discrete uniform-distribution {-} may be used. 

In such situations it follows that constant *Xp = YTY, where by the 
central limit theorem, Y is asymptotically d-variate normal with mean zero 
and unit covariance matrix. For the singly ordered designs the elements of Y 
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are of the form 

constant*^Nijgr(xj)j Jy^Njj. 

V i 
These are asymptotically standard normal, and the components are sums of 
squares of such terms. 

For example, for the balanced incomplete block design when there are no 
ties, we assume that n judges or consumers rank k out of t products with 
each product being ranked r times. As usual rt = nk as both quantities are 
the total number of data points. Put Ri = sum of the ranks for product 

k 

i,Si = 22j2dtj, in which d,j is the number of times product i receives rank 
3=1 

j . Durbin's statistic for testing equality of the product rank sums can be 
defined by 

t 
j2 

Cx 

1 2 ( i - l ) 5 > s 
£? 3r(t-l)(fc + l) 

rt(k2 - 1) (k - 1) 

An accompanying statistic, which examines dispersion or quadratic dif­
ferences between products, is 

180(t - 1) Y^[Si - (fe + l)Ri + r(k + l)(fc + 2)/6]2 

C2 = 1-=1 

rt{k2 - l)(k2 - 4) 

The statistic Ci is a new statistic not considered previously. Durbin's 
statistic is known to be approximately distributed as xi-i- The C-i statistic 
has the same approximate distribution. Schach (1979, p. 43) defined an 
omnibus statistic, A say, which is defined in terms of the table of counts 
{dij}. Schach (1979) showed that 

has an approximate X?t-i)(k-i) distribution. It can be shown that C\ and 
Ci are components of A and that residual A - C\ — C2 has an approximate 
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xft-i)(k-3) distribution. If A - C\ - C2 is large, then it may be important 
to look for cubic and higher order effects. Observe that if k = t (each judge 
ranks every product) then C\ becomes Friedman's rank test and A becomes 
the Anderson statistic for the randomised block design, to be discussed in 
section 4. If k = 2, then A — C\ and C2 is not available: it can be taken to 
be zero. We now show how to decompose C\ and C2. 

Provided k is appropriately large we can define the polynomials 
go(j),gi(j) and (^(j), orthonormal on the discrete uniform distribution, by 

9o(j) = 1 

^WI^HJ-^) and 

/ f 180 1 \ (. n+l\ n2 - 1 
92U) = ( n 2 - l ) ( n 2 - 4 ) J \ y 1 ) 12 j 

each for j = l,. . . ,n. If r = nk/t, the linear or location effect for the ith 
product, Cu say, is defined as 

c" = J(hr)t>Nii9lU)' 
and the quadratic or dispersion effect for the ith product is given by 

c^=^{~)ii^Mj)-
Similarly the sth moment effect for the ith product can be defined by 

c« = v(hr)t>Nii9'{j)-
Then 

A = ^lCli + Yl C* + X] Cli + h i § h e r ° r d e r termS-



251 

Table 1. Consultancies by ranks table. 

Rank 
Consultancy 

Fl 
F2 
F3 

1 2 3 4 5 6 7 8 9 10 
1 1 1 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 1 1 0 
0 0 0 0 0 1 1 0 0 1 

Typically we may isolate the first one, two or sometimes three terms in A and 
combine the rest into a residual. This approach is demonstrated in subsequent 
sections. 

3 The completely randomised design 

When introducing students to the Wilcoxon two-sample and Kruskal-Wallis 
tests, one approach is to order the observations for each treatment, and com­
bine these to form a treatments by ranks table as in the example below. 

Tasters Example. O'Mahony (1986, section 16.14, p. 341) cites an ex­
ample where ten tasters are trained by three different consultancy firms, F l , 
F2, and F3. All the firms claim to have a superior psychological method for 
the sensory evaluation of flavour intensity. The ten tasters were tested for 
their flavour intensity measurement skills and then ranked, with 1 being best 
and 10 worst. The data, in the form of a treatments (consultancies) by ranks 
table, are given in Table 1. 

On the basis of a Kruskal-Wallis test, O'Mahony (1986, section 16.14, p. 
341) claims the consultancy means are significantly different at the 1% level, 
and that the sample sizes are too small to assess exactly which programmes 
are different from which via multiple comparison techniques. A 'by eye' in­
spection suggests that programmes F2 and F3 (average ranks 22/3 and 23/3) 
are equivalent and inferior to F l (average rank 2.5). 

A one-way ANOVA on the ranks has p-value 0.0103, while an LSD com­
parison of the means agrees with the suggestion above, that programme F l 
is superior. This may seem to be a strange choice of analysis for these data, 
but we give it as the parametric competitor to the 'standard' nonparametric 
analysis. 

A deeper nonparametric analysis may be based on (n^L) Xp and its com­
ponents. A feature of this analysis is that the first component is the Kruskal-
Wallis statistic. See Table 2. Each column in Table 1 has a sum of one. The 
reader can quickly verify that XP = 20. In fact Xp is independent of the 
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Table 2. Partition of (~) X% 

Source 
Kruskal-Wallis (Location) 
Residual 
{^)Xl (Total) 

df 
2 
16 
18 

SS 
6.56 
11.44 
18.00 

p-value 
0.04 

-

data; any table of zeros and ones with column totals of one and row totals 4, 
3, 3 will have Xp = 20. This means that in Table 2, that gives details of the 
analysis, we cannot assign p-values to the residual or to (—-) Xp. 

The residual here is numerically small compared to its degrees of freedom. 
Intuition correctly suggests that further partitioning of (2I^ i) Xp to obtain 
components assessing location, dispersion and a new residual involving skew-
ness and higher order effects, will not find further significant effects. 

It is possible to further decompose each component. Here we may calcu­
late values c\\, C12, ci3 of the linear/location component such that the Kruskal-
Wallis statistic takes the value c\ is here given by 

ci = c2
n + c\2 + c?3. 

The statistic en reflects a location effect for the ith treatment. We find 
Cu = -1.98, c12 = 1.05 and c13 = 1.24. An approximate LSD for the cu is 
2\/2. Thus the 'average' ranks for consultancy B and C tasters do not differ, 
but the consultancy A 'average' rank does differ compared to the other two 
consultancies. This agrees with the ANOVA result reported above. 

4 The randomised block design 

When data for a randomised block design for comparing t treatments is put 
into a treatment by ranks table, Anderson (1959) showed that, when there 
are no ties, the usual Pearson statistic does not have the chisquared distri­
bution, but a simple multiple of it, A = {(t- l)/t}XP does have the X(t_1)2 

distribution under the null hypothesis of no distributional differences between 
treatments. Rayner and Best (2002) show how to decompose this statistic 
into the Friedman statistic, a new dispersion assessing statistic, and as many 
other components as may be informative. Usually these other components 
are combined into a residual. 
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Table 3. Consumer by breed table of midrank observations 

Consumer 
1 
2 
3 
4 
5 
6 
7 
8 

A 
2.5 
1.5 
2.5 
1 

1.5 
1 
1 

1.5 

Breed 
B 
1 
3 
1 
3 
3 

2.5 
3 
3 

C 
2.5 
1.5 
2.5 
2 

1.5 
2.5 
2 

1.5 

Table 4. Decomposition of the Anderson statistic for the geese meat flavour data 

Statistic 
Location (Generalised Friedman) 
Dispersion 
Total (Generalised Anderson) 

Value 
3.769 
8.714 
12.484 

Degrees of freedom 
2 
2 
4 

p-value 
0.152 
0.013 
0.014 

When ties occur, as is frequently the case, recommendations include ig­
noring the tied data, randomly breaking the ties, or deriving an entirely new 
analysis, such as that given in Brockhoff, Best and Rayner (2002). Their gen­
eralised Anderson statistic has not been given previously. The approach is 
demonstrated in the following example. 

Geese Meat Flavour Example. Suppose we have a taste-test involving 
meat from three breeds of geese. Flavour rankings were obtained and are given 
in Table 3. Note that consumers frequently cannot completely distinguish 
their preferences, so there are many ties in the data. The Anderson statistic, 
generalised to allow for ties, is decomposed in Table 4. 

The overall difference in the meats from the various breeds, as assessed 
by the generalised Anderson statistic, is significant at the 5% level but not at 
the 1% level. The 15% p-value for the generalised Friedman statistic indicates 
that the location differences, reflected by the rank sums of 12.5 for A, 19.5 
for B and 16 for C, are not significant at the usual levels. However there is a 
significant dispersion difference. Decomposition of this dispersion component 
permits us to analyse pairwise differences; see Table 5. These indicate a 
difference in dispersions for breeds B and C. Breed B has a large dispersion, 
with many large and small ranks, whereas there is strong agreement about 



254 

Table 5. Pairwise comparisons; statistic values (upper triangle), and p-values (lower trian­
gle) 

Breed 
A 
B 
C 

Breed 
A B 

5.48 
0.065 
0.164 0.008 

C 
3.62 
9.62 

-

Table 6. ANOVA for the geese meat flavour data 

Source 
Breed 
Consumers 
Residual 
Total 

df 
2 
7 
14 
23 

SS 
3.0625 
0.0000 
9.3375 
12.400 

F 
2.16 
0.00 

p-value 
0.153 

breed C, with mainly intermediate ranks. 
If we do a two-way or randomised block analysis on the Table 3 data, 

we find that, ignoring consumers, the variances seem to be homogeneous, but 
that the residuals are not normally distributed (the Anderson-Darling test 
has p-value 0.032). Thus some caution in basing inference on the ANOVA 
is advisable. Table 6 gives the ANOVA. As with other ranked two-way or 
randomised block data, the consumers sum of squares must be zero, because 
each consumer mean is the same when ranks are used. Of course the ANOVA, 
inasmuch as it is valid at all, only assesses location differences and fails to find 
the dispersion effect. 

5 The balanced incomplete block design 

As with the previous designs, for balanced incomplete block data it is possible 
to present the data in a treatments by rank table. Suppose, consistent with 
section 2, that each of b blocks contains k experimental units, that each of t 
treatments appears in r blocks and every treatment appears with every other 
treatment precisely A times. As in section 2 we can show that an Anderson-
type statistic for balanced incomplete block designs with no tied data, A, is 
such that A = {(t-l)/t}XP may be decomposed into k-1 statistics assessing 
the differences between the treatments in the first k - 1 moments. In large 
samples A approximately follows the x(t-i,k~i) distribution. Each of the fc-1 
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Table 7. Balanced incomplete block design off-flavour scores for dried egg taste-test 

Consumer 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

a 
b 
b 
a 
a 
b 
b 
e 
a 
d 
a 
c 
a 
c 
c 

Samples 
b 
c 
d 
c 
d 
9 
e 
9 
b 
e 

f 
d 

f 
d 
e 

d 

f 
f 
e 
h 
h 
h 
i 
c 

f 
9 
i 
h 
9 
f 

e 
3 
9 
9 
3 
i 
3 
3 
i 
i 
3 
3 
i 
h 
h 

9.7 
9.6 
9.0 
9.3 
10.0 
9.6 
9.8 
9.4 
9.4 
8.7 
9.7 
9.3 
9.8 
9.0 
9.3 

Scores 
8.7 
8.8 
7.3 
8.7 
7.5 
5.1 
7.4 
6.3 
9.3 
9.0 
6.7 
8.1 
7.3 
8.3 
8.3 

5.4 
5.6 
3.8 
6.8 
4.2 
4.6 
4.4 
5.1 
8.2 
6.0 
6.6 
3.7 
5.4 
4.8 
6.3 

5.0 
3.6 
4.3 
3.8 
2.8 
3.6 
3.8 
2.0 
3.3 
3.3 
2.8 
2.6 
4.0 
3.8 
3.8 

moment detecting components approximately follows the xft-i) distribution 
in large samples. The first statistic in the decomposition assesses location 
differences between the treatments and is identical to Durbin's rank statistic 
for balanced incomplete blocks. 

Dried Egg Example. In sensory evaluation there is evidence to suggest 
that tasting more than four or five samples at one sitting results in reduced 
acuity arising from confusion or fatigue associated with making a large number 
of comparative judgements and/or with taste-bud saturation. For this reason 
incomplete block designs are employed. Rayner and Best (1996) quoted results 
from a taste-test on ten dried egg samples, a,b,...,j where the design used was 
a balanced incomplete block design. Table 7 gives the design for 15 consumers 
and the corresponding scores for 'off-flavour'. If these scores are ranked 1, 2, 
3, 4 and counts are made of how many times each sample received each rank, 
then Table 8 results. Here a rank of 1 is given to the highest score and a rank 
of 4 to the lowest score. 

Our nonparametric analysis results in Table 9. We see that both linear 
and quadratic effects are significant and from Table 8 we see that as we go 
from product a to product j off-flavour worsens. However, also from Table 
8, we see that the quadratic effects are due to clumping at one end only, 
or a middle rank clumping and not to some instances of two clumps. Thus 
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Table 8. Counts of ranks for the dried egg data 

Product 
a 
b 
c 
d 
e 

f 
9 
h 
i 

J 

1 
6 
4 
3 
0 
2 
0 
0 
0 
0 
0 

Rank 
2 
0 
2 
2 
5 
2 
2 
2 
0 
0 
0 

3 
0 
0 
1 
1 
1 
3 
3 
4 
2 
0 

4 
0 
0 
0 
0 
1 
1 
1 
2 
4 
6 

Table 9. Partition of Anderson's statistic for the dried egg data 

Statistic 

Location (Durbin) 

Dispersion 

Residual 

{(t - l)/t}X2
P (Anderson) 

df 

9 
9 

9 

27 

SS 

39.12 
22.80 

10.08 

72.00 

X2 p-value 

< 0.001 

0.007 

0.344 

-

Monte Carlo p-value 

< 0.001 

0.002 

0.337 

-

there is no suggestion of market segmentation. Table 9 also gives Monte 
Carlo permutation test p-values as the chisquared approximation for balanced 
incomplete block statistics may not always be accurate. 
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The maximum likelihood estimation of correlation matrix under order restrictions 
among correlations is treated. Two maximization process:(A) maximization with 
respect to correlation matrix and (B) maximization with respect to variance are 
considered. For the maximization process (A), we generate uniformly distributed 
random correlation matrices on the hypothesis space by Gibbs sampling. In the 
maximization process (B), we show that the maximum point is the fixed point of 
the iterative application of a certain non-linear function and the convergence of 
the process (B) is proved. A simulation result is given which compares the relative 
errors of the m.l.e. and other competitors. 

Keywords: maximum-likelihood estimation, correlation matrix, Gibbs sampling. 

1 Introduction 

Motivation 
We consider the maximum likelihood estimation of the correlation matrix 

of a multivariate normal distribution under order restrictions among compo­
nent correlations. For example, we want to estimate the correlation matrix of 
the four variables Xi,X2,-X3 and XA where X\ denotes the test score in an 
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entrance examination acquired by students and X2, -X3 and X\ denote respec­
tively the test score acquired by the same student in the pre-tests executed in 
one month, two months and three months ago respectively. Putting p^ the 
correlation of the variable Xj and Xj, it seems to be natural to assume the 
following two types of monotonicity among component correlations, 

Hc • Pn > P13 > Pu and p23 > p24 (1) 

and 

Hr : Pn < P23 and pi4 < P24 < P34- (2) 

Thus the situation we consider seems to be considerably realistic. Here 
in general by Hc we denote the column decreasing hypothesis, that is, pij > 
Pi,j+i of all 1 < i < p and 1 < j < p — 1 and by Hr the row increasing 
hypothesis, that is, pij < Pi+ij of all 1 < i < p — 1 and 1 < j < p. Further 
we put Hrc — HrnHc. We denote by Hau "no hypothesis", that is, the space 
is the set of all correlation matrices, and by H+c we denote Hrc n {p^ > 0 of 
all {i,j}. Thus we have the following decreasing sequence of hypotheses 

Haii —> {Hc, Hr} —> Hrc = Hr n Hc —» Hrc. (3) 

The problem is to obtain the maximum likelihood estimator (m.l.e) for the 
correlation matrix under each hypothesis. Though for simplicity we treat the 
hypothesis Hau and if+. in this paper other hypotheses are treated in a similar 
way. This work was inspired by the work of Gelfand et al. (1995) which first 
used Gibbs sampling for several inferential problems under order restrictions. 
Lie et al. (1995) used Gibbs sampling in estimating a covariance matrix and 
Calvin and Dykstra (1995) treated the problem of the maximum likelihood 
estimation of covariance matrices with constrained parameter spaces in the 
context of EM algorithm. The problem treated in this paper seems to be new 
as far as the authors know. The paper of Sakata and Sawae (1998) is closely 
related to this work. A general reference for ordered restricted inference is 
Robertson et al. (1988). 

Likelihood function 
In this paper we assume that the vector X = (Xi,X2,--,Xp) has a p 

dimensional normal distribution A/"p(0, E) and that we have a sample of size 
./V(> p) from this distribution. Then the sufficient statistic for E is the sample 
covariance matrix S = (sij) where Sij = ]Cfc=i XikXjk/N and Xik is the fc-th 
sample of the variable JQ. Let W = NS. Then W has a Wishart distribution, 
W{N,p, E). The density of W{N,p, E) is given by 

1 -etr(-^-1W)\W\^N-p-1^2. (4) 
2^ /2 r p ( f ) |E | f 2 



260 

where etr(-) denotes exp(trace(-)). Now let R denote the sample correlation 
matrix, that is, 

R - (nj), Uj = tJ . (5) 
y/WiiWjj 

Let Vi = wli for i = 1,2, ...,p and V = diag(vi,v2, —,vp). 
Then the statistic (R, V) has the joint density given by 

2 ^ 2 r p ( f ) | E | T V 2 n ' 1 1 J 

Here we consider the corresponding decomposition of the population covari-
ance matrix E into the population correlation matrix Y and the population 
variances A = diag(an, (X221 •••i<ypp)i *na* ' s ' 

E = diag{y/a\l, yjoyi,..., y/Vp~p~) T diag(y/a^, sfo^n, •••, y/°m>) (6) 

= A ^ r A 1 / 2 . (7) 

Then we have the following log likelihood function for V and A 

N P P 1 

- y l o g | r i + i V l o g J J ^ - i V l o g n \ / ^ - 2 i r a c e ( r ~ l r i ? T ) ' (8) 

where i4 = J%- = y ^ f and T = A " 1 / 2 ^ 2 = ^ a 5 ( ^ , ...,tp). 

As far as the maximization, it suffices to consider the following equivalent 
function with the likelihood function 

N p 1 
*(I\t) = — log|r | + JVlogJ]** - -traceiT-'TRT). (9) 

Maximization of the function £(T, <) 
We need to maximize £(T, t) , that is, to take 

sup sup£(T,t), (10) 
reH. t>o 

where H* denotes any hypothesis and t > 0 means that ti > 0 for all 
i. In order to take the above maximization we execute the following two 
maximization processes iteratively. 

(A) Correlation maximization process 
For a given £W, the i-th step value of t, we take the maximum with respect 
to correlations, that is, 

sup * ( r , t « ) = *(r< i + 1 \ <<*>). (11) 
reH, 
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(B) Variance maximization process 
For a given V = T^+1\ we take the maximum with respect to variances, that 
is, 

sup£{^i+l\t) = £(T(i+1\t(i+V). (12) 

The maximization process (A) is done by a random search. That is, we 
generate a certain number, say k, of random correlation matrices on the hy­
pothesis H* and find a T which gives the maximum value of l(T,ti) among 
them. Note that the computing time increases linearly in k. Though it does 
not take so much time to obtain a maximum likelihood estimator for an arbi­
trary k, it takes much time to repeat the simulations to see the performance 
of the m.l.e. And so we used k = 1 in this paper. This means that the 
maximization about T is done through only one iteration of (A) and (B). 
The maximization process is done by solving a certain non-linear equation 
numerically. It is shown that this process converges. 

We iterate both processes and stop at a predetermined number of times. 
Finally we adopt a pair of (r, t) as the maximum likelihood estimator which 
gives the maximal value of the likelihood among all pairs that appear in the 
iteration. 

2 Gibbs sampling and uniform random correlations 

Here we consider to generate uniformly distributed random elements over the 
set of the correlation matrices. We use the Gibbs sampling method. The 
Gibbs sampling is one of the methods to generate random vectors obeying the 
target distribution in the limit through a certain Markov chain. In general 
the one step of the Markov chain is composed of the iterative generations of 
one dimensional random variable from the conditional distribution given all 
other coordinate variables. For the definition of Gibbs sampling and Markov 
chain Monte Carlo methods see Bernardo and Smith (1994), chapter 5. For 
its applications to restricted inference see Gelfand et al. (1995). In our Gibbs 
sampling we cyclically generate correlation coefficients with other correlation 
coefficients fixed. The following Lemma and the statement after the lemma 
state how the method works. 

Lemma 1 Let T = (pjj) > 0 be a correlation matrix, and p_ij be the set of 
all upper half components of T other than p^. For fixed p_ij, in order that 
r = (p^) is a positive definite correlation matrix, pij must be in an interval. 

Proof: Without loss of generality we assume i = 1 and j = 2. The 
condition that T is a positive definite correlation matrix means that all the 



262 

q(q = 1,2,... ,p)-th main diagonal square matrix from the right corner have 
a positive determinant. Since the q-th (q <p—l) main diagonal matrix is un­
related to the element pi2, the condition is equivalent to that the determinant 
of T is positive. We now show that pi2 is in some interval. Let us expand the 
determinant |T| with respect to the second column. We have 

-P32 

(-1)P12 

Pl2 P23 

Pl3 1 
* * 

Pip P3p 

1 P13 ** Pip 

Pl2 * ** P2p 

Pip P3p ** 1 

+ • 

** p2p 

** P3p 
** * 
** 1 

•• + ( - l ) P 

+ 
1 

P13 
* 

Pip 

1 
Pl2 
* 

P l , p - 1 

Pl3 ** Pip 
1 ** p 3 p 

P3p ** 1 

Pl3 ** Pip 

* ** P2p 

P3,p-1 ** Pp-l,p 

> 0 . 

The left hand side of the above equation is a polynomial of degree two in 
x = pi2 and the coefficient of x2 is the main diagonal matrix obtained from 
T by deleting first and second columns and rows from T, and so is positive. 

Hence the condition is the inequality 

-ax2 + bx + c > 0, a > 0. 

This proves pi2 is in the interval (a, /?), where a and /3 are two real roots of 
the equation 

—ax2 + bx + c = 0. 

Note that the iterative generation of the random numbers on 1-
dimensional intervals appearing in the Lemma generates an uniform ran­
dom correlation matrix T s Hau. Further if we add the restriction such 
as pi,j-i > pij > Pi,j+i to the interval for generating pij, it would generate 
the uniform random correlation matrices on the hypothesis Hc and it is easy 
to generate the uniform distributed elements on Hr, Hrc and Hfc similarly. 

In the maximization process (A) we generate uniformly distributed ran­
dom correlation matrices over the hypothesis, say, Hau by the Gibbs sampling 
to seek the correlation matrix maximizing £(T, t) for a given t. A seemingly 
easier way to generate random correlations on Hau is to generate uniform 
random elements in the box [—1,1] 2 and adopt the element only if it is a 
positive definite correlation matrix, that is, in Hau- However the relative size 
of Haii to the box is very small even for p > 4 as is shown in Table 1. This is 
a main reason why we propose Gibbs sampling. 
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Table 1. Relative volume of Hypothesis Hai 

V 
Relative Volume 

3 
61.7 

4 
18.3 

5 
2.2 

6 
0.095 

7 
0.0013 

We note that it is an interesting but difficult problem to obtain theo­
retically the marginal distribution of each correlation coefficient under the 
uniform distribution on any hypothesis space considered in this paper. 

3 Maximization process (B) 

In maximization process (B) for a given r £ H, we seek t = (ti,t2,---,tp) 
which maximizes the likelihood £{T,t). 

Theorem 2 For a given T G H t = (ii,<2, •-,tp) which maximizes the likeli­
hood is the solution of the following non-linear equation, 

where 

N/t = Bt, 

B = {bij) = {p'3rtj) and 1/t = {1/h, 

(13) 

,1/tp). 

Proof: The equation is obtained by taking the partial derivative of the like­
lihood with respect to t. 

Our second main result is the following theorem. 

Theorem 3 The iterative method described below converges to a solution in 
the positive orthant. 

Description;Take a starting point t^ — (4 , 4 i--->4 ) *n ^ e positive 
orthant. First we solve the equation (13) as one of degree two in i i and 
put the positive solution as t[ = / i ( 4 i 4 ' • • • ' 4 )• Next we solve the 
same (13) as the equation of degree two in i2 with t[ in place of t\ and 
put the positive solution as t'2 = /2(t ' i ,4 >• • • >4 )• Likewise we have t'3 = 

f3(t[^tf\...,tp
0)),...,t'p = /p(*i t^-j). We sett™ = (4,4>->4)-

By repeating the process with t^ as a starting point, we have v-2'. Continuing 
this process we have the sequence 

Proof: First we show that the sequence given by the description above con­
verges to a fixed point of a certain map if it converges. By / we denote the 
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map / from 5JP to itself by (t^, t2
j),..., tp

j)) -> (t[, t'2,..., t'p) in the descrip­
tion. Our iteration method thus can be described as the iterative applications 
of the same mapping to the starting point. That is, the sequence of the points 
is given by 

t(n) = f(n){t(0)) = / ( / ( . . . / ( t ( 0 ) ) . . . )}. ( M ) 

If these sequence of points converge to some point tf(°°) it is necessarily the 
fixed point of the mapping. Since ^°° ' is the fixed point we have 

*(«>> = / ( t ( ° ° ) ) . 

Then we have i<°°> = / i ( ^ , ^ , • • • . 4 " 0 ) . 4°°' = M t ^ ^ l • • • ^ } ) , 
..., 4 o o ) =fP(t[°o), t2°°\ ..., t{™\). This shows that the fixed point *(°°) is the 
solution of the non-linear equation (13). Moreover the process shows that the 
solution is in the positive orthant. 

Next we show the convergence. Let us consider the following function: 

h(t) = giTR-^r), 

where 

fl(V,W) = l o g | V W | - t r VW. 

Then we have easily that 

f = Nt^-2Ut, 
at 

where i _ 1 = (l/ti,l/t2,..,l/tp)', T = diag(ti,...,tp) and 

U = (utj), Uij = (R-^ijTij for i = 1,2,...,AT, j = 1,2,...,N. 

From Rao (2000) it follows that the Hessian matrix d2h/dtdt' is negative 
definite. Hence, the function h is strictly concave in every orthant without 
boundary, especially in the positive orthant. Noting that h is equivalent to the 
likelihood function this enables us to apply the convergence theorem of Warga 
(1963) for our procedure. In the conditions of his theorem, the concavity is 
essential and others can be easily checked, and hence we have the convergence 
of our iterative procedure. 

It should be noted that from our experience the non-linear equation can 
be solved by at most 20 iterations in the process (B). 
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Table 2. True r„ e H+ 

Xi 

x2 
x3 

Xr 
1.0000 

* 
* 

x2 
0.9258 
1.0000 

* 

x3 
0.8452 
0.9129 
1.0000 

Xi 

0.7559 
0.8165 
0.8944 

4 Comparisons of relative errors of m.l.e. and others 

In this section we compare the relative error, the mean absolute error divided 
by a true value, among three estimators of the population correlation matrix 
T* e Hfc, Rgibbs, Rpava and R. Rgibbs is the pseudo m.l.e. obtained by 
Gibbs sampling, and Rpava is the estimator obtained by Dykstra's matrix 
order PAVA algorithm, which calculates the isotonic regression of the rows 
and the columns itelatively (see the page 27 of Robertson et al. (1988) for 
the definition of matrix order PAVA algorithm). Note that both Rgibbs a n d 
Rpava are calculated based on the usual sample correlation matrix R. 

In order to run a Gibbs sampling on Hfc, first we choose an initial corre­
lation matrix To in Hfc and an initial variance vector VQ. After 50000 times 
repetitions of the process (A) and (B) we take out Rgibbs which gives the 
highest likelihood value among the 50000 Gibbs samples. By 100 times simu­
lations we obtained the relative error for each estimator. We should note that 
in the above simulation r 0 and T* € H^F are obtained as 

Pij 
I Ki + K2 + ... + Ki 

Kl + K2 + ... + Kj 
(15) 

with KI — 0.8, K2 = 0.6 and K3 = 0.4 for T* and K\ = 0.5, n2 — 0.7 and 
K3 = 0.8 for IV It is easy to show that the matrix whose components are given 
by (15) is a correlation matrix. Table 2 gives correlation matrix T* G H^c. 

Below we present the simulation results about the relative errors. 
From Table 3 we see that Rgibbs is slightly efficient than R and there is 

no difference between Rgibbs a n d Rpava-
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Consider a production line in which a production item is failed with probability 
p and it is then repaired. We consider two repair disciplines I and II. For each 
discipline we find the p.g.f. of the steady state size of the system at the moment 
of departure of the customer. For discipline II, we show that the closed form of 
the p.g.f. depends on solving a functional equation that is the Laplace-Stieltjes 
transform of the service time in the main queue. Through an example, we compare 
the two disciplines in terms of specified performance measure. 

K e y w o r d s : busy period, idle period, imbedded Markov chain, M / G / l queue, probability 
generating function, reservicing. 

1 Introduction 

In this paper we consider an M/G/l queueing model in which some customers, 
after the completion of their service, require reservice with probability p. For 
example in a production line, some items may be failed with probability p 
and must be repaired. Here,the production line is considered as the main 
queue (MQ) and the failed items join a "failed queue" (FQ). We consider 
two disciplines I and II for repairing the failed items. For each, we find a 
steady-state probability generating function (p.g.f.) for the size of the system, 
and show that it depends on the Laplace-Stieltjes transform (for convenience 
LST) of the distribution functions of service and repair times. Through an 
example, we then compare the two disciplines in terms of the probability (or 
proportion of time) that the server is idle. Customers arrive in the system in a 
Poisson process with rate A. Service (s) and repair (s) times are independent 
and have general distributions, denoted by B\(t) and B^t) respectively, with 
means l//zi and 1///2-

In discipline I, if the server is in MQ, then when a service is completed, 
if the item served has failed, then the server switches to repair it; otherwise 
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the server continues to service MQ customers if any are present, or if not the 
server is idle. 

