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PREFACE

Molecular understanding of cancer and cancer progression is at the forefront
of many research programmes today. High-throughput array technologies and
other modern molecular techniques produce a wealth of molecular data about the
structure, organization, and function of cells, tissues and organisms. Correctly
analysed and interpreted these data hold the promise of bringing new markers
for prognostic and diagnostic use, for new treatment schemes, and of gaining new
biological insight into the evolution of cancer and its molecular, pathological and
clinical consequences. For these purposes, however, mathematical, statistical and
bioinformatics tools (in short: informatics tools) are urgently needed to extract,
handle and process the information in the data, and to assist in planning of
future experiments.

At one level cancer is a simple disease – the diagnose is typically a clear-cut
question of yes or no – at the molecular and pathological level, though, cancer
is a highly heterogeneous disease and even tissue-specific cancers show a high
level of heterogeneity phenotypically as well as molecularly. Cancer arises from
multiple genetic or epigenetic lesions that are accompanied by changes in numer-
ous processes, including DNA repair, cellular proliferation, cell-cycle control and
apoptosis. Dysregulation of the complex interplay between genes taking part in
these processes can ultimately lead to tumorgenesis. Molecularly, cancer diseases
are different from most other diseases in that they involve dramatic changes at
the DNA, RNA and higher information levels that seldom (if ever) are seen to
the same extent in other diseases.

High-throughput technologies, in particular microarray technologies, have
dramatically transformed molecular biology and medicine. Within a single exper-
iment it is possible to measure millions of molecular variables simultaneously
and relate the variables to molecular and clinical parameters (such as molecular
phenotypes and clinical outcomes). This has changed molecular medicine from
focusing on a single or few features (e.g. genes or markers) to focusing on sets
of features, signatures and pathways derived by a combination of data-mining,
statistics and bioinformatics. In this way, we see the cell or organism as a system
where individual components alone may contribute little to the functioning and
activities of the system, but in conjunction with other components they may be
key or essential players.

This transformation of molecular medicine requires new statistics and infor-
matics tools to search or mine data, and to identify features or groups of features
that statistically appear extraordinary in some sense. For example, several stud-
ies have identified gene signatures that reliably differentiate between subgroups
or stages of cancers (Golub et al., 1999; van’t Veer et al., 2002; Dyrskjøt et al.,
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2005). Such signatures or classifiers have an obvious diagnostic and prognostic
potential, but also provide new biological insight into cancer progression and
aethiology (Clarke et al., 2008; Lakhani and Ashworth, 2001).

From the mid-1990s where the first DNA microarray technologies became
commercially available and until today, the amount and quality of the data col-
lected in an array experiment have improved immensely. The first Affymetrix
GeneChip r© SNP array, released in 1995, contained approximately 1500 unique
single nucleotide polymorphisms (SNPs) in the human genome – thirteen years
later Affymetrix, Illumina and other SNP arrays contain well over a million SNPs.
Likewise the first RNA expression microarrays targeted roughly 10,000 genes in
the human genome – today they target more than 50,000 known and predicted
genes/transcripts. Part of the story is the completion of the Human Genome
Project in 2000 that made the first realiable human genome sequence available.
With that at hand the genome could be covered much more extensively with
probes measuring DNA and RNA abundance than previously had been pos-
sible. Subsequent refinements of the genome build have resulted in improved
genomic coordinates of the probes and improved knowledge of the genomic con-
text they are in. Alongside these technological advances this has resulted in
high-performance array technologies.

However, part of the success of high-throughput technologies is also advances
in informatics. Since the release of the first array technologies statisticians and
bioinformaticians all over the world have been interested in developing methods
for analysing and extracting information from array data. Naturally, to cope with
a high level of molecular complexity non-standard informatics tools are required.
This has resulted in new theoretical and practical development in informatics
and in increased collaboration between old disciplines. Some tools are developed
specifically for cancer research, while others are applicable in many different
situations.

It is the aim of this book to make the bioinformatics tools used for cancer
research available to a wide range of researchers, in a single coherent volume –
covering the theory behind the tools and their application to real data. Tradi-
tionally, one distinguishes between high and low level analysis, where low level
analysis refers to normalization of the data before a (high-level) biologically rel-
evant analysis can be done. Normalization comprises removing background and
technology related/specific noise that otherwise would make comparison of data
across experiments difficult. The focus of the book is high-level analysis. Natu-
rally, it takes many forms that depend on the technology platform applied and
the biology one wants to uncover. The book presents examples of analysis of
many types of data, from DNA, to RNA and methylation data, their combina-
tion and how additional data from other data sets or databases can facilitate
more detailed and powerful analysis.

Claus L. Andersen Carsten Wiuf
Aarhus University Hospital Aarhus University
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ASSOCIATION STUDIES

Emily Webb and Richard Houlston

1.1 Introduction

Until recently, research on inherited cancer susceptibility has principally focused
on the identification of mutations segregating with disease in large families.
Genetic linkage analysis coupled with positional cloning has proved to be a
highly efficient strategy for the discovery of cancer genes and led to the iden-
tification of highly penetrant genes for a number of common cancers, including
breast and ovarian cancers (BRCA1 and BRCA2 on chromosomes 17 and 13;
Hall et al. 1990; Wooster et al. 1994), colon cancer with adenomatous polyposis
coli (APC on chromosome 5; Bodmer et al. 1987), hereditary non-polyposis col-
orectal cancer (the mismatch repair genes MSH2 and MLH1 on chromosomes 2
and 3; Lindblom et al. 1993; Peltomaki et al. 1993), and melanoma (CDNK2A
on chromosome 9; Cannon-Albright et al. 1992).

Twin studies indicate that for most of the common cancers, much of the
familial aggregation of disease results from inherited susceptibility (Lichtenstein
et al., 2000), for example, 27% of breast, 35% of colorectal and 42% of prostate
cancers. Highly penetrant mutations in known genes, however, cannot account
for most of the excess familial risk of these tumours, for example mutations in
known predisposition genes BRCA1 and BRCA2, account for only ∼20% of the
two-fold excess risk in breast cancer patients’ relatives (Anglian Breast Cancer
Study Group, 2000). Similarly, only ∼3% of colorectal cancer can be ascribed to
germline mutations in APC, MLH1 or MSH2 and for prostate cancer, mutations
in BRCA2 account for only ∼2% of early-onset disease. The remaining familial
risk could be due to high-penetrance mutations in as yet unidentified genes, but
multiple-case cancer families segregating none of the known mutations have failed
to reveal significant linkage to novel loci in recent studies, and a polygenic mech-
anism now appears more plausible (Peto 2002; Pharoah et al. 2002; Antoniou and
Easton 2003). Under the polygenic model or ‘common-disease common-variant’
hypothesis, a large number of common alleles each conferring a small genotypic
risk (typically 1.1–1.5) combine additively or multiplicatively to confer a range of
susceptibilities in the population. Individuals carrying few such alleles would be
at reduced risk while those with many might suffer a lifetime risk as high as 50%
(Fig. 1.1). If low-penetrance alleles cause a substantial proportion of this inher-
ited susceptibility to cancer, their identification is of great practical importance.

Alleles that increase cancer incidence by two-fold or less will rarely cause
multiple-case families and are therefore difficult or impossible to identify through
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Fig. 1.1: The polygenic model of cancer risk. Distribution of lifetime cancer
risk in the general population (solid line) and in individuals who will develop
cancer (dashed line).

linkage (Risch and Merikangas, 1996). For example, to detect a gene with fre-
quency 0.1 conferring a two-fold increase in risk by linkage would require about
10,000 affected sibling pairs. In contrast, it should be detectable through associa-
tion, where the frequencies of genetic variants are compared in cases and controls,
with only 500 unselected cases and 500 controls. The search for low-penetrance
alleles has therefore centred increasingly on association studies.

Recent data from genome-wide association studies (GWAS) of prostate,
breast and colorectal cancer (Amundadottir et al. 2006; Easton et al. 2007;
Tomlinson et al. 2007) have vindicated the ‘common-disease common-variant’
hypothesis and indicate that such studies provide a highly efficient strategy for
identifying novel disease loci and gaining further understanding of the allelic
architecture of inherited susceptibility to cancer.

In this chapter we first introduce the biological principles underlying associa-
tion studies. We then discuss preliminary statistical analysis and quality control
measures before describing the statistical techniques used to search for disease
associations. Finally, we review power and study design considerations and give
a brief overview of the steps required to move from association study discovery
to elucidation of causal variant. The theory and techniques described throughout
the chapter are illustrated with specific reference to the field of cancer; however
they may equally be applied to association studies for any complex disease.

1.2 Sequence variation and patterns of linkage disequilibrium
in the genome

Single nucleotide polymorphisms (SNPs) are by far the most common form of
polymorphic variation in the human genome, with an estimated 10 million SNPs,
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collectively accounting for over 90% of sequence variation (Botstein and Risch,
2003). A SNP is a DNA sequence variation that occurs when a single nucleotide
in the genome varies between two individuals or between paired chromosomes in
the same individual. Each SNP has two alleles, the original sequence (wild type
allele) and the mutated copy. A person’s genotype defined by a specific SNP can
therefore be WW, WM, or MM; where W and M correspond to wild type and
mutated sequences, respectively.

Single nucleotide polymorphisms can be categorized on the basis of their loca-
tion in the genome. While the vast majority of SNPs map to untranslated regions
of the genome, a small proportion localize to coding regions. A minority of these
coding SNPs (cSNPs) alter the encoded amino acid sequence (non-synonymous
SNPs; nsSNPs). Such nsSNPs are proportionally less prevalent than synonymous
SNPs, which do not alter protein sequence, possibly as a consequence of selection
against the functional disruptions of amino acid variation. Based on this asser-
tion it has been hypothesized that as nsSNPs are more likely to have functional
consequences, association studies based on nsSNPs represent a powerful strategy
for directly identifying disease-causing associations (Botstein and Risch, 2003).

Adjacent SNPs in the same chromosomal region are not inherited randomly;
instead they can be strongly correlated so that entire sets of alleles are inherited
together in a haplotype, with an individual receiving one haplotype from each
parent. This correlation between alleles is termed linkage disequilibrium (LD),
and the strength of LD between two adjacent polymorphisms is dependent on
(although not perfectly correlated with) the physical distance between them
along the chromosome. Most chromosomal regions are characterized by having a
restricted number of common haplotypes which account for much of the genetic
variation within any given population. Hence while a chromosomal region may
contain many SNP loci, evaluating a few ‘tag’ SNPs will provide a means of
capturing the majority of the genetic variation in the region.

The International HapMap Project (The International HapMap Consortium,
2003) was established to identify and catalogue genetic similarities and dif-
ferences in humans from different populations. The data generated from this
major worldwide initiative provide an invaluable resource for association studies.
To date, 270 individuals from four populations: Utah residents with Euro-
pean ancestry, Yoruba from Ibadan in Nigeria, Han Chinese from Beijing and
Japanese from Tokyo, have been genotyped for over 3 million SNPs, providing
detailed information on the allelic architecture and LD patterns of these ethnic
groups.

While there are a number of means of quantifying the strength of LD between
a pair of SNPs, r2 is perhaps the most useful metric in the context of association
studies. This is simply defined as the square of the correlation coefficient between
the two SNPs in question:

(PWM − PW.P.M)2

PW.(1 − PW.)P.M(1 − P.M)
(1.1)
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where PWM is the probability of the haplotype formed by allele W at SNP 1 and
allele M at SNP 2, PW. is the marginal probability of allele W at SNP 1, P.M is
the marginal probability of allele M at SNP 2.

Calculation of r2 is therefore based on the frequencies of the four possible
haplotypes of alleles for the two SNPs. In order to calculate these frequencies,
the phase of the haplotypes for each individual must either be known or inferred,
that is which alleles were co-inherited from each parent. If the genotypes of both
parents are known, then unambiguous phased haplotypes of offspring can be
generated. However, if such parental information is not available, then phase
must be inferred. For some combinations of genotypes, the phase can be inferred
with probability 1, for example, if an individual has genotype WW at SNP 1 and
genotype MM at SNP 2, then the only possible haplotypes for the individual are
two copies of the WM haplotype, one inherited from each parent. However, if
the individual is heterozygous at one or more of the SNPs, haplotype phase is
unknown. Phased haplotypes for each individual may be inferred using either
an expectation-maximization (EM) algorithm or a Markov chain Monte Carlo
(MCMC) algorithm and hence haplotype frequencies estimated. Implementations
of these algorithms are accessible in a number of publicly available programs,
such as Haploview (Barrett et al., 2005) and PHASE (Stephens et al., 2001).

1.3 Direct and indirect association studies

Association studies fall broadly into two main types: direct or sequence-based and
indirect or haplotype-based. In a direct association study, the markers genotyped
are those which are expected or thought likely to be directly causal of a change
in disease risk. Common targets for this kind of approach are markers which are
more likely to have functional consequences such as nsSNPs (Smyth et al., 2006)
or insertion/deletion polymorphisms. For some of these polymorphisms, direct
functional data has been generated. If such data is lacking, missense changes
can be analysed according to the biochemical severity of the amino acid substi-
tution and its context within the protein sequence. In the simplest articulation
of this, the Grantham matrix (Grantham, 1974) predicts the effect of substitu-
tions between amino acids based on chemical properties, including polarity and
molecular volume. More sophisticated in silico algorithms have recently been
developed which predict the effect of amino acid substitutions on protein struc-
ture and activity. Polymorphism Phenotyping (PolyPhen; Ramensky et al. 2002)
predicts the functional effect of substitutions by assessing the level of sequence
conservation between homologous genes over evolutionary time, the physiochem-
ical properties of the exchanged residue and the proximity of the substitution to
predicted functional domains and structural features within the protein. Sorting
Intolerant from Tolerant (SIFT; Ng and Henikoff 2001) predicts the functional
importance of an amino acid substitution based on the alignment of highly
similar orthologous and/or paralogous protein sequences. Such algorithms in
combination with other considerations such as gene ontology can thus be used



Preliminary analysis and quality control 5

to prioritize genotyping efforts (Rudd et al., 2006a; Rudd et al., 2006b; Webb
et al., 2006).

The indirect approach makes use of the LD structure of the human genome.
In such an approach the markers genotyped are not necessarily thought to have
a direct impact on disease risk, associations being a consequence of LD with
disease-causing variants. This approach is unbiased and does not depend upon
prior knowledge of function or presumptive involvement of any gene in disease
causation. This strategy has only recently become feasible for large-scale stud-
ies with data generated by HapMap which allow tagging SNPs to be selected
that capture a large proportion of the common sequence variation in the human
genome.

Recent advances in technology now make it possible to simultaneously score
vast numbers of SNPs cost-effectively so that GWAS are now feasible. In a
GWAS, typically hundreds of thousands of tag SNPs are genotyped and the aim
is to capture as much of the common genetic variation throughout the human
genome as possible. Current commercially available platforms allow for the simul-
taneous genotyping of between 300,000 and 1000,000 SNPs capturing >80% of
the common genetic variation in the genome.

An alternative approach to this is the candidate gene approach, where specific
genes or pathways are selected for investigation. For example, the established
relationship between risk of meningioma and exposure to ionizing radiation
provided the rationale for examining whether variants in DNA repair genes con-
tribute to disease susceptibility. Adopting this strategy, Bethke et al. (2008)
showed that variation in the DNA repair gene BRIP1 is associated with risk of
meningioma. Candidate gene studies can be undertaken using either the direct
or indirect approach. If a direct approach is undertaken, specific markers would
be targeted within the genes of interest, whereas in an indirect approach, tagging
SNPs would be genotyped in an attempt to capture all the common variation in
the selected genes.

1.4 Preliminary analysis and quality control

A number of measures should be implemented to assess data quality before
conducting analyses searching for associations with disease risk.

1.4.1 Assessment of call rates

The assay performance for some SNPs using any genotyping platform is likely to
be suboptimal and may lead to erroneous assignment of genotypes. Two quality
metrics relating to call rates are the sample call rate, defined as the number
of SNPs that successfully genotyped for each sample; and the SNP call rate,
defined as the number of samples for which each SNP was successfully genotyped.
Low SNP call rates may indicate that the clustering algorithm used to identify
the three possible genotypes is not working optimally and such SNPs should be
excluded. Typically call rates of less than 95% are treated cautiously. Differential



6 Association studies

sample call rates between cases and controls or between batches or plates are
indicative of a consistent genotyping problem generating systematic bias.

1.4.2 Duplicate samples

Inclusion of duplicate samples in genotyping assays provides an important means
of assessing the performance of the analytical platform, with respect to detecting
both within and between batch variations. Ideally genotyping should be under-
taken blinded to the inclusion of duplicate samples. The genotypes for each pair
of individuals should be compared to determine if DNA from any individual has
mistakenly been included multiple times, and any such copies removed. Finally
a proportion of genotypes should be checked by subjecting 5% of samples to
genotyping on an alternative platform or by directly re-sequencing.

1.4.3 Relatedness between study subjects

Cryptic relatedness between study subjects can be a source of systematic bias.
Relatedness between individuals can be determined by calculating inherited-
by-state (IBS) sharing probabilities of genotyped SNPs between each pair of
study subjects; for each SNP, genotypes for each pair of individuals are compared
and assigned a value of 0, 1 or 2 depending on the number of identical alleles.
Summing these values over all genotyped SNPs yields a probability distribution
for IBS shared values of 0, 1 and 2. A low frequency of IBS = 0 and/or a high
percentage of allele sharing (typically >80%) is highly indicative of relatedness
and it is prudent to remove one of the subjects from the analysis to reduce bias.

1.4.4 Hardy–Weinberg equilibrium

In a large, randomly mating population, in which there is no migration, or selec-
tion against a specific genotype and the mutation rate remains constant, the
genotype proportions at a polymorphic variant will be stable from one gener-
ation to another, i.e. in Hardy–Weinberg equilibrium (HWE). For a two-allele
model where p and q = 1 − p are the allelic frequencies for alleles W and M,
respectively, the genotypic frequencies for genotypes WW, WM and MM should
be p2, 2pq, and q2, respectively.

Testing for deviation from HWE can be carried out using a χ2 goodness-
of-fit test with one degree of freedom. Low genotype counts can however lead
to inflated type I error rates and under these circumstances Fisher’s exact test
provides a more appropriate test statistic. Provided the controls are in HWE,
the cases may also be tested. If a SNP is truly associated with disease risk, then
unless this association is mediated in a multiplicative manner, cases will not be in
HWE. Hence violation of HWE amongst cases only could indicate the presence
of an association with disease risk.

Deviation from HWE in controls can indicate genotyping errors, non-
Mendelian inheritance of the SNP in question, inbreeding or population strat-
ification. SNPs showing extreme deviation from HWE in controls should be
excluded from further analysis as any association statistics calculated will be hard
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Fig. 1.2: Quantile–quantile (QQ) plot. Under the null hypothesis of
Hardy–Weinberg equilibrium, the points are expected to lie on the line y = x.
The inflation from y = x in the upper tail of the distribution indicates a
number of SNPs violating Hardy–Weinberg equilibrium.

to interpret. The question of what constitutes extreme deviation is debatable,
but most researchers implement a fairly pragmatic non-conservative cutpoint by
adjusting for the number of tests performed using a simple Bonferonni correction,
with cutoffs in the range of 10−7 for a GWAS.

1.4.5 Quantile–quantile plots

Quantile–quantile (QQ) plots provide a useful tool for visualizing the distri-
bution of HWE results and later, the distribution of association statistics. A
QQ plot is constructed by plotting the observed ordered test statistics against
the test statistics expected under the null hypothesis for a χ2 distribution with
appropriate degrees of freedom (one degree of freedom for the HWE test). Under
the null hypothesis of HWE, the plotted points would be expected to lie on the
line y = x. Systematic inflation from this line indicates a greater number of
significant deviations from HWE than expected and could be a consequence of
genotyping problems or population stratification (Fig. 1.2).

1.5 Techniques for detecting association

1.5.1 Single locus tests

Current strategies for the analysis of the data generated by an association study
generally encompass statistical testing carried out on a marker-by-marker basis
initially.

For each SNP, genotype data can be represented by the 3 × 2 table of case-
control status against genotype (Table 1.1). Let r0, r1, r2 correspond to the
genotype counts for cases and s0, s1, s2 correspond to the genotype counts for
controls (Table 1.1a). The most straightforward test of association is provided
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Table 1.1. Contingency tables showing (a) genotype counts for
a single SNP, (b) the dominant test, (c) the recessive test and (d)
the allelic test, assuming M is the risk allele.

(a)

WW WM MM Total

Case r0 r1 r2 R

Control s0 s1 s2 S

Total n0 n1 n2 N

(b)

WW WM + MM Total

Case r0 r1 + r2 R

Control s0 s1 + s2 S

Total n0 n1 + n2 N

(c)

WW + WM MM Total

Case r0 + r1 r2 R

Control s0 + s1 s2 S

Total n0 + n1 n2 N

(d)

W M Total

Case 2r0 + r1 r1 + 2r2 R

Control 2s0 + s1 s1 + 2s2 S

Total 2n0 + n1 n1 + 2n2 N

by the χ2 test with two degrees of freedom, calculating expected cell counts from
the marginal row and column totals in the usual manner. If cell counts are small,
i.e. <5, then Fisher’s exact test is more appropriate.

The two degree of freedom test statistic may not necessarily be the most pow-
erful test for association as power is dependent on the true nature of the disease
model underlying an association. For example, if a SNP impacts on disease risk
in a dominant manner, then the most suitable test for detecting the association
is calculated from the 2×2 table of case-control status against the two categories
formed by pooling rare homozygotes and heterozygotes and comparing against
common homozygotes (Table 1.1b). Conversely, if the true model underlying an
association is recessive, then the most powerful test for detecting the association
is calculated from the 2 × 2 table of case/control status against genotype with
common homozygotes and heterozygotes pooled (Table 1.1c). However, since
the mode of inheritance is unknown, these tests are not generally utilized as the
primary test statistic.
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For complex diseases, many biologists believe that either an additive or
multiplicative disease model is most likely. Under an additive model, if the het-
erozygous genotype confers disease risk r, then the rare homozygous genotype
confers disease risk 2r. The Armitage trend test is the most powerful test for
association in this scenario and tests the null hypothesis of zero slope for the line
fitted to the three genotypic risks. It is defined by:

N(N(r1 + 2r2) − R(n1 + 2n2))2

R(N − R)[N(n1 + 4n2) − (n1 + 2n2)2]
. (1.2)

Under a multiplicative model, if the heterozygous genotype confers disease risk r,
then the rare homozygous genotype confers disease risk r2. Genotypes inherited
under such a model are most powerfully detected by the allelic test, which is
performed by counting the number of W and M alleles amongst cases and controls
and then calculating the χ2 statistic with one degree of freedom from the resulting
2×2 table (or Fisher’s exact test if cell counts are small), Table 1.1(d). However,
if a multiplicative model does not hold, then HWE is violated in cases and the
allele test statistic is invalid (Sasieni, 1997). Instead, the Armitage test for trend
is then preferred (note that when HWE holds the Armitage and allele tests are
equivalent).

Since there is no single optimum test for all possible genetic models, a com-
promise is to calculate the test statistic for each SNP as the maximum statistic
under dominant, recessive and additive models (Webb et al., 2006). This test
statistic is not quite as powerful as if the most efficient test were used, but when
the mode of action is not known this loss of power is offset by the reduction
in multiple testing. This statistic may be used to rank SNPs, however since its
distribution is non-standard, P -values must be calculated empirically.

A QQ plot may be used to visualize association test statistics. Under the
null hypothesis of no association, the points would be expected to lie on the line
y = x; consistent inflation from this line could indicate systematic sources of
spurious association (Fig. 1.2).

1.5.2 Incorporating covariates

Some SNPs will affect the risk of cancer more strongly in the presence of other
genes or environmental influences. An example of such a gene–environment inter-
action is provided by the common C677T variant in methylenetetrahydrofolate
reductase (MTHFR), which leads to disturbed folate metabolism and has been
reported to be associated with risks of various common cancers, possibly through
either aberrant DNA methylation or availability of nucleotide precursors for
DNA synthesis. Perhaps not surprisingly, the effect of MTHFR C677T has been
reported to be substantially greater in those with lower circulating levels of folate
(Ma et al., 1997; Chen et al., 1996).

For a given sample size, strength of interaction and allele frequency, the gain
in power achieved by allowing for the interaction depends on the magnitude of the
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exposure frequency. If such covariate information is available, then association
statistics may be calculated adjusting for covariates by logistic regression. It is
possible to implement equivalents of each statistical test described above simply
by imposing appropriate constraints on the way genotypes are coded in the
model. Under the logistic regression model, the binary outcome variable (case-
control status) is related to the explanatory variables (SNP genotype plus any
other covariates) via the logistic transformation:

ln
(

pi

1 − pi

)
= β0X0 + β1X1 + β2X2 + · · · + βpXp (1.3)

where pi is the risk of cancer for the ith individual, X0, X1, X2 are indicator
variables for genotypes WW, WM, MM, respectively (i.e. X0 is 1 if individual
i has genotype WW and 0 otherwise), X3, . . . , Xp represent other explanatory
variables, and β0, . . . , βp are the coefficients to be estimated. The most general
model which, for large sample sizes is equivalent to the genotypic two degree
of freedom test, is obtained by imposing no constraints on β0, β1 and β2. To
implement the equivalent of the Armitage test for trend, the constraint β0 <
β1 < β2 with β2 − β1 = β1 − β0 should be applied. For the dominant test
β1 = β2, and for the recessive test β1 = β0. The association statistic for the
SNP is then calculated by a likelihood ratio test between the model including
the SNP and all other covariates as predictors and the model including all other
covariates only as predictors.

Logistic regression is therefore a useful tool if any covariates are thought
to impact on case-control status; however the full power of logistic regression
comes into force when searching for associations between multiple SNPs and
disease risk; this is discussed further below.

1.5.3 Multi-locus tests

Although the SNP-by-SNP analysis approach is the most straightforward to
implement, by its very nature it does not utilize information on the relationship
between SNPs. One common technique of making use of this information is to
exploit the LD structure of the genome to group SNPs in high LD into haplotype
blocks. A single statistical test may then be applied to each haplotype block.
This can substantially reduce the number of statistical tests undertaken and
hence the multiple testing burden, so that power is increased. For each haplotype
block if there are k observed haplotypes, the data can be represented by a 2× k
table of case/control status against haplotype. The most straightforward test for
association is then the χ2 test with k − 1 degrees of freedom, testing the null
hypothesis of no difference in haplotype frequencies in cases and controls. One
problem with this approach is that since the phase of the genotypes is very rarely
known haplotypes themselves must be inferred; loss of power is small as long as
LD is near-perfect; if LD is weaker, then this approach is not advisable.
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An issue with this type of approach is the question of how information about
similarity between haplotypes should be incorporated into a model. For exam-
ple if two haplotypes differ by only one allele, they are more likely to have a
comparable impact on disease risk than a haplotype where many alleles differ.
One means of addressing this is to integrate this information into the analysis by
using a clustering approach to group together sets of haplotypes that are likely to
share recent common ancestry (i.e. with fewer mutation events separating them).
The subsequent statistical test would have fewer degrees of freedom but could
again suffer from loss of power if there is a reasonable amount of uncertainty
about the relationship between haplotypes.

The haplotype-based analysis approach is therefore most useful when LD
blocks and hence haplotypes are clearly defined and well-delineated, a situation
more likely to occur if the density of SNP genotyping is high. It perhaps has less
utility if a tagging approach has been used to select SNPs for genotyping as tag
SNPs by their very definition will not constitute extensive blocks of strong LD.

1.5.4 Interactive and additive effects

The ‘common-disease common-variant’ model of cancer susceptibility implies
that variation in disease risk will be a consequence of interactions between differ-
ent genetic variants and also between genetic and environmental factors, acting
either additively or multiplicatively. Under this assumption, an alternative anal-
ysis approach which systematically fits models allowing for interactions between
loci has been shown to have greater power to identify risk variants (Marchini
et al., 2005) even when accounting for the increased multiple testing burden. The
approach utilizes logistic regression to fit each pair of SNPs and their interaction
concurrently. However, when the single-locus effects are large relative to the inter-
action effects, this approach does not provide any improvement in power over
the SNP-by-SNP approach. A compromise between the two approaches could
be to first identify a set of associated single loci under liberal statistical criteria
and then evaluate all possible two-way interactions among them under rigorous
criteria, corrected for multiple testing.

If data are available on environmental factors then it is also possible to search
for gene–environment interactive effects by including the environmental variable
with the SNP in a logistic regression model. A more efficient approach to detect-
ing this kind of epistasis is to conduct a case-only regression analysis where the
response is the variable hypothesised to interact with the genetic variant, which
is itself fitted as an explanatory variable. A case-only analysis provides increased
power to detect gene–environment interactions than a case-control analysis based
on the same number of cases (Yang et al., 1997).

An important feature of the polygenic model is that most susceptible individ-
uals are at elevated risk because of the combined effects of several susceptibility
alleles; as multiple risk loci are identified, the combined effects of these may be
examined, whether interactive or additive. For example, Tomlinson et al. (2008)
examined the combined risk of the five low penetrance alleles identified thus far
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for colorectal cancer. There was no evidence of interactive effects between any
of these SNPs; however assigning two for a variant homozygote and one for a
heterozygote, the risk of colorectal cancer increased significantly with increasing
numbers of variant alleles for the five loci, with individuals carrying seven or
more deleterious alleles being at ∼ three-fold increased risk of colorectal can-
cer. Based on these data, the five SNPs identified thus far have potential to be
clinically useful.

1.5.5 Pathway analysis

The ‘common-disease common-variant’ hypothesis implies that it is unlikely that
any one single genetic polymorphism would have a dramatic effect on cancer risk.
A pathway-based genotyping approach, which assesses the combined effects of a
panel of polymorphisms that interact in the same pre-defined biological pathway,
may amplify the effects of individual polymorphisms and enhance the predictive
power. The standard analysis method is to then count the number of ‘risk’ alleles
that each individual carries and compare the distribution of this random variable
in cases and controls, using logistic regression to adjust for other covariates.
To search for higher-order gene–gene interactions, classification and regression
tree (CART) analysis may be perfomed. This is a binary recursive-partitioning
method that produces a decision tree to identify subgroups of subjects at higher
risk. The algorithm, as implemented in HelixTree Software, uses inference-based
recursive modelling to determine the SNP (or other risk factor) at which the first
locally optimal split of subjects occurs. The process continues with multiplicity-
adjusted P -values to control tree growth, until the subject subgroups have no
subsequent statistically significant splits or reach a prespecified minimum size.
This approach has been successfully applied to genes in the DNA repair and cell
cycle control pathways for bladder cancer (Wu et al., 2006).

1.5.6 Subgroup analysis

Another biological hypothesis is that the impact of a genetic variant on disease
risk may be variable dependent on an individual’s phenotype. This is particu-
larly probable for a complex disease such as cancer where the phenotype can be
classified into distinct groups. For example colorectal cancers can be classified
into microsatellite stable (MSS) and microsatellite instable (MSI) cancers and
the effect of the C677T variant in MTHFR varies according to MS status. A
recent study showed that when MTHFR C677T genotype frequencies in MSS
colorectal cancer cases were compared to controls, individuals with homozygous
variant genotype were at 19% reduced risk of cancer compared to wild type.
Conversely, when MSI colorectal cancer cases were compared to controls, indi-
viduals with one or two MTHFR 677T alleles were at 42% increased cancer risk
(Hubner et al., 2007). These observations indicate that MTHFR 677TT homozy-
gous individuals are more likely to develop MSI colorectal cancer than those with
wild type genotype, and this common polymorphism has differential influences
on MSI and MSS colorectal cancer risk.
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In addition to standard case-control analysis methods restricted to the sub-
group in question, this hypothesis may also be assessed using the case-only
regression analysis described above. When conducting a subgroup analysis, it
is important that phenotypes defining subgroups be well defined and have
strong biological basis. Otherwise the temptation could be to continue defin-
ing subgroups in post-hoc analyses until a statistically significant association is
identified, however meaningless.

1.5.7 Imputation of genotypes

Currently, association studies are based on genotyping a proportion of the known
SNPs in the human genome and the cost of sequencing the entire genome for large
numbers of individuals is prohibitive. However it is possible to use data from the
HapMap, estimates of the fine-scale recombination map across the genome and
a population genetic model to accurately infer genotypes for SNPs not directly
assayed in the study (Marchini et al., 2007). Inference of genotypes allows for finer
mapping of regions of interest and also has utility for validation and correction
of data at genotyped markers. Furthermore, imputation of genotypes at markers
not directly assayed also provides the possibility of combining data from multiple
genome-wide scans that have used different SNP sets, since all SNPs genotyped
in any of the studies may be inferred in other studies. By extensively increasing
the number of individuals for whom genotype information is available, such a
strategy has the potential to provide a considerable increase in power to detect
associations with cancer risk.

1.5.8 Confounding and stratification

Population stratification, where cases and controls disproportionately represent
regionally or ethnically defined genetic subgroups, can result in spurious associ-
ations between disease and any genetic marker with allele frequencies that differ
between the subgroups. The potentially confounding effect of population strati-
fication should in principle be allowed for in the design and analysis of a study.
One method of circumventing the problem is to use family-based controls. The
most common approach is the transmission disequilibrium test (TDT; Spielman
et al. 1994), which assesses the evidence for preferential transmission of one allele
over the other from heterozygous parents. For complex late-onset diseases such as
cancer, the non-availability of parental genotypes means that the TDT approach
is often impractical. Allied statistics based only on sibling genotypes have been
devised to obviate the requirement for parental genotypes, but all involve addi-
tional genotyping. Moreover, such restrictions on eligibility inevitably lead to
smaller studies and these tests are also inherently less powerful than conven-
tional case-control methods (Risch and Teng, 1998). If cases and controls are
well matched, differences in the frequency of genotypes will only be seen at pre-
disposition loci. Although population stratification remains a potential problem
its effects within large studies have generally been rather exaggerated and can
usually be addressed by suitable analysis.
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The genomic control approach (Devlin and Roeder, 1999) is most commonly
used, where an inflation factor λ is calculated by comparing the median of the
observed Armitage trend test statistics with the median of the expected distribu-
tion (χ2 with one degree of freedom). A value of λ > 1 represents an inflation of
the test statistics from those expected by chance which is a likely consequence of
population stratification. Genomic control normalizes test statistics by dividing
by λ so that the resulting test statistics represent associations after adjustment
for population stratification.

If the subgroups causing the inflation can be accurately identified, for exam-
ple, by ascertaining the region of origin for each individual, then it is possible to
stratify for them in the analysis. If such classification data are not available, clus-
tering approaches such as those implemented in the STRUCTURE (Pritchard
et al., 2000) and EIGENSTRAT (Price et al., 2006) programs, may be used to
group individuals on the basis of the genotype data alone. This information can
then be incorporated into the analysis; however it is not always clear what the
groupings actually represent.

1.6 Statistical power and multiple testing

The last 10 years have seen a dramatic rise in the number of published stud-
ies reporting the relationship between SNPs in candidate genes and the risk
of cancer. Despite this considerable effort, however, few disease loci have been
identified unequivocally. Published systematic reviews on specific polymorphisms
and risk of breast (Dunning et al., 1999) and colorectal (Houlston and Tomlin-
son, 2001) cancer illustrate this apparent failure. In a review of 50 studies of the
effects of common alleles of 13 genes on risk of colorectal cancer 16 significant
associations (P < 0.05) were seen, but only three were reported in more than
one study and there were only three significant associations in the pooled data
(for APC -I1307K, HRAS1 -VNTR and MTHFRVal/Val). A systematic review
of 46 studies on the effects on breast cancer risk of 18 different genes revealed 12
statistically significant associations. None was reported in more than one study,
and the pooled analysis gave a significant difference in genotype frequency for
only three SNPs (CYP19 -(TTTA)10, GSTP1 -Ile105Val and TP53 -Arg72Pro).
These results illustrate the dangers of imposing too lenient a significance thresh-
old for declaring a positive association. For many of these candidate genes, there
was little prior evidence of involvement of the specific locus and the associated
P -values should in principle be adjusted by Bayesian methods, using prior prob-
abilities based on the strength of the evidence that they are involved in cancer
aetiology or that the specific type of germline variation affects the structure or
level of the expressed protein.

The appropriate threshold for defining statistical significance in any associa-
tion study is an important consideration. As the number of possible risk alleles is
very large, the prior probability that any random SNP tested will be associated
with disease susceptibility will be low. If a significance level of 5% is used to define
a significant result, then by definition the corresponding type I error rate (i.e. the
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probability of an association being declared true when it is, in fact, false) is 5%.
Consequently, if 500,000 SNPs are to be tested on a loci-by-loci basis, 25,000
SNPs will display nominally significant associations purely by chance. Amongst
those results, it is expected that there will reside a subset of SNPs where the
association is truly causal. The simplest response to the multiple testing issue is
to employ a Bonferroni correction, dividing the global significance level by the
number of tests undertaken. For a GWAS, this leads to a required individual
test P -value to the order of 10−7 to declare a significant result. The Bonferroni
correction is however overly stringent if the markers tested are not independent,
as is likely to be the case in a GWAS.

An alternative approach to controlling the type I error rate is to instead
control the false discovery rate (FDR), that is, the proportion of false positive
associations among all positives (Benjamini and Hochberg, 1995). This leads to
a global threshold that is adaptive to the data. That is, if a higher percentage of
the null hypotheses tested are truly false, the FDR procedure will identify a lower
cutoff level than the universal Bonferroni cutoff, therefore improving power.

An empirical approach to the multiple testing problem is to conduct a per-
mutation procedure. This is an iterative approach that samples from the null
hypothesis of no association between SNP and case-control status so that empir-
ical P -values can be generated. At each iteration, the case-control labels are
permuted and then the association statistics re-calculated. By permuting the
case/control labels, any true associations between SNP and disease risk are
nullified so that the association statistics calculated at each iteration represent
samples from the null hypothesis, taking into account the complex correlation
structure between genotyped SNPs. The true association statistics are then com-
pared with this null distribution to generate empirical P -values. Permutation
procedures are extremely computationally intensive and time consuming. One
way of speeding up these procedures is to generate a smaller number of permu-
tations than would usually be required and then fit an extreme value distribution
to the observed maximum statistics (Dudbridge and Koeleman, 2004). Further
permutations are then generated to tune the parameters of the fitted distribution.

Consideration of sample size is clearly essential in the design of association
studies because of the issues of generating true- and false-positive results and
replicating findings. The sample sizes required depend upon SNP allele frequency,
the magnitude of the effect, and the power and significance level stipulated for
defining a positive test.

Segregation analyses and recent results from GWAS of colorectal, breast and
prostate cancers suggest that genetic variants impacting on cancer risk will con-
fer relative risks of 1.1–1.5 in carriers. In order for an association study to have
reasonable power to detect effects of this size at the small significance levels
required, large collections of cases and controls are essential. Figure 1.3 shows
the sample size requirements to detect an association at the 10−4 significance
level with power of 80% by relative risk and allele frequency, assuming equal
numbers of cases and controls. For a SNP with 20% minor allele frequency
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Fig. 1.3: Sample sizes required to detect an association at 10−4 level with power
of 80% by minor allele frequency and relative risk.

conferring a per-allele increase of 1.3 in cancer risk, ∼3500 cases and controls
would be required to detect an association. Clearly studies based on less than
1000 cases and 1000 controls will rarely have adequate power to detect even the
most common variants associated with cancer risk.

1.6.1 Design strategies for increasing power

Analysis of unselected cases is satisfactory for the evaluation of common alleles
but has limited power if the carrier frequency is less than 5%. Restricting the
study to early-onset cases or pathologically defined subsets might increase the
power, but in the absence of good evidence for a different genetic basis in younger
patients or in those with a particular histology such restrictions on eligibility
may merely reduce the available sample size. The power of association studies
can, however, be significantly enhanced by cases selected for a family history of
cancer. Houlston and Peto (2003) and Antoniou and Easton (2003) calculated
the power of association studies based on unselected and familial cases. Assuming
two controls per case, a dominant allele conferring a relative risk of 2.0 carried
by 5% of the population would be detectable using 800 unselected cases. If the
prevalence were only 1% in controls, however, 3700 unselected cases would be
required. In contrast, if the cases analysed had two affected relatives the number
required would be reduced from 3700 to 700, a more than five-fold reduction
in laboratory costs. Bilateral breast cancer patients should prove particularly
informative in this respect. They can be identified systematically through cancer
registries, yet they are as powerful as cases with two affected relatives.

The potential of association studies of familial cases to detect rare suscepti-
bility alleles conferring a relative risk of less than 2.0 is illustrated by the CHEK2
1100delC mutation in breast cancer patients. This allele, which is carried by 1% of
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the population, confers a 1.7-fold increase in breast cancer risk (Meijers-Heijboer
et al., 2002). The prevalence was not significantly increased among unselected
breast cancer cases (1.4%), but was greatly increased among familial cases not
carrying BRCA1 or BRCA2 mutations (5.1%; P < 10−7). The relative risk in
pooled data on unselected cases was 2.3 (CHEK2 Breast Cancer Case-Control
Consortium, 2004).

1.6.2 The staged design

A staged association study design provides a means of offsetting some of the costs
of conducting a GWAS. In this design, all SNPs are genotyped in a subset of the
cases and controls. Those SNPS most significantly associated with risk, typically
at the 5% level are genotyped in the remaining cases and controls. The strategy
minimizes the amount of genotyping required and hence reduces the cost of the
project whilst retaining a high power to identify SNPs associated with a modest
risk. Although the power of the staged design will never exceed the power of a
single stage design if the same number of cases and controls are available, it is
possible by choosing the proportions of samples and SNPs genotyped in each
stage appropriately to attain almost equal power to the single-stage approach.
Genotyping genetically enriched cases in the first stage provides a highly efficient
strategy for achieving the best power-to-genotyping ratio.

1.7 Replication, quantification, and identification of
causal variants

Once an association has been detected in the initial study population, it is highly
desirable to replicate this observation in further independent study populations.
This is useful for two reasons: firstly it provides robust evidence of the association
and negates the possibility that the observed association is due to confound-
ing factors such as extreme population stratification or differential genotyping
problems. Secondly, it can offer valuable information on the nature of the associ-
ation and be used to provide more robust estimates of disease risk. For example,
knowledge of the risk model could provide insight into the biological mechanisms
underlying the association. Further subgroup analysis at this stage could also be
useful to provide insight into the aetiology of the observed association.

After replication of an observed association, the challenge of identifying the
causal locus still remains. A sequence-based association study directly targeting
SNPs with a high prior probability of functionality implies higher probability
that the causal variant has been directly genotyped; however the possibility of
the observed association being a consequence of LD still remains. Therefore all
genetic variants lying within the limits of the region of association must be
thoroughly interrogated.

Before conducting any further experimental work, various techniques may
be used to refine the region of association. One such approach is to consider
genealogical trees in the form of ancestral recombination graphs (ARGs) that
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could explain the recombination and mutation event history in the individuals in
the study (Minichiello and Durbin, 2006). For each tree generated, the branches
of the tree are examined for clustering of disease cases which would suggest that a
causative mutation occurred on that branch. Probabilities are then averaged over
all trees. This approach has been shown to give increased accuracy in positioning
causative loci.

In order to further refine the region of association, samples from different
ethnic groups may be of utility. If the association with disease risk is replicated
in a cohort with different ethnic background, the LD structure of the new pop-
ulation can be interrogated to further refine the region. Populations with higher
rates of recombination such as those with African origins may be particularly
useful. Variants in the SMAD7 gene have recently been shown to be associ-
ated with colorectal cancer risk in the European population (Broderick et al.,
2007). Figure 1.4 shows the LD patterns in CEPH and Chinese populations from
HapMap for the SMAD7 locus. Since the LD patterns in the region are quite
different, a case-control analysis based on individuals from the Chinese popu-
lation should help to further refine the association region. Further genotyping
efforts may focus on those variants which lie in coding regions or areas of high
conservation.

Final evidence for causality of any variant mapping to the associated region
may ultimately be contingent on functional assays. However such work will
inevitably be predicated on robust statistical evidence for a true association.

1.8 Discussion

Around 30 years ago, Anderson (1974) stated that the 2/3-fold excess risk seen
in first-degree relatives of cancer patients ‘is not indicative of strong genetic
effects. They are more suggestive of the involvement of many genes with small
effects acting in concert with environmental or nongenetic factors with larger
and more important effects’. This was a statistical fallacy (Peto, 1980), but
paradoxically there is growing evidence from GWAS of breast, colorectal and
prostate cancer that the conclusion is correct for these malignancies and per-
haps for many other common cancers. Although the risks associated with each
allele may be individually modest, they are likely in combination to contribute
a substantial proportion of overall cancer incidence, and considerably more than
the high-penetrance genes so far identified.

In the future, association studies are likely to play an increasing role in the
search for novel cancer susceptibility genes. After years of poorly powered associ-
ation studies generating mainly type I errors, recent advances in technology have
heralded the advent of association studies based on large numbers of samples,
often genotyped over many SNPs. The robust statistical techniques described in
this chapter are available to analyse the data generated from association studies,
and the recent discovery of many novel low penetrance cancer susceptibility loci
demonstrates the success of this study design.
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(a)

(b)

Fig. 1.4: Linkage disequilibrium patterns in (a) CEPH and (b) Chinese pop-
ulations for the SMAD7 locus associated with colorectal cancer risk. Dark
squares indicate strong linkage disequilibrium while light squares indicate
weak linkage disequilibrium.