In discipline II, if the server is in MQ then on completion of the service, 
the server continues to service any other MQ customers, or if there are no 
more MQ customers but if there are FQ customers, the server attends to 
these. If,however,there are no more MQ and no more FQ customers,the 
server is idle. If the server is in FQ, then the server continues in FQ until 
FQ is empty.and then switches to MQ customers if any are present; otherwise, 
the server becomes idle. If the server is idle, service starts again as soon as 
customers arrive in MQ. 

As mentioned, our aim is to find analytic expressions for the steady-state 
p.g.f. of the system size under the two disciplines at the moment of service 
completion. Since we are studying an M/G/l model, we may consider an 
imbedded Markov chain in which the size of the system is the number of cus­
tomers remaining in the system at the time of service completion for each 
customer. The method of the imbedded Markov chain allows us to simplify 
analysis, since it converts a non-Markovian into a Markovian problem[see 
Kleinrock (1976)]. In Discipline I, the imbedded Markov chain is X(tn) (or 
for convenience, Xn), the number of customers remaining in MQ at the com­
pletion of the nth customer's service time. In Discipline II, we require the bi-
variate imbedded Markov chain (X(tn),Y(tn)) (or for convenience (Xn,Yn)), 
where Yn is the number of customers remaining in FQ at the completion of 
the nth customer's service time. 

This problem has been considered from a slightly different perspective by 
Trivedi (1982). In his problem, as the items come to be serviced, the failed 
item returns to the queue with probability q and servicing is completed with 
probability p. In this paper, we do not allow the item to return to the queue, 
but store the item with probability p if it requires reservice. We suppose that 
there is no set-up time, but this condition is the subject of ongoing research 
by the authors. 

We find the required expressions for the p.g.f. under discipline I and II 
in sections 2 and 3 respectively. At the end we give an example, and by 
discussion we compare a performance measure of the two disciplines. 

2 The queueing discipline I 

Let ti,t2,..., be times at which a service is completed. Let X(tt) = JQ be 
the number of customers remaining in the MQ at U. Then we have 

Xn+1 = (Xn - l ) + + ,4n + 1( s) + [An+1(s) - l ] + / { X n =o} , (1) 
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where (a - 1)+ — max{a - 1,0}. In other words, Xn+i is given by 

' Xn + An+\ (s) — 1 if Xn > 1 and departure at tn+\ occurs 
Xn + An+i(s) + An+i(s) - 1 if Xn > 1 and departure at tn+\ is failed 
An+i(s) if Xn — 0 and departure at tn+i occurs 
[i4n+i(s) - l] + An+i(s) if Xn = 0 and departure at tn+i is failed 

(2) 
where An+i(s) is the number of arrivals during the servicing of the (n + l)th 
customer in MQ, and i4n + i(s) is the number of arrivals during repair in FQ. 
Remark 1: [An+i(s) - 1]+ means: when Xn = 0 and the serviced item is 
failed, it must be repaired.Then,either there are no arrivals during the time 
spent reservicing failed item, in which case the server then becomes idle until 
an arrival does occur,or there is a first such arrival and service on this customer 
starts immediately the server finishes on the failed item.Then to cover both 
these cases in the one equation, we use the [An+i(s) — 1]+ function. 
Remark 2: An+i(s) and An+i(s) are independent of Xn+i and also of each 
other and of n, and depend only on s and s, respectively. Thus we denote 
these by A(s) and A(s) in the following. Three Lemmas become useful for 
finding the required p.g.f. 

Lemma 1 If A(s) and A(s) are the number of arrivals during service and 
reservice times, respectively, then their p.g.f.s are Qi{u) = B*[\{\ — u)],i = 
1,2, where -Bj(-) and S^-) are the LSTs of the service and repair times. 
Proof. We obtain the expression of the p.g.f. of A(s), noting that the proof 
for J4(S) is similar. 

Qx («) = E [uA^] =TUJ I dB^ (*) = / e-A ( 1 _ u )*d£i (s) , 
j=o Jo 3- Jo 

that is, Bl[X(l-u)}. 
Lemma 2 By Lemma 1 we have E\Px{A(s) = 0}] = B^X) . 
Proof. E[PT{A(S) = 0}] = E[e-xs] = f™ e-

xsdB2(s) = B$(\) . 
Lemma 3 If X is a non-negative integer valued r.v. with p.g.f P{u), then 

£[ u (* - i )+ ] = u-
l[P{u) - (1 - u) Pr(X = 0)]. 

Proof. E[u&-V+] =E[u°I{x=0}+u(x-Vl{x>1}] -

Pr (X = 0) + u~x [P(u) - Pr(X = 0)] = u_ 1[P(u) - (1 - u)Fx{X = 0)] . 

Proposition 1 According to (1) and (2) the p.g.f. of the number of customers 
in the system at the moment of departure is 

PM = q-z) f f i [A( l -*) ] [ l -p[ l -g 2 *(A)]] 
1 ; (1 - p)B{ [A(l - z)\ + pC* [A(l -z)]-z**> [6) 
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where C*(-) is the LST of the convolution of service and reservice times, and 
7ro is the probability that the MQ is empty and is equal to 

7T0 = ( l - / » ) { l - p [ l - B 2 * ( A ) ] } - 1 . (4) 

where p = p\ +PP2, p\ = A///1 an<^ P2 = VM2-
Proof. P(z) = E(zx"+1) = 

E 

+E 

E 

zXn+A(s)-iI{x^ ( 1 _ p) + E [^-+^W+^( 5 ) - 17 { X n> 1 } 

*'>J{x„=o>l ( 1 - P ) + E \ Z A ^ + ^ - ^ I { X ^ z'-^'i{x„=a) 

1 r 

=0} 

yA(s) !^[E (zx"I{xn>i}) (1-P) + E (zx«I{Xn>i}) E (**'")) P 

+7ro[(l-p) + E^A^~^)p\} 

Now, by using Lemmas 1 to 3, and since E (zXnI{x„>i}) — P(z) — TTO> 

P(z) = B\ [A(l - z)} | 1 [(1 -p)(P(z) - n0)+p(P(z) - n0)B*2 [A(l - z)}} 

+7ro [(1 -p) + V- [B-Z [A(l - z)] - (1 - z)E [Pr (A{s) = o)] ] ] } 

After simplification, we reach (3). 

Two special cases are as follows: 

a ) l f p = 0 , thenP(z) = {(l-z)Bl[\(l-z)}}{B*1[\(l-z)}-z}-1no (5) 

with 7r0 = 1 — A//ii = 1 — XE[ service time ] = 1 — p\. This is similar to the 
M/G/l queue without any conditions [see Gross and Harris (1985)]. 

b) If p = 1, so that each customer is served twice then 

P(z) = {(1 - z)B* [A(l - z)) B;(X)} {C* [A(l - z)} - z}-1 TT0 (6) 

with TTo = ( l -p ) [ f l5 (A) ] " 1 . 
Note that, in order to find TTQ in (3), (5) and (6), we use Hopital's rule 

and the fact that P ( l ) = 1. 
Remark 3: We can think of the service time of an individual as being the 
service time in MQ plus any 'reservice time' (conditional on requiring such 
reservice), times the probability p of the item being failed. Then E[service 
time]=l//L*i +p/p-2 = l//i- Now, we have an M/G/l queue with mean service 
time l/p. On the other hand, the mean of busy period in M/G/l is found by 
taking the derivative of the functional equation T(u) = B*[u + A(l - T(u))] 
[see Takacs (1955)], with u = 0, in which T(u) and £*(•) are the LST of the 
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distribution functions of busy period in MQ and service time, respectively, 
and is equal to l/(/z - A)[see Gross and Harris(1985)]. Therefore, E[busy 
period]=p/A(l -p). By using Little's law[see Stidham(1974)] and the mean of 
idle period(l/A), that is exponentially distributed, we have £(busy period)/^ 
(idle period)=(l-7To)/7To, which yields TTQ = 1-/9, where 7TQ = Pr(idle period). 

3 T h e queueing discipline I I 

In this case, since we store the failed items and then repair them, we require 
two variables. One of these, Xn, is the number of customers in the MQ at the 
epochs {£„},which are departure times, and the other, Yn, is the number of 
failed items in store (FQ), again at the epochs {£„}. We now have a bivariate 
imbedded Markov chain (Xn,Yn). Thus (Xn+i,Yn+i) is 

((X„ - 1)+ + A(s) + [AiTfcji) - l)+I{Xn=a],Yn I{xn>0} + Un+1) (7) 

in which Un+i = 1 if departure has failed, and is otherwise zero. Since A(-) 
is a counting measure, then .A(E^i s,) = tff=i ^L(SJ)

 m which A(s~i) is the 
number of arrivals during repair of the (i)th failed item in FQ. The A(s~i) 
are i.i.d. r.v.'s. To evaluate the joint p.g.f. (Xn,Yn) in the steady-state, we 
consider by P(u,v) = E(uXnvYn), and develop the proposition below. 
Proposition 2 The joint p.g.f. of (Xn,Yn) is 

P(u,v) = {(1 - p + pw)flf[A(l - u)} - u}-1^ -p + pv)Bl[\(l - u ) ] x 

[R(v) - G*(u,p, A) + (1 - u)G*(0,p, A)]}7T0. (8) 

in which 

R(v) = Znjl0v
j , j > 0 (9) 

TTJIO = Pr{y„ - j | Xn = 0} (10) 

7T0. = Pr(Xn = 0) (11) 

G*(u,p,\)=^(l-P+pB*2[\(l-u)}) (12) 

^ ( u ) = « B J [ A ( l - ^ ( u ) ) ] (13) 

where ip(u) is the p.g.f. of the number of served customers (departures) in a 
busy period (here in MQ) [see (Takacs (1955) and Saaty (1961))]. It is clear 
that the number of failed items in FQ is distributed as a binomial distribution 
with parameters p and K, where K is the number of served customers in a busy 
period in MQ and has p.g.f. ip{u). Expression (13) is a functional equation. 
Takacs has proved the existence and uniqueness of an analytic solution ofip(u) 
for \u\ < 1 subject to 0(0) = 0. In addition, he has shown that l\mip(u), where 
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u —> 1, equals the smallest positive real root of the equation B^ [A(l - a;)] = x. 
By solving Expression (13) we can find the p.g.f. ofYn given Xn = 0, denoted 
by R(-), in terms ofip{u). 

Proof. We start with (7) and use (9) - (13). 

P(u,v) = E(ux"+1vYn+1) = 

= E(uAM){±=2&ZE[ux"vY<>I{Xn>0,Y„>o}] +n00(l-p + pv)+ 

(l-p + pv)E[J-^^Mii)-1^I{Xn=o,Yn>o}]} 
By Lemma 3,using IAB = I A X IB and some computations, P(u, v) is 

(1 - p + pv)B*1 [A(l - u)} { i [P{u, v) - R{v)iro.] + n00+ 

^{E([B*2[X(l-u)]]Yn)-{l-u)E([B^X)]Y")}-E{I{Xri=0,Yn=0})} 

Now, by simplifying, it yields (8). 
Remark 4: Using limP(u, 1), where u —> 1, an ergodicity argument, Remark 
3, Little's law, the means of the busy periods in MQ and FQ and the idle 
period, we can find 7To. and 7i"o0 which are Pr(MQ is empty) and Pr(idle 
period), respectively. On the other hand, we have 

£J[busy period] = E[busy period in MQ] + p-E^busy period in FQ] (14) 

The first expression is equal to l/(/^i — A). To find the second expression, TTO 
and 7Too, we use the results a-g below. 

a E(K) = tl/(l) = (l-p1)-
1. 

Proof. The proof is straightforward and is left to the reader. 

b The LST of the distribution function of a busy period in FQ is 

F*(u) = G*(0,p,u) = R(B*2(u)) (15) 

Proof. First we find R(u) as follows. 

R(u) - E{uY») = E [E[uY- \K}] = E [(1 - p + pu)K] = </>(l - P + pu) . 

On the other hand, the repair time of failed items is T = E ^ S j , where the 
§i are i.i.d and distributed as B2(t). We find the distribution of T as follows: 

F(t) = Pr(T <t)= P r f E f ^ < t] = E{PT[E^S* < t\Yn]} 
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If we take the LST of both sides of this equation, use the fact that the LST 
is a Linear Operator and exploit the LST convolution property and by R(-), 
then F*(u) is equal to 

E [ l / { P r [ E £ i S i < t\Yn]}] = E[{B*2{u))Y~] = <P(l -p + pB*2(u)) 

Hence F*(u) = R(B%{u)) = G*(0,p,u). 

c E [busy period in FQ] = p[/i2(l - P i ) ] - 1 • (16) 

Proof. By taking the derivative of (15), with u — 0, we find 

^ * ' ( « ) | u = 0 = "^[busy period in FQ] = pB*2 {u)^'{I -p + pB*2{u)\u=Q . 

Since B2(0) = —1/^2 and using ip'(l) from a, the proof is completed. 

d E [busy period] = (/ii2+P2j"i)[/"2(/«i-A)]"1. 

Proof. By using (14), (16) and l / (p i - A), we obtain the result. 

e 7rS0 = ( l - / 5 l ) ( l + p i J p 2 ) - 1 . (17) 
Proof. From Little's Law, we have 

E [busy period]/E [idle period] = (1 — ""oo)/(7roo) which yields (17). 

f TTO. = (1 - Pi)2bP2 + (1 - Pi)G*(0,p, A)]"1. 
Proof. We use Hopital's rule and the fact that limP(,u, 1) = 1, where u —> 1. 

g If p = 0 and v = 1, P(u) = (1 - u)BJ[A(l - u)]{JBJ[A(l - u)] - w} _ 1 TT0. 
This is similar to the special case (a) in section 2. 

4 Concluding remarks 

This paper has addressed the problem of M/G/1 queues with the possible 
repair of failed items. Two queuing disciplines have been discussed: in disci­
pline I, the server repairs a failed item immediately, whereas in discipline II, 
failed items are stockpiled and repaired only after all customers in the main 
queue are served. For each discipline, explicit formulae are obtained for the 
steady state probability generating functions of the imbedded Markov chains 
involved. 

By developing the corollary below, the two disciplines are compared in 
terms of the probability(proportion of time) that the server is idle, denoted 
by 7i"o and 7to0 for disciplines I and II, respectively. 
Corollary 1 TTQ < ITQQ. Ifp^O, the inequality is strict. 
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Table 1. Values of (7rJ, TTQ0) for selected A and p, with /J,I = 2, /J.2 = 6 

P\A 
0.1 
0.3 
0.5 
0.7 
0.9 

1/2 9/10 1 4/3 
(.742,.749) (.535,-549) (.483,-499) (.311,-333) 
(.725,744) (.505,.543) (.450,-490) (.267,-327) 
(.708,-735) (.475,.530) (.417,-480) (.222,-316) 
(.692,-721) (.445,-512) (.383,-462) (.178,-301) 
(.675,-703) (.415,-491) (.350,-441) (.133,-283) 

Proof. Suppose that the inequality is not true. Then we should have 7TQ > 
7T0Q, which means 

\4 (1 p->0 
M2 

t A 0/-. A , A 

Ml M2 

By considering the cases p = 0, p ^ 0 and p(l — p) < 1, the proof is completed. 
Hence, if the goal is to minimise this measure, discipline I is superior. 

This is illustrated numerically in table 1 for selected values of p, A,/zi,//2 and 
degenerated service and reservice times distribution. 
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In bioinformatics with special emphasis on computational biology, genomic science, 
polygenic models, and computational sequence analysis, principles of molecular ge­
netics (biology) provide room for stochastics to comprehend the basic differences 
between mathematical exactness and biological diversity. With a large number of 
sites or loci having mostly categorical (qualitative) responses and imprecise depen­
dence patterns, standard (discrete or continuous) multivariate statistical modeling 
and analysis may encounter roadblocks of various kinds. Limitations of likeli­
hoods and their variants are appraised and contrasted with the inadequacy of the 
knowledge discovery and data mining approach that exploits mainly computational 
algorithms. Alternative approaches that take into account underlying biological 
implications to a greater (and parametrics to a lesser) extent are appraised in the 
light of validity and robustness considerations. 

K e y w o r d s : biostochastics, DNA strand, genomics, hidden Markov models, high-
dimensional data, KDDM, likelihoods, nonparametrics, stochastic evolutionary force. 

1 Introduction 

With the advent of modern information technology and scientific curiosity in 
human genomics, we are at the dawn of bioinformatics; it is not precisely 
known what really constitutes the domain of bioinformatics: pharmaceutical 
researchers, molecular biologists, computer scientists, biomathematicians, and 
statisticians differ in their definitions and interpretations, though to a much 
lesser extent than in their basic emphasis on methodologic versus computa­
tional aspects. Faced with this dilemma, let me quote a few lines from a very 
recent statistics text on bioinformatics by Ewens and Grant (2001): 

We take bioinformatics to mean the emerging field of science growing 
from the application of mathematics, statistics, and information technology, 
including computers and the theory surrounding them, to study and analysis 
of very large biological and in particular, genetic data sets. The field has been 
fueled by the increase in the DNA data generation. In a similar manner, an 
image of bioinformatics has been drawn earlier by Waterman (1995), with 
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more emphasis on computational biology. 
At the current stage, gene scientists can not scramble fast enough to 

keep up with the genomics, emerging at a furious rate and in astounding 
detail. This is particularly significant in view of the nearly completed sta­
tus of the mapping of human genome sequence (IHGSC 2001, Venter et al. 
2001). Faced with this monumental genomic task, it is more important to 
see how sound methodolgy could be tied to superb computational schemes 
to unfold the mysteries of the molecular activities in our body system. But, 
that way, we need to have the dusts settled before finding the right path 
for the desired scientific findings. Bioinformatics, at least at this stage, as 
a discipline, does not aim to lay down fundamental mathematical laws that 
govern biological systems parallel to those laid down in physics. There is, 
however, at this stage, mathematical utility in the creation of tools (mostly, 
in the form of computer graphics and algorithms) that investigators can use to 
analyse exceedingly large data sets arising in bioinformatics studies. Because 
of underlying stochastic evolutionary forces, such tools may generally involve 
statistical modeling of (molecular) biological systems, which in turn, requires 
incorporation of probability theory, statistics, and stochastic processes. Al­
though knowledge discovery and data mining (KDDM) procedures dominate 
computational biology, and bioinformatics in general, from the above discus­
sion we may gather that it would be improper to jump on statistical conclu­
sions based on data analysis alone (even under the fancy umbrella of KDDM). 
Elements of statistical learning (Hastie et al. 2001) have therefore emerged 
as an endeavor to impart statistical reasoning to data mining; bagging, boost­
ing, bootstrapping and additive trees are emerging as useful tools in KDDM 
explorations. Yet there is a genuine need to grasp the genetic and molecular 
biologic bases of bioinformatics to sort out the stochastic aspects from purely 
empirical computational aspects, and to lead to some resolutions that synchro­
nize methodology and algorithms towards a common goal. Primarily driven 
by this motivation, we use the following terminology (Sen 2001): Biostochas-
tics to deal primarily with stochastic modeling and analysis (i.e., stochastics) 
for very large biological (including genetic and genomic) data sets. In this 
formulation, biostochastics attempts to cover large biological systems which 
may not have predominant genetic factors; neuronal spatio-temporal models 
are noteworthy examples. In this scenario, we embark on an excursion of 
biostochastics from the traditional biometry to modern biostatistics to the 
evolutionary field of bioinformatics, without being confronted solely in the 
molecular genetics frontier. Yet identifying that molecular biology and large 
genetic models are important members, biostochastics is charged with the 
development of sound methodologic support for valuable computer intensive 
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algorithms that are currently widely used in genomic studies. It is in this sense 
somewhat complementary to statistical learning that places more emphasis on 
computational aspects. 

Section 2 deals with an introduction to the basic need of statistical rea­
soning in bioinformatics including the budding field of pharmacogenomics. 
Section 3 is devoted to certain aspects of polygenic models where also statis­
tical needs are genuine. Variants of likelihoods, such as the quasi-likelihood 
and pseudolikelihood, are discussed in Section 4. Section 5 deals with some 
nonparametrics. Some general remarks are appended in the last section. 

2 Bioinformatics : a preamble 

Given the background of bioinformatics evolution, and the relevance of statis­
tical reasoning, let us start with the current state of art. Computer Science, 
in conjunction with information technology, seem to have stolen the limelight 
of current developments in this field, and KDDM is indeed a hot cake. While 
most of the adopted algorithms are advocated in the name (or game) of data 
mining, there appears to be a propensity, in this way, to choose a model from 
the observed data, and quite often, scores of possible models can be viewed 
as competitors. When a single model is thus chosen as the most appropriate 
one, there may be others that may give as good a fit. On the other hand, 
even when a model is specified on some other (mostly, subjective) grounds, 
it might not have been formulated with due statistical as well as biological 
motivations and justifications, or even, a true model may not exist. Thus, 
under such uncertainty, preliminary checking on model selection (as is needed 
in a computational scheme) merits critical statistical appraisal. Hence, sta­
tistical perspectives in KDDM in the context of bioinformatics can not be 
overlooked. A similar picture holds for statistical impacts in other aspects of 
bioinformatics, some of which are outlined below. It is in this spirit, we like 
to appraise statistical methodology that plays a basic role in bioinformatics. 

Let us also comment on the impact and role of the triplet: pharmacoki­
netics, pharmacogenetics and pharmacogenomics in the evolutionary field of 
bioinformatics. Pharmacology is the science of drugs including materia med-
ica, toxicology and therapeutics, dealing with the properties and reactions of 
drugs, especially with relation to their therapeutic values. In the same vein, 
pharmacodynamics is a branch of pharmacology dealing with reactions be­
tween drugs and living structures; pharmacokinetics relates to the study of 
the bodily absorption, distribution, metabolism, and excretion of drugs. It is 
no wonder that in many cases, the reaction of drugs on living organism may 
have genotoxicity; pharmacogenetics deals with the study of interrelation of 
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hereditary constitution and response to drugs. 
Genome is the sum of all the genetic material in any organism; the precise 

sequence of the four component chemicals {A, C, G, T} determines who we are 
as well as how we function. Each human cell has 46 chromosomes, 23 from 
each parent, and genes are precise sequences of {A, C, G, T} arrayed at definite 
sites or loci on chromosomes. DNA is the carrier of genetic information; it 
is double helic model, made up of the four nucleotides where A pairs with T 
and G with C; A and G are purines while C and T are pyrimidines. Like the 
DNA, RNA and proteins are macromolecules of a cell, though differ in their 
forms and constitution; RNA is single-stranded (with T replaced by U), and 
proteins are complex chains of 20 amino acids that carry out tasks necessary 
for life, while enzymes are proteins that take other proteins apart or put them 
together. Both RNA and proteins are made from instructions in the DNA, 
and new DNA molecules are made from copying existing DNA molecules 
(in a process called synthesis). DNA has a nearly constant diameter with 
regularly spaced and repeated structures, irrespective of the base composition 
or the order of the four bases. Recent researches in human genome analysis 
have revealed that each gene produces, on an average, three proteins, and 
sometimes, as many as five. In this way, pharmacogenetics have paved the 
way for the evolution of pharmacogenomics. 

The Central Dogma states that once (genetic) information passes into pro­
tein, it can not get out again. The transfer of information from nucleic acid to 
nucleic acid, or from nucleic acid to protein is possible, but transfer from pro­
tein to protein or protein to nucleic acid is not possible. The loop from DNA 
to DNA is called replication, from DNA to RNA is called transcription, and 
the loop from RNA to protein is called translation. RNA that is translated 
into protein is called messenger RNA or mRNA, and the transfer RNA or 
tRNA translates the genetic code into amino acids. The central dogma has 
been extended in later years; retroviruses can copy their RNA genomes into 
DNA by a mechanism called reverse transcription. 

If we accept the basic hypothesis that DNA is the blueprint for a living 
organism then it becomes natural to conclude that molecular evolution is 
directly related to changes in DNA; during the course of molecular evolution, 
substitutions occur. Recall that A-T and G-C are pairs formed by hydrogen 
bonds. As such, the substitution A <-> G or C <-> T are called transitions, 
while i n C , A <-> T, G <-* C, G <-> T are called transversions. Thus, two 
purins or two pyrimidines are said to differ by a transition while a purine and 
a pyrimidine are said to differ by a transversion. Also, it may be noted that 
amino acids are encoded by triplets of nucleotides of DNA called codons. Let 
us define MR = {A, C, G, U} as the set of nucleic acids, and let 
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C = {(x1,X2,x3):xi£ArR, j = 1,2,3} (1) 

be the codon. Finally, let A be the set of aminoacids and termination codons. 
Then the genetic code can be defined as a map: 

g:C^A, geG. (2) 

Thus, Q is the set of all genetic codes. 
Stochastic evolutionary forces act on genomes (molecular evolution). 

Probability models have been advocated recently by a host of researchers; we 
refer to Ewens and Grant (2001) for a up-to-date account. However, genes 
are not simple: the very high dimensionality and yet unknown nature of the 
battery of activities, specially in the evolutionary phase, have created an 
enormous task for molecular biologists and geneticists in the years to come. 
With the nearly completed picture of the human genome project, there are 
other formidable statistical tasks too. We shall appraise some of them later on. 

3 Genet ic undercur ren t s 

The genome sequence is a classical illustration of a large molecular biological 
system with persistent genetic undercurrents. High-resolution linkage maps of 
genetic markers play a basic role in human genome project where an increasing 
number of molecular genetic markers are being identified, creating a genuine 
need for genetic maps to describe the location of genetic markers along chro­
mosomes as well as centrosomes. Genetic researchers have recently reached a 
consensus that it takes just about 30,000 to 40,000 genes to make, maintain 
and repair a human being. Gene- environment interaction has emerged as one 
of the most active research areas. It is conceived that there are certain genes 
that are associated with disease phenotype, side-effects, and drug efficacy, so 
that pharmacogenomics occupies a focal position that deals with the study 
of variability in distribution, absorption, metabolism and reaction of humans 
to drugs which are geared to interact at the molecular level in relation to 
toxicologic and therapeutic impacts. Because of inherent variations and an 
enormously large number of genes as well as a very large pool of diseases and 
disorders, there is a genuine need of statistical methods to assess the genetic 
mapping of disease genes. 

In that way, appropriate drugs can be designed to identify disease re­
lated susceptibility genes, study their mutation and mode of penetration, and 
thereby possible means of controlling or eliminating some target disease or 
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disorder. In spite of this being a very appealing motivation, it may not be 
that easy to secure the desired information network. This is why pharmacoge-
nomics is stepping in in this complex genetic modeling and analysis. Usual 
genetic approach may not often be amenable to high throughput screening. In 
pharmacogenomics, data mining of sequences plays a basic role from opera­
tional as well as application points of view. Yet targets need much functional 
validation to relate genomics to a disease process; generally, this way they are 
amenable to high throughput screening. Another approach is the functional 
validation method wherein differential gene expressions, proteomics etc., are 
emphasized. Either way, taking into account the enormous variability in this 
biological process, as well as, the underlying stochastic evolutionary forces, it 
is clear that statistical reasoning is essential in this context. 

The genes inherited by an offspring can be of differing allelic type; if 
there are only two possible types, the locus is termed a diallelic locus. The 
two genes at each locus determine the genotype at that locus, a person is ho-
mozygote or heterozygote according as the two allels are identical or not. The 
phenotype of an individual for a trait refers to the observable characteristics 
of the trait; the frequencies of outcomes for the various possible crosses are 
commonly termed in genetic analysis as segregation ratios. In contrast to loci 
on nonhomologous chromosomes, genes at two physically close loci on a com­
mon chromosome exhibit interference, and it has mostly been observed that 
the recombination fraction behaves as a monotone (but nonlinear) function of 
their physical distance. In this respect, the law of linkage equilibrium relates 
to those recombination fractions (under the usual regularity assumptions that 
underlie the classical Hardy-Wienberg equilibrium). In this respect, infinite 
population (without migration), discrete generations, random mating, and 
equal initial maternal and paternal genotype frequencies are assumed, albeit 
one or more of these assumptions are likely to be vitiated. 

In the classical genetic models involving only a finite number of loci, the 
usual Mendelian likelihoods can be formulated under suitable regularity as­
sumptions. Such likelihoods are based on three submodels: (i) Probability 
distribution of the parential genotypes, (ii) penetrances, defined as the likeli­
hood of an observed phenotype, given an unobserved genotype, and (iii) tran­
sition probabilities depicting the flow of genetic information from the parents 
to an off-spring. Though such a formulation can be worked out for a small 
number of loci, the task becomes prohibitively laborious as the number of loci 
becomes large (as is the case in genomes). The main complication may arise 
due to linkage. In biometrical genetics, one has quantitative traits determined 
by a large number of loci; in a standard polygenic model, it is assumed that 
the loci are acting independently and additively, so that adopting a Mendelian 
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likelihood approach may lead to considerable conceptual as well as computa­
tional complications. There is also a need to incorporate environmental effects 
which may not interact in an additive way. 