1.9 URLs
• HapMap: http://www.hapmap.org
• Haploview: http://www.broad.mit.edu/mpg/haploview/
• R: http://www.r-project.org/

http://www.hapmap.org
http://www.broad.mit.edu/mpg/haploview/
http://www.r-project.org/
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• Phase: http://stephenslab.uchicago.edu/software.html

• Impute: http://www.stats.ox.ac.uk/marchini/software/gwas/impute.html

• Structure: http://pritch.bsd.uchicago.edu/structure.html

• Eigenstrat: http://genepath.med.harvard.edu/reich/Software.htm

• HelixTree: http://www.goldenhelix.com/SNP Variation/HelixTree/
helixtree.html
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2

METHODS FOR DNA COPY NUMBER DERIVATIONS

Cameron Brennan

2.1 Copy number aberration in cancer

Chromosomal copy number aberrations (CNA) are a common form of genomic
mutation in cancer. Like point mutations, translocations and epigenetic alter-
ations, CNA may directly contribute to tumour pathogenesis and also may
generically reflect genomic instability occurring during tumour evolution. CNA
is defined simply as variation from the full chromosomal complement of germline
cells: either loss of one or both normal copies or gain of extra copies. A gene
which is completely deleted is essentially removed from the cell’s transcrip-
tome; a gene amplified by many extra copies is often overexpressed as a result.
For molecular profiling in cancer research, CNA data is particularly attractive
because genomic amplification and deletion generate immediate hypotheses for
their biological impact: many established tumour suppressors are known to be
genomically deleted in cancer and many known oncogenes have been discovered
by their inclusion in amplifications. It stands to reason that newly character-
ized focal CNA events could point to novel cancer-relevant genes, micro-RNAs
or other functional genomic elements. In contrast, gene expression profiling of a
tumour might reveal hundreds or thousands of genes to be differentially expressed
compared to normal tissue, often with little further evidence to identify which of
these are functionally significant. Expression microarray technology has matured
and there are well-developed analytical methods to analyse most forms of expres-
sion data. In comparison, there has been a relative lag in the development of
high-throughput techniques for ascertaining chromosomal copy number and in
the development of methods to analyse this data. The conceptual simplicity of
CNA belies the complexity of analysis needed to identify biologically and sta-
tistically significant events and to distinguish noise and artifacts. This chapter
will introduce some of the major technologies and methods used to generate and
analyse copy number data.

2.2 Obtaining and analysing copy number data: platforms and
initial processing

Chromosomal copy number can be assayed by a variety of microarray and
sequencing methods that will be briefly described here. The methods differ in
sensitivity, resolution, cost, and DNA requirement, and some provide allelic or
sequence information in addition to copy number.
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2.2.1 Array-CGH

Comparative genomic hybridization (CGH) was developed as a technique for
assessing CNA in tumours (Kallioniemi et al., 1992). This technique relies on
competitive hybridization of differentially labelled tumour and normal DNA
onto a normal metaphase chromosomal preparation. Relative gain and loss
are determined by the ratio of fluorophores seen bound to each chromosomal
region. In conventional CGH, resolution is limited by the visibility of cytogenetic
bands. Array-based CGH is a modification in which the chromosome scaffold is
replaced by DNA sequence printed on a microarray. Printed arrays may be com-
prised of BAC, cDNA, or oligonucleotide probe sequences (Carvalho et al., 2004;
Heiskanen et al., 2000; Pinkel et al., 1998; Pollack et al., 1999; Solinas–Toldo
et al., 1997). BAC arrays have been designed with tiling genomic coverage based
on a set of 32,433 BAC clones spotted in triplicate (Ishkanian et al., 2004). The
advantages of full tiling BAC coverage are offset by limitations in specificity
of BACs which harbour large spans of repeat sequence or represent regions of
genomic duplication. Printed BAC arrays have specific utility in replacing clin-
ical diagnostic based on multi-locus FISH (Bejjani and Shaffer 2006; Cheung
et al., 2005; Thorland et al., 2007).

2.2.2 Oligonucleotide arrays

In contrast to printed arrays, more recent technology allows for on-chip syn-
thesis of oligonucleotides at high densities. Non-specific hybridization limits
the sensitivity of oligo-aCGH and is a particular concern for methods that
directly label total genomic DNA (i.e. full complexity): for every copy of target
sequence there are billions of bases on non-target sequence available for partial
hybridization. Longer probe sequences have greater specificity and capture more
labelled target than short sequences. For direct-labelled genomic DNA (e.g. ran-
dom prime labelled), oligonucleotides of 50–70 bp are typically used to reduce
non-specific hybridization. Several different technologies are currently employed
for on-chip synthesis including optical photochemistry (Affymetrix, Nimblegen),
‘inkjet’ printed chemistry (Agilent) and CMOS on-chip electrochemistry (Com-
bimatrix). Long-oligonucleotide aCGH has been validated for direct genomic
labelling and is broadly applied for cancer genomics studies (Barrett et al., 2004;
Brennan et al., 2004). On-chip synthesis allows flexibility of probe design, allow-
ing for tiling-resolution of unique genomic sequence or custom design of probesets
for specific biologic questions and applications such as chromatin immunoprecip-
itation, or ‘ChIP chip’. Most whole-genome CGH applications utilize pre-printed
standardized designs. To support user-specific array design, some manufactur-
ers provide a library of probes which the user can select from. Custom-designed
probes are readily printed as well, and careful probe design can improve probe
performance (Sharp et al., 2007). Figure 2.1 shows an example of tiling aCGH
of a glioblastoma tumour sample using a custom-designed tiling array of 43,000
probes spaced approximately 45 bp apart (excluding genomic repeat sequence).
Given the heterogeneity of probe %GC, probe lengths were adjusted between
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Fig. 2.1: High-density tiling array CGH of a narrow amplicon in a glioblastoma
sample (approximately 2 MB region shown). Probes are custom-designed long
oligonucleotides (45–60mer) based on unique genome assembly sequence. The
amplicon ‘signal’ allows for analysis of probe performance. (a) Top panel:
Probes within regions of apparently uniform copy number are differentially
shaped within this complex amplicon. Bottom panel: The same log2 ratio is
plotted as a function of log2 intensity in the reference channel: Cy3-labelled
pooled genomic reference DNA (diploid normal). As expected, probes with
the lowest reference channel intensity yield the noisiest estimates of copy num-
ber (insensitive hybridization) while the brightest-hybridizing probes show
compression of copy number signal (non-specific hybridization). (b) Probe
length is trimmed in order to offset variation in %GC of target sequence
and thus achieve uniform predicted Tm for the array. (c) Despite Tm cor-
rection, probes with the highest %GC content in this design tend to show
high-intensity hybridization and performance suggesting non-specific bind-
ing. Despite the best informatic design, probe optimization by experimental
hybridization is an important step in custom array design.

45–60 bp for uniformity of melting temperature (Fig. 2.1b). Log2 ratios are plot-
ted with differential colouring according to regions of common copy number.
Plotting log2 ratio as a function of reference channel intensity (cy3) reveals the
effect of non-specific hybridization in suppressing signal, most prominent in the
brighter-hybridizing probes. Despite adjusting probe length to favour uniform
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melting temperature, a residual effect of %GC on hybridization intensity is seen
(Fig. 2.1c). Because probe performance is difficult to predict informatically, a
round of experimental optimization is highly valuable – at minimum, discarding
highest and lowest intensity probes.

2.2.3 Representational methods

Increasing probe length is one way to ameliorate off-target hybridization. Non-
specific hybridization can also be addressed by reducing the complexity of
labelled DNA. One approach is to amplify specific target sequences prior to
hybridization. Whole Genome Sampling Assay (WGSA) and Representational
Oligonucleotide Microarray Analysis (ROMA) are two such approaches which
rely on restriction digest followed by linker ligation and PCR of smaller fragments
to enrich for defined target sequences (Kennedy et al., 2003; Lucito et al., 2003).
In both techniques, the target-enriched amplification product is hybridized to
in situ synthesized oligonucleotide arrays. In ROMA, reduced complexity DNA
is hybridized to 70mer probes, achieving high specificity of hybridization signal
(Lucito et al., 2003).

Reducing complexity allows for use of shorter probe lengths and greater
hybridization sensitivity to single-base-pair mismatch. This forms the basis of
WGSA as a method for SNP detection as well as copy number estimation as used
in the Affymetrix GeneChip platform (Bignell et al., 2004). This single-channel
hybridization provides information on total copy number and allelic balance.
One disadvantage of this approach is that coverage is dictated by restriction
sites. To improve coverage, separate chips may be designed for two or more
complementary enzymes. SNP-based profiling has been adapted to bead array
technology which favours uniform hybridization in moving liquid environment
(Illumina) (Engle et al., 2006). A newer technology, molecular inversion probes
or MIP, gains SNP specificity by employing a ligase reaction highly sensitive to
SNP mismatch (Wang et al., 2007). MIP arrays are currently being investigated
for their performance in calling allele-specific copy number. Representational
methods are somewhat limited by noise and artifacts introduced by processes of
restriction digest, ligation, and PCR. These artifacts must be carefully monitored
and data sets analysed for batch effects. Artifacts from representational arrays
may in some cases be reducible by platform-specific algorithmic approaches such
as ITALICS and GIM, designed for SNP arrays (Komura et al., 2006; Rigaill
et al., 2008).

2.2.4 Digital karyotyping and sequencing-based approaches

Digital karyotyping is a sequencing-based approach to estimate chromosomal
copy number (Wang et al., 2002). Short tags (21 bp) are derived using a tech-
nique similar to long SAGE, but starting with restriction-fragments of genomic
DNA instead of RNA. As in SAGE, tags are concatenated and sequenced. The
frequency of 21 bp tag sequences, when mappable to unique genomic sequence,
directly represents copy number. This approach can be modified to assess DNA



Choosing a platform 29

methylation (Hu et al., 2006). As with SAGE, digital karyotyping is limited in
sensitivity and resolution by the depth of sequencing, which can be expensive and
time-consuming. Massively parallel single-molecule sequencing technologies are
increasingly available and competition among platforms is helping reduce costs.
These ‘next generation’ sequencing technologies are just beginning to be applied
to the cancer genome (Campbell et al., 2008). It is reasonable to expect that
direct sequencing may complement or supplant array-based methods as expe-
rience accrues and costs come down. Next-generation platforms currently are
most efficient at generating large amounts of short sequences for which assembly
(unambiguous mapping) may be greatly aided by an independent measure of
copy number. Arrays are likely to remain valuable for high-quality profiling of
overall CNA at low cost.

2.3 Choosing a platform: array resolution and
practical considerations

As many of the above technologies are rapidly evolving, it is treacherous to gener-
alize about comparative performance and the reader is encouraged to consult the
most recent comparison studies (Greshock et al., 2007; Hehir-Kwa et al., 2007).
The choice of platform is dictated largely by experimental design and cost con-
siderations. One key decision is whether assaying CNA is the sole objective or
if allelic information is important as well. A second decision is what resolution
is experimentally required. Because the most prevalent cancer-related CNA is
regionally broad gain or loss, the majority of aberration in a tumour sample can
be measured by an array with low genomic resolution. Thus measuring global
CNA with high probe sensitivity and specificity can be done inexpensively with
BAC arrays. Higher genomic resolutions are required to identify narrow CNA
events and to resolve their boundaries. Narrow events are rarer but also more
informative for identifying cancer-relevant genes targeted by the CNA.

Genomic resolution of a platform is partly defined by probe density and
coverage of regions of interest for a particular experiment (e.g. genes vs. intra-
genic regions). In practice, actual resolution also depends greatly on a number
of factors which can be loosely classed as ‘signal’, ‘noise’, and ‘artifacts’.

A useful definition of ‘signal’ is the mean copy number (or log2 ratio) reported
by a large population of probes as a function of actual copy number. Factors that
affect this measure include average probe sensitivity, specificity and length, DNA
amount and labelling efficiency, and the dynamic range of the platform. When the
actual copy number (ground truth) is not known, signal may still be compared
across platforms. A comparison of signal between long-oligonucleotide array-
CGH (Agilent 244K) and short-oligonucleotide SNP/CNA array (Affymetrix 6.0)
is shown in Fig. 2.2 and reveals relative compression of log2 copy number for
high-level amplifications in SNP vs. long-oligonucleotide platform. In fact, long
oligo arrays also demonstrate signal compression when compared to ground truth
copy number determined cytogenetically (Greshock et al., 2007; Hehir-Kwa et al.,
2007).



30 Methods for DNA copy number derivations

–4

6

4

2

0

L
og

2 
(c

op
y 

nu
m

be
r)

–
1

sh
or

t o
lig

on
uc

le
ot

id
e 

SN
P/

C
N

A
 a

rr
ay

–2

–4

–2 0 2
Log2 ratio (tumour vs. normal)

long oligonucleotide CGH array

4 6

Fig. 2.2: Relative compression of signal (log2 copy number) compared between
two copy number platforms. CNA amplitudes were determined in the same
sample set of 84 glioblastoma samples (The Cancer Genome Atlas): 244K
long oligonucleotide array (Agilent, log2 ratio, tumour vs. normal) and short
oligonucleotide SNP/CNA array (Affymetrix SNP 6.0, log2 copy number/2).
Relative compression in the short oligo platform is evident for larger ampli-
tude amplifications and deletions (outside dotted lines). Signal compression
is present in all microarray-based approaches. Ideally, platform performance
should be compared to cytogenetically defined standards of absolute copy
number.

If ‘signal’ is defined as the mean of individual probe copy number esti-
mates across a uniform region, a practical definition of ‘noise’ should capture
the variance of these individual probe values across regions of uniform copy
number. Factors affecting ’noise’ include DNA amplification or representation
steps, imperfections in the array, hybridization uniformity, array imaging, and
also the variation in performance between individual probes. Platform noise can
be estimated by the standard deviation of probe values after subtracting the
regional mean, defined either by a moving window or by segmentation pro-
cedure. Alternatively, noise can be simply estimated by standard deviation of
the differences between log2 ratios of neighbouring probes (scaled by square
root of 2), since most neighbouring probes measure identical underlying copy
number.

Studies that directly compare platform performance may use a common set
of cell lines and regions of well-defined copy number (based on cytogenetics)
to establish the ground-truth CNA being measured. Probe performance can be
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characterized by a signal-to-noise model or by analyses of detection power such as
receiver operating characteristic (ROC) curves (Greshock et al., 2007; Hehir-Kwa
et al., 2007).

Noise can be greatly reduced by averaging copy number estimates from neigh-
bouring probes within a region of uniform CNA. Therefore a natural definition
of practical array resolution can be phrased as the number of probes which must
be averaged together to achieve a fixed sensitivity and specificity for detection of
a fixed copy number change (such as single copy loss or gain), times the median
genomic interval between probes. An example of such an analysis is shown in
Fig. 2.3. In this example, a single tumour sample is hybridized against two long
oligo CGH arrays with 42,500 and 231,000 mapped features, designated ‘44K’
and ‘244K’ arrays, respectively. ROC curves are plotted for detection of two-fold
copy number change between chr1 and chrX. A specificity of 99% is chosen arbi-
trarily, understanding that higher specificity would be needed for single probe
calls on a large array to avoid excessive false positives. ROC curves are plotted
for raw log2 ratios as well as increasing numbers of averaged probes. The per-
probe sensitivity for this test is 64% for the 44K array and 93% for the 244K. To
achieve a sensitivity of >98%, four probes must be averaged from the 44K array
versus two probes for the 244K platform. Giving median interprobe intervals of
37.6kb and 9.7kb, respectively, the 44K and 244K arrays have a practical reso-
lution of approximately 150kb and 19kb for two-fold gain. Actual comparison of
platform resolution must be made with multiple samples, preferably with repli-
cates. Such performance-based measures are an important factor in choosing
between platforms, though it should also be recognized that platform perfor-
mance can vary greatly between different samples, core facilities, and even days
the hybridizations are performed.

2.4 Segmentation

Fundamental to the analysis of copy number data is the underlying model of
chromosomal aberration: that copy number is uniform over a genomic region
and then jumps abruptly at transition points. A set of probes hybridizing to
genomic targets within a span of uniform copy number is essentially redundant
and their individual estimates can be combined to reduce noise. Segmentation
or changepoint algorithms apply such models to the raw data in order to localize
and quantify CNAs and their transition boundaries. Segmentation allows greater
resolution of CNA events that span several probes and reduces false positives,
albeit at the cost of false negative calls for extremely narrow events. A diversity
of algorithms has been developed and applied to copy number data. The mov-
ing average or median filter is a simple approach to combining individual probe
estimates and can be coupled to thresholding to determine boundaries of CNA,
albeit inexactly. Circular Binary Segmentation (CBS) is a changepoint detection
technique which attempts to find boundaries around a uniform distribution of
probe values by maximum likelihood and permutation-based significance testing
(R package ‘DNAcopy’) (Olshen et al., 2004; Venkatraman and Olshen, 2007).
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Fig. 2.3: Receiver Operating Characteristic (ROC) analysis with n-neighbour
averaging of probe log2 ratios: a systematic approach to defining and com-
paring useful platform resolution. (a) Example comparative profiles of same
tumour DNA sample on two long oligonucleotide array-CGH platforms of
differing resolution: ∼44K probes (top) vs. ∼244K (bottom). (b) Zoom-in of
chromosome 7, 52–57MB. Increased coverage is apparent when the profile is
inspected closely. EGFR gene boundaries marked by vertical lines. (c) ROC
analysis for 44K and 244K platforms detecting single-copy loss vs. euploidy,
for various windows of n-neighbour probe averaging. Insert figures show data
sampled from the profiles in (a), from regions of single copy loss and diploidy,
after averaging n-nearest neighbouring probes. Reduction in noise with aver-
aging approximates the square root law. Threshold is shown for 99% detection
specificity (dashed lines). For 44K data, raw log2 ratios show only ∼60%
sensitivity for detecting single copy loss. Sensitivity is increased to 98% if
four probes are averaged, though at the direct cost of genomic resolution. In
this example, the 244K array has better baseline performance with raw log2
ratios showing ∼93% sensitivity at 99% specificity. Averaging two neighbour-
ing probes suffices to achieve >98% sensitivity. Note that for an array with
250,000 spots, a specificity as high as 99% still predicts 2500 false positive
events reported.
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Examples of other approaches (many available as downloadable packages) are
those based on hidden Markov models (Marioni et al., 2006; Stjernqvist et al.,
2007), clustering (Wang et al., 2005; Xing et al., 2007), adaptive weights smooth-
ing (Hupe et al., 2004), and Wavelet fitting (Hsu et al., 2005). Evaluating the
performance of these algorithms is problematic since differences in platform noise
and resolution, sample type and labelling artifacts can vary considerably. Exten-
sive cross-platform comparisons are lacking and more importantly, ‘ground truth’
of chromosomal aberrations is typically unknown even for exemplary samples,
particularly at finer scales. Lai and colleagues have directly compared the per-
formance of eleven different algorithms for localizing CNA using aCGH data
(Lai et al., 2005). In this comparison, the segmentation-based methods CBS
and CGHseg (Picard et al., 2005) performed well throughout a range of signal-
to-noise. This same group has made their comparative analysis available as a
web-based tool, CGHweb, which allows users to upload their own data to directly
compare the results of a panel of segmentation algorithms (Lai et al., 2008).

If it seems that there is an excess of methods for segmenting CGH data, it is
worth remembering that their performance differs most in the detection of narrow
events and their sensitivity to noise and artifacts in the data. One algorithm
may call an event real that another rejects as spurious. Because researchers
may be quick to invest time and resources pursuing functional studies for genes
that appear to be targeted by narrow events, it is imperative to understand the
performance of segmentation approaches in this domain. For all segmentation
approaches it can be particularly useful to have an idea of the confidence with
which a CNA has been detected and also an error range or distribution associated
with localizing each boundary. Some algorithms, such as CBS, include these
confidence and error scores, which are useful for prioritizing loci and resolving
discrepancies between experiments and across platforms.

2.4.1 Artifacts

Noise that varies independently across probes can be addressed by averaging and
by the automated segmentation methods described in the next section. However,
when a source of noise affects two or more adjacent probes coordinately it is often
not possible to distinguish from real CNA. The presence of genomic regional arti-
facts in a copy number profile is therefore a particularly insidious problem, and
the nature of artifacts for any platform should be well-understood before pro-
files are analysed for copy number aberration. There are several possible sources
of artifact. Uneven genomic fragmentation, fragment labelling, genome ampli-
fication, or PCR can introduce fluctuations in the profile which are regionally
correlated and which may suggest actual CNA. An example of a genomic regional
artifact is shown in Fig. 2.4. The profile shows waves embedded in the log2 ratio
which are mistakenly identified as regional CNA by segmentation. This artifact
is correlated with mean %GC calculated by a 20KB moving window across the
genome. The artifact is also correlated with 2KB and 50KB window moving aver-
ages. This form of artifact has been seen in copy number data sets from both
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Fig. 2.4: Genomic regional artifacts are can potentially be mistaken for real
CNA. An example of an aCGH profile which is nearly entirely artifactual is
shown (top). The ‘waves’ in log2 ratio are suggestive of complex CNA but are
in fact highly correlated with genomic %GC averaged in windows of 2–50KB
around probe locations. These artifacts can arise from a variety of sources,
and can be detected by correlation with genomic %GC models during data
QC. Multidimensional loess, described in the text, can significantly reduce
this form of artifact.

aCGH and SNP-based platforms. In practice, we measure the artifact amplitude
(covariance with %GC models) as part of QC and apply multidimensional loess
to reduce the amplitude in the raw log2 ratios before segmentation.

2.5 Aberration types

2.5.1 Regional and focal aberrations

While there is no standard nomenclature for CNA in the literature, there is a
common convention of naming CNA by degree which is followed in this chap-
ter: ‘homozygous deletion’ or simply ‘deletion’ refers to complete deletion of a
chromosomal region; ‘heterozygous deletion’ or ‘loss’ refers to loss of one copy
out of two; ‘gain’ typically refers to the addition of one or two extra copies;
and ‘amplification’ is reserved for copy numbers >4. The distinction between
low-level gain/loss and higher-impact amplification/deletion extends beyond the
number of copies counted and reflects an important aspect of CNA in cancer: gain
and loss are common and most often involve extended regions (>10MB) whereas
amplifications and homozygous deletions are typically rarer and more focal.
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Fig. 2.5: Typical relationship of CNA amplitude to CNA width in an aCGH
profiling data set. DNA from 84 glioblastoma tumours and matching normal
DNA from blood were hybridized separately against a pooled genomic DNA
reference. Raw log2 ratios were processed by Circular Binary Segmentation.
(a) 2-D histogram of the absolute values of mean log2 ratios after segmenta-
tion, plotted as a function of segment width, in 84 GBM tumour profiles. Most
segments are long and near zero log2 ratio (euploid). Low amplitude gain/loss
events (|log2 ratio| <1, horizontal dashed lines) account for a majority of CNA
and are typically broad (>1MB, vertical line). High amplitude amplifications
and deletions (|log2 ratio| >1) tend to be focal (<1MB). (b) Matching normal
DNA (blood) from the same patients shows a substantial number of narrow
segments with non-diploid copy number. Some of these events appear to be
artifactual, a result of trends in log2 ratio aberrantly identified as CNA (see
Fig. 4). The majority, however, map either to known regions of copy number
variation in the general population or to genomic regions variably deleted dur-
ing immune globulin and receptor rearrangement in leukocytes. The latter are
exposed when hybridizing blood-derived DNA to pooled genomic reference
DNA derived from non-blood tissues or placenta.

Figure 2.5 shows a typical distribution of CNA widths and amplitudes for
a set of 84 glioblastoma tumour samples and their matched normals, each
hybridized against a common pooled genomic DNA reference (The Cancer
Genome Atlas Research Network, 2008). The log2 ratio copy number profiles
have been processed by Circular Binary Segmentation to identify spans of uni-
form copy number. Regional gain and loss (|log2 ratio| between ∼0.2 and 1.0) are
prevalent and include many long segments, mean width 8MB. Among tumours,
7.5% of the CNA events are amplifications and deletions (|log2 ratio| > 1.0) and
nearly all are narrow (<1MB). These focal events span an average of 400KB
and include 3–4 genes on average. In this example, 660 genes and miRNAs are
within such amplified or deleted regions. Some of these genes are focally targeted
in multiple tumours: 144 genes are altered in more than 5% of the tumours and
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the top gene, amplified in 58% of GBM samples, is the tyrosine kinase recep-
tor EGFR. The most recurrent deleted gene is the Ink4a/ARF locus (38%).
Figure 2.5(b) shows the same analysis run on the 84 matching normal DNA
samples against the same reference DNA. Note that many narrow events are
found in the blood-derived DNA and these are mostly accounted for by a com-
bination of copy number polymorphisms in the general population as well as
genomic regions commonly deleted in leukocyte pools, such and immunoglobulin
and immune receptor subunits.

2.5.2 Copy number variation

Analysis of the human genome has revealed a surprising degree of copy num-
ber variation between individuals (CNV) (Sebat et al., 2004; Redon et al., 2006;
Freeman et al., 2006). CNV regions represent spans of the genome sequence that
are variably present or variably duplicated in the genome among individuals.
It has been estimated that as much as 12% of the human genome is present
in variable copy number (Carter 2007). Compared to SNP, CNV prevalence in
the general population is poorly characterized. Comparative analysis of genome
assemblies or sequence shows CNV may be associated with genomic rearrange-
ments and represent one of a diversity of classes and scales of variation in the
genome (Khaja et al., 2006; Sharp et al., 2005). Based on sequence homology,
a CNV region may not have discrete, well-defined endpoints in the genome.
Current studies of population CNV report the location of probes or markers
which were differential in copy number between individuals, and the reported
‘boundaries’ of the CNV are inferred inexactly from probe/marker positions.
Therefore CNV databases that compile reported events are currently incom-
plete and with inexact boundaries; they should be used with caution. With
those caveats noted, compiled databases of reported CNV, such as the Database
of Genomic Variants (http://projects.tcag.ca/variation/), can be a useful refer-
ence for approximate positions of common polymorphisms found in the general
population so far (Iafrate et al., 2004).

Fine-mapping of CNV breakpoints can be accomplished by sequencing and
it is expected that a more complete database of variation in the human genome
will follow the growth of large-scale genomic sequencing projects with ‘next
generation’ sequencing technologies (Korbel et al., 2007).

An understanding of CNV is critical to interpreting copy number data in
cancer profiling. Because they are both recurrent across samples and focal, unrec-
ognized germline CNV may masquerade as attractive copy number aberrations.
Ideally, experimental design will include correction for germline CNV by pro-
filing patient-matched germline DNA separately or as a reference in two-colour
hybridizations. As demonstrated in Fig. 2.1, it should be noted that DNA derived
from blood inexactly matches germline DNA due to heterogeneous functional
deletions in immune receptor and immunoglobulin loci among leukocytes. In
experiments where matched normal is not available, one can expect a significant
number of CNVs to be evident in the copy number profile. CNAs that match

http://projects.tcag.ca/variation/
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known locations of copy number polymorphism in the general population are
likely to be germline events. However, the possibility of somatically acquired
aberration in a region of known CNV must be considered. A recent report of
differential copy number between identical twins supports the view that rear-
rangements leading to CNV are perhaps common (Bruder et al., 2008). Finally,
CNVs are associated with altered expression and CNVs found overrepresented
in a cancer data set may include susceptibility loci (Stranger et al., 2007).

2.5.3 Regional/broad CNA

As exemplified in Fig. 2.5, broad regions of gain and loss are the most com-
mon form of CNA found in cancer profiling data sets. Gain and loss often
involve entire chromosomes or chromosomal arms. The pattern of gain and loss
is typically tumour-type specific, forming patterns familiar to the cytogeneticist.
The tumour-specific pattern may represent clonal selection of an advantageous
gene dosage alteration generated by background genomic instability and spread
over thousands of genes. The gain/loss patterns may also indicate molecularly
defined tumour subclasses (Carrasco et al., 2006; Maher et al., 2006). The broadly
distributed nature of gain and loss often frustrates efforts to determine the under-
lying biological cause. For example, glioblastoma shows a high incidence of gain
of the whole of chromosome 7. Presumably tumour cells with this pattern have
a growth advantage conferred by increased dosage of at least one gene, but hun-
dreds of genes on the chromosome may be equally implicated. Integration of
other data sets such as expression profiling, epigenetic, mutation, or functional
genomic assays can be useful to further narrow the list of candidate targets
(Tonon et al., 2005). Through such an integrated analysis, one study has found
evidence that chromosome 7 gain in glioblastoma may in some cases be driven
by the effects of simultaneous gain of the MET tyrosine kinase receptor and its
ligand, HGF, which both reside on 7 (Beroukhim et al., 2007).

2.5.4 Focal CNA

It is perhaps obvious that copy number aberrations which are focal are the
most tractable for identifying the candidate genes, miRNAs or other genetic
elements being targeted. Current microarray technologies based on hundreds of
thousands of probes can readily detect CNA spanning a single gene or even a
region internal to the gene. A properly vetted list of focal CNAs culled from
cancer genome profiling can directly drive validation experiments, and there are
numerous examples of oncogenes and tumour suppressors being identified from
this starting point. However, the researcher is advised to move cautiously. First,
a single CNA event can often show complex composition which defies simple
estimation of the width of the event and the portion of the genome targeted.
Figure 2.6 highlights a diversity of CNA morphologies which must be considered.
Four aCGH profiles of glioblastoma are shown from the TCGA data set (The
Cancer Genome Atlas Network, 2008), with a second panel highlighting region
12q14-15. The first profile has a split chr12 amplicon spanning 67.0–67.6MB
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Fig. 2.6: Array-CGH of four glioblastoma tumours selected to demonstrate
increasing complexity of CNA on chromosome 12. Raw log2 ratios (black dots)
and segmentation results (black lines) are shown for the whole genome (a) and
for a chr12 region harbouring several proto-oncogenes including CDK4 and
MDM2 (b, gene positions marked). In the first profile, a single narrow
complex amplicon targets four genes, including MDM2. Subsequent profiles
demonstrate greater disruption and complexity with additional plausible tar-
gets such as CDK4. These complex amplicons are likely physically joined
in double-minute chromosome fragments though they appear discontiguous
when plotted by genomic position. Analytical approaches to summarizing
CNA across samples must contend with a wide range of CNA topographies
and correlations of CNA events which may map to discontiguous genomic
regions.

with internal deletion 67.2–67.47MB. Such narrow split amplicons are likely to
be physically joined (in this case in a double-minute chromosome fragment)
with the internal deletion as a result of recombination. This paired amplicon
spans four genes including MDM2, a direct inactivator of p53 and plausible
target of the amplicon. The second profile shows a more complex picture with
two main amplicons, each showing multiple internal copy number transitions.
Again, it is likely that these amplicons both reside on a common chromosomal
fragment. Should these be considered a single linked event targeting all genes
spanned by the pair, two independent complex events, or multiple independent
events of differing amplitudes? The third and fourth profiles show further degrees
of complexity, with the latter showing extensive rearrangement of the entire
chromosome.

Even for simple topographies, focal CNA candidates must be carefully vetted
before inferring biological significance. As described above, focal CNA is read-
ily mimicked by germline copy number variation. Experiments should include
analysis of matched normal DNA and lists of focal CNA should be compared
to databases of known CNV. CNA may also be mimicked by systematic array
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artifacts and genomic labelling artifacts described previously. Finally, as with
point mutations, some focal CNA may point to cancer-relevant genes while oth-
ers are random ‘passenger’ events: aberrations which are clonally propagated but
do not themselves confer a growth advantage.

2.6 Assigning significance to CNA

Gene resequencing studies in cancer have led to the development of statistical
methods for determining ‘driver’ SNP mutations from a background of ‘passen-
ger’ events (Greenman et al., 2007; Wood et al., 2007). These methods rely on a
background model for passenger point mutation, derived in part from the preva-
lence of silent or synonymous SNPs of various forms. Can a similar approach be
used to define driver CNA mutations? This is complicated for at least three rea-
sons: (1) there is no realistic model for the background process of CNA in cancer;
(2) unlike SNP mutation, CNA covers many genes, is highly spatially correlated,
often with complex topography; and (3) there is no CNA equivalent to synony-
mous events; no systematic methods to assign potential biological significance to
CNA. Several approaches have been proposed, largely based on measuring ampli-
tude, focality and recurrence of CNAs overlapping across samples, testing against
a null model to attempt to distinguish driver events. The methods differ primarily
in what assumptions are made in defining CNAs, determining overlap across data
sets and modelling the background CNA rate typically by non-parametric meth-
ods. As highlighted in Fig. 2.6, the topography of CNA presents a vastly more
complex problem determining driver CNA events compared to point mutations.
Three approaches will be described here.

‘Significance Testing for Aberrant Copy-Number’ (STAC) analyses regions
of aberration defined by reducing continuous copy number data to discrete calls
of ‘aberrant’ and ‘normal’ (done for gains and losses separately) (Diskin et al.,
2006). ‘Stacks’ of aberrations that overlap recurrently across samples are then
analysed to generate two statistics for each point in the genome: frequency-based
and footprint-based. A frequency score is computed for each genomic region
essentially as the count of samples which have aberration at each point. This
score is tested for significance based on positional permutation of aberration
regions in the data, yielding a frequency-based p-value, Pfr. The frequency score
does not consider the width of the aberrations and so does not distinguish focal
from broad events. A complementary ‘footprint’ p-value is designed to address
this by considering the width (footprint) of sets of aberrations that are over-
lapping across samples and computing a likelihood based on a null model. The
computation is complicated by the need to consider all combinations of overlap-
ping aberrations which span a genomic position. If five samples have aberrations
spanning a particular position, footprint scores must be considered for the com-
plete set as well as each possible combination of two, three, and four samples. The
result is a p-value for the best footprint seen (narrowest overlap among largest
subset of samples). An optimization strategy is employed to tame the computa-
tion which is otherwise exponential with sample size. The two p-values, Pfr and
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Pfp, can be used to survey the genome for loci of recurrent and focal aberra-
tions. The amplitude of CNA is not considered by the original STAC approach,
other than by initial thresholds used to define ‘aberration’. The authors have
extended their approach to consider a range of thresholds, including appropri-
ate correction for multiple testing (Guttman et al., 2007). This Multiple Sample
Analysis (MSA) algorithm allows for automatic selection of thresholds which
best capture signal-to-noise in each genomic region separately – reflecting an
important aspect of CNA which is often distributed unevenly across chromoso-
mal regions. MSA has significantly increased computational time compared to
STAC. The authors determine performance using a simulated data model that is
also publically available. One limitation of STAC/MSA is that all non-contiguous
CNA regions within a profile are treated as independent events, whereas physical
linkage of genomically discontinuous CNA, as seen in Fig. 2.6, is common.

A second approach, Genomic Identification of Significant Targets in Can-
cer (GISTIC), analyses a set of copy number profiles to compute a score (‘G
score’) for each genomic region: essentially the sum of the log2 ratios for sam-
ples which show aberration, considering gains and losses separately (Beroukhim
et al., 2007). The G scores are compared to the distribution seen with posi-
tional permutation (within chromosome or chromosomal arm) and significantly
altered regions are identified. GISTIC then applies some additional heuristics
aimed at better-resolving regions that are independently targeted by CNA. First,
significant regions are recalculated with a leave-one-out strategy to generate con-
servative boundaries. For each chromosomal arm, the most significantly altered
(peak) region is noted. G scores are then recalculated after leaving out all samples
that showed CNA in the peak region, and the next peak region is identified. This
‘peel off’ strategy is repeated until no significant peaks remain. Unlike STAC,
GISTIC does not model CNA focality explicitly, though ‘focal’ vs. ‘broad’ events
are distinguished based on their width relative to the chromosomal arm length
and are analysed in separate runs.

The p- and q-values returned by STAC and GISTIC are based on models of
background CNA derived from permutation and sampling of the cancer profile
data set. The resulting statistics are generally quite conservative, and poten-
tially informative CNAs are missed if they fall below the significance thresholds
for recurrence. For example, in a set of 205 glioblastoma tumour profiles from the
TCGA, the p53 tumour suppressor is found focally deleted in only one sample.
While the single event is not statistically significant alone, integration of addi-
tional data (namely LOH and expression) readily identifies p53 as a candidate
target of frequent silencing in GBM. In order to identify such informative rare
events we have developed an approach, Genome Topography Survey (GTS),
which scores three essential features of CNA across a data set of CNA pro-
files: frequency, amplitude, and focality (Wiedemeyer et al., 2008). GTS assigns
two scores for each genomic position: Aberration Recurrence Index (ARI) and
Aberration Focality Index (AFI). ARI is essentially identical to the GISTIC G
score above, and captures the frequency and amplitude of CNA across samples.
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ARI for gain events is calculated as the sum of the log2 ratios of all samples
gained at the genomic position (a separate score is calculated for loss events).
Amplitude and recurrence are combined: high score at a particular position may
arise from summing many samples with moderate CNA amplitude at that loca-
tion or few samples with high amplitude CNA. Note that as with GISTIC’s G
score and STAC’s Pfr, high ARI values provide no information about how often
CNA was seen focally targeting the region. For this reason, the complementary
Aberration Focality Index (AFI) is derived by considering the widths of the
overlapping CNA events, and applying a model for linkage which accounts for
complex CNAs such as shown in Fig. 2.6. AFI represents what proportion of
the ARI score is distributed across potential target genes or other genetic ele-
ments in the region. As with ARI, AFI is calculated for each genomic position,
separately for gained and lost sample subsets. Focality is determined by one of
three models for potential linkage of CNA across the profile: local linkage treats
each group of adjacent gained (or lost) segments as part of a discrete amplicon
(or deletion) implying a set of target genetic elements spanned by the adja-
cent segments; chromosome linkage considers that non-adjacent CNAs within
the same chromosome represent a single amplicon (or deletion) with a shared set
of targets; genome linkage treats all CNA as if it potentially belongs to a single
complex rearrangement. Genome linkage is the most conservative model, though
not likely to be biologically accurate in most cases. Local linkage may overreport
focality for complex CNA. Chromosomal linkage is a compromise which appears
to best capture the kind of intrachromosomal rearrangement shown in Fig. 2.6.
The method for calculating focality is shown schematically in Fig. 2.7 and is
described as follows:

For each segment Si=1..Ntotal in a CNA profile of Ntotal segments:

Smean
i = mean log2 ratio for segment i

Selements
i = number of genomic elements spanned by segment genomic

start/end (or 1 if no elements are spanned).

Groups of linked segments, SG1 , SG2 , etc., are determined by the linkage model:

Genome linkage: one group, SG, comprised of all gained (or lost)
segments;

Chromosome linkage: 24 groups, SG1..24 , of all gained (or lost) segments per
chromosome;

Local linkage: M groups, SG1..M
, of contiguous gained (or lost)

segments bounded by non-gained segments or
chromosomal ends.

Then for each group of segments, SGn
, the N segments are ordered (1 < i < N)

by increasing |Smean
i |. The segment focality-weighted mean, fwMean, is then
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Fig. 2.7: Calculation of aberration focality weighting by GTS algorithm. The
goal is to reweight CNA events by their width, measured by the number of
genetic elements (genes, miRNAs, etc.) or base pairs spanned by the event.
(a) Example glioblastoma CNA profile from chr12 is shown with log2 ratio
(grey points) and segmentation (black lines). Two amplicons are seen (open
arrows), each associated with neighbouring regions of loss. The amplicon at
56MB is complex, with three segmented subregions. (b) Schematic of the
same aCHG profile showing calculation of focality-weighted segment means
by the chromosomal linkage model. In this conservative model, genomically
discontiguous events on the same chromosome are considered part of the same
physical CNA. For each amplified segment, the mean log2 ratio is determined
as well as the count of genes spanned (grey lines, numbers). The segments are
then joined and ordered by ascending amplitude. For each rising plateau of
log2 ratio, the step increase is divided by the total genes spanned at-or-above
that level. The segments are assigned weights based on the cumulative sum
of the ratios. Aberration Focality Index (AFI) is then computed by summing
these reweighted segment values at each genomic position across a set of the
sample (further described in the text). Focality weighting can be based on
the number of genetic elements spanned by CNA, as in this example, or by
the genomic length in base-pairs. (c) Calculation by local linkage model con-
siders the two amplicons to be independently targeting two separate regions.
Compared to chromosomal linkage in (b), both amplicons are assigned higher
focality weights.
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calculated for each segment in the group by:

SfwMean
i =

(
Smean

i − Smean
i−1

)
∑N

j=i S
elements
j

+
i−1∑
k=1

SfwMean
k .

After all profiles have been analysed, focality-weighted ARI (fwARI) is calculated
as for ARI, but using the SfwMean of each segment instead of mean log2 ratio,
Smean. Then AFI = fwARI/ARI.

The two scores, ARI and AFI, can be combined to rank genomic regions by
the degree to which they are targeted by focal, recurrent, and high-amplitude
CNAs. These scores can also be compared to the distribution of scores obtained
after positional permutation of the data set. However, the primary goal of GTS
is to identify discrete genomic regions worthy of further investigation, either by
integration of additional genomic, bioinformatic, or functional data. Results for
GTS analysis of glioma copy number profiling are shown in Fig. 2.8. Validation is
suggested by the high GTS ranking of both known glioma-relevant cancer genes
and several tumour suppressors not previously implicated in glioma, and since
functionally validated: p18/CDKN2C, PTPRD and NF1 (Wiedemeyer et al.,
2008; Solomon et al., 2008; The Cancer Genome Atlas Network, 2008).

GTS scoring is reproducible across copy number microarray platforms. In the
preliminary analysis of the TCGA data set for glioblastoma, genes and miRNAs
were ranked by GTS scores derived from a common set of 139 tumours analysed
by array-CGH (Agilent 244K Whole Genome CGH Array) and SNP platforms
(Affymetrix SNP 6.0). Regions of known or suspected copy number variation
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Fig. 2.8: GTS multi-sample analysis of glioblastoma aCGH profiles reveals focal
and recurrent CNA targeting oncogenes and tumour suppressors known to
be implicated in GBM, as well as new genes not previously identified as
targets of deletion in GBM such as tumour suppressors CDKN2C, NF1 and
PTPRD. GTS ARI score is shown plotted in grey, calculated separately for
gains and losses (assigned positive an negative sign, respectively). Black slices
mark regions of highest AFI score (top 5%ile). Peaks in ARI which are also
focally targeted (high AFI) are enriched for cancer-relevant genes. GTS is
one strategy for multi-sample copy number analysis described in the text.
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(CNV) were excluded. The 200 genes with top-ranked GTS scores in the aCGH
data set were compared to the GTS rankings derived from the SNP data set. For
amplifications, 78% of the top 200 aCGH-identified genes were ranked within the
top 400 SNP-identified genes. For deletions, the comparable overlap was 63%.
Among the top 200 altered genes are nearly all oncogenes and tumour suppressors
known to be implicated in glioma. Overall enrichment for cancer-relevant genes
was assessed by Fisher’s exact test, considering the subset of genes from the
Cancer Gene Census which did not reside in regions of known or suspected
CNV. There was significant overrepresentation of cancer relevant genes in these
focally altered gene sets, as assessed by comparison with the Cancer Gene Census
list (Futreal et al., 2004), both for amplified (odds ratio 7.34, p < 0.00001) and
deleted genes (odds ratio 3.5, p = 0.01).

2.7 Breakpoints/translocations

For genomic DNA in the cell nucleus, naked double-strand breaks are unsta-
ble and subject to non-homologous end joining (NHEJ) (Ferguson et al., 2000).
Transitions in copy number (say from a region of two copies to three copies)
imply either a double-strand break with NHEJ or a homology-based recombina-
tion. That is, virtually all copy number transitions (CNT) are associated with
novel DNA junctions. The converse is true only for unbalanced events. Most junc-
tions will be between non-coding regions or will produce an out-of-frame coding
sequence that will not yield a functional fusion transcript. However, in some
cases CNT may mark unbalanced translocations associated with promoter swap
or functional gene fusion as seen with TMPRSS-ERG (Hermans et al., 2006; Liu
et al., 2007). Gene fusions may also be associated with intrachromosomal dele-
tions, such as seen with FIP1L1-PDGFRA fusion in hypereosinophilic syndrome
(Cools et al., 2003). Copy-number data can be used to assay for unbalanced
rearrangements associated with gene fusion and translocation in this fashion.
Figure 2.9(a) demonstrates aCGH detection of single-copy and homozygous 5′

gene end deletions associated with known TK gene fusions FIP1L1-PDGFRA
and FIG-ROS1, respectively. Using this approach, we have identified several novel
TK gene fusions in glioblastoma including a dual fusion of two TK genes: KDR
and PDGFRA (Fig. 2.9(b)). The copy number profile is inspected to identify
transitions taking place within genes. While some of these events are associated
with fusions, most represent chance events. This is understood by considering
that approximately 25% of the genome is exonic or intronic and therefore the
chance of a random CNT being intragenic is equally high. In order to distin-
guish events occurring more frequently than by chance, a statistical model can
be employed based on the gene size and background distribution of CNTs. We
have developed an R package to perform this ranking of intragenic CNT in seg-
mented copy number data (iCNA, http://cbio.mskcc.org/brennan). Access to
exon-level expression data on the same samples can help discriminate intragenic
CNA events that lead to actual altered transcripts. An example of this coordinate
analysis is shown in Fig. 2.10.

http://cbio.mskcc.org/brennan
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Fig. 2.10: Integration of high-resolution copy number profiling and exon expres-
sion enables detection of intragenic rearrangements which lead to altered
transcripts. Amplification of the MET tyrosine appears to exclude the native
promoter and first exon. Elevated exon expression is noted for this sample
(black dots) versus other GBM samples (grey), except for the first exon which
shows low expression. Similarly, differential expression of 5′ and 3′ exons is
seen in NUP107 which aligns with an intragenic copy number transition.