Identifying gene(s) that cause a specified disease is done by assigning the 
location of the gene(s) on a chromosome. In simple Mendelian inheritance 
models this has been possible by the so called positional cloning approach. 
Many of the common genes may have a genetic component, though their 
mode of inheritance may not be precisely known. Moreover, they are 
generally believed to be under the influence of multiple environmental 
and genetic factors. The genetic basis of a trait may be established by 
demonstrating that the trait runs in families; there may be, in addition to 
environmental effects, some infection effects which could lead to familial 
aggregation of affected individuals. Also, the genetic effects may be the 
consequence of a single gene to a Medenlian mode of inheritance, a small 
number of genes in oligogenic inheritance, or due to a large number of genes 
in a polygenic inheritance. It is usually very difficult to distinguish between 
the three situations, and as a result, genetic analysis is, by no means, very 
simple. Lange (1997) contains a very lucid treatise of currently available 
statistical tools for conventional genetic analysis, with due emphasis on 
Markov chain monte carlo (MCMC) methods, as well as, some interesting 
Poisson approximations. In genomics studies, some of the transitions may 
not be observable, so that usual Markov models may not apply well. Hidden 
Markov models (HMM) have been advocated (Durbin et al. 1998) to adjust 
for such incompleteness, though there remains some concern for the proper 
interpretation and appropriateness of such models, particularly with a large 
number of sites. At the wake of bioinformatics, genetics is undergoing an 
evolutionary phase wherin pharmacogenetics and pharmacogenomics are the 
most visible and dominant factors. In the light of these factors, we need 
to appraise the evolution in classical genetic analysis for its much needed 
adaptation in bioinformatics. Probability theory, stochastic processes and 
statistical reasoning are all indispensible in this context. However, the 
basic task requires incorporation of software development, process design, 
project management, protein structure prediction, disease specialities, and 
biotechnology. At the present the principal areas of focus include 

(a) gene discovery (disease gene mapping), 
(b) pharmacogenetics and pharmacogenomics, 
(c) biological target identification and validation, 
(d) biological network evolution, and 
(e) chemical lead screening. 
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This bioinformatics venture relies heavily on computationally incentive 
statistical methodology in conjunction with statistical genetics. However, 
much of the molecular biological developments are taking place at a fast pace, 
and allowing the seeding time to absorb the fundamental outcomes to emerge 
in an interpretable and identifiable manner, statistical reasoning is somewhat 
lagging behind the (bio-)technological advances. The dominant computational 
aspects have tilted the bulk of statistical work load to computer science, and 
related KDDM, raising some serious questions on the validity of prescribed 
statistical approaches. 

There is good evidence, acquired by now, that there are certain genes 
that are associated with disease phenotype, side-effects, and drug efficacy. 
On the other hand, the pool of diseases and disorders in human is quite large, 
albeit there are the subclasses, namely, dominant, recessive, and oligogenic 
families. Oligogenes with smaller effects in segregating families can mostly 
be detected by linkage, while polygenes have effects so small that linkage has 
little power to detect them. The simplicity of monogenetic traits vanishes 
for oligogenic and polygenic inheritance. Vast observational discovery of 
genomic phenomena has made it necessary to work on the whole genomes 
wherein comparison of gene families and data mining for disease candidates 
have received greater attention. Human geneticists having good evidence of 
a target gene proceed directly to genetic linkage analysis to localize disease 
genes. However, in view of the enormously large pool of genes, drug discovery 
and target evaluation could be a very delicate task, lacking complete scientific 
precision. Microarrays have swept the investigational routes for gene and 
protein expression analysis. In the analysis of microarray (gene chip) data 
sets, the raw data come in such a vast and unmanageable fashion that some 
preprocessing is needed to reduce the data set to a manageable form where 
the data mining and KDDM algorithms can be used to apply classification 
rule, cluster analysis, and interrelationship methodology. In this respect, the 
meta-analysis part in KDDM needs proper statistical appraisal before being 
accepted as a valid and efficient tool in such purely empirical data dredging 
exercise. Phylogenomics has stepped into the task of combining sequence 
information with attempts to eliminating seeming inconsistencies. Of course, 
superb computational abilities underlie all these developments. 

4 Likelihoods and their limitations 

Conventional likelihood function based statistical inference procedures, 
though appropriate, may encounter prohibitively laborious computational 
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complexities as well as lack of robustness prospects in large parameter space 
models. In genomics we typically have data sets on a large number (K) of sites 
or positions, where in each site, there is a purely qualitative ( i.e., categori­
cal) response with 4 to 20 categories depending on the DNA or the protein 
sequence. Neither these sites can be taken to be stochastically independent 
nor their spatial dependence or association pattern may be precisely known. 
Moreover, as typically K is large, there are roadblocks to implementing simple 
patterns in this complex setup. On the other hand, the embedded variability 
in these responses and the nearly identical structures of the DNA molecules 
suggest that alternative variational studies should be more appropriate from 
statistical modeling and analysis perspectives. For example, in the context of 
judging whether or not mutations at different sites take place independently 
of each other, consider a reduction in modeling based on the count of whether 
or not there is a mutation in position j at a given time, for j = 1,...,K. 
If we let Yj = 1 or 0, according as there is a mutation or not in position 
j ( = 1 , . . . , K), and define the stochastic vector Y = (Vj , . . . , YK)', then the 
probability law of Y is defined on ft = {(ii,..., ix) • ij = 0,1; j = 1 , . . . , K} 
(whose cardinality is 2K). Even for moderately large values of K, the number 
of parameters (2K — 1) associated with this probability law is quite large, and 
for such a large parameter space, conventional likelihood approaches stum­
ble into computational as well as conceptual impasses. Replacement of the 
classical likelihood function by suitable conditional, partial, profile, pseudo or 
quasi-likelihood functions may generally lead to more severe nonrobustness 
properties of associated statistical tests and estimates. 

If we let P(y) = P{Y = y}, y e ft, and define 

Q(y) = log{P(y)/P(0)}, y € ft (3) 

then, we obtain by routine computation that 

P ( y ) = e « W / ^ e C W . (4) 

One can then use the Bahadur (1961) representation of multivariate di-
chotomous random variables (see Liang, Zeger and Qaqish (1992) for further 
extensions), and write 

K 

-P(y) = exp {^2 ukVk + ^2 y^^k + 
fe=l l<s<fc<A' 

••• + yi---VKUl...K} (5) 
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where the Uk are the conditional logits, usk are the conditional log odd-ratio 
etc. In this setup, if we assume further that the u^...*, for / > 3 are all null, 
we end-up with a pairwise dependence model: 

K 

Q(y) = YakVk + Y iskyayk, (6) 
fc=l l<s<fe<K 

wherein the ak and 7sfe represent the main effect and first-order interactions. 
This pairwise dependence model has been incorporated in a pseudolikeli-

hood function approach, albeit with insufficient theoretical justifications with­
out a conditional, partial, or even profile likelihood interpretation (Besag 
1974). The specific form of this function (based on n independent sequences 
Y i , . . . , Y n ) is given by 

this model is also termed the autologistic model. Although, highly compu­
tational incentive Markov chain monte carlo (MCMC) methods can be pre­
scribed for finding the maximum pseudo-likelihood estimator (MPLE) of the 
associated parameters, their robustness and efficiency properties may not be 
usually tenable, and moreover, simulated likelihood ratio techniques using the 
Gibbs sampling or the Metropolis-Hastings algorithm may stumble into com­
putational roadblocks when K is large (compared to n), as may be the case 
in the present context. We refer to Sen (2002) for some discussion. 

As mentioned before, in genomic sequence analysis, we have sequences of 
data sets on a large number of sites, and we may like to know about their 
interrelations as well as possible lack of homogeneity over different groups of 
subjects; this is known as computational sequence analysis (CSA). Often, we 
need to test for homogeneity of G(> 2) independent groups of sequences, each 
group having in turn a number of presumably independent sequences. For this 
external CSA problem, analogous to the classical multivariate analysis of vari­
ance (MANOVA) proble, several approaches have been advocated (Sen 2001). 
First, we may consider the classical likelihood ratio type test. But, in view of 
the unassessed nature of the total (or conditional, or partial) likelihood func­
tion, such a procedure is difficult to formulate. As such, we may consider the 
autologistic model, as described above, where for the gth group, we denote 
the associated parameters by 6g = (a'g, j ' g ) ' , for g = 1 , . . . , G. Based on the 
PMLE of the 6g one may consider then a Wald-type test. But, it could be 
quite cumbersome to obtain a good estimator of the (asymptotic) covariance 
matrices of the MPLE (specially when K is large), and this in turn may require 
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a very large sample size (compared to K and G) in order that asymptotics 
may yield reasonably good approximations. Moreover, no (asymptotic) opti-
mality properties for such tests have been precisely formulated, nor they are 
likely to be true. For this reason, it might be more attractive to use suitable 
aligned scores statistics (Sen 2002), albeit in a permutation model to come 
up with more robust and reasonably simple tests for homogeneity. Empirical 
Bayes and hierarchical Bayes procedures have also been advocated. These 
procedures also depend on suitable likelihood formulations, and in addition, 
on the choice of appropriate priors on the associated parameters. There is 
still ample room for further developments in this direction. 

As a second example, we consider a quantitative trait loci (QTL) model 
involving a (large) number of loci and quantitative phenotypic observable vari­
ables. It is typically assumed that the observable random variable (say, V) 
depends on a number of loci with quantitative traits (say Q\,... ,Qm) and 
possibly under the surveillance of genetic markers at some of these loci, and 
in view of the multiplicity of the traits and markers, it is generally taken for 
granted that Y has a (mixed) normal distribution, given these extraneous 
variables; since some of these are not observable, there is a need to use suit­
able conditional normal laws, and on integrating on the unobservable variables 
one can then arrive at the appropriate likelihood function. No matter how we 
proceed, there could be a very large number of parameters associated with 
such a likelihood formulation. Although EM algorithm can be used for com­
putational facilities, there remains the basic concern: For a large parameter 
space with (moderately large) n, number of observations, what could be said 
about properties of derived maximum likelihood estimators? Such estimates 
are generally not efficient (even asymptotically), are biased, and in some ex­
treme cases, may even be inconsistent; the Neyman-Scott problem is a glaring 
example of this type. The same criticism may be labelled against the likeli­
hood ratio (or allied Wald-type or Rao's scores) tests. A greater concern is 
how robust would be a likelihood based test or estimate for model departures 
(e.g., contamination by heavy tail distribution to assumed normal ones)? As 
additional examples, we may consider any other problem that crops up in 
testing for independence of mutations at multiple sites, genetic mapping of 
disease genes, gene-environment interaction, and other problems referred to 
in the preceding section. Although, for most of these genetic models, some 
(pseudo-)likelihood formulations have been advocated, they are generally far 
from being ideal from statistical modeling and analysis perspectives. For lack 
of space, we shall not enter into detailed discussions on individual problems; 
rather, in the next section, we shall discuss some alternative procedures that 
attach less emphasis on likelihood formulations and more on suitable non-
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parametrics. 

5 Whither nonparametrics 

In order to illustrate the relative merits and demerits of likelihood based 
approaches and some alternative ones, let us consider the genomic (external) 
CSA problem, treated in the preceding section. Instead of binary response 
variables, treated there, we consider here a more general model that arises 
in genomics. We consider K positions or sites where at each position the 
response variable is purely qualitative with C possible outcomes, so that we 
have a full model involving CK possible response vectors. Thus essentially, we 
are to test for the homogeneity of G high-dimensional contingency tables. In a 
single-site model, this reduces to a conventional C-category multinomial law, 
so that we have a (categorical) CATANOVA model, treated nicely by Light 
and Margolin (1971, 1974), and more elaborately in the genomic context by 
Pinheiro et al. (2000), where the Hamming distance in a simple formulation 
has been exploited. We consider here the general case, and formulate some 
alternative procedures. 

Let Xj = (Xn,..., Xm)' be a random vector where the coordinate Xik 
stands for the category outcome c(= 1, . . . ,C) for the ith sequence at site 
k, i = 1 , . . . , n; k = 1 , . . . , if .Note that the responses are purely categorical 
variables, and hence, conventional norms or distances may not be usable here. 
For a pair (i,i') of sequences with responses X, and X^ respectively, the 
Hamming distance is defined as 

1 K 

Dw = ^J2^Xik^Xi'k^ (8) 
fe=i 

This leads us to the sample measure 

- l 

E D"'> (9) 
l<i<i'<n 

which is a [/-statistic (Hoeffding, 1948) with a kernel of degree 2. Note that 
this formulation does not assume that the coordinates of the X, are all stochas­
tically independent. Moreover, Dn, being a [/-statistic, unbiasedly estimates 

1 K 

fc=i 

D„ 
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= £ £ ' & do) 
fe=i 

where I^g is the Gini-Simpson index of biodiversity, as adapted in the present 
context (Pinheiro et al. 2000). 

Consider now G independent groups, where the gth group consists of 
ng independent sequences Xg j , i = l,...,ng, for g = 1, . . . , G . We let 
n = X^g=i ng- For the gth group we denote the sample and population Ham­
ming distances as -Dn,g and A# i 9 respectively, for g = 1,...,G. Also, we 
denote the pooled sample measure by Dn and its population counterpart as 
AH. Basically, we are interested in testing the homogeneity of the A#>g based 
on their sample counterparts D„ iS which are all [/-statistics. Pinheiro et al. 
(2000) followed the conventional ANOVA approach based on [/-statistics and 
their estimated variance-covariance, with the main emphasis on the partition 
of the total sum of squares into within and between groups components. Since 
in the present context, we do not have a (generalized) linear model, their sug­
gested test procedure encounters some complex distributional problems, even 
under the hypothesis of homogeneity. Note that for each k(= 1,...,K) and 
g(= 1 , . . . , G), Xgi' has a probability law on the C-simplex, and on top of 

that, for different k, the Xgi' are not necessarily independent. This renders 
some degeneracy in the null hypothesis distribution theory, and instead of 
anticipated asymptotic chi-squared distribution, we end up with more com­
plex Cramer - von Mises type distributions involving a linear combination 
of independent chi-squared variables with one degree of freedom. It is to 
be noted that the pooled sample Dn can be decomposed into two nonnega-
tive quantities, representing the between and within group components (see 
Chatterjee and Sen (2000) for some more general results), so that one may 
compare the between groups component with the within group component to 
draw statistical conclusions. We end up with similar Cramer - von Mises type 
distributions. We refer to Pinheiro et al. (2000) for some details. 

Let us consider here two related tests based on the within group estimates 
Gn,9, (? = 1 , . . . , G), under appropriate regularity assumptions. First, we con­
sider here a test for the homogeneity of the A# j 9 , in a little bit more stringent 
form of homogeneity of the G probability laws defined on the same probability 
space; in this setup, of course the alternative hypotheses relate to the part of 
the parameter space where the A#,g are not the same. Recall that under this 
null hypothesis, all the G probability laws are the same (though unknown), 
so that conventional permutation tests can be formulated. We could generate 
all possible N = {(n\)/ Ylg=1(ng)\} partitioning of the n sequences (in the 
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pooled group) into G subsets of sizes m , . . . , nG respectively, and under the 
null hypothesis, all these permutations are equally likely; we denote this con­
ditional (permutational) probability measure by Vn. It is then easy to verify 
that for each g(= 1 , . . . , G), 

E{Dnig\Vn} = Dni (11) 

which is the same measure based on the pooled set, 

v sh l-D \ 4 ( n g - 2 ) ( n - n 9 ) A , / S V ^ i ^"^hc (V£\ Var{Dn,g\Vn} = ^ _ 1 ) ( n _ 3)Ci.n + [2 ) [1 - ( „ - 2 ) JC2,n, (12) 

and for g ^ h(= 1 , . . . , G), 

Cov{Dn,g,Dnth\Vn} = ^^(i,n-(fj C2,„, (13) 

where 

C l ' " = n ( n - l ) ( n - 2 ) i £ DVD* ' D^ 

C2,n= U £ Dl-&^ (1 4) 
l < i < j < n 

and the Dij refer to the Hamming distance between the ith and j t h observa­
tions in the pooled sample. A little more algebraic manipulations lead us to 
conclude that 

Cov{Dnig, Dn%h\Vn} = 4 ( f g h n ' ) C i , n + 0(ng
2), (15) 

for g,h = 1,. . . ,G, where <59h, the Kronecker delta, is equal to 1 or 0 
according as g = h or not. All these results follow from the general theory of 
[/-statistics under simple random sampling without replacement scheme (from 
the finite population of size n), and a detailed account of this computation 
and its approximations may be found in Nandi and Sen (1963) This permu­
tation variance can be well approximated by its jackknifed version. Based on 
the above computation we consider a quadratic form in the D„,g with their 
permutation means and variance-covariance terms, and arrive at the following 
test statistic: 

G 

LI = [ £ K - l){Dng - Bn?\lKl,n. (16) 
3=1 
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Note that G,„, the pooled sequence estimator, is invariant under any 
permutation of the n sequences among themselves, and so is Dn. On the other 
hand, for each of the N permuted set, we could compute the corresponding 
values of Dn,g,g = 1 , . . . , G, and hence, generate a version of £*. With all 
these N realizations, one could order them and generate the exact permutation 
distribution of Cn. Though this procedure works out well for small values of 
the ng, it becomes prohibitively laborious as the ng become large. 

Fortunately, using the results of Sen (1981, Ch. 3), it is possible to verify 
that under the permutation law, asymptotically, £* has the central chi square 
distribution with G - 1 degrees of freedom (DF). This suggests that even if 
we do not use the permutation principle, the test statistic £* can be used in 
an asymptotic setup for testing the homogeneity of the G groups with respect 
to the parameters A# 9 . 

Next, we note that the A#,g may be equal without requiring that the 
G probability laws are all the same. Hence, it may be more desirable to 
formulate suitable tests for the homogeneity of the A# j 9 without assuming 
the homogeneity of the underlying probability laws. Since the within group 
measures Dn<g are all [/-statistics, we could do it by estimating consistently 
the variance of each measure, and exploiting the asymptotic normality of 
the estimators Dn,g. Toward this end, we let Xgi — (Xg\ \ . . -,Xgt ')', i = 
1 , . . . , ng; g = 1 , . . . , G. Let then 

7r9(fc,c) = P(X$> = c); 7rfl(fc,c; J,d) - P(X%> = c,X$ = d), (17) 

for cy= d) = 1 , . . . , C, k{^l) = l,...,K, g = l,..., G. Let then 

79 = Jo ^ H S J2 7rs(fc' c)n9(l> d){^g(k' c; /, d) - irg(k, c)irg(l, d)}, (18) 
fe=l1=1 c = l d = l 

for g = 1,...,G. Then using the Hoeffding projection result, it follows (Sen 
1981, Ch.3) that as ng increases, 

V^(Dn,g - AH,S) 4 M(0,47g
2), (19) 

for each g(= 1, . . . ,G). Note that even under the null hypothesis, the ~/g 
may not be all equal. However, for each g, we may estimate 7^ by using 
the same formula as in £1)n (in the pooled sample case, treated earlier) but 
solely using the ng sequences in the group g; we denote these estimators by 
7 , , g = l,...,G. Let then 
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D: = E g V g j P " : 9 ( % 2 . (20) 
Y,Un9l% 

Let us then define 
G 

n, 
g=l 7 3 

It follows from the Cochran theorem (along with the Slutzky theorem) 
(cf. Sen and Singer 1993, Ch.3 ) that under the null hypothesis of homo­
geneity of the AH,g, ££* has asymptotically chi square distribution with 
G - 1 degrees of freedom (DF). This is then used in the determination of 
the asymptotic critical level for the test based on the test statistic £°*. Note 
that when the 7^ are not all the same, the test statistic £* may not have 
asymptotically chi-square distribution with G - 1 DF (but a Cramer - von 
Mises type distribution), so that it might not have the correct (asymptotic) 
significance level, although both the tests will be consistent against any 
possible heterogeneity of the A# i S . 

6 Concluding remarks 

In the preceding section, we have considered the usual external CSA 
MANOVA problem and discussed suitable nonparametric procedures. If we 
would have considered some internal CSA problems, such as independence 
of mutations at different sites, a formulation of a suitable likelihood function 
could be in general quite complex. Karnoub et al. (1999) have considered 
some tests for the hypothesis of independence of mutations at a pair of sites, 
discussed the roadblocks for a conventional likelihood approach, and in the 
light of that, formulated a conditional likelihood approach that takes into ac­
count the consensus pair as a pivotal point, and leads to suitable binomial 
test. Whereas for a multivariate normal population, the concept of pairwise 
correlation has been successfully extended to canonical correlations, there are 
genuine impasses for such extensions in the present context; these are not only 
due to the categorical nature of the responses but also due to the fact that 
the number of sites is in general very large. This large dimension problem is 
also perceived in the neuronal spatio-temporal model where the simultaneous 
spike-trains relate to some multivariate counting processes (Sen 2001). Un­
like the multinomial case, pairwise dependence measures do not characterize 
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the higher-factor interactions or dependence patterns, so that the classical 
canonical analysis may not generally apply to count data or qualitative data 
models. As of now, mapping of disease genes, microarray analysis, gene-
environmental interaction etc., all relating to high dimensional qualitative 
data sets, rely heavily on computer graphics and biological intuitions. It is 
indeed a challenge to fathom out the stochastic evolutionary forces underly­
ing these models, so that stochastic modeling and statistical analysis can be 
formulated in an objective manner. The scope for conventional likelihood ap­
proaches in these problems is often obscured by the biological undercurrents 
that may not as yet have a complete scientific explanation. 

There has been a systematic development in statistical genetics dealing 
with quantitative traits (Lange 1997). Even if such quantitative trait mod­
els are conceived in bioinformatics, there remains clouds over the plausible 
dimensionality of the traits, as well as, the validity of the conventional multi-
normality assumption (sans which all statistical models in use at the present 
time may lose their rationality and validity). It may be quite appealing to 
adopt suitable location-scale family of distributions, and to examine, to what 
extent, the robustness of assumed normal models for such alternative situ­
ations. Again, the high dimensionality of the model arising in bioinformat­
ics can create a complete impasse for such multinormality based statistical 
approaches. In this context too, there is a genuine need to explore alter­
native nonparametric approaches that are more viable under the biological 
and genetic setups. Formulation of such alternative approaches, though is a 
challenging task, should be given due consideration. 

As has been referred to in Section 3, pharmacogenetics occupies a very 
focal point in bioinformatics, the main impetus being the tremendous scope 
for genomics in drug research and marketing perspectives. The principal dif­
ficulty in the implementation of phramacogenomics stems from the fact that 
experimental evidence to justify clinical conclusions often precludes human 
subject (due to medical ethics and basic clinical considerations). In the name 
of KDDM, simulation studies have therefore permeated the drug research 
arena. These ventures are mostly based on some algorithms, and often, with­
out much statistical insights. In such a case, it might be wistful to conceive 
of simpler probabilistic models where such conventional algorithms can be 
validly and efficiently applied with full likelihood appreciation. It would be 
therefore more appropriate to conceive of alternative statistical approaches 
that put lesser emphasis on likelihoods and greater emphasis on alternative 
reasoning that adapts well to the biological and genetic explanations. Non-
parametrics seems to have advantages in this setup, and we advocate the use 
of biologically motivated, genetics based, nonparametrics in bioinformatics. 



It is a challenge, and with the steady flow of research in nonparametrics in 
all its horizons, the success should be in the reach of statisticians' theory and 
methodology basket. 
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Monitoring processes with data collected from spatial systems is a common need in 
industry. This paper outlines an approach commonly used in geostatistics, namely 
Universal Kriging (Cressie, 1993), for modelling spatial trends. The fitted spatial 
models together with their standard errors are then used to establish control limits 
for monitoring changes in spatial trends. Also the QQ-plot and related tests are 
used to signal processes that are out-of-control. These methods are applied to the 
process of constructing concrete road pavements. 

Keywords: statistical process control, universal kriging, control charts. 

1 In t roduc t ion 

The application presented in the paper involves monitoring the construction 
of concrete road pavements at the correct height and thickness. The Roads 
and Traffic Authority (RTA) have stated specifications for concrete pavement 
height because it is related to the desired design life of the pavement. Pave­
ments constructed less than the design thickness have significantly reduced 
pavement life. Latest RTA research suggests that concrete pavements that 
are constructed 10 mm less than their design thickness will reduce the design 
life from 40 years to 18 years. This is more than 50% reduction in design life 
for a reduction of 5% in thickness. Construction engineers should therefore 
sets paving machines to construct pavement surfaces "slightly" higher than 
the design height. Their task is to control pavement thickness variation during 
the construction process to ensure the height does not go below the design 
height. Therefore, a critical quality characteristic is the difference between 
the constructed height and the design height of pavements. 

The monitoring process differs slightly depending on whether you are the 
contractor or the RTA. Companies contracted to construct road pavements are 
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more concerned about controlling the construction process variation within a 
contract, therefore within pavement variation is critical. They have the po­
tential to use real-time controlling measurements to feedback information that 
helps reduce variation in construction height. The RTA (the customer) treats 
a contracted pavement as a single sampling unit and is interested in controlling 
across pavement variation. They want to know which pavements are soundly 
constructed and meet specification. This paper is written primarily from the 
RTA's point of view, but it does provide useful information for contractors 
indicating changes in performance within a contracted pavement. Generally 
stakeholders are concerned about the average height, variation in height and 
local smoothness of pavements. 

RTA has data on past constructed pavements. These data are used to 
define a reference or training pavement which has average smoothness, its 
mean construction height is close to that of the average of all pavements, 
and its variance in construction height is close to the average of that of all 
pavement variances. New constructed pavements will be compared to this 
training pavement. Comparisons presented in this paper are only valid if each 
future pavement is measured using a grid identical to that of the training 
pavement. 

One approach to monitoring pavements is to present RTA decision makers 
with an image that will represent the quality of construction. This approach 
starts by fitting a Universal Kriging model to training data. This is used to 
establish the expected 'in-control' levels of the variation of construction height 
from the designed height. Then control limits for monitoring the construction 
process of new pavements are developed. 

2 Universal Kriging 

In this paper, we are interested in models that interpolate measurements Z 
(the differences between the measured height and the design height) onto a 
2-dimensional surface defined by coordinates s = (x, y) given data collected 
on a regular grid over a pavement. The Universal Kriging model is used for 
this purpose, that is, Z(s) is modeled as follows 

Z(a) = b0 + hx + b2y + b3x
2 + b4y

2 + b5x.y + d(s) (1) 

where: d(s) is a zero-mean random process with stationary, isotropic vari-
ogram, that is 

var(Z(S) - Z(s')) = 2g(\h\) (2) 
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and |ft| is the distance between two points s and s in space, i.e., h = s - s 
(see Cressie, 1993). 

Note that this error term d(s) is spatially dependent and this is not equiv­
alent to the random error term e of a bivariate polynomial regression model 
below Z(s) = b0 + hx + b2y + b3x

2 + b4y
2 + b5x.y + e . For Universal 

Kriging, the predicted value of d(s) is not zero as is the case for the random 
error term e. Therefore, in most spatial settings, Universal Kriging (using 
model (1)) improves on the predictions established from bivariate polyno­
mial regression model. The relative improvement depends of the strength of 
the spatial relationships in these error terms d(s) which can be determined 
from the variogram model for var(Z(s) - Z{s')). The fitted model is given by 
Z(s) = b0 + bix + b2y + b3x

2+b4y2 + b5x.y + d(s), where b0, b1,b2,b3, b4,b5,and 
d(s) are estimated parameters and values. Also, let r be the standard error 
for this fit. The fitted value is significantly different from the mean of Z, \iz , 
when either 

Z(s) > (iz + 3r(s) or Z(s) < fiz - 3r(s). (3) 

These could be used as control limits for the contractor in controlling within 
pavement variation. 

3 Sampling design and data considerations 

Sampling was on a "regular" grid as indicated in Figure 1. The values recorded 
are the offset values (x) and chainage (y) as in (1). Recording the location 
of points as offset (across pavement distances) and chainage (down pavement 
distances) has effectively transformed the pavement into a rectangular space, 
and this has consequences when modelling. Large radius curves on RTA roads 
minimise distortion on the rectangular grid when compared with the required 
accuracy of the location of the sampling points. Therefore, for practical appli­
cations, it is assumed that the whole pavement is transferred into a rectangular 
grid, including where it is constructed around curves. In future, recording the 
values of sampling locations, as determined by survey measurements, would 
enhance the spatial information. 

The differences between the constructed and design height did not differ 
significantly from a normal distribution and therefore at times in this paper 
we will assume a normal distribution. It is convenient if modelling of the 
variogram is carried out as a function of distance only, but before doing this 
we checked the anisotropic behaviour of the variogram. This was done vi­
sually by fitting the variogram in various directions down the pavement. A 
visual comparison of the variogram models for distances in various directions 
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:. 3.8m 
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Road Pavement 
Figure 1. Sample grid for Road Pavements 

indicated no sign of anisotropic behaviour for each data set considered in this 
paper. 

This means that it is reasonable to assume that the variogram is only a 
function of distance points are apart, i.e., var(Z(s) — Z(s )) — 2g(\h\) where 
h = s — s . The fitted variogram model is necessary for fitting the Universal 
Kriging model. Fitted models were used to interpolate values onto a finer 
regular grid within the pavement. The spherical variogram model fitted well 
and it was used to model the semi-variogram of pavements in this paper. 

4 Signalling unusual pavement construction 

The design height for the pavement is the lower specification limit for the 
construction height, and the RTA's wishes to reject pavement sections with 
measured height below the design height. If contractors can produce a pave­
ment with its height equal to the design height, with no variation, then they 
will reduce their cost of materials and thus maximise profit. Therefore, we 
signal whether a pavement remains within specifications but also simultane­
ously we signal when the construction process is out-of-control. Data were 
provided for a pavement that was classified as being in-control by experts 
at the RTA. Given this training data set we now wish to assess and signal 
problems with new pavement construction processes. In addition we wish to 
signal when a pavement has a mean and variance that is significantly different 
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Table 1. Assessing whether PAV1 or PAV2 have the same distribution as the training 
pavement (TPAV) 

Intercept(/to) 
Standard errors for [IQ 

Slope(<7i) 
Standard errors for &\ 

PAV1 PAV2 
-0 .0008 -0 .0055 

0.0002 0.0001 
1.1147 0.7674 
0.0101 0.0086 

Conclusion 
Means for PAV1 and PAV2 are 
< that of the training TPAV 
PAV1 varies more than TPAV 
PAV2 varies less than TPAV 

from the mean and variance of the training pavement. 
The QQ-plot is used to compare distributions of construction heights 

for new pavements to the training sample. Let Zq{s) and Tq(s) be the qth 
quantile for the measured construction and designed heights for a pavement 
being monitored and training pavement, respectively. Once constructed, the 
whole pavement is judged to have the identical distribution to the training 
pavement if the relationship between the quantiles of both pavements is a 
simple linear regression model with slope equal to one and intercept equal to 
zero, i.e., 

Zq(8) = no + (nTq(s) + e, (4) 

where (1Q = 0 and <j\ = 1. If either /J,Q is significantly less than 0 or a\ is sig­
nificantly greater than 1, then the pavement will be classified as significantly 
different (out-of-control) in terms of location or variation to the training pave­
ment. 

Two examples of new pavements are considered, denoted PAV1 and PAV2. 
Grid of measured values for these two pavements were identical to that of 
the training sample. The results of the fitted models for the quantiles are 
summarised in Table 1. 

In Figure 2, notice that (at least for PAV1) the linear model is inadequate 
at describing the relationship between the quantiles. The tails of the distribu­
tions of PAV1 and training pavement differ. Several quantiles are below zero 
on both axes in Figure 2, thus raising concerns whether either the training 
pavement or test pavement are within specification. 

The QQ-plot does give us a visual image of how the pavement is out-of-
control and how badly it fails to meet the specification limit on construction 
height. However here it is worth noting that the pavement could be on average 
in-control (no signal using the QQ-plot), but locally out-of-control, e.g., all 
low pavement heights are measured in one region of the pavement. Therefore 
this approach fails to consider the spatial aspect of pavement construction. 
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Figure 2. QQ-plot of the differences between pavement construction and design heights 

Signaling local changes is location and variance 
Non-overlapping groups of measurements (say three across and 12 down 

the pavement) could be used to signal local changes in mean and variance of 
the surface. This gives 36 sample heights. Sort these in order of magnitude, 
and for region G let these be defined as Z^(s), Z^(s),..., Z[ZQ](S). Fit the 
model 

z[j](s) = ao + ai?C7-o.5)/36(?) + £ for j = 2, 3,. . , 35 
where c is the whole training sample. The values for j = 1 and 36 are 

ignored to make the procedure robust to outliers. The fitted values do and 
diand their estimated standard errors &ao and aai, respectively signal no 
change in location or variance if 

0 G [d0 - 3<7ao, d0 + 3<7ao] or 1 G [di - 3aai, dj + 3<rai] 
respectively. Otherwise a change is signalled. Note that this approach is 

distribution free. 

Signaling changes in mean height 
Note that do = 0 indicates the construction height, on average, equals 

the design height. The centre line of the two graphs in Figure 3 indicates 
when do = 0. If the estimated value of the intercept is below zero (do < 0 
) for any part of that new pavement, then this part is estimated as having a 
lower mean than the training pavement. In Figure 3, the only parts of PAV2 
that have a mean that is higher than the training pavement mean is chainage 
46195 to 46555 (12% of PAV2); the remainder has sample means smaller than 
that of the training pavement. The estimated intercepts signal significantly 
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Figure 3. Control chart for signaling location changes 

lower means than that of the training pavement on 5 occasions, (see groups 
with chainage numbers starting with 46735, 47035, 47096, 47875 and 48176 
in Figure 3). PAVl is estimated to have mean height greater than that of 
the training pavement for only 10 of the 56 groups (18% of PAVl), and it 
also gives 7 out-of-control signals on the low side. These occur at chainage 
starting numbers 2185, 2305, 4224, 4765, 5125, 5245 and 5426. PAVl's and 
PAV2's construction processes are out-of-control in several parts. 

Signaling changes in variance 
In Figure 4, PAVl signals significantly higher variance than the training 

pavement variance for 21 of the 56 groups (38% of PAVl). PAVl is often 
out-of-control in terms of its variance. PAV2 has only 4 groups that fail 
to signal lower variance than the training pavement variance. Therefore we 
can conclude that the control of variation in the height for this pavement is 
exceptionally good - significantly better than the training sample. 

The local QQ-plots are good at signalling problems down the pavement 
but provides no information across the pavement. However an image plot will 
now be demonstrated as useful for signaling both changes down and across 
pavements thus giving an improved spatial perception of process control. The 
images Figures 5,6,7 & 9 of the paper are grey scale images, however if the 
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Figure 4. Control chart for signaling changes in variation 

reader goes to web address www.cmis.csiro.au/Ross.Sparks (click on RTA pa­
per) they can observe the colour images. 

5 Image indicating pavement problem areas 

A simple way of signaling whether a constructed pavement fails specification 
limits is to colour each pixel which corresponds to Z(s) < 0 black. Pavements 
within specification will have images with no black pixels. The remaining 
pixels of the image are coloured as follows. 

• Dark blue for pixels that corresponds to Z{s) > fJ-r + 3.r(s). This colour 
signals areas of the pavement pixels as out-of-control from the contrac­
tor's perspective (construction height is significantly higher than designed 
height). 

• Red for pixels that corresponds to 0 < Z(s) < HT — 3.r(s). This colour 
signals areas of the pavement as out-of-control from the RTA perspective 
(construction height is significantly lower than designed height). 

• Blue and orange for each pixel which corresponds to /XX + 2.T(S) < Z(s) < 
HT + 3.T(S) or fiT — 3.T(S) < Z(s) < fix — 2.r(s), respectively. 

http://www.cmis.csiro.au/Ross.Sparks
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• Light blue and yellow for each which corresponds to HT + T(S) < Z(s) < 
HT + 2.r(s) or [iT - 2.r(s) < Z{s) < MT - T{S), respectively. 

• Very light blue for each pixel which corresponds to /XT - T(S) < Z(s) < 
VT + T(S). 

Note that new pavements should have 2.1% of pixels coloured blue, 2.1% 
coloured orange, 0.3% coloured dark blue and 0.3% coloured red, 13.6% 
coloured light blue, 13.6% coloured yellow, and 66% very light blue to be 
equivalent to the training pavement is distribution. 

6 Interpreting the image plots 

Once all pixels are coloured then the resultant image displays information on 
the constructed pavement. Some examples are presented below. 

In-control pavements: Examples from the RTA's perspective follow. 

1. A pavement that has near all pixels very light in colour in its image, e.g., 
with roughly half the pixels light yellow and the remainder very light 
blue, is very much in-control. 

2. A pavement with colours nearly all pixels blue or light blue. 

In-control pavements from the contractor's perspective is a pavement with 
pixel colours nearly all very orange, yellow, and light blue, but with no pixels 
red or black. 

Out-of-control pavements: Examples from the RTA's perspective follow: 

1. Location shifts. A pavement that have pixels with colours significantly 
more light yellow, orange and red colours than expected, will be sig­
naled as out-of-control by producing pavements significantly lower than 
expected. 

2. Increased variation. A pavement having significantly more dark blue, 
blue, orange and red colored pixels than expected, has variation larger 
than expected. 

The resulting images for the training data, and the two pavements being 
monitored (PAV1 and PAV2) are included in Figures 5, 6 and 7 respectively. 
Notice that the training pavement is not always within specification, and 
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down the left-hand side it does not appear to be in-control (top row of pix­
els in Figure 5 has 7.9% black and 16.6% red coloured pixels). This was 
not known to the RTA prior to this analysis. PAV1 has lower construction 
heights on average than the training pavement by having less blue pixels and 
relatively more shades of orange pixels in Figure 6 relative to Figure 5. Also 
from chainage number higher than 5000 the pavement appears both out-of-
control(most pixels are black, red or a shade of orange) and not in specification 
(several pixels are black). Notice that this pavement is more out-of-control 
down the left-hand side (top row of pixels in Figure 5 has 18.8% black and 
26.9% red coloured pixels). PAV2 is clearly not within specification and it is 
out-of-control by having nearly no pixels shaded blue. 

II I 1 

3000 3200 3400 3600 3800 4000 

Chainage 

Figure 5. The image control plots from the fitted Universal Kriged interpolations for the 
training pavement 

The image plot discussed so far present visual information on large scale 
pavement variation. However, we now explore procedures that will display 
and control this better. 

7 Signaling problem with pavement smoothness 

The surface level of the pavement could wonder locally but still on average 
have good distributional properties as measured by the QQ-plot. The image 
plot in Figure 8 gives some information on smoothness, but it is only able to 
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3000 4000 

Chainage 

Figure 6. The image control plots from the fitted Universal Kriged interpolations for PAVl 

3000 3200 3400 3600 3800 4000 

Chainage 

Figure 7. The image control plots from the fitted Universal Kriged interpolations for PAV2 

detect large discrepancies in smoothness. Therefore, we wish to have a method 
that efficiently but simply measures how the pavement changes locally in 
height. This will be achieved by looking at the distribution of local differences. 
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Across the pavement variation: This variation can be examined by looking at 
differences between left-hand side and centre measurements, and centre and 
right-hand side measurements. The simultaneous plot of these differences 
versus chainage is useful for assessing across pavement variation as moving 
along the chainage values. Three standard deviation control limits can be 
placed on these differences to signal unacceptable variation (red dashed lines). 

I Pavement with training data 

PAV1 

1 PAV2 

• , 

8 .- 0^4^ 

Figure 8. Across pavement differences versus chainage scatterplot 

Figure 8 indicates that the training data is higher in the centre than on 
either of the sides of the pavement. The similar is true of PAVl but this is 
not evident for PAV2. The heights across PAV2 is more consistent than the 
other two pavements. 

Down the pavement variation: Here we take adjacent measurement pairwise 
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differences down the chainage value of the pavement, but here we present the 
information as a image. We could fit a Universal Kriging model to these differ­
ences, however the empirical variogram indicates near spatial randomness and 
therefore we let <JD be the standard deviation of all down pavement adjacent 
differences for the training data. Establish the quantlies ^,20 for probabili­
ties ^ for i - 1,5,15,19. The pixels for new pavements corresponding to 
differences that are: 

• smaller than (71,20 are coloured purple, 

• larger than <?i,2o but less than (715,20 are coloured light purple, 

• larger than 715,20 but less than 719,20 are coloured light green, 

• larger than 719,20 a r e coloured green, 

while all others pixels are not coloured. Pavement that correspond to 
image plots with mostly light colours are relatively smooth compared with 
the training pavement. Images with many more darker colours than expected 
indicate pavements that are rougher than the training pavement. 

Figure 9 compares PAV2 and the training data for smoothness. PAV2 
appears significantly smoother than the training pavement by having much 
lighter colours. Testing whether this is statistically significant is achieved by 
using tests similar to earlier tests relating to the QQ-plot. In this situation, 
however, we examine the QQ-plot of adjacent differences as we move down 
the pavement. Figure 10 illustrates tests for comparing PAV2 to the training 
pavement. Notice that there is very little difference in the conclusions for 
the Left, Centre and Right hand-side of the pavement, even when there is a 
substantial outlier in the regression sense. This confirms what was already 
evident from the image in Figure 9, that PAV2 is significantly smoother than 
the training pavement. 

An alternative to this approach is to perform a multivariate EWMA chart 
on adjacent differences moving down the pavement (see Lowry et al., 1992, and 
Sparks, 1992). However, this will not be explored here because the solution 
supplied is very visual, intuitive and informative. 

8 Conclusion 

We have illustrated how to signal whether the construction process of a pave­
ment is simultaneously in-control and within specification, particularly when 
a reference data set is made available. The control process looks at both 
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Figure 9. Along pavement differences versus chainage image plot 

overall construction performance (long range variation) and local pavement 
performance (short range variation). Also an image representation of height 
variation is used to supplement these methods to give a visual image of where 
things are going wrong. It was clear that problems are encountered on the 
edges rather than in the centre of the pavement. This is very useful infor­
mation for trying to correct pavement construction problems. The approach 
used is very different from the classical approach, and is fairly generic because 
in most cases it fails to rely on any distributional theory or spatial correlation 
structure. Therefore it has wide applicability. 

We also have distinguished between control from the perspective of the 
contractor, who is more interested in control within a pavement, and the per­
spective of RTA (customer) is more interested in control pavement to pave­
ment variation. 
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Figure 10. QQ-plot for testing for smoothness of the pavement 
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A key element in the design of a repeated sample survey is the rotation pattern, 
which affects the variability of the time series of survey estimates and the seasonally 
adjusted and trend estimates produced from them. This paper considers the choice 
of rotation pattern for seasonally adjusted and trend estimates obtained from a 
repeated survey, using XI1 based methods. 

K e y w o r d s : sampling error, seasonal adjustment, repeated surveys, rotation pattern, trend, 
X l l . 

1 Introduction 

Many time series are based on sample surveys repeated over time. A key 
element in the design of a repeated survey is the rotation pattern, which is 
the pattern of units' inclusion in the survey over time. The rotation pattern 
affects the degree of sample overlap and hence the correlation between the 
sampling errors at different lags. 

Seasonally adjusted and trend estimates can be produced from the original 
estimates (ABS, 1993). A widely used seasonal adjustment package is the X l l 
program (Shiskin et al, 1967) and its variants X11ARIMA (Dagum, 1988) 
and X12ARIMA (Findley et al, 1998). Since seasonally adjusted and trend 
estimates are obtained from the original series, they are also influenced by the 
sampling error and therefore the rotation pattern. 

Some repeated series are based on independent samples at each time pe­
riod, but usually the samples used have a degree of overlap from period to 
period to reduce costs and the standard errors associated with the estimates of 
change between consecutive time periods (Kish, 1998). The rotation patterns 
currently used have been designed for estimates of the level and/or movements 
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in the original and seasonally adjusted series (Binder and Hidiroglou, 1988). 
Rotation patterns vary in the number of times a unit is included in the 

survey and the time interval between inclusions. A general class of rotation 
patterns is defined by selected units being included in the survey for a con­
secutive months, removed for b months and included again for a further a 
months. The pattern is repeated so that units are included for a total of c 
occasions. These rotation schemes are denoted a-b-a(c) (Rao and Graham, 
1964). Setting 6 = 0 gives an in-for-c rotation pattern. Examples include the 
U.S. Current Population Survey, which uses a 4-8-4(8) rotation pattern (Fuller 
et al, 1992). The Australian Monthly Labour Force Survey(MLFS) uses an 
in-for-8 rotation pattern (ABS, 1998) and the Canadian MLFS uses an in-
for-6 rotation pattern (Singh et al 2001). These designs produce high sample 
overlap for consecutive months, reducing the sampling errrors of estimates 
of monthly change in the original and seasonally adjusted series. However, 
Mclaren and Steel (2000) suggested that rotation patterns with no monthly 
overlap were better for trend estimation. 

McLaren and Steel (2000) considered how the design of the rotation pat­
tern affected the sampling variance of the level and one-month change in 
seasonally adjusted and trend estimates, for a selection of possible rotation 
patterns. This paper considers a more extensive search over different rotation 
patterns for the sampling variance of the level, month-to-month and three-
month movements of the seasonally adjusted and trend estimates. It also 
shows how the effect of a rotation pattern is equivalent to the effect of a filter 
applied to a series obtained from an independent design. 

2 Filter representation of a rotation pattern 

The seasonally adjusted and trend estimates obtained from X l l can be ex­
pressed, approximately, as the result of applying linear filters to the series 
(Dagum et al. 1996, McLaren and Steel, 2000). Consider a filtered value at 
time t 

Vt = w£yT 

where y T is a vector of estimates up to time T >t, obtained from a repeated 
sample survey and wf is a vector of weights. The corresponding series of true 
values is Y T and Yt = w'tYT is the filtered value that would be obtained if 
there were no sampling errors. The weights can be chosen to produce estimates 
of the level and change in seasonally adjusted and trend estimates. 

Let V ( V T | Y T ) be the covariance matrix of the sampling errors associ­
ated with yT. Different rotation patterns produce different V(yT\YT). The 
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sampling variance of the filtered value at time t is 

V(yt) = w ^ ( y T | Y T ) w t (1) 

One way to understand the impact of different rotation patterns is to 
consider how they produce a correlation structure that is equivalent to the 
application of a weight matrix, B, to an independent design. Using this 
concept, linear filters can be found that approximate the impact of the chosen 
rotation patterns. 

Consider two applications of (1) 

V°(vt) = w ^ V V 
v1(yt) = w;v1w t 

where V° is the variance matrix for an independent design, and V is the 
variance matrix for a more complex rotation pattern. These matrices are 
symmetric and of full rank and can be decomposed using the Cholesky de­
composition 

V° = A^A0 V 1 = A'jA: (2) 

For an independent design Ao = d'mg(y/V(yt)). 
Define B = A ^ A ] , then V 1 = B'V°B. The matrix B transforms the 

variance of an independent design to the variance for a specified rotation 
pattern. Each column of B contains weights which approximate the effect of 
the chosen rotation pattern. That is, it represents the results of an application 
of a filter to a series with an independent error structure. 

A gain function G(x) can then be plotted for the filter corresponding to a 
column in B. Gain functions can be used to look at the effect of a linear filter 
on the amplitude of a cycle in a given series at a given frequency. The gain 
function associated with a filter shows those frequencies which are reduced 
(G{x) < 1) and those which are amplified (G(x) > 1) by the application of 
the filter. Frequencies (x) can be converted to months using the relationship, 
\/x for x ^ 0. All columns of B will exhibit similar gain function properties. 

Figures 1(a) to 1(f) give average gain functions for linear filters repre­
senting selected rotation patterns. A correlation model for the sampling error 
of employment estimates given in McLaren and Steel (2000) was used. For 
example, Figure 1(b) is obtained by choosing a column from B after setting 
V to be a variance matrix for a 1-2-1(5) rotation pattern and then calcu­
lating the gain function. This is done for each column of B and the average 
gain plotted. This shows that, by using this type of rotation pattern, cycles 
of approximate length three are produced. This is because a l-2-l(c) rota­
tion pattern induces correlations 3 months apart. This rotation pattern has 
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little effect on the longer term cycles, but reduces the effect of cycles in the 
4 to 12 month band. Figure 1(c) shows that filters approximating the 1-1-
1(6) rotation pattern have a similar gain function with a peak at a cycle of 2 
months. 

(a) Independent (b) 1-2-1(5) 

(c) 1-1-1(6) (d) 2-2-2(4) 

0.1 0.2 0.3 0.4 
frequency 

(e) 4-8-4(8) 

Figure 1. Gain function representation of different rotation patterns for proportion em­
ployed (MLFS) 
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Figure 1(e) is the gain function of a filter representing a 4-8-4(8) rotation 
pattern. In this case cycles of length 9 months and onwards are increased 
in amplitude, whereas cycles from approximately 2 to 6 months are reduced. 
Filters approximating the rotation patterns in-for-8, 2-10-2(4), 3-3-3(6), and 
6-6-6(12) have similar gain functions. 

This filter representation of rotation patterns explains the impact that 
they have on the variance obtained by the subsequent application a different 
filter, w t , to obtain seasonally adjusted or trend estimates. Consider the 1-
2-1(5) rotation pattern and w t corresponding to a trend filter. Trend filters 
reduce cycles of random noise (typically 1 to 3 months) and allow cycles 
indicative of the trend to pass through the filter unchanged (typically 12 
months onwards). The 1-2-1(5) pattern increases cycles of 3 months, where 
the trend level filter reduces these cycles. The 1-2-1(5) pattern reduces cycles 
from approximately 4 to 12 months where the effect of the trend level filter is to 
amplify these cycles. The overall effect is to allow these longer term cycles to 
pass through relatively unchanged. In contrast, the 4-8-4(8) rotation pattern 
reduces cycles around 2 to 10 months, where the trend level filter has already 
reduced cycles from 2 to 6 months. The 4-8-4(8) actually increases cycles 
from the 10 month period on top of an increase by the trend level filter. It is 
a combination of the 1-2-1(5) rotation pattern slightly reducing longer term 
cycles and the 4-8-4(8) type rotation patterns increasing the longer term cycles 
that leads the 1-2-1(5), and rotation patterns with similar gain functions, to 
be superior for reducing the variance of the trend level estimates. 

3 Effects of a-b-a(c) rotation patterns on sampling variance 

McLaren and Steel (2000) suggested that rotation patterns such as 1-2-1(8) 
out-perform other widely used rotation patterns in reducing the variance of 
the estimates of the level and three-month difference in seasonally adjusted 
estimates and the level, one and three-month difference in trend estimates. 
However, only a selected range of rotation patterns was considered. Correla­
tion models for the sampling errors for employment and unemployment were 
used. To examine the impact of the gap between inclusion in the survey, 
a systematic search is conducted here for the 1-6-1(8), 2-6-2(8) and 4-6-4(8) 
rotation patterns. Figures 2(a) to 2(b) show the resulting variances for the es­
timates of level and one and three-month difference in the seasonally adjusted 
and trend estimates for the variable employment. Figures 3(a) to 3(b) give 
the results of a search over values of 6 for 1-6- l(m) rotation patterns where 
6 = 1 , . . . , 12 and c = 2 , . . . , 12. This will show whether 6 = 2 is the best 
option. An additive linear approximation to XI1 was used with no outliers 
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(Dagum et al., 1996). The trend estimates considered were those at the end 
of the series, t = T. Similar results were obtained for unemployed persons. 
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Figure 2. Variances for l-b-l(8) ( ), 2-b-2(8) (• • •) and 4-b-4(8) ( ) rotation patterns 
for proportion employed (MLFS). 

Figures 2(a), 2(c) and 2(e) show that for the level, one and three-month 
differences for trend estimates, the 1-6-1(8) rotation patterns out-perform the 
2-6-2(8) and 4-6-4(8) rotation patterns for all choices of b. The choice of 6 — 2 
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or 3 provides the minimum for each type of rotation pattern. 
Figures 2(b), 2(d) and 2(f) show that for seasonally adjusted estimates 

the 1-6-1(8) rotation pattern performs well for both level and three-month 
differences. The 4-6-4(8) rotation patterns are good for reducing variance of 
the one month difference as they have a high sample overlap from month to 
month. The 4-8-4(8), 2-10-2(8), and 1-11-1(8) patterns all induce correlation 
at lag 12 which Figure 2(b) shows is beneficial when looking at the level of 
seasonally adjusted estimates. 

For the l-6-l(c) rotation patterns, Figure 3(a) shows that for trend level 
the sampling variance is reduced by choosing b = 3 or 4 with c as large 
as possible. Figures 3(c) and 3(e) show that for the one and three-month 
difference of the trend estimates the l-2-l(c) and l-3-l(c) patterns produce 
the lowest variances, with no noticeable difference between the two. There is 
a marked increase in sampling variance for 6 > 4. These results suggest that 
setting 6 = 2 or 3 is best for trend estimation. 

Figure 3(b) shows the effect on the level of the seasonally adjusted es­
timates. A choice of b = 3 provides greater gains along with c as large as 
possible. The advantage of correlations at lags 4, 6 and 12, which correspond 
to seasonal peaks, is evident for choices of 6 = 3,5 and 11. Results for the 
one-month difference of the seasonally adjusted shown in Figure 3(d). This 
illustrates the effect of having the sample overlap at a seasonal frequency, ie. 
1-11-1(8) and 1-5-1(8) which put correlations at lag 12 and 6 respectively. 
Figure 3(b) shows that for the three month difference, 1-2-1(c) produces the 
lowest variances. 

4 Trade-off between seasonally adjusted and trend estimates 

The results suggest that the use of l-6-l(c) with 6 = 2, or 3 is a good choice, 
except for the one-month change in the seasonally adjusted estimates. The 
trade-off in variance between designing for the level and one-month differ­
ence in trend estimates and the level and one-month difference in seasonally 
adjusted estimates is considered by presenting the results as scatterplots in 
Figures 4(a) to 4(d). On each Figure the o's represent an in-for-c rotation 
pattern for c — 1,2,3,... and 1 represents 1-2-1(5), 2 represents 1-2-1(8), 3 
represents 1-1-1(6), 4 represents 2-10-2(4), 5 represents 2-2-2(8), 6 represents 
3-3-3(6), 7 represents 4-8-4(8) and 8 represents 6-6-6(12). 

Figure 4(b) plots the variance of trend level estimates against the sea­
sonally adjusted level estimates for different rotation patterns and shows that 
1-2-1(8) gives the lowest variances for both. As overlap increases the variances 
of both trend level and seasonally adjusted level estimates increase. 
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(a) Trend level (b) Seas. adj. level 

(c) One month difference in trend (d) One month difference in seas. adj. 

(e) Three month difference in trend (f) Three month difference in seas. adj. 

Figure 3. Variances for l-b-l(c) rotation patterns for proportion employed (MLFS). 

Figure 4(a) plots the variance of the one-month difference in trend against 
that of the one-month difference in seasonally adjusted estimates. The in-for-
c rotation patterns perform well for both provided c is very large, say c > 24. 
The l-b-l(c) rotation patterns perform well for trend but not well for the 
seasonally adjusted estimates. A compromise is the 2-2-2(8) rotation pattern. 

Figure 4(c) shows that the 1-2-1(c) pattern gives lower variance for both 
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Figure 4. Trade-off between variances of trend and seasonally adjusted estimates assuming 
different rotation patterns for proportion employed (MLFS). 

the one-month difference in trend and seasonally adjusted level. Rotation 
patterns with high monthly overlap have high variances for the one-month 
difference in trend estimates, unless the overlap is very high, c > 24. The 
results for trend level and one-month difference in trend in Figure 4(d), show 
that the 1-2-1 (c) patterns again out-perform the other rotation patterns. 

Similar comments apply to the trend level vs. three-month difference in 
seasonally adjusted, seasonally adjusted level vs. three-month difference in 
seasonally adjusted, and three-month difference in trend vs. three-month dif­
ference in seasonally adjusted. In all cases the 1-2-1(c) out-performs the other 
chosen rotation patterns. Similar results are obtained for different choices of 
correlation model for the sampling errors. 
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5 Conclusion 

The choice of rotation pattern depended on the estimates that are consid­
ered important. It was found that the 1-2-1 (c) rotation patterns reduced the 
sampling variance of trend and seasonally adjusted level estimates, sampling 
variance of the movements in trend estimates, and the movements in the sea­
sonally adjusted estimates except for the one-month movement, for which 
rotation patterns with high monthly sample overlap perform well. 

Most rotation patterns are designed based on criteria involving the change 
between consecutive periods in the original and seasonally adjusted series. 
There is a trade-off when designing for the movement estimates for the sea­
sonally adjusted and trend estimates. There is a case to use l-2-l(c) rotation 
patterns, unless the one-month change in the seasonally adjusted estimates is 
the key statistic to be analysed. 
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This paper is concerned with the interactions between periodic tidal waves and 
coastal aquifers. The analysis is based on a set of equations governing the hydro-
dynamic interactions near coastal regions consisting of a modified Fokker-Planck 
equation for modelling the transport of salts, a Boussinesq equation for ground­
water flow and a wave equation for tidal waves. The modified Fokker-Planck 
equation is featured with a time- and scale-dependent dispersivity, and solutions 
of the Boussinesq equation are obtained subject to phase-modulated tidal waves 
as the boundary condition which is a solution of the wave equation. The phase-
modulated periodic solution of the wave equation is shown to satisfactorily simulate 
the uneven twin peaks of semi-diurnal tides. Fourier series solutions of the Boussi­
nesq equation subject to periodic boundary conditions reveal that the tidal waves 
damp towards land, and the half amplitude of the tide above the mean sea level 
is greater than that below it. Seawater-freshwater interface is also analysed using 
the modified Fokker-Planck equation. 

K e y w o r d s : modified Fokker-Planck equation, Boussinesq equation, diffusion equation. 

1 In t roduc t ion 

In recent years, more attention has been paid to the interactions between 
coastal aquifers and tidal waves in order to reveal detailed hydrodynamics, and 
their impact on beaches and coastal aquifers (see Bear (1972) and Li and Barry 
(2000) for reviews). In these works, in addition to the use of wave equation, 
diffusion equation or Laplace equation for modelling groundwater waves, some 
researchers also presented new mathematical models (Li and Barry, 2000; 
Nielsen et al., 1997; Parlange and Bruttsert, 1987) to analyse tide-aquifer 
interactions across a more realistic geometry on the beaches. The majority of 
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the works is concerned only with fixed boundary conditions except for Li et al. 
(2001a) who recently used a moving boundary to simulate beach watertable 
fluctuations due to spring-neap tides. These presentations concentrate on 
the influence of tidal waves on groundwater on a horizontal base ignoring 
aquifers overlaying sloping bases which impose a different influence on the 
tide-aquifer interactions. Recently Su et al. (2001) examined tide-induced 
groundwater waves in coastal aquifers overlaying a sloping base subject to a 
periodic boundary condition. 

The interactions between periodic tidal waves and coastal aquifers are 
analysed in this paper. The analysis is based on a set of equations govern­
ing the hydrodynamic interactions near coastal regions. A modified Fokker-
Planck equation (MFP) is presented for modelling the transport of salts, 
Boussinesq equation (BE) for groundwater flow and wave equation (WE) for 
tidal waves. The MFP is featured with a time- and scale-dependent disper­
sivity, and solutions of BE are subject to phase-modulated tidal waves as the 
boundary condition (BC) which is a solution of WE. The development of the 
MFP is achieved by combining two components of the dispersivity, one is a 
fractional power function of time, and the other a power function of fractal 
scale. It is shown that the phase-modulated periodic solution of WE satisfac­
torily simulates the uneven twin peaks of semi-diurnal tides as observed in a 
study area on the east coast of Queensland, Australia. Furthermore numeri­
cal analyses show that the Fourier series solutions of BE subject to a periodic 
BC, which is a phase-modulated periodic solution of WE, reveal two impor­
tant features of the tidal waves. First, the tidal waves damp towards land, 
and second, the half amplitude of the tide above the mean sea level is greater 
than that below it. These two features have been successfully modelled using 
the BE. Seawater-freshwater interface is analysed using the MFP, and the 
simulated results are realistic compared with field data. 

2 Problem formulation 

The mathematical formulation and analysis start with one-dimension ground­
water flow on a sloping base. The configuration of an aquifer in the coast 
coupled with tidal waves is illustrated in Figure 1. 