2.8 Clustering approaches

Copy number data can be analysed with supervised and unsupervised clustering
methods. However, copy number data has essential differences when compared
with expression data and these must be taken into account when planning and
interpreting cluster analysis.

One fundamental difference is that most copy number alteration is low-level
gain and loss, and the gene copy ‘signal’ driving clustering is of low amplitude
compared to gene expression data, in which transcript copies can vary over sev-
eral orders of magnitude. Artifacts such as those related to genomic labelling,
uneven WGA or PCR, can comprise a significant portion of the overall vari-
ance of a copy number profile and may dominate clustering, particularly for
correlation-based metrics. Euclidean or other distance metrics may be less sus-
ceptible. Principal component analysis (PCA) may be useful to isolate artifactual
components and remove them from the data. Segmentation is often critical to
perform prior to clustering to reduce artifacts. A second fundamental difference
between CNA and expression data is that virtually all CNA events are regional –
most probes are redundantly measuring the same copy number in each sample
as their neighbouring probes in the genome. Thus there are multiple reasonable
approaches to assigning weights to features in clustering – one is not restricted
to clustering a full length vector representing CNA estimates at the platform
probe locations. A third difference lies in the interpretation of the data: genomic
gains and losses are biologically distinct events, not simply ‘more or less’ gene
copies. In fact, it is not clear if a 10-copy focal amplicon seen in one sample
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is biologically different from a 50-copy amplicon of the same region in another
sample: both are evidence of selective targeting of the genes spanned, and both
are thought to be biologically significant compared to the euploid two-copy state.

We have developed an approach to clustering with non-negative matrix fac-
torization which attempts to address these differences (Carrasco et al., 2006;
Maher et al., 2006). The data are first made non-negative by replacing each probe
log2 ratio estimate Vn with a pair of variables (V g

n , V
l
n) where V g

n = max(0, Vn)
and V l

n = max(0,−Vn). This effectively doubles the length of the profile and
separates loss events from gain events as distinct non-exclusive features for clus-
tering. To address the redundancy of most probes, the data may optionally be
dimension-reduced by selecting the subset of genomic locations with uniform
copy number across all samples. Clustering is performed by non-negative matrix
factorization (Brunet et al., 2004). Like PCA, NMF is a matrix decomposition
which is designed to return components which account for decreasing variance in
the data. However, NMF components are constrained by requiring only positive
features (non-negative) rather than the constraint of orthogonality in PCA. It
is reasonable to interpret CNA events, whether deletions or amplifications, as
distinct positive features. Compared to K-means, PCA and hierarchical cluster-
ing, we have found NMF to return components and cluster assignments which
are more readily interpretable and better correlate with clinical and pathologi-
cal parameters. Figure 2.11 shows the results of NMF in a data set of multiple
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Fig. 2.11: Genomic non-negative matrix factorization (gNMF) applied to a mul-
tiple myeloma aCGH dataset (Carrasco et al., 2006). gNMF is a method of
data reduction and unsupervised clustering designed for copy number data
(Brunet et al., 2004; Maher et al., 2006). Shown are consensus matrices for
1000 iterations of gNMF: grayscale denotes percent of iterations in which sam-
ples pairs were assigned to the same clusters: white marks sample pairs always
assigned to the same classes while black marks sample pairs always assigned
to different classes. In this study, a two-, three- and four-way classifications
are stable and fit the data well, measured by cophenetic correlation.
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myeloma, finding evidence for division of tumours into three-way and four-way
subclasses. These subclasses, defined by NMF components harbouring specific
features in the copy number profile, were found to have prognostic significance
(Carrasco et al., 2006).

2.9 Conclusion

Technologies for assessing chromosomal copy number continue to rapidly evolve,
as do the methods for analysing this form of genomic profiling data. Many of
the complexities in analysis transcend platform considerations and are likely to
be relevant even if copy number is ultimately assessed by direct sequencing of
cancer genomes. Understanding copy number variation and artifacts is critical
to interpreting cancer genome profiling. Gene rearrangements such as translo-
cations, fusions, and intragenic deletions are increasingly evident as resolutions
improve. Systematic approaches to identifying CNA recurrence across a sample
set, whether focused on broad events, focal events or intragenic aberrations, can
greatly simplify a complex cancer genome, yielding a prioritized set of regions
for further investigation.

References

Barrett, M. T., et al. (2004), Comparative genomic hybridization using oligonu-
cleotide microarrays and total genomic DNA, Proc. Natl. Acad. Sci. USA,
101(51), 17765–70.

Bejjani, B. A. and Shaffer, L. G. (2006). Application of array-based comparative
genomic hybridization to clinical diagnostics, J. Mol. Diagn., 8(5), 528–33.

Beroukhim, R., et al. (2007), Assessing the significance of chromosomal aberra-
tions in cancer: methodology and application to glioma, Proc. Natl. Acad.
Sci. USA, 104(50), 20007–12.

Bignell, G. R., et al. (2004), High-resolution analysis of DNA copy number using
oligonucleotide microarrays, Genome Res., 14(2), 287–95.

Brennan, C., et al. (2004), High-resolution global profiling of genomic alterations
with long oligonucleotide microarray, Cancer Res., 64(14), 4744–8.

Bruder, C. E., et al. (2008), Phenotypically concordant and discordant monozy-
gotic twins display different DNA copy-number-variation profiles, Am. J.
Hum. Genet., 82(3), 763–71.

Brunet, J. P., et al. (2004), Metagenes and molecular pattern discovery using
matrix factorization, Proc. Natl. Acad. Sci. USA, 101(12), 4164–9.

Campbell, P. J., et al. (2008), Identification of somatically acquired rear-
rangements in cancer using genome-wide massively parallel paired-end
sequencing, Nat. Genet., 40(6), 722–9.

Cancer Genome Atlas Research Network (2008). Comprehensive genomic char-
acterization defines human glioblastoma genes and core pathways. Nature,
23;455 (7216), 1061–8.



References 49

Carrasco, D. R., et al. (2006), High-resolution genomic profiles defines distinct
clinico-pathogenetic subgroups of multiple myeloma patients, Cancer Cell,
9, 313–25.

Carter, N. P. (2007), Methods and strategies for analyzing copy number variation
using DNA microarrays, Nat. Genet., 39(7 Suppl), S16–21.

Carvalho, B., et al. (2004), High resolution microarray comparative genomic
hybridisation analysis using spotted oligonucleotides, J. Clin. Pathol., 57(6),
644–6.

Cheung, S. W., et al. (2005), Development and validation of a CGH microarray
for clinical cytogenetic diagnosis, Genet. Med., 7(6), 422–32.

Cools, J., et al. (2003), A tyrosine kinase created by fusion of the PDGFRA
and FIP1L1 genes as a therapeutic target of imatinib in idiopathic
hypereosinophilic syndrome, N. Engl. J. Med., 348(13), 1201–14.

Diskin, S. J., et al. (2006), STAC: A method for testing the significance of DNA
copy number aberrations across multiple array-CGH experiments, Genome
Res., 16(9), 1149–58.

Engle, L. J., Simpson, C. L., and Landers, J. E. (2006), Using high-throughput
SNP technologies to study cancer, Oncogene, 25(11), 1594–601.

Ferguson, D. O., et al. (2000), The nonhomologous end-joining pathway of DNA
repair is required for genomic stability and the suppression of translocations,
Proc. Natl. Acad. Sci. USA, 97(12), 6630–3.

Freeman, J. L., et al. (2006), Copy number variation: new insights in genome
diversity, Genome Res., 16(8), 949–61.

Futreal, P. A., et al. (2004), A census of human cancer genes, Nat. Rev. Cancer,
4(3), 177–83.

Greenman, C., et al. (2007), Patterns of somatic mutation in human cancer
genomes, Nature, 446(7132), 153–8.

Greshock, J., et al. (2007), A comparison of DNA copy number profiling
platforms, Cancer Res., 67(21), 10173–80.

Guttman, M., et al. (2007), Assessing the significance of conserved genomic
aberrations using high resolution genomic microarrays, PLoS Genet., 3(8),
e143.

Hehir-Kwa, J. Y., et al. (2007), Genome-wide copy number profiling on high-
density bacterial artificial chromosomes, single-nucleotide polymorphisms,
and oligonucleotide microarrays: a platform comparison based on statistical
power analysis, DNA Res., 14(1), 1–11.

Heiskanen, M. A., et al. (2000), Detection of gene amplification by genomic
hybridization to cDNA microarrays, Cancer Res., 60(4), 799–802.

Hermans, K. G., et al. (2006), TMPRSS2:ERG fusion by translocation or inter-
stitial deletion is highly relevant in androgen-dependent prostate cancer, but
is bypassed in late-stage androgen receptor-negative prostate cancer, Cancer
Res., 66(22), 10658–63.

Hsu, L., et al. (2005), Denoising array-based comparative genomic hybridization
data using wavelets, Biostatistics, 6(2), 211–26.



50 Methods for DNA copy number derivations

Hu, M., Yao, J., and Polyak, K. (2006), Methylation-specific digital karyotyping,
Nat. Protoc., 1(3), 1621–36.

Hupe, P., et al. (2004), Analysis of array CGH data: from signal ratio to gain
and loss of DNA regions, Bioinformatics, 20(18), 3413–22.

Iafrate, A. J., et al. (2004), Detection of large-scale variation in the human
genome, Nat. Genet., 36(9), 949–51.

Ishkanian, A. S., et al. (2004), A tiling resolution DNA microarray with complete
coverage of the human genome, Nat. Genet., 36(3), 299–303.

Kallioniemi, A., et al. (1992), Comparative genomic hybridization for molecular
cytogenetic analysis of solid tumors, Science, 258(5083), 818–21.

Kennedy, G. C., et al. (2003), Large-scale genotyping of complex DNA, Nat.
Biotechnol., 21(10), 1233–7.

Khaja, R., et al. (2006), Genome assembly comparison identifies structural
variants in the human genome, Nat. Genet., 38(12), 1413–8.

Komura, D., et al. (2006), Noise reduction from genotyping microarrays using
probe level information, In Silico Biol., 6(1–2), 79–92.

Korbel, J. O., et al. (2007), Systematic prediction and validation of breakpoints
associated with copy-number variants in the human genome, Proc. Natl.
Acad. Sci. USA, 104(24), 10110–5.

Lai, W., Choudhary, V., and Park, P. J. (2008), CGHweb: a tool for comparing
DNA copy number segmentations from multiple algorithms, Bioinformatics,
24: 1014–1015.

Lai, W. R., et al. (2005), Comparative analysis of algorithms for identifying
amplifications and deletions in array CGH data, Bioinformatics, 21(19),
3763–70.

Liu, W., et al. (2007), Multiple genomic alterations on 21q22 predict vari-
ous TMPRSS2/ERG fusion transcripts in human prostate cancers, Genes
Chromosomes Cancer, 46(11), 972–80.

Lucito, R., et al. (2003), Representational oligonucleotide microarray analysis: a
high-resolution method to detect genome copy number variation, Genome
Res, 13(10), 2291–305.

Maher, E. A., et al. (2006), Marked genomic differences characterize primary and
secondary glioblastoma subtypes and identify two distinct molecular and
clinical secondary glioblastoma entities, Cancer Res., 66(23), 11502–13.

Marioni, J. C., Thorne, N. P., and Tavare, S. (2006), BioHMM: a heterogeneous
hidden Markov model for segmenting array CGH data, Bioinformatics,
22(9), 1144–6.

Olshen, A. B., et al. (2004), Circular binary segmentation for the analysis of
array-based DNA copy number data, Biostatistics, 5(4), 557–72.

Picard, F., et al. (2005), A statistical approach for array CGH data analysis,
BMC Bioinformatics, 6, 27.

Pinkel, D., et al. (1998), High resolution analysis of DNA copy number varia-
tion using comparative genomic hybridization to microarrays, Nat. Genet.,
20(2), 207–11.

Pollack, J. R., et al. (1999), Genome-wide analysis of DNA copy-number changes
using cDNA microarrays, Nat. Genet., 23(1), 41–6.



References 51

Redon, R., et al. (2006), Global variation in copy number in the human genome.
Nature, 444, 444–54.

Rigaill, G., et al. (2008), ITALICS: an algorithm for normalization and DNA copy
number calling for Affymetrix SNP arrays, Bioinformatics, 24(6), 768–74.

Sebat, J., et al. (2004). Large-scale copy number polymorphism in the human
genome, Science, 305(5683), 525–8.

Sharp, A. J., et al. (2007), Optimal design of oligonucleotide microarrays for
measurement of DNA copy-number, Hum. Mol. Genet., 16(22), 2770–9.

—— (2005), Segmental duplications and copy-number variation in the human
genome, Am. J. Hum. Genet., 77(1), 78–88.

Solinas-Toldo, S., et al. (1997), Matrix-based comparative genomic hybridization:
biochips to screen for genomic imbalances, Genes Chromosomes Cancer,
20(4), 399–407.

Solomon et al. (2008), Mutational inactivation of PTPRD in glioblastoma
multiforme and malignant melanoma. Cancer Res., 68(24), 10300–6.

Stjernqvist, S., et al. (2007), Continuous-index hidden Markov modelling of array
CGH copy number data, Bioinformatics, 23(8), 1006–14.

Stranger, B. E., et al. (2007), Relative impact of nucleotide and copy number
variation on gene expression phenotypes, Science, 315(5813), 848–53.

Thorland, E. C., et al. (2007), Comprehensive validation of array comparative
genomic hybridization platforms: how much is enough? Genet. Med., 9(9),
632–41.

Tonon, G., et al. (2005), High-resolution genomic profiles of human lung cancer,
Proc. Natl. Acad. Sci. USA, 102(27), 9625–30.

Venkatraman, E. S. and Olshen, A. B. (2007), A faster circular binary segmen-
tation algorithm for the analysis of array CGH data, Bioinformatics, 23(6),
657–63.

Xing, B., et al. (2007). A hierarchical clustering method for estimating copy
number variation. Biostatistics, 8(3), 632–53.

Wang, P., et al. (2005). A method for calling gains and losses in array CGH data.
Biostatistics, 6(1), 45–58.

Wang, T. L., et al. (2002), Digital karyotyping, Proc. Natl. Acad. Sci. USA,
99(25), 16156–61.

Wang, Y., et al. (2007), Analysis of molecular inversion probe performance for
allele copy number determination, Genome Biol., 8(11), R246.

Wiedemeyer, R., et al. (2008), Feedback circuit among INK4 tumour suppressors
constrains human glioblastoma development, Cancer Cell, 13(4), 355–64.

Wood, L. D., et al. (2007), The genomic landscapes of human breast and
colorectal cancers, Science, 318(5853), 1108–13.



3

METHODS FOR DERIVATION OF LOH AND ALLELIC COPY
NUMBERS USING SNP ARRAYS

Carsten Wiuf, Philippe Lamy and Claus L. Andersen

3.1 Introduction

Genetic instability is a hallmark of most cancers and hence the cancer genome is
often highly irregular. It is widely accepted that genetic instability is a key driver
in the development and progression of cancer. With the advent of high-troughput
technologies it has become possible to extensively investigate the genomic con-
sequences of uncontrolled cell growth and tumourigenesis and to relate patterns
of genetic changes to clinical outcomes, prognosis, and therapeutics. Whereas it
previously was only possible to study single genes or small regions at a time, it
is now possible to study the entire genome in a single experiment.

This chapter focuses on informatics methods to detect allelic imbalance (AI)
and loss of heterozygozity (LOH) in particular. Here LOH refers only to the event
that either the maternal or the paternal copy of a chromosomal region is deleted
and not that a copy is functionally inactivated by mutation. LOH can be detected
by comparing germline DNA with tumour DNA using genetic markers displaying

A A A AB

Fig. 3.1: The principle behind LOH analysis. The figure shows a heterozygous
SNP on a pair of chromosomes in the germline DNA. If the part containing the
B allele is deleted, then the remaining A allele will appear as a homozygous
SNP. Likewise, if the B allele is converted following a recombination/gene
conversion event, then the SNP will also appear homozygous. In the latter
case there are two chromosomes present, while in the former there is only one
for that particular SNP.
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heterogeneity in the germline sample; see Fig. 3.1 for an example. However, if the
marker is homozygous in the germline, it is non-informative about LOH and one
cannot from that marker alone deduce whether LOH has occurred or not. AI,
in contrast, refers generally to situations in which one allele is lost or amplified,
and thus shows departure from the allelic copy number of the normal genome.
In this terminology LOH is a special kind of AI.

The methods we are going to discuss are developed in the context of whole-
genome Single Nucleotide Polymorphism (SNP) arrays which is a type of DNA
microarray originally intended solely to genotype genetic polymorphisms within
populations.

3.1.1 Overview

The following sections are built up such that we first discuss biological and his-
torical aspects of LOH and AI. We discuss these aspects in the context of tumour
supressor genes (TSGs) and retinoblastoma. Then we move on to discuss meth-
ods for derivation of LOH based on SNP array data, starting with some very
simple methods that are often applied in the literature and end with discussing
methods for derivation of AI based on hidden Markov models (HMMs). These
models are popular tools in bioinformatics and frequently used to model depen-
dencies in data sets (Durbin et al., 1998). We will give some examples to illustrate
the methods.

3.1.2 Retinoblastoma

The concept of LOH is closely related to that of a TSG which is a gene that offers
protection against an organismal cell transforming into a cancer cell. Probably
the best known example of a TSG is the RB1 gene that when inactivated causes
retinoblastoma, cancer of the eye, which is a childhood disease. RB1 is also the
first TSG that was described in the literature and gave rise to Knudson’s famous
two-hit hypothesis from 1971 (Knudson, 1971).

Retinoblastoma occurs with an incidence of approximately 1 in 20,000
(Weinberg, 2007), results in clonal tumours in the retina and includes domi-
nantly inherited as well as sporadic cases. The sporadic cases are often only
present in a single focus in one eye, whereas the familiar cases typically involve
both eyes and can be multifocal (Weinberg, 2007). Knudson compared the ages
of children suffering from both forms of retinoblastoma and found that the spo-
radic cases generally occurred later in childhood than the familiar cases. This
prompted Knudson to suggest the two-hit hypothesis – the hypothesis that two
(genetic) hits are necessary for the cancer to develop. In the inherited cases the
first hit occurs in the germline and the second in the target retinal cell, while
in the sporadic cases both hits occur in the target retinal cell. This is consistent
with the fact that the disease occurs earlier in childhood when inherited than
when sporadic.

Cytogenetic studies identified chromosome 13 as a potential location of the
harmful gene. Subsequent LOH analysis using Restriction Fragment Length Poly-
morphism (RFLP) markers (see Section 3.2) narrowed the relevant genomic
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region substantially until it was possible to pinpoint the exact gene RB1 and
its location in band 13q14. The RB1 gene consists of 27 exons, spans 180kb and
is known as a negative regulator of the cell cycle. According to the COSMIC
data base at the Sanger Institute (2008) there are currently 75 known somatic
substitutions in the RB1, 16 insertions and 43 deletions. These may all reduce
expression of the RB1 protein or disrupt translation completely. Only the
deletions may turn up in an LOH analysis and in a patient suffering from
retinoblastoma, the deletions are indicative of a second harmful mutation in
the remaining copy of the RB1 gene.

3.1.3 Identification of TSGs

TSGs are generally involved in cell cycle regulation or apoptosis, or both. Like
RB1 they are normally not haploinsufficient and a single copy of the gene is
sufficient to produce the required amounts of gene product for the cell to be
fully functioning.

TSG inactivation occurs in different ways as already described in the previous
section. The most common inactivators are DNA point mutations, small inser-
tions or deletions (few base pairs) or large deletions involving the whole TSG and
potentially other genes. Since TSGs generally are not haplosufficient both copies
of the gene must be inactivated before disruption of the gene function occurs –
this reiterates the importance of Knudson’s two-hit hypothesis. However, it also
emphasizes that knowledge of TSGs and their function is key to understanding
cancer progression and how cancer arises in the first place.

LOH analysis is central to pointing at genomic regions potentially harbouring
novel TSGs, as illustrated in Fig. 3.1. Deletion of a region is the first indication
that genes in the region may have reduced expression or have been functionally
inactivated. The problem, however, is that LOH regions rarely cover just a sin-
gle or few genes, but easily cover hundreds of genes. A subsequent mutational
analysis is therefore not feasible, unless the analysis can be guided by other
(functional) information about the genes.

3.1.4 Mechanisms causing AI (in particular LOH)

The molecular mechanism(s) responsible for creating AI are poorly understood.
Studies of human cancers have indicated that most likely multiple mechanisms
are involved. This is illustrated by the different types of LOH regions observed in
human cancer; LOH of a whole chromosome, LOH extending from the telomere
to involve the whole or part of a chromosome arm, and LOH at an interstitial
chromosomal region. It is unlikely that these different types of regions are pro-
duced by the same mechanism. Until recently, LOH was considered to equal a
reduced allelic (DNA) copy number. However, recent studies combining LOH
and DNA copy number analyses have demonstrated that the DNA copy number
of LOH regions can also be unaltered or even increased (Andersen et al., 2007;
Gaasenbeek et al., 2006; Thiagalingam et al., 2001). LOH regions with reduced
copy number are said to be deleted, while regions with unaltered or increased
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copy numbers are said to display uniparental disomy or uniparental polysomy.
Again, these observations indicate that multiple mechanisms are at play.

Several mechanisms have been suggested to cause LOH. Whole chromosome
LOH may occur by ‘non-disjunction’ which refers to the situation, during mitosis,
in which the duplicated chromosomes do not align properly. As a result the
daughter cells end up with unequal chromosome numbers, one cell with three
copies and the other with a single copy. In LOH and copy number analyses the
latter daughter cell will display LOH and a reduced copy number of the whole
chromosome. Whole chromosome LOH without reduced DNA copy number has
been suggested to be the result of an non-disjunction event followed by a whole
chromosome reduplication event.

Mitotic homologous recombination events could potentially result in telom-
eric and interstitial LOH regions (also called gene conversions). These events
would be copy number neutral. However, telomeric and interstitial LOH regions
often have a reduced DNA copy number, which indicates that other mechanisms
are at play. These could be mitotic non-homologous recombination events, chro-
mosomal breakage-fusion-bridge events (Gisselsson et al., 2000), or failures by
the double-strand repair-recombination machinery (Ferguson et al., 2000).

3.1.5 Genomic alterations and their relation to clinical end-points

Many studies have demonstrated that genomic alterations observed in cancer
are distributed in a non-random fashion across the genome (Weinberg, 2007).
Whether the alterations initially occur at specific or random sites in the genome
is presently not fully understood. However, it is a fact that natural selection
drives tumour progression, i.e. the genomic alterations that benefit the survival
and reproduction of the cancer cells in a tumour are the processes that drive
the natural progression of the tumour, and also its ability to acquire resistance
to therapy (Merlo et al., 2006). Hence, non-random alterations observed in the
cancer genome pinpoint regions likely to be of importance for the survival and
reproduction of cancer cells. LOH involving chromosome band 17p13.1 inactivat-
ing the tumour suppressor gene TP53 (thereby, improving the survival of cancer
cells) is a classical example of a non-random alteration occurring at high fre-
quency in many different cancer types. Evidently, alterations affecting specific
genes infer specific phenotypic traits to the tumour, i.e. resistance to growth inhi-
bition, evasion of apoptosis, angiogenesis, invasion, and metastasis (Vogelstein
and Kinzler, 2004). It has been argued that a limited number of alterations is
necessary to transform a normal cell into a neoplastic cell and that the order in
which these alterations occur is stochastic (Hanahan and Weinberg, 2000).

This led to the hypothesis that differences in the genetic makeup of
histopathologically similar tumours may be responsible for differences observed
in prognosis and treatment response. Along this line several studies have investi-
gated the potential of using genomic alterations (LOH) as prognostic biomarkers.
A retrospective study of 467 Multiple Myeloma cases showed that LOH at chro-
mosome arm 16q conferred a poor prognosis (Jenner et al., 2007). Similarly,



56 Methods for derivation of LOH

a retrospective study of 106 curatively resected colorectal cancers showed that
LOH at chromosome arm 18q is associated with an increased risk of both local
and distant recurrence of disease (Sarli et al., 2004). Another retrospective study
of 460 stage III and high risk stage II colon cancer patients treated adjuvantly
with fluorouracil also indicated that 18q LOH is associated with poor outcome
(Watanabe et al., 2001).

LOH markers have also been investigated in relation to prediction of treat-
ment response. A retrospective study of 149 patients diagnosed with Glioma and
treated with temozolomide showed that LOH at chromosome arms 1p and 19q
predicted both a durable chemosensitivity and a favourable outcome (Kaloshi
et al., 2007).

Currently, prospective clinical trials are being performed aiming to transfer
promising molecular biomarkers, including LOH markers, from the research set-
ting to clinical decision making. An example of this is the large E5202 trial of the
Eastern Cooperative Oncology Group which is evaluating the use of 18q LOH to
guide the choice of whether or not to apply adjuvant chemotherapy to stage II
colon cancer patients (http://www.cancer.gov/clinicaltrials/ECOG-E5202).

3.2 Experimental determination of LOH

Most experimental methods for genotyping are qualitative in the sense that they
only allow determination of the presence or the absence of an allele.1 Without
the possibility to measure absolute genomic quantities, LOH can only be derived
by comparing germline DNA with tumour DNA. For example, if the germline
of a particular marker is heterozygous (AB), but only one of the two alleles
is observed in the tumour sample then LOH can be inferred. One of the two
alleles must have been lost and the genotype in the tumour will appear as either
AA or BB.

Therefore, only markers heterozygous in the germline are informative about
the LOH status of the corresponding markers in the tumour tissue. Consequently,
multi-allelic markers should be preferred to bi-allelic markers, because the chance
that a multi-allelic marker is heterozygous is generally higher than the chance
that a bi-allelic marker is. Traditionally, microsatellite markers have been applied
because they show a plethora of alleles varying in length, but also RFLP markers
have been used, because of their greater abundance in the genome. RFLP markers
are bi-allelic markers showing the absence (−) or presence (+) of a restriction
enzyme cut-point.

The large-scale discovery of bi-allelic SNPs and the advent of SNP microarray
technologies have by far made SNP the preferred marker for LOH and copy num-
ber studies. The HapMap project (http://www.hapmap.org/) lists over 5 million
validated SNPs in the human genome, or more than one in 600 base pairs. For

1This remark is only true if we look at markers one by one. We shall later discuss how
these restrictions can be relaxed when using microarrays with many markers. It is possible
quantitatively to derive the copy numbers and hence also the LOH status of homozygous
markers.

http://www.cancer.gov/clinicaltrials/ECOG-E5202
http://www.hapmap.org/
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whole genome-scans or high-resolution maps of LOH, SNPs are therefore today
the natural choice. Generally, bi-allelic markers suffer from lack of information
because the fraction of individuals in a population heterozygous for a given
marker is always less than 50%, and consequently at most half of the markers
are informative about LOH. However, this lack of information is counterbal-
anced by the very high number of known SNPs and their very high density in
the genome.

3.3 SNP genotyping arrays

The first SNP genotyping arrays to be marketed were Affymetrix SNP arrays
in 1994. They targeted 1500 SNPs in the human genome. Since then many
larger arrays have been commercialized (http://www.affymetrix.com) and many
other companies have entered the scene, e.g. Illumina Inc. The newest versions
of Affymetrix and Illumina arrays host ∼1 million SNPs. The array quality
has increased largely over the years due to technological and experimental
advances.

In the following we focus on Affymetrix SNP arrays. Each SNP is represented
by a series of probes. The probes are of two kinds: mismatch (MM) and perfect
match (PM) probes, and these are made specific to the two alleles. A PM probe
is typically around 20 nucleotides long and matches one of the alleles and the sur-
rounding nucleotides perfectly. By moving the position of the SNP in the probe,
one gets a series of allele specific PM probes with different binding affinities. The
MM probes are similar, but the centre position in the probe does not match the
reference sequence. The idea is that MM probes measure non-specific binding,
but it has been debated widely to what extent the information obtained from
MM probes is useful for genotype and copy number inference. Most statistical
approaches applied to SNP arrays ignore MM probes. There are up to 20 PM
probes for each allele.

By nature of the experimental set-up and measurements it is not possible to
detect ploidy differences, i.e. one cannot distinguish between a genome with two
copies of each chromosome and a genome with e.g. four copies.

3.3.1 Normalization

The probe intensities must be normalized before they can be applied to address
biological questions (Carvalho et al., 2007; Draghici, 2003; Speed, 2003). Firstly,
intensities between arrays are not directly comparable because the total amount
of DNA in samples varies and secondly, the relationship between array intensities
need not be linear. These issues are common to microarrays in general and we
will not be concerned with the details here, but refer to the large literature
available on the subject (Speed, 2003; Carvalho et al., 2007). For Affymetrix
SNP arrays the standard has become to use the invariant set normalization
procedure advocated by Li and Wong (2001) and implemented in the dChipSNP
software package. This procedure selects a core set of probe intensities that are
used for calibration of intensity levels. Subsequently, the probe intensities for

http://www.affymetrix.com
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a particular SNP are combined into a single variable, or two variables, if the
intensities are kept separately for the two alleles.

Here we apply a simple average to describe the allele intensity as a single
variable

IA =
1
p

p∑
i=1

log(PMi(A)), (3.1)

where PMi(A) denotes the intensity of the ith PM probe for allele A. A similar
quantity is calculated for allele B.

The allele intensities are now comparable across arrays, but not necessarily
between neighbouring SNPs on the same array, because the chemical binding
properties of the probes depend on the DNA sequence – this is an important
issue that must be dealt with in order to conduct LOH analysis properly. We
will take the issue up in Section 3.6.

3.3.2 Genotyping

Generally, the absence of an intensity signal of a given allele, potentially mea-
sured relatively to a reference, indicates the absence of that allele in the genotype.
In a normal sample where all autosomal markers are assumed to exist in two
copies, the presence/absence of alleles is sufficient to determine the genotype
completely including the number of each allele: AA (presence of A, absence of
B), AB (presence of A and B), and BB (absence of A, presence of B). For chro-
mosome X markers presence/absence of alleles is also sufficient to determine the
genotype, if it is known whether the sample is from a male or female (other-
wise one cannot distinguish between, e.g. AY and AA). Naturally, for abnormal
samples it is not possible to infer the genotype from the presence and absence
of alleles only, as has already been discussed in Section 3.2. In recent years it
has become apparent that many loci in the genome show copy number varia-
tions that are inherited in a Mendelian fashion. Known copy number variations
(mainly detected with SNP arrays, Redon et al., 2006, White et al., 2007) are
still relatively few and we will ignore them here.

However, the intensity signals carry information about the copy number of a
particular allele. In several studies it has been demonstrated that the logarithm
of the intensity is proportional to the logarithm of the allelic copy number;
as demonstrated in Fig. 3.2. This relationship is true even for very high copy
numbers.

In Fig. 3.3, five clouds are easily distinguishable, one for each of the possible
genotypes of a chromosome X marker. There are two important observations
to be made from Figs. 3.2 and 3.3: The first is that the log-intensity log-copy
number relationship does not hold if there are zero copies, because of back-
ground and non-specific binding that elevate the intensity level from the expected
level. The log-copy number would be large and negative, if the hypothesis were
true (log(0) is minus infinity). The second is that we would expect the same
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Fig. 3.2: The relationship between log-intensity and log-copy number. The
figure shows three (out of 42) SNPs in a spiking experiment where the con-
centration (copy number) of each SNP is varied from 1 to 1000 (Bignell et al.,
2004). Clearly there is a linear relationship between the log-intensity and the
log-copy number. Each data point is based on one measurement, occasionally
on two.
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Affymetrix early access 10k array: SNP61143A

Fig. 3.3: Allele intensities in normal tissue. The figure shows allele intensities,
as defined in eqn (3.1) from one SNP located on chromosome X (SNP61143A
from an Affymetrix array) in a sample of 67 males and 57 females. The
genotypes AA (black circle), AB (black square), BB (black triangle), AX
(grey circle) and BX (grey triangle) are clearly distinguishable. Note that
the A intensity for the BB and BX genotypes is elevated due to non-specific
binding and background, corresponding to approximately 0.25 copies of the
A allele. (The same is true for the B intensity of the AA and AX genotypes.)
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difference in intensity between 1 and 2 copies, as between 2 and 4, and in gen-
eral between 2n and 2n+1 copies, because log2(2n+1) − log2(2n) = 1 for all n.
This naturally implies that it is much more difficult statistically to distinguish
between 3 and 4 copies (log2(4) − log2(3) ≈ 0.42) than between 1 and 2 copies
(log2(2) − log2(1) = 1).

3.4 Simple computational tools to infer LOH

3.4.1 Classification of genotypes

Assuming the genotype status of each marker can be determined without error,
then loss of heterozygosity or retention can be inferred without error for each
heterozygous marker. For homogeneous markers, LOH inference is only possible
in conjunction with neighbouring markers, as will be demonstrated below. Geno-
types are recorded as AA, AB, BB, or NC (No Call), irrespective of the number
of actual copies of a given allele in the tissue. AB is said to be informative, while
the remaining genotypes (AA, BB, and NC) are said to be non-informative.
For informative markers, LOH status is either loss (L) or retention (R); for non-
informative markers, loss (L), retention (R), or undecided (U). LOH status L and
R are said to be proper LOH status, and U is said to be improper.

3.4.2 Regions with same boundary (RSB)

Consider the example in Fig. 3.4 with six bi-allelic markers, three of which are
informative, i.e. they are heterozygous in the germline sample. There are various
simple computational tools to infer the LOH status of non-informative markers.
The methods are simple extensions of the immediate classification of markers
according to whether the observed genotypes are indicative of loss or not. We
will mention two methods here; both methods are based on the principle of
parsimony which states that if two explanations are possible one should choose
the explanation that in some sense is the most parsimonious or the simplest.
In the RSB method, LOH status is first inferred for all informative markers. In
Fig. 3.4 there are only three informative markers (1, 4, and 6). Markers 4, 6 are
indicative of LOH, while marker 1 indicates retention. The LOH status of a non-
informative marker bounded by two informative markers is assigned according to
the status of the two informative markers. If the bounding markers agree, then

Germline AB AA AA AB AA AB
Tumour AB AA AA AA AA AA

Fig. 3.4: An example illustrating simple computational tools to infer LOH. The
figure shows six markers, but only three are heterozygous in the germline and
thus informative about LOH. The RSB method assigns L to marker 5, while
markers 2 and 3 are U because they are surrounded by an R and an L. Thus,
the six markers have status RUULLL. The NN method assigns L to markers 3
and 5, and R to marker 2; that is, the six markers have status RRLLLL.
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the non-informative markers obtain the same status as the informative markers,
but if the bounding markers do not agree, the status is left undecided. In the
figure, marker 5 shows loss, while markers 2 and 3 are undecided. Using this
method, some markers may end up being undecided. This happens whenever
a non-informative marker is bounded by two informative makers with opposite
status, as is the case for markers 1 and 4.

3.4.3 Nearest Neighbour (NN)

The NN method differs from the RSB method. In the NN method, the LOH
status of a non-informative marker is determined from the nearest informative
marker. In Fig. 3.4 this implies that the status of marker 2 is retention, that
of marker 3 is loss and that of marker 5 is loss. This method implies that all
markers receive a LOH status, unless there are no informative markers at all, in
which case there would be no nearest neighbours. Whenever the RSB method
assigns a proper status, the same status is assigned by NN – however, the reverse
is not true as is illustrated in Fig. 3.4.

3.5 Advanced statistical tools for LOH inference

The simple tools to infer LOH status are too simple in several ways. In the
present formulation they are not able to handle missing data or errors in the
reported genotypes, and the assignment of LOH status is purely deterministic
relying only on the nearest informative markers. Furthermore, some markers
may end up with an improper status. This is naturally not satisfactory in many
situations. Missing data could be handled by introducing additional rules, e.g. if
the genotype in the germline sample is missing, but heterozygous in the tumour
sample then retention is assigned, and so forth; or all missing genotypes could
be termed undecided. However, these issues are more naturally dealt with in a
probabilistic or statistical set-up and several have been proposed in the literature.
Here we will only deal with one general framework.

3.5.1 Hidden Markov models

Hidden Markov models (HMMs) have been shown to be a useful tool for LOH
and copy number inference (Fridlyand et al., 2004; Lin et al., 2004; Koed et al.,
2005) and one such approach has been implemented in the well-known software
package, dChipSNP, for SNP array analysis. HMMs are probabilistic models that
are able to take correlations in the data into account and use this information
to guide the inference when data are sparse or missing.

The concept of a HMM is explained in Fig. 3.5 and Table 3.1. Underlying the
observations are hidden states (in our case loss or retention; but not undecided);
we only observe the hidden states indirectly through the observed genotypes.
Each marker is either in the loss state or in the retention state. If a marker is
in the loss state, only certain genotype combinations in the germline and the
tumour samples are possible and with certain probabilities; and similarly if in
the retention state (see Section 3.5.2 for an example). Because markers close
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Fig. 3.5: An example of a hidden Markov model (HMM). The top row shows
the genomic states, L or R, of the abnormal sample. When in state L, the
HMM stays in the same state with probability p and jumps to the state R
with probability 1−p, see Table 3.1. If p is small, deleted segments are small,
while they are longer if p is large. Likewise, when in state R, the HMM stays
in the same state with probability q and jumps to the state L with probability
1 − q (p and q need not be identical). If q is large there will be few deleted
segments (few jumps from R to L), while there will be more if q is small. The
state determines which genotype combinations are possible and with which
probabilities. If there are no call errors in the data, then AB-AA is only
possible in the L state; however if call errors are allowed then AB-AA could
also be emitted in the R state.

Table 3.1. Shown are the probabilities of going
from state Si−1 = L or Si−1 = R of marker i − 1
to state Si = L or Si = R of marker i.

Marker Marker i
i−1 L R

L p 1 − p

R 1 − q q

to each other are likely to share LOH status, the hidden states are modelled
through a dependency structure, called a Markov chain.

Let Si (= L, or R) be the hidden state of marker i, where i = 1, . . . , k (e.g.
k = 50,000) and the markers are ordered according to their physical position
along the chromosome. The Markov property dictates that the probability of
being in states S1, S2, . . . , Sk is given by

P (S1, S2, . . . , Sk) = P (S1)P (S2|S1) · · ·P (Sk|Sk−1) (3.2)

such that the probability is split into a product of k terms. The term P (Si|Si−1)
is the probability that marker i is in state Si given the state of the neighbour
marker. Since there are two possibilities for Si and two for Si−1, there are four
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in total and the probabilities of these can be given in the form of a table; see
Table 3.1.

The parameters p and q in Table 3.1 are unknown and describe how likely it
is that a deleted (or retained) region is extended by an extra marker. Likewise
the probability of the first marker being L or R depends on p and q only,

P (L) =
1 − q

2 − p − q
and P (R) = 1 − P (L) =

1 − p

2 − p − q
. (3.3)

For example if p = 0.7 and q = 0.9, then the probability of RRRLLRL is

1 − 0.7
2 − 0.7 − 0.9

· 0.9 · 0.9 · (1 − 0.9) · 0.7 · (1 − 0.7) · (1 − 0.9) = 1.28 · 10−3,

where each term (apart from the first) corresponds to a transition from one
marker to the next.

The likelihood L(G1, G2, . . . , Gk) of a set of paired germline-tumour genotype
observations (as in Fig. 3.4 with six paired genotypes) can be calculated as

L(G1, . . . , Gk) =
∑

S1,...,Sk

P (G1, . . . , Gk|S1, . . . , Sk)P (S1, . . . , Sk)

=
∑

S1,S2,...,Sk

P (G1|S1)P (G2|S2) · · ·P (Gk|Sk)P (S1, S2, . . . Sk),

(3.4)

where S1, S2, . . . , Sk are the hidden states and the sum is over all possible combi-
nations of hidden states; i.e. for each combination of hidden states a probability is
assigned to the observed genotypes. When the hidden states are given we assume
the genotypes are independent of each other, hence P (G1, . . . , Gk|S1, . . . , Sk)
splits into a product with one term for each marker. Some combinations may be
very unlikely (for example frequent jumps between loss and retention), and some
combinations might render the observed genotypes very unlikely or impossible,
e.g. the genotypes in Fig. 3.4 would have low probability if all hidden states are
retention, because the first genotype is indicative of loss.

3.5.2 Example

There are various ways one can relate the hidden states to the genotypes; one
example is given in Table 3.2. Each of the pairs is emitted with a certain proba-
bility. In this example we assume that the genotypes are measured without error
and hence AB-AB can only occur in the R state and not in the L state. Also,
the probability of being heterozygous in the germline is the same irrespective of
the state of the tumour, namely r.
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Table 3.2. Here it is assumed that genotyping errors are impossible, and thus
the probability of emitting AB-AA in state R is zero, likewise the probability of
emitting AB-AB is zero in state L. The parameter r is effectively the fraction
of heterozygous SNPs in the germline DNA.

Genotype Pairs
Hidden
State AA-AA BB-BB AB-AB AB-AA AB-BB

L 1
2 (1 − r) 1

2 (1 − r) 0 1
2r

1
2r

R 1
2 (1 − r) 1

2 (1 − r) r 0 0

Table 3.3. Shown are the combinations of hidden
states with non-zero probabilities. In total there are
32, but the remaining combinations have probability
zero, because they are incompatible with R in position
1, L in position 4 or L in position 6. In this example
the probabilities P (Genotypes|States) end up being the
same, because emitting AA-AA (BB-BB) has the same
probability in the states L and R.

States P (States) P (Genotypes|States)
RRRLLL 2.98 · 10−2 2.89 · 10−4

RRLLLL 2.32 · 10−2 2.89 · 10−4

RLLLLL 1.80 · 10−2 2.89 · 10−4

RLRLLL 1.10 · 10−3 2.89 · 10−4

RRRLRL 1.82 · 10−3 2.89 · 10−4

RRLLRL 1.41 · 10−3 2.89 · 10−4

RLLLRL 1.10 · 10−3 2.89 · 10−4

RLRLRL 6.75 · 10−5 2.89 · 10−4

If we continue the example of six markers in Fig. 3.4, we note that the RSB
method gives the RUULLL, while NN gives RRLLLL. In the HMM there are many
possible assignments of states and they occur with different probabilities. In
Table 3.3 we assume p = 0.7, q = 0.9 and r = 0.3 (which roughly corresponds
to the percentage of heterozygous SNPs in Affymetrix arrays). The best scoring
assignment is different from the one obtained using NN.

One strength of the HMM approach is that errors can be allowed leading to
more correct inference (Lin et al., 2004; Koed et al., 2005).
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3.5.3 Two main problems

There are two main problems we need to tackle:

• For a fixed set of parameters, determination of the optimal choice of hid-
den states, i.e. the assignment of hidden states contributing most to the
likelihood. In Example 3.5.2 the optimal assignment is RRRLLL.

• Determination of the optimal choice of the HMM parameters (in Example
3.5.2, p and q) and the emitting probabilites (in Example 3.5.2, only r). In
Example 3.5.2 the parameters were fixed, but in general they are unknown
and should be estimated from the data.

Both problems can be solved with efficient algorithms and we will not go further
into the issue here.

3.5.4 An interpretation of the hidden Markov model

Using HMMs for analysis of biological data, in particular DNA sequence data
or data that are presented in a sequential order, is commonplace (Durbin et al.,
1998). In addition to being very flexible and robust modelling tools, HMMs are
computationally and statistically easy to manipulate.

However, the HMM also stipulates a mathematical model of the data, in
our case loss of heterozygozity in tumours. The proportion of SNPs in the LOH
state is (1 − q)/(2 − p − q), see eqn (3.3), while the remaining SNPs are in the
retention state. We can also derive the probability distribution of the length of
a LOH region,

P (n) = (1 − p)pn−1, (3.5)

where p is the probability given in Table 3.1 and n ≥ 1 is the number of SNPs in
the LOH region. This distribution is known as the geometric distribution with
parameter p and a LOH region has an expected length of 1/(1− p) SNPs. With
the parameters of Example 3.5.2 this would amount only to 1/0.3 ≈ 3.3 SNPs.
Likewise, the length of a retained region is geometric with parameter q resulting
in an expected length of 1/(1 − q) = 1/0.1 = 10 SNPs. In this example LOH
regions and retained regions are interchanged frequently.

A similar model has been applied to analyse cytogenetic data (Newton and
Lee, 2000). Also a HMM approach has been suggested for the analysis of CGH
array data (Fridlyand et al., 2004).

3.5.5 Limitations to the HMM approach

The HMM approach has a number of limitations. We assume two different states
only, loss and retention, but in some cases it can be difficult to assign a single
state to a genomic region. Sample heterogeneity may cause the copy number to be
non-integer, for example if a fraction of the tumour cells have lost the region while
other tumour cells have not, or if the size of the region varies between tumour
cells. Also sample impurities may result in non-integer copy number. This may
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Fig. 3.6: The figure shows LOH and log-intensity data from three colon cancer
patients using Affymetrix 10K SNP arrays. For each of the three patients
array data were obtained from germline and tumour tissue. The dChipSNP
software package was used to derive LOH based on a HMM that takes NC
and genotyping errors into account. Also copy number intensities (joint for
both alleles) were derived with dChipSNP software and further normalized to
mean zero and variance one. The three parts of the figure show chromosome
20 in the tumour sample from the three patients. (a) LOH and copy num-
bers are normal, (b) factual loss of p-arm (i.e. LOH concomitant with copy
number reduction) and gain of q-arm (i.e. retention of both alleles and simul-
taneous copy number increase), (c) factual loss of the p-arm and uniparental
polysomy of the q-arm (i.e. LOH and concomitant copy number increase of
the remaining allele).
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Table 3.4. Shown are summary statistics from 17 patients with bladder can-
cer genotyped with the Affymetrix 10k array. In total 43 tumour samples were
available (2–3 samples from each patient). Ta, T1 and T2-4 are different pro-
gressive stages of the disease and the numbers confirm that the genome becomes
more instable with more progressed disease stage: The number of heterozygous
SNPs decreases while the number of homozygous SNPs increases with stage,
indicating that the progressed samples have more deletions than the less pro-
gressed samples. Also, the number of NCs increases with stage in concordance
with the discussion in Section 3.5.5. The same conclusions hold for newer and
larger Affymetrix arrays, as well as Illumina arrays.

Blood Ta T1 T2-4

Heterozygous SNPs 2,721 (31%) 2,520 (29%) 2,156 (25%) 1,829 (21%)
Homozygous SNPs 5,648 (65%) 5,692 (66%) 5,878 (68%) 6,057 (70%)
No Call (NC) 317 (4%) 474 (5%) 652 (7%) 800 (9%)

occur, if the pathologist has not been succesful in removing surrounding normal
tissue, or if the tumour sample naturally consists of cancer cells mixed with
normal cells.

Another possibility is that one allele has been lost while the other has been
duplicated to restore two copies (uniparental disomy; see Section 3.1.4). Thereby
the functional integrity of a gene in the region may be intact unless one or both
copies of the duplicated gene have been inactivated by other means. In the HMM
approach, this event cannot be distinguished from the event of loss of one allele
and maintainance of the other allele in one copy, because in both situations the
HMM readout is a transition from AB in the germline to AA or BB in the tumour
(or for homozygous SNPs AA or BB in the germline to AA og BB in the tumour)
This is illustrated in Fig. 3.6.

As seen in Table 3.4 the number of NC is generally higher in tumour samples
than in samples from normal tissue. This may partly be explained by hetero-
geneity and tissue impurities, because fractional copy numbers may be difficult
to interpret correctly. In dChipSNP software (Lin et al., 2004), NCs in tumour
samples are given no special status compared to normal samples, while the higher
number of NCs was taken as evidence of LOH in Koed et al. (2005). However,
NCs may also appear, if one or both alleles have been amplified resulting in
distortions of the intensity values.

3.6 Estimation of allele specific copy numbers

In this section we discuss a HMM for estimation of allele specific copy numbers.
The primary concern is not to derive genomic copy numbers, but to be able to
investigate the allelic composition of genomic regions. Naturally, if we know the
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copy number of the two alleles, the genomic copy number can be determined by
adding the two allele specific copy numbers – however the HMM has inherited
limitations of a combinatorial as well as a statistical nature that makes it difficult
to disentangle the allele specific copy numbers when the genomic copy number is
high. This HMM approach is developed by Lamy et al. (2007) – other approaches
to allele specific copy number derivation have been developed by Nannya et al.
(2005), Huang et al. (2006), LaFramboise et al. (2005) and Ishikawa et al. (2006),
but none of them use HMMs directly.

3.6.1 An allele specific HMM

The first part is to determine the HMM states. Since we want to infer the copy
number of each allele, we need more than the genotypes determined from the
germline and tumour samples: The genotypes could only tell whether an allele
was retained or lost, not whether an allele was amplified.

Therefore, we need to work directly with the allele intensities, since these
reflect the underlying copy numbers; as illustrated in Figs. 3.2 and 3.3. This
further implies that the probability, P (G|S) of a genotype G given the genomic
state S of the tumour should be replaced by the density f(IA, IB |S) of the two
allele intensities given the state S. The density is here conveniently taken to be
normal. The normal density has two mean parameters (one for IA and one for IB)
and a covariance matrix with three parameters (the variances of IA and IB , and
their correlation). This results in five parameters for each state and SNP. With
thousands of SNPs and generally much fewer samples the number of parameters
quickly becomes statistically unmanageable.

To resolve the hurdle, we rely on two main assumptions (Lamy et al., 2007):
The first is the already mentioned linear relationship between log-intensity and
log-copy number that binds the mean parameters of different states together. The
second assumption states that the mean parameters of different SNPs are also
related in a linear fashion; see Fig. 3.7. We note that other authors have solved
the many-parameter problem in other ways; see for example Rabbee and Speed
(2006) for a Bayesian solution in the context of SNP genotyping. In practice, we
exclude SNPs that do not fit the assumption of linearity.

3.6.2 Normalization

There is a clear linear relationship between intensities and copy numbers, as
illustrated in Fig. 3.7. We utilize this feature to normalize the data (Lamy et al.,
2006). For the ith SNP (e.g. i = 1, . . . , 50, 000) and jth allele (j = A, B) assume

log2(M
2
ij) = k1 + k2 log2(M

1
ij), (3.6)

whereM2
ij is the mean intensity for allele j in samples homozygous for the j allele,

M1
ij is the mean intensity for allele j in samples heterozygous for the j allele,

and k1 and k2 are SNP-independent parameters.
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Fig. 3.7: 170 chromosome X SNPs are used from a sample of 57 normal males
and 67 normal females. For each allele the average is taken over all males with
that particular allele and plotted against the average intensity of females with
0, 1 and 2 copies, respectively.

If we further assume that the logarithm of the allele copy number is linearly
related to the log-intensity, then

log2(Cij) = ai + bi log2(M
c
ij), (3.7)

where Cij is the allelic copy number and M c
ij is the mean intensity of allele j in

SNP i, respectively. The parameters ai and bi are SNP-specific. Here we let Cij

be an arbitrary number to allow for mixed samples.
From eqns (3.6) and (3.7) we find Cij in term of M1

ij and M c
ij :

log2(Cij) =
log2(M c

ij) − log2(M1
ij)

k1 + (k2 − 1) log2(M1
ij)

. (3.8)

This equation remains true even if Cij is not an integer.
As we only have the intensity Iij of SNP i and allele j, an estimate of M c

ij ,
we can only obtain Xij , an estimate of log2(Cij); i.e.

Xc
ij =

log2(Iij) − log2(M1
ij)

k1 + (k2 − 1) log2(M1
ij)

. (3.9)

We assume that Xij is normally distributed around log(Cij) with (known) stan-
dard deviation estimated from the germline samples. Likewise, the parameters
k1 and k2, as well as M1

ij , are estimated from the germline samples.
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3.6.3 The states

In the HMM there are six states for heterozygous SNPs and a corresponding num-
ber of states for homozygous SNPs (Fig. 3.8). Since it is difficult to distinguish
between higher copy numbers, the HMM focuses on differentiating low copy num-
bers and lumps all larger copy numbers into one state. For heterozygous SNPs,
the states indicate retention of both alleles, loss of one or both alleles, gain of one
or both, and loss of one and gain of the other. These are clearly distinguishable
states, since in each case we expect 0, 1 or 2 (or more) copies of a given allele
(Fig. 3.8). The states of the homozygous SNPs are made to match those of the
heterozygous SNPs. This is not straigthforward. For example the homozygous
state corresponding to the heterozygous state (1,2+) is (0,3+) (Fig. 3.8), and
the homozygous state corresponding to the heterozygous state (0,2+) is (0,2+).
While each heterozygous SNP is classified to a unique state, a homozygous SNP
may be classified to one or more states. A homozygous SNP with four B alleles
could for example be assigned to (0,3+) as well as to (0,2+), but whether it is
assigned to one state or the other depends to some extent on the surrounding
heterozygous SNPs.

The parameters for going from one state to the next are also more elaborate
now than for the previous HMM. In the previous HMM, one could go from R to L
or from L to R. Inclusion of a gain state and differentiation between alleles make
many more transitions possible, and we need to decide what is considered biolog-
ically realistic or plausible. Here we only consider transitions between states that
require a single change, e.g. amplification of one allele. Further, we distinguish
between going from (or to) the normal state, and going between two abnormal
states.

This puts us in a situation to calculate the likelihoood of the observed
intensities in a tumour sample, similarly to eqn (3.4):

L(I1A, I1B , . . . , IkA, IkB)

=
∑

S1,S2,...,Sk

f(I1A, I1B |S1) · · · f(IkA, IkB |Sk)P (S1, S2, . . . , Sk), (3.10)

where f(IiA, IiB |Si) denotes a normal distribution with mean determined by
the state Si. As pointed out in Section 3.5.3, there are efficient algorithms to
optimize the unknown parameters (Fig. 3.8c) and to find the optimal choice of
hidden states (Fig. 3.8a). Also for each SNP one can derive the probability that
the HMM is in a given state.

3.6.4 Example

We ran the HMM on paired samples (tumour and blood) from 21 patients suf-
fering from bladder cancer using intensities derived from Affymetrix 50k arrays
(Lamy et al., 2007; Zieger et al., 2005). Not all SNPs were used, but only SNPs
that were classifed as ‘normal’ (i.e. total copy number two) in the blood sam-
ples were selected for further analysis. This was accomplished by first running
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(a) (c)

DNA (A,B)(A,B) (A,B) (A,B)

State copy-number N = AB N = AA N = BB

0 2 (1,1 ) (2,0) (0,2 )

1 1 (0,1) or (1,0 ) (1,0) (0,1 )

2 0 (0,0 ) (0,0) (0,0 )

3 2+ (0,2+) or (2+,0) (2+,0) (0,2+)

4 3+ (1,2+) or (2+,1) (3+,0) (0,3+)

5 4+ (2+,2+) (4+,0) (0,4+)

Stat e 1 2 3 4 5

0 p p ε p p

1 r r ε ε

2 ε ε ε

3 r r

4 r

(b)

STATE 0

STATE 1

STATE 2

STATE 3

STATE 4

STATE 5

(d)

p : 0 → 1

r : 1 → 2

ε : 0 → 3

0 → 5

3 → 4

2 → 4

Fig. 3.8: States and transition matrix of the HMM. (a) This figure shows the
definition of the states in the HMM. The genotype call for the germline DNA
is given by the letter N = AB, AA or BB. For each state, the total DNA copy
number and the allelic copy numbers are given. State 0 is the germline state
also called the normal state; state 1 corresponds to a heterozygous deletion
(loss of one allele); state 2 corresponds to a homozygous deletion (loss of two
alleles); state 3 corresponds to uniparental di/polysomy (loss of one allele
and duplication or multiplication of the other allele); state 4 corresponds to
unbalanced amplification (duplication or multiplication of only one allele);
state 5 corresponds to balanced amplification (duplication or multiplication
of both alleles). Notice that when the SNP marker in the germline DNA is
homozygous, states 3, 4 and 5 are very similar and states 0 and 3 cannot be
differentiated in case of uniparental disomy. (b) Visual interpretation of the
states. (c) Transition matrix. The transition probabilities are the probabilities
to move from one state for a SNP to another state for the next SNP. The rest
of the matrix is given by the detailed balance equation (Durbin et al., 1998).
(d) Visual interpretation of the transition parameters. The figure represents
two consecutive SNPs in the sample.
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Fig. 3.9: The figure summarizes the 21 tumour samples. The genome is divided
into 2 Mb regions and for each sample the frequencies of the different states
are counted. Only regions with at least five SNPs are considered. Finally, the
frequencies are averaged over the 21 samples. Below is shown the frequency
colour code for the different states – note that the percentage of SNPs in state
0 is always >50% and the percentages of the other states always are <50%.
State 0: 2 copies (normal unchanged state), 1: heterozygous loss, 2: homozy-
gous loss, 3: uniparental disomy 4: unbalanced amplification, and 5: balanced
amplification.

the HMM on all SNPs and then subsequently re-running the HMM on the SNPs
that appeared normal in the germline. On average this amounts to approximately
43,000 SNPs per sample, or 78% of the available SNPs. The excluded SNPs
(22%) are either not conforming to the model, experimentally unsuccessfull, or
in a chromosomal region subject to copy number variation in the germline.

The results are summarized in Fig. 3.9. The genome is divided in 2 Mb regions
and for each sample and region the frequency of SNPs in a given state (0, 1, . . . ,
5) is counted. Subsequently, the frequencies of the different states are averaged
over the 21 bladder tumour samples. This does not show how the states vary
within a single sample, but how the states vary in the tumour population and
what the predominant states are.

From Fig. 3.9 it transpires that apart from state 0 (both copies retained),
the two most frequent events are loss of a region (LOH) or amplification of a
region, often the region extends to an entire chromosome arm. Loss of the p-arm
on chromosome 8 is a frequent event in bladder cancer and the majority of the
samples have lost the entire arm or part of the arm. Far fewer samples have
lost the p-arm of chromosome 17 – the chromosome that harbours the tumour
suppressor gene TP53.

Some samples show evidence of uniparental disomy (state 3). On 1q four
samples display uniparental disomy and two of these samples are also in state 3 in
a region near a putative TSG fumarate hydratase (FH) (according to the OMIM
database of disease genes). However, the FH gene itself does not appear to be
in the region. Uniparental disomy would be one way to obtain two inactivated
copies of a TSG while maintaining the overall integrity of the chromosomal
region. Likewise, three samples are in state 3 in a region near the TSG TP53,
but again the gene itself is not included. No other TSGs or oncogenes appear to
be in regions that show uniparental disomy. Figure 3.10 gives another example
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(d)

Fig. 3.10: An example of the HMM applied to chromosome 18 in a bladder
tumour sample. In this chromosome, we can distinguish uniparental disomy
coloured in purple in a region of approximatively 15 Mb and LOH in the
rest of the q-arm coloured in blue. In addition, the p-arm has experienced an
unbalanced amplification, coloured in orange. (a) For each SNP heterozygous
in the germline DNA, the normalized intensities of each allele are plotted.
The colours represent the estimated state of the SNP: black for state 0, blue
for state 1, green for state 2, purple for state 3, orange for state 4 and red
for state 5. (b) Shown is the region of LOH. (c) For each SNP homozygous
in the germline DNA, the normalized intensities of each allele are plotted.
The absent allele is coloured in grey. (d) Shown is the estimated sequence of
hidden states. The colour indicates the posterior probabilities of the states:
blue > 0.99, green > 0.95, orange > 0.9 and red < 0.9. See Plate 1.
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of uniparental disomy. For the method to be successful an abnormal region needs
to extent over several SNPs to be detected.

3.7 Conclusion

We have demonstrated how LOH and allelic copy numbers can be derived sta-
tistically with the help of HMMs. A HMM is a very flexible tool that is suitable
to model dependent data such as SNP markers where neighbour SNPs are likely
to share the same copy number. Unless the signal is very strong small regions in
abnormal states are potentially missed because of experimental noise and mod-
elling inaccuracy. As shown in the example above local changes in allelic copy
numbers can be difficult to detect unless they extend over a number of SNPs.
With the advent of arrays with very high SNP density and better experimental
procedures, future methods for allelic copy number determination may improve
on this.
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4

BIOINFORMATICS OF GENE EXPRESSION AND COPY
NUMBER DATA INTEGRATION

Outi Monni and Sampsa Hautaniemi

4.1 Introduction

Transcription is a process by which inheritable information encoded in our DNA
is transformed into messenger RNA (mRNA). mRNA is further translated into
a functional gene product (protein). Gene expression in a cell can be studied by
measuring relative quantities of mRNA molecules. mRNA constitutes only 1–2%
of total RNA. Total RNA also contains transfer RNA (tRNA) and ribosomal
RNA (rRNA) that have a role in protein translation as well as a number of
different small RNAs, such as siRNAs and miRNAs that have a role in gene
regulation. In each cell type, only a set of genes (about 30–50% of the genes in
the genome) are expressed at any given time. Each tissue has its specific gene
expression profile. Gene expression is influenced by a number of cellular and
external factors. For example, some of the genes are expressed only in certain
developmental stage or in response to specific external stimuli.

As compared to the RNA, DNA is much more stable. In normal situation,
each individual has 46 chromosomes including 22 pairs of autosomes and two
sex chromosomes XX (female) or XY (male). In cancers, normal cellular growth
control is disturbed, which causes problems in cell division. This may give rise
to either losses (deletions) or gains (amplifications) of chromosome numbers or
chromosomal regions. These additions or losses of genetic material are called
copy number changes or alterations. The gains typically contain genes that are
important for example in promotion of the cell growth or inhibition of apoptosis,
whereas lost regions may contain genes that are important for example in DNA
damage signalling, promotion of apoptosis or control of the cell cycle.

Both the genetic information encoded in our DNA and gene expression
(mRNA) are altered in cancer. When the copy number or gene expression levels
are compared with the normal situation, it is possible to receive information on
the genes that are likely to have importance in cancer development.

It is well-known that gene copy number alterations play an important role
in cancer development and progression (Knuutila et al., 1999). The frequency
of copy number alterations varies between different cancers, but they are par-
ticularly common in solid tumours, such as in cancers of breast, prostate, lung,
gastric, ovarian, pancreas and head and neck (Knuutila et al., 1999). In differ-
ent tumours, the number, size and magnitude of copy number alterations vary
extensively and that is likely to reflect the differences of individual tumours to
escape from normal protective cellular environment (Fridlyand et al., 2006).
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Gene amplification is an important mechanism for the cancer cells to increase
the expression of cellular proto-oncogenes. Similarly, gene deletions and simulta-
neous decrease in gene expression may turn off critical tumour suppressor genes
that are mutated in their other allele (Knudson, 2001).

The impact of gene copy number on gene expression varies between different
cancers. For example, recent studies have shown that up to 40–50% of the highly
amplified genes are also over-expressed in cancer (Pollack et al., 1999; Hyman
et al., 2002; Järvinen et al., 2006). The impact of deletion on underexpression
is less clear, which is partly due to the fact that small deletions and following
underexpression is technically more challenging to identify. In general, it has
been demonstrated that 10–15% of all gene expression changes are directly asso-
ciated with gene copy number changes (Pollack et al., 2002; Hyman et al., 2002;
Järvinen et al., 2006). The identification of the genes that are either amplified
and overexpressed or deleted and underexpressed may reveal alterations critical
to tumour pathogenesis.

A number of methods have been developed to measure copy number and gene
expression levels on a genome-wide basis in cancer. In this chapter, we will first
briefly review methods that can be used in global detection of copy number and
gene expression levels, and then concentrate on discussing how microarrays can
be used to integrate the data from both the copy number and gene expression
measurements.

4.2 Methods

4.2.1 Methods to study copy number levels
Gene copy number levels can be studied on a genome-wide basis by several
different methods. Traditionally, chromosomal alterations have been studied by
conventional G-banding technique, also called karyotyping, where chromosomes
are stained with Giemsa staining at the metaphase phase of the cell division
(mitosis). This staining produces a G-banding called a staining pattern by which
chromosomes can be identified. The technique has several limitations. For exam-
ple, cancer cells need to be cultured in vitro, which is challenging especially for
solid tumours. Additionally, karyotypes of tumours are often very chaotic with a
number of numerical and structural chromosomal alterations, which makes the
identification of the chromosomal alterations very challenging. G-banding is nei-
ther very sensitive in detecting small copy number alterations and in general,
less than 10–20 Mb alterations remain undetected.

In the early 1990s, the technique called comparative genomic hybridization
(CGH) was developed for mapping the copy number alterations in cancer cells for
normal metaphase chromosomes (Kallioniemi et al., 1992). This technology has
revolutionizing cancer research, since it allows the study of those tumour types
that were difficult to cultivate in vitro. This technique is based on the comparison
of differentially labelled (for example red and green fluorescence dyes) test and
reference DNAs that are simultaneously hybridized on normal chromosomes. The
labelled sequences find their complementary sequences on the chromosomes and
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bind to these sequences in a competitive manner. If the test sample is labelled
with red fluorescence colour, those sequences that are amplified in test sample
(for example in cancer specimen), show increased red fluorescence ratio. Losses of
sequences in the test sample are detected as increased green colour. The resolu-
tion of this technique is better than with chromosomal karyotyping, but it is still
not very sensitive for detecting small copy number alterations, especially small
deletions (resolution 2–10 Mb). However, the technique is very useful in detection
of large unbalanced chromosomal alterations and high-level amplifications.

In addition to G-banding and chromosomal CGH, other methods can be
applied to study copy number alterations. For example, spectral karyotyping,
which was developed after the discovery of fluorescence in situ hybridization
(FISH) and CGH, is based on the fluorescence staining of each chromosome or
chromosome arm with different fluorochromes (Schrock et al., 1996). This tech-
nique allows the detection of extra or missing copies of chromosomal material, but
does not give exact information about the genes involved in the altered regions.

4.2.2 Methods to study gene expression

Different methods can be applied to study gene expression levels on a genome-
wide manner. These methods include for example serial analysis of gene
expression (SAGE), differential display, and gene expression microarrays, the
latter of which will be described later in more detail in this chapter.

SAGE relies on the sequencing of short cDNA sequences without requirement
of any a priori knowledge of the genes to be studied (Velculescu et al., 1995).
SAGE is practically based on sequencing of every transcript in a cell or tissue pro-
viding qualitative and quantitative data of gene expression levels. SAGE is based
on detection of 9 to 10 base pair nucleotide sequence tags that uniquely iden-
tify a transcript. Concatenation of these short sequence tags allows the efficient
analysis of transcripts in a serial manner by sequencing of multiple tags within a
single clone. The advantage of the method is that it produces quantitative data,
but the sequencing of the transcripts is very labour-intensive.

Differential display is a technique that was invented in 1992 to allow the detec-
tion of gene expression alterations between two different biological conditions,
typically diseased and normal tissue (Liang and Pardee, 1992). Like SAGE, dif-
ferential display provides quantitative data of the gene expression measurements
across the whole genome. In this method, reverse transcription and polymerase
chain reaction are first applied to separate and clone individual messenger RNAs
(mRNAs) in two different samples using a poly-dT primer that anneals to the 3′

end of mRNAs and a random primer that is short and arbitrary in sequence and
anneals to different positions in mRNA transcript relative to the first primer.
The identified mRNA sequences defined by these primer pairs are then run on a
DNA sequencing gel. Different bands in the gel can then be isolated, cloned and
sequenced to identify transcripts that are differentially expressed between two
conditions. Like SAGE, the method produces quantitative data, but the analysis
of multiple samples can take several weeks.
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4.2.3 Microarrays in detection of copy number and gene expression levels
DNA microarrays can be used to study both the gene expression levels and
copy number alterations. The technique provides a fast and easy way to identify
expression or copy number levels of all the genes in a genome in one laboratory
experiment. Microarrays were initially developed to study differentially expressed
genes (Schena et al., 1995; Lockhart et al., 1996), but the technique can also be
applied to study relative quantities of practically any biomolecule in a cell. Gene
expression microarrays consist typically of 200–10,000 base pair PCR products
or 25–80 long oligonucleotide sequences arrayed or in situ synthesized on a solid
support, such as glass. One transcript can be represented by long oligos or a num-
ber of short oligonucleotide probes, the intensity of which is then combined when
the array is analysed. Transcripts can also be represented by pairs of perfect and
mismatch oligos. The intensity of a specific signal can then be compared to an
unspecific signal which further improves the accuracy of the analysis. Microar-
rays can be constructed by spotting DNA on a microscope slide using particular
arrayers or alternatively, microarrays can be obtained from commercial vendors.
After the technology was first developed, a number of academic groups con-
structed their own microarrays using large cDNA clone libraries. However, due
to the problems in well-to-well contamination when handling these libraries in
96- or 384-well format, currently nearly all commercial manufacturers synthe-
size or spot 25-80 base oligonucleotides on a solid support. Gene expression
microarrays have applications in nearly all fields of biomedical research. The
technology has been mostly applied in cancer research, including disease classi-
fication, drug discovery, pharmacogenomics, toxicity profiling of new drugs and
also in diagnostics.

When DNA microarrays are applied to study copy number alterations, the
technique is called array-CGH (aCGH) or CGH microarray because it is based on
the same principle as chromosomal CGH. In this technique however, small DNA
fragments are used as targets instead of metaphase chromosomes. CGH microar-
rays are typically constructed from large genomic BAC clones (100–300kb in
size), cDNAs or oligonucleotides (Solinas-Toldo et al., 1997; Pinkel et al., 1998;
Pollack et al., 1999). The advantage of using large genomic clones as targets on
the array is better sensitivity, but oligo arrays allow better resolution and speci-
ficity due to the smaller size of the probe on the array. Therefore, oligonucleotide
arrays can be applied to study small homozygous deletions or intragenic copy
number variations consisting of only a part of the gene. The aCGH technology
has a number of different applications. It has been mostly used in basic research
to study gene copy number alterations in diseases like cancer and mental retarda-
tion, but currently there are also examples utilizing array-CGH in comparative
genomics and diagnostics.

4.3 Microarray experiment

The principle of the gene expression microarray technique is to compare the rela-
tive abundance of expressed sequences between different samples. In a microarray
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experiment, one can study for example the differential expression across a series
of tumour samples or compare gene expression levels between treated and non-
treated samples. Gene expression microarrays can either be carried out as a
two-colour or one-colour experiment. In a two-colour experiment, test and refer-
ence RNAs extracted from two samples are labelled with two different fluorescent
colours (typically Cy3 and Cy5) and hybridized simultaneously on a microscope
slide. This experiment provides ratio data between the test and reference sample.
Alternatively, only one sample can be labelled and hybridized on a microarray
which produces intensity data instead of ratios.

Array-CGH is normally carried out as a two-colour experiment where
the DNA sample extracted from the studied sample is hybridized against normal
DNA. To avoid false positive results, reference DNA should be a pool of normal
DNAs extracted from different individuals due to the copy number variation that
has recently been found to occur also in normal population (Iafrate et al., 2004;
Sebat et al., 2004). Test and reference DNAs are typically labelled with Cy3 and
Cy5 fluorescent labels.

After the hybridization, microarrays are scanned with a microarray scanner
that produces a 16-bit image file. Various image processing software can then be
used to transform the image data into numerical format. These image analysis
software packages are also often used in initial microarray analysis, especially
in background correction and normalization of the data. There is a large num-
ber of different image processing software packages available, but typically each
microarray platform has its own image analysis software recommended by the
manufacturer.

After scanning of the microarray slide that produces a 16-bit image, each
gene on the array is summarized by two intensity values that are typically the
mean or median of all pixel intensity values on the spot. These values belong
to [0, . . . , 65535]. Even though intensity values are often used in microarray
data quality control, they are rarely used in actual analysis (except when the
microarray format is single-colour). In two-colour experiments the two intensity
estimates are divided to form ratios. Formally, the raw ratio for the ith gene on
the array is:

ri =
It
i

Ir
i

, (4.1)

where It
i is the test signal intensity (Cy3 labelled sample), and Ir

i the reference
signal intensity (Cy5 labeled sample). Practically, test and reference samples can
be labelled using either Cy3 or Cy5, so prior analysis is crucial to check whether
Cy3 is test or reference. After a microarray experiment, the obtained raw ratios
are preprocessed to be used in data analysis.

If one is interested in identification of genes where change in gene expression
is associated with copy number alteration, CGH and gene expression microarray
data can be integrated. In Fig. 4.1 we show an example where DNAs and RNAs
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Fig. 4.1: To study gene expression alterations that are associated with DNA
copy number alterations, DNA and RNA can be extracted from the same
sample and hybridized on both the gene expression and CGH microarrays.
An example of a microarray experiment, where the data has been integrated
using an expression annotated copy number (ECN) tool for chromosome 11
is shown. This sample shows high-level amplication of 11q13. See Plate 2.

isolated from an identical tissue sample are hybridized on a gene expression and
CGH microarrays. The data can then be visualized by colour-coded copy number
plots, where the X-axis shows the genomic position of the probes on an array and
the Y-axis shows the copy number ratio. Red colour indicates over-expression in
which the gene belongs to the upper 7th percentile of the gene expression ratios
in the analysed sample (Fig. 4.1).
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Typically, one microarray experiment consists of dozens of samples and since
one microarray slide often contains thousands of genes, one microarray produces
enormous amounts of data. Therefore, bioinformatics has a central role in a
microarray experiment. Various commercial and custom-developed tools have
been developed to further analyse and visualize the microarray data. These tools
are discussed in more detail in the next section of this chapter in regard to
integration of copy number and gene expression data.

A number of studies integrating microarray-based copy number and gene
expression data have been published aiming at identification of genes whose
expression changes are associated with copy number alterations. In a study
by Wolf and co-workers, copy number and gene expression alterations were
integrated in four prostate cancer cell lines to map target genes for genetic rear-
rangements and to study the impact of copy number changes on gene expression
(Wolf et al., 2004). In this study, copy number and gene expression analysis was
performed on 16K cDNA microarrays including 11,600 cDNA clones mapping
across the genome as well as 4700 cDNA clones mapping to common cancer
amplicons. These regions included 2p23–p25, 5p, 8q, 10q21–q24, 11q12–q14,
12q13–q15, 17q11.2–q23, 20q, and Xcen–q13. The copy number data were also
compared to the data obtained from chromosomal CGH and in this study, 92%
of the amplifications and 82% of the deletions identified by chromosomal CGH
could be detected by array-based CGH. Additionally, a number of other regions
were identified that could not be identified using chromosomal CGH. Altogether,
10.6% of the amplified genes showed an increased gene expression ratio and 6.9%
of the genes with normal copy number ratio were up-regulated. On average, gene
amplification led to a 2.8-fold increase in over-expressed genes across the studied
samples. Similarly, gene deletions led to a 1.8-fold increase in under-expressed
genes as compared to genes with normal copy number, demonstrating that copy
number alterations (gains and losses) have significant impact on gene expression.

In another study by Järvinen and co-workers (Järvinen et al., 2006), an
integrated high-resolution microarray analysis of gene copy number and expres-
sion was performed for 20 laryngeal cancer cell lines and primary tumours to
identify genetic alterations that would play a key role in disease pathogenesis
and pinpoint genes whose expression is impacted by gene copy number alter-
ations. Integration of copy number data from array-based comparative genomic
hybridization with gene expression information from oligonucleotide microarrays
was performed using custom-developed CGH-Plotter (Autio et al., 2003), which
is described in detail later in this chapter. This study showed that copy number
alterations and especially high-level amplifications had a clear impact on gene
expression. Out of the genes that were in the highest copy number class (> 2),
39% showed over-expression in the cell lines and 18% in the primary tumours.
The impact of deletions on the reduced expression was less clear with 14% of
genes being under-expressed with copy number ratio of 0.7. Across the genome,
over-expression of 739 genes was attributed to gene amplification events in cell
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lines, with 325 genes showing this association in primary tumours. Integrating
the copy number and gene expression data also facilitated the identification of
putative targets for copy number alterations. For example, 11q13 amplification
is one of the most common highly amplified regions in head and neck cancer
and CCND1 is often considered as a target gene for this region. In a study by
Järvinen and colleagues, however, CCND1 was identified to be often amplified,
but not over-expressed in head and neck cancers. Instead, genes called FADD
and PPFIA1 were most highly amplified and over-expressed in this region and
the over-expression also correlated with increased protein level. Another highly
amplified region in head and neck cancer cell lines was at 12q14–21 which con-
tains a well-known oncogene, MDM2, that is a regulator of p53 and is often
amplified and over-expressed in epithelial cancers. In addition to MDM2, a num-
ber of other genes in this region were identified as amplified and over-expressed
demonstrating that further functional studies are required to determine the
target genes for this alteration (Fig. 4.2). The analysis of gene ontology and
pathway distributions further pinpointed biological processes and pathways that
are impacted due to copy number events. This study highlighted genes that may
be critically important to laryngeal cancer progression and suggested potential
targets for therapeutic intervention.

To identify which biological processes or pathways are activated due to
copy number events, a number of academic and commercial software packages
are available to study which Gene Ontology classes or pathways are enriched
in a studied data set, as discussed in more detail later in this chapter. For
example, a recent study by Myllykangas and co-workers demonstrated an asso-
ciation between over-expression and copy number gain for 657 genes, whereas
95 genes showed an association between under-expression and copy number loss
(Myllykangas et al., 2008). When these data were imported into the GeneGO
MetaCore pathway software, a number of pathways were shown to be acti-
vated by gene amplification. For example, biological pathways involved in signal
transduction, translation and ErbB-family signalling were enriched in the inte-
grated data demonstrating that a number of pathways involved in critical cellular
processes are activated due to copy number gains.

Integration of gene copy number and gene expression data has proven to be
useful in identification of genes that might be targets for copy number alterations
as well as putative targets for therapeutic interventions. A classical example
of such a drug target is HER2 (also known as ERBB2 ), which is amplified
and over-expressed in 10–30% of breast cancers and patients with this alter-
ation have particularly aggressive disease. Patients with HER2 amplification and
over-expression are treated with Herceptin antibody-based therapy that blocks
dimerization of ERBB2 with other ErbB-family members and prevents it from
transmitting growth signals to the cell. Due to the recent development of many
novel genome-wide technologies, it is likely that similar examples of therapies
targeting specific genetic alteration will appear also in the near future.
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Fig. 4.2: Gene-expression annotated copy number plot for head and neck squa-
mous cell carcinoma cell line. All the cDNA clones on array-CGH are arranged
on the X-axis according to their base-pair position in the genome. The Y-axis
shows the copy number ratio for each clone. If the ratio exceeds 1.3, the
gene is regarded as amplified and if it is below 0.7, the gene is regarded
as deleted. The color-coding indicates the gene expression ratio of each
gene on a microarray. Red indicates over-expression, whereas green indicates
under-expression. This figure illustrates that most of the genes in highly
amplified regions show increased gene expression ratio. Below the expres-
sion-annotated copy number plot are shown the corresponding high-resolution
copy number profiles for two highly amplified regions, 11q13 and 12q14-21,
using oligonucleotide array that consists of 185,000 oligonucleotides on a sin-
gle array. These views show that a number of genes are located in highly
amplified regions. See Plate 3.
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4.4 Analysis and integration of gene expression and
copy number data

A major objective for studies integrating high-throughput gene expression and
copy number data is to identify genes that are either amplified and over-expressed
or deleted and under-expressed since these can be attributed to cancer initiation
and progression.

In general, identification of amplified and over-expressed genes is easier than
that of deleted and under-expressed genes. The reason is that signal intensity
for an over-expressed or amplified gene can be very high, such as 216 for 16-bit
images, whereas for down-regulated or deleted genes the signal can be 0. That
is, for over-expressed or amplified genes the signal strength can be very high
compared to the noise level, and is relatively straightforward to detect. However,
the signal-to-noise ratio for a down-regulated or deleted gene can be low, and
creates challenges to separate the signal from the noise. As an exact model for
noise in microarray experiments is still an open problem, various signal processing
methods to tackle the noise issue may need to be applied when identifying under-
expressed or deleted genes.

4.4.1 Preprocessing

All microarray data should be carefully preprocessed before analysis. In this
section, we describe briefly standard preprocessing principles and methods. A
more detailed description of the methods is given in the microarray literature,
such as in Draghici (2003).

The exact preprocessing steps depend on the microarray platform and the
experimental design. For example, two-colour arrays require correction for dye-
bias between the two channels (Cy3 and Cy5) which is due to different chemical
properties of the two dyes (called dye-bias correction) and different dye emission
efficiencies and scanner laser voltage settings. The three major steps that are
common for all array platforms are: quality control, within-slide normalization
and between-slides normalization.

4.4.1.1 Two-colour microarray experimental design In a two-colour microar-
ray experiment one of the most important steps is to choose a reference sample
for the microarray experiment. One option is to use a universal reference, such as
a pool of different cancer cell lines. The idea of using a pool of cancer cell lines as a
reference sample is to have as many genes expressed as possible, so measurement
points can be theoretically obtained from a maximum number of features per
array. As each test sample is compared to the same reference sample, both the
experimental design and the data preprocessing are relatively straightforward.

From a statistical experimental design point of view the reference design may
not be as effective as more complicated designs, such as loop design and dye-
swap design (Kerr and Churchill, 2001). The more complex designs, however,
often require twice as many experiments as compared to the reference design.
To date, all studies integrating gene expression and copy number data from
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two-colour arrays have used a reference design and therefore we will only discuss
the reference design. A discussion of preprocessing data emerging from other
designs is given elsewhere (Altman and Hua, 2006).

4.4.1.2 Quality control A typical microarray experiment results in more than
one million data points. If only 0.1% of the data is erroneous, there will still be
over 1000 spurious values. As currently the error rates for microarray experi-
ments are much higher than 0.1%, the microarray data should always be quality
controlled before proceeding to further analyses. Quality control is particularly
important for studies integrating copy number and gene expression data due
to biological reasons. The range of intensities in copy number data is much
lower than with gene expression values. More than a 10-fold relative increase
in gene expression can often be identified between two conditions, whereas
such a high increase in relative copy number is uncommon even in tumour
samples.

The major objective for quality control is to identify features (or spots) that
are considered to be unreliable. Possible sources for unreliable spots are dust,
dye bursts, bleeding, or problems in microarray printing. Thus, quality control
is an important step to be employed to the scanned images.

The simplest quality control method is to use thresholds for signal intensity
and spot size. For example, a spot is flagged as unreliable if signal intensity in
both channels is below 100 fluorescent units, or the size of the spot is under 50
pixels (Hyman et al., 2002). These cut-offs depend on the microarray platform
and hybridization protocol. More sophisticated methods to automatically detect
bad quality spots from microarray images have been reported, for instance, by
Hautaniemi et al. (2003) and Zhang et al. (2004).

After the quality control step, the microarray data can be represented as a
matrix. Let the gene expression data matrix be Eq ∈ R

m×M and the copy number
data matrix be Cq ∈ R

n×N , where the subscript q denotes quality controlled, m
and n the numbers of genes in the gene expression and copy number experiments,
respectively; and M and N the number of samples in the gene expression and
copy number experiments, respectively.

4.4.1.3 Within-slide normalization Within-slide normalization methods aim
to ensure that the values in each column in the quality controlled data matri-
ces Eq,Cq are comparable. The major sources for variation of the values in a
microarray experiment include the following: Variation of the amount of DNA in
the spots on a microarray (in cDNA microarrays), systematic variation in print-
ing pin groups (print-tip bias), and unequal background intensity of the scanned
microarray.

In two-colour microarray experiments, the signal intensity from the test sam-
ple is divided by the intensity of the control sample and the downstream analyses
are carried out using logarithmically transformed ratios (log-ratios). Formally,
the within-slide normalized ratio for the ith gene on a microarray is obtained
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with the equation:

ri =
It
i

φ · Ir
i

, (4.2)

where It
i and Ir

i are again the test and reference signal intensities, respec-
tively, and φ is a normalization factor that is to be estimated by a within-slide
normalization method.

Various sources of noise can severely twist the ratio distribution. The basic
assumption behind normalization methods is that the expected ratio distribution
for microarray data (after taking logarithm) is symmetric with zero mean. The
normalization can be performed for example using within-slide normalization
with housekeeping genes that are assumed to be constantly expressed in all
of the cells. Therefore, the housekeeping normalization method would use the
housekeeping gene values to correct all the other values on the microarray (Chen
et al., 1997).

Since the expression of housekeeping genes may vary depending on different
tissues, a common approach to perform within-slide normalization is to apply the
local weighted scatterplot smoother (LOWESS) method to the overall intensity,
Ai = log2(

√
It
i · Ir

i ), vs. the logarithm of the ratio, Mi = log2(It
i/I

r
i ), scatterplot

(Yang et al., 2001). The (A,M )-scatterplot may reveal artefacts not visible when
plotting signal intensities for red and green channels against each other. The
LOWESS method consists of four parameters, from which the fraction of data
points used in local regression (f ) is the most influential. The parameter f ∈
[0, 1], and if f is small the correction is dramatic, whereas a large f produces a
small correction. An optimization method to systematically assess the f value is
introduced by Berger et al. (2004).

4.4.1.4 Between-slides normalization Between-slides normalization is per-
formed after within-slide normalization to ensure that the values across different
experiments are comparable. Possible sources causing variation between the
microarray experiments include biological and technical variation. In some cases,
there can also be variation between microarray slides (batch variation).

The between-slides normalization methods are dependent on the purpose of
the study. In studies integrating gene expression and copy number values, it is
often enough that the ratios are log-transformed, and minimum, maximum and
mean log ratios are in the same range across different experiments. Usually gene
expression data and copy number data are normalized separately. The input for
the within-slide and between-slides normalization are Eq,Cq. After normaliza-
tion, we denote the ratio matrices that are quality controlled, within-slide and
between-slide normalized as E ∈ R

n×N ,C ∈ R
m×M . The matrices E and C are

used in downstream analyses and may contain missing values.

4.4.2 Identifying amplified and deleted regions from array-CGH data
A fundamental question in the analysis of high-throughput CGH data is to iden-
tify regions that are amplified or deleted. This question, however, is non-trivial
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to solve mainly due to the following reasons. Firstly, highly amplified or deleted
single probes are of lesser importance as compared to several modest ampli-
fied or deleted probes in the same chromosomal region, rendering methods that
test directly single probes inefficient. Secondly, size and amplitude of ampli-
fied/deleted regions vary from cancer to cancer. For example, in some cases,
amplified regions can be very narrow and amplification may be followed by a
deletion; whereas in some other cases, the aberrant regions may be very large,
comprising whole chromosome arms. Thirdly, cancers are heterogeneous and
often only a subset of samples shares an amplification or deletion. Therefore,
simply taking a mean or median of the CGH data across the samples may hide
regions that are rare but potentially clinically important for a subset of samples.

There exists a plethora of computational methods to identify deleted or
amplified regions in different conditions ranging from fairly straightforward mean
filtering (Pollock, 2002) to mathematically more elaborated methods such as
dynamic programming and hidden Markov models (Autio et al., 2003; Fridlyand
et al., 2004). Notwithstanding the method that has been used to identify ampli-
fied and deleted regions, in studies where array-CGH and gene expression data
are to be integrated, CGH data are often transformed to nominal variable type
(class labels), such as ‘−1’ for deletion, ‘0’ for baseline (no-change) and ‘1’
for amplification. This dimension reduction greatly facilitates the integration
of array-CGH and gene expression data. In the data mining literature this kind
of dimension reduction is known as segmentation.

Due to the large number of methods to analyse array-CGH data, Lai and
colleagues conducted a comparison study of 11 different CGH data analysis algo-
rithms (Lai et al., 2005). They used receiver order characteristic (ROC) analysis
to estimate the true positive rate against false positive rate. The overall conclu-
sion is that segmentation based algorithms (Olshen et al., 2004; Picard et al.,
2005) perform consistently well. Recently, Lai and colleagues developed a web-
based aCGH data analysis package that allows method developers to both test
the existing tools and develop novel methods for aCGH data analysis (Lai et al.,
2008).

Taken together, the array-CGH data analysis step results in a segmented
CGH data matrix Cs ∈ {−1, 0, 1}n×N . An example of CGH data and CGH-
Plotter analysis is shown in Fig. 4.3 for chromosome 1 in prostate cancer cell line
PC3. The figure shows three narrow but clear amplifications and large deletion
between two amplifications.

4.4.3 Statistical approach to integrate gene expression and array-CGH data

In a typical study, where gene expression and CGH data are integrated, the goal
is to identify genes whose expression alteration is associated with the gene copy
number change. Therefore, standard statistical data analysis tools for identifying
differentially expressed genes (DEGs) are of little use in integrative analysis for
gene expression and copy number data. A highly expressed gene with high-fold
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Fig. 4.3: An example of CGH data (grey lines) analysis for chromosome 1 in
prostate cancer cell line PC3. The x-axis denotes cumulative base-pairs and
the y-axis normalized ratios. The thick solid line is a result from CGH-Plotter
analysis (Autio et al., 2003) and crosses denote missing values. The figure
illustrates three narrow amplified regions and large deletion between two
amplicons in 1.7 × 108–2 × 108 base-pairs.

change or statistical significance for differential expression without amplification
in CGH data should not make it to the top list after the integration analysis.

The simplest approach to identify amplified and over-expressed or deleted
and down-regulated genes is to correlate CGH data directly to the gene expres-
sion data. In such approaches a sliding window over CGH and gene expression
data can be used and correlations between the values inside this window are
calculated. Chromosomal regions and genes that show high correlation can then
be examined in a more detailed fashion. Cancers are heterogeneous and it is not
assumed that a gene would be over-expressed and amplified across all samples.
Thus, correlation based analyses may not detect genes that share high correla-
tion only in a small subset of samples. Genes being altered only in a subset of
samples may still be biologically relevant.