The basic equation governing one-dimensional groundwater flow on a slop­
ing impervious base is the Boussinesq equation that is written as (Werner, 
1957; Marino and Luthin, 1982) 

dh K \d2h fdh\2 8h] 

m=^[hd^ + [di) - e ^|< (1) 
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fit) 

x=0 X(t) x=L 

Figure 1. A schematic diagram of an unconfined coastal aquifer-tide system. 

where 

h is the height of watertable; 
S is the specific yield; 
x is the space coordinate; 
K is hydraulic conductivity; 
0 is the slope of the impervious base, 6 = tga 
a is the angle between the horizontal datum and the 

impervious base of the aquifer; 
R(i) is the time-dependent recharge rate; and 

t is time. 

In Figure 1, we choose the intersection between the mean sea level (MSL) 
or mid-tidal sea level (Li et al., 2001a) and the beach face as the origin of the 
x coordinate, and consider the problem defined in Figure 1 and (1) subject to 
the following conditions in a semi-indefinite domain: 

h(x,0) = h0, x>0, t = Q, 

where 

h(X(t),t) = f(t), x = X(t), t>0, 

where X(t) the x-coordinate of the moving boundary given by 

X(t)=cat(P)f(t), 

(2) 

(3) 

(4) 
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where 

(3 the angle between the beach face and the horizontal base; 
h0 the initial watertable; 

f(t) the periodic vertical perturbation relative to MSL due to tidal waves. 
H the equilibrium depth of water on the beach taken as the mean sea 

level (MSL); 
hi, the height of watertable at inland boundary L. 

The groundwater discharge is given by 

<j = K*(e-g) . (5) 

As the term Kh denotes transmissivity, T, and if h deviates only by a 
small amount from the weighted depth, i.e., H « h, then transmissivity, T, 
could be regarded as independent of h (Werner, 1957). In such a case, (1) 
becomes the linear advection-diffusion equation, 

8h d fdh\ dh 

-di=di\Ddi)-Vte (6) 

where 

T 
D-s (?) 

and 

K& 
»=-?•• (8) 

We are only interested in a medium with an average hydraulic conductiv­
ity (Bear, 1972) 

K = l f K(x,y,z')dz' 

and thereafter in this paper, K will be replaced by K. 

3 The general solutions subject to periodic boundary 
conditions 

As shown by Su et al. (2001), the solution of (6) is given by 

(9) 

hn — exp 
( 2D ~ M n ) X 6 X P '* ^nt ~ PnX^ ' n ~ ° ' ^10^ 
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where 

un = 2nn/T, (11) 

,^J^±£±±, ( 1 2 ) 

Pn = 
VWTjP-^^ (13) 

- , (14) 

tf=——, (I5) 

with n being a counter [0, oo] of different waves 
Now, consider a T -periodic boundary condition, f(t) , and define the 

pair of Fourier transformation 

oo 

/(*) = 5T Qn eXP (iwrit) , (16) 

T 

an = 7p / /(*) e x P {-iunt) dt. (17) 
0 

A solution of (6) is now given in a complex conjugate form as 

oo oo 

h — ^ anhn(x, t) + y^ a-.nhn(x, t) (18) 
ra=0 n = l 

where an overbar over a complex number means complex conjugate. 
The phase-modulated tidal wave solutions 
A more realistic model for semi-diurnal tidal waves is the compound cosine 

function which is essentially a solution of the one-dimensional wave equation 
for phase-modulated waves (Elmore and Heald, 1969). The solution is 

f(x, t) = A0 cos [k0x — u;0t + <J> (x — ct)), (19) 
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where k0 and U)Q = k0c pertain to the unmodulated waves with 

c the wave velocity; 
UJ0 the unmodulated frequency; 
Ao is amplitude, and 
A\ is a constant accounting for the displacement of the amplitude. 

The function <J>(x - ct) in (19) is for phase modulation. 
A solution of the one-dimensional wave equation is given by (19). Here 

we examine it as a function of space and time (Elmore and Heald, 1969), with 

$ (x - ct) = m sin (u0t), (20) 

where m is the modulation index. Using(20), (19) is written as 

f{x,t) = A0 cos [kox - uj0t + msin (wmt)]. (21) 

Phase shifts and a constant to account for amplitude shift can be intro­
duced in (21), 

f(x, t) = A1 + Ao cos {k0x - LO0 (t - <i) + msin [uim (t - t2)]} (22) 

where 
A\ is a constant to account for vertical amplitude shift, and t\ and t<i 

are phase shifts. 

When (22) is fitted to the observed tidal data collected at Bundaberg Port, 
Queensland, Australia with the parameters A\ = 0.2 , A0 = 1.7, w0 = 0.2529, 
wm = 0.2529, m = 2.0, ta = 12.42, t2 = 12.0, the fit shown in Figure 2 is 
satisfactory. 

4 Freshwater-seawater interface subject to phase-modulated 
tides 

In the following section, we consider the transport of salts in the aquifer 
due to seawater intrusion subject to phase-modulated tidal waves. The basic 
equation governing the transport of salts is the Fokker-Planck equation which 
is given as 

dC 
4>-^ = V • (£>VC) - V • (Cv), (23) 

where 
4> is porosity; 
C is salt concentration; 
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Figure 2. The observed and simulated semi-diurnal tidal wavesat Bundaberg Port, Queens­
land, Australia, starting from 00:00, AM, 01 Jan. 1999 

D is the dispersion tensor which, in two dimensions, is given as 

/ 2,2 v1 \ 
Dxx=[aLT^+ aT-± + DdTxx t~\ 

V \v\ \v\ I 

Dz aTT~\ + aLT~\ \v\ \v\ 
DdTzz t 

Dxz = Dzx = I (aL - Q T ) - T T ) t (24) 

where Txx and Tzz are the principal components of the tortuosity tensor; and 
aL and ay are the longitudinal and transverse dispersivities respectively, and 
are defined as 

D<3x 2 m Ajz 2 n 
aL = -—-a x , a T = - ^ _ ° ' z (25) 
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where DQX and DQZ are constants dependent on media properties; a is the 
variance of the lower fractal cutoff limit subject to a fractal dimension d 
(1.0 < d < 2.0), with m = 2d - 1. (25) implies that in a heterogeneous 
porous medium there are two sources of variation in the flow travel path. The 
variation at a microscale is due to the heterogeneity of the media which is 
characterized by the variance of the fractal cutoff limit, while the variation 
at a geological scale is characterized by the fractal dimension. Incorporating 
these two sources of variation in the traditional Fokker-Planck equation is 
physically meaningful. 

It is interesting to note that for a mean value of m, i.e., m = 3/2, the 
fractal dispersivity has been shown by Wheatcraft and Tylor (1988) to give 
the best fit of the field data from extensive tracer studies carried out under 
different conditions (Gelhar et al., 1992). When a^ and ay are constants 
i.e., m = 0, and A = 0, (25) reduces to the same form given in Bear (1999). 
Throughout this paper, the case where ai = 0, o r = 0 and Dd ^ 0 will be 
referred to as the constant coefficient dispersion; the case when a^ ^ 0, a^ ^ 
0,Dd = 0 the variable coefficient dispersion, and the case with m ^ 0 the 
time- and scale- dependent dispersion. 

The flow equation may be written as (Frind, 1982; Huyakorn et al., 1987) 

Ss— = V - [ K ( V / I + T C V Z ) ] , (26) 

where 

h is referred to as the freshwater reference hydraulic head; 
K is the hydraulic conductivity tensor; 
7 is the density coupling coefficient; 
G is the solute concentration; 
Ss is the specific storage; 
t is time; and 
z is elevation. 

The reference head and the density coupling coefficient in (26) are defined 
as 

h = — + z, (27) 

and 

7 = T ^ - , (28) 
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where 

p is the fluid pressure; 
g is the gravitational acceleration; 

Cm a x is the concentration that corresponds to the maximum density; 
p0 is the reference (freshwater) density; 
e is the density difference ratio defined as 

e = Ej^ _ i . (29) 

The relationship between fluid density, p, and concentration, C, under 
isothermal conditions can be expressed in the form 

P = Po(l + lC) = po(l + pr), (30) 

where pr is the relative density. 
With the coupled flow and transport equations, numerical solutions have 

been developed to simulate seawater intrusion (Liu et al., 2002). The simplest 
case of seawater intrusion is the so-called Henry problem. 

For the Henry problem, two sets of parameters are used to simulate both 
hydraulic pressure and salt distributions across the model aquifer. The results 
are shown in Figure 3. 

It is seen from Figure 3 that in the upper portion of the aquifer the sim­
ulated salts using the fractal model tend to move inland and mix better with 
freshwater. This result is different from the classic Henry isochlors (Reilly 
and Goodman, 1985). The explanations for this difference are that due to 
enhanced convection and mixing in the upper portion of the aquifer the salt 
concentration in the freshwater water increases. Further experiments are re­
quired to verify this phenomena with field data. 

5 Conclusion 

In the preceding analysis, some important characteristics of tides on beaches 
have been analysed in detail. 

1. As semi-diurnal tides exhibit uneven twin peaks, it has been shown that 
the phase-modulated periodic solution of the wave equation satisfactorily 
simulate the uneven twin peaks of semi-diurnal tides observed in the field 
at Bundaberg on the east coast of Queensland, Australia. 

2. Numerical analyses has shown that the Fourier series solutions of the 
Boussinesq equation subject to periodic BCs capture important features 
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Figure 3. Distribution of hydraulic pressure (top, with seawater on the right hand side), 
and isochlors (salt contents) with different fractal dispersion parameters: A = 1/2; d = 
5/4; Dox = D0y (middle), and A = 1/2; d = 5/4; D0x = D0y/3 (bottom). 
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of tidal waves. First, tidal waves damp towards land, and second, the 
half amplitude of the tide above the mean sea level is greater than that 
below it. These methods have been confirmed by field data collected at 
Bundaberg Port, Queensland, Australia. 

3. With a functional dispersivity, freshwater-seawater interface has been 
simulated which shows more realistic results. Further work and data 
collection are in progress to verify the findings. 
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The paper describes stage 1 of the development of a Health Module, within a 
dynamic microsimulation model simulating individuals over the lifecourse. The 
enhanced model accounts for Australians' health and mortality by socio-economic 
status. In developing the Module we found that household-based health surveys 
were unsatisfactory, as they excluded the very sick who resided in institutions. We 
thus chose the disability surveys which cover institutions as well as households. In­
dividuals' disability status was used as a proxy for their health status, and disability 
and life expectancy were linked mathematically. Amongst the available indicators 
of socio-economic status, the geographically based index of socio-economic disad­
vantage was found to underestimate health inequalities, while an individual-level 
index based on family cash incomes was found to overestimate these. To obtain 
more accurate estimates, we propose indexes accounting for both cash income and 
assets. The paper also describes a range of analyses that could be attempted once 
that Module is completed. Such studies could for example compare the demo­
graphic, labour force, financial and distributional impacts of policies that aimed 
to lower health inequalities - and do that more accurately and at a much greater 
level of detail than was possible previously. 

K e y w o r d s : health inequalities, socio-economic studies, probabilistic modelling, microsim­
ulation. 

1 Introduction 

In recent years health inequalities became a much-researched subject, with a 
number of developed countries having already announced policies that aim to 
reduce inequalities in health - eg the UK and Canada (Acheson, 1998; King's 
Fund, 1999; McCain and Mustard, 1999). Much of the research published in 
Australia and overseas concerns differences in mortality patterns across socio­
economic groupings. The virtually universal finding is that people with low 
socio-economic status (SES) - usually the 'poor' - die younger than people 
with high SES - usually the 'rich' (World Health Organisation, 2000; Glover 
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et al.,1999). More recently the focus of research has shifted to the reasons for 
premature death of the socially disadvantaged, and to the study of individuals' 
health and lifestyles as they affect mortality (Marmot, 1998). Also, there has 
been increasing interest internationally in the study of health in a lifecourse 
context (Barney et al., 2001). This project aims to simulate the life paths of 
individuals over a 20 to 30 year period using a dynamic microsimulation model 
(Antcliff et al, 1996). In its first stage it involves the modelling of health as a 
function of socio-economic status - the subject of this paper - with mortality 
and disability being the indicators of health. In later stages we intend to 
add additional health indicators (such as the severity of disability and the 
main disease causing that disability), and to model health related decisions 
regarding issues such as remaining in (or exiting) the workforce, becoming a 
carer or, in old age, leaving home to enter an institution (eg hostel, nursing 
home). The aim of the full project is to make a unique contribution to the 
broadening of the way in which health inequalities are analysed. 

2 Linkages between health and socio-economic status 

In the Base population of the dynamic microsimulation model, DYNAMOD 
(Appendix Al), disability status is being allocated to individuals, by socio­
economic status, in line with historically observed patterns. Disability is de­
fined by the Australian Bureau of Statistics (ABS) as a limitation, restriction 
or impairment, which has lasted, or is likely to last, for at least six months 
and which restricts every day activities. Demographic, social and economic 
events occurring throughout the lives of people in this Base population - ie 
births, deaths, family structures, migration, education, labour force partici­
pation, earned income, government transfers, taxes and wealth - will then be 
simulated over a 20 to 30 year period. Figure 1 illustrates the way the link 
between health (ie mortality, disability) and SES is handled in the enhanced 
model. 

Briefly, when a child is born, he/she is being allocated a date of death 
based on observed probabilities and on his/her parents' socio-economic sta­
tus. A disabled new born is allocated an earlier date than an able-bodied 
new born. When considering probabilities of death, allowance is made for 
increases in future life expectancies, based on estimates by the ABS. It is only 
if a change occurs in a person's disability or socio-economic status that the 
initially allocated date of death is re-estimated. Appendices A2 and A3 de­
scribe the equations, for the model's input data, that mathematically specify 
the linkages between disability and mortality. 
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From Main Pari of DYNAMOD From »aaWmy Module 

Figure 1. The links being modelled between mortality and disability, by socio-economic 
status 

3 Choice of data sources 

Amongst the available data sources we examined two large nationwide unit 
record surveys:, the ABS's latest (1995) National Health Survey (NHS) -
a household survey (ABS, 1996) - and its 1993 and 1998 Disability surveys 
(ABS, 1999) - which include both households and institutions. Our earlier 
work suggested that data from household surveys were unlikely to be satis­
factory when studying health status over the lifecourse, because such surveys 
excluded persons in institutions - such as hospitals, prisons, nursing homes 
(Walker, 2000). For example, we found that respondents to the 1995 NHS aged 
70 years or more appeared to have better health on average than did younger 
age groups (Walker, 2000). This was thought to be because seriously ill or 
disabled Australians aged 70 or over who had moved into a hospital, hostel or 
nursing home were excluded from the survey. A similar pattern emerged from 
two other household surveys: the 1993-94 and 1998-99 Household Expendi­
ture Surveys (HES) conducted by the ABS. As seen in Figure 2, in both years 
persons aged 75 or over appeared to have spent less on prescribed pharmaceu­
ticals than did younger age groups. Another interesting finding was that in 
most age groups a higher proportion of persons spent on prescribed drugs in 
1998-99 than in 1993-94 (Figure 2). More aggressive screening and treatment 
options available in recent years may have contributed to this pattern. 

In addition, this pattern is consistent with the generally upward trend 
in the number of prescriptions subsidised under Australia's Pharmaceutical 
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Figure 2. Spenders on prescribed drugs, per cent of the population by age group, 1993-94 
and 1998-99 

Benefits Scheme (a growth rate of close to 3 per cent a year). While it could be 
argued that those who survived to age 75 may have had a stronger constitution 
than did the 'younger old', this was not borne out by the statistics reported in 
the 1998 Disability Survey - a survey which included persons in institutions. 
That survey showed the proportion of Australians with a disability and/or 
long term illness as increasing steadily well beyond age 70 (Figure 3). 

O / <r>' 5>/ A ' o V <$y nS>' Ay . » ' &* <&' <k" <£>' <&' * £ ' &' oP' * *?' A"3 

Age group 

Figure 3. Proportion of population disabled and/or with long-term-illness, 1998 

Comparisons across Figures 2 and 3 suggest that the HESs significantly 
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underestimate pharmaceutical spending in older age groups - probably from 
age 70 onwards. This pattern is consistent with the cut-off age of 70 that 
needed to be adopted in an earlier study analysing the 1995 NHS (Walker 
and Abello, 2000). The problem of excluding people aged over 70 or 75 years 
is that then the excluded group accounts for the majority of persons who are a 
year or two away from death (Walker, 1998) - a group of particular importance 
to studies of life time health expenditures and of disability-illness-mortality 
linkages. In view of the above, the Disability survey was chosen for this 
project as it clearly provides better lifecourse estimates of health status than 
the household-based surveys. The Disability survey has linkages to illnesses, 
through the 'main disabling condition' variable, as well as information on 
the severity of disability. Use of these variables is planned for later stages of 
the project and, if necessary, additional disease-related information may be 
imputed from National Health Surveys, but only to age 70 or 75. 

4 Indicators of health status 

Mortality 
When studying health at the population level it is common to use vari­

ous mortality rates and related life expectancies as proxies for health status 
- eg infant mortality, life expectancy at birth (World Health Organisation, 
2000; Walker, 2000). However, health as indicated by mortality rates says 
nothing about how health problems developed over an individual's life; how 
they impacted on a person's family or employment prospects; what factors 
contributed to a particular mortality outcome; and how that outcome could 
have been altered through adoption of various interventions by individuals or 
government. In effect, we know very little from standard statistical collections 
about the characteristics of people who just died. In this project, by linking 
mortality to disability, we expect to fill in some aspects of this knowledge gap. 
For this project we used unpublished mortality statistics extracted by the Aus­
tralian Institute of Health and Welfare (AIHW) from its 1995-97 Mortality 
Database. Apart from the variables often used in earlier mortality studies -
age, gender and an index of socio-economic status based on area of residence 
- we also obtained data split into two groups based on cause of death. These 
were 'External' and 'Non-external' causes, which were separately identified so 
as to be able to distinguish between deaths due to accidents (eg drowning, 
car crashes) and deaths due to illnesses (eg heart attack). This distinction 
is important because people dying from external causes are generally much 
younger than people dying from diseases or old age - hence the former group, 
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although much smaller, will be important when estimating the effects of policy 
or other changes in terms of 'years of life lost'. 

Disability 
For this project we chose the ABS's Disability survey as a key data source 

(Section 3). The choices were to stay with the 1993-94 survey (used in the 
original model), or to up-date the model's Base data using thel998 survey. 
Because in our project we intended to model the SES-health link, and be­
cause the income variable was a potential candidate for indicating SES, we 
examined the income related statistics in these two surveys. We chose the 
1998 Disability survey because we found that the non-response rate to the 
'income' question in that survey was much lower than in the 1993-94 survey. 
Although the 1998 survey - covering some 43,000 persons - is cross sectional 
in nature, we were able to construct lifecourse patterns by assuming, for the 
model's default settings, that the 1998 patterns for groups with a particular 
set of demographic and socio-economic characteristics remained unchanged 
throughout the simulation period. 

5 Indicators of socio-economic status 

Based on income or area of residence 
Two common indicators of socio-economic status used in Australian stud­

ies are the ABS's socio-economic indexes for areas (SEIFA) - (Dunn et o/., 
2002) - and equivalent (or per person) family income (Saunders, 1996). In 
the literature family income was found to be a good single 'proxy' for socio­
economic disadvantage (Walker and ABello, 2000) . With mortality statistics, 
only the SEIFA-based indicator is available. However, using the 1998 Disabil­
ity survey we had the choice of either the SEIFA, or an income-based indicator 
of SES. The question was which of these two was preferable for our purposes. 
Studying both mortality and disability as a function the SEIFA index has the 
advantage of consistency across different aspects of the project. This however 
needed to be weighed against the advantages of the income-based indicator, 
in that the latter can be applied to individuals while the SEIFA applies to all 
people residing in a particular geographical area. Thus households in a par­
ticular area - in our case a Collector District covering on average around 200 
households - will all have the same SEIFA quintile attached to them, and thus 
that data will not reflect the variability in socio-economic status that in reality 
does exist within each CD. In addition, since a 'per person' indicator cannot 
be obtained from the SEIFA, with that index it is not possible to distinguish 
between large and small families. For example, a two person couple family 
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with annual income of $50,000 a year residing in a particular area will have 
the same SEIFA quintile as a five person family, such as a couple with three 
dependent children, living in the same area. By comparison, with the income 
index it is common practice to use the 'equivalent family income' measure -
which can be thought of as being a 'per person' indicator of family income. 
A priori, one would expect equivalent income to be a more appropriate and 
precise indicator of SES than the geographically based SEIFA index. This is 
because family income reflects the purchasing power of the particular family 
being studied, and not the collective wealth of the geographic area in which 
that family happens to reside. 

However, a key disadvantage of the income-based indicator is that it takes 
no account of assets. In a lifecourse context many people start out by being 
'cash poor and asset poor', then progress to a 'cash rich - asset poor' status, 
ending their lives as 'cash poor and asset rich'. This means that the income 
measure will tend to class older Australians into the lower SES groups which, 
for a significant proportion, may not be in line with what their life styles 
suggest (eg in terms large houses, expensive cars, overseas holidays). By 
comparison the SEIFA index has the advantage of taking account - albeit 
indirectly - of assets. 

Using the 1998 Disability survey, we were able to study the way the alloca­
tion of the same population to SES quintiles differed across the two measures 
(SEIFA quintiles and income quintiles). For this exercise we used the ABS's 
index of 'Relative Socio-economic Disadvantage' as the SEIFA Indicator. For 
income we computed 'equivalent family income' (Walker and Abello, 2000). 
Because the SEIFA represents an average for a geographic area - and thus is 
unable to take account of variability - one would expect its use to result in a 
'flattening' of the inequality gradient, compared with the individual family-
based income indicator. This is supported by our findings when plotting the 
proportion of disabled by the two SES measures, with Figure 4 suggesting 
considerably greater inequalities in the proportion of disabled across income 
quintiles than across SEIFA quintiles. With the SEIFA measure 26 per cent 
of persons in the most disadvantaged SES group (quintile 1) were disabled in 
1998, compared with 14 per cent in the least disadvantaged group (quintile 
5). When using the 'equivalent income' measure, a much higher proportion of 
the quintile 1 persons were disabled (35 per cent), with a much lower propor­
tion in quintile 5 (10 per cent). However, with the income measure we found 
that virtually no persons in the older 65+ group fell into the more affluent 
top three quintiles - probably due to the 'cash poor but asset rich' status of 
many in that age group (Walker, 2001). Overall, neither of the measures was 
found to be clearly superior. So for reasons of comparability, we chose the 
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ABS's index of 'Relative Socio-economic Disadvantage' (SEIFA) for both mor­
tality and disability analyses, when preparing the input data to the dynamic 
microsimulation model. 
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Figure 4. Proportion disabled by equivalent income and SEIFA quintiles, 1998 

Income-wealth measure as indicator of SES in projection years 
Although the projection years of the model are outside the scope of this 

paper, the proposed SES measure for that part of the project is briefly men­
tioned here. As seen in Section 5.1, an index which can be attached to indi­
viduals, and which accounts for both cash income and assets, seems prefer­
able to the alternatives available. Because dynamic microsimulation is ideally 
suited to take account of wealth accumulation, and because assets are already 
computed within the model, we are able to propose that a combined income-
wealth indicator be used during the model's projection years. It is expected 
that such an index would be a function of per year 'equivalent' family cash 
income - using model variables such as earnings and social security payments 
- and an annualised value of 'equivalent' family assets. 

6 Modelling the health-SES link 

Preparing the Base year data 
The input data needed for the model - by gender, SES and single years 

of age (0 to 104) - comprises (Appendixes A2 and A3): Probability of death 
- for the able-bodied (who die from external causes), the disabled (who die 
from non-external causes) and the population in general (ie able-bodied plus 
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disabled). The probability of death is a function of disability - ie the disabled 
have lower life expectancies than the able bodied; Mortality improvement 
rates covering three periods: 1987 to 1994, 1995 to 2004 and 2005 to 2050 
- based on ABS predictions. These account for likely future increases in life 
expectancies; Disability prevalence (computed by as the number disabled 
divided by the total number of persons in that class); Disablement rate 
(function of the number becoming disabled, the number of recoveries, the 
able-bodied population, and the number of deaths in the able bodied pop­
ulation); Recovery rate (with values chosen so that the number of persons 
becoming disabled remains positive for all ages within the SES quintile being 
studied). The data sources used were an extract from the AIHW's Mortality 
database (1995-97), the ABS's SEIFA estimates from the 1996 Census, and 
the ABS's 1998 Disability survey. For survey-based analyses we used the SAS 
programming language. 

Mortality rates 

(a) Rates by SES quintiles 
To compute separate mortality rates for the able-bodied and disabled 

populations by SEIFA quintiles, we used the equations detailed in Appendix 
A2. It was only possible to obtain these separate mortality rates by using 
data from two sources: the AIHW extract for mortality by SES, and the 
1998 Disability Survey for disability prevalence by SES. This was because 
- as the equations indicate - the disability prevalence rate mathematically 
links the able-bodied population to the disabled population. Mortality rates 
were initially computed by gender, SEIFA quintile and 5-year age groups and 
then converted - using the GAM spline program of SAS - into single years of 
age. The 'fit' in all cases was statistically significant (for smoothing: p-value 
less than 0.0001; for parameter estimates: p-value less than 0.0001). As an 
example of the results obtained by SES, Figure 5 presents for males mortality 
rates from external causes (such as accidents or suicides). As expected, the 
Figure shows that, when compared with most older age groups, males aged 
20-34 years had exceptionally high such mortality rates. Indeed, the rates 
for that young group were similar to those observed for 70-74 year old men! 
The Figure also shows that quintile 1 people consistently had the highest 
mortality rates, and quintile 5 the lowest - with quintiles 2, 3 and 4 falling 
in between. We found that this ranking remained consistent not only when 
analysing mortality, but also across all the other aspects of the input data 
required by the model. This is remarkable, given that the various rates were 
computed using data from several unrelated sources and were linked through 
complex equations (Appendix A2). Although not reproduced in this paper, 
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for all cause mortality we found the pattern to age 39 to be similar to that 
in Figure 5. However, for the over 40 age groups all cause mortality rates 
were found to be well above those of Figure 5 (Walker, 2001) - illustrating 
the dominance of illness-related deaths after age 40, and the much greater 
importance of 'external cause' related deaths for the younger age groups. 
Hence the decision to model mortality from external and non-external causes 
separately. 

i " 0.0001 

\"'m w f̂  " g ^ &£4>*g-2«r 

Q3 

- # - Q 5 

Age 

Figure 5. Mortality rates, external causes males age, SEIFA quintiles, 1995-7 

(b) Rates over time 
By comparing mortality statistics from the model's original 1990-92 based 

input data with the new 1995-97 data (computed by SES quintile), it was pos­
sible to examine how mortality rates changed over time. Figure 6 illustrates 
this for males, for non-external causes and - for sake of readability - for all 
SES quintiles. 

We chose non-external causes, because for the able-bodied (ie people dying 
from 'external' causes) mortality rates changed very little over time. Figure 
6 also shows that even in this relatively short period - five years between 
the early and late 1990s - mortality rates from non-external causes declined 
significantly. This is consistent with the general trend towards increasing life 
expectancies. 

Disability prevalence 
Unlike the trend for mortality (Figure 6), we found that disability rates 

generally increased between the early and late 1990s - as shown in Figure 
7 which plots the proportion of the disabled by single years of age for 1993 



342 

Figure 6. Mortality rates, non-external causes (ie the disabled population), by single years 
of age and gender, 1990-92 and 1995-97 

(the year of original model's input dataset) and 1998 (the year for which 
we computed prevalence statistics by SEIFA quintile). While this finding 
may seem counter-intuitive - since many people seem to be of the view that 
Australians are living longer because they are healthier - it is in line with 
the findings of earlier studies. Considering the 1983 to 1995 period, one such 
study found that there were steady increases in the number of Australians 
reporting serious illnesses, as well as in the number of doctor visits per person, 
per year (Walker and Abello, 2000). Similar findings were reported in the 
literature for other developed countries. Amongst likely explanations are the 
possibilities that modern technology is now able to keep disabled people alive 
longer and/or that, due to more frequent doctor visits, people are now aware 
of a greater number of illness-related disabilities than previously (Walker and 
Abello, 2000). As for mortality rates, the disability data by SEIFA quintile 
indicated a consistently higher prevalence rate for quintile 1 people (the most 
disadvantaged) than for the quintile 5 group. 

Disability decrement rates 
Disability decrement rates were derived using standard multiple decre­

ment techniques (Antcliff et at, 1996). Briefly, the able bodied population 
is subject to exits due to death and disability and entrants due to recovery, 
while the disabled population is subject to exits due to death and recovery 
and entrants due to onset of disability. We assumed that, for all SEIFA quin-
tiles, the recovery patterns specified in the original input dataset remained 
unchanged. For the new input data we then only needed to compute, by 
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Age 

Figure 7. Disability prevalence rates by age and gender, 1993 and 1998 

SEIFA quintile, the number - and rate - of people becoming disabled. We 
did this using equations A.5, A.6 and A.7 in Appendix A3. Our computed 
disablement rates for all quintiles were similar to the rates initially specified 
for the model. 

7 Concluding remarks 

Once the embedding of the input statistics in the simulation part of the model 
is complete, a limited number of applications will become possible. For ex­
ample: what would be the impact on Australians' health (indicated initially 
by mortality/disability) of policies through which the health of the most dis­
advantaged was lifted to the level of, say, the national average, in terms of 
lower mortality rates. In later stages of the project the effects on a range 
of other factors, such as welfare payments, workforce exits due to health -
based on family level decisions - and nursing home entries/costs could also 
be analysed. This initial illustrative simulation could be thought of as being 
similar to, but considerably more complex than earlier analyses (Mitchell et 
al., 2000). Examples of relevant findings from (Mitchell et al., 2000) are that: 
7597 lives could be saved (7% of all deaths under age 65) if wealth redistri­
bution patterns in the UK were reduced to those of the early 1980s; or 92% 
of avoidable child deaths could be prevented in areas where the death rates 
were higher than the national average if child poverty were eradicated; or 2504 
lives could be saved through achievement of full employment. Another exam­
ple, from (Turell and Mathers, 2001) is that: " If it were possible to reduce 
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death rates .. to a level equivalent to that of the least disadvantaged area, 
premature all-cause mortality for males in each age group would be lower by 
22%, 28% and 26% respectively, and for females, 35%, 70% and 56%." Once 
the full project is completed it will be possible to study the impact of future 
health improvements on people remaining in the workforce after age 65. Such 
an impact could be measured, for example, in terms of changes in government 
expenditures on aged care and on the age pension. Overall, the ability to 
model the SES-health link over people's lives - as is attempted in this project 
- would significantly improve the tools currently available to support complex 
lifecourse related policy decisions. 