The first systematic approach to integrate gene expression and CGH data
so that also subsets of samples are taken into account is introduced in (Hyman
et al., 2002; Hautaniemi et al., 2004). This approach assumes that the CGH
and gene expression levels are measured from the same sample. That is, the ith
sample in the normalized gene expression ratio matrix E is the same sample as
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the ith sample in the normalized CGH data ratio matrix C. This implies that
N = M and if a gene is not measured on a gene expression or CGH microarray,
such values are treated as missing values. Analysis to identify amplified and over-
expressed genes is run separately from identifying deleted and down-regulated
genes.

After preprocessing the gene expression data, the aCGH ratio data are con-
verted to nominal values (class labels) as described in Section 4.4.2. These labels
are used to divide the gene expression values into two classes: amplified and
not-changed (deleted and not-changed) depending on the labels. Then, a weight
value (w) for each gene on the microarray is computed:

w =
m1 − m0

σ1 + σ0
, (4.3)

where m1 is the mean of the gene expressions for amplified samples based on
the labels (similarly for deleted samples), m0 is the mean of the gene expression
values belonging to no-change category based on the CGH data, σ1 is the stan-
dard deviation of the gene expression values for amplified samples and σ0 the
standard deviation for no-change expression values. When identifying deleted
and under-expressed genes m1 and σ1 are replaced by m−1 and σ−1. Further
details are discussed in Hautaniemi et al. (2004).

The weight value (w) is large when amplified (deleted) and gene expression
values are clearly distinct from the ‘no-change’ gene expression values, and vari-
ation in both classes is small. Due to the sum of the standard deviations in the
denominator, eqn (4.3) may rank high genes with extremely similar expression
values across all the samples. As these genes are not of interest, a statistical
measure called the α-value is computed for each gene. The α-value tells the
probability that the null-hypothesis ‘large weight is due to a random event’ is
erroneously rejected. Statistical computations are done using a permutation test,
where the labels are randomly permuted and the weight is computed for the per-
muted class labels with eqn (4.3). If the randomly permuted weight is greater
than or equal to the original weight, then a counter is incremented by one. The
counter is divided by the number of permutations. For instance, if 10,000 per-
mutations are run and the randomly permutated weight was 100 times greater
than or equal to original weight, the α-value is 100/10000 = 0.01.

After the permutation test, each gene receives weight and significance val-
ues. The genes with the highest weight and the lowest α-value are the most
likely candidates to have over-expression (down-regulation) due to amplification
(deletion). A schematic of the approach is given in Fig. 4.4.

4.4.3.1 An application of the statistical approach to integrate gene expression
and array-CGH data The statistical approach to combine CGH data with
gene expression values has been applied to the analysis of several cancer types,
including neuroblastoma, pancreas, breast, gastric, prostate, and head and neck
cancers. The statistical integration of CGH data and gene expression values does
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Fig. 4.4: Flow diagram for integration of CGH and gene expression data. First,
the data are preprocessed. Second, CGH data are analysed in order to identify
amplified, no-change and deleted regions. For each gene the analysis results in
class labels indicating whether the gene is amplified, deleted or not changed
in a particular sample. The labels are used to divide gene expression data
into amplified (deleted) vs. no-change groups. Third, a weight for each gene
is computed with eqn (4.3). Fourth, a permutation test is used to compute
the α-value that tells the probability that the null-hypothesis ‘large weight is
due to a random event’ is erroneously rejected. The result of the integrative
analysis is a list of prioritized genes whose expression changes are likely due
to copy number variation. These genes are then annotated with, for instance,
pathway and Gene Ontology analysis.

not require non-cancerous reference samples, although if such are available they
can be used to form the ratios as described in eqn (4.1). As each weight value is
associated with α-value that is computed with a permutation test, the minimum
number of samples is five. Further, as the labels for CGH data are permuted,
genes that are amplified or deleted in all samples still get α-value of zero regard-
less of their gene expression values. Thus, an analyst needs to manually check
expression levels for genes that are amplified or deleted in all samples. Typically
the number of such genes is small (<30 genes). The statistical approach tolerates
missing values well as long as the number of samples with non-missing values for
genes having both gene expression and copy number measurement is at least five.

Equation (4.3) and associated α-value were applied for integration of CGH
data and gene expression values for the first time by Hyman et al. (2002). The
authors used 14 breast cancer cell lines whose CGH and gene expression levels
were measured for 13,000 genes using cDNA two-colour microarrays. The anal-
ysis resulted in 270 genes that are both amplified and over-expressed in breast
cancer. This gene set includes several genes that have been previously described
as breast cancer genes as well as novel candidates, such as the HOXB7 gene,
whose amplification was identified to be clinically associated with poor patient
prognosis.
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Hyman et al. (2002) used a 5% threshold to determine amplified genes from
the CGH data. That is, the highest 5% of the values in C are labelled with ‘1’
and the rest with ‘0’. Note that the objective was to identify amplified and over-
expressed genes, so also deleted CGH values are labelled with ‘0’. Even though
the use of such a threshold yielded biologically relevant results, the analysis
would probably benefit from a more systematic way to identify amplified genes
from CGH data. Thus, a re-analysis of the same 14 breast cancer cell lines
was carried out to identify amplified genes using CGH-Plotter (Autio et al.,
2003) as described by Hautaniemi et al. (2004). The re-analysis resulted in 92
genes that were both amplified and over-expressed in breast cancer. This set
included previously described breast cancer genes and several novel candidate
genes, including HOXB7. The main reason for the differences between these two
resulting gene lists is in the labelling step. In the re-analysis, criteria for a gene
to be considered amplified were more stringent that in the original study.

4.4.4 Data reduction model approach to integrate gene expression and
array-CGH data

Methods that segment the array-CGH data prior to integrating the CGH data
to gene expression levels have resulted in impressive results, but suffer from
high dependency on the segmentation step. Segmentation of noisy CGH data
is a non-trivial endeavour, and a user needs to adjust several parameters that
often determine the performance of the integration analysis. Given the high het-
erogeneity between, for example, different cancers, array platforms and sample
materials, proper tuning of the segmentation parameter is challenging.

CGH data segmentation is often laborious and error prone, so alternative inte-
grative approaches that do not apply segmentation to the CGH data have been
suggested. First a systematic approach to integrate gene expression and CGH
data without segmentation is the data reduction model approach suggested in
Berger et al. (2006). The basic idea behind this approach is to iteratively decom-
pose both gene expression and CGH data using the generalized singular value
decomposition (GSVD) relying on singular value decomposition (SVD). SVD
is a factorization method in linear algebra and it has been used successfully in
numerous applications. For example, in principal component analysis the SVD is
generally used as a numerically stable way to compute the principal components.

Assume a preprocessed gene expression matrix E = [e1, . . . , eM ]. The SVD
theorem (Golub and Loan, 1996) states that there exists orthogonal matrices

U = (u1, . . . ,um) ∈ R
m×m

and

V = (v1, . . . ,vM ) ∈ R
M×M

such that

UTEV = diag(σ1, . . . , σM ) ∈ R
m×M

where σ1 ≥ σ2 ≥ · · · ≥ σM ≥ 0 are the singular values.
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Assume further a preprocessed copy number ratio matrix C = [c1, . . . , cM ].
Note that here we assume that the number of samples in the gene expression
matrix is identical to the number of samples in the copy number ratio matrix,
i.e., M = N . The GSVD theorem (Golub and Loan, 1996) states that for E and
C there exist orthogonal matricesU ∈ R

m×m andV ∈ R
n×n, and a non-singular

matrix X ∈ R
M×M such that

UTEX = diag(α1, . . . , αM )

and

VTCX = diag(β1, . . . , βp)

where p = min(n,M), αi ≥ 0 for 1 ≤ i ≤ M and βi ≥ 0 for 1 ≤ i ≤ p. In practice
the number of samples is much less than the number of genes on the microarray,
so usually p = M .

In order to apply the GSVD theorem to gene expression and copy number
data integration, a more general formulation of the GSVD theorem for two matri-
ces having the same number of columns is needed. After algebraic manipulations
(details are given in Berger et al., 2006) the equation for the matrix pair E
and C is

β2i E
TExi = α2

iC
TCxi,

where xi is a generalized singular vector and represents the ith column of an
invertible, but not necessarily orthogonal, matrix X. The generalized singular
values are the quotients αi/βi.

Let r = rank
(
E
C

)
− rank(C), s = rank(E) + rank(C) − rank

(
E
C

)
and

t = rank
(
E
C

)
. Now, from the generalized singular values, r is infinite, s is finite

and non-zero, and t − r − s is zero. The matrix X serves as a link between the
input data E and C. Accordingly, projecting the input data onto the columns
of X can lead to biological interpretations based on the chosen direction of the
projections of the corresponding αi and βi.

4.4.4.1 ‘Steerable gene shaving’ procedure with the GSVD Traditionally in the
SVD-based analysis, the original data are projected on a lower-dimensional sub-
space spanned by the eigenvectors, and clusters that are tight and separated
from other clusters are identified.

In the so-called ‘gene shaving’ approach the genes are iteratively projected
on the eigenvector that corresponds to the largest singular value and thus the
highest variation in the original data. The ‘gene shaving’ procedure with the
SVD results in a nested set of clusters based on how much the values vary in
the data.

When the GSVD framework is used in the ‘gene shaving’ approach, the ‘shav-
ing’ is done in a ‘steerable’ fashion based on the chosen direction of the projection.
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As α2
i + β2i = 1 for i = r+1, . . . , r+ s, there is an angle θi such that αi = cos θi

and βi = sin θi. Thus, we can write σi = (1 + tan θi)/(1 − tan θi), and in some
cases we may use the angle θi to represent either a generalized singular value
pair or a generalized singular value (Berger et al., 2006). The angular distance
between E and C is given as:

θi = arctan
(
αi

βi

)
− π/4.

The angular distance indicates the relative significance of the ith gene-space
projection between the data sets. An angular distance of 0 represents the case
where genes are of equal significance in both data sets. An angular distance of
+π/4 indicates that there is no significance in the second data set (e.g. C) as
compared to the first (e.g. E), and vice versa for −π/4. Thus, the most interesting
cases are θmin, θmax and θ ≈ 0.

When the iterative ‘steerable gene shaving’ procedure is used to integrate
gene expression and CGH data, the input set at each iteration is projected onto
the column of X that corresponds to the direction of the highest variance for
both inputs (determined by θi). In general, a fraction η (e.g. 90–95%) of the genes
from E and C are retained. The iteration is repeated until the number of genes
is greater than or equal to the number of samples. After iterations the ‘steerable
gene shaving’ procedure does not result in a single gene but a fraction, such as
the top 5–10% highest variant genes, for further annotation (Berger et al., 2006).

4.4.4.2 An application of the data reduction model approach to integrate gene
expression and array-CGH data The ‘steerable gene shaving’ approach has been
applied to the same 14 breast cancer cell lines as in Section 4.4.3.1 by Berger et al.
(2006). The overlap between the genes identified with ‘steerable gene shaving’
and the statistical approach was 83%.

The performance for the ‘steerable gene shaving’ approach is strongly depen-
dent on the quality of the data and proper preprocessing and transformations
are needed prior to analysis. Thus, the GSVD is extremely sensitive to missing
values. Thus, prior ‘steerable gene shaving’ the missing values should be either
imputed or the corresponding genes discarded. A MATLAB implementation of
the ‘steerable gene shaving’ approach is given in the supplement material for
Berger et al. (2006).

4.4.5 Interpolation
If the gene expression values are obtained from different microarray formats as
compared to the CGH data, the ith gene in the normalized expression data
matrix E is not the same as the ith gene in the normalized CGH data matrix
C. For the integrative analysis, it is important that the genes are in the same
order. A solution is to interpolate either copy number or gene expression values
from the data and impute these genes and values to the data matrices.

In general, interpolating copy number data points is biologically relevant,
since the copy number ratio of a gene is influenced by the copy numbers of the
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genes located in the close vicinity. Therefore, a gene can be amplified with no
biological reason due to the fact that a driver gene in the amplicon that promotes
growth advantage to cancer cells is located next to this gene. Thus, for a gene
having a gene expression value but not a copy number value, the interpolation
could be done by giving the adjacent probes the same class label and imputing
this label to the gene not having an original copy number measurement. If the
adjacent probes have different labels it is challenging to estimate the label, and
typically such a gene is discarded from the analysis. The same applies with the
genes having copy number measurement but not gene expression value.

4.4.6 Gene annotation

Analysis for array-CGH and gene expression data typically results in a list of
approximately a couple of hundred genes whose expression levels are influenced
by copy number. A typical follow-up in silico analysis after identification of sta-
tistically significant genes with association of copy number and gene expression
data is to link the resulting genes to biological processes and pathways.

Annotation methods are based on biological databases, such as Gene Ontol-
ogy and pathway databases. Pathway analysis is covered in Chapters 6 and 7 in
this book, and is not discussed here.

Gene Ontology (GO) is an organized framework for storing localization, inter-
action and functional data for genes (Ashburner et al., 2000). The main objective
for a GO analysis is to identify the function of a gene product. GO is a directed
acyclic graph where the root node (Gene Ontology) is followed by three major
categories: molecular function, biological processes, and cellular component. Each
node in the GO graph can have five types of relations to its parents. The two
most often used are the ‘is a’ and ‘part of’ relations. The ‘is a’ relation means
that a child node is a subclass of the parent node, whereas the ‘part of’ rela-
tion means that a child node is a constituent of the parent node. For example,
the GO term chromosome is in the part of relation to the term nucleus, but
mitochondrial chromosome is in the is a relation to the term chromosome.

There exist several GO analysis methods to conduct annotation analysis, such
as statistics based (Zeeberg et al., 2003), combinatorial (Joslyn et al., 2004) and
information theoretic (Tao et al., 1999). These methods can be used to identify
biological processes or pathways that are enriched or repressed in the studied
data set. This information can be used to prioritize genes and formulate new
experiments to validate the relevance of the genes in cancers.

4.5 Conclusions

Microrrays provide high-resolution information about cancer genome and tran-
scriptome. During the last 10 years, microarrays have been extensively applied to
identify genome-wide copy number and gene expression signatures that are asso-
ciated to particular pathophysiologies in cancer. Gene expression profiling has
revealed novel diagnostic and prognostic subgroups and similarly, occurrence of
particular genetic aberrations such as amplifications and deletions have classified
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tumours into specific biological or clinical subgroups. However, the influence of
the somatic genetic alterations on gene expression levels have remained largely
unknown until recently, when the direct integration of copy number and gene
expression levels by microarrays have highlighted the impact of gene copy number
alteration on gene expression. Microarrays have significantly facilitated integra-
tion of CGH and expression data by focusing on genes having altered expression
due to copy number changes.

Computational methods to analyse high-throughput gene expression and
copy number data are crucial in finding cancer relevant genes. The majority of the
current work has been focused on developing methods that are able to identify
amplified and over-expressed genes. Finding deleted and under-expressed genes
is extremely important in cancer research, but currently available tools often
have problems to identify such genes in a reliable manner, mainly due to the
small signal-to-noise ratio. Further, several cancers have distinct characteristics,
such as small copy number alterations, and to systematically detect biologically
relevant regions without compromising the false positive rate is a real challenge
to be addressed. Another important approach is to develop methods to further
annotate the genes identified from analysis via GO or pathways so that most
likely cancer-relevant genes are prioritized. Taken together, gene copy number
variation causing alterations to the expression level is highly relevant in cancer
genetics. Genes detected from such integrative analysis enable prioritization of
the microarray data and pinpoint potential therapeutic target genes, whose role
in tumorigenesis can be followed further with functional assays.
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ANALYSIS OF DNA METHYLATION IN CANCER

Fabian Model, Jörn Lewin, Catherine Lofton-Day and Gunter Weiss

5.1 Introduction

Sequencing genomic DNA gives the blueprint for all possible types of cells in an
organism and determines the sequences that can be transcribed into mRNA and
translated into proteins. RNA expression and protein analysis give a snapshot
of a particular cell state at one point in time. In addition to DNA sequence
information, which is constant for an individual, and the levels of generated
mRNAs and proteins which vary for every cell and over time, complex organisms
have another epigenetic layer of information.

The term epigenetics defines all meiotically and mitotically heritable changes
in gene expression that are not coded in the DNA sequence itself. Epigenet-
ics can, for instance, explain why the different cell types of an organism share
identical DNA sequences but show broad morphological and functional diversity.
Methylation of DNA is the most extensively studied of epigenetic mechanisms,
and is associated with a wide range of critical biological processes. In particular
it plays a fundamental role in the development of cancer.

5.1.1 DNA methylation biology
DNA methylation in vertebrates is a chemical modification of the cytosine
nucleotide in which the 5-carbon position is enzymatically modified by the
addition of a methyl group, such that cytosines can occur in a methylated or
unmethylated state. In human DNA, methylation of cytosines occurs almost
exclusively in the two-base palindromic sequence of cytosine followed by gua-
nine, so-called CpGs.1 Within a single human cell the methylation of most CpG
loci can have three states: 0% homozygote unmethylated, 100% homozygote
methylated or 50% heterozygote methylated.

The CpG dinucleotide is underrepresented in the human genome, likely
because methylated cytosines are prone to deamination producing thymine,
resulting in a G/T mismatch. This mutagenic property is postulated to have
driven CpG depletion during evolution. Most of the CpG dinucleotides in the
human genome are methylated (between 60 and 70%). However, CpG rich clus-
ters of between three hundred and several thousand base pairs, so-called CpG
islands, are found close to the 5′ regulatory regions of many genes and are gener-
ally not methylated. CpG islands that have a majority of their CpG dinucleotides

1CpG means Cytosine, phosphate bound, Guanine. The sequence is palindromic: it is
identical to its reverse complement.
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unmethylated are referred to as hypomethylated whereas islands with a majority
of methylated CpGs are called hypermethylated.

Hypermethylation of a CpG island is usually associated with transcriptional
silencing of the neighbouring gene. The symmetrical addition of the methyl group
changes the appearance of the major groove of the double helix and directly
influences transcription by altering the binding of sequence specific transcrip-
tion factors, repressors, and insulators (Ehrlich, 2003). An indirect reinforcement
of the transcriptionally silent state is mediated by proteins that can bind to
methylated CpGs. These proteins, which are called methyl-CpG binding pro-
teins, recruit histone deacetylases and other chromatin remodelling proteins that
can modify histones, thereby forming compact, inactive chromatin termed hete-
rochromatin (Hendrich and Tweedie, 2003). However, methylation does not cause
transcriptional silencing in every case. When a negative regulatory element such
as a silencer is hypermethylated expression of the associated gene can actually
increase.

DNA methylation has been shown to play a key role in the following genetic
mechanisms: tissue differentiation, silencing of repetitive elements and endoge-
nous transposons, X chromosome inactivation in females, inactivation of one
allele in parent-of-origin specific manner (imprinting), and interaction between
gene activation and environment.

DNA methylation is maintained and propagated to new cell generations by
DNA methyl transferases (DNMT). The exact mechanism of how methylation
patterns are initially established during implantation of the zygote and later
regulated is still unknown. However, one can observe that methylation states
of adjacent CpG dinucleotides are highly correlated and that methylation sig-
natures of different cell types vary in co-methylated blocks of a few hundred
base pairs (Eckhardt et al., 2006). This observation implies that mechanisms
for methylation and de-methylation address whole blocks of co-methylated CpG
dinucleotides which are likely associated with one biological function.

5.1.2 DNA methylation in cancer

DNA methylation plays an important role in several human diseases but is
probably most extensively studied in cancer. In virtually all types of human
carcinoma dramatic changes of DNA methylation patterns have been reported
for tumours compared to normal tissues. The most common alterations are
a genome wide hypomethylation and gene specific hypermethylation. Genome
wide hypomethylation mainly affects repetitive sequences in satellite DNA and
centromeres causing a general loss of genome stability.

Silencing of tumour suppressor genes by promoter hypermethylation usually
affects genes involved in DNA repair, detoxification, cell cycle regulation, or
apoptosis (Jones and Baylin, 2002). Knudson’s two hit hypothesis postulates
that for the development of a malignant cell both alleles of a tumour suppressor
gene have to be inactivated. Promoter hypermethylation leading to gene silencing
can be one of those hits. Together with other events like mutation or loss of



104 Analysis of DNA methylation in cancer

heterozygosity (LOH) promoter hypermethylation can completely deactivate a
tumour suppressor gene and cause malignancy of a cell (Grady et al., 2000).

Since in contrast to genetic mutations, epigenetic alterations of tumour DNA
are potentially reversible they could be interesting targets for future therapeu-
tics (Egger et al., 2004). An application of DNA methylation that is realizable
in the near future is the development of biomarkers for diagnosis of cancer. In
particular the hypermethylation of specific tumour suppressor genes has con-
siderable advantages compared to tumour markers based on analysis of somatic
mutations, mRNA expression or proteins: (1) Promoter hypermethylation occurs
early in tumorigenesis and can be specific for certain tumour types. (2) Hyper-
methylation of certain genes does not exist in normal cells. For these markers
hypermethylation is a distinct qualitative and specific sign of malignancy and can
be detected in a background of normal cells with high sensitivity. (3) Compared
to mRNA and protein measurements methylation patterns are very stable over
time. (4) Methylation can be quantified in relation to the total amount of DNA.
This enables easy comparison between different measurements. (5) In contrast
to somatic mutations (such as single nucleotide polymorphisms (SNPs)) DNA
methylation signals occur at distinct and well defined genomic locations.

Therefore DNA methylation analysis can be used for a variety of applications
in cancer diagnosis. One is the classification of tissue samples taken either from
a biopsy of a suspicious lesion or from a surgically removed tumour (Adorjan
et al., 2002). Typical diagnostic questions that have to be answered based on
these tissue samples are: (1) Malignancy – Is the tumour benign or malignant?
(2) Prognosis – How aggressive is the tumour? Will the patient have a relapse
after surgery? (3) Prediction of therapy response – How will the tumour respond
to a certain treatment? Is a particular chemotherapy necessary?

Technically, fresh frozen or paraffin embedded tissue samples are the optimal
source material for methylation analysis since they provide sufficient amounts
of DNA that comes almost completely from the tumour tissue of interest. The
disadvantage is that these samples usually require an invasive procedure that
carries a certain risk, is unpleasant for the patient and of course that the tumour
has to be actually diagnosed and located.

Another application of DNA methylation analysis is the detection of cancer
in remote samples. Due to their uncontrolled growth and high rate of cell necrosis
tumours can shed relatively high amounts of their DNA into body fluids such as
blood or urine. By using sensitive detection methods that can identify methylated
tumour DNA biomarkers in an excess of normal DNA, it is possible to diagnose
cancer based on a simple blood or urine test (Lofton-Day et al., 2008). This kind
of analysis does not require an invasive procedure, is very convenient for the
patient, and therefore promises a high compliance in screening programs aimed
at asymptomatic populations.2

2A disease is asymptomatic when the patient does not experience any noticeable symptoms.
This is typical for early stage cancers. They can only be diagnosed by systematically screening
an entire population, including a vast majority of healthy individuals.
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A third application of DNA methylation in cancer diagnostics is the identifi-
cation of patients that are at risk of developing a cancer over the course of their
lives. This kind of predisposition can be caused by a loss of imprinting (LOI).
An example is the gene Insulin Growth Factor II (IGF2) that is usually methy-
lated on the maternal allele, resulting in expression of only the paternal allele.
The loss of maternal imprinting is found in children with Wilm’s tumours and
it has been shown that loss of IGF2 imprinting increases the risk of developing
colorectal cancer. Since LOI is a defect that arises during germline development,
it is present in all patient cells and can be conveniently detected in blood (Cui
et al., 2003).

5.1.3 Overview
In the following sections we will give a short overview of technologies used for
measuring DNA methylation and discuss how it can be quantified. We will take
a more detailed look at data pre-processing algorithms for two of the most com-
monly used high-throughput measurement technologies: direct bisulphite DNA
sequencing and DNA methylation microarrays. Then we will show some typical
examples for DNA methylation data analysis in cancer research: the classification
of tissue samples, the detection of cancer in plasma samples, and the prediction
of tumour recurrence. Finally we will give a short summary and conclusions.

5.2 Measuring DNA methylation
All of the technologies used for measuring DNA methylation originate either from
DNA sequence or mRNA expression analysis. However, the technology transfer is
not trivial. In contrast to the basic sequence of the DNA, its methylation patterns
vary from cell to cell. This makes methylation analysis of tissue or body fluid
samples inherently quantitative. On the other hand DNA methylation patterns
are limited to a finite number of CpG methylation state permutations within the
given set of cells. In contrast to expression analysis the concentrations of these
sequence variants are very much constrained since they are merely proportions of
the total DNA in the sample. Due to these fundamental differences the respective
technologies and the interpretation of the raw measurement values have to be
substantially modified.

5.2.1 Measurement technologies
For the analysis of DNA methylation, sensitive and quantitative methods are
needed to detect even subtle changes in the degree of methylation, as biological
samples often represent a heterogeneous mixture of different cells, e.g. tumour
and non-tumour cells. A variety of techniques for the study of DNA methy-
lation have been developed over the last few years (Fraga and Esteller, 2002;
Laird, 2003). All methods have different advantages and disadvantages with
regard to quantitative accuracy, sensitivity, genome coverage and precise investi-
gations of individual CpG positions (see Fig. 5.1). Therefore the choice of method
mainly depends on the desired application. DNA methylation measurement tech-
niques can be roughly classified into methods analysing the total amount of
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A2 BA1

Fig. 5.1: Principles of DNA methylation analysis. A genomic DNA sample usu-
ally consists of a heterogeneous mix of DNA molecules derived from many
different cells. In this figure, each horizontal bar represents an entire dou-
ble stranded haploid genome. Eight such haploid genomes are aligned above
each other. Circles represent cytosine residues in the context of CpG dinu-
cleotides on the top or bottom strand of the DNA double helix. Methylated
cytosines are represented by black circles, unmethylated cytosines by grey cir-
cles. DNA methylation analysis methods measure either each individual CpG
methylation status (cloned bisulphite sequencing), the proportion of methy-
lated cytosines at one CpG position, e.g. the relative number of black dots in
columns A1 and A2 (methylation sensitive restriction methods, direct bisul-
phite sequencing, MeDIP), the proportion of specific cytosine methylation
patterns at one set of CpG positions, e.g. the relative number of completely
methylated black blocks in columns B (MSP, bisulphite microarrays), or
the overall amount of cytosine methylation, i.e. the total number of black
dots (global methylation analysis). Note that the methylation proportion
estimates for columns A1 and A2 are identical even though the respective
methylation events occur in different cells.

methylcytosine in a sample, methods based on enrichment of methylated DNA
by immunoprecipitation, methods based on methylation sensitive enzymatic
digestion of genomic DNA, and methods relying on bisulphite conversion.

One of the most widely used techniques for the monitoring of global changes
in methylation levels is HPLC following a quantitative hydrolysis of the DNA
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sample to single nucleotides. Increased sensitivity with smaller amounts of DNA
can be achieved by capillary electrophoresis or mass spectrometry. In situ
hybridization methods with methylcytosine specific antibodies can be used to
specifically target methylated sequences allowing detection of methylation on a
cell to cell basis. However, since global methylation analysis is per definition
completely unspecific with regard to genomic location it is not usable for most
diagnostic purposes.

Methylcytosine specific antibodies can also be used in combination with
an immunocapturing approach to measure methylation at specific CpG posi-
tions within the genome. When the genomic DNA is randomly sheared and
immunoprecipitated to enrich for methylated DNA fragments (methylated DNA
immunoprecipitation, or MeDIP), the methylation rate at a specific CpG posi-
tion can be determined, e.g. by hybridization of the enriched DNA to a DNA
tiling microarray (Weber et al., 2005).

Traditionally methylation patterns have been analysed by digestion of
genomic DNA with methylation sensitive restriction endonucleases and subse-
quent detection by Southern blotting or PCR amplification. A variety of methods
have been developed that use the restriction digest of DNA with methylation
sensitive enzymes to compare genome wide methylation patterns between two
samples or two pools of samples. Prominent examples are restriction landmark
genomic scanning, CpG island amplification, methylation sensitive arbitrarily
primed PCR and differential methylation hybridization (DMH) (Yan et al.,
2000). The DMH methodology in combination with high-density single colour
DNA microarrays can also be used for an absolute quantification of methylation
rates on a genome wide scale (Lewin et al., 2007). The fundamental limitation
of all these methylation sensitive restriction enzyme based technologies is their
dependence on the presence of restriction sites in the sequence containing the
CpG sites of interest.

The introduction of sodium bisulphite conversion of genomic DNA has revolu-
tionized the field of DNA methylation analysis. Bisulphite treatment of genomic
DNA samples results in the hydrolytic deamination of non-methylated cytosines
to uracils, while methylated cytosines are resistant to conversion. After PCR
amplification the methylation status at a given position is manifested in the ratio
C (former methylated cytosine) to T (former non-methylated cytosine) and can
be analysed as a virtual C/T polymorphism in the bisulphite treated DNA.

A commonly applied method for the assessment of the methylation status is
either direct sequencing or sequencing of subclones of bisulphite treated DNA
(Frommer et al., 1992). It is so far the only method that allows a thorough analy-
sis of multiple, closely neighbouring CpG positions. Cloned bisulphite sequencing
can be regarded as the gold standard of methylation analysis since it enables the
measurement of the methylation status of every individual CpG dinucleotide in
a sample (see Fig. 5.1). However, cloning is extremely labour intensive and costly
and thus not suitable for large numbers of samples or genomic locations. Direct
bisulphite sequencing can be used to measure the proportions of methylated CpG
dinucleotides at a specific location and is an efficient alternative.
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A high throughput method for bisulphite based methylation measurement is
hybridization of bisulphite converted DNA onto microarrays (Adorjan et al.,
2002; Bibikova et al., 2006). In this technology selected genes are amplified
by multiplex or universally primed PCR from bisulphite treated DNA, fluores-
cently labelled and hybridized onto a microarray with specific oligonucleotides.
Each of these detection oligonucleotides is designed to hybridize to the bisul-
phite converted sequence around a specific CpG site which was originally either
unmethylated or methylated. Oligonucleotide hybridization intensities can then
be used to derive the proportion of methylated CpG dinucleotides at the
respective genomic locations.

Another popular method for the analysis of bisulphite converted DNA is
methylation-specific PCR (MSP). It permits the amplification of small blocks of
CpG sites with primers complementary to the methylation pattern of interest.
The main advantage of MSP is the high sensitivity that enables the detection of
the target allele in the presence of a huge excess of other alleles and the detection
of differentially methylated positions in body fluids. Quantitation in a variable
background is difficult due to the biased amplification and can be improved by
fluorescence based real-time PCR assays such as MethyLight (Eads et al., 2000)
or HeavyMethyl (Cottrell et al., 2004).

5.2.2 Quantification of DNA methylation

As shown in Fig. 5.1 DNA methylation signatures can be different for each
individual cell. However, when we study tissue samples we are interested in
methylation patterns that are characteristic for a certain tissue, e.g. a block of
CpG positions that becomes hypermethylated in the majority of cancer cells but
is hypomethylated in normal cells. Therefore for the study of tissue samples an
analysis of the proportion of methylated CpG dinucleotides at a certain position
is usually sufficient.

We define the amount of extracted DNA, NDNA, as the number of DNA
strands available for analysis. For a given CpG position p a certain number
NDNA+

p of strands will be methylated and a certain number NDNA−
p will be

unmethylated. Independent of the CpG position p their sum is always the total
amount of DNA, NDNA = NDNA+

p +NDNA−
p . Note that the two complementary

DNA strands from the same allele have identical methylation. Depending on
which DNA strand the applied detection technology measures we count only 3′

or 5′ strands, or both.
What we want to estimate from our DNA sample is the methylation rate

Mp, the proportion of methylated DNA at CpG position p. Given our DNA
sample the obvious way to estimate Mp is to simply compute the proportion of
methylated DNA

Mp =
NDNA+

p

NDNA = 1 − NDNA−
p

NDNA =
NDNA+

p

NDNA+
p +NDNA−

p

. (5.1)
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Note that for M values to be representative for a certain tissue the DNA has to
be extracted from tissue samples of high purity.

Because M is a proportion its values are restricted to a [0%, 100%] interval.
Measurement distributions on this scale are often highly skewed since the bio-
logical relevance of differences is not constant. For example a difference between
MA = 0.1% and MB = 10% means there are a hundred times more cells that
show a methylation phenotype in sample B as compared to sample A. On the
other hand the same 10% difference between MA = 40% and MB = 50% can
be easily explained by a slight difference in tissue composition. In general the
closer a differential methylation rate is to the extremes of 0% or 100% the more
biological relevance it has. For analysis it is often more convenient to use a scale
where differences have constant relevance. This can be achieved by using the log
methylation odds defined as

logOp = log
Mp

1 − Mp
= log

NDNA+
p

NDNA−
p

. (5.2)

A difference between two log methylation odds corresponds to the log odds ratio
of the two methylation rates. As a measure of methylation distance it is often
more meaningful than a difference of methylation proportions.

When we measure DNA methylation in remote samples (i.e. we want to detect
the presence of cancer DNA shed by a solid tumour in a body fluid like blood
or urine), we require the target analyte to be completely unmethylated at the
analyzed CpG positions. What we are interested in is the presence and con-
centration of methylated DNA from a primary tumour. Sources of methylated
and unmethylated DNA are completely independent, therefore computation of a
methylation rate is meaningless. The measurement value used for analysis is sim-
ply the concentration of methylated DNA. Using the logarithm of concentration
measurements helps to get distances with constant relevance and symmetrical
distributions.

5.3 Data preprocessing

The goal of preprocessing is to estimate DNA methylation rates from observed
raw measurement values. Even though the detection technologies used to mea-
sure DNAmethylation are very similar to methodologies used in DNA sequencing
or expression analysis the interpretation of the raw data is completely differ-
ent. Compared to classical DNA sequencing electropherogram data has to be
interpreted in a quantitative way and not only qualitatively. In contrast to expres-
sion analysis, the well-defined extreme target concentrations with all or none
of the CpG positions being methylated span a natural scale for quantification
and enable straightforward normalization. The following sections give a short
description of preprocessing algorithms for two of the most commonly used high
throughput measurement technologies: direct bisulphite DNA sequencing and
DNA methylation microarrays.
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5.3.1 Direct bisulphite sequencing

Sequencing large numbers of subclones from a bisulphite converted DNA sample
results in accurate and complete determination of methylation status on a single
DNA strand level. However, this approach is labour intensive and in most cases
a determination of the methylation rate at a specific CpG position is entirely
sufficient. The direct sequencing of bisulphite DNA samples and the quantitative
interpretation of sequencing signal intensities is a more efficient alternative that
still provides quantitative methylation measurements in single CpG resolution
(Lewin et al., 2004).

Quantitative methylation analysis by direct sequencing of PCR products from
bisulphite treated DNA poses several challenges: poor signal quality compared
to genomic sequencing, overscaled cytosine signals and basecaller artefacts. In
combination with the overscaled signals incomplete bisulphite conversion might
influence signal proportions in the trace.

Electropherogram data is stored in trace files and in general represented as
time series of signals from the four bases A, C, G and T. The data include anno-
tations interpreted by basecaller software: maxima of signals and the resulting
DNA sequence of the sequencing experiment. One established format for trace
data is the scf file format (Dear and Staden, 1992). The following algorithm is
optimized for four dye electropherogram trace file data pre-processed by standard
basecaller software (e.g. from Applied Biosystems).

The data processing includes the following steps: (1) entropy based clip-
ping, (2) signal detection, (3) alignment, (4) trace correction, (5) alignment
based clipping, (6) equalization of signal intensities, (7) signal normalization,
and (8) compensation of incomplete conversion and methylation estimation. The
algorithm assumes forward sequencing and aims at estimating the proportion of
cytosine to thymine at the positions of interest. Traces that originate from reverse
sequencing and show guanine and adenine signals can be analysed in the same
way by building the reverse complement of the trace files.

5.3.1.1 Entropy based clipping We observed that basecallers often generate
reads that contain long stretches of called bases with up-scaled background sig-
nals after the end of an amplificate. These artefacts are detected by using the
Shannon entropy

H = −
∑
b∈B

Sb∑
b′∈B Sb′

log4
Sb∑

b′∈B Sb′
(5.3)

of the four trace curves Sb, where b and b′ stand for one of the four bases B =
{A,C,G, T}. The entropy is calculated in a sliding window of 200 data points in
the time series space of the trace signal data. Flanking sequence stretches with
an entropy larger than 0.8 are removed.

5.3.1.2 Signal detection For each base position in the trace file we compute the
corresponding intensities Aint, C int, Gint, T int that estimate the base proportions
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Fig. 5.2: Schematic representation of a trace file electropherogram obtained by
bisulphite PCR sequencing (a) before and (b) after signal normalization.
The upper sequences below the trace curves in (a) represent the sequence
called by the standard basecaller and in (b) the peak mixture represented
using IUPAC code. The sequences at the bottom show the aligned refer-
ence sequence. The lower case t stands for genomic cytosine positions that
are not in CpG context. Since they are unmethylated they should be con-
verted to thymine after bisulphite treatment and PCR amplification. Trace
curves are shown for all four bases. For every base position in the reference
sequence four base intensities Aint, C int, Gint, T int are calculated as the area
under the trace curve segment that belongs to the base position (only C and
T shown in (a)). Normalized base intensities for cytosine (Cnorm

b ; b ∈ {t, C})
and thymine (T norm

b ; b ∈ {t, T, C}) seen in (b) are used to estimate the bisul-
phite conversion rate (base intensities at t positions) and the methylation
level at each CpG (base intensities at C positions).

in the molecular mixture (see Fig. 5.2a). As an appropriate measure we have
chosen the areas under the trace (Sb) corresponding to the respective base for
each position in the sequence. By default, the trace segment between neighbour-
ing local minima is used for the signal area estimation. If no local minima are
present, then the boundaries of the trace segment are estimated as the midpoint
between two neighbouring inflection points.

5.3.1.3 Alignment The base intensities estimated in the previous step are
mapped to an underlying genomic reference sequence. The a priori availabil-
ity of the genomic sequence is a prerequisite for our application. To describe the
bisulphite converted DNA, the commonly used genomic alphabet (A,C,G,T) is
extended by one letter, the lower case t, to distinguish a thymine derived from
cytosine by bisulphite conversion and PCR from a thymine that was present
already in the genomic sequence. As an exception, cytosines in a CpG context
in the reference sequence are denoted by C because their methylation status and
therefore their conversion status is unknown. We use the Smith–Waterman algo-
rithm (Barton, 1993) for optimal local alignments allowing for gaps to align the
called sequence of the trace file with the a priori known reference sequence.

Bisulphite treated DNA contains long stretches of T signal. In some cases this
is misinterpreted by basecallers by inserting too many Ts into the called sequence.
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Accounting for this special situation, we have introduced a content dependent
gap cost between C and G in the reference sequence that forces the alignment
of CpGs as one functional block to avoid their mismapping. An example of this
is given below. Costs for regular gaps are −19 and costs for gaps between C and
G in the reference sequence are −39.

trace ATTTTTTTGA ATTTTTTTGA
reference ATTTTTC-GA ATTTTT-CGA

cost = -39 cost = -19

5.3.1.4 Trace correction Standard basecallers expect one homogeneous DNA
population to be sequenced, therefore they often interpret mixed C and T base
intensities at a single position of the reference sequence as two adjacent bases. In
contrast to standard sequencing, in our experiments we expect signal mixtures
from different DNA populations. It follows that the separation of overlaying
intensities belonging to one position into two bases by the basecaller has to be
corrected. We identify the separated base intensities by searching adjacent T and
C positions in the called sequence from which one is aligned with t or C and the
other is introducing a gap into the reference sequence. These base pairs in the
called sequence are then fused into a single base.

5.3.1.5 Alignment based clipping The quality of trace files from PCR product
sequencing, especially of amplificates from bisulphite treated template containing
different molecule populations, is lower than sequences from a homogeneous clone
template. Alignment quality as a natural measure to assess sequencing quality
is used to identify areas of poor quality. Flanking regions of the sequence are
clipped such that the remaining inner part has less than 10% alignment error to
the reference sequence.

5.3.1.6 Equalization of signal intensities Signal intensities in trace data
decrease with progression of sampling time. If signals from cytosine in and
out of CpG context and thymidine signals are not randomly distributed within
an examined region, the proportions of those signals can be over- or under-
interpreted in normalization based on accumulation at locations with extreme
signal intensity. We therefore equalize all signal intensities prior to normaliza-
tion by dividing all four time series of base signals Sb(t); b ∈ {A,C,G, T} at each
data point by the average signal intensity within a window of n data points and
multiplying by 10,000:

S′
b(t) = Sb(t)

10,000n∑
b∈{A,C,G,T}

∑t+n/2
i=t−n/2 Sb(i)

. (5.4)

5.3.1.7 Signal normalization We found that cytosine trace curves are often
overscaled in direct bisulphite sequencing traces. Base proportion calculation
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based on trace curves with different baseline intensities would give mislead-
ing results. Therefore we normalize the trace curves prior to calculating
the proportions of base intensities to determine bisulphite conversion and
methylation rate (Fig. 5.2b). The normalized base intensities are denoted by
Anorm

b , Cnorm
b , Gnorm

b , T norm
b ; b ∈ {C, t, T} and fulfil the following constraints

based on average base intensities:

T norm
T ≡ T norm

C + Cnorm
C (5.5)

T norm
T ≡ T norm

t + Cnorm
t . (5.6)

The constraints simply require that after normalization thymine signals at
genomic T positions should have the same average intensity as the sum of
thymine and cytosine signals at genomic C positions. The first constraint states
this for C positions in CpG context, the second constraint for other C positions.

Normalization of C int is performed by multiplication of a global factor FC :

Cnorm
b = FCC

int
b ; b ∈ {C, t, A,G, T}. (5.7)

Based on the data we use different strategies for normalization. If there are at
least three C positions with C int

C > T int
C normalization is based on eqn (5.5) with

data from these positions:

FC =
T int

T − T int
C

C int
C

. (5.8)

Otherwise normalization is based on eqn (5.6) with data from all t positions:

FC =
T int

T − T int
t

C int
t

. (5.9)

In rare cases when all cytosines were unmethylated and converted com-
pletely (C int

C = 0) normalization of the cytosine trace curve is impossible and
unnecessary.

5.3.1.8 Compensation of incomplete conversion and methylation estimation
Cytosine base intensity at CpG positions can arise from two sources: from a
population of methylated cytosines in the sample DNA and from an incomplete
conversion reaction. It follows that the bisulphite conversion rate has to be first
estimated to obtain a correct estimation of the methylation rate in the sample
DNA. For an individual t the conversion rate R is estimated by

R =
T norm

t

T norm
t + Cnorm

t

. (5.10)

Local Rloc and global conversion rates Rglob can be determined by averaging
over R of individual bases within defined ranges. Then the methylation rate
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M, 0 ≤ M ≤ 1, at a certain CpG can be estimated by using the following simple
linear relationship

T norm
C = Rglob(1 − M)(T norm

C + Cnorm
C ). (5.11)

The equation describes the fact that the T base intensity at a C position T norm
C

is expected to arise from the unmethylated portion of the sample DNA that
is bisulphite converted by rate R. Furthermore the sum of the base intensities
T norm

C +Cnorm
C is assumed to be proportional to the total of cytosines in the sam-

ple DNA. It follows that the methylation rate can be estimated by incorporating
a correction for the incomplete bisulphite conversion as

M = 1 − T norm
C

(Cnorm
C + T norm

C )Rglob
. (5.12)

Signal variance, artefacts, or errors in the normalization might lead to negative
methylation estimation which is set to 0.

5.3.2 DNA microarrays

DNA microarrays allow the concentration measurement of thousands of target
sequences in parallel. Their raw measurement values are signal intensities of indi-
vidual oligomer probe spots that match a specific sequence in the target DNA.
Higher target sequence concentrations result in higher signal intensities. Two
popular methodologies for measuring DNA methylation with microarrays are
the restriction enzyme based DMH approach (Lewin et al., 2007) and bisulphite
based microarray workflows (Adorjan et al., 2002; Bibikova et al., 2006).

The DMH technology works as follows. First sample DNA is cut by methy-
lation unspecific restriction enzymes into well-defined DNA fragments and PCR
priming sites are ligated. Then unmethylated fragments are cut by restric-
tion enzymes specific for unmethylated CpG sites. Only the uncut completely
methylated fragments are then amplified by PCR and fluorescently labelled.
The resulting PCR product is hybridized onto a microarray with detection
probes that match the fragments expected from the first methylation unspecific
restriction step. Measurement probes are designed for fragments that contain
methylation specific restriction sites. These measurement probes will show low
signals if their matching fragment was unmethylated and high signals if their
matching fragment was completely methylated. A smaller number of control
probes is designed for fragments without methylation specific restriction sites.
These probes will always show maximum signal intensities and can be used for
normalization.

Bisulphite microarrays work as follows. First sample DNA is bisulphite
converted and a selected set of DNA fragments is amplified by PCR and flu-
orescently labelled. The resulting PCR product is hybridized onto a microarray
with detection probes that match fragment locations containing at least one
CpG dinucleotide. Usually there are always two variants of each probe. The
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methylation detection probe matches the bisulphite sequence of a completely
methylated fragment (cytosines are not converted) and the non-methylation
detection probe matches the bisulphite sequence of a completely unmethylated
fragment (cytosines are all converted to thymidine). Depending on the methy-
lation status of the respective fragment the methylation or the non-methylation
probe will show higher signal intensities.

The basic preprocessing steps of methylation microarray analysis are identi-
cal to classical expression microarray analysis. Algorithms for image processing,
background correction, and within-array normalization are well established
(Stekel, 2003) and will not be further discussed here. However, the last two
preprocessing stages of between-array normalization and measurement value esti-
mation can be performed more efficiently than in expression analysis by using
specific properties of DNA methylation.

5.3.2.1 Between-array normalization In order to analyse expression or methy-
lation microarray data one has to compare hybridization intensities between
different arrays. Typically experimental conditions between hybridization reac-
tions vary slightly and cause differences in the overall signal intensity of different
arrays. The simplest method to correct for these differences is to scale the signal
intensities of each array a by a constant factor fa. Normalized intensities are then
computed as In

p,a = (1/fa)Ir
p,a, where p is a probe index and Ir is the original

raw intensity.3

For expression microarrays the scaling factor fa is classically calculated as
the mean or median intensity over all probes for each individual array. This
approach makes the central assumption that the variations in the signal intensity
distributions between arrays are a result of experimental conditions and not
biological variability. Especially when comparing drastically different cell types
such as normal and cancerous tissue this assumption is obviously violated and
poses a fundamental problem for expression microarray analysis. Fortunately for
methylation microarrays we can use the fact that we only want to measure the
proportion of methylated DNA and not its absolute concentration. This enables
us to normalize each array by some measure of total DNA while retaining the
relevant information for calculating the methylation rate.

In the case of the restriction enzyme based DMH microarrays we can use
the signal intensities of the control probes for normalization. Since these probes
are designed for fragments without methylation specific restriction sites they
measure the DNA concentration in the sample independent of methylation at
different genetic loci. The array normalization factor can be simply computed as
the median control probe intensity:

fa = medianp∈C(Ir
p,a), (5.13)

3Note that we use the same symbol p for CpG positions and probes since there is usually a
one-to-one relationship between the two.
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where C is the set of control probe indices on the used microarray layout.
After normalization the control probe intensities on all arrays will be approxi-
mately identical and measurement probe intensities represent the concentrations
of methylated DNA relative to total DNA.

In the case of bisulphite microarrays we can use the property that all
measured CpG positions are queried by a methylation and a non-methylation
detection probe. These probes show an inverse hybridization behaviour for dif-
ferent amounts of methylated DNA in the target sample. The methylation probe
intensity increases with higher degrees of methylation; the non-methylation probe
intensity decreases. As a result the sum of methylation and non-methylation
probe intensity is approximately constant and independent of the degree of
methylation at the respective CpG position. Therefore the array normalization
factor can be computed as the median of the pairwise sum of all detection probe
pairs:

fa = medianp(Ir+
p,a + Ir−

p,a), (5.14)

where Ir+ is the raw signal intensity of the methylation detection probes,
Ir− is the raw signal intensity of the non-methylation detection probes, and
p is a probe pair index. After normalization the pairwise sum of methylation
and non-methylation detection probe intensities on all arrays will be approxi-
mately identical and individual probe intensities represent the concentrations of
methylated and unmethylated DNA relative to total DNA.

5.3.2.2 Methylation rate estimation We assume the following simple linear
model to explain the observed detection probe hybridization intensities on a
microarray:

Ip = kpMp + I0p , (5.15)

where Ip is the expected hybridization intensity, kp is the dynamic range of probe
p (the change in hybridization intensity for a methylation change of 100%), Mp

is the methylation rate at CpG position p and I0p is the unmethylated back-
ground intensity of probe p. We chose here a simplified annotation that uses
the same index p for CpG positions and probes assuming a one to one relation.
For DMH microarrays CpG position p actually describes a particular fragment
containing one or more individual CpG dinucleotides. The methylation rate Mp

is in this case the proportion of completely methylated copies of fragment p.
For bisulphite microarrays CpG position p refers to a set of one or more CpG
dinucleotides covered by a methylation and a non-methylation detection probe.
In this case eqn (5.15) actually splits into a model for the methylation detec-
tion probe I+p = k+p Mp + I0+p and a model for the non-methylation detection
probe I−

p = k−
p Mp + I0−

p , each with their own parameters for dynamic range
and unmethylated background intensity. Note that the slope of the linear model
kp will be positive for methylation detection and negative for non-methylation
detection probes. Figure 5.3 gives a visualization of the hybridization model.
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Fig. 5.3: Simple hybridization intensity model. The plots show the linear
dependence between hybridization intensities and DNA methylation rate for
methylation detection (left) and non-methylation detection (right) probes on
a bisulphite microarray. The hybridization model for DMH microarrays is
identical to the methylation detection probe model (left).

In order to estimate methylation rates from observed hybridization intensi-
ties the model parameters of eqn (5.15) have to be estimated in a calibration
experiment. The unmethylated background intensities of all probes can be esti-
mated by measuring unmethylated reference DNA samples4 which gives a direct
estimate for I0p . The dynamic range of all probes can be estimated from an addi-
tional measurement of a completely methylated reference samples.5 It is simply
the difference between methylated and unmethylated reference sample intensities
kp = I1p − I0p . The methylation rate can be computed as

Mp =
max(Ip − I0p , 0)

I1p − I0p
, (5.16)

where I0p and I1p are the calibration measurements of probe p from the unmethy-
lated and methylated reference samples. The maximum function is used to
avoid negative methylation rates. Probes with I1p ≤ I0p (or I1p ≥ I0p for
non-methylation probes) do not work properly and should be excluded from
analysis. For bisulphite microarrays the equation splits into two independent
estimators for methylation rate. The methylation detection probe gives M+

p =
max(I+p − I0+p , 0)/(I1+p − I0+p ) and the non-methylation detection probe gives
M−

p = max(I0−
p − I−

p , 0)/(I0−
p − I1−

p ). The two independent methylation rate
estimates can be averaged to get the final methylation rate.

4Creation of unmethylated reference DNA is not trivial. One popular method is to use whole
genome amplification of human DNA via phi29 polymerase. A problem with this approach is
the variable copy number of different genomic locations.

5Completely methylated reference DNA can be generated by treating any DNA sample with
SssI methylase.
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A fundamental problem of the calibration method described above is that it
requires the same ploidity in the used reference samples and the measured sam-
ples. This is usually not the case for CpG positions on the X and Y chromosome
as well as CpG positions on aneuploid chromosomes in cancer cells. In these cases
the respective methylation rate estimates will be off by a factor corresponding
to the change in ploidity between reference and measurement sample. For bisul-
phite microarrays this issue can be avoided by using the redundant methylation
and non-methylation measurements for a probe-wise calibration. In analogy to
eqn (5.1) the methylation rate can be calculated as Mp = M+

p /(M+
p +M−

p ) and
any ploidity distortions will cancel out.

If we assume that the dynamic range of methylation and non-methylation
detection probes is identical the probe-wise calibrated methylation rate can be
directly computed as a simple ratio of background corrected intensities:

Mp =
max(I+p − I0+p , 0)

max(I+p − I0+p , 0) + max(I−
p − I1−

p , 0)
, (5.17)

where I0+p and I1−
p are unmethylated and methylated reference sample mea-

surements. The corresponding log methylation odds are simply the log ratio of
methylation and non-methylation probe intensities:

logOp = log
max(I+p − I0+p , 0)

max(I−
p − I1−

p , 0)
. (5.18)

In practice the background correction is much more important than a calibra-
tion of dynamic ranges and these simplified equations give good estimates for
methylation rate and log methylation odds (Adorjan et al., 2002; Bibikova et al.,
2006).

5.4 Data analysis

After preprocessing DNA methylation data (e.g. represented as log methylation
odds) and mRNA expression data (e.g. represented as log mRNA concentra-
tions) show very similar distributions and correlation structures. Biological and
clinical questions that have to be answered are also very similar. Therefore
statistical methods established in the context of microarray or realtime PCR
based expression analysis can usually be readily applied to the analysis of DNA
methylation patterns. This includes methods for experimental design, hypothe-
sis testing and correction for multiple comparisons, clustering, and classification
(Speed, 2003; Draghici, 2003). In the following we will give three typical examples
of methylation data analysis.

5.4.1 Tissue classification using DNA microarrays

Our first example (Model et al., 2001) consists of cell lines and primary tis-
sue obtained from patients with acute lymphoblastic leukemia (ALL) or acute
myeloid leukemia (AML). A total of 17 ALL and 8 AML samples were included.



Data analysis 119

The methylation status of these samples was evaluated at 81 CpG dinucleotide
positions by using a bisulphite microarray. Measurement values are represented
as log methylation odds. The analysis objective is to find an algorithm that
can discriminate between ALL and AML based on the methylation pattern of a
subset of the 81 analysed CpG dinucleotides.

Here we will use the support vector machine algorithm (Christianini and
Shawe-Taylor, 2000) for classification. The major problem of all classification
algorithms for methylation and expression microarray data analysis alike is the
high dimension of input space compared to the small number of available samples.
Although the support vector machine is designed to overcome this problem it
still suffers from these extreme conditions. Therefore feature selection is of crucial
importance for good performance (Blum and Langley, 1997) and we give special
consideration to it by comparing several methods on the data set.

5.4.1.1 Support vector machines In our case, the task of cancer classification
consists of constructing a machine that can predict the leukemia subtype (ALL
or AML) from a patient’s methylation pattern. For every patient sample this
pattern is given as log methylation odds dip, where i is the respective patient
sample index and p a specific CpG position. The complete patient methylation
profile is given by the vector di = (di1, . . . , dinp)

′.
Based on a given set of training examples D = {di : di ∈ Rnp} with known

diagnosis Y = {yi : yi ∈ {ALL,AML}} a discriminant function f : Rnp →
{ALL,AML}, where np is the number of CpG positions, has to be learned. The
number of misclassifications of f on the training set {D,Y } is called the train-
ing error and is usually minimized by the learning machine during the training
phase. However, what is of practical interest is the capability to predict the class
of previously unseen samples, the so-called generalization performance of the
learning machine. This performance is usually estimated by the test error, which
is the number of misclassifications on an independent test set {D′, Y ′}.

The major problem of training a learning machine with good generalization
performance is to find a discriminant function f which on the one hand is complex
enough to capture the essential properties of the data distribution, but which on
the other hand avoids over-fitting the data. The support vector machine (SVM)
tries to solve this problem by constructing a linear discriminant that separates
the training data and maximizes the distance to the nearest points of the training
set. This discriminant is also referred to as the maximum margin hyperplane and
has very good generalization properties.

Of course there are more complex classification problems, where the depen-
dence between class labels yi and features di is not linear and the training set
cannot be separated by a hyperplane. In order to allow for nonlinear discrim-
inant functions the input space can be nonlinearly mapped into a potentially
higher dimensional feature space by a mapping function Φ : di �→ Φ(di).
Because the SVM algorithm in its dual formulation uses only the inner prod-
uct between elements of the input space, knowledge of the kernel function
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k(di,dj) = 〈Φ(di),Φ(dj)〉 is sufficient to train the SVM (Christianini and
Shawe-Taylor, 2000). It is not necessary to explicitly know the mapping Φ and a
nonlinear SVM can be trained efficiently by computing only the kernel function.
Here we will only use the linear kernel k(di,dj) = 〈di,dj〉 and the quadratic
kernel k(di,dj) = (〈di,dj〉 + 1)2.

In the next section we will compare SVMs trained on different feature sets.
In order to evaluate the prediction performance of these SVMs we used a cross-
validation method (Bishop, 1995). For each classification task, the samples were
partitioned into eight groups of approximately equal size. Then the SVM pre-
dicted the class for the test samples in one group after it had been trained using
the seven other groups. The number of misclassifications was counted over eight
runs of the SVM algorithm for all possible choices of the test group. To obtain a
reliable estimate for the test error the number of misclassifications was averaged
over 50 different partitionings of the samples into eight groups.

5.4.1.2 Feature selection The simplest way for applying a SVM to our methy-
lation data is to use every CpG position as a separate dimension, not making
any assumption about the interdependence of CpG sites from the same gene. On
the leukemia subclassification task the SVM with linear kernel trained on this
81 dimensional input space had an average test error of 16%. Using a quadratic
kernel did not significantly improve the results (see Table 5.1). An obvious expla-
nation for this relatively poor performance is that we have only 25 data points
(even less in the training set) in a 81 dimensional space. Finding a separating
hyperplane under these conditions is a heavily under-determined problem. And
as it turns out, the SVM technique of maximizing the margin is not sufficient to

Table 5.1. Performance of different feature selection methods.

Training Error Test Error Training Error Test Error
2 Features 2 Features 5 Features 5 Features

Linear Kernel

Fisher Criterion 0.01 0.05 0.00 0.03
PCA 0.13 0.21 0.05 0.28
No Feature Selection† 0.00 0.16

Quadratic Kernel

Fisher Criterion 0.00 0.06 0.00 0.03
PCA 0.10 0.30 0.00 0.31
Exhaustive Search 0.00 0.06 – –
No Feature Selection† 0.00 0.15

† The SVM was trained on all 81 features.
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find the solution with optimal generalization properties. It is necessary to reduce
the dimensionality of the input space while retaining the relevant information
for classification. This should be possible because it can be expected that only a
minority of CpG positions has any connection with the two subtypes of leukemia.

Principal component analysis Probably the most popular method for dimen-
sion reduction is principal component analysis (PCA) (Bishop, 1995). For a given
training set D, PCA constructs a set of orthogonal vectors (principal compo-
nents) which correspond to the directions of maximum variance. The projection
of D onto the first k principal components gives the 2-norm optimal represen-
tation of D in a k-dimensional orthogonal subspace. Because this projection
does not explicitly use the class information Y , PCA is an unsupervised learning
technique.

In order to reduce the dimension of the input space for the SVM we performed
a PCA on the combined training and test set {D,D′} and projected both sets
on the first k principal components. This gives considerably better results than
performing PCA only on the training set D and is justified by the fact that
no label information is used. However, the generalization results for k = 2 and
k = 5, as shown in Table 5.1, were even worse than for the SVM without feature
selection. The reason for this is that PCA does not necessarily extract features
that are important for the discrimination between ALL and AML. It first picks
the features with the highest variance, which are in this case discriminating
between cell lines and primary patient tissue (see Fig. 5.4a), i.e. subgroups that
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Fig. 5.4: Feature selection methods. (a) Principal component analysis. The
whole data set was projected onto its first two principal components. Cir-
cles represent cell lines, triangles primary patient tissue. Filled circles or
triangles are AML, empty ones ALL samples. (b) Fisher criterion. The 20
highest ranking CpG sites according to the Fisher criterion are shown. The
highest ranking features are on the bottom of the plot. High probability of
methylation corresponds to black, uncertainty to grey and low probability to
white.
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are not relevant to the classification task. Features carrying information about
the leukemia subclasses appear only from the 9th principal component on. The
generalization performance including the 9th component is significantly better
than for a SVM without feature selection. However, it seems clear that a super-
vised feature selection method, which takes the class labels of the training set
into account, should be more reliable and give better generalization.

Fisher criterion and t-test A classical measure to assess the degree of sep-
aration between two classes is given by the Fisher criterion (Bishop, 1995).
In our case it gives the discriminative power of the kth CpG as J(k) =
(µALL

k − µAML
k )2/(σALL

k

2 + σAML
k

2), where µk are the class means and σk are
the class standard deviations. The Fisher criterion gives a high ranking for CpGs
where the two classes are far apart compared to the within-class variances.
Figure 5.4(b) shows the methylation profiles of the best 20 CpGs according to the
Fisher criterion. Similar feature rankings can be obtained from the test statistics
of univariate hypothesis tests such as the Student t-test or Wilcoxon test.

In order to improve classification performance we trained SVMs on the k
highest ranking CpGs according to the Fisher criterion. The test errors for k = 2
and k = 5 are given in Table 5.1. The results show a dramatic improvement
of generalization performance. Using the Fisher criterion for feature selection
and k = 5 CpGs the test error was decreased to 3% compared to 16% for the
SVM without feature selection. Analysis of the dependence of generalization
performance from the selected dimension k indicates that the Fisher criterion
gives dimension independent good generalization for k < 10.

Although the described CpG ranking methods give very good generalization,
they have some potential drawbacks. One problem is that they can only detect
linear dependencies between features and class labels. A simple XOR6 or even
OR7 combination of two CpGs would be completely missed. Another drawback
is that redundant features are not removed. In our case there are usually several
CpGs from the same gene which have a high likelihood of comethylation. This
can result in a large set of high ranking features which carry essentially the
same information. Although the good results seem to indicate that the described
problems do not appear in our dataset, they should be considered.

Exhaustive search PCA and Fisher criterion construct or rank features
independent of the learning machine that does the actual classification and are
therefore called filter methods (Blum and Langley, 1997). Another approach is to
use the learning machine itself for feature selection. These techniques are called
wrapper methods and try to identify the features that are important for the
generalization capability of the machine. A canonical way to construct a wrap-
per method for feature selection is to evaluate the generalization performance of

6XOR combination: A sample is classified as positive if either CpG A or CpG B is methylated
but not both.

7OR combination: A sample is classified as positive if either CpG A or CpG B or both are
methylated.
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the learning machine on every possible feature subset. Cross-validation on the
training set can be used to estimate the generalization of the machine on a given
feature set. What makes this exhaustive search of the feature space practically
useless is the enormous number of

∑n
k=0

(
n
k

)
= 2n different feature combinations

and there are numerous heuristics to search the feature space more efficiently
(e.g. backward elimination).

Here we only want to demonstrate that there are no higher order correla-
tions between features and class labels in our data set. In order to do this we
exhaustively searched the space of all two feature combinations. For each of
the

(81
2

)
= 3240 two CpG combinations we computed the leave-one-out cross-

validation error of a SVM with quadratic kernel on the training set. From all CpG
pairs with minimum leave-one-out error we selected the one with the smallest
radius margin ratio.8 This pair was considered to be the optimal feature combi-
nation and was used to evaluate the generalization performance of the SVM on
the test set.

The average test error of the exhaustive search method was with 6% the same
as the one of the Fisher criterion in the case of two features and a quadratic
kernel. For five features the exhaustive computation is already infeasible. In
the absolute majority of cross-validation runs the CpGs selected by exhaustive
search and the Fisher criterion were identical. In some cases suboptimal CpGs
were chosen by the exhaustive search method. These results clearly demonstrate
that there are no second order combinations of two features in our data set that
are important for an ALL vs. AML discrimination. We expect that higher than
second order combinations of more than two features cannot be detected reliably
with such a limited sample size. Therefore the Fisher criterion should be able
to extract all classification relevant information from our data set and a SVM
trained on these features is the optimal classifier for this application.

5.4.2 Plasma based cancer detection

Our second example (Lofton-Day et al., 2008) consists of plasma samples col-
lected from 179 healthy individuals, and 133 patients with colorectal cancer
(CRC) from the same age group. The concentration of methylated DNA in
the plasma samples was measured for three different genes (TMEFF2, NGFR,
SEPT9). In addition the concentration of bisulphite converted DNA was mea-
sured independent of methylation status (bisDNA). The analysis objective is to
find the gene or gene combination that can most accurately discriminate between
normal and CRC samples based on the measured plasma DNA concentrations.

In the following description of plasma marker analysis we will first look at
the classification performance of individual marker genes. Then we will evalu-
ate whether a combination of several genes into a marker panel can improve
classification performance by using logistic regression analysis.

8The ratio between the radius of the minimum sphere enclosing all data points and the
margin of the separating hyperplane.
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Table 5.2. Single marker performance in plasma.

TMEFF2 NGFR SEPT9 BisDNA

Qualitative Analysis

Normal Plasma Positives in %† 31 (24–38) 16 (11–23) 14 (9–20) 100

CRC Plasma Positives in %† 65 (56–73) 51 (42–60) 69 (60–77) 100

Quantitative Analysis

AUC 0.72 0.70 0.80 0.61

Wilcoxon P-Value 0 0 0 0.0001

Cutoff for 95% Specificity in mg/L� 0.098 0.019 0.011 150.3

Sensitivity at 95% Specificity in %� 30 33 52 15

† 95% confidence intervals in parenthesis.
� The DNA concentration cutoff was selected to correctly classify 95% of normal sam-
ples as negative. Sensitivity gives the percentage of cancer samples that are correctly
classified as positive when this cutoff is used.

5.4.2.1 Single marker analysis Because hypermethylation of specific genes is
exclusively associated with cancer, methylation markers are typically highly
specific for tumour DNA derived from cancer patients compared to normal indi-
viduals, and the simplest way to analyse them is qualitatively. This means a
positive measurement value (i.e. the presence of an amplification curve) is a pos-
itive classification as CRC, a negative measurement value (i.e. the absence of an
amplification curve) is a negative classification as Normal. The resulting posi-
tive rates can be directly interpreted as sensitivity (positive rate in CRC) and
specificity (100% minus positive rate in Normals) and results for our example
are shown in Table 5.2. For computation of confidence intervals the binomial
distribution or its normal approximation can be used.

Despite their high specificity most methylation markers have a significant
positive rate in normal plasma. The concentration of methylated DNA in a
particular plasma sample carries therefore additional information that might
improve classification by using a quantitative classification cutoff. Whether there
is a significant difference in concentrations of methylated DNA between the nor-
mal and the cancer class can be assessed with a simple two-sample hypothesis
test, e.g. the Wilcoxon–Mann–Whitney test. The degree of quantitative discrim-
ination can be assessed by analysing the receiver operating characteristic (ROC)
curve (Pepe, 2003). The area under the ROC curve (AUC) is a general measure
for how well a marker discriminates between two classes that can be used with-
out specifying the cost of false positives and false negatives. The ROC curves for
our example are shown in Fig. 5.5(a) and corresponding AUC values are given
in Table 5.2. The concrete choice of a cutoff depends on the application and
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Fig. 5.5: Plasma based CRC detection. (a) Receiver operating characteristic

curves of TMEFF2, NGFR, SEPT9 and total bisulphite assays for the
discrimination between normal and CRC plasma. (b) Correlation between
plasma concentrations of methylated DNA from SEPT9 and NGFR real-time
PCR assays on a set of normal patients (grey; crosses) and patients with col-
orectal cancer (black; stage 0/I points, stage II diamonds, stage III triangles,
stage IV squares, unknown stage open circles).

its requirements with regard to sensitivity and specificity. An application of our
markers for early detection of cancer would for example require a high specificity
since the prevalence of cancer in the asymptomatic population is low and even
a moderate false positive rate would incur considerable costs.

5.4.2.2 Marker panel analysis using logistic regression In complex diseases like
cancer the existence of alternative genetic mechanisms represented by comple-
mentary activation or deactivation of marker genes has to be considered. In our
plasma data set the number of markers is so small that in contrast to the microar-
ray example all possible feature combinations can be evaluated. As an alternative
to the SVM algorithm of the last section we use a logistic regression model. Com-
pared with the SVM, logistic regression has the disadvantages that it is restricted
to linear discrimination functions and that it makes some assumptions about the
data distribution. However, as we saw in the last section linear discriminants are
often the optimal choice and distribution assumptions are minor. Compared to
machine learning algorithms like the SVM, the advantage of logistic regression
analysis is that it results in a complete statistical model that gives, for instance,
confidence intervals and p-values for all parameter estimates.

The complete logistic regression model including DNA concentrations of the
three methylation markers and the bisulphite DNA measurement is given by the
logit function

g(di) = β0 + β1di,TMEFF2 + β2di,NGFR + β3di,SEPT9 + β4di,bisDNA, (5.19)
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Table 5.3. Marker panel performance in plasma.

Panel Marker Odds Ratio† P Value Bias-corrected
(95% CI) AUC

TMEFF2+NGFR TMEFF2 1.4 (1.2–1.6) 0.004 0.74
NGFR 1.7 (1.5–2.0) 0.0003

SEPT9+NGFR SEPT9 2.6 (2.3–3.1) <0.0001 0.81
NGFR 1.4 (1.2–1.6) 0.04

SEPT9+TMEFF2 SEPT9 2.8 (2.4–3.2) <0.0001 0.81
TMEFF2 1.3 (1.1–1.4) 0.05

SEPT9+NGFR+ SEPT9 2.6 (2.2–3.1) <0.0001 0.79
TMEFF2+bisDNA NGFR 1.2 (1.0–1.5) 0.3

TMEFF2 1.2 (1.0–1.4) 0.4
bisDNA 1.0 (0.8–1.3) 0.9

† Odds are per 10-fold change of DNA concentration.

where di are the log DNA concentrations for sample i, β0 is the model intercept,
and β1, β2, β3 and β4 are the weights for methylation markers and bisulphite
DNA. The probability of a patient i having cancer is then P (yi = CRC|di) =
eg(di)/(1 + eg(di)). Partial models for feature subsets are simply constructed by
setting the weights for the deselected features to β = 0.

Results for the complete model and all partial methylation marker models
are shown in Table 5.3. Weights are given as odds ratios eβ with corresponding
confidence intervals and p-values based on the Wald statistic. In addition the
predictive performance of each logistic regression model is quantified with an
AUC value. Since multivariate models are prone to over-fitting cross-validation
has to be used for unbiased AUC estimation. Here the over-fitting bias corrected
AUC values were calculated from the bootstrap corrected concordance index (C
index) (Harrel, 2001). Results show that the best performing marker panel is the
combination of SEPT9 and NGFR with a small but significant bias corrected
AUC improvement of 1% over SEPT9 alone. Complementarity is low because
the tested methylation markers are highly correlated on a subset of CRC patient
samples with high tumour DNA concentrations in plasma (Fig. 5.5(b)). This
analysis indicates that the single marker, SEPT9, is the best choice for a plasma
based colorectal cancer detection test.

5.4.3 Cancer recurrence prediction

Our third example (Nimmrich et al., 2008) is a cohort of 412 lymph-node neg-
ative, steroid hormone receptor positive breast cancer patients who had not
received any adjuvant systemic treatment. The DNA methylation rate of the
PITX2 gene was measured in primary tumour tissue. After surgery all patients
were examined at least twice yearly during the first 5 years of follow-up and once
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yearly thereafter. The median follow-up period of patients still alive at time of
analysis was 98 months, 92 patients (22%) developed distant metastasis dur-
ing follow-up. The analysis objective is to find out whether methylation of the
PITX2 gene can predict the risk of cancer recurrence.

The distinctive property of survival analysis is the handling of incomplete
follow-up observations. When a patient cohort is followed it is usually impos-
sible to observe the end point (here cancer recurrence, i.e. development of a
distant metastasis) for every patient. Many patients will have a limited follow-
up time without reaching the end point – these observations are censored. When
making predictions about patient survival the information from these censored
observations has to be taken into account.

The simplest method for estimating survival probabilities is Kaplan–Meier
analysis (Lawless, 2002). It computes the survival probability at a given time
point as a product estimate from all earlier observations. For each observed end
point the number of patients that were actually still at risk at that time is taken
into account. Kaplan–Meier analysis is a univariate non-parametric method with
minimal assumptions (independence between censoring and survival times).

In order to apply Kaplan–Meier analysis to our data set we have to define a
PITX2 methylation cutoff that splits our sample into patient groups with poten-
tially different prognosis. Depending on the medical expectations with regard to
proportions of high and low risk groups the cutoff is usually defined as a quantile
of the methylation measurement distribution. Here we define the cutoff as the
66% quantile and the resulting survival curves are shown in Fig. 5.6.

Kaplan–Meier analysis is only descriptive. In order to determine whether
the observed difference between the two curves is significant we can use the
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non-parametric log rank test that compares the survival distributions of two
sample sets. In our case the survival distributions of the PITX2 hypo- and
hypermethylated patient groups show a significant difference with P < 0.01.

To find out whether PITX2 methylation really is a novel and independent
prognostic factor it has to be analysed in a multivariate statistical model together
with established prognostic factors like age, tumour size and grade, and steroid
hormone receptor levels. A Cox regression model is one way to achieve this.
Details of this more advanced analysis can be found in the original article
(Nimmrich et al., 2008).

5.5 Conclusions

DNA methylation plays a central role in carcinogenesis and has many promising
applications, especially in cancer diagnostics. A variety of methylation measure-
ment technologies exist and the right preprocessing algorithms for translating
raw measurement signals into quantitative methylation estimates are key for
obtaining accurate results. Here we have taken a closer look at preprocessing
algorithms for direct bisulphite sequencing and DNA methylation microarrays.
For both cases the described algorithms allow the quantification of methylation
rates at single CpG resolution.

The interpretation and analysis of DNA methylation data is very similar to
mRNA expression analysis. We have given three typical examples. In the case
of the DNA microarray analysis example we have shown that simple univariate
ranking methods like the Fisher criterion are able to select all DNA methyla-
tion features that are relevant for a given classification task. Together with a
classification algorithm such as the SVM it is possible to accurately discriminate
different cancer types based on their methylation patterns. The second example
showed that free floating cancer DNA can be detected in the blood stream and
that qualitative or quantitative analysis of a single methylation marker can dis-
criminate between cancer patients and healthy individuals with high accuracy.
The last example demonstrated how the methylation rate in tumour samples
can be used to predict the probability of tumour recurrence by using simple
Kaplan–Meier analysis. These examples prove that DNA methylation analysis is
a powerful tool for all areas of cancer research and diagnostics.
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PATHWAY ANALYSIS: PATHWAY SIGNATURES AND
CLASSIFICATION

Ming Yi and Robert M. Stephens

Although the use of DNA microarrays and other high throughput (HTP) tech-
nologies is increasingly widespread and affordable, retrieval and interpretation
of underlying biological themes from HTP data remains a major challenge in
the area of systems biology. In recent years, pathway analysis has emerged as
a category of promising analysis methods for HTP data, which is getting more
and more attention in genomics and other ‘omics’ fields in both academic and
industrial settings. This chapter focuses specifically on pathway-based analysis
of HTP data. First, we provide a brief overview of pathway analysis concepts and
methodologies. Then, we describe the evolution from gene signatures to pathway
signatures focusing on the recent development of applications of pathways to the
classification of a phenotype of interest using HTP data.

6.1 Overview of pathway analysis

6.1.1 Pathway and network visualization methods

Pathways have been used for graphically displaying and interpreting biologi-
cal processes in biomedical research for a long time. Since the Human Genome
Project gave a genome-scale view to biologists, a picture of an active cell or
organism could be envisioned as an interconnected information network, with
molecular components linked to one another in topologies that can encode and
represent many features of biological processes and cellular function. This net-
worked view of biology along with pathway-level details brings the potential for
systematic understanding of molecular systems of living entities.

Probably the earliest pathway visualization web interface was built by
the Kyoto Encyclopedia of Genes and Genomes (KEGG) group (Nakao et
al., 1999). Subsequently, it was improved to have limited capacity to dis-
play microarray data within the context of pathways annotated in the KEGG
pathways database (Kanehisa et al., 2002). Additional signal transduction path-
ways can also be visualized through the BioCarta pathway collections web
site (www.biocarta.com/genes/allpathways.asp) and the Science STKE Cell Sig-
naling pathway database web site (http://stke.sciencemag.org/cm/), although
these sites were designed primarily for capture, curation, and sharing of the
actual pathway data and do not allow visualization of HTP data in the
context of the pathways. Until recently, software tools were implemented to

www.biocarta.com/genes/allpathways.asp
http://stke.sciencemag.org/cm/
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incorporate pathway contents mainly for the purpose of visualizing and analysing
high-throughput data. These tools include GenMAPP (Dahlquist et al., 2002),
Pathway Processor (Grosu et al., 2002), and Pathway Tool (Karp et al., 2002).
Thereafter, numerous pathway visualization tools were developed to provide a
variety of functionalities that attempt to interpret the data within the context of
pathways or directly visualize the data within pathways with colour cues. Exam-
ples of tools include but are not limited to Cytoscape (Shannon et al., 2003),
ViMac (Luyf et al., 2002), Osprey (Breitkreutz et al., 2003), WPS (Yi et al.,
2006), and PathSys (Baitaluk et al., 2006).

Many of these tools have one or more unique features that distinguish it from
the others. Among them, it should be noted that Cytoscape (Shannon et al.,
2003) has become more and more utilized since its creation. One reason is likely
because Cytoscape has been evolving into a very powerful and flexible tool with
many nice features, many of which are provided by plug-in packages contributed
by collaborators (www.cytoscape.org/). This is probably due to two factors: plug-
ins as functional extensions can be developed by anyone using the Cytoscape
open Java software architecture, and public contribution has been encouraged
(www.cytoscape.org/). In addition, its success and popularity have been stimu-
lated by the Cytoscape forum, which has been extended by use from the Institute
of Systems Biology and many other collaborators (http://www.cytoscape.org/).
The increase in Cytoscape’s popularity and success reaffirms the notion that
the modular and open software implementations are highly desirable to the
community.

Most of the pathway analysis tools focus more on visualization of data in
the context of pathways, and only some tools may provide statistical assess-
ment of the reliability of each differentially expressed gene (Grosu et al., 2002).
Some of them tend to be comprehensive tools in addition to providing unique
features. For example, WPS attempts to be a comprehensive tool with many
utility functions in addition to its unique way of data visualization of pathways
and networks (Yi et al., 2006). WPS is probably the first pathway analysis tool
that allows simultaneous visualization of multiple HTP data in the context of
one or multiple pathways and provides colour cue-based pattern extraction for
genes with certain defined patterns (Yi et al., 2006). WPS is also probably the
first tool that attempted to integrate analysis results from enrichment analysis
or over-representation analysis with networks of genes and associated pathways
or terms.

Over the years, commercial software packages including Pathway Studio
(Nikitin et al., 2003; a product of Ariadne Genomics, www.ariadnegenomics.com),
PathArt (a product of Jubilant Biosys Ltd, www.jubilantbiosys.com), Inge-
nuity Pathways Analysis tool (a product of Ingenuity Systems Inc, www.
ingenuity.com/), MetaCore (a product of GeneGO Inc, www.genego.com), and
Genomatix software suite GmbH (a product of Genomatix, www.genomatix.de)
also joined the competition in the field of pathway-based HTP data analysis.
These tools provided a variety of interfaces for the visualization of gene networks

www.cytoscape.org/
www.cytoscape.org/
http://www.cytoscape.org/
www.ariadnegenomics.com
www.jubilantbiosys.com
www.genego.com
www.genomatix.de
www.ingenuity.com/
www.ingenuity.com/
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extracted by natural language processing (NLP), or hand-curated biological
pathway/association networks from literature mining, and usually accepted gene-
list based data input for data integration. Some of the tools have nice integration
with enrichment analysis and promoter analysis such as the Genomatix pro-
moter analysis module MatInspector (Cartharius et al., 2005) and BiblioSphere
module (Scherf et al., 2005) as well as the Ingenuity Pathway tool. Although
industrial development teams gave these tools the advantage of cutting-edge
software development technology and database capacity, including hand-curated
data from literature sources, they still do not appear to be superior to what the
collective academic counterparts can offer, particularly considering the expensive
license fees of the industry tools compared to free availability of academic tools.
Of course, the ultimate tool selected will need to weigh cost against utility and
other factors.

The general usage of these tools usually begins with identifying differen-
tially expressed genes using statistical methods, such as Significance Analysis of
Microarray (Tusher et al., 2001), moderated t-test (Smyth 2005, Smyth et al.,
2003), Local-Pooled-Error (LPE) (Jain et al., 2003), False Discovery Rate (FDR)
(Storey and Tibshirani, 2003), as well as other gene selection methods. The lat-
ter includes the ‘unusual ratio method’ (Tao et al., 1999), analysis of variance
(ANOVA) related methods (Draghici et al., 2001, Draghici et al., 2003; Nadon
and Shoemaker 2002; Pavlidis et al., 2002; Pavlidis, 2003), and Mixed Model
Analysis (Hsieh et al., 2003; Chu et al., 2002), colour cue-based pattern extrac-
tion methods (Yi et al., 2006) and patterned genes using clustering analysis; e.g.
hierarchical (Eisen et al., 1998), K-means (Hartigan And Wong 1979), and Self-
Organizing Maps (SOM) (Tamayo et al., 1999). Typically, these gene lists are
generated outside of the pathway analysis tools using additional software tools.
There are some pathway analysis tools that allow direct usage of whole data sets
for analysis instead of gene lists; e.g. GenMAPP (Dahlquist et al., 2002) and
WPS (Yi et al., 2006). These tools allow inclusion of all possible parameters in
the data sets to set up colour cues for the visualization of data on a backdrop of
pathways.

The next step typically is to use the pathway/network-based tools to map
the critical genes into the context of pathways or biological networks and seek
the connection of these genes within pathways and networks for clues of embed-
ded biological themes by means of colour cues for data integration, gene-gene
or gene-term association relations implicated by connections of nodes in path-
ways or networks, and higher levels of network features such as hubs derived
from graphical layout of network architecture. Some tools have the capacity
to use the results of enrichment analysis to filter and simplify the networks
to focus on specific subdomains of the networks or subnetworks; these tools
include WPS (Yi et al., 2006). Others such as Cytoscape (Shannon et al., 2003),
MintViewer (Zanzoni et al., 2002), and Osprey (Breitkreutz et al., 2003) focus-
ing more on network views and queries of the data, have included features for
viewing and querying larger subsets of the networks of association relations such
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as the interactome on a more global scale. These tools typically operate from the
viewpoint of physical associations between proteins, or correlated gene expres-
sion, and include information that summarizes annotated functions, such as Gene
Ontology (GO), groupings among subnetworks of linked genes or proteins. One
tool named VisANT (Hu et al., 2004), which attempts to integrate interactome
data from different sources, has the ability to uncover orthologous networks,
and perform exploratory data mining and basic graph operations on arbitrary
networks and subnetworks, including loop detection, degree distribution (the
distribution of edges per node) and shortest path identification between various
component (genes or proteins). Commercial counterparts such as the Ingenuity
Pathway tool (www.ingenuity.com), MetaCore of GeneGo (www.genego.com)
can do similar operations and queries as well. Some very recent efforts have
focused more on exploring the topology and architectures of the networks in
conjunction with high-throughput data to seek biological scenarios (Lu et al.,
2007; Ulitsky and Shamir 2007).

Each of the existing tools shows strengths and weaknesses in addition to all
of their unique capabilities. The differences typically fall into two categories. In
the first category, there are differences in data visualization capabilities. This
reflects the tools’ ability to lay out the pathway or network and allow the user to
interact with it. These tools also include methods whereby the data provided by
the user is overlaid onto the pathways. Some tools have a cumbersome interface
requiring the user to switch between different experiments and remember what
the other screens looked like. A second class of tool variation comes from the
source or sources of pathway data. Pathway data can be derived from natural
language processing, which is error prone but relatively exhaustive compared
to some other pathway derivation methods. The opposite extreme is to hand
curate the data by expert reading of the literature to build a set of pathways
derived from experimentally identified physical or genetic interaction data. Yet
another source of pathway information can be derived from other terms, such
as GO terms where groups of genes sharing a particular functional term can be
grouped together into a hypothetical pathway or group. Similarly, other group-
ings through transcription factor binding sites, miRNA target interactions, etc.,
can also be useful. Together, this again encourages a relatively modular approach
to software design whereby different visualization views can be combined with
different pathways to provide the ultimate in flexibility.

Given the variety of pathway and network analysis tools available for the
community, pathway information and related databases covering not just tradi-
tional metabolic or signalling pathways, but also relevant information such as
protein–protein interaction, genetic interaction, gene regulation, or transcrip-
tional regulation, have greatly expanded over the years (Cary et al., 2005).
A pathway modelling language is critically needed that can best capture and
exchange with other systems the pathway information derived from a diver-
sity of pathway databases with enormously different data models, data access
methods, file formats and semantic differences in different data sources. Some

www.ingenuity.com
www.genego.com
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efforts to accomplish this have been made, such as Systems Biology Markup
Language (SBML) (Hucka et al., 2003) and its derivatives including PSI-MI/
CellML (Lloyd et al., 2004) and BioPAX (www.biopax.org).

It should be pointed out that due to the relatively large number of network
and pathway tools available for biologists and bioinformaticians, the decision of
which tool should be used for each application can be a complex process that
often involves personal preferences as much as anything else. Side-by-side com-
parisons among the tools should be made to help users make the best use of
the tools. Some comparative efforts have been made (Suderman et al., 2007; Yi
et al., 2006), but more extensive efforts using global and systematic comparisons
would be really helpful for different levels of users that have different analysis
goals in mind: e.g. an unbiased complete survey of the uniqueness and advantages
of each of these tools would be welcome. Ranking these tools in different impor-
tant aspects of their applications to address these issues would also be useful,
although such a task appears to be really difficult and may have concerns about
objectivity. Such a comparison task is further complicated by the fact that many
of the applications are considered ‘works in progress’ with additional features
and capabilities being added almost daily.

6.1.2 Gene-set based methods

In addition to pathway/network based analysis approaches, there is a category
of related but different methods based upon pre-declared gene sets. A gene set
is a collection of genes that have some functional relevance or relationship and
were put together as a group or a set, which were annotated or represented
for a certain biological meaning; e.g. GO terms, or Gene Set Enrichment Anal-
ysis (GSEA) annotation terms. In the broader pathway definition, a pathway
consists of not only a set of genes, but also includes some physical connection
or gene-to-gene relations, usually presented graphically. This conceptual ‘path-
way’ consists of a set of genes that are physically grouped or linked together
as a functional unit to perform a well-known biological function or consti-
tute a defined biological process (e.g. KEGG pathways: www.genome.jp/kegg/;
Biocarta pathways: www.biocarta.com/genes/allpathways.asp). In contrast to a
pathway-based method, a gene-set based approach only considers the fact that
the genes in a defined gene set are grouped together based on their associa-
tion with an annotation term or common functional or structural feature, but
without regard to information of any direct relationship such as protein–protein
interaction, kinase vs. substrate, etc.

Gene-set based analysis methods, also referred to as modular methods,
include but are not restrict to enrichment-based analysis (or over-representation
analysis), functional class scoring (FCS), global tests, and singular value
decomposition (SVD) methods.

Over-representation analysis (ORA), sometimes called enrichment analysis,
begins with pre-defined gene lists (e.g. differential genes between tumour and nor-
mal tissues), which are subjected to analysis for enrichment levels that evaluate

www.biopax.org
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which functional categories are represented in the lists more than expected by
chance. These methods are usually based on a one-tailed Fisher’s exact test
or similarly derived enrichment scores (Hosack et al., 2003; Al-Shahrour et al.,
2004; Yi et al., 2006). ORA has been widely used to seek biological themes
embedded or represented by gene lists that are differentially expressed with cer-
tain functional or structural features. Many software tools have implemented
this algorithm including but not limited to EASE/DAVID (Hosack et al., 2003;
Dennis et al., 2003), GOminer (Zeeberg et al., 2003); Fatigo (Al-Shahrour et al.,
2004), T-profiler (Boorsma et al., 2005), and WPS (Yi et al., 2006). One caveat
for such methods is that since they present a ranked list of terms based on the
Fisher’s exact test p-values or enrichment type of scores, they are quite sensitive
to the cutoff value used for getting the gene lists (Pavlidis et al., 2004).

In contrast, functional class scoring (FCS) usually starts with all genes from a
data set ranked based on their expression differences in terms of statistical signif-
icance (e.g., t-test p-values between the two classes and p-value based aggregate
scoring FCS method (Pavlidis et al., 2004)), based on their expression differ-
ences in terms of fold change versus a normal distribution (Kim and Volsky,
2005), based on correlation levels between their expression in the two classes
(e.g. the signal to noise ratio (SNR) in GSEA method (Mootha et al., 2003,
Subramanian et al., 2005, Sweet-Cordero et al., 2005)), or based on correlated
expression patterns (Lamb et al., 2003). Once these rankings, statistical values, or
correlation levels of individual genes are derived, aggregate class scores for func-
tional categories are derived with different algorithms that rank the functional
terms. The most popular one in this category is probably the GSEA method
(www.broad.mit.edu/gsea/). The GSEA method has recently been improved by
the addition of more GSEA annotation terms as well as the ability to deal with
terms or gene sets of different sizes (Mootha et al., 2003; Subramanian et al.,
2005), since it was argued by others that the GSEA method may be biased
toward assigning higher enrichment scores to gene sets of large size (Damian and
Gorfine, 2004).

Other related methods include the global test method, which looks for associ-
ations between the global expression pattern for a group of genes and a variable
of interest (e.g. a clinical outcome) (Goeman et al., 2004). A SVD method has
been developed that uses the first metagene derived from singular value decom-
position as the basis for calculation of a defined pathway activity level (Tomfohr
et al., 2005).

It should be emphasized that the common gene-level statistical approaches
have encountered limitations when no individual genes meet the threshold for
statistical significance (Mootha et al., 2003), because the relevant biological dif-
ferences are modest compared to the noise inherent in microarray technology
or biological variations across individual samples (e.g. genetic background). As
mentioned above, one popular FCS analysis method, namely GSEA, has been
developed to overcome such limitations by combining the power of ranking of
individual genes for functional class scoring (Mootha et al., 2003; Subramanian

www.broad.mit.edu/gsea/
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et al., 2005). The method has been further extended to incorporate cross-species
gene expression analysis as a new strategy of using genomic analysis from animal
models to probe human diseases (Sweet-Cordero et al., 2005).