Al DYNAMOD 
The dynamic micro-simulation model, DYNAMOD, to which the health 

module will be added, was developed at the National Centre for Social and 
Economic Modelling, University of Canberra. It simulates future events oc­
curring in Australians' lives: such as couple formation, birth of a child, edu­
cation, leaving home, migration, divorce, being employed, income from work 
and government, wealth accumulation, disability and death (Arntcliff et al., 
1996). The model is programmed in C and its Base year dataset is drawn from 
a 1 per cent sample of the Australian population (150,000 persons), extracted 
by the Australian Bureau of Statistics from its 1986 Census. 

A2 Equations for computing mortality rates 
For the disabled, mortality rates, at age x and with SES y, have been 

approximated by q£ which is defined as 

no. of deaths for disabled aged x in quintile y due to non-external causes 
disabled populations aged x in quintile y 

Similarly, the mortality rates covering deaths from all causes, qx,y, were 
calculated as: 

no. of deaths for disabled aged x in quintile y 
x'v disabled populations aged x in quintile y 

Thus, 

J no. of deaths due to non-external causes 
Q = Q V X 

x,y X'V t o £ a i n o 0f dgathg of those aged (x,y) 

total population(x,y) 

disabled populations aged (x,y) 

If px,y is the prevalence of disability at age x then 

total population(x,y) 1 
disabled populations aged (x,y) px%y 
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Since the prevalence px,y is known, we only need to compute the propor­
tion of deaths due to non-external causes to obtain an estimate for qf. y. 

The equation for the able bodied population is similar, except that the 
mortality statistics are for external causes and the prevalence is for the able 
bodied: 

total population(x,y) 1 

able bodied population aged (x,y) 1 - pXiV 

A3 Equations linking disability and mortality 
When computing the input data, disability decrements rates were derived 

using standard multiple decrement techniques (Arntcliff et al, 1996). Briefly, 
the able bodied population is subject to exits due to death and entrants due 
to recovery, while the disabled population is subject to exits due to death and 
recovery and entrants due to disability onsets. Let: 

l%y be the able-bodied population aged x, with family SES quintile y 
l^y be the disabled population aged x, with family SES quintile y 
RXiV be the number of recoveries aged x, with family SES quintile y 
DXiV be the number of people becoming disabled, aged x, SES quintile y. 
Then, in calculating independent death rates for the able-bodied popula­

tion, those initially exposed to risk are given by: 

bx,y
 = ^x,y + 2 x'y ~ 0 

and similarly for the disabled population 

?d __ ,d , 1 - ! 

2""'y 2 ' 
pd id _ i _ _ n _ n 
^X,y ~ lX,y "T" cy^XiV r,UX,y 

Then if q\y is the mortality rate for the able-bodied population and q% y 

the mortality rate for the disabled population, we have 

Tpa n<i I ipd nd rp 
J-'x,yllx,y ' £-'x,i/ (/x,3/ 1-Jx,yqx,y 

where EXiV is the initial exposed risk for all persons wthin that particular SES 
quintile. Thus, 

nd _ ^x,y + '•x,yQx,y (lx,y + 2^>x^v)(&,y 

Furthermore, 

na _ x,y • -x,yi*,y \~x,y • 2~x'V'x,y ,..N 
x'v ld -±R + i-D [ ' 

x,y 2IXx>V T 2 X'V 

l(x+l),y ~ lx,y - Dx,y + Rx,y ~ (lx,y + ^Rx,y ~ ^DXty)q^y (2) 
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and 
1 1 

' ( x + l ) , y = lx,y ~ Dx,y + # x , y ~ (*x,y + 2 x'y ~ 2 x'y'^x^ ' ' 

The able bodied and disabled populations can be related at any point in 
time using the prevalence rate for the appropriate age within the SES quintile 
being studied. For example: 

id _ to, P(x+l),y 
l(x+l),y - t ( x + l ) , 3 / 1 

which, upon substituting from expression (1), (2) and (3), gives for each SES 
quintile 

lx-Rx + D x - (lx - -Rx + -Dx) _ + 

P*+1 -(/°_JDx + i?x-( /S + ^ K ) 
1 - Px+1 •« 

This equation is linear in Dx^y, and therefore can be solved as follows: 

n _ P ( x + l ) , y ^ x , y + **-x,y ~ Qx,yVx,y + 2™x<v) _ 

(1 -Px+l,y){IjyQ- -gx.y) - lg,,gx,y} 
1 2 y x , y 

For any given values of Rx^y this formula can be used to build up a double 
decrement table for death and disability. Values for Rx<y have been chosen to 
ensure that DXiV remains positive for all ages within the SES quintile being 
studied and starts a 4% of the disabled population at age 0, increases to 15% 
of the disabled population over the age range 11 to 40 and then gradually 
declines to zero by age 94. Independent rates of increments due to disability 
and recovery, rx^y and dx,y can be calculated from Rx<y and DXiJ/ using the 
relationships: 

x,y 
Id i i n _ lad 
x,y ~ 2LJx^V 2°x,y 

x<y la t i n _ laa 
x,y < 2nx>V 2ux,y 

During the simulation part of the model, survival functions are established 
which allow estimation of the time of death if/when a person becomes disabled 
(Arntcliff et al., 1996). 



347 

REFERENCES 

ABS (Australian Bureau of Statistics) (1996). 1995 National Health Survey: 
Users' Guide. Cat. No. 4363.0, ABS, Canberra. 

ABS (Australian Bureau of Statistics) (1999). Disability Ageing and Carers, 
1998, User Guide. Cat No. 4431.0, ABS, Canberra. 

Acheson, D. (1998). Independent Inquiry Into Inequalities in Health Report. 
London: The Stationary Office. 

Antcliff, S., Bracher, M., Gruskin, A., Hardin, A. and Kapuscinski, C, (1996). 
Development of DYNAMOD: 1993 and 1994, National Centre for Social 
and Economic Modelling, Dynamic Modelling Working Paper No. 1, 
University of Canberra, and later DYNAMOD Technical Papers. 

Berney, L., Blane, D., Davey Smith, G. and Holland, P. (2001). Lifecourse 
influences on health in old age. In Understanding Health Inequalities, 
Graham, H. (editor). Philadelphia: Open University Press. 

Dunn, C , Sadkowski, K. and McPherson, M. (2002). Mortality Surveillance, 
Australia, 1987-1998. Australian Institute of Health and Welfare, forth­
coming. 

Glover, J., Harris, K. and Tennant, S. (1999). A Social Health Atlas of 
Australia. Commonwealth of Australia. Second Edition 

King's Fund (1999). Local Inequalities Targets. UK: King's Fund Publica­
tions. 

Marmot, M.G. (1998). Contribution of psychosocial factors to socio-economic 
differences in health. Millibank Quarterly 76, 403-48. 

McCain, M. and Mustard, J. (1999). Early Years Study. Canada: Govern­
ment of Ontario. 

Mitchell, R., Shaw, M. and Dorling, D. (2000). Inequalities in Life and Death: 
What if Britain Were More Equal?. Bristol: Policy Press. 

Saunders, P. (1996). Poverty, Income Distribution and Health: An Australian 
Study. Social Policy Research Centre University of New South Wales. 

Turell, G and Mathers, C. 2001. Socioeconomic Inequalities in All Cause 
and Specific Cause Mortality in Australia: 1985-1987 and 1995-1997. 
International Journal of Epidemiology 30, 231-239. 

Walker, A. (1998). Australia's Ageing Population: What Are The Key Issues 
and The Available Methods of Analysis. Discussion Paper 27, National 
Centre for Social and Economic Modelling University of Canberra. 

Walker, A. (2000). Measuring the Health Gap Between Low Income and 
Other Australians, 1977 to 1995: Methodological Issues, Discussion Pa­
per 50. National Centre for Social and Economic Modelling, University 
of Canberra. 



348 

Walker, A. (2001). Assessing health inequalities using a dynamic microsim-
ulation model. Presented at the Health Services & Policy Research Con­
ference, Victoria University, Wellington, New Zealand, 2-4 December, 
Section 5. 

Walker, A. and Abello, A. (2000). Changes in the Health Status of Low 
Income Groups in Australia, 1977-78 to 1995. Discussion Paper 52, Na­
tional Centre for Social and Economic Modelling, University of Canberra. 

World Health Organization (2000). The World Health Report 2000 - Health 
Systems: Improving Performance, Geneva. 
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Multivariate abundances are commonly collected in ecology and related disciplines. 
The main difficulties in modelling such data are that the number of variables is 
usually larger than the number of samples, and that the distribution of measure­
ment variables is typically strongly right-skewed with a positive weight at zero. We 
consider methods of hypothesis testing for multivariate abundances, where permu­
tation tests (permuting rows of the data matrix) are applicable. A number of 
such tests have been proposed in the ecological literature. We suggest alternative 
methods, and compare the different approaches using P-values from 20 datasets 
extracted from the ecological literature. All P-values were calculated using per­
mutation tests. Statistics based on generalised linear models performed poorly in 
unbalanced designs, but other approaches provided comparable or more encourag­
ing results than the test statistics presently used in ecology. 

K e y w o r d s : multivariate analysis, non-normal data, zero-modified distributions, permu­
tation tests. 

1 Introduction 

Multivariate abundances are quite commonly sampled in ecological research. 
In fact, textbooks have been written about the analysis of such data (Gauch 
1982, Jongman et al. 1987). Typical measures of abundance are counts of 
organisms per trap and % projected cover in the sample area. Abundance 
measures are separately recorded for different taxonomic groups. Hence a 
multivariate abundance dataset y will have dimensions N x p, corresponding 
to N multivariate samples of the abundance of p taxa. 

There are two properties of multivariate abundance data which demand 
attention. 

• Data depart markedly from a multivariate normal distribution. In par­
ticular, the distribution of abundances is strongly right-skewed with a 
positive weight at zero. 
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• The number of variables is large relative to the number of replicate sam­
ples. 

Both of these features are apparent in the example dataset (Table 1). 

Table 1. Example multivariate abundance dataset (Moulton 1982). Each row represents 
a single multivariate observation, classified into one of three treatments, each column rep­
resents one variable (abundances in one taxon). Twenty-one variables are not shown, so 
p = 36, whereas N = 14. Note also that most variables are strongly right-skewed, usually 
with a high probability of observing a zero. 

Treatment 1 

Treatment 2 

Treatment 3 

0 
0 
0 
1 
0 
0 

0 
0 
0 
0 

0 
1 
1 
1 

13 
4 
12 
23 
44 
6 

22 
12 
7 
24 

12 
22 
35 
13 

3 
6 
0 
1 
6 
1 

1 
8 
4 
5 

1 
3 
3 
0 

0 
0 
2 
1 
0 
1 

0 
0 
0 
0 

0 
0 
0 
0 

1 
0 
7 
0 
1 
0 

0 
0 
0 
0 

1 
2 
0 
0 

0 
0 
3 
0 
3 
0 

6 
2 
1 
0 

6 
4 
7 
2 

1 
0 
0 
1 
0 
0 

1 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 
1 
0 

0 
4 
0 
0 

2 
2 
13 
4 

0 
0 
1 
0 
1 
0 

0 
1 
1 
1 

2 
1 
0 
4 

1 
0 
0 
0 
18 
0 

0 
7 
0 
1 

18 
11 
16 
4 

0 
0 
0 
1 
0 
2 

0 
1 
0 
0 

0 
2 
6 
4 

0 
0 
1 
0 
4 
8 

1 
2 
2 
2 

5 
38 
2 
1 

0 
0 
0 
0 
0 
0 

0 
0 
0 
1 

0 
1 
4 
1 

0 
1 
3 
0 
0 
0 

10 
29 
0 
0 

0 
0 
0 
0 

1 
1 
0 
0 
4 
1 

0 
0 
0 
0 

0 
0 
0 
0 

This paper considers the case where the N multivariate samples have been 
classified into groups a priori, and there is interest in testing for differences 
in abundance across sets of grouping variables. Differences in abundance are 
assumed to be expressed through location parameters, and tested simultane­
ously for all taxa, using a single overall test. We consider tests of a single 
factor and tests of a nested factor in a multi-way layout. 

An application of particular interest is assessing environmental impacts, 
when the N multivariate observations are classified as "impacted" or "con­
trol" , for example, where there may be a blocking variable (e.g. topology -
ridge/hill/gully). The example in Table 1, however, contains three treatments 
(corresponding to three experimental fires) and no blocking variable. Tabu­
lated values are counts of invertebrates in different taxa, and there is interest 
in testing for location differences in taxon abundance across the fires. 

Note that exact significance levels can be found for tests of the form 
specified above using restricted permutation testing (Edgington 1995). 

For tests of the type described above, several procedures have been sug­
gested in the ecological literature, as briefly reviewed in Section 2. Alternative 
approaches are then reviewed in Sections 3 and 4. There is no existing work 
comparing different test statistics for this type of data, the subject of Sec­
tion 5. 
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2 Methods of analysis presently used 

Practising ecologists presently use one of two types of test statistics - those 
found in a package known as CANOCO (ter Braak and Smilauer 1998), and 
those based on a matrix of pair-wise dissimilarities between observations. In 
all cases, the significance of a test statistic is found by resampling, and all 
variables are assumed to be independent in deriving the test statistics. 

CANOCO methods Test statistics in the CANOCO package are explained 
in its documentation (ter Braak and Smilauer 1998), and are either re­
ferred to as "redundancy analysis" (RDA) or "canonical correspondence 
analysis" (CCA). Both RDA and CCA are scale dependent statistics, al­
though in CCA data are transformed using sums of abundances in such a 
way that if abundances follow a Poisson distribution, they are standard­
ised to have equal variance (ter Braak and Smilauer 1998). 

Distance-based approaches In distance-based approaches, test statistics 
are functions of a matrix of pair-wise distances between multivariate ob­
servations. In ecology, the most common example is the Bray-Curtis 
distance, denned as 

di3 = ylVik'yjkl. a) 

The various test statistics which are used can all be expressed in the form 
of the statistic suggested by Mielke et al. (1976): for each of the g groups, 
we define the average within-group distance 

EE . , . . ' . nk(nk - 1) 

and the test statistic is a weighted average of these 

-^— (2) 

^2/Wkfa (3) 

Here nk is the number of observations in the fcth group, a typical choice 
of r is 1 or 2, and we take wk to be (nk - l)/(N — g), although nk/N is 
another common choice (Mielke and Berry 2001). Under Hi, this statistic 
will be unusually small compared to other permutations of the data. 

Other statistics have been suggested in the ecological literature, which are 
monotonic functions of the Mielke et al. (1976) statistic. For example, 
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choosing u>k = (rifc — l)/(N—g) and r = 2 leads to a test statistic recently 
proposed (Anderson 2001). If in addition the Euclidean distance is used, 
this statistic is equivalent to RDA, and to statistics suggested by others 
(Romesburg 1985, Edgington 1995). 

Clarke (1993) suggested a test statistic based on ranks of distances. It 
is a monotonic function of the Mielke et al. (1976) statistic if ranks of 
distances are used, with Wk = nk(rik — 1) and r = 1. 

A number of alternative approaches will also be considered in this study, 
and these are reviewed in the following sections. These approaches have been 
organised into sections to separately address the two important properties of 
multivariate abundances that were previously identified - nonnormality, and 
the large number of variables. 

3 Approaches for non-normal response variables 

A range of approaches are considered here to address the non-normality of 
abundances. 

Transformation Data are transformed to approximate normality, and least-
squares theory used. The transformations considered are ^/y and 
log(y + a) — log(a), where a is the minimum possible non-zero abun­
dance. The most common transformations used in practice for analysis 
of univariate abundances are ^/y and log(y + 1), but a modification of 
the log-transformation is used here so that the transformation is scale 
independent. Because data are typically overdispersed relative to the 
Poisson distribution, y/y (variance-stabilising transform for the Poisson) 
is not considered. 

Log-linear models Data are often obtained as counts, and so log-linear 
models (McCullagh and Nelder 1989) can be applied. We consider the 
Poisson (with overdispersion parameter) and negative binomial model, 
because counts are usually strongly right-skewed. Parameters of multi­
variate log-linear models are estimated using generalised estimating equa­
tions (Liang and Zeger 1986), with nuisance parameters estimated by mo­
ments. As a test statistic, Rao's score statistic (Rao 1948) is used. Some 
datasets did not contain counted data - in such cases data were trans­
formed to ^, a previously defined, which would be expected to behave 
like counts. 

Robust methods Rank-based analyses (Hollander and Wolfe 1999) and 
other robust approaches (Birkes and Dodge 1993) are obviously appro-
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priate. The Kruskal-Wallis test and least-deviations or L\ regression are 
considered here. For L\ regression, a univariate statistic suggested by 
Birkes and Dodge (Birkes and Dodge 1993) is used. 

Mixture modelling We also consider modelling the abundance in each 
taxon using a lognormal distribution, conditional on the presence of the 
taxon in a sample, which is modelled using the Bernoulli distribution. 
This approach has recently been used to model willingness-to-pay (Reiser 
and Shechter 1999). In the univariate case, a maximum likelihood test 
statistic consists of two additive components - a logistic regression term 
(for presence/absence) and a sums of squares term (for non-zero abun­
dances). This decomposition of the test statistic is particularly attractive 
from the practitioner's viewpoint. 

4 Approaches for multivariate data with a large number of 
variables 

Relative to the number of samples taken, the number of variables is frequently 
large. When p is close to JV, sample correlation and covariance matrices are 
near singular, and test statistics give spurious results. When p > N, as is 
often the case, test statistics requiring the inverse of a sample variance or 
correlation matrix can not be found (due to singularity). 

Data reduction The number of variables could be reduced to a more man­
ageable number prior to analysis, whether using additional information 
(functional groups, taxonomy) or data-driven approaches (e.g. principal 
components analysis). This is not considered further in this paper. 

Subset selection Rather than construct a test statistic using all available 
variables, a subset could be selected to optimise some criterion, e.g. in­
clude the k variables which maximise the value of a given test statistic. 
This approach is presently being evaluated. 

Simplified correlation A simplified correlation structure could be assumed 
in constructing test statistics. Two correlation structures are considered 
here: 

• All variables are independent, so R, the correlation matrix, is the 
identity. 

• Groups of variables are independent of others, R is block diagonal. 
The grouping of variables will be arbitrary, the group size taken to 
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be (N—g)/3 (simulations suggest larger block sizes can give spurious 
results). 

When all variables are assumed independent, each test statistic is a sum of 
univariate statistics. This general approach to multivariate analysis dates back 
to 1958 (Chung and Fraser 1958). The least-squares statistics, with nuisance 
parameters estimated under Hi, are then a sum of univariate F statistics, 
an approach which has previously been suggested (Edgington 1995). For 
robust methods and mixture models, the identity matrix is the only assumed 
correlation structure considered in this paper. 

For all of the test statistics considered here, resampling is used for in­
ference, as it can not be assumed that the simplified correlation structure is 
true. 

5 Main Results 

There are two distinct questions of interest, relating to power considerations. 
Questions are: 
Under what conditions will one test be more powerful than oth­

ers? 
This is an area that has not been investigated at all for multivariate 

abundance data. An outline is presented of how the statistics of Section 1 
may differ in power, given the significance level of each is found through 
permutation. 

Lack of standardisation of data Remarkably, it is not presently routine 
in ecology to standardise abundances (or transformed abundances) ac­
cording to the variability of different taxa. Ensuing test statistics would 
be more sensitive to effects amongst more variable taxa, and insensitive 
to effects amongst taxa with less variable abundances. 

Assumptions of correlation matrix As verified by simulation (Mielke 
and Berry 2001), rotation invariant statistics that fail to account for cor­
relation between variables will be more sensitive to location shifts along 
the first few principal component axes that to location shifts along other 
axes (where the principal components axes have been calculated from the 
sample correlation matrix of y). Although this result will not strictly be 
true of rotation variant statistics, it is indicative of what one might expect 
in general. 

Robustness to outliers If abundances contain outliers, then least squares 
methods will lack power, compared to more robust methods (Birkes and 
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Dodge 1993). Methods based on the Bray-Curtis distance would be ex­
pected to be robust in this sense. 

Choice of abundance model If a particular model for abundances is more 
appropriate than others, statistics based on this model would be expected 
to generally be more powerful. 

Closer consideration of the above issues is required. 

In practice, how often is one statistic more powerful than others? 

Different test statistics will be sensitive to different alternatives, and it is 
of interest to see if a particular type of alternative is frequently encountered 
in practice. 

We addressed this question using 20 datasets taken from applications 
(Table 2). The use of 20 datasets from the literature ensured data were 
representative of multivariate abundance datasets encountered in practice. In 
preliminary work to compare the power of different statistics, P-values were 
calculated for each dataset, and compared across methods. A statistic that is 

Table 2. Dataset source, and properties. "Sub-sampled" refers to whether the dataset was 
reduced in size by selecting a subset of all treatments, variables, observations or by analysing 
only one of several sampling times. For unpublished data, the name of the provider of the 
data is given. 

Source 

N. Andrews 
A. P ik 
Moulton (1982) 
Moulton (1982) 
I. Lunt 
B. Rice 
J . Overton 
B. Rice 

B. Rice 
Clements (1980) 

A. P ik 
Warwick et al (1990b) 
Warwick (1971) 
Gray et al. (1990) 
Warwick et al. (1988) 
Gee et al (1985) 
Warwick et al (1990a) 
van Dobben et al. (1999) 
van den Brink et al (1996) 
van der Aar t and 
Smeenk-Enserink (1970) 

Abundance 

count 
count 
count 
count 
count 
% cover 
% cover 
% cover 

% cover 
% cover 

count 
count 
biomass 
count 
count 
count 
count 
count 
count 

count 

Organisms 

nvertebrates 
nverteb rates 
nver tebrates 
nver tebrates 
slants 
31 ants 
slants 
slants 

slants 
slants 

nvertebrates 
nver tebrates 
nver tebrates 
nver tebrates 
nver tebrates 
nver tebrates 
nver tebrates 
nver tebrates 
nver tebrates 

nver tebrates 

Sub-sampled: 

t ime 

obs. , t ime 
t ime 
t ime 
t r ea tmen t s 

t r ea tmen t s , 
t ime 
excluded 
t rea t . , var., 
t ime 

t r ea tmen t s 

t r ea tmen t s 
t r ea tmen t s 

t ime 

Nested 
factor? 

yes 
yes 
yes 

yes 
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generally more powerful than others in practice will provide generally lower P -
values. Subsequent power simulations are required to strengthen conclusions. 

A hypothesis test was chosen such that most statistics suggest there is 
some evidence (in the range 0.001 < P < 0.1) against the null. This ensured 
that in most cases, Hi was true but there was not such overwhelming evidence 
for it that comparison of test statistics was trivial. To satisfy these conditions, 
subsets of some datasets were used, as indicated in Table 2. One dataset was 
excluded due to lack of evidence for Hi (0.1 < P < 0.6 for most methods). 

Variables with only one (or no) non-zero elements were excluded. 
For all test statistics, P-values were determined by restricted permuta­

tion testing (Edgington 1995). This involved permuting observations (rows 
of y) within each of the groups denned under Ho, except for datasets which 
included nested factors (indicated in Table 2) such that it was appropriate 
to permute blocks of y rather than observations. P-values were estimated 
from ten thousand random permutations, except when exact P-values could 
be found from less than ten thousand systematic permutations. 

P-values are usually interpreted on a proportional scale, so instead of 
arithmetic mean P-values we used geometric means (Table 3) and P-values 
were plotted on a logarithmic scale (Figure 1). 

Table 3. Geometric mean of P-values from 19 datasets. P-values estimated by permutation 
testing with 10,000 iterations. For all "test in literature", data were transformed to fyy, 
Bray-Curtis distances used (where relevant), and "Mielke et al. (1976)" used Wf. = (n^ — 
l)/(N — g). R indicates correlation matrix assumed to be block diagonal, I indicates 
correlation matrix assumed to be the identity matrix, Ho indicates nuisance parameters 
were estimated under HQ. Values in table are geometric mean P-valuexlOOO. 

transformation 

loglinear model 

robust methods 

mixture model 

tests in literature: 

y (none) 

log(y +1) 

y? 
Poisson 
Negative binomial 
Kruskal-Wallis 
L\ regression 

RDA 
CCA 
Mielke et al. (1976), r = 1 
Mielke et al. (1976), r = 2 
Clarke (1993) 

R 

63 
28 
38 
89 
60 

R, Ho 

41 
24 
26 
37 
31 

I 

36 
16 
28 
34 
21 

14 
19 
14 
15 
19 

I, Ho 

33 
17 
17 
26 
27 
15 
38 
15 
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1 

0.1 

0.01 

0.001 

0.1 

0.01 

0.001 

0.1 

0.01 

0.001 

0.1 

0.01 

0.01 

0.001 

log(y+1) 
R . H 0 

+ ' , * ^ + 

°*°¥ 

y 

log(y+1) 
' .H 0 

,,tl 

/ 

/ + + 

9'' 

neg bin 
I 

y4+ 

< + 

¥ ° 

mixture 
model 

° 4+ 
+ + 

* -

Mielke 
r=1 

0.0010.01 0.1 0.0010.01 0.1 0.0010.01 0.1 0.0010.01 0.10.0010.01 0.1 1 

Figure 1. Scatterplot matrix of P-values from 19 datasets, calculated by five different meth­
ods that are labelled as in Table 3. + indicates a severely unbalanced design, with sample 
sizes in different groups varying over a factor of two. 

6 Discussion 

Results (Table 3) suggest the following conclusions for multivariate abun­
dances. 

• Least-squares has generally higher power following transformation of 
data, and loglinear models generally have low power. This is particu­
larly true for unbalanced designs. 

• L\ regression has low power. It models the median, and so only detects 
effects expressed at the median, whereas often effects were observed in 
variables where more than half the values were zero. 

• For these data, there is little obvious advantage in trying to model the 
dependence of variables (block diagonal R), rather than using the inde­
pendence model. 

• Estimating nuisance parameters under Ho rather than Hi can be ad-
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vantageous. This effect was only present in 3 datasets, for which many 
variables were rarely non-zero. 

Otherwise, Table 3 suggests similar performance between methods reviewed 
in Section 1. Comparing individual P-values, however, it is clear that dif­
ferent test statistics often lead to different interpretations of a given dataset 
(Figure 1), most obviously for unbalanced data. 

7 Conclusion 

The above analysis was sufficient to identify methods that are clearly in­
adequate for multivariate abundance data (loglinear models, L\ regression, 
untransformed least-squares). 

In the place of methods presently used in the literature, results provide 
some justification for assuming independence, estimating nuisance parameters 
under Ho, and using either a transformed least-squares approach or a simple 
mixture model. These methods lead to test statistics which have particu­
larly simple forms, and can be easily decomposed into the contributions of 
different variables. However, these results are only preliminary, and require 
support from simulations of data from known distributions, as presented in 
forthcoming publications. 

REFERENCES 

Anderson, M.J. (2001). A new method for non-parametric multivariate anal­
ysis of variance. Austral Ecology 26, 32-46. 

Birkes, D. and Dodge, Y. (1993). Alternative Methods of Regression. New 
York: John Wiley and Sons. 

Chung, J.H. and Fraser, D.A.S. (1958). Randomization tests for a multivari­
ate two-sample problem. Journal of the American Statistical Association 
53, 729-735. 

Clarke, K.R. (1993). Non-parametric multivariate analyses of changes in 
community structure. Australian Journal of Ecology 18, 117-143. 

Clements, A. (1980). The Vegetation of Bushland in the Northern Sydney 
area. M.Sc. Thesis. Macquarie University. 

Edgington, E.S. (1995). Randomization Tests, Third edition. New York: 
Marcel Dekker. 

Gauch, H.G. Jnr. (1982). Multivariate Analysis in Community Ecology. 
Cambridge: Cambridge University Press. 

Gee, J.M., Warwick, R.M., Schaanning, M., Berge, J.A. and Ambrose, W.G. 
Jr. (1985). Effects of organic enrichment on meiofaunal abundance and 



359 

community structure in sublittoral soft sediments. Journal of Experi­
mental Marine Biology and Ecology 91, 247-262. 

Gray, J.S., Clarke, K.R., Warwick, R.M., Hobbs, G. (1990). Detection of 
initial effects of pollution on marine benthos: an example from the Ekofisk 
and Eldfisk oilfields, North Sea. Marine Ecology Progress Series 66, 285-
299. 

Hollander, M. and Wolfe, D.A. (1999). Nonparametric Statistical Methods. 
New York: John Wiley and Sons. 

Jongman, R.H.G., ter Braak, C.J.F. and van Tongeren, O.F.R. (1987). Data 
Analysis in Community and Landscape Ecology. Wageningen: Pudoc. 

Liang, K.Y. and Zeger, S.L. (1986). Longitudinal data analysis using gener­
alized linear models. Biometrika 73, 13-22. 

McCullagh, P. and Nelder, J.A. (1989). Generalised Linear Models, Second 
edition. Boca Raton: Chapman and Hall. 

Mielke, P.W. and Berry, K.J. (2001). Permutation Methods - a Distance 
Function Approach. New York: Springer-Verlag. 

Mielke, P.W., Berry, K.J. and Johnson, E.S. (1976). Multi-response permuta­
tion procedures for a priori classifications. Communications in Statistics 
- Theory and Methods 5, 1409-1424. 

Moulton, T.P. (1982). The Effect of Prescribed Burning and Simulated Burn­
ing on Soil and Litter Arthropods in Open Forest at Cordeaux, N.S.W, 
Australia. Ph.D. Thesis, Macquarie University. 