6.2 From gene signatures/classifiers to pathway
signatures/classifiers

6.2.1 Gene signature and classifiers
Gene signatures have usually been referred to as sets of genes whose change in
behaviour (e.g. transcription level, protein expression levels) reflect the change
of biological states or stages of disease progression. Some of the gene signatures
have been used as biomarkers or therapeutical targets. Usually, signature genes
were identified and then confirmed in follow-up studies. In other cases, signature
genes have been used to develop classifiers or predictive models for the purpose
of class prediction.

Most, if not all, conventional gene-level paradigm-based methods start with
a single list of differentially expressed genes based on the assumption that, for a
given phenotype (e.g. tumour vs. normal tissues, treated vs. control), any relevant
genes should behave consistently across the samples or individuals within the
studied population and class (e.g. tumour or normal tissues). In other words, they
generally focus on evaluating and selecting genes with statistically significant
changes in expression patterns at the individual gene level across the entire data
set. Such selection methods are either based on fold change or altered ratios as
evaluated by t-test derived statistical methods that consider the mean values of
the two classes (e.g. tumour vs. normal), p-values, and FDRs. Other methods are
based on more complex models including ANOVA (Nadon et al., 2002; Kerr et al.,
2000, Pavlidis et al., 2003), ANOVA-based noise sampling method (Draghici
et al., 2001, 2003b), and mixed-model analysis (MMA method, Hsieh et al., 2003;
Chu et al., 2002) that consider complex variance analysis or contributions to the
abundance of variance among individuals and between the contrasted classes, as
well as estimation of empirical distribution of noise with replicate spots. These
methods tend to summarize the statistical differences for each gene between two
classes into a single parametric value. Such gene-level paradigm-based methods
tend to derive a single list of genes summarized from the analysis for the intended
class comparison, which reflects how well the changes of each gene across samples
correlate with phenotype. The methods have been successfully used to identify
many critical gene signatures and biomarkers that persistently exist within the
sample population or are associated with phenotypic changes.

Such gene-level paradigm-based gene selection methods usually use metrics
that are computed across samples from the two classes and require inter-sample
consistencies within a class. Several inadequacies for these selection methods have
been encountered where genes with large variances in the sample population have
a better chance of exhibiting unrealistically large fold changes, even if they are
not differentially expressed. Similarly, genes with only a small fold change may
have a very small p-value because of a very small standard deviation. Even the
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suggestion by the MicroArray Quality Control consortium that fold change rank-
ing plus a non-stringent p-value cutoff can be used as a baseline for generating
more reproducible signature gene lists (MAQC Consortium 2006) has been ques-
tioned (Perket, 2006). Thus, it appears that signature genes for a given system
are affected by the choice of algorithm or statistical method that is chosen to
derive these signatures, given the intention of signatures to represent the distinct
features of studied system at the gene level.

This is similarly true for gene signatures derived for the purpose of classifiers
in many classification or class prediction methods. Class prediction is a super-
vised learning method where the algorithm learns from a training set (known
samples) and establishes a prediction rule or model to classify new samples.
When microarray data were just starting to be used for more and more biolog-
ical studies, they were quickly tested and used for classification of phenotypes
or diseases including different cancer types and subtypes (Golub et al., 1999).
There are numerous well-known classification methods, including but not lim-
ited to Random Forest (Breiman et al., 2001), Support Vector Machine (Vapnik
1995; Guyon et al., 2002), Thrunken Centroids or PAM (Tibshirani et al., 2002),
and Diagonal Linear Discriminant Analysis (DLDA) (Dudoit et al., 2002). Many
classification methods select genes based on their ranking according to their
predictive accuracy (discriminatory ability for the contrasted classes) with a
procedure of gene-by-gene prediction and the frequency of selections in cross-
validation (Li et al., 2001; Guyon et al., 2002; Cho et al., 2004). Some recent
efforts for gene selection have used multiple layers of ranking algorithms for
gene ranking with different criteria, where each individual criterion has a sepa-
rate contribution to its ordering of preference for selection (Chen et al., 2007).
Other recent methods included CERP, which is based on the Classification and
Regression Tree (CART) algorithm (Moon et al., 2006). More comprehensive
gene signatures have been derived using integrative analysis methods includ-
ing the meta-analysis method (Rhodes and Chinnaiyan 2005), which has been
developed to derive different robust gene signatures that can characterize myriad
subtypes of a variety of cancers.

Although the potential benefit to the application of these signatures is obvi-
ous, one important issue regarding the identification and use of the classifiers is
the overfitting problem. In particular, the overfitting problem exists for many
methods that have greater propensity to capitalize on chance, or ‘overfit’ the
sample data on which the model is derived (Tibshirani, 1996). In typical HTP
experiments with thousands or even millions of data points and typically low
numbers of experiments (10s–100s), it is quite easy to identify lists of random
features that could function as classifiers. The goal of model building for classi-
fiers is to obtain a predictive model that generalizes across many such samples
to the universe at large, and not merely to the samples at hand. The conse-
quence of overfitting is that individual models will overfit their training data
and not generalize well to other data. Thus, small changes in training data can
have considerable influence on the outcome of the learning exercise and models
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will have high variance. Increasing the sample size, which could address the
overfitting problem in theory, is not always feasible or even effective (Dobbin
and Simon, 2007). Alternatively, cross-validation can largely prevent or reduce
the risk of overfitting. However, there might still be an issue if a substantial
amount of non-sampling errors (e.g. due to different technological devices) are
present (Ntzani and Loannidis, 2003; Michiels et al., 2005). Thus, testing the
classifiers across different experimental systems remains an extremely important
component to the elucidation and validation of the classifier gene signatures.
Since pathways or gene sets are collections of genes of assumed or validated
functional relationships, making explanatory or predictive models at the level of
pathways or gene sets may simplify the models that previously relied on genes.
Such pathway-level classifiers may possibly be less susceptible to the overfitting
problem due to aggregation of gene-level variables, although costs may be asso-
ciated with the modelling processes when going from genes to pathways. Thus,
pathway classifiers for predictive models or pathway signatures for explanatory
models may tend to be more reliable than their gene-based counterparts.

6.2.2 Pathway signatures/classifiers as an alternative?

Given the ‘vulnerability’ of gene signatures and gene classifiers in terms of the
influence that choice of method and algorithm have upon their content, biolo-
gists probably would prefer to see more reliable signatures of changes or distinct
biological differences that characterize a specific biological system under study
regardless of the measuring method or analysis algorithm and method that has
been used to derive such signatures. The inherent complexity of biological sys-
tems, the multiple stages where protein function can be regulated and the high
overall levels of individual variation suggest that gene-level signatures or gene-
level classification-based approaches may miss important aspects of biology due
to their susceptibility to the choice of algorithm or methodology. For example,
many complex diseases, including cancers, heart disease, and hypertension, are
not simply caused by a single gene, but have been shown to be caused by muta-
tions in multiple genes in the same or related pathways (Peltonen et al., 2001;
Scott et al., 2001; Reiter et al., 2001; Dohr et al., 2005). In addition, the gene-
by-gene approach or gene-level paradigm fails to put single genes in an overall
functional context, and consequently ignores other relevant genes that have bio-
logical relevance and also show similar expression profiles or correlation with the
phenotypes under study.

Evidence has shown that many pathway/gene-set based analysis methods
or group testing methods identify the same pathways that had already been
shown to be involved in the pathogenesis of prostate cancer derived from dif-
ferent prostate data sets, and these pathways/gene-sets appeared to be more
consistent than simple gene signatures (Manoli et al., 2006). Moreover, path-
ways recurrently identified in these analyses are more likely to be reliable than
those from a single analysis on a single data set (Manoli et al., 2006). While bio-
logically relevant genes may consistently behave in correlation with an associated
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phenotype across a population, it is even more likely that common pathways can
be impacted through distinct gene events that are not reflected at the individual
gene level. This seems particularly relevant considering the stochastic nature of
many epigenetic events that lead to disease states. These and similar observa-
tions have driven the efforts to evolve the gene-level signatures to pathway-level
or gene-set-level signatures, or from gene-based classification methods to path-
way or gene-set-based classification methods. The pathway-based signatures
seem likely to evolve further as the interconnectivity and details of known and
to-be-identified pathways emerge through various technologies that are now
being applied.

There are several reasons why a pathway-level, gene-set-based, or modular
analysis scheme may be superior to conventional methods that rely on a gene-
level paradigm-based analysis scheme. First, external stimuli that lead to the
same phenotypic responses may not necessarily cause the same specific regulatory
changes in different individuals. Instead, for each individual case, different genes
at different steps of the same biological process that leads to the phenotype or
response may actually be involved. For example, inappropriate expression of a lig-
and or expression of a ligand-independent form of a receptor can invoke the same
effect. Secondly, as mentioned above, more complex diseases such as cancers,
Parkinson’s disease, and hypertension may involve multiple processes and mul-
tiple genes. In individuals with such complex diseases, the genetic alternations
may occur through different genes instead of a single gene. Even for the same
genes, the changes may occur at the level of protein expression, transcription,
post-translational modifications, and/or signaling/metabolic products. Thirdly,
most current high-throughput approaches, including microarrays measuring the
transcriptome, mass spectroscopy or other proteomic HTP measurements for
the proteome, metabolic profiling for the metabolome, and electron transfer dis-
sociation (ETD) for phosphorylation or phosphopeptides, each only measures
one level of changes. Each of the methods mentioned above only generates data
regarding one aspect of the changes across the genes and can only discover the
genes or proteins with changes at one level on their own data set. With con-
ventional gene-level analysis methods, genes have to be uniformly changed at
one level (e.g. transcription level, or protein expression level) consistently across
the sample class populations in order to be included into the ‘differentiated’ or
‘significantly’ changed list.

No gene operates in a vacuum: each gene interacts either directly or indi-
rectly through its protein product with many other genes and gene products
(Peltonen et al., 2001). It is possible that many diseases, once considered to be
monogenic, will turn out to be complex disorders (Peltonen et al., 2001). It has
been suggested that environment and life-style are major contributors to the
pathogenesis of complex diseases (Peltonen et al., 2001). In addition, at differ-
ent stages of pathogenesis of a disease, multiple genes or genetic factors may be
involved. For example, the parkin gene is influential in the development of early-
onset Parkinson disease, and several genes may influence the development of
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late-onset Parkinson disease, and so it appears that Parkinson disease is caused
by an interaction of genetic and environmental risk factors (Scott et al., 2001).

It is very likely that due to the complexity of the interaction between genetic
and environmental risk factors for a disease, even for the same disease, the respon-
sive genes may be different among different affected individuals, whereas the
molecular pathways or biological processes affected by the responsive genes might
remain the same and persist throughout the individuals with the same disease.
The pathway-level or biological process readout may be more consistent than
individual genes in these individuals. Therefore, seeking pathway-level consisten-
cies across the affected individuals within the population of the same phenotypic
class and pathway-level differences between different phenotypic classes would
largely complement approaches relying on the conventional gene-level changes,
especially under those circumstances mentioned above. Importantly, by focus-
ing on pathway-level consistencies instead of individual gene-level consistencies,
none of the information derived from individual gene-level consistencies is lost,
because this information would still be picked up by the analysis method.

6.2.3 Current advances in pathway-level signatures and
pathway classification

To move the analysis scheme from the individual gene level to the level of bio-
logical processes, several recent methods have used gene modules or gene sets
as the basic building blocks for analysis: These methods include some of the
gene-set-based methods such as FCS or ORA (Segal et al., 2004, 2005; Huang et
al., 2003; Mootha et al., 2003, Lamb et al., 2003). The rationale is that with a
modular view of coherent changes in expression in larger modules, it is possible
to identify the patterns that are too subtle to be uncovered when consider-
ing expression profiles of individual genes in isolation. For example, the GSEA
method (Mootha et al., 2003) can detect significant changes even in situations
where the expression of individual genes is not significantly different. The under-
lying patterns with biological themes are only detected when the coherent signal
is associated with a high-level entity or module.

Currently, the gene-level paradigm where gene-level differentiated genes or
gene-level consistency based on either expression differences or correlations
between expression and the phenotype of interest between the two classes, is
still conventionally considered as a prerequisite for many analysis schemes, even
for group test procedures such as ORA and FCS. Furthermore, FCS methods
such as GSEA do not offer a way to assess the enrichment of a pathway or term
over a collection of individual samples in a data set. Consequently, GSEA and
other FCS methods may miss a particular pathway variation or inconsistency
that might characterize a given set of tumour samples (e.g. subtypes of a cer-
tain tumour), although some recent methods built on the GSEA algorithm have
improved on this limitation with the potential to predict several pathways among
individual samples (Tian et al 2005; Edelman et al., 2006).

One module-level analysis scheme obtains a global view of the shared and
unique molecular modules underlying human cancer by compiling a ‘cancer
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compendium’ from multiple studies and a large collection of biological meaningful
gene sets from experimental studies and hand-curated annotations (Segal et al.,
2004). The identified gene sets with similar behaviour across arrays were
combined into modules, which were used to characterize a variety of clinical con-
ditions (e.g. tumour stages, types, subtypes) with the combination of activated
and deactivated modules. In the so-called ‘cancer module map’, the activation
or deactivation of certain modules was shared across multiple tumour types,
which was more relevant to the general carcinogenic processes, whereas others
were more specific to the tissue types or progression of particular tumours (Segal
et al., 2004). This type of analysis claims to be able to increase the ability to iden-
tify the signal in microarray data and provide results that are intuitive and more
interpretable than simple gene lists. In addition, such a modular approach can
be applied to multiple data resources of different biological systems under study
to uncover the commonalities and uniqueness of multiple clinical and biologi-
cal situations. Similar in rationale but different in methodology and algorithm,
applying a heatmap type of visualization scheme for embedded biological themes
in multiple gene lists (differentially expressed genes, genes with certain profiles or
sequence features, etc.) was also similarly implemented in a pathway-level enrich-
ment pattern extraction or analysis pipeline in WPS, as well using enrichment
scores that are derived from Fisher’s exact test p-values for terms or pathways (Yi
et al., 2006, Yi and Stephens, unpublished work on Pathway Pattern Extraction
pipeline).

Interestingly, modular approaches have attempted to identify regulatory rela-
tionships from genomic data including reconstruction of cis-regulatory circuits,
detecting targets and discovering new cis-elements. Most approaches focusing on
regulatory modules assume that member genes are expected to be controlled by
similar regulators in a similar fashion (Pilpel et al., 2001; Shen-Orr et al., 2002;
Lee et al., 2002). Recent improvements in this method have added evidence
from other data sources including factor binding of ChIP-chip array data (Lee et
al., 2002) and conservation across species (Lee et al., 2002; Stuart et al., 2003;
Pritsker et al., 2004). A model of regulatory modules has been proposed whereby
module genes share both similar expression profiles as well as a similar profile
of cis-elements (Segal et al., 2003a). Thus, a gene’s cis-element profile deter-
mines its module assignment and expression profile. Based on the observation
that many regulatory interactions are shared by all members of a gene module, a
module-network approach has been proposed to identify modules of co-regulated
genes and their shared regulation programme, which specify the expression profile
of a module’s genes as a function of the expression of the module’s regula-
tors (Segal et al., 2003b). This approach has successfully identified functional
coherent modules and known regulatory relationships in a yeast expression data
set. Noticeably, there is a key limitation for this approach: many regulators are
affected post-translationally, and their activity would not be detected in microar-
ray data for gene expression. Interestingly, a newly developed method called
SLEPR (Sample-Level Enrichment-based Pathway-Ranking, Yi and Stephens,
2008), which integrates HTP data that measures gene expression, level of
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post-translational modification, even protein levels, may overcome this limita-
tion. SLEPR is an alternative way to approach the problem of pathway-level
consistency in the absence of gene-level consistency. It looks for the underlying
biological themes through the pathway-level consistencies based on sample-level
enrichment levels of differentiated genes. Similarly, a Pathway Pattern Extrac-
tion pipeline, which was implemented in a new version of WPS (Yi et al., 2006),
is intended to compare multiple gene lists for their commonality and unique-
ness at the pathway level (Yi and Stephens, unpublished work on Pathway
Pattern Extraction pipeline). To fulfil this goal, this analysis pipeline used list-
level enrichment levels of pathways/terms that are derived from Fisher’s exact
test p-values for different gene lists to look for the patterned pathways such as
common or unique pathways/terms that are enriched either consistently among
the lists or specifically in one list but not in others (Yi and Stephens, unpublished
work on Pathway Pattern Extraction pipeline).

By taking a different direction to generate experimental data under the con-
ditions of knowing whether a known pathway is active or not prior to data
analysis, a distinct method pursues gene expression signatures that are exper-
imentally generated to specifically reflect the status of the pathway as either
active or inactive for various oncogenic signalling pathways. One example was
to use quiescent cells, in which many of the pathways of interest (e.g. apoptosis
pathways, proliferation-related pathways) will be inactive (Huang et al., 2003).
Thus, individual pathways are then activated in these cells by means of express-
ing a relevant gene through infection with an adenovirus (Huang et al., 2003).
This experimental approach can isolate the effects of single pathway activation
and then generate corresponding expression signatures or pathway signatures
that reflect this process. Practically, these profiles are represented as metagenes,
which mathematically consist of collections of gene expression values in aggregate
form, characteristic of an experimentally defined condition including pathway
activation in this case (Bild et al., 2006a). Alternative approaches to this same
method include the use of mouse tumour models (Sweet-Cordero et al., 2005)
or cells stably transformed by the expression of an oncogene or the loss of a
tumour suppressor gene (Singh et al., 2001). These signatures provide a way
to assess the status of the pathway by evaluating the extent to which the sig-
natures identified from the training set is represented in an individual sample.
The probabilities of pathway activation are estimated with internal validation
that defines the pathway signature using an external set of samples, which are
further visualized in a heatmap with colour cues to indicate whether the proba-
bility is high or low (Bild et al., 2006a). A high probability would indicate the
corresponding sample may be more likely to express such a pathway signature.
Such experimentally defined pathway signatures provide an opportunity to iden-
tify patterns of pathway de-regulation within individual samples, e.g. identify
subclasses of tumours with common properties (Bild et al., 2006a). It has been
shown that identifying patterns of pathway deregulation helps to better cate-
gorize cancer patients in that certain subgroups of patients, who are identified
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by unique pathway patterns, are more likely to suffer a recurrence of disease
than others (Bild et al., 2006a, 2006b). Furthermore, there is a clear relationship
between the prediction of pathway deregulation and sensitivity to the respec-
tive therapeutic target, which promises to link pathway predictions with drug
sensitivity (Bild et al., 2006b).

A confounding discovery from these studies is the observation that just as
genes do not act in a vacuum, pathways are similarly interconnected, with intra-
cellular feedback loops as well as autocrine and paracrine signalling mechanisms
complicating the interpretation of these data. Analysis of complex diseases such
as cancer have revealed initiating pathway perturbations followed by the accu-
mulation of additional mutations in additional pathways that further disarm
the individual’s ability to respond to and control tumour growth and spread
through the system. It is likely that as these multiple pathways become better
understood, their interactions will become apparent.

Another method similar in principle but different in methodology extends
pathway signature methods one step further by combining gene signatures
derived from expression data with regulatory motif analysis using an enrichment-
based method. The method attempts to discover activated or inactivated
signalling pathways (Liu and Ringer, 2007). This approach is able to identify
pathways deregulated in gene expression signatures by viewing these signatures
as a collection of target genes of the transcription factors that mediate the path-
ways, and appears to be better than the EASE (Hosack et al., 2003) and GSEA
(Mootha et al., 2003) methods in identifying expected pathways in data sets with
known pathway activation (Liu and Ringer, 2007).

More recently, a new method (Efroni et al., 2007), which is based on net-
work structure information or interdependence of a network and the observation
of co-expression of a set of genes is able to choose a miniset of pathways that
can classify phenotypes. The method also considers the probability of being in a
‘down’ or ‘up’ state for genes within a data set and calculates the pathway con-
sistency scores for each interaction in a pathway and for pathway activity scores.
This method, termed the Efroni method, has some similarities to the modular
method (Segal et al., 2004) mentioned above. However, there are some obvious
distinctions. First of all, the modular method uses biological modules that were
internally defined within the paper, whereas the Efroni method uses externally
defined canonical pathways independent of the data that they were used with.
Secondly, the Efroni method is probably the only pathway-level classification
method so far that makes explicit use of the network structure including intercon-
nections of the nodes that exist between genes that form the biological modules,
although substructure information from the network has been used initially in
a qualitative approach of metabolic pathway analysis using elementary modes,
which allows the study of the possible behaviour of a system from only the struc-
ture of the network (Peres et al., 2006). The calculated pathway scores of activity
and consistency are based on network structure and their directive relations (e.g.
inhibition and promotion), which are features or substructure information of
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network information (Efroni et al., 2007). The Enrichment score-based Pathway
Pattern Extraction method in the newly developed pathway analysis pipeline
(Yi and Stephens, unpublished work on Pathway Pattern Extraction pipeline)
and the SLEPR method (Yi and Stephens, 2008) also attempts to use a pathway-
level metric similar to that used by the Efroni method (although a different
metric is derived from pathway enrichment scores instead of pathway consistency
or activity scores derived from network information) to represent an individual
sample or gene list that allows for pathway-level pattern extraction or pathway
ranking.

Another method called LeFE developed very recently, which implemented a
machine learning algorithm based on Random Forest Sampling, was able to cap-
ture complex, system-oriented information for prediction of functional signatures
(Eichler et al., 2007). LeFE determines for each category or gene set whether its
genes are more important as predictors (variables) than a set of randomly sam-
pled negative controlled genes. Although the LeFE method could not claim to be
‘better’ than the GSEA method, it does directly handle problem types (multiple
class, continuous-valued signature, small gene sets) not handled by many other
related gene-set based methods (Eichler et al., 2007).

In order to show the differences between conventional gene-level methods
and pathway-level analysis methods, we specifically used our newly developed
SLEPR method and Pathway Pattern Extraction pipeline implemented in the
new version of the WPS program (Yi et al., 2006; Yi and Stephens, unpub-
lished work on SLEPR method and Pathway Pattern Extraction pipeline) as
an example for a more detailed graphical illustration in Fig. 6.1. As shown in
Fig. 6.1(a), the conventional gene-level methods primarily consider sample-level
changes with gene-level consistency, which is vulnerable to biological variation in
the population and even experimental variation in the data. In contrast, SLEPR
(Yi and Stephens, 2008) relies on the feasible assumption that pathway-level con-
sistencies across individual samples and individuals in population might be more
persistent or penetrant than consistencies of individual genes, which appeared
to be highly likely in terms of its validity (Fig. 6.1(b)). Pathway Pattern Extrac-
tion pipeline (Yi and Stephens, 2008) is intended to extract the pathway-level
patterns beyond individual gene in the gene lists under study, which may obtain
patterns that could be missing from the gene-level methods (Fig. 6.1(b)).

There exists a major difference between the conventional gene-level based
group test methods and the SLEPR method. Conventional gene-level based
methods directly use cross-sample evaluation for differentiated genes or rank-
ing the genes such as GSEA method. In contrast, SLEPR uses cross-sample
evaluation to get sample-wise potentially ‘changed’ genes of individual sam-
ples, or sample-level differentiated genes, followed by cross-sample evalutation
of pathway-level enrichment levels for differentiated pathways. Such operational
differences reflected the differences in concepts and rationales of these methods,
which would lead to quite different outcomes in analysis of data derived from
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many of the complicated studies. Using three previously analysed publicly avail-
able sample data sets and side-by-side comparison with the GSEA method, the
SLEPR method was able to not only reproduce the previous insights with more
robust statistics, but significantly extend the observations made by the GSEA
method with additional insights (Yi and Stephens, 2008). The SLEPR method
was designed to provide an alternative way to compensate for, or even overcome,
the limitation that may be encountered by group test methods such as FCS,
which rely on or start with a gene-level paradigm. Furthermore, since sample-
level differentiated genes should capture individual variation or specificity and
also maintain class-wise differences of each individual sample, data sets mea-
suring changes at different levels of regulation of genes, including transcription,
protein expression, and phosphorylation occurring in the same individual sam-
ples, all HTP data measuring these changes in the systems biology era can be
integrated and included in SLEPR method.

6.3 Potentials of pathway-based analysis for integrative discovery

Over the years, pathway-based analysis has drawn more and more attention
from the research community. This is probably, at first glance, due to its great
analytical abilities and intuitive ways of interpreting high-throughput data in
a biological context, which appears to be the most attractive to biological
researchers themselves due to its ease in interpretation and comprehensiveness.
But in the prospective view of the bioinformatics field, more importantly, this
is also driven by the expectation that biological network/pathways could pro-
vide a mathematical matrix enriched with biological relevances such as detailed
gene–gene interaction relationships for statistical analysis at a more comprehen-
sive level. Such settings are getting closer in nature to the reality of biological
systems with extreme complexities and would largely facilitate the processes of
integrative discovery.

As illustrated in Fig. 6.2, on top of pathways that consist of functionally
connected genes, a biological network can be viewed as logically linked path-
ways with conjunctions of critical genes or hubs, which may play multiple roles
within multiple pathways or biological processes with different biological out-
puts and functions. Such a gene-pathway-network architecture becomes increasly
promising for providing an excellent environment and context for seeking bio-
logical themes. As described earlier, many currently available tools have used
such contexts to directly and simply map the derived differentiated genes or
gene signatures from the data into such network/pathways in a variety of ways
for the purpose of data visualization and seeking biological relevancies and
significance from the neighbourhood of those chosen genes. Such an intuitive
method is the most popular approach to the conventional pathway-based analy-
sis scheme. However, the demands for integrative-types of analysis for discovery
have dramatically increased over recent years as a variety of data types as well as
massive amounts of data derived from numerous improved or novel technologies
in era of systems biology, including microarray data (conventional expression
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Fig. 6.1: Comparison of conventional gene-level methods and SLEPR or
Pathway-level Pattern Extraction. Graphical display and comparison of the
brief procedures for analysis using conventional gene-level methods vs. SLEPR
or Pathway-level Pattern Extraction methods. Pathway A was shown as
an example pathway among the whole biological system, in which many of
its involved genes were changed triggered by biological stimuli, or genetic
defects in disease states. The conventional gene-level methods and SLEPR or
Pathway-level PatternExtraction pipeline processed the genes frompathwayA
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array, exon array, CGH array, miRNA array, SNP array), proteomic data (anti-
body/protein array, mass spectrometry), protein-protein interaction data (e.g.
high-throughput two-hybrid data), protein-DNA interaction data (e.g. ChIP-chip
for transcription factor-promoter interaction, genome-wide methylation etc.),
genome-wide post-translational modification data (e.g. electron transfer disso-
ciation or ETD), and many other in-silicon data such as transcription binding
site prediction, miRNA target prediction, data or text mining from literature
have emerged. In addition, as the setting of network/pathways with enriched
biological contexts opens up a new view and field as the possible new matrix
and inputs for statistical and bioinformatics analysis methods and algorithms,
the new needs for method integration in the realm of networks and pathways
will continue to rise, which will lead to the next generation of analysis schemes.
As a consequence, data and method integration within the context of biological
networks/pathways will become a major challenge for pathway-based analysis in
the era of systems biology.

Figure 6.1 Continued

as well as other pathways in different ways even for the same biological sit-
uations under study. (a) Within a typical procedure of gene-level methods,
all measured data of each sample in study are usually put together into a
gene-level data matrix, and then a statistical analysis method (T-test, SAM,
ANOVA, etc.) is applied to all genes of the matrix to retrieve the gene-level
significant genes based on one or more statistical parameters (e.g. p-value, fold
change, FDR, etc.). Significant genes usually behave with a greater gene-level
consistency across samples in each population of contrasted classes. (b) For
the SLEPR procedure, all measured data of each sample are used to derive
the sample-level differentiated genes, which represent genes for each sam-
ple that are expressed differentiatelly compared to the rest of samples in
the population (see SLEPR manuscript for details, each sample will get a
corresponding list of sample-level differentiated genes). Then, sample-level
differentiated genes (for SLEPR) or all gene lists of different studies (for
Pathway-level Pattern Extraction pipeline) were used to perform sample-wise
enrichment analysis against each of functional annotation categories (e.g. GO
terms, GSEA annotation terms, or Biocarta Pathways, etc.). The derived
enrichment scores (ES) of each term in the chosen functional category for
each gene list were combined into an enrichment score matrix. Then pathway
ranking (for SLEPR), pathway ES heatmaps, clustering, and pattern extrac-
tion (for Pathway-level Pattern Extraction) will be applied to this ES matrix
to get significantly ranked pathways (SLEPR), unique pathways, common
pathways (for Pathway-level Pattern Extraction), respectively. Genes that
are associated with these pathways or terms can be retrieved further within
the Pathway Pattern Extraction pipeline. See Plate 4.
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Fig. 6.2: Prospects of pathway-based analysis: integrative discovery. In the
era of systems biology with accumulation of massive data and numerous
statistical and bioinformatics methods available, pathway-based analysis
may become a pioneer for integrative discovery. It will evolve from a sim-
ple analysis scheme of mapping gene lists into a biological network for
data visualization to look for biological relevance and significance from
the neighbourhood of those chosen genes, into the integrative discovery
scheme through integration of both data and method sides using the biolog-
ical network/pathways as a common ground. Such evolution includes: from
gene-based methods (e.g. gene signature), to pathway-level based method
(e.g. gene set, modular methods, network-based method; pathway signatures
and pathway classification), to more integrative methods. The nodes in the
network are genes and the lines indicate either physical or genetic connections
among the genes. P1–P4 are examples of pathways existing inside the net-
work, with different colours denoting different pathways. The nodes labelled
as ‘Hub’ are genes involved in multiple pathways, which may play multiple
functional roles.

There are many obvious advantages making this transition. First, with the
help of functional connections of genes and pathways in biological networks,
which could be interfered or impaired from diseases and other conditions, we
could allow the integration of different data that look into the system at different
levels and angles of the involved genes with a more or close-to complete scale or
genome-wide scale. Such integration would provide multiple-dimensional views of
the biological system under study that may be especially and in fact desperately
needed for dissecting the most complicated systems or biological systems we deal
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with. Although it may be overwhelming at first, this additional information, once
incorporated and integrated into the analysis, could represent a missing link to
generating scientific hypotheses about the cause, treatment or progression of a
complex disease or condition.

Secondly, with knowing genes or groups of genes working together as a unit
in a pathway or a gene set scope and in a larger scale within a network for
their interdependences and interactions with other genes and pathways through
network hub genes, a possible weighted matrix of these genes that accounts for
their contributions to the system as a network can be captured and used as
additional inputs for integration of analysis methods and algorithms for a new
analysis scheme that has yet to be explored. Preliminary efforts (Efroni et al.,
2007; Lu et al., 2007; Ulitsky and Shamir, 2007) in such a direction have been
made recently as discussed earlier.

Thirdly, the organization of our studied system into a gene-pathway-network
hierarchical structure made it possible to move from our analysis scheme from
gene-level, to pathway or gene-set-level, and even to subnetwork or network level
for different biological systems with different levels of complexity. For exam-
ple, some rare diseases could be caused by a single gene in some populations
with less variation. The gene-level approach can be powerful and has proven to
be successful in such circumstances. However, as we mentioned earlier, some
complex diseases such as cancers already were known having multiple genes
involved and were different in subtypes and populations with different genetic
background. The underlying pathogenesis mechanisms of such complex diseases
may not be easily dissected and uncovered by conventional gene-level methods.
Instead, pathway-level methods may have a better chance when they face up to
the complexities of such diseases. Initial efforts have been made to use pathway
or gene set signatures and classification to characterize different stages, types,
and/or subtypes of diseases especially on cancer, which has been discussed ear-
lier (Segal et al., 2004; Efroni et al., 2007; Yi and Stephens, unpublished work).
The integration from both sides of data and methods on top of the biologi-
cal network/pathways would largely improve such efforts with the further help
from information regarding the structure of a network and the interconnection
of nodes or genes within a network. To bring together relevant data from all
sources, and all the available statistical or bioinformatics analysis methodologies
and algorithms under one roof of gene-pathway-network environment, pathway-
based analysis approach would yield a better chance to really evolve into the
most powerful analysis scheme for integrative discovery.

6.4 Conclusions

Over the course of their relatively short history, microarray analysis tools have
evolved into two principal classes – tools for normalizing and clustering data
and tools for placing the data into the context of their associated biology. More
recently, the latter set of tools has been undergoing a dramatic enhancement
in capabilities through conceptual expansion of both the methodologies they
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employ, but also the expansion of the sources of biological data that they utilize to
gain biological insights. As the volume of data produced in any HTP experiments
is large and complex, visualization and analysis of these results has also evolved
from early generation of lists of differentially expressed genes to visualization of
complex networks of interacting entities or terms to much more comprehensive
ways for integrated discovery. The opportunity now exists to identify and priori-
tize target pathways and other biologically significant information from relatively
routine analysis methods. In addition, classifier and biomarker identification for
particular phenotypes has also become an important and increasingly reachable
capability. As more and more information about the complexity and diversity
of biological systems is understood, these tools for analysis of complex data will
continue to improve and aid in the goal of disease detection and treatment.

The common gene-level statistical approaches and gene-based classification
methods have encountered some limitations especially as a better understand-
ing of the complexity of biological systems and diseases in the post-genomic
era has emerged. The pathway signatures and pathway classifiers may provide
an alternative way to compensate for, or even overcome the limitations that
may be encountered by analysis methods based on the gene-level paradigm.
The pathway-level paradigm represents a new way to analyse high through-
put data through pathway signatures, pathway-level patterns, pathway-level
consistencies, which have been proven to be increasingly effective in uncover-
ing biological themes. In addition, pathway signatures and pathway classifiers
derived from data sets for a particular study may turn out to be more generic
than gene signatures and classifiers and may be more useful when applied to
diagnosing complicated diseases and dissecting biological systems. Also, concep-
tualizing signalling and regulatory ‘modules’ rather than individual genes may
yield insights into comparative species differences in the different pharmacolog-
ical responses seen by different species to a particular therapeutic treatment
regimen. In addition, biological changes at different levels of regulation, includ-
ing transcription, protein expression, and phosphorylation occurring in the same
individual samples, which can now be measured with all types of HTP tech-
nologies as they become increasly feasible, could be more likely integrated for
discovery of underlying biological themes under the context of pathways, gene
set, biological modules, as well as complicated networks.
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TWO METHODS FOR COMPARING GENOMIC DATA
ACROSS INDEPENDENT STUDIES IN CANCER RESEARCH:

META-ANALYSIS AND ONCOMINE CONCEPTS MAP

Wendy Lockwood Banka, Matthew J. Anstett and Daniel R. Rhodes

7.1 Introduction

Microarray experiments measure thousands of genes in every biological sample
examined, and produce far richer result sets than conventional experimental
approaches. The Oncomine project began in 2002 with the recognition that
published genomic profiling data has a high latent value that can be exploited
by assembling existing microarray data into a single, standardized database,
linking the data with a sophisticated set of analysis tools, and making the
resource available through a web-based interface (Rhodes et al., 2004a). By mid-
2007 the Oncomine database and application contained over 500 million data
points from 310 human oncology studies, a suite of analysis tools specifically
designed for biologists, and a large user group that includes nearly 5000 cancer
researchers worldwide. Oncomine is freely available to academic researchers at
www.oncomine.org.

Oncomine contains gene expression data on tens of thousands of genes in
thousands of samples that include normal tissues, diseased tissues, and cell lines,
making it a powerful resource for discovering the expression patterns of individual
genes. In addition, basic statistical analyses are run on every study that assembles
genes on the basis of similar expression patterns between genes (co-expression),
or on differences in expression between samples (differential expression) (Rhodes
et al., 2007a). Oncomine also implements a novel statistical technique called
Cancer Outlier Profile Analysis (COPA), which aims to identify significant over-
expression that occurs in only a subset of samples (Tomlins et al., 2005).

Here we focus on two methods that go beyond analyses of individual genes
or studies, and that instead attempt to capitalize on the coexistence of multiple
standardized data sets within a single database. Meta-analysis compares the
differential expression results calculated by Oncomine across studies, allowing
researchers to distinguish between genes with robust expression from those that
are less reliable. In contrast, Oncomine Concepts Map (OCM) is a database and
application that compares a large and growing collection of gene lists derived
from a variety of sources (Rhodes et al., 2007b; Tomlins et al., 2007). Users
can interrogate concepts of interest using any of the 33,000+ gene lists already
present, or can upload their own lists to compare against the collection. While
OCM can be used for the same type of validation generated by meta-analysis, it

www.oncomine.org
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is more widely used as a tool for expanding results from one experiment to those
of another, with the goal of understanding the complex interactions between
tumours, pathways, drugs, and biology.

7.2 Single-study gene expression analyses in Oncomine

Individual data sets are downloaded from public web sites such as GEO (Barrett
et al., 2007), ArrayExpress (Parkinson et al., 2007), or the Stanford Microar-
ray Database (Demeter et al., 2007), or are provided by authors upon request.
Expression data are provided as two-channel ratio data or single-channel inten-
sity data, and are typically retrieved in single composite file format. All available
data are included in processing and analysis, except for negative single-channel
intensity values. All expression data sets are log transformed and median cen-
tred per array, and standard deviations are normalized to one per array (Rhodes
et al., 2007a).

Comparing results across studies using different array technologies requires
that the language of individual array types (reporter IDs) be translated into
a language that is common between them (genes). Reporter to gene mappings
provided by commercial array manufacturers are not used since they are often
out of date with respect to other public sources, such as UniGene and Entrez
Gene. Instead, Reporter IDs are mapped directly to RefSeq or GenBank, and
then to Entrez Gene using the following strategies:

• Reporter ID → RefSeq → Entrez Gene Mapping
• Reporter ID → GenBank Accession → Entrez Gene Mapping
• Reporter ID → GenBank Accession → UniGene → Entrez Gene Mapping

Note that Entrez Gene provides direct mappings for most RefSeqs, but not to
all GenBank mRNA and EST sequences. When possible, direct Entrez Gene
mappings are used. For all remaining reporters it is determined whether the
GenBank sequence has been clustered by UniGene, and if so, the UniGene →
Entrez Gene mapping is applied.

7.2.1 Differential expression analysis

All multi-study analyses described here begin with the results of differential
expression or co-expression analyses on individual studies. For differential expres-
sion analyses, each data set is reviewed for potential comparisons of interest,
such as:

• cancer versus respective normal tissue;
• high grade (undifferentiated) cancer versus low grade (differentiated)
cancer;

• poor outcome (metastases, recurrence, or cancer-specific death) versus
good outcome (long-term or recurrence-free survival);

• metastasized versus primary cancer;
• subtype 1 versus subtype 2.
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Samples are assigned to classes such that the most advanced or the most
negative of the options is designated Class 2 (e.g. ‘cancer’), whereas the refer-
ence option is Class 1 (e.g. ‘normal’). This provides consistent directionality to
the analyses, which is necessary when making cross-study comparisons. Once
the samples are classified and designated for analysis, Oncomine calculates the
mean expression of each gene in each class, and then determines the statistical
significance of the difference using the Student’s t test; t tests are conducted as
two-sided for differential expression analysis, and one-sided for over- or under-
expression analysis. To calculate the Q-value (or gene-specific false discovery
rate), genes are sorted by P , and then the ratio of the expected number of
occurrences at or better than each P to the actual number of occurrences is
computed (Storey and Tibshirani, 2003):

Q-value = (pn)/i

where
p = P ;
n = total number of genes (inferences);
i = index (number of genes at or better than P ).

Fig. 7.1: Sample Differential Expression Gene List and Heat Map results from
a single study (Beer Lung) that compares gene expression in Lung Adeno-
carcinoma to Normal Lung in Oncomine. Genes are ranked by Q-value. See
Plate 5.
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Oncomine uses the p-value and Q-value to rank differential expression results
in heat maps and gene lists throughout the application (Fig. 7.1). These val-
ues are also used to rank the results for individual genes across studies in
meta-analyses, and to generate gene signatures in Oncomine Concepts Map,
as discussed below.

7.2.2 Co-expression analysis

Co-expression analysis is used to identify groups of genes from large gene sets
that have similar expression patterns that can, for example, indicate interactions
between genes involved in a cancer pathway (Rhodes et al., 2007a,b). This process
begins with calculation of the variance of each gene across all samples in a study,
and selection of the top 10,000 most variable genes. Standard average linkage
hierarchical clustering is then used to identify significant clusters of co-expressed
genes among the 10,000 most variable genes. Thus a Gene Search in Oncomine,
followed by navigation to the ‘co-ex’ tab, retrieves a list of all studies for which
the queried gene was one of the top 10,000 most variable genes and was also a
member of a cluster of similarly expressed genes. Results for any individual study
can be visualized as either a gene list or as a heat map, as shown in Fig. 7.2.
Co-expression clusters are also used to generate concepts in Oncomine Concepts
Map, as discussed below.

Fig. 7.2: Sample Co-Expression Gene List and Heat Map results from a single
study (Stearman Lung) containing Normal Lung and Lung Adenocarcinoma
samples in Oncomine. The ADH1B cluster has a correlation of 0.9201 (cor-
relation value of the 10th ranked gene) with a count size of 14 (number of
genes that have a correlation of 0.9201 or better). See Plate 6.
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7.3 Meta-analysis

Microarray technologies generate false positive results for a number of reasons,
making it important to devise strategies for selecting only the most promis-
ing candidate genes for further research (reviewed in Rhodes and Chinnaiyan,
2004b). One obvious approach is to compare the results of different studies to
determine which genes are differentially expressed repeatedly, across different
labs and different microarray platforms. This solution is difficult to implement,
however, because raw microarray data from different studies is generally not
directly comparable (Kuo et al., 2002; Tan et al., 2003). An important break-
through came with the observation that while experimental variability may cause
expression levels of a gene to vary randomly between studies, the results of dif-
ferential expression analyses for that gene – the difference in expression of a gene
between normal and cancer tissues, for example – should be relatively constant
(Rhodes et al., 2002; Rhodes et al., 2004c). In Oncomine, differential expression
results for each gene are reported in statistical terms, as p-values and Q-values, as
described above. The meta-analysis function builds on these calculations by com-
paring p-values in selected differential expression analyses from different studies,
and reporting a list of genes ranked by p-values across these studies. As the size
of the database has grown, so has the potential for using meta-analysis to make
such cross-study comparisons (Niemantsverdreit et al., 2007; Sharifi et al., 2007;
Wilson and Giguere, 2007).

7.4 Application

An example of an Oncomine meta-analysis is shown in Fig. 7.3. A Profile Search
was used to identify all lung studies available in Oncomine, and then four iden-
tical analysis types (Class 1 = Normal; Class 2 = Lung Adenocarcinoma) from
four independent studies (Garber et al., 2001; Bhattacharjee et al., 2001; Beer
et al., 2002; Stearman et al., 2005), were selected for meta-analysis.

Meta-analysis results are visualized in two ways. The gene list view provides
a ranked list showing the gene name, the list of studies in which that gene was
over- or under-expressed, the p-value for that study, and a link to a box plot
view of the data distribution. Alternatively, the Metamap view provides a view
in which each study is a column and each gene a row, with the level of significant
expression indicated by colour. This provides a visual cue of the level of over-
(red) or under-expression (blue). The heat map also shows a single p-value, and
a link to a box plot view of the underlying data.

For both the gene list and the Metamap visualizations, the method for rank-
ing depends on the number of studies selected in the Study Count window.
When Study Count = 1, Oncomine generates a list that is ranked by the most
significant p-values across the selected studies, irrespective of overlap between
studies. Note that in this case the p-value reported in the heat map corresponds
to the most significant p-value reported in the four analyses (Fig. 7.3a). When
Study Count = 2, Oncomine generates a list that is ranked by the second most
significant p-value for each gene (Fig. 7.3b).
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(a)

(b)

Fig. 7.3: Continued.
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(c)

(d)

Fig. 7.3: Gene Lists and Heat Maps from Normal Lung vs. Lung Adenocar-
cinoma in four studies showing the effects of varying the Study Count. (a)
For Study Count = 1, results are ranked by the most significant p-value for
each gene. (b) For Study Count = 2, results are ranked by the second most
significant p-value for each gene. (c) For Study Count = 3, results are ranked
by the third most significant p-value for each gene. (d) For Study Count =
4, results are ranked by the fourth most significant p-value for each gene.
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The advantage of using very strict criteria – in this example, Study Count =
4 generates a list ranked by the least significant p-value for each gene across the
four studies (Fig. 7.3d) – is that the resulting list is highly conservative, and the
results very likely to be real. The disadvantage is that this is likely an under-
representation of relevant genes, since genes that are not measured on every
platform, or that are poorly measured in a single case will not rank. For these
reasons many users utilize the default ‘leave-one-out’ strategy of selecting a Study
Count that is one less than the total number of studies compared (Fig. 7.3c).

7.5 Oncomine Concepts Map

An alternative approach for comparing results across studies is Oncomine
Concepts Map (OCM) (Rhodes et al., 2007b; Tomlins et al., 2007). Like
meta-analysis, this method often begins with the results of single study differ-
ential expression analysis in Oncomine. However, while meta-analysis compares
p-values of individual genes, OCM compares the overlap of sets of genes – often
referred to as gene signatures – between different experiments.

7.5.1 Assembling gene signatures

Oncomine Concepts Map is similar in structure to Oncomine in that it is a
combination of data repository, analysis tools, and web-based user interface.
However, instead of using microarray data as its source, OCM is built around
a large and growing repository of gene signatures. Many of these signatures
are derived from differential and co-expression analyses in Oncomine, which in
OCM are called Oncomine Gene Expression Signatures and Oncomine Cluster
Signatures, respectively. Other lists are manually curated from the literature, or
are downloaded from public sources. A full list of concepts currently available in
OCM is shown in Table 7.1.

Here we focus on the two types of concepts that are generated directly
from the Oncomine database. First, for every differential expression analysis
conducted in Oncomine, six Oncomine Concept lists are generated:

• Top 1 % Over-Expressed in Class 2 vs. Class 1
• Top 5 % Over-Expressed in Class 2 vs. Class 1
• Top 10 % Over-Expressed in Class 2 vs. Class 1
• Top 1 % Under-Expressed in Class 2 vs. Class 1
• Top 5 % Under-Expressed in Class 2 vs. Class 1
• Top 10 % Under-Expressed in Class 2 vs. Class 1

Thus for each of the four Lung Adenocarcinoma vs. Normal Lung analyses
described in the Oncomine meta-analysis example, Oncomine Concepts Map
contains six gene signatures representing different percentages of over- and under-
expressed genes that resulted from those comparisons.

In addition to generating concepts based on differential expression analy-
sis, OCM generates and stores an additional set of concepts, called Oncomine
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Table 7.1. Source and number of gene signatures
available in Oncomine Concepts Map.

OCM Concept Types Number

• Oncomine Gene Expression Signatures 10,522
• Oncomine Cluster Signatures 11,166
• Literature-defined Concepts 657
• HPRD Interaction Sets 4144
• InterPro Protein Domains and Families 2072
• Connectivity Map Drug Signatures 1516
• GO Biological Process 855
• GO Cellular Component 249
• GO Molecular Function 818
• Transfac Transcription Factor Targets 361
• Chromosome Cytoband 314
• Biocarta Pathway 260
• Conserved Promoter Motifs 174
• picTar predicted miRNA target genes 168
• KEGG Pathway 160
• Conserved UTR Motifs 72
• PINdb Nuclear Protein Complexes 65
• Chromosome Arm 48
TOTAL 33,621

Cluster Signatures, that are derived from the results of co-expression analy-
ses: co-expression clusters with 20 or more reporters with correlation of 0.5 or
higher are added as individual gene lists to Oncomine Concepts Map. Because
some reporters map to the same gene (or to no gene), actual gene cluster sizes
in OCM may be smaller. For the four lung adenocarcinoma studies described
above, OCM generated the 55 Oncomine Cluster Concepts shown in Table 7.2.

7.5.2 Association analysis

In addition to acting as a repository for individual gene signatures, Oncomine
Concepts Map conducts large-scale association analysis across all concepts in
the database. Molecular concepts are stored in a relational database schema
that stratifies concepts by type, and that associates genes with Entrez Gene
identifiers. In addition, each concept is assigned a ‘null set’, which represents
the full set of genes from which the concept genes were defined. Every possible
pair of concepts is tested for significant overlap by counting the number of genes
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Table 7.2. Summary of the number and sizes of Oncomine Cluster
Signatures derived from co-expression analyses of four different lung
studies in Oncomine.

Study Name Number of Size of Largest Size of Smallest
Clusters Cluster Cluster

Beer Lung 3 29 genes 23 genes
Bhattacharjee Lung 14 296 genes 13 genes
Garber Lung 28 162 genes 6 genes
Stearman Lung 10 323 genes 16 genes

measured and present in both concepts, and assessing the significance of overlap
using Fisher’s exact test. Results are stored if a given test has an Odds Ratio
greater than 1.25 and a p-value less than 0.01. p-values less than 1e-100 are set
to 1e-100 (Rhodes et al., 2007b).

The Oncomine Concepts Map web interface also allows users to upload con-
cepts privately. Each of these additional gene lists is compared in the same way
to each of the other 33,000+ public concepts available in OCM, but the results
are only viewable by that particular user.

7.6 Application

7.6.1 Direct comparison of Oncomine concepts results to
meta-analysis results

Since differential expression analyses are the basis both for the individual signa-
tures compared in meta-analysis, and for the gene signature concepts stored in
Oncomine Concepts Map, it is possible to use Oncomine Concepts Map as an
alternative to meta-analysis for directly comparing gene lists from different stud-
ies. For example, data from the same four lung adenocarcinoma studies used in
the previous example can also be identified by doing a Concept Search on ‘lung
adenocarcinoma’ in Oncomine Concepts Map, followed by selection of Concept:
Lung Type – ‘Top 10% under-expressed in Lung Adenocarcinoma (Garber)’.
This concept can be used as a query concept to find similar signatures, using
filters to focus on ‘lung’ and ‘cancer vs. normal’ (Fig. 7.4).

Once identified, concepts of interest can be selected, and comparisons between
gene lists visualized as a network, heat map (overlay), or table. Not surprisingly, a
direct comparison of the gene list derived from Oncomine Concepts Map closely
matches the one derived from meta-analysis in this example where the exact
same analyses were used as the starting point (data not shown); the size of the
resulting gene lists and degree of overlap depends on the criteria used in each.
However, while a set of validated, overlapping genes is generally the end-point
in meta-analysis, in Oncomine Concepts Map it is the starting point for a series
of additional queries.
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Fig. 7.4: Normal Lung vs. Lung Adenocarcinoma concepts in OCM correspond-
ing to the same four analyses used in the meta-analysis in Fig. 7.3.

To demonstrate how this is accomplished, the gene list derived from the
meta-analysis example (Fig. 7.3d) was uploaded into Oncomine Concepts Map.
During Concept Upload, Oncomine automatically computed the association of
the new gene list with the 33,000+ concepts already in the database, and then
provided an interface for exploring the results. The meta-lung adenocarcinoma
list was significantly associated with 1959 existing concepts in OCM, providing
many opportunities for exploring relationships between genes on this list and
those involved in a range of other biological processes.

One basic question that can be asked is where the genes on the list are
expressed in normal tissue: one concept showing significant interaction with the
meta-lung query concept is Yanai Normal (Yanai et al., 2005). Selecting the
analysis button associated with this concept retrieves a heat-map of genes dif-
ferentially expressed between lung and a variety of other normal tissues, filtered
by the genes from our meta-lung query concept. That is, only genes from the
Yanai analysis (genes over-expressed in lung compared to other normal tissues)
that are also in the meta-lung concept are shown (Fig. 7.5). Note that this result
immediately shows that a number of genes that are under-expressed in lung ade-
nocarcinoma (the query concept) are significantly over-expressed in normal lung
when compared to other normal tissues.

It may also be of interest to know if other cancer types, when compared to
their normal counterpart, similarly under-express the set of genes identified in
the meta-analysis of lung adenocarcinoma example. Results from Fig. 7.6 show
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Fig. 7.5: Heat map of genes over-expressed in normal lung as compared to a
number of other normal tissues, filtered by the set of genes identified in a
meta-analysis of genes under-expressed in lung adenocarcinoma as compared
to normal lung. See Plate 7.

that both prostate (Welsh et al., 2001) and ovary (Lu et al., 2004) cancers show
similar under-expression when compared to normal tissues.

In addition to measuring the association of the query concept against other
Oncomine gene signatures, Oncomine Concepts Map contains a wide range of
biological concepts derived from other sources (Table 7.1). Filtering on Concepts
within the KEGG pathway, for example, shows that genes on the meta-lung ade-
nocarcinoma list significantly overlap with genes involved in the regulation of
the actin cytoskeleton, the coagulation cascade, and other biochemical pathways
(Fig. 7.7a). Similarly, by searching on Concepts within the Transfac Transcrip-
tion Factor Targets, it is possible to identify transcription factors that associate
significantly with this concept (Fig 7.7b). These results show how comparing the
gene list from one experiment to gene lists derived from other experiments can
provide unexpected insights and open new lines of inquiry. Beginning this type
of open-ended inquiry with a highly validated meta-analysis signature, as shown
here, is likely to be an effective strategy for ensuring that the query concept
contains genes with a high likelihood of real biological significance.
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(a)

(b)

Fig. 7.6: Heat map of genes under-expressed in cancer as compared to normal
tissues, filtered by the set of genes identified in a meta-analysis of genes
under-expressed in lung adenocarcinoma as compared to normal lung. (a)
Normal prostate vs. prostate cancer. (b) Normal ovary vs. ovarian carcinoma.
See Plate 8.
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(a)

(b)

Fig. 7.7: Oncomine Concepts Map results of KEGG pathway genes lists (a) and
Transfac Transcription Targets (b) that associate with genes identified in a
meta-analysis of genes under-expressed in lung adenocarcinoma as compared
to normal lung.
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7.7 Conclusion

In summary, we have demonstrated two methods by which Oncomine re-utilizes
data from multiple published studies to drive further insight into existing data
and to advance cancer research.

Meta-analysis of microarrays relies on the comparison of gene expression
between two classes of samples within the study – in our example normal lung
vs. lung adenocarcinoma – as a reliable measure that can be used to compare
results across studies, in a way that raw expression values from a single class
of samples (lung adenocarcinoma) cannot. Oncomine automatically calculates
these differential expression values for every gene in selected comparison types,
and makes them available to users for a variety of purposes including meta-
analysis. Meta-analysis makes it possible to distinguish and focus on results that
are consistent across studies and are thus likely to represent actual biological
events.

Oncomine Concepts Map begins with data from the same differential expres-
sion analyses, but stores the results as gene lists encompassing the top 1, 5, and
10 % of genes that are over- or under-expressed in each analysis. While these
gene lists can be used, as in meta-analysis, to validate results across studies, the
real value of OCM is that it provides a systematic way to compare gene lists
derived from a variety of sources, opening new opportunities for assessing the
degree of genetic overlap between disparate biological processes.

Importantly, none of the individual methods described here involve highly
complicated statistical analysis techniques. Rather, the impact of this effort relies
on the continued accumulation of large quantities of existing data, curation to
provide complete and accurate datas ets, organization of the data into a stan-
dard format, and the development of an intuitive interface. To date Oncomine has
facilitated many novel discoveries that have contributed to the biological under-
standing of cancer, as well as to the broader effort of diagnosing and treating
this complex disease.
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BIOINFORMATIC APPROACHES TO THE ANALYSIS OF
ALTERNATIVE SPLICING VARIANTS IN

CANCER BIOLOGY

Lue Ping Zhao, Jessica Andriesen and Wenhong Fan

8.1 Introduction to alternative splicing

Human genes, like those of other eukaryotes, contain intervening sequences that
are present in the genomic DNA and are transcribed by transcription com-
plexes, but do not get translated into the final protein product. These intervening
sequences, termed introns, must get removed as part of the maturation process of
the messenger RNA (mRNA) so that they do not become part of the translated
message. The transcribed regions of the sequence that remain in the mature
message are termed exons. The exonic sequences, together with the poly(A) tail,
constitute the nucleic acids present in the mature mRNA.

The removal of introns from the pre-mRNA ocurrs by a process known as
splicing. In general terms, the cellular splicing machinery (the spliceosome) catal-
yses the intramolecular joining of exon sequences in a sequence-specific way to
produce a mature message. Consensus sequences that define the location of this
joining, termed splice sites, play a major role in the determination of the resulting
product. Much work has been done to identify the cellular components that make
up the spliceosome and the sequences it recognizes, and so constitutive splicing
is fairly well understood at the molecular level. However, throughout the quest
to understand splicing at an overall level, other cis- and trans-elements that
affect specific splice sites have been identified, implying a higher-order regula-
tion of splicing and the existence of alternate splice forms which contribute to
the diversity of cellular functions.

8.1.1 Traditional methods for splicing analysis

Traditional genetic systems were initially utilized to shed light on the mech-
anisms and understanding of constitutive as well as alternative splicing. Sex
determination in Drosophila melanogaster, for example, was one of the initial
systems used to understand splicing regulation and demonstrate that much of
the same machinery is utilized for both systems (Hodges and Bernstein, 1994).
In this system, as well as others, alternatively spliced genes were studied on a
gene-by-gene basis, with the limitations of the molecular techniques available
at the time. For example, Northern blots with exon-specific probes were often
used to demonstrate the presence or absence of specific exons in transcripts of
genes thought to undergo alternative splicing, such as the proto-oncogene Sint1
(Sorensen et al., 2002).
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The use of the enzyme reverse transcriptase (RT) to generate cDNA from
mRNA species opened up a new field of mRNA analysis. The combination of RT
and polymerase chain reaction (PCR) gave scientists a way of amplifying and
cloning even rare mRNA variants that could then be used for further studies.
Large libraries of expressed sequence tags (ESTs) were generated from many
tissues, species and timepoints in development. From these EST clones, longer-
length cDNAs were identified, giving researchers their first glimpse at the world
of alternatively spliced mRNA. Various types of alternative splicing were seen,
including exon-skipping, alternatively used exons, the use of cryptic splice sites,
the inclusion of so-called intronic sequences, and more (Fig. 8.1). However, these
analyses were plagued with problems such as incomplete cDNA synthesis and
encountered obstacles in the identification, annotation, and curation of such a
large number of sequences (Matsubara and Okubo, 1993).

As illustrated here, alternative splice variants can arise from any combina-
tions of exons or alternative exons. One theoretical question is how many different
alternative splice variants can exist from a given number of exons. To proceed
with a theoretical calculation, let us assume that a gene has N exons. Further, we
assume that each exon can take three possible states: complete absence, presence
of the entire exon, and partial presence. Under the assumption that each mature
message must include the first and last exons, the total number of theoretical
alternative splice variants equals 3N−2. In addition, intronic sequence(s) may or
may not be inserted into the mature message, resulting in another multiplier of
2N−1. Collectively, the theoretical number of alternative splice variants can be

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 2 Exon 3a Exon 4

Exon 1 Exon 2 Exon 3 Exon 4I 1 
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Fig. 8.1: Exemplified alternative splice variants within a hypothetical gene:
(1) all exons are included; (2) exon skipping; (3) use of cryptic splice site
generates an alternative exon 3 (exon 3a); (4) inclusion of intronic sequence
in mature message.
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as large as 2 · 6N−2. When the number of exons within a gene is larger than five,
the total number of variants can be quite substantial.

8.1.2 Current estimates of alternative splicing in humans
The number of known splice variants that occur in humans (the alternative
transcriptome) is continually increasing. At present, over half of human genes
have documented alternative splice forms, and several database repositories
for annotating and curating these alternatively spliced sequences are currently
maintained. For example, the Alternative Splicing and Transcript Diversity
(ASTD) database project is run by the European Bioinformatics Institute. The
ASAP II Database, which can be queried for cancer-specific alternative splice
forms, is maintained by the University of California Los Angeles Bioinformatics
Department, and both alternative and traditional splicing variants are collected
in AceView from the National Center for Biotechnology Information (USA).
These databases also contain information on alternative splicing in a number of
additional species, including mouse, rat, nematodes, and others.

8.1.3 Alternative splicing and cancer
Although alternative splicing occurs commonly in normal cells and tissues, alter-
ations of this process in cancer cells can result in the creation of new mRNA
species or the alteration of ratios between isoforms in tissue-specific ways. There
are numerous studies of specific genes with splicing alterations related to can-
cer (reviewed in Venables 2006); however, at this time it is still unclear whether
these alterations are related to cancer biology or are merely by-products of path-
ways activated during the progression to disease. Nonetheless, this group of genes
includes many well-known players including p53, TERT, and members of the cas-
pase and Bcl2 families. Alternative splice forms have also been found in cancers
of all stages. Thus, the questions for the study of alternative splicing as it relates
to cancer biology are many-fold: how does alternative splicing evolve during this
process? What is the role of alternatively spliced forms in the progression to can-
cer? Will limiting the splicing of these alternative forms slow disease progression?
Can these patterns be used as biomarkers to detect and potentially treat certain
cancer forms in a more effective way? Researchers aim to understand the types
of changes that occur when cells become cancerous. However, single-gene specific
analyses will not be sufficient to answer these questions, and cancer researchers
have become reliant on large data sets primarily generated using oligonucleotide
microarray technology.

8.2 Oligonucleotide arrays for detecting alternative
splicing variants

The development of oligonucleotide microarray technology gave scientists a pow-
erful tool for the analysis of alternative splicing. Currently, experiments that
previously took years of library construction, sequence analysis and extensive
annotation can be accomplished within a few months’ time, with far fewer
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resources and smaller amounts of precious sample materials required. The types
of microarrays utilized and their advantages and disadvantages for the study of
alternative splicing are outlined below.

8.2.1 cDNA arrays

A typical cDNA array includes a large number of long probes that are comple-
mentary to the target sequences within candidate genes (Brown and Hartwell,
1998; Brown and Botstein, 1999). When test and reference samples labelled
with two different fluorescent dyes are placed onto the array, the differential
hybrizations of test and reference samples with probes are directly observed via
measuring intensity values of the two dyes. Although this technology is primar-
ily designed to study gene expression, it can be used for assessing alternative
splicing variation when multiple probes are used to cover a single gene. However,
this application has several limitations. The primary limitation is that cDNA
arrays are typically constructed with relatively long, single probes for each gene.
While this is adequate for assessing expression levels of transcripts if the target
sequence is not spliced out, such a probe is not sufficiently useful for assessing
alternative splice variants, either because the single probe sequence is unable
to detect exon variations or the probe is too long to identify missing exons. To
address this issue, some investigators have put effort into the development of
customized arrays to detect alternative splicing. However, these studies can be
cost prohibitive, and these arrays are often designed in a study-specific manner.
Some commercially available array systems are a step increased from the previous
systems. At this point, these arrays are often designed with information derived
from large sequence databases, some of which are known to be biased, including
the enrichment of 3′ sequences due to the methods of EST and cDNA construc-
tion. The need to overcome such biases has stimulated a dynamic development
of commercialized oligonucleotide arrays specifically designed for the study of
splicing events.

8.2.2 GeneChip arrays

One commonly used array system is the GeneChip, produced by Affymetrix Inc.
(www.affymetrix.com). In contrast to the typical two colour cDNA system that
uses a single long probe, the GeneChip system uses multiple pairs of perfect-
and mismatch probes (the actual number of pairs varies according to the chip
version). A perfect-match probe has a short oligo sequence with 25 nucleotides
that are perfectly matching with the targeting sequence. The mismatch probe
has the same probe sequence, except for one nucleotide that is mismatched with
the target sequence. Typically, multiple probe pairs cover different segments of
the target transcript, and tend to be biased towards the 3′ end. When these
probes cover different exons, they can be effectively used to detect the presence
of alternative splice variants (ASV). However, since it is designed to assess gene
expression levels, the GeneChip array has major limitations when it is applied to
assessing ASV. For example, the short oligo-probes are chosen without respect

www.affymetrix.com
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to optimizing the detection capability of ASV. In fact, many probes are located
towards the 3′ end of the target sequence, covering a small portion of the gene,
and hence are inadequate for assessing ASV. Recognition of this and other limi-
tations has stimulated the development of alternative technologies for assessing
ASV, such as exon arrays.

8.2.3 GeneChip exon arrays

To focus on increasing the detection capability of exons within each gene,
Affymetrix Inc. has developed an exon array; the exon array uses one or more
probes to cover each individual exon within each gene. Naturally, this technol-
ogy is much more appropriate for assessing ASV throughout the genome. These
arrays contain probes targeted specifically at exons, often with multiple probes
per exon, enabling evaluation of expression at exon-specific as well as gene-
specific levels. Because the probes are not based solely on pre-existing mRNA
species, these arrays also facilitate the detection of novel splice forms.

Although this is a marked improvement over the use of GeneChip expression
arrays from the perspective of assessing ASV, the content of these arrays is
still not comprehensive. For example, the use of a cryptic splice site within an
exon may result in the inclusion or exclusion of a large portion of the exon,
giving a false read from an exon chip. Alternatively, the inclusion of ‘intronic’
sequences in the final RNA product may be missed, as these sequences may not
be represented on the chip. Finally, the expression of unknown or unpredicted
genes would not be accessible using this system. Overcoming these limitations
motivated the development of tiling arrays (see below).

8.2.4 Tiling arrays

Perhaps the most robust and thorough evaluation of genomic sequence for RNA
splicing comes from the use of genome tiling arrays. These arrays, in which
oligonucleotide probes are based on sequences that are evenly spaced throughout
the genome, are not limited to annotated genes and make no a priori assump-
tions about gene structure. These probes can either be partially overlapping or
non-overlapping in nature. Preliminary studies using arrays of this type have
generated evidence that much more of the genome is transcribed than originally
thought (reviewed in Mockler et al., 2005).

Tiling arrays have also been utilized as a mechanism for resequencing regions
of the genome from many individual samples. In this case, the probes are tiled at
a one base resolution, enabling the analysis of each nucleotide within the defined
region. Information gathered from these analyses could help contribute to the
study of alternative splicing by identifying functional polymorphisms that can
then be correlated with known splicing outcomes, providing a genetic basis for
observed differences seen betweeen groups of samples. These larger and more
complicated array systems, however, present greater problems in terms of data
analysis. With extremely large numbers of data points per sample, and probe
hybridization characteristics dependent on many factors, careful interpretation
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of signals from microarrays must be made a priority. Never before has the need
for bioinformatics and computational approaches to biological data analysis been
so great.

8.3 Bioinformatic approaches

8.3.1 Two group design

8.3.1.1 Matched design Recognizing the complexity of gene expression and its
variations across different cellular populations, one often considers a matched
study design. Specifically, the study may include a group of randomly selected
cancer patients who have been diagnosed with a solid tumour. As such a tumour
is surgically removed, it is common that a relatively sizable piece of tissue, includ-
ing the solid tumour, is removed from the cancerous organ. The removed tissue
includes the targeted tumour tissue as well as ‘normal’ looking tissues, i.e. adja-
cent normal tissues. To compute the differences in alternative splice variants
(ASV) between tissues, let vectors Yi1 and Yi0 denote the intensity values of
probes that are used to measure the abundance of the corresponding expression
levels in tumour and normal tissues, where the subscript i is used to denote the
ith patient. For such a design, the most effective quantification of ASV is via
modelling the difference vector Zi = Yi1 − Yi0. How to model this difference
vector will be discussed below.

There are pros and cons associated with this design. The primary advan-
tage of this design is that it enables the extraction of ASV information from the
difference. Since the difference eliminates subject-specific variations, the differ-
ence vector quantifies only differentially expressed signals between cancerous and
normal tissues. Hence, the resulting information is less likely confounded by any
subject-specific variations, such as age, gender, or ethnicity, provided that such
variables do interact with ASV. Statistically speaking, the results from analysing
such difference data tend to be robust. On the other hand, natural variations
associated with the difference Zi = Yi1 − Yi0 are increased, and the increment is
determined by the intra-correlation between cancerous and normal tissues. On
one extreme, Yi1 and Yi0 are highly correlated due to shared subject-specific
effects. If so, the difference eliminates such subject-specific effects, without sig-
nificantly increasing the variation. On the other extreme, variations in ASV
assessments Yi1 and Yi0 are independent, and hence there is no need to control
subject-specific effects. In this case, the variance of the difference could be dou-
bled. If this is the case, it is much preferred to consider the unmatched design,
described below.

8.3.1.2 Unmatched design In contrast to the matched design, an unmatched
study design consists of collecting a random sample of cancerous tissues as the
case samples, and a random sample of normal tissues as the control samples.
Preferrably, case and control samples are from different subjects, guaranteeing
independence across all samples. Let the binary indicator di = 1 or 0 denote
that the ith subject is a case or control, respectively. For modelling ASV, one
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would use an intensity value vector Yidi
(with the additional index di) as the

quantification of ASV information, i.e. Zidi
= Yidi

. The section below describes
an analytic strategy for modelling such data.

Like the matched design, the unmatched design also has its strengths and
weaknesses. The primary advantage is that this design is relatively easier to
implement if normal biopsy samples are readily available. In addition, this design
is potentially more efficient than the matched study design due to larger sample
sizes for each of the two groups. However, this design becomes inferior to the
matched design if the subject-to-subject variation is much greater than the subtle
signals to be detected between cancerous and normal tissues.

8.3.2 Functional alternative splicing variants utilizing exon arrays

ASV may be an important mechanism for cells to produce sufficient diver-
sity in their molecular repertoire. An earlier schematic (Fig 8.1) identifies the
potential structure of multiple exons within a single gene. To enable the formal-
ization of ASV analysis, we use a slightly different representation of the ASV
data (Fig. 8.2). Suppose that a gene structure includes four exons with variable
sizes. Within each exon, variable numbers of probe sets have been identified and
incorporated into the oligonucleotide-array, indicated by small triangles. In the
figure, the notation ‘H’ and ‘L’ is introduced to denote high and low expression

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 2 Exon 3a Exon 4

Exon 1 Exon 2 Exon 3 Exon 4I 1 

Exon 1 Exon 2 Exon 3 Exon 4

Y11 Y12 Y13 Y14 Y21 Y22 Y31 Y32 Y33 Y41 Y42

        H     H      H    H                H        H                 H             H                 H                   H             H

        H     H      H    H                L        L                 H             H                 H                   H             H

        H     H      H    H                H        H                 L             H                 H                   H             H

        H     H      H    H                H        H                 H             H                 H                   H             H

Fig. 8.2: Notation introduced for this hypothetical gene structure: Ykl denotes
the intensity value for the lth probe within the kth exon, and symbols H and
L stand for relatively high or low intensity values for every probe. Indices i
(subject) and j (gene) are suppressed here for convenience.
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values, respectively, and thus, corresponding exons are detected with varying
expression values. Now we use the subscript i for the ith subject, j for the jth
gene, k for the kth exon, and l for the lth probe. Yijkl is used to denote the mea-
surable signal for the corresponding probe. Suppose that for all possible ASV,
the transcripts are configured to have exons 1 and 4, but exons 2 and 3 are alter-
natively spliced into four possible species: with or without exon 2, 3 or both. By
expectation, numerical expression values for each probe set are relatively high if
the corresponding exon is present, or are relatively low, otherwise.

While ASV are conceptually well-defined, detecting all possible ASV in a
given biological sample is challenging. Presumably, a single gene could have mul-
tiple ASV within a single cell/tissue. Hence, actual measurements via oligo-arrays
are average values of all ASV that contain the given probe sequence, thus the
average values do not provide any information for ASV at the individual probe
level.

Within the two group study, however, we are contrasting measurements
between two groups probe-by-probe, and thus have an opportunity to detect
differences of averaged measurements between two groups. Now if no difference
is detected, one could conclude either that the targeted exon is not involved
in the alternative splicing process, or that the target exon is involved in the
alternative slicing process but the corresponding ASV is not associated with the
cancerous development. On the other hand, if a statistically significant difference
is detected, one would conclude not only the presence of ASV for the target exon,
but also its association with the disease phenotype. Hence, we term such ASV
as functional ASV hereafter.

8.3.3 A general framework
Consider an unmatched study with I independent subjects, who may be cases
(di = 1) or controls (di = 0). The tissue sample from each subject is assayed
with one of the array technologies described above. Suppose that each array
includes J genes, with the subscript running from j = 1 to J . Each gene has
variable numbers of exons, with the subscript k = 1, 2, . . . ,Kj . Further, each
exon is covered by one or more probe sets, with l ranging from 1 to Ljk. For
those exons not covered by any probe set, it is meaningless to incorporate such
a variable. For each probe set, one typically has multiple probes, denoted by the
subscript m. The actual number of probes is fixed depending on the choice of
technology. For example, earlier versions of Affymetrix technology use 11 probe
pairs, while recent versions use only four probes. Other oligonucleotide-array
technology uses one single long probe. Now let Yijklm denote the intensity value
for the jth gene, the kth exon, the lth probe set, and the mth probe in the ith
subject. Here, another complexity, with Affymetrix technology in particular, is
the use of a mismatch probe, and is ignored here, since it is no longer used in
the newer chips. Aside from expression values, a study frequently collects one or
more covariates xi, such as age, gender, and medical history.

The intensity value, quantifying the abundance of the mRNA hybridized on a
probe and denoted as Yijklm, is a random variable. Its average value is influenced
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by gene-specific, exon-specific, probe-specific hybridization, non-specific ran-
dom hybridization on chip, and, finally, biological/sample-specific variations. To
meaningfully capture biological variations, one would have to model multi-level
sources of random variations. A linear model is typically desired, and may be
written as

Yijklm = δi + λi(αjklm + βjkdi) + εijklm, (8.1)

where αjklm is associated with the probe-specific and non-specific hybridization,
and βjk quantifies the difference between cancerous and normal tissues for the
kth exon within the jth gene while δi and λi are heterogeneous factors to be esti-
mated. When array data are appropriately normalized, δi are around zero, and λi

centres around 1. In general, introduction of both parameters ensures correction
of heterogeneity prior to the final association analysis, a good analytic practice.
The random residual εijklm is assumed to be independent across subjects and
may be correlated among multiple probes within the probe set, among multiple
probes within the exon, and among multiple exons within the gene, except that
the correlation structure is unspecified. Furthermore, its random distribution is
unspecified.

Focusing on our primary analytic objective, which is to estimate αjklm and
βjk, we have introduced an idea of applying an estimating equation technique
(Fan et al., 2006). Basically, one can establish an estimating equation for esti-
mating the mean parameters αjklm and βjk via modelling the marginal mean
vector µi = (µ11i, . . . , µjki, . . .), which may be written as E(Yi) = {E(Yijklm)}
given disease status. Generically, the estimating equation, with identity weight
matrix, can be written as

I∑
i=1

∂µi

∂(α, β)
(Yi − µi) = 0, (8.2)

where α and β are vectors of parameters specified in the above eqn (8.1). This
estimating equation may not be considered statistically efficient, because all
covariances between probes are set to zero, leading to an identity weight matrix.
However, the construction of this estimating equation leads to a simplified and
explicit expression for computation, hence leading to a computationally efficient
implementation. It is easily scalable to process a large number of probes. As
a general theory, the estimating equation technique was proposed in the early
1970s, and was made popular by Liang and Zeger (1986). The basic idea is
that one can obtain a consistent estimate of parameters using moments, such as
means, variances, and covariances, from an estimating equation, without requir-
ing any distributional assumption. Its performance is expected to be more robust
than the likelihood estimate, mostly because the former requires no distributional
assumption, while the latter does. After obtaining consistent estimates, the esti-
mating equation theorem (Liang and Zeger, 1986) will render an estimate of the
covariance matrix for estimated parameters. Such a covariance matrix can be
used for making statistical inference, when asymptotic theory is applicable.
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For the matched design, the above framework is readily applicable with some
modifications. The primary modification is that all probe intensity values need
to be modified prior to taking their differences between cancerous and normal
tissues. Some well-established algorithms for modification are implemented in
RMA (Barash et al., 2004) or in GPM schema (Fan et al., 2006). Basically,
one needs to adjust for unequal subject specific terms δi and λi, resulting in a
modified intensity value Ŷi. Following modification, one can compute the differ-
ence as Zi = Ŷi1 − Ŷi0, where the additional subscript 1 and 0 indicates case
and control, respectively. To quantify ASV, one may use the following modified
model as Zijklm = βjk + εijklm. Under such a model, the primary goal is to
estimate βjk, and to assess if βjk is significantly greater or less than zero. Note
that the intercept αjklm is excluded, because it equals zero by the matching
design. Again, the estimating equation technique is applicable for estimating a
covariance matrix, which can be used for making inferences on parameters of
interest. Specifically, the ratio of estimated coefficient over the estimate variance
square-root, i.e. signal-to-noise ratio, is statistically known as the Z-score. Under
the null hypothesis that the true coefficient equals zero, this Z-score would have
a normal distribution. Hence, one can use this normal distribution to compute a
p-value. With an appropriate account for multiple comparisons, one can set up a
threshold value for significance based on the p-value. A significant result would
indicate the presence of a functional ASV.

8.3.4 Relative versus absolute abundance
One important aspect in quantifying functional ASV is the choice of the measure-
ment scale, i.e. using relative abundance or using absolute abundance. MIDAS
by Affymetrix is software whose computational algorithm generally uses the
same statistical framework as above, but quantifies ASV via relative abundance.
Basically, MIDAS quantifies signal levels for each exon, and then computes the
relative abundance of each exon over all exons within the gene. The relative
abundance measurements are then used in all downstream analyses. In con-
trast, Partek r© Genomics Suite, implemented by Partek, also uses virtually the
same modelling framework as described above, except that it uses exon- and
probe-specific intensity values as their absolute abundance measures.

While the statistical framework described here is applicable to either rela-
tive or absolute measurements, the choice of the scale hinges on the underlying
assumptions about exon signals of interest. In the ideal situation, where sig-
nals for multiple exons within a gene are numerically comparable, the relative
abundance measurements via ratios would be preferred, because this calculation
normalizes exon-specific signals across multiple exons. Furthermore, its ratios
are independent of the overall abundance of that gene. Hence, the ratio-based
analysis will be more robust. On the other hand, calculated ratios in some exons
may have an inflated variance due to variations associated with other exons.
Consequently, the analysis may become less efficient.

By using absolute abundance, one implicitly assumes that the intensity values
are directly indicative of ASV at various exons. When the normalization across
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chips and across exons is adequately performed, the normalized intensity value
can be directly used for measuring the abundance of individual exons. Hence,
such an analysis would be efficient and straightforward. However, this analysis
may produce misleading results if probe-level normalization is inadequate.

More research is required to investigate pros and cons associated with each
of these two choices, and future studies with alternate array types may reveal
which technique gives more robust, accurate results.

8.3.5 Detection limits
As noted above, the theoretical number of ASV can be very large, and many
are not detectable due to the ASV complexities and limits of current technolo-
gies. First of all, multiple ASV may be present in any given tissue sample, i.e. a
mixture of different ASV. Different ASV may involve different or the same sets
of probes. Hence, the intensity values of individual probes reflect summations
of all different ASV represented by the corresponding probes. Secondly, given
the limited number of probes, the theoretical number of detectable ASV is also
much smaller. Suppose that we have a perfectly designed probe for each exon.
Hence, in the absence of any sample mixture, we can detect 2N−2 possible com-
binations of individual probes. Hence, many ASV would not be differentiable,
based upon these perfect probes. Thirdly, typical probes and their hybridization
measurements are subject to a host of technical variations. The magnitude of
these variations, coupled with the natural sample variations, would impose lim-
its on the detection of ASV. The full recognition of these limits, and many others,
would require careful use of statistical methods to extract pertinent information
relating to ASV, and, more importantly, cautious interpretation of any positive
findings.

8.4 An example
For illustration purposes, here is an example of how a bioinformatic approach
is used to predict ASV that differ between normal cerebellum and medulloblas-
tomas (Fan et al., 2006). This dataset consists of GeneChip r© Hu6800 expression
array data from 69 medulloblastoma samples and four cerebellum samples as nor-
mal controls. Among the medulloblastomas samples, 42 are from non-metastatic
tumours and 27 are from metastatic tumours. There are 7129 probe sets in the
Hu6800 expression array. Each probe set includes 20 pairs of perfect and mis-
matched probes, each of which target different segments of a gene. As noted
above, this array technology is designed for assessing abundance of transcripts,
without optimizing ASV assessments. Neverthless, one can utilize such data for
an exploratory analysis of ASV.

From the design perspective, this study may be considered as the unmatched
two-group comparison. Utilizing the general framework described in Sec-
tion 8.3.3, we attempted to identify ASV that may partially explain the difference
between medulloblastomas and normal cerebellum. First, we predicted splice
variants between the normal cerebellum and medulloblastoma tumour samples,
including both non-metastatic and metastatic tumours. Operationally, in this
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step, using a significance level of 0.05 in the t-tests, we identified 10,838 pseudo-
exons out of a total of 142,580 (7129×20) probes representing the 7129 probe sets
on the Hu6800 GeneChip r©. A schematic illustration of the probe configuration
is shown in Fig. 8.3. In the second step, we compared the difference in expression
values between the two groups for each of the pseudo-exons. The histogram of Z-
scores from this comparison is shown in Fig. 8.4. By the significance threshold of
Z-score = 4.8 (equivalent to one false positive ), we discovered 811 pseudo-exons,
which are derived from 577 genes, to be significantly different between these two
groups. Note that some genes had more than one selected pseudo-exon. A dis-
tribution of the number of pseudo-exons compared to the number of exons in
a given gene is shown in Fig. 1.5, and the full list of genes can be found as a
supplement to (Fan et al., 2006).

A target gene sequence 

5′ 3′
Exon 1 Exon 2 Exon 3 

Probe cluster 

Probe cluster 

Probe cluster 

Fig. 8.3: An graphic illustration of probes within GeneChip r©.
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Fig. 8.4: Histogram of the Z-scores for comparison between cerebellum and
medulloblastomas.
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Fig. 8.5: Frequency of pseudo-exons by number of exons in a given gene.

Applying the PathwayAssist
TM

software (http://www.ariadnegenomics.com/
products/pathway.html), we searched the literature for pathways the 577 genes
represent to shed light on the functions of these genes. The recognized pathways
can be broadly grouped into either growth/differentiation or apoptosis-related
pathways. For example, the MAPK, EGF, SAPK-JNK and PDGF pathways are
involved in cellular growth and differentiation processes; and apoptosis, caspase,
and TNF pathways relate to apoptosis.

When comparing metastatic to non-metastatic tumours, 13 genes were iden-
tified as having ASV that differed between the tumour types. Five of out of the
13 genes that we predict to have ASV were previously reported in the litera-
ture to have splice variants. They are nitric oxide synthase 1 (NOS1) (Wang
et al., 1999), low density lipoprotein receptor (LDLR) (Kim et al., 1997), throm-
bopoietin (THPO) (Gurney et al., 1995), Down syndrome critical region gene
1 (DSCR1) (Fuentes et al., 1997), and paired box gene 2 (PAX2) (Tavassoli
et al., 1997). This provides support that the methodology described can identify
biologically significant ASV differences between tissue types.

8.5 Future directions

The general framework described above can be readily generalized to study vari-
ous aspects of biological processes. For example, one aspect of a biological process
is the dynamics of transcription related to that process over time. To investigate
this property, one may design a time-course study, involving a serial collection
of cellular samples at pre-set time points, t1, t2, . . . , tn. At every time point, one
could use array technology to survey the transcriptome for various transcrip-
tional signals. In this setting of a time-course study, one could adopt the same

http://www.ariadnegenomics.com/products/pathway.html
http://www.ariadnegenomics.com/products/pathway.html
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framework by replacing the disease status ‘di’ with the time variable or its trans-
formation. The entire estimation and inference framework is readily applicable
to dissect temporal changes in ASV. This design is particularly useful for studies
involving cell lines. Its application to human studies is somewhat limited, largely
due to sample availability over time.

Another use of this framework is to assess how a group of identified ASV
candidates correlates with known ASV datasets. Statistically, one could apply
this framework by bringing in the known ASV as a covariate, and then could
assess how other transcript forms are associated with the covariate. This level
of flexibility in modelling affords us the ability to focus on biological problem at
hand. As we are postulating models, it is essential for data analysts to under-
stand biological questions, processes, and experimental constraints, so that the
model is appropriate for addressing scientific questions at hand. On the other
hand, it is equally important for biologists to understand the quantitative frame-
work, assumptions being made, and to utilize this knowledge for the appropriate
interpretation of results. Together, bioinformatics specialists, working with biol-
ogists, can postulate sensible models and systematically analyse large data sets
to evaluate different alternative splicing variants in cancer biology.
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(d)

Plate 1: An example of the HMM applied to chromosome 18 in a bladder
tumour sample. In this chromosome, we can distinguish uniparental disomy
coloured in purple in a region of approximatively 15 Mb and LOH in the
rest of the q-arm coloured in blue. In addition, the p-arm has experienced an
unbalanced amplification, coloured in orange. (a) For each SNP heterozygous
in the germline DNA, the normalized intensities of each allele are plotted.
The colours represent the estimated state of the SNP: black for state 0, blue
for state 1, green for state 2, purple for state 3, orange for state 4 and red
for state 5. (b) Shown is the region of LOH. (c) For each SNP homozygous
in the germline DNA, the normalized intensities of each allele are plotted.
The absent allele is coloured in grey. (d) Shown is the estimated sequence of
hidden states. The colour indicates the posterior probabilities of the states:
blue > 0.99, green > 0.95, orange > 0.9 and red < 0.9. See Figure 3.10 on
page 73.
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Plate 2: To study gene expression alterations that are associated with DNA
copy number alterations, DNA and RNA can be extracted from the same
sample and hybridized on both the gene expression and CGH microarrays.
An example of a microarray experiment, where the data has been integrated
using an expression annotated copy number (ECN) tool for chromosome 11
is shown. This sample shows high-level amplication of 11q13. See Figure 4.1
on page 83.
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Plate 3: Gene-expression annotated copy number plot for head and neck squa-
mous cell carcinoma cell line. All the cDNA clones on array-CGH are arranged
on the X-axis according to their base-pair position in the genome. The Y-axis
shows the copy number ratio for each clone. If the ratio exceeds 1.3, the
gene is regarded as amplified and if it is below 0.7, the gene is regarded
as deleted. The color-coding indicates the gene expression ratio of each
gene on a microarray. Red indicates over-expression, whereas green indicates
under-expression. This figure illustrates that most of the genes in highly
amplified regions show increased gene expression ratio. Below the expres-
sion-annotated copy number plot are shown the corresponding high-resolution
copy number profiles for two highly amplified regions, 11q13 and 12q14-21,
using oligonucleotide array that consists of 185,000 oligonucleotides on a sin-
gle array. These views show that a number of genes are located in highly
amplified regions. See Figure 4.2 on page 86.
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Plate 4: Comparison of conventional gene-level methods and SLEPR or
Pathway-level Pattern Extraction. Graphical display and comparison of
the brief procedures for analysis using conventional gene-level methods vs.
SLEPR or Pathway-level Pattern Extraction methods. Pathway A was shown
as an example pathway among the whole biological system, in which many
of its involved genes were changed triggered by biological stimuli, or genetic
defects in disease states. The conventional gene-level methods and SLEPR
or Pathway-level Pattern Extraction pipeline processed the genes from path-
way A as well as other pathways in different ways even for the same biological
situations under study. (a) Within a typical procedure of gene-level methods,
all measured data of each sample in study are usually put together into a
gene-level data matrix, and then a statistical analysis method (T-test, SAM,
ANOVA, etc.) is applied to all genes of the matrix to retrieve the gene-level
significant genes based on one or more statistical parameters (e.g. p-value, fold
change, FDR, etc.). Significant genes usually behave with a greater gene-level
consistency across samples in each population of contrasted classes. (b) For
the SLEPR procedure, all measured data of each sample are used to derive
the sample-level differentiated genes, which represent genes for each sam-
ple that are expressed differentiatelly compared to the rest of samples in
the population (see SLEPR manuscript for details, each sample will get a
corresponding list of sample-level differentiated genes). Then, sample-level
differentiated genes (for SLEPR) or all gene lists of different studies (for
Pathway-level Pattern Extraction pipeline) were used to perform sample-wise
enrichment analysis against each of functional annotation categories (e.g. GO
terms, GSEA annotation terms, or Biocarta Pathways, etc.). The derived
enrichment scores (ES) of each term in the chosen functional category for
each gene list were combined into an enrichment score matrix. Then pathway
ranking (for SLEPR), pathway ES heatmaps, clustering, and pattern extrac-
tion (for Pathway-level Pattern Extraction) will be applied to this ES matrix
to get significantly ranked pathways (SLEPR), unique pathways, common
pathways (for Pathway-level Pattern Extraction), respectively. Genes that
are associated with these pathways or terms can be retrieved further within
the Pathway Pattern Extraction pipeline. See Figure 6.1 on page 148.



Plate 5: Sample Differential Expression Gene List and Heat Map results from
a single study (Beer Lung) that compares gene expression in Lung Adeno-
carcinoma to Normal Lung in Oncomine. Genes are ranked by Q-value. See
Figure 7.1 on page 162.

Plate 6: Sample Co-Expression Gene List and Heat Map results from a single
study (Stearman Lung) containing Normal Lung and Lung Adenocarcinoma
samples in Oncomine. The ADH1B cluster has a correlation of 0.9201 (cor-
relation value of the 10th ranked gene) with a count size of 14 (number of
genes that have a correlation of 0.9201 or better). See Figure 7.2 on page 163.



Plate 7: Heat map of genes over-expressed in normal lung as compared to a
number of other normal tissues, filtered by the set of genes identified in a
meta-analysis of genes under-expressed in lung adenocarcinoma as compared
to normal lung. See Figure 7.5 on page 171.



(a)

(b)

Plate 8: Heat map of genes under-expressed in cancer as compared to normal
tissues, filtered by the set of genes identified in a meta-analysis of genes
under-expressed in lung adenocarcinoma as compared to normal lung. (a)
Normal prostate vs. prostate cancer. (b) Normal ovary vs. ovarian carcinoma.
See Figure 7.6 on page 172.
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