Rao, C.R. (1948). Large sample tests of statistical hypotheses concerning sev­
eral parameters with applications to problems of estimation. Proceedings 
of the Cambridge Philosophical Society 44, 50-57. 

Reiser, B. and Shechter, M. (1999). Incorporating zero values in the economic 
valuation of environmental program benefits. Environmetrics 10, 87-101. 

Romesburg, H.C. (1985). Exploring, confirming, and randomization tests. 
Computers and Geos&iences 11, 19-37. 

ter Braak, C.J.F. and Smilauer, P. (1998). CANOCO Reference manual 
and User's Guide to CANOCO for Windows: Software for Canonical 
Community Ordination (version 4). New York: Microcomputer Power. 

van den Brink, P.J., van Wijngaarden, R.P.A., Lucassen, W.G.H., Brock, 
T.C.M., Leeuwangh, P. (1996). Effects of the Insecticide Dursban 4E 
(active ingredient chlorpyrifos) in outdoor experimental ditches: II. In­
vertebrate community responses and recovery, Environmental Toxicology 
and Chemistry 15, 1143-1153. 

van der Aart, P.J.M. and Smeenk-Enserink, N. (1970). Correlations between 
distribution of hunting spiders (Lycosidae, Ctenidae) and environmental 
characteristics in a dune area. Netherlands Journal of Zoology 25, 1-45. 



360 

van Dobben, H.F., ter Braak, C.J.F. and Dirkse, G.M. (1999). Undergrowth 
as a biomonitor for deposition of nitrogen and acidity in pine forest. 
Forest Ecology and Management 114, 83-95. 

Warwick, R.M. (1971). Nematode associations in the Exe estuary. Journal 
of the Marine Biology Association of the United Kingdom 51, 439-454. 

Warwick, R.M., Carr, M.R., Clarke, K.R., Gee, J.M. and Green, R.H. (1988). 
A mesocosm experiment on the effects of hydrocarbon and copper pol­
lution on a sublittoral soft-sediment meiobenthic community. Marine 
Ecology Progress Series 46, 181-191. 

Warwick, R.M., Clarke, K.R. and Gee, J.M. (1990a). The effect of disturbance 
by soldier crabs, Mictyris platycheles H. Milne Edwards, on meiobenthic 
community structure. Journal of Experimental Marine Biology and Ecol­
ogy 135, 19-33. 

Warwick, R.M., Piatt, H.M., Clarke, K.R., Agard, J. and Gobin, J. (1990b). 
Analysis of macrobenthic and meiobenthic community structure in rela­
tion to pollution and disturbance in Hamilton Harbour, Bermuda. Jour­
nal of Experimental Marine Biology and Ecology 138, 119-142. 



ESTIMATION OF PARAMETERS IN PYROLYSIS KINETICS 

JASON M. W H Y T E 

Department of Applied Mathematics 
Adelaide University 

Adelaide, SA 5005, Australia 
E-mail: jwhyte@maths. adelaide. edu. au 

MARK A. SUGDEN AND G E O F F R E Y D. A B B O T T 

Department of Fossil Fuels and Environmental Geochemistry 
University of Newcastle upon Tyne 

Newcastle upon Tyne, NE1 7RU, England 

ANDREW V. METCALFE AND CHARLES E.M. PEARCE 
Department of Applied Mathematics 

Adelaide University 
Adelaide, SA 5005, Australia 

A linear time invariant state space model is proposed for the production and de­
cay of two epimers (R) and (S) of a hopane released from oil bearing rock during 
laboratory pyrolysis. Concentrations of R and S are measured over time. The 
parameters to be estimated are: the initial amounts of precursors X, for R, and 
y , for S; the rate constants for the production of R and 5; the rate constants 
for the decay of R and S; and the rate constants for the two-way epimerization 
between both X and Y and R and S. It is shown that the model is locally identifi­
able. The parameters are estimated by numerical integration of the rate equations, 
alternated with a derivative free least squares constrained, optimisation routine. 
Asymptotic standard errors and covariances of parameters are given and compared 
with those obtained from a resampling approach (parametric bootstrap). An al­
ternative fitting procedure, based on estimating derivatives of the concentrations 
of R and S by fitting splines, is implemented and compared with that based on 
integration of the rate equations. The rate constants are important for elucidation 
of the reaction pathways, and the estimates of initial concentrations of X and Y 
have potential for inferring the yields of oil bearing rock. 

Keywords : compartmental model, identinability, resampling, splines, state-space model. 

1 Introduction 

Biological markers (biomarkers) are compounds detected in petroleum or rock 
extracts which indicate an unambiguous link with a natural product. Chem­
ical changes which occur in the sediment may alter functional groups and 
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bonds in the natural product, but the carbon skeleton of the compound re­
mains basically the same (Mackenzie, 1984). Hopanes are a class of biomarkers 
routinely found in buried sedimentary organic matter and are derived from 
the defunctionalisation of precursors with the biologically inherited (R)- con­
figuration at C-22. The side chain 22ii-configuration dominates the isomeric 
distributions in the organic solvent extract of shallow, relatively cool sedi­
ments (Philp, 1985). 

With increasing burial depth and the associated temperature rise the 
side chain .R-configuration preferred in immature sediments converts gradu­
ally to an all-isomer mixture of R and 5 epimers. This process is gauged 
by measuring a biomarker maturity parameter from gas chromatography -
mass spectrometry (GC-MS) data - the 17a(H),210{H)22S/(22S + 22R)C3i 
homohopane parameter abbreviated to (225/(225 + 22R)), is given by the 
peak area of the 22.R epimer relative to the sum of itself and the peak area 
of its 225 counterpart in the m/z =191 mass chromatogram. These parame­
ters are of great interest to the oil industry because they indicate the extent 
of the thermally-driven reactions which convert sedimentary organic matter 
into petroleum. The biomarker maturity parameter ranges from 0 to an end 
point of about 0.60, and high values suggest the rocks in a sedimentary basin 
have been buried to the depths necessary, about 3 km, for significant and 
economically exploitable petroleum generation to have occurred. 

Kerogen is defined as the organic constituent of sedimentary rocks that 
is neither soluble in aqueous alkaline solvents, nor in the common organic 
solvents. Biomarkers may be trapped in the kerogen network or, alterna­
tively, bound to kerogen by covalent bonds and then are released as a result 
of increasing burial within the Earth's crust. Generally biomarker maturity 
parameters increase with time and temperature during the pyrolysis of sedi­
mentary organic matter (Lewan et al, 1986). In the 1980s it was held that the 
inherited biological (.Reconfiguration at C-22 converts to an epimeric mixture 
during burial and the associated thermal maturation, see Mackenzie (1984) 
and Mackenzie and McKenzie (1983). However, direct chiral isomerization at 
C-22 for hopanes did not appear to be the sole control on observed changes 
in the 225/(225 + 22R) maturity parameter, during the hydrous pyrolysis of 
some kerogens (see Abbott et al., 1990)). Further controlling factors were 
cited which included sequential release of (i?)- and possibly (5)-epimers from 
macromolecular and/or functionalised components, combined with degrada­
tion of both (R)- and (5)-epimers to mainly unknown products. Laboratory 
pyrolysis of kerogens or organic-rich rocks at temperatures in excess of 250 
°C causes the release of bound biomarkers. 

We analyse data from a laboratory experiment on a sample of Messel 
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shale. The free biomarker, R and S, was washed out with solvent over a two 
day period, and the sample was then subjected to pyrolysis, in 23 small glass 
tubes, in an oven which was maintained at 350°C. These tubes were removed 
at different times throughout the pyrolysis and analysed for R and S content. 
Therefore, the laboratory experiment provided a set of n time (£) and esti­
mated epimer concentrations, [R]t and \S]t, triples. The most general chemical 

X M R M DR 

kinetic model considered here is: jfc2TUi fc6Thfc5 

Y M S -^ Ds 

In this model, X and Y are precursors, referred to as bound biomarker, 
for R and S, and DR and Ds are the degradation products. The dominant 
pathways in laboratory pyrolysis are X to R to DR and Y to 5 to Ds. 
However, epimerization between X and Y, and between R and S occurs in 
the ground and this may be emulated in laboratory pyrolysis. 

The washing before pyrolysis justifies an assumption that the initial con­
centrations of R and S are zero. The statistical problem is to estimate the 
rate constants ki,...,kg, possibly with some constraints in addition to their 
being positive, and the initial concentrations of X and Y from the data which 
are subject to experimental errors. The initial concentrations of X and Y 
are of considerable practical importance. Their sum provides an estimate of 
amount of oil in the rock. The ratio [F]o/([X]o + [Y]o) is the bound maturity 
parameter. It has a similar range of values to the maturity parameter based 
on the free R and S found in the rock, and is potentially more reliable because 
the free R and S may have come from extraneous sources. 

2 Results 

2.1 State-space model 

The kinetic model is a set of simultaneous first order linear differential equa­
tions. It can therefore be written in state space form: 

x = Ax (1) 

y = Cx 

x(0) = x0 

Here x is the state vector 

^ = ([X],[Y),[R],[S}) 

xo' = ([X]o,[y]o,0,0) 
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and y is the observation vector 

y' = ([*], is}) 

In practice y will be sampled. The constant matrices A and C are defined as 
follows. 

f-fa-ka k2 0 0 \ 
ki -k2 - fc4 0 0 
k3 0 -k5 - k7 k6 

\ 0 ki k5 -k6-ksJ 

0 0 1 0 
0 0 0 1 

2.2 Identifiability 

The model is deterministically identifiable if it is, in principle, possible to 
estimate all 10 parameters from noise free time series measurements [R]t and 
[S]t- However, even if a model is identifiable it may not be possible to estimate 
the parameters with acceptable precision from finite length, noise corrupted, 
records. Also there may be different sets of parameter values for which the 
model's associated differential equations have identical solutions, [R]t and 
[S]t. A model is described as locally identifiable provided a set of parameters, 
corresponding to any given solution of the differential equations, is unique 
within some neighbourhood of the point values of the parameters. A relevant 
example is the fast/slow ambiguity: there are two sets of parameters, \X]o, k3, 
and kj, for which the system 

X M R M DR, 

with [R]o equal to 0, has identical [R]t, corresponding to the cases k3 > k7 

and k3 < £7. However, it may be possible to distinguish between the two 
cases from knowledge of a likely range of values for [X]o. 

We should check that a model is identifiable before attempting to esti­
mate its parameters. There are several methods for checking model identifia­
bility; see for example Vajda and Rabitz (1988) or Eisenfeld (1985). Here we 
have chosen to use the Laplace transformation approach of Vajda and Rabitz 
(1988). 

The Laplace transform of a first order time-invariant, linear differential 
equation system such as (1) is 

Y(s, k) = C(k)[sl - A(k)]-1 xo(k) 

where k is the vector of unknown parameters. The vector <£ of moment invari­
ants is formed by all different coefficients of powers of s in the numerator and 
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denominator of the transfer functions Yi(s,k), where Y, are the components 
of Y . A Jacobian J is defined as, 

J ~ 9 k ' 

The system is identifiable, at least locally, if and only if the rank of J is equal 
to the number of unknown parameters, except, possibly, for a finite set of 
point values. Even with computer algebra, this criterion becomes impractical 
to implement with a large number of unknown parameters, and similar limi­
tations apply to the other methods. In our case we were able to demonstrate 
that the system is identifiable if the initial conditions are known, from a Jaco­
bian of size 10 by 8, but the symbolic algebra routine could not operate on a 
matrix of size 10 by 10 which would be needed for the case of unknown initial 
conditions. However, we claim that if a linear system is identifiable given 
initial conditions, observable and input connectable (see Davison, 1977), then 
it is also identifiable with unknown initial conditions. An argument for this 
follows. 

Suppose a system is identifiable given initial conditions (10). Then given 
a noise free signal y(t) and 10 we can identify the unknown parameters and 
get an exact fit. But, we don't know 10. Therefore suppose we assume initial 
conditions I I . Then, either we do not get an exact fit and we try different 
initial conditions or we do get an exact fit with II. The former could continue 
until we converge on 10, in which case the rate constants and the parameters 
are identifiable. So, we need only consider the second possibility. The second 
possibility would imply that non-zero initial conditions (11-10) give a zero 
response. This would contradict the assumption of input connect ability. It 
should be noted that such initial conditions may contain negative components 
and are therefore not physically realisable. Nevertheless, the mathematical 
argument holds. 

2.3 Fitting the model 

It is possible to express the solution to the differential equation describing 
the system in algebraic form as in Marin et al. (1999). However, we have 
taken the more general approach of solving the equations numerically. This 
approach extends to A matrices of dimensions larger than 4x4 . The solution, 
for a given set of parameter values, is compared with the data and the sum 
of squared errors is calculated. The parameter values are adjusted and the 
process is repeated until a least value of the sum of squared errors is obtained. 
We checked that this routine did identify the parameter values set equal to 
the estimates identified in Marin et. al (1999) as a test case, from sampled 
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solution time series Rt and St consisting of 400 points. We then fitted the 
following models to the 23 data triples (t, [R]t, [S]t)-

Model 0 
This is the simplest model in which there is no epimerization between R 

and S or their precursors X and Y. Thus, the parameters ki,k2,k^ and ke 
are set to 0. The results of fitting subject to the constraint that [X]o > [Y]o 
are given in Table 1. The constraint was imposed because the Messel shale is 
known to be thermally immature and the maturity parameter, [y]o/([X]o + 
[V]o). was therefore expected to be well below 0.5. The residual sum of squares 
is 102.7. A plot of the fitted values is given in Figure 1. 

Rdata + 
S fitted 
S data x 

0 I* 1 1 1 i 1 1 1 1 
0 10 20 30 40 50 60 70 80 

time (hours) 

Figure 1. Data for R and S with fitted values for Model 0. 

The parameter estimates were insensitive to small changes in the initial 
values taken for the algorithm, but using randomly generated initial values 
two other sets of estimates were found that gave the same residual sum of 
squares. However, these did not correspond to physically reasonable solutions: 



367 

for example, k3 greater than k-j yet k^ less than &g is most unlikely given the 
chiral similarity of the molecules X and Y to the molecules R and S. 

Model F 
This is the full model which allows for epimerization between X and Y and 

between R and S. The constraints are that [X]o > [Y]o, fci < ks + 0.005 and 
^2 < &6 + 0.005. The restrictions on the rate constants arise from a physical 
argument that the epimerization (which involves movement of a hydrogen 
atom) is impeded in the bound state. 

The results depend on the starting values for the unknown parameters 
and are given in Table 1. The residual sum of squares for alternatives (i) and 
(ii) are 99.38 and 103.4 respectively. Even for the case of alternative (i), the 
reduction in the residual sum of squares relative to Model 0 is less than is 
expected with the loss of 4 degrees of freedom, if the additional parameters 
are zero (F=0.30 on 4 and 36 degrees of freedom). Furthermore, despite the 
slightly smaller residual sum of squares, alternative (i) is considered physically 
unrealistic because S is known to degrade directly. 

Model C 
This model allows for epimerization but requires specified values for the 

epimerization rate constants. For Model C(l) k\ and fo were set at 0.005 
and &5 and kg were set at 0.01. For Model C(2), fci and fo were 0.02 and k$ 
and ke were 0.025. These values are somewhat arbitrary but ensure at least 
a small amount of epimerization in the fitted model. 

The estimation problem is therefore similar to Model 0. 
The residual sum of squares for Model C(l) is 103.9. This is directly 

comparable with the residual sum of squares for Model 0, and is slighly higher. 
If more epimerization is assumed, Model C(2) for example, the residual sum 
of squares increases. For Model C(2) the residual sum of squares is 106.6. The 
estimate of [Y]0 is quite sensitive to the amount of epimerization assumed, 
because epimerization provides an alternative pathway for the production of 
S. 

2.4 Spline fits 

The strategy was to use a spline fit to obtain estimates of first and second 
derivatives of [R] and [S], and hence to estimate the rate parameters directly 
by least squares without solving the differential equations. This proposed 
method was first tried on a rather simpler system consisting of a state space 
model for a mass on a spring with natural frequency 1 and damping parameter 
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Table 1. Parameter estimates with their accuracy and precision 

M o d e l 0 estimates 
Boots t rap mean 

Boots t rap std dev. 
Asymptotic std dev. 

M o d e l F 
estimates (i) 
estimates(ii) 

M o d e l C ( l ) estimates 
Boots t rap mean 
Boots t rap s td dev 
M o d e l C ( 2 ) estimates 

M o d e l 0 estimates 
Boots t rap mean 
Boots t rap std dev. 
Asymptotic std dev. 

M o d e l F 
estimates(i) 
estimates (ii) 

M o d e l C ( l ) estimates 
Boots t rap mean 
Boots t rap std dev 

M o d e l C ( 2 ) estimates 

ki 

.019 

.000 

(.005) 

(.02) 

ke 

.350 

.005 

(.01) 

(.025) 

k2 

.000 

.000 

(.005) 

(.02) 

k7 

.033 

.034 
.0036 
.0023 

.430 

.032 

.031 

.032 

.004 

.027 

h 
.409 
.413 

.084 

.053 

.036 
0.400 

.380 

.38 
.079 
.331 

*8 

.028 

.032 

.012 
.0105 

.000 

.026 

.026 

.030 

.012 

.027 

ki 

.088 

.090 

.040 

.036 

.032 

.100 

.110 
.11 

.064 

.170 

[X]o 
29.9 
30.3 
2.04 
1.35 

370 
30.5 

31.3 
31.9 
2.35 
34.5 

h 

.066 

.005 

(.01) 

(.025) 

[Yh 
16.7 

19.4 
5.82 
4.65 

19.3 
14.4 

12.8 
15.6 
6.35 
6.74 

0.2. The method gave precise estimates of parameters from 250 noise free 
observations at 0.1 second intervals, but deteriorated rapidly if noise was 
added. In a simulation, the observations were multiplied by (1 + 0.01 x Zi) 
where Zi is a random number from a standard normal distribution. A centred 
moving average of order 7 was then applied to the noisy observations before 
fitting splines. The means and standard deviations shown in brackets, of 100 
such estimates of the natural frequency and damping were -0.9186 (0.2519) 
and -0.4233 (0.0792) respectively. Fitting methods using the discrete time 
series were slightly better, but, so far, the method of Section 2.3 appears far 
superior. However, use of a Kalman filter with the discrete time series is likely 
to lead to more precise estimates and we will investigate this in future work. 
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3 Model Validation 

There is no statistical evidence of epimerization and the simplest model, Model 
0, was by a small margin the best fit. We have therefore chosen to present 
an analysis of the residuals and the results of a cross-validation for Model 0. 
The residuals for R and S are defined by: 

rm = [R]t - [R}t, 

rst = [S}t - [S]u 

where the circumflex accent denotes fitted value. An R? statistic was defined 
as 

E{([J2] t - [£]) 2 + ( [S] t - [$])*} 
and equals 0.930. If this is adjusted by dividing by the appropriate degrees of 
freedom it becomes 0.913. It would be higher if the overall mean, ([R] + [S]) 
was used in the definitions. There is clear evidence that the residuals for [R] 
have a higher standard deviation (1.96) than those for [S] (0.90). However, 
transforming the residuals by dividing by the square root of either [R]t or [S]t, 
as appropriate, results in transformed residuals which have an approximately 
constant standard deviation, although there are outlying observations at 1, 
2 and 24 hours, (Figures 2, 3) and an approximately normal distribution 
(Figures 4-6). 

-i 1 1 1 1 1 1 1 r 
0 10 20 30 40 50 60 70 80 

time 

Figure 2. Transformed R residuals against time. 

The sensitivity of the parameter estimates to the outlying observations, 
and all the other observations, was ascertained by repeating the analysis with 
each one of the 23 data triples omitted. These estimates are shown in Figures 
7 and 8 and are reasonably stable. The PRESS residuals themselves are shown 
in Figure 9. 
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Figure 3. Transformed S residuals against time. 

Normal Probability Plot for res_R/sqrt[R 
ML Ettlmatw - 95% CI 

ML Estimates 

Mean Q.0040479 

StDav 0.503646 

Goodness of Fit 

AD' 0.665 

Data 

Figure 4. Normal plot for transformed R residuals. 

Normal Probability Plot for res_S/sqrt[S 
ML EltimatM - 95% CI 

ML Estimates 

•0.0226391 

StDsv 0.414412 

Goodness of Fit 

AD' 1.183 

Data 

Figure 5. Normal plot for transformed S residuals. 
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ML Estimates 

-0.0092956 

StD«v 0.461365 

Goodness of Fit 

AD' 0.734 

Data 

Figure 6. Normal plot for transformed residuals. 
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Figure 7. Sensitivity of rate constants to omitted data. 
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Figure 8. Sensitivity of concentration parameters to omitted data 
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£ -2.36347 -

w, 0.23413 
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omitted 

F i g u r e 9. P R E S S res idua l s 

4 Discussion and Conclusions 

In principle it is possible to make accurate estimates of all the rate constants 
and the initial amounts of bound biomarkers from the time series of concen­
trations of [R] and [S]. However, in practice, the observations are not free of 
error and the number of sampling times is restricted (23 in this study). The 
data used in this study were the result of careful experimental work over sev­
eral months. Nevertheless, they are not sufficient to make precise estimates of 
the unknown parameters because the least squares function of all 10 param­
eters has no clearly defined minima at physically realistic points and appears 
to have least values at boundaries. 

If values are assumed for the epimerization rate constants (fci, £2, ks and 
ke) the remaining parameters can be estimated with reasonable precision. 
However, a statistical test of any plausible hypothesis for the epimerization 
rate constants is unlikely to lead to rejection of the hypothesis at any useful 
level. In particular, there is no evidence against a hypothesis of no epimer­
ization, and this simplest model, Model 0, was by a small margin the best 
fit. 

The estimate of [Y]o and hence the estimate of the maturity parameter 
[y]o/([-X]o + \y]o) is quite sensitive to the assumed amount of epimerization, 
at least with the constraints ki = fc2, k5 = ke and k\ + 0.005 < ks, although 
the estimate of the total amount [X]0 + [Y}0 is not. The case of Model C(l) 
is compared with Model 0 in Table 2 below. 

If it is reasonable to assume the epimerization rate constants are small, 
for example when pyrolysis is at temperatures as low as 250°C, Model 0 may 
be a reasonable approximation. Even if such an assumption is not justifiable, 
analysis with an assumption of no epimerization could be used to compare 
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Table 2. Bootstrap statistics for key parameter estimates 

Model 
0 
C 

mean sum 
49.75 
47.48 

std dev (sum) 
6.04 
6.57 

mean maturity 
0.380 
0.320 

std dev (maturity) 
0.074 
0.086 

different oil bearing rocks and to provide an estimate of an upper bound on 
the maturity parameter. However, it would be advisable to make independent 
estimates of the epimerization rate constants from either ab initio molecular 
orbital calculations or ancilliary laboratory experiments. This additional in­
formation could be combined with the method of this paper, for Model C, by 
a Bayesian analysis. 
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The prevalent paradigm for the analysis of common human disease assumes that 
a single gene is largely responsible for individual disease risk. The consequence of 
examining each gene as though it were solely responsible for conferring disease risk 
when in fact that risk is contingent upon interactions with other disease loci has not 
been considered. So, a general genetic model to analyse data for two marker loci 
has been developed. Based on this model it is shown that results can vary markedly 
depending on the parameters associated with the "unidentified" disease gene. In 
particular it is found that if parameters associated with the second gene were to 
vary between studies, then the conclusions from those studies may also vary. This 
is a theoretically broad conclusion with important implications for interpreting 
different results from individual genome studies and comparing results between 
studies. 

K e y w o r d s : association studies, linkage, log-linear modelling, Simpson's paradox. 

1 Introduction 

With the completion of the human genome sequence, a major obstacle to iden­
tifying the genetic basis of human phenotypes, the positional cloning of genes, 
has been largely overcome. For each phenotype, a critical step that remains is 
to identify a list of possible genes as candidates. Regardless of how this list is 
determined, the next step in estabhshing causation is then to identify all the 
gene variants and show that their incidence correlates with phenotypic differ-
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ences between individuals. Generally this is being done by considering each 
locus separately. Unfortunately, there is a disturbing trend in the outcome 
of such studies, specifically a difficulty in replicating positive results. There 
are many possible explanations for inconsistency between studies. Beyond the 
obvious interpretation that replication failure may originate in type I errors, 
is a prospect that these underlying models are too simplistic. If the aetiology 
of a common disease is due to interactions among two or more genes then the 
mode in which those interactions take place, such as additively or multiplica-
tively, may impact on our ability to map the responsible genes. Two of the 
most popular study designs, the transmission disequilibrium test (TDT) and 
the case control design have comparable statistical power to identify genes 
with variants that contribute a low relative risk for common disorders (Risch, 
2000). The TDT uses triad data - consisting of an affected individual and 
their parents. For this test the untransrnitted alleles serve as the control. 
This study design is widely considered robust to the effects of population 
stratification compared with case-control studies. Here, we consider the im­
plications of ignoring epistatic interactions (interactions among genes) on the 
outcome of the TDT, and develop methods for examining such effects using 
the TDT. 

2 Modelling 

Consider affected (A) individuals whose parental marker haplotypes are i\i2l 

3\h for the male parent (MP) and k\k2, l\l2 for the female parent (FP) 
where subscript 1 refers to alleles at the first locus, and 2 at the second. 
L e t Pi1x\ylhlklllk212 b e t h e conditional probability that the MP transmits 
haplotype wx and the FP transmits haplotype yz given that the MP is i\j\i2j2 

and the FP is kilik2l2 and the child is affected, where w is one of the pair 
(ii,ji), x is one of (i2,j2), V is one of (fci.Zi), and z is one of (k2,l2). Suppose 
there are two disease susceptibility (DS) loci which lie between two marker 
loci. Let 0™, #2* a n d ^3* be the recombination fractions between the first 
marker and the first DS locus, between the two DS loci, and between the 
second T>S locus and the second marker respectively for the MP, and with / 
replacing m for the FP. Then it can be shown, using Bayes' theorem as well as 
the assumptions that there is no selection and/or mutation in the production 
of gametes and there is random mating, that 

p « l J l « 2 j 2 l * l ' l * 2 ' 2 _ pi 
rwx\yz ~ Piii2PjiJ2Pkik2Plil2

rLlwx\yz 

where Ewx\yz = P(Child A | MP transmits wx, FP transmits yz)/ P(Child 
A), and pi^2 represents the frequency of marker haplotype i\i2. Let qSlS2 
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represent the frequency of the disease locus haplotype s1s2, and e the rel­
evant linkage disequilibrium parameters for the marker-disease haplotypes. 

Let Ewx[yz = E'wxlyz/E*, where E. = Y.wx\yz K*\y,-
 B a s e d o n a § e n e r a l 

Mendelian disease model for the two disease loci, it can be shown that 

Ewx\yz = / j €ili2SlS2ejlJ2tlt2ekik2UlU2elll2VlV2<]siS2(ltit2<}u1U2'lv1V2TWx\yz 

s,t,u,v 

where s, t, u, v represent the disease locus haplotypes S1S2, M2, «i"2, and 
v\v2 respectively, Twx\yz = 9™lF6s

yz, where superscript T represents (here 
the vector) transpose, and 

JS1U1S2U2 JS1V1S2U2 JS1V1S2V2 JS1U1S2V2 

Jt1«iS2ti2 JtiV1S2U2 JilV1S2l>2 Jt1UiS2V2 

JtlUlt2U2 JtlVit2U2 JtiVit2V2 Jtltllt2^2 

JSl«lt2«2 JSlVit2U2 JS\Vlt2V2 Jsi«l*2'«2 

where, for example, /S l« l S 2 M 2 is the penetrance of the disease locus genotype 
S1U1S2U2, that is Pr(AfFected | S1U1S2U2), and analogously for the other terms, 

T T T T 

and ff^j , #7\ , OTi-, J a n d 07\- are respectively given by the following row 
vectors 

((1 - 0?)(1 - 0J*)(1 - ffs), 6y6™{l - 0?), 6™{1 - 0™)0™, (1 - 0™)0™9™) 

((1 - 0H(i - 0?)0?, o?e™e?, 0?(i - 0?)(i - fff), (1 - e?)e?(i - 0?)) 

(0?(1 - 0?)(1 - 0?), (1 - 0?)0?(1 - 0f), (1 - 0?){1 - 0?)0?, 0T9TOT) 

(0™(1 - 0^)0^, (1 - 0?)0™0f, (1 - 05")(1 - ^ ) ( 1 - 0?), 0?0*(\ - 0?)) 

The corresponding values for 01 are obtained by replacing m by / , and 
s\ by ui, s2 by u2, t\ by vj, and t2 by w2> in the above vectors. It is noted that 
the simplified formulae for a single VS locus can be obtained by ignoring all 
terms with the subscript 2 in the above, as well as 03, x and z, and reducing 
F to its appropriate 2 x 2 form. First, suppose each marker is very close to 
a VS locus, so it can be assumed that 0™ — 0( = 0™ = 0^ = 0. It can be 
shown that 

pii3ihh\kihk2l2 ^ f 
*l*2|fclfca Z-'S.U eHi2SlS2eklk2U1U2<}siS2(}uiU2Js1UlS2U2 

r>iljli2J2\kihk2l2 V* p. . , . P, , n^ . n f . 
1 . . i , , JL,t,VC3l32tlt2cllhVlV2<Jtlt2LIVlV2JtlVlt2V2 

(noting that the 02 terms cancel) 

(1) 
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Pr(A|MP transmits i\i2 and FP transmits kik2) 

Pr(A | MP transmits j\j2 and FP transmits l\l2) ' 

Pr(A I MP transmits i\i2) Pr(A | FP transmits k\k2) 

Pr(A I MP transmits jij2) Pr(A | FP transmits l^l2) 

"• Jsis2uiU2 = JS1S2JU1U21 where 

Pr(k I MP transmits iii2) _ Y,sehsii2s2qslS2fslS2 

Pr(A I MP transmits j^2) £ t ejltlht2qtlt2ftlt2 

and analogously for FP. 
The equality fSls2Ulu2 = fSlS2UlU2 above will occur for all s1,s2,u1,u2 

if the penetrance model is fully multiplicative; namely that the penetrances 
obey not only the relation (/aia.,)2 = /a ia i/aJaj(ai 7̂  «j) for each VS locus 
considered separately, but the penetrances are also multiplicative across the 
loci. The result holds whether the VS loci are linked or unlinked. So before 
proceeding, it is useful to give a simplified matrix of penetrance values for a 
multiplicative model for two VS loci each having two alleles: 

" / r2f r\j ' 

jlf r\r2f r\rlf _ 

The rows represent the three genotypes at the first locus, the columns the 
second locus, and / is the background penetrance rate with r i the relative 
risk of the disease for individuals having one copy of allele 2t at the first 
locus, and r2 being the corresponding relative risk associated with having one 
copy of allele 2^ at the second locus. 

Now consider the general two allele, two VS loci case when parental 
origin of the alleles is ignored. The penetrance model will involve up to eight 
parameters, compared with only two parameters for the single VS locus two 
allele case. Let lj allele and 2t allele denote the two alleles at the first VS 
locus, and 12 allele and 22 allele for the second VS locus. The general matrix 
of penetrance values can be represented as 

/ fePoA feP"'2' 
/e^ .° /e^1-1 fel31'2 

fe02,O fe02,l fe/32,2 

where / represents an arbitrarily chosen base-line risk, and e^ai'°2 represents 
the relative risk of being affected from having a1 2t alleles at the first VS 
locus (where ai = 0,1,2), and a2 2Z alleles at the second (where a2 = 0,1,2), 
compared with the risk of having no type 2 alleles at either locus. 
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3 Analyzing triad data for epistasis using two marker loci 

Consider marker allelic transmission data from both parents to an affected 
child, and suppose the marker loci are unlinked. From application of full 
likelihood methods, the log-linear approach to analysing such data, based on 
the above extended genetic model, is obtained. This section concentrates 
on two loci each having two alleles, otherwise the data could become very 
sparse indeed. However, the methodology is general, and so the results can be 
extended to more than two alleles at the loci, as well as to more than two loci. 
It is convenient to arrange the observations YM1FICI,M2F2C2 °f the parental 
transmissions to affected children, where M\,Fi,C\ represents the number of 
copies of the allele 2j carried by MP, FP and the affected child, respectively, 
at the first locus, and analogously for the second locus, as a two-way table 
with the rows representing the informative mating types, and the columns the 
affected offspring genotypes. For two loci each with two alleles, this matrix 
will have 35 rows of informative matings (i.e. matings for which more than 
a single genotype can occur for their (affected) children) and nine columns 
(with many zero entries for unobservable MiF\C\, M2F2C2 combinations); 
see Wilson (2001). Let HM1F1C1,M2F2C2 = E(YMIFICUM2F2C2)- Then in the 
log-linear model formulation we can write In/iM1F1C1,M2F2C2

 a s 

4>m + Pc1,c2I(C1 = cl,C2=c2) + m ( 2 ) ^ ( M 1 F l C 1 , M 2 F 2 C 2 ) = (x'3/ 'z ' , l ll) (2) 

+ m ( 2 K(M 1 F 1 C 1 ,M 2 F 2 C 2 )= ( l l l , z2 / z ) + l n ( 4 ) / ( 1 U i l l l ) 

where /%0 = 0, and neither xyz nor x'y'z' are equal to 111. Here </>m are 
stratum parameters that constrain the model fit to be such that for each mat­
ing type m, the fitted number equals the observed number of matings of that 
type having affected children. Also, /?Cl,c2 = lnRCltC2 is the logarithm of the 
relative risk (relative penetrance parameter) associated with C\ = c\, C^ = c^ 
relative to C\ = 0, C2 = 0. As well, / is an indicator function taking the 
value 1 when the subscripted relationship holds and 0 otherwise. The con­
stants ln(2) and ln(4) are called "offsets". These are required because of the 
Mendelian assumption that two parents who are heterozygous at the same 
locus are twice as likely to produce a heterozygous child at this locus as to 
produce either one with no copies of allele 2 or two copies of this allele. Two 
doubly heterozygous parents are four times as likely to produce a doubly het­
erozygous child compared with producing one of the four doubly homozygous 
children, and it follows that they are twice as likely to produce a singly het­
erozygous child, i.e. a child who is heterozygous at one locus and homozygous 
at the other, compared with producing a doubly homozygous child. 
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Simplifications of the general model (2) and differences in the relevant de-
viances can be readily evaluated to determine which model gives an adequate 
representation of the available data (Wilson, 2001). 

Suppose that there is complete linkage of each marker to one of the disease 
loci, including complete allelic association. In other words, in the table of 
haplotype frequencies written with the rows representing the marker loci and 
the columns the disease loci, the offdiagonal terms hili2SlS2 are zero. In this 
case the right-hand side of (1) is '̂ifciiz*,a Next, suppose data are only available 
for the first locus, yet the underlying genetic model for the complex disease 
involves two possibly epistatic loci, as well as many background causes and 
associations, each of individually small effect. Then the penetrances at this 
first locus for the three genotypes, that is for having zero, one or two copies 
of allele 2U would be fq% + fe^2p2q2 + fe^2pl feP^fi + fe^2p2q2 + 
/e/3l-2p2> a n d f^2,0<]2 + /e^2,12p2<72 + f^2,2P2 respectively, where P2 is the 
frequency of allele 22 at the second locus, and q2 ~ 1 — p2. For example, for 
the multiplicative disease model, we have e^0'1 = r2, e130,2 = r\, e^1'0 = r\, 
ePi,i = r iT .2 j e£i,2 _ nr2^ e/32,o = r2^ e/32,i = r 2 r 2 a n ( j e/32,2 _ r2 r2 Hence 

the baseline rate for those having no allele 2i at the first locus becomes 
/(?2 + p2r2)

2, and the relative risk associated with having allele 2\ is r\. 
Let P]^ l, J = 1,2 represent the conditional probability that at the first 

locus the parent transmits J\ given that the parent is lt 2j and the child is 
affected. Then tests like the TDT evaluate departures of the ratio P^2" /P2 \ l 2 1 

from 1.0. It can be shown that here this ratio is 

Pifaa + ^"•12P292 + e^p2,) + gi(e^°gf + e^2p2g2 + e^pj) 
p^eP^ql + e^^2p2q2 + eP^pl) + qi(efo.°q% + e^,i2p2<72 + e^^pj)' 

For the multiplicative model considered above, the ratio is r^1. 

4 Influence of a second epistatic locus on a single locus analysis 

To simplify the presentation, assume again that the underlying disease mech­
anism involves two major unlinked disease loci, and that there is complete 
linkage by each marker to one of the disease loci. Further, a specific exam­
ple is given, but the possibility of many generalisations to other situations 
is noted. Suppose that the first locus appears, on analysis say, to be com­
mon dominant. Then the penetrances could be represented by / , few, few 

dependent on whether there are zero, one or two copies of allele 2i, respec­
tively, and W > 1. Suppose a second locus is acting epistatically, and that 
the matrix of penetrance values is of the form 
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Table 1. A simple model parameterisation for disease susceptibility; / represents baseline 
risk 

Genotype 

aa 
Aa 
AA 

frequency 

2pi<7i 

bb 

qi 
f 

Pf 
Pf 

Bb 
2p2<72 

/ 
/ 

BB 

Pi 

/ 
/ 

/ feX fex 

feW feW-Y f£W-Y 

feW feW-Y feW-Y 

where / represents an arbitrarily chosen base-line risk. This is a simplified 
version of the general table of penetrance values given above. Let fez, fev, 
and fev represent the marginal penetrances associated with having zero, one 
or two copies of 12 alleles at the first locus. Then it follows that ex = 
(ez — q2)/(l ~ iV)- Compared with the completely general parameterisation, 
it is easier to see in this case that different relative values of the epistatic 
parameters X and Y due to the second locus, as well as the second locus's 
allele fequencies P2,Q2, could change the marginal appearance of the first 
locus from being common dominant to having no effect, or to being common 
recessive. Further, the ratio P^2l/P^21 above simplifies to 1+Pl(e

z-V - 1). 
So, if ez~v > 1, allele li will appear to be preferentially transmitted at the 
first locus, while on the other hand if ez~v < 1, allele ls will appear to be 
preferentially transmitted, and if ez~v RJ 1, the first locus will appear to have 
no effect. This is further illustrated in Figure 1. Under the simple disease 
model presented in Table 1, the plane represents the values of q^ at which there 
is no transmission bias of a, and for a specific pair of penetrance parameter 
values (a and /?), if the value of qi falls above (or below) the corresponding 
point on the plane, allele a (or allele 4̂) will be perceived as increasing disease 
risk. 

5 Discussion 

Simpson's paradox, the reversal of the direction of the association by collaps­
ing tables, is well known in applied statsitics. As we have shown here and 
elsewhere (Wilson, 2001) the effect of collapsing over other major loci when 
just a single locus is being investigated can be considerable. If the loci affect 
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Figure 1. For a given a and /3, either preferred transmission of a or A will be inferred, 
dependent on whether 92 falls above or below the value on the plane, 
for parameterisation of Table 1. 

disease outcome independently then a single locus approach can be used for 
finding the major genes that have an influence on disease development. If 
the loci do not act independently, however, then ignoring the other loci might 
have a major impact on one's result. In the above it was shown how this can 
occur for a quite simple background scenario, namely that of two loci each 
with two alleles that are the actual susceptibility alleles. It is worth emphasiz­
ing that a role for epistatic interactions in disease phenotypes is a real issue, 
not just a theoretical possibility. Examples of phenotypes where the causative 
loci act epistatically are known in variety of model organisms, including mice 
and humans. 

Despite the perception that tests of association, such as TDT, overcome 
the well-known problems associated with the marker gene frequency varying 
from population to population, the above indicates this confidence can be 
misplaced. When there is epistasis between the genes affecting a phenotype, 
conclusions from family based tests of association such as TDT can also appear 
to vary from study to study if allele frequencies at the other loci that are not 
being simultaneously evaluated also vary between samples. 

6 Conclusion 

The thrust of the theoretical results presented here is to suggest that neither 
variations in empirical results from study to study, nor failure to demonstrate 
an association between a candidate gene locus and a phenotype in a single 
study, be necessarily judged as showing that the particular single locus is not 
a disease locus. Rather, consideration must now be given as to whether there 
may be one or more other major loci acting epistatically with this locus. 
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In the past years statistical process control methodologies have been widely used in 
industry for process monitoring. However, the typical assumption that the process 
data are statistically independent is often invalid. This article discusses different 
approaches for dealing with process autocorrelation when using process control 
charts and process capability indices. 
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1 Introduction 

In the past years, statistical process control (SPC) methodologies such as 
process control charts have been widely used in industry for process mean 
and variability monitoring. Most of SPC charts such as the Shewhart chart, 
the cumulative sum (CUSUM) chart and the exponentially weighted moving 
average (EWMA) chart were established based on the assumption that the 
data are statistically independent. However, this assumption is often invalid 
for many manufacturing processes such as those in continuous processes. In 
industry with continuous processes, on-line data acquisition systems are com­
monly used, and a huge volume of data on process variables is collected. 
Due to the high frequency sampling, most of the on-line data are autocor-
related. When the data are autocorrelated, although the traditional control 
charts still can be used, their use lacks of a solid scientific rationale for as­
certaining whether the proess is in a state of statistical control and they are 
often not effective. Several papers discussed impact of autocorrelation on the 
performance of control charts. Johnson and Bagshaw (1974) and Bagshaw 
and Johnson (1975) found that the autocorrelation affects the performance of 
CUSUM chart. Harris and Ross (1991) discussed the impact of autocorrela­
tion on CUSUM and EWMA charts. 

To illustrate the impact of the autocorrelation on the performance of the 
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traditional control charts, a simulation study was done in Zhang (2000) for 
a (weakly) stationary first order autoregressive (AR(1)) process. An AR(1) 
process {Xt} is defined by 

Xt - i* = <l>(Xt-i - fj) + et (1) 

where | 4> |< 1 and \x is the process mean and et is white noise. Here we 
assume that et is also normally distributed with finite variance <7g. Without 
loss of generality we assume that the process mean, fi, is zero. When <p=0, 
{Xt} is an i.i.d. sequence. For each of the AR(1) processes with </>=0.25, 
0.5, 0.75 and 0.9, at a certain point, a mean shift occurred with a magni­
tude of 0.5, 1, 2, and 3 in the unit of the process standard deviation, i.e., 

The average run length (ARL), the mean of the run length, is used to 
measure the performance of control charts. A desired control chart should 
have large in-control ARL and small out-of-control ARL. That is, for a desired 
chart when the process has no mean shift the ARL should be large, and when 
a mean shift occurs the ARL should be small to signal the mean shift quickly. 
For the AR(1) processes with <f> specified as above, the ARL's were estimated 
for the X (individual) chart, CUSUM chart, and EWMA chart. For the X 
chart, 3cr control limits were used. For the CUSUM chart, the decision interval 
with h=5 and fc=0.5 was used. For the EWMA chart, the parameter A is 0.2 
and 3<7 control limits were used. 

The simulation showed that when an AR(1) process is positively autocor-
related, even as weakly as with ^=0.25, the autocorrelation has a big impact 
on the CUSUM and EWMA charts and the in-control ARL's are smaller than 
those when <j>=0. Namely, even when the process is weakly autocorrelated, 
the control charts will give frequent false alarms when the process is actually 
stable and under control. The details can be found in Zhang (2000). Auto­
correlation also affects the use of process capability indices such as Cpk and 
the tolerance limits. For the effect of autocorrelation on tolerance limits, we 
refer it to Amin and Lee (1999). 

In this article, we discuss various approaches for dealing with process 
autocorrelation. In Section 2, we discuss two approaches for handling auto­
correlation in the use of control charts and present comparisons among various 
charts. In Section 3, we summarize other approaches for dealing with auto­
correlation. In Section 4, we present a brief summary on the use of process 
capability indices when a process is autocorrelated. 
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2 Approaches for dealing with process autocorrelation 

There have been two approaches for dealing with autocorrelation for control 
charts in the literature. We will discuss these approaches separately. 

Residual charts 
The first approach for dealing with autocorrelation is to use process resid­

ual charts proposed by Alwan and Roberts (1988). This approach requires 
one to model the process data and to obtain the process residuals. Assuming 
a true model, the residuals are statistically uncorrelated. Then the traditional 
SPC charts such as the X chart, CUSUM chart and EWMA charts can be 
applied to the residuals. 

To illustrate the approach, consider an AR(1) process in (1). The residual 
at t is 

et = X t-[ / i + to_i-A)], (2) 

where fi and <j> are the estimators of /u and </>. An X residual chart is a 
time-ordered plot of the residuals with ka limits. The center line is set to 
zero. Assuming a perfect model fitting, [i = p, <j> = <j> and the residuals 
are uncorrelated. For simplicity, the parameters and their estimators are 
not distinguished and denoted by fi and 4> respectively, hereafter. Thus, the 
residual can be written as 

et=Xt-\ii + (l>{Xt-1-n)\. (3) 

The residual variance is the same as the white noise variance which is 

a2
e=Var(et) = (l-<j>2)al (4) 

Thus, the 3<r limits for the X residual chart is 3<re. The CUSUM and EWMA 
residual charts are also constructed by applying the corresponding charts to 
the residuals. 

Although the rationale for using residual charts is straightforward and it 
might be expected that the properties of the X residual chart are similar to 
those of the X chart, the X residual chart does not have the same properties 
as the X chart. Harris and Ross (1991) recognized that an X residual chart 
from an AR(1) process may have poor detection capability to signal a mean 
shift, for example when the process is positively autocorrelated. Longnecker 
and Ryan (1990) showed that for an AR(1) process with a positive cp, an X 
residual chart has a high probability of detecting a mean shift as soon as it 
occurs, but if the X residual chart fails to detect the shift immediately, then 
there is a low probability that the shift will be detected later. 
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Zhang (1997b) defined a measure of detection capability for the X residual 
chart for general stationary processes. Using this detection capability index, 
Zhang (1997b) compared the detection capability of the X residual chart with 
that of the X chart applied to an independent sequence. For general AR pro­
cesses, Zhang (1997b) showed that the detection capability of the X residual 
chart is larger than that of the X chart immediately after the occurance of 
a mean shift. For stationary AR(2) processes, the relationship between the 
detection capability indices of the X residual chart and the X chart varies and 
depends on the process parameters. These results were extended to ARMA 
processes in Jiang and Wang (2001). 

Jiang (2000) considered the detection capability index for EWMA residual 
charts. There have been no corresponding studies of the detection capabil­
ity of the CUSUM residual charts. By simulation, Harris and Ross (1991) 
showed that the out-of-control ARL's for CUSUM residual charts are larger 
than those when the charts are applied to independent sequences . Runger, 
Willemnain, and Prabhu (1995) studied the ARL for CUSUM residual charts 
applied to AR(1) processes. Using a Markov chain approach, they provided 
an approximate expression for the ARL of a one-sided CUSUM of residuals 
from AR(P) models. A recent paper by Lu and Reynolds (2001) discussed the 
performance of the CUSUM charts for monitoring an autocorrelated process. 

Lu and Reynolds (1999) discussed the performance of EWMA charts ap­
plied to the residuals of a process, which is an AR(1) process plus a random 
error. The model of the process is the same as the one Harris and Ross (1991) 
discussed, which is equivalent to an ARMA(1,1) process. Similar to Wardell, 
Moskowitz, and Plante (1994), they compared the EWMA chart and EWMA 
residual chart applied to the process mentioned in the above with various 
parameters. The conclusion was that when the process autocorrelation is 
weak or moderate, the two charts perform about the same, while the EWMA 
residual chart performs a little better than the EWMA chart. 

Atienza, Tang, and Ang (1998) proposed a chart based on the statis­
tics used for detecting outliers and level shifts in time series analysis. This 
approach requires time series modeling. 

Control charts based on autocorrelation-adjusted limits 
The second approach for dealing with autocorrelation, which is more di­

rect, is to modify the existing SPC charts by adjusting the control limits 
to accommodate the autocorrelation. This approach has the advantage that 
it does not require time series modeling as the use of residual charts does. 
Vasilopoulos and Stamboulis (1978) proposed using the X chart with mod­
ified control limits to monitor autocorrelated data. Their studies, however, 



387 

were limited to some specific time series models such as AR(1) and AR(2) 
processes. 

When a process model such as an AR(1) model is known, the control limits 
of the X chart can be calculated as a function of the model parameters such 
as (j) for an AR(1) process and the process variance. For an X chart, we are 
charting the subgroup means of the process with subgroups of size n. When 

the process is an i.i.d. sequence, the 3a limits are given by X±3ax/^/n, where 
X is the grand mean. However, when the process is stationary and not white 
noise, the standard deviation of X is not <rx/i/n. The process autocorrelation 
has to be accounted for and the standard deviation of the sample mean is 
expressed in terms of process parameters and the process variance. 

Modifications of CUSUM and EWMA charts have also been considered 
for autocorrelated data. Yashchin (1993) examined the use of CUSUM charts 
when the autocorrelation is moderate. The idea involves replacing the au­
tocorrelated observations with an i.i.d. sequence for which the run length 
distribution is approximately the same. The article proposed a method to 
modify the control limits of the tabular form of the CUSUM chart by using 
the autocorrelation structure of the process. 

Montgomery and Mastrangelo (1991) suggested monitoring a one-step 
ahead EWMA prediction error for autocorrelated data. The parameter of 
the EWMA was determined by minimizing the sum of the squares of the 
EWMA one-step-ahead prediction errors. The standard deviation of the one-
step-ahead errors can be estimated using historical data. As shown by Box 
and Jenkins (1976, p.144-145), when {Xt} is an integrated moving average 
(IMA) (0,1,1) process, the corresponding EWMA is the optimal one-step-
ahead prediction of the process. This scheme is like a residual chart except 
that the IMA(0,1,1) model is assumed for all the processes and the prediction 
errors are used. 

Schmid (1997) considered EWMA charts for time series. Zhang (1998a) 
proposed the EWMAST chart, which is an EWMA chart for stationary pro­
cesses. The limits of the EWMA chart are adjusted to accommodate the 
autocorrelation and are determined by the process variance and autocorrela­
tion. The EWMA of Xt is defined as 

Zt = (l-X)Xt.i + XXt, (5) 

where ZQ = /J. and A (0 < A < 1) is a constant. It is shown in Zhang (1998a) 
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that 

al = Var[Zt] = [ ^ ] ^ { 1 - (1 - A)2f + 2 £ p(fc)(l - A)fe[l - (1 - A)2**"*)]} 
fc=i 

(6) 
where p(k) is the autocorrelation function of Xt at lag fc. When t is large, for 
a large integer M, an approximate variance of Zt is given by 

X M 

^ * [ ^ A ] C T ' { 1 + 2 S ^ X 1 - ^ " (X - A)2(M"fe)]}- (7) 
k=\ 

Assuming that Xt is normally distributed, the EWMAST chart is constructed 
by charting Zt, which is also normally distributed. The centerline is at /z, and 
the La limits are \i ± Laz. 

Jiang, Tsui, and Woodall (2000) proposed to use ARMAST chart as an 
extension of the EWMAST chart. Essentially, for appropriate orders and 
parameters of an ARMA model, the chart is constructed by plotting the cor­
responding ARM A statistic of the process variable in the time order. 

Comparisons among control charts for autocorrelated processes 
In Zhang (1998a) and Zhang (2000), comparisons of ARL's were made 

among the EWMAST chart, X chart, X residual chart, CUSUM residual 
chart, EWMA residual chart, and the chart proposed by Montgomery and 
Mastrangelo (1991) (0 = 0.5, 0.75, and 0.95 for this chart) for AR(1) pro­
cesses. It was concluded that when a process is weakly autocorrelated such 
as for an AR(1) process with 0=0.25, the EWMAST chart, EWMA residual 
chart, and the CUSUM residual chart perform equally well. When 0=0.5, the 
EWMAST chart performs better than the other charts. When 0=0.75, the 
EWMAST chart performs better than other charts for small to medium mean 
shifts. When 0=0.9, the X residual chart performs better than other charts 
for medium to large mean shifts while the EWMAST chart and the X chart 
perform better than other charts for small to medium mean shifts. The chart 
proposed by Montgomery and Mastrangelo (1991) performs very poorly when 
0=0.5 and 0.75. Only when 0=0.95, does the chart performs relatively well. 
But even in this case, the X residual chart is slightly better than the chart 
proposed by Montgomery and Mastrangelo (1991). 

The results for negative 0's show that for large mean shifts all charts 
perform well. For a small mean shift, the EWMAST, CUSUM residual, and 
EWMA residual charts perform best. The performance of the X chart is 
the worst for small to medium mean shifts. Overall, for negative 0's the 
EWMAST chart performs little better than all residual charts. An obvious 
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advantage of using the EWMAST chart is that there is no need to build a 
time series model for stationary process data. 

The performance of the chart proposed by Atienza et al. (1998) is bet­
ter than the residual charts and is comparable to the EWMAST chart for 
AR(1) processes. However, the approach requires time series modeling. The 
ARMAST chart proposed by Jiang, Tsui, and Woodall (2000) performs bet­
ter than the EWMAST chart only when a process has strong and positive 
autocorrelations, i.e., when a process is near non-stationary with positive au­
tocorrelation. A major disadvantage of using the ARMAST chart, however, 
is that the ad hoc approach proposed to choose the chart parameters would 
not be easy for many users. 

3 Other approaches for dealing with autocorrelation 

Another approach for dealing with autocorrelation is to reduce the process 
autocorrelation by some data treatment mechanism. Box and Jenkins (1976) 
and MacGregor (1976) discussed the effects of the choice of sampling interval 
on ARIMA process data. When a process is stationary and samples are taken 
less frequently in time, the autocorrelation of the sampled data will decrease. 
Thus, when the sampling interval is large enough, the data will appear to 
be uncorrelated. However, this approach discards the intermediate data, and 
therefore increases the possibility of missing important events in the process. 

Instead of choosing a large sampling interval, moving averages of the 
process data with a fixed window size can be formed. Telser (1967) and 
Tiao (1972) discussed the autocovariances of moving sums of non-overlapping 
subgroups or temporal aggregation of AR and ARMA processes respectively. 
Brillinger (1973) showed that when {Xt} is a stationary process and satisfies 
some regularity conditions, the non-overlapping means or batch means are 
asymptotically independent and normally distributed. Thus, in principle, 
when the batch size is large enough, the process formed by the batch means 
can be treated as white noise. For a stationary ARM A (1,1) process Kang 
and Schmeiser (1987) discussed the autocorrelation at lag 1 of the process 
formed by batch means as a function of the batch size and the parameters 
of the original process. Alwan and Radson (1992) discussed the time series 
behavior of the subsample means when the underlying process is an AR(1) 
process. Runger and Willemain (1995) and (1996) proposed batch means 
control charts when the underlying processes is an AR(1) processes. 

In Zhang (2001), a general case of moving averages called generalized 
moving averages is discussed: the new data sequence is formed by the aver­
ages of n consecutive observations of the original process moving k step at a 
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time. Assuming that the original process is {Xt}, {Yr{n, k)} for T=l,2,.. , the 
sequence formed by the generalized moving averages is defined as follows: 

Y1(n,k) = 

YT(n,k) = 

Xi+X2 + ... + Xn 

n 

X(T-l)k+l + X(T-l)k+2 + ••• + X(T-l)k+n 

When n = k, this is the case of averages of consecutive non-overlapping sub­
groups or batch means of the original process data, which was discussed in 
Brillinger (1973) and Runger and Willemain (1995). In Zhang (2001), it is 
shown that 

(a) When a process is an MA(q) process, the process formed by the gener­
alized moving averages is another MA(Q) process. When k >n,Q, the order 
of the new process is less than or equal to q. 

(b) When k, the size of the moving step is not smaller than n, the size of 
averaging, and k < n + q — 1, the process formed by the generalized moving 
averages is an MA(1) process. In addition, if k — n is a constant, the first lag 
autocorrelation of the new process decreases to zero when n approaches infin­
ity. That is, the process becomes white noise. Because a stationary process 
can be approximated by an MA process by Wold decomposition Theorem, 
these results can be applied to any stationary process in practice. Thus, for a 
given set of stationary process data the size of averaging and the size of mov­
ing steps for which the process formed by the generalized moving averages to 
be treated as uncorrelated can be estimated. The estimation approach can be 
found in Zhang (2001). Once the process formed by the generalized moving 
averages are uncorrelated or approximately uncorrelated, the traditional SPC 
charts can be applied to it. 

There are some other approaches for dealing with process autocorrela­
tion. Consider a dynamic process system which consists of input streams and 
output streams as described in Zhang and Pollard (1994). When the input 
streams and output streams are autocorrelated, the mass imbalance, which is 
the difference between the input streams and output streams, is also autocor­
related in general. Zhang and Pollard (1994) and Zhang (1997a) showed that 
under some conditions, the autocorrelation of the mass imbalance is less than 
the autocorrelations of the input and output streams. Since the mass imbal­
ance has weaker autocorrelation than those of the input and output streams, 
it is better to apply appropriate control charts to the mass imbalance process. 
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4 Process capability indices for autocorrelated data 

Process capability indices are widely used in manufacturing industries to mea­
sure and monitor the performance of a process in meeting preset specification 
limits. As in the case of control charts, there is a concern about the as­
sumption of the independence of the process observations. In this section we 
will briefly discuss the use of process capability indices when the process is 
autocorrelated. 

The first proposed process capability index is Cp. Because of the short­
comings of Cp, other process capability indices including Cpk and Cpm were 
developed subsequently. The definitions and properties of these indices can 
be found in Kotz and Johnson (1993). When a process is autocorrelated, 
Yang and Hancock (1990) discussed the expectation and variance of X and 
S2, which are used to form the process capability indices. Wallgren (1996a) 
and (1996b) modified the definitions of Cpm and Cpk by incorporating the au­
tocorrelation when the process is an AR(1) process. However, these modified 
indices have limited usage in practice because they are only applied to AR(1) 
processes. 

Zhang (1998b) discussed the use of Cp and Cpk for a stationary process. 
When a process is stationary, Cp and Cpk can still be used as when the process 
is an i.i.d. sequence. However, the corresponding variances for sample Cp and 
sample Cpk in this case will not be the same as given in Zhang, Stenback, and 
Wardrop (1990). When a process is stationary and Gaussian, Zhang (1998b) 
gave approximate variances of sample Cp and sample Cpk- Assume that the 
autocorrelation of the process at lag k is p(k). Then 

^ i * c » C T ? b ) (8) 

and 

Var[Cpk] ~ T W J 1 ^ + 2(n-irP(n,P)] (9) 

where f{n,p), F(n,p), and g{n,p) are functions of p(k) and the sample size, 
n: 

2 n _ 1 

/ ( "' P ) = l ~ n(n-l) ^{U~ i)p{i) 

F(n, p) = n + 2 £ ( n - i)p2(i) + [- ^ = 4 ^ ^ 
i = l 
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9(n,p) 

2Er="oE^o("-»-J>(Qp(J) 
n 

1 2 £?-/(»-Qp(i) 
n 

The approximated variances in (8) and (9) are useful because they are in terms 
of true Cp or Cpk values as well as the autocorrelation and the sample size. 
In addition, when the process is an i.i.d. sequence, f(n,p) — l,g(n,p) = 1 
and F(n, p) = n — 1. From (8) and (9), we have 

v"r^ * 5(^1) (10) 

which are the results in Bissel (1990). Based on the variances given in (8) and 
(9), interval estimators of Cp and Cpk can be obtained. 

5 Conclusion 

In this article, we discussed several approaches for dealing with process au­
tocorrelation in the area of process monitoring. For process control charts, 
we discussed the use of process residual charts and modifications of existing 
SPC charts by adjusting the control limits to accommodate the process au­
tocorrelation. We have made comparisons among the control charts when a 
process is autocorrelated. Other approaches for dealing with autocorrelation 
were also discussed. In addition, we also discussed process capability indices 
for autocorrelated data. 
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